from torch import nn import torch import torch.nn.functional as F from modules.util import AntiAliasInterpolation2d, make_coordinate_grid_2d from torchvision import models import numpy as np from torch.autograd import grad import modules.hopenet as hopenet from torchvision import transforms import random from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt from prefetch_generator import BackgroundGenerator from basicsr.utils.img_process_util import filter2D from basicsr.utils import DiffJPEG, USMSharp class Vgg19(torch.nn.Module): """ Vgg19 network for perceptual loss. """ def __init__(self, requires_grad=False): super(Vgg19, self).__init__() vgg_pretrained_features = models.vgg19(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) self.mean = torch.nn.Parameter(data=torch.Tensor(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))), requires_grad=False) self.std = torch.nn.Parameter(data=torch.Tensor(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))), requires_grad=False) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): X = (X - self.mean) / self.std h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out class ImagePyramide(torch.nn.Module): """ Create image pyramide for computing pyramide perceptual loss. """ def __init__(self, scales, num_channels): super(ImagePyramide, self).__init__() downs = {} for scale in scales: downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale) self.downs = nn.ModuleDict(downs) def forward(self, x): out_dict = {} for scale, down_module in self.downs.items(): out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x) return out_dict class Transform: """ Random tps transformation for equivariance constraints. """ def __init__(self, bs, **kwargs): noise = torch.normal(mean=0, std=kwargs['sigma_affine'] * torch.ones([bs, 2, 3])) self.theta = noise + torch.eye(2, 3).view(1, 2, 3) self.bs = bs if ('sigma_tps' in kwargs) and ('points_tps' in kwargs): self.tps = True self.control_points = make_coordinate_grid_2d((kwargs['points_tps'], kwargs['points_tps']), type=noise.type()) self.control_points = self.control_points.unsqueeze(0) self.control_params = torch.normal(mean=0, std=kwargs['sigma_tps'] * torch.ones([bs, 1, kwargs['points_tps'] ** 2])) else: self.tps = False def transform_frame(self, frame): grid = make_coordinate_grid_2d(frame.shape[2:], type=frame.type()).unsqueeze(0) grid = grid.view(1, frame.shape[2] * frame.shape[3], 2) grid = self.warp_coordinates(grid).view(self.bs, frame.shape[2], frame.shape[3], 2) return F.grid_sample(frame, grid, padding_mode="reflection") def warp_coordinates(self, coordinates): theta = self.theta.type(coordinates.type()) theta = theta.unsqueeze(1) transformed = torch.matmul(theta[:, :, :, :2], coordinates.unsqueeze(-1)) + theta[:, :, :, 2:] transformed = transformed.squeeze(-1) if self.tps: control_points = self.control_points.type(coordinates.type()) control_params = self.control_params.type(coordinates.type()) distances = coordinates.view(coordinates.shape[0], -1, 1, 2) - control_points.view(1, 1, -1, 2) distances = torch.abs(distances).sum(-1) result = distances ** 2 result = result * torch.log(distances + 1e-6) result = result * control_params result = result.sum(dim=2).view(self.bs, coordinates.shape[1], 1) transformed = transformed + result return transformed def jacobian(self, coordinates): new_coordinates = self.warp_coordinates(coordinates) grad_x = grad(new_coordinates[..., 0].sum(), coordinates, create_graph=True) grad_y = grad(new_coordinates[..., 1].sum(), coordinates, create_graph=True) jacobian = torch.cat([grad_x[0].unsqueeze(-2), grad_y[0].unsqueeze(-2)], dim=-2) return jacobian def detach_kp(kp): return {key: value.detach() for key, value in kp.items()} def headpose_pred_to_degree(pred): device = pred.device idx_tensor = [idx for idx in range(66)] idx_tensor = torch.FloatTensor(idx_tensor).to(device) pred = F.softmax(pred) degree = torch.sum(pred*idx_tensor, axis=1) * 3 - 99 return degree ''' # beta version def get_rotation_matrix(yaw, pitch, roll): yaw = yaw / 180 * 3.14 pitch = pitch / 180 * 3.14 roll = roll / 180 * 3.14 roll = roll.unsqueeze(1) pitch = pitch.unsqueeze(1) yaw = yaw.unsqueeze(1) roll_mat = torch.cat([torch.ones_like(roll), torch.zeros_like(roll), torch.zeros_like(roll), torch.zeros_like(roll), torch.cos(roll), -torch.sin(roll), torch.zeros_like(roll), torch.sin(roll), torch.cos(roll)], dim=1) roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3) pitch_mat = torch.cat([torch.cos(pitch), torch.zeros_like(pitch), torch.sin(pitch), torch.zeros_like(pitch), torch.ones_like(pitch), torch.zeros_like(pitch), -torch.sin(pitch), torch.zeros_like(pitch), torch.cos(pitch)], dim=1) pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3) yaw_mat = torch.cat([torch.cos(yaw), -torch.sin(yaw), torch.zeros_like(yaw), torch.sin(yaw), torch.cos(yaw), torch.zeros_like(yaw), torch.zeros_like(yaw), torch.zeros_like(yaw), torch.ones_like(yaw)], dim=1) yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3) rot_mat = torch.einsum('bij,bjk,bkm->bim', roll_mat, pitch_mat, yaw_mat) return rot_mat ''' def get_rotation_matrix(yaw, pitch, roll): yaw = yaw / 180 * 3.14 pitch = pitch / 180 * 3.14 roll = roll / 180 * 3.14 roll = roll.unsqueeze(1) pitch = pitch.unsqueeze(1) yaw = yaw.unsqueeze(1) pitch_mat = torch.cat([torch.ones_like(pitch), torch.zeros_like(pitch), torch.zeros_like(pitch), torch.zeros_like(pitch), torch.cos(pitch), -torch.sin(pitch), torch.zeros_like(pitch), torch.sin(pitch), torch.cos(pitch)], dim=1) pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3) yaw_mat = torch.cat([torch.cos(yaw), torch.zeros_like(yaw), torch.sin(yaw), torch.zeros_like(yaw), torch.ones_like(yaw), torch.zeros_like(yaw), -torch.sin(yaw), torch.zeros_like(yaw), torch.cos(yaw)], dim=1) yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3) roll_mat = torch.cat([torch.cos(roll), -torch.sin(roll), torch.zeros_like(roll), torch.sin(roll), torch.cos(roll), torch.zeros_like(roll), torch.zeros_like(roll), torch.zeros_like(roll), torch.ones_like(roll)], dim=1) roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3) rot_mat = torch.einsum('bij,bjk,bkm->bim', pitch_mat, yaw_mat, roll_mat) return rot_mat def keypoint_transformation(kp_canonical, he, estimate_jacobian=True): kp = kp_canonical['value'] # (bs, k, 3) yaw, pitch, roll = he['yaw'], he['pitch'], he['roll'] t, exp = he['t'], he['exp'] yaw = headpose_pred_to_degree(yaw) pitch = headpose_pred_to_degree(pitch) roll = headpose_pred_to_degree(roll) rot_mat = get_rotation_matrix(yaw, pitch, roll) # (bs, 3, 3) # keypoint rotation kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp) # keypoint translation t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1) kp_t = kp_rotated + t # add expression deviation exp = exp.view(exp.shape[0], -1, 3) kp_transformed = kp_t + exp if estimate_jacobian: jacobian = kp_canonical['jacobian'] # (bs, k ,3, 3) jacobian_transformed = torch.einsum('bmp,bkps->bkms', rot_mat, jacobian) else: jacobian_transformed = None return {'value': kp_transformed, 'jacobian': jacobian_transformed} class GeneratorFullModel(torch.nn.Module): """ Merge all generator related updates into single model for better multi-gpu usage """ def __init__(self, kp_extractor, he_estimator, generator, discriminator, train_params, estimate_jacobian=True): super(GeneratorFullModel, self).__init__() self.kp_extractor = kp_extractor self.he_estimator = he_estimator self.generator = generator self.discriminator = discriminator self.train_params = train_params self.scales = train_params['scales'] self.disc_scales = self.discriminator.scales self.pyramid = ImagePyramide(self.scales, generator.image_channel) if torch.cuda.is_available(): self.pyramid = self.pyramid.cuda() self.loss_weights = train_params['loss_weights'] self.estimate_jacobian = estimate_jacobian if sum(self.loss_weights['perceptual']) != 0: self.vgg = Vgg19() if torch.cuda.is_available(): self.vgg = self.vgg.cuda() self.L1 = nn.L1Loss().cuda() if self.loss_weights['headpose'] != 0: self.hopenet = hopenet.Hopenet(models.resnet.Bottleneck, [3, 4, 6, 3], 66) print('Loading hopenet') hopenet_state_dict = torch.load(train_params['hopenet_snapshot']) self.hopenet.load_state_dict(hopenet_state_dict) if torch.cuda.is_available(): self.hopenet = self.hopenet.cuda() self.hopenet.eval() self.jpeger = DiffJPEG(differentiable=False).cuda() self.usm_sharpener = USMSharp().cuda() self.resize_prob = [0.2, 0.7, 0.1] self.resize_range= [0.5, 1.2] self.noise_range = [1, 10] self.poisson_scale_range =[0.05, 1] self.jpeg_range = [10, 25] self.opt_scale = 1 self.resize_prob2 = [0.3, 0.4, 0.3] self.resize_range2= [0.5, 1.2] self.noise_range2 = [1, 10] self.poisson_scale_range2 = [0.05, 1.0] self.jpeg_range2 = [10, 25] def forward(self, x, config): kp_canonical = self.kp_extractor(x['source']) # {'value': value, 'jacobian': jacobian} he_source = self.he_estimator(x['source']) # {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp} he_driving = self.he_estimator(x['driving']) # {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp} # {'value': value, 'jacobian': jacobian} kp_source = keypoint_transformation(kp_canonical, he_source, self.estimate_jacobian) kp_driving = keypoint_transformation(kp_canonical, he_driving, self.estimate_jacobian) if config['train_params']['low_quality_train']: # ----------------------- The first degradation process ----------------------- # # blur # x_source = self.usm_sharpener(x['source']) x_source = x['source'] x_source = filter2D(x_source, x['kernel']) # random resize updown_type = random.choices(['up', 'down', 'keep'], self.resize_prob)[0] if updown_type == 'up': scale = np.random.uniform(1, self.resize_range[1]) elif updown_type == 'down': scale = np.random.uniform(self.resize_range[0], 1) else: scale = 1 mode = random.choice(['area', 'bilinear', 'bicubic']) x_source = F.interpolate(x_source, scale_factor=scale, mode=mode) # add noise gray_noise_prob = 0.4 if np.random.uniform() < 0.5: x_source = random_add_gaussian_noise_pt( x_source, sigma_range=self.noise_range, clip=True, rounds=False, gray_prob=gray_noise_prob) else: x_source = random_add_poisson_noise_pt( x_source, scale_range=self.poisson_scale_range, gray_prob=gray_noise_prob, clip=True, rounds=False) # JPEG compression jpeg_p = x_source.new_zeros(x_source.size(0)).uniform_(*self.jpeg_range) x_source = torch.clamp(x_source, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts x_source = self.jpeger(x_source, quality=jpeg_p) # ----------------------- The second degradation process ----------------------- # # blur if np.random.uniform() < 0.8: x_source = filter2D(x_source, x['kernel2'].cuda()) # random resize updown_type = random.choices(['up', 'down', 'keep'], self.resize_prob2)[0] if updown_type == 'up': scale = np.random.uniform(1, self.resize_range2[1]) elif updown_type == 'down': scale = np.random.uniform(self.resize_range2[0], 1) else: scale = 1 mode = random.choice(['area', 'bilinear', 'bicubic']) x_source = F.interpolate( x_source, size=(int(config['dataset_params']['frame_shape'][0] / self.opt_scale * scale), int(config['dataset_params']['frame_shape'][1] / self.opt_scale * scale)), mode=mode) # add noise gray_noise_prob = 0.4 if np.random.uniform() < 0.5: x_source = random_add_gaussian_noise_pt( x_source, sigma_range=self.noise_range2, clip=True, rounds=False, gray_prob=gray_noise_prob) else: x_source = random_add_poisson_noise_pt( x_source, scale_range=self.poisson_scale_range2, gray_prob=gray_noise_prob, clip=True, rounds=False) # JPEG compression + the final sinc filter # We also need to resize images to desired sizes. We group [resize back + sinc filter] together # as one operation. # We consider two orders: # 1. [resize back + sinc filter] + JPEG compression # 2. JPEG compression + [resize back + sinc filter] # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines. if np.random.uniform() < 0.5: # resize back + the final sinc filter mode = random.choice(['area', 'bilinear', 'bicubic']) x_source = F.interpolate(x_source, size=(config['dataset_params']['frame_shape'][0] // self.opt_scale, config['dataset_params']['frame_shape'][1] // self.opt_scale), mode=mode) x_source = filter2D(x_source, x['sinc_kernel'].cuda()) # JPEG compression jpeg_p = x_source.new_zeros(x_source.size(0)).uniform_(*self.jpeg_range2) x_source = torch.clamp(x_source, 0, 1) x_source = self.jpeger(x_source, quality=jpeg_p) else: # JPEG compression jpeg_p = x_source.new_zeros(x_source.size(0)).uniform_(*self.jpeg_range2) x_source = torch.clamp(x_source, 0, 1) x_source = self.jpeger(x_source, quality=jpeg_p) # resize back + the final sinc filter mode = random.choice(['area', 'bilinear', 'bicubic']) x_source = F.interpolate(x_source, size=(config['dataset_params']['frame_shape'][0] // self.opt_scale, config['dataset_params']['frame_shape'][1] // self.opt_scale), mode=mode) x_source = filter2D(x_source, x['sinc_kernel'].cuda()) # clamp and round lq = torch.clamp((x_source * 255.0).round(), 0, 255) / 255. lq_img = lq.contiguous() generated = self.generator(lq_img, kp_source=kp_source, kp_driving=kp_driving) else: generated = self.generator(x['source'], kp_source=kp_source, kp_driving=kp_driving) generated.update({'kp_source': kp_source, 'kp_driving': kp_driving}) loss_values = {} pyramide_real = self.pyramid(x['driving']) pyramide_generated = self.pyramid(generated['prediction']) if sum(self.loss_weights['perceptual']) != 0: value_total = 0 for scale in self.scales: x_vgg = self.vgg(pyramide_generated['prediction_' + str(scale)]) y_vgg = self.vgg(pyramide_real['prediction_' + str(scale)]) for i, weight in enumerate(self.loss_weights['perceptual']): value = torch.abs(x_vgg[i] - y_vgg[i].detach()).mean() value_total += self.loss_weights['perceptual'][i] * value loss_values['perceptual'] = value_total if self.loss_weights['generator_gan'] != 0: discriminator_maps_generated = self.discriminator(pyramide_generated) discriminator_maps_real = self.discriminator(pyramide_real) value_total = 0 for scale in self.disc_scales: key = 'prediction_map_%s' % scale if self.train_params['gan_mode'] == 'hinge': value = -torch.mean(discriminator_maps_generated[key]) elif self.train_params['gan_mode'] == 'ls': value = ((1 - discriminator_maps_generated[key]) ** 2).mean() else: raise ValueError('Unexpected gan_mode {}'.format(self.train_params['gan_mode'])) value_total += self.loss_weights['generator_gan'] * value loss_values['gen_gan'] = value_total if sum(self.loss_weights['feature_matching']) != 0: value_total = 0 for scale in self.disc_scales: key = 'feature_maps_%s' % scale for i, (a, b) in enumerate(zip(discriminator_maps_real[key], discriminator_maps_generated[key])): if self.loss_weights['feature_matching'][i] == 0: continue value = torch.abs(a - b).mean() value_total += self.loss_weights['feature_matching'][i] * value loss_values['feature_matching'] = value_total if (self.loss_weights['equivariance_value'] + self.loss_weights['equivariance_jacobian']) != 0: transform = Transform(x['driving'].shape[0], **self.train_params['transform_params']) transformed_frame = transform.transform_frame(x['driving']) transformed_he_driving = self.he_estimator(transformed_frame) transformed_kp = keypoint_transformation(kp_canonical, transformed_he_driving, self.estimate_jacobian) generated['transformed_frame'] = transformed_frame generated['transformed_kp'] = transformed_kp ## Value loss part if self.loss_weights['equivariance_value'] != 0: # project 3d -> 2d kp_driving_2d = kp_driving['value'][:, :, :2] transformed_kp_2d = transformed_kp['value'][:, :, :2] value = torch.abs(kp_driving_2d - transform.warp_coordinates(transformed_kp_2d)).mean() loss_values['equivariance_value'] = self.loss_weights['equivariance_value'] * value ## jacobian loss part if self.loss_weights['equivariance_jacobian'] != 0: # project 3d -> 2d transformed_kp_2d = transformed_kp['value'][:, :, :2] transformed_jacobian_2d = transformed_kp['jacobian'][:, :, :2, :2] jacobian_transformed = torch.matmul(transform.jacobian(transformed_kp_2d), transformed_jacobian_2d) jacobian_2d = kp_driving['jacobian'][:, :, :2, :2] normed_driving = torch.inverse(jacobian_2d) normed_transformed = jacobian_transformed value = torch.matmul(normed_driving, normed_transformed) eye = torch.eye(2).view(1, 1, 2, 2).type(value.type()) value = torch.abs(eye - value).mean() loss_values['equivariance_jacobian'] = self.loss_weights['equivariance_jacobian'] * value if self.loss_weights['keypoint'] != 0: # print(kp_driving['value'].shape) # (bs, k, 3) value_total = 0 for i in range(kp_driving['value'].shape[1]): for j in range(kp_driving['value'].shape[1]): dist = F.pairwise_distance(kp_driving['value'][:, i, :], kp_driving['value'][:, j, :], p=2, keepdim=True) ** 2 dist = 0.1 - dist # set Dt = 0.1 dd = torch.gt(dist, 0) value = (dist * dd).mean() value_total += value kp_mean_depth = kp_driving['value'][:, :, -1].mean(-1) value_depth = torch.abs(kp_mean_depth - 0.33).mean() # set Zt = 0.33 value_total += value_depth loss_values['keypoint'] = self.loss_weights['keypoint'] * value_total if self.loss_weights['headpose'] != 0: transform_hopenet = transforms.Compose([transforms.Resize(size=(224, 224)), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) driving_224 = transform_hopenet(x['driving']) yaw_gt, pitch_gt, roll_gt = self.hopenet(driving_224) yaw_gt = headpose_pred_to_degree(yaw_gt) pitch_gt = headpose_pred_to_degree(pitch_gt) roll_gt = headpose_pred_to_degree(roll_gt) yaw, pitch, roll = he_driving['yaw'], he_driving['pitch'], he_driving['roll'] yaw = headpose_pred_to_degree(yaw) pitch = headpose_pred_to_degree(pitch) roll = headpose_pred_to_degree(roll) value = torch.abs(yaw - yaw_gt).mean() + torch.abs(pitch - pitch_gt).mean() + torch.abs(roll - roll_gt).mean() loss_values['headpose'] = self.loss_weights['headpose'] * value if self.loss_weights['expression'] != 0: value = torch.norm(he_driving['exp'], p=1, dim=-1).mean() loss_values['expression'] = self.loss_weights['expression'] * value loss_values['reconstruction'] = self.loss_weights['reconstruction'] * self.L1(generated['prediction'], x['driving']) return loss_values, generated class DiscriminatorFullModel(torch.nn.Module): """ Merge all discriminator related updates into single model for better multi-gpu usage """ def __init__(self, kp_extractor, generator, discriminator, train_params): super(DiscriminatorFullModel, self).__init__() self.kp_extractor = kp_extractor self.generator = generator self.discriminator = discriminator self.train_params = train_params self.scales = self.discriminator.scales self.pyramid = ImagePyramide(self.scales, generator.image_channel) if torch.cuda.is_available(): self.pyramid = self.pyramid.cuda() self.loss_weights = train_params['loss_weights'] self.zero_tensor = None def get_zero_tensor(self, input): if self.zero_tensor is None: self.zero_tensor = torch.FloatTensor(1).fill_(0).cuda() self.zero_tensor.requires_grad_(False) return self.zero_tensor.expand_as(input) def forward(self, x, generated): pyramide_real = self.pyramid(x['driving']) pyramide_generated = self.pyramid(generated['prediction'].detach()) discriminator_maps_generated = self.discriminator(pyramide_generated) discriminator_maps_real = self.discriminator(pyramide_real) loss_values = {} value_total = 0 for scale in self.scales: key = 'prediction_map_%s' % scale if self.train_params['gan_mode'] == 'hinge': value = -torch.mean(torch.min(discriminator_maps_real[key]-1, self.get_zero_tensor(discriminator_maps_real[key]))) - torch.mean(torch.min(-discriminator_maps_generated[key]-1, self.get_zero_tensor(discriminator_maps_generated[key]))) elif self.train_params['gan_mode'] == 'ls': value = ((1 - discriminator_maps_real[key]) ** 2 + discriminator_maps_generated[key] ** 2).mean() else: raise ValueError('Unexpected gan_mode {}'.format(self.train_params['gan_mode'])) value_total += self.loss_weights['discriminator_gan'] * value loss_values['disc_gan'] = value_total return loss_values