import csv import os from typing import Dict, List import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks) _DATASETNAME = "su_id_asr" _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME _LANGUAGES = ["sun"] _LOCAL = False _CITATION = """\ @inproceedings{sodimana18_sltu, author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha}, title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}}, year=2018, booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)}, pages={66--70}, doi={10.21437/SLTU.2018-14} } """ _DESCRIPTION = """\ Test """ _HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr" _LICENSE = "Attribution-ShareAlike 4.0 International." _URLs = { "su_id_asr": "https://www.openslr.org/resources/36/asr_sundanese_{}.zip", } _SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" GROUP_DATASET_ID = 6 class SuIdASR(datasets.GeneratorBasedBuilder): """su_id contains ~220K utterances for Sundanese ASR training data.""" BUILDER_CONFIGS = [ SEACrowdConfig( name="su_id_asr_source", version=datasets.Version(_SOURCE_VERSION), description="SU_ID_ASR source schema", schema="source", subset_id="su_id_asr", ), SEACrowdConfig( name="su_id_asr_seacrowd_sptext", version=datasets.Version(_SEACROWD_VERSION), description="SU_ID_ASR Nusantara schema", schema="seacrowd_sptext", subset_id="su_id_asr", ), ] DEFAULT_CONFIG_NAME = "su_id_asr_source" def _info(self): if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "path": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "text": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_sptext": features = schemas.speech_text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: base_path = {} base_path[id] = dl_manager.download_and_extract(_URLs["su_id_asr"].format(str(GROUP_DATASET_ID))) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{base_path}/train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": f"{base_path}/validation"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": f"{base_path}/test"}, ), ] def _generate_examples(self, filepath: Dict): if self.config.schema == "source" or self.config.schema == "seacrowd_sptext": # Iterate through the dictionary that contains split paths for split, each_filepath in filepath.items(): tsv_file = os.path.join(each_filepath, "asr_sundanese", "utt_spk_text.tsv") with open(tsv_file, "r") as file: tsv_reader = csv.reader(file, delimiter="\t") for line in tsv_reader: audio_id, speaker_id, transcription_text = line[0], line[1], line[2] wav_path = os.path.join(each_filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id)) if os.path.exists(wav_path): if self.config.schema == "source": ex = { "id": audio_id, "speaker_id": speaker_id, "path": wav_path, "audio": wav_path, "text": transcription_text, } yield audio_id, ex elif self.config.schema == "seacrowd_sptext": ex = { "id": audio_id, "speaker_id": speaker_id, "path": wav_path, "audio": wav_path, "text": transcription_text, "metadata": { "speaker_age": None, "speaker_gender": None, }, } yield audio_id, ex else: raise ValueError(f"Invalid config: {self.config.name}")