from torch import nn import torch.nn.functional as F import torch from modules.util import Hourglass, make_coordinate_grid, kp2gaussian from sync_batchnorm import SynchronizedBatchNorm3d as BatchNorm3d class DenseMotionNetwork(nn.Module): """ Module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving """ def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, estimate_occlusion_map=False): super(DenseMotionNetwork, self).__init__() # self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(feature_channel+1), max_features=max_features, num_blocks=num_blocks) self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) self.norm = BatchNorm3d(compress, affine=True) if estimate_occlusion_map: # self.occlusion = nn.Conv2d(reshape_channel*reshape_depth, 1, kernel_size=7, padding=3) self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3) else: self.occlusion = None self.num_kp = num_kp def create_sparse_motions(self, feature, kp_driving, kp_source): bs, _, d, h, w = feature.shape identity_grid = make_coordinate_grid((d, h, w), type=kp_source['value'].type()) identity_grid = identity_grid.view(1, 1, d, h, w, 3) coordinate_grid = identity_grid - kp_driving['value'].view(bs, self.num_kp, 1, 1, 1, 3) k = coordinate_grid.shape[1] # if 'jacobian' in kp_driving: if 'jacobian' in kp_driving and kp_driving['jacobian'] is not None: jacobian = torch.matmul(kp_source['jacobian'], torch.inverse(kp_driving['jacobian'])) jacobian = jacobian.unsqueeze(-3).unsqueeze(-3).unsqueeze(-3) jacobian = jacobian.repeat(1, 1, d, h, w, 1, 1) coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1)) coordinate_grid = coordinate_grid.squeeze(-1) ''' if 'rot' in kp_driving: rot_s = kp_source['rot'] rot_d = kp_driving['rot'] rot = torch.einsum('bij, bjk->bki', rot_s, torch.inverse(rot_d)) rot = rot.unsqueeze(-3).unsqueeze(-3).unsqueeze(-3).unsqueeze(-3) rot = rot.repeat(1, k, d, h, w, 1, 1) # print(rot.shape) coordinate_grid = torch.matmul(rot, coordinate_grid.unsqueeze(-1)) coordinate_grid = coordinate_grid.squeeze(-1) # print(coordinate_grid.shape) ''' driving_to_source = coordinate_grid + kp_source['value'].view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3) #adding background feature identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1) sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) # sparse_motions = driving_to_source return sparse_motions def create_deformed_feature(self, feature, sparse_motions): bs, _, d, h, w = feature.shape feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w) feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w) sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3) sparse_deformed = F.grid_sample(feature_repeat, sparse_motions) sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w) return sparse_deformed def create_heatmap_representations(self, feature, kp_driving, kp_source): spatial_size = feature.shape[3:] gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) heatmap = gaussian_driving - gaussian_source # adding background feature zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()) heatmap = torch.cat([zeros, heatmap], dim=1) heatmap = heatmap.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w) return heatmap def forward(self, feature, kp_driving, kp_source): bs, _, d, h, w = feature.shape feature = self.compress(feature) feature = self.norm(feature) feature = F.relu(feature) out_dict = dict() sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) deformed_feature = self.create_deformed_feature(feature, sparse_motion) heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) input = torch.cat([heatmap, deformed_feature], dim=2) input = input.view(bs, -1, d, h, w) # input = deformed_feature.view(bs, -1, d, h, w) # (bs, num_kp+1 * c, d, h, w) prediction = self.hourglass(input) mask = self.mask(prediction) mask = F.softmax(mask, dim=1) out_dict['mask'] = mask mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w) sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w) deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3) out_dict['deformation'] = deformation if self.occlusion: bs, c, d, h, w = prediction.shape prediction = prediction.view(bs, -1, h, w) occlusion_map = torch.sigmoid(self.occlusion(prediction)) out_dict['occlusion_map'] = occlusion_map return out_dict