#################### # Install Wet Tool # #################### # libraries for runpod sudo apt-get install libcurl4-openssl-dev sudo apt-get install libbz2-dev sudo apt-get install liblzma-dev sudo add-apt-repository ppa:boost-latest/ppa -y sudo apt-get update sudo apt-get purge boost* -y sudo apt-get install libboost-all-dev -y # clone and build the library git clone https://github.com/kpu/preprocess cd preprocess git checkout wet git submodule update --init --recursive mkdir build cd build cmake .. make -j4 alias wet_lines="${PWD}/bin/wet_lines" cd ../../ ###################### # enA-jpn: 1_468_292 # ###################### # text export DIRECTION_SPEECH="enA" export DIRECTION_TEXT="jpn" export CHUNK_SIZE=20 python download_s2t_metadata.py for i in $(seq 1 ${CHUNK_SIZE}); do cat seamless.dataset.metadata.public.${DIRECTION_SPEECH}-${DIRECTION_TEXT}.withduration.reordered.batch_${i}.tsv | egrep ^crawl-data | tr '\t' ' ' | wet_lines | tee metadata.${DIRECTION_SPEECH}-${DIRECTION_TEXT}.batch_${i}.tsv & done python format_text.py # audio for i in $(seq 1 60); do export N_POOL=15 export DATASET_ID=${i} export DIRECTION_SPEECH="enA" export DIRECTION_TEXT="jpn" export LINE_NO_START=$(((DATASET_ID-1) * 2500)) export LINE_NO_END=$((DATASET_ID * 2500)) echo ${LINE_NO_START} python fetch_dataset_s2t.py done ######## # NLLB # ######## # https://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/ python -c "from datasets import load_dataset; load_dataset('allenai/nllb', 'eng_Latn-jpn_Jpan')"