Datasets:
File size: 20,047 Bytes
bc0ee5c b475b36 bc0ee5c 95edc1a bc0ee5c 74d9a2c bc0ee5c b475b36 1750a4b bc0ee5c c1654fa bc0ee5c 74d9a2c 474078a 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 7902336 688aa47 bc0ee5c 74d9a2c bc0ee5c 74d9a2c bc0ee5c 0aee24b bc0ee5c 0aee24b 688aa47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- ar
- da
- de
- en
- es
- fi
- fr
- he
- hu
- it
- ja
- km
- ko
- ms
- nl
- 'no'
- pl
- pt
- ru
- sv
- th
- tr
- vi
- zh
license:
- cc-by-3.0
multilinguality:
- multilingual
- translation
size_categories:
- 10K<n<100K
source_datasets:
- extended|natural_questions
- original
task_categories:
- question-answering
task_ids:
- open-domain-qa
paperswithcode_id: mkqa
pretty_name: Multilingual Knowledge Questions and Answers
dataset_info:
features:
- name: example_id
dtype: string
- name: queries
struct:
- name: ar
dtype: string
- name: da
dtype: string
- name: de
dtype: string
- name: en
dtype: string
- name: es
dtype: string
- name: fi
dtype: string
- name: fr
dtype: string
- name: he
dtype: string
- name: hu
dtype: string
- name: it
dtype: string
- name: ja
dtype: string
- name: ko
dtype: string
- name: km
dtype: string
- name: ms
dtype: string
- name: nl
dtype: string
- name: 'no'
dtype: string
- name: pl
dtype: string
- name: pt
dtype: string
- name: ru
dtype: string
- name: sv
dtype: string
- name: th
dtype: string
- name: tr
dtype: string
- name: vi
dtype: string
- name: zh_cn
dtype: string
- name: zh_hk
dtype: string
- name: zh_tw
dtype: string
- name: query
dtype: string
- name: answers
struct:
- name: ar
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: da
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: de
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: en
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: es
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: fi
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: fr
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: he
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: hu
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: it
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: ja
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: ko
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: km
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: ms
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: nl
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: 'no'
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: pl
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: pt
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: ru
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: sv
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: th
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: tr
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: vi
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: zh_cn
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: zh_hk
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
- name: zh_tw
list:
- name: type
dtype:
class_label:
names:
'0': entity
'1': long_answer
'2': unanswerable
'3': date
'4': number
'5': number_with_unit
'6': short_phrase
'7': binary
- name: entity
dtype: string
- name: text
dtype: string
- name: aliases
list: string
config_name: mkqa
splits:
- name: train
num_bytes: 36005650
num_examples: 10000
download_size: 11903948
dataset_size: 36005650
---
# Dataset Card for MKQA: Multilingual Knowledge Questions & Answers
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- [**Homepage:**](https://github.com/apple/ml-mkqa/)
- [**Paper:**](https://arxiv.org/abs/2007.15207)
### Dataset Summary
MKQA contains 10,000 queries sampled from the [Google Natural Questions dataset](https://github.com/google-research-datasets/natural-questions).
For each query we collect new passage-independent answers.
These queries and answers are then human translated into 25 Non-English languages.
### Supported Tasks and Leaderboards
`question-answering`
### Languages
| Language code | Language name |
|---------------|---------------|
| `ar` | `Arabic` |
| `da` | `Danish` |
| `de` | `German` |
| `en` | `English` |
| `es` | `Spanish` |
| `fi` | `Finnish` |
| `fr` | `French` |
| `he` | `Hebrew` |
| `hu` | `Hungarian` |
| `it` | `Italian` |
| `ja` | `Japanese` |
| `ko` | `Korean` |
| `km` | `Khmer` |
| `ms` | `Malay` |
| `nl` | `Dutch` |
| `no` | `Norwegian` |
| `pl` | `Polish` |
| `pt` | `Portuguese` |
| `ru` | `Russian` |
| `sv` | `Swedish` |
| `th` | `Thai` |
| `tr` | `Turkish` |
| `vi` | `Vietnamese` |
| `zh_cn` | `Chinese (Simplified)` |
| `zh_hk` | `Chinese (Hong kong)` |
| `zh_tw` | `Chinese (Traditional)` |
## Dataset Structure
### Data Instances
An example from the data set looks as follows:
```
{
'example_id': 563260143484355911,
'queries': {
'en': "who sings i hear you knocking but you can't come in",
'ru': "кто поет i hear you knocking but you can't come in",
'ja': '「 I hear you knocking」は誰が歌っていますか',
'zh_cn': "《i hear you knocking but you can't come in》是谁演唱的",
...
},
'query': "who sings i hear you knocking but you can't come in",
'answers': {'en': [{'type': 'entity',
'entity': 'Q545186',
'text': 'Dave Edmunds',
'aliases': []}],
'ru': [{'type': 'entity',
'entity': 'Q545186',
'text': 'Эдмундс, Дэйв',
'aliases': ['Эдмундс', 'Дэйв Эдмундс', 'Эдмундс Дэйв', 'Dave Edmunds']}],
'ja': [{'type': 'entity',
'entity': 'Q545186',
'text': 'デイヴ・エドモンズ',
'aliases': ['デーブ・エドモンズ', 'デイブ・エドモンズ']}],
'zh_cn': [{'type': 'entity', 'text': '戴维·埃德蒙兹 ', 'entity': 'Q545186'}],
...
},
}
```
### Data Fields
Each example in the dataset contains the unique Natural Questions `example_id`, the original English `query`, and then `queries` and `answers` in 26 languages.
Each answer is labelled with an answer type. The breakdown is:
| Answer Type | Occurrence |
|---------------|---------------|
| `entity` | `4221` |
| `long_answer` | `1815` |
| `unanswerable` | `1427` |
| `date` | `1174` |
| `number` | `485` |
| `number_with_unit` | `394` |
| `short_phrase` | `346` |
| `binary` | `138` |
For each language, there can be more than one acceptable textual answer, in order to capture a variety of possible valid answers.
Detailed explanation of fields taken from [here](https://github.com/apple/ml-mkqa/#dataset)
when `entity` field is not available it is set to an empty string ''.
when `aliases` field is not available it is set to an empty list [].
### Data Splits
- Train: 10000
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[Google Natural Questions dataset](https://github.com/google-research-datasets/natural-questions)
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[CC BY-SA 3.0](https://github.com/apple/ml-mkqa#license)
### Citation Information
```
@misc{mkqa,
title = {MKQA: A Linguistically Diverse Benchmark for Multilingual Open Domain Question Answering},
author = {Shayne Longpre and Yi Lu and Joachim Daiber},
year = {2020},
URL = {https://arxiv.org/pdf/2007.15207.pdf}
}
```
### Contributions
Thanks to [@cceyda](https://github.com/cceyda) for adding this dataset. |