# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TupleInf Open IE Dataset""" import os import datasets _CITATION = """\ @article{Khot2017AnsweringCQ, title={Answering Complex Questions Using Open Information Extraction}, author={Tushar Khot and A. Sabharwal and Peter Clark}, journal={ArXiv}, year={2017}, volume={abs/1704.05572} } """ _DESCRIPTION = """\ The TupleInf Open IE dataset contains Open IE tuples extracted from 263K sentences that were used by the solver \ in “Answering Complex Questions Using Open Information Extraction” (referred as Tuple KB, T). \ These sentences were collected from a large Web corpus using training questions from 4th and 8th grade as queries. \ This dataset contains 156K sentences collected for 4th grade questions and 107K sentences for 8th grade questions. \ Each sentence is followed by the Open IE v4 tuples using their simple format. """ _HOMEPAGE = "https://allenai.org/data/tuple-ie" _URL = "https://ai2-datasets.s3-us-west-2.amazonaws.com/tuple-ie/TupleInfKB.zip" _DOMAIN_FILES = {"4th_grade": "4thGradeOpenIE.txt", "8th_grade": "8thGradeOpenIE.txt"} class TupleIEConfig(datasets.BuilderConfig): """BuilderConfig for TupleIE""" def __init__(self, *args, domains=None, **kwargs): super().__init__(*args, **kwargs) self.domains = domains class TupleIE(datasets.GeneratorBasedBuilder): """TupleInf Open IE Dataset""" BUILDER_CONFIGS = [ TupleIEConfig( name="all", domains=list(_DOMAIN_FILES.keys()), description="collected using training questions from 4th and 8th grade as queries.", ) ] + [ TupleIEConfig( name=name, domains=[name], description=f"collected using training questions from {name} as queries." ) for name in _DOMAIN_FILES.keys() ] BUILDER_CONFIG_CLASS = TupleIEConfig DEFAULT_CONFIG_NAME = "all" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "sentence": datasets.Value("string"), "tuples": datasets.features.Sequence( { "score": datasets.Value("float"), "tuple_text": datasets.Value("string"), "context": datasets.Value("string"), "arg1": datasets.Value("string"), "rel": datasets.Value("string"), "arg2s": datasets.features.Sequence(datasets.Value("string")), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = os.path.join(dl_manager.download_and_extract(_URL), "TupleInfKB") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir}, ) ] def _generate_examples(self, data_dir): """Yields examples.""" id_ = -1 for domain in self.config.domains: with open(os.path.join(data_dir, _DOMAIN_FILES[domain]), encoding="utf-8") as f: all_text = f.read() samples = all_text.split("\n\n") for sample in samples: rows = sample.split("\n") item = {"sentence": rows[0], "tuples": []} tuple_lines = rows[1:] for tuple_line in tuple_lines: score, tuple_text = tuple_line.split(" ", 1) context, arg1, rel, arg2s = self._decode_tuple_text(tuple_text) item["tuples"].append( { "score": score, "tuple_text": tuple_text, "context": context, "arg1": arg1, "rel": rel, "arg2s": arg2s, } ) id_ += 1 yield id_, item def _decode_tuple_text(self, tuple_text): """Decompose the tuple text into arguments and relations Args: tuple_text (str): Format of extraction text: .. code-block:: {Context():}(; ; {[L|T]:}; {[L|T]:}; ...) .. note:: * ``{}`` means one can be optionally appear * ``[L|T]`` means ``L`` or ``T`` * ``L`` means spatial/location argument * ``T`` means temporal argument * We can have multiple arg2s """ context = "" arg1 = "" rel = "" arg2s = [] if tuple_text.startswith("Context("): context, tuple_text = tuple_text.split(":", 1) context = context[len("Context(") : -1] args = tuple_text[1:-1].split("; ") arg1, rel = args[:2] arg2s = args[2:] return context, arg1, rel, arg2s