# -*- coding: utf-8 -*- """IG Fake Account Detector Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/11AvA8ysxhTbkhDXq-Sn2HnnKRgdGeT9U """ # Commented out IPython magic to ensure Python compatibility. import numpy as np import pandas as pd import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt from matplotlib import style # %matplotlib inline import warnings warnings.filterwarnings('ignore') df = pd.read_csv('/content/final-v1.csv') df.head(5) df.tail(5) df.shape df.columns print(df) print('dimensions:') print(df.shape) print('Information:') df.info() print(df.apply(lambda col: col.unique())) df.nunique() df.corr() df.isnull().sum() df.describe().T df.drop(["has_guides"],axis=1,inplace=True) df.drop(["edge_follow"],axis=1,inplace=True) df.drop(["has_channel"],axis=1,inplace=True) df.drop(["edge_followed_by"],axis=1,inplace=True) df.head(5) account = df.groupby("is_business_account") account = account.size() account plt.pie(account.values , labels = ("Business Account", "Personal Account"), autopct='%1.1f%%',colors=['Lavender','lightgreen'], radius = 1, textprops = {"fontsize" : 16}) plt.title("Account Type", c="Blue") plt.show() account1 = df.groupby("is_private") account1 = account1.size() account1 plt.pie(account1.values, labels = ("Private", "Public"), autopct='%1.1f%%', colors=['pink', 'skyblue'], radius = 1.2, textprops = {"fontsize" : 16}) plt.title("Account Type", c="Blue") plt.show() fake_account_counts = df['is_fake'].value_counts() labels = ['Yes', 'No'] colors = ['Skyblue', 'lightgreen'] explode = (0.1, 0) plt.figure(figsize=(6, 4)) plt.pie(fake_account_counts, labels=labels, colors=colors, autopct='%1.1f%%', startangle=140, pctdistance=0.85, explode=explode) plt.title('Fake Accounts Distribution', fontsize=16) centre_circle = plt.Circle((0,0),0.70,fc='white') fig = plt.gcf() fig.gca().add_artist(centre_circle) plt.axis('equal') plt.show() def barplot(column, horizontal): plt.figure(figsize=(4, 4)) sns.countplot(x=column, data=df, palette='viridis') plt.xlabel(column) plt.ylabel("Fake") plt.title(f"Users have Business Account", fontweight='bold') plt.xticks(rotation=45) sns.despine() plt.tight_layout() plt.show() barplot('is_business_account', True) def barplot(column, horizontal): plt.figure(figsize=(4, 4)) sns.countplot(x=column, data=df, palette='viridis') plt.xlabel(column) plt.ylabel("Fake") plt.title(f"Private Account", fontweight='bold') plt.xticks(rotation=45) sns.despine() plt.tight_layout() plt.show() barplot('is_private', True) def barplot(column, horizontal): plt.figure(figsize=(4, 4)) sns.countplot(x=column, data=df, palette='viridis') plt.xlabel(column) plt.ylabel("Fake") plt.title(f"User name has number", fontweight='bold') plt.xticks(rotation=45) sns.despine() plt.tight_layout() plt.show() barplot('username_has_number', True) def barplot(column, horizontal): plt.figure(figsize=(4, 4)) sns.countplot(x=column, data=df, palette='viridis') plt.xlabel(column) plt.ylabel("Fake") plt.title(f"User's full Name Has Number", fontweight='bold') plt.xticks(rotation=45) sns.despine() plt.tight_layout() plt.show() barplot('full_name_has_number', True) def barplot(column, horizontal): plt.figure(figsize=(4, 4)) sns.countplot(x=column, data=df, palette='viridis') plt.xlabel(column) plt.ylabel("Fake") plt.title(f"Users are Joined Recently", fontweight='bold') plt.xticks(rotation=45) sns.despine() plt.tight_layout() plt.show() barplot('is_joined_recently', True) def barplot(column, horizontal): plt.figure(figsize=(6, 6)) sns.countplot(x=column, data=df, palette='viridis') plt.xlabel(column) plt.ylabel("Fake") plt.title(f"User's full name length", fontweight='bold') plt.xticks(rotation=45) sns.despine() plt.tight_layout() plt.show() barplot('username_length', True)