# -*- coding: utf-8 -*- """Master Card&VisaStockData.159 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/127-oS8O1T914B2Fx1z0r0JAfHc3RJ8NB """ import pandas as pd data = pd.read_csv('MVR.csv') print(data.head()) print(data.isnull().sum()) data['Date'] = pd.to_datetime(data['Date']) data.set_index('Date', inplace=True) print(data.dtypes) print(data.info()) print(data.describe()) import matplotlib.pyplot as plt plt.figure(figsize=(14, 7)) plt.plot(data.index, data['Close_M'], label='MasterCard Close') plt.plot(data.index, data['Close_V'], label='Visa Close') plt.title('Stock Prices of MasterCard and Visa') plt.xlabel('Date') plt.ylabel('Stock Price') plt.legend() plt.show() data['MA_Close_M'] = data['Close_M'].rolling(window=30).mean() data['MA_Close_V'] = data['Close_V'].rolling(window=30).mean() plt.figure(figsize=(14, 7)) plt.plot(data['Close_M'], label='MasterCard Close Price') plt.plot(data['MA_Close_M'], label='MasterCard 30-Day MA') plt.title('Moving Averages of Stock Prices') plt.xlabel('Date') plt.ylabel('Price') plt.legend() plt.show() plt.figure(figsize=(14, 7)) plt.plot(data['Volume_M'], label='MasterCard Volume') plt.plot(data['Volume_V'], label='Visa Volume') plt.title('Volume of Stocks Traded') plt.xlabel('Date') plt.ylabel('Volume') plt.legend() plt.show() data['SMA50_M'] = data['Close_M'].rolling(window=50).mean() data['SMA200_M'] = data['Close_M'].rolling(window=200).mean() data['SMA50_V'] = data['Close_V'].rolling(window=50).mean() data['SMA200_V'] = data['Close_V'].rolling(window=200).mean() plt.figure(figsize=(14, 7)) plt.plot(data.index, data['Close_M'], label='MasterCard Close') plt.plot(data.index, data['SMA50_M'], label='MasterCard SMA50') plt.plot(data.index, data['SMA200_M'], label='MasterCard SMA200') plt.title('MasterCard Stock Price and Moving Averages') plt.xlabel('Date') plt.ylabel('Stock Price') plt.legend() plt.show() plt.figure(figsize=(14, 7)) plt.plot(data.index, data['Close_V'], label='Visa Close') plt.plot(data.index, data['SMA50_V'], label='Visa SMA50') plt.plot(data.index, data['SMA200_V'], label='Visa SMA200') plt.title('Visa Stock Price and Moving Averages') plt.xlabel('Date') plt.ylabel('Stock Price') plt.legend() plt.show data['Volatility_M'] = data['Close_M'].rolling(window=30).std() data['Volatility_V'] = data['Close_V'].rolling(window=30).std() plt.figure(figsize=(14, 7)) plt.plot(data.index, data['Volatility_M'], label='MasterCard Volatility') plt.plot(data.index, data['Volatility_V'], label='Visa Volatility') plt.title('Stock Price Volatility of MasterCard and Visa') plt.xlabel('Date') plt.ylabel('Volatility') plt.legend() plt.show() data['Return_M'] = data['Close_M'].pct_change() data['Return_V'] = data['Close_V'].pct_change() data['Cumulative_Return_M'] = (1 + data['Return_M']).cumprod() data['Cumulative_Return_V'] = (1 + data['Return_V']).cumprod() plt.figure(figsize=(14, 7)) plt.plot(data.index, data['Cumulative_Return_M'], label='MasterCard Cumulative Return') plt.plot(data.index, data['Cumulative_Return_V'], label='Visa Cumulative Return') plt.title('Cumulative Returns of MasterCard and Visa') plt.xlabel('Date') plt.ylabel('Cumulative Return') plt.legend() plt.show() correlation = data[['Close_M', 'Close_V']].corr() print(correlation) from statsmodels.tsa.seasonal import seasonal_decompose decomposition_M = seasonal_decompose(data['Close_M'], model='multiplicative', period=365) fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(15, 12)) ax1.plot(decomposition_M.observed) ax1.set_title('Observed - MasterCard') ax2.plot(decomposition_M.trend) ax2.set_title('Tren - MasterCard') ax3.plot(decomposition_M.seasonal) ax3.set_title('Seasonal - MasterCard') ax4.plot(decomposition_M.resid) ax4.set_title('Residual - MasterCard') plt.tight_layout() plt.show decomposition_V = seasonal_decompose(data['Close_V'], model='multiplicative', period=365) fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(15, 12)) ax1.plot(decomposition_V.observed) ax1.set_title('Observed - Visa') ax2.plot(decomposition_V.trend) ax2.set_title('Trend - Visa') ax3.plot(decomposition_V.seasonal) ax3.set_title('Seasonal - Visa') ax4.plot(decomposition_V.resid) ax4.set_title('Residual - Visa') plt.tight_layout() plt.show() from statsmodels.tsa.stattools import adfuller def adf_test(series): result = adfuller(series.dropna()) print('ADF Statistic:', result[0]) print('p-value:', result[1]) for key, value in result[4].items(): print('Critial Values:') print(f' {key}, {value}') print("ADF Test for MasterCard Close Price:") adf_test(data['Close_M']) print("\ADF Test for Visa Close Price:") adf_test(data['Close_V']) import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import LSTM, Dense, Input from sklearn.metrics import mean_squared_error scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data_M = scaler.fit_transform(data[['Close_M']]) scaled_data_V = scaler.fit_transform(data[['Close_V']]) train_len_M = int(len(scaled_data_M) * 0.8) train_len_V = int(len(scaled_data_V) * 0.8) train_data_M = scaled_data_M[:train_len_M] test_data_M = scaled_data_M[train_len_M:] train_data_V = scaled_data_V[:train_len_V] test_data_V = scaled_data_V[train_len_V:] def create_sequences(data, seq_length): x = [] y = [] for i in range(seq_length, len(data)): x.append(data[i-seq_length:i, 0]) y.append(data[i, 0]) return np.array(x), np.array(y) seq_length = 60 x_train_M, y_train_M = create_sequences(train_data_M, seq_length) x_test_M, y_test_M = create_sequences(test_data_M, seq_length) x_train_V, y_train_V = create_sequences(train_data_V, seq_length) x_test_V, y_test_V = create_sequences(test_data_V, seq_length) x_train_M = np.reshape(x_train_M, (x_train_M.shape[0], x_train_M.shape[1], 1)) x_test_M = np.reshape(x_test_M, (x_test_M.shape[0], x_test_M.shape[1], 1)) x_train_V = np.reshape(x_train_V, (x_train_V.shape[0], x_train_V.shape[1], 1)) x_test_V = np.reshape(x_test_V, (x_test_V.shape[0], x_test_V.shape[1], 1)) model_M = Sequential() model_M.add(Input(shape=(x_train_M.shape[1], 1))) model_M.add(LSTM(units=50, return_sequences=True)) model_M.add(LSTM(units=50, return_sequences=False)) model_M.add(Dense(units=25)) model_M.add(Dense(units=1)) model_M.compile(optimizer='adam', loss='mean_squared_error') model_V = Sequential() model_V.add(Input(shape=(x_train_V.shape[1], 1))) model_V.add(LSTM(units=50, return_sequences=True)) model_V.add(LSTM(units=50, return_sequences=False)) model_V.add(Dense(units=25)) model_V.add(Dense(units=1)) model_V.compile(optimizer ='adam', loss='mean_squared_error') model_M.fit(x_train_M, y_train_M, batch_size=32, epochs=100) model_V.fit(x_train_V, y_train_V, batch_size=32, epochs=100) predictions_M = model_M.predict(x_test_M) predictions_M = scaler.inverse_transform(predictions_M) predictions_V = model_V.predict(x_test_V) predictions_V = scaler.inverse_transform(predictions_V) rmse_M = np.sqrt(mean_squared_error(y_test_M, predictions_M)) rmse_V = np.sqrt(mean_squared_error(y_test_V, predictions_V)) print(f'RMSE for MasterCard: {rmse_M}') print(f'RMSE for Visa: {rmse_V}') train_M = data[:train_len_M]['Close_M'] valid_M = data[train_len_M:train_len_M + len(predictions_M)]['Close_M'] valid_M = valid_M.to_frame() valid_M['Predictions'] = predictions_M train_V = data[:train_len_V]['Close_V'] valid_V = data[train_len_V:train_len_V + len(predictions_V)]['Close_V'] valid_V = valid_V.to_frame() valid_V['Predictions'] = predictions_V plt.figure(figsize=(14, 7)) plt.plot(train_M, label='Train - MasterCard') plt.plot(valid_M['Close_M'], label='Valid - MasterCard') plt.plot(valid_M['Predictions'], label='Predictions - MasterCard') plt.legend() plt.show() plt.figure(figsize=(14, 7)) plt.plot(train_V, label ='Train -Visa') plt.plot(valid_V['Close_V'], label='Valid -Visa') plt.plot(valid_V['Predictions'], label='Predictions - Visa') plt.legend() plt.show() from statsmodels.tsa.arima.model import ARIMA data = data.asfreq('B') train_size = int(len(data) * 0.8) train, test = data['Close_M'][:train_size], data['Close_M'][train_size:] model = ARIMA(train, order=(5, 1, 0)) model_fit = model.fit() print(model_fit.summary()) predictions = model_fit.forecast(steps=len(test)) predictions = pd.Series(predictions, index=test.index) plt.figure(figsize=(14, 7)) plt.plot(train, label='Training Data') plt.plot(test, label='Test Data') plt.plot(predictions, label='Predicted Data') plt.title('ARIMA Model Predictions for MasterCard') plt.xlabel('Date') plt.ylabel('Price') plt.legend() plt.show() data = data.asfreq('B') train_size = int(len(data) * 0.8) train_V, test_V = data['Close_V'][:train_size], data['Close_V'][train_size:] model_V = ARIMA(train_V, order=(5, 1, 0)) model_fit_V = model_V.fit() print(model_fit_V.summary()) predictions_V = model_fit_V.forecast(steps=len(test_V)) predictions_V = pd.Series(predictions_V, index=test_V.index) plt.figure(figsize=(14, 7)) plt.plot(train_V, label='Training Data') plt.plot(test_V, label='Test Data') plt.plot(predictions_V, label='Predicted Data'), plt.title('ARIMA Model Predictions for Visa') plt.xlabel('Date') plt.ylabel('Price') plt.legend() plt.show() import warnings warnings.filterwarnings('ignore') import plotly.graph_objects as go def predict_stock_price(data, column_name, forecast_periods): train_size = int(len(data) * 0.8) train, test = data[column_name][:train_size], data[column_name][train_size:] model = ARIMA(train, order=(5, 1, 0)) model_fit = model.fit() future_dates = pd.date_range(start=data.index[-1], periods=forecast_periods, freq='B') forecast = model_fit.forecast(steps=forecast_periods) forecast_series = pd.Series(forecast, index=future_dates) return forecast_series forecast_periods = 3 * 252 forecast_M = predict_stock_price(data, 'Close_M', forecast_periods) forecast_V = predict_stock_price(data, 'Close_V', forecast_periods) extended_data_M = pd.concat([data['Close_M'], forecast_M]) extended_data_V = pd.concat([data['Close_V'], forecast_V]) candlestick_data_M = pd.DataFrame({ 'Date': extended_data_M.index, 'Open': extended_data_M.shift(1).fillna(method='bfill'), 'High': extended_data_M.rolling(2).max(), 'Low': extended_data_M.rolling(2).min(), 'Close': extended_data_M }).reset_index(drop=True) candlestick_data_V = pd.DataFrame({ 'Date': extended_data_V.index, 'Open': extended_data_V.shift(1).fillna(method='bfill'), 'High': extended_data_V.rolling(2).max(), 'Low': extended_data_V.rolling(2).min(), 'Close': extended_data_V }).reset_index(drop=True) fig = go.Figure() fig.add_trace(go.Candlestick( x=candlestick_data_M['Date'], open=candlestick_data_M['Open'], high=candlestick_data_M['High'], low=candlestick_data_M['Low'], close=candlestick_data_M['Close'], name='MasterCard', increasing_line_color='blue', decreasing_line_color='red' )) fig.add_trace(go.Candlestick( x=candlestick_data_V['Date'], open=candlestick_data_V['Open'], high=candlestick_data_V['High'], low=candlestick_data_V['Low'], close=candlestick_data_V['Close'], name='Visa', increasing_line_color='green', decreasing_line_color='orange' )) fig.update_layout( title='MasterCard and Visa Stock Prices (Historical and Predicted)', xaxis_title='Date', yaxis_title='Price', xaxis_rangeslider_visible=False ) fig.show()