# This is an improved version and model of HED edge detection with Apache License, Version 2.0. # Please use this implementation in your products # This implementation may produce slightly different results from Saining Xie's official implementations, # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. # Different from official models and other implementations, this is an RGB-input model (rather than BGR) # and in this way it works better for gradio's RGB protocol import os import cv2 import torch import numpy as np from einops import rearrange import os from modules import devices from annotator.annotator_path import models_path from annotator.util import safe_step, nms class DoubleConvBlock(torch.nn.Module): def __init__(self, input_channel, output_channel, layer_number): super().__init__() self.convs = torch.nn.Sequential() self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) for i in range(1, layer_number): self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) def __call__(self, x, down_sampling=False): h = x if down_sampling: h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) for conv in self.convs: h = conv(h) h = torch.nn.functional.relu(h) return h, self.projection(h) class ControlNetHED_Apache2(torch.nn.Module): def __init__(self): super().__init__() self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) def __call__(self, x): h = x - self.norm h, projection1 = self.block1(h) h, projection2 = self.block2(h, down_sampling=True) h, projection3 = self.block3(h, down_sampling=True) h, projection4 = self.block4(h, down_sampling=True) h, projection5 = self.block5(h, down_sampling=True) return projection1, projection2, projection3, projection4, projection5 netNetwork = None remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth" modeldir = os.path.join(models_path, "hed") old_modeldir = os.path.dirname(os.path.realpath(__file__)) def apply_hed(input_image, is_safe=False): global netNetwork if netNetwork is None: modelpath = os.path.join(modeldir, "ControlNetHED.pth") old_modelpath = os.path.join(old_modeldir, "ControlNetHED.pth") if os.path.exists(old_modelpath): modelpath = old_modelpath elif not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=modeldir) netNetwork = ControlNetHED_Apache2().to(devices.get_device_for("controlnet")) netNetwork.load_state_dict(torch.load(modelpath, map_location='cpu')) netNetwork.to(devices.get_device_for("controlnet")).float().eval() assert input_image.ndim == 3 H, W, C = input_image.shape with torch.no_grad(): image_hed = torch.from_numpy(input_image.copy()).float().to(devices.get_device_for("controlnet")) image_hed = rearrange(image_hed, 'h w c -> 1 c h w') edges = netNetwork(image_hed) edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] edges = np.stack(edges, axis=2) edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) if is_safe: edge = safe_step(edge) edge = (edge * 255.0).clip(0, 255).astype(np.uint8) return edge def unload_hed_model(): global netNetwork if netNetwork is not None: netNetwork.cpu()