import torch from transformers import BertModel class LanguageIdentifier(torch.nn.Module): def __init__(self): super().__init__() self.portuguese_bert = BertModel.from_pretrained( "neuralmind/bert-large-portuguese-cased") self.linear_layer = torch.nn.Sequential( torch.nn.Dropout(p=0.2), torch.nn.Linear(self.portuguese_bert.config.hidden_size, 1), ) def forward(self, input_ids, attention_mask): # (Batch_Size,Sequence Length, Hidden_Size) outputs = self.portuguese_bert( input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0, :] outputs = self.linear_layer(outputs) return outputs class Ensembler(torch.nn.Module): def __init__(self): super().__init__() self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def forward(self, input_ids, attention_mask): outputs = [] with torch.no_grad(): for domain in ['politics', 'news', 'law', 'social_media', 'literature', 'web']: specialist = LanguageIdentifier() specialist.load_state_dict(torch.load(f"{domain}.pt", map_location=self.device)) specialist.eval() specialist.to(self.device) outputs.append(specialist(input_ids, attention_mask)) # Remove the specialist from the GPU specialist.cpu() del specialist torch.cuda.empty_cache() outputs = torch.cat(outputs, dim=1) return torch.mean(outputs, dim=1).unsqueeze(1)