import torch import torch.nn as nn import torch.optim as optim class RealTimeModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RealTimeModel, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x model = RealTimeModel(input_size=10, hidden_size=20, output_size=1) criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) import numpy as np import time def get_new_data(): return torch.tensor(np.random.rand(10), dtype=torch.float32) def real_time_update(): while True: new_data = get_new_data().unsqueeze(0) target = torch.tensor([0.5], dtype=torch.float32) output = model(new_data) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimzier.step() print(f"Real-Time Update - Loss: {loss.item():.4f}") time.sleep(1) import matplotlib.pyplot as plt def visualize_loss(loss_values): plt.plot(loss_values) plt.xlabel("Time") plt.ylabel("Loss") plt.show() import numpy as np import matplotlib.pyplot as plt import torch import time def get_new_data(): return torch.sin(torch.linspace(0,2 * np.p, 100) + time.time()).numpy() plt.ion() fig, ax = plt.subplots() x_data = np.linspace(0, 2 * np.pi, 100) y_data = get_new_data() line, = ax.plot(x_data, y_data) def real_time_plot(): while True: new_y_data = get_new_data() line.set_ydata(new_y_data) fig.canvas.draw() fig.canvas.flush_events() time.sleep(0.1) try: real_time_plot() except KeyboardInterrupt: print("Real-time plotting stopped.") finally: plt.ioff() plt.show()