import gc import shutil from datasets import Dataset, load_from_disk from chat_data_pipeline.pipeline import logger from chat_data_pipeline import utils from chat_data_pipeline.minhash_deduplication import deduplicate class DataPreprocessor: dataset: Dataset def __init__( self, dataset, column_name, cleaners, filters, deduplication_config, dry_run=False, verbose=False ): self.dataset = dataset self.column_name = column_name self.cleaners = cleaners self.filters = filters self.deduplication_config = deduplication_config self.dry_run = dry_run self.verbose = verbose def run(self): self._clean_dataset() self._filter_dataset() if self.deduplication_config.get("do_deduplication", False): self._deduplicate_dataset() return self.dataset def _clean_dataset(self): if len(self.cleaners) > 0: self.dataset = utils.run_cleaner(self.dataset, self.column_name, self.cleaners) return self.dataset def _filter_dataset(self): for filter_func in self.filters: dataset_length = len(self.dataset) ids = range(dataset_length) self.dataset = self.dataset.add_column("ids", ids) filtered_dataset = utils.run_filter( dataset=self.dataset, column_name=self.column_name, filter_func=filter_func, dry_run=self.dry_run ) self._print_filter_logs(filtered_dataset, filter_func.__name__) self.dataset = filtered_dataset.remove_columns("ids") return self.dataset def _deduplicate_dataset(self): dataset_length = len(self.dataset) ids = range(dataset_length) self.dataset = self.dataset.add_column("ids", ids) # need to save to disk and load again, otherwise it is very slow target_directory = "./.temp-dataset" shutil.rmtree(target_directory, ignore_errors=True) try: self.dataset.save_to_disk(target_directory) except PermissionError: logger.info("Can not save dataset, nothing changed. Skipping...") gc.collect() self.dataset = load_from_disk(target_directory) deduplicated_ds = deduplicate( self.dataset, column=self.column_name, **self.deduplication_config.get("args", {}) ) self.dataset = deduplicated_ds.remove_columns("ids") return self.dataset def _print_filter_logs(self, filtered_dataset, filter_name): original_length = len(self.dataset) filtered_length = len(filtered_dataset) reduced_percent = round(100 * (original_length - filtered_length) / original_length, 2) logger.info( f'Filtered by {filter_name} on {self.column_name}:\n' f'{reduced_percent}% = {original_length - filtered_length:,} samples reduced\n' f'New dataset size: {filtered_length:,} rows' ) if self.verbose: utils.print_sample_dropped_examples(self.dataset, filtered_dataset, num_samples=10)