# -*- coding: utf-8 -*- """.1952 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1Gw-RJg5Bp__ayBzDb0HsHaj9uYYfQ_nI """ # Commented out IPython magic to ensure Python compatibility. import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') # %matplotlib inline file_path = '/content/Key_Economic_Indicators.csv' df = pd.read_csv(file_path) df.head() df.isnull().sum() df.fillna(df.mean(), inplace=True) df['Date'] = pd.to_datetime(df[['Year', 'Month']].assign(DAY=1)) df.drop(['Year', 'Month'], axis=1, inplace=True) df.head() plt.figure(figsize=(12, 6)) sns.lineplot(data=df, x='Date', y='Consumer Confidence Index TX', label='TX') plt.title('Consumer Confidence Index Over Time') plt.xlabel('Date') plt.ylabel('Consumer Confidence Index') plt.legend() plt.show() plt.figure(figsize=(12, 6)) sns.histplot(df['Unemployment TX'], kde=True, color='blue', label='TX') sns.histplot(df['Unemployment U.S.'], kde=True, color='red', label='US') plt.title('Distribution of Unemployment Rates') plt.xlabel('Unemployment Rate') plt.ylabel('Frequency') plt.legend() plt.show() numeric_df = df.select_dtypes(include=[np.number]) plt.figure(figsize=(14, 10)) sns.heatmap(numeric_df.corr(), annot=True, fmt='.2f', cmap='coolwarm') plt.title('Correlation Matrix of Economic Indicators') plt.show() from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error X = numeric_df.drop(columns=['Consumer Confidence Index TX']) y = numeric_df['Consumer Confidence Index TX'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = RandomForestRegressor(random_state=42) model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) rmse