import yfinance stocks = ['ARM', 'META', 'SPY', 'TSLA'] data = yfinance.download(stocks, '2024-04-01', '2024-05-09')['Close'] returns = data.pct_change() returns.head() returns = returns.dropna() returns.head() average_daily_returns = returns.mean() print(average_daily_returns) standard_deviation_daily_returns = returns.std() print(standard_deviation_daily_returns) import numpy weights = numpy.array([0.25, 0.25, 0.25, 0.25]) covariance_matrix = (returns.cov())*250 expected_portfolio_performace = numpy.sum(average_daily_returns * weights) print(expected_portfolio_performance) returns['Portfolio Returns'] = returns.dot(weights) returns.head() daily_cumulative_returns = (1+returns).cumprod() print(daily_cumulative_returns) daily_cumulative_returns.tail()