import os from glob import glob from PIL import Image import datasets _DESCRIPTION = """\ Watermark Dataset """ _VERSION = datasets.Version("1.0.0") _REPO = "data" _URLS = {"train": f"{_REPO}/train.zip", "valid": f"{_REPO}/valid.zip"} _CATEGORIES = ["watermark"] class WatermarkPita(datasets.GeneratorBasedBuilder): """Watermark Dataset""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "image": datasets.Image(), "objects": datasets.Sequence({ "label": datasets.ClassLabel(names=_CATEGORIES), "bbox": datasets.Sequence(datasets.Value("int32"), length=4) }), } ), description=_DESCRIPTION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "data_dir": data_dir["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"split": "valid", "data_dir": data_dir["valid"]}, ), ] def _generate_examples(self, split, data_dir): image_dir = os.path.join(data_dir, "images") label_dir = os.path.join(data_dir, "labels") image_paths = sorted(glob(image_dir + "/*/*.jpg")) label_paths = sorted(glob(label_dir + "/*/*.txt")) for idx, (image_path, label_path) in enumerate(zip(image_paths, label_paths)): im = Image.open(image_path) width, height = im.size with open(label_path, "r") as f: lines = f.readlines() objects = [] for line in lines: line = line.strip().split() bbox_class = int(line[0]) bbox_top_left = int(float(line[1]) * width) bbox_top_right = int(float(line[2]) * height) bbox_bottom_left = int(float(line[3]) * width) bbox_bottom_right = int(float(line[4]) * height) objects.append({ "label": bbox_class, "bbox": [bbox_top_left, bbox_top_right, bbox_bottom_left, bbox_bottom_right] }) yield idx, {"image": image_path, "objects": objects}