import datasets import os import random import json class MyDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description="My dataset with text and audio.", features=datasets.Features({ "sentence": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), # Defines the audio feature }), homepage="https://huggingface.co/datasets/my-dataset", license="MIT", ) def _split_generators(self, dl_manager): # Download and extract the dataset # data_dir = dl_manager.download_and_extract("https://github.com/atulksingh011/test-voice-data/raw/main/audios.tar.gz") # metadata = dl_manager.download("https://github.com/atulksingh011/test-voice-data/raw/main/metadata.jsonl") data_dir = dl_manager.download_and_extract("https://raw.githubusercontent.com/atulksingh011/test-voice-data/refs/heads/record-names/audio.tar.gz") metadata = dl_manager.download("https://github.com/atulksingh011/test-voice-data/raw/record-names/metadata.jsonl") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": metadata, "audio_dir": data_dir, "split": "train" }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": metadata, "audio_dir": data_dir, "split": "eval" }, ) ] def _generate_examples(self, filepath, audio_dir, split): # Read and parse the metadata JSONL file with open(filepath, "r", encoding="utf-8") as f: data = [json.loads(line) for line in f] # Shuffle the data for randomness random.shuffle(data) # Calculate split index for training and evaluation split_index = int(len(data) * 0.8) if split == "train": examples = data[:split_index] else: examples = data[split_index:] # Yield the examples for idx, record in enumerate(examples): yield idx, { "sentence": record["sentence"], "audio": os.path.join(audio_dir, record["file_name"]), # Correct path to the audio file }