peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/linalg
/_decomp_schur.py
| """Schur decomposition functions.""" | |
| import numpy | |
| from numpy import asarray_chkfinite, single, asarray, array | |
| from numpy.linalg import norm | |
| # Local imports. | |
| from ._misc import LinAlgError, _datacopied | |
| from .lapack import get_lapack_funcs | |
| from ._decomp import eigvals | |
| __all__ = ['schur', 'rsf2csf'] | |
| _double_precision = ['i', 'l', 'd'] | |
| def schur(a, output='real', lwork=None, overwrite_a=False, sort=None, | |
| check_finite=True): | |
| """ | |
| Compute Schur decomposition of a matrix. | |
| The Schur decomposition is:: | |
| A = Z T Z^H | |
| where Z is unitary and T is either upper-triangular, or for real | |
| Schur decomposition (output='real'), quasi-upper triangular. In | |
| the quasi-triangular form, 2x2 blocks describing complex-valued | |
| eigenvalue pairs may extrude from the diagonal. | |
| Parameters | |
| ---------- | |
| a : (M, M) array_like | |
| Matrix to decompose | |
| output : {'real', 'complex'}, optional | |
| Construct the real or complex Schur decomposition (for real matrices). | |
| lwork : int, optional | |
| Work array size. If None or -1, it is automatically computed. | |
| overwrite_a : bool, optional | |
| Whether to overwrite data in a (may improve performance). | |
| sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional | |
| Specifies whether the upper eigenvalues should be sorted. A callable | |
| may be passed that, given a eigenvalue, returns a boolean denoting | |
| whether the eigenvalue should be sorted to the top-left (True). | |
| Alternatively, string parameters may be used:: | |
| 'lhp' Left-hand plane (x.real < 0.0) | |
| 'rhp' Right-hand plane (x.real > 0.0) | |
| 'iuc' Inside the unit circle (x*x.conjugate() <= 1.0) | |
| 'ouc' Outside the unit circle (x*x.conjugate() > 1.0) | |
| Defaults to None (no sorting). | |
| check_finite : bool, optional | |
| Whether to check that the input matrix contains only finite numbers. | |
| Disabling may give a performance gain, but may result in problems | |
| (crashes, non-termination) if the inputs do contain infinities or NaNs. | |
| Returns | |
| ------- | |
| T : (M, M) ndarray | |
| Schur form of A. It is real-valued for the real Schur decomposition. | |
| Z : (M, M) ndarray | |
| An unitary Schur transformation matrix for A. | |
| It is real-valued for the real Schur decomposition. | |
| sdim : int | |
| If and only if sorting was requested, a third return value will | |
| contain the number of eigenvalues satisfying the sort condition. | |
| Raises | |
| ------ | |
| LinAlgError | |
| Error raised under three conditions: | |
| 1. The algorithm failed due to a failure of the QR algorithm to | |
| compute all eigenvalues. | |
| 2. If eigenvalue sorting was requested, the eigenvalues could not be | |
| reordered due to a failure to separate eigenvalues, usually because | |
| of poor conditioning. | |
| 3. If eigenvalue sorting was requested, roundoff errors caused the | |
| leading eigenvalues to no longer satisfy the sorting condition. | |
| See Also | |
| -------- | |
| rsf2csf : Convert real Schur form to complex Schur form | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.linalg import schur, eigvals | |
| >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]]) | |
| >>> T, Z = schur(A) | |
| >>> T | |
| array([[ 2.65896708, 1.42440458, -1.92933439], | |
| [ 0. , -0.32948354, -0.49063704], | |
| [ 0. , 1.31178921, -0.32948354]]) | |
| >>> Z | |
| array([[0.72711591, -0.60156188, 0.33079564], | |
| [0.52839428, 0.79801892, 0.28976765], | |
| [0.43829436, 0.03590414, -0.89811411]]) | |
| >>> T2, Z2 = schur(A, output='complex') | |
| >>> T2 | |
| array([[ 2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j], # may vary | |
| [ 0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j], | |
| [ 0. , 0. , -0.32948354-0.80225456j]]) | |
| >>> eigvals(T2) | |
| array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j]) | |
| An arbitrary custom eig-sorting condition, having positive imaginary part, | |
| which is satisfied by only one eigenvalue | |
| >>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0) | |
| >>> sdim | |
| 1 | |
| """ | |
| if output not in ['real', 'complex', 'r', 'c']: | |
| raise ValueError("argument must be 'real', or 'complex'") | |
| if check_finite: | |
| a1 = asarray_chkfinite(a) | |
| else: | |
| a1 = asarray(a) | |
| if numpy.issubdtype(a1.dtype, numpy.integer): | |
| a1 = asarray(a, dtype=numpy.dtype("long")) | |
| if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]): | |
| raise ValueError('expected square matrix') | |
| typ = a1.dtype.char | |
| if output in ['complex', 'c'] and typ not in ['F', 'D']: | |
| if typ in _double_precision: | |
| a1 = a1.astype('D') | |
| typ = 'D' | |
| else: | |
| a1 = a1.astype('F') | |
| typ = 'F' | |
| overwrite_a = overwrite_a or (_datacopied(a1, a)) | |
| gees, = get_lapack_funcs(('gees',), (a1,)) | |
| if lwork is None or lwork == -1: | |
| # get optimal work array | |
| result = gees(lambda x: None, a1, lwork=-1) | |
| lwork = result[-2][0].real.astype(numpy.int_) | |
| if sort is None: | |
| sort_t = 0 | |
| def sfunction(x): | |
| return None | |
| else: | |
| sort_t = 1 | |
| if callable(sort): | |
| sfunction = sort | |
| elif sort == 'lhp': | |
| def sfunction(x): | |
| return x.real < 0.0 | |
| elif sort == 'rhp': | |
| def sfunction(x): | |
| return x.real >= 0.0 | |
| elif sort == 'iuc': | |
| def sfunction(x): | |
| return abs(x) <= 1.0 | |
| elif sort == 'ouc': | |
| def sfunction(x): | |
| return abs(x) > 1.0 | |
| else: | |
| raise ValueError("'sort' parameter must either be 'None', or a " | |
| "callable, or one of ('lhp','rhp','iuc','ouc')") | |
| result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a, | |
| sort_t=sort_t) | |
| info = result[-1] | |
| if info < 0: | |
| raise ValueError(f'illegal value in {-info}-th argument of internal gees') | |
| elif info == a1.shape[0] + 1: | |
| raise LinAlgError('Eigenvalues could not be separated for reordering.') | |
| elif info == a1.shape[0] + 2: | |
| raise LinAlgError('Leading eigenvalues do not satisfy sort condition.') | |
| elif info > 0: | |
| raise LinAlgError("Schur form not found. Possibly ill-conditioned.") | |
| if sort_t == 0: | |
| return result[0], result[-3] | |
| else: | |
| return result[0], result[-3], result[1] | |
| eps = numpy.finfo(float).eps | |
| feps = numpy.finfo(single).eps | |
| _array_kind = {'b': 0, 'h': 0, 'B': 0, 'i': 0, 'l': 0, | |
| 'f': 0, 'd': 0, 'F': 1, 'D': 1} | |
| _array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1} | |
| _array_type = [['f', 'd'], ['F', 'D']] | |
| def _commonType(*arrays): | |
| kind = 0 | |
| precision = 0 | |
| for a in arrays: | |
| t = a.dtype.char | |
| kind = max(kind, _array_kind[t]) | |
| precision = max(precision, _array_precision[t]) | |
| return _array_type[kind][precision] | |
| def _castCopy(type, *arrays): | |
| cast_arrays = () | |
| for a in arrays: | |
| if a.dtype.char == type: | |
| cast_arrays = cast_arrays + (a.copy(),) | |
| else: | |
| cast_arrays = cast_arrays + (a.astype(type),) | |
| if len(cast_arrays) == 1: | |
| return cast_arrays[0] | |
| else: | |
| return cast_arrays | |
| def rsf2csf(T, Z, check_finite=True): | |
| """ | |
| Convert real Schur form to complex Schur form. | |
| Convert a quasi-diagonal real-valued Schur form to the upper-triangular | |
| complex-valued Schur form. | |
| Parameters | |
| ---------- | |
| T : (M, M) array_like | |
| Real Schur form of the original array | |
| Z : (M, M) array_like | |
| Schur transformation matrix | |
| check_finite : bool, optional | |
| Whether to check that the input arrays contain only finite numbers. | |
| Disabling may give a performance gain, but may result in problems | |
| (crashes, non-termination) if the inputs do contain infinities or NaNs. | |
| Returns | |
| ------- | |
| T : (M, M) ndarray | |
| Complex Schur form of the original array | |
| Z : (M, M) ndarray | |
| Schur transformation matrix corresponding to the complex form | |
| See Also | |
| -------- | |
| schur : Schur decomposition of an array | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.linalg import schur, rsf2csf | |
| >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]]) | |
| >>> T, Z = schur(A) | |
| >>> T | |
| array([[ 2.65896708, 1.42440458, -1.92933439], | |
| [ 0. , -0.32948354, -0.49063704], | |
| [ 0. , 1.31178921, -0.32948354]]) | |
| >>> Z | |
| array([[0.72711591, -0.60156188, 0.33079564], | |
| [0.52839428, 0.79801892, 0.28976765], | |
| [0.43829436, 0.03590414, -0.89811411]]) | |
| >>> T2 , Z2 = rsf2csf(T, Z) | |
| >>> T2 | |
| array([[2.65896708+0.j, -1.64592781+0.743164187j, -1.21516887+1.00660462j], | |
| [0.+0.j , -0.32948354+8.02254558e-01j, -0.82115218-2.77555756e-17j], | |
| [0.+0.j , 0.+0.j, -0.32948354-0.802254558j]]) | |
| >>> Z2 | |
| array([[0.72711591+0.j, 0.28220393-0.31385693j, 0.51319638-0.17258824j], | |
| [0.52839428+0.j, 0.24720268+0.41635578j, -0.68079517-0.15118243j], | |
| [0.43829436+0.j, -0.76618703+0.01873251j, -0.03063006+0.46857912j]]) | |
| """ | |
| if check_finite: | |
| Z, T = map(asarray_chkfinite, (Z, T)) | |
| else: | |
| Z, T = map(asarray, (Z, T)) | |
| for ind, X in enumerate([Z, T]): | |
| if X.ndim != 2 or X.shape[0] != X.shape[1]: | |
| raise ValueError("Input '{}' must be square.".format('ZT'[ind])) | |
| if T.shape[0] != Z.shape[0]: | |
| message = f"Input array shapes must match: Z: {Z.shape} vs. T: {T.shape}" | |
| raise ValueError(message) | |
| N = T.shape[0] | |
| t = _commonType(Z, T, array([3.0], 'F')) | |
| Z, T = _castCopy(t, Z, T) | |
| for m in range(N-1, 0, -1): | |
| if abs(T[m, m-1]) > eps*(abs(T[m-1, m-1]) + abs(T[m, m])): | |
| mu = eigvals(T[m-1:m+1, m-1:m+1]) - T[m, m] | |
| r = norm([mu[0], T[m, m-1]]) | |
| c = mu[0] / r | |
| s = T[m, m-1] / r | |
| G = array([[c.conj(), s], [-s, c]], dtype=t) | |
| T[m-1:m+1, m-1:] = G.dot(T[m-1:m+1, m-1:]) | |
| T[:m+1, m-1:m+1] = T[:m+1, m-1:m+1].dot(G.conj().T) | |
| Z[:, m-1:m+1] = Z[:, m-1:m+1].dot(G.conj().T) | |
| T[m, m-1] = 0.0 | |
| return T, Z | |