[ { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 80, 81, 82, 82, 83, 84, 85, 86, 87, 88, 88, 89, 90, 91, 92, 93, 93, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 100, 99, 99, 99, 98, 97, 97, 96, 95, 95, 94, 94, 93, 93, 92, 91, 91, 90, 90, 89, 88, 88, 87, 87, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 90, 89, 89, 88, 87, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 76, 75, 74, 74, 74, 74, 74, 74, 74, 74, 74, 75, 75, 76, 76, 77, 78, 78, 78, 79, 80, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 88, 89, 90, 90, 91, 91, 91, 90, 89, 89, 88, 86, 85, 84, 83, 83, 83, 83, 84, 84, 85, 86, 87, 87, 88, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 97, 96, 94, 93, 91, 91, 90, 90, 89, 89, 89, 89, 91, 94, 96, 94, 92, 90, 88, 88, 86, 85, 84, 84, 84, 85, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 89, 89, 90, 90, 90, 91, 93, 94, 94, 93, 92, 90, 88, 86, 84, 82, 80, 78, 77, 76, 76, 76, 75, 76, 76, 76, 77, 77, 77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 85, 85, 86, 86, 87, 87, 88, 88, 88, 87, 87, 86, 85, 84, 83, 83, 82, 82, 82, 82, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 89, 90, 92, 93, 95, 96, 96, 95, 94, 93, 92, 91, 90, 89, 89, 89, 90, 92, 94, 98, 98, 95, 93, 90, 89, 88, 87, 85, 84, 85, 83, 82, 81, 80, 89, 90, 90, 80, 80, 79, 80, 81, 81, 81, 80, 81, 80, 80, 80, 81, 83, 83, 82, 81, 79, 77, 75, 73, 71, 70, 70, 70, 70, 70, 70, 71, 71, 72, 72, 73, 73, 74, 75, 76, 76, 76, 77, 78, 79, 79, 80, 81, 82, 82, 83, 84, 84, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 92, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87, 86, 85, 85, 85, 86, 87, 88, 89, 91, 92, 93, 93, 92, 90, 87, 84, 81, 78, 75, 73, 70, 67, 65, 63, 62, 62, 62, 62, 61, 60, 58, 57, 56, 56, 55, 55, 55, 55, 55, 56, 56, 55, 55, 54, 53, 52, 51, 51, 50, 50, 49, 47, 45, 43, 42, 40, 39, 38, 52, 52, 52, 53, 53, 54, 54, 55, 55, 56, 57, 58, 58, 60, 61, 62, 64, 66, 68, 70, 71, 73, 76, 79, 81, 83, 84, 84, 85, 86, 86, 86, 87, 88, 89, 89, 87, 85, 84, 82, 80, 79, 78, 77, 75, 75, 74, 74, 74, 74, 74, 74, 75, 76, 77, 78, 80, 81, 83 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 80, 81, 82, 82, 83, 84, 85, 86, 87, 88, 88, 89, 90, 91, 92, 93, 93, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 100, 99, 99, 99, 98, 97, 97, 96, 95, 95, 94, 94, 93, 93, 92, 91, 91, 90, 90, 89, 88, 88, 87, 87, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 90, 89, 89, 88, 87, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 76, 75, 74, 74, 74, 74, 74, 74, 74, 74, 74, 75, 75, 76, 76, 77, 78, 78, 78, 79, 80, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 88, 89, 90, 90, 91, 91, 91, 90, 89, 89, 88, 86, 85, 84, 83, 83, 83, 83, 84, 84, 85, 86, 87, 87, 88, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 97, 96, 94, 93, 91, 91, 90, 90, 89, 89, 89, 89, 91, 94, 96, 94, 92, 90, 88, 88, 86, 85, 84, 84, 84, 85, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 89, 89, 90, 90, 90, 91, 93, 94, 94, 93, 92, 90, 88, 86, 84, 82, 80, 78, 77, 76, 76, 76, 75, 76, 76, 76, 77, 77, 77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 85, 85, 86, 86, 87, 87, 88, 88, 88, 87, 87, 86, 85, 84, 83, 83, 82, 82, 82, 82, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 89, 90, 92, 93, 95, 96, 96, 95, 94, 93, 92, 91, 90, 89, 89, 89, 90, 92, 94, 98, 98, 95, 93, 90, 89, 88, 87, 85, 84, 85, 83, 82, 81, 80, 89, 90, 90, 80, 80, 79, 80, 81, 81, 81, 80, 81, 80, 80, 80, 81, 83, 83, 82, 81, 79, 77, 75, 73, 71, 70, 70, 70, 70, 70, 70, 71, 71, 72, 72, 73, 73, 74, 75, 76, 76, 76, 77, 78, 79, 79, 80, 81, 82, 82, 83, 84, 84, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 92, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87, 86, 85, 85, 85, 86, 87, 88, 89, 91, 92, 93, 93, 92, 90, 87, 84, 81, 78, 75, 73, 70, 67, 65, 63, 62, 62, 62, 62, 61, 60, 58, 57, 56, 56, 55, 55, 55, 55, 55, 56, 56, 55, 55, 54, 53, 52, 51, 51, 50, 50, 49, 47, 45, 43, 42, 40, 39, 38, 52, 52, 52, 53, 53, 54, 54, 55, 55, 56, 57, 58, 58, 60, 61, 62, 64, 66, 68, 70, 71, 73, 76, 79, 81, 83, 84, 84, 85, 86, 86, 86, 87, 88, 89, 89, 87, 85, 84, 82, 80, 79, 78, 77, 75, 75, 74, 74, 74, 74, 74, 74, 75, 76, 77, 78, 80, 81, 83 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 111 ], [ 136, 235 ], [ 255, 338 ], [ 340, 353 ], [ 380, 424 ], [ 490, 506 ], [ 522, 524 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 80, 81, 82, 82, 83, 84, 85, 86, 87, 88, 88, 89, 90, 91, 92, 93, 93, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 100, 99, 99, 99, 98, 97, 97, 96, 95, 95, 94, 94, 93, 93, 92, 91, 91, 90, 90, 89, 88, 88, 87, 87, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 90, 89, 89, 88, 87, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 76, 75, 74, 74, 74, 74, 74, 74, 74, 74, 74, 75, 75, 76, 76, 77, 78, 78, 78, 79, 80, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 88, 89, 90, 90, 91, 91, 91, 90, 89, 89, 88, 86, 85, 84, 83, 83, 83, 83, 84, 84, 85, 86, 87, 87, 88, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 97, 96, 94, 93, 91, 91, 90, 90, 89, 89, 89, 89, 91, 94, 96, 94, 92, 90, 88, 88, 86, 85, 84, 84, 84, 85, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 89, 89, 90, 90, 90, 91, 93, 94, 94, 93, 92, 90, 88, 86, 84, 82, 80, 78, 77, 76, 76, 76, 75, 76, 76, 76, 77, 77, 77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 85, 85, 86, 86, 87, 87, 88, 88, 88, 87, 87, 86, 85, 84, 83, 83, 82, 82, 82, 82, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 89, 90, 92, 93, 95, 96, 96, 95, 94, 93, 92, 91, 90, 89, 89, 89, 90, 92, 94, 98, 98, 95, 93, 90, 89, 88, 87, 85, 84, 85, 83, 82, 81, 80, 89, 90, 90, 80, 80, 79, 80, 81, 81, 81, 80, 81, 80, 80, 80, 81, 83, 83, 82, 81, 79, 77, 75, 73, 71, 70, 70, 70, 70, 70, 70, 71, 71, 72, 72, 73, 73, 74, 75, 76, 76, 76, 77, 78, 79, 79, 80, 81, 82, 82, 83, 84, 84, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 92, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87, 86, 85, 85, 85, 86, 87, 88, 89, 91, 92, 93, 93, 92, 90, 87, 84, 81, 78, 75, 73, 70, 67, 65, 63, 62, 62, 62, 62, 61, 60, 58, 57, 56, 56, 55, 55, 55, 55, 55, 56, 56, 55, 55, 54, 53, 52, 51, 51, 50, 50, 49, 47, 45, 43, 42, 40, 39, 38, 52, 52, 52, 53, 53, 54, 54, 55, 55, 56, 57, 58, 58, 60, 61, 62, 64, 66, 68, 70, 71, 73, 76, 79, 81, 83, 84, 84, 85, 86, 86, 86, 87, 88, 89, 89, 87, 85, 84, 82, 80, 79, 78, 77, 75, 75, 74, 74, 74, 74, 74, 74, 75, 76, 77, 78, 80, 81, 83 ], "output": { "3. Local Minima": { "frames": [ [ 456, 465 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 89, 88, 87, 87, 86, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 89, 88, 87, 86, 85, 84, 84, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 89, 89, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 93, 93, 94, 95, 96, 97, 97, 98, 98, 99, 99, 99, 98, 98, 98, 98, 98, 99, 99, 100, 99, 98, 97, 96, 95, 94, 93, 93, 92, 90, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 91, 91, 91, 92, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 90, 90, 89, 88, 88, 87, 86, 86, 85, 85, 85, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 93, 94, 94, 94, 95, 95, 95, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 89, 88, 87, 87, 86, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 89, 88, 87, 86, 85, 84, 84, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 89, 89, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 93, 93, 94, 95, 96, 97, 97, 98, 98, 99, 99, 99, 98, 98, 98, 98, 98, 99, 99, 100, 99, 98, 97, 96, 95, 94, 93, 93, 92, 90, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 91, 91, 91, 92, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 90, 90, 89, 88, 88, 87, 86, 86, 85, 85, 85, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 93, 94, 94, 94, 95, 95, 95, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 395 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 89, 88, 87, 87, 86, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 89, 88, 87, 86, 85, 84, 84, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 89, 89, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 93, 93, 94, 95, 96, 97, 97, 98, 98, 99, 99, 99, 98, 98, 98, 98, 98, 99, 99, 100, 99, 98, 97, 96, 95, 94, 93, 93, 92, 90, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 91, 91, 91, 92, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 90, 90, 89, 88, 88, 87, 86, 86, 85, 85, 85, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 93, 94, 94, 94, 95, 95, 95, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "3. Local Minima": { "frames": [ [ 34, 53 ], [ 101, 119 ], [ 170, 175 ], [ 228, 241 ], [ 294, 303 ], [ 355, 355 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 97, 97, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87, 86, 86, 85, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 90, 90, 91, 91, 92, 93, 93, 94, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 96, 95, 94, 93, 92, 91, 90, 89, 87, 86, 86, 85, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 85, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 84, 84, 84, 83, 83, 82, 83, 83, 83, 83, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 89, 87, 86, 85, 84, 83, 83, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 97, 97, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87, 86, 86, 85, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 90, 90, 91, 91, 92, 93, 93, 94, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 96, 95, 94, 93, 92, 91, 90, 89, 87, 86, 86, 85, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 85, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 84, 84, 84, 83, 83, 82, 83, 83, 83, 83, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 89, 87, 86, 85, 84, 83, 83, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 295 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 97, 97, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87, 86, 86, 85, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 90, 90, 91, 91, 92, 93, 93, 94, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 96, 95, 94, 93, 92, 91, 90, 89, 87, 86, 86, 85, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 85, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 84, 84, 84, 83, 83, 82, 83, 83, 83, 83, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 89, 87, 86, 85, 84, 83, 83, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 92, 92, 91, 90, 89, 89, 88, 87 ], "output": { "3. Local Minima": { "frames": [ [ 27, 37 ], [ 82, 89 ], [ 136, 146 ], [ 188, 199 ], [ 243, 263 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 89, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 87, 87, 86, 85, 84, 83, 82, 82, 84, 82, 80, 77, 73, 70, 68, 67, 67, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 78, 79, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 97, 98, 98, 98, 97, 97, 96, 96, 95, 94, 94, 94, 94, 93, 92, 92, 93, 93, 94, 94, 95, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 89, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 87, 87, 86, 85, 84, 83, 82, 82, 84, 82, 80, 77, 73, 70, 68, 67, 67, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 78, 79, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 97, 98, 98, 98, 97, 97, 96, 96, 95, 94, 94, 94, 94, 93, 92, 92, 93, 93, 94, 94, 95, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 186 ], [ 205, 399 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 89, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 87, 87, 86, 85, 84, 83, 82, 82, 84, 82, 80, 77, 73, 70, 68, 67, 67, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 78, 79, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 97, 98, 98, 98, 97, 97, 96, 96, 95, 94, 94, 94, 94, 93, 92, 92, 93, 93, 94, 94, 95, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "3. Local Minima": { "frames": [ [ 188, 198 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 84, 84, 84, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 84, 84, 84, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 84, 84, 84, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "3. Local Minima": { "frames": [ [ 163, 333 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 88, 89, 90, 90, 91, 92, 93, 94, 95, 96, 97, 97, 98, 99, 100, 99, 98, 98, 97, 96, 96, 95, 95, 95, 95, 95, 95, 96, 97, 97, 98, 99, 100, 98, 97, 96, 95, 94, 94, 93, 92, 91, 89, 88, 88, 87, 86, 85, 85, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 90, 88, 87, 86, 86, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 89, 90, 90, 91, 92, 93, 93, 94, 95, 96, 97, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 96, 97, 97, 98, 98, 98, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 86, 85, 84, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 82, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 88, 89, 90, 91, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99, 99, 99, 98, 97, 97, 96, 96, 95, 95, 96, 96, 96, 97, 98, 98, 99, 98, 98, 97, 96, 95, 94, 93, 92, 90, 89, 88, 87, 86, 85, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 84, 85, 86, 86, 87, 87, 88, 89, 89, 90, 90, 91, 91, 91 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 88, 89, 90, 90, 91, 92, 93, 94, 95, 96, 97, 97, 98, 99, 100, 99, 98, 98, 97, 96, 96, 95, 95, 95, 95, 95, 95, 96, 97, 97, 98, 99, 100, 98, 97, 96, 95, 94, 94, 93, 92, 91, 89, 88, 88, 87, 86, 85, 85, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 90, 88, 87, 86, 86, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 89, 90, 90, 91, 92, 93, 93, 94, 95, 96, 97, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 96, 97, 97, 98, 98, 98, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 86, 85, 84, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 82, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 88, 89, 90, 91, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99, 99, 99, 98, 97, 97, 96, 96, 95, 95, 96, 96, 96, 97, 98, 98, 99, 98, 98, 97, 96, 95, 94, 93, 92, 90, 89, 88, 87, 86, 85, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 84, 85, 86, 86, 87, 87, 88, 89, 89, 90, 90, 91, 91, 91 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 341 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 88, 89, 90, 90, 91, 92, 93, 94, 95, 96, 97, 97, 98, 99, 100, 99, 98, 98, 97, 96, 96, 95, 95, 95, 95, 95, 95, 96, 97, 97, 98, 99, 100, 98, 97, 96, 95, 94, 94, 93, 92, 91, 89, 88, 88, 87, 86, 85, 85, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 90, 88, 87, 86, 86, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 89, 90, 90, 91, 92, 93, 93, 94, 95, 96, 97, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 96, 97, 97, 98, 98, 98, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 86, 85, 84, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 82, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 88, 89, 90, 91, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99, 99, 99, 98, 97, 97, 96, 96, 95, 95, 96, 96, 96, 97, 98, 98, 99, 98, 98, 97, 96, 95, 94, 93, 92, 90, 89, 88, 87, 86, 85, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 84, 84, 84, 85, 86, 86, 87, 87, 88, 89, 89, 90, 90, 91, 91, 91 ], "output": { "3. Local Minima": { "frames": [ [ 49, 61 ], [ 113, 130 ], [ 178, 194 ], [ 242, 259 ], [ 310, 328 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 71, 71, 71, 70, 70, 69, 69, 70, 69, 70, 70, 69, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 68, 68, 67, 67, 66, 66, 66, 66, 66, 66, 66, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 70, 71, 71, 72, 73, 73, 74, 74, 74, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 76, 76, 75, 75, 75, 75, 76, 76, 76, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 79, 79, 79, 80, 81, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 80, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 83, 84, 83, 83, 83, 83 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 71, 71, 71, 70, 70, 69, 69, 70, 69, 70, 70, 69, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 68, 68, 67, 67, 66, 66, 66, 66, 66, 66, 66, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 70, 71, 71, 72, 73, 73, 74, 74, 74, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 76, 76, 75, 75, 75, 75, 76, 76, 76, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 79, 79, 79, 80, 81, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 80, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 83, 84, 83, 83, 83, 83 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 40 ], [ 52, 167 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 71, 71, 71, 70, 70, 69, 69, 70, 69, 70, 70, 69, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 68, 68, 67, 67, 66, 66, 66, 66, 66, 66, 66, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 70, 71, 71, 72, 73, 73, 74, 74, 74, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 76, 76, 75, 75, 75, 75, 76, 76, 76, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 79, 79, 79, 80, 81, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 80, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 81, 82, 82, 82, 82, 83, 83, 83, 83, 84, 83, 83, 83, 83 ], "output": { "3. Local Minima": { "frames": [ [ 5, 6 ], [ 8, 8 ], [ 11, 11 ], [ 14, 26 ], [ 37, 57 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 90, 91, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 97, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 88, 89, 89, 90, 91, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 91, 91, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 90, 91, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 97, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 88, 89, 89, 90, 91, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 91, 91, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 431 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 90, 91, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 97, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 88, 89, 89, 90, 91, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 91, 91, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89 ], "output": { "3. Local Minima": { "frames": [ [ 21, 39 ], [ 45, 63 ], [ 185, 199 ], [ 289, 331 ], [ 428, 431 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 83, 83, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 80, 80, 79, 79, 79, 79, 80, 80, 80, 81, 81, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 87, 88, 89, 90, 90, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 99, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 87, 87, 86, 86, 86, 85, 85, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 93, 94, 93, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 83, 83, 83, 82, 82, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 89, 89, 90, 91, 92, 92, 93, 94, 95, 96, 96, 97, 98, 99, 99, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 95, 96, 96, 97, 97, 97, 98, 98, 97, 97, 96, 95, 95, 94, 93, 92, 91, 91, 90, 89, 89, 88, 87, 86, 86, 85, 85, 84, 83, 83, 82, 82, 81, 81, 80, 80, 80, 79, 79, 79, 79, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 85, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 90, 90, 91, 91, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 82, 82, 82, 82, 83, 83, 84, 85, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 99, 99, 98, 98, 97, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 91, 91, 92, 93, 93 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 83, 83, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 80, 80, 79, 79, 79, 79, 80, 80, 80, 81, 81, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 87, 88, 89, 90, 90, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 99, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 87, 87, 86, 86, 86, 85, 85, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 93, 94, 93, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 83, 83, 83, 82, 82, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 89, 89, 90, 91, 92, 92, 93, 94, 95, 96, 96, 97, 98, 99, 99, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 95, 96, 96, 97, 97, 97, 98, 98, 97, 97, 96, 95, 95, 94, 93, 92, 91, 91, 90, 89, 89, 88, 87, 86, 86, 85, 85, 84, 83, 83, 82, 82, 81, 81, 80, 80, 80, 79, 79, 79, 79, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 85, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 90, 90, 91, 91, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 82, 82, 82, 82, 83, 83, 84, 85, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 99, 99, 98, 98, 97, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 91, 91, 92, 93, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 198 ], [ 203, 838 ], [ 843, 1032 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 83, 83, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 80, 80, 79, 79, 79, 79, 80, 80, 80, 81, 81, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 87, 88, 89, 90, 90, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 99, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 87, 87, 86, 86, 86, 85, 85, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 93, 94, 93, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 83, 83, 83, 82, 82, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 84, 85, 86, 86, 87, 88, 89, 89, 90, 91, 92, 92, 93, 94, 95, 96, 96, 97, 98, 99, 99, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 95, 96, 96, 97, 97, 97, 98, 98, 97, 97, 96, 95, 95, 94, 93, 92, 91, 91, 90, 89, 89, 88, 87, 86, 86, 85, 85, 84, 83, 83, 82, 82, 81, 81, 80, 80, 80, 79, 79, 79, 79, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 85, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 90, 90, 91, 91, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 82, 82, 82, 82, 83, 83, 84, 85, 85, 86, 87, 87, 88, 89, 90, 90, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 99, 99, 98, 98, 97, 96, 95, 95, 94, 93, 93, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 89, 89, 90, 91, 91, 92, 93, 93 ], "output": { "3. Local Minima": { "frames": [ [ 63, 93 ], [ 134, 140 ], [ 191, 211 ], [ 318, 347 ], [ 454, 472 ], [ 710, 731 ], [ 830, 856 ], [ 944, 958 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 84, 85, 85, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 84, 85, 85, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 474 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 84, 85, 85, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92 ], "output": { "3. Local Minima": { "frames": [ [ 39, 160 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 69, 69, 69, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 71, 71, 72, 73, 73, 74, 74, 75, 76, 77, 77, 78, 79, 80, 81, 82, 83, 83, 84, 85, 86, 87, 87, 88, 88, 89, 89, 89, 89, 88, 88, 87, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 76, 75, 74, 73, 73, 72, 71, 70, 70, 69, 69, 68, 67, 67, 66, 66, 65, 64, 64, 63, 62, 62, 61, 61, 61, 60, 59, 59, 59, 58, 58, 57, 57, 56, 56, 56, 55, 55, 54, 54, 53, 53, 52, 52, 51, 51, 50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 69, 69, 69, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 71, 71, 72, 73, 73, 74, 74, 75, 76, 77, 77, 78, 79, 80, 81, 82, 83, 83, 84, 85, 86, 87, 87, 88, 88, 89, 89, 89, 89, 88, 88, 87, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 76, 75, 74, 73, 73, 72, 71, 70, 70, 69, 69, 68, 67, 67, 66, 66, 65, 64, 64, 63, 62, 62, 61, 61, 61, 60, 59, 59, 59, 58, 58, 57, 57, 56, 56, 56, 55, 55, 54, 54, 53, 53, 52, 52, 51, 51, 50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 136 ], [ 193, 240 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 69, 69, 69, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 71, 71, 72, 73, 73, 74, 74, 75, 76, 77, 77, 78, 79, 80, 81, 82, 83, 83, 84, 85, 86, 87, 87, 88, 88, 89, 89, 89, 89, 88, 88, 87, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 76, 75, 74, 73, 73, 72, 71, 70, 70, 69, 69, 68, 67, 67, 66, 66, 65, 64, 64, 63, 62, 62, 61, 61, 61, 60, 59, 59, 59, 58, 58, 57, 57, 56, 56, 56, 55, 55, 54, 54, 53, 53, 52, 52, 51, 51, 50, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47 ], "output": { "3. Local Minima": { "frames": [ [ 282, 363 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 91, 91, 91, 90, 90, 90, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 89, 89, 88, 88, 87, 86, 86, 85, 85, 85, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 91, 91, 91, 90, 90, 90, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 89, 89, 88, 88, 87, 86, 86, 85, 85, 85, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 441 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 91, 91, 91, 90, 90, 90, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 89, 89, 88, 88, 87, 86, 86, 85, 85, 85, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85 ], "output": { "3. Local Minima": { "frames": [ [ 321, 324 ], [ 345, 427 ], [ 429, 429 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 94, 95, 96, 98, 99, 96, 94, 91, 88, 86, 83, 81, 78, 77, 75, 74, 73, 72, 71, 70, 69, 68, 68, 67, 67, 67, 67, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 71, 72, 73, 74, 74, 75, 76, 78, 78, 78, 79, 80, 81, 83, 84, 84, 85, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 94, 95, 96, 98, 99, 96, 94, 91, 88, 86, 83, 81, 78, 77, 75, 74, 73, 72, 71, 70, 69, 68, 68, 67, 67, 67, 67, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 71, 72, 73, 74, 74, 75, 76, 78, 78, 78, 79, 80, 81, 83, 84, 84, 85, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 229 ], [ 287, 502 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 94, 95, 96, 98, 99, 96, 94, 91, 88, 86, 83, 81, 78, 77, 75, 74, 73, 72, 71, 70, 69, 68, 68, 67, 67, 67, 67, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 71, 72, 73, 74, 74, 75, 76, 78, 78, 78, 79, 80, 81, 83, 84, 84, 85, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "3. Local Minima": { "frames": [ [ 235, 277 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 84, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 92, 92, 93, 93, 92, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 62, 61, 59, 58, 56, 55, 53, 52, 50, 49, 47, 45, 43, 41, 40, 38, 37, 35, 34, 33, 33, 32, 32, 33, 33, 34, 35, 36, 38, 39, 41, 42, 43, 42, 45, 46, 46, 48, 51, 53, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 68, 70, 72, 74, 76, 78, 80, 73, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 89, 89, 89, 88, 86, 84, 82, 80, 78, 75, 73, 71, 69, 68, 66, 64, 62, 61, 59, 58, 56, 55, 53, 52, 50, 49, 48, 47, 47, 46, 46, 46, 46, 45, 45, 44, 44, 44, 44, 44, 44, 44, 45, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 86, 88, 89, 89, 90, 91, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 98, 99, 99, 98, 98, 98, 97, 97, 96, 96, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 84, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 92, 92, 93, 93, 92, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 62, 61, 59, 58, 56, 55, 53, 52, 50, 49, 47, 45, 43, 41, 40, 38, 37, 35, 34, 33, 33, 32, 32, 33, 33, 34, 35, 36, 38, 39, 41, 42, 43, 42, 45, 46, 46, 48, 51, 53, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 68, 70, 72, 74, 76, 78, 80, 73, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 89, 89, 89, 88, 86, 84, 82, 80, 78, 75, 73, 71, 69, 68, 66, 64, 62, 61, 59, 58, 56, 55, 53, 52, 50, 49, 48, 47, 47, 46, 46, 46, 46, 45, 45, 44, 44, 44, 44, 44, 44, 44, 45, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 86, 88, 89, 89, 90, 91, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 98, 99, 99, 98, 98, 98, 97, 97, 96, 96, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 386 ], [ 461, 461 ], [ 467, 481 ], [ 543, 883 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 84, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 92, 92, 93, 93, 92, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 62, 61, 59, 58, 56, 55, 53, 52, 50, 49, 47, 45, 43, 41, 40, 38, 37, 35, 34, 33, 33, 32, 32, 33, 33, 34, 35, 36, 38, 39, 41, 42, 43, 42, 45, 46, 46, 48, 51, 53, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 68, 70, 72, 74, 76, 78, 80, 73, 75, 76, 78, 79, 81, 82, 84, 86, 87, 88, 89, 89, 89, 89, 88, 86, 84, 82, 80, 78, 75, 73, 71, 69, 68, 66, 64, 62, 61, 59, 58, 56, 55, 53, 52, 50, 49, 48, 47, 47, 46, 46, 46, 46, 45, 45, 44, 44, 44, 44, 44, 44, 44, 45, 45, 46, 48, 49, 51, 52, 54, 56, 57, 59, 60, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 86, 88, 89, 89, 90, 91, 91, 92, 93, 94, 94, 95, 96, 97, 97, 98, 98, 99, 99, 98, 98, 98, 97, 97, 96, 96, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85 ], "output": { "3. Local Minima": { "frames": [ [ 414, 437 ], [ 507, 517 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 78, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 73, 72, 72, 72, 71, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 61, 61, 61, 61, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 75, 75, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 78, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 73, 72, 72, 72, 71, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 61, 61, 61, 61, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 75, 75, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 163 ], [ 299, 422 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 78, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 73, 72, 72, 72, 71, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 61, 61, 61, 61, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 75, 75, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84 ], "output": { "3. Local Minima": { "frames": [ [ 180, 288 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 468 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "3. Local Minima": { "frames": [ [ 101, 175 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 89, 89, 88, 88, 87, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 79, 78, 76, 75, 73, 71, 70, 68, 66, 64, 62, 60, 58, 56, 54, 52, 50, 48, 47, 45, 45, 44, 44, 44, 44, 45, 45, 46, 47, 48, 50, 51, 54, 56, 58, 61, 64, 67, 70, 73, 77, 80, 83, 87, 90, 93, 94, 92, 88, 85, 81, 77, 73, 69, 66, 63, 60, 58, 56, 54, 54, 53, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 64, 65, 66, 67, 69, 70, 71, 71, 72, 73, 73, 74, 75, 75, 76, 77, 77, 77, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 89, 89, 88, 88, 87, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 79, 78, 76, 75, 73, 71, 70, 68, 66, 64, 62, 60, 58, 56, 54, 52, 50, 48, 47, 45, 45, 44, 44, 44, 44, 45, 45, 46, 47, 48, 50, 51, 54, 56, 58, 61, 64, 67, 70, 73, 77, 80, 83, 87, 90, 93, 94, 92, 88, 85, 81, 77, 73, 69, 66, 63, 60, 58, 56, 54, 54, 53, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 64, 65, 66, 67, 69, 70, 71, 71, 72, 73, 73, 74, 75, 75, 76, 77, 77, 77, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 226 ], [ 267, 276 ], [ 319, 585 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 89, 89, 88, 88, 87, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 79, 78, 76, 75, 73, 71, 70, 68, 66, 64, 62, 60, 58, 56, 54, 52, 50, 48, 47, 45, 45, 44, 44, 44, 44, 45, 45, 46, 47, 48, 50, 51, 54, 56, 58, 61, 64, 67, 70, 73, 77, 80, 83, 87, 90, 93, 94, 92, 88, 85, 81, 77, 73, 69, 66, 63, 60, 58, 56, 54, 54, 53, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 64, 65, 66, 67, 69, 70, 71, 71, 72, 73, 73, 74, 75, 75, 76, 77, 77, 77, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "3. Local Minima": { "frames": [ [ 240, 258 ], [ 285, 289 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 92, 91, 91, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 92, 91, 91, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 398 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 92, 91, 91, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 84, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87 ], "output": { "3. Local Minima": { "frames": [ [ 240, 323 ], [ 371, 390 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 86, 85, 83, 82, 81, 80, 80, 79, 79, 78, 78, 78, 78, 79, 79, 80, 80, 81, 81, 82, 82, 82, 81, 76, 76, 76, 76, 75, 75, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 95, 95, 94, 94, 94, 93, 94, 94, 95, 96, 96, 91, 92, 95, 98, 97, 94, 92, 89, 87, 85, 83, 81, 79, 78, 76, 75, 74, 73, 73, 72, 72, 72, 72, 72, 72, 73, 73, 74, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 89, 87, 87, 87, 87, 87, 88, 88, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 93, 91, 91, 91, 91, 89, 88, 87, 85, 84, 83, 83, 82, 82, 81, 81, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 78, 78, 78, 77, 77, 77, 77, 77, 78, 78, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 98, 99, 98, 89, 90, 93, 96, 98, 98, 96, 94, 91, 89, 87, 86, 84, 83, 82, 81, 80, 79, 79, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 87, 88, 88, 88, 88, 88, 87, 87, 87, 87, 88, 88, 89, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 88, 89, 90, 92, 90, 89, 88, 87, 85, 84, 83, 83, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 83, 84, 85, 86, 86, 86, 86, 86, 81, 80, 79, 79, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 96, 97, 97, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 100, 99, 88, 90, 92, 96, 97, 97, 96, 94, 92, 91, 89, 87, 86, 85, 84, 83, 82, 81, 81, 81, 80, 80, 80, 81, 81, 81, 82, 83, 83, 84, 85, 86 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 86, 85, 83, 82, 81, 80, 80, 79, 79, 78, 78, 78, 78, 79, 79, 80, 80, 81, 81, 82, 82, 82, 81, 76, 76, 76, 76, 75, 75, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 95, 95, 94, 94, 94, 93, 94, 94, 95, 96, 96, 91, 92, 95, 98, 97, 94, 92, 89, 87, 85, 83, 81, 79, 78, 76, 75, 74, 73, 73, 72, 72, 72, 72, 72, 72, 73, 73, 74, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 89, 87, 87, 87, 87, 87, 88, 88, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 93, 91, 91, 91, 91, 89, 88, 87, 85, 84, 83, 83, 82, 82, 81, 81, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 78, 78, 78, 77, 77, 77, 77, 77, 78, 78, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 98, 99, 98, 89, 90, 93, 96, 98, 98, 96, 94, 91, 89, 87, 86, 84, 83, 82, 81, 80, 79, 79, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 87, 88, 88, 88, 88, 88, 87, 87, 87, 87, 88, 88, 89, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 88, 89, 90, 92, 90, 89, 88, 87, 85, 84, 83, 83, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 83, 84, 85, 86, 86, 86, 86, 86, 81, 80, 79, 79, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 96, 97, 97, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 100, 99, 88, 90, 92, 96, 97, 97, 96, 94, 92, 91, 89, 87, 86, 85, 84, 83, 82, 81, 81, 81, 80, 80, 80, 81, 81, 81, 82, 83, 83, 84, 85, 86 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 6 ], [ 15, 22 ], [ 38, 79 ], [ 102, 172 ], [ 184, 234 ], [ 242, 326 ], [ 332, 400 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 86, 85, 83, 82, 81, 80, 80, 79, 79, 78, 78, 78, 78, 79, 79, 80, 80, 81, 81, 82, 82, 82, 81, 76, 76, 76, 76, 75, 75, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 95, 95, 94, 94, 94, 93, 94, 94, 95, 96, 96, 91, 92, 95, 98, 97, 94, 92, 89, 87, 85, 83, 81, 79, 78, 76, 75, 74, 73, 73, 72, 72, 72, 72, 72, 72, 73, 73, 74, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 86, 87, 88, 89, 89, 87, 87, 87, 87, 87, 88, 88, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 93, 91, 91, 91, 91, 89, 88, 87, 85, 84, 83, 83, 82, 82, 81, 81, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 78, 78, 78, 77, 77, 77, 77, 77, 78, 78, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 98, 99, 98, 89, 90, 93, 96, 98, 98, 96, 94, 91, 89, 87, 86, 84, 83, 82, 81, 80, 79, 79, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 87, 88, 88, 88, 88, 88, 87, 87, 87, 87, 88, 88, 89, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 88, 89, 90, 92, 90, 89, 88, 87, 85, 84, 83, 83, 82, 81, 81, 81, 81, 81, 81, 81, 82, 82, 83, 84, 85, 86, 86, 86, 86, 86, 81, 80, 79, 79, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 96, 97, 97, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 100, 99, 88, 90, 92, 96, 97, 97, 96, 94, 92, 91, 89, 87, 86, 85, 84, 83, 82, 81, 81, 81, 80, 80, 80, 81, 81, 81, 82, 83, 83, 84, 85, 86 ], "output": { "3. Local Minima": { "frames": [ [ 23, 33 ], [ 82, 99 ], [ 176, 180 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 89, 87, 85, 83, 82, 80, 79, 78, 79, 80, 82, 85, 88, 92, 96, 98, 94, 91, 87, 84, 81, 80, 79, 80, 80, 79, 80, 81, 81, 81, 82, 82, 83, 84, 85, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 93, 93, 91, 90, 88, 86, 84, 81, 77, 74, 70, 66, 63, 61, 60, 61, 63, 66, 70, 74, 79, 84, 89, 94, 95, 91, 86, 81, 77, 73, 71, 69, 68, 68, 69, 71, 73, 75, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 91, 91, 90, 88, 86, 83, 80, 76, 71, 66, 62, 57, 54, 51, 49, 48, 47, 49, 50, 53, 57, 62, 67, 73, 79, 84, 90, 95, 95, 88, 82, 76, 70, 66, 62, 60, 58, 58, 59, 59, 60, 63, 65, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 83, 84, 84, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 96, 97, 98, 98, 99, 98, 98, 98, 97, 97, 96, 96, 95, 95, 95, 95, 95, 95, 95, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 89, 87, 85, 83, 82, 80, 79, 78, 79, 80, 82, 85, 88, 92, 96, 98, 94, 91, 87, 84, 81, 80, 79, 80, 80, 79, 80, 81, 81, 81, 82, 82, 83, 84, 85, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 93, 93, 91, 90, 88, 86, 84, 81, 77, 74, 70, 66, 63, 61, 60, 61, 63, 66, 70, 74, 79, 84, 89, 94, 95, 91, 86, 81, 77, 73, 71, 69, 68, 68, 69, 71, 73, 75, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 91, 91, 90, 88, 86, 83, 80, 76, 71, 66, 62, 57, 54, 51, 49, 48, 47, 49, 50, 53, 57, 62, 67, 73, 79, 84, 90, 95, 95, 88, 82, 76, 70, 66, 62, 60, 58, 58, 59, 59, 60, 63, 65, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 83, 84, 84, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 96, 97, 98, 98, 99, 98, 98, 98, 97, 97, 96, 96, 95, 95, 95, 95, 95, 95, 95, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 117 ], [ 121, 133 ], [ 135, 136 ], [ 138, 165 ], [ 179, 185 ], [ 198, 212 ], [ 231, 236 ], [ 258, 337 ] ] } } }, { "instruction": "CoM is the Center of Mass. The closer to the max value, the more stable the posture, and the closer to the min value, the more unstable the posture. \n\n \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 89, 87, 85, 83, 82, 80, 79, 78, 79, 80, 82, 85, 88, 92, 96, 98, 94, 91, 87, 84, 81, 80, 79, 80, 80, 79, 80, 81, 81, 81, 82, 82, 83, 84, 85, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 93, 93, 91, 90, 88, 86, 84, 81, 77, 74, 70, 66, 63, 61, 60, 61, 63, 66, 70, 74, 79, 84, 89, 94, 95, 91, 86, 81, 77, 73, 71, 69, 68, 68, 69, 71, 73, 75, 78, 79, 81, 82, 85, 87, 88, 89, 90, 91, 91, 91, 90, 88, 86, 83, 80, 76, 71, 66, 62, 57, 54, 51, 49, 48, 47, 49, 50, 53, 57, 62, 67, 73, 79, 84, 90, 95, 95, 88, 82, 76, 70, 66, 62, 60, 58, 58, 59, 59, 60, 63, 65, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 83, 83, 84, 84, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 96, 97, 98, 98, 99, 98, 98, 98, 97, 97, 96, 96, 95, 95, 95, 95, 95, 95, 95, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "3. Local Minima": { "frames": [ [ 217, 226 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 22, 22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 20, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 14, 13, 13, 12, 11, 10, 10, 9, 8, 8, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 22, 23, 23, 24, 24, 24, 24, 24, 24, 24, 23, 22, 22, 21, 20, 19, 17, 16, 15, 13, 12, 11, 11, 11, 12, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 35, 37, 39, 40, 41, 42, 43, 44, 44, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 41, 41, 40, 39, 39, 39, 40, 40, 40, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 18, 17, 18, 18, 18, 17, 15, 13, 11, 10, 8, 8, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 27, 28, 28, 28, 28, 28, 28, 28, 27, 27, 26, 25, 24, 23, 22, 21, 19, 19, 19, 19, 19, 19, 20, 18, 16, 15, 15, 15, 15, 16, 18, 19, 21, 22, 24, 26, 27, 28, 31, 33, 35, 36, 38, 39, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 41, 42, 41, 41, 41, 41, 41, 40, 38, 38, 38, 37, 36, 36, 36, 35, 34, 34, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 9, 8, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 30, 31, 32, 33, 33, 34, 35, 35, 35, 35, 34, 33, 32, 31, 30, 29, 28, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 11, 11, 11, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 21, 21, 22, 24, 25, 27, 29, 31, 33, 34, 34, 34, 34, 33, 33, 32, 31, 29, 28, 24, 24, 24, 24, 24, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 36, 37, 38, 39, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 45, 45, 45 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 22, 22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 20, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 14, 13, 13, 12, 11, 10, 10, 9, 8, 8, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 22, 23, 23, 24, 24, 24, 24, 24, 24, 24, 23, 22, 22, 21, 20, 19, 17, 16, 15, 13, 12, 11, 11, 11, 12, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 35, 37, 39, 40, 41, 42, 43, 44, 44, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 41, 41, 40, 39, 39, 39, 40, 40, 40, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 18, 17, 18, 18, 18, 17, 15, 13, 11, 10, 8, 8, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 27, 28, 28, 28, 28, 28, 28, 28, 27, 27, 26, 25, 24, 23, 22, 21, 19, 19, 19, 19, 19, 19, 20, 18, 16, 15, 15, 15, 15, 16, 18, 19, 21, 22, 24, 26, 27, 28, 31, 33, 35, 36, 38, 39, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 41, 42, 41, 41, 41, 41, 41, 40, 38, 38, 38, 37, 36, 36, 36, 35, 34, 34, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 9, 8, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 30, 31, 32, 33, 33, 34, 35, 35, 35, 35, 34, 33, 32, 31, 30, 29, 28, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 11, 11, 11, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 21, 21, 22, 24, 25, 27, 29, 31, 33, 34, 34, 34, 34, 33, 33, 32, 31, 29, 28, 24, 24, 24, 24, 24, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 36, 37, 38, 39, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 45, 45, 45 ], "output": { "2. Local Maxima": { "frames": [ [ 189, 229 ], [ 316, 349 ], [ 480, 524 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 22, 22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 20, 20, 20, 19, 19, 18, 18, 17, 17, 16, 16, 15, 14, 13, 13, 12, 11, 10, 10, 9, 8, 8, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 22, 23, 23, 24, 24, 24, 24, 24, 24, 24, 23, 22, 22, 21, 20, 19, 17, 16, 15, 13, 12, 11, 11, 11, 12, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 25, 27, 29, 30, 32, 35, 37, 39, 40, 41, 42, 43, 44, 44, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 41, 41, 40, 39, 39, 39, 40, 40, 40, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 18, 17, 18, 18, 18, 17, 15, 13, 11, 10, 8, 8, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 27, 28, 28, 28, 28, 28, 28, 28, 27, 27, 26, 25, 24, 23, 22, 21, 19, 19, 19, 19, 19, 19, 20, 18, 16, 15, 15, 15, 15, 16, 18, 19, 21, 22, 24, 26, 27, 28, 31, 33, 35, 36, 38, 39, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 41, 42, 41, 41, 41, 41, 41, 40, 38, 38, 38, 37, 36, 36, 36, 35, 34, 34, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 9, 8, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 30, 31, 32, 33, 33, 34, 35, 35, 35, 35, 34, 33, 32, 31, 30, 29, 28, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 11, 11, 11, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 21, 21, 22, 24, 25, 27, 29, 31, 33, 34, 34, 34, 34, 33, 33, 32, 31, 29, 28, 24, 24, 24, 24, 24, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 36, 37, 38, 39, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 45, 45, 45 ], "output": { "3. Local Minima": { "frames": [ [ 0, 25 ], [ 121, 137 ], [ 167, 171 ], [ 253, 262 ], [ 372, 384 ], [ 422, 436 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 14, 14, 14, 14, 13, 13, 13, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 13, 13, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 17, 17, 17, 17, 16, 16, 15, 15, 14, 14, 14, 13, 13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 7, 7, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 14, 14, 14, 14, 13, 13, 13, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 13, 13, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 17, 17, 17, 17, 16, 16, 15, 15, 14, 14, 14, 13, 13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 7, 7, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 29 ], [ 75, 96 ], [ 151, 160 ], [ 209, 221 ], [ 267, 290 ], [ 332, 357 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 14, 14, 14, 14, 13, 13, 13, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 13, 13, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 17, 17, 17, 17, 16, 16, 15, 15, 14, 14, 14, 13, 13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 7, 7, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14 ], "output": { "3. Local Minima": { "frames": [ [ 113, 132 ], [ 238, 255 ], [ 305, 315 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 11, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 11, 10, 10, 9, 8, 7, 7, 6, 6, 5, 5, 6, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 18, 18, 17, 17, 16, 15, 15, 14, 13, 12, 11, 11, 10, 9, 8, 7, 6, 5, 5, 5, 4, 4, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 19, 19, 20, 19, 20, 20, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 9, 8, 7, 6, 6, 5, 6, 6, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 20, 19, 19, 18, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 7, 6, 6, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 18, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 20, 20, 20, 19, 19, 18, 18, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 9, 8, 7, 7, 6, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 11, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 11, 10, 10, 9, 8, 7, 7, 6, 6, 5, 5, 6, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 18, 18, 17, 17, 16, 15, 15, 14, 13, 12, 11, 11, 10, 9, 8, 7, 6, 5, 5, 5, 4, 4, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 19, 19, 20, 19, 20, 20, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 9, 8, 7, 6, 6, 5, 6, 6, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 20, 19, 19, 18, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 7, 6, 6, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 18, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 20, 20, 20, 19, 19, 18, 18, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 9, 8, 7, 7, 6, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22 ], "output": { "2. Local Maxima": { "frames": [ [ 10, 21 ], [ 63, 81 ], [ 119, 133 ], [ 169, 192 ], [ 224, 247 ], [ 281, 295 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 11, 11, 12, 13, 14, 15, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 11, 10, 10, 9, 8, 7, 7, 6, 6, 5, 5, 6, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 18, 18, 17, 17, 16, 15, 15, 14, 13, 12, 11, 11, 10, 9, 8, 7, 6, 5, 5, 5, 4, 4, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 19, 19, 20, 19, 20, 20, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 9, 8, 7, 6, 6, 5, 6, 6, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 20, 19, 19, 18, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 7, 6, 6, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 18, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 20, 20, 20, 19, 19, 18, 18, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 9, 8, 7, 7, 6, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22 ], "output": { "3. Local Minima": { "frames": [ [ 39, 49 ], [ 95, 106 ], [ 148, 156 ], [ 203, 213 ], [ 260, 268 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 11, 11, 11, 9, 8, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 15, 16, 16, 14, 12, 11, 11, 11, 10, 10, 11, 12, 12, 11, 10, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 11, 11, 11, 9, 8, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 15, 16, 16, 14, 12, 11, 11, 11, 10, 10, 11, 12, 12, 11, 10, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 261, 264 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 11, 11, 11, 9, 8, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 15, 16, 16, 14, 12, 11, 11, 11, 10, 10, 11, 12, 12, 11, 10, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 0, 61 ], [ 164, 172 ], [ 180, 187 ], [ 190, 206 ], [ 209, 228 ], [ 312, 399 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 11, 11, 11, 11, 11, 11, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 25, 25, 25, 24, 24, 24, 24, 24, 24, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 13, 13, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 11, 11, 11, 11, 11, 11, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 25, 25, 25, 24, 24, 24, 24, 24, 24, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 13, 13, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11 ], "output": { "2. Local Maxima": { "frames": [ [ 133, 338 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 11, 11, 11, 11, 11, 11, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 25, 25, 25, 24, 24, 24, 24, 24, 24, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 13, 13, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11 ], "output": { "3. Local Minima": { "frames": [ [ 0, 64 ], [ 403, 512 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 7, 6, 6, 6, 6, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 17, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 12, 11, 11, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 21, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 10, 10, 9, 8, 9, 8, 8, 7, 7, 8, 9, 9, 9, 9, 10, 10, 11 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 7, 6, 6, 6, 6, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 17, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 12, 11, 11, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 21, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 10, 10, 9, 8, 9, 8, 8, 7, 7, 8, 9, 9, 9, 9, 10, 10, 11 ], "output": { "2. Local Maxima": { "frames": [ [ 22, 44 ], [ 91, 111 ], [ 155, 177 ], [ 220, 243 ], [ 284, 312 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 7, 6, 6, 6, 6, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 17, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 12, 11, 11, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 21, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 11, 10, 10, 10, 9, 8, 9, 8, 8, 7, 7, 8, 9, 9, 9, 9, 10, 10, 11 ], "output": { "3. Local Minima": { "frames": [ [ 0, 10 ], [ 63, 74 ], [ 126, 142 ], [ 194, 205 ], [ 256, 273 ], [ 327, 338 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 15, 13, 13, 11, 11, 10, 9, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 20, 21, 21, 21, 21, 20, 20, 19, 19, 18, 17, 17, 16, 14, 13, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 13, 13, 14, 14, 16, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 19, 19, 19, 18, 17, 17, 16, 16, 14, 13, 13, 12, 11, 10, 10, 10, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 18, 18, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 17, 18, 18, 18, 18, 18, 19 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 15, 13, 13, 11, 11, 10, 9, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 20, 21, 21, 21, 21, 20, 20, 19, 19, 18, 17, 17, 16, 14, 13, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 13, 13, 14, 14, 16, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 19, 19, 19, 18, 17, 17, 16, 16, 14, 13, 13, 12, 11, 10, 10, 10, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 18, 18, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 17, 18, 18, 18, 18, 18, 19 ], "output": { "2. Local Maxima": { "frames": [ [ 25, 42 ], [ 69, 85 ], [ 117, 128 ], [ 160, 167 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 15, 13, 13, 11, 11, 10, 9, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 20, 21, 21, 21, 21, 20, 20, 19, 19, 18, 17, 17, 16, 14, 13, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 13, 13, 14, 14, 16, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 19, 19, 19, 18, 17, 17, 16, 16, 14, 13, 13, 12, 11, 10, 10, 10, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 18, 18, 19, 19, 18, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 17, 18, 18, 18, 18, 18, 19 ], "output": { "3. Local Minima": { "frames": [ [ 5, 16 ], [ 50, 59 ], [ 93, 108 ], [ 137, 137 ], [ 139, 146 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 149, 174 ], [ 297, 298 ], [ 301, 322 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 24, 26 ], [ 37, 44 ], [ 46, 47 ], [ 50, 51 ], [ 54, 129 ], [ 207, 281 ], [ 286, 287 ], [ 359, 359 ], [ 363, 364 ], [ 368, 371 ], [ 374, 406 ], [ 409, 411 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 ], "output": { "2. Local Maxima": { "frames": [ [ 670, 703 ], [ 764, 824 ], [ 904, 934 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 ], "output": { "3. Local Minima": { "frames": [ [ 91, 114 ], [ 217, 237 ], [ 354, 365 ], [ 497, 502 ], [ 549, 627 ], [ 629, 629 ], [ 858, 878 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 29, 29, 30, 30, 30, 30, 30, 30, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 26, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 29, 29, 30, 30, 30, 30, 30, 30, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 26, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14 ], "output": { "2. Local Maxima": { "frames": [ [ 242, 409 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 29, 29, 30, 30, 30, 30, 30, 30, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 26, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 17, 17, 17, 16, 16, 16, 16, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14 ], "output": { "3. Local Minima": { "frames": [ [ 0, 138 ], [ 436, 474 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 43, 43, 42, 42, 42, 42, 42, 42, 41, 41, 40, 39, 38, 38, 37, 36, 35, 34, 32, 31, 29, 28, 26, 26, 25, 25, 24, 24, 23, 23, 23, 22, 22, 21, 20, 20, 21, 21, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 43, 43, 42, 42, 42, 42, 42, 42, 41, 41, 40, 39, 38, 38, 37, 36, 35, 34, 32, 31, 29, 28, 26, 26, 25, 25, 24, 24, 23, 23, 23, 22, 22, 21, 20, 20, 21, 21, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 ], "output": { "2. Local Maxima": { "frames": [ [ 107, 221 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 43, 43, 42, 42, 42, 42, 42, 42, 41, 41, 40, 39, 38, 38, 37, 36, 35, 34, 32, 31, 29, 28, 26, 26, 25, 25, 24, 24, 23, 23, 23, 22, 22, 21, 20, 20, 21, 21, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29 ], "output": { "3. Local Minima": { "frames": [ [ 0, 82 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 18, 18, 19, 19, 19, 18, 17, 15, 13, 12, 13, 14, 15, 15, 14, 13, 12, 13, 13, 14, 13, 13, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 12, 12, 11, 11, 11, 13, 15, 17, 20, 21, 22, 23, 22, 21, 18, 15, 11, 7, 4, 6, 11, 16, 20, 24, 26, 26, 25, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 9, 9, 10, 11, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 29, 29, 29, 28, 28, 27, 27, 26, 25, 23, 21, 19, 16, 16, 19, 22, 25, 27, 29, 30, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 17, 16, 16, 15, 15, 14, 14, 13, 13, 13, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 18, 18, 19, 19, 19, 18, 17, 15, 13, 12, 13, 14, 15, 15, 14, 13, 12, 13, 13, 14, 13, 13, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 12, 12, 11, 11, 11, 13, 15, 17, 20, 21, 22, 23, 22, 21, 18, 15, 11, 7, 4, 6, 11, 16, 20, 24, 26, 26, 25, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 9, 9, 10, 11, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 29, 29, 29, 28, 28, 27, 27, 26, 25, 23, 21, 19, 16, 16, 19, 22, 25, 27, 29, 30, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 17, 16, 16, 15, 15, 14, 14, 13, 13, 13, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ], "output": { "2. Local Maxima": { "frames": [ [ 246, 247 ], [ 293, 304 ], [ 314, 348 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 18, 18, 19, 19, 19, 18, 17, 15, 13, 12, 13, 14, 15, 15, 14, 13, 12, 13, 13, 14, 13, 13, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 12, 12, 11, 11, 11, 13, 15, 17, 20, 21, 22, 23, 22, 21, 18, 15, 11, 7, 4, 6, 11, 16, 20, 24, 26, 26, 25, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 9, 9, 10, 11, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 29, 29, 29, 28, 28, 27, 27, 26, 25, 23, 21, 19, 16, 16, 19, 22, 25, 27, 29, 30, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 20, 20, 19, 19, 18, 18, 17, 16, 16, 15, 15, 14, 14, 13, 13, 13, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ], "output": { "3. Local Minima": { "frames": [ [ 0, 142 ], [ 239, 241 ], [ 268, 279 ], [ 384, 441 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 20, 21, 21, 21, 21, 21, 20, 19, 18, 17, 16, 14, 13, 11, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 20, 19, 18, 17, 16, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 15, 15, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 20, 21, 21, 21, 21, 21, 20, 19, 18, 17, 16, 14, 13, 11, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 20, 19, 18, 17, 16, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 15, 15, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 206, 218 ], [ 266, 286 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 20, 21, 21, 21, 21, 21, 20, 19, 18, 17, 16, 14, 13, 11, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 20, 19, 18, 17, 16, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 15, 15, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 0, 194 ], [ 375, 502 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 11, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 26, 26, 27, 27, 28, 28, 29, 29, 29, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 32, 31, 31, 31, 32, 32, 31, 31, 30, 30, 30, 30, 30, 29, 29, 28, 27, 26, 25, 24, 22, 21, 20, 19, 18, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 34, 34, 34, 34, 33, 33, 32, 32, 32, 32, 31, 31, 31, 30, 30, 29, 28, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 21, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 11, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 26, 26, 27, 27, 28, 28, 29, 29, 29, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 32, 31, 31, 31, 32, 32, 31, 31, 30, 30, 30, 30, 30, 29, 29, 28, 27, 26, 25, 24, 22, 21, 20, 19, 18, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 34, 34, 34, 34, 33, 33, 32, 32, 32, 32, 31, 31, 31, 30, 30, 29, 28, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 21, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 393, 450 ], [ 492, 545 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 10, 10, 11, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 26, 26, 27, 27, 28, 28, 29, 29, 29, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 32, 31, 31, 31, 32, 32, 31, 31, 30, 30, 30, 30, 30, 29, 29, 28, 27, 26, 25, 24, 22, 21, 20, 19, 18, 17, 16, 16, 15, 14, 13, 12, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 32, 33, 33, 33, 34, 34, 35, 35, 35, 34, 34, 34, 34, 33, 33, 32, 32, 32, 32, 31, 31, 31, 30, 30, 29, 28, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 21, 21, 20, 20, 19, 19, 18, 18, 17, 17, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 12, 12, 12, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3 ], "output": { "3. Local Minima": { "frames": [ [ 0, 303 ], [ 306, 306 ], [ 591, 883 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 25, 24, 24, 24, 24, 24, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 25, 24, 24, 24, 24, 24, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 ], "output": { "2. Local Maxima": { "frames": [ [ 157, 299 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 25, 24, 24, 24, 24, 24, 23, 23, 23, 23, 22, 22, 22, 22, 21, 21, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 ], "output": { "3. Local Minima": { "frames": [ [ 0, 115 ], [ 347, 422 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 20, 22 ], [ 106, 164 ], [ 190, 210 ], [ 234, 240 ], [ 245, 254 ], [ 286, 354 ], [ 375, 409 ], [ 419, 468 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 19 ], [ 23, 105 ], [ 165, 189 ], [ 211, 233 ], [ 241, 244 ], [ 255, 285 ], [ 355, 374 ], [ 410, 418 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 221, 229 ], [ 248, 257 ], [ 323, 366 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], "output": { "3. Local Minima": { "frames": [ [ 0, 170 ], [ 185, 208 ], [ 307, 310 ], [ 428, 585 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12 ], "output": { "2. Local Maxima": { "frames": [ [ 350, 382 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12 ], "output": { "3. Local Minima": { "frames": [ [ 31, 69 ], [ 259, 334 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 26, 26, 26, 26, 27, 27, 27, 27, 26, 26, 26, 26, 26, 25, 25, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 20, 19, 19, 18, 17, 16, 16, 15, 14, 13, 13, 12, 12, 12, 12, 13, 13, 14, 14, 14, 17, 17, 17, 17, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 29, 30, 30, 30, 30, 30, 31, 31, 31, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 27, 27, 27, 29, 29, 29, 28, 28, 28, 28, 27, 27, 27, 26, 26, 25, 25, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 13, 12, 11, 10, 9, 8, 7, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 27, 28, 28, 28, 28, 28, 29, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 26, 26, 26, 25, 25, 24, 24, 23, 23, 22, 21, 21, 20, 19, 18, 17, 17, 16, 15, 15, 14, 14, 14, 14, 13, 13, 13, 16, 15, 15, 14, 14, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 24, 24, 24, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 24, 24, 23, 23, 22, 22, 21, 20, 19, 19, 18, 17, 15, 14, 13, 12, 11, 11, 10, 10, 10, 10, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 25, 25, 24, 23, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 14, 13, 12, 12, 12, 12, 13, 13, 14, 15, 15, 16, 16, 19, 19, 19, 19, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 27, 27, 27 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 26, 26, 26, 26, 27, 27, 27, 27, 26, 26, 26, 26, 26, 25, 25, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 20, 19, 19, 18, 17, 16, 16, 15, 14, 13, 13, 12, 12, 12, 12, 13, 13, 14, 14, 14, 17, 17, 17, 17, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 29, 30, 30, 30, 30, 30, 31, 31, 31, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 27, 27, 27, 29, 29, 29, 28, 28, 28, 28, 27, 27, 27, 26, 26, 25, 25, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 13, 12, 11, 10, 9, 8, 7, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 27, 28, 28, 28, 28, 28, 29, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 26, 26, 26, 25, 25, 24, 24, 23, 23, 22, 21, 21, 20, 19, 18, 17, 17, 16, 15, 15, 14, 14, 14, 14, 13, 13, 13, 16, 15, 15, 14, 14, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 24, 24, 24, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 24, 24, 23, 23, 22, 22, 21, 20, 19, 19, 18, 17, 15, 14, 13, 12, 11, 11, 10, 10, 10, 10, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 25, 25, 24, 23, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 14, 13, 12, 12, 12, 12, 13, 13, 14, 15, 15, 16, 16, 19, 19, 19, 19, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 27, 27, 27 ], "output": { "2. Local Maxima": { "frames": [ [ 14, 39 ], [ 81, 124 ], [ 165, 195 ], [ 242, 252 ], [ 256, 269 ], [ 308, 343 ], [ 384, 400 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 26, 26, 26, 26, 27, 27, 27, 27, 26, 26, 26, 26, 26, 25, 25, 25, 25, 24, 24, 23, 23, 22, 22, 21, 21, 20, 19, 19, 18, 17, 16, 16, 15, 14, 13, 13, 12, 12, 12, 12, 13, 13, 14, 14, 14, 17, 17, 17, 17, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 29, 30, 30, 30, 30, 30, 31, 31, 31, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 27, 27, 27, 29, 29, 29, 28, 28, 28, 28, 27, 27, 27, 26, 26, 25, 25, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 13, 12, 11, 10, 9, 8, 7, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 27, 28, 28, 28, 28, 28, 29, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 26, 26, 26, 25, 25, 24, 24, 23, 23, 22, 21, 21, 20, 19, 18, 17, 17, 16, 15, 15, 14, 14, 14, 14, 13, 13, 13, 16, 15, 15, 14, 14, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 24, 24, 24, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 24, 24, 23, 23, 22, 22, 21, 20, 19, 19, 18, 17, 15, 14, 13, 12, 11, 11, 10, 10, 10, 10, 11, 12, 13, 14, 14, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 27, 27, 26, 26, 25, 25, 24, 23, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 14, 13, 12, 12, 12, 12, 13, 13, 14, 15, 15, 16, 16, 19, 19, 19, 19, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 27, 27, 27 ], "output": { "3. Local Minima": { "frames": [ [ 138, 150 ], [ 286, 292 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 8, 8, 8, 7, 7, 6, 6, 6, 6, 6, 8, 8, 9, 11, 11, 10, 11, 10, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 5, 5, 4, 6, 7, 6, 7, 7, 6, 5, 4, 5, 5, 6, 6, 7, 8, 10, 9, 9, 9, 8, 10, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 8, 11, 11, 9, 7, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 8, 9, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 8, 8, 8, 7, 7, 6, 6, 6, 6, 6, 8, 8, 9, 11, 11, 10, 11, 10, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 5, 5, 4, 6, 7, 6, 7, 7, 6, 5, 4, 5, 5, 6, 6, 7, 8, 10, 9, 9, 9, 8, 10, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 8, 11, 11, 9, 7, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 8, 9, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ], "output": { "2. Local Maxima": { "frames": [ [ 193, 202 ], [ 227, 230 ], [ 232, 233 ], [ 237, 238 ], [ 243, 243 ], [ 245, 247 ], [ 259, 262 ], [ 266, 266 ], [ 310, 319 ] ] } } }, { "instruction": "Symmetry represents the body is divided into left and right sides, and the similarity between the symmetrical joints is calculated. Near the maximum value, the less symmetry there is between the left and right sides of the body with moving only one side of arm or leg, and near the minimum value, the more symmetry there is between the left and right sides of the body. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 8, 8, 8, 7, 7, 6, 6, 6, 6, 6, 8, 8, 9, 11, 11, 10, 11, 10, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 5, 5, 4, 6, 7, 6, 7, 7, 6, 5, 4, 5, 5, 6, 6, 7, 8, 10, 9, 9, 9, 8, 10, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 8, 11, 11, 9, 7, 8, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 8, 8, 8, 9, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ], "output": { "3. Local Minima": { "frames": [ [ 0, 113 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 96, 96, 96, 96, 97, 97, 98, 98, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 98, 97, 96, 95, 94, 93, 92, 92, 91, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 87, 86, 84, 82, 81, 80, 78, 76, 73, 70, 34, 38, 41, 42, 44, 45, 48, 50, 54, 57, 59, 62, 65, 68, 70, 72, 73, 72, 72, 71, 69, 67, 64, 62, 59, 55, 53, 51, 49, 47, 46, 44, 40, 35, 69, 73, 76, 79, 81, 84, 86, 88, 91, 93, 95, 96, 97, 98, 99, 99, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 96, 95, 94, 94, 93, 93, 92, 91, 91, 90, 89, 89, 88, 88, 87, 87, 87, 88, 88, 89, 90, 90, 91, 91, 91, 90, 90, 89, 88, 87, 85, 83, 82, 80, 78, 75, 72, 68, 34, 34, 35, 37, 39, 42, 44, 47, 49, 51, 55, 58, 61, 64, 66, 67, 67, 67, 66, 64, 62, 59, 57, 54, 52, 50, 48, 46, 43, 42, 40, 37, 34, 70, 75, 78, 81, 84, 87, 89, 91, 92, 93, 94, 95, 95, 96, 97, 97, 98, 98, 99, 99, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 100, 98, 97, 96, 94, 92, 90, 88, 86, 84, 83, 82, 20, 21, 23, 25, 27, 29, 30, 32, 33, 33, 34, 35, 36, 37, 38, 39, 41, 41, 44, 43, 42, 42, 44, 43, 40, 39, 62, 63, 63, 64, 64, 48, 47, 46, 45, 45, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 48, 49, 49, 50, 51, 51, 52, 53, 53, 54, 54, 54, 53, 53, 52, 52, 51, 51, 50, 50, 49, 48, 47, 45, 44, 42, 40, 38, 35, 33, 32, 30, 29, 27, 25, 76, 78, 80, 81, 83, 84, 85, 86 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 96, 96, 96, 96, 97, 97, 98, 98, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 98, 97, 96, 95, 94, 93, 92, 92, 91, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 87, 86, 84, 82, 81, 80, 78, 76, 73, 70, 34, 38, 41, 42, 44, 45, 48, 50, 54, 57, 59, 62, 65, 68, 70, 72, 73, 72, 72, 71, 69, 67, 64, 62, 59, 55, 53, 51, 49, 47, 46, 44, 40, 35, 69, 73, 76, 79, 81, 84, 86, 88, 91, 93, 95, 96, 97, 98, 99, 99, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 96, 95, 94, 94, 93, 93, 92, 91, 91, 90, 89, 89, 88, 88, 87, 87, 87, 88, 88, 89, 90, 90, 91, 91, 91, 90, 90, 89, 88, 87, 85, 83, 82, 80, 78, 75, 72, 68, 34, 34, 35, 37, 39, 42, 44, 47, 49, 51, 55, 58, 61, 64, 66, 67, 67, 67, 66, 64, 62, 59, 57, 54, 52, 50, 48, 46, 43, 42, 40, 37, 34, 70, 75, 78, 81, 84, 87, 89, 91, 92, 93, 94, 95, 95, 96, 97, 97, 98, 98, 99, 99, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 100, 98, 97, 96, 94, 92, 90, 88, 86, 84, 83, 82, 20, 21, 23, 25, 27, 29, 30, 32, 33, 33, 34, 35, 36, 37, 38, 39, 41, 41, 44, 43, 42, 42, 44, 43, 40, 39, 62, 63, 63, 64, 64, 48, 47, 46, 45, 45, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 48, 49, 49, 50, 51, 51, 52, 53, 53, 54, 54, 54, 53, 53, 52, 52, 51, 51, 50, 50, 49, 48, 47, 45, 44, 42, 40, 38, 35, 33, 32, 30, 29, 27, 25, 76, 78, 80, 81, 83, 84, 85, 86 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 189 ], [ 232, 314 ], [ 355, 434 ], [ 519, 524 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 96, 96, 96, 96, 97, 97, 98, 98, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 98, 97, 96, 95, 94, 93, 92, 92, 91, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 87, 86, 84, 82, 81, 80, 78, 76, 73, 70, 34, 38, 41, 42, 44, 45, 48, 50, 54, 57, 59, 62, 65, 68, 70, 72, 73, 72, 72, 71, 69, 67, 64, 62, 59, 55, 53, 51, 49, 47, 46, 44, 40, 35, 69, 73, 76, 79, 81, 84, 86, 88, 91, 93, 95, 96, 97, 98, 99, 99, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 96, 95, 94, 94, 93, 93, 92, 91, 91, 90, 89, 89, 88, 88, 87, 87, 87, 88, 88, 89, 90, 90, 91, 91, 91, 90, 90, 89, 88, 87, 85, 83, 82, 80, 78, 75, 72, 68, 34, 34, 35, 37, 39, 42, 44, 47, 49, 51, 55, 58, 61, 64, 66, 67, 67, 67, 66, 64, 62, 59, 57, 54, 52, 50, 48, 46, 43, 42, 40, 37, 34, 70, 75, 78, 81, 84, 87, 89, 91, 92, 93, 94, 95, 95, 96, 97, 97, 98, 98, 99, 99, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 100, 98, 97, 96, 94, 92, 90, 88, 86, 84, 83, 82, 20, 21, 23, 25, 27, 29, 30, 32, 33, 33, 34, 35, 36, 37, 38, 39, 41, 41, 44, 43, 42, 42, 44, 43, 40, 39, 62, 63, 63, 64, 64, 48, 47, 46, 45, 45, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 48, 49, 49, 50, 51, 51, 52, 53, 53, 54, 54, 54, 53, 53, 52, 52, 51, 51, 50, 50, 49, 48, 47, 45, 44, 42, 40, 38, 35, 33, 32, 30, 29, 27, 25, 76, 78, 80, 81, 83, 84, 85, 86 ], "output": { "3. Local Minima": { "frames": [ [ 194, 194 ], [ 227, 227 ], [ 319, 321 ], [ 351, 351 ], [ 435, 447 ], [ 510, 516 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 97, 97, 97, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 97, 97, 97, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 395 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 97, 97, 97, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97 ], "output": { "3. Local Minima": { "frames": [ [ 360, 368 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 95, 95, 95, 95, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 93 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 95, 95, 95, 95, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 295 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 95, 95, 95, 95, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 95, 95, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 93 ], "output": { "3. Local Minima": { "frames": [ [ 227, 232 ], [ 247, 266 ], [ 283, 290 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 97, 96, 93, 91, 90, 89, 89, 88, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 76, 75, 74, 73, 73, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 71, 71, 72, 72, 73, 74, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 94, 95, 97, 98, 98, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 97, 96, 93, 91, 90, 89, 89, 88, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 76, 75, 74, 73, 73, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 71, 71, 72, 72, 73, 74, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 94, 95, 97, 98, 98, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 195 ], [ 240, 399 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 97, 96, 93, 91, 90, 89, 89, 88, 86, 85, 84, 83, 82, 80, 79, 78, 77, 76, 76, 75, 74, 73, 73, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 71, 71, 72, 72, 73, 74, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 91, 92, 94, 95, 97, 98, 98, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 202, 234 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 341 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 24, 28 ], [ 53, 68 ], [ 119, 134 ], [ 158, 160 ], [ 188, 194 ], [ 251, 258 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 95, 95, 96, 95, 95, 95, 95, 95, 96, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 96, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 96, 96, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 98, 98, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 95, 95, 96, 95, 95, 95, 95, 95, 96, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 96, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 96, 96, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 98, 98, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 167 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 95, 95, 96, 95, 95, 95, 95, 95, 96, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 96, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 96, 96, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 98, 98, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98 ], "output": { "3. Local Minima": { "frames": [ [ 0, 1 ], [ 3, 7 ], [ 32, 54 ], [ 86, 94 ], [ 126, 139 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 96, 95, 95, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 92, 92, 93, 93, 94, 94, 95, 96, 96, 97, 98, 98, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 95, 94, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 97, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 96, 95, 95, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 92, 92, 93, 93, 94, 94, 95, 96, 96, 97, 98, 98, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 95, 94, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 97, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 431 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 96, 95, 95, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 92, 92, 93, 93, 94, 94, 95, 96, 96, 97, 98, 98, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 95, 94, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 96, 97, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 0, 13 ], [ 75, 85 ], [ 141, 156 ], [ 268, 288 ], [ 340, 355 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 95, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 100, 99, 99, 100, 100, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 95, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 100, 99, 99, 100, 100, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1032 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 95, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 100, 99, 99, 100, 100, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 539, 594 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 474 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 192, 204 ], [ 306, 306 ], [ 309, 329 ], [ 332, 346 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 363 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 144, 144 ], [ 149, 179 ], [ 236, 268 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 441 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 294, 302 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 99, 99, 98, 97, 96, 95, 93, 91, 90, 89, 87, 86, 85, 83, 82, 81, 80, 79, 78, 77, 77, 76, 75, 74, 73, 72, 72, 71, 70, 70, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 87, 88, 88, 89, 90, 91, 92, 93, 93, 94, 95, 95, 96, 97, 97, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 99, 99, 98, 97, 96, 95, 93, 91, 90, 89, 87, 86, 85, 83, 82, 81, 80, 79, 78, 77, 77, 76, 75, 74, 73, 72, 72, 71, 70, 70, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 87, 88, 88, 89, 90, 91, 92, 93, 93, 94, 95, 95, 96, 97, 97, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 229 ], [ 270, 502 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 99, 99, 98, 97, 96, 95, 93, 91, 90, 89, 87, 86, 85, 83, 82, 81, 80, 79, 78, 77, 77, 76, 75, 74, 73, 72, 72, 71, 70, 70, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 87, 87, 88, 88, 89, 90, 91, 92, 93, 93, 94, 95, 95, 96, 97, 97, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "3. Local Minima": { "frames": [ [ 236, 264 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 98, 98, 97, 96, 95, 94, 92, 91, 89, 87, 15, 18, 20, 23, 25, 28, 31, 34, 36, 39, 42, 44, 47, 49, 52, 54, 58, 63, 62, 65, 64, 66, 72, 73, 78, 82, 82, 82, 83, 85, 87, 88, 90, 93, 95, 97, 99, 101, 103, 104, 105, 106, 106, 110, 111, 112, 112, 112, 113, 113, 113, 112, 112, 112, 112, 112, 112, 111, 111, 111, 110, 109, 108, 107, 106, 105, 104, 102, 101, 99, 98, 96, 94, 92, 91, 89, 87, 85, 83, 81, 78, 76, 73, 69, 66, 62, 59, 55, 52, 48, 45, 42, 40, 37, 34, 31, 29, 27, 25, 22, 20, 19, 17, 16, 14, 13, 12, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 97, 98, 99, 99, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 98, 98, 97, 96, 95, 94, 92, 91, 89, 87, 15, 18, 20, 23, 25, 28, 31, 34, 36, 39, 42, 44, 47, 49, 52, 54, 58, 63, 62, 65, 64, 66, 72, 73, 78, 82, 82, 82, 83, 85, 87, 88, 90, 93, 95, 97, 99, 101, 103, 104, 105, 106, 106, 110, 111, 112, 112, 112, 113, 113, 113, 112, 112, 112, 112, 112, 112, 111, 111, 111, 110, 109, 108, 107, 106, 105, 104, 102, 101, 99, 98, 96, 94, 92, 91, 89, 87, 85, 83, 81, 78, 76, 73, 69, 66, 62, 59, 55, 52, 48, 45, 42, 40, 37, 34, 31, 29, 27, 25, 22, 20, 19, 17, 16, 14, 13, 12, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 97, 98, 99, 99, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 416 ], [ 452, 493 ], [ 528, 883 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 98, 98, 97, 96, 95, 94, 92, 91, 89, 87, 15, 18, 20, 23, 25, 28, 31, 34, 36, 39, 42, 44, 47, 49, 52, 54, 58, 63, 62, 65, 64, 66, 72, 73, 78, 82, 82, 82, 83, 85, 87, 88, 90, 93, 95, 97, 99, 101, 103, 104, 105, 106, 106, 110, 111, 112, 112, 112, 113, 113, 113, 112, 112, 112, 112, 112, 112, 111, 111, 111, 110, 109, 108, 107, 106, 105, 104, 102, 101, 99, 98, 96, 94, 92, 91, 89, 87, 85, 83, 81, 78, 76, 73, 69, 66, 62, 59, 55, 52, 48, 45, 42, 40, 37, 34, 31, 29, 27, 25, 22, 20, 19, 17, 16, 14, 13, 12, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 97, 98, 99, 99, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 419, 425 ], [ 514, 525 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 422 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 193, 279 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 468 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 179, 182 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 94, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85, 85, 86, 86, 87, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 94, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85, 85, 86, 86, 87, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 585 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 94, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85, 85, 86, 86, 87, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 256, 277 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 398 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100 ], "output": { "3. Local Minima": { "frames": [ [ 76, 93 ], [ 140, 164 ], [ 297, 329 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 94, 94, 94, 93, 93, 92, 92, 92, 92, 91, 91, 91, 98, 99, 99, 99, 99, 100, 100, 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 93, 93, 92, 92, 91, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 94, 97, 97, 97, 96, 95, 94, 94, 94, 95, 95, 96, 96, 97, 98, 99, 100, 99, 98, 98, 97, 96, 96, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 96, 96, 96, 97, 97, 98, 98, 99, 100, 94, 94, 94, 95, 95, 96, 96, 97, 98, 98, 99, 100, 99, 99, 98, 97, 96, 95, 94, 93, 92, 92, 91, 91, 91, 91, 91, 92, 92, 93, 93, 93, 94, 95, 96, 97, 99, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 92, 91, 91, 90, 90, 90, 90, 90, 94, 97, 97, 97, 97, 97, 97, 98, 98, 98, 99, 99, 100, 100, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 95, 97, 99, 99, 99, 98, 96, 96, 95, 95, 95, 95, 95, 96, 96, 97, 98, 99, 99, 100, 99, 98, 98, 97, 97, 96, 96, 96, 96, 96, 95, 95, 96, 96, 96, 96, 96, 96, 97, 97, 98, 97, 93, 93, 93, 94, 94, 94, 95, 95, 96, 97, 97, 98, 99, 99, 100, 99, 99, 98, 97, 96, 95, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 93, 93, 94, 94, 95, 96, 97, 100, 97, 97, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 90, 90, 90, 91, 96, 96, 96, 96, 96, 96, 97, 97, 97, 98, 98, 99, 100, 100, 99, 98, 98, 97, 96, 95, 95, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 97, 99, 99, 99, 98, 97, 96, 96, 96, 96, 96, 96, 96, 97, 97, 98, 99, 99, 100, 100, 99, 99, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 94, 94, 94, 93, 93, 92, 92, 92, 92, 91, 91, 91, 98, 99, 99, 99, 99, 100, 100, 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 93, 93, 92, 92, 91, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 94, 97, 97, 97, 96, 95, 94, 94, 94, 95, 95, 96, 96, 97, 98, 99, 100, 99, 98, 98, 97, 96, 96, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 96, 96, 96, 97, 97, 98, 98, 99, 100, 94, 94, 94, 95, 95, 96, 96, 97, 98, 98, 99, 100, 99, 99, 98, 97, 96, 95, 94, 93, 92, 92, 91, 91, 91, 91, 91, 92, 92, 93, 93, 93, 94, 95, 96, 97, 99, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 92, 91, 91, 90, 90, 90, 90, 90, 94, 97, 97, 97, 97, 97, 97, 98, 98, 98, 99, 99, 100, 100, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 95, 97, 99, 99, 99, 98, 96, 96, 95, 95, 95, 95, 95, 96, 96, 97, 98, 99, 99, 100, 99, 98, 98, 97, 97, 96, 96, 96, 96, 96, 95, 95, 96, 96, 96, 96, 96, 96, 97, 97, 98, 97, 93, 93, 93, 94, 94, 94, 95, 95, 96, 97, 97, 98, 99, 99, 100, 99, 99, 98, 97, 96, 95, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 93, 93, 94, 94, 95, 96, 97, 100, 97, 97, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 90, 90, 90, 91, 96, 96, 96, 96, 96, 96, 97, 97, 97, 98, 98, 99, 100, 100, 99, 98, 98, 97, 96, 95, 95, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 97, 99, 99, 99, 98, 97, 96, 96, 96, 96, 96, 96, 96, 97, 97, 98, 99, 99, 100, 100, 99, 99, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 400 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 94, 94, 94, 93, 93, 92, 92, 92, 92, 91, 91, 91, 98, 99, 99, 99, 99, 100, 100, 100, 100, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 93, 93, 92, 92, 91, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 94, 97, 97, 97, 96, 95, 94, 94, 94, 95, 95, 96, 96, 97, 98, 99, 100, 99, 98, 98, 97, 96, 96, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 96, 96, 96, 97, 97, 98, 98, 99, 100, 94, 94, 94, 95, 95, 96, 96, 97, 98, 98, 99, 100, 99, 99, 98, 97, 96, 95, 94, 93, 92, 92, 91, 91, 91, 91, 91, 92, 92, 93, 93, 93, 94, 95, 96, 97, 99, 98, 98, 98, 98, 98, 97, 97, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 92, 91, 91, 90, 90, 90, 90, 90, 94, 97, 97, 97, 97, 97, 97, 98, 98, 98, 99, 99, 100, 100, 99, 99, 98, 98, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 95, 97, 99, 99, 99, 98, 96, 96, 95, 95, 95, 95, 95, 96, 96, 97, 98, 99, 99, 100, 99, 98, 98, 97, 97, 96, 96, 96, 96, 96, 95, 95, 96, 96, 96, 96, 96, 96, 97, 97, 98, 97, 93, 93, 93, 94, 94, 94, 95, 95, 96, 97, 97, 98, 99, 99, 100, 99, 99, 98, 97, 96, 95, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 93, 93, 94, 94, 95, 96, 97, 100, 97, 97, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 94, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 90, 90, 90, 91, 96, 96, 96, 96, 96, 96, 97, 97, 97, 98, 98, 99, 100, 100, 99, 98, 98, 97, 96, 95, 95, 94, 93, 93, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 97, 99, 99, 99, 98, 97, 96, 96, 96, 96, 96, 96, 96, 97, 97, 98, 99, 99, 100, 100, 99, 99, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "3. Local Minima": { "frames": [ [ 48, 63 ], [ 168, 172 ], [ 319, 323 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 99, 99, 97, 96, 95, 93, 92, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 98, 99, 100, 100, 100, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 98, 97, 95, 93, 91, 89, 88, 87, 87, 87, 88, 89, 90, 91, 91, 92, 92, 92, 93, 94, 95, 97, 97, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 96, 95, 92, 88, 85, 81, 77, 74, 72, 71, 70, 71, 71, 72, 74, 75, 78, 80, 81, 83, 85, 86, 87, 87, 88, 90, 93, 96, 99, 99, 100, 99, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 99, 99, 97, 96, 95, 93, 92, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 98, 99, 100, 100, 100, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 98, 97, 95, 93, 91, 89, 88, 87, 87, 87, 88, 89, 90, 91, 91, 92, 92, 92, 93, 94, 95, 97, 97, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 96, 95, 92, 88, 85, 81, 77, 74, 72, 71, 70, 71, 71, 72, 74, 75, 78, 80, 81, 83, 85, 86, 87, 87, 88, 90, 93, 96, 99, 99, 100, 99, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 221 ], [ 233, 337 ] ] } } }, { "instruction": "Grounding represents whether and to what extent both feet are grounded. Near the maximum value, both feet are in contact with the ground, and near the minimum value, both legs are far from the ground with a large extent equals to jump and small extent equals to walk. Specifically, a peak value of 0.7 corresponds to actions like jumping, 0.9 to actions like walking or running. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 99, 99, 97, 96, 95, 93, 92, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 98, 99, 100, 100, 100, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 98, 97, 95, 93, 91, 89, 88, 87, 87, 87, 88, 89, 90, 91, 91, 92, 92, 92, 93, 94, 95, 97, 97, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 96, 95, 92, 88, 85, 81, 77, 74, 72, 71, 70, 71, 71, 72, 74, 75, 78, 80, 81, 83, 85, 86, 87, 87, 88, 90, 93, 96, 99, 99, 100, 99, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98 ], "output": { "3. Local Minima": { "frames": [ [ 223, 231 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 55, 55, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 84, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 90, 90, 89, 88, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 79, 77, 76, 74, 72, 70, 68, 66, 64, 62, 60, 58, 55, 54, 54, 54, 53, 53, 53, 52, 52, 53, 54, 55, 57, 58, 59, 59, 59, 60, 60, 59, 59, 58, 57, 57, 56, 57, 58, 59, 59, 60, 60, 61, 61, 61, 62, 66, 69, 71, 73, 75, 76, 78, 79, 81, 82, 84, 85, 86, 87, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 91, 91, 91, 91, 91, 91, 92, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 87, 86, 85, 84, 82, 80, 79, 77, 75, 73, 71, 69, 67, 65, 63, 61, 59, 58, 56, 56, 56, 56, 55, 55, 54, 54, 53, 53, 52, 51, 51, 52, 52, 53, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 61, 61, 62, 63, 63, 63, 62, 62, 61, 60, 59, 57, 55, 53, 51, 49, 49, 51, 55, 58, 62, 65, 68, 72, 75, 77, 80, 82, 84, 85, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 87, 88, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 89, 89, 88, 88, 89, 88, 88, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 93, 93, 93, 93, 93, 92, 92, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 91, 91, 91, 90, 90, 89, 88, 88, 87, 86, 85, 84, 83, 81, 81, 79, 78, 76, 75, 74, 73, 71, 70, 68, 66, 65, 64, 62, 61, 60, 59, 58, 57, 57, 56, 56, 56, 57, 57, 58, 59, 59, 60, 60, 61, 61, 62, 62, 62, 62, 62, 62, 62, 61, 62, 62, 62, 62, 62, 62, 62, 63, 63, 64, 64, 65, 65, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 73, 73, 73, 73, 74, 74, 74, 75, 75, 76, 76, 76, 77, 78, 79, 80, 80, 81, 82, 83, 83, 83, 84, 84, 84 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 55, 55, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 84, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 90, 90, 89, 88, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 79, 77, 76, 74, 72, 70, 68, 66, 64, 62, 60, 58, 55, 54, 54, 54, 53, 53, 53, 52, 52, 53, 54, 55, 57, 58, 59, 59, 59, 60, 60, 59, 59, 58, 57, 57, 56, 57, 58, 59, 59, 60, 60, 61, 61, 61, 62, 66, 69, 71, 73, 75, 76, 78, 79, 81, 82, 84, 85, 86, 87, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 91, 91, 91, 91, 91, 91, 92, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 87, 86, 85, 84, 82, 80, 79, 77, 75, 73, 71, 69, 67, 65, 63, 61, 59, 58, 56, 56, 56, 56, 55, 55, 54, 54, 53, 53, 52, 51, 51, 52, 52, 53, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 61, 61, 62, 63, 63, 63, 62, 62, 61, 60, 59, 57, 55, 53, 51, 49, 49, 51, 55, 58, 62, 65, 68, 72, 75, 77, 80, 82, 84, 85, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 87, 88, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 89, 89, 88, 88, 89, 88, 88, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 93, 93, 93, 93, 93, 92, 92, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 91, 91, 91, 90, 90, 89, 88, 88, 87, 86, 85, 84, 83, 81, 81, 79, 78, 76, 75, 74, 73, 71, 70, 68, 66, 65, 64, 62, 61, 60, 59, 58, 57, 57, 56, 56, 56, 57, 57, 58, 59, 59, 60, 60, 61, 61, 62, 62, 62, 62, 62, 62, 62, 61, 62, 62, 62, 62, 62, 62, 62, 63, 63, 64, 64, 65, 65, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 73, 73, 73, 73, 74, 74, 74, 75, 75, 76, 76, 76, 77, 78, 79, 80, 80, 81, 82, 83, 83, 83, 84, 84, 84 ], "output": { "2. Local Maxima": { "frames": [ [ 21, 136 ], [ 186, 258 ], [ 320, 432 ], [ 509, 524 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 55, 55, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 84, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 90, 90, 89, 88, 87, 86, 86, 85, 84, 84, 83, 82, 81, 80, 79, 77, 76, 74, 72, 70, 68, 66, 64, 62, 60, 58, 55, 54, 54, 54, 53, 53, 53, 52, 52, 53, 54, 55, 57, 58, 59, 59, 59, 60, 60, 59, 59, 58, 57, 57, 56, 57, 58, 59, 59, 60, 60, 61, 61, 61, 62, 66, 69, 71, 73, 75, 76, 78, 79, 81, 82, 84, 85, 86, 87, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 91, 91, 91, 91, 91, 91, 92, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 87, 86, 85, 84, 82, 80, 79, 77, 75, 73, 71, 69, 67, 65, 63, 61, 59, 58, 56, 56, 56, 56, 55, 55, 54, 54, 53, 53, 52, 51, 51, 52, 52, 53, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 61, 61, 62, 63, 63, 63, 62, 62, 61, 60, 59, 57, 55, 53, 51, 49, 49, 51, 55, 58, 62, 65, 68, 72, 75, 77, 80, 82, 84, 85, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 87, 88, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 89, 89, 89, 88, 88, 89, 88, 88, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 93, 93, 93, 93, 93, 92, 92, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 91, 91, 91, 90, 90, 89, 88, 88, 87, 86, 85, 84, 83, 81, 81, 79, 78, 76, 75, 74, 73, 71, 70, 68, 66, 65, 64, 62, 61, 60, 59, 58, 57, 57, 56, 56, 56, 57, 57, 58, 59, 59, 60, 60, 61, 61, 62, 62, 62, 62, 62, 62, 62, 61, 62, 62, 62, 62, 62, 62, 62, 63, 63, 64, 64, 65, 65, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 73, 73, 73, 73, 74, 74, 74, 75, 75, 76, 76, 76, 77, 78, 79, 80, 80, 81, 82, 83, 83, 83, 84, 84, 84 ], "output": { "3. Local Minima": { "frames": [ [ 0, 5 ], [ 145, 159 ], [ 167, 172 ], [ 268, 291 ], [ 306, 314 ], [ 446, 454 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 76, 76, 76, 76, 75, 75, 75, 75, 74, 74, 74, 74, 73, 73, 73, 73, 73, 72, 72, 71, 71, 70, 70, 69, 68, 67, 67, 66, 66, 65, 64, 64, 63, 64, 64, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 66, 66, 65, 64, 64, 63, 62, 61, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 78, 79, 79, 80, 80, 80, 80, 80, 79, 79, 78, 78, 77, 77, 76, 76, 76, 75, 74, 74, 74, 73, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 63, 63, 62, 63, 63, 63, 64, 64, 64, 65, 65, 66, 66, 67, 67, 68, 68, 68, 69, 69, 69, 69, 69, 69, 70, 70, 70, 69, 69, 69, 69, 69, 68, 68, 67, 67, 66, 66, 65, 64, 63, 62, 61, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, 69, 70, 71, 71, 72, 73, 73, 74, 75, 76, 76, 76, 77, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 78, 78, 77, 77, 77, 76, 76, 76, 76, 75, 74, 74, 74, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 68, 68, 67, 67, 66, 65, 65, 66, 67, 67, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 74, 74, 74, 74, 73, 73, 72, 71, 70, 69, 67, 66, 64, 62, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 71, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 68, 67, 67, 67, 66, 66, 65, 65, 65, 65, 65, 64, 65, 65, 65, 65, 66, 67, 67 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 76, 76, 76, 76, 75, 75, 75, 75, 74, 74, 74, 74, 73, 73, 73, 73, 73, 72, 72, 71, 71, 70, 70, 69, 68, 67, 67, 66, 66, 65, 64, 64, 63, 64, 64, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 66, 66, 65, 64, 64, 63, 62, 61, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 78, 79, 79, 80, 80, 80, 80, 80, 79, 79, 78, 78, 77, 77, 76, 76, 76, 75, 74, 74, 74, 73, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 63, 63, 62, 63, 63, 63, 64, 64, 64, 65, 65, 66, 66, 67, 67, 68, 68, 68, 69, 69, 69, 69, 69, 69, 70, 70, 70, 69, 69, 69, 69, 69, 68, 68, 67, 67, 66, 66, 65, 64, 63, 62, 61, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, 69, 70, 71, 71, 72, 73, 73, 74, 75, 76, 76, 76, 77, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 78, 78, 77, 77, 77, 76, 76, 76, 76, 75, 74, 74, 74, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 68, 68, 67, 67, 66, 65, 65, 66, 67, 67, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 74, 74, 74, 74, 73, 73, 72, 71, 70, 69, 67, 66, 64, 62, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 71, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 68, 67, 67, 67, 66, 66, 65, 65, 65, 65, 65, 64, 65, 65, 65, 65, 66, 67, 67 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 46 ], [ 48, 86 ], [ 93, 150 ], [ 159, 192 ], [ 201, 299 ], [ 303, 395 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 76, 76, 76, 76, 75, 75, 75, 75, 74, 74, 74, 74, 73, 73, 73, 73, 73, 72, 72, 71, 71, 70, 70, 69, 68, 67, 67, 66, 66, 65, 64, 64, 63, 64, 64, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 66, 66, 65, 64, 64, 63, 62, 61, 60, 61, 62, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 78, 79, 79, 80, 80, 80, 80, 80, 79, 79, 78, 78, 77, 77, 76, 76, 76, 75, 74, 74, 74, 73, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 63, 63, 62, 63, 63, 63, 64, 64, 64, 65, 65, 66, 66, 67, 67, 68, 68, 68, 69, 69, 69, 69, 69, 69, 70, 70, 70, 69, 69, 69, 69, 69, 68, 68, 67, 67, 66, 66, 65, 64, 63, 62, 61, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, 69, 70, 71, 71, 72, 73, 73, 74, 75, 76, 76, 76, 77, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 78, 78, 77, 77, 77, 76, 76, 76, 76, 75, 74, 74, 74, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 68, 68, 67, 67, 66, 65, 65, 66, 67, 67, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 74, 74, 74, 74, 73, 73, 72, 71, 70, 69, 67, 66, 64, 62, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 71, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 72, 72, 72, 72, 71, 71, 70, 70, 69, 69, 69, 68, 68, 67, 67, 67, 66, 66, 65, 65, 65, 65, 65, 64, 65, 65, 65, 65, 66, 67, 67 ], "output": { "3. Local Minima": { "frames": [ [ 45, 49 ], [ 85, 93 ], [ 149, 161 ], [ 192, 201 ], [ 299, 303 ], [ 388, 388 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 86, 86, 85, 85, 85, 85, 85, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 80, 79, 79, 79, 80, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 82, 82, 82, 83, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 80, 80, 80, 79, 79, 78, 78, 78, 77, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 81, 82, 82, 83, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 81, 81, 80, 80, 79, 79, 79, 79, 78, 78, 77, 77, 77, 77 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 86, 86, 85, 85, 85, 85, 85, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 80, 79, 79, 79, 80, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 82, 82, 82, 83, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 80, 80, 80, 79, 79, 78, 78, 78, 77, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 81, 82, 82, 83, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 81, 81, 80, 80, 79, 79, 79, 79, 78, 78, 77, 77, 77, 77 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 295 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 86, 86, 85, 85, 85, 85, 85, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 80, 79, 79, 79, 80, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 82, 82, 82, 83, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 80, 80, 80, 79, 79, 78, 78, 78, 77, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 81, 82, 82, 83, 83, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 81, 81, 80, 80, 79, 79, 79, 79, 78, 78, 77, 77, 77, 77 ], "output": { "3. Local Minima": { "frames": [ [ 188, 196 ], [ 234, 252 ], [ 290, 295 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 82, 82, 80, 79, 77, 75, 72, 70, 68, 65, 63, 60, 58, 56, 55, 53, 52, 51, 50, 50, 51, 51, 52, 52, 53, 53, 54, 54, 54, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 56, 56, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 65, 66, 66, 67, 68, 69, 70, 71, 71, 72, 73, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 73, 73, 73, 72, 72, 72, 73, 73, 73, 74, 75, 76, 76, 76, 77, 77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 82, 82, 83, 83, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 82, 82, 80, 79, 77, 75, 72, 70, 68, 65, 63, 60, 58, 56, 55, 53, 52, 51, 50, 50, 51, 51, 52, 52, 53, 53, 54, 54, 54, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 56, 56, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 65, 66, 66, 67, 68, 69, 70, 71, 71, 72, 73, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 73, 73, 73, 72, 72, 72, 73, 73, 73, 74, 75, 76, 76, 76, 77, 77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 82, 82, 83, 83, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 155 ], [ 213, 256 ], [ 260, 399 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 82, 82, 80, 79, 77, 75, 72, 70, 68, 65, 63, 60, 58, 56, 55, 53, 52, 51, 50, 50, 51, 51, 52, 52, 53, 53, 54, 54, 54, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 56, 56, 56, 57, 57, 58, 59, 60, 61, 62, 63, 64, 65, 65, 66, 66, 67, 68, 69, 70, 71, 71, 72, 73, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 73, 73, 73, 72, 72, 72, 73, 73, 73, 74, 75, 76, 76, 76, 77, 77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 82, 82, 83, 83, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85 ], "output": { "3. Local Minima": { "frames": [ [ 162, 195 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 70, 70, 71, 71, 71, 71, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 71, 71, 71, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 66, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 70, 70, 70, 71, 71, 71 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 70, 70, 71, 71, 71, 71, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 71, 71, 71, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 66, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 70, 70, 70, 71, 71, 71 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 70, 70, 70, 70, 71, 71, 71, 71, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 71, 71, 71, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 66, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 66, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 70, 70, 70, 71, 71, 71 ], "output": { "3. Local Minima": { "frames": [ [ 65, 69 ], [ 337, 366 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 82, 82, 82, 81, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 82, 82, 82, 81, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 341 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 82, 82, 82, 81, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83 ], "output": { "3. Local Minima": { "frames": [ [ 17, 33 ], [ 215, 215 ], [ 219, 219 ], [ 225, 234 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 55, 54, 54, 53, 53, 53, 53, 53, 54, 54, 55, 55, 55, 56, 56, 56, 56, 57, 57, 57, 57, 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 58, 57, 57, 56, 56, 56, 55, 55, 55, 55, 55, 56, 56, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59, 58, 58, 58, 58, 58, 57, 57, 57, 57, 57, 57, 57, 57, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 63, 63, 63, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 66 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 55, 54, 54, 53, 53, 53, 53, 53, 54, 54, 55, 55, 55, 56, 56, 56, 56, 57, 57, 57, 57, 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 58, 57, 57, 56, 56, 56, 55, 55, 55, 55, 55, 56, 56, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59, 58, 58, 58, 58, 58, 57, 57, 57, 57, 57, 57, 57, 57, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 63, 63, 63, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 66 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 2 ], [ 8, 167 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 55, 54, 54, 53, 53, 53, 53, 53, 54, 54, 55, 55, 55, 56, 56, 56, 56, 57, 57, 57, 57, 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 58, 57, 57, 56, 56, 56, 55, 55, 55, 55, 55, 56, 56, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59, 58, 58, 58, 58, 58, 57, 57, 57, 57, 57, 57, 57, 57, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 63, 63, 63, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 66 ], "output": { "3. Local Minima": { "frames": [ [ 0, 12 ], [ 48, 52 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 80, 80, 79, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 76, 75, 74, 74, 73, 72, 71, 71, 70, 69, 68, 66, 65, 64, 63, 62, 60, 59, 58, 56, 55, 53, 51, 50, 49, 48, 48, 48, 48, 48, 47, 48, 48, 49, 50, 51, 52, 53, 55, 56, 56, 57, 58, 58, 59, 60, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 66, 66, 67, 67, 67, 67, 68, 68, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 77, 78, 78, 79, 79, 80, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 77, 76, 75, 74, 73, 73, 72, 71, 70, 68, 67, 66, 64, 63, 61, 60, 59, 58, 57, 56, 54, 53, 52, 51, 50, 50, 50, 50, 49, 49, 49, 50, 50, 51, 51, 51, 51, 51, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 68, 69, 70, 70, 71, 71, 72, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 77, 77, 78, 78, 79, 79, 79, 80, 81, 81, 81, 82, 82, 83, 83, 83, 84, 84, 83, 83, 83, 83, 82, 83, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 77, 77, 76, 76, 75, 74, 73, 72, 71, 70, 68, 67, 65, 63, 62, 60, 58, 57, 55, 53, 52, 51, 50, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 78, 79, 79, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 81, 81, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 80, 80, 79, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 76, 75, 74, 74, 73, 72, 71, 71, 70, 69, 68, 66, 65, 64, 63, 62, 60, 59, 58, 56, 55, 53, 51, 50, 49, 48, 48, 48, 48, 48, 47, 48, 48, 49, 50, 51, 52, 53, 55, 56, 56, 57, 58, 58, 59, 60, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 66, 66, 67, 67, 67, 67, 68, 68, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 77, 78, 78, 79, 79, 80, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 77, 76, 75, 74, 73, 73, 72, 71, 70, 68, 67, 66, 64, 63, 61, 60, 59, 58, 57, 56, 54, 53, 52, 51, 50, 50, 50, 50, 49, 49, 49, 50, 50, 51, 51, 51, 51, 51, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 68, 69, 70, 70, 71, 71, 72, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 77, 77, 78, 78, 79, 79, 79, 80, 81, 81, 81, 82, 82, 83, 83, 83, 84, 84, 83, 83, 83, 83, 82, 83, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 77, 77, 76, 76, 75, 74, 73, 72, 71, 70, 68, 67, 65, 63, 62, 60, 58, 57, 55, 53, 52, 51, 50, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 78, 79, 79, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 81, 81, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 23 ], [ 76, 153 ], [ 205, 295 ], [ 332, 431 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 80, 80, 79, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 76, 75, 74, 74, 73, 72, 71, 71, 70, 69, 68, 66, 65, 64, 63, 62, 60, 59, 58, 56, 55, 53, 51, 50, 49, 48, 48, 48, 48, 48, 47, 48, 48, 49, 50, 51, 52, 53, 55, 56, 56, 57, 58, 58, 59, 60, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 66, 66, 67, 67, 67, 67, 68, 68, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 77, 78, 78, 79, 79, 80, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 77, 76, 75, 74, 73, 73, 72, 71, 70, 68, 67, 66, 64, 63, 61, 60, 59, 58, 57, 56, 54, 53, 52, 51, 50, 50, 50, 50, 49, 49, 49, 50, 50, 51, 51, 51, 51, 51, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 68, 69, 70, 70, 71, 71, 72, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 77, 77, 78, 78, 79, 79, 79, 80, 81, 81, 81, 82, 82, 83, 83, 83, 84, 84, 83, 83, 83, 83, 82, 83, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 77, 77, 76, 76, 75, 74, 73, 72, 71, 70, 68, 67, 65, 63, 62, 60, 58, 57, 55, 53, 52, 51, 50, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 78, 79, 79, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 81, 81, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80 ], "output": { "3. Local Minima": { "frames": [ [ 34, 50 ], [ 164, 192 ], [ 304, 320 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1032 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87 ], "output": { "3. Local Minima": { "frames": [ [ 603, 614 ], [ 979, 1015 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 77, 76, 75, 75, 74, 73, 73, 72, 72, 71, 70, 70, 69, 69, 68, 68, 68, 67, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 66, 66, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 67, 67, 67, 66, 66, 66, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 75, 75, 75, 75, 75, 75, 75, 76, 76, 76, 76, 76, 76, 77 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 77, 76, 75, 75, 74, 73, 73, 72, 72, 71, 70, 70, 69, 69, 68, 68, 68, 67, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 66, 66, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 67, 67, 67, 66, 66, 66, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 75, 75, 75, 75, 75, 75, 75, 76, 76, 76, 76, 76, 76, 77 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 197 ], [ 250, 259 ], [ 265, 269 ], [ 371, 397 ], [ 427, 474 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 77, 76, 75, 75, 74, 73, 73, 72, 72, 71, 70, 70, 69, 69, 68, 68, 68, 67, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 66, 66, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 67, 67, 67, 66, 66, 66, 65, 65, 65, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 75, 75, 75, 75, 75, 75, 75, 76, 76, 76, 76, 76, 76, 77 ], "output": { "3. Local Minima": { "frames": [ [ 196, 378 ], [ 394, 431 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 69, 69, 69, 68, 68, 67, 67, 67, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 88, 89, 90, 90, 90, 90, 89, 88, 87, 86, 85, 83, 82, 81, 80, 79, 78, 77, 76, 75, 75, 74, 73, 73, 72, 71, 71, 71, 70, 70, 69, 69, 68, 67, 67, 66, 65, 64, 63, 63, 62, 61, 60, 59, 59, 58, 57, 57, 56, 56, 55, 55, 54, 54, 54, 53, 53, 53, 53, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 55, 55, 56, 56, 56, 57, 58, 58, 59, 59, 59, 60, 60, 61, 61, 62, 62, 63, 63, 64, 65, 65, 66, 66, 66, 67, 67, 68, 68, 69, 69, 69, 70, 70, 71, 71, 71, 72 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 69, 69, 69, 68, 68, 67, 67, 67, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 88, 89, 90, 90, 90, 90, 89, 88, 87, 86, 85, 83, 82, 81, 80, 79, 78, 77, 76, 75, 75, 74, 73, 73, 72, 71, 71, 71, 70, 70, 69, 69, 68, 67, 67, 66, 65, 64, 63, 63, 62, 61, 60, 59, 59, 58, 57, 57, 56, 56, 55, 55, 54, 54, 54, 53, 53, 53, 53, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 55, 55, 56, 56, 56, 57, 58, 58, 59, 59, 59, 60, 60, 61, 61, 62, 62, 63, 63, 64, 65, 65, 66, 66, 66, 67, 67, 68, 68, 69, 69, 69, 70, 70, 71, 71, 71, 72 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 104 ], [ 230, 269 ], [ 363, 363 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 77, 76, 76, 76, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 69, 69, 69, 68, 68, 67, 67, 67, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 86, 87, 88, 88, 89, 90, 90, 90, 90, 89, 88, 87, 86, 85, 83, 82, 81, 80, 79, 78, 77, 76, 75, 75, 74, 73, 73, 72, 71, 71, 71, 70, 70, 69, 69, 68, 67, 67, 66, 65, 64, 63, 63, 62, 61, 60, 59, 59, 58, 57, 57, 56, 56, 55, 55, 54, 54, 54, 53, 53, 53, 53, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 55, 55, 56, 56, 56, 57, 58, 58, 59, 59, 59, 60, 60, 61, 61, 62, 62, 63, 63, 64, 65, 65, 66, 66, 66, 67, 67, 68, 68, 69, 69, 69, 70, 70, 71, 71, 71, 72 ], "output": { "3. Local Minima": { "frames": [ [ 288, 336 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 71, 70, 69, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 56, 55, 54, 53, 52, 52, 52, 53, 53, 54, 54, 54, 56, 58, 59, 61, 63, 64, 65, 67, 67, 68, 68, 67, 65, 63, 60, 56, 53, 57, 60, 61, 60, 58, 56, 54, 52, 50, 52, 54, 55, 56, 58, 59, 60, 60, 61, 62, 62, 62, 63, 63, 63, 64, 64, 64, 65, 65, 65, 66, 66, 67, 67, 67, 68, 68, 67, 65, 63, 60, 57, 53, 54, 55, 55, 54, 52, 54, 56, 58, 59, 61, 62, 64, 65, 66, 66, 67, 67, 67, 67, 67, 67, 66, 66, 65, 63, 62, 60, 58, 58, 62, 66, 68, 68, 66, 64, 61, 63, 64, 64, 63, 61, 57, 61, 69, 75, 76, 76, 73, 70, 67, 65, 62, 62, 63, 65, 66, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 65, 65, 64, 64, 63, 62, 61, 61, 60, 59, 58, 57, 57, 57, 57, 57, 56, 55, 54, 56, 57, 58, 60, 60, 60, 60, 59, 57, 59, 60, 61, 61, 61, 61, 61, 60, 59, 57, 57, 57, 56, 55, 55, 54, 53, 53, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 52, 52, 52, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 50, 49, 50, 50, 51, 51, 52, 52, 53, 53, 53, 54, 54, 55, 55, 55, 56, 56, 57, 57, 58, 58, 59, 59, 59, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 64, 64, 64, 65, 65, 66, 66, 67, 68, 68, 69, 69, 70, 71, 71, 72, 73, 73, 74, 74, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 71, 70, 69, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 56, 55, 54, 53, 52, 52, 52, 53, 53, 54, 54, 54, 56, 58, 59, 61, 63, 64, 65, 67, 67, 68, 68, 67, 65, 63, 60, 56, 53, 57, 60, 61, 60, 58, 56, 54, 52, 50, 52, 54, 55, 56, 58, 59, 60, 60, 61, 62, 62, 62, 63, 63, 63, 64, 64, 64, 65, 65, 65, 66, 66, 67, 67, 67, 68, 68, 67, 65, 63, 60, 57, 53, 54, 55, 55, 54, 52, 54, 56, 58, 59, 61, 62, 64, 65, 66, 66, 67, 67, 67, 67, 67, 67, 66, 66, 65, 63, 62, 60, 58, 58, 62, 66, 68, 68, 66, 64, 61, 63, 64, 64, 63, 61, 57, 61, 69, 75, 76, 76, 73, 70, 67, 65, 62, 62, 63, 65, 66, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 65, 65, 64, 64, 63, 62, 61, 61, 60, 59, 58, 57, 57, 57, 57, 57, 56, 55, 54, 56, 57, 58, 60, 60, 60, 60, 59, 57, 59, 60, 61, 61, 61, 61, 61, 60, 59, 57, 57, 57, 56, 55, 55, 54, 53, 53, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 52, 52, 52, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 50, 49, 50, 50, 51, 51, 52, 52, 53, 53, 53, 54, 54, 55, 55, 55, 56, 56, 57, 57, 58, 58, 59, 59, 59, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 64, 64, 64, 65, 65, 66, 66, 67, 68, 68, 69, 69, 70, 71, 71, 72, 73, 73, 74, 74, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 125 ], [ 144, 154 ], [ 160, 160 ], [ 175, 197 ], [ 210, 226 ], [ 230, 241 ], [ 243, 287 ], [ 310, 314 ], [ 378, 441 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 71, 70, 69, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 56, 55, 54, 53, 52, 52, 52, 53, 53, 54, 54, 54, 56, 58, 59, 61, 63, 64, 65, 67, 67, 68, 68, 67, 65, 63, 60, 56, 53, 57, 60, 61, 60, 58, 56, 54, 52, 50, 52, 54, 55, 56, 58, 59, 60, 60, 61, 62, 62, 62, 63, 63, 63, 64, 64, 64, 65, 65, 65, 66, 66, 67, 67, 67, 68, 68, 67, 65, 63, 60, 57, 53, 54, 55, 55, 54, 52, 54, 56, 58, 59, 61, 62, 64, 65, 66, 66, 67, 67, 67, 67, 67, 67, 66, 66, 65, 63, 62, 60, 58, 58, 62, 66, 68, 68, 66, 64, 61, 63, 64, 64, 63, 61, 57, 61, 69, 75, 76, 76, 73, 70, 67, 65, 62, 62, 63, 65, 66, 67, 67, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 66, 66, 66, 65, 65, 64, 64, 63, 62, 61, 61, 60, 59, 58, 57, 57, 57, 57, 57, 56, 55, 54, 56, 57, 58, 60, 60, 60, 60, 59, 57, 59, 60, 61, 61, 61, 61, 61, 60, 59, 57, 57, 57, 56, 55, 55, 54, 53, 53, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 52, 52, 52, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 50, 49, 50, 50, 51, 51, 52, 52, 53, 53, 53, 54, 54, 55, 55, 55, 56, 56, 57, 57, 58, 58, 59, 59, 59, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 64, 64, 64, 65, 65, 66, 66, 67, 68, 68, 69, 69, 70, 71, 71, 72, 73, 73, 74, 74, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74 ], "output": { "3. Local Minima": { "frames": [ [ 131, 140 ], [ 157, 157 ], [ 164, 168 ], [ 200, 201 ], [ 204, 206 ], [ 298, 298 ], [ 323, 363 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 80, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 73, 73, 73, 72, 71, 71, 70, 70, 69, 69, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 62, 62, 62, 62, 61, 61, 60, 59, 58, 57, 57, 56, 55, 55, 54, 54, 54, 55, 55, 56, 56, 57, 58, 58, 59, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 63, 63, 63, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57, 57, 57, 56, 56, 56, 56, 56, 55, 55, 55, 56, 56, 57, 58, 59, 60, 60, 61, 62, 64, 65, 66, 67, 67, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 82, 83, 83, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 86, 86, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 80, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 73, 73, 73, 72, 71, 71, 70, 70, 69, 69, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 62, 62, 62, 62, 61, 61, 60, 59, 58, 57, 57, 56, 55, 55, 54, 54, 54, 55, 55, 56, 56, 57, 58, 58, 59, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 63, 63, 63, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57, 57, 57, 56, 56, 56, 56, 56, 55, 55, 55, 56, 56, 57, 58, 59, 60, 60, 61, 62, 64, 65, 66, 67, 67, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 82, 83, 83, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 86, 86, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 167 ], [ 295, 502 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 80, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 73, 73, 73, 72, 71, 71, 70, 70, 69, 69, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 62, 62, 62, 62, 61, 61, 60, 59, 58, 57, 57, 56, 55, 55, 54, 54, 54, 55, 55, 56, 56, 57, 58, 58, 59, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 63, 63, 63, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 60, 60, 60, 60, 60, 60, 60, 59, 59, 59, 59, 58, 58, 58, 57, 57, 57, 57, 57, 56, 56, 56, 56, 56, 55, 55, 55, 56, 56, 57, 58, 59, 60, 60, 61, 62, 64, 65, 66, 67, 67, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 82, 83, 83, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 86, 86, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87 ], "output": { "3. Local Minima": { "frames": [ [ 200, 224 ], [ 251, 284 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 82, 82, 82, 82, 83, 83, 82, 81, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 77, 77, 76, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 77, 78, 78, 78, 78, 79, 79, 80, 80, 79, 80, 80, 80, 80, 80, 80, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 89, 88, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 87, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 87, 87, 87, 88, 88, 87, 87, 87, 88, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 87, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 87, 87, 87, 87, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 82, 82, 82, 82, 83, 83, 82, 81, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 77, 77, 76, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 77, 78, 78, 78, 78, 79, 79, 80, 80, 79, 80, 80, 80, 80, 80, 80, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 89, 88, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 87, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 87, 87, 87, 88, 88, 87, 87, 87, 88, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 87, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 87, 87, 87, 87, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 883 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 84, 84, 84, 83, 83, 82, 82, 82, 82, 81, 81, 81, 82, 82, 82, 82, 83, 83, 82, 81, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 77, 77, 76, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 77, 78, 78, 78, 78, 79, 79, 80, 80, 79, 80, 80, 80, 80, 80, 80, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 89, 88, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 87, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 87, 87, 87, 88, 88, 87, 87, 87, 88, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 88, 88, 88, 87, 88, 88, 88, 88, 88, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 88, 88, 87, 87, 87, 87, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 87, 88, 87, 87, 87, 87, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87 ], "output": { "3. Local Minima": { "frames": [ [ 446, 472 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 70, 70, 69, 69, 68, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 62, 62, 61, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 70, 70, 69, 69, 68, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 62, 62, 61, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 117 ], [ 319, 422 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 80, 80, 80, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 70, 70, 69, 69, 68, 68, 67, 67, 66, 66, 65, 65, 64, 64, 63, 63, 62, 62, 61, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68, 69, 69, 69, 70, 70, 70, 71, 71, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84 ], "output": { "3. Local Minima": { "frames": [ [ 122, 312 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 77, 77, 76, 76, 75, 74, 74, 73, 73, 72, 72, 71, 70, 70, 69, 68, 68, 67, 66, 65, 65, 64, 63, 63, 62, 61, 61, 60, 59, 59, 58, 57, 56, 56, 55, 54, 54, 53, 52, 51, 51, 50, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 49, 49, 48, 48, 48, 48, 49, 50, 51, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 60, 61, 61, 62, 62, 63, 64, 64, 65, 66, 66, 67, 68, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 86, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 84, 84, 83, 82, 82, 80, 79, 78, 77, 75, 73, 72, 70, 69, 68, 67, 66, 66, 65, 65, 65, 66, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 82, 83, 84, 85, 86, 86, 87, 87, 87, 87, 86, 86, 86, 85, 84, 84, 83, 83, 83, 82, 82, 81, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 77, 77, 76, 76, 75, 74, 74, 73, 73, 72, 72, 71, 70, 70, 69, 68, 68, 67, 66, 65, 65, 64, 63, 63, 62, 61, 61, 60, 59, 59, 58, 57, 56, 56, 55, 54, 54, 53, 52, 51, 51, 50, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 49, 49, 48, 48, 48, 48, 49, 50, 51, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 60, 61, 61, 62, 62, 63, 64, 64, 65, 66, 66, 67, 68, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 86, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 84, 84, 83, 82, 82, 80, 79, 78, 77, 75, 73, 72, 70, 69, 68, 67, 66, 66, 65, 65, 65, 66, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 82, 83, 84, 85, 86, 86, 87, 87, 87, 87, 86, 86, 86, 85, 84, 84, 83, 83, 83, 82, 82, 81, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 171 ], [ 307, 354 ], [ 369, 468 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 77, 77, 76, 76, 75, 74, 74, 73, 73, 72, 72, 71, 70, 70, 69, 68, 68, 67, 66, 65, 65, 64, 63, 63, 62, 61, 61, 60, 59, 59, 58, 57, 56, 56, 55, 54, 54, 53, 52, 51, 51, 50, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 49, 49, 48, 48, 48, 48, 49, 50, 51, 52, 52, 53, 54, 55, 56, 57, 58, 59, 60, 60, 61, 61, 62, 62, 63, 64, 64, 65, 66, 66, 67, 68, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 86, 87, 87, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 84, 84, 83, 82, 82, 80, 79, 78, 77, 75, 73, 72, 70, 69, 68, 67, 66, 66, 65, 65, 65, 66, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 76, 77, 78, 79, 80, 81, 82, 82, 83, 84, 85, 86, 86, 87, 87, 87, 87, 86, 86, 86, 85, 84, 84, 83, 83, 83, 82, 82, 81, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80 ], "output": { "3. Local Minima": { "frames": [ [ 192, 286 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 93, 93, 92, 91, 90, 90, 89, 88, 87, 86, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 93, 93, 92, 91, 90, 90, 89, 88, 87, 86, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 585 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 92, 92, 92, 91, 91, 91, 91, 91, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 90, 90, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 93, 93, 92, 91, 90, 90, 89, 88, 87, 86, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 86, 86, 87, 87, 87, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "3. Local Minima": { "frames": [ [ 313, 343 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 64, 65, 65, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 74, 75, 75, 75, 75, 76, 76, 76, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 79, 78, 77 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 64, 65, 65, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 74, 75, 75, 75, 75, 76, 76, 76, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 79, 78, 77 ], "output": { "2. Local Maxima": { "frames": [ [ 5, 398 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 64, 65, 65, 66, 66, 67, 67, 67, 68, 68, 68, 69, 69, 69, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 74, 75, 75, 75, 75, 76, 76, 76, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 79, 79, 79, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 81, 81, 80, 79, 78, 77 ], "output": { "3. Local Minima": { "frames": [ [ 0, 7 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 77, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 69, 69, 70, 70, 70, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 70, 71, 71, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 77, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 69, 69, 70, 70, 70, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 70, 71, 71, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 400 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 77, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 69, 69, 70, 70, 70, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, 67, 67, 67, 66, 66, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 68, 68, 68, 69, 69, 70, 70, 70, 71, 71, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 74, 74, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73, 72, 72, 72, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 73, 72, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71 ], "output": { "3. Local Minima": { "frames": [ [ 85, 138 ], [ 251, 285 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 68, 67, 67, 67, 67, 67, 68, 68, 69, 69, 70, 70, 71, 72, 72, 73, 73, 73, 72, 70, 66, 62, 58, 53, 52, 52, 53, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 64, 63, 62, 60, 57, 55, 52, 51, 50, 49, 48, 49, 49, 50, 52, 53, 55, 56, 58, 60, 61, 61, 60, 59, 56, 53, 51, 51, 51, 53, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 67, 66, 64, 62, 60, 60, 60, 59, 58, 57, 55, 53, 55, 57, 60, 63, 66, 69, 73, 76, 79, 81, 83, 84, 84, 83, 82, 80, 77, 74, 70, 66, 62, 58, 55, 53, 51, 49, 49, 49, 50, 51, 51, 50, 50, 50, 50, 52, 53, 54, 54, 54, 55, 55, 56, 56, 56, 57, 57, 57, 56, 55, 55, 55, 55, 55, 56, 58, 60, 62, 63, 64, 64, 64, 63, 61, 59, 57, 55, 53, 52, 51, 51, 50, 49, 49, 49, 50, 50, 51, 52, 53, 54, 55, 56, 58, 60, 62, 64, 66, 68, 71, 73, 75, 76, 77, 78, 79, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 81, 81, 81, 80, 80, 79, 79, 78, 78, 78, 78, 78, 79, 80, 80, 81, 81, 81, 81, 81, 80, 79, 78, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 69, 69, 69, 69, 68, 69, 70, 70, 71, 72, 73 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 68, 67, 67, 67, 67, 67, 68, 68, 69, 69, 70, 70, 71, 72, 72, 73, 73, 73, 72, 70, 66, 62, 58, 53, 52, 52, 53, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 64, 63, 62, 60, 57, 55, 52, 51, 50, 49, 48, 49, 49, 50, 52, 53, 55, 56, 58, 60, 61, 61, 60, 59, 56, 53, 51, 51, 51, 53, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 67, 66, 64, 62, 60, 60, 60, 59, 58, 57, 55, 53, 55, 57, 60, 63, 66, 69, 73, 76, 79, 81, 83, 84, 84, 83, 82, 80, 77, 74, 70, 66, 62, 58, 55, 53, 51, 49, 49, 49, 50, 51, 51, 50, 50, 50, 50, 52, 53, 54, 54, 54, 55, 55, 56, 56, 56, 57, 57, 57, 56, 55, 55, 55, 55, 55, 56, 58, 60, 62, 63, 64, 64, 64, 63, 61, 59, 57, 55, 53, 52, 51, 51, 50, 49, 49, 49, 50, 50, 51, 52, 53, 54, 55, 56, 58, 60, 62, 64, 66, 68, 71, 73, 75, 76, 77, 78, 79, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 81, 81, 81, 80, 80, 79, 79, 78, 78, 78, 78, 78, 79, 80, 80, 81, 81, 81, 81, 81, 80, 79, 78, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 69, 69, 69, 69, 68, 69, 70, 70, 71, 72, 73 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 87 ], [ 93, 106 ], [ 193, 206 ], [ 276, 337 ] ] } } }, { "instruction": "Arm fold represents a quantification of the angle of the arm (wrist-elbow-shoulder angle). Near the maximum value, both arms are fully extended, and near the minimum value, both arms are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 68, 67, 67, 67, 67, 67, 68, 68, 69, 69, 70, 70, 71, 72, 72, 73, 73, 73, 72, 70, 66, 62, 58, 53, 52, 52, 53, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 66, 66, 66, 66, 66, 66, 66, 65, 65, 65, 65, 64, 63, 62, 60, 57, 55, 52, 51, 50, 49, 48, 49, 49, 50, 52, 53, 55, 56, 58, 60, 61, 61, 60, 59, 56, 53, 51, 51, 51, 53, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 67, 66, 64, 62, 60, 60, 60, 59, 58, 57, 55, 53, 55, 57, 60, 63, 66, 69, 73, 76, 79, 81, 83, 84, 84, 83, 82, 80, 77, 74, 70, 66, 62, 58, 55, 53, 51, 49, 49, 49, 50, 51, 51, 50, 50, 50, 50, 52, 53, 54, 54, 54, 55, 55, 56, 56, 56, 57, 57, 57, 56, 55, 55, 55, 55, 55, 56, 58, 60, 62, 63, 64, 64, 64, 63, 61, 59, 57, 55, 53, 52, 51, 51, 50, 49, 49, 49, 50, 50, 51, 52, 53, 54, 55, 56, 58, 60, 62, 64, 66, 68, 71, 73, 75, 76, 77, 78, 79, 80, 80, 81, 81, 81, 82, 82, 82, 82, 82, 81, 81, 81, 80, 80, 79, 79, 78, 78, 78, 78, 78, 79, 80, 80, 81, 81, 81, 81, 81, 80, 79, 78, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 69, 69, 69, 69, 68, 69, 70, 70, 71, 72, 73 ], "output": { "3. Local Minima": { "frames": [ [ 110, 114 ], [ 140, 151 ], [ 160, 165 ], [ 186, 188 ], [ 210, 229 ], [ 237, 241 ], [ 254, 269 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 71, 71, 72, 72, 73, 73, 74, 74, 75, 76, 76, 77, 78, 79, 79, 80, 81, 81, 82, 82, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 78, 77, 76, 76, 75, 74, 74, 73, 73, 72, 72, 72, 71, 71, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 78, 79, 79, 79, 79, 78, 76, 74, 71, 69, 66, 64, 61, 60, 58, 60, 62, 64, 66, 67, 69, 70, 72, 72, 73, 73, 74, 74, 74, 74, 74, 73, 73, 72, 71, 70, 70, 69, 70, 72, 74, 76, 78, 80, 81, 83, 85, 87, 87, 86, 86, 85, 83, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 81, 83, 84, 84, 85, 85, 85, 85, 84, 84, 85, 84, 82, 81, 80, 79, 78, 78, 78, 77, 77, 77, 78, 77, 76, 75, 74, 72, 70, 68, 67, 65, 64, 62, 62, 62, 62, 62, 62, 62, 63, 63, 64, 65, 66, 68, 69, 71, 72, 74, 75, 76, 77, 78, 79, 79, 79, 79, 78, 77, 75, 74, 71, 69, 67, 65, 62, 60, 58, 60, 62, 65, 67, 69, 71, 73, 74, 75, 76, 77, 77, 76, 76, 75, 74, 73, 72, 71, 70, 70, 69, 67, 67, 69, 72, 74, 76, 78, 81, 82, 84, 86, 87, 87, 87, 87, 87, 87, 87, 86, 86, 84, 85, 85, 85, 85, 83, 82, 82, 83, 84, 84, 84, 84, 84, 86, 86, 87, 88, 88, 89, 88, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 79, 79, 79, 79, 78, 77, 76, 75, 74, 73, 71, 69, 68, 66, 66, 65, 65, 64, 64, 64, 64, 64, 64, 65, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 82, 83, 83, 83, 82, 81, 81, 80, 79, 78, 76, 75, 74, 72, 71, 69, 67, 65, 64, 63, 63, 63, 63, 63, 64, 65, 66, 68, 70, 72, 73, 74, 76, 76, 77, 77, 78, 78, 78, 78, 79, 80, 80, 81, 82, 82, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 91, 91, 90, 89, 89, 89, 90, 89, 88, 87, 86, 82, 81, 80, 79, 77, 76, 74, 73, 72, 72, 73, 73, 73, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 87, 86, 87, 87, 87, 87, 87, 86, 86, 85, 84, 86, 85, 84, 82, 81, 80, 79, 78, 79, 79, 80, 80, 82, 83, 81, 81, 80, 80, 80, 79, 81, 80, 78, 77 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 71, 71, 72, 72, 73, 73, 74, 74, 75, 76, 76, 77, 78, 79, 79, 80, 81, 81, 82, 82, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 78, 77, 76, 76, 75, 74, 74, 73, 73, 72, 72, 72, 71, 71, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 78, 79, 79, 79, 79, 78, 76, 74, 71, 69, 66, 64, 61, 60, 58, 60, 62, 64, 66, 67, 69, 70, 72, 72, 73, 73, 74, 74, 74, 74, 74, 73, 73, 72, 71, 70, 70, 69, 70, 72, 74, 76, 78, 80, 81, 83, 85, 87, 87, 86, 86, 85, 83, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 81, 83, 84, 84, 85, 85, 85, 85, 84, 84, 85, 84, 82, 81, 80, 79, 78, 78, 78, 77, 77, 77, 78, 77, 76, 75, 74, 72, 70, 68, 67, 65, 64, 62, 62, 62, 62, 62, 62, 62, 63, 63, 64, 65, 66, 68, 69, 71, 72, 74, 75, 76, 77, 78, 79, 79, 79, 79, 78, 77, 75, 74, 71, 69, 67, 65, 62, 60, 58, 60, 62, 65, 67, 69, 71, 73, 74, 75, 76, 77, 77, 76, 76, 75, 74, 73, 72, 71, 70, 70, 69, 67, 67, 69, 72, 74, 76, 78, 81, 82, 84, 86, 87, 87, 87, 87, 87, 87, 87, 86, 86, 84, 85, 85, 85, 85, 83, 82, 82, 83, 84, 84, 84, 84, 84, 86, 86, 87, 88, 88, 89, 88, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 79, 79, 79, 79, 78, 77, 76, 75, 74, 73, 71, 69, 68, 66, 66, 65, 65, 64, 64, 64, 64, 64, 64, 65, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 82, 83, 83, 83, 82, 81, 81, 80, 79, 78, 76, 75, 74, 72, 71, 69, 67, 65, 64, 63, 63, 63, 63, 63, 64, 65, 66, 68, 70, 72, 73, 74, 76, 76, 77, 77, 78, 78, 78, 78, 79, 80, 80, 81, 82, 82, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 91, 91, 90, 89, 89, 89, 90, 89, 88, 87, 86, 82, 81, 80, 79, 77, 76, 74, 73, 72, 72, 73, 73, 73, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 87, 86, 87, 87, 87, 87, 87, 86, 86, 85, 84, 86, 85, 84, 82, 81, 80, 79, 78, 79, 79, 80, 80, 82, 83, 81, 81, 80, 80, 80, 79, 81, 80, 78, 77 ], "output": { "2. Local Maxima": { "frames": [ [ 4, 119 ], [ 144, 157 ], [ 174, 182 ], [ 190, 244 ], [ 267, 279 ], [ 293, 303 ], [ 313, 369 ], [ 390, 410 ], [ 428, 473 ], [ 476, 524 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 71, 71, 72, 72, 73, 73, 74, 74, 75, 76, 76, 77, 78, 79, 79, 80, 81, 81, 82, 82, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 79, 79, 79, 78, 78, 78, 77, 76, 76, 75, 74, 74, 73, 73, 72, 72, 72, 71, 71, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 69, 69, 69, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 78, 79, 79, 79, 79, 78, 76, 74, 71, 69, 66, 64, 61, 60, 58, 60, 62, 64, 66, 67, 69, 70, 72, 72, 73, 73, 74, 74, 74, 74, 74, 73, 73, 72, 71, 70, 70, 69, 70, 72, 74, 76, 78, 80, 81, 83, 85, 87, 87, 86, 86, 85, 83, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 81, 83, 84, 84, 85, 85, 85, 85, 84, 84, 85, 84, 82, 81, 80, 79, 78, 78, 78, 77, 77, 77, 78, 77, 76, 75, 74, 72, 70, 68, 67, 65, 64, 62, 62, 62, 62, 62, 62, 62, 63, 63, 64, 65, 66, 68, 69, 71, 72, 74, 75, 76, 77, 78, 79, 79, 79, 79, 78, 77, 75, 74, 71, 69, 67, 65, 62, 60, 58, 60, 62, 65, 67, 69, 71, 73, 74, 75, 76, 77, 77, 76, 76, 75, 74, 73, 72, 71, 70, 70, 69, 67, 67, 69, 72, 74, 76, 78, 81, 82, 84, 86, 87, 87, 87, 87, 87, 87, 87, 86, 86, 84, 85, 85, 85, 85, 83, 82, 82, 83, 84, 84, 84, 84, 84, 86, 86, 87, 88, 88, 89, 88, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 79, 79, 79, 79, 78, 77, 76, 75, 74, 73, 71, 69, 68, 66, 66, 65, 65, 64, 64, 64, 64, 64, 64, 65, 65, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 82, 83, 83, 83, 82, 81, 81, 80, 79, 78, 76, 75, 74, 72, 71, 69, 67, 65, 64, 63, 63, 63, 63, 63, 64, 65, 66, 68, 70, 72, 73, 74, 76, 76, 77, 77, 78, 78, 78, 78, 79, 80, 80, 81, 82, 82, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 91, 91, 90, 89, 89, 89, 90, 89, 88, 87, 86, 82, 81, 80, 79, 77, 76, 74, 73, 72, 72, 73, 73, 73, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 87, 86, 87, 87, 87, 87, 87, 86, 86, 85, 84, 86, 85, 84, 82, 81, 80, 79, 78, 79, 79, 80, 80, 82, 83, 81, 81, 80, 80, 80, 79, 81, 80, 78, 77 ], "output": { "3. Local Minima": { "frames": [ [ 161, 167 ], [ 250, 260 ], [ 284, 288 ], [ 377, 382 ], [ 416, 422 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 95, 95, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 90, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 81, 81, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 96, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 94, 93, 93, 92, 91, 90, 88, 87, 86, 84, 83, 82, 81, 80, 79, 78, 78, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 77, 77, 78, 78, 78, 79, 79, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 96, 96, 96, 96, 96, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 86, 85, 84, 82, 81, 80, 79, 78, 78, 77, 77, 76, 76, 76, 75, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 78, 78, 79, 79, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 97, 97, 97, 97, 97, 96, 96, 95, 94, 94, 93, 92, 91, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 96, 96, 95, 95, 94, 93, 92, 92, 91, 90, 89, 88, 86, 85, 84, 83, 81, 80, 79, 79, 78, 78, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 77, 77, 78, 78, 79, 79, 80, 80, 81, 82, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 95, 96, 97 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 95, 95, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 90, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 81, 81, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 96, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 94, 93, 93, 92, 91, 90, 88, 87, 86, 84, 83, 82, 81, 80, 79, 78, 78, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 77, 77, 78, 78, 78, 79, 79, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 96, 96, 96, 96, 96, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 86, 85, 84, 82, 81, 80, 79, 78, 78, 77, 77, 76, 76, 76, 75, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 78, 78, 79, 79, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 97, 97, 97, 97, 97, 96, 96, 95, 94, 94, 93, 92, 91, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 96, 96, 95, 95, 94, 93, 92, 92, 91, 90, 89, 88, 86, 85, 84, 83, 81, 80, 79, 79, 78, 78, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 77, 77, 78, 78, 79, 79, 80, 80, 81, 82, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 95, 96, 97 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 108 ], [ 125, 232 ], [ 250, 356 ], [ 372, 395 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 95, 95, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 90, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 81, 81, 80, 80, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 96, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 94, 93, 93, 92, 91, 90, 88, 87, 86, 84, 83, 82, 81, 80, 79, 78, 78, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 77, 77, 78, 78, 78, 79, 79, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 80, 80, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 96, 96, 96, 96, 96, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 86, 85, 84, 82, 81, 80, 79, 78, 78, 77, 77, 76, 76, 76, 75, 75, 75, 75, 76, 76, 76, 76, 76, 77, 77, 77, 78, 78, 79, 79, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 97, 97, 97, 97, 97, 96, 96, 95, 94, 94, 93, 92, 91, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 95, 96, 96, 96, 96, 95, 95, 94, 93, 92, 92, 91, 90, 89, 88, 86, 85, 84, 83, 81, 80, 79, 79, 78, 78, 77, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 77, 77, 78, 78, 79, 79, 80, 80, 81, 82, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 95, 96, 97 ], "output": { "3. Local Minima": { "frames": [ [ 46, 57 ], [ 106, 129 ], [ 172, 186 ], [ 230, 253 ], [ 296, 313 ], [ 353, 375 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 90, 91, 92, 93, 93, 93, 91, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 91, 91, 91, 90, 92, 93, 91, 89, 87, 86, 84, 82, 81, 80, 79, 78, 78, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 96, 97, 97, 97, 97, 97, 97, 98, 98, 97, 97, 96, 95, 93, 92, 90, 88, 87, 85, 84, 82, 81, 80, 80, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 93, 92, 92, 92, 93, 93, 93, 93, 93, 93, 92, 91, 91, 90, 90, 92, 93, 91, 88, 86, 85, 83, 82, 81, 80, 79, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 79, 80, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 93, 91, 90, 88, 86, 84, 83, 82, 80, 80, 79, 78, 78, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 79, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 94, 94, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 91, 91, 90, 93, 93, 90, 88, 86, 84, 82, 81, 79, 78, 77, 76, 76, 75, 75, 75, 74, 74, 74, 75, 75, 75, 75, 76, 76, 77, 77, 78, 78, 79, 80, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 97, 97, 95, 94, 93 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 90, 91, 92, 93, 93, 93, 91, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 91, 91, 91, 90, 92, 93, 91, 89, 87, 86, 84, 82, 81, 80, 79, 78, 78, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 96, 97, 97, 97, 97, 97, 97, 98, 98, 97, 97, 96, 95, 93, 92, 90, 88, 87, 85, 84, 82, 81, 80, 80, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 93, 92, 92, 92, 93, 93, 93, 93, 93, 93, 92, 91, 91, 90, 90, 92, 93, 91, 88, 86, 85, 83, 82, 81, 80, 79, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 79, 80, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 93, 91, 90, 88, 86, 84, 83, 82, 80, 80, 79, 78, 78, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 79, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 94, 94, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 91, 91, 90, 93, 93, 90, 88, 86, 84, 82, 81, 79, 78, 77, 76, 76, 75, 75, 75, 74, 74, 74, 75, 75, 75, 75, 76, 76, 77, 77, 78, 78, 79, 80, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 97, 97, 95, 94, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 31 ], [ 48, 88 ], [ 96, 140 ], [ 155, 194 ], [ 207, 247 ], [ 268, 295 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 90, 91, 92, 93, 93, 93, 91, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 91, 91, 91, 90, 92, 93, 91, 89, 87, 86, 84, 82, 81, 80, 79, 78, 78, 77, 76, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 78, 78, 79, 79, 80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 96, 97, 97, 97, 97, 97, 97, 98, 98, 97, 97, 96, 95, 93, 92, 90, 88, 87, 85, 84, 82, 81, 80, 80, 79, 79, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 93, 92, 92, 92, 93, 93, 93, 93, 93, 93, 92, 91, 91, 90, 90, 92, 93, 91, 88, 86, 85, 83, 82, 81, 80, 79, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 79, 80, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 97, 97, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 93, 91, 90, 88, 86, 84, 83, 82, 80, 80, 79, 78, 78, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 79, 79, 80, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 94, 94, 92, 93, 93, 93, 93, 93, 93, 93, 92, 92, 91, 91, 91, 90, 93, 93, 90, 88, 86, 84, 82, 81, 79, 78, 77, 76, 76, 75, 75, 75, 74, 74, 74, 75, 75, 75, 75, 76, 76, 77, 77, 78, 78, 79, 80, 80, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95, 96, 96, 97, 97, 98, 98, 98, 98, 98, 97, 97, 95, 94, 93 ], "output": { "3. Local Minima": { "frames": [ [ 32, 47 ], [ 89, 95 ], [ 141, 154 ], [ 195, 206 ], [ 248, 267 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 94, 94, 93, 92, 92, 91, 91, 90, 89, 89, 88, 87, 87, 86, 86, 85, 84, 84, 83, 83, 82, 81, 81, 80, 79, 79, 78, 78, 77, 76, 76, 75, 75, 74, 73, 73, 72, 71, 71, 70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 63, 62, 61, 60, 60, 59, 58, 58, 57, 56, 55, 55, 54, 53, 53, 52, 51, 51, 50, 50, 49, 49, 48, 48, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 53, 53, 53, 52, 52, 52, 51, 51, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 65, 67, 69, 72, 74, 77, 80, 83, 86, 89, 92, 95, 96, 95, 95, 95, 96, 95, 94, 94, 93, 92, 92, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 88, 87, 85, 84, 82, 80, 78, 77, 75, 74, 73, 71, 70, 68, 67, 65, 64, 63, 62, 62, 61, 61, 60, 60, 60, 60, 60, 60, 60, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 65, 66, 67, 67, 68, 69, 69, 70, 71, 72, 72, 73, 74, 75, 76, 76, 77, 78, 79, 80, 80, 81, 82, 83, 84, 84, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 94, 94, 93, 92, 92, 91, 91, 90, 89, 89, 88, 87, 87, 86, 86, 85, 84, 84, 83, 83, 82, 81, 81, 80, 79, 79, 78, 78, 77, 76, 76, 75, 75, 74, 73, 73, 72, 71, 71, 70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 63, 62, 61, 60, 60, 59, 58, 58, 57, 56, 55, 55, 54, 53, 53, 52, 51, 51, 50, 50, 49, 49, 48, 48, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 53, 53, 53, 52, 52, 52, 51, 51, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 65, 67, 69, 72, 74, 77, 80, 83, 86, 89, 92, 95, 96, 95, 95, 95, 96, 95, 94, 94, 93, 92, 92, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 88, 87, 85, 84, 82, 80, 78, 77, 75, 74, 73, 71, 70, 68, 67, 65, 64, 63, 62, 62, 61, 61, 60, 60, 60, 60, 60, 60, 60, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 65, 66, 67, 67, 68, 69, 69, 70, 71, 72, 72, 73, 74, 75, 76, 76, 77, 78, 79, 80, 80, 81, 82, 83, 84, 84, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 69 ], [ 177, 258 ], [ 309, 399 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 95, 95, 94, 94, 93, 92, 92, 91, 91, 90, 89, 89, 88, 87, 87, 86, 86, 85, 84, 84, 83, 83, 82, 81, 81, 80, 79, 79, 78, 78, 77, 76, 76, 75, 75, 74, 73, 73, 72, 71, 71, 70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 63, 62, 61, 60, 60, 59, 58, 58, 57, 56, 55, 55, 54, 53, 53, 52, 51, 51, 50, 50, 49, 49, 48, 48, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 53, 53, 53, 52, 52, 52, 51, 51, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 63, 65, 67, 69, 72, 74, 77, 80, 83, 86, 89, 92, 95, 96, 95, 95, 95, 96, 95, 94, 94, 93, 92, 92, 92, 92, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 91, 90, 88, 87, 85, 84, 82, 80, 78, 77, 75, 74, 73, 71, 70, 68, 67, 65, 64, 63, 62, 62, 61, 61, 60, 60, 60, 60, 60, 60, 60, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 65, 66, 67, 67, 68, 69, 69, 70, 71, 72, 72, 73, 74, 75, 76, 76, 77, 78, 79, 80, 80, 81, 82, 83, 84, 84, 85, 86, 86, 87, 87, 88, 89, 89, 90, 91, 91, 92, 92, 93, 94, 94, 95, 95, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "3. Local Minima": { "frames": [ [ 100, 166 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "3. Local Minima": { "frames": [ [ 173, 330 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 80, 80, 81, 81, 81, 81, 82, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 97, 97, 97, 97, 96, 96, 97, 97, 97, 98, 98, 97, 97, 96, 96, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 85, 85, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 87, 88, 89, 89, 90, 91, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 99, 98, 98, 98, 98, 98, 99, 99, 98, 98, 97, 97, 96, 96, 95, 94, 93, 92, 91, 90, 90, 89, 88, 87, 87, 86, 85, 85, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 94, 93, 93, 92, 91, 89, 88, 87, 86, 85, 84, 84, 83, 83, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 98, 98, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 87, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 80, 80, 81, 81, 81, 81, 82, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 97, 97, 97, 97, 96, 96, 97, 97, 97, 98, 98, 97, 97, 96, 96, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 85, 85, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 87, 88, 89, 89, 90, 91, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 99, 98, 98, 98, 98, 98, 99, 99, 98, 98, 97, 97, 96, 96, 95, 94, 93, 92, 91, 90, 90, 89, 88, 87, 87, 86, 85, 85, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 94, 93, 93, 92, 91, 89, 88, 87, 86, 85, 84, 84, 83, 83, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 98, 98, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 87, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 125 ], [ 133, 341 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 80, 80, 81, 81, 81, 81, 82, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 97, 97, 97, 97, 96, 96, 97, 97, 97, 98, 98, 97, 97, 96, 96, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 88, 87, 86, 85, 85, 85, 84, 84, 84, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 85, 86, 87, 88, 89, 89, 90, 91, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 83, 82, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 99, 98, 98, 98, 98, 98, 99, 99, 98, 98, 97, 97, 96, 96, 95, 94, 93, 92, 91, 90, 90, 89, 88, 87, 87, 86, 85, 85, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 96, 95, 94, 93, 93, 92, 91, 89, 88, 87, 86, 85, 84, 84, 83, 83, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 82, 82, 83, 84, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 98, 98, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 96, 95, 94, 94, 93, 92, 91, 90, 89, 88, 87, 87, 86, 86, 85, 85, 84, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 85, 85, 86, 86, 87, 87 ], "output": { "3. Local Minima": { "frames": [ [ 0, 8 ], [ 56, 70 ], [ 117, 142 ], [ 187, 204 ], [ 248, 270 ], [ 325, 330 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 75, 74, 73, 72, 71, 70, 70, 70, 70, 70, 71, 71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 86, 87, 88, 89, 89, 90, 90, 90, 90, 90, 89, 88, 88, 86, 85, 84, 82, 80, 79, 78, 76, 75, 74, 73, 72, 71, 70, 70, 70, 69, 69, 69, 70, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 87, 88, 90, 91, 92, 92, 93, 93, 93, 92, 90, 89, 88, 86, 84, 82, 81, 79, 77, 75, 74, 73, 72, 71, 70, 70, 69, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 89, 90, 90, 91, 91, 90, 90, 89, 88, 87, 86, 84, 83, 82, 80, 79, 77, 76, 75, 73, 72, 71, 71, 70, 70, 69, 69, 69, 69, 69, 70, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 91, 92, 92, 92 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 75, 74, 73, 72, 71, 70, 70, 70, 70, 70, 71, 71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 86, 87, 88, 89, 89, 90, 90, 90, 90, 90, 89, 88, 88, 86, 85, 84, 82, 80, 79, 78, 76, 75, 74, 73, 72, 71, 70, 70, 70, 69, 69, 69, 70, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 87, 88, 90, 91, 92, 92, 93, 93, 93, 92, 90, 89, 88, 86, 84, 82, 81, 79, 77, 75, 74, 73, 72, 71, 70, 70, 69, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 89, 90, 90, 91, 91, 90, 90, 89, 88, 87, 86, 84, 83, 82, 80, 79, 77, 76, 75, 73, 72, 71, 71, 70, 70, 69, 69, 69, 69, 69, 70, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 91, 92, 92, 92 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 0 ], [ 16, 46 ], [ 63, 89 ], [ 106, 134 ], [ 152, 167 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 75, 74, 73, 72, 71, 70, 70, 70, 70, 70, 71, 71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 86, 87, 88, 89, 89, 90, 90, 90, 90, 90, 89, 88, 88, 86, 85, 84, 82, 80, 79, 78, 76, 75, 74, 73, 72, 71, 70, 70, 70, 69, 69, 69, 70, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 83, 85, 87, 88, 90, 91, 92, 92, 93, 93, 93, 92, 90, 89, 88, 86, 84, 82, 81, 79, 77, 75, 74, 73, 72, 71, 70, 70, 69, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 89, 90, 90, 91, 91, 90, 90, 89, 88, 87, 86, 84, 83, 82, 80, 79, 77, 76, 75, 73, 72, 71, 71, 70, 70, 69, 69, 69, 69, 69, 70, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 89, 90, 91, 91, 92, 92, 92 ], "output": { "3. Local Minima": { "frames": [ [ 2, 14 ], [ 48, 61 ], [ 91, 104 ], [ 135, 150 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 77, 76, 75, 74, 73, 73, 72, 72, 72, 72, 72, 72, 72, 73, 74, 75, 76, 77, 78, 79, 79, 80, 81, 82, 83, 84, 85, 85, 86, 87, 87, 87, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 78, 78, 78, 77, 76, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 67, 66, 66, 66, 66, 67, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 82, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 85, 86, 87, 87, 88, 89, 89, 90, 90, 91, 91, 92, 92, 92, 92, 92, 91, 91, 90, 90, 89, 89, 88, 87, 87, 86, 85, 85, 84, 83, 83, 82, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 70, 69, 69, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 85, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 81, 80, 80, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 91, 92, 92, 93, 93, 93, 93, 92, 92, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 77, 76, 76, 76, 76, 77, 77, 78, 79, 79, 80, 80, 81, 81, 82, 83, 83, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 77, 76, 75, 74, 73, 73, 72, 72, 72, 72, 72, 72, 72, 73, 74, 75, 76, 77, 78, 79, 79, 80, 81, 82, 83, 84, 85, 85, 86, 87, 87, 87, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 78, 78, 78, 77, 76, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 67, 66, 66, 66, 66, 67, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 82, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 85, 86, 87, 87, 88, 89, 89, 90, 90, 91, 91, 92, 92, 92, 92, 92, 91, 91, 90, 90, 89, 89, 88, 87, 87, 86, 85, 85, 84, 83, 83, 82, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 70, 69, 69, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 85, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 81, 80, 80, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 91, 92, 92, 93, 93, 93, 93, 92, 92, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 77, 76, 76, 76, 76, 77, 77, 78, 79, 79, 80, 80, 81, 81, 82, 83, 83, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 36 ], [ 49, 102 ], [ 125, 232 ], [ 251, 431 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 77, 76, 75, 74, 73, 73, 72, 72, 72, 72, 72, 72, 72, 73, 74, 75, 76, 77, 78, 79, 79, 80, 81, 82, 83, 84, 85, 85, 86, 87, 87, 87, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 79, 79, 78, 78, 78, 77, 76, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 67, 66, 66, 66, 66, 67, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 82, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 86, 86, 86, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 88, 87, 86, 85, 84, 84, 83, 83, 83, 83, 83, 83, 84, 84, 85, 86, 87, 87, 88, 89, 89, 90, 90, 91, 91, 92, 92, 92, 92, 92, 91, 91, 90, 90, 89, 89, 88, 87, 87, 86, 85, 85, 84, 83, 83, 82, 82, 81, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 70, 69, 69, 69, 70, 70, 71, 72, 73, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 85, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 81, 80, 80, 80, 80, 80, 80, 81, 81, 82, 83, 83, 84, 85, 86, 87, 88, 89, 90, 91, 91, 92, 92, 93, 93, 93, 93, 92, 92, 91, 90, 90, 89, 89, 88, 88, 87, 86, 86, 85, 85, 84, 84, 84, 83, 83, 83, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 82, 82, 81, 81, 81, 81, 80, 80, 80, 79, 79, 78, 77, 77, 76, 76, 76, 76, 77, 77, 78, 79, 79, 80, 80, 81, 81, 82, 83, 83, 84, 84, 85, 85, 85, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89 ], "output": { "3. Local Minima": { "frames": [ [ 106, 121 ], [ 238, 246 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 95, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 94, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 97, 96, 96, 95, 95, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 96, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 99, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 95, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 94, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 97, 96, 96, 95, 95, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 96, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 99, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1032 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 95, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 95, 95, 94, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 94, 94, 95, 95, 96, 97, 97, 97, 98, 98, 97, 96, 96, 95, 95, 94, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 96, 97, 97, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 99, 99, 99, 98, 98, 97, 97, 96, 96, 95, 95, 94, 94, 93, 93, 92, 92, 91, 91, 90, 90, 89, 89, 88, 88, 87, 87, 87, 86, 86, 86, 86, 86, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 94, 95, 95, 96, 96, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98 ], "output": { "3. Local Minima": { "frames": [ [ 77, 104 ], [ 326, 369 ], [ 469, 480 ], [ 843, 874 ], [ 950, 984 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 94, 94, 94, 93, 92, 92, 91, 91, 90, 89, 88, 88, 87, 86, 85, 84, 83, 83, 82, 81, 80, 80, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 62, 62, 61, 60, 59, 58, 58, 57, 56, 55, 55, 54, 54, 53, 52, 52, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 52, 52, 53, 53, 54, 54, 54, 55, 55, 56, 56, 57, 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 60, 60, 60, 60, 59, 59, 59, 58, 58, 57, 57, 57, 56, 56, 55, 55, 54, 54, 53, 52, 52, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 52, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 60, 61, 62, 63, 63, 64, 65, 65, 66, 67, 67, 68, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 92, 93 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 94, 94, 94, 93, 92, 92, 91, 91, 90, 89, 88, 88, 87, 86, 85, 84, 83, 83, 82, 81, 80, 80, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 62, 62, 61, 60, 59, 58, 58, 57, 56, 55, 55, 54, 54, 53, 52, 52, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 52, 52, 53, 53, 54, 54, 54, 55, 55, 56, 56, 57, 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 60, 60, 60, 60, 59, 59, 59, 58, 58, 57, 57, 57, 56, 56, 55, 55, 54, 54, 53, 52, 52, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 52, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 60, 61, 62, 63, 63, 64, 65, 65, 66, 67, 67, 68, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 92, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 195 ], [ 444, 474 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 88, 88, 88, 89, 89, 90, 90, 90, 91, 91, 92, 92, 93, 93, 94, 94, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 94, 94, 94, 93, 92, 92, 91, 91, 90, 89, 88, 88, 87, 86, 85, 84, 83, 83, 82, 81, 80, 80, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 70, 69, 69, 68, 67, 67, 66, 65, 65, 64, 63, 62, 62, 61, 60, 59, 58, 58, 57, 56, 55, 55, 54, 54, 53, 52, 52, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 52, 52, 53, 53, 54, 54, 54, 55, 55, 56, 56, 57, 57, 58, 58, 58, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 62, 62, 62, 62, 62, 62, 62, 62, 62, 61, 61, 61, 61, 60, 60, 60, 60, 59, 59, 59, 58, 58, 57, 57, 57, 56, 56, 55, 55, 54, 54, 53, 52, 52, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 52, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 60, 61, 62, 63, 63, 64, 65, 65, 66, 67, 67, 68, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 79, 80, 80, 81, 81, 82, 83, 83, 84, 84, 85, 85, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 92, 92, 92, 93 ], "output": { "3. Local Minima": { "frames": [ [ 225, 276 ], [ 368, 412 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 363 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "3. Local Minima": { "frames": [ [ 136, 190 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 92, 91, 90, 90, 90, 90, 90, 90, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 90, 89, 88, 87, 86, 85, 84, 84, 83, 82, 82, 82, 82, 83, 83, 84, 86, 87, 88, 90, 91, 92, 92, 91, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 92, 91, 90, 90, 90, 90, 90, 90, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 90, 89, 88, 87, 86, 85, 84, 84, 83, 82, 82, 82, 82, 83, 83, 84, 86, 87, 88, 90, 91, 92, 92, 91, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 441 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 92, 91, 90, 90, 90, 90, 90, 90, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 88, 88, 87, 87, 86, 85, 85, 84, 84, 84, 84, 85, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 91, 91, 92, 92, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 92, 92, 91, 90, 89, 88, 87, 86, 85, 84, 84, 83, 82, 82, 82, 82, 83, 83, 84, 86, 87, 88, 90, 91, 92, 92, 91, 89, 90, 90, 90, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "3. Local Minima": { "frames": [ [ 235, 238 ], [ 295, 304 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 99, 99, 98, 98, 98, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 99, 99, 99, 98, 98, 98, 99, 99, 99, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 88, 87, 86, 84, 83, 82, 80, 79, 78, 76, 75, 74, 73, 71, 70, 69, 68, 67, 66, 65, 64, 63, 63, 62, 61, 61, 60, 60, 60, 60, 60, 61, 61, 62, 63, 63, 64, 66, 67, 69, 71, 73, 76, 79, 82, 85, 88, 91, 94, 95, 97, 97, 97, 97, 97, 96, 94, 93, 92, 91, 90, 90, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 79, 79, 78, 78, 77, 76, 76, 75, 73, 72, 70, 70, 69, 69, 68, 66, 65, 64, 63, 63, 63, 63, 64, 64, 65, 65, 65, 65, 65, 65, 65, 66, 66, 67, 68, 69, 69, 69, 69, 69, 69, 70, 71, 71, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 80, 80, 81, 81, 82, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 99, 99, 98, 98, 98, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 99, 99, 99, 98, 98, 98, 99, 99, 99, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 88, 87, 86, 84, 83, 82, 80, 79, 78, 76, 75, 74, 73, 71, 70, 69, 68, 67, 66, 65, 64, 63, 63, 62, 61, 61, 60, 60, 60, 60, 60, 61, 61, 62, 63, 63, 64, 66, 67, 69, 71, 73, 76, 79, 82, 85, 88, 91, 94, 95, 97, 97, 97, 97, 97, 96, 94, 93, 92, 91, 90, 90, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 79, 79, 78, 78, 77, 76, 76, 75, 73, 72, 70, 70, 69, 69, 68, 66, 65, 64, 63, 63, 63, 63, 64, 64, 65, 65, 65, 65, 65, 65, 65, 66, 66, 67, 68, 69, 69, 69, 69, 69, 69, 70, 71, 71, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 80, 80, 81, 81, 82, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 174 ], [ 212, 268 ], [ 328, 502 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 99, 99, 99, 99, 98, 98, 98, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 98, 99, 99, 98, 98, 98, 98, 99, 98, 98, 98, 98, 98, 98, 99, 99, 99, 98, 98, 98, 99, 99, 99, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 90, 88, 87, 86, 84, 83, 82, 80, 79, 78, 76, 75, 74, 73, 71, 70, 69, 68, 67, 66, 65, 64, 63, 63, 62, 61, 61, 60, 60, 60, 60, 60, 61, 61, 62, 63, 63, 64, 66, 67, 69, 71, 73, 76, 79, 82, 85, 88, 91, 94, 95, 97, 97, 97, 97, 97, 96, 94, 93, 92, 91, 90, 90, 89, 88, 88, 88, 88, 88, 88, 88, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 80, 80, 80, 80, 79, 79, 78, 78, 77, 76, 76, 75, 73, 72, 70, 70, 69, 69, 68, 66, 65, 64, 63, 63, 63, 63, 64, 64, 65, 65, 65, 65, 65, 65, 65, 66, 66, 67, 68, 69, 69, 69, 69, 69, 69, 70, 71, 71, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 78, 79, 79, 80, 80, 81, 81, 82, 83, 83, 83, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95 ], "output": { "3. Local Minima": { "frames": [ [ 185, 206 ], [ 284, 302 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 81, 81, 81, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 79, 79, 80, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 87, 88, 90, 91, 93, 95, 97, 96, 94, 93, 96, 97, 97, 95, 92, 92, 94, 94, 94, 94, 95, 95, 94, 94, 93, 93, 93, 92, 93, 93, 93, 93, 94, 94, 93, 93, 93, 93, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 95, 93, 92, 92, 91, 91, 89, 89, 88, 87, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 81, 81, 81, 81, 82, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 90, 90, 90, 91, 90, 90, 90, 91, 91, 90, 90, 91, 91, 90, 90, 90, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 81, 81, 81, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 79, 79, 80, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 87, 88, 90, 91, 93, 95, 97, 96, 94, 93, 96, 97, 97, 95, 92, 92, 94, 94, 94, 94, 95, 95, 94, 94, 93, 93, 93, 92, 93, 93, 93, 93, 94, 94, 93, 93, 93, 93, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 95, 93, 92, 92, 91, 91, 89, 89, 88, 87, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 81, 81, 81, 81, 82, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 90, 90, 90, 91, 90, 90, 90, 91, 91, 90, 90, 91, 91, 90, 90, 90, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 392 ], [ 405, 883 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 87, 87, 87, 86, 86, 86, 85, 85, 84, 84, 83, 83, 82, 82, 81, 81, 81, 80, 80, 79, 79, 79, 78, 78, 78, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 79, 79, 80, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 83, 83, 83, 84, 84, 85, 85, 86, 87, 88, 90, 91, 93, 95, 97, 96, 94, 93, 96, 97, 97, 95, 92, 92, 94, 94, 94, 94, 95, 95, 94, 94, 93, 93, 93, 92, 93, 93, 93, 93, 94, 94, 93, 93, 93, 93, 92, 92, 93, 93, 93, 93, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 95, 93, 92, 92, 91, 91, 89, 89, 88, 87, 86, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 81, 81, 81, 81, 80, 80, 80, 81, 81, 81, 81, 82, 83, 83, 83, 83, 83, 84, 84, 84, 84, 85, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 90, 90, 90, 91, 90, 90, 90, 91, 91, 90, 90, 91, 91, 90, 90, 90, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90 ], "output": { "3. Local Minima": { "frames": [ [ 382, 414 ], [ 529, 540 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 422 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "3. Local Minima": { "frames": [ [ 138, 328 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 95, 95, 95, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 95, 95, 95, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 468 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 94, 94, 93, 93, 93, 92, 92, 91, 91, 91, 90, 90, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 90, 90, 90, 91, 91, 92, 92, 92, 93, 93, 94, 94, 95, 95, 95, 95, 95, 95, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "3. Local Minima": { "frames": [ [ 114, 177 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 70, 70, 70, 70, 70, 70, 71, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 91, 91, 90, 89, 89, 87, 86, 85, 83, 82, 80, 78, 77, 76, 75, 74, 73, 72, 72, 72, 71, 71, 71, 71, 72, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 89, 91, 92, 93, 94, 95, 96, 96, 95, 95, 94, 93, 92, 90, 89, 87, 84, 82, 79, 77, 74, 73, 72, 71, 71, 70, 69, 69, 68, 68, 68, 68, 68, 68, 68, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 90, 91, 92, 92, 93, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 70, 70, 70, 70, 70, 70, 71, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 91, 91, 90, 89, 89, 87, 86, 85, 83, 82, 80, 78, 77, 76, 75, 74, 73, 72, 72, 72, 71, 71, 71, 71, 72, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 89, 91, 92, 93, 94, 95, 96, 96, 95, 95, 94, 93, 92, 90, 89, 87, 84, 82, 79, 77, 74, 73, 72, 71, 71, 70, 69, 69, 68, 68, 68, 68, 68, 68, 68, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 90, 91, 92, 92, 93, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 197 ], [ 234, 253 ], [ 275, 297 ], [ 328, 585 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 93, 93, 93, 93, 92, 92, 92, 91, 91, 91, 90, 90, 90, 90, 89, 89, 89, 89, 88, 88, 88, 88, 87, 87, 87, 87, 87, 86, 86, 86, 86, 85, 85, 85, 85, 85, 84, 84, 84, 84, 84, 83, 83, 83, 83, 83, 82, 82, 82, 82, 81, 81, 81, 80, 80, 80, 80, 79, 79, 79, 79, 79, 78, 78, 77, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 70, 70, 70, 70, 70, 70, 71, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 89, 90, 91, 91, 91, 90, 89, 89, 87, 86, 85, 83, 82, 80, 78, 77, 76, 75, 74, 73, 72, 72, 72, 71, 71, 71, 71, 72, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 89, 91, 92, 93, 94, 95, 96, 96, 95, 95, 94, 93, 92, 90, 89, 87, 84, 82, 79, 77, 74, 73, 72, 71, 71, 70, 69, 69, 68, 68, 68, 68, 68, 68, 68, 69, 69, 70, 70, 71, 72, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 90, 91, 92, 92, 93, 94, 94, 94, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ], "output": { "3. Local Minima": { "frames": [ [ 211, 229 ], [ 258, 270 ], [ 300, 323 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 95, 94, 93, 91, 89, 88, 88, 88, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 95, 94, 93, 91, 89, 88, 88, 88, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 398 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 95, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 94, 94, 95, 94, 93, 91, 89, 88, 88, 88, 87, 87, 86, 86, 85, 85, 85, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 84, 83, 83, 83, 83, 83, 83, 83, 83, 82, 82, 82, 82, 82, 81, 81, 81, 81, 81, 81 ], "output": { "3. Local Minima": { "frames": [ [ 366, 372 ], [ 379, 398 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 71, 71, 71, 72, 72, 72, 73, 73, 73, 73, 72, 72, 73, 73, 73, 74, 74, 75, 75, 75, 74, 74, 73, 73, 74, 75, 76, 77, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 85, 85, 84, 83, 82, 81, 79, 78, 77, 76, 75, 72, 70, 68, 70, 70, 69, 70, 71, 72, 73, 73, 74, 75, 75, 76, 76, 77, 77, 77, 77, 77, 78, 78, 77, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 72, 72, 72, 72, 72, 72, 73, 74, 76, 77, 79, 80, 80, 81, 82, 83, 83, 84, 85, 85, 86, 87, 87, 87, 87, 87, 87, 87, 86, 85, 85, 83, 82, 81, 79, 78, 77, 76, 74, 73, 71, 70, 72, 73, 73, 73, 73, 73, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 75, 75, 75, 76, 76, 76, 75, 75, 74, 73, 73, 74, 74, 75, 76, 76, 77, 78, 78, 78, 78, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 86, 86, 86, 85, 84, 83, 82, 81, 80, 78, 77, 76, 73, 70, 69, 70, 70, 69, 70, 71, 72, 72, 73, 74, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 72, 73, 74, 76, 77, 78, 79, 80, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 88, 88, 88, 89, 89, 89, 88, 88, 88, 87, 86, 85, 83, 82, 80, 79, 78, 77, 76, 74, 72, 71, 72, 73, 73, 72, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 74, 74, 73, 73, 73, 74, 74, 75, 75, 75, 75, 75, 75, 74, 73, 74, 75, 76, 77, 78, 79, 80, 80, 81, 81, 82, 82, 83, 83, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 90, 89, 88, 87, 86, 85, 83, 82, 81, 79, 78, 77, 74, 71, 69, 71, 71, 70, 70, 71, 72, 73, 73, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 71, 71, 71, 72, 72, 72, 73, 73, 73, 73, 72, 72, 73, 73, 73, 74, 74, 75, 75, 75, 74, 74, 73, 73, 74, 75, 76, 77, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 85, 85, 84, 83, 82, 81, 79, 78, 77, 76, 75, 72, 70, 68, 70, 70, 69, 70, 71, 72, 73, 73, 74, 75, 75, 76, 76, 77, 77, 77, 77, 77, 78, 78, 77, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 72, 72, 72, 72, 72, 72, 73, 74, 76, 77, 79, 80, 80, 81, 82, 83, 83, 84, 85, 85, 86, 87, 87, 87, 87, 87, 87, 87, 86, 85, 85, 83, 82, 81, 79, 78, 77, 76, 74, 73, 71, 70, 72, 73, 73, 73, 73, 73, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 75, 75, 75, 76, 76, 76, 75, 75, 74, 73, 73, 74, 74, 75, 76, 76, 77, 78, 78, 78, 78, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 86, 86, 86, 85, 84, 83, 82, 81, 80, 78, 77, 76, 73, 70, 69, 70, 70, 69, 70, 71, 72, 72, 73, 74, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 72, 73, 74, 76, 77, 78, 79, 80, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 88, 88, 88, 89, 89, 89, 88, 88, 88, 87, 86, 85, 83, 82, 80, 79, 78, 77, 76, 74, 72, 71, 72, 73, 73, 72, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 74, 74, 73, 73, 73, 74, 74, 75, 75, 75, 75, 75, 75, 74, 73, 74, 75, 76, 77, 78, 79, 80, 80, 81, 81, 82, 82, 83, 83, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 90, 89, 88, 87, 86, 85, 83, 82, 81, 79, 78, 77, 74, 71, 69, 71, 71, 70, 70, 71, 72, 73, 73, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72 ], "output": { "2. Local Maxima": { "frames": [ [ 3, 66 ], [ 74, 144 ], [ 147, 216 ], [ 224, 248 ], [ 256, 294 ], [ 296, 367 ], [ 375, 400 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 71, 71, 71, 72, 72, 72, 73, 73, 73, 73, 72, 72, 73, 73, 73, 74, 74, 75, 75, 75, 74, 74, 73, 73, 74, 75, 76, 77, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 83, 84, 84, 84, 85, 85, 85, 86, 86, 86, 85, 85, 84, 83, 82, 81, 79, 78, 77, 76, 75, 72, 70, 68, 70, 70, 69, 70, 71, 72, 73, 73, 74, 75, 75, 76, 76, 77, 77, 77, 77, 77, 78, 78, 77, 77, 77, 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 74, 73, 73, 72, 72, 72, 72, 72, 72, 73, 74, 76, 77, 79, 80, 80, 81, 82, 83, 83, 84, 85, 85, 86, 87, 87, 87, 87, 87, 87, 87, 86, 85, 85, 83, 82, 81, 79, 78, 77, 76, 74, 73, 71, 70, 72, 73, 73, 73, 73, 73, 72, 72, 72, 73, 73, 73, 73, 73, 74, 74, 75, 75, 75, 76, 76, 76, 75, 75, 74, 73, 73, 74, 74, 75, 76, 76, 77, 78, 78, 78, 78, 79, 79, 79, 80, 80, 80, 80, 81, 81, 82, 82, 82, 83, 83, 84, 84, 85, 85, 86, 86, 86, 86, 86, 85, 84, 83, 82, 81, 80, 78, 77, 76, 73, 70, 69, 70, 70, 69, 70, 71, 72, 72, 73, 74, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 72, 72, 72, 71, 71, 71, 71, 71, 71, 71, 72, 73, 74, 76, 77, 78, 79, 80, 80, 81, 82, 83, 83, 84, 85, 86, 86, 87, 88, 88, 88, 89, 89, 89, 88, 88, 88, 87, 86, 85, 83, 82, 80, 79, 78, 77, 76, 74, 72, 71, 72, 73, 73, 72, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 74, 74, 73, 73, 73, 74, 74, 75, 75, 75, 75, 75, 75, 74, 73, 74, 75, 76, 77, 78, 79, 80, 80, 81, 81, 82, 82, 83, 83, 84, 84, 84, 85, 85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 90, 90, 89, 88, 87, 86, 85, 83, 82, 81, 79, 78, 77, 74, 71, 69, 71, 71, 70, 70, 71, 72, 73, 73, 74, 74, 75, 75, 75, 76, 76, 76, 76, 76, 76, 75, 75, 75, 75, 75, 74, 74, 74, 73, 73, 73, 72 ], "output": { "3. Local Minima": { "frames": [ [ 0, 5 ], [ 10, 11 ], [ 66, 74 ], [ 105, 110 ], [ 145, 147 ], [ 153, 155 ], [ 217, 225 ], [ 246, 256 ], [ 294, 296 ], [ 299, 302 ], [ 368, 375 ], [ 400, 400 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 90, 90, 89, 88, 87, 86, 84, 83, 82, 80, 78, 77, 75, 74, 73, 72, 72, 72, 74, 75, 77, 79, 81, 81, 82, 81, 81, 80, 79, 79, 79, 80, 82, 84, 86, 88, 90, 91, 92, 92, 91, 89, 86, 83, 80, 77, 75, 73, 71, 70, 69, 68, 66, 65, 64, 62, 61, 60, 59, 57, 56, 55, 55, 54, 54, 54, 55, 56, 57, 58, 59, 61, 63, 66, 68, 71, 73, 74, 74, 74, 73, 71, 70, 70, 71, 73, 75, 77, 80, 83, 85, 87, 89, 90, 90, 90, 89, 86, 83, 79, 74, 70, 66, 64, 61, 59, 57, 56, 56, 55, 55, 55, 55, 56, 57, 59, 60, 62, 65, 68, 71, 74, 78, 82, 84, 85, 85, 82, 78, 75, 72, 69, 67, 66, 66, 66, 67, 68, 70, 72, 74, 77, 81, 84, 87, 90, 92, 93, 93, 92, 90, 86, 82, 76, 73, 70, 68, 67, 66, 65, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 81, 84, 86, 87, 89, 89, 90, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 93, 93, 93, 93, 93, 93 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 90, 90, 89, 88, 87, 86, 84, 83, 82, 80, 78, 77, 75, 74, 73, 72, 72, 72, 74, 75, 77, 79, 81, 81, 82, 81, 81, 80, 79, 79, 79, 80, 82, 84, 86, 88, 90, 91, 92, 92, 91, 89, 86, 83, 80, 77, 75, 73, 71, 70, 69, 68, 66, 65, 64, 62, 61, 60, 59, 57, 56, 55, 55, 54, 54, 54, 55, 56, 57, 58, 59, 61, 63, 66, 68, 71, 73, 74, 74, 74, 73, 71, 70, 70, 71, 73, 75, 77, 80, 83, 85, 87, 89, 90, 90, 90, 89, 86, 83, 79, 74, 70, 66, 64, 61, 59, 57, 56, 56, 55, 55, 55, 55, 56, 57, 59, 60, 62, 65, 68, 71, 74, 78, 82, 84, 85, 85, 82, 78, 75, 72, 69, 67, 66, 66, 66, 67, 68, 70, 72, 74, 77, 81, 84, 87, 90, 92, 93, 93, 92, 90, 86, 82, 76, 73, 70, 68, 67, 66, 65, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 81, 84, 86, 87, 89, 89, 90, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 93, 93, 93, 93, 93, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 104 ], [ 113, 138 ], [ 180, 192 ], [ 215, 221 ], [ 234, 246 ], [ 261, 337 ] ] } } }, { "instruction": "Leg fold represents a numerical representation of the angle of the legs (ankle-knee-pelvis angle). Near the maximum value, the legs are fully extended, and near the minimum value, the legs are folded. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 92, 92, 92, 92, 91, 91, 90, 90, 89, 88, 87, 86, 84, 83, 82, 80, 78, 77, 75, 74, 73, 72, 72, 72, 74, 75, 77, 79, 81, 81, 82, 81, 81, 80, 79, 79, 79, 80, 82, 84, 86, 88, 90, 91, 92, 92, 91, 89, 86, 83, 80, 77, 75, 73, 71, 70, 69, 68, 66, 65, 64, 62, 61, 60, 59, 57, 56, 55, 55, 54, 54, 54, 55, 56, 57, 58, 59, 61, 63, 66, 68, 71, 73, 74, 74, 74, 73, 71, 70, 70, 71, 73, 75, 77, 80, 83, 85, 87, 89, 90, 90, 90, 89, 86, 83, 79, 74, 70, 66, 64, 61, 59, 57, 56, 56, 55, 55, 55, 55, 56, 57, 59, 60, 62, 65, 68, 71, 74, 78, 82, 84, 85, 85, 82, 78, 75, 72, 69, 67, 66, 66, 66, 67, 68, 70, 72, 74, 77, 81, 84, 87, 90, 92, 93, 93, 92, 90, 86, 82, 76, 73, 70, 68, 67, 66, 65, 65, 66, 67, 68, 69, 71, 72, 74, 76, 78, 81, 84, 86, 87, 89, 89, 90, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 93, 93, 93, 93, 93, 93 ], "output": { "3. Local Minima": { "frames": [ [ 148, 164 ], [ 197, 210 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 15, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 16, 2, 2, 2, 2, 2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 15, 3, 3, 3, 2, 15, 2, 2, 15, 3, 2, 3, 3, 3, 15, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 17, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 4, 5, 5, 6, 5, 5, 5, 5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 15, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 16, 2, 2, 2, 2, 2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 15, 3, 3, 3, 2, 15, 2, 2, 15, 3, 2, 3, 3, 3, 15, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 17, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 4, 5, 5, 6, 5, 5, 5, 5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 202, 202 ], [ 219, 219 ], [ 329, 329 ], [ 334, 334 ], [ 337, 337 ], [ 343, 343 ], [ 466, 466 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 15, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 16, 2, 2, 2, 2, 2, 3, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 15, 3, 3, 3, 2, 15, 2, 2, 15, 3, 2, 3, 3, 3, 15, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 17, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 4, 5, 5, 6, 5, 5, 5, 5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 185 ], [ 187, 201 ], [ 203, 218 ], [ 220, 227 ], [ 229, 232 ], [ 234, 237 ], [ 241, 243 ], [ 245, 310 ], [ 312, 316 ], [ 318, 328 ], [ 330, 333 ], [ 335, 336 ], [ 338, 342 ], [ 344, 354 ], [ 358, 358 ], [ 360, 465 ], [ 467, 502 ], [ 511, 524 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 68, 68 ], [ 93, 93 ], [ 95, 95 ], [ 97, 97 ], [ 99, 99 ], [ 103, 103 ], [ 107, 107 ], [ 163, 163 ], [ 169, 169 ], [ 173, 174 ], [ 217, 233 ], [ 235, 237 ], [ 279, 279 ], [ 281, 281 ], [ 283, 292 ], [ 294, 294 ], [ 297, 298 ], [ 300, 301 ], [ 303, 303 ], [ 342, 343 ], [ 346, 346 ], [ 394, 394 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 18 ], [ 21, 21 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 21, 24 ], [ 30, 30 ], [ 32, 32 ], [ 35, 38 ], [ 43, 43 ], [ 74, 76 ], [ 78, 111 ], [ 121, 123 ], [ 130, 164 ], [ 169, 169 ], [ 179, 180 ], [ 182, 202 ], [ 204, 218 ], [ 236, 237 ], [ 239, 248 ], [ 250, 253 ], [ 255, 258 ], [ 261, 262 ], [ 264, 264 ], [ 267, 269 ], [ 272, 273 ], [ 275, 276 ], [ 280, 280 ], [ 288, 288 ], [ 290, 291 ], [ 294, 294 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 20 ], [ 25, 29 ], [ 31, 31 ], [ 33, 34 ], [ 39, 42 ], [ 44, 73 ], [ 77, 77 ], [ 112, 120 ], [ 124, 129 ], [ 165, 168 ], [ 170, 178 ], [ 181, 181 ], [ 203, 203 ], [ 219, 235 ], [ 238, 238 ], [ 249, 249 ], [ 254, 254 ], [ 259, 260 ], [ 263, 263 ], [ 265, 266 ], [ 270, 271 ], [ 274, 274 ], [ 277, 279 ], [ 281, 287 ], [ 289, 289 ], [ 292, 293 ], [ 295, 295 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 8, 6, 7, 7, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 8, 7, 6, 6, 6, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 8, 6, 7, 7, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 8, 7, 6, 6, 6, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 177, 177 ], [ 179, 185 ], [ 251, 256 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 5, 6, 5, 6, 6, 6, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 8, 6, 7, 7, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 8, 7, 6, 6, 6, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 81 ], [ 84, 86 ], [ 111, 111 ], [ 119, 119 ], [ 123, 142 ], [ 213, 223 ], [ 271, 296 ], [ 299, 299 ], [ 302, 399 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 99, 99 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 98 ], [ 100, 512 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 2, 4 ], [ 38, 39 ], [ 42, 43 ], [ 46, 47 ], [ 51, 51 ], [ 59, 59 ], [ 106, 124 ], [ 126, 126 ], [ 131, 132 ], [ 137, 137 ], [ 167, 183 ], [ 185, 186 ], [ 188, 191 ], [ 196, 196 ], [ 234, 251 ], [ 253, 256 ], [ 260, 260 ], [ 263, 265 ], [ 268, 269 ], [ 299, 324 ], [ 327, 330 ], [ 332, 337 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 1 ], [ 5, 37 ], [ 40, 41 ], [ 44, 45 ], [ 48, 50 ], [ 52, 58 ], [ 60, 105 ], [ 125, 125 ], [ 127, 130 ], [ 133, 136 ], [ 138, 166 ], [ 184, 184 ], [ 187, 187 ], [ 192, 195 ], [ 197, 233 ], [ 252, 252 ], [ 257, 259 ], [ 261, 262 ], [ 266, 267 ], [ 270, 298 ], [ 325, 326 ], [ 331, 331 ], [ 338, 341 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 5 ], [ 8, 52 ], [ 54, 94 ], [ 96, 96 ], [ 98, 100 ], [ 102, 102 ], [ 104, 117 ], [ 119, 121 ], [ 123, 138 ], [ 149, 154 ], [ 156, 167 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 6, 7 ], [ 53, 53 ], [ 95, 95 ], [ 97, 97 ], [ 101, 101 ], [ 103, 103 ], [ 118, 118 ], [ 122, 122 ], [ 139, 148 ], [ 155, 155 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 27, 27 ], [ 255, 256 ], [ 300, 301 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 43, 45 ], [ 114, 115 ], [ 314, 314 ], [ 383, 383 ], [ 404, 406 ], [ 408, 431 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 218, 218 ], [ 708, 709 ], [ 818, 841 ], [ 843, 845 ], [ 922, 951 ], [ 953, 957 ], [ 960, 966 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 619, 620 ], [ 623, 624 ], [ 627, 632 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 179, 179 ], [ 202, 251 ], [ 263, 264 ], [ 388, 396 ], [ 398, 431 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 113 ], [ 117, 117 ], [ 279, 281 ], [ 285, 287 ], [ 290, 345 ], [ 347, 365 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 225, 225 ], [ 228, 236 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 71 ], [ 158, 180 ], [ 301, 319 ], [ 321, 324 ], [ 326, 345 ], [ 347, 347 ], [ 349, 349 ], [ 351, 352 ], [ 355, 356 ], [ 358, 359 ], [ 362, 363 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 240, 243 ], [ 306, 314 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 146 ], [ 159, 164 ], [ 166, 166 ], [ 168, 192 ], [ 202, 204 ], [ 212, 222 ], [ 247, 248 ], [ 254, 286 ], [ 325, 441 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 211, 221 ], [ 273, 280 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 171 ], [ 194, 194 ], [ 316, 502 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 8, 8, 5, 8, 6, 6, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 8, 8, 5, 8, 6, 6, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 438, 439 ], [ 441, 441 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 8, 8, 5, 8, 6, 6, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 361 ], [ 363, 364 ], [ 368, 368 ], [ 575, 883 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 113, 184 ], [ 274, 335 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 112 ], [ 185, 273 ], [ 336, 422 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 98, 98 ], [ 172, 184 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 68 ], [ 127, 148 ], [ 208, 349 ], [ 379, 468 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 235, 260 ], [ 272, 299 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 206 ], [ 316, 316 ], [ 332, 585 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 246, 352 ], [ 356, 398 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 6, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 7, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 5, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 7, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 6, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 7, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 5, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 7, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 23, 23 ], [ 68, 68 ], [ 111, 111 ], [ 147, 147 ], [ 173, 173 ], [ 218, 218 ], [ 295, 295 ], [ 325, 325 ], [ 369, 369 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 6, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 7, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 6, 5, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 7, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 22 ], [ 24, 65 ], [ 69, 69 ], [ 81, 110 ], [ 112, 142 ], [ 145, 145 ], [ 151, 172 ], [ 175, 215 ], [ 219, 219 ], [ 229, 255 ], [ 258, 292 ], [ 302, 324 ], [ 326, 366 ], [ 370, 370 ], [ 379, 400 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 7, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 11, 12, 12, 11, 11, 10, 11, 11, 11, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 8, 7, 9, 6, 6, 5, 4, 4, 4, 3, 4, 4, 4, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 7, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 11, 12, 12, 11, 11, 10, 11, 11, 11, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 8, 7, 9, 6, 6, 5, 4, 4, 4, 3, 4, 4, 4, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 216, 226 ], [ 228, 230 ], [ 233, 244 ] ] } } }, { "instruction": "Kinetic energy represents the kinetic energy of the whole body. Near the maximum value, the movement is dynamic, indicating that the body is actively performing an action. Near the minimum value, the movement is static, suggesting that the body is preparing to act. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 7, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 11, 11, 11, 12, 12, 11, 11, 10, 11, 11, 11, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 8, 7, 9, 6, 6, 5, 4, 4, 4, 3, 4, 4, 4, 3, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 101 ], [ 107, 108 ], [ 259, 259 ], [ 265, 337 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 52, 52, 52, 51, 51, 51, 50, 50, 50, 49, 49, 49, 49, 49, 49, 48, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 48, 48, 47, 47, 47, 46, 46, 45, 44, 44, 43, 43, 42, 42, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 43, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 74, 75, 76, 76, 77, 78, 79, 80, 81, 81, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 79, 77, 77, 76, 76, 75, 74, 73, 72, 71, 69, 68, 66, 64, 63, 61, 59, 58, 56, 54, 52, 50, 48, 47, 45, 43, 42, 40, 39, 38, 37, 36, 36, 35, 35, 35, 36, 36, 36, 36, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 46, 46, 47, 47, 47, 46, 46, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 43, 43, 43, 43, 44, 44, 44, 44, 45, 45, 46, 47, 48, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 64, 66, 68, 69, 70, 71, 72, 73, 73, 74, 75, 75, 76, 76, 77, 78, 79, 79, 80, 79, 77, 77, 79, 80, 79, 79, 78, 78, 76, 75, 74, 74, 73, 72, 72, 71, 70, 68, 67, 65, 64, 62, 60, 59, 57, 55, 53, 52, 50, 49, 47, 46, 45, 43, 42, 41, 40, 40, 39, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 41, 41, 41, 40, 40, 40, 40, 39, 39, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 40, 41, 41, 42, 43, 44, 45, 45, 45, 46, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 70, 71, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 77, 78, 78, 79, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 79, 78, 77, 76, 75, 74, 72, 71, 70, 69, 68, 67, 65, 63, 61, 59, 57, 55, 53, 51, 50, 49, 48, 48, 47, 46, 46, 45, 45, 44, 43, 43, 43, 43 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 52, 52, 52, 51, 51, 51, 50, 50, 50, 49, 49, 49, 49, 49, 49, 48, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 48, 48, 47, 47, 47, 46, 46, 45, 44, 44, 43, 43, 42, 42, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 43, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 74, 75, 76, 76, 77, 78, 79, 80, 81, 81, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 79, 77, 77, 76, 76, 75, 74, 73, 72, 71, 69, 68, 66, 64, 63, 61, 59, 58, 56, 54, 52, 50, 48, 47, 45, 43, 42, 40, 39, 38, 37, 36, 36, 35, 35, 35, 36, 36, 36, 36, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 46, 46, 47, 47, 47, 46, 46, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 43, 43, 43, 43, 44, 44, 44, 44, 45, 45, 46, 47, 48, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 64, 66, 68, 69, 70, 71, 72, 73, 73, 74, 75, 75, 76, 76, 77, 78, 79, 79, 80, 79, 77, 77, 79, 80, 79, 79, 78, 78, 76, 75, 74, 74, 73, 72, 72, 71, 70, 68, 67, 65, 64, 62, 60, 59, 57, 55, 53, 52, 50, 49, 47, 46, 45, 43, 42, 41, 40, 40, 39, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 41, 41, 41, 40, 40, 40, 40, 39, 39, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 40, 41, 41, 42, 43, 44, 45, 45, 45, 46, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 70, 71, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 77, 78, 78, 79, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 79, 78, 77, 76, 75, 74, 72, 71, 70, 69, 68, 67, 65, 63, 61, 59, 57, 55, 53, 51, 50, 49, 48, 48, 47, 46, 46, 45, 45, 44, 43, 43, 43, 43 ], "output": { "2. Local Maxima": { "frames": [ [ 190, 231 ], [ 316, 353 ], [ 452, 502 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 52, 52, 52, 51, 51, 51, 50, 50, 50, 49, 49, 49, 49, 49, 49, 48, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 48, 48, 47, 47, 47, 46, 46, 45, 44, 44, 43, 43, 42, 42, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 43, 43, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 64, 66, 67, 69, 70, 71, 73, 74, 74, 75, 76, 76, 77, 78, 79, 80, 81, 81, 82, 82, 82, 82, 82, 82, 82, 81, 81, 81, 81, 80, 79, 77, 77, 76, 76, 75, 74, 73, 72, 71, 69, 68, 66, 64, 63, 61, 59, 58, 56, 54, 52, 50, 48, 47, 45, 43, 42, 40, 39, 38, 37, 36, 36, 35, 35, 35, 36, 36, 36, 36, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 46, 46, 47, 47, 47, 46, 46, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 43, 43, 43, 43, 44, 44, 44, 44, 45, 45, 46, 47, 48, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 64, 66, 68, 69, 70, 71, 72, 73, 73, 74, 75, 75, 76, 76, 77, 78, 79, 79, 80, 79, 77, 77, 79, 80, 79, 79, 78, 78, 76, 75, 74, 74, 73, 72, 72, 71, 70, 68, 67, 65, 64, 62, 60, 59, 57, 55, 53, 52, 50, 49, 47, 46, 45, 43, 42, 41, 40, 40, 39, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 41, 41, 41, 40, 40, 40, 40, 39, 39, 38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 40, 41, 41, 42, 43, 44, 45, 45, 45, 46, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 70, 71, 72, 72, 73, 73, 73, 74, 74, 75, 75, 76, 76, 76, 77, 77, 77, 78, 78, 79, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 80, 79, 78, 77, 76, 75, 74, 72, 71, 70, 69, 68, 67, 65, 63, 61, 59, 57, 55, 53, 51, 50, 49, 48, 48, 47, 46, 46, 45, 45, 44, 43, 43, 43, 43 ], "output": { "3. Local Minima": { "frames": [ [ 0, 9 ], [ 43, 58 ], [ 131, 175 ], [ 244, 271 ], [ 289, 299 ], [ 368, 431 ], [ 520, 524 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 48, 48 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 48, 48 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 395 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 48, 48 ], "output": { "3. Local Minima": { "frames": [ [ 0, 39 ], [ 78, 111 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 46, 46, 46, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 47, 47, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 46, 46, 46, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 47, 47, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 295 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 46, 46, 46, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 47, 47, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50 ], "output": { "3. Local Minima": { "frames": [ [ 0, 37 ], [ 73, 75 ], [ 79, 80 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 40, 40, 39, 39, 39, 38, 38, 37, 37, 37, 36, 36, 35, 35, 34, 34, 34, 33, 33, 32, 32, 31, 31, 30, 30, 29, 29, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 21, 21, 20, 19, 19, 18, 17, 17, 16, 15, 15, 14, 13, 13, 12, 12, 11, 10, 10, 9, 8, 8, 7, 7, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -5, -5, -5, -4, -4, -3, -2, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 40, 43, 46, 50, 53, 57, 61, 65, 68, 72, 75, 78, 81, 83, 86, 88, 91, 93, 96, 98, 100, 103, 105, 106, 108, 110, 111, 113, 114, 115, 117, 118, 119, 119, 120, 121, 121, 122, 122, 122, 123, 123, 123, 122, 122, 122, 121, 120, 120, 119, 118, 117, 116, 115, 113, 112, 110, 109, 107, 105, 103, 101, 99, 97, 95, 92, 90, 87, 85, 82, 79, 76, 73, 69, 66, 62, 59, 55, 51, 47, 44, 41, 38, 35, 32, 30, 28, 26, 24, 23, 22, 20, 19, 19, 18, 18, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 40, 40, 39, 39, 39, 38, 38, 37, 37, 37, 36, 36, 35, 35, 34, 34, 34, 33, 33, 32, 32, 31, 31, 30, 30, 29, 29, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 21, 21, 20, 19, 19, 18, 17, 17, 16, 15, 15, 14, 13, 13, 12, 12, 11, 10, 10, 9, 8, 8, 7, 7, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -5, -5, -5, -4, -4, -3, -2, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 40, 43, 46, 50, 53, 57, 61, 65, 68, 72, 75, 78, 81, 83, 86, 88, 91, 93, 96, 98, 100, 103, 105, 106, 108, 110, 111, 113, 114, 115, 117, 118, 119, 119, 120, 121, 121, 122, 122, 122, 123, 123, 123, 122, 122, 122, 121, 120, 120, 119, 118, 117, 116, 115, 113, 112, 110, 109, 107, 105, 103, 101, 99, 97, 95, 92, 90, 87, 85, 82, 79, 76, 73, 69, 66, 62, 59, 55, 51, 47, 44, 41, 38, 35, 32, 30, 28, 26, 24, 23, 22, 20, 19, 19, 18, 18, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "2. Local Maxima": { "frames": [ [ 197, 239 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 40, 40, 39, 39, 39, 38, 38, 37, 37, 37, 36, 36, 35, 35, 34, 34, 34, 33, 33, 32, 32, 31, 31, 30, 30, 29, 29, 28, 27, 27, 26, 26, 25, 24, 24, 23, 23, 22, 21, 21, 20, 19, 19, 18, 17, 17, 16, 15, 15, 14, 13, 13, 12, 12, 11, 10, 10, 9, 8, 8, 7, 7, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 0, 0, -1, -1, -2, -2, -3, -3, -4, -4, -5, -5, -5, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -5, -5, -5, -4, -4, -3, -2, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 40, 43, 46, 50, 53, 57, 61, 65, 68, 72, 75, 78, 81, 83, 86, 88, 91, 93, 96, 98, 100, 103, 105, 106, 108, 110, 111, 113, 114, 115, 117, 118, 119, 119, 120, 121, 121, 122, 122, 122, 123, 123, 123, 122, 122, 122, 121, 120, 120, 119, 118, 117, 116, 115, 113, 112, 110, 109, 107, 105, 103, 101, 99, 97, 95, 92, 90, 87, 85, 82, 79, 76, 73, 69, 66, 62, 59, 55, 51, 47, 44, 41, 38, 35, 32, 30, 28, 26, 24, 23, 22, 20, 19, 19, 18, 18, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "3. Local Minima": { "frames": [ [ 92, 169 ], [ 269, 286 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "3. Local Minima": { "frames": [ [ 0, 56 ], [ 415, 446 ], [ 501, 512 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 341 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43 ], "output": { "3. Local Minima": { "frames": [ [ 100, 103 ], [ 163, 167 ], [ 231, 240 ], [ 284, 306 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49, 49, 50, 50, 51, 51, 51, 51, 51, 52, 52, 52, 52, 51, 51, 51, 50, 50, 49, 49, 48, 47, 47, 46, 45, 45, 44, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 51, 51, 52, 52, 52, 52, 51, 51, 51, 51, 50, 50, 49, 49, 48, 47, 47, 46, 46, 45, 45, 44, 44, 44, 43, 43, 43, 43, 43, 44, 44, 44, 44, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49, 49, 50, 50, 51, 51, 51, 51, 51, 52, 52, 52, 52, 51, 51, 51, 50, 50, 49, 49, 48, 47, 47, 46, 45, 45, 44, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 51, 51, 52, 52, 52, 52, 51, 51, 51, 51, 50, 50, 49, 49, 48, 47, 47, 46, 46, 45, 45, 44, 44, 44, 43, 43, 43, 43, 43, 44, 44, 44, 44, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 167 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49, 49, 50, 50, 51, 51, 51, 51, 51, 52, 52, 52, 52, 51, 51, 51, 50, 50, 49, 49, 48, 47, 47, 46, 45, 45, 44, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 51, 51, 52, 52, 52, 52, 51, 51, 51, 51, 50, 50, 49, 49, 48, 47, 47, 46, 46, 45, 45, 44, 44, 44, 43, 43, 43, 43, 43, 44, 44, 44, 44, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50 ], "output": { "3. Local Minima": { "frames": [ [ 0, 10 ], [ 47, 62 ], [ 93, 101 ], [ 139, 150 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 45, 45, 45, 46, 46, 46, 45, 45, 45, 45, 44, 44, 43, 43, 42, 41, 41, 40, 39, 38, 37, 35, 34, 33, 31, 30, 28, 27, 25, 24, 23, 21, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 31, 32, 33, 34, 36, 37, 37, 38, 39, 40, 40, 41, 41, 42, 42, 42, 42, 42, 43, 43, 42, 42, 42, 42, 41, 41, 40, 40, 39, 39, 38, 37, 36, 35, 34, 33, 32, 31, 29, 28, 27, 25, 24, 23, 21, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 15, 15, 16, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 42, 43, 43, 43, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 42, 41, 40, 40, 39, 38, 37, 36, 35, 33, 32, 31, 29, 28, 27, 25, 24, 23, 22, 21, 21, 20, 20, 20, 20, 20, 20, 21, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 35, 36, 37, 38, 38, 39, 39, 40, 40, 40, 41, 41, 41, 41, 41, 41, 40, 40, 40, 39, 39, 38, 37, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 21, 20, 19, 19, 18, 17, 17, 17, 17, 17, 18, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 45, 45, 44, 43, 43, 42, 41, 40, 39, 37, 36, 35, 33, 32, 30, 29, 27, 26, 24, 23, 22, 20, 19, 18, 18, 17, 17, 16, 16, 16, 17, 17, 18, 18, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 41, 41, 40, 39, 39, 38, 37, 36, 35, 33, 32, 31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 45, 45, 45, 46, 46, 46, 45, 45, 45, 45, 44, 44, 43, 43, 42, 41, 41, 40, 39, 38, 37, 35, 34, 33, 31, 30, 28, 27, 25, 24, 23, 21, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 31, 32, 33, 34, 36, 37, 37, 38, 39, 40, 40, 41, 41, 42, 42, 42, 42, 42, 43, 43, 42, 42, 42, 42, 41, 41, 40, 40, 39, 39, 38, 37, 36, 35, 34, 33, 32, 31, 29, 28, 27, 25, 24, 23, 21, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 15, 15, 16, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 42, 43, 43, 43, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 42, 41, 40, 40, 39, 38, 37, 36, 35, 33, 32, 31, 29, 28, 27, 25, 24, 23, 22, 21, 21, 20, 20, 20, 20, 20, 20, 21, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 35, 36, 37, 38, 38, 39, 39, 40, 40, 40, 41, 41, 41, 41, 41, 41, 40, 40, 40, 39, 39, 38, 37, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 21, 20, 19, 19, 18, 17, 17, 17, 17, 17, 18, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 45, 45, 44, 43, 43, 42, 41, 40, 39, 37, 36, 35, 33, 32, 30, 29, 27, 26, 24, 23, 22, 20, 19, 18, 18, 17, 17, 16, 16, 16, 17, 17, 18, 18, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 41, 41, 40, 39, 39, 38, 37, 36, 35, 33, 32, 31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 21 ], [ 68, 91 ], [ 138, 163 ], [ 202, 220 ], [ 263, 294 ], [ 335, 362 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 45, 45, 45, 46, 46, 46, 45, 45, 45, 45, 44, 44, 43, 43, 42, 41, 41, 40, 39, 38, 37, 35, 34, 33, 31, 30, 28, 27, 25, 24, 23, 21, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 31, 32, 33, 34, 36, 37, 37, 38, 39, 40, 40, 41, 41, 42, 42, 42, 42, 42, 43, 43, 42, 42, 42, 42, 41, 41, 40, 40, 39, 39, 38, 37, 36, 35, 34, 33, 32, 31, 29, 28, 27, 25, 24, 23, 21, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 15, 15, 16, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 42, 43, 43, 43, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 42, 41, 40, 40, 39, 38, 37, 36, 35, 33, 32, 31, 29, 28, 27, 25, 24, 23, 22, 21, 21, 20, 20, 20, 20, 20, 20, 21, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 35, 36, 37, 38, 38, 39, 39, 40, 40, 40, 41, 41, 41, 41, 41, 41, 40, 40, 40, 39, 39, 38, 37, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 21, 20, 19, 19, 18, 17, 17, 17, 17, 17, 18, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 45, 45, 44, 43, 43, 42, 41, 40, 39, 37, 36, 35, 33, 32, 30, 29, 27, 26, 24, 23, 22, 20, 19, 18, 18, 17, 17, 16, 16, 16, 17, 17, 18, 18, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 42, 41, 41, 40, 39, 39, 38, 37, 36, 35, 33, 32, 31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25 ], "output": { "3. Local Minima": { "frames": [ [ 33, 54 ], [ 105, 124 ], [ 177, 186 ], [ 236, 250 ], [ 307, 322 ], [ 377, 393 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 43, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 43, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1032 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 43, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43 ], "output": { "3. Local Minima": { "frames": [ [ 420, 421 ], [ 494, 505 ], [ 550, 555 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 40, 40, 40, 40, 39, 39, 39, 38, 38, 37, 37, 36, 35, 35, 34, 33, 33, 32, 31, 30, 29, 29, 28, 27, 26, 25, 25, 24, 23, 22, 21, 20, 20, 19, 18, 17, 16, 15, 15, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 6, 6, 5, 4, 4, 3, 2, 2, 1, 0, 0, -1, -1, -2, -3, -3, -4, -4, -4, -5, -5, -6, -7, -7, -8, -8, -8, -9, -9, -9, -10, -10, -10, -10, -10, -11, -11, -11, -11, -11, -12, -12, -12, -12, -12, -12, -12, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -11, -11, -11, -11, -11, -11, -10, -10, -10, -10, -9, -9, -9, -8, -8, -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -1, -1, 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 40, 40, 40, 40, 39, 39, 39, 38, 38, 37, 37, 36, 35, 35, 34, 33, 33, 32, 31, 30, 29, 29, 28, 27, 26, 25, 25, 24, 23, 22, 21, 20, 20, 19, 18, 17, 16, 15, 15, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 6, 6, 5, 4, 4, 3, 2, 2, 1, 0, 0, -1, -1, -2, -3, -3, -4, -4, -4, -5, -5, -6, -7, -7, -8, -8, -8, -9, -9, -9, -10, -10, -10, -10, -10, -11, -11, -11, -11, -11, -12, -12, -12, -12, -12, -12, -12, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -11, -11, -11, -11, -11, -11, -10, -10, -10, -10, -9, -9, -9, -8, -8, -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -1, -1, 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 204 ], [ 439, 474 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 40, 40, 40, 40, 39, 39, 39, 38, 38, 37, 37, 36, 35, 35, 34, 33, 33, 32, 31, 30, 29, 29, 28, 27, 26, 25, 25, 24, 23, 22, 21, 20, 20, 19, 18, 17, 16, 15, 15, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 6, 6, 5, 4, 4, 3, 2, 2, 1, 0, 0, -1, -1, -2, -3, -3, -4, -4, -4, -5, -5, -6, -7, -7, -8, -8, -8, -9, -9, -9, -10, -10, -10, -10, -10, -11, -11, -11, -11, -11, -12, -12, -12, -12, -12, -12, -12, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -13, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -12, -11, -11, -11, -11, -11, -11, -10, -10, -10, -10, -9, -9, -9, -8, -8, -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -1, -1, 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43 ], "output": { "3. Local Minima": { "frames": [ [ 255, 388 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 44, 44, 44, 44, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 44, 44, 44, 44, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 363 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 44, 44, 44, 44, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53 ], "output": { "3. Local Minima": { "frames": [ [ 0, 127 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 44, 44, 44, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 40, 40, 39, 39, 38, 38, 38, 38, 38, 38, 38, 39, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 46, 47, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 44, 44, 44, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 40, 40, 39, 39, 38, 38, 38, 38, 38, 38, 38, 39, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 46, 47, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 441 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 44, 44, 44, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 40, 40, 40, 40, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 40, 40, 39, 39, 38, 38, 38, 38, 38, 38, 38, 39, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 46, 47, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "3. Local Minima": { "frames": [ [ 237, 238 ], [ 295, 305 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 42, 42, 41, 41, 40, 39, 38, 37, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 26, 25, 24, 24, 23, 23, 23, 23, 23, 23, 24, 24, 25, 26, 27, 28, 29, 31, 33, 35, 37, 39, 42, 44, 47, 50, 53, 56, 59, 61, 64, 67, 69, 71, 74, 76, 78, 80, 82, 83, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 97, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 89, 88, 86, 84, 83, 81, 79, 77, 75, 73, 71, 68, 66, 63, 60, 58, 55, 53, 50, 48, 46, 43, 42, 40, 39, 38, 36, 36, 35, 34, 33, 32, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 42, 42, 41, 41, 40, 39, 38, 37, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 26, 25, 24, 24, 23, 23, 23, 23, 23, 23, 24, 24, 25, 26, 27, 28, 29, 31, 33, 35, 37, 39, 42, 44, 47, 50, 53, 56, 59, 61, 64, 67, 69, 71, 74, 76, 78, 80, 82, 83, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 97, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 89, 88, 86, 84, 83, 81, 79, 77, 75, 73, 71, 68, 66, 63, 60, 58, 55, 53, 50, 48, 46, 43, 42, 40, 39, 38, 36, 36, 35, 34, 33, 32, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "2. Local Maxima": { "frames": [ [ 227, 267 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 42, 42, 41, 41, 40, 39, 38, 37, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 26, 25, 24, 24, 23, 23, 23, 23, 23, 23, 24, 24, 25, 26, 27, 28, 29, 31, 33, 35, 37, 39, 42, 44, 47, 50, 53, 56, 59, 61, 64, 67, 69, 71, 74, 76, 78, 80, 82, 83, 85, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 97, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 97, 97, 96, 95, 94, 93, 92, 91, 89, 88, 86, 84, 83, 81, 79, 77, 75, 73, 71, 68, 66, 63, 60, 58, 55, 53, 50, 48, 46, 43, 42, 40, 39, 38, 36, 36, 35, 34, 33, 32, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 39, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "3. Local Minima": { "frames": [ [ 176, 210 ], [ 287, 325 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 39, 38, 38, 38, 37, 37, 36, 36, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 36, 37, 38, 39, 39, 40, 40, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 49, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 31, 30, 30, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 39, 38, 38, 38, 37, 37, 36, 36, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 36, 37, 38, 39, 39, 40, 40, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 49, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 31, 30, 30, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 377 ], [ 441, 505 ], [ 563, 883 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 39, 38, 38, 38, 37, 37, 36, 36, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 31, 31, 31, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 31, 31, 32, 32, 33, 34, 34, 35, 36, 37, 38, 39, 39, 40, 40, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 49, 49, 49, 48, 48, 47, 47, 46, 46, 45, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 31, 30, 30, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "3. Local Minima": { "frames": [ [ 399, 429 ], [ 514, 546 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 422 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "3. Local Minima": { "frames": [ [ 189, 282 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 103 ], [ 173, 468 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 41, 41, 41, 40, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 35, 35, 35, 34, 34, 33, 33, 33, 32, 32, 32, 32, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 39, 39, 39, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44 ], "output": { "3. Local Minima": { "frames": [ [ 111, 163 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 38, 38, 38, 38, 38, 38, 38, 37, 37, 37, 37, 37, 36, 36, 36, 36, 36, 36, 35, 35, 35, 34, 34, 33, 33, 32, 32, 31, 31, 30, 30, 29, 29, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 28, 28, 29, 30, 30, 31, 32, 33, 34, 36, 37, 39, 41, 43, 44, 46, 48, 50, 52, 54, 56, 58, 59, 61, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 74, 75, 75, 76, 76, 76, 76, 76, 76, 76, 75, 75, 74, 73, 73, 72, 71, 70, 69, 68, 66, 65, 64, 62, 60, 59, 57, 55, 53, 50, 48, 46, 43, 41, 40, 38, 36, 35, 33, 32, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 38, 38, 38, 38, 38, 38, 38, 37, 37, 37, 37, 37, 36, 36, 36, 36, 36, 36, 35, 35, 35, 34, 34, 33, 33, 32, 32, 31, 31, 30, 30, 29, 29, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 28, 28, 29, 30, 30, 31, 32, 33, 34, 36, 37, 39, 41, 43, 44, 46, 48, 50, 52, 54, 56, 58, 59, 61, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 74, 75, 75, 76, 76, 76, 76, 76, 76, 76, 75, 75, 74, 73, 73, 72, 71, 70, 69, 68, 66, 65, 64, 62, 60, 59, 57, 55, 53, 50, 48, 46, 43, 41, 40, 38, 36, 35, 33, 32, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "2. Local Maxima": { "frames": [ [ 250, 285 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 38, 38, 38, 38, 38, 38, 38, 37, 37, 37, 37, 37, 36, 36, 36, 36, 36, 36, 35, 35, 35, 34, 34, 33, 33, 32, 32, 31, 31, 30, 30, 29, 29, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 28, 28, 29, 30, 30, 31, 32, 33, 34, 36, 37, 39, 41, 43, 44, 46, 48, 50, 52, 54, 56, 58, 59, 61, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 74, 75, 75, 76, 76, 76, 76, 76, 76, 76, 75, 75, 74, 73, 73, 72, 71, 70, 69, 68, 66, 65, 64, 62, 60, 59, 57, 55, 53, 50, 48, 46, 43, 41, 40, 38, 36, 35, 33, 32, 31, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45 ], "output": { "3. Local Minima": { "frames": [ [ 196, 236 ], [ 298, 325 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 398 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 42, 42, 42, 42, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41 ], "output": { "3. Local Minima": { "frames": [ [ 361, 398 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 48, 48, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 48, 47, 47, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 48, 48, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 48, 47, 47, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 400 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 48, 48, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 43, 43, 43, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 44, 44, 44, 44, 45, 45, 45, 46, 46, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 48, 48, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 45, 44, 44, 44, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 43, 43, 43, 43, 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 49, 50, 50, 50, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 48, 48, 48, 48, 47, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 48, 48, 47, 47, 47, 46, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 50, 50, 50, 50, 50, 49, 49, 49, 49, 48, 48, 48, 47, 47, 46, 46, 46, 45, 45, 45, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50 ], "output": { "3. Local Minima": { "frames": [ [ 46, 69 ], [ 129, 145 ], [ 203, 216 ], [ 282, 292 ], [ 354, 367 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 42, 42, 41, 40, 39, 39, 38, 37, 37, 36, 36, 36, 36, 37, 38, 40, 41, 43, 45, 47, 49, 51, 53, 54, 55, 56, 56, 56, 55, 55, 54, 53, 52, 50, 49, 46, 44, 43, 41, 40, 39, 37, 36, 35, 34, 33, 33, 32, 31, 30, 30, 29, 28, 27, 26, 25, 25, 25, 25, 25, 25, 26, 26, 27, 28, 30, 31, 33, 34, 36, 39, 41, 44, 46, 49, 51, 54, 55, 57, 58, 59, 59, 59, 59, 59, 58, 57, 56, 55, 53, 51, 49, 46, 44, 41, 39, 37, 36, 34, 33, 31, 30, 29, 28, 27, 27, 28, 28, 29, 30, 31, 33, 34, 37, 39, 41, 43, 46, 48, 51, 55, 58, 60, 63, 65, 67, 69, 71, 72, 72, 73, 73, 73, 72, 71, 70, 69, 67, 65, 63, 61, 58, 55, 52, 48, 44, 41, 40, 38, 36, 35, 34, 34, 34, 35, 36, 36, 37, 39, 40, 40, 41, 42, 43, 43, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 42, 42, 41, 40, 39, 39, 38, 37, 37, 36, 36, 36, 36, 37, 38, 40, 41, 43, 45, 47, 49, 51, 53, 54, 55, 56, 56, 56, 55, 55, 54, 53, 52, 50, 49, 46, 44, 43, 41, 40, 39, 37, 36, 35, 34, 33, 33, 32, 31, 30, 30, 29, 28, 27, 26, 25, 25, 25, 25, 25, 25, 26, 26, 27, 28, 30, 31, 33, 34, 36, 39, 41, 44, 46, 49, 51, 54, 55, 57, 58, 59, 59, 59, 59, 59, 58, 57, 56, 55, 53, 51, 49, 46, 44, 41, 39, 37, 36, 34, 33, 31, 30, 29, 28, 27, 27, 28, 28, 29, 30, 31, 33, 34, 37, 39, 41, 43, 46, 48, 51, 55, 58, 60, 63, 65, 67, 69, 71, 72, 72, 73, 73, 73, 72, 71, 70, 69, 67, 65, 63, 61, 58, 55, 52, 48, 44, 41, 40, 38, 36, 35, 34, 34, 34, 35, 36, 36, 37, 39, 40, 40, 41, 42, 43, 43, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47 ], "output": { "2. Local Maxima": { "frames": [ [ 179, 183 ], [ 221, 239 ] ] } } }, { "instruction": "Potential energy represents the height level of the body's center of mass. Near the maximum value, it can be considered a jumping position, and near the minimum value, it can be considered a sitting position. Specifically, a value of 0.4 typically corresponds to the initial standing position. At a peak value of 1 corresponds to actions like significant jump, 0.7 to actions like small jump, 0 to actions like sitting. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 44, 44, 44, 44, 44, 43, 43, 42, 42, 41, 40, 39, 39, 38, 37, 37, 36, 36, 36, 36, 37, 38, 40, 41, 43, 45, 47, 49, 51, 53, 54, 55, 56, 56, 56, 55, 55, 54, 53, 52, 50, 49, 46, 44, 43, 41, 40, 39, 37, 36, 35, 34, 33, 33, 32, 31, 30, 30, 29, 28, 27, 26, 25, 25, 25, 25, 25, 25, 26, 26, 27, 28, 30, 31, 33, 34, 36, 39, 41, 44, 46, 49, 51, 54, 55, 57, 58, 59, 59, 59, 59, 59, 58, 57, 56, 55, 53, 51, 49, 46, 44, 41, 39, 37, 36, 34, 33, 31, 30, 29, 28, 27, 27, 28, 28, 29, 30, 31, 33, 34, 37, 39, 41, 43, 46, 48, 51, 55, 58, 60, 63, 65, 67, 69, 71, 72, 72, 73, 73, 73, 72, 71, 70, 69, 67, 65, 63, 61, 58, 55, 52, 48, 44, 41, 40, 38, 36, 35, 34, 34, 34, 35, 36, 36, 37, 39, 40, 40, 41, 42, 43, 43, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47 ], "output": { "3. Local Minima": { "frames": [ [ 143, 167 ], [ 197, 211 ], [ 250, 252 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 524 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "3. Local Minima": { "frames": [ [ 0, 524 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 395 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "3. Local Minima": { "frames": [ [ 0, 395 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 295 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89 ], "output": { "3. Local Minima": { "frames": [ [ 0, 295 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 399 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91 ], "output": { "3. Local Minima": { "frames": [ [ 0, 83 ], [ 241, 285 ], [ 389, 399 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, 91 ], "output": { "3. Local Minima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 341 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "3. Local Minima": { "frames": [ [ 0, 341 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 167 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "3. Local Minima": { "frames": [ [ 0, 167 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 431 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97 ], "output": { "3. Local Minima": { "frames": [ [ 0, 431 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1032 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "3. Local Minima": { "frames": [ [ 0, 1032 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 474 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "3. Local Minima": { "frames": [ [ 0, 474 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 363 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92 ], "output": { "3. Local Minima": { "frames": [ [ 0, 363 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 441 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93 ], "output": { "3. Local Minima": { "frames": [ [ 0, 441 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 502 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "3. Local Minima": { "frames": [ [ 230, 502 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 883 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "3. Local Minima": { "frames": [ [ 0, 883 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 422 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "3. Local Minima": { "frames": [ [ 263, 337 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 468 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "3. Local Minima": { "frames": [ [ 0, 468 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 585 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "3. Local Minima": { "frames": [ [ 0, 585 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 398 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95 ], "output": { "3. Local Minima": { "frames": [ [ 0, 398 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 400 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94 ], "output": { "3. Local Minima": { "frames": [ [ 0, 67 ], [ 164, 192 ], [ 316, 343 ], [ 365, 369 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 337 ] ] } } }, { "instruction": "Bone length coherence represents how well the initial inter-articular length is maintained throughout the sequence. Near the maximum value, similar to the initial bone length, near the minimum value, different from the initial bone length. If bone length consistency is measured low, people may question the integrity of the data. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96 ], "output": { "3. Local Minima": { "frames": [ [ 0, 337 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 2, 5, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 4, 3, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 3, 3, 6, 4, 4, 3, 3, 5, 5, 4, 4, 4, 5, 5, 6, 4, 5, 3, 5, 4, 5, 4, 3, 4, 3, 3, 3, 3, 4, 3, 5, 5, 4, 4, 5, 4, 3, 5, 3, 4, 3, 4, 4, 2, 4, 3, 3, 5, 3, 3, 3, 4, 4, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 2, 4, 3, 2, 2, 2, 5, 4, 4, 3, 3, 14, 4, 4, 4, 3, 6, 5, 3, 7, 3, 3, 3, 3, 3, 3, 2, 4, 3, 4, 3, 3, 2, 2, 2, 3, 4, 3, 3, 7, 2, 5, 5, 8, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 11, 10, 7, 8, 6, 17, 7, 18, 12, 15, 17, 10, 17, 10, 12, 171, 273, 13, 12, 15, 23, 55, 5, 21, 4, 19, 16, 23, 4, 6, 5, 14, 313, 285, 4, 8, 12, 6, 6, 4, 10, 5, 12, 5, 9, 10, 4, 14, 6, 4, 4, 3, 4, 2, 12, 9, 3, 1, 8, 4, 7, 6, 7, 6, 5, 7, 4, 3, 5, 4, 3, 3, 4, 2, 3, 3, 4, 2, 2, 3, 1, 1, 3, 1, 1, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 4, 3, 4, 2, 3, 6, 5, 4, 5, 6, 3, 3, 3, 3, 5, 3, 5, 4, 4, 4, 4, 11, 11, 8, 6, 8, 8, 16, 22, 18, 9, 8, 8, 6, 15, 15, 16, 14, 227, 327, 21, 5, 64, 363, 269, 14, 277, 393, 42, 18, 10, 13, 348, 296, 15, 4, 21, 12, 5, 8, 9, 6, 21, 5, 6, 7, 13, 16, 4, 14, 7, 5, 35, 4, 3, 9, 12, 10, 21, 6, 5, 9, 9, 4, 5, 9, 5, 4, 8, 3, 5, 4, 4, 3, 4, 3, 5, 2, 6, 5, 2, 6, 3, 2, 8, 3, 3, 5, 3, 5, 6, 3, 7, 4, 3, 5, 6, 5, 4, 4, 5, 3, 3, 4, 2, 6, 3, 3, 3, 3, 3, 4, 3, 4, 5, 5, 5, 3, 9, 6, 6, 8, 13, 5, 4, 1, 5, 5, 4, 8, 6, 12, 6, 10, 10, 10, 16, 10, 10, 10, 10, 12, 15, 34, 11, 9, 16, 12, 18, 8, 11, 9, 18, 6, 6, 178, 50, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 6, 6, 6, 22, 9, 8, 6, 12, 7, 9, 7, 13, 7, 55, 27, 18, 37, 45, 18, 33, 8, 26, 47, 8, 6, 8, 19, 104, 22, 14, 6, 6, 18, 5, 6, 6, 10, 9, 6, 6, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 2, 5, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 4, 3, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 3, 3, 6, 4, 4, 3, 3, 5, 5, 4, 4, 4, 5, 5, 6, 4, 5, 3, 5, 4, 5, 4, 3, 4, 3, 3, 3, 3, 4, 3, 5, 5, 4, 4, 5, 4, 3, 5, 3, 4, 3, 4, 4, 2, 4, 3, 3, 5, 3, 3, 3, 4, 4, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 2, 4, 3, 2, 2, 2, 5, 4, 4, 3, 3, 14, 4, 4, 4, 3, 6, 5, 3, 7, 3, 3, 3, 3, 3, 3, 2, 4, 3, 4, 3, 3, 2, 2, 2, 3, 4, 3, 3, 7, 2, 5, 5, 8, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 11, 10, 7, 8, 6, 17, 7, 18, 12, 15, 17, 10, 17, 10, 12, 171, 273, 13, 12, 15, 23, 55, 5, 21, 4, 19, 16, 23, 4, 6, 5, 14, 313, 285, 4, 8, 12, 6, 6, 4, 10, 5, 12, 5, 9, 10, 4, 14, 6, 4, 4, 3, 4, 2, 12, 9, 3, 1, 8, 4, 7, 6, 7, 6, 5, 7, 4, 3, 5, 4, 3, 3, 4, 2, 3, 3, 4, 2, 2, 3, 1, 1, 3, 1, 1, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 4, 3, 4, 2, 3, 6, 5, 4, 5, 6, 3, 3, 3, 3, 5, 3, 5, 4, 4, 4, 4, 11, 11, 8, 6, 8, 8, 16, 22, 18, 9, 8, 8, 6, 15, 15, 16, 14, 227, 327, 21, 5, 64, 363, 269, 14, 277, 393, 42, 18, 10, 13, 348, 296, 15, 4, 21, 12, 5, 8, 9, 6, 21, 5, 6, 7, 13, 16, 4, 14, 7, 5, 35, 4, 3, 9, 12, 10, 21, 6, 5, 9, 9, 4, 5, 9, 5, 4, 8, 3, 5, 4, 4, 3, 4, 3, 5, 2, 6, 5, 2, 6, 3, 2, 8, 3, 3, 5, 3, 5, 6, 3, 7, 4, 3, 5, 6, 5, 4, 4, 5, 3, 3, 4, 2, 6, 3, 3, 3, 3, 3, 4, 3, 4, 5, 5, 5, 3, 9, 6, 6, 8, 13, 5, 4, 1, 5, 5, 4, 8, 6, 12, 6, 10, 10, 10, 16, 10, 10, 10, 10, 12, 15, 34, 11, 9, 16, 12, 18, 8, 11, 9, 18, 6, 6, 178, 50, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 6, 6, 6, 22, 9, 8, 6, 12, 7, 9, 7, 13, 7, 55, 27, 18, 37, 45, 18, 33, 8, 26, 47, 8, 6, 8, 19, 104, 22, 14, 6, 6, 18, 5, 6, 6, 10, 9, 6, 6, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 329, 329 ], [ 333, 333 ], [ 337, 337 ], [ 342, 342 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 2, 5, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 4, 3, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 3, 3, 6, 4, 4, 3, 3, 5, 5, 4, 4, 4, 5, 5, 6, 4, 5, 3, 5, 4, 5, 4, 3, 4, 3, 3, 3, 3, 4, 3, 5, 5, 4, 4, 5, 4, 3, 5, 3, 4, 3, 4, 4, 2, 4, 3, 3, 5, 3, 3, 3, 4, 4, 3, 4, 3, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 2, 4, 3, 2, 2, 2, 5, 4, 4, 3, 3, 14, 4, 4, 4, 3, 6, 5, 3, 7, 3, 3, 3, 3, 3, 3, 2, 4, 3, 4, 3, 3, 2, 2, 2, 3, 4, 3, 3, 7, 2, 5, 5, 8, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 5, 4, 4, 4, 4, 11, 10, 7, 8, 6, 17, 7, 18, 12, 15, 17, 10, 17, 10, 12, 171, 273, 13, 12, 15, 23, 55, 5, 21, 4, 19, 16, 23, 4, 6, 5, 14, 313, 285, 4, 8, 12, 6, 6, 4, 10, 5, 12, 5, 9, 10, 4, 14, 6, 4, 4, 3, 4, 2, 12, 9, 3, 1, 8, 4, 7, 6, 7, 6, 5, 7, 4, 3, 5, 4, 3, 3, 4, 2, 3, 3, 4, 2, 2, 3, 1, 1, 3, 1, 1, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 5, 2, 2, 2, 3, 3, 2, 2, 4, 3, 4, 2, 3, 6, 5, 4, 5, 6, 3, 3, 3, 3, 5, 3, 5, 4, 4, 4, 4, 11, 11, 8, 6, 8, 8, 16, 22, 18, 9, 8, 8, 6, 15, 15, 16, 14, 227, 327, 21, 5, 64, 363, 269, 14, 277, 393, 42, 18, 10, 13, 348, 296, 15, 4, 21, 12, 5, 8, 9, 6, 21, 5, 6, 7, 13, 16, 4, 14, 7, 5, 35, 4, 3, 9, 12, 10, 21, 6, 5, 9, 9, 4, 5, 9, 5, 4, 8, 3, 5, 4, 4, 3, 4, 3, 5, 2, 6, 5, 2, 6, 3, 2, 8, 3, 3, 5, 3, 5, 6, 3, 7, 4, 3, 5, 6, 5, 4, 4, 5, 3, 3, 4, 2, 6, 3, 3, 3, 3, 3, 4, 3, 4, 5, 5, 5, 3, 9, 6, 6, 8, 13, 5, 4, 1, 5, 5, 4, 8, 6, 12, 6, 10, 10, 10, 16, 10, 10, 10, 10, 12, 15, 34, 11, 9, 16, 12, 18, 8, 11, 9, 18, 6, 6, 178, 50, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 6, 6, 6, 22, 9, 8, 6, 12, 7, 9, 7, 13, 7, 55, 27, 18, 37, 45, 18, 33, 8, 26, 47, 8, 6, 8, 19, 104, 22, 14, 6, 6, 18, 5, 6, 6, 10, 9, 6, 6, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 200 ], [ 203, 217 ], [ 220, 327 ], [ 330, 332 ], [ 335, 335 ], [ 338, 341 ], [ 344, 464 ], [ 466, 509 ], [ 511, 524 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 6, 3, 6, 4, 3, 7, 5, 3, 8, 4, 6, 6, 3, 4, 3, 6, 3, 3, 7, 3, 6, 3, 3, 6, 3, 5, 2, 6, 2, 3, 4, 3, 5, 3, 8, 2, 3, 6, 3, 6, 2, 3, 4, 2, 5, 3, 3, 2, 3, 3, 5, 3, 8, 2, 3, 3, 3, 5, 2, 3, 5, 4, 2, 6, 6, 8, 10, 4, 4, 3, 5, 5, 3, 4, 5, 4, 5, 4, 4, 8, 4, 3, 4, 5, 3, 3, 4, 4, 3, 5, 3, 4, 3, 4, 2, 5, 2, 3, 2, 4, 2, 3, 2, 2, 2, 5, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 3, 2, 3, 5, 6, 5, 4, 2, 4, 2, 4, 3, 3, 4, 2, 4, 6, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 3, 3, 4, 5, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 3, 4, 2, 4, 4, 3, 3, 3, 5, 4, 3, 3, 3, 4, 4, 4, 2, 4, 3, 4, 4, 3, 4, 4, 3, 5, 4, 5, 3, 5, 5, 3, 4, 6, 5, 5, 3, 3, 5, 5, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 5, 3, 2, 3, 4, 2, 3, 4, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 4, 2, 2, 3, 3, 2, 3, 2, 4, 3, 2, 4, 3, 3, 3, 5, 4, 3, 3, 3, 4, 4, 3, 3, 6, 3, 4, 3, 5, 3, 4, 5, 3, 3, 4, 4, 3, 8, 2, 5, 2, 3, 3, 5, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3, 5, 3, 5, 2, 4, 3, 3, 3, 3, 4, 4, 4, 5, 2, 5, 5, 5, 4, 4, 4, 7, 4, 4, 4, 5, 5, 4, 4, 5, 3, 5, 4, 3, 3, 3, 5, 3, 4, 3, 4, 3, 3, 10, 3, 2, 4, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 3, 3, 2, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 3, 3, 5, 2, 3, 4, 5, 4, 3, 2, 6, 7, 5, 9, 3, 8, 3, 4, 5, 18, 18 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 6, 3, 6, 4, 3, 7, 5, 3, 8, 4, 6, 6, 3, 4, 3, 6, 3, 3, 7, 3, 6, 3, 3, 6, 3, 5, 2, 6, 2, 3, 4, 3, 5, 3, 8, 2, 3, 6, 3, 6, 2, 3, 4, 2, 5, 3, 3, 2, 3, 3, 5, 3, 8, 2, 3, 3, 3, 5, 2, 3, 5, 4, 2, 6, 6, 8, 10, 4, 4, 3, 5, 5, 3, 4, 5, 4, 5, 4, 4, 8, 4, 3, 4, 5, 3, 3, 4, 4, 3, 5, 3, 4, 3, 4, 2, 5, 2, 3, 2, 4, 2, 3, 2, 2, 2, 5, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 3, 2, 3, 5, 6, 5, 4, 2, 4, 2, 4, 3, 3, 4, 2, 4, 6, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 3, 3, 4, 5, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 3, 4, 2, 4, 4, 3, 3, 3, 5, 4, 3, 3, 3, 4, 4, 4, 2, 4, 3, 4, 4, 3, 4, 4, 3, 5, 4, 5, 3, 5, 5, 3, 4, 6, 5, 5, 3, 3, 5, 5, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 5, 3, 2, 3, 4, 2, 3, 4, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 4, 2, 2, 3, 3, 2, 3, 2, 4, 3, 2, 4, 3, 3, 3, 5, 4, 3, 3, 3, 4, 4, 3, 3, 6, 3, 4, 3, 5, 3, 4, 5, 3, 3, 4, 4, 3, 8, 2, 5, 2, 3, 3, 5, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3, 5, 3, 5, 2, 4, 3, 3, 3, 3, 4, 4, 4, 5, 2, 5, 5, 5, 4, 4, 4, 7, 4, 4, 4, 5, 5, 4, 4, 5, 3, 5, 4, 3, 3, 3, 5, 3, 4, 3, 4, 3, 3, 10, 3, 2, 4, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 3, 3, 2, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 3, 3, 5, 2, 3, 4, 5, 4, 3, 2, 6, 7, 5, 9, 3, 8, 3, 4, 5, 18, 18 ], "output": { "2. Local Maxima": { "frames": [ [ 394, 395 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 6, 3, 6, 4, 3, 7, 5, 3, 8, 4, 6, 6, 3, 4, 3, 6, 3, 3, 7, 3, 6, 3, 3, 6, 3, 5, 2, 6, 2, 3, 4, 3, 5, 3, 8, 2, 3, 6, 3, 6, 2, 3, 4, 2, 5, 3, 3, 2, 3, 3, 5, 3, 8, 2, 3, 3, 3, 5, 2, 3, 5, 4, 2, 6, 6, 8, 10, 4, 4, 3, 5, 5, 3, 4, 5, 4, 5, 4, 4, 8, 4, 3, 4, 5, 3, 3, 4, 4, 3, 5, 3, 4, 3, 4, 2, 5, 2, 3, 2, 4, 2, 3, 2, 2, 2, 5, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 3, 2, 3, 5, 6, 5, 4, 2, 4, 2, 4, 3, 3, 4, 2, 4, 6, 4, 3, 4, 4, 4, 4, 4, 5, 4, 4, 3, 3, 4, 5, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 3, 4, 2, 4, 4, 3, 3, 3, 5, 4, 3, 3, 3, 4, 4, 4, 2, 4, 3, 4, 4, 3, 4, 4, 3, 5, 4, 5, 3, 5, 5, 3, 4, 6, 5, 5, 3, 3, 5, 5, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 4, 3, 5, 3, 2, 3, 4, 2, 3, 4, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 4, 2, 2, 3, 3, 2, 3, 2, 4, 3, 2, 4, 3, 3, 3, 5, 4, 3, 3, 3, 4, 4, 3, 3, 6, 3, 4, 3, 5, 3, 4, 5, 3, 3, 4, 4, 3, 8, 2, 5, 2, 3, 3, 5, 3, 3, 3, 3, 2, 3, 3, 2, 3, 2, 2, 3, 3, 2, 3, 5, 3, 5, 2, 4, 3, 3, 3, 3, 4, 4, 4, 5, 2, 5, 5, 5, 4, 4, 4, 7, 4, 4, 4, 5, 5, 4, 4, 5, 3, 5, 4, 3, 3, 3, 5, 3, 4, 3, 4, 3, 3, 10, 3, 2, 4, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 3, 3, 2, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 3, 3, 5, 2, 3, 4, 5, 4, 3, 2, 6, 7, 5, 9, 3, 8, 3, 4, 5, 18, 18 ], "output": { "3. Local Minima": { "frames": [ [ 0, 1 ], [ 3, 3 ], [ 5, 6 ], [ 8, 9 ], [ 11, 11 ], [ 14, 16 ], [ 18, 19 ], [ 21, 21 ], [ 23, 24 ], [ 26, 28 ], [ 30, 35 ], [ 37, 38 ], [ 40, 40 ], [ 42, 53 ], [ 55, 64 ], [ 69, 80 ], [ 82, 121 ], [ 123, 133 ], [ 135, 198 ], [ 200, 265 ], [ 267, 278 ], [ 280, 320 ], [ 322, 342 ], [ 344, 384 ], [ 387, 387 ], [ 389, 389 ], [ 391, 393 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 3, 2, 3, 4, 3, 2, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 2, 3, 5, 3, 2, 3, 4, 3, 2, 2, 4, 3, 3, 3, 3, 2, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 3, 2, 3, 4, 3, 2, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 2, 3, 5, 3, 2, 3, 4, 3, 2, 2, 4, 3, 3, 3, 3, 2, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 123, 123 ], [ 280, 280 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 3, 2, 3, 4, 3, 2, 2, 3, 4, 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 2, 3, 5, 3, 2, 3, 4, 3, 2, 2, 4, 3, 3, 3, 3, 2, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 0, 7 ], [ 10, 17 ], [ 19, 31 ], [ 33, 43 ], [ 45, 46 ], [ 49, 49 ], [ 73, 74 ], [ 82, 82 ], [ 85, 88 ], [ 91, 114 ], [ 116, 122 ], [ 124, 152 ], [ 155, 157 ], [ 161, 161 ], [ 188, 188 ], [ 192, 193 ], [ 196, 196 ], [ 198, 199 ], [ 203, 203 ], [ 206, 212 ], [ 214, 240 ], [ 242, 246 ], [ 248, 250 ], [ 253, 257 ], [ 260, 261 ], [ 265, 266 ], [ 271, 271 ], [ 278, 278 ], [ 282, 282 ], [ 286, 287 ], [ 293, 293 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 5, 5, 6, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 6, 6, 5, 5, 7, 6, 5, 6, 6, 5, 7, 6, 6, 7, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 7, 6, 7, 5, 9, 9, 6, 6, 7, 8, 8, 8, 6, 7, 9, 7, 8, 8, 7, 8, 8, 9, 8, 7, 7, 8, 9, 8, 9, 8, 7, 7, 11, 9, 8, 12, 14, 7, 8, 9, 8, 8, 8, 18, 14, 8, 9, 10, 12, 9, 7, 9, 10, 9, 9, 11, 9, 9, 10, 8, 7, 9, 10, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 10, 12, 5, 6, 7, 10, 11, 5, 5, 7, 6, 6, 5, 5, 7, 5, 10, 6, 5, 7, 5, 7, 6, 32, 38, 6, 7, 13, 27, 9, 5, 8, 9, 7, 8, 9, 9, 11, 10, 9, 8, 9, 7, 8, 9, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 6, 6, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 9, 11, 34, 23, 5, 8, 11, 21, 23, 22, 12, 13, 11, 8, 16, 15, 9, 11, 17, 8, 8, 7, 7, 7, 7, 10, 5, 6, 6, 6, 8, 7, 5, 6, 8, 7, 7, 6, 7, 7, 7, 7, 6, 6, 9, 6, 6, 7, 7, 6, 7, 7, 5, 6, 6, 7, 8, 7, 5, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 7, 4, 8, 6, 7, 7, 7, 6, 6, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7, 7, 5, 6, 7, 7, 7, 7, 5, 6, 6, 6, 6, 7, 6, 5, 6, 6, 6, 6, 5, 5, 6, 7, 6, 6, 6, 6, 5, 6, 6, 7, 6, 5, 5, 7, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 5, 5, 6, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 6, 6, 5, 5, 7, 6, 5, 6, 6, 5, 7, 6, 6, 7, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 7, 6, 7, 5, 9, 9, 6, 6, 7, 8, 8, 8, 6, 7, 9, 7, 8, 8, 7, 8, 8, 9, 8, 7, 7, 8, 9, 8, 9, 8, 7, 7, 11, 9, 8, 12, 14, 7, 8, 9, 8, 8, 8, 18, 14, 8, 9, 10, 12, 9, 7, 9, 10, 9, 9, 11, 9, 9, 10, 8, 7, 9, 10, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 10, 12, 5, 6, 7, 10, 11, 5, 5, 7, 6, 6, 5, 5, 7, 5, 10, 6, 5, 7, 5, 7, 6, 32, 38, 6, 7, 13, 27, 9, 5, 8, 9, 7, 8, 9, 9, 11, 10, 9, 8, 9, 7, 8, 9, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 6, 6, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 9, 11, 34, 23, 5, 8, 11, 21, 23, 22, 12, 13, 11, 8, 16, 15, 9, 11, 17, 8, 8, 7, 7, 7, 7, 10, 5, 6, 6, 6, 8, 7, 5, 6, 8, 7, 7, 6, 7, 7, 7, 7, 6, 6, 9, 6, 6, 7, 7, 6, 7, 7, 5, 6, 6, 7, 8, 7, 5, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 7, 4, 8, 6, 7, 7, 7, 6, 6, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7, 7, 5, 6, 7, 7, 7, 7, 5, 6, 6, 6, 6, 7, 6, 5, 6, 6, 6, 6, 5, 5, 6, 7, 6, 6, 6, 6, 5, 6, 6, 7, 6, 5, 5, 7, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 184, 185 ], [ 256, 256 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 5, 5, 6, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 6, 6, 5, 5, 7, 6, 5, 6, 6, 5, 7, 6, 6, 7, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 7, 6, 7, 5, 9, 9, 6, 6, 7, 8, 8, 8, 6, 7, 9, 7, 8, 8, 7, 8, 8, 9, 8, 7, 7, 8, 9, 8, 9, 8, 7, 7, 11, 9, 8, 12, 14, 7, 8, 9, 8, 8, 8, 18, 14, 8, 9, 10, 12, 9, 7, 9, 10, 9, 9, 11, 9, 9, 10, 8, 7, 9, 10, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 10, 12, 5, 6, 7, 10, 11, 5, 5, 7, 6, 6, 5, 5, 7, 5, 10, 6, 5, 7, 5, 7, 6, 32, 38, 6, 7, 13, 27, 9, 5, 8, 9, 7, 8, 9, 9, 11, 10, 9, 8, 9, 7, 8, 9, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 6, 6, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 9, 11, 34, 23, 5, 8, 11, 21, 23, 22, 12, 13, 11, 8, 16, 15, 9, 11, 17, 8, 8, 7, 7, 7, 7, 10, 5, 6, 6, 6, 8, 7, 5, 6, 8, 7, 7, 6, 7, 7, 7, 7, 6, 6, 9, 6, 6, 7, 7, 6, 7, 7, 5, 6, 6, 7, 8, 7, 5, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 7, 4, 8, 6, 7, 7, 7, 6, 6, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7, 7, 5, 6, 7, 7, 7, 7, 5, 6, 6, 6, 6, 7, 6, 5, 6, 6, 6, 6, 5, 5, 6, 7, 6, 6, 6, 6, 5, 6, 6, 7, 6, 5, 5, 7, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 105 ], [ 107, 108 ], [ 111, 116 ], [ 119, 121 ], [ 123, 128 ], [ 130, 161 ], [ 163, 166 ], [ 168, 183 ], [ 186, 187 ], [ 190, 197 ], [ 199, 254 ], [ 258, 259 ], [ 267, 267 ], [ 270, 270 ], [ 273, 399 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 5, 5, 5, 7, 8, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 5, 6, 7, 7, 6, 6, 5, 8, 8, 6, 7, 6, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 6, 7, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 6, 7, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 7, 6, 7, 7, 6, 6, 7, 7, 7, 6, 7, 6, 6, 7, 6, 7, 7, 6, 7, 6, 6, 7, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 6, 6, 7, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 6, 7, 6, 7, 6, 7, 7, 6, 7, 6, 6, 6, 7, 7, 6, 7, 7, 6, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 7, 6, 7, 6, 6, 7, 7, 6, 6, 6, 7, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 7, 5, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 5, 7, 7, 6, 5, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 5, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 5, 9, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 8, 5, 7, 8, 7, 6, 5, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 7, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 5, 5, 5, 7, 8, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 5, 6, 7, 7, 6, 6, 5, 8, 8, 6, 7, 6, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 6, 7, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 6, 7, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 7, 6, 7, 7, 6, 6, 7, 7, 7, 6, 7, 6, 6, 7, 6, 7, 7, 6, 7, 6, 6, 7, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 6, 6, 7, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 6, 7, 6, 7, 6, 7, 7, 6, 7, 6, 6, 6, 7, 7, 6, 7, 7, 6, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 7, 6, 7, 6, 6, 7, 7, 6, 6, 6, 7, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 7, 5, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 5, 7, 7, 6, 5, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 5, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 5, 9, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 8, 5, 7, 8, 7, 6, 5, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 7, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 20, 20 ], [ 99, 100 ], [ 388, 388 ], [ 404, 404 ], [ 407, 407 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 5, 5, 5, 7, 8, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 5, 6, 7, 7, 6, 6, 5, 8, 8, 6, 7, 6, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 6, 7, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 6, 7, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 7, 6, 7, 7, 6, 6, 7, 7, 7, 6, 7, 6, 6, 7, 6, 7, 7, 6, 7, 6, 6, 7, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 6, 6, 7, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 6, 7, 6, 7, 6, 7, 7, 6, 7, 6, 6, 6, 7, 7, 6, 7, 7, 6, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 6, 7, 6, 7, 6, 6, 7, 7, 6, 6, 6, 7, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 7, 5, 6, 7, 6, 6, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 5, 7, 7, 6, 5, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 5, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 5, 9, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 8, 5, 7, 8, 7, 6, 5, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 7, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 16, 18 ], [ 36, 37 ], [ 53, 53 ], [ 66, 66 ], [ 92, 92 ], [ 98, 98 ], [ 329, 329 ], [ 348, 348 ], [ 352, 352 ], [ 364, 364 ], [ 387, 387 ], [ 399, 399 ], [ 403, 403 ], [ 405, 405 ], [ 410, 410 ], [ 436, 436 ], [ 443, 443 ], [ 448, 448 ], [ 455, 455 ], [ 459, 460 ], [ 464, 464 ], [ 473, 474 ], [ 484, 484 ], [ 511, 512 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 6, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 5, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 4, 5, 3, 3, 5, 6, 4, 3, 4, 6, 5, 4, 4, 5, 4, 4, 4, 4, 5, 5, 4, 5, 5, 4, 5, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 5, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 4, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 4, 4, 3, 3, 5, 4, 3, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 3, 5, 5, 4, 5, 4, 4, 4, 5, 4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 2, 3, 3, 3, 3, 4, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 5, 4, 5, 4, 3, 4, 4, 4, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 2, 4, 4, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 6, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 5, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 4, 5, 3, 3, 5, 6, 4, 3, 4, 6, 5, 4, 4, 5, 4, 4, 4, 4, 5, 5, 4, 5, 5, 4, 5, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 5, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 4, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 4, 4, 3, 3, 5, 4, 3, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 3, 5, 5, 4, 5, 4, 4, 4, 5, 4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 2, 3, 3, 3, 3, 4, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 5, 4, 5, 4, 3, 4, 4, 4, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 2, 4, 4, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 18, 19 ], [ 22, 23 ], [ 26, 26 ], [ 59, 59 ], [ 72, 72 ], [ 75, 76 ], [ 80, 81 ], [ 84, 84 ], [ 89, 90 ], [ 92, 93 ], [ 95, 95 ], [ 143, 143 ], [ 149, 150 ], [ 153, 154 ], [ 156, 157 ], [ 206, 206 ], [ 209, 209 ], [ 213, 213 ], [ 217, 217 ], [ 220, 221 ], [ 223, 223 ], [ 227, 227 ], [ 251, 251 ], [ 280, 281 ], [ 284, 285 ], [ 287, 287 ], [ 294, 295 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 6, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 5, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 4, 5, 3, 3, 5, 6, 4, 3, 4, 6, 5, 4, 4, 5, 4, 4, 4, 4, 5, 5, 4, 5, 5, 4, 5, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 5, 5, 4, 4, 3, 4, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 4, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 4, 4, 4, 3, 3, 5, 4, 3, 5, 4, 4, 4, 5, 4, 4, 4, 5, 4, 3, 5, 5, 4, 5, 4, 4, 4, 5, 4, 3, 4, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 2, 3, 3, 3, 3, 4, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 5, 5, 4, 5, 4, 3, 4, 4, 4, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 3, 2, 4, 4, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3 ], "output": { "3. Local Minima": { "frames": [ [ 0, 2 ], [ 41, 41 ], [ 45, 45 ], [ 50, 50 ], [ 54, 54 ], [ 58, 58 ], [ 112, 114 ], [ 117, 117 ], [ 120, 120 ], [ 125, 125 ], [ 130, 130 ], [ 176, 176 ], [ 180, 180 ], [ 184, 184 ], [ 187, 187 ], [ 194, 194 ], [ 252, 252 ], [ 258, 259 ], [ 328, 328 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 14, 14, 9, 12, 4, 5, 4, 4, 5, 4, 4, 3, 3, 3, 4, 4, 2, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 1, 4, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 3, 4, 2, 3, 5, 3, 4, 5, 1, 5, 4, 3, 3, 3, 2, 1, 9, 1, 1, 9, 3, 1, 1, 5, 6, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 5, 5, 3, 1, 9, 4, 3, 4, 4, 2, 7, 2, 3, 4, 4, 2, 4, 1, 4, 4, 3, 1, 4, 2, 3, 3, 3, 3, 2, 2, 4, 3, 2, 1, 3, 4, 1, 1, 4, 1, 2, 2, 2, 2, 3, 3, 1, 2, 3, 3, 3, 3, 4, 4, 5, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 7, 2, 4, 5, 4, 5, 1, 6, 4, 4, 3, 3, 3, 3 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 14, 14, 9, 12, 4, 5, 4, 4, 5, 4, 4, 3, 3, 3, 4, 4, 2, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 1, 4, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 3, 4, 2, 3, 5, 3, 4, 5, 1, 5, 4, 3, 3, 3, 2, 1, 9, 1, 1, 9, 3, 1, 1, 5, 6, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 5, 5, 3, 1, 9, 4, 3, 4, 4, 2, 7, 2, 3, 4, 4, 2, 4, 1, 4, 4, 3, 1, 4, 2, 3, 3, 3, 3, 2, 2, 4, 3, 2, 1, 3, 4, 1, 1, 4, 1, 2, 2, 2, 2, 3, 3, 1, 2, 3, 3, 3, 3, 4, 4, 5, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 7, 2, 4, 5, 4, 5, 1, 6, 4, 4, 3, 3, 3, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1 ], [ 3, 3 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 14, 14, 9, 12, 4, 5, 4, 4, 5, 4, 4, 3, 3, 3, 4, 4, 2, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 1, 4, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 3, 4, 2, 3, 5, 3, 4, 5, 1, 5, 4, 3, 3, 3, 2, 1, 9, 1, 1, 9, 3, 1, 1, 5, 6, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 5, 5, 3, 1, 9, 4, 3, 4, 4, 2, 7, 2, 3, 4, 4, 2, 4, 1, 4, 4, 3, 1, 4, 2, 3, 3, 3, 3, 2, 2, 4, 3, 2, 1, 3, 4, 1, 1, 4, 1, 2, 2, 2, 2, 3, 3, 1, 2, 3, 3, 3, 3, 4, 4, 5, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 7, 2, 4, 5, 4, 5, 1, 6, 4, 4, 3, 3, 3, 3 ], "output": { "3. Local Minima": { "frames": [ [ 11, 13 ], [ 16, 22 ], [ 24, 27 ], [ 29, 43 ], [ 45, 45 ], [ 47, 48 ], [ 50, 50 ], [ 53, 53 ], [ 56, 60 ], [ 62, 63 ], [ 65, 67 ], [ 77, 77 ], [ 80, 85 ], [ 88, 89 ], [ 92, 92 ], [ 95, 95 ], [ 97, 98 ], [ 101, 101 ], [ 103, 103 ], [ 106, 107 ], [ 109, 115 ], [ 117, 120 ], [ 122, 123 ], [ 125, 137 ], [ 141, 141 ], [ 144, 145 ], [ 148, 150 ], [ 155, 155 ], [ 160, 160 ], [ 164, 167 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 9, 9, 11, 13, 13, 10, 9, 12, 10, 10, 9, 10, 10, 9, 16, 9, 9, 10, 9, 11, 10, 10, 11, 10, 10, 10, 10, 16, 18, 19, 16, 10, 18, 23, 18, 24, 25, 13, 16, 27, 28, 12, 21, 15, 10, 16, 10, 11, 10, 13, 12, 10, 10, 10, 10, 11, 10, 10, 12, 16, 19, 14, 15, 17, 20, 20, 16, 14, 10, 13, 24, 13, 11, 11, 11, 10, 9, 9, 9, 7, 8, 6, 5, 6, 14, 5, 4, 5, 7, 4, 5, 4, 6, 4, 3, 3, 3, 3, 4, 5, 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 6, 6, 8, 7, 4, 5, 6, 6, 6, 9, 11, 11, 12, 9, 9, 13, 13, 11, 12, 11, 9, 12, 11, 9, 10, 11, 8, 9, 11, 9, 10, 10, 9, 9, 10, 9, 9, 9, 12, 11, 21, 15, 14, 9, 35, 13, 37, 18, 19, 21, 21, 19, 9, 21, 12, 9, 9, 11, 9, 9, 10, 10, 10, 13, 19, 10, 18, 17, 22, 15, 13, 15, 13, 13, 12, 13, 12, 11, 10, 11, 10, 9, 9, 8, 7, 7, 6, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 3, 3, 3, 4, 4, 4, 2, 4, 4, 3, 5, 6, 5, 5, 5, 4, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 7, 5, 6, 10, 9, 5, 7, 9, 8, 8, 6, 11, 11, 10, 10, 12, 13, 13, 11, 10, 13, 12, 9, 10, 11, 10, 10, 12, 10, 10, 10, 9, 9, 11, 9, 9, 10, 13, 9, 10, 9, 11, 10, 10, 12, 20, 19, 15, 13, 21, 22, 20, 25, 29, 20, 17, 23, 22, 11, 10, 10, 12, 11, 11, 10, 12, 18, 20, 10, 14, 11, 13, 17, 21, 19, 17, 23, 15, 12, 16, 16, 15, 15, 13, 11, 13, 14, 10, 10, 10, 8, 9, 9, 8, 6, 6, 6, 9, 6, 5, 5, 6, 5, 5, 6, 4, 4, 4, 5, 5, 4, 4, 4, 5, 13, 4, 4, 3, 5, 7, 6, 6, 8, 4, 4, 5, 5, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 4, 4, 4, 2, 2, 3, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 9, 9, 11, 13, 13, 10, 9, 12, 10, 10, 9, 10, 10, 9, 16, 9, 9, 10, 9, 11, 10, 10, 11, 10, 10, 10, 10, 16, 18, 19, 16, 10, 18, 23, 18, 24, 25, 13, 16, 27, 28, 12, 21, 15, 10, 16, 10, 11, 10, 13, 12, 10, 10, 10, 10, 11, 10, 10, 12, 16, 19, 14, 15, 17, 20, 20, 16, 14, 10, 13, 24, 13, 11, 11, 11, 10, 9, 9, 9, 7, 8, 6, 5, 6, 14, 5, 4, 5, 7, 4, 5, 4, 6, 4, 3, 3, 3, 3, 4, 5, 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 6, 6, 8, 7, 4, 5, 6, 6, 6, 9, 11, 11, 12, 9, 9, 13, 13, 11, 12, 11, 9, 12, 11, 9, 10, 11, 8, 9, 11, 9, 10, 10, 9, 9, 10, 9, 9, 9, 12, 11, 21, 15, 14, 9, 35, 13, 37, 18, 19, 21, 21, 19, 9, 21, 12, 9, 9, 11, 9, 9, 10, 10, 10, 13, 19, 10, 18, 17, 22, 15, 13, 15, 13, 13, 12, 13, 12, 11, 10, 11, 10, 9, 9, 8, 7, 7, 6, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 3, 3, 3, 4, 4, 4, 2, 4, 4, 3, 5, 6, 5, 5, 5, 4, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 7, 5, 6, 10, 9, 5, 7, 9, 8, 8, 6, 11, 11, 10, 10, 12, 13, 13, 11, 10, 13, 12, 9, 10, 11, 10, 10, 12, 10, 10, 10, 9, 9, 11, 9, 9, 10, 13, 9, 10, 9, 11, 10, 10, 12, 20, 19, 15, 13, 21, 22, 20, 25, 29, 20, 17, 23, 22, 11, 10, 10, 12, 11, 11, 10, 12, 18, 20, 10, 14, 11, 13, 17, 21, 19, 17, 23, 15, 12, 16, 16, 15, 15, 13, 11, 13, 14, 10, 10, 10, 8, 9, 9, 8, 6, 6, 6, 9, 6, 5, 5, 6, 5, 5, 6, 4, 4, 4, 5, 5, 4, 4, 4, 5, 13, 4, 4, 3, 5, 7, 6, 6, 8, 4, 4, 5, 5, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 4, 4, 4, 2, 2, 3, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 173, 173 ], [ 175, 175 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 9, 9, 11, 13, 13, 10, 9, 12, 10, 10, 9, 10, 10, 9, 16, 9, 9, 10, 9, 11, 10, 10, 11, 10, 10, 10, 10, 16, 18, 19, 16, 10, 18, 23, 18, 24, 25, 13, 16, 27, 28, 12, 21, 15, 10, 16, 10, 11, 10, 13, 12, 10, 10, 10, 10, 11, 10, 10, 12, 16, 19, 14, 15, 17, 20, 20, 16, 14, 10, 13, 24, 13, 11, 11, 11, 10, 9, 9, 9, 7, 8, 6, 5, 6, 14, 5, 4, 5, 7, 4, 5, 4, 6, 4, 3, 3, 3, 3, 4, 5, 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 6, 6, 8, 7, 4, 5, 6, 6, 6, 9, 11, 11, 12, 9, 9, 13, 13, 11, 12, 11, 9, 12, 11, 9, 10, 11, 8, 9, 11, 9, 10, 10, 9, 9, 10, 9, 9, 9, 12, 11, 21, 15, 14, 9, 35, 13, 37, 18, 19, 21, 21, 19, 9, 21, 12, 9, 9, 11, 9, 9, 10, 10, 10, 13, 19, 10, 18, 17, 22, 15, 13, 15, 13, 13, 12, 13, 12, 11, 10, 11, 10, 9, 9, 8, 7, 7, 6, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 3, 3, 3, 4, 4, 4, 2, 4, 4, 3, 5, 6, 5, 5, 5, 4, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 7, 5, 6, 10, 9, 5, 7, 9, 8, 8, 6, 11, 11, 10, 10, 12, 13, 13, 11, 10, 13, 12, 9, 10, 11, 10, 10, 12, 10, 10, 10, 9, 9, 11, 9, 9, 10, 13, 9, 10, 9, 11, 10, 10, 12, 20, 19, 15, 13, 21, 22, 20, 25, 29, 20, 17, 23, 22, 11, 10, 10, 12, 11, 11, 10, 12, 18, 20, 10, 14, 11, 13, 17, 21, 19, 17, 23, 15, 12, 16, 16, 15, 15, 13, 11, 13, 14, 10, 10, 10, 8, 9, 9, 8, 6, 6, 6, 9, 6, 5, 5, 6, 5, 5, 6, 4, 4, 4, 5, 5, 4, 4, 4, 5, 13, 4, 4, 3, 5, 7, 6, 6, 8, 4, 4, 5, 5, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 4, 4, 4, 2, 2, 3, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 1 ], [ 6, 6 ], [ 10, 10 ], [ 13, 13 ], [ 15, 16 ], [ 18, 18 ], [ 76, 83 ], [ 85, 138 ], [ 142, 143 ], [ 149, 149 ], [ 152, 152 ], [ 155, 156 ], [ 158, 158 ], [ 161, 162 ], [ 164, 166 ], [ 172, 172 ], [ 181, 181 ], [ 184, 185 ], [ 187, 188 ], [ 210, 258 ], [ 260, 266 ], [ 278, 278 ], [ 287, 288 ], [ 290, 291 ], [ 294, 294 ], [ 296, 296 ], [ 346, 369 ], [ 371, 431 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 2, 2, 4, 4, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 3, 2, 5, 4, 2, 3, 5, 4, 3, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 2, 3, 4, 4, 3, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 6, 5, 3, 4, 4, 4, 4, 3, 4, 6, 4, 3, 4, 6, 5, 4, 3, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 3, 4, 6, 4, 3, 4, 5, 4, 3, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 5, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 5, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 2, 2, 4, 4, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 3, 2, 5, 4, 2, 3, 5, 4, 3, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 2, 3, 4, 4, 3, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 6, 5, 3, 4, 4, 4, 4, 3, 4, 6, 4, 3, 4, 6, 5, 4, 3, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 3, 4, 6, 4, 3, 4, 5, 4, 3, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 5, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 5, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 218, 218 ], [ 222, 222 ], [ 533, 533 ], [ 539, 539 ], [ 551, 552 ], [ 566, 566 ], [ 573, 573 ], [ 577, 577 ], [ 585, 586 ], [ 594, 594 ], [ 598, 599 ], [ 603, 603 ], [ 609, 609 ], [ 615, 615 ], [ 618, 618 ], [ 622, 622 ], [ 625, 626 ], [ 629, 629 ], [ 639, 639 ], [ 650, 650 ], [ 737, 738 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 2, 2, 4, 4, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 3, 4, 3, 2, 5, 4, 2, 3, 5, 4, 3, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 2, 3, 4, 4, 3, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 4, 5, 4, 4, 4, 4, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 6, 5, 3, 4, 4, 4, 4, 3, 4, 6, 4, 3, 4, 6, 5, 4, 3, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 3, 4, 6, 4, 3, 4, 5, 4, 3, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 5, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 5, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 ], "output": { "3. Local Minima": { "frames": [ [ 25, 25 ], [ 33, 33 ], [ 157, 159 ], [ 164, 164 ], [ 217, 217 ], [ 220, 220 ], [ 415, 415 ], [ 784, 784 ], [ 817, 817 ], [ 1006, 1006 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 6, 6, 4, 5, 7, 6, 5, 6, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 4, 6, 5, 5, 6, 5, 5, 6, 6, 6, 5, 4, 4, 8, 7, 4, 7, 5, 6, 7, 5, 4, 7, 7, 5, 5, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 4, 5, 6, 5, 6, 5, 5, 5, 5, 6, 6, 5, 7, 8, 6, 5, 7, 7, 6, 6, 6, 7, 7, 6, 6, 6, 7, 6, 6, 6, 7, 7, 5, 6, 6, 5, 5, 5, 6, 7, 5, 5, 9, 7, 6, 7, 7, 6, 6, 8, 7, 5, 6, 8, 7, 8, 7, 6, 10, 8, 6, 8, 7, 8, 14, 5, 6, 8, 9, 9, 8, 8, 7, 10, 9, 8, 8, 10, 9, 8, 7, 8, 10, 10, 10, 11, 10, 8, 9, 12, 13, 7, 12, 10, 7, 11, 21, 23, 11, 12, 13, 11, 10, 9, 13, 13, 11, 11, 11, 11, 12, 13, 11, 11, 10, 10, 14, 13, 15, 11, 9, 13, 15, 12, 12, 13, 12, 12, 11, 12, 11, 12, 12, 12, 12, 13, 12, 9, 11, 13, 14, 11, 11, 10, 10, 14, 13, 10, 12, 11, 12, 12, 12, 12, 12, 11, 10, 13, 12, 12, 11, 11, 11, 10, 10, 13, 12, 10, 11, 15, 12, 10, 12, 12, 12, 11, 11, 11, 9, 20, 12, 13, 12, 10, 9, 12, 10, 13, 10, 10, 11, 10, 10, 11, 10, 11, 12, 10, 9, 9, 10, 10, 11, 10, 7, 8, 10, 9, 12, 10, 7, 8, 10, 8, 9, 10, 10, 7, 7, 9, 8, 8, 9, 7, 7, 10, 7, 6, 9, 27, 16, 6, 9, 9, 8, 7, 7, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7, 8, 9, 10, 10, 5, 7, 8, 5, 10, 8, 7, 9, 8, 7, 6, 6, 9, 9, 6, 6, 8, 7, 6, 6, 7, 7, 7, 6, 6, 6, 6, 5, 7, 9, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 6, 5, 8, 6, 6, 6, 7, 6, 5, 6, 7, 7, 6, 6, 5, 7, 7 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 6, 6, 4, 5, 7, 6, 5, 6, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 4, 6, 5, 5, 6, 5, 5, 6, 6, 6, 5, 4, 4, 8, 7, 4, 7, 5, 6, 7, 5, 4, 7, 7, 5, 5, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 4, 5, 6, 5, 6, 5, 5, 5, 5, 6, 6, 5, 7, 8, 6, 5, 7, 7, 6, 6, 6, 7, 7, 6, 6, 6, 7, 6, 6, 6, 7, 7, 5, 6, 6, 5, 5, 5, 6, 7, 5, 5, 9, 7, 6, 7, 7, 6, 6, 8, 7, 5, 6, 8, 7, 8, 7, 6, 10, 8, 6, 8, 7, 8, 14, 5, 6, 8, 9, 9, 8, 8, 7, 10, 9, 8, 8, 10, 9, 8, 7, 8, 10, 10, 10, 11, 10, 8, 9, 12, 13, 7, 12, 10, 7, 11, 21, 23, 11, 12, 13, 11, 10, 9, 13, 13, 11, 11, 11, 11, 12, 13, 11, 11, 10, 10, 14, 13, 15, 11, 9, 13, 15, 12, 12, 13, 12, 12, 11, 12, 11, 12, 12, 12, 12, 13, 12, 9, 11, 13, 14, 11, 11, 10, 10, 14, 13, 10, 12, 11, 12, 12, 12, 12, 12, 11, 10, 13, 12, 12, 11, 11, 11, 10, 10, 13, 12, 10, 11, 15, 12, 10, 12, 12, 12, 11, 11, 11, 9, 20, 12, 13, 12, 10, 9, 12, 10, 13, 10, 10, 11, 10, 10, 11, 10, 11, 12, 10, 9, 9, 10, 10, 11, 10, 7, 8, 10, 9, 12, 10, 7, 8, 10, 8, 9, 10, 10, 7, 7, 9, 8, 8, 9, 7, 7, 10, 7, 6, 9, 27, 16, 6, 9, 9, 8, 7, 7, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7, 8, 9, 10, 10, 5, 7, 8, 5, 10, 8, 7, 9, 8, 7, 6, 6, 9, 9, 6, 6, 8, 7, 6, 6, 7, 7, 7, 6, 6, 6, 6, 5, 7, 9, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 6, 5, 8, 6, 6, 6, 7, 6, 5, 6, 7, 7, 6, 6, 5, 7, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 264, 264 ], [ 396, 396 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 6, 6, 4, 5, 7, 6, 5, 6, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 4, 5, 5, 6, 5, 5, 5, 6, 5, 4, 6, 5, 5, 6, 5, 5, 6, 6, 6, 5, 4, 4, 8, 7, 4, 7, 5, 6, 7, 5, 4, 7, 7, 5, 5, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 4, 5, 6, 5, 6, 5, 5, 5, 5, 6, 6, 5, 7, 8, 6, 5, 7, 7, 6, 6, 6, 7, 7, 6, 6, 6, 7, 6, 6, 6, 7, 7, 5, 6, 6, 5, 5, 5, 6, 7, 5, 5, 9, 7, 6, 7, 7, 6, 6, 8, 7, 5, 6, 8, 7, 8, 7, 6, 10, 8, 6, 8, 7, 8, 14, 5, 6, 8, 9, 9, 8, 8, 7, 10, 9, 8, 8, 10, 9, 8, 7, 8, 10, 10, 10, 11, 10, 8, 9, 12, 13, 7, 12, 10, 7, 11, 21, 23, 11, 12, 13, 11, 10, 9, 13, 13, 11, 11, 11, 11, 12, 13, 11, 11, 10, 10, 14, 13, 15, 11, 9, 13, 15, 12, 12, 13, 12, 12, 11, 12, 11, 12, 12, 12, 12, 13, 12, 9, 11, 13, 14, 11, 11, 10, 10, 14, 13, 10, 12, 11, 12, 12, 12, 12, 12, 11, 10, 13, 12, 12, 11, 11, 11, 10, 10, 13, 12, 10, 11, 15, 12, 10, 12, 12, 12, 11, 11, 11, 9, 20, 12, 13, 12, 10, 9, 12, 10, 13, 10, 10, 11, 10, 10, 11, 10, 11, 12, 10, 9, 9, 10, 10, 11, 10, 7, 8, 10, 9, 12, 10, 7, 8, 10, 8, 9, 10, 10, 7, 7, 9, 8, 8, 9, 7, 7, 10, 7, 6, 9, 27, 16, 6, 9, 9, 8, 7, 7, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7, 8, 9, 10, 10, 5, 7, 8, 5, 10, 8, 7, 9, 8, 7, 6, 6, 9, 9, 6, 6, 8, 7, 6, 6, 7, 7, 7, 6, 6, 6, 6, 5, 7, 9, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 6, 5, 8, 6, 6, 6, 7, 6, 5, 6, 7, 7, 6, 6, 5, 7, 7 ], "output": { "3. Local Minima": { "frames": [ [ 0, 208 ], [ 210, 224 ], [ 226, 230 ], [ 232, 234 ], [ 237, 239 ], [ 242, 243 ], [ 246, 248 ], [ 254, 254 ], [ 258, 258 ], [ 261, 261 ], [ 371, 372 ], [ 377, 378 ], [ 380, 380 ], [ 384, 385 ], [ 387, 388 ], [ 390, 391 ], [ 393, 394 ], [ 398, 398 ], [ 401, 414 ], [ 418, 421 ], [ 423, 424 ], [ 426, 429 ], [ 432, 446 ], [ 448, 474 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 9, 9, 9, 9, 9, 8, 10, 8, 8, 12, 8, 9, 7, 10, 10, 8, 10, 8, 9, 10, 9, 9, 10, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 8, 10, 9, 8, 9, 9, 9, 10, 9, 9, 9, 9, 10, 8, 10, 8, 9, 9, 8, 9, 8, 8, 10, 8, 9, 7, 8, 10, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 9, 8, 8, 15, 6, 5, 11, 10, 6, 8, 10, 9, 6, 8, 9, 8, 7, 7, 8, 4, 15, 12, 18, 14, 12, 15, 8, 6, 12, 6, 12, 18, 19, 12, 4, 11, 14, 4, 16, 16, 11, 15, 14, 14, 14, 15, 14, 9, 10, 15, 15, 14, 10, 13, 18, 13, 12, 12, 12, 13, 14, 14, 9, 11, 17, 13, 12, 13, 11, 13, 14, 11, 13, 13, 11, 13, 11, 13, 13, 12, 10, 12, 16, 14, 11, 12, 13, 11, 12, 13, 10, 11, 14, 11, 9, 11, 14, 10, 8, 10, 14, 11, 8, 12, 11, 6, 13, 12, 10, 10, 10, 9, 10, 11, 10, 11, 10, 9, 10, 11, 8, 7, 13, 14, 2, 9, 15, 8, 6, 11, 5, 3, 16, 12, 10, 9, 7, 8, 10, 8, 8, 10, 10, 8, 8, 9, 10, 11, 9, 9, 11, 12, 10, 10, 11, 10, 9, 12, 12, 9, 9, 9, 8, 30, 16, 12, 7, 15, 9, 10, 10, 10, 11, 9, 8, 7, 7, 11, 10, 7, 10, 9, 7, 8, 7, 7, 8, 7, 8, 7, 7, 6, 6, 7, 7, 5, 6, 5, 5, 6, 5, 4, 6, 6, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 9, 9, 9, 9, 9, 8, 10, 8, 8, 12, 8, 9, 7, 10, 10, 8, 10, 8, 9, 10, 9, 9, 10, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 8, 10, 9, 8, 9, 9, 9, 10, 9, 9, 9, 9, 10, 8, 10, 8, 9, 9, 8, 9, 8, 8, 10, 8, 9, 7, 8, 10, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 9, 8, 8, 15, 6, 5, 11, 10, 6, 8, 10, 9, 6, 8, 9, 8, 7, 7, 8, 4, 15, 12, 18, 14, 12, 15, 8, 6, 12, 6, 12, 18, 19, 12, 4, 11, 14, 4, 16, 16, 11, 15, 14, 14, 14, 15, 14, 9, 10, 15, 15, 14, 10, 13, 18, 13, 12, 12, 12, 13, 14, 14, 9, 11, 17, 13, 12, 13, 11, 13, 14, 11, 13, 13, 11, 13, 11, 13, 13, 12, 10, 12, 16, 14, 11, 12, 13, 11, 12, 13, 10, 11, 14, 11, 9, 11, 14, 10, 8, 10, 14, 11, 8, 12, 11, 6, 13, 12, 10, 10, 10, 9, 10, 11, 10, 11, 10, 9, 10, 11, 8, 7, 13, 14, 2, 9, 15, 8, 6, 11, 5, 3, 16, 12, 10, 9, 7, 8, 10, 8, 8, 10, 10, 8, 8, 9, 10, 11, 9, 9, 11, 12, 10, 10, 11, 10, 9, 12, 12, 9, 9, 9, 8, 30, 16, 12, 7, 15, 9, 10, 10, 10, 11, 9, 8, 7, 7, 11, 10, 7, 10, 9, 7, 8, 7, 7, 8, 7, 8, 7, 7, 6, 6, 7, 7, 5, 6, 5, 5, 6, 5, 4, 6, 6, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 238, 238 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 9, 9, 9, 9, 9, 8, 10, 8, 8, 12, 8, 9, 7, 10, 10, 8, 10, 8, 9, 10, 9, 9, 10, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 8, 10, 9, 8, 9, 9, 9, 10, 9, 9, 9, 9, 10, 8, 10, 8, 9, 9, 8, 9, 8, 8, 10, 8, 9, 7, 8, 10, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 9, 8, 8, 15, 6, 5, 11, 10, 6, 8, 10, 9, 6, 8, 9, 8, 7, 7, 8, 4, 15, 12, 18, 14, 12, 15, 8, 6, 12, 6, 12, 18, 19, 12, 4, 11, 14, 4, 16, 16, 11, 15, 14, 14, 14, 15, 14, 9, 10, 15, 15, 14, 10, 13, 18, 13, 12, 12, 12, 13, 14, 14, 9, 11, 17, 13, 12, 13, 11, 13, 14, 11, 13, 13, 11, 13, 11, 13, 13, 12, 10, 12, 16, 14, 11, 12, 13, 11, 12, 13, 10, 11, 14, 11, 9, 11, 14, 10, 8, 10, 14, 11, 8, 12, 11, 6, 13, 12, 10, 10, 10, 9, 10, 11, 10, 11, 10, 9, 10, 11, 8, 7, 13, 14, 2, 9, 15, 8, 6, 11, 5, 3, 16, 12, 10, 9, 7, 8, 10, 8, 8, 10, 10, 8, 8, 9, 10, 11, 9, 9, 11, 12, 10, 10, 11, 10, 9, 12, 12, 9, 9, 9, 8, 30, 16, 12, 7, 15, 9, 10, 10, 10, 11, 9, 8, 7, 7, 11, 10, 7, 10, 9, 7, 8, 7, 7, 8, 7, 8, 7, 7, 6, 6, 7, 7, 5, 6, 5, 5, 6, 5, 4, 6, 6, 4, 3, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 12, 12 ], [ 61, 61 ], [ 79, 80 ], [ 83, 83 ], [ 87, 87 ], [ 91, 92 ], [ 94, 94 ], [ 102, 102 ], [ 104, 104 ], [ 109, 109 ], [ 112, 112 ], [ 180, 180 ], [ 196, 196 ], [ 199, 199 ], [ 203, 203 ], [ 205, 206 ], [ 211, 211 ], [ 241, 241 ], [ 250, 251 ], [ 254, 254 ], [ 257, 257 ], [ 259, 260 ], [ 262, 262 ], [ 264, 363 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 9, 9, 8, 8, 7, 8, 7, 6, 6, 6, 11, 7, 7, 9, 9, 10, 10, 17, 18, 18, 17, 11, 5, 7, 5, 7, 17, 19, 27, 8, 9, 10, 10, 10, 11, 11, 10, 12, 11, 9, 10, 9, 9, 9, 9, 10, 11, 10, 10, 8, 6, 6, 5, 7, 5, 6, 5, 8, 13, 15, 19, 21, 17, 12, 8, 6, 6, 8, 12, 9, 10, 12, 14, 14, 14, 13, 11, 10, 8, 6, 6, 5, 5, 5, 6, 7, 8, 9, 6, 6, 11, 16, 13, 6, 6, 7, 10, 6, 7, 6, 7, 14, 10, 13, 15, 20, 28, 21, 7, 6, 11, 11, 9, 7, 17, 8, 8, 10, 9, 8, 8, 8, 9, 10, 11, 10, 8, 10, 7, 12, 11, 10, 9, 9, 9, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 9, 11, 11, 9, 9, 8, 6, 7, 8, 9, 9, 7, 5, 5, 6, 11, 4, 14, 13, 11, 23, 17, 13, 12, 6, 9, 12, 10, 15, 11, 9, 11, 10, 10, 8, 7, 8, 8, 7, 8, 7, 7, 7, 3, 7, 9, 8, 6, 6, 7, 7, 6, 9, 7, 7, 7, 7, 9, 6, 9, 6, 9, 5, 12, 7, 11, 8, 7, 8, 7, 8, 9, 8, 9, 7, 12, 6, 10, 8, 8, 9, 9, 8, 10, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 8, 8, 10, 7, 9, 8, 8, 11, 8, 8, 9, 9, 9, 8, 9, 9, 9, 9, 7, 10, 9, 9, 9, 9, 8, 8, 8, 8, 9, 8, 7, 8, 9, 9, 8, 7, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 6, 6 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 9, 9, 8, 8, 7, 8, 7, 6, 6, 6, 11, 7, 7, 9, 9, 10, 10, 17, 18, 18, 17, 11, 5, 7, 5, 7, 17, 19, 27, 8, 9, 10, 10, 10, 11, 11, 10, 12, 11, 9, 10, 9, 9, 9, 9, 10, 11, 10, 10, 8, 6, 6, 5, 7, 5, 6, 5, 8, 13, 15, 19, 21, 17, 12, 8, 6, 6, 8, 12, 9, 10, 12, 14, 14, 14, 13, 11, 10, 8, 6, 6, 5, 5, 5, 6, 7, 8, 9, 6, 6, 11, 16, 13, 6, 6, 7, 10, 6, 7, 6, 7, 14, 10, 13, 15, 20, 28, 21, 7, 6, 11, 11, 9, 7, 17, 8, 8, 10, 9, 8, 8, 8, 9, 10, 11, 10, 8, 10, 7, 12, 11, 10, 9, 9, 9, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 9, 11, 11, 9, 9, 8, 6, 7, 8, 9, 9, 7, 5, 5, 6, 11, 4, 14, 13, 11, 23, 17, 13, 12, 6, 9, 12, 10, 15, 11, 9, 11, 10, 10, 8, 7, 8, 8, 7, 8, 7, 7, 7, 3, 7, 9, 8, 6, 6, 7, 7, 6, 9, 7, 7, 7, 7, 9, 6, 9, 6, 9, 5, 12, 7, 11, 8, 7, 8, 7, 8, 9, 8, 9, 7, 12, 6, 10, 8, 8, 9, 9, 8, 10, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 8, 8, 10, 7, 9, 8, 8, 11, 8, 8, 9, 9, 9, 8, 9, 9, 9, 9, 7, 10, 9, 9, 9, 9, 8, 8, 8, 8, 9, 8, 7, 8, 9, 9, 8, 7, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 6, 6 ], "output": { "2. Local Maxima": { "frames": [ [ 167, 167 ], [ 245, 245 ], [ 313, 313 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 9, 9, 8, 8, 7, 8, 7, 6, 6, 6, 11, 7, 7, 9, 9, 10, 10, 17, 18, 18, 17, 11, 5, 7, 5, 7, 17, 19, 27, 8, 9, 10, 10, 10, 11, 11, 10, 12, 11, 9, 10, 9, 9, 9, 9, 10, 11, 10, 10, 8, 6, 6, 5, 7, 5, 6, 5, 8, 13, 15, 19, 21, 17, 12, 8, 6, 6, 8, 12, 9, 10, 12, 14, 14, 14, 13, 11, 10, 8, 6, 6, 5, 5, 5, 6, 7, 8, 9, 6, 6, 11, 16, 13, 6, 6, 7, 10, 6, 7, 6, 7, 14, 10, 13, 15, 20, 28, 21, 7, 6, 11, 11, 9, 7, 17, 8, 8, 10, 9, 8, 8, 8, 9, 10, 11, 10, 8, 10, 7, 12, 11, 10, 9, 9, 9, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 9, 11, 11, 9, 9, 8, 6, 7, 8, 9, 9, 7, 5, 5, 6, 11, 4, 14, 13, 11, 23, 17, 13, 12, 6, 9, 12, 10, 15, 11, 9, 11, 10, 10, 8, 7, 8, 8, 7, 8, 7, 7, 7, 3, 7, 9, 8, 6, 6, 7, 7, 6, 9, 7, 7, 7, 7, 9, 6, 9, 6, 9, 5, 12, 7, 11, 8, 7, 8, 7, 8, 9, 8, 9, 7, 12, 6, 10, 8, 8, 9, 9, 8, 10, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 8, 8, 10, 7, 9, 8, 8, 11, 8, 8, 9, 9, 9, 8, 9, 9, 9, 9, 7, 10, 9, 9, 9, 9, 8, 8, 8, 8, 9, 8, 7, 8, 9, 9, 8, 7, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 6, 6 ], "output": { "3. Local Minima": { "frames": [ [ 0, 138 ], [ 141, 148 ], [ 150, 151 ], [ 161, 164 ], [ 168, 168 ], [ 188, 196 ], [ 203, 206 ], [ 217, 225 ], [ 227, 228 ], [ 232, 234 ], [ 236, 239 ], [ 247, 248 ], [ 252, 252 ], [ 254, 255 ], [ 258, 260 ], [ 265, 265 ], [ 267, 267 ], [ 275, 292 ], [ 298, 301 ], [ 304, 307 ], [ 309, 309 ], [ 317, 317 ], [ 327, 337 ], [ 339, 344 ], [ 346, 349 ], [ 351, 351 ], [ 353, 353 ], [ 355, 355 ], [ 357, 357 ], [ 359, 363 ], [ 365, 365 ], [ 367, 367 ], [ 369, 369 ], [ 371, 372 ], [ 375, 375 ], [ 377, 382 ], [ 386, 388 ], [ 390, 390 ], [ 392, 393 ], [ 395, 396 ], [ 400, 400 ], [ 405, 405 ], [ 411, 414 ], [ 416, 418 ], [ 421, 422 ], [ 424, 426 ], [ 428, 432 ], [ 434, 438 ], [ 440, 441 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 5, 4, 3, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 1, 1, 2, 1, 3, 1, 1, 0, 1, 3, 2, 2, 3, 4, 2, 3, 4, 4, 5, 6, 5, 3, 4, 3, 8, 4, 7, 13, 5, 7, 10, 5, 3, 3, 5, 5, 4, 4, 5, 5, 7, 6, 5, 5, 4, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 6, 5, 6, 6, 7, 9, 6, 6, 7, 6, 6, 6, 6, 7, 9, 9, 9, 10, 5, 11, 16, 12, 8, 14, 8, 9, 8, 7, 4, 4, 4, 6, 4, 7, 6, 5, 3, 5, 5, 5, 3, 8, 3, 7, 4, 5, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 6, 5, 3, 4, 4, 5, 3, 5, 4, 5, 4, 4, 4, 4, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 5, 4, 3, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 5, 4, 3, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 1, 1, 2, 1, 3, 1, 1, 0, 1, 3, 2, 2, 3, 4, 2, 3, 4, 4, 5, 6, 5, 3, 4, 3, 8, 4, 7, 13, 5, 7, 10, 5, 3, 3, 5, 5, 4, 4, 5, 5, 7, 6, 5, 5, 4, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 6, 5, 6, 6, 7, 9, 6, 6, 7, 6, 6, 6, 6, 7, 9, 9, 9, 10, 5, 11, 16, 12, 8, 14, 8, 9, 8, 7, 4, 4, 4, 6, 4, 7, 6, 5, 3, 5, 5, 5, 3, 8, 3, 7, 4, 5, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 6, 5, 3, 4, 4, 5, 3, 5, 4, 5, 4, 4, 4, 4, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 5, 4, 3, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 228, 228 ], [ 281, 281 ], [ 284, 284 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 5, 4, 3, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 1, 1, 2, 1, 3, 1, 1, 0, 1, 3, 2, 2, 3, 4, 2, 3, 4, 4, 5, 6, 5, 3, 4, 3, 8, 4, 7, 13, 5, 7, 10, 5, 3, 3, 5, 5, 4, 4, 5, 5, 7, 6, 5, 5, 4, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 6, 5, 6, 6, 7, 9, 6, 6, 7, 6, 6, 6, 6, 7, 9, 9, 9, 10, 5, 11, 16, 12, 8, 14, 8, 9, 8, 7, 4, 4, 4, 6, 4, 7, 6, 5, 3, 5, 5, 5, 3, 8, 3, 7, 4, 5, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 6, 5, 3, 4, 4, 5, 3, 5, 4, 5, 4, 4, 4, 4, 4, 4, 3, 5, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 5, 4, 3, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3 ], "output": { "3. Local Minima": { "frames": [ [ 6, 6 ], [ 157, 157 ], [ 163, 164 ], [ 166, 182 ], [ 184, 185 ], [ 189, 189 ], [ 192, 192 ], [ 194, 196 ], [ 198, 213 ], [ 215, 216 ], [ 222, 222 ], [ 224, 224 ], [ 233, 234 ], [ 297, 297 ], [ 301, 301 ], [ 303, 303 ], [ 346, 346 ], [ 349, 351 ], [ 353, 353 ], [ 355, 357 ], [ 359, 360 ], [ 362, 362 ], [ 364, 364 ], [ 366, 368 ], [ 371, 371 ], [ 374, 375 ], [ 383, 383 ], [ 387, 387 ], [ 404, 404 ], [ 407, 407 ], [ 411, 411 ], [ 421, 421 ], [ 436, 436 ], [ 441, 441 ], [ 445, 445 ], [ 450, 451 ], [ 457, 457 ], [ 461, 461 ], [ 463, 463 ], [ 477, 477 ], [ 480, 480 ], [ 489, 489 ], [ 495, 496 ], [ 500, 502 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 10, 10, 10, 8, 5, 11, 8, 8, 8, 7, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8, 7, 7, 8, 7, 8, 8, 8, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 8, 8, 7, 8, 8, 7, 8, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 8, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 7, 7, 8, 7, 8, 8, 8, 7, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 7, 8, 7, 8, 7, 7, 8, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8, 8, 8, 7, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 7, 8, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 7, 8, 7, 8, 7, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 8, 7, 7, 6, 10, 8, 7, 7, 7, 8, 7, 7, 8, 7, 8, 8, 7, 7, 7, 7, 8, 8, 7, 7, 7, 8, 7, 7, 8, 7, 7, 8, 8, 7, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 8, 9, 9, 8, 8, 9, 9, 9, 10, 8, 8, 10, 8, 10, 9, 8, 8, 9, 9, 10, 9, 9, 9, 9, 9, 9, 8, 11, 7, 10, 9, 9, 9, 9, 9, 9, 10, 8, 8, 9, 8, 9, 10, 9, 9, 9, 9, 12, 9, 9, 10, 9, 9, 9, 9, 9, 9, 10, 9, 8, 9, 10, 8, 8, 13, 12, 8, 10, 8, 9, 9, 8, 9, 10, 8, 9, 11, 15, 8, 7, 9, 12, 9, 7, 7, 8, 7, 8, 7, 7, 8, 8, 7, 9, 8, 6, 6, 8, 8, 6, 10, 21, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 4, 5, 6, 8, 5, 5, 5, 4, 14, 14, 8, 10, 4, 4, 4, 4, 3, 3, 6, 5, 5, 6, 6, 7, 6, 4, 5, 5, 3, 3, 3, 5, 3, 3, 1, 6, 2, 15, 17, 36, 89, 184, 146, 104, 33, 31, 11, 24, 8, 10, 10, 6, 5, 5, 7, 15, 18, 11, 14, 9, 16, 20, 14, 30, 18, 16, 17, 14, 15, 17, 16, 16, 13, 15, 17, 17, 14, 13, 13, 15, 17, 14, 14, 14, 15, 13, 12, 15, 15, 13, 16, 15, 13, 11, 11, 10, 10, 10, 11, 9, 11, 8, 8, 9, 8, 7, 7, 6, 6, 6, 9, 5, 9, 13, 10, 14, 9, 9, 10, 9, 5, 7, 12, 3, 3, 3, 3, 8, 6, 5, 7, 5, 7, 4, 4, 8, 7, 2, 10, 7, 6, 6, 5, 3, 12, 5, 8, 8, 12, 9, 14, 11, 8, 8, 6, 10, 10, 9, 10, 12, 8, 11, 9, 10, 11, 10, 10, 8, 19, 6, 11, 10, 12, 10, 9, 10, 10, 10, 12, 11, 9, 10, 10, 11, 12, 10, 9, 11, 11, 9, 9, 12, 9, 10, 13, 7, 11, 9, 11, 9, 10, 9, 11, 10, 9, 9, 8, 11, 10, 9, 8, 9, 9, 9, 9, 8, 9, 9, 8, 9, 9, 9, 9, 9, 8, 9, 9, 8, 9, 9, 8, 8, 8, 10, 10, 9, 8, 9, 8, 9, 8, 7, 8, 10, 9, 8, 8, 9, 9, 7, 9, 10, 9, 8, 9, 9, 9, 9, 7, 7, 10, 10, 8, 8, 8, 8, 10, 9, 8, 9, 8, 9, 9, 8, 8, 9, 8, 9, 9, 9, 8, 9, 8, 9, 9, 9, 8, 8, 9, 9, 8, 8, 9, 9, 9, 8, 8, 8, 10, 9, 7, 8, 9, 9, 7, 9, 9, 8, 9, 8, 7, 8, 9, 9, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 8, 8, 10, 8, 8, 8, 7, 11, 9, 8, 9, 8, 7, 8, 8, 9, 8, 9, 8, 8, 9, 8, 7, 8, 10, 8, 7, 9, 9, 9, 7, 7, 9, 9, 8, 7, 7, 11, 8, 8, 8, 8, 9, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 9, 8, 8, 8, 9, 8, 9, 8, 8, 8, 9, 9, 7, 8, 9, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 7, 9, 8, 8, 9, 9, 8, 8, 8, 8, 7, 8, 9, 9, 8, 8, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 9, 8, 8, 8, 8, 8, 9, 9, 8, 9, 8, 7, 9, 8, 9, 8, 8, 9, 8, 7, 7 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 10, 10, 10, 8, 5, 11, 8, 8, 8, 7, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8, 7, 7, 8, 7, 8, 8, 8, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 8, 8, 7, 8, 8, 7, 8, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 8, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 7, 7, 8, 7, 8, 8, 8, 7, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 7, 8, 7, 8, 7, 7, 8, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8, 8, 8, 7, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 7, 8, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 7, 8, 7, 8, 7, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 8, 7, 7, 6, 10, 8, 7, 7, 7, 8, 7, 7, 8, 7, 8, 8, 7, 7, 7, 7, 8, 8, 7, 7, 7, 8, 7, 7, 8, 7, 7, 8, 8, 7, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 8, 9, 9, 8, 8, 9, 9, 9, 10, 8, 8, 10, 8, 10, 9, 8, 8, 9, 9, 10, 9, 9, 9, 9, 9, 9, 8, 11, 7, 10, 9, 9, 9, 9, 9, 9, 10, 8, 8, 9, 8, 9, 10, 9, 9, 9, 9, 12, 9, 9, 10, 9, 9, 9, 9, 9, 9, 10, 9, 8, 9, 10, 8, 8, 13, 12, 8, 10, 8, 9, 9, 8, 9, 10, 8, 9, 11, 15, 8, 7, 9, 12, 9, 7, 7, 8, 7, 8, 7, 7, 8, 8, 7, 9, 8, 6, 6, 8, 8, 6, 10, 21, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 4, 5, 6, 8, 5, 5, 5, 4, 14, 14, 8, 10, 4, 4, 4, 4, 3, 3, 6, 5, 5, 6, 6, 7, 6, 4, 5, 5, 3, 3, 3, 5, 3, 3, 1, 6, 2, 15, 17, 36, 89, 184, 146, 104, 33, 31, 11, 24, 8, 10, 10, 6, 5, 5, 7, 15, 18, 11, 14, 9, 16, 20, 14, 30, 18, 16, 17, 14, 15, 17, 16, 16, 13, 15, 17, 17, 14, 13, 13, 15, 17, 14, 14, 14, 15, 13, 12, 15, 15, 13, 16, 15, 13, 11, 11, 10, 10, 10, 11, 9, 11, 8, 8, 9, 8, 7, 7, 6, 6, 6, 9, 5, 9, 13, 10, 14, 9, 9, 10, 9, 5, 7, 12, 3, 3, 3, 3, 8, 6, 5, 7, 5, 7, 4, 4, 8, 7, 2, 10, 7, 6, 6, 5, 3, 12, 5, 8, 8, 12, 9, 14, 11, 8, 8, 6, 10, 10, 9, 10, 12, 8, 11, 9, 10, 11, 10, 10, 8, 19, 6, 11, 10, 12, 10, 9, 10, 10, 10, 12, 11, 9, 10, 10, 11, 12, 10, 9, 11, 11, 9, 9, 12, 9, 10, 13, 7, 11, 9, 11, 9, 10, 9, 11, 10, 9, 9, 8, 11, 10, 9, 8, 9, 9, 9, 9, 8, 9, 9, 8, 9, 9, 9, 9, 9, 8, 9, 9, 8, 9, 9, 8, 8, 8, 10, 10, 9, 8, 9, 8, 9, 8, 7, 8, 10, 9, 8, 8, 9, 9, 7, 9, 10, 9, 8, 9, 9, 9, 9, 7, 7, 10, 10, 8, 8, 8, 8, 10, 9, 8, 9, 8, 9, 9, 8, 8, 9, 8, 9, 9, 9, 8, 9, 8, 9, 9, 9, 8, 8, 9, 9, 8, 8, 9, 9, 9, 8, 8, 8, 10, 9, 7, 8, 9, 9, 7, 9, 9, 8, 9, 8, 7, 8, 9, 9, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 8, 8, 10, 8, 8, 8, 7, 11, 9, 8, 9, 8, 7, 8, 8, 9, 8, 9, 8, 8, 9, 8, 7, 8, 10, 8, 7, 9, 9, 9, 7, 7, 9, 9, 8, 7, 7, 11, 8, 8, 8, 8, 9, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 9, 8, 8, 8, 9, 8, 9, 8, 8, 8, 9, 9, 7, 8, 9, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 7, 9, 8, 8, 9, 9, 8, 8, 8, 8, 7, 8, 9, 9, 8, 8, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 9, 8, 8, 8, 8, 8, 9, 9, 8, 9, 8, 7, 9, 8, 9, 8, 8, 9, 8, 7, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 439, 439 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 10, 10, 10, 8, 5, 11, 8, 8, 8, 7, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8, 7, 7, 8, 7, 8, 8, 8, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 8, 8, 7, 8, 8, 7, 8, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 8, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 7, 7, 8, 7, 8, 8, 8, 7, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 7, 8, 7, 8, 7, 7, 8, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 7, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8, 8, 8, 7, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 7, 8, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 7, 8, 7, 8, 7, 8, 8, 8, 8, 7, 7, 8, 8, 8, 8, 8, 7, 7, 7, 7, 8, 7, 7, 6, 10, 8, 7, 7, 7, 8, 7, 7, 8, 7, 8, 8, 7, 7, 7, 7, 8, 8, 7, 7, 7, 8, 7, 7, 8, 7, 7, 8, 8, 7, 7, 8, 8, 7, 8, 8, 8, 8, 7, 8, 8, 7, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 8, 9, 9, 8, 8, 9, 9, 9, 10, 8, 8, 10, 8, 10, 9, 8, 8, 9, 9, 10, 9, 9, 9, 9, 9, 9, 8, 11, 7, 10, 9, 9, 9, 9, 9, 9, 10, 8, 8, 9, 8, 9, 10, 9, 9, 9, 9, 12, 9, 9, 10, 9, 9, 9, 9, 9, 9, 10, 9, 8, 9, 10, 8, 8, 13, 12, 8, 10, 8, 9, 9, 8, 9, 10, 8, 9, 11, 15, 8, 7, 9, 12, 9, 7, 7, 8, 7, 8, 7, 7, 8, 8, 7, 9, 8, 6, 6, 8, 8, 6, 10, 21, 5, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 4, 5, 6, 8, 5, 5, 5, 4, 14, 14, 8, 10, 4, 4, 4, 4, 3, 3, 6, 5, 5, 6, 6, 7, 6, 4, 5, 5, 3, 3, 3, 5, 3, 3, 1, 6, 2, 15, 17, 36, 89, 184, 146, 104, 33, 31, 11, 24, 8, 10, 10, 6, 5, 5, 7, 15, 18, 11, 14, 9, 16, 20, 14, 30, 18, 16, 17, 14, 15, 17, 16, 16, 13, 15, 17, 17, 14, 13, 13, 15, 17, 14, 14, 14, 15, 13, 12, 15, 15, 13, 16, 15, 13, 11, 11, 10, 10, 10, 11, 9, 11, 8, 8, 9, 8, 7, 7, 6, 6, 6, 9, 5, 9, 13, 10, 14, 9, 9, 10, 9, 5, 7, 12, 3, 3, 3, 3, 8, 6, 5, 7, 5, 7, 4, 4, 8, 7, 2, 10, 7, 6, 6, 5, 3, 12, 5, 8, 8, 12, 9, 14, 11, 8, 8, 6, 10, 10, 9, 10, 12, 8, 11, 9, 10, 11, 10, 10, 8, 19, 6, 11, 10, 12, 10, 9, 10, 10, 10, 12, 11, 9, 10, 10, 11, 12, 10, 9, 11, 11, 9, 9, 12, 9, 10, 13, 7, 11, 9, 11, 9, 10, 9, 11, 10, 9, 9, 8, 11, 10, 9, 8, 9, 9, 9, 9, 8, 9, 9, 8, 9, 9, 9, 9, 9, 8, 9, 9, 8, 9, 9, 8, 8, 8, 10, 10, 9, 8, 9, 8, 9, 8, 7, 8, 10, 9, 8, 8, 9, 9, 7, 9, 10, 9, 8, 9, 9, 9, 9, 7, 7, 10, 10, 8, 8, 8, 8, 10, 9, 8, 9, 8, 9, 9, 8, 8, 9, 8, 9, 9, 9, 8, 9, 8, 9, 9, 9, 8, 8, 9, 9, 8, 8, 9, 9, 9, 8, 8, 8, 10, 9, 7, 8, 9, 9, 7, 9, 9, 8, 9, 8, 7, 8, 9, 9, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 8, 8, 10, 8, 8, 8, 7, 11, 9, 8, 9, 8, 7, 8, 8, 9, 8, 9, 8, 8, 9, 8, 7, 8, 10, 8, 7, 9, 9, 9, 7, 7, 9, 9, 8, 7, 7, 11, 8, 8, 8, 8, 9, 9, 8, 8, 8, 9, 9, 8, 8, 8, 8, 9, 9, 8, 8, 8, 9, 8, 9, 8, 8, 8, 9, 9, 7, 8, 9, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 7, 9, 8, 8, 9, 9, 8, 8, 8, 8, 7, 8, 9, 9, 8, 8, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 9, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 9, 8, 8, 8, 8, 8, 9, 9, 8, 9, 8, 7, 9, 8, 9, 8, 8, 9, 8, 7, 7 ], "output": { "3. Local Minima": { "frames": [ [ 0, 437 ], [ 442, 883 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6 ], "output": { "2. Local Maxima": { "frames": [ [ 95, 95 ], [ 103, 105 ], [ 111, 117 ], [ 124, 133 ], [ 135, 168 ], [ 170, 240 ], [ 242, 254 ], [ 303, 303 ], [ 325, 325 ], [ 331, 331 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 6, 6, 5, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 5, 6, 6, 6, 6 ], "output": { "3. Local Minima": { "frames": [ [ 2, 2 ], [ 9, 10 ], [ 59, 59 ], [ 61, 61 ], [ 65, 65 ], [ 415, 415 ], [ 418, 418 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 8, 7, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 7, 7, 11, 7, 6, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 7, 8, 8, 7, 7, 7, 7, 7, 7, 6, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 6, 6, 7, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 7, 7, 8, 6, 6, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 10, 8, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 8, 7, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 7, 7, 11, 7, 6, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 7, 8, 8, 7, 7, 7, 7, 7, 7, 6, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 6, 6, 7, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 7, 7, 8, 6, 6, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 10, 8, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 89, 89 ], [ 194, 196 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 8, 7, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 7, 7, 11, 7, 6, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 7, 8, 8, 7, 7, 7, 7, 7, 7, 6, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 6, 6, 7, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 7, 7, 8, 6, 6, 7, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 10, 8, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 ], "output": { "3. Local Minima": { "frames": [ [ 41, 43 ], [ 54, 54 ], [ 58, 60 ], [ 65, 81 ], [ 85, 86 ], [ 91, 91 ], [ 96, 97 ], [ 124, 124 ], [ 130, 131 ], [ 142, 143 ], [ 146, 147 ], [ 149, 149 ], [ 151, 168 ], [ 170, 173 ], [ 178, 179 ], [ 198, 198 ], [ 225, 225 ], [ 274, 276 ], [ 318, 320 ], [ 326, 328 ], [ 335, 335 ], [ 337, 357 ], [ 389, 389 ], [ 410, 410 ], [ 416, 417 ], [ 434, 435 ], [ 440, 440 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 5, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 14, 13, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 10, 12, 10, 8, 6, 7, 10, 12, 12, 10, 16, 6, 7, 8, 9, 9, 8, 7, 6, 6, 5, 5, 7, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 5, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 14, 13, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 10, 12, 10, 8, 6, 7, 10, 12, 12, 10, 16, 6, 7, 8, 9, 9, 8, 7, 6, 6, 5, 5, 7, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 231, 232 ], [ 303, 303 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 5, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 14, 13, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 10, 12, 10, 8, 6, 7, 10, 12, 12, 10, 16, 6, 7, 8, 9, 9, 8, 7, 6, 6, 5, 5, 7, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 230 ], [ 233, 244 ], [ 251, 255 ], [ 262, 292 ], [ 297, 297 ], [ 304, 304 ], [ 311, 314 ], [ 316, 585 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 6, 6, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 2, 5, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 6, 6, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 2, 5, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1 ], [ 3, 3 ], [ 39, 47 ], [ 49, 61 ], [ 68, 68 ], [ 70, 71 ], [ 73, 73 ], [ 101, 137 ], [ 139, 145 ], [ 147, 148 ], [ 150, 151 ], [ 153, 153 ], [ 155, 155 ], [ 157, 312 ], [ 314, 314 ], [ 380, 380 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 6, 6, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 2, 5, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3 ], "output": { "3. Local Minima": { "frames": [ [ 339, 344 ], [ 353, 353 ], [ 379, 379 ], [ 387, 395 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 15, 28, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 6, 18, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 9, 25, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 11, 20, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 9, 21, 6, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 14, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 6, 17, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 4, 13, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 9, 22, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 14, 5, 4, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 4, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 15, 28, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 6, 18, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 9, 25, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 11, 20, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 9, 21, 6, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 14, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 6, 17, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 4, 13, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 9, 22, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 14, 5, 4, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 4, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 23, 23 ], [ 111, 111 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 15, 28, 4, 3, 4, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 6, 18, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 9, 25, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 11, 20, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 9, 21, 6, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 14, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 6, 17, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 4, 13, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 9, 22, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 14, 5, 4, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 4, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 21 ], [ 24, 67 ], [ 69, 109 ], [ 112, 145 ], [ 148, 171 ], [ 174, 217 ], [ 219, 255 ], [ 258, 295 ], [ 297, 323 ], [ 326, 368 ], [ 370, 400 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 2, 2, 2, 2, 2, 6, 3, 4, 2, 5, 5, 6, 5, 9, 7, 7, 4, 3, 3, 2, 2, 2, 3, 3, 3, 2, 12, 8, 2, 8, 11, 4, 21, 6, 6, 6, 4, 5, 3, 2, 2, 2, 2, 3, 5, 3, 3, 4, 4, 2, 2, 2, 3, 3, 6, 4, 3, 2, 4, 6, 7, 5, 3, 11, 13, 7, 17, 8, 10, 6, 4, 5, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 5, 11, 2, 13, 6, 3, 7, 2, 2, 2, 3, 5, 3, 2, 2, 7, 5, 7, 6, 4, 2, 4, 4, 7, 2, 3, 11, 12, 31, 10, 4, 7, 8, 4, 15, 10, 6, 5, 8, 8, 4, 5, 4, 3, 3, 3, 3, 5, 5, 5, 9, 11, 4, 63, 13, 16, 27, 8, 18, 12, 4, 4, 5, 2, 3, 4, 3, 11, 5, 7, 2, 4, 2, 4, 5, 2, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 2, 2, 2, 2, 2, 6, 3, 4, 2, 5, 5, 6, 5, 9, 7, 7, 4, 3, 3, 2, 2, 2, 3, 3, 3, 2, 12, 8, 2, 8, 11, 4, 21, 6, 6, 6, 4, 5, 3, 2, 2, 2, 2, 3, 5, 3, 3, 4, 4, 2, 2, 2, 3, 3, 6, 4, 3, 2, 4, 6, 7, 5, 3, 11, 13, 7, 17, 8, 10, 6, 4, 5, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 5, 11, 2, 13, 6, 3, 7, 2, 2, 2, 3, 5, 3, 2, 2, 7, 5, 7, 6, 4, 2, 4, 4, 7, 2, 3, 11, 12, 31, 10, 4, 7, 8, 4, 15, 10, 6, 5, 8, 8, 4, 5, 4, 3, 3, 3, 3, 5, 5, 5, 9, 11, 4, 63, 13, 16, 27, 8, 18, 12, 4, 4, 5, 2, 3, 4, 3, 11, 5, 7, 2, 4, 2, 4, 5, 2, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 244, 244 ] ] } } }, { "instruction": "Torque represents the torque value on the limbs (both arms, both legs). Near the maximum value, the torque value on the body is higher (more movement) indicating that the body is actively performing an action. Near the minimum value, the torque value on the body is lower (less movement). \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 2, 2, 2, 2, 2, 6, 3, 4, 2, 5, 5, 6, 5, 9, 7, 7, 4, 3, 3, 2, 2, 2, 3, 3, 3, 2, 12, 8, 2, 8, 11, 4, 21, 6, 6, 6, 4, 5, 3, 2, 2, 2, 2, 3, 5, 3, 3, 4, 4, 2, 2, 2, 3, 3, 6, 4, 3, 2, 4, 6, 7, 5, 3, 11, 13, 7, 17, 8, 10, 6, 4, 5, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 5, 11, 2, 13, 6, 3, 7, 2, 2, 2, 3, 5, 3, 2, 2, 7, 5, 7, 6, 4, 2, 4, 4, 7, 2, 3, 11, 12, 31, 10, 4, 7, 8, 4, 15, 10, 6, 5, 8, 8, 4, 5, 4, 3, 3, 3, 3, 5, 5, 5, 9, 11, 4, 63, 13, 16, 27, 8, 18, 12, 4, 4, 5, 2, 3, 4, 3, 11, 5, 7, 2, 4, 2, 4, 5, 2, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 139 ], [ 141, 173 ], [ 175, 218 ], [ 220, 224 ], [ 226, 243 ], [ 245, 245 ], [ 248, 248 ], [ 250, 337 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 5, 5, 4, 5, 6, 5, 5, 6, 6, 7, 8, 7, 6, 7, 8, 7, 7, 8, 8, 8, 7, 8, 8, 7, 7, 7, 9, 8, 8, 9, 10, 10, 10, 10, 9, 12, 12, 12, 13, 16, 15, 13, 13, 14, 14, 13, 14, 16, 16, 15, 15, 16, 15, 14, 14, 14, 14, 16, 16, 15, 14, 16, 19, 16, 16, 15, 17, 18, 17, 15, 15, 15, 14, 11, 11, 9, 8, 6, 6, 5, 5, 5, 5, 6, 8, 10, 11, 12, 12, 11, 13, 13, 12, 12, 11, 11, 10, 12, 12, 13, 13, 14, 15, 16, 19, 20, 19, 20, 20, 20, 20, 20, 19, 18, 17, 17, 18, 17, 17, 17, 18, 19, 21, 21, 22, 23, 22, 23, 25, 25, 25, 27, 28, 31, 29, 27, 24, 31, 31, 23, 26, 26, 26, 27, 27, 27, 28, 26, 28, 28, 31, 31, 33, 33, 35, 33, 34, 31, 29, 29, 28, 28, 30, 30, 25, 25, 28, 26, 25, 24, 24, 23, 23, 20, 26, 30, 35, 38, 40, 41, 44, 47, 49, 50, 53, 56, 57, 52, 50, 48, 46, 51, 39, 45, 37, 36, 33, 31, 31, 30, 31, 25, 26, 25, 24, 25, 24, 24, 31, 20, 19, 22, 20, 19, 17, 26, 17, 22, 19, 18, 14, 17, 19, 21, 23, 26, 28, 29, 32, 35, 38, 39, 39, 43, 38, 41, 42, 45, 48, 51, 57, 50, 46, 49, 55, 47, 46, 33, 32, 31, 26, 26, 23, 25, 29, 26, 25, 28, 27, 28, 31, 37, 39, 38, 41, 41, 36, 41, 46, 40, 40, 41, 37, 36, 36, 33, 33, 31, 29, 29, 30, 32, 33, 28, 31, 32, 30, 26, 33, 32, 35, 32, 31, 31, 28, 20, 26, 30, 28, 30, 24, 31, 33, 37, 41, 42, 45, 46, 48, 51, 55, 58, 52, 50, 48, 51, 50, 52, 48, 42, 38, 34, 31, 29, 27, 26, 30, 27, 26, 28, 22, 28, 25, 26, 55, 21, 25, 59, 23, 17, 18, 20, 19, 20, 21, 21, 24, 20, 26, 27, 27, 32, 36, 34, 39, 39, 44, 45, 40, 47, 48, 50, 51, 40, 42, 48, 44, 44, 41, 24, 33, 30, 26, 21, 26, 21, 19, 20, 24, 20, 23, 23, 22, 21, 28, 28, 28, 25, 33, 29, 26, 31, 28, 27, 33, 25, 26, 28, 22, 28, 27, 24, 23, 26, 25, 28, 28, 24, 24, 26, 23, 22, 22, 17, 30, 20, 18, 22, 18, 20, 15, 24, 13, 24, 26, 19, 21, 21, 29, 15, 23, 15, 19, 12, 12, 10, 15, 12, 15, 21, 25, 34, 26, 38, 40, 40, 42, 38, 38, 36, 34, 32, 34, 30, 28, 27, 28, 28, 23, 27, 24, 26, 27, 21, 21, 21, 58, 14, 11, 19, 12, 8, 14, 14, 12, 16, 14, 9, 6, 3, 8, 10, 12, 12, 15, 13, 20, 19, 27, 24, 24, 30, 35, 34, 35, 39, 39, 38, 39, 38, 32, 36, 31, 43, 49, 55, 40, 45, 49, 47, 44, 20, 16, 11, 12, 13, 9, 10, 11, 8, 10, 6, 5, 3, 5 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 5, 5, 4, 5, 6, 5, 5, 6, 6, 7, 8, 7, 6, 7, 8, 7, 7, 8, 8, 8, 7, 8, 8, 7, 7, 7, 9, 8, 8, 9, 10, 10, 10, 10, 9, 12, 12, 12, 13, 16, 15, 13, 13, 14, 14, 13, 14, 16, 16, 15, 15, 16, 15, 14, 14, 14, 14, 16, 16, 15, 14, 16, 19, 16, 16, 15, 17, 18, 17, 15, 15, 15, 14, 11, 11, 9, 8, 6, 6, 5, 5, 5, 5, 6, 8, 10, 11, 12, 12, 11, 13, 13, 12, 12, 11, 11, 10, 12, 12, 13, 13, 14, 15, 16, 19, 20, 19, 20, 20, 20, 20, 20, 19, 18, 17, 17, 18, 17, 17, 17, 18, 19, 21, 21, 22, 23, 22, 23, 25, 25, 25, 27, 28, 31, 29, 27, 24, 31, 31, 23, 26, 26, 26, 27, 27, 27, 28, 26, 28, 28, 31, 31, 33, 33, 35, 33, 34, 31, 29, 29, 28, 28, 30, 30, 25, 25, 28, 26, 25, 24, 24, 23, 23, 20, 26, 30, 35, 38, 40, 41, 44, 47, 49, 50, 53, 56, 57, 52, 50, 48, 46, 51, 39, 45, 37, 36, 33, 31, 31, 30, 31, 25, 26, 25, 24, 25, 24, 24, 31, 20, 19, 22, 20, 19, 17, 26, 17, 22, 19, 18, 14, 17, 19, 21, 23, 26, 28, 29, 32, 35, 38, 39, 39, 43, 38, 41, 42, 45, 48, 51, 57, 50, 46, 49, 55, 47, 46, 33, 32, 31, 26, 26, 23, 25, 29, 26, 25, 28, 27, 28, 31, 37, 39, 38, 41, 41, 36, 41, 46, 40, 40, 41, 37, 36, 36, 33, 33, 31, 29, 29, 30, 32, 33, 28, 31, 32, 30, 26, 33, 32, 35, 32, 31, 31, 28, 20, 26, 30, 28, 30, 24, 31, 33, 37, 41, 42, 45, 46, 48, 51, 55, 58, 52, 50, 48, 51, 50, 52, 48, 42, 38, 34, 31, 29, 27, 26, 30, 27, 26, 28, 22, 28, 25, 26, 55, 21, 25, 59, 23, 17, 18, 20, 19, 20, 21, 21, 24, 20, 26, 27, 27, 32, 36, 34, 39, 39, 44, 45, 40, 47, 48, 50, 51, 40, 42, 48, 44, 44, 41, 24, 33, 30, 26, 21, 26, 21, 19, 20, 24, 20, 23, 23, 22, 21, 28, 28, 28, 25, 33, 29, 26, 31, 28, 27, 33, 25, 26, 28, 22, 28, 27, 24, 23, 26, 25, 28, 28, 24, 24, 26, 23, 22, 22, 17, 30, 20, 18, 22, 18, 20, 15, 24, 13, 24, 26, 19, 21, 21, 29, 15, 23, 15, 19, 12, 12, 10, 15, 12, 15, 21, 25, 34, 26, 38, 40, 40, 42, 38, 38, 36, 34, 32, 34, 30, 28, 27, 28, 28, 23, 27, 24, 26, 27, 21, 21, 21, 58, 14, 11, 19, 12, 8, 14, 14, 12, 16, 14, 9, 6, 3, 8, 10, 12, 12, 15, 13, 20, 19, 27, 24, 24, 30, 35, 34, 35, 39, 39, 38, 39, 38, 32, 36, 31, 43, 49, 55, 40, 45, 49, 47, 44, 20, 16, 11, 12, 13, 9, 10, 11, 8, 10, 6, 5, 3, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 182, 189 ], [ 191, 191 ], [ 238, 241 ], [ 243, 244 ], [ 308, 318 ], [ 334, 334 ], [ 337, 337 ], [ 360, 362 ], [ 365, 365 ], [ 466, 466 ], [ 504, 505 ], [ 508, 508 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 5, 5, 4, 5, 6, 5, 5, 6, 6, 7, 8, 7, 6, 7, 8, 7, 7, 8, 8, 8, 7, 8, 8, 7, 7, 7, 9, 8, 8, 9, 10, 10, 10, 10, 9, 12, 12, 12, 13, 16, 15, 13, 13, 14, 14, 13, 14, 16, 16, 15, 15, 16, 15, 14, 14, 14, 14, 16, 16, 15, 14, 16, 19, 16, 16, 15, 17, 18, 17, 15, 15, 15, 14, 11, 11, 9, 8, 6, 6, 5, 5, 5, 5, 6, 8, 10, 11, 12, 12, 11, 13, 13, 12, 12, 11, 11, 10, 12, 12, 13, 13, 14, 15, 16, 19, 20, 19, 20, 20, 20, 20, 20, 19, 18, 17, 17, 18, 17, 17, 17, 18, 19, 21, 21, 22, 23, 22, 23, 25, 25, 25, 27, 28, 31, 29, 27, 24, 31, 31, 23, 26, 26, 26, 27, 27, 27, 28, 26, 28, 28, 31, 31, 33, 33, 35, 33, 34, 31, 29, 29, 28, 28, 30, 30, 25, 25, 28, 26, 25, 24, 24, 23, 23, 20, 26, 30, 35, 38, 40, 41, 44, 47, 49, 50, 53, 56, 57, 52, 50, 48, 46, 51, 39, 45, 37, 36, 33, 31, 31, 30, 31, 25, 26, 25, 24, 25, 24, 24, 31, 20, 19, 22, 20, 19, 17, 26, 17, 22, 19, 18, 14, 17, 19, 21, 23, 26, 28, 29, 32, 35, 38, 39, 39, 43, 38, 41, 42, 45, 48, 51, 57, 50, 46, 49, 55, 47, 46, 33, 32, 31, 26, 26, 23, 25, 29, 26, 25, 28, 27, 28, 31, 37, 39, 38, 41, 41, 36, 41, 46, 40, 40, 41, 37, 36, 36, 33, 33, 31, 29, 29, 30, 32, 33, 28, 31, 32, 30, 26, 33, 32, 35, 32, 31, 31, 28, 20, 26, 30, 28, 30, 24, 31, 33, 37, 41, 42, 45, 46, 48, 51, 55, 58, 52, 50, 48, 51, 50, 52, 48, 42, 38, 34, 31, 29, 27, 26, 30, 27, 26, 28, 22, 28, 25, 26, 55, 21, 25, 59, 23, 17, 18, 20, 19, 20, 21, 21, 24, 20, 26, 27, 27, 32, 36, 34, 39, 39, 44, 45, 40, 47, 48, 50, 51, 40, 42, 48, 44, 44, 41, 24, 33, 30, 26, 21, 26, 21, 19, 20, 24, 20, 23, 23, 22, 21, 28, 28, 28, 25, 33, 29, 26, 31, 28, 27, 33, 25, 26, 28, 22, 28, 27, 24, 23, 26, 25, 28, 28, 24, 24, 26, 23, 22, 22, 17, 30, 20, 18, 22, 18, 20, 15, 24, 13, 24, 26, 19, 21, 21, 29, 15, 23, 15, 19, 12, 12, 10, 15, 12, 15, 21, 25, 34, 26, 38, 40, 40, 42, 38, 38, 36, 34, 32, 34, 30, 28, 27, 28, 28, 23, 27, 24, 26, 27, 21, 21, 21, 58, 14, 11, 19, 12, 8, 14, 14, 12, 16, 14, 9, 6, 3, 8, 10, 12, 12, 15, 13, 20, 19, 27, 24, 24, 30, 35, 34, 35, 39, 39, 38, 39, 38, 32, 36, 31, 43, 49, 55, 40, 45, 49, 47, 44, 20, 16, 11, 12, 13, 9, 10, 11, 8, 10, 6, 5, 3, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 38 ], [ 41, 46 ], [ 53, 56 ], [ 60, 60 ], [ 72, 101 ], [ 220, 220 ], [ 422, 422 ], [ 433, 435 ], [ 437, 437 ], [ 467, 468 ], [ 470, 474 ], [ 476, 483 ], [ 485, 485 ], [ 513, 524 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 14, 14, 16, 14, 15, 14, 14, 22, 14, 16, 19, 16, 21, 18, 17, 21, 18, 20, 21, 23, 22, 19, 27, 21, 25, 23, 21, 26, 24, 31, 23, 24, 25, 25, 29, 21, 27, 21, 25, 24, 21, 28, 19, 22, 27, 19, 24, 24, 18, 24, 25, 21, 22, 21, 23, 20, 22, 24, 22, 23, 22, 23, 23, 23, 23, 24, 20, 20, 29, 24, 24, 23, 24, 24, 22, 24, 25, 26, 25, 23, 25, 28, 27, 24, 27, 27, 27, 27, 29, 29, 29, 32, 31, 34, 29, 33, 30, 33, 30, 31, 29, 30, 27, 32, 28, 27, 29, 31, 28, 27, 27, 28, 26, 27, 28, 26, 25, 25, 27, 27, 26, 25, 23, 28, 26, 25, 25, 24, 26, 25, 26, 25, 24, 26, 26, 23, 25, 25, 25, 25, 26, 26, 27, 26, 25, 27, 28, 28, 28, 27, 28, 29, 29, 31, 31, 30, 29, 29, 31, 32, 31, 30, 31, 31, 30, 30, 29, 29, 29, 29, 28, 28, 28, 28, 28, 26, 27, 27, 27, 27, 27, 26, 26, 27, 27, 25, 26, 26, 27, 26, 26, 27, 26, 27, 26, 25, 26, 26, 28, 27, 27, 26, 26, 26, 28, 28, 28, 28, 27, 29, 29, 30, 30, 30, 30, 32, 33, 33, 34, 34, 34, 34, 34, 33, 32, 33, 32, 33, 33, 31, 31, 31, 30, 31, 30, 28, 29, 28, 29, 28, 28, 27, 28, 27, 27, 27, 27, 27, 26, 28, 27, 27, 26, 26, 26, 28, 26, 26, 26, 26, 26, 27, 28, 27, 27, 28, 29, 27, 27, 31, 29, 28, 31, 30, 29, 30, 31, 31, 30, 35, 31, 33, 31, 33, 34, 35, 32, 31, 31, 31, 30, 31, 30, 30, 30, 28, 27, 29, 30, 27, 29, 30, 23, 29, 26, 28, 26, 25, 24, 26, 26, 26, 26, 25, 25, 27, 27, 27, 27, 27, 26, 29, 27, 27, 28, 30, 29, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 29, 32, 31, 33, 32, 32, 29, 33, 31, 30, 29, 29, 29, 26, 26, 30, 28, 25, 27, 27, 22, 28, 25, 28, 26, 24, 24, 23, 24, 23, 28, 23, 24, 25, 22, 24, 24, 25, 24, 21, 25, 25, 25, 24, 24, 23, 26, 23, 21, 29, 24, 28, 19, 30, 24, 34, 25 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 14, 14, 16, 14, 15, 14, 14, 22, 14, 16, 19, 16, 21, 18, 17, 21, 18, 20, 21, 23, 22, 19, 27, 21, 25, 23, 21, 26, 24, 31, 23, 24, 25, 25, 29, 21, 27, 21, 25, 24, 21, 28, 19, 22, 27, 19, 24, 24, 18, 24, 25, 21, 22, 21, 23, 20, 22, 24, 22, 23, 22, 23, 23, 23, 23, 24, 20, 20, 29, 24, 24, 23, 24, 24, 22, 24, 25, 26, 25, 23, 25, 28, 27, 24, 27, 27, 27, 27, 29, 29, 29, 32, 31, 34, 29, 33, 30, 33, 30, 31, 29, 30, 27, 32, 28, 27, 29, 31, 28, 27, 27, 28, 26, 27, 28, 26, 25, 25, 27, 27, 26, 25, 23, 28, 26, 25, 25, 24, 26, 25, 26, 25, 24, 26, 26, 23, 25, 25, 25, 25, 26, 26, 27, 26, 25, 27, 28, 28, 28, 27, 28, 29, 29, 31, 31, 30, 29, 29, 31, 32, 31, 30, 31, 31, 30, 30, 29, 29, 29, 29, 28, 28, 28, 28, 28, 26, 27, 27, 27, 27, 27, 26, 26, 27, 27, 25, 26, 26, 27, 26, 26, 27, 26, 27, 26, 25, 26, 26, 28, 27, 27, 26, 26, 26, 28, 28, 28, 28, 27, 29, 29, 30, 30, 30, 30, 32, 33, 33, 34, 34, 34, 34, 34, 33, 32, 33, 32, 33, 33, 31, 31, 31, 30, 31, 30, 28, 29, 28, 29, 28, 28, 27, 28, 27, 27, 27, 27, 27, 26, 28, 27, 27, 26, 26, 26, 28, 26, 26, 26, 26, 26, 27, 28, 27, 27, 28, 29, 27, 27, 31, 29, 28, 31, 30, 29, 30, 31, 31, 30, 35, 31, 33, 31, 33, 34, 35, 32, 31, 31, 31, 30, 31, 30, 30, 30, 28, 27, 29, 30, 27, 29, 30, 23, 29, 26, 28, 26, 25, 24, 26, 26, 26, 26, 25, 25, 27, 27, 27, 27, 27, 26, 29, 27, 27, 28, 30, 29, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 29, 32, 31, 33, 32, 32, 29, 33, 31, 30, 29, 29, 29, 26, 26, 30, 28, 25, 27, 27, 22, 28, 25, 28, 26, 24, 24, 23, 24, 23, 28, 23, 24, 25, 22, 24, 24, 25, 24, 21, 25, 25, 25, 24, 24, 23, 26, 23, 21, 29, 24, 28, 19, 30, 24, 34, 25 ], "output": { "2. Local Maxima": { "frames": [ [ 29, 29 ], [ 34, 34 ], [ 41, 41 ], [ 68, 68 ], [ 81, 81 ], [ 88, 101 ], [ 103, 104 ], [ 106, 108 ], [ 111, 111 ], [ 114, 114 ], [ 123, 123 ], [ 146, 148 ], [ 150, 174 ], [ 198, 198 ], [ 204, 207 ], [ 209, 240 ], [ 242, 242 ], [ 249, 249 ], [ 255, 255 ], [ 262, 262 ], [ 265, 266 ], [ 269, 295 ], [ 297, 298 ], [ 300, 301 ], [ 303, 303 ], [ 305, 305 ], [ 321, 321 ], [ 324, 326 ], [ 328, 351 ], [ 354, 355 ], [ 360, 360 ], [ 362, 362 ], [ 369, 369 ], [ 388, 388 ], [ 390, 390 ], [ 392, 392 ], [ 394, 394 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 14, 14, 16, 14, 15, 14, 14, 22, 14, 16, 19, 16, 21, 18, 17, 21, 18, 20, 21, 23, 22, 19, 27, 21, 25, 23, 21, 26, 24, 31, 23, 24, 25, 25, 29, 21, 27, 21, 25, 24, 21, 28, 19, 22, 27, 19, 24, 24, 18, 24, 25, 21, 22, 21, 23, 20, 22, 24, 22, 23, 22, 23, 23, 23, 23, 24, 20, 20, 29, 24, 24, 23, 24, 24, 22, 24, 25, 26, 25, 23, 25, 28, 27, 24, 27, 27, 27, 27, 29, 29, 29, 32, 31, 34, 29, 33, 30, 33, 30, 31, 29, 30, 27, 32, 28, 27, 29, 31, 28, 27, 27, 28, 26, 27, 28, 26, 25, 25, 27, 27, 26, 25, 23, 28, 26, 25, 25, 24, 26, 25, 26, 25, 24, 26, 26, 23, 25, 25, 25, 25, 26, 26, 27, 26, 25, 27, 28, 28, 28, 27, 28, 29, 29, 31, 31, 30, 29, 29, 31, 32, 31, 30, 31, 31, 30, 30, 29, 29, 29, 29, 28, 28, 28, 28, 28, 26, 27, 27, 27, 27, 27, 26, 26, 27, 27, 25, 26, 26, 27, 26, 26, 27, 26, 27, 26, 25, 26, 26, 28, 27, 27, 26, 26, 26, 28, 28, 28, 28, 27, 29, 29, 30, 30, 30, 30, 32, 33, 33, 34, 34, 34, 34, 34, 33, 32, 33, 32, 33, 33, 31, 31, 31, 30, 31, 30, 28, 29, 28, 29, 28, 28, 27, 28, 27, 27, 27, 27, 27, 26, 28, 27, 27, 26, 26, 26, 28, 26, 26, 26, 26, 26, 27, 28, 27, 27, 28, 29, 27, 27, 31, 29, 28, 31, 30, 29, 30, 31, 31, 30, 35, 31, 33, 31, 33, 34, 35, 32, 31, 31, 31, 30, 31, 30, 30, 30, 28, 27, 29, 30, 27, 29, 30, 23, 29, 26, 28, 26, 25, 24, 26, 26, 26, 26, 25, 25, 27, 27, 27, 27, 27, 26, 29, 27, 27, 28, 30, 29, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 29, 32, 31, 33, 32, 32, 29, 33, 31, 30, 29, 29, 29, 26, 26, 30, 28, 25, 27, 27, 22, 28, 25, 28, 26, 24, 24, 23, 24, 23, 28, 23, 24, 25, 22, 24, 24, 25, 24, 21, 25, 25, 25, 24, 24, 23, 26, 23, 21, 29, 24, 28, 19, 30, 24, 34, 25 ], "output": { "3. Local Minima": { "frames": [ [ 0, 6 ], [ 8, 9 ], [ 11, 11 ], [ 13, 14 ], [ 16, 16 ], [ 48, 48 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 28, 28, 27, 27, 26, 27, 28, 28, 28, 27, 27, 28, 28, 28, 29, 30, 30, 30, 32, 31, 31, 31, 30, 31, 31, 30, 29, 30, 30, 29, 29, 30, 30, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 28, 28, 27, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 30, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 31, 31, 32, 32, 32, 32, 33, 34, 33, 31, 31, 32, 32, 32, 31, 31, 31, 30, 30, 30, 29, 29, 29, 28, 28, 29, 28, 28, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 30, 31, 31, 29, 32, 34, 33, 33, 32, 33, 33, 33, 34, 33, 32, 32, 32, 32, 31, 32, 33, 32, 32, 32, 31, 31, 30, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 32, 31, 29, 29, 30, 31, 31, 30, 30, 31, 32, 32, 31, 30, 31, 32, 31, 30, 31, 32, 31, 32, 33, 33, 33, 33, 34, 34, 33, 37, 36, 34, 33, 33, 34, 33, 33, 32, 31, 31, 32, 31, 30, 28, 31, 28, 29, 30, 30, 28, 28, 29, 28, 28, 29, 29, 28, 29, 29, 31, 31, 30, 29, 31, 31, 30, 30, 30, 30, 30, 31, 30, 30, 31, 31, 31, 31, 32, 32, 32, 34, 34, 33, 35, 35, 34, 33, 32, 32, 31, 31, 32, 33, 32, 32, 30, 29, 30, 30, 30, 29, 28, 32, 28, 29, 28, 27, 27, 30, 29, 26, 31, 20, 24, 30, 36, 29, 27, 26, 29, 33, 26, 36, 35, 28, 28, 31, 34, 27, 32, 30, 33, 28, 34, 30, 34, 27, 47, 34, 31, 28, 36, 30 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 28, 28, 27, 27, 26, 27, 28, 28, 28, 27, 27, 28, 28, 28, 29, 30, 30, 30, 32, 31, 31, 31, 30, 31, 31, 30, 29, 30, 30, 29, 29, 30, 30, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 28, 28, 27, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 30, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 31, 31, 32, 32, 32, 32, 33, 34, 33, 31, 31, 32, 32, 32, 31, 31, 31, 30, 30, 30, 29, 29, 29, 28, 28, 29, 28, 28, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 30, 31, 31, 29, 32, 34, 33, 33, 32, 33, 33, 33, 34, 33, 32, 32, 32, 32, 31, 32, 33, 32, 32, 32, 31, 31, 30, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 32, 31, 29, 29, 30, 31, 31, 30, 30, 31, 32, 32, 31, 30, 31, 32, 31, 30, 31, 32, 31, 32, 33, 33, 33, 33, 34, 34, 33, 37, 36, 34, 33, 33, 34, 33, 33, 32, 31, 31, 32, 31, 30, 28, 31, 28, 29, 30, 30, 28, 28, 29, 28, 28, 29, 29, 28, 29, 29, 31, 31, 30, 29, 31, 31, 30, 30, 30, 30, 30, 31, 30, 30, 31, 31, 31, 31, 32, 32, 32, 34, 34, 33, 35, 35, 34, 33, 32, 32, 31, 31, 32, 33, 32, 32, 30, 29, 30, 30, 30, 29, 28, 32, 28, 29, 28, 27, 27, 30, 29, 26, 31, 20, 24, 30, 36, 29, 27, 26, 29, 33, 26, 36, 35, 28, 28, 31, 34, 27, 32, 30, 33, 28, 34, 30, 34, 27, 47, 34, 31, 28, 36, 30 ], "output": { "2. Local Maxima": { "frames": [ [ 290, 290 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 28, 28, 27, 27, 26, 27, 28, 28, 28, 27, 27, 28, 28, 28, 29, 30, 30, 30, 32, 31, 31, 31, 30, 31, 31, 30, 29, 30, 30, 29, 29, 30, 30, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 28, 28, 27, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 30, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 31, 31, 32, 32, 32, 32, 33, 34, 33, 31, 31, 32, 32, 32, 31, 31, 31, 30, 30, 30, 29, 29, 29, 28, 28, 29, 28, 28, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 30, 31, 31, 29, 32, 34, 33, 33, 32, 33, 33, 33, 34, 33, 32, 32, 32, 32, 31, 32, 33, 32, 32, 32, 31, 31, 30, 30, 30, 30, 30, 30, 29, 29, 29, 28, 28, 32, 31, 29, 29, 30, 31, 31, 30, 30, 31, 32, 32, 31, 30, 31, 32, 31, 30, 31, 32, 31, 32, 33, 33, 33, 33, 34, 34, 33, 37, 36, 34, 33, 33, 34, 33, 33, 32, 31, 31, 32, 31, 30, 28, 31, 28, 29, 30, 30, 28, 28, 29, 28, 28, 29, 29, 28, 29, 29, 31, 31, 30, 29, 31, 31, 30, 30, 30, 30, 30, 31, 30, 30, 31, 31, 31, 31, 32, 32, 32, 34, 34, 33, 35, 35, 34, 33, 32, 32, 31, 31, 32, 33, 32, 32, 30, 29, 30, 30, 30, 29, 28, 32, 28, 29, 28, 27, 27, 30, 29, 26, 31, 20, 24, 30, 36, 29, 27, 26, 29, 33, 26, 36, 35, 28, 28, 31, 34, 27, 32, 30, 33, 28, 34, 30, 34, 27, 47, 34, 31, 28, 36, 30 ], "output": { "3. Local Minima": { "frames": [ [ 265, 266 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 10, 11, 12, 12, 12, 14, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 19, 19, 19, 20, 20, 22, 20, 18, 20, 23, 23, 22, 22, 22, 24, 24, 23, 25, 25, 24, 25, 25, 25, 25, 25, 26, 27, 27, 26, 25, 26, 26, 28, 29, 26, 27, 28, 24, 15, 25, 27, 27, 28, 29, 40, 28, 17, 24, 27, 26, 23, 23, 24, 24, 22, 22, 22, 19, 17, 17, 15, 13, 13, 11, 9, 8, 7, 5, 5, 7, 11, 14, 14, 18, 22, 23, 24, 25, 28, 29, 30, 32, 33, 35, 39, 41, 43, 44, 42, 35, 49, 48, 55, 62, 72, 67, 72, 76, 77, 85, 88, 91, 95, 102, 106, 106, 108, 111, 110, 111, 112, 107, 99, 83, 86, 88, 83, 70, 69, 73, 71, 69, 68, 67, 65, 61, 57, 53, 50, 46, 42, 40, 37, 34, 32, 30, 27, 25, 22, 19, 16, 14, 11, 8, 6, 5, 6, 9, 12, 14, 16, 19, 22, 25, 27, 31, 33, 36, 39, 41, 44, 46, 49, 52, 55, 57, 59, 61, 64, 67, 69, 72, 76, 80, 83, 87, 91, 95, 99, 103, 105, 108, 118, 115, 96, 84, 86, 84, 78, 71, 61, 50, 45, 41, 38, 37, 30, 22, 17, 14, 6, 5, 3, 2, 5, 5, 5, 2, 8, 9, 11, 14, 13, 13, 17, 19, 18, 18, 19, 20, 19, 20, 20, 19, 20, 22, 20, 20, 20, 19, 19, 19, 18, 18, 18, 19, 19, 19, 17, 16, 17, 17, 18, 16, 14, 15, 15, 14, 14, 13, 12, 12, 15, 12, 11, 11, 10, 9, 9, 9, 9, 9, 8, 7, 7, 6, 5, 5, 4, 4, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 10, 11, 12, 12, 12, 14, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 19, 19, 19, 20, 20, 22, 20, 18, 20, 23, 23, 22, 22, 22, 24, 24, 23, 25, 25, 24, 25, 25, 25, 25, 25, 26, 27, 27, 26, 25, 26, 26, 28, 29, 26, 27, 28, 24, 15, 25, 27, 27, 28, 29, 40, 28, 17, 24, 27, 26, 23, 23, 24, 24, 22, 22, 22, 19, 17, 17, 15, 13, 13, 11, 9, 8, 7, 5, 5, 7, 11, 14, 14, 18, 22, 23, 24, 25, 28, 29, 30, 32, 33, 35, 39, 41, 43, 44, 42, 35, 49, 48, 55, 62, 72, 67, 72, 76, 77, 85, 88, 91, 95, 102, 106, 106, 108, 111, 110, 111, 112, 107, 99, 83, 86, 88, 83, 70, 69, 73, 71, 69, 68, 67, 65, 61, 57, 53, 50, 46, 42, 40, 37, 34, 32, 30, 27, 25, 22, 19, 16, 14, 11, 8, 6, 5, 6, 9, 12, 14, 16, 19, 22, 25, 27, 31, 33, 36, 39, 41, 44, 46, 49, 52, 55, 57, 59, 61, 64, 67, 69, 72, 76, 80, 83, 87, 91, 95, 99, 103, 105, 108, 118, 115, 96, 84, 86, 84, 78, 71, 61, 50, 45, 41, 38, 37, 30, 22, 17, 14, 6, 5, 3, 2, 5, 5, 5, 2, 8, 9, 11, 14, 13, 13, 17, 19, 18, 18, 19, 20, 19, 20, 20, 19, 20, 22, 20, 20, 20, 19, 19, 19, 18, 18, 18, 19, 19, 19, 17, 16, 17, 17, 18, 16, 14, 15, 15, 14, 14, 13, 12, 12, 15, 12, 11, 11, 10, 9, 9, 9, 9, 9, 8, 7, 7, 6, 5, 5, 4, 4, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 175, 185 ], [ 250, 257 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 10, 11, 12, 12, 12, 14, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 19, 19, 19, 20, 20, 22, 20, 18, 20, 23, 23, 22, 22, 22, 24, 24, 23, 25, 25, 24, 25, 25, 25, 25, 25, 26, 27, 27, 26, 25, 26, 26, 28, 29, 26, 27, 28, 24, 15, 25, 27, 27, 28, 29, 40, 28, 17, 24, 27, 26, 23, 23, 24, 24, 22, 22, 22, 19, 17, 17, 15, 13, 13, 11, 9, 8, 7, 5, 5, 7, 11, 14, 14, 18, 22, 23, 24, 25, 28, 29, 30, 32, 33, 35, 39, 41, 43, 44, 42, 35, 49, 48, 55, 62, 72, 67, 72, 76, 77, 85, 88, 91, 95, 102, 106, 106, 108, 111, 110, 111, 112, 107, 99, 83, 86, 88, 83, 70, 69, 73, 71, 69, 68, 67, 65, 61, 57, 53, 50, 46, 42, 40, 37, 34, 32, 30, 27, 25, 22, 19, 16, 14, 11, 8, 6, 5, 6, 9, 12, 14, 16, 19, 22, 25, 27, 31, 33, 36, 39, 41, 44, 46, 49, 52, 55, 57, 59, 61, 64, 67, 69, 72, 76, 80, 83, 87, 91, 95, 99, 103, 105, 108, 118, 115, 96, 84, 86, 84, 78, 71, 61, 50, 45, 41, 38, 37, 30, 22, 17, 14, 6, 5, 3, 2, 5, 5, 5, 2, 8, 9, 11, 14, 13, 13, 17, 19, 18, 18, 19, 20, 19, 20, 20, 19, 20, 22, 20, 20, 20, 19, 19, 19, 18, 18, 18, 19, 19, 19, 17, 16, 17, 17, 18, 16, 14, 15, 15, 14, 14, 13, 12, 12, 15, 12, 11, 11, 10, 9, 9, 9, 9, 9, 8, 7, 7, 6, 5, 5, 4, 4, 4, 3, 3, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 86 ], [ 89, 89 ], [ 111, 111 ], [ 119, 119 ], [ 123, 124 ], [ 127, 148 ], [ 211, 225 ], [ 270, 399 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 3, 2, 1, 1, 1, 2, 2, 0, 2, 1, 3, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 4, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 3, 2, 1, 1, 1, 2, 2, 0, 2, 1, 3, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 4, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 99, 99 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 3, 2, 1, 1, 1, 2, 2, 0, 2, 1, 3, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 4, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 9, 9 ], [ 24, 24 ], [ 27, 27 ], [ 29, 35 ], [ 37, 40 ], [ 42, 42 ], [ 54, 54 ], [ 59, 60 ], [ 64, 64 ], [ 66, 67 ], [ 70, 73 ], [ 76, 78 ], [ 81, 81 ], [ 83, 84 ], [ 87, 91 ], [ 101, 107 ], [ 109, 109 ], [ 111, 118 ], [ 121, 123 ], [ 126, 127 ], [ 135, 136 ], [ 139, 139 ], [ 156, 157 ], [ 167, 167 ], [ 171, 173 ], [ 180, 182 ], [ 187, 189 ], [ 193, 194 ], [ 198, 200 ], [ 203, 208 ], [ 211, 225 ], [ 228, 230 ], [ 232, 235 ], [ 238, 241 ], [ 243, 244 ], [ 247, 247 ], [ 249, 254 ], [ 257, 260 ], [ 266, 266 ], [ 269, 272 ], [ 274, 279 ], [ 282, 282 ], [ 285, 287 ], [ 289, 293 ], [ 295, 296 ], [ 300, 303 ], [ 309, 309 ], [ 312, 312 ], [ 328, 328 ], [ 362, 362 ], [ 366, 367 ], [ 370, 371 ], [ 376, 377 ], [ 387, 387 ], [ 398, 399 ], [ 438, 438 ], [ 458, 459 ], [ 463, 464 ], [ 469, 472 ], [ 479, 485 ], [ 487, 493 ], [ 495, 497 ], [ 503, 503 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 26, 26, 28, 30, 29, 27, 26, 26, 28, 28, 27, 28, 29, 28, 27, 26, 27, 29, 29, 28, 28, 28, 28, 29, 30, 29, 28, 28, 30, 30, 29, 30, 30, 31, 32, 32, 33, 33, 33, 33, 32, 32, 33, 32, 31, 31, 32, 31, 30, 30, 30, 30, 29, 27, 27, 27, 27, 27, 27, 26, 26, 27, 27, 26, 26, 26, 26, 25, 26, 25, 25, 26, 26, 25, 26, 27, 27, 26, 26, 27, 28, 26, 26, 26, 28, 28, 27, 28, 28, 29, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 32, 32, 32, 33, 33, 33, 34, 33, 32, 32, 32, 32, 32, 32, 31, 30, 30, 29, 29, 29, 29, 29, 28, 26, 28, 27, 26, 27, 27, 28, 28, 26, 26, 27, 27, 27, 28, 27, 27, 28, 28, 27, 28, 29, 28, 28, 29, 29, 29, 29, 29, 30, 30, 29, 30, 30, 30, 29, 30, 31, 31, 31, 32, 32, 32, 34, 35, 34, 34, 34, 34, 33, 34, 32, 32, 33, 32, 33, 32, 32, 31, 30, 28, 30, 29, 28, 28, 29, 29, 28, 28, 28, 27, 26, 27, 27, 27, 27, 28, 28, 27, 27, 26, 27, 28, 28, 28, 28, 27, 27, 29, 29, 28, 28, 28, 29, 29, 30, 31, 30, 30, 30, 30, 31, 31, 31, 30, 31, 31, 32, 32, 33, 34, 36, 36, 35, 34, 34, 34, 33, 33, 33, 32, 32, 31, 30, 31, 31, 31, 30, 28, 29, 29, 29, 28, 28, 27, 28, 28, 27, 27, 28, 28, 28, 27, 27, 28, 28, 28, 29, 29, 28, 28, 29, 29, 28, 29, 30, 29, 28, 28, 30, 31, 29, 29, 30, 28, 29, 30, 31, 30, 31, 32, 33, 32, 34, 34, 34, 34, 35, 36, 35, 33, 33, 34, 34, 33, 33, 33, 32, 33, 33, 31, 30, 31, 30, 30, 29, 27, 29, 30, 29, 28, 26, 27, 28, 28, 29, 27, 27, 27, 27, 27, 28, 29, 29, 28, 26, 27, 29 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 26, 26, 28, 30, 29, 27, 26, 26, 28, 28, 27, 28, 29, 28, 27, 26, 27, 29, 29, 28, 28, 28, 28, 29, 30, 29, 28, 28, 30, 30, 29, 30, 30, 31, 32, 32, 33, 33, 33, 33, 32, 32, 33, 32, 31, 31, 32, 31, 30, 30, 30, 30, 29, 27, 27, 27, 27, 27, 27, 26, 26, 27, 27, 26, 26, 26, 26, 25, 26, 25, 25, 26, 26, 25, 26, 27, 27, 26, 26, 27, 28, 26, 26, 26, 28, 28, 27, 28, 28, 29, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 32, 32, 32, 33, 33, 33, 34, 33, 32, 32, 32, 32, 32, 32, 31, 30, 30, 29, 29, 29, 29, 29, 28, 26, 28, 27, 26, 27, 27, 28, 28, 26, 26, 27, 27, 27, 28, 27, 27, 28, 28, 27, 28, 29, 28, 28, 29, 29, 29, 29, 29, 30, 30, 29, 30, 30, 30, 29, 30, 31, 31, 31, 32, 32, 32, 34, 35, 34, 34, 34, 34, 33, 34, 32, 32, 33, 32, 33, 32, 32, 31, 30, 28, 30, 29, 28, 28, 29, 29, 28, 28, 28, 27, 26, 27, 27, 27, 27, 28, 28, 27, 27, 26, 27, 28, 28, 28, 28, 27, 27, 29, 29, 28, 28, 28, 29, 29, 30, 31, 30, 30, 30, 30, 31, 31, 31, 30, 31, 31, 32, 32, 33, 34, 36, 36, 35, 34, 34, 34, 33, 33, 33, 32, 32, 31, 30, 31, 31, 31, 30, 28, 29, 29, 29, 28, 28, 27, 28, 28, 27, 27, 28, 28, 28, 27, 27, 28, 28, 28, 29, 29, 28, 28, 29, 29, 28, 29, 30, 29, 28, 28, 30, 31, 29, 29, 30, 28, 29, 30, 31, 30, 31, 32, 33, 32, 34, 34, 34, 34, 35, 36, 35, 33, 33, 34, 34, 33, 33, 33, 32, 33, 33, 31, 30, 31, 30, 30, 29, 27, 29, 30, 29, 28, 26, 27, 28, 28, 29, 27, 27, 27, 27, 27, 28, 29, 29, 28, 26, 27, 29 ], "output": { "2. Local Maxima": { "frames": [ [ 3, 4 ], [ 12, 12 ], [ 17, 18 ], [ 23, 25 ], [ 28, 52 ], [ 89, 89 ], [ 92, 123 ], [ 145, 145 ], [ 148, 183 ], [ 185, 186 ], [ 189, 190 ], [ 212, 213 ], [ 217, 251 ], [ 253, 255 ], [ 271, 272 ], [ 275, 276 ], [ 278, 280 ], [ 283, 287 ], [ 289, 319 ], [ 321, 323 ], [ 329, 329 ], [ 336, 337 ], [ 341, 341 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 26, 26, 28, 30, 29, 27, 26, 26, 28, 28, 27, 28, 29, 28, 27, 26, 27, 29, 29, 28, 28, 28, 28, 29, 30, 29, 28, 28, 30, 30, 29, 30, 30, 31, 32, 32, 33, 33, 33, 33, 32, 32, 33, 32, 31, 31, 32, 31, 30, 30, 30, 30, 29, 27, 27, 27, 27, 27, 27, 26, 26, 27, 27, 26, 26, 26, 26, 25, 26, 25, 25, 26, 26, 25, 26, 27, 27, 26, 26, 27, 28, 26, 26, 26, 28, 28, 27, 28, 28, 29, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 32, 32, 32, 33, 33, 33, 34, 33, 32, 32, 32, 32, 32, 32, 31, 30, 30, 29, 29, 29, 29, 29, 28, 26, 28, 27, 26, 27, 27, 28, 28, 26, 26, 27, 27, 27, 28, 27, 27, 28, 28, 27, 28, 29, 28, 28, 29, 29, 29, 29, 29, 30, 30, 29, 30, 30, 30, 29, 30, 31, 31, 31, 32, 32, 32, 34, 35, 34, 34, 34, 34, 33, 34, 32, 32, 33, 32, 33, 32, 32, 31, 30, 28, 30, 29, 28, 28, 29, 29, 28, 28, 28, 27, 26, 27, 27, 27, 27, 28, 28, 27, 27, 26, 27, 28, 28, 28, 28, 27, 27, 29, 29, 28, 28, 28, 29, 29, 30, 31, 30, 30, 30, 30, 31, 31, 31, 30, 31, 31, 32, 32, 33, 34, 36, 36, 35, 34, 34, 34, 33, 33, 33, 32, 32, 31, 30, 31, 31, 31, 30, 28, 29, 29, 29, 28, 28, 27, 28, 28, 27, 27, 28, 28, 28, 27, 27, 28, 28, 28, 29, 29, 28, 28, 29, 29, 28, 29, 30, 29, 28, 28, 30, 31, 29, 29, 30, 28, 29, 30, 31, 30, 31, 32, 33, 32, 34, 34, 34, 34, 35, 36, 35, 33, 33, 34, 34, 33, 33, 33, 32, 33, 33, 31, 30, 31, 30, 30, 29, 27, 29, 30, 29, 28, 26, 27, 28, 28, 29, 27, 27, 27, 27, 27, 28, 29, 29, 28, 26, 27, 29 ], "output": { "3. Local Minima": { "frames": [ [ 0, 1 ], [ 5, 7 ], [ 10, 10 ], [ 14, 16 ], [ 53, 79 ], [ 81, 83 ], [ 86, 86 ], [ 125, 125 ], [ 127, 130 ], [ 133, 137 ], [ 139, 140 ], [ 143, 143 ], [ 194, 199 ], [ 202, 205 ], [ 210, 211 ], [ 258, 258 ], [ 261, 262 ], [ 266, 267 ], [ 320, 320 ], [ 325, 326 ], [ 330, 334 ], [ 339, 340 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 63, 63, 53, 66, 57, 56, 53, 49, 66, 57, 57, 57, 58, 59, 60, 60, 59, 60, 61, 62, 62, 62, 65, 65, 63, 62, 62, 57, 71, 61, 61, 62, 62, 61, 60, 60, 62, 61, 61, 61, 62, 62, 61, 61, 60, 59, 58, 55, 56, 55, 52, 53, 54, 53, 55, 53, 54, 55, 58, 60, 60, 64, 60, 62, 67, 61, 61, 66, 71, 69, 65, 65, 65, 64, 63, 62, 61, 61, 62, 61, 59, 58, 60, 61, 62, 63, 62, 59, 61, 61, 66, 60, 59, 56, 54, 52, 56, 49, 60, 58, 56, 55, 56, 55, 60, 58, 57, 58, 62, 61, 62, 60, 61, 61, 61, 63, 62, 57, 55, 61, 62, 64, 49, 58, 62, 57, 59, 59, 59, 59, 58, 58, 57, 59, 58, 57, 55, 55, 55, 55, 53, 51, 53, 54, 53, 54, 54, 56, 53, 59, 60, 61, 61, 62, 62, 56, 66, 65, 63, 63, 58, 67, 63, 62, 60, 61, 60, 59 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 63, 63, 53, 66, 57, 56, 53, 49, 66, 57, 57, 57, 58, 59, 60, 60, 59, 60, 61, 62, 62, 62, 65, 65, 63, 62, 62, 57, 71, 61, 61, 62, 62, 61, 60, 60, 62, 61, 61, 61, 62, 62, 61, 61, 60, 59, 58, 55, 56, 55, 52, 53, 54, 53, 55, 53, 54, 55, 58, 60, 60, 64, 60, 62, 67, 61, 61, 66, 71, 69, 65, 65, 65, 64, 63, 62, 61, 61, 62, 61, 59, 58, 60, 61, 62, 63, 62, 59, 61, 61, 66, 60, 59, 56, 54, 52, 56, 49, 60, 58, 56, 55, 56, 55, 60, 58, 57, 58, 62, 61, 62, 60, 61, 61, 61, 63, 62, 57, 55, 61, 62, 64, 49, 58, 62, 57, 59, 59, 59, 59, 58, 58, 57, 59, 58, 57, 55, 55, 55, 55, 53, 51, 53, 54, 53, 54, 54, 56, 53, 59, 60, 61, 61, 62, 62, 56, 66, 65, 63, 63, 58, 67, 63, 62, 60, 61, 60, 59 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1 ], [ 3, 4 ], [ 8, 46 ], [ 58, 92 ], [ 98, 99 ], [ 104, 117 ], [ 119, 121 ], [ 123, 135 ], [ 149, 154 ], [ 156, 167 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 63, 63, 53, 66, 57, 56, 53, 49, 66, 57, 57, 57, 58, 59, 60, 60, 59, 60, 61, 62, 62, 62, 65, 65, 63, 62, 62, 57, 71, 61, 61, 62, 62, 61, 60, 60, 62, 61, 61, 61, 62, 62, 61, 61, 60, 59, 58, 55, 56, 55, 52, 53, 54, 53, 55, 53, 54, 55, 58, 60, 60, 64, 60, 62, 67, 61, 61, 66, 71, 69, 65, 65, 65, 64, 63, 62, 61, 61, 62, 61, 59, 58, 60, 61, 62, 63, 62, 59, 61, 61, 66, 60, 59, 56, 54, 52, 56, 49, 60, 58, 56, 55, 56, 55, 60, 58, 57, 58, 62, 61, 62, 60, 61, 61, 61, 63, 62, 57, 55, 61, 62, 64, 49, 58, 62, 57, 59, 59, 59, 59, 58, 58, 57, 59, 58, 57, 55, 55, 55, 55, 53, 51, 53, 54, 53, 54, 54, 56, 53, 59, 60, 61, 61, 62, 62, 56, 66, 65, 63, 63, 58, 67, 63, 62, 60, 61, 60, 59 ], "output": { "3. Local Minima": { "frames": [ [ 2, 2 ], [ 6, 7 ], [ 50, 51 ], [ 53, 53 ], [ 55, 55 ], [ 95, 95 ], [ 97, 97 ], [ 122, 122 ], [ 140, 142 ], [ 144, 144 ], [ 148, 148 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 7, 7, 6, 4, 3, 4, 6, 7, 7, 9, 12, 15, 17, 18, 20, 20, 23, 26, 29, 31, 31, 33, 35, 36, 39, 43, 46, 49, 48, 45, 42, 41, 42, 40, 36, 34, 29, 24, 22, 18, 13, 6, 6, 2, 2, 5, 5, 13, 17, 21, 26, 31, 33, 35, 38, 41, 43, 45, 47, 48, 47, 44, 43, 42, 39, 35, 30, 27, 24, 24, 23, 21, 18, 16, 15, 12, 9, 7, 7, 3, 1, 0, 3, 6, 7, 7, 10, 13, 15, 14, 17, 23, 25, 24, 26, 29, 32, 34, 37, 38, 36, 38, 40, 40, 38, 37, 35, 31, 27, 24, 20, 16, 13, 8, 2, 3, 7, 11, 16, 20, 24, 28, 30, 34, 38, 39, 41, 43, 43, 41, 38, 36, 31, 27, 26, 26, 24, 23, 22, 20, 17, 14, 11, 11, 9, 6, 3, 3, 2, 4, 6, 6, 7, 10, 11, 11, 16, 19, 20, 22, 24, 25, 28, 30, 32, 34, 36, 40, 41, 42, 43, 41, 40, 40, 35, 30, 26, 23, 20, 15, 11, 7, 8, 15, 18, 21, 24, 29, 32, 35, 38, 42, 44, 45, 43, 41, 42, 38, 32, 30, 29, 27, 25, 23, 22, 21, 17, 15, 16, 14, 11, 8, 8, 10, 9, 10, 10, 12, 13, 16, 19, 20, 20, 22, 25, 25, 27, 30, 32, 35, 36, 37, 36, 39, 38, 36, 36, 33, 27, 23, 18, 14, 8, 6, 8, 12, 16, 20, 25, 29, 33, 37, 40, 42, 44, 45, 45, 42, 40, 37, 31, 28, 30, 28, 25, 22, 21, 21, 19, 15, 14, 13, 10, 8, 7, 6, 6, 6, 6, 8, 8, 10, 13, 15, 15, 17, 19, 21, 24, 25, 26, 29, 33, 34, 33, 35, 40, 42, 44, 46, 49, 48, 46, 43, 41, 41, 38, 34, 30, 25, 18, 15, 13, 8, 1, 7, 13, 15, 21, 26, 30, 34, 39, 43, 45, 46, 47, 49, 49, 46, 42, 39, 35, 31, 30, 30, 28, 27, 24, 21, 20, 20, 17, 12, 12, 11, 7, 5, 3, 4, 3, 2, 7, 9, 8, 9, 13, 15, 15, 18, 19, 19, 22, 25, 28, 29, 30, 36, 38, 38, 39, 28, 29, 29, 30, 29, 25, 23, 17, 11, 9, 9, 6, 0, 3, 4, 7, 8, 10, 11, 12, 10, 9, 11, 12, 12, 10, 12, 13, 10, 8, 5, 9, 6, 4, 2, 3, 3, 2, 3, 3, 3, 4, 3, 3, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 7, 7, 6, 4, 3, 4, 6, 7, 7, 9, 12, 15, 17, 18, 20, 20, 23, 26, 29, 31, 31, 33, 35, 36, 39, 43, 46, 49, 48, 45, 42, 41, 42, 40, 36, 34, 29, 24, 22, 18, 13, 6, 6, 2, 2, 5, 5, 13, 17, 21, 26, 31, 33, 35, 38, 41, 43, 45, 47, 48, 47, 44, 43, 42, 39, 35, 30, 27, 24, 24, 23, 21, 18, 16, 15, 12, 9, 7, 7, 3, 1, 0, 3, 6, 7, 7, 10, 13, 15, 14, 17, 23, 25, 24, 26, 29, 32, 34, 37, 38, 36, 38, 40, 40, 38, 37, 35, 31, 27, 24, 20, 16, 13, 8, 2, 3, 7, 11, 16, 20, 24, 28, 30, 34, 38, 39, 41, 43, 43, 41, 38, 36, 31, 27, 26, 26, 24, 23, 22, 20, 17, 14, 11, 11, 9, 6, 3, 3, 2, 4, 6, 6, 7, 10, 11, 11, 16, 19, 20, 22, 24, 25, 28, 30, 32, 34, 36, 40, 41, 42, 43, 41, 40, 40, 35, 30, 26, 23, 20, 15, 11, 7, 8, 15, 18, 21, 24, 29, 32, 35, 38, 42, 44, 45, 43, 41, 42, 38, 32, 30, 29, 27, 25, 23, 22, 21, 17, 15, 16, 14, 11, 8, 8, 10, 9, 10, 10, 12, 13, 16, 19, 20, 20, 22, 25, 25, 27, 30, 32, 35, 36, 37, 36, 39, 38, 36, 36, 33, 27, 23, 18, 14, 8, 6, 8, 12, 16, 20, 25, 29, 33, 37, 40, 42, 44, 45, 45, 42, 40, 37, 31, 28, 30, 28, 25, 22, 21, 21, 19, 15, 14, 13, 10, 8, 7, 6, 6, 6, 6, 8, 8, 10, 13, 15, 15, 17, 19, 21, 24, 25, 26, 29, 33, 34, 33, 35, 40, 42, 44, 46, 49, 48, 46, 43, 41, 41, 38, 34, 30, 25, 18, 15, 13, 8, 1, 7, 13, 15, 21, 26, 30, 34, 39, 43, 45, 46, 47, 49, 49, 46, 42, 39, 35, 31, 30, 30, 28, 27, 24, 21, 20, 20, 17, 12, 12, 11, 7, 5, 3, 4, 3, 2, 7, 9, 8, 9, 13, 15, 15, 18, 19, 19, 22, 25, 28, 29, 30, 36, 38, 38, 39, 28, 29, 29, 30, 29, 25, 23, 17, 11, 9, 9, 6, 0, 3, 4, 7, 8, 10, 11, 12, 10, 9, 11, 12, 12, 10, 12, 13, 10, 8, 5, 9, 6, 4, 2, 3, 3, 2, 3, 3, 3, 4, 3, 3, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 25, 33 ], [ 55, 63 ], [ 102, 103 ], [ 126, 129 ], [ 167, 173 ], [ 191, 196 ], [ 252, 258 ], [ 296, 305 ], [ 323, 330 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 7, 7, 6, 4, 3, 4, 6, 7, 7, 9, 12, 15, 17, 18, 20, 20, 23, 26, 29, 31, 31, 33, 35, 36, 39, 43, 46, 49, 48, 45, 42, 41, 42, 40, 36, 34, 29, 24, 22, 18, 13, 6, 6, 2, 2, 5, 5, 13, 17, 21, 26, 31, 33, 35, 38, 41, 43, 45, 47, 48, 47, 44, 43, 42, 39, 35, 30, 27, 24, 24, 23, 21, 18, 16, 15, 12, 9, 7, 7, 3, 1, 0, 3, 6, 7, 7, 10, 13, 15, 14, 17, 23, 25, 24, 26, 29, 32, 34, 37, 38, 36, 38, 40, 40, 38, 37, 35, 31, 27, 24, 20, 16, 13, 8, 2, 3, 7, 11, 16, 20, 24, 28, 30, 34, 38, 39, 41, 43, 43, 41, 38, 36, 31, 27, 26, 26, 24, 23, 22, 20, 17, 14, 11, 11, 9, 6, 3, 3, 2, 4, 6, 6, 7, 10, 11, 11, 16, 19, 20, 22, 24, 25, 28, 30, 32, 34, 36, 40, 41, 42, 43, 41, 40, 40, 35, 30, 26, 23, 20, 15, 11, 7, 8, 15, 18, 21, 24, 29, 32, 35, 38, 42, 44, 45, 43, 41, 42, 38, 32, 30, 29, 27, 25, 23, 22, 21, 17, 15, 16, 14, 11, 8, 8, 10, 9, 10, 10, 12, 13, 16, 19, 20, 20, 22, 25, 25, 27, 30, 32, 35, 36, 37, 36, 39, 38, 36, 36, 33, 27, 23, 18, 14, 8, 6, 8, 12, 16, 20, 25, 29, 33, 37, 40, 42, 44, 45, 45, 42, 40, 37, 31, 28, 30, 28, 25, 22, 21, 21, 19, 15, 14, 13, 10, 8, 7, 6, 6, 6, 6, 8, 8, 10, 13, 15, 15, 17, 19, 21, 24, 25, 26, 29, 33, 34, 33, 35, 40, 42, 44, 46, 49, 48, 46, 43, 41, 41, 38, 34, 30, 25, 18, 15, 13, 8, 1, 7, 13, 15, 21, 26, 30, 34, 39, 43, 45, 46, 47, 49, 49, 46, 42, 39, 35, 31, 30, 30, 28, 27, 24, 21, 20, 20, 17, 12, 12, 11, 7, 5, 3, 4, 3, 2, 7, 9, 8, 9, 13, 15, 15, 18, 19, 19, 22, 25, 28, 29, 30, 36, 38, 38, 39, 28, 29, 29, 30, 29, 25, 23, 17, 11, 9, 9, 6, 0, 3, 4, 7, 8, 10, 11, 12, 10, 9, 11, 12, 12, 10, 12, 13, 10, 8, 5, 9, 6, 4, 2, 3, 3, 2, 3, 3, 3, 4, 3, 3, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4 ], "output": { "3. Local Minima": { "frames": [ [ 0, 9 ], [ 41, 46 ], [ 76, 85 ], [ 113, 116 ], [ 144, 152 ], [ 181, 182 ], [ 211, 212 ], [ 214, 214 ], [ 242, 244 ], [ 273, 280 ], [ 313, 315 ], [ 346, 355 ], [ 380, 387 ], [ 392, 392 ], [ 400, 431 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 9, 9, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 17, 17, 16, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 13, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 13, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 12, 12, 13, 15, 14, 13, 13, 15, 15, 14, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 11, 12, 12, 13, 15, 12, 10, 13, 13, 11, 11, 11, 11, 10, 11, 11, 11, 10, 10, 10, 11, 11, 11, 10, 11, 11, 10, 10, 11, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 17, 18, 19, 18, 18, 17, 18, 17, 17, 16, 16, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 15, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 15, 16, 16, 15, 15, 15, 15, 15, 15, 14, 14, 15, 14, 14, 14, 13, 13, 12, 12, 12, 11, 11, 12, 11, 10, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 6, 6, 5, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 8, 7, 7, 7, 7, 7, 8, 8, 8, 9, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 8, 8, 9, 9, 9, 10, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 7, 8, 9, 9, 8, 8, 8, 9, 8, 7, 7, 8, 7, 7, 7, 7, 6, 5, 6, 7, 6, 5, 6, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 5, 5, 5, 5, 6, 5, 6, 6, 7, 8, 7, 7, 8, 8, 9, 10, 10, 9, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 15, 15, 16, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 12, 11, 12, 12, 12, 14, 13, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 12, 13, 13, 13, 13, 13, 13, 14, 13, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 17, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 22, 21, 21, 22, 21, 21, 21, 21, 20, 20, 21, 20, 20, 19, 20, 19, 19, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 14, 14, 14, 13, 13, 14, 15, 14, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 17, 16, 16, 16, 16, 15, 16, 15, 14, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 14, 14, 14, 14, 14, 13, 13, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 13, 14, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 13, 14, 14, 15, 15, 15, 15, 15, 15, 15 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 9, 9, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 17, 17, 16, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 13, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 13, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 12, 12, 13, 15, 14, 13, 13, 15, 15, 14, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 11, 12, 12, 13, 15, 12, 10, 13, 13, 11, 11, 11, 11, 10, 11, 11, 11, 10, 10, 10, 11, 11, 11, 10, 11, 11, 10, 10, 11, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 17, 18, 19, 18, 18, 17, 18, 17, 17, 16, 16, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 15, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 15, 16, 16, 15, 15, 15, 15, 15, 15, 14, 14, 15, 14, 14, 14, 13, 13, 12, 12, 12, 11, 11, 12, 11, 10, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 6, 6, 5, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 8, 7, 7, 7, 7, 7, 8, 8, 8, 9, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 8, 8, 9, 9, 9, 10, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 7, 8, 9, 9, 8, 8, 8, 9, 8, 7, 7, 8, 7, 7, 7, 7, 6, 5, 6, 7, 6, 5, 6, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 5, 5, 5, 5, 6, 5, 6, 6, 7, 8, 7, 7, 8, 8, 9, 10, 10, 9, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 15, 15, 16, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 12, 11, 12, 12, 12, 14, 13, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 12, 13, 13, 13, 13, 13, 13, 14, 13, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 17, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 22, 21, 21, 22, 21, 21, 21, 21, 20, 20, 21, 20, 20, 19, 20, 19, 19, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 14, 14, 14, 13, 13, 14, 15, 14, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 17, 16, 16, 16, 16, 15, 16, 15, 14, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 14, 14, 14, 14, 14, 13, 13, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 13, 14, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 13, 14, 14, 15, 15, 15, 15, 15, 15, 15 ], "output": { "2. Local Maxima": { "frames": [ [ 177, 188 ], [ 290, 312 ], [ 314, 317 ], [ 319, 319 ], [ 691, 712 ], [ 801, 802 ], [ 804, 840 ], [ 911, 947 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 9, 9, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 17, 17, 16, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 13, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 13, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 12, 12, 13, 15, 14, 13, 13, 15, 15, 14, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 11, 12, 12, 13, 15, 12, 10, 13, 13, 11, 11, 11, 11, 10, 11, 11, 11, 10, 10, 10, 11, 11, 11, 10, 11, 11, 10, 10, 11, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 17, 18, 19, 18, 18, 17, 18, 17, 17, 16, 16, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 15, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 15, 16, 16, 15, 15, 15, 15, 15, 15, 14, 14, 15, 14, 14, 14, 13, 13, 12, 12, 12, 11, 11, 12, 11, 10, 11, 11, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 9, 8, 8, 8, 8, 9, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 6, 6, 5, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 8, 7, 7, 7, 7, 7, 8, 8, 8, 9, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 8, 8, 9, 9, 9, 10, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 7, 8, 9, 9, 8, 8, 8, 9, 8, 7, 7, 8, 7, 7, 7, 7, 6, 5, 6, 7, 6, 5, 6, 5, 5, 4, 4, 4, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 5, 5, 5, 5, 6, 5, 6, 6, 7, 8, 7, 7, 8, 8, 9, 10, 10, 9, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 15, 15, 16, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 12, 11, 12, 12, 12, 14, 13, 12, 12, 12, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 12, 12, 13, 13, 13, 13, 13, 13, 14, 13, 13, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 17, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 22, 22, 21, 21, 22, 21, 21, 21, 21, 20, 20, 21, 20, 20, 19, 20, 19, 19, 18, 18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 14, 14, 14, 13, 13, 14, 15, 14, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 17, 16, 16, 16, 16, 15, 16, 15, 14, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 14, 14, 14, 14, 14, 13, 13, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 13, 14, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 13, 14, 14, 15, 15, 15, 15, 15, 15, 15 ], "output": { "3. Local Minima": { "frames": [ [ 499, 501 ], [ 507, 517 ], [ 520, 520 ], [ 523, 523 ], [ 526, 526 ], [ 600, 600 ], [ 604, 604 ], [ 606, 648 ], [ 651, 654 ], [ 656, 656 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 4, 4, 3, 2, 3, 4, 3, 4, 4, 4, 5, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 5, 5, 4, 4, 4, 5, 5, 4, 5, 5, 6, 6, 5, 4, 5, 6, 7, 5, 5, 6, 7, 7, 6, 7, 8, 7, 8, 7, 8, 8, 9, 8, 8, 9, 10, 10, 9, 9, 10, 10, 11, 11, 11, 12, 12, 11, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 16, 17, 18, 18, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 19, 20, 20, 18, 19, 19, 18, 17, 18, 18, 17, 17, 17, 17, 17, 17, 18, 18, 17, 19, 19, 18, 20, 21, 21, 23, 25, 27, 27, 26, 28, 29, 28, 27, 28, 28, 28, 29, 30, 29, 29, 31, 32, 32, 31, 30, 31, 32, 30, 29, 31, 31, 31, 29, 22, 30, 29, 29, 27, 26, 27, 27, 28, 26, 26, 26, 25, 24, 24, 24, 25, 26, 25, 24, 23, 22, 22, 23, 23, 21, 15, 14, 15, 17, 23, 32, 25, 16, 14, 13, 11, 10, 10, 13, 11, 10, 9, 7, 7, 9, 9, 7, 6, 5, 6, 11, 8, 6, 4, 4, 6, 9, 5, 4, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 3, 4, 2, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 3, 4, 2, 2, 3, 5, 2, 1, 3, 2, 1, 1, 1, 1, 1, 8, 3, 3, 2, 1, 1, 3, 2, 4, 2, 2, 4, 4, 4, 5, 5, 5, 5, 4, 5, 7, 7, 8, 9, 8, 8, 12, 14, 14, 17, 9, 11, 15, 16, 16, 18, 18, 16, 16, 19, 22, 22, 23, 24, 23, 25, 27, 26, 26, 30, 29, 16, 29, 33, 32, 30, 31, 32, 33, 33, 32, 32, 32, 33, 32, 32, 32, 32, 32, 33, 29, 26, 23, 29, 29, 28, 31, 28, 27, 27, 25, 24, 24, 24, 25, 23, 21, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 20, 19, 20, 20, 20, 17, 17, 17, 17, 18, 17, 17, 19, 18, 18, 19, 20, 21, 19, 19, 19, 20, 19, 19, 21, 22, 21, 21, 21, 22, 22, 22 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 4, 4, 3, 2, 3, 4, 3, 4, 4, 4, 5, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 5, 5, 4, 4, 4, 5, 5, 4, 5, 5, 6, 6, 5, 4, 5, 6, 7, 5, 5, 6, 7, 7, 6, 7, 8, 7, 8, 7, 8, 8, 9, 8, 8, 9, 10, 10, 9, 9, 10, 10, 11, 11, 11, 12, 12, 11, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 16, 17, 18, 18, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 19, 20, 20, 18, 19, 19, 18, 17, 18, 18, 17, 17, 17, 17, 17, 17, 18, 18, 17, 19, 19, 18, 20, 21, 21, 23, 25, 27, 27, 26, 28, 29, 28, 27, 28, 28, 28, 29, 30, 29, 29, 31, 32, 32, 31, 30, 31, 32, 30, 29, 31, 31, 31, 29, 22, 30, 29, 29, 27, 26, 27, 27, 28, 26, 26, 26, 25, 24, 24, 24, 25, 26, 25, 24, 23, 22, 22, 23, 23, 21, 15, 14, 15, 17, 23, 32, 25, 16, 14, 13, 11, 10, 10, 13, 11, 10, 9, 7, 7, 9, 9, 7, 6, 5, 6, 11, 8, 6, 4, 4, 6, 9, 5, 4, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 3, 4, 2, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 3, 4, 2, 2, 3, 5, 2, 1, 3, 2, 1, 1, 1, 1, 1, 8, 3, 3, 2, 1, 1, 3, 2, 4, 2, 2, 4, 4, 4, 5, 5, 5, 5, 4, 5, 7, 7, 8, 9, 8, 8, 12, 14, 14, 17, 9, 11, 15, 16, 16, 18, 18, 16, 16, 19, 22, 22, 23, 24, 23, 25, 27, 26, 26, 30, 29, 16, 29, 33, 32, 30, 31, 32, 33, 33, 32, 32, 32, 33, 32, 32, 32, 32, 32, 33, 29, 26, 23, 29, 29, 28, 31, 28, 27, 27, 25, 24, 24, 24, 25, 23, 21, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 20, 19, 20, 20, 20, 17, 17, 17, 17, 18, 17, 17, 19, 18, 18, 19, 20, 21, 19, 19, 19, 20, 19, 19, 21, 22, 21, 21, 21, 22, 22, 22 ], "output": { "2. Local Maxima": { "frames": [ [ 205, 206 ], [ 208, 231 ], [ 233, 236 ], [ 238, 240 ], [ 263, 263 ], [ 392, 392 ], [ 395, 396 ], [ 398, 416 ], [ 419, 425 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 4, 4, 3, 2, 3, 4, 3, 4, 4, 4, 5, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 5, 5, 4, 4, 4, 5, 5, 4, 5, 5, 6, 6, 5, 4, 5, 6, 7, 5, 5, 6, 7, 7, 6, 7, 8, 7, 8, 7, 8, 8, 9, 8, 8, 9, 10, 10, 9, 9, 10, 10, 11, 11, 11, 12, 12, 11, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 16, 17, 18, 18, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 19, 20, 20, 18, 19, 19, 18, 17, 18, 18, 17, 17, 17, 17, 17, 17, 18, 18, 17, 19, 19, 18, 20, 21, 21, 23, 25, 27, 27, 26, 28, 29, 28, 27, 28, 28, 28, 29, 30, 29, 29, 31, 32, 32, 31, 30, 31, 32, 30, 29, 31, 31, 31, 29, 22, 30, 29, 29, 27, 26, 27, 27, 28, 26, 26, 26, 25, 24, 24, 24, 25, 26, 25, 24, 23, 22, 22, 23, 23, 21, 15, 14, 15, 17, 23, 32, 25, 16, 14, 13, 11, 10, 10, 13, 11, 10, 9, 7, 7, 9, 9, 7, 6, 5, 6, 11, 8, 6, 4, 4, 6, 9, 5, 4, 4, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 3, 4, 2, 1, 2, 2, 3, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 3, 4, 2, 2, 3, 5, 2, 1, 3, 2, 1, 1, 1, 1, 1, 8, 3, 3, 2, 1, 1, 3, 2, 4, 2, 2, 4, 4, 4, 5, 5, 5, 5, 4, 5, 7, 7, 8, 9, 8, 8, 12, 14, 14, 17, 9, 11, 15, 16, 16, 18, 18, 16, 16, 19, 22, 22, 23, 24, 23, 25, 27, 26, 26, 30, 29, 16, 29, 33, 32, 30, 31, 32, 33, 33, 32, 32, 32, 33, 32, 32, 32, 32, 32, 33, 29, 26, 23, 29, 29, 28, 31, 28, 27, 27, 25, 24, 24, 24, 25, 23, 21, 22, 22, 21, 21, 21, 21, 21, 21, 20, 20, 20, 19, 20, 20, 20, 17, 17, 17, 17, 18, 17, 17, 19, 18, 18, 19, 20, 21, 19, 19, 19, 20, 19, 19, 21, 22, 21, 21, 21, 22, 22, 22 ], "output": { "3. Local Minima": { "frames": [ [ 0, 127 ], [ 129, 129 ], [ 131, 131 ], [ 275, 276 ], [ 279, 282 ], [ 285, 288 ], [ 290, 345 ], [ 347, 367 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 4, 5, 5, 3, 5, 6, 4, 3, 4, 6, 6, 7, 7, 7, 8, 10, 9, 9, 8, 7, 6, 7, 8, 10, 10, 11, 10, 10, 9, 9, 11, 12, 11, 12, 12, 11, 11, 11, 11, 11, 11, 11, 10, 11, 11, 10, 11, 11, 11, 11, 10, 10, 9, 9, 10, 10, 9, 9, 10, 9, 9, 9, 8, 7, 8, 8, 7, 7, 6, 7, 7, 6, 7, 5, 6, 6, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 4, 3, 2, 4, 4, 4, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 10, 11, 12, 12, 12, 14, 14, 13, 14, 15, 14, 17, 17, 17, 17, 17, 17, 19, 20, 19, 20, 20, 20, 20, 20, 21, 20, 20, 19, 19, 19, 18, 17, 17, 17, 16, 15, 13, 12, 12, 11, 9, 9, 7, 3, 2, 1, 4, 4, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 15, 16, 16, 15, 14, 14, 15, 16, 18, 22, 17, 17, 16, 17, 18, 18, 18, 18, 18, 18, 19, 18, 17, 17, 17, 17, 16, 15, 16, 16, 15, 13, 13, 12, 11, 10, 9, 10, 9, 8, 7, 7, 7, 6, 5, 5, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 3, 3, 3, 3, 2, 3, 4, 4, 2, 3, 3, 3, 3, 4, 3, 3, 2, 3, 4, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 2, 3, 4, 4, 3 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 4, 5, 5, 3, 5, 6, 4, 3, 4, 6, 6, 7, 7, 7, 8, 10, 9, 9, 8, 7, 6, 7, 8, 10, 10, 11, 10, 10, 9, 9, 11, 12, 11, 12, 12, 11, 11, 11, 11, 11, 11, 11, 10, 11, 11, 10, 11, 11, 11, 11, 10, 10, 9, 9, 10, 10, 9, 9, 10, 9, 9, 9, 8, 7, 8, 8, 7, 7, 6, 7, 7, 6, 7, 5, 6, 6, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 4, 3, 2, 4, 4, 4, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 10, 11, 12, 12, 12, 14, 14, 13, 14, 15, 14, 17, 17, 17, 17, 17, 17, 19, 20, 19, 20, 20, 20, 20, 20, 21, 20, 20, 19, 19, 19, 18, 17, 17, 17, 16, 15, 13, 12, 12, 11, 9, 9, 7, 3, 2, 1, 4, 4, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 15, 16, 16, 15, 14, 14, 15, 16, 18, 22, 17, 17, 16, 17, 18, 18, 18, 18, 18, 18, 19, 18, 17, 17, 17, 17, 16, 15, 16, 16, 15, 13, 13, 12, 11, 10, 9, 10, 9, 8, 7, 7, 7, 6, 5, 5, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 3, 3, 3, 3, 2, 3, 4, 4, 2, 3, 3, 3, 3, 4, 3, 3, 2, 3, 4, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 2, 3, 4, 4, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 212, 226 ], [ 262, 263 ], [ 268, 275 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 4, 5, 5, 3, 5, 6, 4, 3, 4, 6, 6, 7, 7, 7, 8, 10, 9, 9, 8, 7, 6, 7, 8, 10, 10, 11, 10, 10, 9, 9, 11, 12, 11, 12, 12, 11, 11, 11, 11, 11, 11, 11, 10, 11, 11, 10, 11, 11, 11, 11, 10, 10, 9, 9, 10, 10, 9, 9, 10, 9, 9, 9, 8, 7, 8, 8, 7, 7, 6, 7, 7, 6, 7, 5, 6, 6, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 4, 3, 2, 4, 4, 4, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 9, 10, 10, 10, 11, 12, 12, 12, 14, 14, 13, 14, 15, 14, 17, 17, 17, 17, 17, 17, 19, 20, 19, 20, 20, 20, 20, 20, 21, 20, 20, 19, 19, 19, 18, 17, 17, 17, 16, 15, 13, 12, 12, 11, 9, 9, 7, 3, 2, 1, 4, 4, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 15, 16, 16, 15, 14, 14, 15, 16, 18, 22, 17, 17, 16, 17, 18, 18, 18, 18, 18, 18, 19, 18, 17, 17, 17, 17, 16, 15, 16, 16, 15, 13, 13, 12, 11, 10, 9, 10, 9, 8, 7, 7, 7, 6, 5, 5, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 3, 3, 3, 3, 2, 3, 4, 4, 2, 3, 3, 3, 3, 4, 3, 3, 2, 3, 4, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 2, 3, 4, 4, 3 ], "output": { "3. Local Minima": { "frames": [ [ 0, 80 ], [ 83, 83 ], [ 86, 88 ], [ 158, 180 ], [ 239, 244 ], [ 301, 363 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 4, 6, 8, 9, 11, 11, 10, 9, 7, 6, 5, 5, 5, 5, 6, 7, 5, 7, 7, 7, 6, 5, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 7, 9, 11, 12, 12, 11, 11, 10, 9, 8, 7, 5, 2, 4, 6, 8, 8, 9, 9, 9, 9, 9, 8, 7, 5, 5, 4, 3, 2, 3, 3, 3, 3, 2, 3, 6, 9, 11, 12, 13, 13, 15, 16, 12, 9, 3, 2, 4, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 11, 9, 8, 9, 11, 7, 6, 5, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 1, 2, 3, 3, 2, 2, 3, 3, 5, 6, 7, 9, 13, 15, 16, 19, 20, 21, 21, 20, 18, 15, 12, 9, 7, 13, 17, 21, 24, 27, 28, 26, 24, 23, 22, 21, 20, 19, 19, 20, 20, 20, 17, 13, 9, 11, 8, 9, 8, 9, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 2, 4, 10, 7, 4, 5, 5, 5, 5, 6, 2, 3, 4, 4, 4, 3, 3, 3, 5, 4, 4, 4, 5, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 4, 6, 8, 9, 11, 11, 10, 9, 7, 6, 5, 5, 5, 5, 6, 7, 5, 7, 7, 7, 6, 5, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 7, 9, 11, 12, 12, 11, 11, 10, 9, 8, 7, 5, 2, 4, 6, 8, 8, 9, 9, 9, 9, 9, 8, 7, 5, 5, 4, 3, 2, 3, 3, 3, 3, 2, 3, 6, 9, 11, 12, 13, 13, 15, 16, 12, 9, 3, 2, 4, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 11, 9, 8, 9, 11, 7, 6, 5, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 1, 2, 3, 3, 2, 2, 3, 3, 5, 6, 7, 9, 13, 15, 16, 19, 20, 21, 21, 20, 18, 15, 12, 9, 7, 13, 17, 21, 24, 27, 28, 26, 24, 23, 22, 21, 20, 19, 19, 20, 20, 20, 17, 13, 9, 11, 8, 9, 8, 9, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 2, 4, 10, 7, 4, 5, 5, 5, 5, 6, 2, 3, 4, 4, 4, 3, 3, 3, 5, 4, 4, 4, 5, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 304, 309 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 4, 6, 8, 9, 11, 11, 10, 9, 7, 6, 5, 5, 5, 5, 6, 7, 5, 7, 7, 7, 6, 5, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 7, 9, 11, 12, 12, 11, 11, 10, 9, 8, 7, 5, 2, 4, 6, 8, 8, 9, 9, 9, 9, 9, 8, 7, 5, 5, 4, 3, 2, 3, 3, 3, 3, 2, 3, 6, 9, 11, 12, 13, 13, 15, 16, 12, 9, 3, 2, 4, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 11, 9, 8, 9, 11, 7, 6, 5, 4, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 2, 1, 2, 3, 3, 2, 2, 3, 3, 5, 6, 7, 9, 13, 15, 16, 19, 20, 21, 21, 20, 18, 15, 12, 9, 7, 13, 17, 21, 24, 27, 28, 26, 24, 23, 22, 21, 20, 19, 19, 20, 20, 20, 17, 13, 9, 11, 8, 9, 8, 9, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 2, 4, 10, 7, 4, 5, 5, 5, 5, 6, 2, 3, 4, 4, 4, 3, 3, 3, 5, 4, 4, 4, 5, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4 ], "output": { "3. Local Minima": { "frames": [ [ 0, 151 ], [ 161, 164 ], [ 167, 167 ], [ 172, 190 ], [ 202, 204 ], [ 215, 225 ], [ 236, 238 ], [ 256, 284 ], [ 333, 337 ], [ 340, 344 ], [ 346, 441 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 12, 15, 17, 19, 21, 23, 26, 27, 28, 30, 30, 31, 32, 32, 32, 32, 31, 31, 32, 32, 30, 26, 23, 21, 20, 17, 15, 10, 8, 5, 6, 8, 12, 15, 21, 26, 31, 38, 44, 46, 55, 61, 68, 74, 78, 82, 86, 87, 87, 87, 85, 82, 79, 74, 69, 65, 65, 60, 59, 52, 51, 48, 37, 43, 40, 34, 31, 35, 34, 33, 32, 26, 24, 22, 21, 18, 14, 13, 13, 12, 11, 15, 16, 16, 17, 20, 22, 25, 26, 27, 31, 35, 37, 40, 43, 45, 48, 50, 51, 47, 57, 60, 62, 65, 69, 71, 72, 74, 77, 79, 80, 77, 72, 72, 66, 57, 53, 50, 38, 34, 29, 22, 19, 21, 21, 21, 19, 19, 14, 9, 5, 7, 7, 5, 7, 7, 6, 7, 7, 10, 12, 13, 14, 15, 16, 17, 15, 14, 13, 13, 13, 14, 13, 13, 14, 13, 11, 10, 9, 9, 8, 7, 7, 7, 6, 5, 5, 4, 4, 3, 3, 2, 3, 3, 3, 3, 4, 5, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 4, 5, 5, 5, 6, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 9, 9, 11, 10, 10, 8, 10, 9, 10, 9, 9, 9, 9, 9, 8, 8, 10, 8, 8, 7, 8, 9, 8, 8, 7, 7, 7, 7, 7, 7, 6, 5, 6, 6, 5, 5, 6, 6, 5, 4, 6, 6, 5, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 12, 15, 17, 19, 21, 23, 26, 27, 28, 30, 30, 31, 32, 32, 32, 32, 31, 31, 32, 32, 30, 26, 23, 21, 20, 17, 15, 10, 8, 5, 6, 8, 12, 15, 21, 26, 31, 38, 44, 46, 55, 61, 68, 74, 78, 82, 86, 87, 87, 87, 85, 82, 79, 74, 69, 65, 65, 60, 59, 52, 51, 48, 37, 43, 40, 34, 31, 35, 34, 33, 32, 26, 24, 22, 21, 18, 14, 13, 13, 12, 11, 15, 16, 16, 17, 20, 22, 25, 26, 27, 31, 35, 37, 40, 43, 45, 48, 50, 51, 47, 57, 60, 62, 65, 69, 71, 72, 74, 77, 79, 80, 77, 72, 72, 66, 57, 53, 50, 38, 34, 29, 22, 19, 21, 21, 21, 19, 19, 14, 9, 5, 7, 7, 5, 7, 7, 6, 7, 7, 10, 12, 13, 14, 15, 16, 17, 15, 14, 13, 13, 13, 14, 13, 13, 14, 13, 11, 10, 9, 9, 8, 7, 7, 7, 6, 5, 5, 4, 4, 3, 3, 2, 3, 3, 3, 3, 4, 5, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 4, 5, 5, 5, 6, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 9, 9, 11, 10, 10, 8, 10, 9, 10, 9, 9, 9, 9, 9, 8, 8, 10, 8, 8, 7, 8, 9, 8, 8, 7, 7, 7, 7, 7, 7, 6, 5, 6, 6, 5, 5, 6, 6, 5, 4, 6, 6, 5, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 210, 220 ], [ 272, 280 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 12, 15, 17, 19, 21, 23, 26, 27, 28, 30, 30, 31, 32, 32, 32, 32, 31, 31, 32, 32, 30, 26, 23, 21, 20, 17, 15, 10, 8, 5, 6, 8, 12, 15, 21, 26, 31, 38, 44, 46, 55, 61, 68, 74, 78, 82, 86, 87, 87, 87, 85, 82, 79, 74, 69, 65, 65, 60, 59, 52, 51, 48, 37, 43, 40, 34, 31, 35, 34, 33, 32, 26, 24, 22, 21, 18, 14, 13, 13, 12, 11, 15, 16, 16, 17, 20, 22, 25, 26, 27, 31, 35, 37, 40, 43, 45, 48, 50, 51, 47, 57, 60, 62, 65, 69, 71, 72, 74, 77, 79, 80, 77, 72, 72, 66, 57, 53, 50, 38, 34, 29, 22, 19, 21, 21, 21, 19, 19, 14, 9, 5, 7, 7, 5, 7, 7, 6, 7, 7, 10, 12, 13, 14, 15, 16, 17, 15, 14, 13, 13, 13, 14, 13, 13, 14, 13, 11, 10, 9, 9, 8, 7, 7, 7, 6, 5, 5, 4, 4, 3, 3, 2, 3, 3, 3, 3, 4, 5, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 4, 4, 4, 4, 5, 5, 5, 6, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 11, 9, 9, 11, 10, 10, 8, 10, 9, 10, 9, 9, 9, 9, 9, 8, 8, 10, 8, 8, 7, 8, 9, 8, 8, 7, 7, 7, 7, 7, 7, 6, 5, 6, 6, 5, 5, 6, 6, 5, 4, 6, 6, 5, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 169 ], [ 192, 200 ], [ 243, 251 ], [ 295, 502 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 5, 5, 3, 1, 1, 4, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 4, 4, 4, 5, 5, 5, 5, 6, 4, 6, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 5, 5, 4, 4, 3, 4, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 5, 5, 4, 4, 5, 6, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 9, 8, 8, 8, 9, 9, 9, 10, 9, 10, 11, 13, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 14, 14, 16, 16, 16, 16, 16, 14, 21, 18, 19, 19, 20, 19, 18, 19, 21, 21, 22, 22, 23, 24, 24, 25, 26, 25, 26, 27, 27, 28, 29, 29, 35, 27, 31, 31, 32, 33, 33, 34, 35, 35, 35, 36, 37, 38, 39, 39, 38, 39, 39, 41, 43, 36, 40, 40, 38, 41, 42, 42, 43, 43, 45, 46, 46, 46, 45, 44, 45, 44, 44, 44, 43, 43, 43, 44, 43, 43, 43, 43, 43, 44, 44, 43, 42, 42, 41, 39, 40, 39, 40, 39, 36, 37, 36, 36, 37, 36, 36, 35, 35, 33, 34, 33, 34, 33, 30, 31, 30, 32, 30, 32, 31, 33, 29, 31, 31, 30, 30, 30, 29, 29, 30, 30, 32, 30, 31, 31, 31, 30, 32, 32, 32, 33, 34, 34, 33, 33, 34, 35, 34, 34, 34, 36, 36, 36, 37, 37, 39, 40, 40, 40, 40, 42, 43, 42, 44, 44, 44, 42, 41, 41, 40, 40, 40, 42, 42, 40, 43, 43, 43, 44, 43, 41, 41, 40, 41, 40, 40, 39, 43, 41, 42, 41, 40, 41, 41, 41, 41, 39, 38, 38, 36, 34, 38, 37, 33, 34, 33, 33, 33, 33, 32, 31, 31, 30, 29, 29, 28, 27, 27, 27, 27, 23, 25, 24, 24, 23, 22, 22, 21, 21, 20, 19, 18, 18, 20, 18, 18, 17, 16, 16, 15, 14, 15, 15, 14, 14, 14, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 9, 9, 9, 9, 7, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 5, 3, 4, 4, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 3, 4, 4, 4, 2, 4, 5, 3, 4, 3, 4, 2, 3, 2, 2, 2, 3, 4, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 5, 5, 3, 1, 1, 4, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 4, 4, 4, 5, 5, 5, 5, 6, 4, 6, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 5, 5, 4, 4, 3, 4, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 5, 5, 4, 4, 5, 6, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 9, 8, 8, 8, 9, 9, 9, 10, 9, 10, 11, 13, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 14, 14, 16, 16, 16, 16, 16, 14, 21, 18, 19, 19, 20, 19, 18, 19, 21, 21, 22, 22, 23, 24, 24, 25, 26, 25, 26, 27, 27, 28, 29, 29, 35, 27, 31, 31, 32, 33, 33, 34, 35, 35, 35, 36, 37, 38, 39, 39, 38, 39, 39, 41, 43, 36, 40, 40, 38, 41, 42, 42, 43, 43, 45, 46, 46, 46, 45, 44, 45, 44, 44, 44, 43, 43, 43, 44, 43, 43, 43, 43, 43, 44, 44, 43, 42, 42, 41, 39, 40, 39, 40, 39, 36, 37, 36, 36, 37, 36, 36, 35, 35, 33, 34, 33, 34, 33, 30, 31, 30, 32, 30, 32, 31, 33, 29, 31, 31, 30, 30, 30, 29, 29, 30, 30, 32, 30, 31, 31, 31, 30, 32, 32, 32, 33, 34, 34, 33, 33, 34, 35, 34, 34, 34, 36, 36, 36, 37, 37, 39, 40, 40, 40, 40, 42, 43, 42, 44, 44, 44, 42, 41, 41, 40, 40, 40, 42, 42, 40, 43, 43, 43, 44, 43, 41, 41, 40, 41, 40, 40, 39, 43, 41, 42, 41, 40, 41, 41, 41, 41, 39, 38, 38, 36, 34, 38, 37, 33, 34, 33, 33, 33, 33, 32, 31, 31, 30, 29, 29, 28, 27, 27, 27, 27, 23, 25, 24, 24, 23, 22, 22, 21, 21, 20, 19, 18, 18, 20, 18, 18, 17, 16, 16, 15, 14, 15, 15, 14, 14, 14, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 9, 9, 9, 9, 7, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 5, 3, 4, 4, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 3, 4, 4, 4, 2, 4, 5, 3, 4, 3, 4, 2, 3, 2, 2, 2, 3, 4, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 398, 406 ], [ 408, 445 ], [ 447, 447 ], [ 450, 450 ], [ 500, 545 ], [ 548, 549 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 5, 5, 3, 1, 1, 4, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 4, 4, 4, 5, 5, 5, 5, 6, 4, 6, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 6, 6, 6, 5, 5, 4, 4, 3, 4, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 5, 5, 4, 4, 5, 6, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 9, 8, 8, 8, 9, 9, 9, 10, 9, 10, 11, 13, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 14, 14, 16, 16, 16, 16, 16, 14, 21, 18, 19, 19, 20, 19, 18, 19, 21, 21, 22, 22, 23, 24, 24, 25, 26, 25, 26, 27, 27, 28, 29, 29, 35, 27, 31, 31, 32, 33, 33, 34, 35, 35, 35, 36, 37, 38, 39, 39, 38, 39, 39, 41, 43, 36, 40, 40, 38, 41, 42, 42, 43, 43, 45, 46, 46, 46, 45, 44, 45, 44, 44, 44, 43, 43, 43, 44, 43, 43, 43, 43, 43, 44, 44, 43, 42, 42, 41, 39, 40, 39, 40, 39, 36, 37, 36, 36, 37, 36, 36, 35, 35, 33, 34, 33, 34, 33, 30, 31, 30, 32, 30, 32, 31, 33, 29, 31, 31, 30, 30, 30, 29, 29, 30, 30, 32, 30, 31, 31, 31, 30, 32, 32, 32, 33, 34, 34, 33, 33, 34, 35, 34, 34, 34, 36, 36, 36, 37, 37, 39, 40, 40, 40, 40, 42, 43, 42, 44, 44, 44, 42, 41, 41, 40, 40, 40, 42, 42, 40, 43, 43, 43, 44, 43, 41, 41, 40, 41, 40, 40, 39, 43, 41, 42, 41, 40, 41, 41, 41, 41, 39, 38, 38, 36, 34, 38, 37, 33, 34, 33, 33, 33, 33, 32, 31, 31, 30, 29, 29, 28, 27, 27, 27, 27, 23, 25, 24, 24, 23, 22, 22, 21, 21, 20, 19, 18, 18, 20, 18, 18, 17, 16, 16, 15, 14, 15, 15, 14, 14, 14, 13, 12, 12, 12, 11, 11, 11, 11, 10, 10, 9, 9, 9, 9, 7, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 5, 3, 4, 4, 4, 5, 4, 5, 4, 3, 4, 5, 4, 3, 3, 4, 4, 4, 2, 4, 5, 3, 4, 3, 4, 2, 3, 2, 2, 2, 3, 4, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 337 ], [ 339, 339 ], [ 603, 883 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 278, 306 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 94 ], [ 102, 103 ], [ 227, 252 ], [ 342, 366 ], [ 368, 391 ], [ 393, 399 ], [ 411, 413 ], [ 415, 418 ], [ 420, 421 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 16, 15, 16, 17, 17, 18, 20, 19, 19, 19, 19, 19, 20, 20, 21, 20, 19, 17, 17, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 8, 8, 7, 6, 10, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 6, 7, 12, 8, 8, 8, 9, 10, 11, 11, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 18, 19, 19, 19, 19, 18, 18, 17, 18, 18, 17, 17, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 16, 15, 16, 17, 17, 18, 20, 19, 19, 19, 19, 19, 20, 20, 21, 20, 19, 17, 17, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 8, 8, 7, 6, 10, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 6, 7, 12, 8, 8, 8, 9, 10, 11, 11, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 18, 19, 19, 19, 19, 18, 18, 17, 18, 18, 17, 17, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 95, 111 ], [ 170, 183 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 16, 16, 15, 16, 17, 17, 18, 20, 19, 19, 19, 19, 19, 20, 20, 21, 20, 19, 17, 17, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 8, 8, 7, 6, 10, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 6, 7, 12, 8, 8, 8, 9, 10, 11, 11, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 18, 19, 19, 19, 19, 18, 18, 17, 18, 18, 17, 17, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 74 ], [ 129, 145 ], [ 197, 468 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 14, 16, 15, 16, 16, 17, 17, 18, 18, 19, 20, 20, 20, 21, 21, 21, 21, 22, 21, 21, 21, 21, 21, 22, 23, 24, 27, 30, 33, 37, 40, 44, 48, 51, 41, 58, 61, 63, 66, 68, 70, 72, 73, 74, 74, 74, 73, 71, 69, 67, 65, 63, 61, 60, 58, 57, 56, 55, 54, 52, 51, 49, 47, 46, 45, 44, 44, 43, 43, 44, 44, 45, 45, 46, 48, 49, 50, 51, 53, 54, 55, 57, 58, 60, 62, 64, 65, 66, 67, 69, 70, 72, 74, 76, 78, 78, 73, 67, 62, 61, 61, 60, 53, 46, 38, 33, 24, 31, 29, 27, 24, 22, 21, 21, 22, 23, 24, 25, 20, 27, 28, 28, 29, 29, 29, 29, 29, 29, 28, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 14, 16, 15, 16, 16, 17, 17, 18, 18, 19, 20, 20, 20, 21, 21, 21, 21, 22, 21, 21, 21, 21, 21, 22, 23, 24, 27, 30, 33, 37, 40, 44, 48, 51, 41, 58, 61, 63, 66, 68, 70, 72, 73, 74, 74, 74, 73, 71, 69, 67, 65, 63, 61, 60, 58, 57, 56, 55, 54, 52, 51, 49, 47, 46, 45, 44, 44, 43, 43, 44, 44, 45, 45, 46, 48, 49, 50, 51, 53, 54, 55, 57, 58, 60, 62, 64, 65, 66, 67, 69, 70, 72, 74, 76, 78, 78, 73, 67, 62, 61, 61, 60, 53, 46, 38, 33, 24, 31, 29, 27, 24, 22, 21, 21, 22, 23, 24, 25, 20, 27, 28, 28, 29, 29, 29, 29, 29, 29, 28, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 235, 249 ], [ 283, 295 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 14, 16, 15, 16, 16, 17, 17, 18, 18, 19, 20, 20, 20, 21, 21, 21, 21, 22, 21, 21, 21, 21, 21, 22, 23, 24, 27, 30, 33, 37, 40, 44, 48, 51, 41, 58, 61, 63, 66, 68, 70, 72, 73, 74, 74, 74, 73, 71, 69, 67, 65, 63, 61, 60, 58, 57, 56, 55, 54, 52, 51, 49, 47, 46, 45, 44, 44, 43, 43, 44, 44, 45, 45, 46, 48, 49, 50, 51, 53, 54, 55, 57, 58, 60, 62, 64, 65, 66, 67, 69, 70, 72, 74, 76, 78, 78, 73, 67, 62, 61, 61, 60, 53, 46, 38, 33, 24, 31, 29, 27, 24, 22, 21, 21, 22, 23, 24, 25, 20, 27, 28, 28, 29, 29, 29, 29, 29, 29, 28, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 198 ], [ 200, 200 ], [ 340, 585 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 46, 46, 45, 45, 44, 45, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 33, 33, 33, 33, 33, 33, 33, 33, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 24, 24, 24, 24, 24, 24, 24, 23, 23, 23, 23, 23, 23, 23, 23, 23, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 46, 46, 45, 45, 44, 45, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 33, 33, 33, 33, 33, 33, 33, 33, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 24, 24, 24, 24, 24, 24, 24, 23, 23, 23, 23, 23, 23, 23, 23, 23, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 78 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 46, 46, 45, 45, 44, 45, 44, 44, 44, 44, 44, 44, 43, 43, 43, 43, 43, 43, 43, 43, 42, 42, 42, 42, 42, 42, 42, 42, 41, 41, 41, 41, 41, 41, 41, 41, 41, 40, 40, 40, 40, 40, 40, 40, 40, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 33, 33, 33, 33, 33, 33, 33, 33, 32, 32, 32, 32, 32, 32, 32, 32, 31, 31, 31, 31, 31, 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 24, 24, 24, 24, 24, 24, 24, 23, 23, 23, 23, 23, 23, 23, 23, 23, 22, 22, 22, 22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 17, 17, 17, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 17, 17, 16, 16, 15, 14, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7 ], "output": { "3. Local Minima": { "frames": [ [ 286, 347 ], [ 369, 398 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 13, 13, 15, 16, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 24, 24, 25, 24, 24, 24, 23, 22, 21, 21, 20, 19, 19, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 26, 25, 24, 23, 22, 21, 21, 20, 20, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 25, 25, 26, 26, 26, 26, 26, 26, 25, 24, 24, 23, 22, 21, 20, 20, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 27, 26, 25, 25, 24, 23, 22, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 27, 26, 25, 25, 24, 23, 22, 22, 21, 21, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 19, 19, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 13, 13, 15, 16, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 24, 24, 25, 24, 24, 24, 23, 22, 21, 21, 20, 19, 19, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 26, 25, 24, 23, 22, 21, 21, 20, 20, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 25, 25, 26, 26, 26, 26, 26, 26, 25, 24, 24, 23, 22, 21, 20, 20, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 27, 26, 25, 25, 24, 23, 22, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 27, 26, 25, 25, 24, 23, 22, 22, 21, 21, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 19, 19, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19 ], "output": { "2. Local Maxima": { "frames": [ [ 47, 57 ], [ 119, 136 ], [ 194, 208 ], [ 268, 286 ], [ 340, 359 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 13, 13, 15, 16, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 24, 24, 25, 24, 24, 24, 23, 22, 21, 21, 20, 19, 19, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 26, 25, 24, 23, 22, 21, 21, 20, 20, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 25, 25, 26, 26, 26, 26, 26, 26, 25, 24, 24, 23, 22, 21, 20, 20, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 27, 26, 25, 25, 24, 23, 22, 21, 21, 21, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 28, 27, 27, 26, 25, 25, 24, 23, 22, 22, 21, 21, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 19, 19, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19 ], "output": { "3. Local Minima": { "frames": [ [ 0, 29 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 10, 11, 11, 11, 12, 13, 14, 13, 14, 16, 18, 18, 20, 22, 25, 26, 28, 30, 28, 27, 27, 28, 26, 26, 29, 34, 42, 49, 53, 63, 67, 73, 76, 71, 69, 62, 59, 51, 49, 45, 46, 46, 48, 51, 53, 55, 62, 66, 69, 74, 62, 53, 54, 52, 46, 61, 44, 47, 48, 50, 49, 49, 51, 53, 52, 51, 50, 48, 48, 49, 49, 48, 43, 47, 51, 54, 57, 63, 71, 79, 86, 93, 103, 112, 113, 121, 126, 123, 117, 115, 107, 108, 102, 100, 100, 97, 99, 101, 101, 102, 103, 105, 109, 111, 114, 118, 116, 115, 100, 98, 89, 86, 87, 77, 75, 75, 73, 65, 56, 59, 68, 70, 67, 65, 82, 95, 109, 114, 117, 136, 131, 140, 141, 153, 151, 132, 131, 131, 142, 138, 133, 126, 115, 121, 123, 120, 119, 120, 125, 129, 131, 138, 140, 138, 140, 142, 142, 146, 153, 155, 82, 83, 107, 66, 70, 55, 44, 49, 48, 46, 51, 54, 56, 55, 36, 51, 43, 46, 42, 42, 39, 30, 33, 30, 28, 28, 27, 24, 26, 23, 24, 21, 20, 20, 18, 20, 17, 19, 16, 15, 14, 13, 13, 11, 11, 10, 10, 9, 8, 9, 8, 7, 7, 6, 6, 6, 6, 5, 6, 5, 4, 5, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 10, 11, 11, 11, 12, 13, 14, 13, 14, 16, 18, 18, 20, 22, 25, 26, 28, 30, 28, 27, 27, 28, 26, 26, 29, 34, 42, 49, 53, 63, 67, 73, 76, 71, 69, 62, 59, 51, 49, 45, 46, 46, 48, 51, 53, 55, 62, 66, 69, 74, 62, 53, 54, 52, 46, 61, 44, 47, 48, 50, 49, 49, 51, 53, 52, 51, 50, 48, 48, 49, 49, 48, 43, 47, 51, 54, 57, 63, 71, 79, 86, 93, 103, 112, 113, 121, 126, 123, 117, 115, 107, 108, 102, 100, 100, 97, 99, 101, 101, 102, 103, 105, 109, 111, 114, 118, 116, 115, 100, 98, 89, 86, 87, 77, 75, 75, 73, 65, 56, 59, 68, 70, 67, 65, 82, 95, 109, 114, 117, 136, 131, 140, 141, 153, 151, 132, 131, 131, 142, 138, 133, 126, 115, 121, 123, 120, 119, 120, 125, 129, 131, 138, 140, 138, 140, 142, 142, 146, 153, 155, 82, 83, 107, 66, 70, 55, 44, 49, 48, 46, 51, 54, 56, 55, 36, 51, 43, 46, 42, 42, 39, 30, 33, 30, 28, 28, 27, 24, 26, 23, 24, 21, 20, 20, 18, 20, 17, 19, 16, 15, 14, 13, 13, 11, 11, 10, 10, 9, 8, 9, 8, 7, 7, 6, 6, 6, 6, 5, 6, 5, 4, 5, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 171, 171 ], [ 214, 226 ], [ 233, 244 ] ] } } }, { "instruction": "Center velocity represents the speed of movement of the center of gravity of the body. Near the maximum value, the faster the center of the body moves, the closer to the minimum value, the slower the center of the body moves. Specifically, a peak value of 1 corresponds to actions like jumping, 0.6 to jumps within specific actions like ballet jumps or cartwheels, 0.4 to sitting, and 0.2 to walking. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 10, 11, 11, 11, 12, 13, 14, 13, 14, 16, 18, 18, 20, 22, 25, 26, 28, 30, 28, 27, 27, 28, 26, 26, 29, 34, 42, 49, 53, 63, 67, 73, 76, 71, 69, 62, 59, 51, 49, 45, 46, 46, 48, 51, 53, 55, 62, 66, 69, 74, 62, 53, 54, 52, 46, 61, 44, 47, 48, 50, 49, 49, 51, 53, 52, 51, 50, 48, 48, 49, 49, 48, 43, 47, 51, 54, 57, 63, 71, 79, 86, 93, 103, 112, 113, 121, 126, 123, 117, 115, 107, 108, 102, 100, 100, 97, 99, 101, 101, 102, 103, 105, 109, 111, 114, 118, 116, 115, 100, 98, 89, 86, 87, 77, 75, 75, 73, 65, 56, 59, 68, 70, 67, 65, 82, 95, 109, 114, 117, 136, 131, 140, 141, 153, 151, 132, 131, 131, 142, 138, 133, 126, 115, 121, 123, 120, 119, 120, 125, 129, 131, 138, 140, 138, 140, 142, 142, 146, 153, 155, 82, 83, 107, 66, 70, 55, 44, 49, 48, 46, 51, 54, 56, 55, 36, 51, 43, 46, 42, 42, 39, 30, 33, 30, 28, 28, 27, 24, 26, 23, 24, 21, 20, 20, 18, 20, 17, 19, 16, 15, 14, 13, 13, 11, 11, 10, 10, 9, 8, 9, 8, 7, 7, 6, 6, 6, 6, 5, 6, 5, 4, 5, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 109 ], [ 266, 266 ], [ 268, 337 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 11, 11, 11, 10, 15, 11, 12, 10, 13, 11, 10, 11, 11, 10, 10, 9, 9, 8, 8, 7, 8, 7, 6, 6, 6, 5, 4, 2, 0, 2, 2, 4, 4, 3, 4, 4, 4, 4, 5, 6, 5, 5, 5, 4, 4, 5, 6, 7, 6, 5, 5, 6, 5, 5, 6, 6, 5, 5, 4, 4, 3, 1, 1, 1, 1, 0, 3, 3, 3, 3, 4, 4, 4, 5, 4, 3, 5, 6, 6, 7, 6, 6, 7, 7, 7, 5, 7, 6, 6, 6, 3, 2, 1, 1, 2, 2, 4, 6, 7, 8, 9, 10, 11, 11, 11, 13, 15, 15, 16, 15, 16, 16, 16, 16, 16, 15, 15, 14, 13, 8, 8, 10, 8, 7, 6, 5, 5, 4, 5, 4, 4, 6, 10, 4, 4, 6, 10, 4, 5, 14, 11, 11, 11, 13, 13, 11, 13, 15, 12, 11, 10, 7, 5, 5, 4, 7, 7, 8, 10, 9, 8, 3, 5, 9, 15, 19, 25, 29, 33, 32, 26, 31, 35, 32, 29, 26, 23, 21, 22, 21, 21, 20, 18, 16, 15, 13, 20, 13, 12, 10, 9, 7, 14, 15, 14, 11, 22, 49, 43, 42, 36, 30, 206, 42, 50, 59, 58, 66, 94, 119, 118, 56, 59, 61, 92, 116, 116, 102, 82, 345, 25, 14, 9, 8, 18, 30, 36, 40, 42, 40, 39, 36, 34, 33, 31, 28, 24, 21, 16, 9, 7, 13, 5, 5, 3, 4, 4, 7, 10, 9, 5, 11, 7, 8, 8, 9, 9, 8, 10, 9, 9, 8, 7, 7, 6, 7, 10, 9, 6, 7, 8, 8, 6, 6, 7, 11, 12, 12, 16, 17, 16, 13, 12, 8, 7, 2, 5, 8, 9, 15, 9, 17, 18, 18, 23, 25, 28, 27, 22, 23, 26, 27, 27, 29, 28, 28, 27, 26, 25, 20, 18, 23, 18, 8, 8, 2, 2, 6, 23, 50, 49, 48, 36, 29, 19, 20, 34, 45, 54, 285, 80, 104, 132, 139, 1103, 129, 88, 1125, 127, 105, 157, 120, 102, 403, 52, 82, 24, 29, 21, 32, 44, 38, 10, 22, 26, 29, 19, 24, 16, 16, 7, 5, 9, 3, 1, 3, 4, 1, 1, 10, 4, 6, 11, 14, 10, 8, 13, 13, 11, 12, 12, 13, 12, 13, 12, 12, 12, 16, 13, 15, 13, 13, 16, 13, 10, 14, 11, 7, 4, 3, 7, 9, 13, 17, 13, 11, 20, 18, 13, 12, 11, 10, 12, 19, 17, 28, 27, 30, 36, 33, 38, 37, 44, 40, 41, 43, 45, 47, 37, 47, 41, 43, 35, 30, 24, 27, 32, 40, 41, 41, 36, 27, 27, 13, 7, 9, 3, 6, 1, 4, 11, 32, 21, 52, 22, 30, 16, 18, 38, 50, 35, 36, 34, 17, 25, 16, 248, 26, 25, 29, 15, 11, 13, 7, 6, 18, 10, 11, 9, 11, 15, 3, 12, 11, 13, 12, 19, 8, 13, 3, 5, 8, 12, 10, 9, 13, 16, 23, 14, 13, 19, 30, 39, 47, 41, 32, 23, 10, 17, 38, 42, 33, 28, 31, 31, 28, 32, 33, 31, 26, 27, 31, 30, 28, 29 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 11, 11, 11, 10, 15, 11, 12, 10, 13, 11, 10, 11, 11, 10, 10, 9, 9, 8, 8, 7, 8, 7, 6, 6, 6, 5, 4, 2, 0, 2, 2, 4, 4, 3, 4, 4, 4, 4, 5, 6, 5, 5, 5, 4, 4, 5, 6, 7, 6, 5, 5, 6, 5, 5, 6, 6, 5, 5, 4, 4, 3, 1, 1, 1, 1, 0, 3, 3, 3, 3, 4, 4, 4, 5, 4, 3, 5, 6, 6, 7, 6, 6, 7, 7, 7, 5, 7, 6, 6, 6, 3, 2, 1, 1, 2, 2, 4, 6, 7, 8, 9, 10, 11, 11, 11, 13, 15, 15, 16, 15, 16, 16, 16, 16, 16, 15, 15, 14, 13, 8, 8, 10, 8, 7, 6, 5, 5, 4, 5, 4, 4, 6, 10, 4, 4, 6, 10, 4, 5, 14, 11, 11, 11, 13, 13, 11, 13, 15, 12, 11, 10, 7, 5, 5, 4, 7, 7, 8, 10, 9, 8, 3, 5, 9, 15, 19, 25, 29, 33, 32, 26, 31, 35, 32, 29, 26, 23, 21, 22, 21, 21, 20, 18, 16, 15, 13, 20, 13, 12, 10, 9, 7, 14, 15, 14, 11, 22, 49, 43, 42, 36, 30, 206, 42, 50, 59, 58, 66, 94, 119, 118, 56, 59, 61, 92, 116, 116, 102, 82, 345, 25, 14, 9, 8, 18, 30, 36, 40, 42, 40, 39, 36, 34, 33, 31, 28, 24, 21, 16, 9, 7, 13, 5, 5, 3, 4, 4, 7, 10, 9, 5, 11, 7, 8, 8, 9, 9, 8, 10, 9, 9, 8, 7, 7, 6, 7, 10, 9, 6, 7, 8, 8, 6, 6, 7, 11, 12, 12, 16, 17, 16, 13, 12, 8, 7, 2, 5, 8, 9, 15, 9, 17, 18, 18, 23, 25, 28, 27, 22, 23, 26, 27, 27, 29, 28, 28, 27, 26, 25, 20, 18, 23, 18, 8, 8, 2, 2, 6, 23, 50, 49, 48, 36, 29, 19, 20, 34, 45, 54, 285, 80, 104, 132, 139, 1103, 129, 88, 1125, 127, 105, 157, 120, 102, 403, 52, 82, 24, 29, 21, 32, 44, 38, 10, 22, 26, 29, 19, 24, 16, 16, 7, 5, 9, 3, 1, 3, 4, 1, 1, 10, 4, 6, 11, 14, 10, 8, 13, 13, 11, 12, 12, 13, 12, 13, 12, 12, 12, 16, 13, 15, 13, 13, 16, 13, 10, 14, 11, 7, 4, 3, 7, 9, 13, 17, 13, 11, 20, 18, 13, 12, 11, 10, 12, 19, 17, 28, 27, 30, 36, 33, 38, 37, 44, 40, 41, 43, 45, 47, 37, 47, 41, 43, 35, 30, 24, 27, 32, 40, 41, 41, 36, 27, 27, 13, 7, 9, 3, 6, 1, 4, 11, 32, 21, 52, 22, 30, 16, 18, 38, 50, 35, 36, 34, 17, 25, 16, 248, 26, 25, 29, 15, 11, 13, 7, 6, 18, 10, 11, 9, 11, 15, 3, 12, 11, 13, 12, 19, 8, 13, 3, 5, 8, 12, 10, 9, 13, 16, 23, 14, 13, 19, 30, 39, 47, 41, 32, 23, 10, 17, 38, 42, 33, 28, 31, 31, 28, 32, 33, 31, 26, 27, 31, 30, 28, 29 ], "output": { "2. Local Maxima": { "frames": [ [ 334, 334 ], [ 337, 337 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 11, 11, 11, 10, 15, 11, 12, 10, 13, 11, 10, 11, 11, 10, 10, 9, 9, 8, 8, 7, 8, 7, 6, 6, 6, 5, 4, 2, 0, 2, 2, 4, 4, 3, 4, 4, 4, 4, 5, 6, 5, 5, 5, 4, 4, 5, 6, 7, 6, 5, 5, 6, 5, 5, 6, 6, 5, 5, 4, 4, 3, 1, 1, 1, 1, 0, 3, 3, 3, 3, 4, 4, 4, 5, 4, 3, 5, 6, 6, 7, 6, 6, 7, 7, 7, 5, 7, 6, 6, 6, 3, 2, 1, 1, 2, 2, 4, 6, 7, 8, 9, 10, 11, 11, 11, 13, 15, 15, 16, 15, 16, 16, 16, 16, 16, 15, 15, 14, 13, 8, 8, 10, 8, 7, 6, 5, 5, 4, 5, 4, 4, 6, 10, 4, 4, 6, 10, 4, 5, 14, 11, 11, 11, 13, 13, 11, 13, 15, 12, 11, 10, 7, 5, 5, 4, 7, 7, 8, 10, 9, 8, 3, 5, 9, 15, 19, 25, 29, 33, 32, 26, 31, 35, 32, 29, 26, 23, 21, 22, 21, 21, 20, 18, 16, 15, 13, 20, 13, 12, 10, 9, 7, 14, 15, 14, 11, 22, 49, 43, 42, 36, 30, 206, 42, 50, 59, 58, 66, 94, 119, 118, 56, 59, 61, 92, 116, 116, 102, 82, 345, 25, 14, 9, 8, 18, 30, 36, 40, 42, 40, 39, 36, 34, 33, 31, 28, 24, 21, 16, 9, 7, 13, 5, 5, 3, 4, 4, 7, 10, 9, 5, 11, 7, 8, 8, 9, 9, 8, 10, 9, 9, 8, 7, 7, 6, 7, 10, 9, 6, 7, 8, 8, 6, 6, 7, 11, 12, 12, 16, 17, 16, 13, 12, 8, 7, 2, 5, 8, 9, 15, 9, 17, 18, 18, 23, 25, 28, 27, 22, 23, 26, 27, 27, 29, 28, 28, 27, 26, 25, 20, 18, 23, 18, 8, 8, 2, 2, 6, 23, 50, 49, 48, 36, 29, 19, 20, 34, 45, 54, 285, 80, 104, 132, 139, 1103, 129, 88, 1125, 127, 105, 157, 120, 102, 403, 52, 82, 24, 29, 21, 32, 44, 38, 10, 22, 26, 29, 19, 24, 16, 16, 7, 5, 9, 3, 1, 3, 4, 1, 1, 10, 4, 6, 11, 14, 10, 8, 13, 13, 11, 12, 12, 13, 12, 13, 12, 12, 12, 16, 13, 15, 13, 13, 16, 13, 10, 14, 11, 7, 4, 3, 7, 9, 13, 17, 13, 11, 20, 18, 13, 12, 11, 10, 12, 19, 17, 28, 27, 30, 36, 33, 38, 37, 44, 40, 41, 43, 45, 47, 37, 47, 41, 43, 35, 30, 24, 27, 32, 40, 41, 41, 36, 27, 27, 13, 7, 9, 3, 6, 1, 4, 11, 32, 21, 52, 22, 30, 16, 18, 38, 50, 35, 36, 34, 17, 25, 16, 248, 26, 25, 29, 15, 11, 13, 7, 6, 18, 10, 11, 9, 11, 15, 3, 12, 11, 13, 12, 19, 8, 13, 3, 5, 8, 12, 10, 9, 13, 16, 23, 14, 13, 19, 30, 39, 47, 41, 32, 23, 10, 17, 38, 42, 33, 28, 31, 31, 28, 32, 33, 31, 26, 27, 31, 30, 28, 29 ], "output": { "3. Local Minima": { "frames": [ [ 0, 218 ], [ 220, 328 ], [ 330, 333 ], [ 335, 336 ], [ 338, 342 ], [ 344, 465 ], [ 467, 524 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 2, 1, 2, 2, 7, 4, 2, 4, 3, 6, 6, 3, 5, 8, 6, 7, 9, 8, 7, 9, 8, 8, 7, 7, 9, 7, 13, 7, 8, 7, 8, 10, 5, 6, 5, 5, 5, 2, 5, 0, 1, 3, 5, 2, 1, 7, 1, 3, 8, 6, 4, 7, 8, 7, 7, 8, 7, 6, 8, 9, 8, 8, 8, 11, 10, 4, 7, 7, 8, 8, 7, 6, 8, 5, 3, 4, 2, 2, 5, 3, 2, 3, 4, 6, 6, 7, 8, 9, 10, 11, 11, 9, 11, 11, 10, 10, 10, 9, 8, 8, 8, 6, 5, 4, 3, 1, 1, 1, 1, 0, 2, 2, 2, 3, 1, 4, 2, 3, 4, 2, 7, 5, 4, 6, 7, 7, 8, 5, 5, 7, 6, 5, 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 2, 2, 3, 4, 4, 6, 7, 9, 10, 10, 8, 9, 10, 10, 9, 10, 10, 10, 9, 8, 7, 6, 6, 6, 4, 2, 1, 2, 2, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 4, 7, 6, 6, 6, 9, 6, 5, 6, 8, 6, 6, 6, 7, 6, 6, 6, 6, 4, 3, 3, 3, 2, 2, 2, 4, 5, 6, 7, 9, 10, 11, 13, 11, 12, 11, 14, 11, 10, 10, 12, 10, 9, 7, 8, 6, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 4, 5, 7, 6, 7, 7, 7, 5, 6, 7, 7, 8, 8, 8, 8, 7, 7, 6, 8, 7, 5, 7, 6, 3, 4, 2, 4, 4, 4, 6, 6, 7, 9, 12, 10, 10, 7, 8, 10, 11, 9, 9, 7, 6, 6, 5, 4, 5, 3, 1, 2, 1, 1, 5, 3, 1, 9, 1, 8, 4, 5, 7, 6, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 4, 6, 5, 5, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 7, 9, 8, 11, 11, 11, 10, 14, 11, 8, 12, 11, 10, 11, 7, 6, 5, 6, 6, 3, 6, 1, 4, 2, 4, 4, 5, 6, 5, 6, 4, 5, 4, 7, 6, 6, 8, 7, 8, 7, 8, 10, 7, 7, 9, 8, 8, 8, 5, 10, 7, 4, 6, 5, 5, 1, 5, 10, 5 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 2, 1, 2, 2, 7, 4, 2, 4, 3, 6, 6, 3, 5, 8, 6, 7, 9, 8, 7, 9, 8, 8, 7, 7, 9, 7, 13, 7, 8, 7, 8, 10, 5, 6, 5, 5, 5, 2, 5, 0, 1, 3, 5, 2, 1, 7, 1, 3, 8, 6, 4, 7, 8, 7, 7, 8, 7, 6, 8, 9, 8, 8, 8, 11, 10, 4, 7, 7, 8, 8, 7, 6, 8, 5, 3, 4, 2, 2, 5, 3, 2, 3, 4, 6, 6, 7, 8, 9, 10, 11, 11, 9, 11, 11, 10, 10, 10, 9, 8, 8, 8, 6, 5, 4, 3, 1, 1, 1, 1, 0, 2, 2, 2, 3, 1, 4, 2, 3, 4, 2, 7, 5, 4, 6, 7, 7, 8, 5, 5, 7, 6, 5, 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 2, 2, 3, 4, 4, 6, 7, 9, 10, 10, 8, 9, 10, 10, 9, 10, 10, 10, 9, 8, 7, 6, 6, 6, 4, 2, 1, 2, 2, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 4, 7, 6, 6, 6, 9, 6, 5, 6, 8, 6, 6, 6, 7, 6, 6, 6, 6, 4, 3, 3, 3, 2, 2, 2, 4, 5, 6, 7, 9, 10, 11, 13, 11, 12, 11, 14, 11, 10, 10, 12, 10, 9, 7, 8, 6, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 4, 5, 7, 6, 7, 7, 7, 5, 6, 7, 7, 8, 8, 8, 8, 7, 7, 6, 8, 7, 5, 7, 6, 3, 4, 2, 4, 4, 4, 6, 6, 7, 9, 12, 10, 10, 7, 8, 10, 11, 9, 9, 7, 6, 6, 5, 4, 5, 3, 1, 2, 1, 1, 5, 3, 1, 9, 1, 8, 4, 5, 7, 6, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 4, 6, 5, 5, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 7, 9, 8, 11, 11, 11, 10, 14, 11, 8, 12, 11, 10, 11, 7, 6, 5, 6, 6, 3, 6, 1, 4, 2, 4, 4, 5, 6, 5, 6, 4, 5, 4, 7, 6, 6, 8, 7, 8, 7, 8, 10, 7, 7, 9, 8, 8, 8, 5, 10, 7, 4, 6, 5, 5, 1, 5, 10, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 29, 29 ], [ 218, 218 ], [ 220, 220 ], [ 222, 222 ], [ 226, 226 ], [ 279, 279 ], [ 344, 344 ], [ 347, 347 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 2, 1, 2, 2, 7, 4, 2, 4, 3, 6, 6, 3, 5, 8, 6, 7, 9, 8, 7, 9, 8, 8, 7, 7, 9, 7, 13, 7, 8, 7, 8, 10, 5, 6, 5, 5, 5, 2, 5, 0, 1, 3, 5, 2, 1, 7, 1, 3, 8, 6, 4, 7, 8, 7, 7, 8, 7, 6, 8, 9, 8, 8, 8, 11, 10, 4, 7, 7, 8, 8, 7, 6, 8, 5, 3, 4, 2, 2, 5, 3, 2, 3, 4, 6, 6, 7, 8, 9, 10, 11, 11, 9, 11, 11, 10, 10, 10, 9, 8, 8, 8, 6, 5, 4, 3, 1, 1, 1, 1, 0, 2, 2, 2, 3, 1, 4, 2, 3, 4, 2, 7, 5, 4, 6, 7, 7, 8, 5, 5, 7, 6, 5, 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 2, 2, 3, 4, 4, 6, 7, 9, 10, 10, 8, 9, 10, 10, 9, 10, 10, 10, 9, 8, 7, 6, 6, 6, 4, 2, 1, 2, 2, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 4, 7, 6, 6, 6, 9, 6, 5, 6, 8, 6, 6, 6, 7, 6, 6, 6, 6, 4, 3, 3, 3, 2, 2, 2, 4, 5, 6, 7, 9, 10, 11, 13, 11, 12, 11, 14, 11, 10, 10, 12, 10, 9, 7, 8, 6, 3, 3, 4, 2, 2, 5, 2, 2, 2, 2, 2, 3, 2, 3, 4, 5, 7, 6, 7, 7, 7, 5, 6, 7, 7, 8, 8, 8, 8, 7, 7, 6, 8, 7, 5, 7, 6, 3, 4, 2, 4, 4, 4, 6, 6, 7, 9, 12, 10, 10, 7, 8, 10, 11, 9, 9, 7, 6, 6, 5, 4, 5, 3, 1, 2, 1, 1, 5, 3, 1, 9, 1, 8, 4, 5, 7, 6, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 4, 6, 5, 5, 4, 3, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 7, 9, 8, 11, 11, 11, 10, 14, 11, 8, 12, 11, 10, 11, 7, 6, 5, 6, 6, 3, 6, 1, 4, 2, 4, 4, 5, 6, 5, 6, 4, 5, 4, 7, 6, 6, 8, 7, 8, 7, 8, 10, 7, 7, 9, 8, 8, 8, 5, 10, 7, 4, 6, 5, 5, 1, 5, 10, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 6 ], [ 9, 9 ], [ 40, 40 ], [ 42, 43 ], [ 46, 47 ], [ 49, 49 ], [ 79, 80 ], [ 83, 83 ], [ 108, 115 ], [ 117, 117 ], [ 119, 119 ], [ 122, 122 ], [ 146, 147 ], [ 171, 174 ], [ 208, 210 ], [ 235, 236 ], [ 238, 242 ], [ 244, 244 ], [ 271, 271 ], [ 295, 298 ], [ 301, 301 ], [ 303, 303 ], [ 358, 358 ], [ 360, 360 ], [ 392, 392 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 7, 7, 7, 8, 7, 6, 5, 5, 4, 2, 3, 5, 6, 8, 11, 14, 15, 15, 13, 11, 12, 14, 13, 13, 14, 14, 5, 14, 8, 10, 6, 8, 3, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 6, 6, 7, 7, 7, 8, 8, 8, 9, 7, 7, 8, 8, 7, 7, 7, 5, 5, 4, 3, 3, 2, 3, 2, 5, 7, 9, 11, 12, 13, 15, 13, 11, 11, 12, 13, 13, 10, 9, 10, 9, 6, 3, 1, 2, 7, 6, 5, 6, 6, 7, 8, 8, 7, 7, 7, 9, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 7, 7, 6, 5, 4, 3, 1, 0, 2, 3, 6, 6, 24, 13, 15, 14, 13, 13, 14, 14, 15, 13, 12, 12, 11, 10, 7, 6, 2, 2, 3, 4, 5, 5, 5, 6, 5, 5, 6, 7, 9, 4, 7, 8, 8, 6, 8, 8, 7, 8, 8, 6, 6, 8, 8, 5, 4, 5, 3, 2, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 19, 14, 11, 10, 14, 15, 13, 9, 8, 11, 9, 2, 3, 3, 5, 5, 4, 7, 9, 7, 5, 5, 7, 7, 7, 7, 9, 10, 9, 9, 7, 6, 9, 10, 8, 8, 9, 9, 9, 8, 7, 6, 6, 6, 2, 1, 1, 3, 5, 7, 10, 14, 16, 15, 15, 14, 13, 14, 16, 16, 15, 13, 12, 12, 11, 10, 5, 1, 0, 1, 2, 3, 4, 2, 4, 6, 7, 6, 6, 5, 6, 9, 5, 10, 8, 7, 4, 7, 8, 8, 8, 7, 9, 4, 5, 9, 7, 4, 3, 5, 1, 2, 4, 3, 5, 7, 12, 9, 20, 13, 10, 12, 14, 13 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 7, 7, 7, 8, 7, 6, 5, 5, 4, 2, 3, 5, 6, 8, 11, 14, 15, 15, 13, 11, 12, 14, 13, 13, 14, 14, 5, 14, 8, 10, 6, 8, 3, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 6, 6, 7, 7, 7, 8, 8, 8, 9, 7, 7, 8, 8, 7, 7, 7, 5, 5, 4, 3, 3, 2, 3, 2, 5, 7, 9, 11, 12, 13, 15, 13, 11, 11, 12, 13, 13, 10, 9, 10, 9, 6, 3, 1, 2, 7, 6, 5, 6, 6, 7, 8, 8, 7, 7, 7, 9, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 7, 7, 6, 5, 4, 3, 1, 0, 2, 3, 6, 6, 24, 13, 15, 14, 13, 13, 14, 14, 15, 13, 12, 12, 11, 10, 7, 6, 2, 2, 3, 4, 5, 5, 5, 6, 5, 5, 6, 7, 9, 4, 7, 8, 8, 6, 8, 8, 7, 8, 8, 6, 6, 8, 8, 5, 4, 5, 3, 2, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 19, 14, 11, 10, 14, 15, 13, 9, 8, 11, 9, 2, 3, 3, 5, 5, 4, 7, 9, 7, 5, 5, 7, 7, 7, 7, 9, 10, 9, 9, 7, 6, 9, 10, 8, 8, 9, 9, 9, 8, 7, 6, 6, 6, 2, 1, 1, 3, 5, 7, 10, 14, 16, 15, 15, 14, 13, 14, 16, 16, 15, 13, 12, 12, 11, 10, 5, 1, 0, 1, 2, 3, 4, 2, 4, 6, 7, 6, 6, 5, 6, 9, 5, 10, 8, 7, 4, 7, 8, 8, 8, 7, 9, 4, 5, 9, 7, 4, 3, 5, 1, 2, 4, 3, 5, 7, 12, 9, 20, 13, 10, 12, 14, 13 ], "output": { "2. Local Maxima": { "frames": [ [ 124, 124 ], [ 290, 290 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 7, 7, 7, 8, 7, 6, 5, 5, 4, 2, 3, 5, 6, 8, 11, 14, 15, 15, 13, 11, 12, 14, 13, 13, 14, 14, 5, 14, 8, 10, 6, 8, 3, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 6, 6, 7, 7, 7, 8, 8, 8, 9, 7, 7, 8, 8, 7, 7, 7, 5, 5, 4, 3, 3, 2, 3, 2, 5, 7, 9, 11, 12, 13, 15, 13, 11, 11, 12, 13, 13, 10, 9, 10, 9, 6, 3, 1, 2, 7, 6, 5, 6, 6, 7, 8, 8, 7, 7, 7, 9, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 7, 7, 6, 5, 4, 3, 1, 0, 2, 3, 6, 6, 24, 13, 15, 14, 13, 13, 14, 14, 15, 13, 12, 12, 11, 10, 7, 6, 2, 2, 3, 4, 5, 5, 5, 6, 5, 5, 6, 7, 9, 4, 7, 8, 8, 6, 8, 8, 7, 8, 8, 6, 6, 8, 8, 5, 4, 5, 3, 2, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 19, 14, 11, 10, 14, 15, 13, 9, 8, 11, 9, 2, 3, 3, 5, 5, 4, 7, 9, 7, 5, 5, 7, 7, 7, 7, 9, 10, 9, 9, 7, 6, 9, 10, 8, 8, 9, 9, 9, 8, 7, 6, 6, 6, 2, 1, 1, 3, 5, 7, 10, 14, 16, 15, 15, 14, 13, 14, 16, 16, 15, 13, 12, 12, 11, 10, 5, 1, 0, 1, 2, 3, 4, 2, 4, 6, 7, 6, 6, 5, 6, 9, 5, 10, 8, 7, 4, 7, 8, 8, 8, 7, 9, 4, 5, 9, 7, 4, 3, 5, 1, 2, 4, 3, 5, 7, 12, 9, 20, 13, 10, 12, 14, 13 ], "output": { "3. Local Minima": { "frames": [ [ 8, 10 ], [ 32, 36 ], [ 61, 66 ], [ 85, 87 ], [ 116, 121 ], [ 140, 143 ], [ 153, 153 ], [ 168, 168 ], [ 170, 174 ], [ 193, 195 ], [ 198, 198 ], [ 226, 229 ], [ 249, 256 ], [ 268, 268 ], [ 275, 275 ], [ 279, 280 ], [ 282, 285 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 5, 4, 4, 5, 6, 4, 6, 6, 5, 5, 4, 6, 7, 6, 4, 4, 3, 2, 2, 1, 2, 2, 0, 0, 0, 2, 2, 1, 1, 1, 0, 1, 1, 3, 4, 4, 3, 3, 5, 6, 6, 8, 10, 11, 11, 13, 15, 16, 16, 17, 16, 16, 15, 15, 15, 14, 12, 12, 10, 7, 3, 3, 1, 5, 6, 8, 9, 10, 10, 12, 13, 13, 14, 13, 12, 9, 5, 9, 12, 16, 17, 22, 17, 12, 10, 4, 2, 2, 3, 4, 5, 4, 5, 4, 3, 2, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 5, 6, 3, 1, 4, 4, 6, 5, 3, 1, 1, 0, 1, 2, 2, 1, 2, 3, 3, 2, 4, 4, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 5, 4, 4, 5, 6, 4, 6, 6, 5, 5, 4, 6, 7, 6, 4, 4, 3, 2, 2, 1, 2, 2, 0, 0, 0, 2, 2, 1, 1, 1, 0, 1, 1, 3, 4, 4, 3, 3, 5, 6, 6, 8, 10, 11, 11, 13, 15, 16, 16, 17, 16, 16, 15, 15, 15, 14, 12, 12, 10, 7, 3, 3, 1, 5, 6, 8, 9, 10, 10, 12, 13, 13, 14, 13, 12, 9, 5, 9, 12, 16, 17, 22, 17, 12, 10, 4, 2, 2, 3, 4, 5, 4, 5, 4, 3, 2, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 5, 6, 3, 1, 4, 4, 6, 5, 3, 1, 1, 0, 1, 2, 2, 1, 2, 3, 3, 2, 4, 4, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 188, 188 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 5, 4, 4, 5, 6, 4, 6, 6, 5, 5, 4, 6, 7, 6, 4, 4, 3, 2, 2, 1, 2, 2, 0, 0, 0, 2, 2, 1, 1, 1, 0, 1, 1, 3, 4, 4, 3, 3, 5, 6, 6, 8, 10, 11, 11, 13, 15, 16, 16, 17, 16, 16, 15, 15, 15, 14, 12, 12, 10, 7, 3, 3, 1, 5, 6, 8, 9, 10, 10, 12, 13, 13, 14, 13, 12, 9, 5, 9, 12, 16, 17, 22, 17, 12, 10, 4, 2, 2, 3, 4, 5, 4, 5, 4, 3, 2, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 5, 6, 3, 1, 4, 4, 6, 5, 3, 1, 1, 0, 1, 2, 2, 1, 2, 3, 3, 2, 4, 4, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 106 ], [ 108, 109 ], [ 112, 112 ], [ 117, 117 ], [ 121, 144 ], [ 167, 169 ], [ 192, 196 ], [ 198, 198 ], [ 200, 254 ], [ 257, 260 ], [ 263, 399 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 93, 93 ], [ 99, 99 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 10, 10 ], [ 17, 17 ], [ 25, 25 ], [ 27, 84 ], [ 87, 91 ], [ 98, 98 ], [ 101, 132 ], [ 135, 141 ], [ 143, 145 ], [ 147, 151 ], [ 153, 159 ], [ 163, 167 ], [ 170, 177 ], [ 179, 190 ], [ 192, 245 ], [ 247, 299 ], [ 301, 306 ], [ 309, 309 ], [ 311, 311 ], [ 314, 314 ], [ 321, 322 ], [ 333, 333 ], [ 345, 347 ], [ 350, 377 ], [ 380, 386 ], [ 390, 391 ], [ 395, 396 ], [ 411, 413 ], [ 416, 421 ], [ 423, 443 ], [ 445, 448 ], [ 452, 459 ], [ 462, 465 ], [ 467, 512 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 7, 7, 5, 5, 6, 8, 8, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 6, 4, 4, 3, 1, 1, 2, 3, 6, 6, 6, 7, 9, 9, 10, 10, 10, 9, 7, 8, 9, 9, 9, 9, 10, 5, 9, 7, 6, 6, 6, 7, 1, 1, 2, 1, 2, 2, 1, 3, 12, 3, 3, 5, 5, 5, 4, 4, 5, 5, 5, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 5, 6, 7, 6, 5, 5, 6, 5, 5, 4, 3, 3, 2, 1, 3, 4, 5, 7, 8, 8, 8, 9, 9, 9, 10, 9, 9, 10, 11, 10, 10, 9, 8, 8, 8, 7, 4, 5, 3, 1, 1, 1, 1, 1, 2, 4, 3, 3, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 9, 7, 6, 7, 7, 6, 6, 6, 6, 5, 4, 4, 3, 2, 2, 4, 4, 6, 8, 9, 9, 11, 12, 11, 10, 8, 7, 8, 9, 9, 10, 10, 7, 7, 7, 6, 7, 7, 4, 3, 2, 1, 0, 2, 3, 4, 3, 2, 4, 4, 3, 4, 5, 5, 4, 5, 6, 5, 5, 6, 7, 6, 6, 6, 6, 5, 6, 7, 7, 6, 6, 5, 5, 6, 6, 5, 5, 4, 3, 3, 1, 1, 3, 5, 5, 6, 6, 8, 9, 9, 9, 10, 11, 11, 11, 11, 10, 9, 8, 8, 8, 7, 6, 5, 3, 2, 1, 0, 1, 2, 4, 3, 2, 2, 4, 5, 5, 5, 6, 5, 6, 6, 6, 7, 8, 6, 7, 8, 7, 7, 7, 7, 7, 8, 8, 7, 6, 7, 7, 6, 5, 4, 3, 2, 1, 2, 3, 5, 6, 6, 6, 8, 10, 10, 10, 10, 9, 8, 9, 11, 12, 10, 9, 8, 7, 7, 8, 8, 7, 6, 6, 3, 2, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 5, 4, 5, 7, 7, 7, 6, 8, 8, 7, 6, 7, 7, 7, 7 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 7, 7, 5, 5, 6, 8, 8, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 6, 4, 4, 3, 1, 1, 2, 3, 6, 6, 6, 7, 9, 9, 10, 10, 10, 9, 7, 8, 9, 9, 9, 9, 10, 5, 9, 7, 6, 6, 6, 7, 1, 1, 2, 1, 2, 2, 1, 3, 12, 3, 3, 5, 5, 5, 4, 4, 5, 5, 5, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 5, 6, 7, 6, 5, 5, 6, 5, 5, 4, 3, 3, 2, 1, 3, 4, 5, 7, 8, 8, 8, 9, 9, 9, 10, 9, 9, 10, 11, 10, 10, 9, 8, 8, 8, 7, 4, 5, 3, 1, 1, 1, 1, 1, 2, 4, 3, 3, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 9, 7, 6, 7, 7, 6, 6, 6, 6, 5, 4, 4, 3, 2, 2, 4, 4, 6, 8, 9, 9, 11, 12, 11, 10, 8, 7, 8, 9, 9, 10, 10, 7, 7, 7, 6, 7, 7, 4, 3, 2, 1, 0, 2, 3, 4, 3, 2, 4, 4, 3, 4, 5, 5, 4, 5, 6, 5, 5, 6, 7, 6, 6, 6, 6, 5, 6, 7, 7, 6, 6, 5, 5, 6, 6, 5, 5, 4, 3, 3, 1, 1, 3, 5, 5, 6, 6, 8, 9, 9, 9, 10, 11, 11, 11, 11, 10, 9, 8, 8, 8, 7, 6, 5, 3, 2, 1, 0, 1, 2, 4, 3, 2, 2, 4, 5, 5, 5, 6, 5, 6, 6, 6, 7, 8, 6, 7, 8, 7, 7, 7, 7, 7, 8, 8, 7, 6, 7, 7, 6, 5, 4, 3, 2, 1, 2, 3, 5, 6, 6, 6, 8, 10, 10, 10, 10, 9, 8, 9, 11, 12, 10, 9, 8, 7, 7, 8, 8, 7, 6, 6, 3, 2, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 5, 4, 5, 7, 7, 7, 6, 8, 8, 7, 6, 7, 7, 7, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 33, 35 ], [ 43, 43 ], [ 59, 59 ], [ 104, 104 ], [ 107, 110 ], [ 164, 167 ], [ 173, 174 ], [ 234, 239 ], [ 295, 298 ], [ 302, 304 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 7, 7, 5, 5, 6, 8, 8, 8, 7, 7, 7, 7, 6, 6, 7, 7, 7, 6, 6, 6, 4, 4, 3, 1, 1, 2, 3, 6, 6, 6, 7, 9, 9, 10, 10, 10, 9, 7, 8, 9, 9, 9, 9, 10, 5, 9, 7, 6, 6, 6, 7, 1, 1, 2, 1, 2, 2, 1, 3, 12, 3, 3, 5, 5, 5, 4, 4, 5, 5, 5, 6, 6, 7, 5, 6, 6, 6, 7, 6, 6, 5, 6, 7, 6, 5, 5, 6, 5, 5, 4, 3, 3, 2, 1, 3, 4, 5, 7, 8, 8, 8, 9, 9, 9, 10, 9, 9, 10, 11, 10, 10, 9, 8, 8, 8, 7, 4, 5, 3, 1, 1, 1, 1, 1, 2, 4, 3, 3, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 9, 7, 6, 7, 7, 6, 6, 6, 6, 5, 4, 4, 3, 2, 2, 4, 4, 6, 8, 9, 9, 11, 12, 11, 10, 8, 7, 8, 9, 9, 10, 10, 7, 7, 7, 6, 7, 7, 4, 3, 2, 1, 0, 2, 3, 4, 3, 2, 4, 4, 3, 4, 5, 5, 4, 5, 6, 5, 5, 6, 7, 6, 6, 6, 6, 5, 6, 7, 7, 6, 6, 5, 5, 6, 6, 5, 5, 4, 3, 3, 1, 1, 3, 5, 5, 6, 6, 8, 9, 9, 9, 10, 11, 11, 11, 11, 10, 9, 8, 8, 8, 7, 6, 5, 3, 2, 1, 0, 1, 2, 4, 3, 2, 2, 4, 5, 5, 5, 6, 5, 6, 6, 6, 7, 8, 6, 7, 8, 7, 7, 7, 7, 7, 8, 8, 7, 6, 7, 7, 6, 5, 4, 3, 2, 1, 2, 3, 5, 6, 6, 6, 8, 10, 10, 10, 10, 9, 8, 9, 11, 12, 10, 9, 8, 7, 7, 8, 8, 7, 6, 6, 3, 2, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 5, 4, 5, 7, 7, 7, 6, 8, 8, 7, 6, 7, 7, 7, 7 ], "output": { "3. Local Minima": { "frames": [ [ 23, 25 ], [ 51, 57 ], [ 92, 93 ], [ 119, 124 ], [ 156, 157 ], [ 183, 186 ], [ 190, 190 ], [ 223, 224 ], [ 248, 252 ], [ 255, 256 ], [ 286, 288 ], [ 315, 320 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 2, 12, 6, 5, 4, 5, 7, 5, 5, 5, 7, 6, 5, 6, 6, 7, 7, 7, 7, 8, 7, 6, 7, 6, 4, 6, 3, 5, 4, 3, 2, 3, 4, 5, 5, 4, 6, 7, 7, 9, 8, 6, 4, 4, 4, 5, 3, 3, 4, 8, 5, 2, 6, 4, 4, 6, 6, 5, 5, 3, 10, 7, 2, 12, 10, 6, 4, 5, 7, 7, 6, 5, 5, 5, 5, 5, 6, 8, 6, 8, 10, 9, 8, 11, 9, 7, 8, 11, 9, 5, 6, 2, 3, 5, 3, 5, 6, 2, 1, 3, 4, 5, 3, 3, 3, 2, 9, 3, 1, 10, 3, 4, 4, 6, 4, 4, 3, 1, 2, 2, 4, 5, 11, 1, 7, 8, 7, 8, 6, 9, 9, 7, 4, 4, 3, 1, 2, 2, 3, 5, 3, 3, 2, 4, 5, 5, 4, 4, 2, 3, 4, 5, 4, 8, 7, 5, 5, 6, 9, 9, 4, 3, 4, 2, 4, 3 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 2, 12, 6, 5, 4, 5, 7, 5, 5, 5, 7, 6, 5, 6, 6, 7, 7, 7, 7, 8, 7, 6, 7, 6, 4, 6, 3, 5, 4, 3, 2, 3, 4, 5, 5, 4, 6, 7, 7, 9, 8, 6, 4, 4, 4, 5, 3, 3, 4, 8, 5, 2, 6, 4, 4, 6, 6, 5, 5, 3, 10, 7, 2, 12, 10, 6, 4, 5, 7, 7, 6, 5, 5, 5, 5, 5, 6, 8, 6, 8, 10, 9, 8, 11, 9, 7, 8, 11, 9, 5, 6, 2, 3, 5, 3, 5, 6, 2, 1, 3, 4, 5, 3, 3, 3, 2, 9, 3, 1, 10, 3, 4, 4, 6, 4, 4, 3, 1, 2, 2, 4, 5, 11, 1, 7, 8, 7, 8, 6, 9, 9, 7, 4, 4, 3, 1, 2, 2, 3, 5, 3, 3, 2, 4, 5, 5, 4, 4, 2, 3, 4, 5, 4, 8, 7, 5, 5, 6, 9, 9, 4, 3, 4, 2, 4, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 3, 3 ], [ 62, 62 ], [ 65, 66 ], [ 82, 82 ], [ 85, 85 ], [ 89, 89 ], [ 111, 111 ], [ 124, 124 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 2, 12, 6, 5, 4, 5, 7, 5, 5, 5, 7, 6, 5, 6, 6, 7, 7, 7, 7, 8, 7, 6, 7, 6, 4, 6, 3, 5, 4, 3, 2, 3, 4, 5, 5, 4, 6, 7, 7, 9, 8, 6, 4, 4, 4, 5, 3, 3, 4, 8, 5, 2, 6, 4, 4, 6, 6, 5, 5, 3, 10, 7, 2, 12, 10, 6, 4, 5, 7, 7, 6, 5, 5, 5, 5, 5, 6, 8, 6, 8, 10, 9, 8, 11, 9, 7, 8, 11, 9, 5, 6, 2, 3, 5, 3, 5, 6, 2, 1, 3, 4, 5, 3, 3, 3, 2, 9, 3, 1, 10, 3, 4, 4, 6, 4, 4, 3, 1, 2, 2, 4, 5, 11, 1, 7, 8, 7, 8, 6, 9, 9, 7, 4, 4, 3, 1, 2, 2, 3, 5, 3, 3, 2, 4, 5, 5, 4, 4, 2, 3, 4, 5, 4, 8, 7, 5, 5, 6, 9, 9, 4, 3, 4, 2, 4, 3 ], "output": { "3. Local Minima": { "frames": [ [ 0, 2 ], [ 28, 28 ], [ 31, 33 ], [ 48, 49 ], [ 53, 53 ], [ 61, 61 ], [ 64, 64 ], [ 93, 94 ], [ 96, 96 ], [ 99, 101 ], [ 104, 107 ], [ 109, 110 ], [ 112, 112 ], [ 118, 121 ], [ 125, 125 ], [ 136, 140 ], [ 142, 144 ], [ 150, 151 ], [ 163, 163 ], [ 165, 165 ], [ 167, 167 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 3, 3, 4, 5, 4, 3, 3, 3, 3, 2, 3, 3, 4, 3, 2, 2, 2, 3, 3, 3, 4, 3, 2, 4, 7, 6, 4, 1, 2, 2, 2, 5, 6, 4, 4, 8, 5, 3, 1, 2, 1, 1, 1, 3, 3, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 4, 3, 3, 4, 6, 7, 7, 7, 5, 6, 4, 4, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 3, 4, 3, 3, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 3, 3, 1, 2, 1, 0, 1, 1, 1, 2, 3, 3, 4, 4, 3, 4, 4, 3, 3, 3, 4, 5, 4, 4, 3, 4, 5, 4, 4, 3, 5, 4, 3, 4, 4, 3, 3, 2, 2, 3, 4, 5, 4, 3, 4, 3, 4, 7, 4, 3, 4, 4, 5, 6, 4, 3, 4, 8, 5, 4, 5, 5, 3, 3, 4, 4, 2, 3, 5, 4, 5, 7, 7, 8, 8, 6, 5, 4, 2, 3, 3, 3, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 2, 3, 2, 2, 3, 4, 5, 4, 4, 4, 4, 3, 2, 3, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 3, 4, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 5, 4, 4, 5, 4, 4, 4, 5, 4, 3, 2, 1, 2, 4, 4, 3, 2, 3, 5, 5, 4, 3, 3, 4, 4, 5, 6, 3, 3, 1, 1, 1, 2, 3, 1, 3, 1, 4, 2, 4, 1, 2, 7, 4, 5, 4, 4, 4, 3, 4, 5, 7, 7, 7, 7, 5, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 2, 2, 2, 2, 1, 2, 4, 1, 0, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 0, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 4, 5, 4, 3, 3, 3, 3, 2, 3, 3, 4, 3, 2, 2, 2, 3, 3, 3, 4, 3, 2, 4, 7, 6, 4, 1, 2, 2, 2, 5, 6, 4, 4, 8, 5, 3, 1, 2, 1, 1, 1, 3, 3, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 4, 3, 3, 4, 6, 7, 7, 7, 5, 6, 4, 4, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 3, 4, 3, 3, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 3, 3, 1, 2, 1, 0, 1, 1, 1, 2, 3, 3, 4, 4, 3, 4, 4, 3, 3, 3, 4, 5, 4, 4, 3, 4, 5, 4, 4, 3, 5, 4, 3, 4, 4, 3, 3, 2, 2, 3, 4, 5, 4, 3, 4, 3, 4, 7, 4, 3, 4, 4, 5, 6, 4, 3, 4, 8, 5, 4, 5, 5, 3, 3, 4, 4, 2, 3, 5, 4, 5, 7, 7, 8, 8, 6, 5, 4, 2, 3, 3, 3, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 2, 3, 2, 2, 3, 4, 5, 4, 4, 4, 4, 3, 2, 3, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 3, 4, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 5, 4, 4, 5, 4, 4, 4, 5, 4, 3, 2, 1, 2, 4, 4, 3, 2, 3, 5, 5, 4, 3, 3, 4, 4, 5, 6, 3, 3, 1, 1, 1, 2, 3, 1, 3, 1, 4, 2, 4, 1, 2, 7, 4, 5, 4, 4, 4, 3, 4, 5, 7, 7, 7, 7, 5, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 2, 2, 2, 2, 1, 2, 4, 1, 0, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 0, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 27, 27 ], [ 38, 38 ], [ 66, 68 ], [ 173, 173 ], [ 183, 183 ], [ 197, 200 ], [ 323, 323 ], [ 332, 335 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 4, 5, 4, 3, 3, 3, 3, 2, 3, 3, 4, 3, 2, 2, 2, 3, 3, 3, 4, 3, 2, 4, 7, 6, 4, 1, 2, 2, 2, 5, 6, 4, 4, 8, 5, 3, 1, 2, 1, 1, 1, 3, 3, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 4, 3, 3, 4, 6, 7, 7, 7, 5, 6, 4, 4, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 3, 4, 3, 3, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 3, 3, 1, 2, 1, 0, 1, 1, 1, 2, 3, 3, 4, 4, 3, 4, 4, 3, 3, 3, 4, 5, 4, 4, 3, 4, 5, 4, 4, 3, 5, 4, 3, 4, 4, 3, 3, 2, 2, 3, 4, 5, 4, 3, 4, 3, 4, 7, 4, 3, 4, 4, 5, 6, 4, 3, 4, 8, 5, 4, 5, 5, 3, 3, 4, 4, 2, 3, 5, 4, 5, 7, 7, 8, 8, 6, 5, 4, 2, 3, 3, 3, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 1, 1, 2, 3, 2, 2, 3, 4, 5, 4, 4, 4, 4, 3, 2, 3, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 3, 4, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 4, 4, 4, 4, 5, 4, 5, 5, 4, 5, 5, 4, 4, 5, 4, 4, 4, 5, 4, 3, 2, 1, 2, 4, 4, 3, 2, 3, 5, 5, 4, 3, 3, 4, 4, 5, 6, 3, 3, 1, 1, 1, 2, 3, 1, 3, 1, 4, 2, 4, 1, 2, 7, 4, 5, 4, 4, 4, 3, 4, 5, 7, 7, 7, 7, 5, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 2, 2, 2, 2, 1, 2, 4, 1, 0, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 1, 0, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 30, 30 ], [ 41, 41 ], [ 43, 45 ], [ 48, 48 ], [ 55, 57 ], [ 78, 83 ], [ 85, 88 ], [ 91, 92 ], [ 96, 97 ], [ 102, 105 ], [ 115, 125 ], [ 128, 128 ], [ 130, 134 ], [ 208, 210 ], [ 213, 213 ], [ 220, 220 ], [ 228, 229 ], [ 245, 245 ], [ 247, 249 ], [ 253, 253 ], [ 255, 258 ], [ 264, 264 ], [ 292, 292 ], [ 310, 312 ], [ 315, 315 ], [ 317, 317 ], [ 321, 321 ], [ 339, 339 ], [ 341, 342 ], [ 345, 346 ], [ 348, 351 ], [ 353, 354 ], [ 357, 358 ], [ 362, 362 ], [ 367, 367 ], [ 370, 372 ], [ 375, 375 ], [ 378, 379 ], [ 383, 383 ], [ 392, 393 ], [ 396, 400 ], [ 403, 406 ], [ 408, 409 ], [ 413, 413 ], [ 415, 431 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 6, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 2, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 4, 3, 4, 4, 3, 4, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 3, 4, 5, 4, 4, 3, 3, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 5, 6, 5, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 6, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 2, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 4, 3, 4, 4, 3, 4, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 3, 4, 5, 4, 4, 3, 3, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 5, 6, 5, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 177, 179 ], [ 181, 183 ], [ 219, 220 ], [ 223, 230 ], [ 232, 232 ], [ 234, 235 ], [ 287, 290 ], [ 296, 297 ], [ 301, 310 ], [ 371, 372 ], [ 473, 496 ], [ 684, 684 ], [ 689, 689 ], [ 695, 696 ], [ 699, 699 ], [ 703, 704 ], [ 734, 734 ], [ 738, 741 ], [ 745, 748 ], [ 752, 753 ], [ 801, 803 ], [ 808, 827 ], [ 859, 859 ], [ 862, 883 ], [ 912, 920 ], [ 923, 940 ], [ 962, 986 ], [ 1029, 1032 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 6, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 2, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 4, 4, 3, 4, 4, 3, 4, 4, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 3, 3, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 3, 4, 5, 4, 4, 3, 3, 5, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 5, 6, 5, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 4, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 14 ], [ 74, 74 ], [ 135, 146 ], [ 199, 202 ], [ 255, 255 ], [ 259, 268 ], [ 272, 273 ], [ 329, 332 ], [ 395, 403 ], [ 466, 466 ], [ 577, 578 ], [ 580, 582 ], [ 584, 584 ], [ 586, 593 ], [ 595, 608 ], [ 611, 612 ], [ 614, 615 ], [ 618, 621 ], [ 626, 628 ], [ 658, 659 ], [ 665, 674 ], [ 720, 722 ], [ 776, 787 ], [ 840, 841 ], [ 897, 903 ], [ 1005, 1014 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 7, 5, 1, 4, 10, 7, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 3, 3, 2, 2, 1, 2, 3, 3, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 5, 1, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 4, 3, 4, 4, 4, 5, 5, 3, 3, 1, 2, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 3, 4, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 7, 5, 1, 4, 10, 7, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 3, 3, 2, 2, 1, 2, 3, 3, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 5, 1, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 4, 3, 4, 4, 4, 5, 5, 3, 3, 1, 2, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 3, 4, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 263, 263 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 7, 5, 1, 4, 10, 7, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 3, 3, 2, 2, 1, 2, 3, 3, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 2, 2, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 5, 1, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 4, 4, 3, 4, 4, 4, 5, 5, 3, 3, 1, 2, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 3, 4, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 0, 122 ], [ 124, 124 ], [ 126, 126 ], [ 129, 129 ], [ 151, 159 ], [ 168, 175 ], [ 210, 224 ], [ 226, 228 ], [ 231, 232 ], [ 235, 258 ], [ 261, 261 ], [ 265, 281 ], [ 284, 287 ], [ 290, 345 ], [ 347, 374 ], [ 377, 388 ], [ 390, 391 ], [ 393, 394 ], [ 396, 398 ], [ 401, 421 ], [ 423, 428 ], [ 431, 433 ], [ 446, 447 ], [ 449, 450 ], [ 455, 466 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 3, 5, 3, 3, 5, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 5, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 9, 10, 9, 7, 8, 10, 10, 9, 9, 9, 8, 7, 7, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 4, 4, 5, 6, 7, 8, 9, 9, 9, 9, 8, 9, 9, 9, 8, 6, 7, 6, 6, 6, 5, 5, 5, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 6, 8, 7, 8, 8, 9, 11, 11, 11, 12, 13, 13, 14, 15, 14, 14, 15, 14, 13, 13, 14, 13, 12, 11, 10, 9, 9, 8, 8, 8, 7, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 3, 5, 3, 3, 5, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 5, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 9, 10, 9, 7, 8, 10, 10, 9, 9, 9, 8, 7, 7, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 4, 4, 5, 6, 7, 8, 9, 9, 9, 9, 8, 9, 9, 9, 8, 6, 7, 6, 6, 6, 5, 5, 5, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 6, 8, 7, 8, 8, 9, 11, 11, 11, 12, 13, 13, 14, 15, 14, 14, 15, 14, 13, 13, 14, 13, 12, 11, 10, 9, 9, 8, 8, 8, 7, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 271, 284 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 3, 5, 3, 3, 5, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 5, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 9, 10, 9, 7, 8, 10, 10, 9, 9, 9, 8, 7, 7, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 4, 4, 5, 6, 7, 8, 9, 9, 9, 9, 8, 9, 9, 9, 8, 6, 7, 6, 6, 6, 5, 5, 5, 4, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 6, 8, 7, 8, 8, 9, 11, 11, 11, 12, 13, 13, 14, 15, 14, 14, 15, 14, 13, 13, 14, 13, 12, 11, 10, 9, 9, 8, 8, 8, 7, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 125 ], [ 152, 152 ], [ 154, 155 ], [ 157, 178 ], [ 223, 226 ], [ 251, 260 ], [ 300, 337 ], [ 340, 340 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 7, 9, 10, 12, 13, 14, 14, 14, 11, 8, 4, 1, 1, 2, 3, 4, 4, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 7, 9, 10, 10, 9, 8, 5, 2, 1, 2, 5, 5, 6, 5, 6, 6, 6, 5, 4, 3, 2, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 7, 6, 5, 3, 2, 4, 6, 7, 6, 5, 5, 5, 5, 6, 9, 10, 11, 10, 4, 4, 6, 10, 11, 9, 9, 9, 9, 7, 6, 5, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 2, 1, 1, 1, 3, 5, 5, 6, 6, 6, 5, 4, 3, 3, 4, 7, 8, 11, 12, 14, 16, 20, 22, 25, 23, 23, 20, 16, 15, 12, 10, 8, 6, 5, 4, 2, 1, 1, 2, 3, 2, 3, 3, 2, 1, 5, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 7, 9, 10, 12, 13, 14, 14, 14, 11, 8, 4, 1, 1, 2, 3, 4, 4, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 7, 9, 10, 10, 9, 8, 5, 2, 1, 2, 5, 5, 6, 5, 6, 6, 6, 5, 4, 3, 2, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 7, 6, 5, 3, 2, 4, 6, 7, 6, 5, 5, 5, 5, 6, 9, 10, 11, 10, 4, 4, 6, 10, 11, 9, 9, 9, 9, 7, 6, 5, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 2, 1, 1, 1, 3, 5, 5, 6, 6, 6, 5, 4, 3, 3, 4, 7, 8, 11, 12, 14, 16, 20, 22, 25, 23, 23, 20, 16, 15, 12, 10, 8, 6, 5, 4, 2, 1, 1, 2, 3, 2, 3, 3, 2, 1, 5, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 314, 319 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 7, 9, 10, 12, 13, 14, 14, 14, 11, 8, 4, 1, 1, 2, 3, 4, 4, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 7, 9, 10, 10, 9, 8, 5, 2, 1, 2, 5, 5, 6, 5, 6, 6, 6, 5, 4, 3, 2, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 7, 6, 5, 3, 2, 4, 6, 7, 6, 5, 5, 5, 5, 6, 9, 10, 11, 10, 4, 4, 6, 10, 11, 9, 9, 9, 9, 7, 6, 5, 4, 3, 3, 3, 3, 2, 2, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 3, 2, 1, 1, 1, 3, 5, 5, 6, 6, 6, 5, 4, 3, 3, 4, 7, 8, 11, 12, 14, 16, 20, 22, 25, 23, 23, 20, 16, 15, 12, 10, 8, 6, 5, 4, 2, 1, 1, 2, 3, 2, 3, 3, 2, 1, 5, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 148 ], [ 160, 166 ], [ 171, 194 ], [ 201, 206 ], [ 208, 208 ], [ 212, 223 ], [ 229, 232 ], [ 236, 239 ], [ 245, 246 ], [ 256, 299 ], [ 303, 307 ], [ 326, 441 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 2, 2, 3, 3, 4, 5, 5, 7, 7, 7, 7, 8, 9, 7, 7, 7, 8, 9, 9, 9, 8, 8, 7, 6, 6, 6, 3, 4, 9, 9, 10, 12, 16, 19, 15, 19, 17, 16, 15, 16, 18, 14, 12, 10, 11, 10, 11, 13, 12, 11, 12, 13, 14, 14, 14, 14, 14, 13, 14, 13, 13, 13, 13, 13, 13, 12, 14, 13, 12, 11, 12, 12, 12, 13, 13, 13, 8, 12, 12, 11, 11, 12, 14, 13, 10, 9, 10, 16, 16, 12, 12, 13, 16, 16, 13, 13, 13, 13, 15, 18, 16, 16, 15, 13, 9, 9, 8, 8, 7, 7, 7, 5, 2, 2, 1, 3, 4, 5, 4, 3, 2, 3, 4, 5, 5, 5, 5, 4, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 5, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 2, 2, 3, 3, 4, 5, 5, 7, 7, 7, 7, 8, 9, 7, 7, 7, 8, 9, 9, 9, 8, 8, 7, 6, 6, 6, 3, 4, 9, 9, 10, 12, 16, 19, 15, 19, 17, 16, 15, 16, 18, 14, 12, 10, 11, 10, 11, 13, 12, 11, 12, 13, 14, 14, 14, 14, 14, 13, 14, 13, 13, 13, 13, 13, 13, 12, 14, 13, 12, 11, 12, 12, 12, 13, 13, 13, 8, 12, 12, 11, 11, 12, 14, 13, 10, 9, 10, 16, 16, 12, 12, 13, 16, 16, 13, 13, 13, 13, 15, 18, 16, 16, 15, 13, 9, 9, 8, 8, 7, 7, 7, 5, 2, 2, 1, 3, 4, 5, 4, 3, 2, 3, 4, 5, 5, 5, 5, 4, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 5, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 222, 223 ], [ 225, 227 ], [ 229, 230 ], [ 277, 278 ], [ 282, 283 ], [ 289, 291 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 2, 2, 3, 3, 4, 5, 5, 7, 7, 7, 7, 8, 9, 7, 7, 7, 8, 9, 9, 9, 8, 8, 7, 6, 6, 6, 3, 4, 9, 9, 10, 12, 16, 19, 15, 19, 17, 16, 15, 16, 18, 14, 12, 10, 11, 10, 11, 13, 12, 11, 12, 13, 14, 14, 14, 14, 14, 13, 14, 13, 13, 13, 13, 13, 13, 12, 14, 13, 12, 11, 12, 12, 12, 13, 13, 13, 8, 12, 12, 11, 11, 12, 14, 13, 10, 9, 10, 16, 16, 12, 12, 13, 16, 16, 13, 13, 13, 13, 15, 18, 16, 16, 15, 13, 9, 9, 8, 8, 7, 7, 7, 5, 2, 2, 1, 3, 4, 5, 4, 3, 2, 3, 4, 5, 5, 5, 5, 4, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 3, 5, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 167 ], [ 169, 171 ], [ 183, 187 ], [ 189, 193 ], [ 216, 216 ], [ 302, 305 ], [ 309, 311 ], [ 318, 318 ], [ 331, 362 ], [ 368, 370 ], [ 372, 373 ], [ 375, 502 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0, 2, 1, 3, 4, 2, 2, 2, 1, 2, 4, 3, 0, 1, 4, 4, 4, 2, 2, 4, 5, 4, 4, 5, 5, 4, 5, 6, 5, 6, 6, 5, 5, 3, 2, 3, 5, 5, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 6, 3, 2, 3, 2, 2, 3, 1, 1, 3, 2, 1, 2, 3, 1, 1, 6, 2, 2, 2, 1, 1, 0, 2, 1, 2, 2, 2, 1, 1, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 5, 6, 4, 4, 4, 4, 5, 4, 4, 4, 2, 3, 2, 2, 2, 5, 2, 2, 5, 5, 6, 3, 8, 6, 3, 3, 1, 2, 0, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 4, 4, 1, 8, 3, 5, 5, 6, 5, 4, 7, 8, 8, 8, 7, 8, 9, 11, 10, 10, 10, 11, 16, 14, 13, 12, 13, 14, 19, 20, 23, 25, 24, 27, 30, 31, 32, 32, 33, 34, 34, 33, 32, 31, 28, 26, 24, 22, 20, 17, 15, 23, 51, 107, 97, 196, 125, 37, 190, 138, 165, 118, 28, 2, 28, 39, 49, 59, 71, 76, 79, 81, 81, 76, 62, 50, 50, 54, 52, 83, 52, 55, 57, 57, 51, 46, 53, 52, 47, 52, 58, 56, 65, 63, 58, 63, 65, 68, 67, 67, 68, 61, 65, 70, 51, 65, 51, 61, 53, 44, 41, 48, 41, 40, 46, 43, 43, 48, 51, 60, 65, 62, 55, 48, 42, 37, 24, 21, 19, 22, 21, 21, 19, 22, 21, 24, 25, 26, 23, 21, 24, 19, 18, 16, 16, 14, 9, 13, 11, 11, 11, 12, 12, 12, 12, 14, 13, 10, 9, 11, 8, 9, 6, 8, 6, 7, 6, 10, 6, 3, 3, 4, 5, 5, 5, 8, 6, 7, 7, 7, 6, 6, 6, 8, 4, 7, 6, 6, 5, 6, 5, 4, 4, 5, 4, 3, 5, 6, 4, 4, 4, 4, 4, 3, 4, 3, 2, 5, 3, 4, 3, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 4, 4, 3, 2, 3, 3, 3, 2, 3, 2, 1, 0, 1, 1, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 3, 3, 1, 2, 3, 2, 1, 2, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 1, 1, 1, 3, 3, 1, 3, 3, 3, 2, 2, 4, 3, 1, 2, 4, 2, 0, 2, 4, 2, 2, 4, 1, 1, 3, 5, 4, 2, 2, 2, 2, 1, 1, 1, 2, 3, 3, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 1, 0, 1, 1, 1, 2, 1, 0, 2, 1, 2, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 3 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0, 2, 1, 3, 4, 2, 2, 2, 1, 2, 4, 3, 0, 1, 4, 4, 4, 2, 2, 4, 5, 4, 4, 5, 5, 4, 5, 6, 5, 6, 6, 5, 5, 3, 2, 3, 5, 5, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 6, 3, 2, 3, 2, 2, 3, 1, 1, 3, 2, 1, 2, 3, 1, 1, 6, 2, 2, 2, 1, 1, 0, 2, 1, 2, 2, 2, 1, 1, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 5, 6, 4, 4, 4, 4, 5, 4, 4, 4, 2, 3, 2, 2, 2, 5, 2, 2, 5, 5, 6, 3, 8, 6, 3, 3, 1, 2, 0, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 4, 4, 1, 8, 3, 5, 5, 6, 5, 4, 7, 8, 8, 8, 7, 8, 9, 11, 10, 10, 10, 11, 16, 14, 13, 12, 13, 14, 19, 20, 23, 25, 24, 27, 30, 31, 32, 32, 33, 34, 34, 33, 32, 31, 28, 26, 24, 22, 20, 17, 15, 23, 51, 107, 97, 196, 125, 37, 190, 138, 165, 118, 28, 2, 28, 39, 49, 59, 71, 76, 79, 81, 81, 76, 62, 50, 50, 54, 52, 83, 52, 55, 57, 57, 51, 46, 53, 52, 47, 52, 58, 56, 65, 63, 58, 63, 65, 68, 67, 67, 68, 61, 65, 70, 51, 65, 51, 61, 53, 44, 41, 48, 41, 40, 46, 43, 43, 48, 51, 60, 65, 62, 55, 48, 42, 37, 24, 21, 19, 22, 21, 21, 19, 22, 21, 24, 25, 26, 23, 21, 24, 19, 18, 16, 16, 14, 9, 13, 11, 11, 11, 12, 12, 12, 12, 14, 13, 10, 9, 11, 8, 9, 6, 8, 6, 7, 6, 10, 6, 3, 3, 4, 5, 5, 5, 8, 6, 7, 7, 7, 6, 6, 6, 8, 4, 7, 6, 6, 5, 6, 5, 4, 4, 5, 4, 3, 5, 6, 4, 4, 4, 4, 4, 3, 4, 3, 2, 5, 3, 4, 3, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 4, 4, 3, 2, 3, 3, 3, 2, 3, 2, 1, 0, 1, 1, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 3, 3, 1, 2, 3, 2, 1, 2, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 1, 1, 1, 3, 3, 1, 3, 3, 3, 2, 2, 4, 3, 1, 2, 4, 2, 0, 2, 4, 2, 2, 4, 1, 1, 3, 5, 4, 2, 2, 2, 2, 1, 1, 1, 2, 3, 3, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 1, 0, 1, 1, 1, 2, 1, 0, 2, 1, 2, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 438, 438 ], [ 441, 441 ], [ 443, 443 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 0, 2, 1, 3, 4, 2, 2, 2, 1, 2, 4, 3, 0, 1, 4, 4, 4, 2, 2, 4, 5, 4, 4, 5, 5, 4, 5, 6, 5, 6, 6, 5, 5, 3, 2, 3, 5, 5, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 6, 3, 2, 3, 2, 2, 3, 1, 1, 3, 2, 1, 2, 3, 1, 1, 6, 2, 2, 2, 1, 1, 0, 2, 1, 2, 2, 2, 1, 1, 3, 2, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 5, 6, 4, 4, 4, 4, 5, 4, 4, 4, 2, 3, 2, 2, 2, 5, 2, 2, 5, 5, 6, 3, 8, 6, 3, 3, 1, 2, 0, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 4, 4, 1, 8, 3, 5, 5, 6, 5, 4, 7, 8, 8, 8, 7, 8, 9, 11, 10, 10, 10, 11, 16, 14, 13, 12, 13, 14, 19, 20, 23, 25, 24, 27, 30, 31, 32, 32, 33, 34, 34, 33, 32, 31, 28, 26, 24, 22, 20, 17, 15, 23, 51, 107, 97, 196, 125, 37, 190, 138, 165, 118, 28, 2, 28, 39, 49, 59, 71, 76, 79, 81, 81, 76, 62, 50, 50, 54, 52, 83, 52, 55, 57, 57, 51, 46, 53, 52, 47, 52, 58, 56, 65, 63, 58, 63, 65, 68, 67, 67, 68, 61, 65, 70, 51, 65, 51, 61, 53, 44, 41, 48, 41, 40, 46, 43, 43, 48, 51, 60, 65, 62, 55, 48, 42, 37, 24, 21, 19, 22, 21, 21, 19, 22, 21, 24, 25, 26, 23, 21, 24, 19, 18, 16, 16, 14, 9, 13, 11, 11, 11, 12, 12, 12, 12, 14, 13, 10, 9, 11, 8, 9, 6, 8, 6, 7, 6, 10, 6, 3, 3, 4, 5, 5, 5, 8, 6, 7, 7, 7, 6, 6, 6, 8, 4, 7, 6, 6, 5, 6, 5, 4, 4, 5, 4, 3, 5, 6, 4, 4, 4, 4, 4, 3, 4, 3, 2, 5, 3, 4, 3, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 4, 4, 3, 2, 3, 3, 3, 2, 3, 2, 1, 0, 1, 1, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 3, 3, 1, 2, 3, 2, 1, 2, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 1, 1, 1, 3, 3, 1, 3, 3, 3, 2, 2, 4, 3, 1, 2, 4, 2, 0, 2, 4, 2, 2, 4, 1, 1, 3, 5, 4, 2, 2, 2, 2, 1, 1, 1, 2, 3, 3, 1, 2, 3, 2, 2, 3, 2, 1, 2, 2, 1, 0, 1, 1, 1, 2, 1, 0, 2, 1, 2, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 3 ], "output": { "3. Local Minima": { "frames": [ [ 0, 434 ], [ 440, 440 ], [ 445, 448 ], [ 508, 883 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 153, 175 ], [ 285, 313 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 66 ], [ 73, 105 ], [ 219, 258 ], [ 355, 390 ], [ 407, 422 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 3, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 3, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 356, 373 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 3, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 70 ], [ 106, 173 ], [ 208, 263 ], [ 292, 348 ], [ 383, 395 ], [ 401, 468 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 12, 15, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 12, 11, 9, 7, 5, 3, 3, 2, 2, 2, 2, 4, 6, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 24, 24, 24, 23, 22, 21, 20, 18, 17, 15, 13, 10, 8, 5, 2, 1, 3, 5, 6, 6, 5, 4, 2, 0, 2, 4, 4, 4, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 0, 1, 2, 2, 3, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 12, 15, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 12, 11, 9, 7, 5, 3, 3, 2, 2, 2, 2, 4, 6, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 24, 24, 24, 23, 22, 21, 20, 18, 17, 15, 13, 10, 8, 5, 2, 1, 3, 5, 6, 6, 5, 4, 2, 0, 2, 4, 4, 4, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 0, 1, 2, 2, 3, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 266, 279 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 12, 15, 16, 16, 15, 15, 15, 14, 14, 14, 13, 13, 12, 11, 9, 7, 5, 3, 3, 2, 2, 2, 2, 4, 6, 8, 10, 11, 13, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 24, 24, 24, 23, 22, 21, 20, 18, 17, 15, 13, 10, 8, 5, 2, 1, 3, 5, 6, 6, 5, 4, 2, 0, 2, 4, 4, 4, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 0, 1, 2, 2, 3, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 224 ], [ 249, 255 ], [ 287, 289 ], [ 294, 325 ], [ 343, 585 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 4, 3, 3, 2, 1, 1, 2, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 5 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 4, 3, 3, 2, 1, 1, 2, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 322, 340 ], [ 358, 370 ], [ 398, 398 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 4, 3, 3, 2, 1, 1, 2, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 5 ], "output": { "3. Local Minima": { "frames": [ [ 2, 24 ], [ 48, 311 ], [ 347, 348 ], [ 377, 378 ], [ 381, 389 ], [ 397, 397 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 18, 18, 16, 13, 14, 13, 11, 10, 8, 7, 5, 4, 3, 2, 2, 10, 10, 9, 8, 7, 6, 5, 7, 85, 14, 10, 10, 9, 9, 8, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 11, 11, 10, 10, 9, 8, 7, 6, 5, 6, 8, 17, 13, 93, 12, 24, 34, 26, 26, 25, 25, 24, 23, 22, 20, 19, 18, 16, 14, 12, 11, 9, 7, 5, 4, 2, 1, 1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 16, 11, 12, 107, 15, 12, 14, 14, 16, 9, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 16, 15, 13, 12, 10, 9, 7, 5, 4, 4, 5, 7, 8, 15, 12, 5, 71, 85, 18, 20, 24, 16, 16, 15, 14, 13, 11, 10, 8, 7, 5, 4, 2, 1, 9, 9, 9, 8, 7, 7, 6, 5, 6, 108, 22, 8, 8, 7, 7, 7, 7, 8, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 13, 13, 13, 12, 11, 10, 8, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 7, 19, 11, 119, 18, 26, 34, 25, 24, 24, 23, 22, 20, 19, 18, 16, 14, 13, 11, 9, 7, 5, 3, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 13, 9, 6, 95, 22, 12, 12, 13, 13, 14, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15, 15, 15, 14, 13, 13, 12, 11, 10, 9, 8, 7, 7, 7, 7, 7, 7, 16, 9, 102, 55, 22, 27, 16, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 4, 3, 2, 2, 3, 4, 5, 16, 15, 14, 12, 10, 9, 15, 112, 12, 14, 15, 14, 13, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 14, 14, 13, 12, 12, 11, 10, 9, 9, 9, 9, 8, 7, 7, 7, 7, 7, 7, 7, 7, 19, 12, 125, 12, 25, 34, 21, 21, 21, 20, 19, 18, 17, 16, 14, 13, 12, 10, 9, 7, 6, 5, 3, 3, 2, 2, 3, 5, 6, 7, 6, 10, 9, 12 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 18, 18, 16, 13, 14, 13, 11, 10, 8, 7, 5, 4, 3, 2, 2, 10, 10, 9, 8, 7, 6, 5, 7, 85, 14, 10, 10, 9, 9, 8, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 11, 11, 10, 10, 9, 8, 7, 6, 5, 6, 8, 17, 13, 93, 12, 24, 34, 26, 26, 25, 25, 24, 23, 22, 20, 19, 18, 16, 14, 12, 11, 9, 7, 5, 4, 2, 1, 1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 16, 11, 12, 107, 15, 12, 14, 14, 16, 9, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 16, 15, 13, 12, 10, 9, 7, 5, 4, 4, 5, 7, 8, 15, 12, 5, 71, 85, 18, 20, 24, 16, 16, 15, 14, 13, 11, 10, 8, 7, 5, 4, 2, 1, 9, 9, 9, 8, 7, 7, 6, 5, 6, 108, 22, 8, 8, 7, 7, 7, 7, 8, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 13, 13, 13, 12, 11, 10, 8, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 7, 19, 11, 119, 18, 26, 34, 25, 24, 24, 23, 22, 20, 19, 18, 16, 14, 13, 11, 9, 7, 5, 3, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 13, 9, 6, 95, 22, 12, 12, 13, 13, 14, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15, 15, 15, 14, 13, 13, 12, 11, 10, 9, 8, 7, 7, 7, 7, 7, 7, 16, 9, 102, 55, 22, 27, 16, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 4, 3, 2, 2, 3, 4, 5, 16, 15, 14, 12, 10, 9, 15, 112, 12, 14, 15, 14, 13, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 14, 14, 13, 12, 12, 11, 10, 9, 9, 9, 9, 8, 7, 7, 7, 7, 7, 7, 7, 7, 19, 12, 125, 12, 25, 34, 21, 21, 21, 20, 19, 18, 17, 16, 14, 13, 12, 10, 9, 7, 6, 5, 3, 3, 2, 2, 3, 5, 6, 7, 6, 10, 9, 12 ], "output": { "2. Local Maxima": { "frames": [ [ 111, 111 ], [ 173, 173 ], [ 218, 218 ], [ 295, 295 ], [ 325, 325 ], [ 369, 369 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 18, 18, 16, 13, 14, 13, 11, 10, 8, 7, 5, 4, 3, 2, 2, 10, 10, 9, 8, 7, 6, 5, 7, 85, 14, 10, 10, 9, 9, 8, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 11, 11, 10, 10, 9, 8, 7, 6, 5, 6, 8, 17, 13, 93, 12, 24, 34, 26, 26, 25, 25, 24, 23, 22, 20, 19, 18, 16, 14, 12, 11, 9, 7, 5, 4, 2, 1, 1, 2, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 16, 11, 12, 107, 15, 12, 14, 14, 16, 9, 10, 10, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 16, 15, 13, 12, 10, 9, 7, 5, 4, 4, 5, 7, 8, 15, 12, 5, 71, 85, 18, 20, 24, 16, 16, 15, 14, 13, 11, 10, 8, 7, 5, 4, 2, 1, 9, 9, 9, 8, 7, 7, 6, 5, 6, 108, 22, 8, 8, 7, 7, 7, 7, 8, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 13, 13, 13, 12, 11, 10, 8, 7, 7, 6, 6, 6, 6, 6, 6, 6, 7, 7, 19, 11, 119, 18, 26, 34, 25, 24, 24, 23, 22, 20, 19, 18, 16, 14, 13, 11, 9, 7, 5, 3, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 13, 9, 6, 95, 22, 12, 12, 13, 13, 14, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15, 15, 15, 14, 13, 13, 12, 11, 10, 9, 8, 7, 7, 7, 7, 7, 7, 16, 9, 102, 55, 22, 27, 16, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 4, 3, 2, 2, 3, 4, 5, 16, 15, 14, 12, 10, 9, 15, 112, 12, 14, 15, 14, 13, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 14, 14, 13, 12, 12, 11, 10, 9, 9, 9, 9, 8, 7, 7, 7, 7, 7, 7, 7, 7, 19, 12, 125, 12, 25, 34, 21, 21, 21, 20, 19, 18, 17, 16, 14, 13, 12, 10, 9, 7, 6, 5, 3, 3, 2, 2, 3, 5, 6, 7, 6, 10, 9, 12 ], "output": { "3. Local Minima": { "frames": [ [ 0, 22 ], [ 24, 67 ], [ 69, 70 ], [ 74, 110 ], [ 112, 145 ], [ 148, 172 ], [ 174, 217 ], [ 219, 219 ], [ 222, 255 ], [ 257, 294 ], [ 297, 297 ], [ 299, 324 ], [ 326, 368 ], [ 370, 371 ], [ 373, 400 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 2, 0, 2, 5, 8, 14, 19, 23, 24, 24, 21, 19, 16, 12, 9, 1, 6, 15, 24, 34, 36, 40, 41, 40, 37, 36, 30, 26, 21, 8, 4, 14, 13, 3, 4, 7, 6, 7, 9, 13, 15, 17, 18, 17, 17, 20, 19, 11, 21, 18, 14, 10, 2, 3, 8, 10, 11, 8, 2, 7, 18, 29, 42, 46, 48, 42, 31, 19, 5, 8, 18, 25, 35, 43, 45, 45, 42, 39, 35, 32, 29, 24, 17, 12, 4, 4, 5, 22, 25, 20, 25, 24, 14, 8, 9, 12, 7, 10, 18, 24, 20, 20, 19, 15, 2, 10, 25, 33, 43, 67, 73, 75, 72, 62, 50, 51, 43, 26, 5, 15, 36, 48, 56, 59, 58, 55, 47, 46, 43, 44, 45, 44, 43, 42, 39, 31, 19, 12, 4, 4, 14, 12, 8, 5, 4, 8, 9, 6, 6, 4, 7, 14, 18, 20, 9, 18, 10, 9, 6, 10, 8, 11, 19, 16, 14, 13, 13, 11, 13, 12, 14, 11, 12, 14, 10, 12, 10, 12, 9, 9, 8, 8, 7, 6, 5, 3, 2, 1, 1, 3, 2, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 5, 4, 3, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3, 3, 3, 3, 2, 2, 1, 2 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 2, 0, 2, 5, 8, 14, 19, 23, 24, 24, 21, 19, 16, 12, 9, 1, 6, 15, 24, 34, 36, 40, 41, 40, 37, 36, 30, 26, 21, 8, 4, 14, 13, 3, 4, 7, 6, 7, 9, 13, 15, 17, 18, 17, 17, 20, 19, 11, 21, 18, 14, 10, 2, 3, 8, 10, 11, 8, 2, 7, 18, 29, 42, 46, 48, 42, 31, 19, 5, 8, 18, 25, 35, 43, 45, 45, 42, 39, 35, 32, 29, 24, 17, 12, 4, 4, 5, 22, 25, 20, 25, 24, 14, 8, 9, 12, 7, 10, 18, 24, 20, 20, 19, 15, 2, 10, 25, 33, 43, 67, 73, 75, 72, 62, 50, 51, 43, 26, 5, 15, 36, 48, 56, 59, 58, 55, 47, 46, 43, 44, 45, 44, 43, 42, 39, 31, 19, 12, 4, 4, 14, 12, 8, 5, 4, 8, 9, 6, 6, 4, 7, 14, 18, 20, 9, 18, 10, 9, 6, 10, 8, 11, 19, 16, 14, 13, 13, 11, 13, 12, 14, 11, 12, 14, 10, 12, 10, 12, 9, 9, 8, 8, 7, 6, 5, 3, 2, 1, 1, 3, 2, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 5, 4, 3, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3, 3, 3, 3, 2, 2, 1, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 214, 218 ] ] } } }, { "instruction": "Extremity speed represents the speed of movement of the end joints of the limbs (both wrists, ankles). Near the maximum value, the faster the speed of the extremities, near the minimum value, the less movement of the extremities. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 2, 2, 1, 1, 1, 2, 0, 2, 5, 8, 14, 19, 23, 24, 24, 21, 19, 16, 12, 9, 1, 6, 15, 24, 34, 36, 40, 41, 40, 37, 36, 30, 26, 21, 8, 4, 14, 13, 3, 4, 7, 6, 7, 9, 13, 15, 17, 18, 17, 17, 20, 19, 11, 21, 18, 14, 10, 2, 3, 8, 10, 11, 8, 2, 7, 18, 29, 42, 46, 48, 42, 31, 19, 5, 8, 18, 25, 35, 43, 45, 45, 42, 39, 35, 32, 29, 24, 17, 12, 4, 4, 5, 22, 25, 20, 25, 24, 14, 8, 9, 12, 7, 10, 18, 24, 20, 20, 19, 15, 2, 10, 25, 33, 43, 67, 73, 75, 72, 62, 50, 51, 43, 26, 5, 15, 36, 48, 56, 59, 58, 55, 47, 46, 43, 44, 45, 44, 43, 42, 39, 31, 19, 12, 4, 4, 14, 12, 8, 5, 4, 8, 9, 6, 6, 4, 7, 14, 18, 20, 9, 18, 10, 9, 6, 10, 8, 11, 19, 16, 14, 13, 13, 11, 13, 12, 14, 11, 12, 14, 10, 12, 10, 12, 9, 9, 8, 8, 7, 6, 5, 3, 2, 1, 1, 3, 2, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 5, 4, 3, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3, 3, 3, 3, 2, 2, 1, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 110 ], [ 118, 122 ], [ 134, 145 ], [ 152, 152 ], [ 155, 164 ], [ 173, 174 ], [ 188, 191 ], [ 197, 202 ], [ 208, 210 ], [ 223, 224 ], [ 242, 256 ], [ 259, 259 ], [ 261, 266 ], [ 269, 337 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 8, 8, 9, 8, 8, 7, 7, 8, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 11, 11, 11, 11, 11, 11, 12, 10, 9, 10, 10, 10, 10, 10, 9, 10, 11, 10, 11, 11, 11, 12, 12, 12, 13, 12, 13, 12, 12, 11, 10, 10, 10, 9, 10, 10, 10, 11, 12, 13, 15, 16, 16, 16, 18, 18, 18, 17, 17, 14, 12, 14, 14, 14, 14, 14, 13, 13, 12, 13, 12, 11, 10, 11, 11, 9, 8, 8, 8, 8, 7, 7, 6, 6, 5, 6, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 3, 2, 2, 4, 3, 3, 3, 5, 2, 3, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 18, 18, 19, 18, 18, 19, 20, 21, 21, 23, 21, 21, 22, 24, 23, 24, 23, 23, 20, 17, 18, 20, 20, 21, 21, 19, 21, 20, 20, 20, 21, 21, 20, 20, 18, 17, 17, 18, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 5, 6, 6, 5, 5, 6, 8, 8, 8, 11, 8, 10, 10, 10, 10, 12, 11, 11, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 12, 13, 15, 15, 14, 16, 16, 15, 16, 14, 13, 11, 10, 9, 8, 8, 7, 8, 8, 8, 7, 8, 7, 6, 6, 9, 5, 5, 16, 3, 3, 4, 4, 5, 6, 9, 10, 12, 13, 12, 15, 14, 15, 18, 17, 17, 18, 19, 18, 19, 19, 18, 19, 20, 13, 16, 18, 19, 16, 15, 13, 11, 12, 12, 11, 12, 12, 13, 14, 14, 13, 13, 14, 14, 14, 16, 16, 16, 16, 18, 16, 16, 16, 16, 15, 17, 14, 14, 14, 11, 12, 9, 8, 6, 6, 6, 5, 4, 5, 6, 7, 8, 7, 11, 13, 13, 16, 15, 14, 13, 13, 14, 15, 15, 16, 17, 16, 17, 18, 18, 18, 23, 19, 21, 21, 22, 22, 22, 22, 25, 24, 24, 28, 22, 24, 28, 21, 23, 21, 20, 18, 18, 17, 17, 17, 15, 14, 13, 11, 11, 10, 9, 6, 6, 7, 5, 6, 5, 8, 4, 8, 7, 7, 6, 5, 10, 5, 5, 4, 4, 5, 6, 4, 4, 7, 5, 5, 7, 7, 8, 9, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 13, 14, 14, 15, 17, 16, 14, 16, 17, 18, 19, 12, 12, 11, 11, 10, 9, 10, 9, 9, 9, 7, 7, 6, 6 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 8, 8, 9, 8, 8, 7, 7, 8, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 11, 11, 11, 11, 11, 11, 12, 10, 9, 10, 10, 10, 10, 10, 9, 10, 11, 10, 11, 11, 11, 12, 12, 12, 13, 12, 13, 12, 12, 11, 10, 10, 10, 9, 10, 10, 10, 11, 12, 13, 15, 16, 16, 16, 18, 18, 18, 17, 17, 14, 12, 14, 14, 14, 14, 14, 13, 13, 12, 13, 12, 11, 10, 11, 11, 9, 8, 8, 8, 8, 7, 7, 6, 6, 5, 6, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 3, 2, 2, 4, 3, 3, 3, 5, 2, 3, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 18, 18, 19, 18, 18, 19, 20, 21, 21, 23, 21, 21, 22, 24, 23, 24, 23, 23, 20, 17, 18, 20, 20, 21, 21, 19, 21, 20, 20, 20, 21, 21, 20, 20, 18, 17, 17, 18, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 5, 6, 6, 5, 5, 6, 8, 8, 8, 11, 8, 10, 10, 10, 10, 12, 11, 11, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 12, 13, 15, 15, 14, 16, 16, 15, 16, 14, 13, 11, 10, 9, 8, 8, 7, 8, 8, 8, 7, 8, 7, 6, 6, 9, 5, 5, 16, 3, 3, 4, 4, 5, 6, 9, 10, 12, 13, 12, 15, 14, 15, 18, 17, 17, 18, 19, 18, 19, 19, 18, 19, 20, 13, 16, 18, 19, 16, 15, 13, 11, 12, 12, 11, 12, 12, 13, 14, 14, 13, 13, 14, 14, 14, 16, 16, 16, 16, 18, 16, 16, 16, 16, 15, 17, 14, 14, 14, 11, 12, 9, 8, 6, 6, 6, 5, 4, 5, 6, 7, 8, 7, 11, 13, 13, 16, 15, 14, 13, 13, 14, 15, 15, 16, 17, 16, 17, 18, 18, 18, 23, 19, 21, 21, 22, 22, 22, 22, 25, 24, 24, 28, 22, 24, 28, 21, 23, 21, 20, 18, 18, 17, 17, 17, 15, 14, 13, 11, 11, 10, 9, 6, 6, 7, 5, 6, 5, 8, 4, 8, 7, 7, 6, 5, 10, 5, 5, 4, 4, 5, 6, 4, 4, 7, 5, 5, 7, 7, 8, 9, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 13, 14, 14, 15, 17, 16, 14, 16, 17, 18, 19, 12, 12, 11, 11, 10, 9, 10, 9, 9, 9, 7, 7, 6, 6 ], "output": { "2. Local Maxima": { "frames": [ [ 240, 240 ], [ 244, 248 ], [ 430, 430 ], [ 438, 441 ], [ 443, 444 ], [ 446, 446 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 8, 8, 9, 8, 8, 7, 7, 8, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 11, 11, 11, 11, 11, 11, 12, 10, 9, 10, 10, 10, 10, 10, 9, 10, 11, 10, 11, 11, 11, 12, 12, 12, 13, 12, 13, 12, 12, 11, 10, 10, 10, 9, 10, 10, 10, 11, 12, 13, 15, 16, 16, 16, 18, 18, 18, 17, 17, 14, 12, 14, 14, 14, 14, 14, 13, 13, 12, 13, 12, 11, 10, 11, 11, 9, 8, 8, 8, 8, 7, 7, 6, 6, 5, 6, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 3, 2, 2, 4, 3, 3, 3, 5, 2, 3, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 18, 18, 19, 18, 18, 19, 20, 21, 21, 23, 21, 21, 22, 24, 23, 24, 23, 23, 20, 17, 18, 20, 20, 21, 21, 19, 21, 20, 20, 20, 21, 21, 20, 20, 18, 17, 17, 18, 16, 15, 15, 14, 13, 12, 11, 10, 8, 7, 6, 5, 6, 6, 5, 5, 6, 8, 8, 8, 11, 8, 10, 10, 10, 10, 12, 11, 11, 13, 13, 12, 12, 12, 12, 11, 11, 11, 10, 10, 12, 13, 15, 15, 14, 16, 16, 15, 16, 14, 13, 11, 10, 9, 8, 8, 7, 8, 8, 8, 7, 8, 7, 6, 6, 9, 5, 5, 16, 3, 3, 4, 4, 5, 6, 9, 10, 12, 13, 12, 15, 14, 15, 18, 17, 17, 18, 19, 18, 19, 19, 18, 19, 20, 13, 16, 18, 19, 16, 15, 13, 11, 12, 12, 11, 12, 12, 13, 14, 14, 13, 13, 14, 14, 14, 16, 16, 16, 16, 18, 16, 16, 16, 16, 15, 17, 14, 14, 14, 11, 12, 9, 8, 6, 6, 6, 5, 4, 5, 6, 7, 8, 7, 11, 13, 13, 16, 15, 14, 13, 13, 14, 15, 15, 16, 17, 16, 17, 18, 18, 18, 23, 19, 21, 21, 22, 22, 22, 22, 25, 24, 24, 28, 22, 24, 28, 21, 23, 21, 20, 18, 18, 17, 17, 17, 15, 14, 13, 11, 11, 10, 9, 6, 6, 7, 5, 6, 5, 8, 4, 8, 7, 7, 6, 5, 10, 5, 5, 4, 4, 5, 6, 4, 4, 7, 5, 5, 7, 7, 8, 9, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 13, 14, 14, 15, 17, 16, 14, 16, 17, 18, 19, 12, 12, 11, 11, 10, 9, 10, 9, 9, 9, 7, 7, 6, 6 ], "output": { "3. Local Minima": { "frames": [ [ 0, 43 ], [ 45, 46 ], [ 64, 106 ], [ 194, 197 ], [ 199, 221 ], [ 279, 285 ], [ 332, 333 ], [ 335, 336 ], [ 338, 343 ], [ 402, 408 ], [ 461, 462 ], [ 464, 466 ], [ 468, 468 ], [ 472, 473 ], [ 475, 482 ], [ 484, 485 ], [ 523, 524 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 5, 2, 4, 4, 1, 5, 3, 3, 6, 2, 5, 3, 4, 5, 4, 5, 4, 5, 4, 4, 6, 5, 5, 5, 7, 3, 7, 6, 3, 8, 5, 7, 6, 7, 7, 5, 6, 5, 7, 7, 7, 5, 8, 7, 7, 7, 6, 7, 6, 5, 9, 8, 6, 8, 8, 6, 8, 7, 7, 7, 8, 6, 6, 8, 8, 5, 7, 5, 6, 11, 6, 7, 7, 8, 7, 7, 8, 7, 6, 8, 7, 7, 7, 7, 5, 8, 5, 6, 6, 7, 6, 6, 6, 6, 6, 8, 5, 6, 6, 6, 5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 2, 9, 6, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 5, 5, 6, 7, 6, 7, 6, 6, 5, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 8, 8, 7, 7, 7, 8, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 6, 6, 7, 6, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 6, 4, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 8, 9, 10, 8, 9, 9, 8, 9, 8, 8, 9, 8, 8, 9, 8, 7, 9, 7, 7, 7, 8, 8, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 8, 8, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 9, 7, 7, 8, 7, 5, 2, 7, 7, 7, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 5, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 7, 7, 7, 6, 7, 6, 7, 6, 8, 7, 9, 7 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 5, 2, 4, 4, 1, 5, 3, 3, 6, 2, 5, 3, 4, 5, 4, 5, 4, 5, 4, 4, 6, 5, 5, 5, 7, 3, 7, 6, 3, 8, 5, 7, 6, 7, 7, 5, 6, 5, 7, 7, 7, 5, 8, 7, 7, 7, 6, 7, 6, 5, 9, 8, 6, 8, 8, 6, 8, 7, 7, 7, 8, 6, 6, 8, 8, 5, 7, 5, 6, 11, 6, 7, 7, 8, 7, 7, 8, 7, 6, 8, 7, 7, 7, 7, 5, 8, 5, 6, 6, 7, 6, 6, 6, 6, 6, 8, 5, 6, 6, 6, 5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 2, 9, 6, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 5, 5, 6, 7, 6, 7, 6, 6, 5, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 8, 8, 7, 7, 7, 8, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 6, 6, 7, 6, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 6, 4, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 8, 9, 10, 8, 9, 9, 8, 9, 8, 8, 9, 8, 8, 9, 8, 7, 9, 7, 7, 7, 8, 8, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 8, 8, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 9, 7, 7, 8, 7, 5, 2, 7, 7, 7, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 5, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 7, 7, 7, 6, 7, 6, 7, 6, 8, 7, 9, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 62, 62 ], [ 81, 81 ], [ 123, 123 ], [ 283, 285 ], [ 288, 289 ], [ 291, 292 ], [ 294, 294 ], [ 297, 297 ], [ 300, 300 ], [ 303, 303 ], [ 339, 339 ], [ 394, 394 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 5, 2, 4, 4, 1, 5, 3, 3, 6, 2, 5, 3, 4, 5, 4, 5, 4, 5, 4, 4, 6, 5, 5, 5, 7, 3, 7, 6, 3, 8, 5, 7, 6, 7, 7, 5, 6, 5, 7, 7, 7, 5, 8, 7, 7, 7, 6, 7, 6, 5, 9, 8, 6, 8, 8, 6, 8, 7, 7, 7, 8, 6, 6, 8, 8, 5, 7, 5, 6, 11, 6, 7, 7, 8, 7, 7, 8, 7, 6, 8, 7, 7, 7, 7, 5, 8, 5, 6, 6, 7, 6, 6, 6, 6, 6, 8, 5, 6, 6, 6, 5, 6, 5, 6, 5, 5, 6, 5, 6, 5, 2, 9, 6, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 5, 5, 6, 7, 6, 7, 6, 6, 5, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 8, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 8, 8, 7, 7, 7, 8, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 6, 6, 7, 6, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 6, 4, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 6, 6, 6, 7, 7, 7, 7, 8, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 8, 9, 10, 8, 9, 9, 8, 9, 8, 8, 9, 8, 8, 9, 8, 7, 9, 7, 7, 7, 8, 8, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 7, 7, 8, 8, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 9, 7, 7, 8, 7, 5, 2, 7, 7, 7, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 5, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6, 7, 7, 7, 6, 7, 6, 7, 6, 8, 7, 9, 7 ], "output": { "3. Local Minima": { "frames": [ [ 0, 6 ], [ 8, 9 ], [ 11, 11 ], [ 13, 13 ], [ 16, 16 ], [ 18, 19 ], [ 21, 21 ], [ 23, 23 ], [ 37, 37 ], [ 40, 40 ], [ 122, 122 ], [ 345, 345 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 8, 7, 8, 8, 9, 10, 10, 9, 10, 10, 10, 10, 10, 11, 12, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 10, 10, 10, 10, 10, 9, 10, 12, 10, 8, 8, 8, 8, 7, 7, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 2, 1, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 14, 14, 14, 14, 14, 15, 14, 14, 14, 14, 14, 15, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 12, 11, 10, 10, 10, 10, 9, 9, 9, 8, 7, 6, 6, 7, 6, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 14, 14, 13, 14, 14, 13, 15, 14, 14, 14, 15, 15, 15, 14, 14, 15, 14, 14, 14, 14, 14, 14, 14, 13, 14, 13, 12, 12, 12, 12, 10, 11, 10, 9, 8, 9, 9, 7, 7, 8, 6, 6, 5, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 8, 7, 8, 8, 9, 10, 10, 9, 10, 10, 10, 10, 10, 11, 12, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 10, 10, 10, 10, 10, 9, 10, 12, 10, 8, 8, 8, 8, 7, 7, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 2, 1, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 14, 14, 14, 14, 14, 15, 14, 14, 14, 14, 14, 15, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 12, 11, 10, 10, 10, 10, 9, 9, 9, 8, 7, 6, 6, 7, 6, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 14, 14, 13, 14, 14, 13, 15, 14, 14, 14, 15, 15, 15, 14, 14, 15, 14, 14, 14, 14, 14, 14, 14, 13, 14, 13, 12, 12, 12, 12, 10, 11, 10, 9, 8, 9, 9, 7, 7, 8, 6, 6, 5, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 32, 32 ], [ 36, 58 ], [ 66, 66 ], [ 137, 169 ], [ 247, 280 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 8, 7, 8, 8, 9, 10, 10, 9, 10, 10, 10, 10, 10, 11, 12, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 12, 12, 13, 12, 12, 12, 12, 12, 12, 12, 10, 10, 10, 10, 10, 9, 10, 12, 10, 8, 8, 8, 8, 7, 7, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 2, 1, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 14, 14, 14, 14, 14, 15, 14, 14, 14, 14, 14, 15, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 12, 11, 10, 10, 10, 10, 9, 9, 9, 8, 7, 6, 6, 7, 6, 5, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 14, 14, 13, 14, 14, 13, 15, 14, 14, 14, 15, 15, 15, 14, 14, 15, 14, 14, 14, 14, 14, 14, 14, 13, 14, 13, 12, 12, 12, 12, 10, 11, 10, 9, 8, 9, 9, 7, 7, 8, 6, 6, 5, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 1 ], [ 84, 88 ], [ 90, 116 ], [ 191, 195 ], [ 197, 225 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 12, 12, 12, 14, 13, 12, 13, 13, 13, 11, 12, 14, 12, 10, 10, 11, 9, 7, 7, 6, 5, 4, 4, 4, 4, 5, 6, 8, 9, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 25, 26, 28, 30, 33, 34, 34, 38, 39, 39, 40, 43, 43, 42, 44, 44, 45, 46, 47, 45, 44, 44, 41, 41, 39, 38, 39, 39, 37, 34, 32, 31, 30, 29, 29, 27, 24, 19, 19, 17, 14, 10, 9, 9, 10, 9, 8, 7, 6, 5, 5, 4, 4, 5, 6, 8, 7, 7, 7, 7, 7, 6, 7, 8, 8, 8, 8, 9, 10, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 22, 23, 23, 24, 24, 25, 27, 26, 22, 20, 21, 21, 19, 19, 17, 15, 14, 14, 14, 14, 12, 10, 9, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 6, 6, 7, 8, 7, 7, 7, 7, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 12, 12, 12, 14, 13, 12, 13, 13, 13, 11, 12, 14, 12, 10, 10, 11, 9, 7, 7, 6, 5, 4, 4, 4, 4, 5, 6, 8, 9, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 25, 26, 28, 30, 33, 34, 34, 38, 39, 39, 40, 43, 43, 42, 44, 44, 45, 46, 47, 45, 44, 44, 41, 41, 39, 38, 39, 39, 37, 34, 32, 31, 30, 29, 29, 27, 24, 19, 19, 17, 14, 10, 9, 9, 10, 9, 8, 7, 6, 5, 5, 4, 4, 5, 6, 8, 7, 7, 7, 7, 7, 6, 7, 8, 8, 8, 8, 9, 10, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 22, 23, 23, 24, 24, 25, 27, 26, 22, 20, 21, 21, 19, 19, 17, 15, 14, 14, 14, 14, 12, 10, 9, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 6, 6, 7, 8, 7, 7, 7, 7, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 156, 176 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 12, 12, 12, 12, 14, 13, 12, 13, 13, 13, 11, 12, 14, 12, 10, 10, 11, 9, 7, 7, 6, 5, 4, 4, 4, 4, 5, 6, 8, 9, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 25, 26, 28, 30, 33, 34, 34, 38, 39, 39, 40, 43, 43, 42, 44, 44, 45, 46, 47, 45, 44, 44, 41, 41, 39, 38, 39, 39, 37, 34, 32, 31, 30, 29, 29, 27, 24, 19, 19, 17, 14, 10, 9, 9, 10, 9, 8, 7, 6, 5, 5, 4, 4, 5, 6, 8, 7, 7, 7, 7, 7, 6, 7, 8, 8, 8, 8, 9, 10, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 22, 23, 23, 24, 24, 25, 27, 26, 22, 20, 21, 21, 19, 19, 17, 15, 14, 14, 14, 14, 12, 10, 9, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 6, 6, 7, 8, 7, 7, 7, 7, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 102 ], [ 124, 137 ], [ 191, 192 ], [ 194, 216 ], [ 218, 218 ], [ 271, 399 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 85, 86 ], [ 358, 358 ], [ 364, 365 ], [ 371, 371 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1 ], "output": { "3. Local Minima": { "frames": [ [ 5, 5 ], [ 8, 8 ], [ 13, 14 ], [ 17, 17 ], [ 21, 23 ], [ 27, 37 ], [ 40, 41 ], [ 43, 43 ], [ 59, 59 ], [ 61, 62 ], [ 65, 77 ], [ 80, 81 ], [ 83, 83 ], [ 92, 93 ], [ 97, 97 ], [ 102, 104 ], [ 106, 106 ], [ 108, 109 ], [ 111, 119 ], [ 123, 124 ], [ 126, 132 ], [ 134, 152 ], [ 156, 157 ], [ 160, 166 ], [ 168, 168 ], [ 173, 173 ], [ 178, 179 ], [ 181, 183 ], [ 187, 187 ], [ 191, 192 ], [ 194, 195 ], [ 198, 221 ], [ 224, 264 ], [ 267, 271 ], [ 273, 285 ], [ 288, 294 ], [ 297, 299 ], [ 302, 304 ], [ 307, 312 ], [ 314, 314 ], [ 316, 320 ], [ 323, 325 ], [ 328, 330 ], [ 338, 338 ], [ 390, 392 ], [ 398, 398 ], [ 402, 403 ], [ 408, 409 ], [ 416, 417 ], [ 422, 422 ], [ 428, 429 ], [ 434, 435 ], [ 441, 441 ], [ 443, 445 ], [ 448, 452 ], [ 454, 454 ], [ 456, 464 ], [ 466, 469 ], [ 471, 471 ], [ 473, 476 ], [ 478, 484 ], [ 488, 488 ], [ 494, 495 ], [ 499, 499 ], [ 503, 505 ], [ 509, 511 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 5, 3, 4, 5, 5, 5, 5, 6, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 7, 8, 8, 8, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 9, 12, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 6, 5, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 4, 4, 5, 4, 4, 3, 4, 5, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 5, 6, 6, 7, 8, 7, 7, 7, 7, 7, 8, 9, 10, 9, 8, 9, 10, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 11, 11, 10, 11, 11, 10, 11, 11, 10, 10, 11, 11, 11, 11, 10, 11, 10, 10, 9, 9, 9, 10, 10, 10, 9, 10, 9, 9, 9, 8, 8, 9, 8, 8, 8, 7, 8, 8, 7, 7, 7, 7, 6, 7, 7, 6, 5, 6, 6, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 5, 3, 4, 5, 5, 5, 5, 6, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 7, 8, 8, 8, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 9, 12, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 6, 5, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 4, 4, 5, 4, 4, 3, 4, 5, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 5, 6, 6, 7, 8, 7, 7, 7, 7, 7, 8, 9, 10, 9, 8, 9, 10, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 11, 11, 10, 11, 11, 10, 11, 11, 10, 10, 11, 11, 11, 11, 10, 11, 10, 10, 9, 9, 9, 10, 10, 10, 9, 10, 9, 9, 9, 8, 8, 9, 8, 8, 8, 7, 8, 8, 7, 7, 7, 7, 6, 7, 7, 6, 5, 6, 6, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12 ], "output": { "2. Local Maxima": { "frames": [ [ 49, 49 ], [ 58, 70 ], [ 72, 72 ], [ 74, 85 ], [ 87, 88 ], [ 177, 177 ], [ 181, 181 ], [ 185, 212 ], [ 216, 218 ], [ 220, 220 ], [ 312, 341 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 5, 3, 4, 5, 5, 5, 5, 6, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 7, 8, 8, 8, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 9, 12, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 8, 8, 7, 7, 7, 7, 7, 6, 5, 6, 6, 5, 5, 5, 5, 6, 6, 5, 5, 5, 4, 4, 5, 4, 4, 3, 4, 5, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 6, 5, 6, 6, 7, 8, 7, 7, 7, 7, 7, 8, 9, 10, 9, 8, 9, 10, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 11, 11, 10, 11, 11, 10, 11, 11, 10, 10, 11, 11, 11, 11, 10, 11, 10, 10, 9, 9, 9, 10, 10, 10, 9, 10, 9, 9, 9, 8, 8, 9, 8, 8, 8, 7, 8, 8, 7, 7, 7, 7, 6, 7, 7, 6, 5, 6, 6, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12 ], "output": { "3. Local Minima": { "frames": [ [ 0, 18 ], [ 20, 21 ], [ 27, 28 ], [ 120, 121 ], [ 123, 126 ], [ 128, 153 ], [ 248, 249 ], [ 252, 279 ], [ 283, 284 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 20, 20, 19, 21, 20, 19, 18, 19, 21, 19, 18, 18, 18, 18, 18, 17, 16, 16, 17, 17, 16, 15, 15, 16, 15, 14, 13, 13, 16, 15, 15, 15, 14, 14, 14, 14, 14, 15, 15, 14, 14, 15, 16, 17, 16, 14, 14, 13, 13, 12, 11, 11, 11, 10, 10, 10, 10, 11, 11, 12, 12, 13, 12, 13, 14, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 17, 17, 18, 20, 19, 18, 18, 17, 17, 17, 15, 18, 17, 16, 15, 15, 16, 18, 16, 14, 14, 15, 15, 16, 15, 15, 14, 13, 14, 14, 13, 13, 12, 15, 13, 12, 13, 13, 13, 13, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 10, 10, 11, 10, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 12, 12, 13, 12, 14, 13, 13, 14, 13, 14, 14, 15, 15, 16, 15, 15 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 20, 20, 19, 21, 20, 19, 18, 19, 21, 19, 18, 18, 18, 18, 18, 17, 16, 16, 17, 17, 16, 15, 15, 16, 15, 14, 13, 13, 16, 15, 15, 15, 14, 14, 14, 14, 14, 15, 15, 14, 14, 15, 16, 17, 16, 14, 14, 13, 13, 12, 11, 11, 11, 10, 10, 10, 10, 11, 11, 12, 12, 13, 12, 13, 14, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 17, 17, 18, 20, 19, 18, 18, 17, 17, 17, 15, 18, 17, 16, 15, 15, 16, 18, 16, 14, 14, 15, 15, 16, 15, 15, 14, 13, 14, 14, 13, 13, 12, 15, 13, 12, 13, 13, 13, 13, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 10, 10, 11, 10, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 12, 12, 13, 12, 14, 13, 13, 14, 13, 14, 14, 15, 15, 16, 15, 15 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 15 ], [ 18, 19 ], [ 43, 43 ], [ 84, 96 ], [ 98, 99 ], [ 104, 104 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 20, 20, 19, 21, 20, 19, 18, 19, 21, 19, 18, 18, 18, 18, 18, 17, 16, 16, 17, 17, 16, 15, 15, 16, 15, 14, 13, 13, 16, 15, 15, 15, 14, 14, 14, 14, 14, 15, 15, 14, 14, 15, 16, 17, 16, 14, 14, 13, 13, 12, 11, 11, 11, 10, 10, 10, 10, 11, 11, 12, 12, 13, 12, 13, 14, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 17, 17, 18, 20, 19, 18, 18, 17, 17, 17, 15, 18, 17, 16, 15, 15, 16, 18, 16, 14, 14, 15, 15, 16, 15, 15, 14, 13, 14, 14, 13, 13, 12, 15, 13, 12, 13, 13, 13, 13, 14, 14, 14, 14, 13, 13, 13, 13, 12, 12, 12, 10, 10, 11, 10, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 12, 12, 13, 12, 14, 13, 13, 14, 13, 14, 14, 15, 15, 16, 15, 15 ], "output": { "3. Local Minima": { "frames": [ [ 50, 58 ], [ 138, 151 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 17, 17, 17, 17, 17, 16, 14, 12, 14, 14, 14, 13, 12, 12, 14, 13, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 13, 14, 15, 14, 14, 16, 13, 11, 10, 10, 7, 6, 5, 2, 2, 4, 5, 12, 11, 10, 10, 11, 11, 11, 12, 12, 11, 11, 12, 12, 11, 11, 10, 10, 9, 10, 10, 10, 10, 11, 7, 13, 11, 11, 10, 12, 12, 12, 14, 14, 13, 13, 14, 16, 17, 15, 16, 17, 17, 18, 17, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 19, 19, 18, 17, 17, 16, 14, 12, 11, 9, 7, 5, 2, 3, 5, 7, 9, 10, 11, 14, 15, 16, 16, 17, 18, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 23, 23, 22, 22, 21, 20, 20, 20, 20, 19, 18, 17, 17, 18, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 15, 15, 15, 14, 15, 15, 19, 15, 15, 12, 13, 12, 18, 7, 6, 3, 3, 5, 7, 8, 14, 14, 15, 15, 17, 17, 17, 18, 18, 17, 16, 16, 19, 17, 17, 17, 17, 16, 15, 15, 15, 14, 13, 14, 15, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 18, 17, 18, 18, 18, 18, 18, 17, 17, 16, 15, 15, 14, 12, 11, 9, 7, 5, 7, 8, 8, 9, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 22, 23, 23, 23, 24, 23, 23, 21, 24, 23, 24, 23, 23, 24, 21, 21, 21, 21, 20, 20, 19, 18, 18, 17, 16, 16, 15, 14, 13, 13, 13, 13, 13, 12, 12, 13, 12, 12, 12, 12, 12, 13, 13, 14, 15, 16, 16, 16, 16, 16, 15, 14, 13, 11, 10, 8, 6, 5, 5, 4, 5, 8, 12, 11, 11, 14, 12, 15, 19, 20, 15, 16, 15, 15, 15, 14, 13, 13, 14, 13, 12, 12, 12, 12, 12, 11, 11, 12, 12, 13, 13, 13, 14, 15, 15, 14, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 17, 17, 15, 15, 12, 12, 11, 10, 9, 8, 8, 6, 5, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 4, 5, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 0, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 17, 17, 17, 17, 17, 16, 14, 12, 14, 14, 14, 13, 12, 12, 14, 13, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 13, 14, 15, 14, 14, 16, 13, 11, 10, 10, 7, 6, 5, 2, 2, 4, 5, 12, 11, 10, 10, 11, 11, 11, 12, 12, 11, 11, 12, 12, 11, 11, 10, 10, 9, 10, 10, 10, 10, 11, 7, 13, 11, 11, 10, 12, 12, 12, 14, 14, 13, 13, 14, 16, 17, 15, 16, 17, 17, 18, 17, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 19, 19, 18, 17, 17, 16, 14, 12, 11, 9, 7, 5, 2, 3, 5, 7, 9, 10, 11, 14, 15, 16, 16, 17, 18, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 23, 23, 22, 22, 21, 20, 20, 20, 20, 19, 18, 17, 17, 18, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 15, 15, 15, 14, 15, 15, 19, 15, 15, 12, 13, 12, 18, 7, 6, 3, 3, 5, 7, 8, 14, 14, 15, 15, 17, 17, 17, 18, 18, 17, 16, 16, 19, 17, 17, 17, 17, 16, 15, 15, 15, 14, 13, 14, 15, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 18, 17, 18, 18, 18, 18, 18, 17, 17, 16, 15, 15, 14, 12, 11, 9, 7, 5, 7, 8, 8, 9, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 22, 23, 23, 23, 24, 23, 23, 21, 24, 23, 24, 23, 23, 24, 21, 21, 21, 21, 20, 20, 19, 18, 18, 17, 16, 16, 15, 14, 13, 13, 13, 13, 13, 12, 12, 13, 12, 12, 12, 12, 12, 13, 13, 14, 15, 16, 16, 16, 16, 16, 15, 14, 13, 11, 10, 8, 6, 5, 5, 4, 5, 8, 12, 11, 11, 14, 12, 15, 19, 20, 15, 16, 15, 15, 15, 14, 13, 13, 14, 13, 12, 12, 12, 12, 12, 11, 11, 12, 12, 13, 13, 13, 14, 15, 15, 14, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 17, 17, 15, 15, 12, 12, 11, 10, 9, 8, 8, 6, 5, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 4, 5, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 0, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 96, 99 ], [ 127, 145 ], [ 251, 273 ], [ 323, 323 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 17, 17, 17, 17, 17, 16, 14, 12, 14, 14, 14, 13, 12, 12, 14, 13, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 13, 14, 15, 14, 14, 16, 13, 11, 10, 10, 7, 6, 5, 2, 2, 4, 5, 12, 11, 10, 10, 11, 11, 11, 12, 12, 11, 11, 12, 12, 11, 11, 10, 10, 9, 10, 10, 10, 10, 11, 7, 13, 11, 11, 10, 12, 12, 12, 14, 14, 13, 13, 14, 16, 17, 15, 16, 17, 17, 18, 17, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 19, 19, 19, 18, 17, 17, 16, 14, 12, 11, 9, 7, 5, 2, 3, 5, 7, 9, 10, 11, 14, 15, 16, 16, 17, 18, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 23, 23, 22, 22, 21, 20, 20, 20, 20, 19, 18, 17, 17, 18, 17, 16, 16, 15, 15, 15, 15, 15, 15, 15, 14, 14, 15, 15, 15, 14, 15, 15, 19, 15, 15, 12, 13, 12, 18, 7, 6, 3, 3, 5, 7, 8, 14, 14, 15, 15, 17, 17, 17, 18, 18, 17, 16, 16, 19, 17, 17, 17, 17, 16, 15, 15, 15, 14, 13, 14, 15, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 18, 17, 18, 18, 18, 18, 18, 17, 17, 16, 15, 15, 14, 12, 11, 9, 7, 5, 7, 8, 8, 9, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 22, 23, 23, 23, 24, 23, 23, 21, 24, 23, 24, 23, 23, 24, 21, 21, 21, 21, 20, 20, 19, 18, 18, 17, 16, 16, 15, 14, 13, 13, 13, 13, 13, 12, 12, 13, 12, 12, 12, 12, 12, 13, 13, 14, 15, 16, 16, 16, 16, 16, 15, 14, 13, 11, 10, 8, 6, 5, 5, 4, 5, 8, 12, 11, 11, 14, 12, 15, 19, 20, 15, 16, 15, 15, 15, 14, 13, 13, 14, 13, 12, 12, 12, 12, 12, 11, 11, 12, 12, 13, 13, 13, 14, 15, 15, 14, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 17, 17, 15, 15, 12, 12, 11, 10, 9, 8, 8, 6, 5, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 4, 5, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 0, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 42, 44 ], [ 113, 114 ], [ 178, 179 ], [ 313, 313 ], [ 389, 397 ], [ 399, 431 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 5, 3, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 7, 7, 7, 6, 7, 7, 6, 7, 7, 6, 7, 7, 6, 5, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 4, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 5, 3, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 7, 7, 7, 6, 7, 7, 6, 7, 7, 6, 7, 7, 6, 5, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 4, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 636, 638 ], [ 643, 665 ], [ 667, 679 ], [ 796, 796 ], [ 801, 803 ], [ 806, 841 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 4, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 4, 5, 3, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 7, 7, 7, 6, 7, 7, 6, 7, 7, 6, 7, 7, 6, 5, 6, 6, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 4, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 131, 131 ], [ 135, 135 ], [ 388, 388 ], [ 401, 401 ], [ 404, 405 ], [ 587, 587 ], [ 707, 707 ], [ 710, 751 ], [ 757, 757 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 4, 1, 3, 5, 2, 3, 4, 3, 2, 5, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 11, 10, 10, 9, 10, 11, 9, 9, 10, 10, 7, 9, 13, 9, 9, 9, 8, 7, 7, 7, 12, 8, 8, 8, 7, 7, 6, 7, 7, 8, 7, 6, 6, 5, 5, 6, 6, 5, 4, 3, 3, 3, 5, 6, 5, 3, 3, 2, 2, 2, 2, 3, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 3, 3, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 5, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 11, 11, 12, 10, 9, 8, 10, 10, 9, 10, 10, 9, 8, 8, 8, 8, 8, 9, 9, 8, 8, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 4, 1, 3, 5, 2, 3, 4, 3, 2, 5, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 11, 10, 10, 9, 10, 11, 9, 9, 10, 10, 7, 9, 13, 9, 9, 9, 8, 7, 7, 7, 12, 8, 8, 8, 7, 7, 6, 7, 7, 8, 7, 6, 6, 5, 5, 6, 6, 5, 4, 3, 3, 3, 5, 6, 5, 3, 3, 2, 2, 2, 2, 3, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 3, 3, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 5, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 11, 11, 12, 10, 9, 8, 10, 10, 9, 10, 10, 9, 8, 8, 8, 8, 8, 9, 9, 8, 8, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 220, 220 ], [ 225, 225 ], [ 232, 232 ], [ 240, 240 ], [ 411, 411 ], [ 413, 415 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 4, 1, 3, 5, 2, 3, 4, 3, 2, 5, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 11, 10, 10, 9, 10, 11, 9, 9, 10, 10, 7, 9, 13, 9, 9, 9, 8, 7, 7, 7, 12, 8, 8, 8, 7, 7, 6, 7, 7, 8, 7, 6, 6, 5, 5, 6, 6, 5, 4, 3, 3, 3, 5, 6, 5, 3, 3, 2, 2, 2, 2, 3, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 3, 3, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 5, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 11, 11, 12, 10, 9, 8, 10, 10, 9, 10, 10, 9, 8, 8, 8, 8, 8, 9, 9, 8, 8, 8, 8, 8, 8, 7, 8, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 5, 6, 5, 6, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 118 ], [ 121, 121 ], [ 124, 124 ], [ 128, 128 ], [ 267, 270 ], [ 272, 374 ], [ 376, 380 ], [ 384, 384 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 9, 9, 8, 9, 10, 11, 11, 12, 12, 12, 11, 11, 13, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 13, 13, 12, 11, 12, 11, 11, 12, 12, 12, 12, 11, 11, 10, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 7, 7, 7, 7, 6, 7, 6, 6, 5, 5, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 3, 4, 5, 4, 4, 5, 6, 5, 5, 5, 6, 6, 7, 8, 7, 7, 9, 10, 9, 10, 11, 9, 12, 15, 14, 13, 14, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 26, 28, 29, 29, 31, 32, 34, 34, 34, 34, 34, 33, 33, 33, 34, 32, 30, 29, 28, 28, 28, 27, 28, 29, 29, 29, 30, 31, 31, 31, 30, 31, 31, 31, 29, 28, 27, 25, 25, 34, 24, 23, 24, 23, 21, 20, 19, 19, 18, 18, 18, 17, 16, 16, 14, 13, 13, 12, 11, 10, 10, 9, 8, 8, 8, 7, 7, 7, 6, 5, 5, 5, 6, 4, 4, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 16, 3, 4, 4, 3, 11, 5, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 9, 9, 8, 9, 10, 11, 11, 12, 12, 12, 11, 11, 13, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 13, 13, 12, 11, 12, 11, 11, 12, 12, 12, 12, 11, 11, 10, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 7, 7, 7, 7, 6, 7, 6, 6, 5, 5, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 3, 4, 5, 4, 4, 5, 6, 5, 5, 5, 6, 6, 7, 8, 7, 7, 9, 10, 9, 10, 11, 9, 12, 15, 14, 13, 14, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 26, 28, 29, 29, 31, 32, 34, 34, 34, 34, 34, 33, 33, 33, 34, 32, 30, 29, 28, 28, 28, 27, 28, 29, 29, 29, 30, 31, 31, 31, 30, 31, 31, 31, 29, 28, 27, 25, 25, 34, 24, 23, 24, 23, 21, 20, 19, 19, 18, 18, 18, 17, 16, 16, 14, 13, 13, 12, 11, 10, 10, 9, 8, 8, 8, 7, 7, 7, 6, 5, 5, 5, 6, 4, 4, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 16, 3, 4, 4, 3, 11, 5, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 225, 244 ], [ 246, 259 ], [ 263, 263 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 9, 9, 8, 9, 10, 11, 11, 12, 12, 12, 11, 11, 13, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 13, 13, 12, 11, 12, 11, 11, 12, 12, 12, 12, 11, 11, 10, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 8, 7, 7, 7, 7, 6, 7, 6, 6, 5, 5, 5, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 3, 4, 5, 4, 4, 5, 6, 5, 5, 5, 6, 6, 7, 8, 7, 7, 9, 10, 9, 10, 11, 9, 12, 15, 14, 13, 14, 15, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 26, 28, 29, 29, 31, 32, 34, 34, 34, 34, 34, 33, 33, 33, 34, 32, 30, 29, 28, 28, 28, 27, 28, 29, 29, 29, 30, 31, 31, 31, 30, 31, 31, 31, 29, 28, 27, 25, 25, 34, 24, 23, 24, 23, 21, 20, 19, 19, 18, 18, 18, 17, 16, 16, 14, 13, 13, 12, 11, 10, 10, 9, 8, 8, 8, 7, 7, 7, 6, 5, 5, 5, 6, 4, 4, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 16, 3, 4, 4, 3, 11, 5, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 79 ], [ 150, 150 ], [ 152, 195 ], [ 292, 319 ], [ 321, 324 ], [ 326, 363 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 10, 12, 13, 14, 17, 20, 22, 24, 28, 32, 35, 38, 43, 46, 46, 45, 35, 23, 10, 4, 13, 16, 21, 22, 16, 32, 21, 21, 22, 21, 20, 19, 18, 16, 15, 13, 11, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 3, 3, 7, 8, 13, 18, 27, 37, 44, 47, 48, 40, 26, 13, 10, 17, 29, 27, 28, 24, 25, 25, 23, 19, 16, 12, 8, 4, 3, 4, 6, 9, 12, 16, 20, 24, 29, 31, 31, 34, 35, 30, 20, 7, 12, 23, 29, 38, 42, 42, 43, 44, 38, 37, 32, 28, 26, 18, 13, 11, 10, 6, 5, 3, 4, 3, 4, 6, 6, 7, 7, 8, 8, 8, 8, 7, 8, 7, 7, 7, 6, 5, 5, 4, 3, 2, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 14, 16, 17, 16, 15, 16, 16, 16, 15, 14, 12, 8, 4, 9, 13, 19, 27, 34, 42, 49, 57, 64, 74, 76, 90, 90, 96, 98, 91, 86, 85, 72, 72, 65, 56, 48, 39, 32, 27, 21, 16, 13, 11, 10, 10, 10, 11, 9, 9, 9, 9, 7, 11, 10, 9, 9, 9, 10, 10, 10, 9, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 13, 11, 12, 14, 12, 12, 12, 13, 13, 13, 14, 13, 14, 13, 14, 14, 14, 13, 14, 12, 13, 13, 12, 12, 12, 12, 11, 10, 9, 9, 10, 10, 8, 8, 8, 8, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 10, 12, 13, 14, 17, 20, 22, 24, 28, 32, 35, 38, 43, 46, 46, 45, 35, 23, 10, 4, 13, 16, 21, 22, 16, 32, 21, 21, 22, 21, 20, 19, 18, 16, 15, 13, 11, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 3, 3, 7, 8, 13, 18, 27, 37, 44, 47, 48, 40, 26, 13, 10, 17, 29, 27, 28, 24, 25, 25, 23, 19, 16, 12, 8, 4, 3, 4, 6, 9, 12, 16, 20, 24, 29, 31, 31, 34, 35, 30, 20, 7, 12, 23, 29, 38, 42, 42, 43, 44, 38, 37, 32, 28, 26, 18, 13, 11, 10, 6, 5, 3, 4, 3, 4, 6, 6, 7, 7, 8, 8, 8, 8, 7, 8, 7, 7, 7, 6, 5, 5, 4, 3, 2, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 14, 16, 17, 16, 15, 16, 16, 16, 15, 14, 12, 8, 4, 9, 13, 19, 27, 34, 42, 49, 57, 64, 74, 76, 90, 90, 96, 98, 91, 86, 85, 72, 72, 65, 56, 48, 39, 32, 27, 21, 16, 13, 11, 10, 10, 10, 11, 9, 9, 9, 9, 7, 11, 10, 9, 9, 9, 10, 10, 10, 9, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 13, 11, 12, 14, 12, 12, 12, 13, 13, 13, 14, 13, 14, 13, 14, 14, 14, 13, 14, 12, 13, 13, 12, 12, 12, 12, 11, 10, 9, 9, 10, 10, 8, 8, 8, 8, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 310, 316 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 10, 12, 13, 14, 17, 20, 22, 24, 28, 32, 35, 38, 43, 46, 46, 45, 35, 23, 10, 4, 13, 16, 21, 22, 16, 32, 21, 21, 22, 21, 20, 19, 18, 16, 15, 13, 11, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 3, 3, 7, 8, 13, 18, 27, 37, 44, 47, 48, 40, 26, 13, 10, 17, 29, 27, 28, 24, 25, 25, 23, 19, 16, 12, 8, 4, 3, 4, 6, 9, 12, 16, 20, 24, 29, 31, 31, 34, 35, 30, 20, 7, 12, 23, 29, 38, 42, 42, 43, 44, 38, 37, 32, 28, 26, 18, 13, 11, 10, 6, 5, 3, 4, 3, 4, 6, 6, 7, 7, 8, 8, 8, 8, 7, 8, 7, 7, 7, 6, 5, 5, 4, 3, 2, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 14, 16, 17, 16, 15, 16, 16, 16, 15, 14, 12, 8, 4, 9, 13, 19, 27, 34, 42, 49, 57, 64, 74, 76, 90, 90, 96, 98, 91, 86, 85, 72, 72, 65, 56, 48, 39, 32, 27, 21, 16, 13, 11, 10, 10, 10, 11, 9, 9, 9, 9, 7, 11, 10, 9, 9, 9, 10, 10, 10, 9, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 13, 11, 12, 14, 12, 12, 12, 13, 13, 13, 14, 13, 14, 13, 14, 14, 14, 13, 14, 12, 13, 13, 12, 12, 12, 12, 11, 10, 9, 9, 10, 10, 8, 8, 8, 8, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 146 ], [ 160, 163 ], [ 166, 166 ], [ 173, 194 ], [ 202, 204 ], [ 212, 222 ], [ 232, 233 ], [ 246, 301 ], [ 326, 441 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 17, 16, 18, 16, 17, 16, 14, 15, 15, 15, 14, 14, 14, 14, 14, 15, 16, 16, 17, 17, 17, 16, 15, 15, 14, 14, 12, 13, 12, 10, 12, 12, 11, 10, 10, 10, 10, 10, 10, 10, 9, 9, 8, 8, 8, 8, 8, 7, 9, 8, 8, 8, 9, 9, 9, 10, 9, 11, 12, 12, 13, 14, 14, 14, 15, 16, 15, 17, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 20, 20, 21, 20, 18, 15, 14, 12, 13, 11, 11, 10, 9, 9, 9, 8, 7, 7, 7, 8, 6, 6, 5, 4, 3, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 2, 2, 4, 4, 3, 2, 4, 3, 4, 3, 3, 3, 3, 4, 3, 2, 4, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 17, 16, 18, 16, 17, 16, 14, 15, 15, 15, 14, 14, 14, 14, 14, 15, 16, 16, 17, 17, 17, 16, 15, 15, 14, 14, 12, 13, 12, 10, 12, 12, 11, 10, 10, 10, 10, 10, 10, 10, 9, 9, 8, 8, 8, 8, 8, 7, 9, 8, 8, 8, 9, 9, 9, 10, 9, 11, 12, 12, 13, 14, 14, 14, 15, 16, 15, 17, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 20, 20, 21, 20, 18, 15, 14, 12, 13, 11, 11, 10, 9, 9, 9, 8, 7, 7, 7, 8, 6, 6, 5, 4, 3, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 2, 2, 4, 4, 3, 2, 4, 3, 4, 3, 3, 3, 3, 4, 3, 2, 4, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 197, 200 ], [ 202, 202 ], [ 204, 204 ], [ 218, 220 ], [ 267, 282 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 17, 16, 18, 16, 17, 16, 14, 15, 15, 15, 14, 14, 14, 14, 14, 15, 16, 16, 17, 17, 17, 16, 15, 15, 14, 14, 12, 13, 12, 10, 12, 12, 11, 10, 10, 10, 10, 10, 10, 10, 9, 9, 8, 8, 8, 8, 8, 7, 9, 8, 8, 8, 9, 9, 9, 10, 9, 11, 12, 12, 13, 14, 14, 14, 15, 16, 15, 17, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 20, 20, 21, 20, 18, 15, 14, 12, 13, 11, 11, 10, 9, 9, 9, 8, 7, 7, 7, 8, 6, 6, 5, 4, 3, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5, 2, 2, 4, 4, 3, 2, 4, 3, 4, 3, 3, 3, 3, 4, 3, 2, 4, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 177 ], [ 301, 317 ], [ 324, 326 ], [ 328, 404 ], [ 406, 502 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 12, 11, 9, 12, 11, 12, 12, 12, 13, 13, 13, 14, 13, 15, 14, 15, 16, 16, 15, 16, 17, 17, 17, 18, 17, 18, 18, 18, 18, 20, 19, 19, 20, 22, 21, 20, 25, 23, 23, 21, 24, 24, 24, 25, 24, 25, 25, 25, 25, 25, 28, 27, 27, 25, 27, 26, 27, 26, 25, 13, 17, 21, 23, 23, 23, 23, 23, 23, 22, 21, 20, 19, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 12, 12, 12, 13, 13, 13, 13, 12, 13, 12, 11, 11, 11, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 5, 6, 7, 8, 8, 7, 8, 9, 9, 10, 8, 8, 9, 9, 11, 9, 10, 13, 11, 10, 13, 12, 12, 12, 12, 12, 16, 10, 13, 11, 14, 12, 14, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 10, 10, 9, 10, 10, 10, 9, 10, 8, 10, 9, 9, 7, 8, 8, 7, 7, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 12, 11, 9, 12, 11, 12, 12, 12, 13, 13, 13, 14, 13, 15, 14, 15, 16, 16, 15, 16, 17, 17, 17, 18, 17, 18, 18, 18, 18, 20, 19, 19, 20, 22, 21, 20, 25, 23, 23, 21, 24, 24, 24, 25, 24, 25, 25, 25, 25, 25, 28, 27, 27, 25, 27, 26, 27, 26, 25, 13, 17, 21, 23, 23, 23, 23, 23, 23, 22, 21, 20, 19, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 12, 12, 12, 13, 13, 13, 13, 12, 13, 12, 11, 11, 11, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 5, 6, 7, 8, 8, 7, 8, 9, 9, 10, 8, 8, 9, 9, 11, 9, 10, 13, 11, 10, 13, 12, 12, 12, 12, 12, 16, 10, 13, 11, 14, 12, 14, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 10, 10, 9, 10, 10, 10, 9, 10, 8, 10, 9, 9, 7, 8, 8, 7, 7, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 385, 387 ], [ 389, 407 ], [ 411, 416 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 10, 10, 10, 10, 11, 12, 11, 9, 12, 11, 12, 12, 12, 13, 13, 13, 14, 13, 15, 14, 15, 16, 16, 15, 16, 17, 17, 17, 18, 17, 18, 18, 18, 18, 20, 19, 19, 20, 22, 21, 20, 25, 23, 23, 21, 24, 24, 24, 25, 24, 25, 25, 25, 25, 25, 28, 27, 27, 25, 27, 26, 27, 26, 25, 13, 17, 21, 23, 23, 23, 23, 23, 23, 22, 21, 20, 19, 19, 18, 17, 16, 15, 14, 13, 13, 13, 13, 12, 12, 12, 13, 13, 13, 13, 12, 13, 12, 11, 11, 11, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 5, 6, 7, 8, 8, 7, 8, 9, 9, 10, 8, 8, 9, 9, 11, 9, 10, 13, 11, 10, 13, 12, 12, 12, 12, 12, 16, 10, 13, 11, 14, 12, 14, 11, 11, 11, 11, 12, 11, 11, 11, 11, 11, 10, 10, 9, 10, 10, 10, 9, 10, 8, 10, 9, 9, 7, 8, 8, 7, 7, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 2, 2, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 331 ], [ 460, 516 ], [ 587, 883 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 86, 105 ], [ 131, 162 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 59 ], [ 198, 270 ], [ 372, 422 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 9, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 6, 6, 6, 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 10, 10, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 20, 20, 19, 19, 18, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 9, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 6, 6, 6, 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 10, 10, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 20, 20, 19, 19, 18, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 359, 372 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 9, 7, 7, 7, 7, 8, 8, 8, 8, 8, 7, 6, 6, 6, 7, 6, 6, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 10, 10, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 20, 20, 19, 19, 18, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 83 ], [ 117, 121 ], [ 123, 124 ], [ 126, 155 ], [ 200, 259 ], [ 282, 348 ], [ 384, 396 ], [ 400, 468 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 16, 15, 12, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 23, 23, 23, 23, 24, 24, 25, 24, 23, 22, 21, 20, 20, 20, 19, 18, 17, 16, 15, 15, 14, 13, 12, 10, 11, 10, 10, 9, 8, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 16, 15, 12, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 23, 23, 23, 23, 24, 24, 25, 24, 23, 22, 21, 20, 20, 20, 19, 18, 17, 16, 15, 15, 14, 13, 12, 10, 11, 10, 10, 9, 8, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 290, 306 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 17, 17, 17, 16, 16, 16, 16, 15, 12, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 23, 23, 23, 23, 23, 24, 24, 25, 24, 23, 22, 21, 20, 20, 20, 19, 18, 17, 16, 15, 15, 14, 13, 12, 10, 11, 10, 10, 9, 8, 8, 7, 7, 6, 6, 5, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 199 ], [ 327, 585 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 136 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ], "output": { "3. Local Minima": { "frames": [ [ 291, 305 ], [ 365, 379 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 12, 13, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 12, 13, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 62, 62 ], [ 64, 64 ], [ 341, 369 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 12, 13, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 12, 12, 11, 11, 10, 10, 9, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3 ], "output": { "3. Local Minima": { "frames": [ [ 0, 19 ], [ 144, 176 ], [ 302, 315 ], [ 400, 400 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 1, 2, 2, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18, 18, 17, 15, 12, 12, 13, 15, 18, 20, 21, 23, 24, 24, 23, 22, 21, 19, 19, 16, 14, 12, 13, 12, 14, 14, 16, 17, 19, 22, 25, 28, 27, 27, 28, 28, 25, 29, 19, 15, 11, 8, 8, 8, 7, 5, 4, 3, 3, 6, 10, 17, 25, 28, 37, 36, 43, 46, 51, 54, 55, 56, 53, 49, 45, 42, 36, 35, 35, 32, 29, 24, 19, 15, 12, 11, 12, 10, 8, 7, 5, 3, 3, 4, 9, 13, 19, 23, 27, 31, 32, 35, 36, 38, 43, 45, 48, 54, 59, 62, 62, 66, 68, 69, 68, 65, 65, 72, 65, 66, 57, 53, 42, 38, 35, 37, 32, 25, 22, 21, 22, 21, 25, 18, 22, 22, 22, 20, 18, 15, 11, 8, 8, 11, 14, 16, 17, 20, 28, 37, 50, 57, 49, 55, 63, 55, 51, 48, 37, 33, 28, 23, 19, 16, 13, 11, 5, 7, 4, 5, 4, 4, 4, 4, 3, 3, 3, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 6, 5, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 6, 5, 5, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 1, 2, 2, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18, 18, 17, 15, 12, 12, 13, 15, 18, 20, 21, 23, 24, 24, 23, 22, 21, 19, 19, 16, 14, 12, 13, 12, 14, 14, 16, 17, 19, 22, 25, 28, 27, 27, 28, 28, 25, 29, 19, 15, 11, 8, 8, 8, 7, 5, 4, 3, 3, 6, 10, 17, 25, 28, 37, 36, 43, 46, 51, 54, 55, 56, 53, 49, 45, 42, 36, 35, 35, 32, 29, 24, 19, 15, 12, 11, 12, 10, 8, 7, 5, 3, 3, 4, 9, 13, 19, 23, 27, 31, 32, 35, 36, 38, 43, 45, 48, 54, 59, 62, 62, 66, 68, 69, 68, 65, 65, 72, 65, 66, 57, 53, 42, 38, 35, 37, 32, 25, 22, 21, 22, 21, 25, 18, 22, 22, 22, 20, 18, 15, 11, 8, 8, 11, 14, 16, 17, 20, 28, 37, 50, 57, 49, 55, 63, 55, 51, 48, 37, 33, 28, 23, 19, 16, 13, 11, 5, 7, 4, 5, 4, 4, 4, 4, 3, 3, 3, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 6, 5, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 6, 5, 5, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 201, 212 ], [ 247, 247 ] ] } } }, { "instruction": "Left arm extremity angular velocity represents the angular velocity value of left arm. Near the maximum value, the larger the angular velocity value of left arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 1, 2, 2, 4, 5, 7, 8, 10, 12, 14, 16, 17, 18, 18, 17, 15, 12, 12, 13, 15, 18, 20, 21, 23, 24, 24, 23, 22, 21, 19, 19, 16, 14, 12, 13, 12, 14, 14, 16, 17, 19, 22, 25, 28, 27, 27, 28, 28, 25, 29, 19, 15, 11, 8, 8, 8, 7, 5, 4, 3, 3, 6, 10, 17, 25, 28, 37, 36, 43, 46, 51, 54, 55, 56, 53, 49, 45, 42, 36, 35, 35, 32, 29, 24, 19, 15, 12, 11, 12, 10, 8, 7, 5, 3, 3, 4, 9, 13, 19, 23, 27, 31, 32, 35, 36, 38, 43, 45, 48, 54, 59, 62, 62, 66, 68, 69, 68, 65, 65, 72, 65, 66, 57, 53, 42, 38, 35, 37, 32, 25, 22, 21, 22, 21, 25, 18, 22, 22, 22, 20, 18, 15, 11, 8, 8, 11, 14, 16, 17, 20, 28, 37, 50, 57, 49, 55, 63, 55, 51, 48, 37, 33, 28, 23, 19, 16, 13, 11, 5, 7, 4, 5, 4, 4, 4, 4, 3, 3, 3, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 6, 5, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 6, 5, 5, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 100 ], [ 107, 109 ], [ 123, 128 ], [ 143, 153 ], [ 177, 188 ], [ 233, 237 ], [ 257, 337 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 9, 10, 9, 9, 8, 8, 8, 8, 7, 6, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 12, 12, 11, 10, 10, 9, 9, 9, 9, 9, 9, 9, 7, 8, 8, 8, 7, 6, 6, 7, 7, 7, 9, 8, 8, 9, 8, 8, 9, 9, 10, 11, 13, 13, 16, 18, 21, 22, 23, 24, 27, 28, 28, 27, 28, 32, 27, 28, 27, 24, 23, 22, 22, 23, 21, 21, 21, 20, 18, 17, 16, 16, 14, 16, 16, 16, 15, 15, 14, 13, 13, 8, 11, 10, 9, 8, 6, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 5, 4, 3, 6, 6, 6, 6, 8, 6, 6, 7, 7, 8, 9, 10, 11, 13, 13, 14, 16, 17, 18, 18, 19, 19, 20, 19, 19, 20, 20, 20, 21, 22, 21, 19, 19, 20, 17, 16, 12, 13, 14, 13, 14, 9, 7, 5, 6, 6, 6, 6, 6, 7, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 9, 9, 9, 8, 9, 9, 9, 9, 9, 10, 10, 12, 15, 17, 16, 20, 21, 21, 22, 28, 26, 24, 33, 28, 26, 23, 22, 26, 25, 25, 25, 26, 26, 23, 22, 22, 22, 22, 23, 22, 20, 20, 16, 16, 15, 15, 14, 12, 10, 11, 8, 8, 8, 6, 7, 8, 5, 7, 6, 5, 6, 5, 8, 2, 3, 15, 3, 4, 4, 4, 4, 5, 6, 8, 8, 9, 11, 13, 13, 15, 18, 17, 20, 20, 21, 21, 19, 21, 20, 21, 21, 16, 19, 21, 19, 18, 17, 13, 16, 17, 15, 15, 13, 12, 11, 11, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 11, 11, 9, 11, 10, 9, 8, 8, 8, 7, 10, 7, 8, 8, 6, 8, 7, 8, 7, 6, 7, 8, 9, 8, 9, 11, 14, 20, 18, 19, 19, 21, 23, 24, 25, 24, 25, 28, 27, 29, 26, 31, 24, 31, 27, 29, 26, 27, 26, 26, 23, 27, 28, 24, 29, 27, 29, 29, 25, 28, 23, 26, 24, 22, 21, 21, 21, 19, 18, 17, 18, 17, 16, 14, 15, 14, 11, 11, 7, 11, 10, 11, 9, 10, 10, 9, 11, 9, 9, 9, 10, 11, 12, 10, 13, 12, 12, 13, 14, 14, 16, 12, 13, 14, 17, 15, 15, 17, 16, 19, 18, 19, 18, 19, 10, 15, 16, 19, 15, 17, 20, 21, 21, 16, 14, 13, 12, 11, 9, 9, 9, 10, 7, 7, 6, 4, 5 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 9, 10, 9, 9, 8, 8, 8, 8, 7, 6, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 12, 12, 11, 10, 10, 9, 9, 9, 9, 9, 9, 9, 7, 8, 8, 8, 7, 6, 6, 7, 7, 7, 9, 8, 8, 9, 8, 8, 9, 9, 10, 11, 13, 13, 16, 18, 21, 22, 23, 24, 27, 28, 28, 27, 28, 32, 27, 28, 27, 24, 23, 22, 22, 23, 21, 21, 21, 20, 18, 17, 16, 16, 14, 16, 16, 16, 15, 15, 14, 13, 13, 8, 11, 10, 9, 8, 6, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 5, 4, 3, 6, 6, 6, 6, 8, 6, 6, 7, 7, 8, 9, 10, 11, 13, 13, 14, 16, 17, 18, 18, 19, 19, 20, 19, 19, 20, 20, 20, 21, 22, 21, 19, 19, 20, 17, 16, 12, 13, 14, 13, 14, 9, 7, 5, 6, 6, 6, 6, 6, 7, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 9, 9, 9, 8, 9, 9, 9, 9, 9, 10, 10, 12, 15, 17, 16, 20, 21, 21, 22, 28, 26, 24, 33, 28, 26, 23, 22, 26, 25, 25, 25, 26, 26, 23, 22, 22, 22, 22, 23, 22, 20, 20, 16, 16, 15, 15, 14, 12, 10, 11, 8, 8, 8, 6, 7, 8, 5, 7, 6, 5, 6, 5, 8, 2, 3, 15, 3, 4, 4, 4, 4, 5, 6, 8, 8, 9, 11, 13, 13, 15, 18, 17, 20, 20, 21, 21, 19, 21, 20, 21, 21, 16, 19, 21, 19, 18, 17, 13, 16, 17, 15, 15, 13, 12, 11, 11, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 11, 11, 9, 11, 10, 9, 8, 8, 8, 7, 10, 7, 8, 8, 6, 8, 7, 8, 7, 6, 7, 8, 9, 8, 9, 11, 14, 20, 18, 19, 19, 21, 23, 24, 25, 24, 25, 28, 27, 29, 26, 31, 24, 31, 27, 29, 26, 27, 26, 26, 23, 27, 28, 24, 29, 27, 29, 29, 25, 28, 23, 26, 24, 22, 21, 21, 21, 19, 18, 17, 18, 17, 16, 14, 15, 14, 11, 11, 7, 11, 10, 11, 9, 10, 10, 9, 11, 9, 9, 9, 10, 11, 12, 10, 13, 12, 12, 13, 14, 14, 16, 12, 13, 14, 17, 15, 15, 17, 16, 19, 18, 19, 18, 19, 10, 15, 16, 19, 15, 17, 20, 21, 21, 16, 14, 13, 12, 11, 9, 9, 9, 10, 7, 7, 6, 4, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 161, 169 ], [ 291, 291 ], [ 294, 295 ], [ 425, 427 ], [ 429, 429 ], [ 431, 433 ], [ 435, 435 ], [ 439, 440 ], [ 442, 445 ], [ 447, 447 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 9, 10, 9, 9, 8, 8, 8, 8, 7, 6, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 12, 12, 11, 10, 10, 9, 9, 9, 9, 9, 9, 9, 7, 8, 8, 8, 7, 6, 6, 7, 7, 7, 9, 8, 8, 9, 8, 8, 9, 9, 10, 11, 13, 13, 16, 18, 21, 22, 23, 24, 27, 28, 28, 27, 28, 32, 27, 28, 27, 24, 23, 22, 22, 23, 21, 21, 21, 20, 18, 17, 16, 16, 14, 16, 16, 16, 15, 15, 14, 13, 13, 8, 11, 10, 9, 8, 6, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 5, 4, 3, 6, 6, 6, 6, 8, 6, 6, 7, 7, 8, 9, 10, 11, 13, 13, 14, 16, 17, 18, 18, 19, 19, 20, 19, 19, 20, 20, 20, 21, 22, 21, 19, 19, 20, 17, 16, 12, 13, 14, 13, 14, 9, 7, 5, 6, 6, 6, 6, 6, 7, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 10, 9, 9, 9, 8, 9, 9, 9, 9, 9, 10, 10, 12, 15, 17, 16, 20, 21, 21, 22, 28, 26, 24, 33, 28, 26, 23, 22, 26, 25, 25, 25, 26, 26, 23, 22, 22, 22, 22, 23, 22, 20, 20, 16, 16, 15, 15, 14, 12, 10, 11, 8, 8, 8, 6, 7, 8, 5, 7, 6, 5, 6, 5, 8, 2, 3, 15, 3, 4, 4, 4, 4, 5, 6, 8, 8, 9, 11, 13, 13, 15, 18, 17, 20, 20, 21, 21, 19, 21, 20, 21, 21, 16, 19, 21, 19, 18, 17, 13, 16, 17, 15, 15, 13, 12, 11, 11, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 11, 11, 9, 11, 10, 9, 8, 8, 8, 7, 10, 7, 8, 8, 6, 8, 7, 8, 7, 6, 7, 8, 9, 8, 9, 11, 14, 20, 18, 19, 19, 21, 23, 24, 25, 24, 25, 28, 27, 29, 26, 31, 24, 31, 27, 29, 26, 27, 26, 26, 23, 27, 28, 24, 29, 27, 29, 29, 25, 28, 23, 26, 24, 22, 21, 21, 21, 19, 18, 17, 18, 17, 16, 14, 15, 14, 11, 11, 7, 11, 10, 11, 9, 10, 10, 9, 11, 9, 9, 9, 10, 11, 12, 10, 13, 12, 12, 13, 14, 14, 16, 12, 13, 14, 17, 15, 15, 17, 16, 19, 18, 19, 18, 19, 10, 15, 16, 19, 15, 17, 20, 21, 21, 16, 14, 13, 12, 11, 9, 9, 9, 10, 7, 7, 6, 4, 5 ], "output": { "3. Local Minima": { "frames": [ [ 0, 36 ], [ 63, 110 ], [ 133, 133 ], [ 137, 142 ], [ 197, 214 ], [ 216, 219 ], [ 253, 260 ], [ 325, 326 ], [ 328, 333 ], [ 335, 336 ], [ 338, 344 ], [ 397, 397 ], [ 399, 399 ], [ 402, 402 ], [ 404, 404 ], [ 406, 408 ], [ 466, 466 ], [ 520, 524 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 5, 5, 6, 4, 6, 4, 4, 4, 3, 4, 4, 3, 5, 3, 3, 5, 3, 4, 4, 4, 5, 3, 6, 3, 6, 5, 4, 6, 6, 5, 4, 6, 7, 6, 7, 7, 9, 6, 8, 8, 8, 8, 7, 7, 6, 7, 7, 6, 7, 7, 6, 8, 7, 5, 10, 6, 7, 7, 8, 7, 6, 9, 7, 7, 8, 8, 8, 6, 7, 8, 8, 7, 7, 8, 4, 8, 8, 7, 7, 4, 6, 14, 7, 8, 9, 9, 8, 8, 10, 9, 11, 11, 9, 9, 8, 9, 8, 8, 6, 7, 7, 7, 5, 6, 5, 5, 5, 6, 2, 3, 4, 4, 2, 4, 5, 3, 3, 4, 5, 5, 5, 4, 2, 8, 6, 4, 6, 4, 6, 6, 6, 6, 6, 7, 7, 7, 5, 6, 6, 7, 7, 7, 7, 6, 7, 7, 6, 6, 6, 6, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 8, 8, 9, 8, 8, 9, 9, 9, 10, 9, 9, 8, 9, 9, 8, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 8, 10, 10, 9, 9, 11, 8, 7, 10, 11, 9, 9, 8, 9, 9, 8, 8, 7, 6, 7, 8, 7, 7, 6, 6, 6, 6, 6, 4, 5, 4, 5, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 7, 5, 6, 7, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 9, 10, 9, 10, 10, 10, 9, 9, 9, 9, 9, 8, 9, 8, 9, 9, 9, 10, 9, 9, 10, 9, 10, 9, 8, 8, 8, 8, 6, 7, 8, 7, 6, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 6, 2, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 5, 3, 3, 4, 4, 4, 4, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 5, 7, 9, 6, 6, 7, 7, 6, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 9, 8, 9, 9, 9, 9, 10, 14, 8 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 5, 5, 6, 4, 6, 4, 4, 4, 3, 4, 4, 3, 5, 3, 3, 5, 3, 4, 4, 4, 5, 3, 6, 3, 6, 5, 4, 6, 6, 5, 4, 6, 7, 6, 7, 7, 9, 6, 8, 8, 8, 8, 7, 7, 6, 7, 7, 6, 7, 7, 6, 8, 7, 5, 10, 6, 7, 7, 8, 7, 6, 9, 7, 7, 8, 8, 8, 6, 7, 8, 8, 7, 7, 8, 4, 8, 8, 7, 7, 4, 6, 14, 7, 8, 9, 9, 8, 8, 10, 9, 11, 11, 9, 9, 8, 9, 8, 8, 6, 7, 7, 7, 5, 6, 5, 5, 5, 6, 2, 3, 4, 4, 2, 4, 5, 3, 3, 4, 5, 5, 5, 4, 2, 8, 6, 4, 6, 4, 6, 6, 6, 6, 6, 7, 7, 7, 5, 6, 6, 7, 7, 7, 7, 6, 7, 7, 6, 6, 6, 6, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 8, 8, 9, 8, 8, 9, 9, 9, 10, 9, 9, 8, 9, 9, 8, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 8, 10, 10, 9, 9, 11, 8, 7, 10, 11, 9, 9, 8, 9, 9, 8, 8, 7, 6, 7, 8, 7, 7, 6, 6, 6, 6, 6, 4, 5, 4, 5, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 7, 5, 6, 7, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 9, 10, 9, 10, 10, 10, 9, 9, 9, 9, 9, 8, 9, 8, 9, 9, 9, 10, 9, 9, 10, 9, 10, 9, 8, 8, 8, 8, 6, 7, 8, 7, 6, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 6, 2, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 5, 3, 3, 4, 4, 4, 4, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 5, 7, 9, 6, 6, 7, 7, 6, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 9, 8, 9, 9, 9, 9, 10, 14, 8 ], "output": { "2. Local Maxima": { "frames": [ [ 81, 81 ], [ 394, 394 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 5, 5, 6, 4, 6, 4, 4, 4, 3, 4, 4, 3, 5, 3, 3, 5, 3, 4, 4, 4, 5, 3, 6, 3, 6, 5, 4, 6, 6, 5, 4, 6, 7, 6, 7, 7, 9, 6, 8, 8, 8, 8, 7, 7, 6, 7, 7, 6, 7, 7, 6, 8, 7, 5, 10, 6, 7, 7, 8, 7, 6, 9, 7, 7, 8, 8, 8, 6, 7, 8, 8, 7, 7, 8, 4, 8, 8, 7, 7, 4, 6, 14, 7, 8, 9, 9, 8, 8, 10, 9, 11, 11, 9, 9, 8, 9, 8, 8, 6, 7, 7, 7, 5, 6, 5, 5, 5, 6, 2, 3, 4, 4, 2, 4, 5, 3, 3, 4, 5, 5, 5, 4, 2, 8, 6, 4, 6, 4, 6, 6, 6, 6, 6, 7, 7, 7, 5, 6, 6, 7, 7, 7, 7, 6, 7, 7, 6, 6, 6, 6, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 9, 8, 8, 9, 8, 8, 9, 9, 9, 10, 9, 9, 8, 9, 9, 8, 8, 8, 8, 9, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 8, 10, 10, 9, 9, 11, 8, 7, 10, 11, 9, 9, 8, 9, 9, 8, 8, 7, 6, 7, 8, 7, 7, 6, 6, 6, 6, 6, 4, 5, 4, 5, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 7, 5, 6, 7, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 9, 10, 9, 10, 10, 10, 9, 9, 9, 9, 9, 8, 9, 8, 9, 9, 9, 10, 9, 9, 10, 9, 10, 9, 8, 8, 8, 8, 6, 7, 8, 7, 6, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 6, 2, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 5, 3, 3, 4, 4, 4, 4, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 5, 7, 9, 6, 6, 7, 7, 6, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 9, 8, 9, 9, 9, 9, 10, 14, 8 ], "output": { "3. Local Minima": { "frames": [ [ 3, 3 ], [ 5, 11 ], [ 13, 14 ], [ 16, 19 ], [ 21, 21 ], [ 23, 23 ], [ 26, 26 ], [ 30, 30 ], [ 74, 74 ], [ 79, 79 ], [ 108, 113 ], [ 115, 117 ], [ 121, 122 ], [ 125, 125 ], [ 127, 127 ], [ 218, 218 ], [ 220, 220 ], [ 222, 227 ], [ 323, 323 ], [ 326, 330 ], [ 332, 345 ], [ 347, 352 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 10, 10, 10, 10, 11, 11, 9, 9, 9, 9, 8, 8, 7, 7, 7, 7, 6, 6, 7, 6, 5, 6, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 4, 5, 6, 5, 5, 6, 7, 7, 7, 8, 8, 8, 8, 9, 10, 9, 9, 10, 11, 11, 10, 10, 11, 13, 13, 11, 11, 13, 13, 13, 13, 13, 13, 14, 14, 14, 13, 13, 13, 13, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 11, 10, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 16, 15, 15, 16, 16, 16, 15, 15, 16, 16, 15, 15, 15, 16, 15, 15, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 4, 4, 5, 4, 6, 6, 6, 6, 7, 7 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 10, 10, 10, 10, 11, 11, 9, 9, 9, 9, 8, 8, 7, 7, 7, 7, 6, 6, 7, 6, 5, 6, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 4, 5, 6, 5, 5, 6, 7, 7, 7, 8, 8, 8, 8, 9, 10, 9, 9, 10, 11, 11, 10, 10, 11, 13, 13, 11, 11, 13, 13, 13, 13, 13, 13, 14, 14, 14, 13, 13, 13, 13, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 11, 10, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 16, 15, 15, 16, 16, 16, 15, 15, 16, 16, 15, 15, 15, 16, 15, 15, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 4, 4, 5, 4, 6, 6, 6, 6, 7, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 88, 89 ], [ 92, 112 ], [ 194, 224 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 10, 10, 10, 10, 11, 11, 9, 9, 9, 9, 8, 8, 7, 7, 7, 7, 6, 6, 7, 6, 5, 6, 5, 4, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 4, 5, 6, 5, 5, 6, 7, 7, 7, 8, 8, 8, 8, 9, 10, 9, 9, 10, 11, 11, 10, 10, 11, 13, 13, 11, 11, 13, 13, 13, 13, 13, 13, 14, 14, 14, 13, 13, 13, 13, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 11, 10, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 16, 15, 15, 16, 16, 16, 15, 15, 16, 16, 15, 15, 15, 16, 15, 15, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 4, 4, 5, 4, 6, 6, 6, 6, 7, 7 ], "output": { "3. Local Minima": { "frames": [ [ 30, 62 ], [ 139, 170 ], [ 256, 259 ], [ 261, 285 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 15, 13, 14, 14, 13, 13, 11, 12, 14, 11, 10, 10, 10, 8, 7, 6, 6, 5, 4, 4, 5, 6, 6, 7, 10, 12, 12, 14, 16, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 38, 40, 40, 42, 43, 43, 43, 42, 45, 44, 45, 46, 48, 44, 43, 42, 40, 39, 37, 37, 35, 35, 33, 30, 29, 28, 26, 24, 24, 22, 20, 16, 16, 16, 15, 11, 8, 9, 8, 7, 7, 7, 7, 6, 5, 5, 5, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 15, 15, 16, 17, 18, 18, 19, 20, 21, 21, 24, 23, 19, 17, 19, 20, 19, 20, 20, 20, 20, 20, 19, 19, 18, 16, 15, 15, 13, 13, 12, 12, 11, 11, 11, 11, 10, 10, 10, 8, 8, 8, 8, 7, 7, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 3 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 15, 13, 14, 14, 13, 13, 11, 12, 14, 11, 10, 10, 10, 8, 7, 6, 6, 5, 4, 4, 5, 6, 6, 7, 10, 12, 12, 14, 16, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 38, 40, 40, 42, 43, 43, 43, 42, 45, 44, 45, 46, 48, 44, 43, 42, 40, 39, 37, 37, 35, 35, 33, 30, 29, 28, 26, 24, 24, 22, 20, 16, 16, 16, 15, 11, 8, 9, 8, 7, 7, 7, 7, 6, 5, 5, 5, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 15, 15, 16, 17, 18, 18, 19, 20, 21, 21, 24, 23, 19, 17, 19, 20, 19, 20, 20, 20, 20, 20, 19, 19, 18, 16, 15, 15, 13, 13, 12, 12, 11, 11, 11, 11, 10, 10, 10, 8, 8, 8, 8, 7, 7, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 156, 172 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 15, 13, 14, 14, 13, 13, 11, 12, 14, 11, 10, 10, 10, 8, 7, 6, 6, 5, 4, 4, 5, 6, 6, 7, 10, 12, 12, 14, 16, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 38, 40, 40, 42, 43, 43, 43, 42, 45, 44, 45, 46, 48, 44, 43, 42, 40, 39, 37, 37, 35, 35, 33, 30, 29, 28, 26, 24, 24, 22, 20, 16, 16, 16, 15, 11, 8, 9, 8, 7, 7, 7, 7, 6, 5, 5, 5, 6, 6, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 15, 15, 16, 17, 18, 18, 19, 20, 21, 21, 24, 23, 19, 17, 19, 20, 19, 20, 20, 20, 20, 20, 19, 19, 18, 16, 15, 15, 13, 13, 12, 12, 11, 11, 11, 11, 10, 10, 10, 8, 8, 8, 8, 7, 7, 7, 6, 6, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 3 ], "output": { "3. Local Minima": { "frames": [ [ 0, 102 ], [ 124, 134 ], [ 191, 234 ], [ 284, 399 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 4, 4, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 6, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 5, 5, 6, 5, 5, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 6, 6, 7, 7, 7, 8, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 8, 8, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 8, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 2, 2, 3, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 4, 4, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 6, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 5, 5, 6, 5, 5, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 6, 6, 7, 7, 7, 8, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 8, 8, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 8, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 2, 2, 3, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 324, 325 ], [ 328, 347 ], [ 349, 354 ], [ 356, 361 ], [ 365, 366 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 4, 4, 3, 3, 3, 3, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 4, 4, 5, 6, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 5, 5, 6, 5, 5, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 6, 6, 7, 7, 7, 8, 7, 7, 7, 8, 8, 8, 8, 8, 7, 7, 8, 8, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 8, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 3, 3, 3, 3, 2, 2, 3, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 ], "output": { "3. Local Minima": { "frames": [ [ 9, 9 ], [ 28, 37 ], [ 184, 185 ], [ 187, 190 ], [ 192, 301 ], [ 429, 430 ], [ 434, 512 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 9, 9, 10, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 10, 10, 7, 8, 8, 7, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 6, 6, 5, 6, 6, 5, 6, 6, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 8, 9, 9, 9, 9, 10, 10, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 11, 10, 9, 10, 10, 10, 10, 10, 9, 9, 9, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 7, 7, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 10, 10, 10, 11, 11, 10, 10, 11, 11, 11, 10, 10, 10, 10, 9, 9, 10, 10, 9, 9, 9, 8, 8, 9, 9, 8, 8, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 6, 4, 4, 5, 4, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 9, 9, 10, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 10, 10, 7, 8, 8, 7, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 6, 6, 5, 6, 6, 5, 6, 6, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 8, 9, 9, 9, 9, 10, 10, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 11, 10, 9, 10, 10, 10, 10, 10, 9, 9, 9, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 7, 7, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 10, 10, 10, 11, 11, 10, 10, 11, 11, 11, 10, 10, 10, 10, 9, 9, 10, 10, 9, 9, 9, 8, 8, 9, 9, 8, 8, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 6, 4, 4, 5, 4, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 26 ], [ 114, 114 ], [ 117, 119 ], [ 121, 158 ], [ 160, 160 ], [ 245, 246 ], [ 248, 291 ], [ 294, 295 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 9, 9, 10, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 10, 10, 7, 8, 8, 7, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 6, 6, 5, 6, 6, 5, 6, 6, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 8, 9, 9, 9, 9, 10, 10, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 11, 10, 9, 10, 10, 10, 10, 10, 9, 9, 9, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 4, 4, 4, 5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 7, 7, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 10, 10, 10, 11, 11, 10, 10, 11, 11, 11, 10, 10, 10, 10, 9, 9, 10, 10, 9, 9, 9, 8, 8, 9, 9, 8, 8, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 6, 4, 4, 5, 4, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 53, 53 ], [ 56, 85 ], [ 87, 93 ], [ 184, 184 ], [ 187, 187 ], [ 190, 190 ], [ 192, 194 ], [ 196, 198 ], [ 203, 205 ], [ 208, 209 ], [ 213, 215 ], [ 218, 219 ], [ 318, 318 ], [ 321, 325 ], [ 327, 333 ], [ 336, 337 ], [ 339, 341 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 12, 12, 10, 11, 9, 9, 8, 7, 11, 8, 8, 8, 9, 9, 9, 9, 9, 10, 9, 9, 10, 11, 11, 11, 12, 12, 11, 11, 15, 13, 15, 15, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 21, 21, 20, 20, 19, 20, 20, 18, 17, 16, 16, 17, 16, 15, 15, 16, 16, 15, 15, 14, 13, 14, 14, 13, 14, 14, 14, 14, 13, 13, 12, 12, 13, 13, 13, 13, 11, 11, 11, 12, 12, 13, 13, 14, 14, 12, 12, 12, 11, 11, 10, 9, 8, 10, 7, 10, 11, 11, 10, 11, 10, 10, 10, 10, 10, 11, 11, 12, 11, 11, 11, 12, 12, 12, 12, 11, 13, 14, 14, 13, 13, 14, 14, 15, 15, 15, 14, 16, 16, 15, 16, 17, 18, 18, 18, 17, 17, 17, 17, 16, 16, 16, 18, 17, 15, 15, 16, 16, 17, 16, 14, 12, 12, 14, 18, 15, 14, 14, 15, 14, 13, 12, 12, 12, 14 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 12, 12, 10, 11, 9, 9, 8, 7, 11, 8, 8, 8, 9, 9, 9, 9, 9, 10, 9, 9, 10, 11, 11, 11, 12, 12, 11, 11, 15, 13, 15, 15, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 21, 21, 20, 20, 19, 20, 20, 18, 17, 16, 16, 17, 16, 15, 15, 16, 16, 15, 15, 14, 13, 14, 14, 13, 14, 14, 14, 14, 13, 13, 12, 12, 13, 13, 13, 13, 11, 11, 11, 12, 12, 13, 13, 14, 14, 12, 12, 12, 11, 11, 10, 9, 8, 10, 7, 10, 11, 11, 10, 11, 10, 10, 10, 10, 10, 11, 11, 12, 11, 11, 11, 12, 12, 12, 12, 11, 13, 14, 14, 13, 13, 14, 14, 15, 15, 15, 14, 16, 16, 15, 16, 17, 18, 18, 18, 17, 17, 17, 17, 16, 16, 16, 18, 17, 15, 15, 16, 16, 17, 16, 14, 12, 12, 14, 18, 15, 14, 14, 15, 14, 13, 12, 12, 12, 14 ], "output": { "2. Local Maxima": { "frames": [ [ 37, 51 ], [ 54, 54 ], [ 134, 141 ], [ 145, 146 ], [ 151, 151 ], [ 157, 157 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 12, 12, 10, 11, 9, 9, 8, 7, 11, 8, 8, 8, 9, 9, 9, 9, 9, 10, 9, 9, 10, 11, 11, 11, 12, 12, 11, 11, 15, 13, 15, 15, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 21, 21, 20, 20, 19, 20, 20, 18, 17, 16, 16, 17, 16, 15, 15, 16, 16, 15, 15, 14, 13, 14, 14, 13, 14, 14, 14, 14, 13, 13, 12, 12, 13, 13, 13, 13, 11, 11, 11, 12, 12, 13, 13, 14, 14, 12, 12, 12, 11, 11, 10, 9, 8, 10, 7, 10, 11, 11, 10, 11, 10, 10, 10, 10, 10, 11, 11, 12, 11, 11, 11, 12, 12, 12, 12, 11, 13, 14, 14, 13, 13, 14, 14, 15, 15, 15, 14, 16, 16, 15, 16, 17, 18, 18, 18, 17, 17, 17, 17, 16, 16, 16, 18, 17, 15, 15, 16, 16, 17, 16, 14, 12, 12, 14, 18, 15, 14, 14, 15, 14, 13, 12, 12, 12, 14 ], "output": { "3. Local Minima": { "frames": [ [ 4, 7 ], [ 9, 16 ], [ 18, 19 ], [ 94, 95 ], [ 97, 97 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 17, 17, 17, 16, 15, 15, 15, 16, 14, 13, 12, 11, 12, 11, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 13, 14, 15, 15, 14, 15, 16, 16, 12, 14, 12, 10, 9, 12, 6, 3, 5, 5, 6, 6, 11, 8, 9, 11, 14, 16, 16, 14, 14, 13, 13, 13, 12, 12, 12, 12, 12, 10, 10, 10, 11, 11, 11, 17, 11, 10, 11, 11, 12, 12, 14, 13, 13, 15, 16, 15, 15, 16, 21, 16, 17, 17, 18, 18, 18, 19, 20, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 17, 16, 15, 14, 12, 10, 8, 6, 5, 6, 7, 8, 9, 10, 13, 15, 16, 16, 18, 19, 20, 20, 21, 22, 22, 24, 23, 23, 23, 22, 22, 23, 25, 24, 24, 24, 24, 23, 23, 22, 22, 22, 21, 21, 20, 19, 17, 16, 16, 17, 16, 16, 17, 17, 17, 16, 15, 15, 14, 14, 15, 14, 14, 14, 14, 14, 15, 15, 15, 19, 27, 13, 11, 10, 9, 8, 6, 3, 3, 5, 10, 7, 10, 12, 15, 16, 16, 15, 15, 15, 16, 16, 18, 15, 14, 15, 16, 15, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 20, 20, 20, 19, 20, 21, 20, 18, 18, 18, 17, 16, 14, 13, 11, 9, 6, 4, 3, 3, 5, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 22, 22, 23, 23, 21, 23, 23, 23, 23, 23, 22, 23, 23, 22, 21, 21, 21, 20, 19, 20, 20, 17, 16, 17, 18, 17, 15, 16, 16, 15, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16, 18, 17, 16, 17, 18, 19, 19, 17, 16, 17, 16, 14, 13, 11, 8, 6, 2, 2, 5, 6, 5, 10, 14, 11, 18, 15, 15, 25, 18, 19, 17, 16, 14, 14, 14, 13, 13, 12, 11, 11, 10, 10, 10, 10, 10, 9, 11, 12, 12, 12, 13, 15, 14, 15, 14, 15, 16, 17, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 19, 19, 21, 21, 21, 21, 18, 18, 18, 21, 20, 18, 16, 16, 14, 14, 14, 13, 6, 7, 8, 8, 6, 4, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 17, 17, 17, 16, 15, 15, 15, 16, 14, 13, 12, 11, 12, 11, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 13, 14, 15, 15, 14, 15, 16, 16, 12, 14, 12, 10, 9, 12, 6, 3, 5, 5, 6, 6, 11, 8, 9, 11, 14, 16, 16, 14, 14, 13, 13, 13, 12, 12, 12, 12, 12, 10, 10, 10, 11, 11, 11, 17, 11, 10, 11, 11, 12, 12, 14, 13, 13, 15, 16, 15, 15, 16, 21, 16, 17, 17, 18, 18, 18, 19, 20, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 17, 16, 15, 14, 12, 10, 8, 6, 5, 6, 7, 8, 9, 10, 13, 15, 16, 16, 18, 19, 20, 20, 21, 22, 22, 24, 23, 23, 23, 22, 22, 23, 25, 24, 24, 24, 24, 23, 23, 22, 22, 22, 21, 21, 20, 19, 17, 16, 16, 17, 16, 16, 17, 17, 17, 16, 15, 15, 14, 14, 15, 14, 14, 14, 14, 14, 15, 15, 15, 19, 27, 13, 11, 10, 9, 8, 6, 3, 3, 5, 10, 7, 10, 12, 15, 16, 16, 15, 15, 15, 16, 16, 18, 15, 14, 15, 16, 15, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 20, 20, 20, 19, 20, 21, 20, 18, 18, 18, 17, 16, 14, 13, 11, 9, 6, 4, 3, 3, 5, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 22, 22, 23, 23, 21, 23, 23, 23, 23, 23, 22, 23, 23, 22, 21, 21, 21, 20, 19, 20, 20, 17, 16, 17, 18, 17, 15, 16, 16, 15, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16, 18, 17, 16, 17, 18, 19, 19, 17, 16, 17, 16, 14, 13, 11, 8, 6, 2, 2, 5, 6, 5, 10, 14, 11, 18, 15, 15, 25, 18, 19, 17, 16, 14, 14, 14, 13, 13, 12, 11, 11, 10, 10, 10, 10, 10, 9, 11, 12, 12, 12, 13, 15, 14, 15, 14, 15, 16, 17, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 19, 19, 21, 21, 21, 21, 18, 18, 18, 21, 20, 18, 16, 16, 14, 14, 14, 13, 6, 7, 8, 8, 6, 4, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 126, 144 ], [ 173, 173 ], [ 255, 259 ], [ 261, 269 ], [ 323, 323 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 17, 17, 17, 16, 15, 15, 15, 16, 14, 13, 12, 11, 12, 11, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 13, 14, 15, 15, 14, 15, 16, 16, 12, 14, 12, 10, 9, 12, 6, 3, 5, 5, 6, 6, 11, 8, 9, 11, 14, 16, 16, 14, 14, 13, 13, 13, 12, 12, 12, 12, 12, 10, 10, 10, 11, 11, 11, 17, 11, 10, 11, 11, 12, 12, 14, 13, 13, 15, 16, 15, 15, 16, 21, 16, 17, 17, 18, 18, 18, 19, 20, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 17, 16, 15, 14, 12, 10, 8, 6, 5, 6, 7, 8, 9, 10, 13, 15, 16, 16, 18, 19, 20, 20, 21, 22, 22, 24, 23, 23, 23, 22, 22, 23, 25, 24, 24, 24, 24, 23, 23, 22, 22, 22, 21, 21, 20, 19, 17, 16, 16, 17, 16, 16, 17, 17, 17, 16, 15, 15, 14, 14, 15, 14, 14, 14, 14, 14, 15, 15, 15, 19, 27, 13, 11, 10, 9, 8, 6, 3, 3, 5, 10, 7, 10, 12, 15, 16, 16, 15, 15, 15, 16, 16, 18, 15, 14, 15, 16, 15, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 20, 20, 20, 19, 20, 21, 20, 18, 18, 18, 17, 16, 14, 13, 11, 9, 6, 4, 3, 3, 5, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 22, 22, 23, 23, 21, 23, 23, 23, 23, 23, 22, 23, 23, 22, 21, 21, 21, 20, 19, 20, 20, 17, 16, 17, 18, 17, 15, 16, 16, 15, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16, 18, 17, 16, 17, 18, 19, 19, 17, 16, 17, 16, 14, 13, 11, 8, 6, 2, 2, 5, 6, 5, 10, 14, 11, 18, 15, 15, 25, 18, 19, 17, 16, 14, 14, 14, 13, 13, 12, 11, 11, 10, 10, 10, 10, 10, 9, 11, 12, 12, 12, 13, 15, 14, 15, 14, 15, 16, 17, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 19, 19, 21, 21, 21, 21, 18, 18, 18, 21, 20, 18, 16, 16, 14, 14, 14, 13, 6, 7, 8, 8, 6, 4, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 40, 45 ], [ 110, 112 ], [ 179, 182 ], [ 239, 243 ], [ 311, 316 ], [ 383, 383 ], [ 387, 431 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 4, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 6, 6, 4, 5, 7, 7, 5, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 4, 5, 5, 5, 5, 6, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 5, 6, 6, 7, 7, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 8, 8, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 9, 9, 9, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 4, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 6, 6, 4, 5, 7, 7, 5, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 4, 5, 5, 5, 5, 6, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 5, 6, 6, 7, 7, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 8, 8, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 9, 9, 9, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 702, 702 ], [ 705, 723 ], [ 726, 728 ], [ 948, 948 ], [ 951, 955 ], [ 957, 957 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 4, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 6, 6, 4, 5, 7, 7, 5, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 4, 5, 5, 5, 5, 6, 5, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 5, 6, 6, 7, 7, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 8, 8, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 9, 9, 9, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 21 ], [ 24, 27 ], [ 31, 32 ], [ 77, 110 ], [ 112, 117 ], [ 124, 125 ], [ 129, 129 ], [ 256, 259 ], [ 261, 292 ], [ 347, 347 ], [ 352, 352 ], [ 360, 364 ], [ 367, 368 ], [ 370, 371 ], [ 373, 374 ], [ 377, 382 ], [ 384, 387 ], [ 393, 393 ], [ 396, 397 ], [ 471, 472 ], [ 476, 476 ], [ 479, 519 ], [ 675, 678 ], [ 761, 817 ], [ 866, 867 ], [ 871, 871 ], [ 873, 903 ], [ 907, 908 ], [ 994, 994 ], [ 996, 1032 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2, 4, 0, 3, 2, 3, 2, 0, 1, 4, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 6, 7, 5, 4, 6, 5, 5, 5, 4, 5, 5, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 9, 3, 4, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 4, 3, 3, 4, 5, 4, 5, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 2, 4, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2, 4, 0, 3, 2, 3, 2, 0, 1, 4, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 6, 7, 5, 4, 6, 5, 5, 5, 4, 5, 5, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 9, 3, 4, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 4, 3, 3, 4, 5, 4, 5, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 2, 4, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 260, 260 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2, 4, 0, 3, 2, 3, 2, 0, 1, 4, 2, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 6, 7, 5, 4, 6, 5, 5, 5, 4, 5, 5, 4, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 9, 3, 4, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 4, 3, 3, 4, 5, 4, 5, 5, 4, 4, 4, 5, 5, 4, 4, 4, 4, 5, 5, 4, 4, 4, 2, 4, 5, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 3, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2 ], "output": { "3. Local Minima": { "frames": [ [ 26, 26 ], [ 29, 65 ], [ 67, 76 ], [ 78, 89 ], [ 92, 99 ], [ 102, 107 ], [ 109, 110 ], [ 112, 112 ], [ 114, 115 ], [ 117, 119 ], [ 122, 122 ], [ 127, 128 ], [ 131, 137 ], [ 139, 147 ], [ 150, 151 ], [ 275, 276 ], [ 279, 279 ], [ 286, 287 ], [ 290, 345 ], [ 347, 357 ], [ 359, 360 ], [ 363, 364 ], [ 418, 418 ], [ 453, 453 ], [ 456, 459 ], [ 461, 465 ], [ 468, 470 ], [ 473, 473 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 12, 12, 12, 13, 14, 15, 14, 15, 15, 15, 15, 15, 15, 16, 16, 17, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 15, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 12, 10, 10, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 7, 8, 5, 5, 9, 4, 3, 3, 4, 3, 3, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 3, 4, 5, 4, 5, 6, 6, 6, 6, 7, 8, 8, 8, 9, 9, 11, 10, 16, 13, 13, 11, 12, 12, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 35, 35, 35, 34, 34, 33, 32, 30, 28, 26, 24, 22, 21, 20, 20, 20, 20, 23, 22, 21, 22, 24, 25, 25, 25, 25, 26, 27, 26, 23, 25, 25, 25, 25, 24, 24, 23, 23, 24, 23, 22, 20, 20, 21, 22, 19, 17, 17, 18, 17, 16, 15, 14, 14, 13, 10, 12, 11, 11, 10, 8, 9, 9, 7, 6, 6, 6, 6, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 12, 12, 12, 13, 14, 15, 14, 15, 15, 15, 15, 15, 15, 16, 16, 17, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 15, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 12, 10, 10, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 7, 8, 5, 5, 9, 4, 3, 3, 4, 3, 3, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 3, 4, 5, 4, 5, 6, 6, 6, 6, 7, 8, 8, 8, 9, 9, 11, 10, 16, 13, 13, 11, 12, 12, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 35, 35, 35, 34, 34, 33, 32, 30, 28, 26, 24, 22, 21, 20, 20, 20, 20, 23, 22, 21, 22, 24, 25, 25, 25, 25, 26, 27, 26, 23, 25, 25, 25, 25, 24, 24, 23, 23, 24, 23, 22, 20, 20, 21, 22, 19, 17, 17, 18, 17, 16, 15, 14, 14, 13, 10, 12, 11, 11, 10, 8, 9, 9, 7, 6, 6, 6, 6, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 227, 242 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 12, 12, 12, 13, 14, 15, 14, 15, 15, 15, 15, 15, 15, 16, 16, 17, 16, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 14, 15, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 12, 12, 12, 11, 11, 11, 12, 10, 10, 10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 7, 8, 5, 5, 9, 4, 3, 3, 4, 3, 3, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 4, 4, 3, 4, 5, 4, 5, 6, 6, 6, 6, 7, 8, 8, 8, 9, 9, 11, 10, 16, 13, 13, 11, 12, 12, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 35, 35, 35, 34, 34, 33, 32, 30, 28, 26, 24, 22, 21, 20, 20, 20, 20, 23, 22, 21, 22, 24, 25, 25, 25, 25, 26, 27, 26, 23, 25, 25, 25, 25, 24, 24, 23, 23, 24, 23, 22, 20, 20, 21, 22, 19, 17, 17, 18, 17, 16, 15, 14, 14, 13, 10, 12, 11, 11, 10, 8, 9, 9, 7, 6, 6, 6, 6, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7 ], "output": { "3. Local Minima": { "frames": [ [ 0, 80 ], [ 147, 152 ], [ 154, 155 ], [ 157, 199 ], [ 297, 336 ], [ 339, 340 ], [ 363, 363 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 8, 7, 7, 8, 9, 9, 9, 9, 9, 10, 9, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 10, 11, 11, 11, 10, 9, 9, 8, 7, 7, 6, 2, 12, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 7, 7, 7, 7, 7, 6, 5, 4, 4, 3, 2, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 17, 16, 14, 13, 4, 9, 23, 32, 43, 46, 56, 63, 68, 68, 58, 34, 17, 5, 21, 25, 27, 27, 26, 25, 24, 23, 22, 20, 17, 15, 13, 12, 11, 10, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 2, 2, 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17, 17, 17, 16, 15, 14, 13, 12, 11, 10, 11, 16, 23, 28, 31, 33, 35, 38, 40, 41, 39, 36, 33, 29, 26, 22, 20, 18, 17, 16, 14, 12, 11, 10, 8, 12, 11, 10, 9, 8, 8, 7, 7, 6, 6, 5, 4, 5, 4, 4, 5, 9, 2, 2, 1, 2, 4, 4, 5, 6, 7, 4, 5, 5, 5, 6, 6, 5, 4, 5, 6, 5, 6, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 8, 7, 7, 8, 9, 9, 9, 9, 9, 10, 9, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 10, 11, 11, 11, 10, 9, 9, 8, 7, 7, 6, 2, 12, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 7, 7, 7, 7, 7, 6, 5, 4, 4, 3, 2, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 17, 16, 14, 13, 4, 9, 23, 32, 43, 46, 56, 63, 68, 68, 58, 34, 17, 5, 21, 25, 27, 27, 26, 25, 24, 23, 22, 20, 17, 15, 13, 12, 11, 10, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 2, 2, 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17, 17, 17, 16, 15, 14, 13, 12, 11, 10, 11, 16, 23, 28, 31, 33, 35, 38, 40, 41, 39, 36, 33, 29, 26, 22, 20, 18, 17, 16, 14, 12, 11, 10, 8, 12, 11, 10, 9, 8, 8, 7, 7, 6, 6, 5, 4, 5, 4, 4, 5, 9, 2, 2, 1, 2, 4, 4, 5, 6, 7, 4, 5, 5, 5, 6, 6, 5, 4, 5, 6, 5, 6, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 240, 244 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 8, 7, 7, 8, 9, 9, 9, 9, 9, 10, 9, 10, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 10, 11, 11, 11, 10, 9, 9, 8, 7, 7, 6, 2, 12, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 7, 7, 7, 7, 7, 6, 5, 4, 4, 3, 2, 3, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, 4, 5, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 17, 16, 14, 13, 4, 9, 23, 32, 43, 46, 56, 63, 68, 68, 58, 34, 17, 5, 21, 25, 27, 27, 26, 25, 24, 23, 22, 20, 17, 15, 13, 12, 11, 10, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 2, 2, 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17, 17, 17, 16, 15, 14, 13, 12, 11, 10, 11, 16, 23, 28, 31, 33, 35, 38, 40, 41, 39, 36, 33, 29, 26, 22, 20, 18, 17, 16, 14, 12, 11, 10, 8, 12, 11, 10, 9, 8, 8, 7, 7, 6, 6, 5, 4, 5, 4, 4, 5, 9, 2, 2, 1, 2, 4, 4, 5, 6, 7, 4, 5, 5, 5, 6, 6, 5, 4, 5, 6, 5, 6, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 225 ], [ 233, 235 ], [ 247, 247 ], [ 260, 282 ], [ 292, 296 ], [ 317, 441 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 18, 18, 19, 19, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 15, 14, 15, 14, 14, 13, 12, 12, 9, 10, 10, 9, 9, 9, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 15, 16, 15, 14, 15, 17, 16, 13, 13, 16, 16, 13, 14, 15, 13, 15, 16, 17, 16, 17, 17, 19, 19, 20, 21, 21, 22, 22, 21, 23, 24, 22, 19, 22, 21, 21, 21, 20, 20, 21, 21, 21, 20, 21, 21, 21, 20, 21, 21, 22, 21, 23, 21, 24, 21, 23, 22, 21, 22, 22, 21, 21, 21, 21, 20, 20, 18, 17, 16, 16, 15, 14, 14, 14, 13, 13, 12, 11, 11, 10, 10, 10, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 6, 3, 2, 3, 3, 3, 2, 4, 4, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 18, 18, 19, 19, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 15, 14, 15, 14, 14, 13, 12, 12, 9, 10, 10, 9, 9, 9, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 15, 16, 15, 14, 15, 17, 16, 13, 13, 16, 16, 13, 14, 15, 13, 15, 16, 17, 16, 17, 17, 19, 19, 20, 21, 21, 22, 22, 21, 23, 24, 22, 19, 22, 21, 21, 21, 20, 20, 21, 21, 21, 20, 21, 21, 21, 20, 21, 21, 22, 21, 23, 21, 24, 21, 23, 22, 21, 22, 22, 21, 21, 21, 21, 20, 20, 18, 17, 16, 16, 15, 14, 14, 14, 13, 13, 12, 11, 11, 10, 10, 10, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 6, 3, 2, 3, 3, 3, 2, 4, 4, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 207, 209 ], [ 274, 282 ], [ 284, 316 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 18, 18, 19, 19, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18, 18, 18, 18, 17, 15, 14, 15, 14, 14, 13, 12, 12, 9, 10, 10, 9, 9, 9, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 15, 16, 15, 14, 15, 17, 16, 13, 13, 16, 16, 13, 14, 15, 13, 15, 16, 17, 16, 17, 17, 19, 19, 20, 21, 21, 22, 22, 21, 23, 24, 22, 19, 22, 21, 21, 21, 20, 20, 21, 21, 21, 20, 21, 21, 21, 20, 21, 21, 22, 21, 23, 21, 24, 21, 23, 22, 21, 22, 22, 21, 21, 21, 21, 20, 20, 18, 17, 16, 16, 15, 14, 14, 14, 13, 13, 12, 11, 11, 10, 10, 10, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 6, 3, 2, 3, 3, 3, 2, 4, 4, 2, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 171 ], [ 369, 404 ], [ 406, 502 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 9, 8, 7, 7, 8, 8, 8, 8, 9, 9, 8, 9, 10, 9, 9, 9, 10, 10, 10, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 12, 11, 11, 10, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 11, 8, 8, 20, 15, 11, 9, 9, 10, 12, 11, 11, 10, 10, 11, 11, 10, 8, 8, 9, 8, 7, 7, 7, 7, 7, 7, 8, 8, 7, 6, 9, 10, 11, 7, 1, 4, 6, 1, 1, 3, 2, 2, 3, 2, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 5, 4, 3, 6, 4, 3, 3, 4, 3, 6, 5, 5, 7, 6, 7, 7, 7, 8, 7, 8, 8, 7, 8, 7, 9, 9, 9, 10, 10, 10, 10, 11, 10, 10, 12, 11, 11, 12, 13, 11, 12, 12, 13, 13, 14, 15, 15, 14, 14, 15, 15, 15, 16, 17, 17, 17, 19, 21, 18, 19, 21, 20, 19, 28, 20, 20, 22, 23, 19, 21, 17, 20, 20, 21, 21, 21, 21, 20, 22, 20, 19, 19, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 14, 13, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 7, 7, 5, 7, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 9, 8, 7, 7, 8, 8, 8, 8, 9, 9, 8, 9, 10, 9, 9, 9, 10, 10, 10, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 12, 11, 11, 10, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 11, 8, 8, 20, 15, 11, 9, 9, 10, 12, 11, 11, 10, 10, 11, 11, 10, 8, 8, 9, 8, 7, 7, 7, 7, 7, 7, 8, 8, 7, 6, 9, 10, 11, 7, 1, 4, 6, 1, 1, 3, 2, 2, 3, 2, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 5, 4, 3, 6, 4, 3, 3, 4, 3, 6, 5, 5, 7, 6, 7, 7, 7, 8, 7, 8, 8, 7, 8, 7, 9, 9, 9, 10, 10, 10, 10, 11, 10, 10, 12, 11, 11, 12, 13, 11, 12, 12, 13, 13, 14, 15, 15, 14, 14, 15, 15, 15, 16, 17, 17, 17, 19, 21, 18, 19, 21, 20, 19, 28, 20, 20, 22, 23, 19, 21, 17, 20, 20, 21, 21, 21, 21, 20, 22, 20, 19, 19, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 14, 13, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 7, 7, 5, 7, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 529, 529 ], [ 533, 533 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 9, 8, 7, 7, 8, 8, 8, 8, 9, 9, 8, 9, 10, 9, 9, 9, 10, 10, 10, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 12, 11, 11, 10, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 11, 8, 8, 20, 15, 11, 9, 9, 10, 12, 11, 11, 10, 10, 11, 11, 10, 8, 8, 9, 8, 7, 7, 7, 7, 7, 7, 8, 8, 7, 6, 9, 10, 11, 7, 1, 4, 6, 1, 1, 3, 2, 2, 3, 2, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 5, 4, 3, 6, 4, 3, 3, 4, 3, 6, 5, 5, 7, 6, 7, 7, 7, 8, 7, 8, 8, 7, 8, 7, 9, 9, 9, 10, 10, 10, 10, 11, 10, 10, 12, 11, 11, 12, 13, 11, 12, 12, 13, 13, 14, 15, 15, 14, 14, 15, 15, 15, 16, 17, 17, 17, 19, 21, 18, 19, 21, 20, 19, 28, 20, 20, 22, 23, 19, 21, 17, 20, 20, 21, 21, 21, 21, 20, 22, 20, 19, 19, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 16, 16, 16, 15, 15, 14, 13, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 7, 7, 5, 7, 6, 6, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 338 ], [ 440, 441 ], [ 443, 468 ], [ 470, 474 ], [ 476, 477 ], [ 593, 593 ], [ 597, 883 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 326, 335 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 15 ], [ 17, 17 ], [ 39, 64 ], [ 235, 268 ], [ 400, 419 ], [ 422, 422 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 9, 8, 8, 7, 8, 8, 8, 9, 9, 8, 6, 8, 8, 7, 6, 6, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 17, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 9, 8, 8, 7, 8, 8, 8, 9, 9, 8, 6, 8, 8, 7, 6, 6, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 17, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 359, 373 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 9, 8, 8, 7, 8, 8, 8, 9, 9, 8, 6, 8, 8, 7, 6, 6, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 17, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 80 ], [ 119, 124 ], [ 126, 149 ], [ 202, 259 ], [ 296, 296 ], [ 304, 347 ], [ 385, 468 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 7, 7, 8, 8, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 11, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 8, 9, 10, 12, 13, 14, 16, 17, 19, 21, 23, 24, 26, 27, 27, 27, 27, 28, 29, 29, 28, 26, 25, 23, 21, 22, 21, 19, 18, 16, 14, 13, 12, 11, 10, 9, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 7, 7, 8, 8, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 11, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 8, 9, 10, 12, 13, 14, 16, 17, 19, 21, 23, 24, 26, 27, 27, 27, 27, 28, 29, 29, 28, 26, 25, 23, 21, 22, 21, 19, 18, 16, 14, 13, 12, 11, 10, 9, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 291, 302 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 7, 7, 8, 8, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 16, 16, 16, 15, 15, 15, 11, 15, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 8, 9, 10, 12, 13, 14, 16, 17, 19, 21, 23, 24, 26, 27, 27, 27, 27, 28, 29, 29, 28, 26, 25, 23, 21, 22, 21, 19, 18, 16, 14, 13, 12, 11, 10, 9, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 199 ], [ 263, 273 ], [ 319, 325 ], [ 341, 585 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 11, 11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 3, 2, 2, 2, 3 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 11, 11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 3, 2, 2, 2, 3 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 17 ], [ 34, 101 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 11, 11, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 3, 2, 2, 2, 3 ], "output": { "3. Local Minima": { "frames": [ [ 256, 349 ], [ 390, 398 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 9, 9, 9, 8, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 9, 9, 9, 8, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6 ], "output": { "2. Local Maxima": { "frames": [ [ 146, 150 ], [ 279, 298 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 9, 9, 9, 8, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6 ], "output": { "3. Local Minima": { "frames": [ [ 25, 38 ], [ 58, 92 ], [ 212, 250 ], [ 363, 388 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 6, 7, 6, 6, 6, 5, 4, 3, 2, 2, 2, 3, 5, 7, 9, 12, 14, 17, 19, 19, 21, 20, 17, 17, 20, 22, 23, 23, 22, 22, 23, 23, 23, 22, 19, 19, 18, 16, 13, 11, 10, 10, 10, 11, 14, 13, 16, 18, 21, 25, 27, 28, 27, 28, 28, 21, 26, 18, 17, 13, 13, 15, 16, 16, 14, 12, 7, 5, 5, 8, 16, 23, 27, 32, 39, 46, 51, 55, 57, 60, 58, 53, 46, 40, 36, 31, 31, 30, 26, 22, 20, 16, 14, 13, 11, 9, 7, 7, 5, 7, 7, 8, 10, 11, 11, 12, 13, 15, 17, 17, 22, 25, 28, 37, 40, 46, 55, 66, 74, 78, 88, 94, 90, 87, 80, 77, 77, 71, 67, 61, 57, 51, 43, 39, 44, 41, 34, 30, 26, 27, 27, 26, 29, 28, 29, 29, 31, 27, 25, 22, 20, 17, 17, 17, 19, 24, 31, 39, 46, 54, 59, 47, 50, 56, 48, 45, 41, 38, 32, 30, 26, 26, 22, 19, 15, 9, 12, 7, 7, 5, 5, 4, 5, 6, 6, 7, 9, 9, 10, 11, 11, 12, 13, 13, 13, 13, 13, 13, 12, 12, 11, 10, 9, 8, 7, 7, 6, 5, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 13, 13, 14, 15, 14, 14, 13, 12, 12, 12, 10, 9, 7, 4, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 5, 7, 8, 7, 8, 8, 8, 7, 9 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 6, 7, 6, 6, 6, 5, 4, 3, 2, 2, 2, 3, 5, 7, 9, 12, 14, 17, 19, 19, 21, 20, 17, 17, 20, 22, 23, 23, 22, 22, 23, 23, 23, 22, 19, 19, 18, 16, 13, 11, 10, 10, 10, 11, 14, 13, 16, 18, 21, 25, 27, 28, 27, 28, 28, 21, 26, 18, 17, 13, 13, 15, 16, 16, 14, 12, 7, 5, 5, 8, 16, 23, 27, 32, 39, 46, 51, 55, 57, 60, 58, 53, 46, 40, 36, 31, 31, 30, 26, 22, 20, 16, 14, 13, 11, 9, 7, 7, 5, 7, 7, 8, 10, 11, 11, 12, 13, 15, 17, 17, 22, 25, 28, 37, 40, 46, 55, 66, 74, 78, 88, 94, 90, 87, 80, 77, 77, 71, 67, 61, 57, 51, 43, 39, 44, 41, 34, 30, 26, 27, 27, 26, 29, 28, 29, 29, 31, 27, 25, 22, 20, 17, 17, 17, 19, 24, 31, 39, 46, 54, 59, 47, 50, 56, 48, 45, 41, 38, 32, 30, 26, 26, 22, 19, 15, 9, 12, 7, 7, 5, 5, 4, 5, 6, 6, 7, 9, 9, 10, 11, 11, 12, 13, 13, 13, 13, 13, 13, 12, 12, 11, 10, 9, 8, 7, 7, 6, 5, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 13, 13, 14, 15, 14, 14, 13, 12, 12, 12, 10, 9, 7, 4, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 5, 7, 8, 7, 8, 8, 8, 7, 9 ], "output": { "2. Local Maxima": { "frames": [ [ 203, 210 ] ] } } }, { "instruction": "Right arm extremity angular velocity represents the angular velocity value of right arm. Near the maximum value, the larger the angular velocity value of right arm, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 6, 7, 6, 6, 6, 5, 4, 3, 2, 2, 2, 3, 5, 7, 9, 12, 14, 17, 19, 19, 21, 20, 17, 17, 20, 22, 23, 23, 22, 22, 23, 23, 23, 22, 19, 19, 18, 16, 13, 11, 10, 10, 10, 11, 14, 13, 16, 18, 21, 25, 27, 28, 27, 28, 28, 21, 26, 18, 17, 13, 13, 15, 16, 16, 14, 12, 7, 5, 5, 8, 16, 23, 27, 32, 39, 46, 51, 55, 57, 60, 58, 53, 46, 40, 36, 31, 31, 30, 26, 22, 20, 16, 14, 13, 11, 9, 7, 7, 5, 7, 7, 8, 10, 11, 11, 12, 13, 15, 17, 17, 22, 25, 28, 37, 40, 46, 55, 66, 74, 78, 88, 94, 90, 87, 80, 77, 77, 71, 67, 61, 57, 51, 43, 39, 44, 41, 34, 30, 26, 27, 27, 26, 29, 28, 29, 29, 31, 27, 25, 22, 20, 17, 17, 17, 19, 24, 31, 39, 46, 54, 59, 47, 50, 56, 48, 45, 41, 38, 32, 30, 26, 26, 22, 19, 15, 9, 12, 7, 7, 5, 5, 4, 5, 6, 6, 7, 9, 9, 10, 11, 11, 12, 13, 13, 13, 13, 13, 13, 12, 12, 11, 10, 9, 8, 7, 7, 6, 5, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 13, 13, 14, 15, 14, 14, 13, 12, 12, 12, 10, 9, 7, 4, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 5, 7, 8, 7, 8, 8, 8, 7, 9 ], "output": { "3. Local Minima": { "frames": [ [ 0, 101 ], [ 106, 107 ], [ 120, 131 ], [ 141, 154 ], [ 175, 193 ], [ 235, 237 ], [ 258, 337 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 6, 6, 6, 5, 8, 6, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 5, 4, 3, 3, 2, 3, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 4, 4, 4, 5, 6, 6, 4, 3, 3, 4, 5, 4, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 8, 9, 10, 11, 11, 11, 11, 11, 11, 10, 11, 10, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 15, 15, 16, 16, 17, 18, 18, 19, 20, 23, 21, 13, 4, 2, 5, 7, 58, 10, 10, 10, 9, 7, 5, 4, 3, 7, 7, 8, 11, 14, 16, 15, 15, 59, 11, 11, 10, 7, 7, 13, 21, 24, 23, 20, 19, 18, 17, 16, 15, 14, 13, 12, 10, 7, 5, 5, 1, 0, 2, 2, 3, 2, 1, 1, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 10, 10, 9, 9, 9, 10, 10, 11, 11, 14, 14, 15, 15, 17, 17, 17, 16, 16, 16, 15, 16, 16, 15, 16, 17, 18, 18, 14, 6, 1, 4, 6, 9, 8, 7, 5, 5, 58, 10, 11, 11, 5, 65, 4, 4, 68, 14, 13, 17, 15, 16, 58, 12, 12, 10, 10, 7, 7, 11, 18, 20, 22, 18, 20, 16, 15, 13, 13, 6, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 6, 8, 10, 11, 13, 14, 16, 18, 18, 19, 20, 21, 21, 21, 21, 21, 21, 19, 19, 19, 17, 14, 10, 8, 9, 11, 13, 14, 14, 12, 9, 10, 5, 6, 7, 6, 8, 6, 4, 3, 3, 2, 4, 4, 5, 5, 6, 7, 6, 7, 10, 10, 5, 9, 7, 62, 11, 10, 10, 8, 10, 12, 11, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 11, 10, 8, 10, 7, 7, 6, 4, 4, 5, 5, 6, 2, 2, 4, 1, 2, 6, 5, 4, 7, 3, 3, 4, 6, 6, 3, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 2, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 6, 6, 6, 5, 8, 6, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 5, 4, 3, 3, 2, 3, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 4, 4, 4, 5, 6, 6, 4, 3, 3, 4, 5, 4, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 8, 9, 10, 11, 11, 11, 11, 11, 11, 10, 11, 10, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 15, 15, 16, 16, 17, 18, 18, 19, 20, 23, 21, 13, 4, 2, 5, 7, 58, 10, 10, 10, 9, 7, 5, 4, 3, 7, 7, 8, 11, 14, 16, 15, 15, 59, 11, 11, 10, 7, 7, 13, 21, 24, 23, 20, 19, 18, 17, 16, 15, 14, 13, 12, 10, 7, 5, 5, 1, 0, 2, 2, 3, 2, 1, 1, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 10, 10, 9, 9, 9, 10, 10, 11, 11, 14, 14, 15, 15, 17, 17, 17, 16, 16, 16, 15, 16, 16, 15, 16, 17, 18, 18, 14, 6, 1, 4, 6, 9, 8, 7, 5, 5, 58, 10, 11, 11, 5, 65, 4, 4, 68, 14, 13, 17, 15, 16, 58, 12, 12, 10, 10, 7, 7, 11, 18, 20, 22, 18, 20, 16, 15, 13, 13, 6, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 6, 8, 10, 11, 13, 14, 16, 18, 18, 19, 20, 21, 21, 21, 21, 21, 21, 19, 19, 19, 17, 14, 10, 8, 9, 11, 13, 14, 14, 12, 9, 10, 5, 6, 7, 6, 8, 6, 4, 3, 3, 2, 4, 4, 5, 5, 6, 7, 6, 7, 10, 10, 5, 9, 7, 62, 11, 10, 10, 8, 10, 12, 11, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 11, 10, 8, 10, 7, 7, 6, 4, 4, 5, 5, 6, 2, 2, 4, 1, 2, 6, 5, 4, 7, 3, 3, 4, 6, 6, 3, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 2, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 202, 202 ], [ 219, 219 ], [ 329, 329 ], [ 334, 334 ], [ 337, 337 ], [ 343, 343 ], [ 466, 466 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 6, 6, 6, 5, 8, 6, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 6, 5, 5, 5, 4, 3, 3, 2, 3, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 4, 4, 4, 5, 6, 6, 4, 3, 3, 4, 5, 4, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 8, 9, 10, 11, 11, 11, 11, 11, 11, 10, 11, 10, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 15, 15, 16, 16, 17, 18, 18, 19, 20, 23, 21, 13, 4, 2, 5, 7, 58, 10, 10, 10, 9, 7, 5, 4, 3, 7, 7, 8, 11, 14, 16, 15, 15, 59, 11, 11, 10, 7, 7, 13, 21, 24, 23, 20, 19, 18, 17, 16, 15, 14, 13, 12, 10, 7, 5, 5, 1, 0, 2, 2, 3, 2, 1, 1, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 10, 10, 9, 9, 9, 10, 10, 11, 11, 14, 14, 15, 15, 17, 17, 17, 16, 16, 16, 15, 16, 16, 15, 16, 17, 18, 18, 14, 6, 1, 4, 6, 9, 8, 7, 5, 5, 58, 10, 11, 11, 5, 65, 4, 4, 68, 14, 13, 17, 15, 16, 58, 12, 12, 10, 10, 7, 7, 11, 18, 20, 22, 18, 20, 16, 15, 13, 13, 6, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 6, 8, 10, 11, 13, 14, 16, 18, 18, 19, 20, 21, 21, 21, 21, 21, 21, 19, 19, 19, 17, 14, 10, 8, 9, 11, 13, 14, 14, 12, 9, 10, 5, 6, 7, 6, 8, 6, 4, 3, 3, 2, 4, 4, 5, 5, 6, 7, 6, 7, 10, 10, 5, 9, 7, 62, 11, 10, 10, 8, 10, 12, 11, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 11, 10, 8, 10, 7, 7, 6, 4, 4, 5, 5, 6, 2, 2, 4, 1, 2, 6, 5, 4, 7, 3, 3, 4, 6, 6, 3, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 2, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 180 ], [ 197, 201 ], [ 203, 214 ], [ 220, 225 ], [ 236, 300 ], [ 320, 328 ], [ 330, 333 ], [ 335, 336 ], [ 339, 339 ], [ 344, 350 ], [ 358, 415 ], [ 433, 437 ], [ 440, 465 ], [ 467, 524 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 7, 7, 6, 6, 7, 7, 6, 8, 7, 6, 8, 7, 7, 8, 8, 9, 8, 8, 8, 9, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 6, 6, 5, 4, 3, 3, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 6, 6, 6, 6, 7, 8, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 5, 4, 4, 3, 3, 3, 2, 4, 2, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 2, 2, 3, 4, 4, 5, 6, 5, 6, 6, 7, 7, 7, 6, 7, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 7, 9, 7, 9, 7, 7, 6, 6, 6, 11, 2 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 7, 7, 6, 6, 7, 7, 6, 8, 7, 6, 8, 7, 7, 8, 8, 9, 8, 8, 8, 9, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 6, 6, 5, 4, 3, 3, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 6, 6, 6, 6, 7, 8, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 5, 4, 4, 3, 3, 3, 2, 4, 2, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 2, 2, 3, 4, 4, 5, 6, 5, 6, 6, 7, 7, 7, 6, 7, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 7, 9, 7, 9, 7, 7, 6, 6, 6, 11, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 123, 123 ], [ 127, 129 ], [ 132, 137 ], [ 247, 266 ], [ 375, 382 ], [ 384, 384 ], [ 386, 386 ], [ 388, 388 ], [ 394, 394 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 7, 7, 6, 6, 7, 7, 6, 8, 7, 6, 8, 7, 7, 8, 8, 9, 8, 8, 8, 9, 9, 9, 8, 8, 9, 9, 9, 9, 9, 9, 8, 8, 8, 8, 8, 8, 7, 7, 6, 6, 5, 4, 3, 3, 3, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 6, 6, 6, 6, 7, 8, 6, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 5, 4, 4, 3, 3, 3, 2, 4, 2, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 3, 2, 2, 3, 4, 4, 5, 6, 5, 6, 6, 7, 7, 7, 6, 7, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 7, 9, 7, 9, 7, 7, 6, 6, 6, 11, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 101 ], [ 153, 153 ], [ 155, 226 ], [ 278, 278 ], [ 280, 280 ], [ 282, 348 ], [ 350, 351 ], [ 395, 395 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 9, 9, 9, 8, 8, 7, 7, 7, 7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 10, 9, 10, 9, 9, 9, 8, 8, 7, 7, 6, 5, 5, 5, 5, 5, 5, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 8, 7, 9, 9, 9, 9, 10, 10, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 6, 5, 4, 4, 3, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 9, 9, 9, 8, 8, 7, 7, 7, 7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 10, 9, 10, 9, 9, 9, 8, 8, 7, 7, 6, 5, 5, 5, 5, 5, 5, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 8, 7, 9, 9, 9, 9, 10, 10, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 6, 5, 4, 4, 3, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 4 ], [ 88, 115 ], [ 196, 202 ], [ 204, 225 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 9, 9, 9, 8, 8, 7, 7, 7, 7, 5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 10, 9, 10, 9, 9, 9, 8, 8, 7, 7, 6, 5, 5, 5, 5, 5, 5, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 9, 8, 7, 9, 9, 9, 9, 10, 10, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 8, 8, 7, 6, 5, 4, 4, 3, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2 ], "output": { "3. Local Minima": { "frames": [ [ 13, 79 ], [ 125, 125 ], [ 128, 187 ], [ 232, 234 ], [ 237, 295 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 6, 10, 17, 10, 10, 9, 11, 10, 10, 9, 9, 8, 7, 7, 8, 8, 8, 7, 7, 6, 6, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 6, 5, 4, 6, 2, 1, 2, 3, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 6, 10, 17, 10, 10, 9, 11, 10, 10, 9, 9, 8, 7, 7, 8, 8, 8, 7, 7, 6, 6, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 6, 5, 4, 6, 2, 1, 2, 3, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 184, 184 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 6, 10, 17, 10, 10, 9, 11, 10, 10, 9, 9, 8, 7, 7, 8, 8, 8, 7, 7, 6, 6, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 6, 5, 4, 6, 2, 1, 2, 3, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 180 ], [ 208, 228 ], [ 258, 399 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 406, 406 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 405 ], [ 407, 512 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 8, 7, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 5, 6, 6, 7, 7, 7, 8, 8, 7, 7, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 7, 7, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 7, 8, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 10, 10, 9, 9, 8, 8, 7, 5, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 8, 7, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 5, 6, 6, 7, 7, 7, 8, 8, 7, 7, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 7, 7, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 7, 8, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 10, 10, 9, 9, 8, 8, 7, 5, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 19 ], [ 129, 153 ], [ 258, 283 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 8, 7, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 5, 6, 6, 7, 7, 7, 8, 8, 7, 7, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 7, 7, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 7, 8, 8, 7, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 10, 10, 10, 10, 9, 9, 8, 8, 7, 5, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 29, 114 ], [ 160, 243 ], [ 293, 341 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 11, 14, 12, 11, 14, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 14, 13, 12, 10, 9, 8, 7, 6, 6, 5, 5, 4, 4, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 4, 1, 2, 3, 4, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 8, 7, 7, 7, 8, 9, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 12, 12, 11, 10, 8, 7 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 11, 14, 12, 11, 14, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 14, 13, 12, 10, 9, 8, 7, 6, 6, 5, 5, 4, 4, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 4, 1, 2, 3, 4, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 8, 7, 7, 7, 8, 9, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 12, 12, 11, 10, 8, 7 ], "output": { "2. Local Maxima": { "frames": [ [ 51, 51 ], [ 54, 74 ], [ 145, 161 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 9, 9, 9, 10, 11, 11, 11, 11, 14, 12, 11, 14, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 14, 13, 12, 10, 9, 8, 7, 6, 6, 5, 5, 4, 4, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 4, 1, 2, 3, 4, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 8, 7, 7, 7, 8, 9, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 13, 14, 14, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 13, 12, 12, 11, 10, 8, 7 ], "output": { "3. Local Minima": { "frames": [ [ 0, 24 ], [ 86, 107 ], [ 109, 110 ], [ 112, 114 ], [ 116, 116 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 2, 2, 3, 2, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 2, 2, 3, 2, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 66, 75 ], [ 78, 81 ], [ 135, 141 ], [ 262, 269 ], [ 275, 275 ], [ 344, 344 ], [ 347, 348 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 5, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 2, 2, 3, 2, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1 ], "output": { "3. Local Minima": { "frames": [ [ 29, 60 ], [ 99, 128 ], [ 170, 196 ], [ 230, 256 ], [ 302, 328 ], [ 371, 431 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 1, 4, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 1, 4, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 214, 234 ], [ 476, 488 ], [ 490, 490 ], [ 729, 729 ], [ 734, 758 ], [ 960, 993 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 1, 4, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 196 ], [ 272, 462 ], [ 525, 545 ], [ 547, 548 ], [ 551, 559 ], [ 561, 581 ], [ 584, 637 ], [ 639, 639 ], [ 641, 718 ], [ 792, 942 ], [ 1017, 1032 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 192, 208 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 185 ], [ 211, 429 ], [ 460, 474 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 50, 50 ], [ 133, 133 ], [ 233, 233 ], [ 237, 238 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 36 ], [ 38, 45 ], [ 47, 49 ], [ 52, 54 ], [ 57, 57 ], [ 59, 82 ], [ 85, 127 ], [ 135, 149 ], [ 152, 177 ], [ 179, 179 ], [ 185, 192 ], [ 197, 197 ], [ 202, 208 ], [ 210, 210 ], [ 212, 213 ], [ 231, 231 ], [ 257, 259 ], [ 268, 269 ], [ 275, 276 ], [ 278, 279 ], [ 282, 282 ], [ 286, 286 ], [ 288, 288 ], [ 303, 304 ], [ 307, 308 ], [ 310, 312 ], [ 314, 315 ], [ 317, 331 ], [ 334, 349 ], [ 352, 356 ], [ 358, 358 ], [ 360, 363 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 313, 313 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 137 ], [ 139, 143 ], [ 147, 148 ], [ 152, 155 ], [ 158, 167 ], [ 172, 190 ], [ 197, 197 ], [ 203, 204 ], [ 208, 209 ], [ 213, 219 ], [ 226, 227 ], [ 236, 238 ], [ 241, 242 ], [ 246, 248 ], [ 252, 252 ], [ 258, 290 ], [ 296, 298 ], [ 316, 322 ], [ 324, 327 ], [ 331, 390 ], [ 392, 393 ], [ 395, 441 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 3, 4, 5, 7, 5, 7, 9, 6, 7, 10, 9, 10, 11, 8, 8, 8, 8, 8, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 6, 6, 7, 7, 7, 8, 9, 9, 9, 5, 4, 6, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 3, 4, 5, 7, 5, 7, 9, 6, 7, 10, 9, 10, 11, 8, 8, 8, 8, 8, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 6, 6, 7, 7, 7, 8, 9, 9, 9, 5, 4, 6, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 220, 220 ], [ 223, 226 ], [ 273, 275 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 3, 3, 4, 5, 7, 5, 7, 9, 6, 7, 10, 9, 10, 11, 8, 8, 8, 8, 8, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 6, 6, 7, 7, 7, 8, 9, 9, 9, 5, 4, 6, 2, 3, 2, 3, 4, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 209 ], [ 211, 212 ], [ 243, 252 ], [ 279, 279 ], [ 281, 281 ], [ 284, 502 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 2, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 4, 6, 8, 10, 10, 10, 12, 12, 13, 15, 15, 16, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 13, 13, 13, 14, 13, 12, 12, 12, 13, 13, 13, 13, 13, 13, 12, 12, 13, 13, 13, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 15, 10, 14, 11, 13, 11, 9, 8, 10, 8, 8, 9, 8, 8, 9, 10, 12, 14, 13, 12, 10, 8, 8, 5, 8, 4, 2, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 1, 1, 1, 1, 3, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 2, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 4, 6, 8, 10, 10, 10, 12, 12, 13, 15, 15, 16, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 13, 13, 13, 14, 13, 12, 12, 12, 13, 13, 13, 13, 13, 13, 12, 12, 13, 13, 13, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 15, 10, 14, 11, 13, 11, 9, 8, 10, 8, 8, 9, 8, 8, 9, 10, 12, 14, 13, 12, 10, 8, 8, 5, 8, 4, 2, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 1, 1, 1, 1, 3, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 421, 451 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 2, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 4, 6, 8, 10, 10, 10, 12, 12, 13, 15, 15, 16, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 19, 19, 19, 18, 18, 17, 17, 17, 16, 16, 16, 16, 16, 16, 16, 15, 15, 15, 15, 14, 13, 13, 13, 14, 13, 12, 12, 12, 13, 13, 13, 13, 13, 13, 12, 12, 13, 13, 13, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 15, 10, 14, 11, 13, 11, 9, 8, 10, 8, 8, 9, 8, 8, 9, 10, 12, 14, 13, 12, 10, 8, 8, 5, 8, 4, 2, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 1, 1, 1, 1, 3, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 410 ], [ 511, 883 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 422 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 422 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 90, 90 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 89 ], [ 91, 468 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 8, 8, 8, 8, 7, 7, 6, 4, 3, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 8, 8, 8, 8, 7, 7, 6, 4, 3, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 266, 282 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 16, 16, 15, 14, 13, 12, 11, 10, 9, 8, 8, 8, 8, 7, 7, 6, 4, 3, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 243 ], [ 296, 585 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 92 ], [ 397, 398 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4 ], "output": { "3. Local Minima": { "frames": [ [ 288, 379 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 11, 11, 11, 10, 10, 9, 9, 8, 7, 6, 6, 5, 4, 4, 3, 5, 5, 5, 5, 4, 4, 5, 6, 62, 11, 8, 8, 7, 7, 6, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 8, 12, 12, 9, 35, 52, 13, 13, 15, 12, 11, 11, 10, 10, 9, 8, 8, 7, 7, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 6, 59, 19, 7, 7, 7, 6, 6, 5, 5, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 7, 8, 8, 14, 12, 52, 36, 15, 17, 12, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 6, 5, 5, 4, 3, 3, 2, 6, 6, 6, 6, 6, 6, 13, 62, 9, 10, 10, 9, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 11, 11, 11, 10, 10, 9, 9, 8, 7, 6, 6, 5, 4, 4, 3, 5, 5, 5, 5, 4, 4, 5, 6, 62, 11, 8, 8, 7, 7, 6, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 8, 12, 12, 9, 35, 52, 13, 13, 15, 12, 11, 11, 10, 10, 9, 8, 8, 7, 7, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 6, 59, 19, 7, 7, 7, 6, 6, 5, 5, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 7, 8, 8, 14, 12, 52, 36, 15, 17, 12, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 6, 5, 5, 4, 3, 3, 2, 6, 6, 6, 6, 6, 6, 13, 62, 9, 10, 10, 9, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 23, 23 ], [ 147, 147 ], [ 173, 173 ], [ 295, 295 ], [ 325, 325 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 11, 11, 11, 10, 10, 9, 9, 8, 7, 6, 6, 5, 4, 4, 3, 5, 5, 5, 5, 4, 4, 5, 6, 62, 11, 8, 8, 7, 7, 6, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 8, 12, 12, 9, 35, 52, 13, 13, 15, 12, 11, 11, 10, 10, 9, 8, 8, 7, 7, 6, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 6, 59, 19, 7, 7, 7, 6, 6, 5, 5, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 7, 8, 8, 14, 12, 52, 36, 15, 17, 12, 12, 12, 11, 11, 10, 10, 9, 9, 8, 8, 7, 6, 5, 5, 4, 3, 3, 2, 6, 6, 6, 6, 6, 6, 13, 62, 9, 10, 10, 9, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 5, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 22 ], [ 24, 145 ], [ 151, 172 ], [ 175, 292 ], [ 294, 294 ], [ 299, 323 ], [ 326, 400 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, 4, 5, 5, 9, 10, 11, 13, 15, 15, 16, 16, 16, 15, 14, 11, 10, 7, 5, 2, 2, 2, 1, 0, 2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 3, 4, 7, 11, 14, 17, 19, 20, 21, 23, 26, 26, 27, 27, 25, 24, 22, 21, 18, 15, 13, 12, 11, 6, 5, 2, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 7, 11, 17, 18, 16, 17, 19, 21, 21, 23, 26, 26, 29, 29, 29, 27, 27, 28, 29, 28, 28, 26, 24, 23, 20, 17, 18, 15, 11, 8, 6, 1, 3, 1, 2, 2, 1, 2, 3, 3, 1, 1, 0, 2, 2, 4, 6, 7, 6, 6, 4, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, 4, 5, 5, 9, 10, 11, 13, 15, 15, 16, 16, 16, 15, 14, 11, 10, 7, 5, 2, 2, 2, 1, 0, 2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 3, 4, 7, 11, 14, 17, 19, 20, 21, 23, 26, 26, 27, 27, 25, 24, 22, 21, 18, 15, 13, 12, 11, 6, 5, 2, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 7, 11, 17, 18, 16, 17, 19, 21, 21, 23, 26, 26, 29, 29, 29, 27, 27, 28, 29, 28, 28, 26, 24, 23, 20, 17, 18, 15, 11, 8, 6, 1, 3, 1, 2, 2, 1, 2, 3, 3, 1, 1, 0, 2, 2, 4, 6, 7, 6, 6, 4, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 178, 183 ], [ 226, 238 ] ] } } }, { "instruction": "Left leg extremity angular velocity represents the angular velocity value of left leg. Near the maximum value, the larger the angular velocity value of left leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, 4, 5, 5, 9, 10, 11, 13, 15, 15, 16, 16, 16, 15, 14, 11, 10, 7, 5, 2, 2, 2, 1, 0, 2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 3, 4, 7, 11, 14, 17, 19, 20, 21, 23, 26, 26, 27, 27, 25, 24, 22, 21, 18, 15, 13, 12, 11, 6, 5, 2, 2, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 7, 11, 17, 18, 16, 17, 19, 21, 21, 23, 26, 26, 29, 29, 29, 27, 27, 28, 29, 28, 28, 26, 24, 23, 20, 17, 18, 15, 11, 8, 6, 1, 3, 1, 2, 2, 1, 2, 3, 3, 1, 1, 0, 2, 2, 4, 6, 7, 6, 6, 4, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 119 ], [ 134, 169 ], [ 192, 215 ], [ 247, 261 ], [ 266, 337 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 10, 9, 11, 11, 10, 10, 9, 8, 6, 6, 4, 2, 1, 1, 2, 3, 3, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5, 10, 8, 11, 10, 10, 11, 11, 13, 12, 12, 12, 12, 12, 13, 14, 13, 11, 10, 11, 11, 14, 12, 10, 11, 9, 6, 5, 5, 5, 5, 6, 6, 7, 8, 7, 8, 8, 8, 8, 8, 8, 10, 10, 10, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 10, 11, 10, 11, 11, 11, 11, 11, 11, 10, 10, 10, 9, 8, 7, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 9, 11, 9, 9, 11, 12, 13, 13, 12, 12, 11, 12, 13, 13, 13, 13, 13, 12, 12, 12, 13, 12, 7, 6, 5, 4, 4, 3, 2, 5, 5, 6, 8, 9, 10, 8, 9, 9, 10, 11, 9, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 7, 8, 7, 7, 7, 7, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 10, 10, 8, 7, 6, 4, 2, 2, 2, 2, 4, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 15, 5, 22, 5, 8, 8, 16, 10, 16, 14, 17, 12, 13, 13, 12, 72, 7, 8, 8, 10, 11, 11, 12, 12, 13, 12, 12, 12, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 8, 7, 6, 5, 4, 4, 4, 3, 3, 3, 4, 5, 6, 5, 7, 8, 11, 10, 11, 12, 13, 12, 11, 10, 10, 10, 10, 12, 11, 11, 11, 10, 12, 10, 9, 9 ], "output": { "1. Frame Length": "The total frame length is: 525." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 10, 9, 11, 11, 10, 10, 9, 8, 6, 6, 4, 2, 1, 1, 2, 3, 3, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5, 10, 8, 11, 10, 10, 11, 11, 13, 12, 12, 12, 12, 12, 13, 14, 13, 11, 10, 11, 11, 14, 12, 10, 11, 9, 6, 5, 5, 5, 5, 6, 6, 7, 8, 7, 8, 8, 8, 8, 8, 8, 10, 10, 10, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 10, 11, 10, 11, 11, 11, 11, 11, 11, 10, 10, 10, 9, 8, 7, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 9, 11, 9, 9, 11, 12, 13, 13, 12, 12, 11, 12, 13, 13, 13, 13, 13, 12, 12, 12, 13, 12, 7, 6, 5, 4, 4, 3, 2, 5, 5, 6, 8, 9, 10, 8, 9, 9, 10, 11, 9, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 7, 8, 7, 7, 7, 7, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 10, 10, 8, 7, 6, 4, 2, 2, 2, 2, 4, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 15, 5, 22, 5, 8, 8, 16, 10, 16, 14, 17, 12, 13, 13, 12, 72, 7, 8, 8, 10, 11, 11, 12, 12, 13, 12, 12, 12, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 8, 7, 6, 5, 4, 4, 4, 3, 3, 3, 4, 5, 6, 5, 7, 8, 11, 10, 11, 12, 13, 12, 11, 10, 10, 10, 10, 12, 11, 11, 11, 10, 12, 10, 9, 9 ], "output": { "2. Local Maxima": { "frames": [ [ 466, 466 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 2, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 9, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 10, 9, 11, 11, 10, 10, 9, 8, 6, 6, 4, 2, 1, 1, 2, 3, 3, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5, 10, 8, 11, 10, 10, 11, 11, 13, 12, 12, 12, 12, 12, 13, 14, 13, 11, 10, 11, 11, 14, 12, 10, 11, 9, 6, 5, 5, 5, 5, 6, 6, 7, 8, 7, 8, 8, 8, 8, 8, 8, 10, 10, 10, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 7, 7, 7, 6, 6, 6, 6, 6, 5, 6, 7, 7, 7, 8, 9, 9, 9, 10, 10, 11, 10, 11, 11, 11, 11, 11, 11, 10, 10, 10, 9, 8, 7, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 9, 11, 9, 9, 11, 12, 13, 13, 12, 12, 11, 12, 13, 13, 13, 13, 13, 12, 12, 12, 13, 12, 7, 6, 5, 4, 4, 3, 2, 5, 5, 6, 8, 9, 10, 8, 9, 9, 10, 11, 9, 10, 10, 10, 10, 10, 10, 10, 10, 9, 9, 9, 8, 7, 8, 7, 7, 7, 7, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 10, 10, 8, 7, 6, 4, 2, 2, 2, 2, 4, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 15, 5, 22, 5, 8, 8, 16, 10, 16, 14, 17, 12, 13, 13, 12, 72, 7, 8, 8, 10, 11, 11, 12, 12, 13, 12, 12, 12, 11, 11, 10, 10, 10, 10, 10, 10, 9, 9, 8, 7, 6, 5, 4, 4, 4, 3, 3, 3, 4, 5, 6, 5, 7, 8, 11, 10, 11, 12, 13, 12, 11, 10, 10, 10, 10, 12, 11, 11, 11, 10, 12, 10, 9, 9 ], "output": { "3. Local Minima": { "frames": [ [ 0, 450 ], [ 452, 452 ], [ 454, 456 ], [ 458, 458 ], [ 460, 460 ], [ 462, 465 ], [ 467, 524 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 8, 8, 8, 8, 9, 8, 8, 8, 7, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 8, 8, 9, 9, 8, 8, 8, 8, 7, 7, 7, 6, 6, 5, 4, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 8, 9, 9, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 5, 4, 4, 3, 3, 2, 2, 2, 3, 3, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 3, 1 ], "output": { "1. Frame Length": "The total frame length is: 396." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 8, 8, 8, 8, 9, 8, 8, 8, 7, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 8, 8, 9, 9, 8, 8, 8, 8, 7, 7, 7, 6, 6, 5, 4, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 8, 9, 9, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 5, 4, 4, 3, 3, 2, 2, 2, 3, 3, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 3, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 53, 75 ], [ 178, 204 ], [ 302, 302 ], [ 304, 328 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 8, 8, 8, 8, 9, 8, 8, 8, 7, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 8, 8, 9, 9, 8, 8, 8, 8, 7, 7, 7, 6, 6, 5, 4, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 8, 9, 9, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 6, 5, 4, 4, 3, 3, 2, 2, 2, 3, 3, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 3, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 35 ], [ 98, 162 ], [ 221, 285 ], [ 344, 344 ], [ 347, 393 ], [ 395, 395 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 2, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 5, 3, 4, 4, 8, 3, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 6, 5, 4, 4, 3, 2, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 2, 3, 4, 4, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 9, 10, 10, 9, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 5, 5, 4, 3, 3, 3, 4, 3, 3, 1 ], "output": { "1. Frame Length": "The total frame length is: 296." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 2, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 5, 3, 4, 4, 8, 3, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 6, 5, 4, 4, 3, 2, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 2, 3, 4, 4, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 9, 10, 10, 9, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 5, 5, 4, 3, 3, 3, 4, 3, 3, 1 ], "output": { "2. Local Maxima": { "frames": [ [ 30, 30 ], [ 37, 61 ], [ 144, 170 ], [ 257, 281 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 2, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 5, 3, 4, 4, 8, 3, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 10, 9, 9, 9, 9, 9, 8, 8, 7, 7, 6, 6, 5, 4, 4, 3, 2, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 1, 2, 2, 2, 3, 4, 4, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 9, 10, 10, 10, 10, 10, 10, 9, 10, 10, 9, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 8, 8, 7, 6, 6, 6, 5, 5, 4, 3, 3, 3, 4, 3, 3, 1 ], "output": { "3. Local Minima": { "frames": [ [ 0, 25 ], [ 70, 71 ], [ 75, 134 ], [ 183, 241 ], [ 295, 295 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 11, 23, 12, 9, 8, 10, 11, 10, 10, 7, 8, 8, 9, 9, 9, 8, 7, 6, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 4, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 9, 5, 5, 8, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 400." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 11, 23, 12, 9, 8, 10, 11, 10, 10, 7, 8, 8, 9, 9, 9, 8, 7, 6, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 4, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 9, 5, 5, 8, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 184, 184 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 6, 11, 23, 12, 9, 8, 10, 11, 10, 10, 7, 8, 8, 9, 9, 9, 8, 7, 6, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 4, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 9, 5, 5, 8, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 181 ], [ 207, 207 ], [ 210, 232 ], [ 234, 234 ], [ 257, 399 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 513." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 512 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 4, 1, 3, 3, 3, 3, 2, 6, 6, 5, 5, 6, 7, 5, 3, 13, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 9, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 8, 8, 7, 7, 6, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 7, 7, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 6, 6, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10 ], "output": { "1. Frame Length": "The total frame length is: 342." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 4, 1, 3, 3, 3, 3, 2, 6, 6, 5, 5, 6, 7, 5, 3, 13, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 9, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 8, 8, 7, 7, 6, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 7, 7, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 6, 6, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10 ], "output": { "2. Local Maxima": { "frames": [ [ 59, 59 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 4, 1, 3, 3, 3, 3, 2, 6, 6, 5, 5, 6, 7, 5, 3, 13, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 8, 9, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 8, 8, 7, 7, 6, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 7, 7, 8, 8, 8, 8, 8, 9, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 8, 7, 6, 6, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10 ], "output": { "3. Local Minima": { "frames": [ [ 0, 43 ], [ 45, 45 ], [ 50, 50 ], [ 99, 177 ], [ 230, 311 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 13, 13, 10, 8, 8, 9, 10, 12, 14, 14, 14, 13, 15, 14, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 13, 12, 12, 11, 9, 9, 8, 7, 7, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 14, 14, 14, 14, 14, 11, 12, 11, 10, 9, 8, 6, 5, 6, 5, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 3, 3, 4, 4, 5 ], "output": { "1. Frame Length": "The total frame length is: 168." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 13, 13, 10, 8, 8, 9, 10, 12, 14, 14, 14, 13, 15, 14, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 13, 12, 12, 11, 9, 9, 8, 7, 7, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 14, 14, 14, 14, 14, 11, 12, 11, 10, 9, 8, 6, 5, 6, 5, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 3, 3, 4, 4, 5 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 1 ], [ 7, 31 ], [ 95, 116 ], [ 118, 118 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 13, 13, 10, 8, 8, 9, 10, 12, 14, 14, 14, 13, 15, 14, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 14, 14, 13, 12, 12, 11, 9, 9, 8, 7, 7, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 14, 14, 14, 14, 14, 11, 12, 11, 10, 9, 8, 6, 5, 6, 5, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 3, 3, 4, 4, 5 ], "output": { "3. Local Minima": { "frames": [ [ 40, 72 ], [ 128, 160 ], [ 162, 164 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 4, 5, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 5, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 432." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 4, 5, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 5, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 68, 71 ], [ 74, 77 ], [ 79, 79 ], [ 135, 135 ], [ 197, 222 ], [ 334, 336 ], [ 341, 342 ], [ 345, 346 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 5, 5, 5, 4, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 4, 5, 5, 6, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 5, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 30, 57 ], [ 60, 60 ], [ 98, 99 ], [ 103, 128 ], [ 170, 189 ], [ 194, 194 ], [ 231, 231 ], [ 234, 235 ], [ 237, 257 ], [ 300, 304 ], [ 306, 325 ], [ 368, 368 ], [ 371, 431 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 1033." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 96, 98 ], [ 100, 103 ], [ 352, 353 ], [ 365, 367 ], [ 371, 372 ], [ 855, 889 ], [ 891, 891 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 70 ], [ 146, 159 ], [ 161, 320 ], [ 403, 593 ], [ 595, 606 ], [ 609, 611 ], [ 621, 632 ], [ 672, 832 ], [ 907, 919 ], [ 922, 1032 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 475." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 129, 153 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 116 ], [ 161, 162 ], [ 166, 474 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 364." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 269, 269 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 93 ], [ 96, 101 ], [ 104, 104 ], [ 112, 112 ], [ 114, 114 ], [ 118, 119 ], [ 126, 126 ], [ 137, 137 ], [ 141, 141 ], [ 151, 152 ], [ 155, 158 ], [ 161, 169 ], [ 171, 179 ], [ 183, 184 ], [ 188, 188 ], [ 218, 219 ], [ 222, 222 ], [ 227, 227 ], [ 232, 235 ], [ 240, 240 ], [ 243, 243 ], [ 249, 249 ], [ 251, 251 ], [ 254, 255 ], [ 260, 262 ], [ 265, 265 ], [ 267, 267 ], [ 279, 279 ], [ 282, 284 ], [ 288, 291 ], [ 295, 298 ], [ 302, 308 ], [ 311, 332 ], [ 334, 335 ], [ 338, 339 ], [ 342, 346 ], [ 348, 349 ], [ 351, 351 ], [ 353, 359 ], [ 361, 363 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 442." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 145, 149 ], [ 194, 200 ], [ 204, 209 ], [ 229, 229 ], [ 232, 232 ], [ 235, 237 ], [ 248, 249 ], [ 293, 296 ], [ 299, 300 ], [ 308, 312 ], [ 315, 316 ], [ 319, 320 ], [ 323, 326 ], [ 389, 389 ], [ 393, 394 ], [ 403, 403 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 144 ], [ 150, 193 ], [ 201, 203 ], [ 210, 228 ], [ 230, 231 ], [ 233, 234 ], [ 238, 247 ], [ 250, 292 ], [ 297, 298 ], [ 301, 307 ], [ 313, 314 ], [ 317, 318 ], [ 321, 322 ], [ 327, 388 ], [ 390, 392 ], [ 395, 402 ], [ 404, 441 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 9, 10, 10, 9, 10, 10, 11, 10, 10, 10, 10, 9, 9, 9, 9, 10, 10, 10, 10, 9, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 14, 14, 14, 13, 13, 13, 12, 11, 10, 8, 8, 8, 7, 7, 6, 5, 4, 3, 3, 4, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 503." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 9, 10, 10, 9, 10, 10, 11, 10, 10, 10, 10, 9, 9, 9, 9, 10, 10, 10, 10, 9, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 14, 14, 14, 13, 13, 13, 12, 11, 10, 8, 8, 8, 7, 7, 6, 5, 4, 3, 3, 4, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 282, 292 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 9, 10, 10, 9, 10, 10, 11, 10, 10, 10, 10, 9, 9, 9, 9, 10, 10, 10, 10, 9, 10, 10, 10, 10, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 14, 14, 14, 13, 13, 13, 12, 11, 10, 8, 8, 8, 7, 7, 6, 5, 4, 3, 3, 4, 1, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 210 ], [ 306, 367 ], [ 377, 502 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 5, 7, 13, 26, 25, 52, 36, 7, 43, 37, 35, 23, 7, 2, 5, 8, 10, 11, 15, 17, 18, 19, 17, 17, 15, 14, 13, 12, 13, 46, 15, 15, 14, 13, 13, 12, 12, 12, 12, 13, 13, 14, 15, 15, 15, 15, 15, 16, 16, 17, 17, 15, 16, 17, 17, 16, 16, 17, 18, 17, 17, 18, 18, 18, 18, 19, 18, 20, 18, 18, 19, 19, 19, 19, 18, 19, 19, 19, 19, 19, 18, 18, 17, 16, 15, 14, 14, 13, 11, 11, 10, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 4, 5, 7, 7, 5, 4, 3, 3, 2, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 884." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 5, 7, 13, 26, 25, 52, 36, 7, 43, 37, 35, 23, 7, 2, 5, 8, 10, 11, 15, 17, 18, 19, 17, 17, 15, 14, 13, 12, 13, 46, 15, 15, 14, 13, 13, 12, 12, 12, 12, 13, 13, 14, 15, 15, 15, 15, 15, 16, 16, 17, 17, 15, 16, 17, 17, 16, 16, 17, 18, 17, 17, 18, 18, 18, 18, 19, 18, 20, 18, 18, 19, 19, 19, 19, 18, 19, 19, 19, 19, 19, 18, 18, 17, 16, 15, 14, 14, 13, 11, 11, 10, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 4, 5, 7, 7, 5, 4, 3, 3, 2, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 438, 438 ], [ 441, 441 ], [ 462, 462 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 5, 7, 13, 26, 25, 52, 36, 7, 43, 37, 35, 23, 7, 2, 5, 8, 10, 11, 15, 17, 18, 19, 17, 17, 15, 14, 13, 12, 13, 46, 15, 15, 14, 13, 13, 12, 12, 12, 12, 13, 13, 14, 15, 15, 15, 15, 15, 16, 16, 17, 17, 15, 16, 17, 17, 16, 16, 17, 18, 17, 17, 18, 18, 18, 18, 19, 18, 20, 18, 18, 19, 19, 19, 19, 18, 19, 19, 19, 19, 19, 18, 18, 17, 16, 15, 14, 14, 13, 11, 11, 10, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 5, 4, 5, 7, 7, 5, 4, 3, 3, 2, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 434 ], [ 440, 440 ], [ 445, 449 ], [ 523, 883 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 423." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 123, 146 ], [ 157, 162 ], [ 285, 325 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 65 ], [ 70, 78 ], [ 221, 258 ], [ 363, 381 ], [ 408, 422 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 469." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 468 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 468 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 15, 15, 14, 14, 13, 12, 11, 11, 10, 9, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 6, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 586." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 15, 15, 14, 14, 13, 12, 11, 11, 10, 9, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 6, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 265, 279 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 15, 15, 14, 14, 13, 12, 11, 11, 10, 9, 8, 7, 7, 7, 7, 8, 8, 8, 8, 8, 6, 5, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 243 ], [ 297, 585 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 ], "output": { "1. Frame Length": "The total frame length is: 399." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 0, 100 ], [ 322, 346 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 ], "output": { "3. Local Minima": { "frames": [ [ 285, 309 ], [ 363, 372 ], [ 374, 379 ], [ 381, 397 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 15, 15, 48, 10, 16, 22, 18, 18, 17, 17, 17, 16, 15, 15, 14, 13, 12, 11, 10, 9, 8, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 6, 4, 8, 59, 10, 8, 9, 8, 8, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 15, 16, 57, 10, 17, 23, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 7, 5, 4, 6, 47, 30, 8, 8, 8, 8, 7, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 5, 5, 5, 6, 6, 6, 6, 7, 15, 15, 59, 9, 16, 22, 16, 16, 15, 15, 14, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2 ], "output": { "1. Frame Length": "The total frame length is: 401." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 15, 15, 48, 10, 16, 22, 18, 18, 17, 17, 17, 16, 15, 15, 14, 13, 12, 11, 10, 9, 8, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 6, 4, 8, 59, 10, 8, 9, 8, 8, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 15, 16, 57, 10, 17, 23, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 7, 5, 4, 6, 47, 30, 8, 8, 8, 8, 7, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 5, 5, 5, 6, 6, 6, 6, 7, 15, 15, 59, 9, 16, 22, 16, 16, 15, 15, 14, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2 ], "output": { "2. Local Maxima": { "frames": [ [ 68, 68 ], [ 111, 111 ], [ 218, 218 ], [ 369, 369 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 15, 15, 48, 10, 16, 22, 18, 18, 17, 17, 17, 16, 15, 15, 14, 13, 12, 11, 10, 9, 8, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 6, 4, 8, 59, 10, 8, 9, 8, 8, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 6, 5, 4, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 15, 16, 57, 10, 17, 23, 18, 17, 17, 16, 16, 15, 14, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 7, 5, 4, 6, 47, 30, 8, 8, 8, 8, 7, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 5, 5, 5, 6, 6, 6, 6, 7, 15, 15, 59, 9, 16, 22, 16, 16, 15, 15, 14, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2 ], "output": { "3. Local Minima": { "frames": [ [ 0, 65 ], [ 69, 69 ], [ 83, 110 ], [ 112, 215 ], [ 219, 219 ], [ 232, 255 ], [ 258, 366 ], [ 370, 370 ], [ 382, 400 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo calculate the frame length, count the total number of frames in the dataset. Each frame represents a data point collected over time. The total frame length gives the duration of the motion or activity being analyzed. In this dataset, the total frame length is determined by the number of entries in the data array.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 9, 8, 10, 12, 14, 15, 16, 15, 15, 14, 13, 12, 11, 10, 6, 3, 5, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 3, 3, 6, 9, 12, 14, 16, 16, 17, 18, 20, 22, 23, 24, 25, 25, 25, 25, 24, 23, 21, 19, 16, 16, 9, 5, 4, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 4, 7, 11, 13, 16, 16, 17, 20, 19, 21, 21, 21, 23, 24, 26, 28, 30, 32, 32, 34, 33, 32, 30, 27, 25, 20, 22, 21, 19, 7, 5, 7, 2, 2, 0, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "1. Frame Length": "The total frame length is: 338." } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local maxima, we identify the ranges where the values reach a peak within the dataset. A local maximum is a point where the value is higher than its neighboring values. This indicates periods of high activity or dynamic movement. The detection is based on a threshold percentage (e.g., 80% of the maximum value) to focus on the most significant peaks. The output lists the frame ranges where these peaks occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 9, 8, 10, 12, 14, 15, 16, 15, 15, 14, 13, 12, 11, 10, 6, 3, 5, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 3, 3, 6, 9, 12, 14, 16, 16, 17, 18, 20, 22, 23, 24, 25, 25, 25, 25, 24, 23, 21, 19, 16, 16, 9, 5, 4, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 4, 7, 11, 13, 16, 16, 17, 20, 19, 21, 21, 21, 23, 24, 26, 28, 30, 32, 32, 34, 33, 32, 30, 27, 25, 20, 22, 21, 19, 7, 5, 7, 2, 2, 0, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "2. Local Maxima": { "frames": [ [ 231, 238 ] ] } } }, { "instruction": "Right leg extremity angular velocity represents the angular velocity value of right leg. Near the maximum value, the larger the angular velocity value of right leg, indicating fast rotation, near the minimum value, the slower the rotation. \n\nTo find the local minima, we identify the ranges where the values reach a low point within the dataset. A local minimum is a point where the value is lower than its neighboring values. This indicates periods of less activity or reduced movement. The detection is based on a threshold percentage (e.g., 20% above the minimum value) to focus on the most significant dips. The output lists the frame ranges where these dips occur and their respective values.", "integer": [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 9, 8, 10, 12, 14, 15, 16, 15, 15, 14, 13, 12, 11, 10, 6, 3, 5, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 3, 3, 6, 9, 12, 14, 16, 16, 17, 18, 20, 22, 23, 24, 25, 25, 25, 25, 24, 23, 21, 19, 16, 16, 9, 5, 4, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 4, 7, 11, 13, 16, 16, 17, 20, 19, 21, 21, 21, 23, 24, 26, 28, 30, 32, 32, 34, 33, 32, 30, 27, 25, 20, 22, 21, 19, 7, 5, 7, 2, 2, 0, 1, 1, 1, 0, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], "output": { "3. Local Minima": { "frames": [ [ 0, 119 ], [ 135, 170 ], [ 193, 216 ], [ 246, 246 ], [ 248, 337 ] ] } } } ]