diff --git "a/all/deepmind_mathematics_algebra.json" "b/all/deepmind_mathematics_algebra.json" deleted file mode 100644--- "a/all/deepmind_mathematics_algebra.json" +++ /dev/null @@ -1,16805 +0,0 @@ -{ - "Source": [ - "mathematics" - ], - "Categories": [ - { - "Math complexity": 4, - "Language complexity": 7, - "Domain knowledge complexity": 3 - } - ], - "Instances": [ - { - "Input": "Solve 2*v + 762843*d = 762846*d + 59, -d + 7 = -14*v for v.", - "Output Program": [ - "from sympy import *\nv, d = symbols(\"v d\")\nv = solve([Eq(2*v + 762843*d, 762846*d + 59), Eq(-d + 7, -14*v)])[v]\nprint(v)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Suppose 3*a + z = -4, a - 12 = -3*a + 3*z. Suppose -5*o = -s - a - 4, 3*s - 16 = o. Is 3 a factor of s?", - "Output Program": [ - "from sympy import *\na, z = symbols(\"a z\")\na = solve([Eq(3*a + z, -4), Eq(a - 12, -3*a + 3*z)])[a]\ns, o = symbols(\"s o\")\ns = solve([Eq(-5*o, -s - a - 4), Eq(3*s - 16, o)])[s]\nprint(6 % 3 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Solve 72*p + 112 + 824 = 0 for p.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\np = solve([Eq(72*p + 112 + 824, 0)])[p]\nprint(p)" - ], - "Output Answer": [ - "-13" - ], - "split": "train" - }, - { - "Input": "Solve 3858464*h = 3858505*h + 2583 for h.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\nh = solve([Eq(3858464*h, 3858505*h + 2583)])[h]\nprint(h)" - ], - "Output Answer": [ - "-63" - ], - "split": "train" - }, - { - "Input": "Let s be (-2)/6 - 2985/(-45). Let m be 14/49 - s/(-14). Suppose -m*t + 159 = 3*g, -g - g - t = -99. Is 20 a factor of g?", - "Output Program": [ - "from sympy import *\ns = (-2)/6 - 2985/(-45)\nm = 14/49 - s/(-14)\ng, t = symbols(\"g t\")\ng = solve([Eq(-m*t + 159, 3*g), Eq(-g - g - t, -99)])[g]\nprint(48 % 20 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 0? (a) -2/199 (b) -5 (c) 41", - "Output Program": [ - "from sympy import *\nchoices = [-2/199, -5, 41]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.010050251256281407" - ], - "split": "train" - }, - { - "Input": "Let s = 24 - 1. Let h(r) = s - 7 - 13 - 3*r. Suppose 7*x - 2*x = -15. Determine h(x).", - "Output Program": [ - "from sympy import *\ns = 24 - 1\nr = symbols(\"r\")\ndef h(r):\n\treturn s - 7 - 13 - 3*r\nx = symbols(\"x\")\nx = solve([Eq(7*x - 2*x, -15)])[x]\nprint(h(x))" - ], - "Output Answer": [ - "12" - ], - "split": "train" - }, - { - "Input": "Let c = 443 - 363.6. Let s = c - 79. What is the nearest to 0 in s, -0.2, -3/2?", - "Output Program": [ - "from sympy import *\nc = 443 - 363.6\ns = c - 79\nchoices = [s, -0.2, -3/2]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.2" - ], - "split": "train" - }, - { - "Input": "Solve 12*t**4/7 + 51*t**3/7 + 24*t**2/7 - 69*t/7 - 18/7 = 0.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef k(t):\n\treturn 12*t**4/7 + 51*t**3/7 + 24*t**2/7 - 69*t/7 - 18/7\nt = symbols(\"t\")\nt = solve(12*t**4/7 + 51*t**3/7 + 24*t**2/7 - 69*t/7 - 18/7)\nprint(t)" - ], - "Output Answer": [ - "[-3.00000000000000, -2.00000000000000, -0.250000000000000, 1.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Is 7178 a multiple of 27?", - "Output Program": [ - "from sympy import *\nprint(7178 % 27 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Solve 0 = -21*h - 5*r + 84, 63*h - 5*r - 8 = 61*h for h.", - "Output Program": [ - "from sympy import *\nh, r = symbols(\"h r\")\nh = solve([Eq(0, -21*h - 5*r + 84), Eq(63*h - 5*r - 8, 61*h)])[h]\nprint(h)" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Is 44 a factor of 121264?", - "Output Program": [ - "from sympy import *\nprint(121264 % 44 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "What is the fourth root of 10096 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(10096 ** (1 / 4))))" - ], - "Output Answer": [ - "10" - ], - "split": "train" - }, - { - "Input": "Which is greater: -1337 or 1/2?", - "Output Program": [ - "from sympy import *\nprint(max(-1337, 1/2))" - ], - "Output Answer": [ - "0.5" - ], - "split": "train" - }, - { - "Input": "Let l = 0.4 + 0.1. Let r be 1/(2/(-4))*1. What is the closest to r in -2, 3, l?", - "Output Program": [ - "from sympy import *\nr = 1/(2/(-4))*1\nl = 0.4 + 0.1\nchoices = [-2, 3, l]\ntarget = r\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Put -3, 3, -2, 1, 398, -343, -5 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-3, 3, -2, 1, 398, -343, -5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "398 3 1 -2 -3 -5 -343" - ], - "split": "train" - }, - { - "Input": "Is 2/1547 greater than or equal to 0?", - "Output Program": [ - "from sympy import *\nprint(2/1547 >= 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let k = -5940 - -9306. Is k a multiple of 118?", - "Output Program": [ - "from sympy import *\nk = -5940 - -9306\nprint(3366 % 118 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let q(n) = 8 + n - 8. Let z be q(-5). Let i(t) = 5*t**3 - 3*t. Let s(h) = 7*h**3 - 5*h. Let g(v) = z*s(v) + 8*i(v). Give g(-1).", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef q(n):\n\treturn 8 + n - 8\nz = q(-5)\nh = symbols(\"h\")\ndef s(h):\n\treturn 7*h**3 - 5*h\nt = symbols(\"t\")\ndef i(t):\n\treturn 5*t**3 - 3*t\ndef g(v):\n\treturn z*s(v) + 8*i(v)\nprint(g(-1))" - ], - "Output Answer": [ - "-6" - ], - "split": "train" - }, - { - "Input": "Let m(w) = 5*w**2 - 72264*w - 289048. Calculate m(-4).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef m(w):\n\treturn 5*w**2 - 72264*w - 289048\nprint(m(-4))" - ], - "Output Answer": [ - "88" - ], - "split": "train" - }, - { - "Input": "Let j = -29 + 29. Let n be (j - 1)/(17/(-85)). Let d = 2 + 0. Solve 3*k + d*b - n = 0, b + b = k - 7 for k.", - "Output Program": [ - "from sympy import *\nj = -29 + 29\nn = (j - 1)/(17/(-85))\nd = 2 + 0\nk, b = symbols(\"k b\")\nk = solve([Eq(3*k + d*b - n, 0), Eq(b + b, k - 7)])[k]\nprint(k)" - ], - "Output Answer": [ - "3.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let f be 2/2 + 2/(-1). Let d = f + 5. Let b be d + -5 + -1 + 12. Solve 2*s + p + p = 12, -s = -3*p + b for s.", - "Output Program": [ - "from sympy import *\nf = 2/2 + 2/(-1)\nd = f + 5\nb = d + -5 + -1 + 12\ns, p = symbols(\"s p\")\ns = solve([Eq(2*s + p + p, 12), Eq(-s, -3*p + b)])[s]\nprint(s)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Suppose -4*d = 8 - 8. Is -0.5 bigger than d?", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\nd = solve([Eq(-4*d, 8 - 8)])[d]\nprint(-0.5 > d)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (2*((sqrt(6) - (sqrt(84)/sqrt(2))/sqrt(7)) + -2*sqrt(486))/(sqrt(54)/sqrt(2)*-1))**2*-2*1.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((2*((sqrt(6) - (sqrt(84)/sqrt(2))/sqrt(7)) + -2*sqrt(486))/(sqrt(54)/sqrt(2)*-1))**2*-2*1)))" - ], - "Output Answer": [ - "-576" - ], - "split": "train" - }, - { - "Input": "Let m = 1543.5 - 1543. Put m, 1.33, -5 in increasing order.", - "Output Program": [ - "from sympy import *\nm = 1543.5 - 1543\nchoices = [m, 1.33, -5]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 0.5 1.33" - ], - "split": "train" - }, - { - "Input": "Solve -142*k + 3304 + 198 = -48 for k.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\nk = solve([Eq(-142*k + 3304 + 198, -48)])[k]\nprint(k)" - ], - "Output Answer": [ - "25" - ], - "split": "train" - }, - { - "Input": "Let l = -14655 + 14655.5. Put -1.8, -0.4, -3/10, 0.1, l in decreasing order.", - "Output Program": [ - "from sympy import *\nl = -14655 + 14655.5\nchoices = [-1.8, -0.4, -3/10, 0.1, l]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.5 0.1 -0.3 -0.4 -1.8" - ], - "split": "train" - }, - { - "Input": "Simplify (-1*sqrt(288) + (sqrt(20)*2)/sqrt(10) + sqrt(8)/(sqrt(900) + sqrt(36) - sqrt(36)))**2*-2*2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-1*sqrt(288) + (sqrt(20)*2)/sqrt(10) + sqrt(8)/(sqrt(900) + sqrt(36) - sqrt(36)))**2*-2*2)))" - ], - "Output Answer": [ - "-177608/225" - ], - "split": "train" - }, - { - "Input": "Let s(x) = -x - 23. Let q = 25 - 30. Let b(f) = f**2 + 7*f - 13. Let r be b(q). Let w be s(r). Is 6/43 greater than w?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef s(x):\n\treturn -x - 23\nf = symbols(\"f\")\ndef b(f):\n\treturn f**2 + 7*f - 13\nq = 25 - 30\nr = b(q)\nw = s(r)\nprint(6/43 > w)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(7) - (sqrt(7) + -3 + 4 + sqrt(7))**2 - (sqrt(7) + -4*(sqrt(7) - sqrt(63)/sqrt(9))**2).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(7) - (sqrt(7) + -3 + 4 + sqrt(7))**2 - (sqrt(7) + -4*(sqrt(7) - sqrt(63)/sqrt(9))**2))))" - ], - "Output Answer": [ - "-29 - 4*sqrt(7)" - ], - "split": "train" - }, - { - "Input": "Let j be (-10)/(-4) + (-1)/2. Let m = -13 - -14. Let s be 4 + 3 - (j + m). Solve 0 = -5*h - 20, 11 = s*f - h - 13 for f.", - "Output Program": [ - "from sympy import *\nm = -13 - -14\nj = (-10)/(-4) + (-1)/2\ns = 4 + 3 - (j + m)\nf, h = symbols(\"f h\")\nf = solve([Eq(0, -5*h - 20), Eq(11, s*f - h - 13)])[f]\nprint(f)" - ], - "Output Answer": [ - "5.00000000000000" - ], - "split": "train" - }, - { - "Input": "Which is bigger: -4223 or -4218?", - "Output Program": [ - "from sympy import *\nprint(max(-4223, -4218))" - ], - "Output Answer": [ - "-4218" - ], - "split": "train" - }, - { - "Input": "Let n = 0.3 - 1.3. Let j = n + 2. Let b = j + 1. Sort 4/3, 1, b in decreasing order.", - "Output Program": [ - "from sympy import *\nn = 0.3 - 1.3\nj = n + 2\nb = j + 1\nchoices = [4/3, 1, b]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "2.0 1.3333333333333333 1" - ], - "split": "train" - }, - { - "Input": "Let k = -5.5 + -0.5. Let v = -15.36 - -11.7. Let z = v + -1.34. What is the nearest to 0.1 in k, z, 0.5?", - "Output Program": [ - "from sympy import *\nk = -5.5 + -0.5\nv = -15.36 - -11.7\nz = v + -1.34\nchoices = [k, z, 0.5]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.5" - ], - "split": "train" - }, - { - "Input": "Simplify -2*(((sqrt(320)/sqrt(8))/sqrt(8) - sqrt(5)) + sqrt(125)*3 + sqrt(5) + (4*-1*sqrt(5) - (-3 + sqrt(245)))).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-2*(((sqrt(320)/sqrt(8))/sqrt(8) - sqrt(5)) + sqrt(125)*3 + sqrt(5) + (4*-1*sqrt(5) - (-3 + sqrt(245)))))))" - ], - "Output Answer": [ - "-10*sqrt(5) - 6" - ], - "split": "train" - }, - { - "Input": "Solve 0 = 107*o + 338*o + 4895 for o.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\no = solve([Eq(0, 107*o + 338*o + 4895)])[o]\nprint(o)" - ], - "Output Answer": [ - "-11" - ], - "split": "train" - }, - { - "Input": "Let n = -7 - -21. Are -2 and n unequal?", - "Output Program": [ - "from sympy import *\nn = -7 - -21\nprint(-2 != n)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Solve 46 + 25 = -21*k - 118 for k.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\nk = solve([Eq(46 + 25, -21*k - 118)])[k]\nprint(k)" - ], - "Output Answer": [ - "-9" - ], - "split": "train" - }, - { - "Input": "Suppose -s + 2 = a - 0*s, 3*s - 2 = -2*a. Suppose -a = -19*x + 17*x. Solve x = -2*w - 0 for w.", - "Output Program": [ - "from sympy import *\na, s = symbols(\"a s\")\na = solve([Eq(-s + 2, a - 0*s), Eq(3*s - 2, -2*a)])[a]\nx = symbols(\"x\")\nx = solve([Eq(-a, -19*x + 17*x)])[x]\nw = symbols(\"w\")\nw = solve([Eq(x, -2*w - 0)])[w]\nprint(w)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Solve 3*o**2/7 - 21939*o/7 - 29428254/7 = 0 for o.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef t(o):\n\treturn 3*o**2/7 - 21939*o/7 - 29428254/7\no = symbols(\"o\")\no = solve(3*o**2/7 - 21939*o/7 - 29428254/7)\nprint(o)" - ], - "Output Answer": [ - "[-1158.00000000000, 8471.00000000000]" - ], - "split": "train" - }, - { - "Input": "Let r be (-25)/175 + (-54)/(-182). Is 0.08 greater than or equal to r?", - "Output Program": [ - "from sympy import *\nr = (-25)/175 + (-54)/(-182)\nprint(0.08 >= r)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Suppose 2*g + 2*t - 8 = 0, 4*g + 5*t - 2 - 13 = 0. Suppose 0 = g*s - 0*s. Solve s = 5*z - 11 - 9 for z.", - "Output Program": [ - "from sympy import *\ng, t = symbols(\"g t\")\ng = solve([Eq(2*g + 2*t - 8, 0), Eq(4*g + 5*t - 2 - 13, 0)])[g]\ns = symbols(\"s\")\ns = solve([Eq(0, g*s - 0*s)])[s]\nz = symbols(\"z\")\nz = solve([Eq(s, 5*z - 11 - 9)])[z]\nprint(z)" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Solve -369*l - 24 = -357*l for l.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\nl = solve([Eq(-369*l - 24, -357*l)])[l]\nprint(l)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "What is 9101 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(9101 ** (1 / 2))))" - ], - "Output Answer": [ - "95" - ], - "split": "train" - }, - { - "Input": "Let t = 5 + -9. Let g be (4 + -1)/(174/t). Let n = g + 37/116. Which is the nearest to -1/4? (a) n (b) 5 (c) 4", - "Output Program": [ - "from sympy import *\nt = 5 + -9\ng = (4 + -1)/(174/t)\nn = g + 37/116\nchoices = [n, 5, 4]\ntarget = -1/4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.25" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(19) + sqrt(19) + (-5 + sqrt(133)/sqrt(7) - sqrt(19) - sqrt(19)) + sqrt(19) + (1 + sqrt(2299))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(19) + sqrt(19) + (-5 + sqrt(133)/sqrt(7) - sqrt(19) - sqrt(19)) + sqrt(19) + (1 + sqrt(2299))**2)))" - ], - "Output Answer": [ - "24*sqrt(19) + 2295" - ], - "split": "train" - }, - { - "Input": "What is the square root of 108859292 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(108859292 ** (1 / 2))))" - ], - "Output Answer": [ - "10434" - ], - "split": "train" - }, - { - "Input": "Sort 1115, 2, -7 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [1115, 2, -7]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-7 2 1115" - ], - "split": "train" - }, - { - "Input": "Let v = -218 + 219. Is v at least 4/745?", - "Output Program": [ - "from sympy import *\nv = -218 + 219\nprint(v >= 4/745)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let v = -0.65 - -0.45. Which is the nearest to 1? (a) 3/11 (b) -4 (c) v", - "Output Program": [ - "from sympy import *\nv = -0.65 - -0.45\nchoices = [3/11, -4, v]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.2727272727272727" - ], - "split": "train" - }, - { - "Input": "Is 5 a factor of 331350?", - "Output Program": [ - "from sympy import *\nprint(331350 % 5 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "What is the cube root of 151175744 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(151175744 ** (1 / 3))))" - ], - "Output Answer": [ - "533" - ], - "split": "train" - }, - { - "Input": "Let q = 269 + -234. Solve -4*p + q = 5*t, 2*t + 2*t = -5*p + 37 for t.", - "Output Program": [ - "from sympy import *\nq = 269 + -234\nt, p = symbols(\"t p\")\nt = solve([Eq(-4*p + q, 5*t), Eq(2*t + 2*t, -5*p + 37)])[t]\nprint(t)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Suppose 4*j = -4*i + 20, -3*j + 38*i = 36*i - 25. Solve j = -w + 2*n, -8*w - n + 4 = -9*w for w.", - "Output Program": [ - "from sympy import *\nj, i = symbols(\"j i\")\nj = solve([Eq(4*j, -4*i + 20), Eq(-3*j + 38*i, 36*i - 25)])[j]\nw, n = symbols(\"w n\")\nw = solve([Eq(j, -w + 2*n), Eq(-8*w - n + 4, -9*w)])[w]\nprint(w)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Let j(w) = -1517*w - 52. Is j(-2) a multiple of 30?", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef j(w):\n\treturn -1517*w - 52\no = j(-2)\nprint(2982 % 30 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Sort 1, 8987, -91 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [1, 8987, -91]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-91 1 8987" - ], - "split": "train" - }, - { - "Input": "Factor 3*q**3/2 + 387*q**2 - 82377*q/2.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef v(q):\n\treturn 3*q**3/2 + 387*q**2 - 82377*q/2\nq = symbols(\"q\")\neq = factor(3*q**3/2 + 387*q**2 - 82377*q/2)\nprint(eq)" - ], - "Output Answer": [ - "3*q*(q - 81)*(q + 339)/2" - ], - "split": "train" - }, - { - "Input": "Let u(d) = -d**3 - 12*d**2 + d + 12. Calculate u(-12).", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef u(d):\n\treturn -d**3 - 12*d**2 + d + 12\nprint(u(-12))" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Find f, given that 3*f**2 - 4917123*f + 172095630 = 0.", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\ndef j(f):\n\treturn 3*f**2 - 4917123*f + 172095630\nf = symbols(\"f\")\nf = solve(3*f**2 - 4917123*f + 172095630)\nprint(f)" - ], - "Output Answer": [ - "[35, 1639006]" - ], - "split": "train" - }, - { - "Input": "Is 0 smaller than -20/913093?", - "Output Program": [ - "from sympy import *\nprint(0 < -20/913093)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(171) + 2*(-4*sqrt(171) - sqrt(171)))**2 + -2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(171) + 2*(-4*sqrt(171) - sqrt(171)))**2 + -2)))" - ], - "Output Answer": [ - "13849" - ], - "split": "train" - }, - { - "Input": "Is 3/64208764 at least as big as -1/3?", - "Output Program": [ - "from sympy import *\nprint(3/64208764 >= -1/3)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let a be ((-9120)/5500)/((-3)/40). Let h = -65/11 + a. Are h and 16 equal?", - "Output Program": [ - "from sympy import *\na = ((-9120)/5500)/((-3)/40)\nh = -65/11 + a\nprint(h == 16)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (3 + (-5 + sqrt(32)*1 + sqrt(32))*5)**2 - 1*((((sqrt(200) + -1 - sqrt(200)) + sqrt(200))*1)**2 + sqrt(200) - (4 + 2*sqrt(200))).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((3 + (-5 + sqrt(32)*1 + sqrt(32))*5)**2 - 1*((((sqrt(200) + -1 - sqrt(200)) + sqrt(200))*1)**2 + sqrt(200) - (4 + 2*sqrt(200))))))" - ], - "Output Answer": [ - "3487 - 1730*sqrt(2)" - ], - "split": "train" - }, - { - "Input": "Put -5, -2726, -10, -23, 3 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-5, -2726, -10, -23, 3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2726 -23 -10 -5 3" - ], - "split": "train" - }, - { - "Input": "Let i(a) = -a**2 - 5*a + 18. Determine i(-10).", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef i(a):\n\treturn -a**2 - 5*a + 18\nprint(i(-10))" - ], - "Output Answer": [ - "-32" - ], - "split": "train" - }, - { - "Input": "Which is greater: 0 or 1058/65663?", - "Output Program": [ - "from sympy import *\nprint(max(0, 1058/65663))" - ], - "Output Answer": [ - "0.01611257481382209" - ], - "split": "train" - }, - { - "Input": "Let v be (-76)/(-2) - ((-6 - -15) + -5). Solve v*a = 30*a - 16 for a.", - "Output Program": [ - "from sympy import *\nv = (-76)/(-2) - ((-6 - -15) + -5)\na = symbols(\"a\")\na = solve([Eq(v*a, 30*a - 16)])[a]\nprint(a)" - ], - "Output Answer": [ - "-4.00000000000000" - ], - "split": "train" - }, - { - "Input": "Solve -99*l = -32 + 416 + 309 for l.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\nl = solve([Eq(-99*l, -32 + 416 + 309)])[l]\nprint(l)" - ], - "Output Answer": [ - "-7" - ], - "split": "train" - }, - { - "Input": "What is the nearest to 0.7 in -3, 2.4, 0.1?", - "Output Program": [ - "from sympy import *\nchoices = [-3, 2.4, 0.1]\ntarget = 0.7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "train" - }, - { - "Input": "Let q be ((-2)/3)/(3/(-9)). Suppose 2*p - 16 = -q*j, 3*j - 2*p + 9 = 33. Is j a multiple of 4?", - "Output Program": [ - "from sympy import *\nq = ((-2)/3)/(3/(-9))\nj, p = symbols(\"j p\")\nj = solve([Eq(2*p - 16, -q*j), Eq(3*j - 2*p + 9, 33)])[j]\nprint(8 % 4 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Which is greater: -993 or -990?", - "Output Program": [ - "from sympy import *\nprint(max(-993, -990))" - ], - "Output Answer": [ - "-990" - ], - "split": "train" - }, - { - "Input": "Let z = -19229 - -19382. Solve -69*r + 330 = -z for r.", - "Output Program": [ - "from sympy import *\nz = -19229 - -19382\nr = symbols(\"r\")\nr = solve([Eq(-69*r + 330, -z)])[r]\nprint(r)" - ], - "Output Answer": [ - "7" - ], - "split": "train" - }, - { - "Input": "Let o = 5 + 15. Suppose x + 5 = -2*q, q = -3*x - x - o. Let j be (-15)/20*(-1)/3. Which is the closest to j? (a) x (b) 6 (c) 0.5", - "Output Program": [ - "from sympy import *\nj = (-15)/20*(-1)/3\no = 5 + 15\nx, q = symbols(\"x q\")\nx = solve([Eq(x + 5, -2*q), Eq(q, -3*x - x - o)])[x]\nchoices = [x, 6, 0.5]\ntarget = j\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.5" - ], - "split": "train" - }, - { - "Input": "Let g(x) = -1285*x - 6874. Let z be g(-7). Solve 0 = z*r - 2129*r for r.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef g(x):\n\treturn -1285*x - 6874\nz = g(-7)\nr = symbols(\"r\")\nr = solve([Eq(0, z*r - 2129*r)])[r]\nprint(r)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "What is 226849 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(226849 ** (1 / 3))))" - ], - "Output Answer": [ - "61" - ], - "split": "train" - }, - { - "Input": "Which is the closest to -2/31201? (a) 34 (b) 0.1 (c) -4.2", - "Output Program": [ - "from sympy import *\nchoices = [34, 0.1, -4.2]\ntarget = -2/31201\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "train" - }, - { - "Input": "Let q be (-2)/8*(-24)/5. Suppose -n + 3213 = -18*n. Let l be (-15)/35 - (5 + 984/n). Put q, l, -2 in ascending order.", - "Output Program": [ - "from sympy import *\nq = (-2)/8*(-24)/5\nn = symbols(\"n\")\nn = solve([Eq(-n + 3213, -18*n)])[n]\nl = (-15)/35 - (5 + 984/n)\nchoices = [q, l, -2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2 -0.222222222222222 1.2" - ], - "split": "train" - }, - { - "Input": "Simplify ((sqrt(312)*1*4)/sqrt(8))/((2*sqrt(576) - sqrt(576) - sqrt(36))/sqrt(12)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((sqrt(312)*1*4)/sqrt(8))/((2*sqrt(576) - sqrt(576) - sqrt(36))/sqrt(12)))))" - ], - "Output Answer": [ - "4*sqrt(13)/3" - ], - "split": "train" - }, - { - "Input": "Let y(z) = -11*z**2 - 1015*z + 5345. What is y(5)?", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef y(z):\n\treturn -11*z**2 - 1015*z + 5345\nprint(y(5))" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Which is the closest to -32? (a) 0.2 (b) 1 (c) -0.1", - "Output Program": [ - "from sympy import *\nchoices = [0.2, 1, -0.1]\ntarget = -32\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "train" - }, - { - "Input": "Sort 3, 177, -1, 1 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [3, 177, -1, 1]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1 1 3 177" - ], - "split": "train" - }, - { - "Input": "Suppose 5*y = 8*u + 5, 3*u - 5*y = -2*u - 5. Suppose 0 = 4*f - 2*f - 4. Suppose -16 = -4*o - 2*k - f*k, -12 = -o - 5*k. Solve u*q = o*q for q.", - "Output Program": [ - "from sympy import *\nu, y = symbols(\"u y\")\nu = solve([Eq(5*y, 8*u + 5), Eq(3*u - 5*y, -2*u - 5)])[u]\nf = symbols(\"f\")\nf = solve([Eq(0, 4*f - 2*f - 4)])[f]\no, k = symbols(\"o k\")\no = solve([Eq(-16, -4*o - 2*k - f*k), Eq(-12, -o - 5*k)])[o]\nq = symbols(\"q\")\nq = solve([Eq(u*q, o*q)])[q]\nprint(q)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Solve 1065*z + 125096 = 404*z - 985*z for z.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(1065*z + 125096, 404*z - 985*z)])[z]\nprint(z)" - ], - "Output Answer": [ - "-76" - ], - "split": "train" - }, - { - "Input": "Sort -3, 60, 4 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-3, 60, 4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "60 4 -3" - ], - "split": "train" - }, - { - "Input": "Suppose -c**2/3 + 4*c/3 = 0. What is c?", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef s(c):\n\treturn -c**2/3 + 4*c/3\nc = symbols(\"c\")\nc = solve(-c**2/3 + 4*c/3)\nprint(c)" - ], - "Output Answer": [ - "[0, 4]" - ], - "split": "train" - }, - { - "Input": "Simplify (-1 + (-4*(sqrt(272) + -1 + sqrt(272)) - ((1 + sqrt(272) - sqrt(272)) + sqrt(272) + 0)))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-1 + (-4*(sqrt(272) + -1 + sqrt(272)) - ((1 + sqrt(272) - sqrt(272)) + sqrt(272) + 0)))**2)))" - ], - "Output Answer": [ - "22036 - 144*sqrt(17)" - ], - "split": "train" - }, - { - "Input": "Solve -6 + 1 = -5*f for f.", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\nf = solve([Eq(-6 + 1, -5*f)])[f]\nprint(f)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 0.1? (a) -4/5 (b) 0.1 (c) 3 (d) -0.3", - "Output Program": [ - "from sympy import *\nchoices = [-4/5, 0.1, 3, -0.3]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "train" - }, - { - "Input": "Suppose -g + 5 = 3, 0 = -o - 4*g + 14. Suppose -o*b = -3*b. Suppose -u + 10 + 10 = 0. Solve b = -a - 4*a - u for a.", - "Output Program": [ - "from sympy import *\no, g = symbols(\"o g\")\no = solve([Eq(-g + 5, 3), Eq(0, -o - 4*g + 14)])[o]\nb = symbols(\"b\")\nb = solve([Eq(-o*b, -3*b)])[b]\nu = symbols(\"u\")\nu = solve([Eq(-u + 10 + 10, 0)])[u]\na = symbols(\"a\")\na = solve([Eq(b, -a - 4*a - u)])[a]\nprint(a)" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "Let u(c) = 2*c**2 - c + 2. Determine u(1).", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef u(c):\n\treturn 2*c**2 - c + 2\nprint(u(1))" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let r = -1.8 + 1.9. Which is greater: 15 or r?", - "Output Program": [ - "from sympy import *\nr = -1.8 + 1.9\nprint(max(15, r))" - ], - "Output Answer": [ - "15" - ], - "split": "train" - }, - { - "Input": "Solve -236 = 5*k + k - 15*f + 54*f + 61, 1 = -2*k + f for k.", - "Output Program": [ - "from sympy import *\nk, f = symbols(\"k f\")\nk = solve([Eq(-236, 5*k + k - 15*f + 54*f + 61), Eq(1, -2*k + f)])[k]\nprint(k)" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "Let l = 30 - 30. Suppose l = -5*t + 7 + 8. Suppose -15 = -5*g, -2*i - 2*i - 31 = -5*g. Sort t, i, 1 in decreasing order.", - "Output Program": [ - "from sympy import *\nl = 30 - 30\nt = symbols(\"t\")\nt = solve([Eq(l, -5*t + 7 + 8)])[t]\ni, g = symbols(\"i g\")\ni = solve([Eq(-15, -5*g), Eq(-2*i - 2*i - 31, -5*g)])[i]\nchoices = [t, i, 1]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 1 -4" - ], - "split": "train" - }, - { - "Input": "Let a be -3 - ((-6)/(-8) + (-243)/36). Let n(y) = -7*y**2 - 2*y**2 + 8*y**2 - 2. What is n(a)?", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef n(y):\n\treturn -7*y**2 - 2*y**2 + 8*y**2 - 2\na = -3 - ((-6)/(-8) + (-243)/36)\nprint(n(a))" - ], - "Output Answer": [ - "-11.0" - ], - "split": "train" - }, - { - "Input": "Let m be 156/755 - (-5)/(-25). Let n = -311/1359 + m. Is n less than 1?", - "Output Program": [ - "from sympy import *\nm = 156/755 - (-5)/(-25)\nn = -311/1359 + m\nprint(n < 1)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "What is 36786 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(36786 ** (1 / 2))))" - ], - "Output Answer": [ - "192" - ], - "split": "train" - }, - { - "Input": "Solve -2*x + 15*p - 71 = 0, -3*x = -39*p + 38*p - 1 for x.", - "Output Program": [ - "from sympy import *\nx, p = symbols(\"x p\")\nx = solve([Eq(-2*x + 15*p - 71, 0), Eq(-3*x, -39*p + 38*p - 1)])[x]\nprint(x)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 3? (a) -4 (b) -15 (c) 0.2 (d) 300 (e) -2", - "Output Program": [ - "from sympy import *\nchoices = [-4, -15, 0.2, 300, -2]\ntarget = 3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.2" - ], - "split": "train" - }, - { - "Input": "Let z(x) = 38*x**2 + 646*x + 1477. Give z(-13).", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef z(x):\n\treturn 38*x**2 + 646*x + 1477\nprint(z(-13))" - ], - "Output Answer": [ - "-499" - ], - "split": "train" - }, - { - "Input": "Is -10 + (891 - -3 - 7) composite?", - "Output Program": [ - "from sympy import *\nm = -10 + (891 - -3 - 7)\nprint(not isprime(877))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Solve 3*r**3/2 + 75*r**2/2 - 39*r = 0 for r.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef z(r):\n\treturn 3*r**3/2 + 75*r**2/2 - 39*r\nr = symbols(\"r\")\nr = solve(3*r**3/2 + 75*r**2/2 - 39*r)\nprint(r)" - ], - "Output Answer": [ - "[-26, 0, 1]" - ], - "split": "train" - }, - { - "Input": "Which is greater: -52.96 or -596?", - "Output Program": [ - "from sympy import *\nprint(max(-52.96, -596))" - ], - "Output Answer": [ - "-52.96" - ], - "split": "train" - }, - { - "Input": "Put 5, 17, 0, -6 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [5, 17, 0, -6]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "17 5 0 -6" - ], - "split": "train" - }, - { - "Input": "Let c(b) = -16457*b - 164574. What is c(-10)?", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef c(b):\n\treturn -16457*b - 164574\nprint(c(-10))" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(153)*1)**2*2 - (sqrt(136)/(-1*sqrt(648)))**2 - (sqrt(119)/sqrt(28) + 0 - (5 + sqrt(17) + 1 + -4)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(153)*1)**2*2 - (sqrt(136)/(-1*sqrt(648)))**2 - (sqrt(119)/sqrt(28) + 0 - (5 + sqrt(17) + 1 + -4)))))" - ], - "Output Answer": [ - "sqrt(17)/2 + 24931/81" - ], - "split": "train" - }, - { - "Input": "Suppose 2*t + 55 = 65. Solve 3*h + 18 = 6, -h = -g + t for g.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(2*t + 55, 65)])[t]\ng, h = symbols(\"g h\")\ng = solve([Eq(3*h + 18, 6), Eq(-h, -g + t)])[g]\nprint(g)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Sort 1/6, -5, 1193, -4/7 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [1/6, -5, 1193, -4/7]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "1193 0.16666666666666666 -0.5714285714285714 -5" - ], - "split": "train" - }, - { - "Input": "Let d = -91 + 638/7. Sort d, 5, 0.1, -0.03 in descending order.", - "Output Program": [ - "from sympy import *\nd = -91 + 638/7\nchoices = [d, 5, 0.1, -0.03]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 0.1428571428571388 0.1 -0.03" - ], - "split": "train" - }, - { - "Input": "Let 2*w**4/7 + 2372*w**3/7 - 429158*w**2/7 + 2100592*w/7 - 2503560/7 = 0. Calculate w.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef l(w):\n\treturn 2*w**4/7 + 2372*w**3/7 - 429158*w**2/7 + 2100592*w/7 - 2503560/7\nw = symbols(\"w\")\nw = solve(2*w**4/7 + 2372*w**3/7 - 429158*w**2/7 + 2100592*w/7 - 2503560/7)\nprint(w)" - ], - "Output Answer": [ - "[-1346.0 - 2.43901714448317e-28*I, 2.00000000000001 - 8.57537183758112e-28*I, 2.99999999999999 + 3.27170830593365e-27*I, 155.0 - 2.17026940772722e-27*I]" - ], - "split": "train" - }, - { - "Input": "Put -4758, -1, -35 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-4758, -1, -35]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4758 -35 -1" - ], - "split": "train" - }, - { - "Input": "Factor -5*w**2 + 3755*w + 11310.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef d(w):\n\treturn -5*w**2 + 3755*w + 11310\nw = symbols(\"w\")\neq = factor(-5*w**2 + 3755*w + 11310)\nprint(eq)" - ], - "Output Answer": [ - "-5*(w - 754)*(w + 3)" - ], - "split": "train" - }, - { - "Input": "Let x = 5 + -2. Suppose 0 = -3*m + a + 9, -x*m + m + a + 6 = 0. Solve -m*l = -1 + 7 for l.", - "Output Program": [ - "from sympy import *\nx = 5 + -2\nm, a = symbols(\"m a\")\nm = solve([Eq(0, -3*m + a + 9), Eq(-x*m + m + a + 6, 0)])[m]\nl = symbols(\"l\")\nl = solve([Eq(-m*l, -1 + 7)])[l]\nprint(l)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Suppose 2*m - 2754 = 2*v - 742, 3*m = -5*v + 3074. Which is smaller: 1011 or m?", - "Output Program": [ - "from sympy import *\nm, v = symbols(\"m v\")\nm = solve([Eq(2*m - 2754, 2*v - 742), Eq(3*m, -5*v + 3074)])[m]\nprint(min(1011, m))" - ], - "Output Answer": [ - "1011" - ], - "split": "train" - }, - { - "Input": "Suppose -8 = -2*y - 24. Let g = y + 2. Let d = g + 7. Is 1/2 smaller than d?", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ny = solve([Eq(-8, -2*y - 24)])[y]\ng = y + 2\nd = g + 7\nprint(1/2 < d)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose x + 1 = 3*s - 12, 0 = 5*x + s + 1. Let r be -1 - (-31)/13 - 2. Let i = r - -45/52. Put i, x, -3 in increasing order.", - "Output Program": [ - "from sympy import *\nr = -1 - (-31)/13 - 2\ni = r - -45/52\nx, s = symbols(\"x s\")\nx = solve([Eq(x + 1, 3*s - 12), Eq(0, 5*x + s + 1)])[x]\nchoices = [i, x, -3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-3 -1 0.25" - ], - "split": "train" - }, - { - "Input": "Let a be (((-18)/21)/3)/(-5). Let m be 20 + -23 - 1*-2. Does a = m?", - "Output Program": [ - "from sympy import *\na = (((-18)/21)/3)/(-5)\nm = 20 + -23 - 1*-2\nprint(a == m)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let f(a) = a**2 + 49*a - 766. Give f(-56).", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef f(a):\n\treturn a**2 + 49*a - 766\nprint(f(-56))" - ], - "Output Answer": [ - "-374" - ], - "split": "train" - }, - { - "Input": "Let j(k) = k + 18. Let o be j(-15). Solve -3*n - 18 = -3*a, -7 - 3 = -n - o*a for n.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef j(k):\n\treturn k + 18\no = j(-15)\nn, a = symbols(\"n a\")\nn = solve([Eq(-3*n - 18, -3*a), Eq(-7 - 3, -n - o*a)])[n]\nprint(n)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Let j = -11 - -11. Let h be (-1*6)/(-2) + j. Factor 1 - g**h + g**4 + 3*g**3 + g - 3*g - 2*g**4.", - "Output Program": [ - "from sympy import *\nj = -11 - -11\nh = (-1*6)/(-2) + j\ng = symbols(\"g\")\ndef l(g):\n\treturn 1 - g**h + g**4 + 3*g**3 + g - 3*g - 2*g**4\ng = symbols(\"g\")\neq = factor(1 - g**h + g**4 + 3*g**3 + g - 3*g - 2*g**4)\nprint(eq)" - ], - "Output Answer": [ - "-g**4 + 3*g**3 - 2*g - g**3.0 + 1" - ], - "split": "train" - }, - { - "Input": "Suppose -4*d + 3*z = -4 - 9, -5*d - 3*z - 4 = 0. Let a = 6 - d. Solve a*v - 7 = -n, 0*n - 2 = -3*n + 4*v for n.", - "Output Program": [ - "from sympy import *\nd, z = symbols(\"d z\")\nd = solve([Eq(-4*d + 3*z, -4 - 9), Eq(-5*d - 3*z - 4, 0)])[d]\na = 6 - d\nn, v = symbols(\"n v\")\nn = solve([Eq(a*v - 7, -n), Eq(0*n - 2, -3*n + 4*v)])[n]\nprint(n)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Let g = 566/411 + -6/137. Which is the nearest to -0.3? (a) -3 (b) -4 (c) g", - "Output Program": [ - "from sympy import *\ng = 566/411 + -6/137\nchoices = [-3, -4, g]\ntarget = -0.3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1.3333333333333335" - ], - "split": "train" - }, - { - "Input": "Put 7, 6, -10, -3 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [7, 6, -10, -3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "7 6 -3 -10" - ], - "split": "train" - }, - { - "Input": "Let w(z) = 3*z**3 - z**2 + 3*z + 4. Let s be w(0). Sort 5, s, 1, 56.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef w(z):\n\treturn 3*z**3 - z**2 + 3*z + 4\ns = w(0)\nchoices = [5, s, 1, 56]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "1 4 5 56" - ], - "split": "train" - }, - { - "Input": "Is 303024 a multiple of 1284?", - "Output Program": [ - "from sympy import *\nprint(303024 % 1284 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose 21*j + j = j. Let v be 1/(1 - (-177)/(-6)). Is v != j?", - "Output Program": [ - "from sympy import *\nv = 1/(1 - (-177)/(-6))\nj = symbols(\"j\")\nj = solve([Eq(21*j + j, j)])[j]\nprint(v != j)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Solve -25*j + 3*i = -20*j + 31, -5*i - 15 = 5*j for j.", - "Output Program": [ - "from sympy import *\nj, i = symbols(\"j i\")\nj = solve([Eq(-25*j + 3*i, -20*j + 31), Eq(-5*i - 15, 5*j)])[j]\nprint(j)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Let n(c) = 5*c - 98. Give n(-70).", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef n(c):\n\treturn 5*c - 98\nprint(n(-70))" - ], - "Output Answer": [ - "-448" - ], - "split": "train" - }, - { - "Input": "Simplify (2*sqrt(121)*-2 - -6*1*sqrt(121) - 4*((sqrt(121) - 4*sqrt(121)*-1) + sqrt(121)))/((sqrt(704)*-2)/(sqrt(144)*-4)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((2*sqrt(121)*-2 - -6*1*sqrt(121) - 4*((sqrt(121) - 4*sqrt(121)*-1) + sqrt(121)))/((sqrt(704)*-2)/(sqrt(144)*-4)))))" - ], - "Output Answer": [ - "-66*sqrt(11)" - ], - "split": "train" - }, - { - "Input": "Put 165458, -29, 3, -1, 0 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [165458, -29, 3, -1, 0]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "165458 3 0 -1 -29" - ], - "split": "train" - }, - { - "Input": "Let n(x) = -2*x**3 - 315*x**2 + 125*x - 5228. Determine n(-158).", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef n(x):\n\treturn -2*x**3 - 315*x**2 + 125*x - 5228\nprint(n(-158))" - ], - "Output Answer": [ - "-14" - ], - "split": "train" - }, - { - "Input": "Solve -3*s + 4*r - 15 = 0, -s = -r - 2092 + 2097 for s.", - "Output Program": [ - "from sympy import *\ns, r = symbols(\"s r\")\ns = solve([Eq(-3*s + 4*r - 15, 0), Eq(-s, -r - 2092 + 2097)])[s]\nprint(s)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Is 362701063 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(362701063))" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let q = 13.1 + -1.1. Let i = -12.07 + q. Let t = 4.93 - i. Sort -0.1, -0.3, t in ascending order.", - "Output Program": [ - "from sympy import *\nq = 13.1 + -1.1\ni = -12.07 + q\nt = 4.93 - i\nchoices = [-0.1, -0.3, t]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.3 -0.1 5.0" - ], - "split": "train" - }, - { - "Input": "Let h = -0.034 + 2.034. Sort -4, h, 0, 1/6 in increasing order.", - "Output Program": [ - "from sympy import *\nh = -0.034 + 2.034\nchoices = [-4, h, 0, 1/6]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 0 0.16666666666666666 1.9999999999999998" - ], - "split": "train" - }, - { - "Input": "Simplify (2*(sqrt(405) + -2)**2*1 + -4)*-1 + 1.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((2*(sqrt(405) + -2)**2*1 + -4)*-1 + 1)))" - ], - "Output Answer": [ - "-813 + 72*sqrt(5)" - ], - "split": "train" - }, - { - "Input": "What is the fourth root of 3273 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(3273 ** (1 / 4))))" - ], - "Output Answer": [ - "8" - ], - "split": "train" - }, - { - "Input": "Is 24 a factor of 5813403?", - "Output Program": [ - "from sympy import *\nprint(5813403 % 24 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let k(s) = -s**3 + 5*s**2 + 5*s + 3. Let y be k(6). Suppose 5*n + 16 = 5*a + 11, -5*a = -3*n - 3. Let o be -6*28/(-21) - 3. Put 3, y, a, o in decreasing order.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef k(s):\n\treturn -s**3 + 5*s**2 + 5*s + 3\ny = k(6)\na, n = symbols(\"a n\")\na = solve([Eq(5*n + 16, 5*a + 11), Eq(-5*a, -3*n - 3)])[a]\no = -6*28/(-21) - 3\nchoices = [3, y, a, o]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5.0 3 0 -3" - ], - "split": "train" - }, - { - "Input": "Let x(n) = 2 - n + 4 + 5. Let v be x(8). Solve -2*y - 3*m + 3 = 0, -3*y - v*m + 3 = -0 for y.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef x(n):\n\treturn 2 - n + 4 + 5\nv = x(8)\ny, m = symbols(\"y m\")\ny = solve([Eq(-2*y - 3*m + 3, 0), Eq(-3*y - v*m + 3, -0)])[y]\nprint(y)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Let o = 153 - 151. Suppose 4*t + 3*h + 4 = -t, -4*t - 5*h + 2 = 0. Let m = 9/23 - -1/115. Sort m, t, o.", - "Output Program": [ - "from sympy import *\nm = 9/23 - -1/115\nt, h = symbols(\"t h\")\nt = solve([Eq(4*t + 3*h + 4, -t), Eq(-4*t - 5*h + 2, 0)])[t]\no = 153 - 151\nchoices = [m, t, o]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2 0.4 2" - ], - "split": "train" - }, - { - "Input": "Suppose -g + 2*u + 2 = 0, 10*u - 23 = -g + 5*u. Solve -5*s - 26 = -4*f - g, 3*f - 2 = -2*s for s.", - "Output Program": [ - "from sympy import *\ng, u = symbols(\"g u\")\ng = solve([Eq(-g + 2*u + 2, 0), Eq(10*u - 23, -g + 5*u)])[g]\ns, f = symbols(\"s f\")\ns = solve([Eq(-5*s - 26, -4*f - g), Eq(3*f - 2, -2*s)])[s]\nprint(s)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Put -2, -0.2, 3/4, -1/9, 0.3 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-2, -0.2, 3/4, -1/9, 0.3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.75 0.3 -0.1111111111111111 -0.2 -2" - ], - "split": "train" - }, - { - "Input": "Let f be ((-1)/48)/((-15)/470). Let v = f + -7/8. Which is the nearest to -1? (a) 1 (b) v (c) 1/4", - "Output Program": [ - "from sympy import *\nf = ((-1)/48)/((-15)/470)\nv = f + -7/8\nchoices = [1, v, 1/4]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.2222222222222222" - ], - "split": "train" - }, - { - "Input": "Let q(l) = -l - 26. Let h(t) = 5. Let g(o) = -11*h(o) - 2*q(o). Suppose 5*z - 12*c = -56, z + 43 = 5*c + 11. Determine g(z).", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef q(l):\n\treturn -l - 26\nt = symbols(\"t\")\ndef h(t):\n\treturn 5\ndef g(o):\n\treturn -11*h(o) - 2*q(o)\nz, c = symbols(\"z c\")\nz = solve([Eq(5*z - 12*c, -56), Eq(z + 43, 5*c + 11)])[z]\nprint(g(z))" - ], - "Output Answer": [ - "13" - ], - "split": "train" - }, - { - "Input": "Is 37 a factor of 8325?", - "Output Program": [ - "from sympy import *\nprint(8325 % 37 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let s(f) = 4*f + 17 + 10 - 3*f. Let q be s(-17). Let y(a) = -1 + 14*a**2 - q*a + 2*a - 15*a**2. What is y(-6)?", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\ndef s(f):\n\treturn 4*f + 17 + 10 - 3*f\nq = s(-17)\na = symbols(\"a\")\ndef y(a):\n\treturn -1 + 14*a**2 - q*a + 2*a - 15*a**2\nprint(y(-6))" - ], - "Output Answer": [ - "11" - ], - "split": "train" - }, - { - "Input": "Let v(o) = -o**2 - 11*o - 12. Let a be v(-10). Let y be (-1)/a*12/9. Let w = 14885 - 14886. Sort w, y, 2/9 in ascending order.", - "Output Program": [ - "from sympy import *\nw = 14885 - 14886\no = symbols(\"o\")\ndef v(o):\n\treturn -o**2 - 11*o - 12\na = v(-10)\ny = (-1)/a*12/9\nchoices = [w, y, 2/9]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1 0.2222222222222222 0.6666666666666666" - ], - "split": "train" - }, - { - "Input": "Which is smaller: -8 or 0.6517?", - "Output Program": [ - "from sympy import *\nprint(min(-8, 0.6517))" - ], - "Output Answer": [ - "-8" - ], - "split": "train" - }, - { - "Input": "Let x be 4/(-10) + 8/(-5). Let r(w) = 3*w**2 + 2*w + 4. Let m be r(x). Solve -z - 3*z = m for z.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef r(w):\n\treturn 3*w**2 + 2*w + 4\nx = 4/(-10) + 8/(-5)\nm = r(x)\nz = symbols(\"z\")\nz = solve([Eq(-z - 3*z, m)])[z]\nprint(z)" - ], - "Output Answer": [ - "-3.00000000000000" - ], - "split": "train" - }, - { - "Input": "Sort 0.2, -2296/9, -1 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0.2, -2296/9, -1]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.2 -1 -255.11111111111111" - ], - "split": "train" - }, - { - "Input": "Is 18947116619 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(18947116619))" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose -t = r + 3*r + 339, t = 5*r + 426. Let h = 17 - r. Is 17 a factor of h?", - "Output Program": [ - "from sympy import *\nr, t = symbols(\"r t\")\nr = solve([Eq(-t, r + 3*r + 339), Eq(t, 5*r + 426)])[r]\nh = 17 - r\nprint(102 % 17 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Is 24 a factor of 12/45*502 - (-12)/90?", - "Output Program": [ - "from sympy import *\nj = 12/45*502 - (-12)/90\nprint(134 % 24 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let x = 3.9 + -4. Which is the nearest to 2? (a) -0.2 (b) -2 (c) x", - "Output Program": [ - "from sympy import *\nx = 3.9 + -4\nchoices = [-0.2, -2, x]\ntarget = 2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.10000000000000009" - ], - "split": "train" - }, - { - "Input": "What is the nearest to -0.02065 in -0.05, 1/44, -0.5, 3/4?", - "Output Program": [ - "from sympy import *\nchoices = [-0.05, 1/44, -0.5, 3/4]\ntarget = -0.02065\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.05" - ], - "split": "train" - }, - { - "Input": "Suppose -2*r + 2*c + 16 = -0*r, 2*c = -r - 1. Solve -4*u + 3*x - r*x - 24 = 0, -5*u + 3*x - 19 = 0 for u.", - "Output Program": [ - "from sympy import *\nr, c = symbols(\"r c\")\nr = solve([Eq(-2*r + 2*c + 16, -0*r), Eq(2*c, -r - 1)])[r]\nu, x = symbols(\"u x\")\nu = solve([Eq(-4*u + 3*x - r*x - 24, 0), Eq(-5*u + 3*x - 19, 0)])[u]\nprint(u)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "What is the square root of 5694908 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(5694908 ** (1 / 2))))" - ], - "Output Answer": [ - "2386" - ], - "split": "train" - }, - { - "Input": "Is 4213/20 less than or equal to -18?", - "Output Program": [ - "from sympy import *\nprint(4213/20 <= -18)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to -1/4? (a) -3/7 (b) -2.1 (c) 0.161 (d) -1/104", - "Output Program": [ - "from sympy import *\nchoices = [-3/7, -2.1, 0.161, -1/104]\ntarget = -1/4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.42857142857142855" - ], - "split": "train" - }, - { - "Input": "Factor -2*g**2 - 12976*g.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef p(g):\n\treturn -2*g**2 - 12976*g\ng = symbols(\"g\")\neq = factor(-2*g**2 - 12976*g)\nprint(eq)" - ], - "Output Answer": [ - "-2*g*(g + 6488)" - ], - "split": "train" - }, - { - "Input": "What is 63217 to the power of 1/10, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(63217 ** (1 / 10))))" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let 1/5*k**4 - 2/5*k**2 + 0*k + 0*k**3 + 1/5 = 0. What is k?", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef d(k):\n\treturn 1/5*k**4 - 2/5*k**2 + 0*k + 0*k**3 + 1/5\nk = symbols(\"k\")\nk = solve(1/5*k**4 - 2/5*k**2 + 0*k + 0*k**3 + 1/5)\nprint(k)" - ], - "Output Answer": [ - "[-1.00000000000000, 1.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Suppose -2*s + 5*s = f + 5, -4 = -4*s + 4*f. Solve 0 = -s*w - l - 9 + 1, 3*l = 4*w - 4 for w.", - "Output Program": [ - "from sympy import *\ns, f = symbols(\"s f\")\ns = solve([Eq(-2*s + 5*s, f + 5), Eq(-4, -4*s + 4*f)])[s]\nw, l = symbols(\"w l\")\nw = solve([Eq(0, -s*w - l - 9 + 1), Eq(3*l, 4*w - 4)])[w]\nprint(w)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Let g = 13 + 1. Let t = -15 + g. Suppose -4*u - 1 = -5. Are u and t unequal?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(-4*u - 1, -5)])[u]\ng = 13 + 1\nt = -15 + g\nprint(u != t)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose -f + 1 = 0, 2*d + 3*f - 47 = -8. Suppose -d*k = -14494 + 2020. Is 694 >= k?", - "Output Program": [ - "from sympy import *\nd, f = symbols(\"d f\")\nd = solve([Eq(-f + 1, 0), Eq(2*d + 3*f - 47, -8)])[d]\nk = symbols(\"k\")\nk = solve([Eq(-d*k, -14494 + 2020)])[k]\nprint(694 >= k)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let x be 0 + (-1)/(-5)*-2. Let u = -48.79 + 49. Let h = 3.79 + u. Which is the nearest to x? (a) h (b) 2 (c) -0.5", - "Output Program": [ - "from sympy import *\nx = 0 + (-1)/(-5)*-2\nu = -48.79 + 49\nh = 3.79 + u\nchoices = [h, 2, -0.5]\ntarget = x\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.5" - ], - "split": "train" - }, - { - "Input": "Determine v, given that -2*v**4/9 - 42526*v**3/9 + 1192414*v**2/9 + 837466*v/3 + 141940 = 0.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef f(v):\n\treturn -2*v**4/9 - 42526*v**3/9 + 1192414*v**2/9 + 837466*v/3 + 141940\nv = symbols(\"v\")\nv = solve(-2*v**4/9 - 42526*v**3/9 + 1192414*v**2/9 + 837466*v/3 + 141940)\nprint(v)" - ], - "Output Answer": [ - "[-21291, -1, 30]" - ], - "split": "train" - }, - { - "Input": "Let n(q) = 5*q**2 - 48*q + 11. Determine n(9).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef n(q):\n\treturn 5*q**2 - 48*q + 11\nprint(n(9))" - ], - "Output Answer": [ - "-16" - ], - "split": "train" - }, - { - "Input": "Let p = 98 + -89. Solve -3*o - 5*y + 24 = 0, 0 = -o + 2*y - 4*y + p for o.", - "Output Program": [ - "from sympy import *\np = 98 + -89\no, y = symbols(\"o y\")\no = solve([Eq(-3*o - 5*y + 24, 0), Eq(0, -o + 2*y - 4*y + p)])[o]\nprint(o)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Solve 2*x - 7525 = 5*h - 7294, 5*x + 4*h + 165 = 0 for x.", - "Output Program": [ - "from sympy import *\nx, h = symbols(\"x h\")\nx = solve([Eq(2*x - 7525, 5*h - 7294), Eq(5*x + 4*h + 165, 0)])[x]\nprint(x)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Put 0.3, -5, 2, -5/3, -31/3 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [0.3, -5, 2, -5/3, -31/3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-10.333333333333334 -5 -1.6666666666666667 0.3 2" - ], - "split": "train" - }, - { - "Input": "Let p(u) = u**2 + 9*u + 7. Let n(q) = -5*q**2 - 46*q - 35. Let j = -9 - -11. Let y(a) = j*n(a) + 11*p(a). Let k = -7 + 2. What is y(k)?", - "Output Program": [ - "from sympy import *\nj = -9 - -11\nq = symbols(\"q\")\ndef n(q):\n\treturn -5*q**2 - 46*q - 35\nu = symbols(\"u\")\ndef p(u):\n\treturn u**2 + 9*u + 7\ndef y(a):\n\treturn j*n(a) + 11*p(a)\nk = -7 + 2\nprint(y(k))" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Which is smaller: -19342 or -19243?", - "Output Program": [ - "from sympy import *\nprint(min(-19342, -19243))" - ], - "Output Answer": [ - "-19342" - ], - "split": "train" - }, - { - "Input": "Let j(v) = -2*v**2 - 2735*v + 162363. Give j(57).", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef j(v):\n\treturn -2*v**2 - 2735*v + 162363\nprint(j(57))" - ], - "Output Answer": [ - "-30" - ], - "split": "train" - }, - { - "Input": "Is 5946017659 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(5946017659))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Suppose 83*k + 110 + 305 = 0. Let w = -40/3 - -13. Let i = w + 2/3. Put 5, 0.01, k, i in ascending order.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\nk = solve([Eq(83*k + 110 + 305, 0)])[k]\nw = -40/3 - -13\ni = w + 2/3\nchoices = [5, 0.01, k, i]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 0.01 0.3333333333333327 5" - ], - "split": "train" - }, - { - "Input": "Factor 3*j**3/4 + 38709*j**2/4 - 4755987*j/4 + 145398075/4.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef a(j):\n\treturn 3*j**3/4 + 38709*j**2/4 - 4755987*j/4 + 145398075/4\nj = symbols(\"j\")\neq = factor(3*j**3/4 + 38709*j**2/4 - 4755987*j/4 + 145398075/4)\nprint(eq)" - ], - "Output Answer": [ - "36349518.75*(7.67754318618042e-5*j + 1.0)*(0.0163934426229508*j - 1.0)**2" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(216) + sqrt(216) + -2*sqrt(216))/sqrt(8) - (-3 + (sqrt(192)*2 - sqrt(192)))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(216) + sqrt(216) + -2*sqrt(216))/sqrt(8) - (-3 + (sqrt(192)*2 - sqrt(192)))**2)))" - ], - "Output Answer": [ - "-201 + 48*sqrt(3)" - ], - "split": "train" - }, - { - "Input": "Suppose 0 = -33*g + 35*g - 644. Suppose g + 214 = 4*f. Is 31 a factor of f?", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(0, -33*g + 35*g - 644)])[g]\nf = symbols(\"f\")\nf = solve([Eq(g + 214, 4*f)])[f]\nprint(134 % 31 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (-2 + -3*(sqrt(242)*-4 + 0))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-2 + -3*(sqrt(242)*-4 + 0))**2)))" - ], - "Output Answer": [ - "34852 - 528*sqrt(2)" - ], - "split": "train" - }, - { - "Input": "Let z(j) = j**3 - 2*j**2 - 20*j - 21. Let b be z(6). Solve b*l = -p - 18, 4*l + 11 = -4*p - 21 for l.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef z(j):\n\treturn j**3 - 2*j**2 - 20*j - 21\nb = z(6)\nl, p = symbols(\"l p\")\nl = solve([Eq(b*l, -p - 18), Eq(4*l + 11, -4*p - 21)])[l]\nprint(l)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Let f = -2000/13 + 154. Factor -f*d - 2/13*d**2 + 0.", - "Output Program": [ - "from sympy import *\nf = -2000/13 + 154\nd = symbols(\"d\")\ndef r(d):\n\treturn -f*d - 2/13*d**2 + 0\nd = symbols(\"d\")\neq = factor(-f*d - 2/13*d**2 + 0)\nprint(eq)" - ], - "Output Answer": [ - "-0.15384615384616*d*(0.999999999999957*d + 1.0)" - ], - "split": "train" - }, - { - "Input": "Suppose -3*w = -3*j + 30, -w - 25 = -j - 3*w. Solve -3*o - t = -4*t + j, -2*o = -3*t + 10 for o.", - "Output Program": [ - "from sympy import *\nj, w = symbols(\"j w\")\nj = solve([Eq(-3*w, -3*j + 30), Eq(-w - 25, -j - 3*w)])[j]\no, t = symbols(\"o t\")\no = solve([Eq(-3*o - t, -4*t + j), Eq(-2*o, -3*t + 10)])[o]\nprint(o)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Is 220 a factor of 2030?", - "Output Program": [ - "from sympy import *\nprint(2030 % 220 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(605) - (0 + sqrt(605) + -3))**2 - sqrt(40)/(sqrt(32)/sqrt(4))*-1 - (4*(-1 + sqrt(180)) + -5*(2 + 0 + sqrt(5))).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(605) - (0 + sqrt(605) + -3))**2 - sqrt(40)/(sqrt(32)/sqrt(4))*-1 - (4*(-1 + sqrt(180)) + -5*(2 + 0 + sqrt(5))))))" - ], - "Output Answer": [ - "23 - 18*sqrt(5)" - ], - "split": "train" - }, - { - "Input": "Which is smaller: 111155/117 or 950?", - "Output Program": [ - "from sympy import *\nprint(min(111155/117, 950))" - ], - "Output Answer": [ - "950" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to 0? (a) -1/10 (b) -4 (c) -3", - "Output Program": [ - "from sympy import *\nchoices = [-1/10, -4, -3]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "train" - }, - { - "Input": "Solve -a**2/7 + 202*a/7 - 1737/7 = 0.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef g(a):\n\treturn -a**2/7 + 202*a/7 - 1737/7\na = symbols(\"a\")\na = solve(-a**2/7 + 202*a/7 - 1737/7)\nprint(a)" - ], - "Output Answer": [ - "[8.99999999999999, 193.000000000000]" - ], - "split": "train" - }, - { - "Input": "Is 456 a multiple of 57?", - "Output Program": [ - "from sympy import *\nprint(456 % 57 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "What is the square root of 227892 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(227892 ** (1 / 2))))" - ], - "Output Answer": [ - "477" - ], - "split": "train" - }, - { - "Input": "Solve 835*v - 2408 = 491*v for v.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(835*v - 2408, 491*v)])[v]\nprint(v)" - ], - "Output Answer": [ - "7" - ], - "split": "train" - }, - { - "Input": "Suppose 11*w = 19*w. Let p(g) = 14 + g**2 + w*g**2 - 3*g - 23*g + 11*g. Calculate p(12).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\nw = solve([Eq(11*w, 19*w)])[w]\ng = symbols(\"g\")\ndef p(g):\n\treturn 14 + g**2 + w*g**2 - 3*g - 23*g + 11*g\nprint(p(12))" - ], - "Output Answer": [ - "-22" - ], - "split": "train" - }, - { - "Input": "Let f(j) = -j**3 + 10*j**2 + 2*j - 15. Let g be f(10). Suppose -g*y + 2*z + 62 - 6 = 0, y = 4*z + 4. Solve 5*w + 3 = -y for w.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef f(j):\n\treturn -j**3 + 10*j**2 + 2*j - 15\ng = f(10)\ny, z = symbols(\"y z\")\ny = solve([Eq(-g*y + 2*z + 62 - 6, 0), Eq(y, 4*z + 4)])[y]\nw = symbols(\"w\")\nw = solve([Eq(5*w + 3, -y)])[w]\nprint(w)" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Let g(n) = -6*n - 24. Let r be 2/10 - ((-252)/10)/(-6). Let b be g(r). Let f = 99398/71 + -1400. Are b and f non-equal?", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef g(n):\n\treturn -6*n - 24\nr = 2/10 - ((-252)/10)/(-6)\nb = g(r)\nf = 99398/71 + -1400\nprint(b != f)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose 3*w - s + 522 = 0, 3*s = 665 - 683. Which is greater: -172 or w?", - "Output Program": [ - "from sympy import *\nw, s = symbols(\"w s\")\nw = solve([Eq(3*w - s + 522, 0), Eq(3*s, 665 - 683)])[w]\nprint(max(-172, w))" - ], - "Output Answer": [ - "-172" - ], - "split": "train" - }, - { - "Input": "Let i(w) = -w**2 - 5*w + 10. Let n be i(-6). Sort -4, 0.12, n, -3/5 in decreasing order.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef i(w):\n\treturn -w**2 - 5*w + 10\nn = i(-6)\nchoices = [-4, 0.12, n, -3/5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 0.12 -0.6 -4" - ], - "split": "train" - }, - { - "Input": "Suppose 16*t - 115 = 957. Is t a composite number?", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(16*t - 115, 957)])[t]\nprint(not isprime(67))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let v be 0 + 12 - 0/(-2). Suppose -4*j + 5*m = v, 0 = -3*j + 5*m - 14 - 0. Suppose j*n + 3*k + 6 = 4*n, -5*k = 4*n + 10. Solve 3*q + 2*q = n for q.", - "Output Program": [ - "from sympy import *\nv = 0 + 12 - 0/(-2)\nj, m = symbols(\"j m\")\nj = solve([Eq(-4*j + 5*m, v), Eq(0, -3*j + 5*m - 14 - 0)])[j]\nn, k = symbols(\"n k\")\nn = solve([Eq(j*n + 3*k + 6, 4*n), Eq(-5*k, 4*n + 10)])[n]\nq = symbols(\"q\")\nq = solve([Eq(3*q + 2*q, n)])[q]\nprint(q)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Suppose 3*r - 79*p + 56*p = 130, 3*p - 10 = -5*r. Suppose 0*w + 0*w**2 + 1/3*w**r + 0*w**3 + 0 - 3*w**4 = 0. Calculate w.", - "Output Program": [ - "from sympy import *\nr, p = symbols(\"r p\")\nr = solve([Eq(3*r - 79*p + 56*p, 130), Eq(3*p - 10, -5*r)])[r]\nw = symbols(\"w\")\ndef h(w):\n\treturn 0*w + 0*w**2 + 1/3*w**r + 0*w**3 + 0 - 3*w**4\nw = symbols(\"w\")\nw = solve(0*w + 0*w**2 + 1/3*w**r + 0*w**3 + 0 - 3*w**4)\nprint(w)" - ], - "Output Answer": [ - "[0.0, 9.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Solve -f + 25*c - 102 = 0, -2*f - 2195*c = -2196*c + 8 for f.", - "Output Program": [ - "from sympy import *\nf, c = symbols(\"f c\")\nf = solve([Eq(-f + 25*c - 102, 0), Eq(-2*f - 2195*c, -2196*c + 8)])[f]\nprint(f)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Let k = 3560 + -21359/6. What is the closest to 1/3 in 87, -0.4, -1/4, k?", - "Output Program": [ - "from sympy import *\nk = 3560 + -21359/6\nchoices = [87, -0.4, -1/4, k]\ntarget = 1/3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.16666666666651508" - ], - "split": "train" - }, - { - "Input": "Let z(n) = -n**2 - 39*n - 268. Let i be z(-9). Solve 4*v = i*r - 6, v - r = -4*v for v.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef z(n):\n\treturn -n**2 - 39*n - 268\ni = z(-9)\nv, r = symbols(\"v r\")\nv = solve([Eq(4*v, i*r - 6), Eq(v - r, -4*v)])[v]\nprint(v)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "What is the cube root of 114 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(114 ** (1 / 3))))" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Which is smaller: 250 or -2105/3?", - "Output Program": [ - "from sympy import *\nprint(min(250, -2105/3))" - ], - "Output Answer": [ - "-701.6666666666666" - ], - "split": "train" - }, - { - "Input": "Factor -2*j**4/7 + 256*j**3 - 404976*j**2/7 + 228352*j - 1591328/7.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef x(j):\n\treturn -2*j**4/7 + 256*j**3 - 404976*j**2/7 + 228352*j - 1591328/7\nj = symbols(\"j\")\neq = factor(-2*j**4/7 + 256*j**3 - 404976*j**2/7 + 228352*j - 1591328/7)\nprint(eq)" - ], - "Output Answer": [ - "-227332.571428571*(0.00224215246636771*j - 1.0)**2*(0.5*j - 1.0)**2" - ], - "split": "train" - }, - { - "Input": "Is 101955 smaller than 0.1?", - "Output Program": [ - "from sympy import *\nprint(101955 < 0.1)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "What is the fourth root of 485236999 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(485236999 ** (1 / 4))))" - ], - "Output Answer": [ - "148" - ], - "split": "train" - }, - { - "Input": "Sort 5, -6, 3, -4, -2 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [5, -6, 3, -4, -2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-6 -4 -2 3 5" - ], - "split": "train" - }, - { - "Input": "What is the nearest to 1 in 3/5, -0.2, -1476492?", - "Output Program": [ - "from sympy import *\nchoices = [3/5, -0.2, -1476492]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.6" - ], - "split": "train" - }, - { - "Input": "Let h be (-621)/138*(0 + 0 - 40/(-30)). Which is the closest to -7? (a) -2/3 (b) -4 (c) h", - "Output Program": [ - "from sympy import *\nh = (-621)/138*(0 + 0 - 40/(-30))\nchoices = [-2/3, -4, h]\ntarget = -7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-6.0" - ], - "split": "train" - }, - { - "Input": "Let w be ((-18)/(-30))/((-7)/35). Which is smaller: w or -12/5?", - "Output Program": [ - "from sympy import *\nw = ((-18)/(-30))/((-7)/35)\nprint(min(w, -12/5))" - ], - "Output Answer": [ - "-2.9999999999999996" - ], - "split": "train" - }, - { - "Input": "Suppose -4 = -4*a + 4*v, -4*v = 2*a - a + 19. Sort -4, 1, a.", - "Output Program": [ - "from sympy import *\na, v = symbols(\"a v\")\na = solve([Eq(-4, -4*a + 4*v), Eq(-4*v, 2*a - a + 19)])[a]\nchoices = [-4, 1, a]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 -3 1" - ], - "split": "train" - }, - { - "Input": "Solve -51*g = -9*g - 294 for g.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(-51*g, -9*g - 294)])[g]\nprint(g)" - ], - "Output Answer": [ - "7" - ], - "split": "train" - }, - { - "Input": "Let c(p) = 10*p - 18. Calculate c(6).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef c(p):\n\treturn 10*p - 18\nprint(c(6))" - ], - "Output Answer": [ - "42" - ], - "split": "train" - }, - { - "Input": "Let n = -9709/4 - -2428. Factor 3/4*y - n*y**2 + 3/2.", - "Output Program": [ - "from sympy import *\nn = -9709/4 - -2428\ny = symbols(\"y\")\ndef t(y):\n\treturn 3/4*y - n*y**2 + 3/2\ny = symbols(\"y\")\neq = factor(3/4*y - n*y**2 + 3/2)\nprint(eq)" - ], - "Output Answer": [ - "-1.5*(0.5*y - 1.0)*(1.0*y + 1.0)" - ], - "split": "train" - }, - { - "Input": "Let t(k) = -k**3 + 10*k**2 - 25*k + 6. Let w be t(6). Suppose 5*q - 2*s - 11 = 0, -2*q - 2*q - 2*s = -16. Sort -1, q, 34, w in descending order.", - "Output Program": [ - "from sympy import *\nq, s = symbols(\"q s\")\nq = solve([Eq(5*q - 2*s - 11, 0), Eq(-2*q - 2*q - 2*s, -16)])[q]\nk = symbols(\"k\")\ndef t(k):\n\treturn -k**3 + 10*k**2 - 25*k + 6\nw = t(6)\nchoices = [-1, q, 34, w]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "34 3 0 -1" - ], - "split": "train" - }, - { - "Input": "Let c = 8406.6 - 8406. What is the nearest to 2/5 in 0.07, c, 4, 2?", - "Output Program": [ - "from sympy import *\nc = 8406.6 - 8406\nchoices = [0.07, c, 4, 2]\ntarget = 2/5\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.6000000000003638" - ], - "split": "train" - }, - { - "Input": "What is the third root of 30282 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(30282 ** (1 / 3))))" - ], - "Output Answer": [ - "31" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to -0.3? (a) 1 (b) 12 (c) 7", - "Output Program": [ - "from sympy import *\nchoices = [1, 12, 7]\ntarget = -0.3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let h(n) = n**3 - 3*n**2 - 8*n + 3. Let u be h(5). Suppose 3*o = w + u, 4*w - 9 - 4 = -o. Let -10*y**w - 12*y - 8/3 + 25/3*y**3 = 0. What is y?", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef h(n):\n\treturn n**3 - 3*n**2 - 8*n + 3\nu = h(5)\nw, o = symbols(\"w o\")\nw = solve([Eq(3*o, w + u), Eq(4*w - 9 - 4, -o)])[w]\ny = symbols(\"y\")\ndef x(y):\n\treturn -10*y**w - 12*y - 8/3 + 25/3*y**3\ny = symbols(\"y\")\ny = solve(-10*y**w - 12*y - 8/3 + 25/3*y**3)\nprint(y)" - ], - "Output Answer": [ - "[-0.400000000000000, 2.00000000000000]" - ], - "split": "train" - }, - { - "Input": "What is the cube root of 6559049418 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(6559049418 ** (1 / 3))))" - ], - "Output Answer": [ - "1872" - ], - "split": "train" - }, - { - "Input": "Let o = 48/7 - 130/21. Let p(l) = -3*l - 3. Let h be p(-2). Let w be (-16)/(-6)*h/(-12). Which is the nearest to 1? (a) o (b) 3 (c) w", - "Output Program": [ - "from sympy import *\no = 48/7 - 130/21\nl = symbols(\"l\")\ndef p(l):\n\treturn -3*l - 3\nh = p(-2)\nw = (-16)/(-6)*h/(-12)\nchoices = [o, 3, w]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.6666666666666661" - ], - "split": "train" - }, - { - "Input": "Suppose 41*o - 39*o - 390 = 0. Suppose 2*p - 3 = o. Is p a multiple of 20?", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\no = solve([Eq(41*o - 39*o - 390, 0)])[o]\np = symbols(\"p\")\np = solve([Eq(2*p - 3, o)])[p]\nprint(99 % 20 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let t(d) = -13*d - 14. Let s(q) = 11*q + 12. Let v(f) = -7*s(f) - 6*t(f). What is v(12)?", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef s(q):\n\treturn 11*q + 12\nd = symbols(\"d\")\ndef t(d):\n\treturn -13*d - 14\ndef v(f):\n\treturn -7*s(f) - 6*t(f)\nprint(v(12))" - ], - "Output Answer": [ - "12" - ], - "split": "train" - }, - { - "Input": "Which is the closest to -0.3? (a) 0.1 (b) 0.4 (c) 54 (d) 4/5", - "Output Program": [ - "from sympy import *\nchoices = [0.1, 0.4, 54, 4/5]\ntarget = -0.3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "train" - }, - { - "Input": "Factor 110*b**2 + 2126375*b - 4253190.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef s(b):\n\treturn 110*b**2 + 2126375*b - 4253190\nb = symbols(\"b\")\neq = factor(110*b**2 + 2126375*b - 4253190)\nprint(eq)" - ], - "Output Answer": [ - "5*(b - 2)*(22*b + 425319)" - ], - "split": "train" - }, - { - "Input": "Is 1305/554 at most 2?", - "Output Program": [ - "from sympy import *\nprint(1305/554 <= 2)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "What is w in 1513*w - 2888 - 11*w**3 + 150*w**2 - 8*w**3 + 1223*w + 21*w**3 = 0?", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef x(w):\n\treturn 1513*w - 2888 - 11*w**3 + 150*w**2 - 8*w**3 + 1223*w + 21*w**3\nw = symbols(\"w\")\nw = solve(1513*w - 2888 - 11*w**3 + 150*w**2 - 8*w**3 + 1223*w + 21*w**3)\nprint(w)" - ], - "Output Answer": [ - "[-38, 1]" - ], - "split": "train" - }, - { - "Input": "Let t = 7 - 4. Let i(c) = -2*c + 3*c + 8*c - 10 + 6*c - 2*c**2. Let r be i(7). Sort r, t, -5 in decreasing order.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef i(c):\n\treturn -2*c + 3*c + 8*c - 10 + 6*c - 2*c**2\nr = i(7)\nt = 7 - 4\nchoices = [r, t, -5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 -3 -5" - ], - "split": "train" - }, - { - "Input": "What is the nearest to 15 in 2/3, -398/11431, -1/5?", - "Output Program": [ - "from sympy import *\nchoices = [2/3, -398/11431, -1/5]\ntarget = 15\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.6666666666666666" - ], - "split": "train" - }, - { - "Input": "Let k(p) = 1013311*p - 51678862. Calculate k(51).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef k(p):\n\treturn 1013311*p - 51678862\nprint(k(51))" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Let c be (-1)/4*(-15 + (16 - 1035)). Which is greater: 1/2 or c?", - "Output Program": [ - "from sympy import *\nc = (-1)/4*(-15 + (16 - 1035))\nprint(max(1/2, c))" - ], - "Output Answer": [ - "258.5" - ], - "split": "train" - }, - { - "Input": "Sort -47, 5, 24, 2 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-47, 5, 24, 2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "24 5 2 -47" - ], - "split": "train" - }, - { - "Input": "Let f be ((-22)/(-16))/(2/(-92)). Let r = f - -63. Is -1 less than r?", - "Output Program": [ - "from sympy import *\nf = ((-22)/(-16))/(2/(-92))\nr = f - -63\nprint(-1 < r)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose g + 3 = 8. Is 4 equal to g?", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(g + 3, 8)])[g]\nprint(4 == g)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "What is 169574 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(169574 ** (1 / 3))))" - ], - "Output Answer": [ - "55" - ], - "split": "train" - }, - { - "Input": "Put -9, -10, 0 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-9, -10, 0]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0 -9 -10" - ], - "split": "train" - }, - { - "Input": "Let q = -9712 + 34965. Is q a composite number?", - "Output Program": [ - "from sympy import *\nq = -9712 + 34965\nprint(not isprime(25253))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let b(d) = d**3 - 12*d**2 - 22. Let i be b(12). Is -23 at least as big as i?", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef b(d):\n\treturn d**3 - 12*d**2 - 22\ni = b(12)\nprint(-23 >= i)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let k(z) = z**2 + z + 4. Let c be (-9)/21 - ((-144)/42 + 9). Calculate k(c).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef k(z):\n\treturn z**2 + z + 4\nc = (-9)/21 - ((-144)/42 + 9)\nprint(k(c))" - ], - "Output Answer": [ - "34.0" - ], - "split": "train" - }, - { - "Input": "Solve 84205 - 81789 = 151*j for j.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\nj = solve([Eq(84205 - 81789, 151*j)])[j]\nprint(j)" - ], - "Output Answer": [ - "16" - ], - "split": "train" - }, - { - "Input": "Let s = -40.334 + 38.334. Let c be (-448)/(-3)*2/7. Let b = c + -43. What is the closest to b in 6/7, s, 5/3?", - "Output Program": [ - "from sympy import *\nc = (-448)/(-3)*2/7\nb = c + -43\ns = -40.334 + 38.334\nchoices = [6/7, s, 5/3]\ntarget = b\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.8571428571428571" - ], - "split": "train" - }, - { - "Input": "Suppose 3*l = -h - 8, 5*h + 2*l = 1 - 2. Let x be 1 + -11 - ((-416)/26 - -6). Solve x = -m + 2*m + h for m.", - "Output Program": [ - "from sympy import *\nx = 1 + -11 - ((-416)/26 - -6)\nh, l = symbols(\"h l\")\nh = solve([Eq(3*l, -h - 8), Eq(5*h + 2*l, 1 - 2)])[h]\nm = symbols(\"m\")\nm = solve([Eq(x, -m + 2*m + h)])[m]\nprint(m)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Let k(m) = 12*m - 5 + m**3 + 1783*m**2 - 890*m**2 + 0 + 3 - 903*m**2. Calculate k(9).", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef k(m):\n\treturn 12*m - 5 + m**3 + 1783*m**2 - 890*m**2 + 0 + 3 - 903*m**2\nprint(k(9))" - ], - "Output Answer": [ - "25" - ], - "split": "train" - }, - { - "Input": "Let c = 0.05 + 3.95. Let t = -3 + c. Let w = -591.6 - -592. What is the nearest to t in 3, 1, w?", - "Output Program": [ - "from sympy import *\nc = 0.05 + 3.95\nt = -3 + c\nw = -591.6 - -592\nchoices = [3, 1, w]\ntarget = t\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Sort 5, 5/3, 4, -3/2.", - "Output Program": [ - "from sympy import *\nchoices = [5, 5/3, 4, -3/2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1.5 1.6666666666666667 4 5" - ], - "split": "train" - }, - { - "Input": "Simplify -4*(4 + (sqrt(539) - sqrt(539)*1)*-3 + (sqrt(539) - (sqrt(539) + 0)*1)**2).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-4*(4 + (sqrt(539) - sqrt(539)*1)*-3 + (sqrt(539) - (sqrt(539) + 0)*1)**2))))" - ], - "Output Answer": [ - "-16" - ], - "split": "train" - }, - { - "Input": "What is the third root of 264405262 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(264405262 ** (1 / 3))))" - ], - "Output Answer": [ - "642" - ], - "split": "train" - }, - { - "Input": "Let m = -1 - 0. Let i = 0.076 - 0.0747. Let w = 19.9987 + i. Which is greater: m or w?", - "Output Program": [ - "from sympy import *\nm = -1 - 0\ni = 0.076 - 0.0747\nw = 19.9987 + i\nprint(max(m, w))" - ], - "Output Answer": [ - "20.0" - ], - "split": "train" - }, - { - "Input": "Put 3, 1, 10, 2, 19 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [3, 1, 10, 2, 19]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "19 10 3 2 1" - ], - "split": "train" - }, - { - "Input": "Sort 0.2, -2, 0.21, 3/8, 2.", - "Output Program": [ - "from sympy import *\nchoices = [0.2, -2, 0.21, 3/8, 2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2 0.2 0.21 0.375 2" - ], - "split": "train" - }, - { - "Input": "What is the eighth root of 15306807 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(15306807 ** (1 / 8))))" - ], - "Output Answer": [ - "8" - ], - "split": "train" - }, - { - "Input": "Suppose 5*l = 2*p + 3*p + 35, -p = l - 3. Let o(q) = -2*q**2 + 4*q + 18. Let w be o(p). Solve -x + 8 = 3*g - w*g, x + 2*g = 13 for x.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef o(q):\n\treturn -2*q**2 + 4*q + 18\np, l = symbols(\"p l\")\np = solve([Eq(5*l, 2*p + 3*p + 35), Eq(-p, l - 3)])[p]\nw = o(p)\nx, g = symbols(\"x g\")\nx = solve([Eq(-x + 8, 3*g - w*g), Eq(x + 2*g, 13)])[x]\nprint(x)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Simplify -6*(sqrt(272) + 0) + -2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-6*(sqrt(272) + 0) + -2)))" - ], - "Output Answer": [ - "-24*sqrt(17) - 2" - ], - "split": "train" - }, - { - "Input": "Let i be (54 - 1) + -2 - (-6 - -10). Solve i*n = 52*n + 20 for n.", - "Output Program": [ - "from sympy import *\ni = (54 - 1) + -2 - (-6 - -10)\nn = symbols(\"n\")\nn = solve([Eq(i*n, 52*n + 20)])[n]\nprint(n)" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "Let g = 279 + -21. Let u = g + -269. Is u at least as big as 5?", - "Output Program": [ - "from sympy import *\ng = 279 + -21\nu = g + -269\nprint(u >= 5)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Suppose -4*d**5 + 196*d**4 + 7644*d**3 + 44332*d**2 - 112360*d + 60192 = 0. What is d?", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef h(d):\n\treturn -4*d**5 + 196*d**4 + 7644*d**3 + 44332*d**2 - 112360*d + 60192\nd = symbols(\"d\")\nd = solve(-4*d**5 + 196*d**4 + 7644*d**3 + 44332*d**2 - 112360*d + 60192)\nprint(d)" - ], - "Output Answer": [ - "[-18, -11, 1, 76]" - ], - "split": "train" - }, - { - "Input": "Which is smaller: 1 or -3/65594?", - "Output Program": [ - "from sympy import *\nprint(min(1, -3/65594))" - ], - "Output Answer": [ - "-4.5735890477787606e-05" - ], - "split": "train" - }, - { - "Input": "Suppose -t + 3 = -1. Let o be (9/(-36))/(4/(-112)). Let h = o - t. Solve 6 = -3*c + 3*r, 20 = 5*c + h*r - 10 for c.", - "Output Program": [ - "from sympy import *\no = (9/(-36))/(4/(-112))\nt = symbols(\"t\")\nt = solve([Eq(-t + 3, -1)])[t]\nh = o - t\nc, r = symbols(\"c r\")\nc = solve([Eq(6, -3*c + 3*r), Eq(20, 5*c + h*r - 10)])[c]\nprint(c)" - ], - "Output Answer": [ - "3.00000000000000" - ], - "split": "train" - }, - { - "Input": "Solve 171*q - 588 = 465*q for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(171*q - 588, 465*q)])[q]\nprint(q)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Let r be (2/(-5))/(3/(-30)). Solve -8 = 2*a - r*a for a.", - "Output Program": [ - "from sympy import *\nr = (2/(-5))/(3/(-30))\na = symbols(\"a\")\na = solve([Eq(-8, 2*a - r*a)])[a]\nprint(a)" - ], - "Output Answer": [ - "4.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let m = 217 + -215. Let g be (-28)/(-16) + 2/8. Find n, given that -m - n**2 + 4*n - 5*n + 2*n**g = 0.", - "Output Program": [ - "from sympy import *\ng = (-28)/(-16) + 2/8\nm = 217 + -215\nn = symbols(\"n\")\ndef j(n):\n\treturn -m - n**2 + 4*n - 5*n + 2*n**g\nn = symbols(\"n\")\nn = solve(-m - n**2 + 4*n - 5*n + 2*n**g)\nprint(n)" - ], - "Output Answer": [ - "[-1.00000000000000, 2.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Let n(d) = 2*d**3 + 2*d**2 + 244*d - 496. Let i be n(2). Solve 0 = -2*v + 3*l - i, -3*l + 15 - 14 = v for v.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef n(d):\n\treturn 2*d**3 + 2*d**2 + 244*d - 496\ni = n(2)\nv, l = symbols(\"v l\")\nv = solve([Eq(0, -2*v + 3*l - i), Eq(-3*l + 15 - 14, v)])[v]\nprint(v)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Let d(i) = i + 10. Suppose 76*k - 26*k = 124 - 374. Calculate d(k).", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef d(i):\n\treturn i + 10\nk = symbols(\"k\")\nk = solve([Eq(76*k - 26*k, 124 - 374)])[k]\nprint(d(k))" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Suppose -b - 43 = 9. Let p be (b/(-6))/(1/3). Let x(d) = 13*d**3 + d**2 - d + 1. Let j be x(1). Solve 0 = 5*r + 4*i - p, 0*i + j = -3*r + 5*i for r.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef x(d):\n\treturn 13*d**3 + d**2 - d + 1\nj = x(1)\nb = symbols(\"b\")\nb = solve([Eq(-b - 43, 9)])[b]\np = (b/(-6))/(1/3)\nr, i = symbols(\"r i\")\nr = solve([Eq(0, 5*r + 4*i - p), Eq(0*i + j, -3*r + 5*i)])[r]\nprint(r)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Simplify (6*(sqrt(126) - (-1*sqrt(126) + sqrt(126) - sqrt(126) - sqrt(126)) - sqrt(126)))/((-1*sqrt(1536))/sqrt(12)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((6*(sqrt(126) - (-1*sqrt(126) + sqrt(126) - sqrt(126) - sqrt(126)) - sqrt(126)))/((-1*sqrt(1536))/sqrt(12)))))" - ], - "Output Answer": [ - "-9*sqrt(7)/2" - ], - "split": "train" - }, - { - "Input": "Solve 5*s + i = 25, 4*s - 3*i = -5*i + 26 for s.", - "Output Program": [ - "from sympy import *\ns, i = symbols(\"s i\")\ns = solve([Eq(5*s + i, 25), Eq(4*s - 3*i, -5*i + 26)])[s]\nprint(s)" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Let h(q) = -2*q**2 - 12*q + 11. Determine h(-9).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef h(q):\n\treturn -2*q**2 - 12*q + 11\nprint(h(-9))" - ], - "Output Answer": [ - "-43" - ], - "split": "train" - }, - { - "Input": "Solve 37 = -5*a + 52 for a.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(37, -5*a + 52)])[a]\nprint(a)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let k be 88739/42 + 5/(-6). Let g be (5554/1)/((-4)/1 + 6). Suppose 4*u + 258 - k = -2*m, 3*m + 5*u = g. Is m a composite number?", - "Output Program": [ - "from sympy import *\nk = 88739/42 + 5/(-6)\ng = (5554/1)/((-4)/1 + 6)\nm, u = symbols(\"m u\")\nm = solve([Eq(4*u + 258 - k, -2*m), Eq(3*m + 5*u, g)])[m]\nprint(not isprime(919))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Sort -0.13, -2, -4, 0.05 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-0.13, -2, -4, 0.05]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.05 -0.13 -2 -4" - ], - "split": "train" - }, - { - "Input": "Let h = -4593/261184 - -8/4081. What is the nearest to h in 0, -1/4, 2, -4?", - "Output Program": [ - "from sympy import *\nh = -4593/261184 - -8/4081\nchoices = [0, -1/4, 2, -4]\ntarget = h\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "What is the nearest to -0.1 in -14, 2, -0.16, 1/8, -4?", - "Output Program": [ - "from sympy import *\nchoices = [-14, 2, -0.16, 1/8, -4]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.16" - ], - "split": "train" - }, - { - "Input": "Solve y - 3*j + 7*j = 17, 4*y + 5*j - 24 = 0 for y.", - "Output Program": [ - "from sympy import *\ny, j = symbols(\"y j\")\ny = solve([Eq(y - 3*j + 7*j, 17), Eq(4*y + 5*j - 24, 0)])[y]\nprint(y)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Sort -100, 3, 0.4.", - "Output Program": [ - "from sympy import *\nchoices = [-100, 3, 0.4]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-100 0.4 3" - ], - "split": "train" - }, - { - "Input": "Let r = 2443 - 1612. Suppose 0*y = -5*c - y + 5927, -2362 = -2*c + 4*y. Suppose 0 = 14*w - c - r. Is w a multiple of 36?", - "Output Program": [ - "from sympy import *\nc, y = symbols(\"c y\")\nc = solve([Eq(0*y, -5*c - y + 5927), Eq(-2362, -2*c + 4*y)])[c]\nr = 2443 - 1612\nw = symbols(\"w\")\nw = solve([Eq(0, 14*w - c - r)])[w]\nprint(144 % 36 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Is 72 a factor of 1408147?", - "Output Program": [ - "from sympy import *\nprint(1408147 % 72 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Solve -4*q**4 - 11148*q**3 + 11156*q**2 + 11148*q - 11152 = 0 for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef z(q):\n\treturn -4*q**4 - 11148*q**3 + 11156*q**2 + 11148*q - 11152\nq = symbols(\"q\")\nq = solve(-4*q**4 - 11148*q**3 + 11156*q**2 + 11148*q - 11152)\nprint(q)" - ], - "Output Answer": [ - "[-2788, -1, 1]" - ], - "split": "train" - }, - { - "Input": "Solve 110*z + 4*r = 107*z + 10, 0 = 5*r - 5 for z.", - "Output Program": [ - "from sympy import *\nz, r = symbols(\"z r\")\nz = solve([Eq(110*z + 4*r, 107*z + 10), Eq(0, 5*r - 5)])[z]\nprint(z)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Is ((-5)/(-2) + -1)/(2/112) a multiple of 21?", - "Output Program": [ - "from sympy import *\nl = ((-5)/(-2) + -1)/(2/112)\nprint(84 % 21 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let t = 130.0148 + -0.0148. Let f = 132 - t. Which is smaller: f or 182?", - "Output Program": [ - "from sympy import *\nt = 130.0148 + -0.0148\nf = 132 - t\nprint(min(f, 182))" - ], - "Output Answer": [ - "2.0" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to 4? (a) -2 (b) -1 (c) 5 (d) -2/19", - "Output Program": [ - "from sympy import *\nchoices = [-2, -1, 5, -2/19]\ntarget = 4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Suppose 3*h - 4*p = -h + 176, -5*p - 126 = -3*h. Suppose 0 = -13*b + 5 + h. Does b = 9?", - "Output Program": [ - "from sympy import *\nh, p = symbols(\"h p\")\nh = solve([Eq(3*h - 4*p, -h + 176), Eq(-5*p - 126, -3*h)])[h]\nb = symbols(\"b\")\nb = solve([Eq(0, -13*b + 5 + h)])[b]\nprint(b == 9)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let q = -49 + 49.1. Which is smaller: 22 or q?", - "Output Program": [ - "from sympy import *\nq = -49 + 49.1\nprint(min(22, q))" - ], - "Output Answer": [ - "0.10000000000000142" - ], - "split": "train" - }, - { - "Input": "Solve -v - 21 = -5*r, v + 4*r + 5258 = 5264 for v.", - "Output Program": [ - "from sympy import *\nv, r = symbols(\"v r\")\nv = solve([Eq(-v - 21, -5*r), Eq(v + 4*r + 5258, 5264)])[v]\nprint(v)" - ], - "Output Answer": [ - "-6" - ], - "split": "train" - }, - { - "Input": "Suppose 3*d = -1 + 1066. Let k = d + -345. Let t = 967/175 - -94/25. Is t < k?", - "Output Program": [ - "from sympy import *\nt = 967/175 - -94/25\nd = symbols(\"d\")\nd = solve([Eq(3*d, -1 + 1066)])[d]\nk = d + -345\nprint(t < k)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Solve 915*i - 26262 = -2003*i for i.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ni = solve([Eq(915*i - 26262, -2003*i)])[i]\nprint(i)" - ], - "Output Answer": [ - "9" - ], - "split": "train" - }, - { - "Input": "Solve -21*u = 19*u - 240 for u.", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(-21*u, 19*u - 240)])[u]\nprint(u)" - ], - "Output Answer": [ - "6" - ], - "split": "train" - }, - { - "Input": "Solve 2*c - 25 = 5*v + 4, -4*v - 10 = 5*c for c.", - "Output Program": [ - "from sympy import *\nc, v = symbols(\"c v\")\nc = solve([Eq(2*c - 25, 5*v + 4), Eq(-4*v - 10, 5*c)])[c]\nprint(c)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "What is the closest to -1/4 in 3, -1, -6, 0.3?", - "Output Program": [ - "from sympy import *\nchoices = [3, -1, -6, 0.3]\ntarget = -1/4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.3" - ], - "split": "train" - }, - { - "Input": "Let j be (-3)/(-5) + (-9282)/(-780). Suppose 6*y**4 + 3*y**2 + 0*y + 0 - 7/2*y**5 + j*y**3 = 0. Calculate y.", - "Output Program": [ - "from sympy import *\nj = (-3)/(-5) + (-9282)/(-780)\ny = symbols(\"y\")\ndef g(y):\n\treturn 6*y**4 + 3*y**2 + 0*y + 0 - 7/2*y**5 + j*y**3\ny = symbols(\"y\")\ny = solve(6*y**4 + 3*y**2 + 0*y + 0 - 7/2*y**5 + j*y**3)\nprint(y)" - ], - "Output Answer": [ - "[-1.00000000000000, -0.285714285714286, 0.0, 3.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Is 52 a factor of 52?", - "Output Program": [ - "from sympy import *\nprint(52 % 52 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Simplify -3*((sqrt(17) + (sqrt(1700) - (sqrt(1700) + 3) - sqrt(1700)))**2 + 5) + 4.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-3*((sqrt(17) + (sqrt(1700) - (sqrt(1700) + 3) - sqrt(1700)))**2 + 5) + 4)))" - ], - "Output Answer": [ - "-4169 - 162*sqrt(17)" - ], - "split": "train" - }, - { - "Input": "Let l(k) = 3 + 2 + k - 3 - 14. Give l(6).", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef l(k):\n\treturn 3 + 2 + k - 3 - 14\nprint(l(6))" - ], - "Output Answer": [ - "-6" - ], - "split": "train" - }, - { - "Input": "Let o(i) = -3*i**2 - 2. Let d be o(3). Let l = d + 34. Let b(m) = -m**3 + 5*m**2 + 2*m. What is b(l)?", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef b(m):\n\treturn -m**3 + 5*m**2 + 2*m\ni = symbols(\"i\")\ndef o(i):\n\treturn -3*i**2 - 2\nd = o(3)\nl = d + 34\nprint(b(l))" - ], - "Output Answer": [ - "10" - ], - "split": "train" - }, - { - "Input": "Let a = 16 - 15. Suppose g = -0*g + a. Let n(r) = -r**3 + 2*r**2 - r - 3. Let d be n(2). What is the nearest to g in 1/4, -0.4, d?", - "Output Program": [ - "from sympy import *\na = 16 - 15\ng = symbols(\"g\")\ng = solve([Eq(g, -0*g + a)])[g]\nr = symbols(\"r\")\ndef n(r):\n\treturn -r**3 + 2*r**2 - r - 3\nd = n(2)\nchoices = [1/4, -0.4, d]\ntarget = g\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.25" - ], - "split": "train" - }, - { - "Input": "Solve -6450*y + 139 = 3*k - 6452*y, -k + 5*y + 55 = 0 for k.", - "Output Program": [ - "from sympy import *\nk, y = symbols(\"k y\")\nk = solve([Eq(-6450*y + 139, 3*k - 6452*y), Eq(-k + 5*y + 55, 0)])[k]\nprint(k)" - ], - "Output Answer": [ - "45" - ], - "split": "train" - }, - { - "Input": "Let y = 73 + -64. Suppose 22 = -4*u + y*u + 2*r, 0 = -2*r + 2. Solve -u = 4*h - 0 for h.", - "Output Program": [ - "from sympy import *\ny = 73 + -64\nu, r = symbols(\"u r\")\nu = solve([Eq(22, -4*u + y*u + 2*r), Eq(0, -2*r + 2)])[u]\nh = symbols(\"h\")\nh = solve([Eq(-u, 4*h - 0)])[h]\nprint(h)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Solve -4*i + 3*j - 21 = 8*j, 0 = 4*i - j - j + 14 for i.", - "Output Program": [ - "from sympy import *\ni, j = symbols(\"i j\")\ni = solve([Eq(-4*i + 3*j - 21, 8*j), Eq(0, 4*i - j - j + 14)])[i]\nprint(i)" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "Let u(l) = l + 2. Let c be u(-2). Suppose 0 = -b - c*b. Suppose 14 = 2*x - 4*g, -4*x = -0*x - g - 21. Put b, x, 2 in descending order.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef u(l):\n\treturn l + 2\nc = u(-2)\nb = symbols(\"b\")\nb = solve([Eq(0, -b - c*b)])[b]\nx, g = symbols(\"x g\")\nx = solve([Eq(14, 2*x - 4*g), Eq(-4*x, -0*x - g - 21)])[x]\nchoices = [b, x, 2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 2 0" - ], - "split": "train" - }, - { - "Input": "Suppose -6 = 5*z - 21. Suppose -z*o = 2*h + 6, -4*h + 7*o = 2*o - 32. Suppose -5*u + 0*y + y = 0, -22 = h*u - 5*y. Which is greater: u or 2/13?", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(-6, 5*z - 21)])[z]\nh, o = symbols(\"h o\")\nh = solve([Eq(-z*o, 2*h + 6), Eq(-4*h + 7*o, 2*o - 32)])[h]\nu, y = symbols(\"u y\")\nu = solve([Eq(-5*u + 0*y + y, 0), Eq(-22, h*u - 5*y)])[u]\nprint(max(u, 2/13))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Suppose -26*d = -28*d. Solve 3*z + d*z - 3 = 3*x, -2*z - 6 = 2*x for z.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\nd = solve([Eq(-26*d, -28*d)])[d]\nz, x = symbols(\"z x\")\nz = solve([Eq(3*z + d*z - 3, 3*x), Eq(-2*z - 6, 2*x)])[z]\nprint(z)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Let b(p) = p**2 - 22865*p - 182986. Give b(-8).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef b(p):\n\treturn p**2 - 22865*p - 182986\nprint(b(-8))" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Is 1748850 a multiple of 54?", - "Output Program": [ - "from sympy import *\nprint(1748850 % 54 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Determine h, given that -5/3*h**5 + 0 - 155/3*h + 470/3*h**2 - 160*h**3 + 170/3*h**4 = 0.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef p(h):\n\treturn -5/3*h**5 + 0 - 155/3*h + 470/3*h**2 - 160*h**3 + 170/3*h**4\nh = symbols(\"h\")\nh = solve(-5/3*h**5 + 0 - 155/3*h + 470/3*h**2 - 160*h**3 + 170/3*h**4)\nprint(h)" - ], - "Output Answer": [ - "[0.0, 1.00000000000000, 31.0000000000000]" - ], - "split": "train" - }, - { - "Input": "Is 35954460 a multiple of 2049?", - "Output Program": [ - "from sympy import *\nprint(35954460 % 2049 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Which is smaller: -0.2 or -4.6?", - "Output Program": [ - "from sympy import *\nprint(min(-0.2, -4.6))" - ], - "Output Answer": [ - "-4.6" - ], - "split": "train" - }, - { - "Input": "Solve 596 + 623 = 53*o for o.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\no = solve([Eq(596 + 623, 53*o)])[o]\nprint(o)" - ], - "Output Answer": [ - "23" - ], - "split": "train" - }, - { - "Input": "Solve 4*h**4/5 + 672*h**3/5 + 664*h**2/5 - 672*h/5 - 668/5 = 0 for h.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef t(h):\n\treturn 4*h**4/5 + 672*h**3/5 + 664*h**2/5 - 672*h/5 - 668/5\nh = symbols(\"h\")\nh = solve(4*h**4/5 + 672*h**3/5 + 664*h**2/5 - 672*h/5 - 668/5)\nprint(h)" - ], - "Output Answer": [ - "[-167.000000000000, -1.00000000000000, 1.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Let u = -1.251 - -0.251. Which is the closest to u? (a) -7 (b) -1/3 (c) 0.03", - "Output Program": [ - "from sympy import *\nu = -1.251 - -0.251\nchoices = [-7, -1/3, 0.03]\ntarget = u\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.3333333333333333" - ], - "split": "train" - }, - { - "Input": "Solve -5*r - 20319 = -t - 20335, 0 = t + 3*r - 16 for t.", - "Output Program": [ - "from sympy import *\nt, r = symbols(\"t r\")\nt = solve([Eq(-5*r - 20319, -t - 20335), Eq(0, t + 3*r - 16)])[t]\nprint(t)" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Let q(d) = d**3 - 8*d**2 + 8*d - 5. Let t be q(7). Suppose 3*l + t*l - 210 = 0. Is 14 a factor of l?", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef q(d):\n\treturn d**3 - 8*d**2 + 8*d - 5\nt = q(7)\nl = symbols(\"l\")\nl = solve([Eq(3*l + t*l - 210, 0)])[l]\nprint(42 % 14 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Simplify 2 + sqrt(156)/(sqrt(108)/sqrt(9)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(2 + sqrt(156)/(sqrt(108)/sqrt(9)))))" - ], - "Output Answer": [ - "2 + sqrt(13)" - ], - "split": "train" - }, - { - "Input": "Let o = -127/188 + 5/564. Let u be (4 - 3)*(1 + -1). Suppose 2*j = -u*j. Which is the closest to -6? (a) -3 (b) o (c) j", - "Output Program": [ - "from sympy import *\no = -127/188 + 5/564\nu = (4 - 3)*(1 + -1)\nj = symbols(\"j\")\nj = solve([Eq(2*j, -u*j)])[j]\nchoices = [-3, o, j]\ntarget = -6\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Let a(w) = 1 - w. Let z(b) = b + 1. Let m(g) = 2*a(g) - z(g). Let j be m(-2). Let r = 10 - j. Solve r*h = 5*h + 10 for h.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef z(b):\n\treturn b + 1\nw = symbols(\"w\")\ndef a(w):\n\treturn 1 - w\ndef m(g):\n\treturn 2*a(g) - z(g)\nj = m(-2)\nr = 10 - j\nh = symbols(\"h\")\nh = solve([Eq(r*h, 5*h + 10)])[h]\nprint(h)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Simplify -1 + ((-3*(-1 + sqrt(2057)) - (0 + sqrt(2057)*-1))*-4)**2 + ((4*-3*sqrt(2057) - sqrt(2057))**2 - ((sqrt(2057) + -2 + sqrt(2057))**2 + 0)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-1 + ((-3*(-1 + sqrt(2057)) - (0 + sqrt(2057)*-1))*-4)**2 + ((4*-3*sqrt(2057) - sqrt(2057))**2 - ((sqrt(2057) + -2 + sqrt(2057))**2 + 0)))))" - ], - "Output Answer": [ - "471192 - 2024*sqrt(17)" - ], - "split": "train" - }, - { - "Input": "Which is smaller: -395 or 7394?", - "Output Program": [ - "from sympy import *\nprint(min(-395, 7394))" - ], - "Output Answer": [ - "-395" - ], - "split": "train" - }, - { - "Input": "Let q(v) = 3*v + 3. Let y be q(-6). Let l = -884 + 1431. Let x = 529 - l. Are y and x unequal?", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef q(v):\n\treturn 3*v + 3\ny = q(-6)\nl = -884 + 1431\nx = 529 - l\nprint(y != x)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let n be (-2)/(-5)*(0 - -10). Let x be 65/25 + n/10. Let f be -4 - (6/33 - 72/33). Put f, -5, x in increasing order.", - "Output Program": [ - "from sympy import *\nf = -4 - (6/33 - 72/33)\nn = (-2)/(-5)*(0 - -10)\nx = 65/25 + n/10\nchoices = [f, -5, x]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 -2.0 3.0" - ], - "split": "train" - }, - { - "Input": "Let r be -2*-2*2/(-4). Let a(n) = 285 - 9*n. Let l be a(32). Put l, r, 2 in descending order.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef a(n):\n\treturn 285 - 9*n\nl = a(32)\nr = -2*-2*2/(-4)\nchoices = [l, r, 2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "2 -2.0 -3" - ], - "split": "train" - }, - { - "Input": "Let o(m) = m - 20. Calculate o(-4).", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef o(m):\n\treturn m - 20\nprint(o(-4))" - ], - "Output Answer": [ - "-24" - ], - "split": "train" - }, - { - "Input": "Solve 6*s - 66456 = -66420 for s.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ns = solve([Eq(6*s - 66456, -66420)])[s]\nprint(s)" - ], - "Output Answer": [ - "6" - ], - "split": "train" - }, - { - "Input": "Let j(m) = 11*m**2 + 10*m + 102. Let l(a) = 29*a**2 + 29*a + 305. Let y(w) = 8*j(w) - 3*l(w). Determine y(-7).", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef j(m):\n\treturn 11*m**2 + 10*m + 102\na = symbols(\"a\")\ndef l(a):\n\treturn 29*a**2 + 29*a + 305\ndef y(w):\n\treturn 8*j(w) - 3*l(w)\nprint(y(-7))" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Let c(q) = -q**3 - 6*q**2 + 7. Determine c(-5).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef c(q):\n\treturn -q**3 - 6*q**2 + 7\nprint(c(-5))" - ], - "Output Answer": [ - "-18" - ], - "split": "train" - }, - { - "Input": "Let b be 1/(-1 - 21/(-18)). Let j = -4 + b. Solve -5*l = 4*o + 37, -j*l = 3*o - o + 16 for l.", - "Output Program": [ - "from sympy import *\nb = 1/(-1 - 21/(-18))\nj = -4 + b\nl, o = symbols(\"l o\")\nl = solve([Eq(-5*l, 4*o + 37), Eq(-j*l, 3*o - o + 16)])[l]\nprint(l)" - ], - "Output Answer": [ - "-5.00000000000000" - ], - "split": "train" - }, - { - "Input": "Simplify -3 + (-1*sqrt(2600))/(sqrt(4)/sqrt(2)*-2).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-3 + (-1*sqrt(2600))/(sqrt(4)/sqrt(2)*-2))))" - ], - "Output Answer": [ - "-3 + 5*sqrt(13)" - ], - "split": "train" - }, - { - "Input": "Let o be (72/30)/(1/5). Suppose -o = -3*h - 3. Is h greater than or equal to 4?", - "Output Program": [ - "from sympy import *\no = (72/30)/(1/5)\nh = symbols(\"h\")\nh = solve([Eq(-o, -3*h - 3)])[h]\nprint(h >= 4)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let s be 57/5 + (-10)/25. Suppose -3*z = -29 + s. Solve -f - 5 + z = 2*k, f - 7 = -5*k for k.", - "Output Program": [ - "from sympy import *\ns = 57/5 + (-10)/25\nz = symbols(\"z\")\nz = solve([Eq(-3*z, -29 + s)])[z]\nk, f = symbols(\"k f\")\nk = solve([Eq(-f - 5 + z, 2*k), Eq(f - 7, -5*k)])[k]\nprint(k)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Is -64008 >= -64008?", - "Output Program": [ - "from sympy import *\nprint(-64008 >= -64008)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let g = -4/2227 - 2954/835125. What is the nearest to -1 in 0.1, 1, -4, g?", - "Output Program": [ - "from sympy import *\ng = -4/2227 - 2954/835125\nchoices = [0.1, 1, -4, g]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.005333333333333333" - ], - "split": "train" - }, - { - "Input": "Let l be 1/(-12)*3 + (-21)/(-4). Suppose -5*c + 36 = 4*j, c + 3*c - 4*j = 0. Which is smaller: l or c?", - "Output Program": [ - "from sympy import *\nl = 1/(-12)*3 + (-21)/(-4)\nc, j = symbols(\"c j\")\nc = solve([Eq(-5*c + 36, 4*j), Eq(c + 3*c - 4*j, 0)])[c]\nprint(min(l, c))" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Suppose -2*a = -2*g - 10, 17 = -4*g + 1. Solve -4*c = -11 - a for c.", - "Output Program": [ - "from sympy import *\na, g = symbols(\"a g\")\na = solve([Eq(-2*a, -2*g - 10), Eq(17, -4*g + 1)])[a]\nc = symbols(\"c\")\nc = solve([Eq(-4*c, -11 - a)])[c]\nprint(c)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Solve 0 = -a - 451*p + 456*p + 8, -4*p - 19 = a for a.", - "Output Program": [ - "from sympy import *\na, p = symbols(\"a p\")\na = solve([Eq(0, -a - 451*p + 456*p + 8), Eq(-4*p - 19, a)])[a]\nprint(a)" - ], - "Output Answer": [ - "-7" - ], - "split": "train" - }, - { - "Input": "Let r(h) = 4*h**2 + 3*h - 4. Let i(z) = 5*z**2 + 3*z - 5. Let j(a) = -2*i(a) + 3*r(a). Let l be j(-3). Solve q = -2*q - 2*y + l, -5*y + 25 = 0 for q.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef i(z):\n\treturn 5*z**2 + 3*z - 5\nh = symbols(\"h\")\ndef r(h):\n\treturn 4*h**2 + 3*h - 4\ndef j(a):\n\treturn -2*i(a) + 3*r(a)\nl = j(-3)\nq, y = symbols(\"q y\")\nq = solve([Eq(q, -2*q - 2*y + l), Eq(-5*y + 25, 0)])[q]\nprint(q)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Suppose n**2/4 + 1565*n/4 - 1567/2 = 0. Calculate n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef x(n):\n\treturn n**2/4 + 1565*n/4 - 1567/2\nn = symbols(\"n\")\nn = solve(n**2/4 + 1565*n/4 - 1567/2)\nprint(n)" - ], - "Output Answer": [ - "[-1567.00000000000, 2.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to 0? (a) 1 (b) 5 (c) 2/23 (d) -1/8", - "Output Program": [ - "from sympy import *\nchoices = [1, 5, 2/23, -1/8]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.08695652173913043" - ], - "split": "train" - }, - { - "Input": "Solve -y - 10 = 5*a, 963*y - 964*y - 7*a - 70 = -14*a for y.", - "Output Program": [ - "from sympy import *\ny, a = symbols(\"y a\")\ny = solve([Eq(-y - 10, 5*a), Eq(963*y - 964*y - 7*a - 70, -14*a)])[y]\nprint(y)" - ], - "Output Answer": [ - "-35" - ], - "split": "train" - }, - { - "Input": "Let c be ((-25)/50)/((-2)/(-24)*-1). Solve -c = -2*q - q for q.", - "Output Program": [ - "from sympy import *\nc = ((-25)/50)/((-2)/(-24)*-1)\nq = symbols(\"q\")\nq = solve([Eq(-c, -2*q - q)])[q]\nprint(q)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Sort 69, -2, -481 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [69, -2, -481]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "69 -2 -481" - ], - "split": "train" - }, - { - "Input": "Let q = 4.9 - 5. What is the nearest to -1 in 2, -1/2, q?", - "Output Program": [ - "from sympy import *\nq = 4.9 - 5\nchoices = [2, -1/2, q]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.5" - ], - "split": "train" - }, - { - "Input": "Is 321 less than 795642/2479?", - "Output Program": [ - "from sympy import *\nprint(321 < 795642/2479)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let b be ((-14)/(336/18))/(3/(-8)). Suppose 2*t + 2*t - 2*n + 6 = 0, -3*t - 3 = -n. Solve 2*a = b*y + 8, t*a + 5*y = 2*a - 11 for a.", - "Output Program": [ - "from sympy import *\nb = ((-14)/(336/18))/(3/(-8))\nt, n = symbols(\"t n\")\nt = solve([Eq(2*t + 2*t - 2*n + 6, 0), Eq(-3*t - 3, -n)])[t]\na, y = symbols(\"a y\")\na = solve([Eq(2*a, b*y + 8), Eq(t*a + 5*y, 2*a - 11)])[a]\nprint(a)" - ], - "Output Answer": [ - "3.00000000000000" - ], - "split": "train" - }, - { - "Input": "Solve -270 = 58*g - 53*g + 5*m, 3*m = -4*g - 159 + 56 - 64 for g.", - "Output Program": [ - "from sympy import *\ng, m = symbols(\"g m\")\ng = solve([Eq(-270, 58*g - 53*g + 5*m), Eq(3*m, -4*g - 159 + 56 - 64)])[g]\nprint(g)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Simplify 3 + (sqrt(2736) + 0 + -4)**2 + 0.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(3 + (sqrt(2736) + 0 + -4)**2 + 0)))" - ], - "Output Answer": [ - "2755 - 96*sqrt(19)" - ], - "split": "train" - }, - { - "Input": "Simplify (3*(5 + sqrt(125) + 1 + sqrt(125) - (sqrt(125) + -1 + 5 - sqrt(125))))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((3*(5 + sqrt(125) + 1 + sqrt(125) - (sqrt(125) + -1 + 5 - sqrt(125))))**2)))" - ], - "Output Answer": [ - "360*sqrt(5) + 4536" - ], - "split": "train" - }, - { - "Input": "Sort 3, -1, -4, -265063 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [3, -1, -4, -265063]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-265063 -4 -1 3" - ], - "split": "train" - }, - { - "Input": "Is 421470 a multiple of 18?", - "Output Program": [ - "from sympy import *\nprint(421470 % 18 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Put -5, -6936, -2 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-5, -6936, -2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "-2 -5 -6936" - ], - "split": "train" - }, - { - "Input": "Solve -5*r = -x - 16, r = 23*x - 16*x - 6*x + 4 for r.", - "Output Program": [ - "from sympy import *\nr, x = symbols(\"r x\")\nr = solve([Eq(-5*r, -x - 16), Eq(r, 23*x - 16*x - 6*x + 4)])[r]\nprint(r)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Solve o + 4*s - 1022 = -1014, -26 = -6*o - 2*s for o.", - "Output Program": [ - "from sympy import *\no, s = symbols(\"o s\")\no = solve([Eq(o + 4*s - 1022, -1014), Eq(-26, -6*o - 2*s)])[o]\nprint(o)" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Let v = -5.9 + -17.1. Let n = v - -20. Let g = 1.06 - 0.06. Sort n, g, -4.", - "Output Program": [ - "from sympy import *\nv = -5.9 + -17.1\nn = v - -20\ng = 1.06 - 0.06\nchoices = [n, g, -4]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 -3.0 1.0" - ], - "split": "train" - }, - { - "Input": "Suppose -10*o + 20 = -5*o. Let q be o*-1*(-30)/(-20). Which is bigger: -7 or q?", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\no = solve([Eq(-10*o + 20, -5*o)])[o]\nq = o*-1*(-30)/(-20)\nprint(max(-7, q))" - ], - "Output Answer": [ - "-6" - ], - "split": "train" - }, - { - "Input": "What is the closest to 2 in 0.05, 0.03, 4, 0.3?", - "Output Program": [ - "from sympy import *\nchoices = [0.05, 0.03, 4, 0.3]\ntarget = 2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.3" - ], - "split": "train" - }, - { - "Input": "Let n be (-1 - -1)/(1 + -2). Let q = -2 - -5. Let k = -2.7 + 2.6. Which is the closest to n? (a) q (b) k (c) -1", - "Output Program": [ - "from sympy import *\nn = (-1 - -1)/(1 + -2)\nq = -2 - -5\nk = -2.7 + 2.6\nchoices = [q, k, -1]\ntarget = n\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.10000000000000009" - ], - "split": "train" - }, - { - "Input": "Solve -4*d = 5*l + 19, -4*d - 25 = -225*l + 232*l for l.", - "Output Program": [ - "from sympy import *\nl, d = symbols(\"l d\")\nl = solve([Eq(-4*d, 5*l + 19), Eq(-4*d - 25, -225*l + 232*l)])[l]\nprint(l)" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Suppose -23*k - 38*k = -272 + 89. Sort -5, 0.2, 0.07, k, -0.5 in descending order.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\nk = solve([Eq(-23*k - 38*k, -272 + 89)])[k]\nchoices = [-5, 0.2, 0.07, k, -0.5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 0.2 0.07 -0.5 -5" - ], - "split": "train" - }, - { - "Input": "Simplify 0 + (-5*sqrt(11)*-1 - sqrt(33)/sqrt(3)*-5).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(0 + (-5*sqrt(11)*-1 - sqrt(33)/sqrt(3)*-5))))" - ], - "Output Answer": [ - "10*sqrt(11)" - ], - "split": "train" - }, - { - "Input": "Which is greater: -4017529/2 or -2008764?", - "Output Program": [ - "from sympy import *\nprint(max(-4017529/2, -2008764))" - ], - "Output Answer": [ - "-2008764" - ], - "split": "train" - }, - { - "Input": "Put 0, 3, 18779569 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [0, 3, 18779569]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "18779569 3 0" - ], - "split": "train" - }, - { - "Input": "Let i = -4/5 - -3/10. Let c = -620 + 2479/4. What is the nearest to i in c, 3, 2/5?", - "Output Program": [ - "from sympy import *\ni = -4/5 - -3/10\nc = -620 + 2479/4\nchoices = [c, 3, 2/5]\ntarget = i\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.25" - ], - "split": "train" - }, - { - "Input": "Suppose -7*l + 2*l = 0. Suppose l = 3*k - 5*q - 25, -3*k + 0*q + 21 = -3*q. Solve -6*d + 5*d = -k for d.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\nl = solve([Eq(-7*l + 2*l, 0)])[l]\nk, q = symbols(\"k q\")\nk = solve([Eq(l, 3*k - 5*q - 25), Eq(-3*k + 0*q + 21, -3*q)])[k]\nd = symbols(\"d\")\nd = solve([Eq(-6*d + 5*d, -k)])[d]\nprint(d)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Suppose 0 = -3*q + 2 + 4. Suppose 4*z - 44 = -3*a, q*z - 3*a = -2 + 6. Is 8 a factor of z?", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(0, -3*q + 2 + 4)])[q]\nz, a = symbols(\"z a\")\nz = solve([Eq(4*z - 44, -3*a), Eq(q*z - 3*a, -2 + 6)])[z]\nprint(8 % 8 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let g = -21 + 78. Let s = 60 - g. Suppose 2*i - 13 = -4*o + i, s*o - 2*i - 18 = 0. Solve -n + o*x - 13 = -4*n, 0 = -3*n - 5*x + 17 for n.", - "Output Program": [ - "from sympy import *\ng = -21 + 78\ns = 60 - g\no, i = symbols(\"o i\")\no = solve([Eq(2*i - 13, -4*o + i), Eq(s*o - 2*i - 18, 0)])[o]\nn, x = symbols(\"n x\")\nn = solve([Eq(-n + o*x - 13, -4*n), Eq(0, -3*n - 5*x + 17)])[n]\nprint(n)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Is 239316 a multiple of 42?", - "Output Program": [ - "from sympy import *\nprint(239316 % 42 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let w(b) = -3493*b - 167639. Give w(-48).", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef w(b):\n\treturn -3493*b - 167639\nprint(w(-48))" - ], - "Output Answer": [ - "25" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 1? (a) 59 (b) -5 (c) -1/5 (d) 0.1", - "Output Program": [ - "from sympy import *\nchoices = [59, -5, -1/5, 0.1]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "train" - }, - { - "Input": "Solve -10056*h + 10096*h - 520 = 0 for h.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\nh = solve([Eq(-10056*h + 10096*h - 520, 0)])[h]\nprint(h)" - ], - "Output Answer": [ - "13" - ], - "split": "train" - }, - { - "Input": "Let d be (-6)/(-2) - (-2 + 8). Let b = 5 - 3. Let p = b + -1. What is the closest to p in 2/9, d, 4?", - "Output Program": [ - "from sympy import *\nb = 5 - 3\np = b + -1\nd = (-6)/(-2) - (-2 + 8)\nchoices = [2/9, d, 4]\ntarget = p\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.2222222222222222" - ], - "split": "train" - }, - { - "Input": "Is 47 a factor of 28730?", - "Output Program": [ - "from sympy import *\nprint(28730 % 47 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Suppose -d**3 - 1825*d**2 - 3643*d + 5469 = 0. What is d?", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef a(d):\n\treturn -d**3 - 1825*d**2 - 3643*d + 5469\nd = symbols(\"d\")\nd = solve(-d**3 - 1825*d**2 - 3643*d + 5469)\nprint(d)" - ], - "Output Answer": [ - "[-1823, -3, 1]" - ], - "split": "train" - }, - { - "Input": "Let q be 42/4 + (-5)/10. Suppose -3*n + 20 = -q. Solve -4*s = -9*s - n for s.", - "Output Program": [ - "from sympy import *\nq = 42/4 + (-5)/10\nn = symbols(\"n\")\nn = solve([Eq(-3*n + 20, -q)])[n]\ns = symbols(\"s\")\ns = solve([Eq(-4*s, -9*s - n)])[s]\nprint(s)" - ], - "Output Answer": [ - "-2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let v(a) = -39*a - 1170. Let h be v(-30). Let f = -4 + 3.75. Let n = -0.05 + f. What is the closest to -2/5 in h, n, 3/2?", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef v(a):\n\treturn -39*a - 1170\nh = v(-30)\nf = -4 + 3.75\nn = -0.05 + f\nchoices = [h, n, 3/2]\ntarget = -2/5\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.3" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(96)/sqrt(3))**2 - (sqrt(200) + 2*sqrt(200)) - -1*sqrt(98)*-4.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(96)/sqrt(3))**2 - (sqrt(200) + 2*sqrt(200)) - -1*sqrt(98)*-4)))" - ], - "Output Answer": [ - "32 - 58*sqrt(2)" - ], - "split": "train" - }, - { - "Input": "Suppose 4*n = -2*o, -4*n = 4*o - 7*o. Solve 4*s - 2*u + 16 = o, 2*s + 2*u + 12 = -s for s.", - "Output Program": [ - "from sympy import *\no, n = symbols(\"o n\")\no = solve([Eq(4*n, -2*o), Eq(-4*n, 4*o - 7*o)])[o]\ns, u = symbols(\"s u\")\ns = solve([Eq(4*s - 2*u + 16, o), Eq(2*s + 2*u + 12, -s)])[s]\nprint(s)" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "Are 7 and -7 equal?", - "Output Program": [ - "from sympy import *\nprint(7 == -7)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(2) + 1 + 2 - sqrt(2))**2 + 3 + (sqrt(2) + (sqrt(12)/sqrt(2) - sqrt(6))/sqrt(3) - (sqrt(2) - (sqrt(8) + -3))**2).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(2) + 1 + 2 - sqrt(2))**2 + 3 + (sqrt(2) + (sqrt(12)/sqrt(2) - sqrt(6))/sqrt(3) - (sqrt(2) - (sqrt(8) + -3))**2))))" - ], - "Output Answer": [ - "1 + 7*sqrt(2)" - ], - "split": "train" - }, - { - "Input": "Let h = -6193 + 6192.919. Is h at most as big as 1.3?", - "Output Program": [ - "from sympy import *\nh = -6193 + 6192.919\nprint(h <= 1.3)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose -15*f + 2*i - 264 = -14*f, 2*f + 2*i + 546 = 0. Let r = f - -275. Solve -4*g + 5*g - r = 0 for g.", - "Output Program": [ - "from sympy import *\nf, i = symbols(\"f i\")\nf = solve([Eq(-15*f + 2*i - 264, -14*f), Eq(2*f + 2*i + 546, 0)])[f]\nr = f - -275\ng = symbols(\"g\")\ng = solve([Eq(-4*g + 5*g - r, 0)])[g]\nprint(g)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Let p be (174/(-29) + 3)*-1. Factor 0 - 2/11*v**p - 8/11*v**2 + 10/11*v.", - "Output Program": [ - "from sympy import *\np = (174/(-29) + 3)*-1\nv = symbols(\"v\")\ndef x(v):\n\treturn 0 - 2/11*v**p - 8/11*v**2 + 10/11*v\nv = symbols(\"v\")\neq = factor(0 - 2/11*v**p - 8/11*v**2 + 10/11*v)\nprint(eq)" - ], - "Output Answer": [ - "-0.909090909090909*(0.8*v**2 - 1.0*v + 0.2*v**3.0)" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(392)/(sqrt(112) + sqrt(7) - sqrt(7)))/((sqrt(8) - (sqrt(8) - (sqrt(1152)*-1 - sqrt(1152)))) + sqrt(8)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(392)/(sqrt(112) + sqrt(7) - sqrt(7)))/((sqrt(8) - (sqrt(8) - (sqrt(1152)*-1 - sqrt(1152)))) + sqrt(8)))))" - ], - "Output Answer": [ - "-sqrt(7)/92" - ], - "split": "train" - }, - { - "Input": "Let i be ((-28)/(-63))/(-4*2/(-36)). Solve 5*o - 14 = -4*c, -2*c = o - i*o for o.", - "Output Program": [ - "from sympy import *\ni = ((-28)/(-63))/(-4*2/(-36))\no, c = symbols(\"o c\")\no = solve([Eq(5*o - 14, -4*c), Eq(-2*c, o - i*o)])[o]\nprint(o)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Simplify (-2*(sqrt(19)*1 + -3) - (-2 + -5 + sqrt(19)*-2 + sqrt(19)))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-2*(sqrt(19)*1 + -3) - (-2 + -5 + sqrt(19)*-2 + sqrt(19)))**2)))" - ], - "Output Answer": [ - "188 - 26*sqrt(19)" - ], - "split": "train" - }, - { - "Input": "Let d = -0.02 - -11.02. Let i = d + -6. Let l = -5 + i. What is the closest to l in 0.4, 3/4, 2?", - "Output Program": [ - "from sympy import *\nd = -0.02 - -11.02\ni = d + -6\nl = -5 + i\nchoices = [0.4, 3/4, 2]\ntarget = l\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.4" - ], - "split": "train" - }, - { - "Input": "Simplify (5*((2 + sqrt(192) - sqrt(192)) + 1 - sqrt(24)/(sqrt(24)/sqrt(3)*6 - sqrt(8))))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((5*((2 + sqrt(192) - sqrt(192)) + 1 - sqrt(24)/(sqrt(24)/sqrt(3)*6 - sqrt(8))))**2)))" - ], - "Output Answer": [ - "228 - 30*sqrt(3)" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 4? (a) 1 (b) 40 (c) -2/47 (d) 1/4", - "Output Program": [ - "from sympy import *\nchoices = [1, 40, -2/47, 1/4]\ntarget = 4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let x(f) = 4*f - 4. Let t(p) = 175 - 17*p. Let s be t(10). Calculate x(s).", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\ndef x(f):\n\treturn 4*f - 4\np = symbols(\"p\")\ndef t(p):\n\treturn 175 - 17*p\ns = t(10)\nprint(x(s))" - ], - "Output Answer": [ - "16" - ], - "split": "train" - }, - { - "Input": "Let j = -863 + 954. Let k be (-7 - j/(-14))*136. What is the closest to k in 4, -0.4, 0.1?", - "Output Program": [ - "from sympy import *\nj = -863 + 954\nk = (-7 - j/(-14))*136\nchoices = [4, -0.4, 0.1]\ntarget = k\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.4" - ], - "split": "train" - }, - { - "Input": "Let w(g) = g**3 + 14*g**2 + 13*g - 1. Let x(r) = r**3 + 20*r**2 + 19*r - 13. Let b be x(-19). Let m be w(b). Is m at least -4/27?", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef w(g):\n\treturn g**3 + 14*g**2 + 13*g - 1\nr = symbols(\"r\")\ndef x(r):\n\treturn r**3 + 20*r**2 + 19*r - 13\nb = x(-19)\nm = w(b)\nprint(m >= -4/27)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let b be (-3)/12 + 21/4. Suppose -5*i - 4*c = -8*c, -4*c = b*i - 40. Suppose -i*s + 0 = -20. Solve -4 = -4*o - 4*p, -o - 3*p + s = 4 for o.", - "Output Program": [ - "from sympy import *\nb = (-3)/12 + 21/4\ni, c = symbols(\"i c\")\ni = solve([Eq(-5*i - 4*c, -8*c), Eq(-4*c, b*i - 40)])[i]\ns = symbols(\"s\")\ns = solve([Eq(-i*s + 0, -20)])[s]\no, p = symbols(\"o p\")\no = solve([Eq(-4, -4*o - 4*p), Eq(-o - 3*p + s, 4)])[o]\nprint(o)" - ], - "Output Answer": [ - "1.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let j(l) = 29*l - 1. Let i be j(1). Suppose -i - 8 = -2*p. Solve -3*k + 6 = 2*k + 3*t, -4*t = -2*k + p for k.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef j(l):\n\treturn 29*l - 1\ni = j(1)\np = symbols(\"p\")\np = solve([Eq(-i - 8, -2*p)])[p]\nk, t = symbols(\"k t\")\nk = solve([Eq(-3*k + 6, 2*k + 3*t), Eq(-4*t, -2*k + p)])[k]\nprint(k)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Solve 2*x = 28*l - 23*l - 9, l - 9 = 4*x for x.", - "Output Program": [ - "from sympy import *\nx, l = symbols(\"x l\")\nx = solve([Eq(2*x, 28*l - 23*l - 9), Eq(l - 9, 4*x)])[x]\nprint(x)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Which is bigger: -8182 or 0.5?", - "Output Program": [ - "from sympy import *\nprint(max(-8182, 0.5))" - ], - "Output Answer": [ - "0.5" - ], - "split": "train" - }, - { - "Input": "Solve 368*q = 360*q + 16 for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(368*q, 360*q + 16)])[q]\nprint(q)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Sort -5, -20, -2, -1, 1, 338.", - "Output Program": [ - "from sympy import *\nchoices = [-5, -20, -2, -1, 1, 338]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-20 -5 -2 -1 1 338" - ], - "split": "train" - }, - { - "Input": "Simplify ((6*(sqrt(1620) + sqrt(1620) + sqrt(1620) + 2*sqrt(1620)) + (sqrt(1620) - sqrt(1620)*-2)*4)/(sqrt(8)/sqrt(2)*4 + (sqrt(4) - sqrt(256)*3)))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((6*(sqrt(1620) + sqrt(1620) + sqrt(1620) + 2*sqrt(1620)) + (sqrt(1620) - sqrt(1620)*-2)*4)/(sqrt(8)/sqrt(2)*4 + (sqrt(4) - sqrt(256)*3)))**2)))" - ], - "Output Answer": [ - "714420/361" - ], - "split": "train" - }, - { - "Input": "Is 8515452913 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(8515452913))" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Simplify (6*1*sqrt(76))/sqrt(4) - (-1 + ((-4*sqrt(2736))**2 - sqrt(2736))).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((6*1*sqrt(76))/sqrt(4) - (-1 + ((-4*sqrt(2736))**2 - sqrt(2736))))))" - ], - "Output Answer": [ - "-43775 + 18*sqrt(19)" - ], - "split": "train" - }, - { - "Input": "Which is greater: 1 or -1/730?", - "Output Program": [ - "from sympy import *\nprint(max(1, -1/730))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "What is 87256 to the power of 1/9, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(87256 ** (1 / 9))))" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Let c = -0.047 - 113.953. Let j = 114.2 + c. Put 0.1, j, -1 in ascending order.", - "Output Program": [ - "from sympy import *\nc = -0.047 - 113.953\nj = 114.2 + c\nchoices = [0.1, j, -1]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1 0.1 0.20000000000000284" - ], - "split": "train" - }, - { - "Input": "Is -3/192812 bigger than 0?", - "Output Program": [ - "from sympy import *\nprint(-3/192812 > 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(85)*4*-5 + -2*1*sqrt(85))/(((sqrt(240)/sqrt(6))/sqrt(8) + sqrt(10)/(sqrt(2)*-2))*6).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(85)*4*-5 + -2*1*sqrt(85))/(((sqrt(240)/sqrt(6))/sqrt(8) + sqrt(10)/(sqrt(2)*-2))*6))))" - ], - "Output Answer": [ - "-22*sqrt(17)/3" - ], - "split": "train" - }, - { - "Input": "Determine y so that 117*y**2/4 + 51*y/4 - 417 = 0.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef f(y):\n\treturn 117*y**2/4 + 51*y/4 - 417\ny = symbols(\"y\")\ny = solve(117*y**2/4 + 51*y/4 - 417)\nprint(y)" - ], - "Output Answer": [ - "[-4, 139/39]" - ], - "split": "train" - }, - { - "Input": "Let n(t) = -t**3 + 38*t**2 - 35*t - 100. Give n(37).", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef n(t):\n\treturn -t**3 + 38*t**2 - 35*t - 100\nprint(n(37))" - ], - "Output Answer": [ - "-26" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(76)/(3*sqrt(576)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(76)/(3*sqrt(576)))))" - ], - "Output Answer": [ - "sqrt(19)/36" - ], - "split": "train" - }, - { - "Input": "What is 115046 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(115046 ** (1 / 2))))" - ], - "Output Answer": [ - "339" - ], - "split": "train" - }, - { - "Input": "What is the closest to 1 in 5, 3, 7, -0.2?", - "Output Program": [ - "from sympy import *\nchoices = [5, 3, 7, -0.2]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.2" - ], - "split": "train" - }, - { - "Input": "Let j = 661 - 661.3. What is the nearest to -2 in 1, j, -149, 4?", - "Output Program": [ - "from sympy import *\nj = 661 - 661.3\nchoices = [1, j, -149, 4]\ntarget = -2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.2999999999999545" - ], - "split": "train" - }, - { - "Input": "Let b = 3 + 1. Let w(q) = 52*q**2 + 260*q + 5. Let c be w(-5). Solve m - 22 = b*o - 2, -25 = 3*m + c*o for m.", - "Output Program": [ - "from sympy import *\nb = 3 + 1\nq = symbols(\"q\")\ndef w(q):\n\treturn 52*q**2 + 260*q + 5\nc = w(-5)\nm, o = symbols(\"m o\")\nm = solve([Eq(m - 22, b*o - 2), Eq(-25, 3*m + c*o)])[m]\nprint(m)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Which is smaller: 35 or -132?", - "Output Program": [ - "from sympy import *\nprint(min(35, -132))" - ], - "Output Answer": [ - "-132" - ], - "split": "train" - }, - { - "Input": "Solve 4*i - 105*s - 114*s + 221*s = -14, 2*i = 4*s + 28 for i.", - "Output Program": [ - "from sympy import *\ni, s = symbols(\"i s\")\ni = solve([Eq(4*i - 105*s - 114*s + 221*s, -14), Eq(2*i, 4*s + 28)])[i]\nprint(i)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Let s(y) = -y**2 - 4*y - 4. Let c be s(-4). Let r be ((-18)/24)/((-1)/c). Let u(a) = -a**3 - 2*a**2 + 4*a + 4. Determine u(r).", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef u(a):\n\treturn -a**3 - 2*a**2 + 4*a + 4\ny = symbols(\"y\")\ndef s(y):\n\treturn -y**2 - 4*y - 4\nc = s(-4)\nr = ((-18)/24)/((-1)/c)\nprint(u(r))" - ], - "Output Answer": [ - "1.0" - ], - "split": "train" - }, - { - "Input": "Solve -5*x = -3*g + 4, 5*g + 3*x + 0*x + 16 = 0 for g.", - "Output Program": [ - "from sympy import *\ng, x = symbols(\"g x\")\ng = solve([Eq(-5*x, -3*g + 4), Eq(5*g + 3*x + 0*x + 16, 0)])[g]\nprint(g)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Suppose -4*f - 4*f = 72. Let v(b) = -b**2 - 9*b - 17. Let y be v(f). Is 75/(-25) - (y + 1 - 0) a multiple of 13?", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef v(b):\n\treturn -b**2 - 9*b - 17\nf = symbols(\"f\")\nf = solve([Eq(-4*f - 4*f, 72)])[f]\ny = v(f)\nr = 75/(-25) - (y + 1 - 0)\nprint(13 % 13 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 1? (a) -0.3 (b) -2738/9 (c) 1/5 (d) 3/10", - "Output Program": [ - "from sympy import *\nchoices = [-0.3, -2738/9, 1/5, 3/10]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.3" - ], - "split": "train" - }, - { - "Input": "Suppose -90 = -19*q + q. Solve -4*n + 7*n - 30 = -5*t, 2*t + q*n = 31 for t.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(-90, -19*q + q)])[q]\nt, n = symbols(\"t n\")\nt = solve([Eq(-4*n + 7*n - 30, -5*t), Eq(2*t + q*n, 31)])[t]\nprint(t)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let k(o) = -12*o + 27*o - 38 - 11*o - 6*o. Let a be k(-21). Solve a*x + 7 = -3*m, 4*m = -0*x - 3*x - 7 for m.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef k(o):\n\treturn -12*o + 27*o - 38 - 11*o - 6*o\na = k(-21)\nm, x = symbols(\"m x\")\nm = solve([Eq(a*x + 7, -3*m), Eq(4*m, -0*x - 3*x - 7)])[m]\nprint(m)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Let u = 4 + -2. Suppose -2*a + 5*s = 1, -3*a = -2*a - 4*s + u. Let y(f) = 4*f**2 - 4*f**2 + f**a - 1 + 4*f. What is y(-2)?", - "Output Program": [ - "from sympy import *\nu = 4 + -2\na, s = symbols(\"a s\")\na = solve([Eq(-2*a + 5*s, 1), Eq(-3*a, -2*a - 4*s + u)])[a]\nf = symbols(\"f\")\ndef y(f):\n\treturn 4*f**2 - 4*f**2 + f**a - 1 + 4*f\nprint(y(-2))" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Let l be (-4 + 45/12)*-1. Let t = 2/43 + 35/172. Factor -t*v**2 + 0 - l*v.", - "Output Program": [ - "from sympy import *\nl = (-4 + 45/12)*-1\nt = 2/43 + 35/172\nv = symbols(\"v\")\ndef h(v):\n\treturn -t*v**2 + 0 - l*v\nv = symbols(\"v\")\neq = factor(-t*v**2 + 0 - l*v)\nprint(eq)" - ], - "Output Answer": [ - "-0.25*v*(v + 1)" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 517? (a) 6 (b) -3 (c) 0", - "Output Program": [ - "from sympy import *\nchoices = [6, -3, 0]\ntarget = 517\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "6" - ], - "split": "train" - }, - { - "Input": "Let v be (-4 + 264/55)/(26/30 + -1). Sort -2, v, 0, 5 in descending order.", - "Output Program": [ - "from sympy import *\nv = (-4 + 264/55)/(26/30 + -1)\nchoices = [-2, v, 0, 5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 0 -2 -6.0" - ], - "split": "train" - }, - { - "Input": "Simplify -5 + 5 + (-2 + (1 + sqrt(19) - sqrt(19)) + -1)**2 + ((-4*(sqrt(171)*2 - sqrt(171)))/((sqrt(72)*1)/sqrt(8) + sqrt(9)))**2 + -2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-5 + 5 + (-2 + (1 + sqrt(19) - sqrt(19)) + -1)**2 + ((-4*(sqrt(171)*2 - sqrt(171)))/((sqrt(72)*1)/sqrt(8) + sqrt(9)))**2 + -2)))" - ], - "Output Answer": [ - "78" - ], - "split": "train" - }, - { - "Input": "Let p(d) = -d**3 + 4*d**2 + 1. Let z be p(3). Let c be (z/4)/((-1)/(-2)). Solve -5*m = c*a - 5, 4*m + 5*a - 1 = -0*m for m.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef p(d):\n\treturn -d**3 + 4*d**2 + 1\nz = p(3)\nc = (z/4)/((-1)/(-2))\nm, a = symbols(\"m a\")\nm = solve([Eq(-5*m, c*a - 5), Eq(4*m + 5*a - 1, -0*m)])[m]\nprint(m)" - ], - "Output Answer": [ - "4.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let r(t) = -t**3 + 173*t**2 + 2402*t - 469232. Give r(171).", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef r(t):\n\treturn -t**3 + 173*t**2 + 2402*t - 469232\nprint(r(171))" - ], - "Output Answer": [ - "-8" - ], - "split": "train" - }, - { - "Input": "Suppose -46 = -5*v - 3*y, 31*v - 29*v - 3*y = 31. Let a(l) = 2*l - 17. Calculate a(v).", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef a(l):\n\treturn 2*l - 17\nv, y = symbols(\"v y\")\nv = solve([Eq(-46, -5*v - 3*y), Eq(31*v - 29*v - 3*y, 31)])[v]\nprint(a(v))" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "What is the fourth root of 3524 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(3524 ** (1 / 4))))" - ], - "Output Answer": [ - "8" - ], - "split": "train" - }, - { - "Input": "What is the fifth root of 1010 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1010 ** (1 / 5))))" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Which is smaller: -355 or -357?", - "Output Program": [ - "from sympy import *\nprint(min(-355, -357))" - ], - "Output Answer": [ - "-357" - ], - "split": "train" - }, - { - "Input": "Let l(p) = p**2 - 2*p + 6. Let f be l(2). Let j be (f/(-9))/((-2)/9). Suppose -3*k = -s - 1, -1 = -3*k + 2*s - 5. Solve j*w + k*w + 15 = 0 for w.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef l(p):\n\treturn p**2 - 2*p + 6\nf = l(2)\nj = (f/(-9))/((-2)/9)\nk, s = symbols(\"k s\")\nk = solve([Eq(-3*k, -s - 1), Eq(-1, -3*k + 2*s - 5)])[k]\nw = symbols(\"w\")\nw = solve([Eq(j*w + k*w + 15, 0)])[w]\nprint(w)" - ], - "Output Answer": [ - "-3.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let o(h) = 12*h - 16. Let s = -793 + 796. Let y be o(s). Solve -7*t + 8 = -y for t.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef o(h):\n\treturn 12*h - 16\ns = -793 + 796\ny = o(s)\nt = symbols(\"t\")\nt = solve([Eq(-7*t + 8, -y)])[t]\nprint(t)" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Let y(o) = o**3 - 12*o**2 + 10*o + 23. Calculate y(11).", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef y(o):\n\treturn o**3 - 12*o**2 + 10*o + 23\nprint(y(11))" - ], - "Output Answer": [ - "12" - ], - "split": "train" - }, - { - "Input": "Is 2 a factor of 10535?", - "Output Program": [ - "from sympy import *\nprint(10535 % 2 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to 1? (a) 4 (b) 3/17 (c) 31532 (d) 1", - "Output Program": [ - "from sympy import *\nchoices = [4, 3/17, 31532, 1]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let 9*y**3 - 186*y**2/5 + 204*y/5 - 24/5 = 0. Calculate y.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef n(y):\n\treturn 9*y**3 - 186*y**2/5 + 204*y/5 - 24/5\ny = symbols(\"y\")\ny = solve(9*y**3 - 186*y**2/5 + 204*y/5 - 24/5)\nprint(y)" - ], - "Output Answer": [ - "[0.133333333333333, 2.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Let m(h) = 80 - 2*h. Let r = -6856 + 6884. Calculate m(r).", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef m(h):\n\treturn 80 - 2*h\nr = -6856 + 6884\nprint(m(r))" - ], - "Output Answer": [ - "24" - ], - "split": "train" - }, - { - "Input": "Suppose n + j = -0*j + 18, -3*n + 2*j = -44. Solve 2*x = -c + 3*x - 4, -5*x = -4*c - n for c.", - "Output Program": [ - "from sympy import *\nn, j = symbols(\"n j\")\nn = solve([Eq(n + j, -0*j + 18), Eq(-3*n + 2*j, -44)])[n]\nc, x = symbols(\"c x\")\nc = solve([Eq(2*x, -c + 3*x - 4), Eq(-5*x, -4*c - n)])[c]\nprint(c)" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "Suppose -4*g = -i - 2*g + 74, 0 = -4*i + 4*g + 312. Suppose -5*o = -2*x - o + i, 3*x - 4*o = 127. Let w = x + -44. Solve -5*s = -w + 6 for s.", - "Output Program": [ - "from sympy import *\ni, g = symbols(\"i g\")\ni = solve([Eq(-4*g, -i - 2*g + 74), Eq(0, -4*i + 4*g + 312)])[i]\nx, o = symbols(\"x o\")\nx = solve([Eq(-5*o, -2*x - o + i), Eq(3*x - 4*o, 127)])[x]\nw = x + -44\ns = symbols(\"s\")\ns = solve([Eq(-5*s, -w + 6)])[s]\nprint(s)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Solve 7*t + 8*t + 320 - 395 = 0 for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(7*t + 8*t + 320 - 395, 0)])[t]\nprint(t)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Solve -2*t + 2 - 5 = -f, -4*f + 12 = 5*t for t.", - "Output Program": [ - "from sympy import *\nt, f = symbols(\"t f\")\nt = solve([Eq(-2*t + 2 - 5, -f), Eq(-4*f + 12, 5*t)])[t]\nprint(t)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Solve 12*g + 4*r = 80, g + 270 = -5*r + 300 for g.", - "Output Program": [ - "from sympy import *\ng, r = symbols(\"g r\")\ng = solve([Eq(12*g + 4*r, 80), Eq(g + 270, -5*r + 300)])[g]\nprint(g)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Which is smaller: 1/7 or -14?", - "Output Program": [ - "from sympy import *\nprint(min(1/7, -14))" - ], - "Output Answer": [ - "-14" - ], - "split": "train" - }, - { - "Input": "Which is the closest to -2/7? (a) 5 (b) 1.1 (c) -2/3 (d) 0.2", - "Output Program": [ - "from sympy import *\nchoices = [5, 1.1, -2/3, 0.2]\ntarget = -2/7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.6666666666666666" - ], - "split": "train" - }, - { - "Input": "Find m, given that -121*m**5/4 + 51535*m**4/4 + 226679*m**3 + 1039812*m**2 + 940392*m + 239220 = 0.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef y(m):\n\treturn -121*m**5/4 + 51535*m**4/4 + 226679*m**3 + 1039812*m**2 + 940392*m + 239220\nm = symbols(\"m\")\nm = solve(-121*m**5/4 + 51535*m**4/4 + 226679*m**3 + 1039812*m**2 + 940392*m + 239220)\nprint(m)" - ], - "Output Answer": [ - "[-10, -6, -6/11, 443]" - ], - "split": "train" - }, - { - "Input": "What is the cube root of 4328 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(4328 ** (1 / 3))))" - ], - "Output Answer": [ - "16" - ], - "split": "train" - }, - { - "Input": "Is 1338 a factor of 1525254714?", - "Output Program": [ - "from sympy import *\nprint(1525254714 % 1338 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Suppose 4*j = -q - 12, 43 - 34 = q - 3*j. Solve 9*o + o = q for o.", - "Output Program": [ - "from sympy import *\nq, j = symbols(\"q j\")\nq = solve([Eq(4*j, -q - 12), Eq(43 - 34, q - 3*j)])[q]\no = symbols(\"o\")\no = solve([Eq(9*o + o, q)])[o]\nprint(o)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Simplify -2 + (sqrt(17) - ((sqrt(17) - sqrt(425)) + sqrt(17) + -4)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-2 + (sqrt(17) - ((sqrt(17) - sqrt(425)) + sqrt(17) + -4)))))" - ], - "Output Answer": [ - "2 + 4*sqrt(17)" - ], - "split": "train" - }, - { - "Input": "Sort 4, 6, 2, 5, -16, 244 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [4, 6, 2, 5, -16, 244]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "244 6 5 4 2 -16" - ], - "split": "train" - }, - { - "Input": "Solve -5 = -42649*v + 42650*v - 4*n + 3, 4*n - 24 = -3*v for v.", - "Output Program": [ - "from sympy import *\nv, n = symbols(\"v n\")\nv = solve([Eq(-5, -42649*v + 42650*v - 4*n + 3), Eq(4*n - 24, -3*v)])[v]\nprint(v)" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Factor -5*y**3 - 5615*y**2 - 292200*y + 1602000.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef l(y):\n\treturn -5*y**3 - 5615*y**2 - 292200*y + 1602000\ny = symbols(\"y\")\neq = factor(-5*y**3 - 5615*y**2 - 292200*y + 1602000)\nprint(eq)" - ], - "Output Answer": [ - "-5*(y - 5)*(y + 60)*(y + 1068)" - ], - "split": "train" - }, - { - "Input": "Let k(z) = -z**2 - 8*z - 9. Suppose -4*u - 18 = 2*u. Let i be (6/(-7))/(u/21)*-1. Let p be k(i). Let d(q) = -q**2 + 3*q + 4. Give d(p).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef d(q):\n\treturn -q**2 + 3*q + 4\nz = symbols(\"z\")\ndef k(z):\n\treturn -z**2 - 8*z - 9\nu = symbols(\"u\")\nu = solve([Eq(-4*u - 18, 2*u)])[u]\ni = (6/(-7))/(u/21)*-1\np = k(i)\nprint(d(p))" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Let f(m) = -102*m**3 + 2*m**2 + 851*m - 851. Determine f(1).", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef f(m):\n\treturn -102*m**3 + 2*m**2 + 851*m - 851\nprint(f(1))" - ], - "Output Answer": [ - "-100" - ], - "split": "train" - }, - { - "Input": "Which is greater: -29 or -0.1?", - "Output Program": [ - "from sympy import *\nprint(max(-29, -0.1))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(204)/(sqrt(972) + sqrt(972) + (sqrt(972) + (sqrt(972)*1 - sqrt(972)) - sqrt(972))).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(204)/(sqrt(972) + sqrt(972) + (sqrt(972) + (sqrt(972)*1 - sqrt(972)) - sqrt(972))))))" - ], - "Output Answer": [ - "sqrt(17)/18" - ], - "split": "train" - }, - { - "Input": "Is 2/565 bigger than 0?", - "Output Program": [ - "from sympy import *\nprint(2/565 > 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "What is the closest to -4/7 in -29, 3/7, 0?", - "Output Program": [ - "from sympy import *\nchoices = [-29, 3/7, 0]\ntarget = -4/7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Let w = -11 - -15. Let f(s) = -s**3 + 3*s**2 + 5*s - 5. Let t be f(w). Let z be t/9*-47 + (-2)/9. Solve z*x - 4 = 1 for x.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef f(s):\n\treturn -s**3 + 3*s**2 + 5*s - 5\nw = -11 - -15\nt = f(w)\nz = t/9*-47 + (-2)/9\nx = symbols(\"x\")\nx = solve([Eq(z*x - 4, 1)])[x]\nprint(x)" - ], - "Output Answer": [ - "1.00000000000000" - ], - "split": "train" - }, - { - "Input": "Sort 3, -4, 2, 12, -2 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [3, -4, 2, 12, -2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "12 3 2 -2 -4" - ], - "split": "train" - }, - { - "Input": "Is 10495 + 4/(40/(-70)) a multiple of 46?", - "Output Program": [ - "from sympy import *\nl = 10495 + 4/(40/(-70))\nprint(10488 % 46 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let o = -58 - -24. Let a(c) = 276*c - 281. Let u be a(1). Put o, u, -2/7, 3/7 in decreasing order.", - "Output Program": [ - "from sympy import *\no = -58 - -24\nc = symbols(\"c\")\ndef a(c):\n\treturn 276*c - 281\nu = a(1)\nchoices = [o, u, -2/7, 3/7]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.42857142857142855 -0.2857142857142857 -5 -34" - ], - "split": "train" - }, - { - "Input": "Let r = -5 - -4. Let l = 3 + 0. Sort r, 4, l in decreasing order.", - "Output Program": [ - "from sympy import *\nr = -5 - -4\nl = 3 + 0\nchoices = [r, 4, l]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 3 -1" - ], - "split": "train" - }, - { - "Input": "Is 207514973 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(207514973))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to 2? (a) 3/4 (b) -0.3 (c) -4 (d) 7 (e) -2/13", - "Output Program": [ - "from sympy import *\nchoices = [3/4, -0.3, -4, 7, -2/13]\ntarget = 2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.75" - ], - "split": "train" - }, - { - "Input": "Let r(m) = m**3 + 8*m**2 + 10*m + 5. What is r(-7)?", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef r(m):\n\treturn m**3 + 8*m**2 + 10*m + 5\nprint(r(-7))" - ], - "Output Answer": [ - "-16" - ], - "split": "train" - }, - { - "Input": "Factor -2*d**5 - 2282*d**4 - 654350*d**3 - 1942566*d**2.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef x(d):\n\treturn -2*d**5 - 2282*d**4 - 654350*d**3 - 1942566*d**2\nd = symbols(\"d\")\neq = factor(-2*d**5 - 2282*d**4 - 654350*d**3 - 1942566*d**2)\nprint(eq)" - ], - "Output Answer": [ - "-2*d**2*(d + 3)*(d + 569)**2" - ], - "split": "train" - }, - { - "Input": "Let i(z) = 2*z**2 - z + 51. Give i(0).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef i(z):\n\treturn 2*z**2 - z + 51\nprint(i(0))" - ], - "Output Answer": [ - "51" - ], - "split": "train" - }, - { - "Input": "Suppose 0 = -5*d - 3*p + 12, 5*p - 4*p - 4 = 4*d. Suppose d = 5*v + 19 - 54. Put 1, -1, v in descending order.", - "Output Program": [ - "from sympy import *\nd, p = symbols(\"d p\")\nd = solve([Eq(0, -5*d - 3*p + 12), Eq(5*p - 4*p - 4, 4*d)])[d]\nv = symbols(\"v\")\nv = solve([Eq(d, 5*v + 19 - 54)])[v]\nchoices = [1, -1, v]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "7 1 -1" - ], - "split": "train" - }, - { - "Input": "Suppose 14 = 3*v + 2. Factor -2*t**3 + 3*t**4 - v*t**2 - 2*t**2 + 2*t + 2*t**4 + t**2.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(14, 3*v + 2)])[v]\nt = symbols(\"t\")\ndef x(t):\n\treturn -2*t**3 + 3*t**4 - v*t**2 - 2*t**2 + 2*t + 2*t**4 + t**2\nt = symbols(\"t\")\neq = factor(-2*t**3 + 3*t**4 - v*t**2 - 2*t**2 + 2*t + 2*t**4 + t**2)\nprint(eq)" - ], - "Output Answer": [ - "t*(t - 1)*(t + 1)*(5*t - 2)" - ], - "split": "train" - }, - { - "Input": "Let -2*h**3/11 + 6*h**2 - 280*h/11 = 0. Calculate h.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef y(h):\n\treturn -2*h**3/11 + 6*h**2 - 280*h/11\nh = symbols(\"h\")\nh = solve(-2*h**3/11 + 6*h**2 - 280*h/11)\nprint(h)" - ], - "Output Answer": [ - "[0, 5, 28]" - ], - "split": "train" - }, - { - "Input": "Let a be (2 + -1)*3 - -1. Solve 0 = -a*i + 19 - 3 for i.", - "Output Program": [ - "from sympy import *\na = (2 + -1)*3 - -1\ni = symbols(\"i\")\ni = solve([Eq(0, -a*i + 19 - 3)])[i]\nprint(i)" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "What is the square root of 334 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(334 ** (1 / 2))))" - ], - "Output Answer": [ - "18" - ], - "split": "train" - }, - { - "Input": "What is the square root of 42217351 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(42217351 ** (1 / 2))))" - ], - "Output Answer": [ - "6497" - ], - "split": "train" - }, - { - "Input": "What is the fourth root of 42606 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(42606 ** (1 / 4))))" - ], - "Output Answer": [ - "14" - ], - "split": "train" - }, - { - "Input": "Let v = 3 + -2. Let z be ((1 - -1)*-1)/((-114)/741). Let k(x) = v - 7*x**2 - 5*x**2 - 3*x + z*x**2. What is k(2)?", - "Output Program": [ - "from sympy import *\nz = ((1 - -1)*-1)/((-114)/741)\nv = 3 + -2\nx = symbols(\"x\")\ndef k(x):\n\treturn v - 7*x**2 - 5*x**2 - 3*x + z*x**2\nprint(k(2))" - ], - "Output Answer": [ - "-1.0" - ], - "split": "train" - }, - { - "Input": "Factor 5*i**4 + 34885*i**3 + 81154125*i**2 + 63002559375*i + 125680781250.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef b(i):\n\treturn 5*i**4 + 34885*i**3 + 81154125*i**2 + 63002559375*i + 125680781250\ni = symbols(\"i\")\neq = factor(5*i**4 + 34885*i**3 + 81154125*i**2 + 63002559375*i + 125680781250)\nprint(eq)" - ], - "Output Answer": [ - "5*(i + 2)*(i + 2325)**3" - ], - "split": "train" - }, - { - "Input": "Suppose -3*g + 12 = -0*g. Determine x so that 0*x**3 + 1/2*x**2 - 1/2*x**g + 0*x + 0 = 0.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(-3*g + 12, -0*g)])[g]\nx = symbols(\"x\")\ndef o(x):\n\treturn 0*x**3 + 1/2*x**2 - 1/2*x**g + 0*x + 0\nx = symbols(\"x\")\nx = solve(0*x**3 + 1/2*x**2 - 1/2*x**g + 0*x + 0)\nprint(x)" - ], - "Output Answer": [ - "[-1.00000000000000, 0.0, 1.00000000000000]" - ], - "split": "train" - }, - { - "Input": "What is the ninth root of 1317 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1317 ** (1 / 9))))" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Solve 5*j - 2 - 18 = 0, -o - 9*j = -27 - 6 for o.", - "Output Program": [ - "from sympy import *\no, j = symbols(\"o j\")\no = solve([Eq(5*j - 2 - 18, 0), Eq(-o - 9*j, -27 - 6)])[o]\nprint(o)" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Let d(o) = -o**3 - 8*o**2 + o + 4. Let n = 8 - 16. Let l be d(n). Let f be l/(-1)*14/4. Solve 5*x - x - 2*u = -f, -4*x = 4*u + 20 for x.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef d(o):\n\treturn -o**3 - 8*o**2 + o + 4\nn = 8 - 16\nl = d(n)\nf = l/(-1)*14/4\nx, u = symbols(\"x u\")\nx = solve([Eq(5*x - x - 2*u, -f), Eq(-4*x, 4*u + 20)])[x]\nprint(x)" - ], - "Output Answer": [ - "-4.00000000000000" - ], - "split": "train" - }, - { - "Input": "Are -40/137 and 1 non-equal?", - "Output Program": [ - "from sympy import *\nprint(-40/137 != 1)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "What is 3573492 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(3573492 ** (1 / 2))))" - ], - "Output Answer": [ - "1890" - ], - "split": "train" - }, - { - "Input": "Solve 12*a + 9 = -3 for a.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(12*a + 9, -3)])[a]\nprint(a)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Solve a - 24*r = -18*r + 143, -243*r = -5*a - 242*r + 48 for a.", - "Output Program": [ - "from sympy import *\na, r = symbols(\"a r\")\na = solve([Eq(a - 24*r, -18*r + 143), Eq(-243*r, -5*a - 242*r + 48)])[a]\nprint(a)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Simplify -5 + (-4*(-2 + (sqrt(19) - (sqrt(19) + sqrt(19)*-1))) + (sqrt(304)*-1 - sqrt(304))*4)**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-5 + (-4*(-2 + (sqrt(19) - (sqrt(19) + sqrt(19)*-1))) + (sqrt(304)*-1 - sqrt(304))*4)**2)))" - ], - "Output Answer": [ - "24683 - 576*sqrt(19)" - ], - "split": "train" - }, - { - "Input": "Let q = 0.622 - 1.622. Which is the nearest to 0.1? (a) -0.5 (b) 3 (c) q (d) -4", - "Output Program": [ - "from sympy import *\nq = 0.622 - 1.622\nchoices = [-0.5, 3, q, -4]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.5" - ], - "split": "train" - }, - { - "Input": "Factor 0*n**2 + 6*n + 0 - 3/2*n**3.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef y(n):\n\treturn 0*n**2 + 6*n + 0 - 3/2*n**3\nn = symbols(\"n\")\neq = factor(0*n**2 + 6*n + 0 - 3/2*n**3)\nprint(eq)" - ], - "Output Answer": [ - "-6.0*n*(0.5*n - 1.0)*(0.5*n + 1.0)" - ], - "split": "train" - }, - { - "Input": "What is the third root of 173500921 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(173500921 ** (1 / 3))))" - ], - "Output Answer": [ - "558" - ], - "split": "train" - }, - { - "Input": "Let f(y) = y**3 - 9*y**2 - 9*y - 9. Let v be f(10). Let h(d) = 4*d**2 + 1. Let c be h(v). Put 3, c, -2 in decreasing order.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef h(d):\n\treturn 4*d**2 + 1\ny = symbols(\"y\")\ndef f(y):\n\treturn y**3 - 9*y**2 - 9*y - 9\nv = f(10)\nc = h(v)\nchoices = [3, c, -2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 3 -2" - ], - "split": "train" - }, - { - "Input": "Determine r, given that r**3/3 + 92285*r**2/3 = 0.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef q(r):\n\treturn r**3/3 + 92285*r**2/3\nr = symbols(\"r\")\nr = solve(r**3/3 + 92285*r**2/3)\nprint(r)" - ], - "Output Answer": [ - "[-92285, 0]" - ], - "split": "train" - }, - { - "Input": "Simplify (-2 + (sqrt(700) - (sqrt(700) + 0 - sqrt(700)) - sqrt(700)))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-2 + (sqrt(700) - (sqrt(700) + 0 - sqrt(700)) - sqrt(700)))**2)))" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Let z be -36*-3*2/9. Let x be 1*(z/14)/4. What is the closest to 2/7 in x, -0.4, 4?", - "Output Program": [ - "from sympy import *\nz = -36*-3*2/9\nx = 1*(z/14)/4\nchoices = [x, -0.4, 4]\ntarget = 2/7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.42857142857142855" - ], - "split": "train" - }, - { - "Input": "Solve -3*k + 0 + 3 = -3*z, -z - 1 = k for k.", - "Output Program": [ - "from sympy import *\nk, z = symbols(\"k z\")\nk = solve([Eq(-3*k + 0 + 3, -3*z), Eq(-z - 1, k)])[k]\nprint(k)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "What is 451 to the power of 1/10, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(451 ** (1 / 10))))" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Find b, given that 3*b**3 + 5*b**3 + 217*b - 49*b**2 - 21*b**3 + 6*b**3 + 265 + 6*b**3 = 0.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef w(b):\n\treturn 3*b**3 + 5*b**3 + 217*b - 49*b**2 - 21*b**3 + 6*b**3 + 265 + 6*b**3\nb = symbols(\"b\")\nb = solve(3*b**3 + 5*b**3 + 217*b - 49*b**2 - 21*b**3 + 6*b**3 + 265 + 6*b**3)\nprint(b)" - ], - "Output Answer": [ - "[-53, -1, 5]" - ], - "split": "train" - }, - { - "Input": "Let f(m) = -m**2 - 7. Let q(c) = -7*c**2 - 72*c + 308. Let v(k) = 4*f(k) - q(k). Find r, given that v(r) = 0.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef q(c):\n\treturn -7*c**2 - 72*c + 308\nm = symbols(\"m\")\ndef f(m):\n\treturn -m**2 - 7\ndef v(k):\n\treturn 4*f(k) - q(k)\nr = symbols(\"r\")\nr = solve(v(r))\nprint(r)" - ], - "Output Answer": [ - "[-28, 4]" - ], - "split": "train" - }, - { - "Input": "Suppose -5*s + 2*x = 63, 0*s = s - x + 12. Let w(p) = p + 14. Let t be w(s). Suppose 7*u - t = 6*u. Solve 2*v + 9 = -u for v.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef w(p):\n\treturn p + 14\ns, x = symbols(\"s x\")\ns = solve([Eq(-5*s + 2*x, 63), Eq(0*s, s - x + 12)])[s]\nt = w(s)\nu = symbols(\"u\")\nu = solve([Eq(7*u - t, 6*u)])[u]\nv = symbols(\"v\")\nv = solve([Eq(2*v + 9, -u)])[v]\nprint(v)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Suppose 26 = -5*o + 31. Suppose -k + o = -5. Solve -v = v - k for v.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\no = solve([Eq(26, -5*o + 31)])[o]\nk = symbols(\"k\")\nk = solve([Eq(-k + o, -5)])[k]\nv = symbols(\"v\")\nv = solve([Eq(-v, v - k)])[v]\nprint(v)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Is 2 a factor of 46?", - "Output Program": [ - "from sympy import *\nprint(46 % 2 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose 0 = 3*i + w + 596 + 438, 0 = -i - 4*w - 341. Let p = -5173/15 - i. Put 0, p, 0.03 in descending order.", - "Output Program": [ - "from sympy import *\ni, w = symbols(\"i w\")\ni = solve([Eq(0, 3*i + w + 596 + 438), Eq(0, -i - 4*w - 341)])[i]\np = -5173/15 - i\nchoices = [0, p, 0.03]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.133333333333326 0.03 0" - ], - "split": "train" - }, - { - "Input": "Solve w + 13*m + 25 = 0, -391*w + 2*m = -395*w for w.", - "Output Program": [ - "from sympy import *\nw, m = symbols(\"w m\")\nw = solve([Eq(w + 13*m + 25, 0), Eq(-391*w + 2*m, -395*w)])[w]\nprint(w)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Which is greater: 3/10015 or 0?", - "Output Program": [ - "from sympy import *\nprint(max(3/10015, 0))" - ], - "Output Answer": [ - "0.0002995506739890165" - ], - "split": "train" - }, - { - "Input": "Solve -145 - 163 = -32*z + 10*z for z.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(-145 - 163, -32*z + 10*z)])[z]\nprint(z)" - ], - "Output Answer": [ - "14" - ], - "split": "train" - }, - { - "Input": "Let n(r) = r - 5. Let s(o) = -o**3 + 9*o**2 + 2*o - 13. Let b be s(9). Let k be n(b). Solve -3*i + k*u - 17 = -4*u, u - 7 = -2*i for i.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef n(r):\n\treturn r - 5\no = symbols(\"o\")\ndef s(o):\n\treturn -o**3 + 9*o**2 + 2*o - 13\nb = s(9)\nk = n(b)\ni, u = symbols(\"i u\")\ni = solve([Eq(-3*i + k*u - 17, -4*u), Eq(u - 7, -2*i)])[i]\nprint(i)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Put 2/165, -3, -5.6, 1, -5, 0.4 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [2/165, -3, -5.6, 1, -5, 0.4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "1 0.4 0.012121212121212121 -3 -5 -5.6" - ], - "split": "train" - }, - { - "Input": "Let u(z) = 3*z**2 + 26*z - 4. Let n(j) = -24*j + 9 + 2*j - 19*j - 6*j**2 - 13*j. Let x(s) = 4*n(s) + 9*u(s). Factor x(l).", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef n(j):\n\treturn -24*j + 9 + 2*j - 19*j - 6*j**2 - 13*j\nz = symbols(\"z\")\ndef u(z):\n\treturn 3*z**2 + 26*z - 4\ndef x(s):\n\treturn 4*n(s) + 9*u(s)\nl = symbols(\"l\")\neq = factor(x(l))\nprint(eq)" - ], - "Output Answer": [ - "3*l*(l + 6)" - ], - "split": "train" - }, - { - "Input": "Is 102139 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(102139))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Factor -4*k**2/5 - 564*k - 22304/5.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef d(k):\n\treturn -4*k**2/5 - 564*k - 22304/5\nk = symbols(\"k\")\neq = factor(-4*k**2/5 - 564*k - 22304/5)\nprint(eq)" - ], - "Output Answer": [ - "-4460.8*(0.00143472022955524*k + 1.0)*(0.125*k + 1.0)" - ], - "split": "train" - }, - { - "Input": "Let a be ((-170)/(-12))/(-1) - 28/(-7). Is -11 at most a?", - "Output Program": [ - "from sympy import *\na = ((-170)/(-12))/(-1) - 28/(-7)\nprint(-11 <= a)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let i(j) = 4*j + 23. Let c be i(-11). Let n be 3/(54/c)*(-8)/14. Determine m so that -2/3 + 1/2*m**2 - n*m = 0.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef i(j):\n\treturn 4*j + 23\nc = i(-11)\nn = 3/(54/c)*(-8)/14\nm = symbols(\"m\")\ndef z(m):\n\treturn -2/3 + 1/2*m**2 - n*m\nm = symbols(\"m\")\nm = solve(-2/3 + 1/2*m**2 - n*m)\nprint(m)" - ], - "Output Answer": [ - "[-0.666666666666667, 2.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Let u(n) = -n**3 + 7*n**2 - 7*n + 4. Let k be u(6). Let t be -2*k*2/28. Which is the closest to t? (a) -3/4 (b) -1/2 (c) -1", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef u(n):\n\treturn -n**3 + 7*n**2 - 7*n + 4\nk = u(6)\nt = -2*k*2/28\nchoices = [-3/4, -1/2, -1]\ntarget = t\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.5" - ], - "split": "train" - }, - { - "Input": "Let d(l) = -l**3 - l**2 + l. Let c be d(0). Suppose c = -3*a + 2*a + 10. Is a a multiple of 10?", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef d(l):\n\treturn -l**3 - l**2 + l\nc = d(0)\na = symbols(\"a\")\na = solve([Eq(c, -3*a + 2*a + 10)])[a]\nprint(10 % 10 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let h be -7*2*(-1)/2. Let t = 7 - h. Let c be (t + -1)*(-7 - -5). Solve -2*q - c*q = 8 for q.", - "Output Program": [ - "from sympy import *\nh = -7*2*(-1)/2\nt = 7 - h\nc = (t + -1)*(-7 - -5)\nq = symbols(\"q\")\nq = solve([Eq(-2*q - c*q, 8)])[q]\nprint(q)" - ], - "Output Answer": [ - "-2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Suppose -39 = -19*f + 37. Let y = 21 - 19. Factor -f*s + 3*s**3 + 2*s - 7*s**2 + 8*s**y.", - "Output Program": [ - "from sympy import *\ny = 21 - 19\nf = symbols(\"f\")\nf = solve([Eq(-39, -19*f + 37)])[f]\ns = symbols(\"s\")\ndef w(s):\n\treturn -f*s + 3*s**3 + 2*s - 7*s**2 + 8*s**y\ns = symbols(\"s\")\neq = factor(-f*s + 3*s**3 + 2*s - 7*s**2 + 8*s**y)\nprint(eq)" - ], - "Output Answer": [ - "s*(s + 1)*(3*s - 2)" - ], - "split": "train" - }, - { - "Input": "Suppose 0 = 16*z - 124 - 36. Let w be 8*(z/25 + (-47)/(-20)). Suppose 16 = w*a - 18*a. Solve a*k + 4 - 20 = 0 for k.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(0, 16*z - 124 - 36)])[z]\nw = 8*(z/25 + (-47)/(-20))\na = symbols(\"a\")\na = solve([Eq(16, w*a - 18*a)])[a]\nk = symbols(\"k\")\nk = solve([Eq(a*k + 4 - 20, 0)])[k]\nprint(k)" - ], - "Output Answer": [ - "4.00000000000000" - ], - "split": "train" - }, - { - "Input": "Suppose 87 = -67*j + 70*j. Solve 0 = -4*f + b + b + 24, 5*f - 2*b = j for f.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\nj = solve([Eq(87, -67*j + 70*j)])[j]\nf, b = symbols(\"f b\")\nf = solve([Eq(0, -4*f + b + b + 24), Eq(5*f - 2*b, j)])[f]\nprint(f)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Which is smaller: -2682 or 2?", - "Output Program": [ - "from sympy import *\nprint(min(-2682, 2))" - ], - "Output Answer": [ - "-2682" - ], - "split": "train" - }, - { - "Input": "Which is the closest to -1? (a) 2 (b) 10 (c) -212", - "Output Program": [ - "from sympy import *\nchoices = [2, 10, -212]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Let o = 198 - 316. Let a = -78 - o. Suppose -7 = -3*j - 5*t, 6 - a = -2*j + 4*t. Is j a multiple of 5?", - "Output Program": [ - "from sympy import *\no = 198 - 316\na = -78 - o\nj, t = symbols(\"j t\")\nj = solve([Eq(-7, -3*j - 5*t), Eq(6 - a, -2*j + 4*t)])[j]\nprint(9 % 5 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Solve -i + 12*p = -11, -3889*p - 7 = 3*i - 3885*p for i.", - "Output Program": [ - "from sympy import *\ni, p = symbols(\"i p\")\ni = solve([Eq(-i + 12*p, -11), Eq(-3889*p - 7, 3*i - 3885*p)])[i]\nprint(i)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Simplify (-2*sqrt(720)/(2*sqrt(12) - sqrt(12)))/((sqrt(1728) - ((sqrt(1728)*2 + sqrt(1728))*-6 + sqrt(1728))) + sqrt(1728)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-2*sqrt(720)/(2*sqrt(12) - sqrt(12)))/((sqrt(1728) - ((sqrt(1728)*2 + sqrt(1728))*-6 + sqrt(1728))) + sqrt(1728)))))" - ], - "Output Answer": [ - "-sqrt(5)/114" - ], - "split": "train" - }, - { - "Input": "Determine k so that -2*k**4/5 - 114*k**3/5 - 1646*k**2/5 + 714*k + 143344/5 = 0.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef j(k):\n\treturn -2*k**4/5 - 114*k**3/5 - 1646*k**2/5 + 714*k + 143344/5\nk = symbols(\"k\")\nk = solve(-2*k**4/5 - 114*k**3/5 - 1646*k**2/5 + 714*k + 143344/5)\nprint(k)" - ], - "Output Answer": [ - "[-31.0000000000000, -17.0000000000000, 8.00000000000000]" - ], - "split": "train" - }, - { - "Input": "What is 41629690 to the power of 1/5, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(41629690 ** (1 / 5))))" - ], - "Output Answer": [ - "33" - ], - "split": "train" - }, - { - "Input": "Solve 7*v = -v + 8 for v.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(7*v, -v + 8)])[v]\nprint(v)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Is 646 a multiple of 9?", - "Output Program": [ - "from sympy import *\nprint(646 % 9 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let t(p) = 13*p**2 - 151*p + 151. Determine t(1).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef t(p):\n\treturn 13*p**2 - 151*p + 151\nprint(t(1))" - ], - "Output Answer": [ - "13" - ], - "split": "train" - }, - { - "Input": "Let u(y) = 4*y**2 - 6. Calculate u(-2).", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef u(y):\n\treturn 4*y**2 - 6\nprint(u(-2))" - ], - "Output Answer": [ - "10" - ], - "split": "train" - }, - { - "Input": "Let x be (-9)/(-12) + -146*(-231)/(-70952). Let j = -2/181 - x. Which is bigger: 14/13 or j?", - "Output Program": [ - "from sympy import *\nx = (-9)/(-12) + -146*(-231)/(-70952)\nj = -2/181 - x\nprint(max(14/13, j))" - ], - "Output Answer": [ - "1.0769230769230769" - ], - "split": "train" - }, - { - "Input": "Solve -14 = -2*s, 2*d + 39*s = 37*s + 4 for d.", - "Output Program": [ - "from sympy import *\nd, s = symbols(\"d s\")\nd = solve([Eq(-14, -2*s), Eq(2*d + 39*s, 37*s + 4)])[d]\nprint(d)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Let w(g) = -589*g**2 + 8846*g - 165. What is w(15)?", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef w(g):\n\treturn -589*g**2 + 8846*g - 165\nprint(w(15))" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Is 521 a factor of 2104961306?", - "Output Program": [ - "from sympy import *\nprint(2104961306 % 521 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Factor g**2/9 + 1087*g/9 - 242.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef w(g):\n\treturn g**2/9 + 1087*g/9 - 242\ng = symbols(\"g\")\neq = factor(g**2/9 + 1087*g/9 - 242)\nprint(eq)" - ], - "Output Answer": [ - "(g - 2)*(g + 1089)/9" - ], - "split": "train" - }, - { - "Input": "Is 5 a factor of 4640?", - "Output Program": [ - "from sympy import *\nprint(4640 % 5 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let w(o) = o**3 + 16*o**2 - 11*o - 19. Is w(-13) a composite number?", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef w(o):\n\treturn o**3 + 16*o**2 - 11*o - 19\nk = w(-13)\nprint(not isprime(631))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "What is the fifth root of 3226 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(3226 ** (1 / 5))))" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Solve -18*q + 14*q = -8 for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(-18*q + 14*q, -8)])[q]\nprint(q)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Let f(l) = 5*l**3 + 54*l**2 - 27*l - 139. Let n be f(-11). Solve s + 5 = -3*k, n*k - 39*k - 5*s - 12 = 0 for k.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef f(l):\n\treturn 5*l**3 + 54*l**2 - 27*l - 139\nn = f(-11)\nk, s = symbols(\"k s\")\nk = solve([Eq(s + 5, -3*k), Eq(n*k - 39*k - 5*s - 12, 0)])[k]\nprint(k)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Suppose 69 = -5*s - 41. Let l = -21 - s. Let x(w) = -3*w**3 + w - 1. Give x(l).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef x(w):\n\treturn -3*w**3 + w - 1\ns = symbols(\"s\")\ns = solve([Eq(69, -5*s - 41)])[s]\nl = -21 - s\nprint(x(l))" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Let -k**4/2 + 69*k**3/2 - 277*k**2 + 408*k + 720 = 0. Calculate k.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef s(k):\n\treturn -k**4/2 + 69*k**3/2 - 277*k**2 + 408*k + 720\nk = symbols(\"k\")\nk = solve(-k**4/2 + 69*k**3/2 - 277*k**2 + 408*k + 720)\nprint(k)" - ], - "Output Answer": [ - "[-1, 4, 6, 60]" - ], - "split": "train" - }, - { - "Input": "Let c = 0.178 - -106.822. Let a = -112 + c. Let h = 3.1 + 0.9. Put h, -2/11, -2/5, a in descending order.", - "Output Program": [ - "from sympy import *\nh = 3.1 + 0.9\nc = 0.178 - -106.822\na = -112 + c\nchoices = [h, -2/11, -2/5, a]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4.0 -0.18181818181818182 -0.4 -5.0" - ], - "split": "train" - }, - { - "Input": "Let t = 175 + -165. Let v(j) = -j**2 + 7*j - 1. Calculate v(t).", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef v(j):\n\treturn -j**2 + 7*j - 1\nt = 175 + -165\nprint(v(t))" - ], - "Output Answer": [ - "-31" - ], - "split": "train" - }, - { - "Input": "Let i(x) = -x**3 + 33*x**2 + 112*x - 108. What is i(36)?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef i(x):\n\treturn -x**3 + 33*x**2 + 112*x - 108\nprint(i(36))" - ], - "Output Answer": [ - "36" - ], - "split": "train" - }, - { - "Input": "Suppose -10*c + 13*c + 87 = s, -5*s = 5*c - 515. Solve -9*x + s - 144 = 0 for x.", - "Output Program": [ - "from sympy import *\ns, c = symbols(\"s c\")\ns = solve([Eq(-10*c + 13*c + 87, s), Eq(-5*s, 5*c - 515)])[s]\nx = symbols(\"x\")\nx = solve([Eq(-9*x + s - 144, 0)])[x]\nprint(x)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Factor 180*t**3 - 45208*t**2 - 176572*t + 28560.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef b(t):\n\treturn 180*t**3 - 45208*t**2 - 176572*t + 28560\nt = symbols(\"t\")\neq = factor(180*t**3 - 45208*t**2 - 176572*t + 28560)\nprint(eq)" - ], - "Output Answer": [ - "4*(t - 255)*(t + 4)*(45*t - 7)" - ], - "split": "train" - }, - { - "Input": "Let x(l) = 2*l**2 - 7*l - 10. Give x(6).", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef x(l):\n\treturn 2*l**2 - 7*l - 10\nprint(x(6))" - ], - "Output Answer": [ - "20" - ], - "split": "train" - }, - { - "Input": "Solve 4*d + 2*l + 10 = 18, 3*l + 6 = 3*d for d.", - "Output Program": [ - "from sympy import *\nd, l = symbols(\"d l\")\nd = solve([Eq(4*d + 2*l + 10, 18), Eq(3*l + 6, 3*d)])[d]\nprint(d)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Let o = -0.3 - -0.5. Let d be (5980/2392)/((-2)/4). Is d at least o?", - "Output Program": [ - "from sympy import *\nd = (5980/2392)/((-2)/4)\no = -0.3 - -0.5\nprint(d >= o)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "What is 156500 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(156500 ** (1 / 3))))" - ], - "Output Answer": [ - "54" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(66) - ((sqrt(66) - (sqrt(66) + 4*(sqrt(66) - (sqrt(66) - sqrt(66)*2) - sqrt(66)))) + sqrt(66)))/sqrt(6).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(66) - ((sqrt(66) - (sqrt(66) + 4*(sqrt(66) - (sqrt(66) - sqrt(66)*2) - sqrt(66)))) + sqrt(66)))/sqrt(6))))" - ], - "Output Answer": [ - "4*sqrt(11)" - ], - "split": "train" - }, - { - "Input": "Which is greater: -9 or 0?", - "Output Program": [ - "from sympy import *\nprint(max(-9, 0))" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Which is smaller: 28 or 36?", - "Output Program": [ - "from sympy import *\nprint(min(28, 36))" - ], - "Output Answer": [ - "28" - ], - "split": "train" - }, - { - "Input": "Let y(s) = -70*s - 61. Let r be y(-1). Solve -r*h + 8*h = i, -3*i + h = 20 for i.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef y(s):\n\treturn -70*s - 61\nr = y(-1)\ni, h = symbols(\"i h\")\ni = solve([Eq(-r*h + 8*h, i), Eq(-3*i + h, 20)])[i]\nprint(i)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Let u be (-1)/(-2) - (-6)/4. Let g be u + (0/(-3))/(-3). Let c be (-16)/(-10) + g/5. Solve 3*a - 18 = -a - c*s, 3*a - 5*s = 7 for a.", - "Output Program": [ - "from sympy import *\nu = (-1)/(-2) - (-6)/4\ng = u + (0/(-3))/(-3)\nc = (-16)/(-10) + g/5\na, s = symbols(\"a s\")\na = solve([Eq(3*a - 18, -a - c*s), Eq(3*a - 5*s, 7)])[a]\nprint(a)" - ], - "Output Answer": [ - "4.00000000000000" - ], - "split": "train" - }, - { - "Input": "Simplify (3*sqrt(153)/sqrt(36))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((3*sqrt(153)/sqrt(36))**2)))" - ], - "Output Answer": [ - "153/4" - ], - "split": "train" - }, - { - "Input": "Is (-3433)/((1*(1 + -2))/1) composite?", - "Output Program": [ - "from sympy import *\nn = (-3433)/((1*(1 + -2))/1)\nprint(not isprime(3433))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Suppose 4*m - 5*h + 29 = 0, -3*m = -0*m - 4*h + 23. Let v be ((-1)/m)/(3/(-21)). Which is smaller: -8 or v?", - "Output Program": [ - "from sympy import *\nm, h = symbols(\"m h\")\nm = solve([Eq(4*m - 5*h + 29, 0), Eq(-3*m, -0*m - 4*h + 23)])[m]\nv = ((-1)/m)/(3/(-21))\nprint(min(-8, v))" - ], - "Output Answer": [ - "-8" - ], - "split": "train" - }, - { - "Input": "Suppose -1260 = 71*r + 419*r - 175*r. Suppose 6 = -2*z + z + 3*f, 30 = 3*z + 3*f. Let q = -4 + z. Sort -2, -1, q, r in ascending order.", - "Output Program": [ - "from sympy import *\nz, f = symbols(\"z f\")\nz = solve([Eq(6, -2*z + z + 3*f), Eq(30, 3*z + 3*f)])[z]\nq = -4 + z\nr = symbols(\"r\")\nr = solve([Eq(-1260, 71*r + 419*r - 175*r)])[r]\nchoices = [-2, -1, q, r]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 -2 -1 2" - ], - "split": "train" - }, - { - "Input": "Solve -245*q - 367*q = -10*q - 159*q - 8417 for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(-245*q - 367*q, -10*q - 159*q - 8417)])[q]\nprint(q)" - ], - "Output Answer": [ - "19" - ], - "split": "train" - }, - { - "Input": "Let y(g) = 42860 - 2857*g. What is y(15)?", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef y(g):\n\treturn 42860 - 2857*g\nprint(y(15))" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Sort 10/17, 280, 1/4 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [10/17, 280, 1/4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "280 0.5882352941176471 0.25" - ], - "split": "train" - }, - { - "Input": "Suppose -273*u + 267*u + 2592 = 0. Is u a multiple of 48?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(-273*u + 267*u + 2592, 0)])[u]\nprint(432 % 48 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let r(s) = s**2 - 61*s + 272. What is r(0)?", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef r(s):\n\treturn s**2 - 61*s + 272\nprint(r(0))" - ], - "Output Answer": [ - "272" - ], - "split": "train" - }, - { - "Input": "Let j(c) = -5*c - 6. Let b be j(-7). Let g be (b/1)/1 - (43 + -42). Suppose -w + g = -5*w. Sort 0, w, 4, -2 in decreasing order.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef j(c):\n\treturn -5*c - 6\nb = j(-7)\ng = (b/1)/1 - (43 + -42)\nw = symbols(\"w\")\nw = solve([Eq(-w + g, -5*w)])[w]\nchoices = [0, w, 4, -2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 0 -2 -7.00000000000000" - ], - "split": "train" - }, - { - "Input": "Simplify ((0 + sqrt(55)/sqrt(5) - sqrt(11)) + -1 + sqrt(1331) + sqrt(1331)*2 + 3 + sqrt(1331))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((0 + sqrt(55)/sqrt(5) - sqrt(11)) + -1 + sqrt(1331) + sqrt(1331)*2 + 3 + sqrt(1331))**2)))" - ], - "Output Answer": [ - "176*sqrt(11) + 21300" - ], - "split": "train" - }, - { - "Input": "What is 546574 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(546574 ** (1 / 3))))" - ], - "Output Answer": [ - "82" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(572)/((sqrt(88)*-1)/sqrt(8))*4.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(572)/((sqrt(88)*-1)/sqrt(8))*4)))" - ], - "Output Answer": [ - "-8*sqrt(13)" - ], - "split": "train" - }, - { - "Input": "Simplify (4*sqrt(396))/sqrt(4).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((4*sqrt(396))/sqrt(4))))" - ], - "Output Answer": [ - "12*sqrt(11)" - ], - "split": "train" - }, - { - "Input": "What is the third root of 12645865 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(12645865 ** (1 / 3))))" - ], - "Output Answer": [ - "233" - ], - "split": "train" - }, - { - "Input": "Let c be 3/(-43)*(7 - (-10 + (-308)/(-33))). Are c and 0.1 unequal?", - "Output Program": [ - "from sympy import *\nc = 3/(-43)*(7 - (-10 + (-308)/(-33)))\nprint(c != 0.1)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Solve 3*f = 9*v + 18, -10002*v + 3*f - 6 + 0 = -10001*v + 20 for v.", - "Output Program": [ - "from sympy import *\nv, f = symbols(\"v f\")\nv = solve([Eq(3*f, 9*v + 18), Eq(-10002*v + 3*f - 6 + 0, -10001*v + 20)])[v]\nprint(v)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let w(b) = -18*b**2 + 46*b + 46. What is w(-1)?", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef w(b):\n\treturn -18*b**2 + 46*b + 46\nprint(w(-1))" - ], - "Output Answer": [ - "-18" - ], - "split": "train" - }, - { - "Input": "Let r = 11 - 22. Let l(x) = 26*x + 13. Let c be l(-1). Are c and r non-equal?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef l(x):\n\treturn 26*x + 13\nc = l(-1)\nr = 11 - 22\nprint(c != r)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let o be ((-36)/(-5))/((-18)/(-120)). Suppose g = 13*g + o. Let t(z) = -z**3 - 5*z**2 - 2*z - 3. Give t(g).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef t(z):\n\treturn -z**3 - 5*z**2 - 2*z - 3\no = ((-36)/(-5))/((-18)/(-120))\ng = symbols(\"g\")\ng = solve([Eq(g, 13*g + o)])[g]\nprint(t(g))" - ], - "Output Answer": [ - "-11.0000000000000" - ], - "split": "train" - }, - { - "Input": "Determine y so that 3*y**5/4 - 948*y**4 + 1190661*y**3/4 + 1203015*y**2 + 904401*y = 0.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef c(y):\n\treturn 3*y**5/4 - 948*y**4 + 1190661*y**3/4 + 1203015*y**2 + 904401*y\ny = symbols(\"y\")\ny = solve(3*y**5/4 - 948*y**4 + 1190661*y**3/4 + 1203015*y**2 + 904401*y)\nprint(y)" - ], - "Output Answer": [ - "[-3, -1, 0, 634]" - ], - "split": "train" - }, - { - "Input": "What is the seventh root of 1719251 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1719251 ** (1 / 7))))" - ], - "Output Answer": [ - "8" - ], - "split": "train" - }, - { - "Input": "Is 1703 a multiple of 13?", - "Output Program": [ - "from sympy import *\nprint(1703 % 13 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Solve 1718 = 117*a - 769 - 2661 for a.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(1718, 117*a - 769 - 2661)])[a]\nprint(a)" - ], - "Output Answer": [ - "44" - ], - "split": "train" - }, - { - "Input": "Sort -0.2, -0.7, 2711.", - "Output Program": [ - "from sympy import *\nchoices = [-0.2, -0.7, 2711]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.7 -0.2 2711" - ], - "split": "train" - }, - { - "Input": "Solve 3*w + 9 = -3*d, -4*d = -4*w + 5*w + 18 for w.", - "Output Program": [ - "from sympy import *\nw, d = symbols(\"w d\")\nw = solve([Eq(3*w + 9, -3*d), Eq(-4*d, -4*w + 5*w + 18)])[w]\nprint(w)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Is 0 greater than or equal to -15/274?", - "Output Program": [ - "from sympy import *\nprint(0 >= -15/274)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let k = 0.2 + 0.8. Let l = k - 1. Let b = 0.042 + -0.042. What is the nearest to b in l, -5, -4/9?", - "Output Program": [ - "from sympy import *\nb = 0.042 + -0.042\nk = 0.2 + 0.8\nl = k - 1\nchoices = [l, -5, -4/9]\ntarget = b\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.0" - ], - "split": "train" - }, - { - "Input": "Is -3 >= 0.9?", - "Output Program": [ - "from sympy import *\nprint(-3 >= 0.9)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 5? (a) -0.6 (b) 8 (c) 5 (d) 6", - "Output Program": [ - "from sympy import *\nchoices = [-0.6, 8, 5, 6]\ntarget = 5\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Solve -3*q - 24*q - 27 = 0 for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(-3*q - 24*q - 27, 0)])[q]\nprint(q)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Factor 5*y**2 - 1390226760*y + 96636522211004880.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef f(y):\n\treturn 5*y**2 - 1390226760*y + 96636522211004880\ny = symbols(\"y\")\neq = factor(5*y**2 - 1390226760*y + 96636522211004880)\nprint(eq)" - ], - "Output Answer": [ - "5*(y - 139022676)**2" - ], - "split": "train" - }, - { - "Input": "Suppose -8 = c - 5*c + 5*s, 3*c - 3*s = 6. Let t be 2/4 + (-1)/c. Is -3 <= t?", - "Output Program": [ - "from sympy import *\nc, s = symbols(\"c s\")\nc = solve([Eq(-8, c - 5*c + 5*s), Eq(3*c - 3*s, 6)])[c]\nt = 2/4 + (-1)/c\nprint(-3 <= t)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to 0.2665? (a) 12 (b) -0.3 (c) 0 (d) 0.013", - "Output Program": [ - "from sympy import *\nchoices = [12, -0.3, 0, 0.013]\ntarget = 0.2665\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.013" - ], - "split": "train" - }, - { - "Input": "Let l be 1/((-9)/15) - 120/(-40). Let u = 2/1377 + 3209/2754. Suppose 1/6*x**2 - l - u*x = 0. What is x?", - "Output Program": [ - "from sympy import *\nu = 2/1377 + 3209/2754\nl = 1/((-9)/15) - 120/(-40)\nx = symbols(\"x\")\ndef t(x):\n\treturn 1/6*x**2 - l - u*x\nx = symbols(\"x\")\nx = solve(1/6*x**2 - l - u*x)\nprint(x)" - ], - "Output Answer": [ - "[-1.00000000000000, 8.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Let u(r) = r**3 + 6*r**2 - 10*r - 55. Let q be u(-4). Solve 0 = q*k + 173 - 156 for k.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef u(r):\n\treturn r**3 + 6*r**2 - 10*r - 55\nq = u(-4)\nk = symbols(\"k\")\nk = solve([Eq(0, q*k + 173 - 156)])[k]\nprint(k)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Solve 5*q + 34*h - 32*h = -2, 2*q + 3*h + 3 = 0 for q.", - "Output Program": [ - "from sympy import *\nq, h = symbols(\"q h\")\nq = solve([Eq(5*q + 34*h - 32*h, -2), Eq(2*q + 3*h + 3, 0)])[q]\nprint(q)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Sort 0.03, 4, -1/6, 3.", - "Output Program": [ - "from sympy import *\nchoices = [0.03, 4, -1/6, 3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.16666666666666666 0.03 3 4" - ], - "split": "train" - }, - { - "Input": "Let z = 4218 + -97012/23. Suppose z*i**2 + 36/23*i + 162/23 = 0. What is i?", - "Output Program": [ - "from sympy import *\nz = 4218 + -97012/23\ni = symbols(\"i\")\ndef d(i):\n\treturn z*i**2 + 36/23*i + 162/23\ni = symbols(\"i\")\ni = solve(z*i**2 + 36/23*i + 162/23)\nprint(i)" - ], - "Output Answer": [ - "[-9.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Suppose a = -3*n + 3*a + 18, 0 = -2*a - 6. Find x, given that 4*x**3 + 5*x**5 + 0*x**3 + x**3 + 17*x**n - 7*x**4 = 0.", - "Output Program": [ - "from sympy import *\nn, a = symbols(\"n a\")\nn = solve([Eq(a, -3*n + 3*a + 18), Eq(0, -2*a - 6)])[n]\nx = symbols(\"x\")\ndef s(x):\n\treturn 4*x**3 + 5*x**5 + 0*x**3 + x**3 + 17*x**n - 7*x**4\nx = symbols(\"x\")\nx = solve(4*x**3 + 5*x**5 + 0*x**3 + x**3 + 17*x**n - 7*x**4)\nprint(x)" - ], - "Output Answer": [ - "[-1, 0]" - ], - "split": "train" - }, - { - "Input": "Let s = 15.2608 + -0.5608. What is the nearest to 1 in 3, 4, s?", - "Output Program": [ - "from sympy import *\ns = 15.2608 + -0.5608\nchoices = [3, 4, s]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Solve 83*i - 4*d = 102, 3*d + d + 18 - 59 = i + 21 for i.", - "Output Program": [ - "from sympy import *\ni, d = symbols(\"i d\")\ni = solve([Eq(83*i - 4*d, 102), Eq(3*d + d + 18 - 59, i + 21)])[i]\nprint(i)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Factor 4*g**3 - 24*g**2 + 44*g - 24.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef t(g):\n\treturn 4*g**3 - 24*g**2 + 44*g - 24\ng = symbols(\"g\")\neq = factor(4*g**3 - 24*g**2 + 44*g - 24)\nprint(eq)" - ], - "Output Answer": [ - "4*(g - 3)*(g - 2)*(g - 1)" - ], - "split": "train" - }, - { - "Input": "Solve 2793*h + 1023*h - 205269 = 800*h - 857*h for h.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\nh = solve([Eq(2793*h + 1023*h - 205269, 800*h - 857*h)])[h]\nprint(h)" - ], - "Output Answer": [ - "53" - ], - "split": "train" - }, - { - "Input": "Determine c, given that -3*c**3 + 555*c**2 - 25944*c + 25392 = 0.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef n(c):\n\treturn -3*c**3 + 555*c**2 - 25944*c + 25392\nc = symbols(\"c\")\nc = solve(-3*c**3 + 555*c**2 - 25944*c + 25392)\nprint(c)" - ], - "Output Answer": [ - "[1, 92]" - ], - "split": "train" - }, - { - "Input": "Is 180 a factor of 680688144?", - "Output Program": [ - "from sympy import *\nprint(680688144 % 180 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to -1? (a) 2 (b) 0.1 (c) -1458 (d) 8", - "Output Program": [ - "from sympy import *\nchoices = [2, 0.1, -1458, 8]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "train" - }, - { - "Input": "Solve 2*p**2/3 - 98*p/3 + 120 = 0 for p.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef z(p):\n\treturn 2*p**2/3 - 98*p/3 + 120\np = symbols(\"p\")\np = solve(2*p**2/3 - 98*p/3 + 120)\nprint(p)" - ], - "Output Answer": [ - "[4, 45]" - ], - "split": "train" - }, - { - "Input": "Let y = 62 + -37. Let n = y - 35. Let r be 20*1 + 6 + n. Which is greater: 17 or r?", - "Output Program": [ - "from sympy import *\ny = 62 + -37\nn = y - 35\nr = 20*1 + 6 + n\nprint(max(17, r))" - ], - "Output Answer": [ - "17" - ], - "split": "train" - }, - { - "Input": "Let s(d) = d**2 + 7*d + 8. Let m be s(-6). Let x = 0.18 - 0.03. Let k = -0.05 + x. Which is smaller: k or m?", - "Output Program": [ - "from sympy import *\nx = 0.18 - 0.03\nk = -0.05 + x\nd = symbols(\"d\")\ndef s(d):\n\treturn d**2 + 7*d + 8\nm = s(-6)\nprint(min(k, m))" - ], - "Output Answer": [ - "0.09999999999999999" - ], - "split": "train" - }, - { - "Input": "Let t be (-9)/(-6) - ((-77)/(-14) - -5). Let a = 84 + t. Is a a multiple of 15?", - "Output Program": [ - "from sympy import *\nt = (-9)/(-6) - ((-77)/(-14) - -5)\na = 84 + t\nprint(75 % 15 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Simplify 4 + ((sqrt(11)*1)**2 + -5 - (-1 + (2*sqrt(11))**2)) - ((sqrt(11) - sqrt(704)*1) + (-3*sqrt(99))/sqrt(9)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(4 + ((sqrt(11)*1)**2 + -5 - (-1 + (2*sqrt(11))**2)) - ((sqrt(11) - sqrt(704)*1) + (-3*sqrt(99))/sqrt(9)))))" - ], - "Output Answer": [ - "-33 + 10*sqrt(11)" - ], - "split": "train" - }, - { - "Input": "Let x(i) = 3*i**2 + 77*i - 156. Calculate x(2).", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef x(i):\n\treturn 3*i**2 + 77*i - 156\nprint(x(2))" - ], - "Output Answer": [ - "10" - ], - "split": "train" - }, - { - "Input": "Put 3, -9, -0.13, 5, -13 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [3, -9, -0.13, 5, -13]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 3 -0.13 -9 -13" - ], - "split": "train" - }, - { - "Input": "Suppose k - 4*k = 321. Let i = -52 - k. Suppose 5*x - 95 = i. Is 14 a factor of x?", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\nk = solve([Eq(k - 4*k, 321)])[k]\ni = -52 - k\nx = symbols(\"x\")\nx = solve([Eq(5*x - 95, i)])[x]\nprint(30 % 14 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Suppose 11*q - 475 - 1021 = 0. Let f = q - 136. Solve 3*t - 2 - 7 = f for t.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(11*q - 475 - 1021, 0)])[q]\nf = q - 136\nt = symbols(\"t\")\nt = solve([Eq(3*t - 2 - 7, f)])[t]\nprint(t)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let l = 1376 + -6881/5. What is the nearest to 1 in 0.042, l, -1?", - "Output Program": [ - "from sympy import *\nl = 1376 + -6881/5\nchoices = [0.042, l, -1]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.042" - ], - "split": "train" - }, - { - "Input": "Simplify 3*(sqrt(10)/(2*sqrt(5)) + sqrt(64)/sqrt(2)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(3*(sqrt(10)/(2*sqrt(5)) + sqrt(64)/sqrt(2)))))" - ], - "Output Answer": [ - "27*sqrt(2)/2" - ], - "split": "train" - }, - { - "Input": "Let k(f) = 4*f + 14. Let q be k(-3). Solve 4*s + s + 25 = 0, -q*i - 27 = 5*s for i.", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\ndef k(f):\n\treturn 4*f + 14\nq = k(-3)\ni, s = symbols(\"i s\")\ni = solve([Eq(4*s + s + 25, 0), Eq(-q*i - 27, 5*s)])[i]\nprint(i)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Let o = -16 + 15.6. Sort 0.1, 3, o in descending order.", - "Output Program": [ - "from sympy import *\no = -16 + 15.6\nchoices = [0.1, 3, o]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 0.1 -0.40000000000000036" - ], - "split": "train" - }, - { - "Input": "Solve -s = 3*f + 8, -5*f + 4*f = -3*s + 6 for s.", - "Output Program": [ - "from sympy import *\ns, f = symbols(\"s f\")\ns = solve([Eq(-s, 3*f + 8), Eq(-5*f + 4*f, -3*s + 6)])[s]\nprint(s)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let l = 2066/1705 - 4/341. Suppose 3/5*y**4 + 0*y**2 - l*y**3 + 0*y + 0 = 0. Calculate y.", - "Output Program": [ - "from sympy import *\nl = 2066/1705 - 4/341\ny = symbols(\"y\")\ndef w(y):\n\treturn 3/5*y**4 + 0*y**2 - l*y**3 + 0*y + 0\ny = symbols(\"y\")\ny = solve(3/5*y**4 + 0*y**2 - l*y**3 + 0*y + 0)\nprint(y)" - ], - "Output Answer": [ - "[0.0, 2.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Let c = 4 - 2. Suppose -c*w - w + 3 = 0. Factor -1 - 4*g**2 + 0 + w + 2*g**3.", - "Output Program": [ - "from sympy import *\nc = 4 - 2\nw = symbols(\"w\")\nw = solve([Eq(-c*w - w + 3, 0)])[w]\ng = symbols(\"g\")\ndef b(g):\n\treturn -1 - 4*g**2 + 0 + w + 2*g**3\ng = symbols(\"g\")\neq = factor(-1 - 4*g**2 + 0 + w + 2*g**3)\nprint(eq)" - ], - "Output Answer": [ - "2*g**2*(g - 2)" - ], - "split": "train" - }, - { - "Input": "Let d(z) = 120*z - 928. Determine d(8).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef d(z):\n\treturn 120*z - 928\nprint(d(8))" - ], - "Output Answer": [ - "32" - ], - "split": "train" - }, - { - "Input": "Let t(x) = 2*x + 54. What is t(-25)?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef t(x):\n\treturn 2*x + 54\nprint(t(-25))" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Find j, given that 87*j**5 + 531*j**4 + 1098*j**3 + 804*j**2 + 72*j = 0.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef u(j):\n\treturn 87*j**5 + 531*j**4 + 1098*j**3 + 804*j**2 + 72*j\nj = symbols(\"j\")\nj = solve(87*j**5 + 531*j**4 + 1098*j**3 + 804*j**2 + 72*j)\nprint(j)" - ], - "Output Answer": [ - "[-2, -3/29, 0]" - ], - "split": "train" - }, - { - "Input": "Is 6 a factor of 1875256?", - "Output Program": [ - "from sympy import *\nprint(1875256 % 6 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Solve v + v = -3*v for v.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(v + v, -3*v)])[v]\nprint(v)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Suppose 76*z + 12684 = 12684. Factor 0*b - 2/3*b**4 - 8/3*b**3 + z + 8*b**2.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(76*z + 12684, 12684)])[z]\nb = symbols(\"b\")\ndef k(b):\n\treturn 0*b - 2/3*b**4 - 8/3*b**3 + z + 8*b**2\nb = symbols(\"b\")\neq = factor(0*b - 2/3*b**4 - 8/3*b**3 + z + 8*b**2)\nprint(eq)" - ], - "Output Answer": [ - "-8.0*b**2*(0.166666666666667*b + 1.0)*(0.5*b - 1.0)" - ], - "split": "train" - }, - { - "Input": "Let i(t) = 3*t - 5. Let u be i(3). Let g = -0.2 + 0.1. Let j = -1.517 - -1.217. Which is the nearest to -1? (a) g (b) u (c) j", - "Output Program": [ - "from sympy import *\ng = -0.2 + 0.1\nt = symbols(\"t\")\ndef i(t):\n\treturn 3*t - 5\nu = i(3)\nj = -1.517 - -1.217\nchoices = [g, u, j]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.2999999999999998" - ], - "split": "train" - }, - { - "Input": "Is -183 less than -1099/6?", - "Output Program": [ - "from sympy import *\nprint(-183 < -1099/6)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(65) + ((sqrt(65) - -2*sqrt(65)) + sqrt(65))*6 - (4*sqrt(65) + sqrt(65))*-2)/(4*(2*sqrt(80) + sqrt(80))*-5).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(65) + ((sqrt(65) - -2*sqrt(65)) + sqrt(65))*6 - (4*sqrt(65) + sqrt(65))*-2)/(4*(2*sqrt(80) + sqrt(80))*-5))))" - ], - "Output Answer": [ - "-7*sqrt(13)/48" - ], - "split": "train" - }, - { - "Input": "Solve -52*r + 4564 + 4942 - 564 = 211*r for r.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\nr = solve([Eq(-52*r + 4564 + 4942 - 564, 211*r)])[r]\nprint(r)" - ], - "Output Answer": [ - "34" - ], - "split": "train" - }, - { - "Input": "Suppose 5*w = 47 + 43. Let g = 22 - w. Solve 6 = -g*j + 26 for j.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\nw = solve([Eq(5*w, 47 + 43)])[w]\ng = 22 - w\nj = symbols(\"j\")\nj = solve([Eq(6, -g*j + 26)])[j]\nprint(j)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Is 4101655 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(4101655))" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let x be 37 + (-10)/((-70)/21). Let l = -21 - -36. Suppose -x*z**2 + 8*z**3 - 38*z**3 + 5*z**5 + 0*z**5 - l*z = 0. What is z?", - "Output Program": [ - "from sympy import *\nx = 37 + (-10)/((-70)/21)\nl = -21 - -36\nz = symbols(\"z\")\ndef h(z):\n\treturn -x*z**2 + 8*z**3 - 38*z**3 + 5*z**5 + 0*z**5 - l*z\nz = symbols(\"z\")\nz = solve(-x*z**2 + 8*z**3 - 38*z**3 + 5*z**5 + 0*z**5 - l*z)\nprint(z)" - ], - "Output Answer": [ - "[-1.00000000000000, 0.0, 3.00000000000000]" - ], - "split": "train" - }, - { - "Input": "What is 181674453 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(181674453 ** (1 / 2))))" - ], - "Output Answer": [ - "13479" - ], - "split": "train" - }, - { - "Input": "Which is the closest to -2/3? (a) 0.1 (b) -0.5 (c) 3 (d) -15/11 (e) 20", - "Output Program": [ - "from sympy import *\nchoices = [0.1, -0.5, 3, -15/11, 20]\ntarget = -2/3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.5" - ], - "split": "train" - }, - { - "Input": "Solve -12*u + 4 + 20 = 0 for u.", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(-12*u + 4 + 20, 0)])[u]\nprint(u)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Is -114535 equal to -114540?", - "Output Program": [ - "from sympy import *\nprint(-114535 == -114540)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Solve 35017 - 111549 = 1444*y for y.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ny = solve([Eq(35017 - 111549, 1444*y)])[y]\nprint(y)" - ], - "Output Answer": [ - "-53" - ], - "split": "train" - }, - { - "Input": "Suppose 3*t + 3*i + 156 = 0, t = -4*i - 31 - 33. Let o(c) = 5*c + c**3 - 7 + 0*c**3 + 0*c**3 - 8*c**2. Let j be o(6). Which is greater: j or t?", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef o(c):\n\treturn 5*c + c**3 - 7 + 0*c**3 + 0*c**3 - 8*c**2\nj = o(6)\nt, i = symbols(\"t i\")\nt = solve([Eq(3*t + 3*i + 156, 0), Eq(t, -4*i - 31 - 33)])[t]\nprint(max(j, t))" - ], - "Output Answer": [ - "-48" - ], - "split": "train" - }, - { - "Input": "Is -2/209885 less than -1?", - "Output Program": [ - "from sympy import *\nprint(-2/209885 < -1)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Is 1588 a factor of 101614532?", - "Output Program": [ - "from sympy import *\nprint(101614532 % 1588 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Is -129/238223 at most -1?", - "Output Program": [ - "from sympy import *\nprint(-129/238223 <= -1)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let j be 25/30*(4 - 2). Suppose 0*m = 2*m - 4. Is j not equal to m?", - "Output Program": [ - "from sympy import *\nj = 25/30*(4 - 2)\nm = symbols(\"m\")\nm = solve([Eq(0*m, 2*m - 4)])[m]\nprint(j != m)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Solve q = 5*y + 22, 3*q - 693*y = -691*y + 1 for q.", - "Output Program": [ - "from sympy import *\nq, y = symbols(\"q y\")\nq = solve([Eq(q, 5*y + 22), Eq(3*q - 693*y, -691*y + 1)])[q]\nprint(q)" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Determine t, given that -1255*t**5 - 4082510*t**4 + 8202630*t**3 + 53085260*t**2 + 40638625*t - 162750 = 0.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef h(t):\n\treturn -1255*t**5 - 4082510*t**4 + 8202630*t**3 + 53085260*t**2 + 40638625*t - 162750\nt = symbols(\"t\")\nt = solve(-1255*t**5 - 4082510*t**4 + 8202630*t**3 + 53085260*t**2 + 40638625*t - 162750)\nprint(t)" - ], - "Output Answer": [ - "[-3255, -2, -1, 1/251, 5]" - ], - "split": "train" - }, - { - "Input": "Factor -12*u**4 - 9*u + 166*u**2 - 2*u**3 + 4*u**5 + 0*u - 154*u**2 + 8*u**3 - u**5.", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef c(u):\n\treturn -12*u**4 - 9*u + 166*u**2 - 2*u**3 + 4*u**5 + 0*u - 154*u**2 + 8*u**3 - u**5\nu = symbols(\"u\")\neq = factor(-12*u**4 - 9*u + 166*u**2 - 2*u**3 + 4*u**5 + 0*u - 154*u**2 + 8*u**3 - u**5)\nprint(eq)" - ], - "Output Answer": [ - "3*u*(u - 3)*(u - 1)**2*(u + 1)" - ], - "split": "train" - }, - { - "Input": "Let j be (-1)/1*94/(-2). Let d = j + 13. Let f be 5*8/d - 4/6. Solve f = -0*m + 3*m + 15 for m.", - "Output Program": [ - "from sympy import *\nj = (-1)/1*94/(-2)\nd = j + 13\nf = 5*8/d - 4/6\nm = symbols(\"m\")\nm = solve([Eq(f, -0*m + 3*m + 15)])[m]\nprint(m)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Which is smaller: -1569063 or -1569299?", - "Output Program": [ - "from sympy import *\nprint(min(-1569063, -1569299))" - ], - "Output Answer": [ - "-1569299" - ], - "split": "train" - }, - { - "Input": "Solve -4762*f + 288 + 41 = -4769*f for f.", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\nf = solve([Eq(-4762*f + 288 + 41, -4769*f)])[f]\nprint(f)" - ], - "Output Answer": [ - "-47" - ], - "split": "train" - }, - { - "Input": "Simplify 1 + 1 + sqrt(800) - (-1*sqrt(800)*-3)**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(1 + 1 + sqrt(800) - (-1*sqrt(800)*-3)**2)))" - ], - "Output Answer": [ - "-7198 + 20*sqrt(2)" - ], - "split": "train" - }, - { - "Input": "Factor 3*p**5 + 424248*p**4 - 2545560*p**3 + 5091168*p**2 - 3394128*p.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef g(p):\n\treturn 3*p**5 + 424248*p**4 - 2545560*p**3 + 5091168*p**2 - 3394128*p\np = symbols(\"p\")\neq = factor(3*p**5 + 424248*p**4 - 2545560*p**3 + 5091168*p**2 - 3394128*p)\nprint(eq)" - ], - "Output Answer": [ - "3*p*(p - 2)**3*(p + 141422)" - ], - "split": "train" - }, - { - "Input": "Suppose 44*r = 49*r + 116*r - 121. Sort 18, r, -212 in descending order.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\nr = solve([Eq(44*r, 49*r + 116*r - 121)])[r]\nchoices = [18, r, -212]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "18 1 -212" - ], - "split": "train" - }, - { - "Input": "Suppose 2*z - 3*c = -10, 0*z - 5*c = 5*z - 25. Which is greater: -1/36 or z?", - "Output Program": [ - "from sympy import *\nz, c = symbols(\"z c\")\nz = solve([Eq(2*z - 3*c, -10), Eq(0*z - 5*c, 5*z - 25)])[z]\nprint(max(-1/36, z))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let l = -938/23 - -10272/253. Let x = -13647/25 + 546. Put x, l, 0.3 in ascending order.", - "Output Program": [ - "from sympy import *\nx = -13647/25 + 546\nl = -938/23 - -10272/253\nchoices = [x, l, 0.3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.18181818181817988 0.12000000000000455 0.3" - ], - "split": "train" - }, - { - "Input": "Simplify -2 + sqrt(12)/sqrt(24) + -3 + -4.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-2 + sqrt(12)/sqrt(24) + -3 + -4)))" - ], - "Output Answer": [ - "-9 + sqrt(2)/2" - ], - "split": "train" - }, - { - "Input": "Let b = 23.9 - 25. Let n = -0.13 + 0.93. Let i = b + n. Put i, 1, -1/4 in descending order.", - "Output Program": [ - "from sympy import *\nb = 23.9 - 25\nn = -0.13 + 0.93\ni = b + n\nchoices = [i, 1, -1/4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "1 -0.25 -0.3000000000000014" - ], - "split": "train" - }, - { - "Input": "Let c(v) = -v - 3. Let y = -50 - -44. Calculate c(y).", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef c(v):\n\treturn -v - 3\ny = -50 - -44\nprint(c(y))" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let m be 2/(-3)*15/((-15)/3). Suppose -9*u = -4*u + 3*u. Suppose u = 8*w - m*w - 36. Let q(f) = -f**3 + 6*f**2 + 4. Give q(w).", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\ndef q(f):\n\treturn -f**3 + 6*f**2 + 4\nm = 2/(-3)*15/((-15)/3)\nu = symbols(\"u\")\nu = solve([Eq(-9*u, -4*u + 3*u)])[u]\nw = symbols(\"w\")\nw = solve([Eq(u, 8*w - m*w - 36)])[w]\nprint(q(w))" - ], - "Output Answer": [ - "4" - ], - "split": "train" - }, - { - "Input": "Simplify -1*(-5 + (sqrt(50))**2) + 5*2*sqrt(2)*-2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-1*(-5 + (sqrt(50))**2) + 5*2*sqrt(2)*-2)))" - ], - "Output Answer": [ - "-45 - 20*sqrt(2)" - ], - "split": "train" - }, - { - "Input": "Put -5, -57, 10 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [-5, -57, 10]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-57 -5 10" - ], - "split": "train" - }, - { - "Input": "What is the closest to -1 in -3/4, -164/19, -3, -1/5, 5?", - "Output Program": [ - "from sympy import *\nchoices = [-3/4, -164/19, -3, -1/5, 5]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.75" - ], - "split": "train" - }, - { - "Input": "Solve -93*h + 593 + 810 = -717 - 484 for h.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\nh = solve([Eq(-93*h + 593 + 810, -717 - 484)])[h]\nprint(h)" - ], - "Output Answer": [ - "28" - ], - "split": "train" - }, - { - "Input": "Solve -41*v + 1042 = 1488 + 1112 for v.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(-41*v + 1042, 1488 + 1112)])[v]\nprint(v)" - ], - "Output Answer": [ - "-38" - ], - "split": "train" - }, - { - "Input": "Let o(n) = -n**3 + 2*n**2. Let c be o(1). Let d be 2 - (c - (0 - -2)). Solve d + 2 = -m for m.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef o(n):\n\treturn -n**3 + 2*n**2\nc = o(1)\nd = 2 - (c - (0 - -2))\nm = symbols(\"m\")\nm = solve([Eq(d + 2, -m)])[m]\nprint(m)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "Let m = 3 + 2. Suppose 0 = -3*w - 2*x - 16, 5*x + 21 = 2*w - 0*w. Let u be w/(222/(-30) - -7). Solve -6*l + 20 = -u*q - l, -m*l = 3*q - 28 for q.", - "Output Program": [ - "from sympy import *\nw, x = symbols(\"w x\")\nw = solve([Eq(0, -3*w - 2*x - 16), Eq(5*x + 21, 2*w - 0*w)])[w]\nu = w/(222/(-30) - -7)\nm = 3 + 2\nq, l = symbols(\"q l\")\nq = solve([Eq(-6*l + 20, -u*q - l), Eq(-m*l, 3*q - 28)])[q]\nprint(q)" - ], - "Output Answer": [ - "1.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let x be 20/9 + 2/(-9). Suppose 0 = -3*v - x*v. Solve -3*w - 1 + 10 = v for w.", - "Output Program": [ - "from sympy import *\nx = 20/9 + 2/(-9)\nv = symbols(\"v\")\nv = solve([Eq(0, -3*v - x*v)])[v]\nw = symbols(\"w\")\nw = solve([Eq(-3*w - 1 + 10, v)])[w]\nprint(w)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Solve -k = 3*f - 4, 2*f + 7*k + 31 = 2 for f.", - "Output Program": [ - "from sympy import *\nf, k = symbols(\"f k\")\nf = solve([Eq(-k, 3*f - 4), Eq(2*f + 7*k + 31, 2)])[f]\nprint(f)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Sort 1655, -0.02, 0, -0.5.", - "Output Program": [ - "from sympy import *\nchoices = [1655, -0.02, 0, -0.5]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.5 -0.02 0 1655" - ], - "split": "train" - }, - { - "Input": "Solve 71*g - 365*g - 747*g = 2364*g + 228135 for g.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(71*g - 365*g - 747*g, 2364*g + 228135)])[g]\nprint(g)" - ], - "Output Answer": [ - "-67" - ], - "split": "train" - }, - { - "Input": "Is 61 equal to -1?", - "Output Program": [ - "from sympy import *\nprint(61 == -1)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Suppose -1083 = -8*a - 235. Is a a multiple of 53?", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(-1083, -8*a - 235)])[a]\nprint(106 % 53 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let x(q) = -q**3 - 7*q**2 + 24*q + 143. Determine x(-7).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef x(q):\n\treturn -q**3 - 7*q**2 + 24*q + 143\nprint(x(-7))" - ], - "Output Answer": [ - "-25" - ], - "split": "train" - }, - { - "Input": "What is 378069438 to the power of 1/7, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(378069438 ** (1 / 7))))" - ], - "Output Answer": [ - "17" - ], - "split": "train" - }, - { - "Input": "Solve 0 = 13158*t - 13139*t for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(0, 13158*t - 13139*t)])[t]\nprint(t)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "What is 16660372 to the power of 1/7, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(16660372 ** (1 / 7))))" - ], - "Output Answer": [ - "11" - ], - "split": "train" - }, - { - "Input": "Solve -52*n = 221*n + 8*n + 4047 - 14725 for n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(-52*n, 221*n + 8*n + 4047 - 14725)])[n]\nprint(n)" - ], - "Output Answer": [ - "38" - ], - "split": "train" - }, - { - "Input": "Let n = 0 - -6. Let t be 2/n - (-14)/21. Is t bigger than -3?", - "Output Program": [ - "from sympy import *\nn = 0 - -6\nt = 2/n - (-14)/21\nprint(t > -3)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let d = -3.11 + 0.11. Let z = -39 - -24. Let w = -14.8 - z. Is w at least d?", - "Output Program": [ - "from sympy import *\nz = -39 - -24\nw = -14.8 - z\nd = -3.11 + 0.11\nprint(w >= d)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Determine m, given that -2*m**4/5 - 62*m**3/5 + 282*m**2/5 + 62*m/5 - 56 = 0.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef h(m):\n\treturn -2*m**4/5 - 62*m**3/5 + 282*m**2/5 + 62*m/5 - 56\nm = symbols(\"m\")\nm = solve(-2*m**4/5 - 62*m**3/5 + 282*m**2/5 + 62*m/5 - 56)\nprint(m)" - ], - "Output Answer": [ - "[-35, -1, 1, 4]" - ], - "split": "train" - }, - { - "Input": "Simplify ((sqrt(187) + sqrt(187)*1 - sqrt(187))*-2 + sqrt(187) + -2*(sqrt(187)*2 + sqrt(187)))/(6*sqrt(539)*2).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((sqrt(187) + sqrt(187)*1 - sqrt(187))*-2 + sqrt(187) + -2*(sqrt(187)*2 + sqrt(187)))/(6*sqrt(539)*2))))" - ], - "Output Answer": [ - "-sqrt(17)/12" - ], - "split": "train" - }, - { - "Input": "Is 816321 a multiple of 11?", - "Output Program": [ - "from sympy import *\nprint(816321 % 11 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Is 186 a factor of 269347101?", - "Output Program": [ - "from sympy import *\nprint(269347101 % 186 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify ((-4*(-2*2*sqrt(1215) + sqrt(1215)))/(((sqrt(80) + -3*sqrt(80))*6 - sqrt(80)) + sqrt(80)))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((-4*(-2*2*sqrt(1215) + sqrt(1215)))/(((sqrt(80) + -3*sqrt(80))*6 - sqrt(80)) + sqrt(80)))**2)))" - ], - "Output Answer": [ - "243/16" - ], - "split": "train" - }, - { - "Input": "Let d(z) = -2*z**3 + 54*z**2 + 44*z + 52. Calculate d(28).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef d(z):\n\treturn -2*z**3 + 54*z**2 + 44*z + 52\nprint(d(28))" - ], - "Output Answer": [ - "-284" - ], - "split": "train" - }, - { - "Input": "Simplify (sqrt(500) + 0)**2*-1*-4.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(500) + 0)**2*-1*-4)))" - ], - "Output Answer": [ - "2000" - ], - "split": "train" - }, - { - "Input": "Find w such that -w**3 + 4*w**2 + 16*w - 64 = 0.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef c(w):\n\treturn -w**3 + 4*w**2 + 16*w - 64\nw = symbols(\"w\")\nw = solve(-w**3 + 4*w**2 + 16*w - 64)\nprint(w)" - ], - "Output Answer": [ - "[-4, 4]" - ], - "split": "train" - }, - { - "Input": "What is the square root of 628069819 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(628069819 ** (1 / 2))))" - ], - "Output Answer": [ - "25061" - ], - "split": "train" - }, - { - "Input": "Sort 1, -22644, 3 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [1, -22644, 3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 1 -22644" - ], - "split": "train" - }, - { - "Input": "Let i(y) = y**3 + 18*y**2 - 61*y + 33. Give i(-21).", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef i(y):\n\treturn y**3 + 18*y**2 - 61*y + 33\nprint(i(-21))" - ], - "Output Answer": [ - "-9" - ], - "split": "train" - }, - { - "Input": "Is 851153 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(851153))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let y(j) = 458 - 33*j. What is y(14)?", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef y(j):\n\treturn 458 - 33*j\nprint(y(14))" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "What is the nearest to -1 in 24.68, 31/3, -3?", - "Output Program": [ - "from sympy import *\nchoices = [24.68, 31/3, -3]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Let f = -5.7 - -2.7. Let i = 24/35 + 31/210. Let s = -3.3 + 3. Which is the closest to 1? (a) f (b) s (c) i", - "Output Program": [ - "from sympy import *\nf = -5.7 - -2.7\ns = -3.3 + 3\ni = 24/35 + 31/210\nchoices = [f, s, i]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.8333333333333334" - ], - "split": "train" - }, - { - "Input": "Let w = 0.11 - 0.04. Let j = 0.47 - w. Let p = -3932 + 3929. Which is the nearest to -0.3? (a) p (b) 0 (c) j", - "Output Program": [ - "from sympy import *\np = -3932 + 3929\nw = 0.11 - 0.04\nj = 0.47 - w\nchoices = [p, 0, j]\ntarget = -0.3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Suppose 0 = 5*y + 3*k - 295, -5*y + 305 = k + 4*k. Is 7 a factor of y?", - "Output Program": [ - "from sympy import *\ny, k = symbols(\"y k\")\ny = solve([Eq(0, 5*y + 3*k - 295), Eq(-5*y + 305, k + 4*k)])[y]\nprint(56 % 7 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Find h such that 4*h**3 - 26348*h**2 + 43375392*h + 43401744 = 0.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef n(h):\n\treturn 4*h**3 - 26348*h**2 + 43375392*h + 43401744\nh = symbols(\"h\")\nh = solve(4*h**3 - 26348*h**2 + 43375392*h + 43401744)\nprint(h)" - ], - "Output Answer": [ - "[-1, 3294]" - ], - "split": "train" - }, - { - "Input": "Let j = 15.51 + -15.61. Let y = -1.5 - 4.5. Let r = y + 5.99. Which is the nearest to j? (a) -3/5 (b) r (c) -2", - "Output Program": [ - "from sympy import *\nj = 15.51 + -15.61\ny = -1.5 - 4.5\nr = y + 5.99\nchoices = [-3/5, r, -2]\ntarget = j\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.009999999999999787" - ], - "split": "train" - }, - { - "Input": "Let w = 1892 + -1888. Sort 0.1, w, 12/43.", - "Output Program": [ - "from sympy import *\nw = 1892 + -1888\nchoices = [0.1, w, 12/43]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "0.1 0.27906976744186046 4" - ], - "split": "train" - }, - { - "Input": "Solve 260 = -10*w + 15*w + 4*l, -5*l + 340 = -3*w - 22 for w.", - "Output Program": [ - "from sympy import *\nw, l = symbols(\"w l\")\nw = solve([Eq(260, -10*w + 15*w + 4*l), Eq(-5*l + 340, -3*w - 22)])[w]\nprint(w)" - ], - "Output Answer": [ - "-4" - ], - "split": "train" - }, - { - "Input": "What is the nearest to 1/5 in 1, -1, 21?", - "Output Program": [ - "from sympy import *\nchoices = [1, -1, 21]\ntarget = 1/5\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to 0.4? (a) -0.8 (b) 5 (c) -3", - "Output Program": [ - "from sympy import *\nchoices = [-0.8, 5, -3]\ntarget = 0.4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.8" - ], - "split": "train" - }, - { - "Input": "Solve 4*k + q + 3 = 0, 2*k + k - q + 4 = 0 for k.", - "Output Program": [ - "from sympy import *\nk, q = symbols(\"k q\")\nk = solve([Eq(4*k + q + 3, 0), Eq(2*k + k - q + 4, 0)])[k]\nprint(k)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "What is the closest to -8/11 in 199, 2, 3, 2/9?", - "Output Program": [ - "from sympy import *\nchoices = [199, 2, 3, 2/9]\ntarget = -8/11\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.2222222222222222" - ], - "split": "train" - }, - { - "Input": "Let y**3/2 - 34*y**2 + 248*y - 480 = 0. Calculate y.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef j(y):\n\treturn y**3/2 - 34*y**2 + 248*y - 480\ny = symbols(\"y\")\ny = solve(y**3/2 - 34*y**2 + 248*y - 480)\nprint(y)" - ], - "Output Answer": [ - "[4, 60]" - ], - "split": "train" - }, - { - "Input": "Suppose -2*f + 48 = 2*f. Let r(q) = 29055 - 447*q. Let h be r(65). Solve -4*p = f - h for p.", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\nf = solve([Eq(-2*f + 48, 2*f)])[f]\nq = symbols(\"q\")\ndef r(q):\n\treturn 29055 - 447*q\nh = r(65)\np = symbols(\"p\")\np = solve([Eq(-4*p, f - h)])[p]\nprint(p)" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Suppose 4 = s - 0*w - w, 7 = 4*s + 5*w. Suppose -4*m = -4*z - 60, z = 169*m - 164*m + 41. Put s, z, 0 in descending order.", - "Output Program": [ - "from sympy import *\ns, w = symbols(\"s w\")\ns = solve([Eq(4, s - 0*w - w), Eq(7, 4*s + 5*w)])[s]\nz, m = symbols(\"z m\")\nz = solve([Eq(-4*m, -4*z - 60), Eq(z, 169*m - 164*m + 41)])[z]\nchoices = [s, z, 0]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 0 -29" - ], - "split": "train" - }, - { - "Input": "Let y = -1042/11 + 4157/44. Let x = -3 + 3.5. Which is the nearest to 1/4? (a) y (b) 3 (c) x", - "Output Program": [ - "from sympy import *\ny = -1042/11 + 4157/44\nx = -3 + 3.5\nchoices = [y, 3, x]\ntarget = 1/4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.5" - ], - "split": "train" - }, - { - "Input": "Sort -1, -2448, -5, 17, 5, 3.", - "Output Program": [ - "from sympy import *\nchoices = [-1, -2448, -5, 17, 5, 3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2448 -5 -1 3 5 17" - ], - "split": "train" - }, - { - "Input": "Is 437 a factor of 119931591?", - "Output Program": [ - "from sympy import *\nprint(119931591 % 437 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Simplify (-2 + 1*(sqrt(1008) - 3*sqrt(1008)) + -3 + ((sqrt(1008) + 0 - sqrt(1008))*-6 + 2*sqrt(1008) + 2)*-3)**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-2 + 1*(sqrt(1008) - 3*sqrt(1008)) + -3 + ((sqrt(1008) + 0 - sqrt(1008))*-6 + 2*sqrt(1008) + 2)*-3)**2)))" - ], - "Output Answer": [ - "2112*sqrt(7) + 64633" - ], - "split": "train" - }, - { - "Input": "Let x(j) = j**2 - 3*j - 5. Let w be -21*(8/(-6) + 1). Suppose w = 2*f - 1. Determine x(f).", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef x(j):\n\treturn j**2 - 3*j - 5\nw = -21*(8/(-6) + 1)\nf = symbols(\"f\")\nf = solve([Eq(w, 2*f - 1)])[f]\nprint(x(f))" - ], - "Output Answer": [ - "-1.00000000000000" - ], - "split": "train" - }, - { - "Input": "Simplify 4*(sqrt(98) - (sqrt(98)*-2 + 4)**2) + -4.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(4*(sqrt(98) - (sqrt(98)*-2 + 4)**2) + -4)))" - ], - "Output Answer": [ - "-1636 + 476*sqrt(2)" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(63)*-3 - ((sqrt(84)/sqrt(3))/sqrt(4))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(63)*-3 - ((sqrt(84)/sqrt(3))/sqrt(4))**2)))" - ], - "Output Answer": [ - "-9*sqrt(7) - 7" - ], - "split": "train" - }, - { - "Input": "Suppose 85*a - 79*a + 324 = 0. Let p be (-3)/(a/(-274)) - (-4)/18. Which is bigger: p or -18?", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(85*a - 79*a + 324, 0)])[a]\np = (-3)/(a/(-274)) - (-4)/18\nprint(max(p, -18))" - ], - "Output Answer": [ - "-15.0000000000000" - ], - "split": "train" - }, - { - "Input": "Suppose 2*y = 13*s - 140075, 17*s - 18*s = -3*y - 10775. Are s and -0.1 nonequal?", - "Output Program": [ - "from sympy import *\ns, y = symbols(\"s y\")\ns = solve([Eq(2*y, 13*s - 140075), Eq(17*s - 18*s, -3*y - 10775)])[s]\nprint(s != -0.1)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Is 1109432234 a multiple of 663?", - "Output Program": [ - "from sympy import *\nprint(1109432234 % 663 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Simplify (3 + 1 + (-3 + sqrt(1300) - sqrt(1300)) + sqrt(1300) + sqrt(1300) + (sqrt(1300) + -2 + -4)*5 + 2)**2 + 0.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((3 + 1 + (-3 + sqrt(1300) - sqrt(1300)) + sqrt(1300) + sqrt(1300) + (sqrt(1300) + -2 + -4)*5 + 2)**2 + 0)))" - ], - "Output Answer": [ - "64429 - 3780*sqrt(13)" - ], - "split": "train" - }, - { - "Input": "Is 5 a factor of 21236415?", - "Output Program": [ - "from sympy import *\nprint(21236415 % 5 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let c = 1437 - 1437. Suppose 3*o + 2*g + 4 = 0, c = 5*o - 3*g + 35 - 41. Let v(x) = 3*x + 1. Let s be v(2). Solve 5*z - 2*t + t + s = 0, o = -4*z + t - 6 for z.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef v(x):\n\treturn 3*x + 1\ns = v(2)\nc = 1437 - 1437\no, g = symbols(\"o g\")\no = solve([Eq(3*o + 2*g + 4, 0), Eq(c, 5*o - 3*g + 35 - 41)])[o]\nz, t = symbols(\"z t\")\nz = solve([Eq(5*z - 2*t + t + s, 0), Eq(o, -4*z + t - 6)])[z]\nprint(z)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Let y(i) = 0*i - 1 + 2*i + 4 - 11*i. Let s(q) = 8*q - 2. Let o(x) = 5*s(x) + 4*y(x). Determine o(-3).", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef y(i):\n\treturn 0*i - 1 + 2*i + 4 - 11*i\nq = symbols(\"q\")\ndef s(q):\n\treturn 8*q - 2\ndef o(x):\n\treturn 5*s(x) + 4*y(x)\nprint(o(-3))" - ], - "Output Answer": [ - "-10" - ], - "split": "train" - }, - { - "Input": "Factor 14*y**3 - 290*y**2/3 + 224*y/3 + 8.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef q(y):\n\treturn 14*y**3 - 290*y**2/3 + 224*y/3 + 8\ny = symbols(\"y\")\neq = factor(14*y**3 - 290*y**2/3 + 224*y/3 + 8)\nprint(eq)" - ], - "Output Answer": [ - "2*(y - 6)*(y - 1)*(21*y + 2)/3" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(1300)*2*-1 + sqrt(1300)*2 + 1.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(1300)*2*-1 + sqrt(1300)*2 + 1)))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Solve -2398 = 7443*z - 7661*z for z.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(-2398, 7443*z - 7661*z)])[z]\nprint(z)" - ], - "Output Answer": [ - "11" - ], - "split": "train" - }, - { - "Input": "Let d(i) = 17*i + 153. Let s be (-1)/(-2) - (-7 + (-66)/(-4)). Let z be d(s). Which is the closest to 1/3? (a) z (b) -1 (c) -7", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef d(i):\n\treturn 17*i + 153\ns = (-1)/(-2) - (-7 + (-66)/(-4))\nz = d(s)\nchoices = [z, -1, -7]\ntarget = 1/3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.0" - ], - "split": "train" - }, - { - "Input": "Put -5, -1, 23, -2, 292, 4 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-5, -1, 23, -2, 292, 4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "292 23 4 -1 -2 -5" - ], - "split": "train" - }, - { - "Input": "Let y be 1 - 96 - (-6 + 8). Let n = 871/9 + y. Which is the nearest to 0? (a) -0.4 (b) -0.3 (c) n", - "Output Program": [ - "from sympy import *\ny = 1 - 96 - (-6 + 8)\nn = 871/9 + y\nchoices = [-0.4, -0.3, n]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.22222222222222854" - ], - "split": "train" - }, - { - "Input": "Solve 521*d + 4550 - 11140 = 12687 for d.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\nd = solve([Eq(521*d + 4550 - 11140, 12687)])[d]\nprint(d)" - ], - "Output Answer": [ - "37" - ], - "split": "train" - }, - { - "Input": "Let v(t) = -5*t + 0*t - t + 4*t + 2*t**2 + 1. Suppose 5*r - 7 = z + 14, 5*z = 3*r + 5. Suppose 5*h - 18 = -c, 27 = r*h + 6*c - 2*c. Give v(h).", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef v(t):\n\treturn -5*t + 0*t - t + 4*t + 2*t**2 + 1\nr, z = symbols(\"r z\")\nr = solve([Eq(5*r - 7, z + 14), Eq(5*z, 3*r + 5)])[r]\nh, c = symbols(\"h c\")\nh = solve([Eq(5*h - 18, -c), Eq(27, r*h + 6*c - 2*c)])[h]\nprint(v(h))" - ], - "Output Answer": [ - "13" - ], - "split": "train" - }, - { - "Input": "Solve -3 - 21 = -3*q for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(-3 - 21, -3*q)])[q]\nprint(q)" - ], - "Output Answer": [ - "8" - ], - "split": "train" - }, - { - "Input": "Solve 8*b = -8650 + 8722 for b.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\nb = solve([Eq(8*b, -8650 + 8722)])[b]\nprint(b)" - ], - "Output Answer": [ - "9" - ], - "split": "train" - }, - { - "Input": "Let j(w) = w**3 + 6*w**2 - w - 3. Let f be j(-6). Let d be (3 - 2)/(2 - f). Put -3, d, 2 in ascending order.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef j(w):\n\treturn w**3 + 6*w**2 - w - 3\nf = j(-6)\nd = (3 - 2)/(2 - f)\nchoices = [-3, d, 2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-3 -1.0 2" - ], - "split": "train" - }, - { - "Input": "Suppose 38*i - 42*i - 4 = 0. Let o be (-56)/(-18) - i - 10/90. Solve 0 = 2*l + 2*l - o for l.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ni = solve([Eq(38*i - 42*i - 4, 0)])[i]\no = (-56)/(-18) - i - 10/90\nl = symbols(\"l\")\nl = solve([Eq(0, 2*l + 2*l - o)])[l]\nprint(l)" - ], - "Output Answer": [ - "1.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let a = 4716 - 1091. Is 5 a factor of a?", - "Output Program": [ - "from sympy import *\na = 4716 - 1091\nprint(3625 % 5 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let n be (0 + 1)*(-2 - -1)*-7. Let f = 2 + n. Solve 1 = 5*g - f for g.", - "Output Program": [ - "from sympy import *\nn = (0 + 1)*(-2 - -1)*-7\nf = 2 + n\ng = symbols(\"g\")\ng = solve([Eq(1, 5*g - f)])[g]\nprint(g)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Let n(k) = 2*k**3 + 14*k**2 + 20*k - 2. Let f(u) = -u**3 - 7*u**2 - 9*u. Let h(t) = -9*f(t) - 4*n(t). Give h(-7).", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef n(k):\n\treturn 2*k**3 + 14*k**2 + 20*k - 2\nu = symbols(\"u\")\ndef f(u):\n\treturn -u**3 - 7*u**2 - 9*u\ndef h(t):\n\treturn -9*f(t) - 4*n(t)\nprint(h(-7))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let q(b) = -b**3 + 2*b**2 + 7*b - 2. Let h be q(3). Solve -t + 3*t = h for t.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef q(b):\n\treturn -b**3 + 2*b**2 + 7*b - 2\nh = q(3)\nt = symbols(\"t\")\nt = solve([Eq(-t + 3*t, h)])[t]\nprint(t)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Let r = 11232 - 11231.9. Let c = -13 + 8. Put c, 2/13, 6, r in ascending order.", - "Output Program": [ - "from sympy import *\nc = -13 + 8\nr = 11232 - 11231.9\nchoices = [c, 2/13, 6, r]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 0.1000000000003638 0.15384615384615385 6" - ], - "split": "train" - }, - { - "Input": "Let h be ((286528/666)/(-88))/(10/(-9)). Factor -4/5*j**2 + h*j - 6.", - "Output Program": [ - "from sympy import *\nh = ((286528/666)/(-88))/(10/(-9))\nj = symbols(\"j\")\ndef r(j):\n\treturn -4/5*j**2 + h*j - 6\nj = symbols(\"j\")\neq = factor(-4/5*j**2 + h*j - 6)\nprint(eq)" - ], - "Output Answer": [ - "-6.0*(0.333333333333333*j - 1.0)*(0.4*j - 1.0)" - ], - "split": "train" - }, - { - "Input": "What is the closest to 6/13 in -3, -1, -1/9?", - "Output Program": [ - "from sympy import *\nchoices = [-3, -1, -1/9]\ntarget = 6/13\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1111111111111111" - ], - "split": "train" - }, - { - "Input": "Solve 154*i + 582 - 257 + 753 = 0 for i.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ni = solve([Eq(154*i + 582 - 257 + 753, 0)])[i]\nprint(i)" - ], - "Output Answer": [ - "-7" - ], - "split": "train" - }, - { - "Input": "Let g = -4 - -8. Let r = -4.3 + g. Suppose -14 = 2*d - l - 1, -4*l - 26 = 5*d. Sort d, 1/2, r in descending order.", - "Output Program": [ - "from sympy import *\nd, l = symbols(\"d l\")\nd = solve([Eq(-14, 2*d - l - 1), Eq(-4*l - 26, 5*d)])[d]\ng = -4 - -8\nr = -4.3 + g\nchoices = [d, 1/2, r]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.5 -0.2999999999999998 -6" - ], - "split": "train" - }, - { - "Input": "Let t(p) = -1. Let f(r) = -r**2 + 3*r - 5. Let s(d) = f(d) - 3*t(d). Let j(q) = q**2 + 4*q - 10. Let k be j(2). Let x be s(k). Solve -9 = -x*w + 3*w for w.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef t(p):\n\treturn -1\nr = symbols(\"r\")\ndef f(r):\n\treturn -r**2 + 3*r - 5\ndef s(d):\n\treturn f(d) - 3*t(d)\nq = symbols(\"q\")\ndef j(q):\n\treturn q**2 + 4*q - 10\nk = j(2)\nx = s(k)\nw = symbols(\"w\")\nw = solve([Eq(-9, -x*w + 3*w)])[w]\nprint(w)" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Suppose 2*u = 123 - 99. Suppose -u*j + 4*m + 28 = -10*j, -2*m + 6 = 4*j. Solve -2*g - 4*w + 2*w + 2 = 0, -4*w - 20 = -j*g for g.", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(2*u, 123 - 99)])[u]\nj, m = symbols(\"j m\")\nj = solve([Eq(-u*j + 4*m + 28, -10*j), Eq(-2*m + 6, 4*j)])[j]\ng, w = symbols(\"g w\")\ng = solve([Eq(-2*g - 4*w + 2*w + 2, 0), Eq(-4*w - 20, -j*g)])[g]\nprint(g)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Suppose 9*r - 65 = 4*r. Solve -4*t - 2*z - 12 = 0, -r = -2*t + 3*t + 3*z for t.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\nr = solve([Eq(9*r - 65, 4*r)])[r]\nt, z = symbols(\"t z\")\nt = solve([Eq(-4*t - 2*z - 12, 0), Eq(-r, -2*t + 3*t + 3*z)])[t]\nprint(t)" - ], - "Output Answer": [ - "-1" - ], - "split": "train" - }, - { - "Input": "Suppose -5*d + h + 24 = -2*h, -5*d + 18 = -h. Solve 5 = -d*x + 14 for x.", - "Output Program": [ - "from sympy import *\nd, h = symbols(\"d h\")\nd = solve([Eq(-5*d + h + 24, -2*h), Eq(-5*d + 18, -h)])[d]\nx = symbols(\"x\")\nx = solve([Eq(5, -d*x + 14)])[x]\nprint(x)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let n = -3/19 - -31/76. Let z = 0.1 - -0.1. Let u = 0 + z. Which is the closest to u? (a) 1/6 (b) -0.1 (c) n", - "Output Program": [ - "from sympy import *\nz = 0.1 - -0.1\nu = 0 + z\nn = -3/19 - -31/76\nchoices = [1/6, -0.1, n]\ntarget = u\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.16666666666666666" - ], - "split": "train" - }, - { - "Input": "Solve -26858 + 135307 + 35299 = 2662*i for i.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ni = solve([Eq(-26858 + 135307 + 35299, 2662*i)])[i]\nprint(i)" - ], - "Output Answer": [ - "54" - ], - "split": "train" - }, - { - "Input": "Let t = -3.7 - -4. Suppose 194*n - 215*n - 3 = -24. What is the nearest to -0.1 in -2, n, t?", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(194*n - 215*n - 3, -24)])[n]\nt = -3.7 - -4\nchoices = [-2, n, t]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.2999999999999998" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(288)*-2 + sqrt(288) + 5 + 4 + -4 - (3 + sqrt(288) + 1 + (sqrt(288) + 2)*-5).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(288)*-2 + sqrt(288) + 5 + 4 + -4 - (3 + sqrt(288) + 1 + (sqrt(288) + 2)*-5))))" - ], - "Output Answer": [ - "11 + 36*sqrt(2)" - ], - "split": "train" - }, - { - "Input": "Let n(k) = -10*k - 10. Let t be n(-1). Put -6, -2, t, 4 in decreasing order.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef n(k):\n\treturn -10*k - 10\nt = n(-1)\nchoices = [-6, -2, t, 4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 0 -2 -6" - ], - "split": "train" - }, - { - "Input": "Is 1263/4370 smaller than -1?", - "Output Program": [ - "from sympy import *\nprint(1263/4370 < -1)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Sort 3333, 2, -1.", - "Output Program": [ - "from sympy import *\nchoices = [3333, 2, -1]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1 2 3333" - ], - "split": "train" - }, - { - "Input": "Which is greater: -1.85 or 0.9?", - "Output Program": [ - "from sympy import *\nprint(max(-1.85, 0.9))" - ], - "Output Answer": [ - "0.9" - ], - "split": "train" - }, - { - "Input": "Suppose -228*x + 4128 = -220*x. Let q = x - 512. Solve 0 = 3*k - g - 9, -q*k + 3*g + 17 = -0*k for k.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\nx = solve([Eq(-228*x + 4128, -220*x)])[x]\nq = x - 512\nk, g = symbols(\"k g\")\nk = solve([Eq(0, 3*k - g - 9), Eq(-q*k + 3*g + 17, -0*k)])[k]\nprint(k)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Solve 18*b - 95*b + b - 2010 = 58*b for b.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\nb = solve([Eq(18*b - 95*b + b - 2010, 58*b)])[b]\nprint(b)" - ], - "Output Answer": [ - "-15" - ], - "split": "train" - }, - { - "Input": "Let r = 0.4 - 0.3. Let d = -20 - -24. Let m be -2 - (15/6 - d). Which is the closest to r? (a) -1 (b) m (c) 0", - "Output Program": [ - "from sympy import *\nr = 0.4 - 0.3\nd = -20 - -24\nm = -2 - (15/6 - d)\nchoices = [-1, m, 0]\ntarget = r\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Suppose -l + 3*i - 38 = 0, -l + i - 33 - 13 = 0. Let k be 238/595*l/(-4). Solve 0 = 5*d - 0*r - 5*r + k, -5*d - 41 = 4*r for d.", - "Output Program": [ - "from sympy import *\nl, i = symbols(\"l i\")\nl = solve([Eq(-l + 3*i - 38, 0), Eq(-l + i - 33 - 13, 0)])[l]\nk = 238/595*l/(-4)\nd, r = symbols(\"d r\")\nd = solve([Eq(0, 5*d - 0*r - 5*r + k), Eq(-5*d - 41, 4*r)])[d]\nprint(d)" - ], - "Output Answer": [ - "-5.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let m be (1 - (-18)/(-2))/(-2). Solve m*r + 3 = -5 for r.", - "Output Program": [ - "from sympy import *\nm = (1 - (-18)/(-2))/(-2)\nr = symbols(\"r\")\nr = solve([Eq(m*r + 3, -5)])[r]\nprint(r)" - ], - "Output Answer": [ - "-2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Solve 4*f - 4 = 4*a, -4*f = a + f + 25 for a.", - "Output Program": [ - "from sympy import *\na, f = symbols(\"a f\")\na = solve([Eq(4*f - 4, 4*a), Eq(-4*f, a + f + 25)])[a]\nprint(a)" - ], - "Output Answer": [ - "-5" - ], - "split": "train" - }, - { - "Input": "What is the nearest to 3 in -274, 0.4, 31/3, 1?", - "Output Program": [ - "from sympy import *\nchoices = [-274, 0.4, 31/3, 1]\ntarget = 3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Simplify (-3*((sqrt(19) - sqrt(304)) + sqrt(19) + 0))**2 + 5 - (3*sqrt(76)*-1 + -1).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-3*((sqrt(19) - sqrt(304)) + sqrt(19) + 0))**2 + 5 - (3*sqrt(76)*-1 + -1))))" - ], - "Output Answer": [ - "6*sqrt(19) + 690" - ], - "split": "train" - }, - { - "Input": "Let -3*q**3/2 + 273*q**2/2 - 537*q/2 + 267/2 = 0. What is q?", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef k(q):\n\treturn -3*q**3/2 + 273*q**2/2 - 537*q/2 + 267/2\nq = symbols(\"q\")\nq = solve(-3*q**3/2 + 273*q**2/2 - 537*q/2 + 267/2)\nprint(q)" - ], - "Output Answer": [ - "[1.00000000000000, 89.0000000000000]" - ], - "split": "train" - }, - { - "Input": "Is 56 a factor of 241781?", - "Output Program": [ - "from sympy import *\nprint(241781 % 56 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Solve 177*n + 4328 - 1850 = 0 for n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(177*n + 4328 - 1850, 0)])[n]\nprint(n)" - ], - "Output Answer": [ - "-14" - ], - "split": "train" - }, - { - "Input": "What is the nearest to 42/71 in 96.3, 8, 4, 0.3?", - "Output Program": [ - "from sympy import *\nchoices = [96.3, 8, 4, 0.3]\ntarget = 42/71\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.3" - ], - "split": "train" - }, - { - "Input": "Let k be ((-30)/18 - -1) + 14/(-6). Which is the closest to 1? (a) -1/9 (b) 13 (c) k", - "Output Program": [ - "from sympy import *\nk = ((-30)/18 - -1) + 14/(-6)\nchoices = [-1/9, 13, k]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1111111111111111" - ], - "split": "train" - }, - { - "Input": "Let f(j) = 8 - j - j + 4*j. Let x be f(-10). Are -12 and x nonequal?", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef f(j):\n\treturn 8 - j - j + 4*j\nx = f(-10)\nprint(-12 != x)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Are -1703 and -7112 nonequal?", - "Output Program": [ - "from sympy import *\nprint(-1703 != -7112)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let t = 68 + -147. Let c be 489/(-4)*2/3. Let m = t - c. Sort m, -3, -5 in increasing order.", - "Output Program": [ - "from sympy import *\nt = 68 + -147\nc = 489/(-4)*2/3\nm = t - c\nchoices = [m, -3, -5]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 -3 2.5" - ], - "split": "train" - }, - { - "Input": "Solve 6*n - 10*n - z - 12 = 0, 3*n + 3*z + 18 = 0 for n.", - "Output Program": [ - "from sympy import *\nn, z = symbols(\"n z\")\nn = solve([Eq(6*n - 10*n - z - 12, 0), Eq(3*n + 3*z + 18, 0)])[n]\nprint(n)" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Let m(n) = -n**3 - 3*n**2 + 7*n - 12. Determine m(-5).", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef m(n):\n\treturn -n**3 - 3*n**2 + 7*n - 12\nprint(m(-5))" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let h be ((-34)/5100)/((-3)/81). Is 0 at least h?", - "Output Program": [ - "from sympy import *\nh = ((-34)/5100)/((-3)/81)\nprint(0 >= h)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let j be -2*(-1 - (-6)/10). Factor j - 2/5*x**2 + 2/5*x.", - "Output Program": [ - "from sympy import *\nj = -2*(-1 - (-6)/10)\nx = symbols(\"x\")\ndef w(x):\n\treturn j - 2/5*x**2 + 2/5*x\nx = symbols(\"x\")\neq = factor(j - 2/5*x**2 + 2/5*x)\nprint(eq)" - ], - "Output Answer": [ - "-0.8*(0.5*x - 1.0)*(1.0*x + 1.0)" - ], - "split": "train" - }, - { - "Input": "Which is the closest to -3/8? (a) 0 (b) -5/2 (c) -2/3 (d) -287", - "Output Program": [ - "from sympy import *\nchoices = [0, -5/2, -2/3, -287]\ntarget = -3/8\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.6666666666666666" - ], - "split": "train" - }, - { - "Input": "Which is greater: -3/22492249 or 1?", - "Output Program": [ - "from sympy import *\nprint(max(-3/22492249, 1))" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let w = 250 + -256. Is 21 a factor of 7/(-3)*36*w/4?", - "Output Program": [ - "from sympy import *\nw = 250 + -256\ny = 7/(-3)*36*w/4\nprint(126 % 21 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let q be ((-45)/27)/(1/3). Let u(m) = m**2 + 7*m + 7. Let t be u(q). Put -4, -3/8, t in ascending order.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef u(m):\n\treturn m**2 + 7*m + 7\nq = ((-45)/27)/(1/3)\nt = u(q)\nchoices = [-4, -3/8, t]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 -2.9999999999999964 -0.375" - ], - "split": "train" - }, - { - "Input": "Which is greater: 4 or 179?", - "Output Program": [ - "from sympy import *\nprint(max(4, 179))" - ], - "Output Answer": [ - "179" - ], - "split": "train" - }, - { - "Input": "Is 0 >= 245/59979?", - "Output Program": [ - "from sympy import *\nprint(0 >= 245/59979)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let x = -0.048 + -0.052. Which is the closest to x? (a) -0.1 (b) 5 (c) 1.4", - "Output Program": [ - "from sympy import *\nx = -0.048 + -0.052\nchoices = [-0.1, 5, 1.4]\ntarget = x\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "train" - }, - { - "Input": "Suppose 13 = 4*x + 1. Determine j so that 26*j**4 - x*j**2 - 23*j**4 - 2*j**3 + 2*j**2 = 0.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\nx = solve([Eq(13, 4*x + 1)])[x]\nj = symbols(\"j\")\ndef z(j):\n\treturn 26*j**4 - x*j**2 - 23*j**4 - 2*j**3 + 2*j**2\nj = symbols(\"j\")\nj = solve(26*j**4 - x*j**2 - 23*j**4 - 2*j**3 + 2*j**2)\nprint(j)" - ], - "Output Answer": [ - "[-1/3, 0, 1]" - ], - "split": "train" - }, - { - "Input": "Sort -0.021, -77, 0.1, 0.5.", - "Output Program": [ - "from sympy import *\nchoices = [-0.021, -77, 0.1, 0.5]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-77 -0.021 0.1 0.5" - ], - "split": "train" - }, - { - "Input": "Solve -3*y + 36 = 7*c - 10*c, -119 - 45 = -37*y - 3*c for y.", - "Output Program": [ - "from sympy import *\ny, c = symbols(\"y c\")\ny = solve([Eq(-3*y + 36, 7*c - 10*c), Eq(-119 - 45, -37*y - 3*c)])[y]\nprint(y)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Let v(j) = j**3 - 5*j**2 - 4*j - 7. Let b be v(6). Let q(i) = -i**3 + 6*i**2 + 4. Let f be q(6). Let r(t) = t**2 + t + 1. Let z be r(-1). Sort z, f, b.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef r(t):\n\treturn t**2 + t + 1\nz = r(-1)\ni = symbols(\"i\")\ndef q(i):\n\treturn -i**3 + 6*i**2 + 4\nf = q(6)\nj = symbols(\"j\")\ndef v(j):\n\treturn j**3 - 5*j**2 - 4*j - 7\nb = v(6)\nchoices = [z, f, b]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "1 4 5" - ], - "split": "train" - }, - { - "Input": "Let v(m) = m + 1. Let y be v(6). Let b be 12/y + (-8)/(-28). Suppose 0 = -0*j - b*j. Let x(w) = -w**3 + w**2 - w + 2. Determine x(j).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef x(w):\n\treturn -w**3 + w**2 - w + 2\nm = symbols(\"m\")\ndef v(m):\n\treturn m + 1\ny = v(6)\nb = 12/y + (-8)/(-28)\nj = symbols(\"j\")\nj = solve([Eq(0, -0*j - b*j)])[j]\nprint(x(j))" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Sort -6, -2, -11.", - "Output Program": [ - "from sympy import *\nchoices = [-6, -2, -11]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-11 -6 -2" - ], - "split": "train" - }, - { - "Input": "Let x be (-4)/14 + 1070/70. Suppose -9*f + 57 = -x. Suppose -3*a - 5*a = -2*a. Solve -2*y - f = -y + 3*o, a = 2*y + 2*o + 12 for y.", - "Output Program": [ - "from sympy import *\nx = (-4)/14 + 1070/70\nf = symbols(\"f\")\nf = solve([Eq(-9*f + 57, -x)])[f]\na = symbols(\"a\")\na = solve([Eq(-3*a - 5*a, -2*a)])[a]\ny, o = symbols(\"y o\")\ny = solve([Eq(-2*y - f, -y + 3*o), Eq(a, 2*y + 2*o + 12)])[y]\nprint(y)" - ], - "Output Answer": [ - "-5.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let y(g) = 1958*g - 1. Is y(1) a composite number?", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef y(g):\n\treturn 1958*g - 1\ns = y(1)\nprint(not isprime(1957))" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Suppose -2*q = 4*v - 16, -4*v + v + 11 = 2*q. Solve 2*p = -3*b, v*b - 13 = 4*p - 3*p for b.", - "Output Program": [ - "from sympy import *\nv, q = symbols(\"v q\")\nv = solve([Eq(-2*q, 4*v - 16), Eq(-4*v + v + 11, 2*q)])[v]\nb, p = symbols(\"b p\")\nb = solve([Eq(2*p, -3*b), Eq(v*b - 13, 4*p - 3*p)])[b]\nprint(b)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "Let c be (0 - 2) + (3 + 1 - -3). Let 14*m**4 + m**5 + 4*m**5 - m**c - 10*m**4 = 0. Calculate m.", - "Output Program": [ - "from sympy import *\nc = (0 - 2) + (3 + 1 - -3)\nm = symbols(\"m\")\ndef r(m):\n\treturn 14*m**4 + m**5 + 4*m**5 - m**c - 10*m**4\nm = symbols(\"m\")\nm = solve(14*m**4 + m**5 + 4*m**5 - m**c - 10*m**4)\nprint(m)" - ], - "Output Answer": [ - "[-1, 0]" - ], - "split": "train" - }, - { - "Input": "Simplify sqrt(4)/(sqrt(2) - sqrt(10)/(sqrt(5)*-2)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(4)/(sqrt(2) - sqrt(10)/(sqrt(5)*-2)))))" - ], - "Output Answer": [ - "2*sqrt(2)/3" - ], - "split": "train" - }, - { - "Input": "Solve -3*k + 39 = 3*w + w, 3*w = 5*k - 36 for w.", - "Output Program": [ - "from sympy import *\nw, k = symbols(\"w k\")\nw = solve([Eq(-3*k + 39, 3*w + w), Eq(3*w, 5*k - 36)])[w]\nprint(w)" - ], - "Output Answer": [ - "3" - ], - "split": "train" - }, - { - "Input": "Let k(h) = -h**3 - 25*h**2 + 340*h + 308. Give k(-35).", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef k(h):\n\treturn -h**3 - 25*h**2 + 340*h + 308\nprint(k(-35))" - ], - "Output Answer": [ - "658" - ], - "split": "train" - }, - { - "Input": "Solve 108*x - 1724 = -88*x - 156 for x.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\nx = solve([Eq(108*x - 1724, -88*x - 156)])[x]\nprint(x)" - ], - "Output Answer": [ - "8" - ], - "split": "train" - }, - { - "Input": "What is the nearest to -0.1 in 654, 751, 1/2?", - "Output Program": [ - "from sympy import *\nchoices = [654, 751, 1/2]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.5" - ], - "split": "train" - }, - { - "Input": "What is the nearest to -6/5 in -0.5, -5, 0.3, -115?", - "Output Program": [ - "from sympy import *\nchoices = [-0.5, -5, 0.3, -115]\ntarget = -6/5\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.5" - ], - "split": "train" - }, - { - "Input": "Let v(c) = -2*c. Let u be v(0). Let w(x) = x**3 + x**2 + 3. Let t be w(u). Solve 0*p**2 + 0 - 1/2*p + 1/2*p**t = 0.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef w(x):\n\treturn x**3 + x**2 + 3\nc = symbols(\"c\")\ndef v(c):\n\treturn -2*c\nu = v(0)\nt = w(u)\np = symbols(\"p\")\ndef b(p):\n\treturn 0*p**2 + 0 - 1/2*p + 1/2*p**t\np = symbols(\"p\")\np = solve(0*p**2 + 0 - 1/2*p + 1/2*p**t)\nprint(p)" - ], - "Output Answer": [ - "[-1.00000000000000, 0.0, 1.00000000000000]" - ], - "split": "train" - }, - { - "Input": "Let k(r) = -7 - 5*r + 2*r**2 - r - 3*r**2. Let v(p) = -p**3 - 5*p**2 - 3*p - 1. Let c be v(-4). Calculate k(c).", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef k(r):\n\treturn -7 - 5*r + 2*r**2 - r - 3*r**2\np = symbols(\"p\")\ndef v(p):\n\treturn -p**3 - 5*p**2 - 3*p - 1\nc = v(-4)\nprint(k(c))" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Solve 769*r = -545*r + 91*r - 1343*r + 205280 for r.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\nr = solve([Eq(769*r, -545*r + 91*r - 1343*r + 205280)])[r]\nprint(r)" - ], - "Output Answer": [ - "80" - ], - "split": "train" - }, - { - "Input": "Let m be 9*(-2)/3 - 0 - -10. What is the nearest to 1 in -2/29, 8, -4, m?", - "Output Program": [ - "from sympy import *\nm = 9*(-2)/3 - 0 - -10\nchoices = [-2/29, 8, -4, m]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.06896551724137931" - ], - "split": "train" - }, - { - "Input": "Is 1215410 a multiple of 895?", - "Output Program": [ - "from sympy import *\nprint(1215410 % 895 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let q = 14.2 + -14. Which is the nearest to 7/6? (a) -2/13 (b) q (c) -4", - "Output Program": [ - "from sympy import *\nq = 14.2 + -14\nchoices = [-2/13, q, -4]\ntarget = 7/6\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1999999999999993" - ], - "split": "train" - }, - { - "Input": "Suppose 2*r - 127 = -121, 5*v + r - 13 = 0. Solve -14 = -4*d + 5*z + 11, v*d = 3*z + 15 for d.", - "Output Program": [ - "from sympy import *\nv, r = symbols(\"v r\")\nv = solve([Eq(2*r - 127, -121), Eq(5*v + r - 13, 0)])[v]\nd, z = symbols(\"d z\")\nd = solve([Eq(-14, -4*d + 5*z + 11), Eq(v*d, 3*z + 15)])[d]\nprint(d)" - ], - "Output Answer": [ - "0" - ], - "split": "train" - }, - { - "Input": "Put -8, 76, 9 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-8, 76, 9]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "76 9 -8" - ], - "split": "train" - }, - { - "Input": "What is the closest to -105/2 in -2, 2, 3, 1?", - "Output Program": [ - "from sympy import *\nchoices = [-2, 2, 3, 1]\ntarget = -105/2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-2" - ], - "split": "train" - }, - { - "Input": "Does 1289 = 1282?", - "Output Program": [ - "from sympy import *\nprint(1289 == 1282)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Put 327, 88, 1, 2 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [327, 88, 1, 2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "1 2 88 327" - ], - "split": "train" - }, - { - "Input": "Put -18, 4, -9/16, -2/61 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [-18, 4, -9/16, -2/61]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-18 -0.5625 -0.03278688524590164 4" - ], - "split": "train" - }, - { - "Input": "Solve 14*g + 24 = 26*g for g.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(14*g + 24, 26*g)])[g]\nprint(g)" - ], - "Output Answer": [ - "2" - ], - "split": "train" - }, - { - "Input": "What is 13623 to the power of 1/5, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(13623 ** (1 / 5))))" - ], - "Output Answer": [ - "7" - ], - "split": "train" - }, - { - "Input": "Sort 904/5, -42, -12.", - "Output Program": [ - "from sympy import *\nchoices = [904/5, -42, -12]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-42 -12 180.8" - ], - "split": "train" - }, - { - "Input": "Is 15 a factor of 603240?", - "Output Program": [ - "from sympy import *\nprint(603240 % 15 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let o(i) = 867*i - 62205. Let r(w) = -w**2 - 868*w + 62204. Let a(l) = -4*o(l) - 3*r(l). Factor a(u).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef r(w):\n\treturn -w**2 - 868*w + 62204\ni = symbols(\"i\")\ndef o(i):\n\treturn 867*i - 62205\ndef a(l):\n\treturn -4*o(l) - 3*r(l)\nu = symbols(\"u\")\neq = factor(a(u))\nprint(eq)" - ], - "Output Answer": [ - "3*(u - 144)**2" - ], - "split": "train" - }, - { - "Input": "Which is greater: 0 or 2451?", - "Output Program": [ - "from sympy import *\nprint(max(0, 2451))" - ], - "Output Answer": [ - "2451" - ], - "split": "train" - }, - { - "Input": "Let u = 622 + -566. Let q = u - -3. Solve 0 = 3*l + 44 - q for l.", - "Output Program": [ - "from sympy import *\nu = 622 + -566\nq = u - -3\nl = symbols(\"l\")\nl = solve([Eq(0, 3*l + 44 - q)])[l]\nprint(l)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Let q(y) = -y**2 + 414*y - 12216. Give q(32).", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef q(y):\n\treturn -y**2 + 414*y - 12216\nprint(q(32))" - ], - "Output Answer": [ - "8" - ], - "split": "train" - }, - { - "Input": "What is 443199181 to the power of 1/7, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(443199181 ** (1 / 7))))" - ], - "Output Answer": [ - "17" - ], - "split": "train" - }, - { - "Input": "Which is the closest to -3.2? (a) -2/27 (b) -1 (c) -3 (d) -0.2 (e) -0.65", - "Output Program": [ - "from sympy import *\nchoices = [-2/27, -1, -3, -0.2, -0.65]\ntarget = -3.2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Let y be 0/351 + 4/(-6). Let a = 2 - 3. What is the closest to a in 9/5, y, -0.4?", - "Output Program": [ - "from sympy import *\na = 2 - 3\ny = 0/351 + 4/(-6)\nchoices = [9/5, y, -0.4]\ntarget = a\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.6666666666666666" - ], - "split": "train" - }, - { - "Input": "What is the nearest to 2 in -0.2, 107, 2.2, -1/4, -4?", - "Output Program": [ - "from sympy import *\nchoices = [-0.2, 107, 2.2, -1/4, -4]\ntarget = 2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "2.2" - ], - "split": "train" - }, - { - "Input": "Which is the closest to 0.01? (a) 3 (b) -3/7 (c) 1/3", - "Output Program": [ - "from sympy import *\nchoices = [3, -3/7, 1/3]\ntarget = 0.01\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.3333333333333333" - ], - "split": "train" - }, - { - "Input": "What is 1707453 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1707453 ** (1 / 2))))" - ], - "Output Answer": [ - "1307" - ], - "split": "train" - }, - { - "Input": "Let s = -35 - -89. Let j = s + -29. Solve i - 2*i + 21 = -4*m, 5*i - j = 4*m for i.", - "Output Program": [ - "from sympy import *\ns = -35 - -89\nj = s + -29\ni, m = symbols(\"i m\")\ni = solve([Eq(i - 2*i + 21, -4*m), Eq(5*i - j, 4*m)])[i]\nprint(i)" - ], - "Output Answer": [ - "1" - ], - "split": "train" - }, - { - "Input": "Let q = 3593/4277 + -40/47. Which is greater: -1 or q?", - "Output Program": [ - "from sympy import *\nq = 3593/4277 + -40/47\nprint(max(-1, q))" - ], - "Output Answer": [ - "-0.01098901098901095" - ], - "split": "train" - }, - { - "Input": "Let i = -37 - -40. Put 5, i, -2 in increasing order.", - "Output Program": [ - "from sympy import *\ni = -37 - -40\nchoices = [5, i, -2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2 3 5" - ], - "split": "train" - }, - { - "Input": "Let q(k) = 10*k**2 + 24*k + 2. Let n(z) = z**3 + z**2 - 6*z + 4. Let s be n(-3). Let y(f) = -9*f**2 - 23*f - 1. Let t(b) = s*y(b) + 6*q(b). Factor t(d).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef n(z):\n\treturn z**3 + z**2 - 6*z + 4\ns = n(-3)\nf = symbols(\"f\")\ndef y(f):\n\treturn -9*f**2 - 23*f - 1\nk = symbols(\"k\")\ndef q(k):\n\treturn 10*k**2 + 24*k + 2\ndef t(b):\n\treturn s*y(b) + 6*q(b)\nd = symbols(\"d\")\neq = factor(t(d))\nprint(eq)" - ], - "Output Answer": [ - "4*(d + 2)*(6*d + 1)" - ], - "split": "train" - }, - { - "Input": "Let y = 145 - 135. Let z be y/(-45) - (-116)/198. Is 0 > z?", - "Output Program": [ - "from sympy import *\ny = 145 - 135\nz = y/(-45) - (-116)/198\nprint(0 > z)" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let i(q) = -q**3 - q**2 - q - 3. Let k(v) = v**2 + v + 1. Let b = -14 - -13. Let d(r) = b*i(r) - 2*k(r). What is p in d(p) = 0?", - "Output Program": [ - "from sympy import *\nb = -14 - -13\nq = symbols(\"q\")\ndef i(q):\n\treturn -q**3 - q**2 - q - 3\nv = symbols(\"v\")\ndef k(v):\n\treturn v**2 + v + 1\ndef d(r):\n\treturn b*i(r) - 2*k(r)\np = symbols(\"p\")\np = solve(d(p))\nprint(p)" - ], - "Output Answer": [ - "[-1, 1]" - ], - "split": "train" - }, - { - "Input": "What is the fourth root of 522094552 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(522094552 ** (1 / 4))))" - ], - "Output Answer": [ - "151" - ], - "split": "train" - }, - { - "Input": "Let c = 24832 - 21439. Solve 2*m - c + 3383 = 0 for m.", - "Output Program": [ - "from sympy import *\nc = 24832 - 21439\nm = symbols(\"m\")\nm = solve([Eq(2*m - c + 3383, 0)])[m]\nprint(m)" - ], - "Output Answer": [ - "5" - ], - "split": "train" - }, - { - "Input": "Which is the nearest to 17? (a) 0.2 (b) -0.5 (c) 8 (d) 1/51 (e) -0.1", - "Output Program": [ - "from sympy import *\nchoices = [0.2, -0.5, 8, 1/51, -0.1]\ntarget = 17\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "8" - ], - "split": "train" - }, - { - "Input": "What is the square root of 313456 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(313456 ** (1 / 2))))" - ], - "Output Answer": [ - "560" - ], - "split": "train" - }, - { - "Input": "Let l be (-1)/(-1)*3/9*9. Let r be (-1 - -1 - -2) + 2. Solve l*q - q = r for q.", - "Output Program": [ - "from sympy import *\nl = (-1)/(-1)*3/9*9\nr = (-1 - -1 - -2) + 2\nq = symbols(\"q\")\nq = solve([Eq(l*q - q, r)])[q]\nprint(q)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Let c(u) = 35*u**2 - 2*u. Give c(1).", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef c(u):\n\treturn 35*u**2 - 2*u\nprint(c(1))" - ], - "Output Answer": [ - "33" - ], - "split": "train" - }, - { - "Input": "What is the square root of 1136 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1136 ** (1 / 2))))" - ], - "Output Answer": [ - "34" - ], - "split": "train" - }, - { - "Input": "Suppose -17*z + 1198021 = 39624. Is z a composite number?", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(-17*z + 1198021, 39624)])[z]\nprint(not isprime(68141))" - ], - "Output Answer": [ - "False" - ], - "split": "train" - }, - { - "Input": "Let w be 3*2/(-4)*(-7 + 5). Solve 2 = 4*m + 2*o, -3*m - 2*o = -o - w for m.", - "Output Program": [ - "from sympy import *\nw = 3*2/(-4)*(-7 + 5)\nm, o = symbols(\"m o\")\nm = solve([Eq(2, 4*m + 2*o), Eq(-3*m - 2*o, -o - w)])[m]\nprint(m)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "train" - }, - { - "Input": "Solve 133*b - 6904 + 1135 = 1147 for b.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\nb = solve([Eq(133*b - 6904 + 1135, 1147)])[b]\nprint(b)" - ], - "Output Answer": [ - "52" - ], - "split": "train" - }, - { - "Input": "Determine y so that y**3/5 - 1083*y**2/5 + 58536*y - 4685040 = 0.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef b(y):\n\treturn y**3/5 - 1083*y**2/5 + 58536*y - 4685040\ny = symbols(\"y\")\ny = solve(y**3/5 - 1083*y**2/5 + 58536*y - 4685040)\nprint(y)" - ], - "Output Answer": [ - "[180, 723]" - ], - "split": "train" - }, - { - "Input": "Are 543 and 543 equal?", - "Output Program": [ - "from sympy import *\nprint(543 == 543)" - ], - "Output Answer": [ - "True" - ], - "split": "train" - }, - { - "Input": "Let s(o) = -2 + 4*o - 3*o - 2 - 5. Determine s(6).", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef s(o):\n\treturn -2 + 4*o - 3*o - 2 - 5\nprint(s(6))" - ], - "Output Answer": [ - "-3" - ], - "split": "train" - }, - { - "Input": "Let k be 100/70*(-7)/(-2). Let b be 1/(-1)*-3 + -8. Sort k, -3, -4, b in decreasing order.", - "Output Program": [ - "from sympy import *\nk = 100/70*(-7)/(-2)\nb = 1/(-1)*-3 + -8\nchoices = [k, -3, -4, b]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5.0 -3 -4 -5.0" - ], - "split": "train" - }, - { - "Input": "Let j = 12125 - 12125.1. Which is the nearest to j? (a) -4/3 (b) 5 (c) 12/11 (d) 3", - "Output Program": [ - "from sympy import *\nj = 12125 - 12125.1\nchoices = [-4/3, 5, 12/11, 3]\ntarget = j\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1.0909090909090908" - ], - "split": "train" - }, - { - "Input": "Is 9154594 a multiple of 132?", - "Output Program": [ - "from sympy import *\nprint(9154594 % 132 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let w(y) = -y**2 - 6*y - 2. Let a = -8 - -2. Determine w(a).", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef w(y):\n\treturn -y**2 - 6*y - 2\na = -8 - -2\nprint(w(a))" - ], - "Output Answer": [ - "-2" - ], - "split": "dev" - }, - { - "Input": "Solve -23*n + 1629*n + 7738 = -1740 - 13006 for n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(-23*n + 1629*n + 7738, -1740 - 13006)])[n]\nprint(n)" - ], - "Output Answer": [ - "-14" - ], - "split": "dev" - }, - { - "Input": "What is the closest to 0 in 6/23, -0.4, 2/15?", - "Output Program": [ - "from sympy import *\nchoices = [6/23, -0.4, 2/15]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.13333333333333333" - ], - "split": "dev" - }, - { - "Input": "Is 54 a factor of 756?", - "Output Program": [ - "from sympy import *\nprint(756 % 54 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let b = -44 - -68. Let l be b/6*(-2)/(-4). Let q be ((-2)/(-4))/(1/8). Solve -5*m - 19 = -2*j, -q*m = -l*j + 10 + 6 for j.", - "Output Program": [ - "from sympy import *\nb = -44 - -68\nl = b/6*(-2)/(-4)\nq = ((-2)/(-4))/(1/8)\nj, m = symbols(\"j m\")\nj = solve([Eq(-5*m - 19, -2*j), Eq(-q*m, -l*j + 10 + 6)])[j]\nprint(j)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Let r = 15 + -21. Let i be 1 + 1 + (-6 - r). Let l(c) = -c**2 + c - i*c - 7*c + 5*c. Give l(-4).", - "Output Program": [ - "from sympy import *\nr = 15 + -21\ni = 1 + 1 + (-6 - r)\nc = symbols(\"c\")\ndef l(c):\n\treturn -c**2 + c - i*c - 7*c + 5*c\nprint(l(-4))" - ], - "Output Answer": [ - "-4" - ], - "split": "dev" - }, - { - "Input": "Is 17034 a multiple of 62?", - "Output Program": [ - "from sympy import *\nprint(17034 % 62 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "What is the cube root of 2631015 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(2631015 ** (1 / 3))))" - ], - "Output Answer": [ - "138" - ], - "split": "dev" - }, - { - "Input": "Simplify ((sqrt(242) - (0 + sqrt(242)))**2 + -1 - (-6*(1 + sqrt(72)) + sqrt(72))**2) + -3.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((sqrt(242) - (0 + sqrt(242)))**2 + -1 - (-6*(1 + sqrt(72)) + sqrt(72))**2) + -3)))" - ], - "Output Answer": [ - "-1840 - 360*sqrt(2)" - ], - "split": "dev" - }, - { - "Input": "Is 52 a factor of 2799?", - "Output Program": [ - "from sympy import *\nprint(2799 % 52 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Is 4 a factor of 1036?", - "Output Program": [ - "from sympy import *\nprint(1036 % 4 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Solve -27*t = 28*t + 11*t + 151 - 547 for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(-27*t, 28*t + 11*t + 151 - 547)])[t]\nprint(t)" - ], - "Output Answer": [ - "6" - ], - "split": "dev" - }, - { - "Input": "Simplify (1*(sqrt(77) + sqrt(77)*-1))/sqrt(11).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((1*(sqrt(77) + sqrt(77)*-1))/sqrt(11))))" - ], - "Output Answer": [ - "0" - ], - "split": "dev" - }, - { - "Input": "Suppose 5*i + 20 = 0, 0 = 2*k + 5*i - 4 - 0. Suppose -6*s + k = -30. Let l(x) = x**3 - 7*x**2 + 3*x + 8. Is 2 a factor of l(s)?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef l(x):\n\treturn x**3 - 7*x**2 + 3*x + 8\nk, i = symbols(\"k i\")\nk = solve([Eq(5*i + 20, 0), Eq(0, 2*k + 5*i - 4 - 0)])[k]\ns = symbols(\"s\")\ns = solve([Eq(-6*s + k, -30)])[s]\na = l(s)\nprint(29 % 2 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Solve 98 = 3*p - 20*y, 188*y - 184*y = 5*p - 1 - 45 for p.", - "Output Program": [ - "from sympy import *\np, y = symbols(\"p y\")\np = solve([Eq(98, 3*p - 20*y), Eq(188*y - 184*y, 5*p - 1 - 45)])[p]\nprint(p)" - ], - "Output Answer": [ - "6" - ], - "split": "dev" - }, - { - "Input": "Solve 0 = d - 2*l, -5*d + 2*l - 1047 = -1039 for d.", - "Output Program": [ - "from sympy import *\nd, l = symbols(\"d l\")\nd = solve([Eq(0, d - 2*l), Eq(-5*d + 2*l - 1047, -1039)])[d]\nprint(d)" - ], - "Output Answer": [ - "-2" - ], - "split": "dev" - }, - { - "Input": "Which is the closest to -390? (a) 10/463 (b) -0.21 (c) -1 (d) -5/3", - "Output Program": [ - "from sympy import *\nchoices = [10/463, -0.21, -1, -5/3]\ntarget = -390\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-1.6666666666666667" - ], - "split": "dev" - }, - { - "Input": "Let t(j) = j**3 + 12*j**2 - 11*j - 7. Let v be t(-11). Let x = v - 1875/8. Is 0 greater than x?", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef t(j):\n\treturn j**3 + 12*j**2 - 11*j - 7\nv = t(-11)\nx = v - 1875/8\nprint(0 > x)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let h be (2*-1)/(15/150*-4). Sort 0, -57, -5, h in descending order.", - "Output Program": [ - "from sympy import *\nh = (2*-1)/(15/150*-4)\nchoices = [0, -57, -5, h]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5.0 0 -5 -57" - ], - "split": "dev" - }, - { - "Input": "Let h(c) = 2*c**3 - 2*c**2 - 2*c + 5. Give h(2).", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef h(c):\n\treturn 2*c**3 - 2*c**2 - 2*c + 5\nprint(h(2))" - ], - "Output Answer": [ - "9" - ], - "split": "dev" - }, - { - "Input": "Let s(r) = 2*r**3 + 5*r**2 + 2*r - 10. Calculate s(-4).", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef s(r):\n\treturn 2*r**3 + 5*r**2 + 2*r - 10\nprint(s(-4))" - ], - "Output Answer": [ - "-66" - ], - "split": "dev" - }, - { - "Input": "Let k = 39 + -38. Let f be 24/510*11 + 2/(-5). Let x(w) = w**3 + 6*w**2 - 7*w + 3. Let l be x(-7). What is the closest to k in l, f, -2/19?", - "Output Program": [ - "from sympy import *\nk = 39 + -38\nw = symbols(\"w\")\ndef x(w):\n\treturn w**3 + 6*w**2 - 7*w + 3\nl = x(-7)\nf = 24/510*11 + 2/(-5)\nchoices = [l, f, -2/19]\ntarget = k\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.11764705882352933" - ], - "split": "dev" - }, - { - "Input": "Which is the nearest to -0.046? (a) 9/5 (b) 75 (c) 2", - "Output Program": [ - "from sympy import *\nchoices = [9/5, 75, 2]\ntarget = -0.046\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1.8" - ], - "split": "dev" - }, - { - "Input": "Let u(p) = 467*p - 17261. Calculate u(32).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef u(p):\n\treturn 467*p - 17261\nprint(u(32))" - ], - "Output Answer": [ - "-2317" - ], - "split": "dev" - }, - { - "Input": "Simplify (sqrt(250)*-1)/sqrt(5) - sqrt(10)/(sqrt(160)/sqrt(8)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(250)*-1)/sqrt(5) - sqrt(10)/(sqrt(160)/sqrt(8)))))" - ], - "Output Answer": [ - "-11*sqrt(2)/2" - ], - "split": "dev" - }, - { - "Input": "Let p be 1/(-4) - (-1)/4*-59. Let y be (18/(-15))/(((-9)/p)/3). Let r(n) = n**3 + 5*n**2 - 3*n - 8. Determine r(y).", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef r(n):\n\treturn n**3 + 5*n**2 - 3*n - 8\np = 1/(-4) - (-1)/4*-59\ny = (18/(-15))/(((-9)/p)/3)\nprint(r(y))" - ], - "Output Answer": [ - "-26.0" - ], - "split": "dev" - }, - { - "Input": "Suppose 51*r**4 + 13944*r**3 - 10524024*r**2 - 4719142176*r - 503539602384 = 0. What is r?", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef l(r):\n\treturn 51*r**4 + 13944*r**3 - 10524024*r**2 - 4719142176*r - 503539602384\nr = symbols(\"r\")\nr = solve(51*r**4 + 13944*r**3 - 10524024*r**2 - 4719142176*r - 503539602384)\nprint(r)" - ], - "Output Answer": [ - "[-266, 8918/17]" - ], - "split": "dev" - }, - { - "Input": "Let i = 22 + -14. Let p = i + -13. Let h = p + 9. Solve 2 = 2*z + h for z.", - "Output Program": [ - "from sympy import *\ni = 22 + -14\np = i + -13\nh = p + 9\nz = symbols(\"z\")\nz = solve([Eq(2, 2*z + h)])[z]\nprint(z)" - ], - "Output Answer": [ - "-1" - ], - "split": "dev" - }, - { - "Input": "Let n(x) = x**3 + 5*x**2 + 2*x - 4. Let j be n(-4). Let a(r) = -j*r - 3 + 4*r**2 + 3*r**2 + 3*r**3 - 4*r**3. Is a(6) a multiple of 8?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef n(x):\n\treturn x**3 + 5*x**2 + 2*x - 4\nj = n(-4)\nr = symbols(\"r\")\ndef a(r):\n\treturn -j*r - 3 + 4*r**2 + 3*r**2 + 3*r**3 - 4*r**3\np = a(6)\nprint(9 % 8 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Solve -2*v + 28 = 14*p - 32, -5*p = -20*v - 23*v + 38*v + 30 for p.", - "Output Program": [ - "from sympy import *\np, v = symbols(\"p v\")\np = solve([Eq(-2*v + 28, 14*p - 32), Eq(-5*p, -20*v - 23*v + 38*v + 30)])[p]\nprint(p)" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Let t = -9 + 7. Suppose h - 4 = -2*x + 2*h, -3*h = -3*x + 6. Suppose 0*s = -x*s - 5*u + 10, 0 = 2*s - 5*u - 10. What is the nearest to t in -5, s, -3?", - "Output Program": [ - "from sympy import *\nt = -9 + 7\nx, h = symbols(\"x h\")\nx = solve([Eq(h - 4, -2*x + 2*h), Eq(-3*h, -3*x + 6)])[x]\ns, u = symbols(\"s u\")\ns = solve([Eq(0*s, -x*s - 5*u + 10), Eq(0, 2*s - 5*u - 10)])[s]\nchoices = [-5, s, -3]\ntarget = t\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-3" - ], - "split": "dev" - }, - { - "Input": "What is 1062 to the power of 1/7, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1062 ** (1 / 7))))" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Solve 0 = -2*a - 3*l - 14 + 22, 4*l - 6 = 2*a for a.", - "Output Program": [ - "from sympy import *\na, l = symbols(\"a l\")\na = solve([Eq(0, -2*a - 3*l - 14 + 22), Eq(4*l - 6, 2*a)])[a]\nprint(a)" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "What is 9597007 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(9597007 ** (1 / 2))))" - ], - "Output Answer": [ - "3098" - ], - "split": "dev" - }, - { - "Input": "Let j = -34 + -24. Let h = j - -112. Suppose h*z - 50*z - 772 = 0. Is z a multiple of 25?", - "Output Program": [ - "from sympy import *\nj = -34 + -24\nh = j - -112\nz = symbols(\"z\")\nz = solve([Eq(h*z - 50*z - 772, 0)])[z]\nprint(193 % 25 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let k = -2 + 23. Is 10 a factor of k?", - "Output Program": [ - "from sympy import *\nk = -2 + 23\nprint(21 % 10 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let a(j) = -2*j**3 + j**2 + 5*j + 3. Give a(-2).", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef a(j):\n\treturn -2*j**3 + j**2 + 5*j + 3\nprint(a(-2))" - ], - "Output Answer": [ - "13" - ], - "split": "dev" - }, - { - "Input": "Simplify -3*(sqrt(1700) - (sqrt(1700) + (3 + sqrt(1700))*-6)) + -3.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-3*(sqrt(1700) - (sqrt(1700) + (3 + sqrt(1700))*-6)) + -3)))" - ], - "Output Answer": [ - "-180*sqrt(17) - 57" - ], - "split": "dev" - }, - { - "Input": "Let r = 0.1147 - 0.2147. Which is the nearest to 8/7? (a) 0.1 (b) -0.5 (c) r (d) -2", - "Output Program": [ - "from sympy import *\nr = 0.1147 - 0.2147\nchoices = [0.1, -0.5, r, -2]\ntarget = 8/7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "dev" - }, - { - "Input": "Suppose 5*r = 2*h + 13 - 3, 3*r = 6. Suppose h = -2*n + 5*s + 31, 0 = 2*n + n - s - 14. Let y(m) = m**2 - 5*m + 3. Determine y(n).", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef y(m):\n\treturn m**2 - 5*m + 3\nh, r = symbols(\"h r\")\nh = solve([Eq(5*r, 2*h + 13 - 3), Eq(3*r, 6)])[h]\nn, s = symbols(\"n s\")\nn = solve([Eq(h, -2*n + 5*s + 31), Eq(0, 2*n + n - s - 14)])[n]\nprint(y(n))" - ], - "Output Answer": [ - "-3" - ], - "split": "dev" - }, - { - "Input": "Sort -2, -33, 5 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-2, -33, 5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 -2 -33" - ], - "split": "dev" - }, - { - "Input": "Sort 3, -10119, -2 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [3, -10119, -2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-10119 -2 3" - ], - "split": "dev" - }, - { - "Input": "What is 416185228 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(416185228 ** (1 / 3))))" - ], - "Output Answer": [ - "747" - ], - "split": "dev" - }, - { - "Input": "Are 7333 and 7334 unequal?", - "Output Program": [ - "from sympy import *\nprint(7333 != 7334)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let b(w) = 2*w + 14. Let g be b(-6). Suppose 0 = v - 5, 5*v = -g*d + 56 + 35. Is d a multiple of 8?", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef b(w):\n\treturn 2*w + 14\ng = b(-6)\nd, v = symbols(\"d v\")\nd = solve([Eq(0, v - 5), Eq(5*v, -g*d + 56 + 35)])[d]\nprint(33 % 8 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Solve 2*z**3 - 49886*z**2 + 312741072*z - 20730315096 = 0.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef c(z):\n\treturn 2*z**3 - 49886*z**2 + 312741072*z - 20730315096\nz = symbols(\"z\")\nz = solve(2*z**3 - 49886*z**2 + 312741072*z - 20730315096)\nprint(z)" - ], - "Output Answer": [ - "[67, 12438]" - ], - "split": "dev" - }, - { - "Input": "Which is the closest to 4? (a) 2 (b) 3/2 (c) -1/2 (d) 2.5 (e) 43", - "Output Program": [ - "from sympy import *\nchoices = [2, 3/2, -1/2, 2.5, 43]\ntarget = 4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "2.5" - ], - "split": "dev" - }, - { - "Input": "Suppose 3*n - 4*s = -9*s + 3, s = 4*n - 27. Let y be 12/18 - 21/(-9). Solve n = a + y for a.", - "Output Program": [ - "from sympy import *\nn, s = symbols(\"n s\")\nn = solve([Eq(3*n - 4*s, -9*s + 3), Eq(s, 4*n - 27)])[n]\ny = 12/18 - 21/(-9)\na = symbols(\"a\")\na = solve([Eq(n, a + y)])[a]\nprint(a)" - ], - "Output Answer": [ - "3.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Solve -5819 = 402*t + 6516 + 1369 + 7602 for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(-5819, 402*t + 6516 + 1369 + 7602)])[t]\nprint(t)" - ], - "Output Answer": [ - "-53" - ], - "split": "dev" - }, - { - "Input": "Simplify (sqrt(36) + (sqrt(900) + sqrt(900) + sqrt(900)*4 - sqrt(36)))/(sqrt(12) - (sqrt(12) + sqrt(24)/(-1*sqrt(2)))).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(36) + (sqrt(900) + sqrt(900) + sqrt(900)*4 - sqrt(36)))/(sqrt(12) - (sqrt(12) + sqrt(24)/(-1*sqrt(2)))))))" - ], - "Output Answer": [ - "30*sqrt(3)" - ], - "split": "dev" - }, - { - "Input": "Let v(z) = -2*z**2 - 21*z - 6. Let x be -15*(2 - 16/12). Let s be v(x). Solve s*m + 2 + 2 = 0 for m.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef v(z):\n\treturn -2*z**2 - 21*z - 6\nx = -15*(2 - 16/12)\ns = v(x)\nm = symbols(\"m\")\nm = solve([Eq(s*m + 2 + 2, 0)])[m]\nprint(m)" - ], - "Output Answer": [ - "-1.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Let z(m) = 31*m**2 + 5*m - 8. Let i be z(2). Suppose 2*g - i = -118. Let q(c) = c**3 - 5*c**2 + 4*c + 3. Calculate q(g).", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef q(c):\n\treturn c**3 - 5*c**2 + 4*c + 3\nm = symbols(\"m\")\ndef z(m):\n\treturn 31*m**2 + 5*m - 8\ni = z(2)\ng = symbols(\"g\")\ng = solve([Eq(2*g - i, -118)])[g]\nprint(q(g))" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Let q = -15 - -14. Suppose -2*j = 5*x + 4, -240*x + 241*x = 2*j + 16. Which is smaller: q or x?", - "Output Program": [ - "from sympy import *\nq = -15 - -14\nx, j = symbols(\"x j\")\nx = solve([Eq(-2*j, 5*x + 4), Eq(-240*x + 241*x, 2*j + 16)])[x]\nprint(min(q, x))" - ], - "Output Answer": [ - "-1" - ], - "split": "dev" - }, - { - "Input": "Solve -3 = 373*n - 374*n - i, -16 = -4*n - 2*i for n.", - "Output Program": [ - "from sympy import *\nn, i = symbols(\"n i\")\nn = solve([Eq(-3, 373*n - 374*n - i), Eq(-16, -4*n - 2*i)])[n]\nprint(n)" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Let i(g) = 16*g + 1. Give i(1).", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef i(g):\n\treturn 16*g + 1\nprint(i(1))" - ], - "Output Answer": [ - "17" - ], - "split": "dev" - }, - { - "Input": "Is 1234628 a multiple of 257?", - "Output Program": [ - "from sympy import *\nprint(1234628 % 257 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Which is the nearest to 7? (a) -1/240 (b) -5 (c) 3/4 (d) 40", - "Output Program": [ - "from sympy import *\nchoices = [-1/240, -5, 3/4, 40]\ntarget = 7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.75" - ], - "split": "dev" - }, - { - "Input": "Sort -55, -2, 2, 6, -4, 1063 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-55, -2, 2, 6, -4, 1063]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-55 -4 -2 2 6 1063" - ], - "split": "dev" - }, - { - "Input": "Which is smaller: 39 or -10659500?", - "Output Program": [ - "from sympy import *\nprint(min(39, -10659500))" - ], - "Output Answer": [ - "-10659500" - ], - "split": "dev" - }, - { - "Input": "Simplify -3*sqrt(117)*-5 + sqrt(117) + -3 + -1.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-3*sqrt(117)*-5 + sqrt(117) + -3 + -1)))" - ], - "Output Answer": [ - "-4 + 48*sqrt(13)" - ], - "split": "dev" - }, - { - "Input": "Let d = -3.37 + 3.36. Which is smaller: d or -1/2?", - "Output Program": [ - "from sympy import *\nd = -3.37 + 3.36\nprint(min(d, -1/2))" - ], - "Output Answer": [ - "-0.5" - ], - "split": "dev" - }, - { - "Input": "What is the square root of 4147 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(4147 ** (1 / 2))))" - ], - "Output Answer": [ - "64" - ], - "split": "dev" - }, - { - "Input": "Let t be (-1107)/(-410)*((-8)/(-12) - -1). Solve 3/4*g**4 + 6*g + 0 + 9*g**2 + t*g**3 = 0.", - "Output Program": [ - "from sympy import *\nt = (-1107)/(-410)*((-8)/(-12) - -1)\ng = symbols(\"g\")\ndef y(g):\n\treturn 3/4*g**4 + 6*g + 0 + 9*g**2 + t*g**3\ng = symbols(\"g\")\ng = solve(3/4*g**4 + 6*g + 0 + 9*g**2 + t*g**3)\nprint(g)" - ], - "Output Answer": [ - "[-2.00000000000000, 0.0]" - ], - "split": "dev" - }, - { - "Input": "What is 62751540 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(62751540 ** (1 / 3))))" - ], - "Output Answer": [ - "397" - ], - "split": "dev" - }, - { - "Input": "Solve 213*g = 10*g - 202*g - 5670 for g.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(213*g, 10*g - 202*g - 5670)])[g]\nprint(g)" - ], - "Output Answer": [ - "-14" - ], - "split": "dev" - }, - { - "Input": "Which is the closest to -95? (a) -0.4 (b) 1/5 (c) 17", - "Output Program": [ - "from sympy import *\nchoices = [-0.4, 1/5, 17]\ntarget = -95\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.4" - ], - "split": "dev" - }, - { - "Input": "Let a be (-225)/(-1386)*22 + 3/7. Let l(g) = -4*g - 1. Let t be l(-4). Solve -a*k = -4*o - 40, 0 = -o - 2*k + 4*k - t for o.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef l(g):\n\treturn -4*g - 1\nt = l(-4)\na = (-225)/(-1386)*22 + 3/7\no, k = symbols(\"o k\")\no = solve([Eq(-a*k, -4*o - 40), Eq(0, -o - 2*k + 4*k - t)])[o]\nprint(o)" - ], - "Output Answer": [ - "-5.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Suppose 0 = -a - s + 5*s + 6, -5*a - 3*s + 7 = 0. Suppose -a = j - 7. Suppose -4*w = -2711 - j. Is w a composite number?", - "Output Program": [ - "from sympy import *\na, s = symbols(\"a s\")\na = solve([Eq(0, -a - s + 5*s + 6), Eq(-5*a - 3*s + 7, 0)])[a]\nj = symbols(\"j\")\nj = solve([Eq(-a, j - 7)])[j]\nw = symbols(\"w\")\nw = solve([Eq(-4*w, -2711 - j)])[w]\nprint(not isprime(679))" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Which is smaller: -641 or -640?", - "Output Program": [ - "from sympy import *\nprint(min(-641, -640))" - ], - "Output Answer": [ - "-641" - ], - "split": "dev" - }, - { - "Input": "What is the closest to 3 in 2, 20.09, -3?", - "Output Program": [ - "from sympy import *\nchoices = [2, 20.09, -3]\ntarget = 3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "2" - ], - "split": "dev" - }, - { - "Input": "Let h = 0.116 - 0.716. Is h at most as big as 0.2?", - "Output Program": [ - "from sympy import *\nh = 0.116 - 0.716\nprint(h <= 0.2)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let j(d) = -d**3 - 9*d**2 + 12*d + 18. Let o be j(-10). Let n = 0 - 0. Sort o, 4, n in descending order.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef j(d):\n\treturn -d**3 - 9*d**2 + 12*d + 18\no = j(-10)\nn = 0 - 0\nchoices = [o, 4, n]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 0 -2" - ], - "split": "dev" - }, - { - "Input": "Let k = 11 + -7. Suppose k*q + 5*t = -31, q - t - 3*t - 8 = 0. Let c(w) = 3*w - 2*w**3 + 3*w**3 - w**2 + 3*w**2 + 1 + 3*w**2. Determine c(q).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef c(w):\n\treturn 3*w - 2*w**3 + 3*w**3 - w**2 + 3*w**2 + 1 + 3*w**2\nk = 11 + -7\nq, t = symbols(\"q t\")\nq = solve([Eq(k*q + 5*t, -31), Eq(q - t - 3*t - 8, 0)])[q]\nprint(c(q))" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Suppose -3*m + 0*m + 15 = 5*f, 0 = -m - 3*f + 5. Suppose 0 = -9*h + m*h + 16. Suppose h*i - i = 9. Solve 2*n + i = d, 3*d = -0*d + 5*n + 10 for d.", - "Output Program": [ - "from sympy import *\nm, f = symbols(\"m f\")\nm = solve([Eq(-3*m + 0*m + 15, 5*f), Eq(0, -m - 3*f + 5)])[m]\nh = symbols(\"h\")\nh = solve([Eq(0, -9*h + m*h + 16)])[h]\ni = symbols(\"i\")\ni = solve([Eq(h*i - i, 9)])[i]\nd, n = symbols(\"d n\")\nd = solve([Eq(2*n + i, d), Eq(3*d, -0*d + 5*n + 10)])[d]\nprint(d)" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Let z(r) = -r**3 + 18*r**2 - 395*r - 420. Let t(s) = -s**3 - 2*s**2. Let m(o) = 6*t(o) - z(o). Determine b, given that m(b) = 0.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef z(r):\n\treturn -r**3 + 18*r**2 - 395*r - 420\ns = symbols(\"s\")\ndef t(s):\n\treturn -s**3 - 2*s**2\ndef m(o):\n\treturn 6*t(o) - z(o)\nb = symbols(\"b\")\nb = solve(m(b))\nprint(b)" - ], - "Output Answer": [ - "[-12, -1, 7]" - ], - "split": "dev" - }, - { - "Input": "Let g(r) = r**3 - 42*r**2 + 297*r - 518. What is g(33)?", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef g(r):\n\treturn r**3 - 42*r**2 + 297*r - 518\nprint(g(33))" - ], - "Output Answer": [ - "-518" - ], - "split": "dev" - }, - { - "Input": "Suppose -17 = -5*a + 8. Solve a*z = -4*u + 33, -u + 19 = 3*z + u for z.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(-17, -5*a + 8)])[a]\nz, u = symbols(\"z u\")\nz = solve([Eq(a*z, -4*u + 33), Eq(-u + 19, 3*z + u)])[z]\nprint(z)" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Is 864 less than or equal to 866?", - "Output Program": [ - "from sympy import *\nprint(864 <= 866)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Simplify sqrt(117) + -2 + -1 + sqrt(117) + sqrt(117) - sqrt(117).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(117) + -2 + -1 + sqrt(117) + sqrt(117) - sqrt(117))))" - ], - "Output Answer": [ - "-3 + 6*sqrt(13)" - ], - "split": "dev" - }, - { - "Input": "Solve 67*u - 2105 = -164 + 605 for u.", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(67*u - 2105, -164 + 605)])[u]\nprint(u)" - ], - "Output Answer": [ - "38" - ], - "split": "dev" - }, - { - "Input": "Suppose u = -2*w - 5, -5*u = 4*w + 1 - 0. Suppose -7 + 10 = u*r. Let v(z) = 15*z - 19*z + z**2 - r + 1. Calculate v(5).", - "Output Program": [ - "from sympy import *\nu, w = symbols(\"u w\")\nu = solve([Eq(u, -2*w - 5), Eq(-5*u, 4*w + 1 - 0)])[u]\nr = symbols(\"r\")\nr = solve([Eq(-7 + 10, u*r)])[r]\nz = symbols(\"z\")\ndef v(z):\n\treturn 15*z - 19*z + z**2 - r + 1\nprint(v(5))" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Let s(g) = -5*g - 3. Calculate s(-2).", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef s(g):\n\treturn -5*g - 3\nprint(s(-2))" - ], - "Output Answer": [ - "7" - ], - "split": "dev" - }, - { - "Input": "What is the nearest to 0.2 in -273, 7, -8423?", - "Output Program": [ - "from sympy import *\nchoices = [-273, 7, -8423]\ntarget = 0.2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "7" - ], - "split": "dev" - }, - { - "Input": "What is 432034 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(432034 ** (1 / 2))))" - ], - "Output Answer": [ - "657" - ], - "split": "dev" - }, - { - "Input": "What is the ninth root of 2494940414 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(2494940414 ** (1 / 9))))" - ], - "Output Answer": [ - "11" - ], - "split": "dev" - }, - { - "Input": "What is the square root of 767746 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(767746 ** (1 / 2))))" - ], - "Output Answer": [ - "876" - ], - "split": "dev" - }, - { - "Input": "Sort 0, 3, -3, -4 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0, 3, -3, -4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 0 -3 -4" - ], - "split": "dev" - }, - { - "Input": "Suppose -4*t + 4*k + 15 = -1, 3*t + 4*k = -9. Let o = 0 + t. Let f be 7/((-7)/(-6)) + 3. Solve 2*n - 3*n = -2*s + f, -s = 3*n - o for s.", - "Output Program": [ - "from sympy import *\nt, k = symbols(\"t k\")\nt = solve([Eq(-4*t + 4*k + 15, -1), Eq(3*t + 4*k, -9)])[t]\no = 0 + t\nf = 7/((-7)/(-6)) + 3\ns, n = symbols(\"s n\")\ns = solve([Eq(2*n - 3*n, -2*s + f), Eq(-s, 3*n - o)])[s]\nprint(s)" - ], - "Output Answer": [ - "4.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Let i(m) = -m**3 + 10*m**2 - 2. Suppose 2*q - 40 = -2*q. Let y be i(q). Let r be (y - -4)/(3 - 2). Sort 0, -1, r.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef i(m):\n\treturn -m**3 + 10*m**2 - 2\nq = symbols(\"q\")\nq = solve([Eq(2*q - 40, -2*q)])[q]\ny = i(q)\nr = (y - -4)/(3 - 2)\nchoices = [0, -1, r]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1 0 2" - ], - "split": "dev" - }, - { - "Input": "Find x, given that -12*x**3 + 24 + 24 - 284*x**2 - 64*x**3 - 8*x**3 - 80*x = 0.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef p(x):\n\treturn -12*x**3 + 24 + 24 - 284*x**2 - 64*x**3 - 8*x**3 - 80*x\nx = symbols(\"x\")\nx = solve(-12*x**3 + 24 + 24 - 284*x**2 - 64*x**3 - 8*x**3 - 80*x)\nprint(x)" - ], - "Output Answer": [ - "[-3, -2/3, 2/7]" - ], - "split": "dev" - }, - { - "Input": "Let x(c) = -c - 17. Let m(g) = -1. Let r(w) = -2*m(w) - x(w). Let t be r(-5). Let s be (-35 - 1)*t/(-28). Solve 4*q - 2 = j + j, -5*j - s = 3*q for q.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef x(c):\n\treturn -c - 17\ng = symbols(\"g\")\ndef m(g):\n\treturn -1\ndef r(w):\n\treturn -2*m(w) - x(w)\nt = r(-5)\ns = (-35 - 1)*t/(-28)\nq, j = symbols(\"q j\")\nq = solve([Eq(4*q - 2, j + j), Eq(-5*j - s, 3*q)])[q]\nprint(q)" - ], - "Output Answer": [ - "-1.00000000000000" - ], - "split": "dev" - }, - { - "Input": "What is the eighth root of 1971 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1971 ** (1 / 8))))" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Let j = 11 - -10. Suppose -15*a = -8*a - j. Suppose a*p + 41 = s, -5*s + 276 - 45 = -2*p. Is 13 a factor of s?", - "Output Program": [ - "from sympy import *\nj = 11 - -10\na = symbols(\"a\")\na = solve([Eq(-15*a, -8*a - j)])[a]\ns, p = symbols(\"s p\")\ns = solve([Eq(a*p + 41, s), Eq(-5*s + 276 - 45, -2*p)])[s]\nprint(47 % 13 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let n = -14 - -72/5. Which is smaller: 20 or n?", - "Output Program": [ - "from sympy import *\nn = -14 - -72/5\nprint(min(20, n))" - ], - "Output Answer": [ - "0.40000000000000036" - ], - "split": "dev" - }, - { - "Input": "Let p(k) = -96*k**3 + 1364*k**2 - 5241*k + 3969. Let q(o) = 191*o**3 - 2729*o**2 + 10485*o - 7938. Let g(i) = 9*p(i) + 4*q(i). Let g(d) = 0. What is d?", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef q(o):\n\treturn 191*o**3 - 2729*o**2 + 10485*o - 7938\nk = symbols(\"k\")\ndef p(k):\n\treturn -96*k**3 + 1364*k**2 - 5241*k + 3969\ndef g(i):\n\treturn 9*p(i) + 4*q(i)\nd = symbols(\"d\")\nd = solve(g(d))\nprint(d)" - ], - "Output Answer": [ - "[1, 63/10]" - ], - "split": "dev" - }, - { - "Input": "Let j = -17 - -20. Suppose -j*u + 4 = f + 1, 0 = 2*u + 4*f - 12. Suppose u = -0*h - 5*h + 75. Solve c + h = -2*c for c.", - "Output Program": [ - "from sympy import *\nj = -17 - -20\nu, f = symbols(\"u f\")\nu = solve([Eq(-j*u + 4, f + 1), Eq(0, 2*u + 4*f - 12)])[u]\nh = symbols(\"h\")\nh = solve([Eq(u, -0*h - 5*h + 75)])[h]\nc = symbols(\"c\")\nc = solve([Eq(c + h, -2*c)])[c]\nprint(c)" - ], - "Output Answer": [ - "-5" - ], - "split": "dev" - }, - { - "Input": "Let t(u) = -2*u**3 - 2*u**2 - 2. Suppose -3*y = -y + 8. Let k be (-11 + 2)/(2/y). Suppose 3*g + 5*d - 4 = 0, 0*g - 5*g = -4*d + k. What is t(g)?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef t(u):\n\treturn -2*u**3 - 2*u**2 - 2\ny = symbols(\"y\")\ny = solve([Eq(-3*y, -y + 8)])[y]\nk = (-11 + 2)/(2/y)\ng, d = symbols(\"g d\")\ng = solve([Eq(3*g + 5*d - 4, 0), Eq(0*g - 5*g, -4*d + k)])[g]\nprint(t(g))" - ], - "Output Answer": [ - "6" - ], - "split": "dev" - }, - { - "Input": "Suppose 0*v + 27 = 3*v. Suppose 0 = -z + 2*p + v, -2*z = p - 11 - 22. Suppose n = -4*n + z. Solve -6 - 6 = n*l for l.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(0*v + 27, 3*v)])[v]\nz, p = symbols(\"z p\")\nz = solve([Eq(0, -z + 2*p + v), Eq(-2*z, p - 11 - 22)])[z]\nn = symbols(\"n\")\nn = solve([Eq(n, -4*n + z)])[n]\nl = symbols(\"l\")\nl = solve([Eq(-6 - 6, n*l)])[l]\nprint(l)" - ], - "Output Answer": [ - "-4" - ], - "split": "dev" - }, - { - "Input": "Suppose -2*c + c - 3 = 3*z, 2*z + 19 = 5*c. Determine p so that 3*p - 4 - c + 7 + 3*p**2 = 0.", - "Output Program": [ - "from sympy import *\nc, z = symbols(\"c z\")\nc = solve([Eq(-2*c + c - 3, 3*z), Eq(2*z + 19, 5*c)])[c]\np = symbols(\"p\")\ndef r(p):\n\treturn 3*p - 4 - c + 7 + 3*p**2\np = symbols(\"p\")\np = solve(3*p - 4 - c + 7 + 3*p**2)\nprint(p)" - ], - "Output Answer": [ - "[-1, 0]" - ], - "split": "dev" - }, - { - "Input": "Is 158/(-3)*(-72048)/304 a multiple of 79?", - "Output Program": [ - "from sympy import *\nh = 158/(-3)*(-72048)/304\nprint(12482 % 79 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let l = -2411 + 2419. Solve l*f + 56 = 80 for f.", - "Output Program": [ - "from sympy import *\nl = -2411 + 2419\nf = symbols(\"f\")\nf = solve([Eq(l*f + 56, 80)])[f]\nprint(f)" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Are 137/493 and -7/3 unequal?", - "Output Program": [ - "from sympy import *\nprint(137/493 != -7/3)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Put 0.15, 2, 17 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0.15, 2, 17]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "0.15 2 17" - ], - "split": "dev" - }, - { - "Input": "Is 14 a factor of 918?", - "Output Program": [ - "from sympy import *\nprint(918 % 14 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let s(z) = 8*z**2 - 8*z - 3. Let f(i) = -26*i**2 + 24*i + 10. Let q(w) = 3*f(w) + 10*s(w). Let v be q(5). Solve -3*t + v = -2 for t.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef f(i):\n\treturn -26*i**2 + 24*i + 10\nz = symbols(\"z\")\ndef s(z):\n\treturn 8*z**2 - 8*z - 3\ndef q(w):\n\treturn 3*f(w) + 10*s(w)\nv = q(5)\nt = symbols(\"t\")\nt = solve([Eq(-3*t + v, -2)])[t]\nprint(t)" - ], - "Output Answer": [ - "4" - ], - "split": "dev" - }, - { - "Input": "Let l(y) = -y**3 + 27*y**2 - 26*y + 7. Let n be l(26). Suppose 0 = -2*u + 2*b + 8 + 28, -18 = -u + 2*b. Suppose -n*g + u = -g. Solve 0 = g*d - 6*d + 15 for d.", - "Output Program": [ - "from sympy import *\nu, b = symbols(\"u b\")\nu = solve([Eq(0, -2*u + 2*b + 8 + 28), Eq(-18, -u + 2*b)])[u]\ny = symbols(\"y\")\ndef l(y):\n\treturn -y**3 + 27*y**2 - 26*y + 7\nn = l(26)\ng = symbols(\"g\")\ng = solve([Eq(-n*g + u, -g)])[g]\nd = symbols(\"d\")\nd = solve([Eq(0, g*d - 6*d + 15)])[d]\nprint(d)" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Simplify 5*(5*(sqrt(28) - sqrt(7)) + -2).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(5*(5*(sqrt(28) - sqrt(7)) + -2))))" - ], - "Output Answer": [ - "-10 + 25*sqrt(7)" - ], - "split": "dev" - }, - { - "Input": "Let c(s) = -s**2 - 71*s + 2807. Give c(29).", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef c(s):\n\treturn -s**2 - 71*s + 2807\nprint(c(29))" - ], - "Output Answer": [ - "-93" - ], - "split": "dev" - }, - { - "Input": "What is 122431609 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(122431609 ** (1 / 2))))" - ], - "Output Answer": [ - "11065" - ], - "split": "dev" - }, - { - "Input": "What is the nearest to 0.1 in -15, 2/11, 5, -2/23, -1/9?", - "Output Program": [ - "from sympy import *\nchoices = [-15, 2/11, 5, -2/23, -1/9]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.18181818181818182" - ], - "split": "dev" - }, - { - "Input": "What is 188 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(188 ** (1 / 2))))" - ], - "Output Answer": [ - "14" - ], - "split": "dev" - }, - { - "Input": "Is 32 a factor of 939366312?", - "Output Program": [ - "from sympy import *\nprint(939366312 % 32 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Solve -80 = y - 5*i - 60, 7*y = 2*i + 25 for y.", - "Output Program": [ - "from sympy import *\ny, i = symbols(\"y i\")\ny = solve([Eq(-80, y - 5*i - 60), Eq(7*y, 2*i + 25)])[y]\nprint(y)" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Is 9 a factor of 3492245?", - "Output Program": [ - "from sympy import *\nprint(3492245 % 9 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let h = 195.76 + -181.56. Put h, -0.08, -0.3 in increasing order.", - "Output Program": [ - "from sympy import *\nh = 195.76 + -181.56\nchoices = [h, -0.08, -0.3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.3 -0.08 14.199999999999989" - ], - "split": "dev" - }, - { - "Input": "Suppose 0*j - j = 0. Let n be (-8)/12*(-11 + -1). Suppose -3*d + n = d. Solve j = -2*r + 2*v - 2, -5*v = -d*v - 6 for r.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\nj = solve([Eq(0*j - j, 0)])[j]\nn = (-8)/12*(-11 + -1)\nd = symbols(\"d\")\nd = solve([Eq(-3*d + n, d)])[d]\nr, v = symbols(\"r v\")\nr = solve([Eq(j, -2*r + 2*v - 2), Eq(-5*v, -d*v - 6)])[r]\nprint(r)" - ], - "Output Answer": [ - "1.00000000000000" - ], - "split": "dev" - }, - { - "Input": "What is 453 to the power of 1/4, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(453 ** (1 / 4))))" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Which is greater: 79 or 80?", - "Output Program": [ - "from sympy import *\nprint(max(79, 80))" - ], - "Output Answer": [ - "80" - ], - "split": "dev" - }, - { - "Input": "Sort 4, 12, -25, 5.", - "Output Program": [ - "from sympy import *\nchoices = [4, 12, -25, 5]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-25 4 5 12" - ], - "split": "dev" - }, - { - "Input": "Suppose -20 = 3*d - 2*d. Let s = 16 - d. Suppose s = -2*n + 6*n. Is n a multiple of 9?", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\nd = solve([Eq(-20, 3*d - 2*d)])[d]\ns = 16 - d\nn = symbols(\"n\")\nn = solve([Eq(s, -2*n + 6*n)])[n]\nprint(9 % 9 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let z(c) = 3*c**2 - 1715*c + 25507. Calculate z(15).", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef z(c):\n\treturn 3*c**2 - 1715*c + 25507\nprint(z(15))" - ], - "Output Answer": [ - "457" - ], - "split": "dev" - }, - { - "Input": "Suppose -3*m - 12 = 0, -4*w = -w + 4*m - 38. Solve 35*t + w = 53 for t.", - "Output Program": [ - "from sympy import *\nw, m = symbols(\"w m\")\nw = solve([Eq(-3*m - 12, 0), Eq(-4*w, -w + 4*m - 38)])[w]\nt = symbols(\"t\")\nt = solve([Eq(35*t + w, 53)])[t]\nprint(t)" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "Solve 60*a + 97*a = 4*a - 2295 for a.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(60*a + 97*a, 4*a - 2295)])[a]\nprint(a)" - ], - "Output Answer": [ - "-15" - ], - "split": "dev" - }, - { - "Input": "Find i such that 2*i**2 + 4970192*i = 0.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef g(i):\n\treturn 2*i**2 + 4970192*i\ni = symbols(\"i\")\ni = solve(2*i**2 + 4970192*i)\nprint(i)" - ], - "Output Answer": [ - "[-2485096, 0]" - ], - "split": "dev" - }, - { - "Input": "Which is the closest to -501.6? (a) 67 (b) 1 (c) 2", - "Output Program": [ - "from sympy import *\nchoices = [67, 1, 2]\ntarget = -501.6\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "Suppose -11 = 2*m - w + 2*w, 4*m + 4*w = -24. Let p be m/7 + 2/(-7). Let l(g) = 7*g + 7. Let n(v) = 11*v + 11. Let s(r) = 8*l(r) - 5*n(r). Give s(p).", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef n(v):\n\treturn 11*v + 11\ng = symbols(\"g\")\ndef l(g):\n\treturn 7*g + 7\ndef s(r):\n\treturn 8*l(r) - 5*n(r)\nm, w = symbols(\"m w\")\nm = solve([Eq(-11, 2*m - w + 2*w), Eq(4*m + 4*w, -24)])[m]\np = m/7 + 2/(-7)\nprint(s(p))" - ], - "Output Answer": [ - "0" - ], - "split": "dev" - }, - { - "Input": "Solve -2*c - 51*i = c + 252 + 63, -5*c - 5*i - 45 = 0 for c.", - "Output Program": [ - "from sympy import *\nc, i = symbols(\"c i\")\nc = solve([Eq(-2*c - 51*i, c + 252 + 63), Eq(-5*c - 5*i - 45, 0)])[c]\nprint(c)" - ], - "Output Answer": [ - "-3" - ], - "split": "dev" - }, - { - "Input": "Let u = -7698 + 7738. Determine i so that -2/5*i**2 - u - 8*i = 0.", - "Output Program": [ - "from sympy import *\nu = -7698 + 7738\ni = symbols(\"i\")\ndef s(i):\n\treturn -2/5*i**2 - u - 8*i\ni = symbols(\"i\")\ni = solve(-2/5*i**2 - u - 8*i)\nprint(i)" - ], - "Output Answer": [ - "[-10.0000000000000]" - ], - "split": "dev" - }, - { - "Input": "Let b(l) = 587*l - 5. Let i be b(3). Is i greater than 1757?", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef b(l):\n\treturn 587*l - 5\ni = b(3)\nprint(i > 1757)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let q be (1/(-1))/(-3)*3. Let v = q + 4. Let y be 3/9 + 7/(-3). Sort v, 1, y in decreasing order.", - "Output Program": [ - "from sympy import *\nq = (1/(-1))/(-3)*3\nv = q + 4\ny = 3/9 + 7/(-3)\nchoices = [v, 1, y]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5.0 1 -2.0" - ], - "split": "dev" - }, - { - "Input": "Sort -3, 1, -1, 3 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-3, 1, -1, 3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 1 -1 -3" - ], - "split": "dev" - }, - { - "Input": "Simplify (sqrt(77) - 4*(2*sqrt(77) + sqrt(77)))/(sqrt(28)*-3).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(77) - 4*(2*sqrt(77) + sqrt(77)))/(sqrt(28)*-3))))" - ], - "Output Answer": [ - "11*sqrt(11)/6" - ], - "split": "dev" - }, - { - "Input": "Let k(s) = s**3 - 4*s**2 + 3*s + 4. Let w be k(3). Let x be (9/(-6))/((-3)/80). Suppose 42 = p + w*i, -2*p + 3*i + x = -0*i. Is p a multiple of 13?", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef k(s):\n\treturn s**3 - 4*s**2 + 3*s + 4\nw = k(3)\nx = (9/(-6))/((-3)/80)\np, i = symbols(\"p i\")\np = solve([Eq(42, p + w*i), Eq(-2*p + 3*i + x, -0*i)])[p]\nprint(26 % 13 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "What is the third root of 479403953 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(479403953 ** (1 / 3))))" - ], - "Output Answer": [ - "783" - ], - "split": "dev" - }, - { - "Input": "Simplify (sqrt(228) + (-1*sqrt(228) + sqrt(228))*-2 + sqrt(228))/((sqrt(12)*3 + sqrt(12))*-1).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(228) + (-1*sqrt(228) + sqrt(228))*-2 + sqrt(228))/((sqrt(12)*3 + sqrt(12))*-1))))" - ], - "Output Answer": [ - "-sqrt(19)/2" - ], - "split": "dev" - }, - { - "Input": "Simplify (-3 + -3 + -1*(3 + sqrt(1300)*3))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-3 + -3 + -1*(3 + sqrt(1300)*3))**2)))" - ], - "Output Answer": [ - "540*sqrt(13) + 11781" - ], - "split": "dev" - }, - { - "Input": "Suppose -5*i + 3*k = -10, 2*k + 7 = 3*i + 1. Suppose -i*m = -2*s + 28, -14 = 2*s + 2*m - 46. Let a = -10 + s. Solve -a*t + t = 0 for t.", - "Output Program": [ - "from sympy import *\ni, k = symbols(\"i k\")\ni = solve([Eq(-5*i + 3*k, -10), Eq(2*k + 7, 3*i + 1)])[i]\ns, m = symbols(\"s m\")\ns = solve([Eq(-i*m, -2*s + 28), Eq(-14, 2*s + 2*m - 46)])[s]\na = -10 + s\nt = symbols(\"t\")\nt = solve([Eq(-a*t + t, 0)])[t]\nprint(t)" - ], - "Output Answer": [ - "0" - ], - "split": "dev" - }, - { - "Input": "Is 15/61 equal to -328.3?", - "Output Program": [ - "from sympy import *\nprint(15/61 == -328.3)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let c = -3.8 - -4.3. Sort c, 0.7, -3/5 in increasing order.", - "Output Program": [ - "from sympy import *\nc = -3.8 - -4.3\nchoices = [c, 0.7, -3/5]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.6 0.5 0.7" - ], - "split": "dev" - }, - { - "Input": "Suppose -4*m + 0*m = 0. Suppose m = -6*n + 2*n + 32. Let d(y) = 12 - y. Let j be d(n). Solve 2*b = -4*x + j*b + 20, 0 = b + 2 for x.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef d(y):\n\treturn 12 - y\nm = symbols(\"m\")\nm = solve([Eq(-4*m + 0*m, 0)])[m]\nn = symbols(\"n\")\nn = solve([Eq(m, -6*n + 2*n + 32)])[n]\nj = d(n)\nx, b = symbols(\"x b\")\nx = solve([Eq(2*b, -4*x + j*b + 20), Eq(0, b + 2)])[x]\nprint(x)" - ], - "Output Answer": [ - "4" - ], - "split": "dev" - }, - { - "Input": "Let d(l) = 54*l + 157. Determine d(-3).", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef d(l):\n\treturn 54*l + 157\nprint(d(-3))" - ], - "Output Answer": [ - "-5" - ], - "split": "dev" - }, - { - "Input": "Suppose 0*b = -6*b - 18. Let v be (((-3)/2)/b)/(14/4). Solve 0 + 3/7*f**2 + 1/7*f**4 + 3/7*f**3 + v*f = 0.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\nb = solve([Eq(0*b, -6*b - 18)])[b]\nv = (((-3)/2)/b)/(14/4)\nf = symbols(\"f\")\ndef a(f):\n\treturn 0 + 3/7*f**2 + 1/7*f**4 + 3/7*f**3 + v*f\nf = symbols(\"f\")\nf = solve(0 + 3/7*f**2 + 1/7*f**4 + 3/7*f**3 + v*f)\nprint(f)" - ], - "Output Answer": [ - "[-1.00000000000000, 0.0]" - ], - "split": "dev" - }, - { - "Input": "Let x(p) = 2*p**3 - 10*p + 4. Determine x(-3).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef x(p):\n\treturn 2*p**3 - 10*p + 4\nprint(x(-3))" - ], - "Output Answer": [ - "-20" - ], - "split": "dev" - }, - { - "Input": "Let x(u) = -u**2 - 142*u + 46024. Determine x(-297).", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef x(u):\n\treturn -u**2 - 142*u + 46024\nprint(x(-297))" - ], - "Output Answer": [ - "-11" - ], - "split": "dev" - }, - { - "Input": "Simplify (-4 + (sqrt(700) + (sqrt(700)*1 + 4 + sqrt(700) - sqrt(700)) - (5 + 3*sqrt(700))))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-4 + (sqrt(700) + (sqrt(700)*1 + 4 + sqrt(700) - sqrt(700)) - (5 + 3*sqrt(700))))**2)))" - ], - "Output Answer": [ - "100*sqrt(7) + 725" - ], - "split": "dev" - }, - { - "Input": "What is the nearest to 27 in 14, -3, 2374, 0?", - "Output Program": [ - "from sympy import *\nchoices = [14, -3, 2374, 0]\ntarget = 27\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "14" - ], - "split": "dev" - }, - { - "Input": "Is 6127 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(6127))" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Suppose -x = 3*x - 4*z, 0 = 4*x + z - 20. Let l be (1/x)/(1/4). Solve -w = 2 + l for w.", - "Output Program": [ - "from sympy import *\nx, z = symbols(\"x z\")\nx = solve([Eq(-x, 3*x - 4*z), Eq(0, 4*x + z - 20)])[x]\nl = (1/x)/(1/4)\nw = symbols(\"w\")\nw = solve([Eq(-w, 2 + l)])[w]\nprint(w)" - ], - "Output Answer": [ - "-3.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Solve -386*t = -385*t - 2 for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(-386*t, -385*t - 2)])[t]\nprint(t)" - ], - "Output Answer": [ - "2" - ], - "split": "dev" - }, - { - "Input": "Let x = -0.026 - 0.074. What is the closest to x in -0.4, -1, 1?", - "Output Program": [ - "from sympy import *\nx = -0.026 - 0.074\nchoices = [-0.4, -1, 1]\ntarget = x\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.4" - ], - "split": "dev" - }, - { - "Input": "Let t be 2/(-3) - 228/9. Let p be 4/t - (-111)/(-39). Is p*(-3)/(-3) - -18 a multiple of 14?", - "Output Program": [ - "from sympy import *\nt = 2/(-3) - 228/9\np = 4/t - (-111)/(-39)\nc = p*(-3)/(-3) - -18\nprint(15 % 14 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let t(r) = -2*r**2 - 52*r - 301. Calculate t(-14).", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef t(r):\n\treturn -2*r**2 - 52*r - 301\nprint(t(-14))" - ], - "Output Answer": [ - "35" - ], - "split": "dev" - }, - { - "Input": "Sort 2/15, -101, -1/4, 7.", - "Output Program": [ - "from sympy import *\nchoices = [2/15, -101, -1/4, 7]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-101 -0.25 0.13333333333333333 7" - ], - "split": "dev" - }, - { - "Input": "Solve 5*n**5/2 - 365*n**4/2 + 485*n**3 + 2770*n**2 + 2100*n = 0.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef j(n):\n\treturn 5*n**5/2 - 365*n**4/2 + 485*n**3 + 2770*n**2 + 2100*n\nn = symbols(\"n\")\nn = solve(5*n**5/2 - 365*n**4/2 + 485*n**3 + 2770*n**2 + 2100*n)\nprint(n)" - ], - "Output Answer": [ - "[-2, -1, 0, 6, 70]" - ], - "split": "dev" - }, - { - "Input": "Let g = 5434 + -5437. What is the nearest to -1 in 2/7, -23/12, g?", - "Output Program": [ - "from sympy import *\ng = 5434 + -5437\nchoices = [2/7, -23/12, g]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-1.9166666666666667" - ], - "split": "dev" - }, - { - "Input": "Simplify ((sqrt(132)/sqrt(3)*2 - sqrt(44))/(sqrt(24)/sqrt(486)))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((sqrt(132)/sqrt(3)*2 - sqrt(44))/(sqrt(24)/sqrt(486)))**2)))" - ], - "Output Answer": [ - "891" - ], - "split": "dev" - }, - { - "Input": "Let q be (1/1)/((-5)/(-20)). Suppose -2*y = q*p - 18, 4*y + 0*p - 26 = -3*p. Let i be 2/((3 - -17)/y). Which is the nearest to -2/5? (a) 4 (b) 0.3 (c) i", - "Output Program": [ - "from sympy import *\nq = (1/1)/((-5)/(-20))\ny, p = symbols(\"y p\")\ny = solve([Eq(-2*y, q*p - 18), Eq(4*y + 0*p - 26, -3*p)])[y]\ni = 2/((3 - -17)/y)\nchoices = [4, 0.3, i]\ntarget = -2/5\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.3" - ], - "split": "dev" - }, - { - "Input": "Let x(c) = -6*c**3 - 2*c**2 - c + 5. Determine x(2).", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef x(c):\n\treturn -6*c**3 - 2*c**2 - c + 5\nprint(x(2))" - ], - "Output Answer": [ - "-53" - ], - "split": "dev" - }, - { - "Input": "What is the seventh root of 722 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(722 ** (1 / 7))))" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Solve 82 = -17*o - 3 for o.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\no = solve([Eq(82, -17*o - 3)])[o]\nprint(o)" - ], - "Output Answer": [ - "-5" - ], - "split": "dev" - }, - { - "Input": "Let u(g) = 2*g + g**3 - 5*g**2 + 3*g - 1 + 0*g. Let o be u(4). Suppose 0 = -f + 4*f - 21. Solve -f*i + 12 = -o*i for i.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef u(g):\n\treturn 2*g + g**3 - 5*g**2 + 3*g - 1 + 0*g\no = u(4)\nf = symbols(\"f\")\nf = solve([Eq(0, -f + 4*f - 21)])[f]\ni = symbols(\"i\")\ni = solve([Eq(-f*i + 12, -o*i)])[i]\nprint(i)" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Put 5154, -8, 1, -0.3, 5, 3/2 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [5154, -8, 1, -0.3, 5, 3/2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-8 -0.3 1 1.5 5 5154" - ], - "split": "dev" - }, - { - "Input": "Let h = 1 - 1. Suppose -2 = -26*m + 24*m. Is h at least as big as m?", - "Output Program": [ - "from sympy import *\nh = 1 - 1\nm = symbols(\"m\")\nm = solve([Eq(-2, -26*m + 24*m)])[m]\nprint(h >= m)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Suppose 2 = y + y + 3*f, -6 = 2*y - f. Let w be (1/(-2) - -1)/y. Which is the nearest to 1? (a) -2/11 (b) -1 (c) w", - "Output Program": [ - "from sympy import *\ny, f = symbols(\"y f\")\ny = solve([Eq(2, y + y + 3*f), Eq(-6, 2*y - f)])[y]\nw = (1/(-2) - -1)/y\nchoices = [-2/11, -1, w]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.18181818181818182" - ], - "split": "dev" - }, - { - "Input": "Suppose -5*b - 3*r - 35 = r, 4*r = -2*b - 26. Let x be b/6 - 63/(-6). Suppose y - 3 = -0*y. Solve y*i = -2*i + x for i.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ny = solve([Eq(y - 3, -0*y)])[y]\nb, r = symbols(\"b r\")\nb = solve([Eq(-5*b - 3*r - 35, r), Eq(4*r, -2*b - 26)])[b]\nx = b/6 - 63/(-6)\ni = symbols(\"i\")\ni = solve([Eq(y*i, -2*i + x)])[i]\nprint(i)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Is 58464 a multiple of 9?", - "Output Program": [ - "from sympy import *\nprint(58464 % 9 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Suppose 0 = -2*g + b + 7 - 9, 8 = 4*g + b. Suppose 5*f + 4 - 3 = 2*t, -4*f + 4 = -t. Put g, 0, t in decreasing order.", - "Output Program": [ - "from sympy import *\ng, b = symbols(\"g b\")\ng = solve([Eq(0, -2*g + b + 7 - 9), Eq(8, 4*g + b)])[g]\nt, f = symbols(\"t f\")\nt = solve([Eq(5*f + 4 - 3, 2*t), Eq(-4*f + 4, -t)])[t]\nchoices = [g, 0, t]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "8 1 0" - ], - "split": "dev" - }, - { - "Input": "Simplify -1*(-2 + -1 + sqrt(931) + sqrt(931))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-1*(-2 + -1 + sqrt(931) + sqrt(931))**2)))" - ], - "Output Answer": [ - "-3733 + 84*sqrt(19)" - ], - "split": "dev" - }, - { - "Input": "Which is bigger: -1 or 0.0871?", - "Output Program": [ - "from sympy import *\nprint(max(-1, 0.0871))" - ], - "Output Answer": [ - "0.0871" - ], - "split": "dev" - }, - { - "Input": "Solve -2*d - 7 = -3*i, -4*i + 13 = 15*d - 2*d - 12*d for i.", - "Output Program": [ - "from sympy import *\ni, d = symbols(\"i d\")\ni = solve([Eq(-2*d - 7, -3*i), Eq(-4*i + 13, 15*d - 2*d - 12*d)])[i]\nprint(i)" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Let u(m) = -m - 5. Let s be u(-9). Suppose i + s*i + 10 = 0. Let h be 4/(-2)*i*1. Solve 0 = -2*g + h*g - 4 for g.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef u(m):\n\treturn -m - 5\ns = u(-9)\ni = symbols(\"i\")\ni = solve([Eq(i + s*i + 10, 0)])[i]\nh = 4/(-2)*i*1\ng = symbols(\"g\")\ng = solve([Eq(0, -2*g + h*g - 4)])[g]\nprint(g)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Suppose -600 - 180 = -5*j. Suppose 0 = 2*a + 5*f - 54, 6*a = 5*a - 5*f + 27. Let g be j/a - (-4)/18. Is 7 greater than or equal to g?", - "Output Program": [ - "from sympy import *\na, f = symbols(\"a f\")\na = solve([Eq(0, 2*a + 5*f - 54), Eq(6*a, 5*a - 5*f + 27)])[a]\nj = symbols(\"j\")\nj = solve([Eq(-600 - 180, -5*j)])[j]\ng = j/a - (-4)/18\nprint(7 >= g)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Is 1081 a factor of 43193517?", - "Output Program": [ - "from sympy import *\nprint(43193517 % 1081 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "What is the fourth root of 33352979 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(33352979 ** (1 / 4))))" - ], - "Output Answer": [ - "76" - ], - "split": "dev" - }, - { - "Input": "Simplify ((sqrt(3) - sqrt(18)/(sqrt(6)*2)) + sqrt(3))**2*-1.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((sqrt(3) - sqrt(18)/(sqrt(6)*2)) + sqrt(3))**2*-1)))" - ], - "Output Answer": [ - "-27/4" - ], - "split": "dev" - }, - { - "Input": "What is the closest to -0.1 in 0.3, -1/1921, 1?", - "Output Program": [ - "from sympy import *\nchoices = [0.3, -1/1921, 1]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.0005205622071837585" - ], - "split": "dev" - }, - { - "Input": "Sort 0.62, -0.06, -1, 5457.", - "Output Program": [ - "from sympy import *\nchoices = [0.62, -0.06, -1, 5457]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1 -0.06 0.62 5457" - ], - "split": "dev" - }, - { - "Input": "What is 1134508901 to the power of 1/4, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1134508901 ** (1 / 4))))" - ], - "Output Answer": [ - "184" - ], - "split": "dev" - }, - { - "Input": "Let v = 18 - 25. Put v, -2, 4, 2 in descending order.", - "Output Program": [ - "from sympy import *\nv = 18 - 25\nchoices = [v, -2, 4, 2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 2 -2 -7" - ], - "split": "dev" - }, - { - "Input": "Solve -6612 + 4540 = 74*q for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(-6612 + 4540, 74*q)])[q]\nprint(q)" - ], - "Output Answer": [ - "-28" - ], - "split": "dev" - }, - { - "Input": "Suppose 4*p**2 - 3334184*p + 694798934116 = 0. Calculate p.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef s(p):\n\treturn 4*p**2 - 3334184*p + 694798934116\np = symbols(\"p\")\np = solve(4*p**2 - 3334184*p + 694798934116)\nprint(p)" - ], - "Output Answer": [ - "[416773]" - ], - "split": "dev" - }, - { - "Input": "Let h(x) = -3*x**2 - 3*x - 2. Give h(-2).", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef h(x):\n\treturn -3*x**2 - 3*x - 2\nprint(h(-2))" - ], - "Output Answer": [ - "-8" - ], - "split": "dev" - }, - { - "Input": "Let c(t) = t**3 - 37*t**2 + 33*t + 113. Let b be c(36). Solve 4*v = b*q + 3*v - 12, -3 = q - 2*v for q.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef c(t):\n\treturn t**3 - 37*t**2 + 33*t + 113\nb = c(36)\nq, v = symbols(\"q v\")\nq = solve([Eq(4*v, b*q + 3*v - 12), Eq(-3, q - 2*v)])[q]\nprint(q)" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Let q(z) = 16 + 0*z + 7*z + 23 + 6. Let s be q(-3). Solve -c - s = 5*c for c.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef q(z):\n\treturn 16 + 0*z + 7*z + 23 + 6\ns = q(-3)\nc = symbols(\"c\")\nc = solve([Eq(-c - s, 5*c)])[c]\nprint(c)" - ], - "Output Answer": [ - "-4" - ], - "split": "dev" - }, - { - "Input": "Let c = 4085 - 3275. Solve c*n = 802*n + 48 for n.", - "Output Program": [ - "from sympy import *\nc = 4085 - 3275\nn = symbols(\"n\")\nn = solve([Eq(c*n, 802*n + 48)])[n]\nprint(n)" - ], - "Output Answer": [ - "6" - ], - "split": "dev" - }, - { - "Input": "Which is the nearest to -1/4? (a) 17 (b) -2/1055 (c) 1 (d) -8 (e) -3/4", - "Output Program": [ - "from sympy import *\nchoices = [17, -2/1055, 1, -8, -3/4]\ntarget = -1/4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.0018957345971563982" - ], - "split": "dev" - }, - { - "Input": "Let y(s) = -207*s**2 - 35611*s - 1244. What is y(-172)?", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef y(s):\n\treturn -207*s**2 - 35611*s - 1244\nprint(y(-172))" - ], - "Output Answer": [ - "-40" - ], - "split": "dev" - }, - { - "Input": "Let c = 7 + 5. Suppose j + j = c. Let z be ((-3)/(-2))/(j/80). Solve -2*x - 3*q = -5 - 8, -4*q = 4*x - z for x.", - "Output Program": [ - "from sympy import *\nc = 7 + 5\nj = symbols(\"j\")\nj = solve([Eq(j + j, c)])[j]\nz = ((-3)/(-2))/(j/80)\nx, q = symbols(\"x q\")\nx = solve([Eq(-2*x - 3*q, -5 - 8), Eq(-4*q, 4*x - z)])[x]\nprint(x)" - ], - "Output Answer": [ - "2.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Let y = 138775/4 + -34694. Let j = -5 + 3. Which is the nearest to j? (a) y (b) 3 (c) 0", - "Output Program": [ - "from sympy import *\nj = -5 + 3\ny = 138775/4 + -34694\nchoices = [y, 3, 0]\ntarget = j\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.25" - ], - "split": "dev" - }, - { - "Input": "Solve 0 = -144*q + 84*q + 307*q - 9139 for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(0, -144*q + 84*q + 307*q - 9139)])[q]\nprint(q)" - ], - "Output Answer": [ - "37" - ], - "split": "dev" - }, - { - "Input": "Let n(d) = -d**3 + 2*d**2 + 5*d - 6. Let w be n(1). Solve w*p + p + j + 4 = 0, -16 = -2*p + 4*j for p.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef n(d):\n\treturn -d**3 + 2*d**2 + 5*d - 6\nw = n(1)\np, j = symbols(\"p j\")\np = solve([Eq(w*p + p + j + 4, 0), Eq(-16, -2*p + 4*j)])[p]\nprint(p)" - ], - "Output Answer": [ - "0" - ], - "split": "dev" - }, - { - "Input": "Let h be (504/168 - 36/(-1))/1. Solve -h*m + 28*m = 11 for m.", - "Output Program": [ - "from sympy import *\nh = (504/168 - 36/(-1))/1\nm = symbols(\"m\")\nm = solve([Eq(-h*m + 28*m, 11)])[m]\nprint(m)" - ], - "Output Answer": [ - "-1.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Let h be 17 - (-11 - -16)*-53. Which is smaller: h or 1409/5?", - "Output Program": [ - "from sympy import *\nh = 17 - (-11 - -16)*-53\nprint(min(h, 1409/5))" - ], - "Output Answer": [ - "281.8" - ], - "split": "dev" - }, - { - "Input": "Suppose 0 = -56*x - 36*x + 1211 - 383. Solve -x*c - 619 = -583 for c.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\nx = solve([Eq(0, -56*x - 36*x + 1211 - 383)])[x]\nc = symbols(\"c\")\nc = solve([Eq(-x*c - 619, -583)])[c]\nprint(c)" - ], - "Output Answer": [ - "-4" - ], - "split": "dev" - }, - { - "Input": "Solve -h - 2*z = 4 - 0, 2*h - 24 = 4*z for h.", - "Output Program": [ - "from sympy import *\nh, z = symbols(\"h z\")\nh = solve([Eq(-h - 2*z, 4 - 0), Eq(2*h - 24, 4*z)])[h]\nprint(h)" - ], - "Output Answer": [ - "4" - ], - "split": "dev" - }, - { - "Input": "Suppose -9 = -m + 21. Is m a multiple of 15?", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\nm = solve([Eq(-9, -m + 21)])[m]\nprint(30 % 15 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Which is the closest to -2/93? (a) -2 (b) 60 (c) -480", - "Output Program": [ - "from sympy import *\nchoices = [-2, 60, -480]\ntarget = -2/93\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-2" - ], - "split": "dev" - }, - { - "Input": "Let w(b) = -5*b**2 - 11*b - 33. Give w(-11).", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef w(b):\n\treturn -5*b**2 - 11*b - 33\nprint(w(-11))" - ], - "Output Answer": [ - "-517" - ], - "split": "dev" - }, - { - "Input": "Let b = 50 + -46. Solve b*r = 4*z - 12, -6*z = 5*r - z - 35 for r.", - "Output Program": [ - "from sympy import *\nb = 50 + -46\nr, z = symbols(\"r z\")\nr = solve([Eq(b*r, 4*z - 12), Eq(-6*z, 5*r - z - 35)])[r]\nprint(r)" - ], - "Output Answer": [ - "2" - ], - "split": "dev" - }, - { - "Input": "Is 89 a factor of 855112?", - "Output Program": [ - "from sympy import *\nprint(855112 % 89 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Sort 6, 2, -5.9364 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [6, 2, -5.9364]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "6 2 -5.9364" - ], - "split": "dev" - }, - { - "Input": "Suppose 21*b - 9*b + 504 = 0. Let d be (b/5)/((-8)/20). Solve -g - 22 = -d for g.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\nb = solve([Eq(21*b - 9*b + 504, 0)])[b]\nd = (b/5)/((-8)/20)\ng = symbols(\"g\")\ng = solve([Eq(-g - 22, -d)])[g]\nprint(g)" - ], - "Output Answer": [ - "-1.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Solve 3*j = -j - 4*p + 28, -5*j = 4*p - 32 for j.", - "Output Program": [ - "from sympy import *\nj, p = symbols(\"j p\")\nj = solve([Eq(3*j, -j - 4*p + 28), Eq(-5*j, 4*p - 32)])[j]\nprint(j)" - ], - "Output Answer": [ - "4" - ], - "split": "dev" - }, - { - "Input": "Solve 4*l - 2*p = l + 7, -5*l + 3*p + 11 = 0 for l.", - "Output Program": [ - "from sympy import *\nl, p = symbols(\"l p\")\nl = solve([Eq(4*l - 2*p, l + 7), Eq(-5*l + 3*p + 11, 0)])[l]\nprint(l)" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "Is 1524184 a multiple of 74?", - "Output Program": [ - "from sympy import *\nprint(1524184 % 74 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let f = -3 - -2. Let z = -0.174 - 0.026. Which is the closest to z? (a) 5 (b) -2/13 (c) f", - "Output Program": [ - "from sympy import *\nz = -0.174 - 0.026\nf = -3 - -2\nchoices = [5, -2/13, f]\ntarget = z\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.15384615384615385" - ], - "split": "dev" - }, - { - "Input": "Let i be 39/(-30) - (-2)/4. Let a = -74 + 73. Sort -3, a, i in descending order.", - "Output Program": [ - "from sympy import *\na = -74 + 73\ni = 39/(-30) - (-2)/4\nchoices = [-3, a, i]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "-0.8 -1 -3" - ], - "split": "dev" - }, - { - "Input": "Suppose -5*q = -3*w + 21, -84 = -2*q + 2*w - 94. Sort q, -4, -100, 3 in descending order.", - "Output Program": [ - "from sympy import *\nq, w = symbols(\"q w\")\nq = solve([Eq(-5*q, -3*w + 21), Eq(-84, -2*q + 2*w - 94)])[q]\nchoices = [q, -4, -100, 3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 -3 -4 -100" - ], - "split": "dev" - }, - { - "Input": "Which is the nearest to 0? (a) -18.339 (b) -922 (c) 3", - "Output Program": [ - "from sympy import *\nchoices = [-18.339, -922, 3]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Let c = -1 - 1. Let s = c + 8. Let x be 5*s/(-75)*-1. Sort 1/5, x, 1 in ascending order.", - "Output Program": [ - "from sympy import *\nc = -1 - 1\ns = c + 8\nx = 5*s/(-75)*-1\nchoices = [1/5, x, 1]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "0.2 0.4 1" - ], - "split": "dev" - }, - { - "Input": "Let c = -11 + 22. Suppose 19*q - 8 = 258. Suppose 3*k = 9 + 6. Solve -q - c = -k*i for i.", - "Output Program": [ - "from sympy import *\nc = -11 + 22\nq = symbols(\"q\")\nq = solve([Eq(19*q - 8, 258)])[q]\nk = symbols(\"k\")\nk = solve([Eq(3*k, 9 + 6)])[k]\ni = symbols(\"i\")\ni = solve([Eq(-q - c, -k*i)])[i]\nprint(i)" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Let w = 14 - 17.24. Let g = w + 0.24. Which is smaller: -1 or g?", - "Output Program": [ - "from sympy import *\nw = 14 - 17.24\ng = w + 0.24\nprint(min(-1, g))" - ], - "Output Answer": [ - "-2.9999999999999982" - ], - "split": "dev" - }, - { - "Input": "What is the nearest to -1/5 in -74, 6, 1/6, 130?", - "Output Program": [ - "from sympy import *\nchoices = [-74, 6, 1/6, 130]\ntarget = -1/5\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.16666666666666666" - ], - "split": "dev" - }, - { - "Input": "Let o(r) = 12*r - 173. Let c be o(15). Solve -4*t + c*t - 6 = 0, 3*t + 3 = 3*i for i.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef o(r):\n\treturn 12*r - 173\nc = o(15)\ni, t = symbols(\"i t\")\ni = solve([Eq(-4*t + c*t - 6, 0), Eq(3*t + 3, 3*i)])[i]\nprint(i)" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Solve 5*j = -n + 31, -2*n - 2*j - 338 + 360 = 0 for n.", - "Output Program": [ - "from sympy import *\nn, j = symbols(\"n j\")\nn = solve([Eq(5*j, -n + 31), Eq(-2*n - 2*j - 338 + 360, 0)])[n]\nprint(n)" - ], - "Output Answer": [ - "6" - ], - "split": "dev" - }, - { - "Input": "Suppose 26*x + 4 = 30*x. Let f be x - (24/20)/((-4)/10). Solve -f*m - 15 = m for m.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\nx = solve([Eq(26*x + 4, 30*x)])[x]\nf = x - (24/20)/((-4)/10)\nm = symbols(\"m\")\nm = solve([Eq(-f*m - 15, m)])[m]\nprint(m)" - ], - "Output Answer": [ - "-3.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Let p = -8399 - -7433. Sort p, -3, 5 in descending order.", - "Output Program": [ - "from sympy import *\np = -8399 - -7433\nchoices = [p, -3, 5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 -3 -966" - ], - "split": "dev" - }, - { - "Input": "Let a be (-1 - -3)*-2*(-3)/(-6). Let n be 2/(a/3) - -5. Suppose -l = n*l - l. Solve l*g + 2 = -2*g for g.", - "Output Program": [ - "from sympy import *\na = (-1 - -3)*-2*(-3)/(-6)\nn = 2/(a/3) - -5\nl = symbols(\"l\")\nl = solve([Eq(-l, n*l - l)])[l]\ng = symbols(\"g\")\ng = solve([Eq(l*g + 2, -2*g)])[g]\nprint(g)" - ], - "Output Answer": [ - "-1" - ], - "split": "dev" - }, - { - "Input": "Let t = -2 + 5. Let g = -0.35 - 0.15. Let s = -0.7 - g. Is s < t?", - "Output Program": [ - "from sympy import *\ng = -0.35 - 0.15\ns = -0.7 - g\nt = -2 + 5\nprint(s < t)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Put 0.5, 29, -1, -0.2 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0.5, 29, -1, -0.2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "29 0.5 -0.2 -1" - ], - "split": "dev" - }, - { - "Input": "Solve 11*t = -4*g - 12, t + 3 = 231*g - 232*g for t.", - "Output Program": [ - "from sympy import *\nt, g = symbols(\"t g\")\nt = solve([Eq(11*t, -4*g - 12), Eq(t + 3, 231*g - 232*g)])[t]\nprint(t)" - ], - "Output Answer": [ - "0" - ], - "split": "dev" - }, - { - "Input": "Factor -3*n**4 - 26433*n**3 - 53397792*n**2 + 21691616940*n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef m(n):\n\treturn -3*n**4 - 26433*n**3 - 53397792*n**2 + 21691616940*n\nn = symbols(\"n\")\neq = factor(-3*n**4 - 26433*n**3 - 53397792*n**2 + 21691616940*n)\nprint(eq)" - ], - "Output Answer": [ - "-3*n*(n - 345)*(n + 4578)**2" - ], - "split": "dev" - }, - { - "Input": "What is the nearest to -7 in 1, 1.2, 2, 1/314?", - "Output Program": [ - "from sympy import *\nchoices = [1, 1.2, 2, 1/314]\ntarget = -7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.0031847133757961785" - ], - "split": "dev" - }, - { - "Input": "Let c(n) = -n**3 - 13*n**2 - 10*n + 28. Let v be c(-12). Sort -13, -5, v in decreasing order.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef c(n):\n\treturn -n**3 - 13*n**2 - 10*n + 28\nv = c(-12)\nchoices = [-13, -5, v]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 -5 -13" - ], - "split": "dev" - }, - { - "Input": "Solve 65*t - 72 = 57*t for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(65*t - 72, 57*t)])[t]\nprint(t)" - ], - "Output Answer": [ - "9" - ], - "split": "dev" - }, - { - "Input": "Let i = -7630 - -7635. Solve 5*v = 2*h - i, v + 26 = -3*h + 8 for v.", - "Output Program": [ - "from sympy import *\ni = -7630 - -7635\nv, h = symbols(\"v h\")\nv = solve([Eq(5*v, 2*h - i), Eq(v + 26, -3*h + 8)])[v]\nprint(v)" - ], - "Output Answer": [ - "-3" - ], - "split": "dev" - }, - { - "Input": "Let k = -32483 - -161887/5. Suppose -q + 419 = -4*n - 2*q, 409 = -4*n - 3*q. Let l = k - n. What is the nearest to 1 in 2/13, 5, l?", - "Output Program": [ - "from sympy import *\nk = -32483 - -161887/5\nn, q = symbols(\"n q\")\nn = solve([Eq(-q + 419, -4*n - 2*q), Eq(409, -4*n - 3*q)])[n]\nl = k - n\nchoices = [2/13, 5, l]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.400000000001455" - ], - "split": "dev" - }, - { - "Input": "Is 412 a multiple of 5?", - "Output Program": [ - "from sympy import *\nprint(412 % 5 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "What is 1883 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1883 ** (1 / 2))))" - ], - "Output Answer": [ - "43" - ], - "split": "dev" - }, - { - "Input": "Sort 3, 1, -4, 36, -21.", - "Output Program": [ - "from sympy import *\nchoices = [3, 1, -4, 36, -21]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-21 -4 1 3 36" - ], - "split": "dev" - }, - { - "Input": "Solve -4165 + 47402 = 648*m + 402*m - 17663 for m.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\nm = solve([Eq(-4165 + 47402, 648*m + 402*m - 17663)])[m]\nprint(m)" - ], - "Output Answer": [ - "58" - ], - "split": "dev" - }, - { - "Input": "What is r in 32*r**2 - 428*r - 7480 = 0?", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef t(r):\n\treturn 32*r**2 - 428*r - 7480\nr = symbols(\"r\")\nr = solve(32*r**2 - 428*r - 7480)\nprint(r)" - ], - "Output Answer": [ - "[-10, 187/8]" - ], - "split": "dev" - }, - { - "Input": "Let o = -2315 + 2315.1. Put 1/98, -3, o in increasing order.", - "Output Program": [ - "from sympy import *\no = -2315 + 2315.1\nchoices = [1/98, -3, o]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-3 0.01020408163265306 0.09999999999990905" - ], - "split": "dev" - }, - { - "Input": "Suppose -30 = -0*r - 5*r. Let v(c) = -c**2 + 5*c + 4. Let w be v(r). Let y = 5 + w. Solve 5*s + y*t + 2*t - 25 = 0, -12 = -4*s - 2*t for s.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef v(c):\n\treturn -c**2 + 5*c + 4\nr = symbols(\"r\")\nr = solve([Eq(-30, -0*r - 5*r)])[r]\nw = v(r)\ny = 5 + w\ns, t = symbols(\"s t\")\ns = solve([Eq(5*s + y*t + 2*t - 25, 0), Eq(-12, -4*s - 2*t)])[s]\nprint(s)" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "Sort -2, -5955, 3/7, -2/15.", - "Output Program": [ - "from sympy import *\nchoices = [-2, -5955, 3/7, -2/15]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5955 -2 -0.13333333333333333 0.42857142857142855" - ], - "split": "dev" - }, - { - "Input": "Let q = -1.031 + 0.031. Let i = -0.1 + 0.2. Which is the closest to i? (a) -0.1 (b) q (c) -5", - "Output Program": [ - "from sympy import *\ni = -0.1 + 0.2\nq = -1.031 + 0.031\nchoices = [-0.1, q, -5]\ntarget = i\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "dev" - }, - { - "Input": "Is -2/283 at least 28?", - "Output Program": [ - "from sympy import *\nprint(-2/283 >= 28)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let v(m) = -m - 1. Let p be v(-8). Suppose -k - 8 = -2*b, 3*b - 3 - 6 = 3*k. Solve -2*i + 12 = 2*q - p*i, -4*q - b*i - 6 = 0 for q.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef v(m):\n\treturn -m - 1\np = v(-8)\nb, k = symbols(\"b k\")\nb = solve([Eq(-k - 8, -2*b), Eq(3*b - 3 - 6, 3*k)])[b]\nq, i = symbols(\"q i\")\nq = solve([Eq(-2*i + 12, 2*q - p*i), Eq(-4*q - b*i - 6, 0)])[q]\nprint(q)" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "Sort 0.328, 4/9, 1/2, 0.4 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0.328, 4/9, 1/2, 0.4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.5 0.4444444444444444 0.4 0.328" - ], - "split": "dev" - }, - { - "Input": "Let f = 202/21 + -72/7. Let y be 0/(-2) - (0 - 0). Let h = -2/5 + y. Which is smaller: h or f?", - "Output Program": [ - "from sympy import *\ny = 0/(-2) - (0 - 0)\nh = -2/5 + y\nf = 202/21 + -72/7\nprint(min(h, f))" - ], - "Output Answer": [ - "-0.6666666666666679" - ], - "split": "dev" - }, - { - "Input": "Let q(n) = 3*n**2 - 2*n - 1. Let i be q(2). Let g(t) = -153 - 2*t + 169 + t - t. Let v be g(i). Solve v*l + 10 = 4 for l.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef g(t):\n\treturn -153 - 2*t + 169 + t - t\nn = symbols(\"n\")\ndef q(n):\n\treturn 3*n**2 - 2*n - 1\ni = q(2)\nv = g(i)\nl = symbols(\"l\")\nl = solve([Eq(v*l + 10, 4)])[l]\nprint(l)" - ], - "Output Answer": [ - "-3" - ], - "split": "dev" - }, - { - "Input": "Factor 4255*l**2 + 85105*l + 100.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef m(l):\n\treturn 4255*l**2 + 85105*l + 100\nl = symbols(\"l\")\neq = factor(4255*l**2 + 85105*l + 100)\nprint(eq)" - ], - "Output Answer": [ - "5*(l + 20)*(851*l + 1)" - ], - "split": "dev" - }, - { - "Input": "Solve -2*d = m - 17, 2466*d - 27 = m + 2464*d for m.", - "Output Program": [ - "from sympy import *\nm, d = symbols(\"m d\")\nm = solve([Eq(-2*d, m - 17), Eq(2466*d - 27, m + 2464*d)])[m]\nprint(m)" - ], - "Output Answer": [ - "-5" - ], - "split": "dev" - }, - { - "Input": "Let w be 3 + (2 - -2)/(-4). Suppose -w*j - 1 - 3 = 0. Let h be (j/4)/(2/(-12)). Are 4 and h unequal?", - "Output Program": [ - "from sympy import *\nw = 3 + (2 - -2)/(-4)\nj = symbols(\"j\")\nj = solve([Eq(-w*j - 1 - 3, 0)])[j]\nh = (j/4)/(2/(-12))\nprint(4 != h)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Solve 17146 + 15629 = -12*l + 33975 for l.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\nl = solve([Eq(17146 + 15629, -12*l + 33975)])[l]\nprint(l)" - ], - "Output Answer": [ - "100" - ], - "split": "dev" - }, - { - "Input": "Suppose -288/7*w + 0 + 12*w**2 + 4/7*w**3 = 0. What is w?", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef c(w):\n\treturn -288/7*w + 0 + 12*w**2 + 4/7*w**3\nw = symbols(\"w\")\nw = solve(-288/7*w + 0 + 12*w**2 + 4/7*w**3)\nprint(w)" - ], - "Output Answer": [ - "[-24.0000000000000, 0.0, 3.00000000000000]" - ], - "split": "dev" - }, - { - "Input": "Let s be 207*-3*(-1)/12. Let j = 52 - s. Which is bigger: -1 or j?", - "Output Program": [ - "from sympy import *\ns = 207*-3*(-1)/12\nj = 52 - s\nprint(max(-1, j))" - ], - "Output Answer": [ - "0.25" - ], - "split": "dev" - }, - { - "Input": "Let x = -89 + 92. Suppose -s = -k + 8, s - 9 = -x*k - 1. Is k a multiple of 4?", - "Output Program": [ - "from sympy import *\nx = -89 + 92\nk, s = symbols(\"k s\")\nk = solve([Eq(-s, -k + 8), Eq(s - 9, -x*k - 1)])[k]\nprint(4 % 4 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "What is the seventh root of 4524710 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(4524710 ** (1 / 7))))" - ], - "Output Answer": [ - "9" - ], - "split": "dev" - }, - { - "Input": "Solve 98*r = 4065 - 439 for r.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\nr = solve([Eq(98*r, 4065 - 439)])[r]\nprint(r)" - ], - "Output Answer": [ - "37" - ], - "split": "dev" - }, - { - "Input": "Simplify -2*(sqrt(900) + sqrt(900)*2)/(sqrt(75)*-1).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-2*(sqrt(900) + sqrt(900)*2)/(sqrt(75)*-1))))" - ], - "Output Answer": [ - "12*sqrt(3)" - ], - "split": "dev" - }, - { - "Input": "What is the fifth root of 144251 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(144251 ** (1 / 5))))" - ], - "Output Answer": [ - "11" - ], - "split": "dev" - }, - { - "Input": "Solve -5*u + 6940 = 3*n + 6957, 2*u = -2*n - 6 for n.", - "Output Program": [ - "from sympy import *\nn, u = symbols(\"n u\")\nn = solve([Eq(-5*u + 6940, 3*n + 6957), Eq(2*u, -2*n - 6)])[n]\nprint(n)" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "Simplify (5 + (sqrt(833) - (sqrt(833) + -2)) + -2)**2 - ((2 + sqrt(17))*6 - (1 + sqrt(17)*-5 - sqrt(17))).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((5 + (sqrt(833) - (sqrt(833) + -2)) + -2)**2 - ((2 + sqrt(17))*6 - (1 + sqrt(17)*-5 - sqrt(17))))))" - ], - "Output Answer": [ - "14 - 12*sqrt(17)" - ], - "split": "dev" - }, - { - "Input": "Solve 2341*f = 2819*f + 10038 for f.", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\nf = solve([Eq(2341*f, 2819*f + 10038)])[f]\nprint(f)" - ], - "Output Answer": [ - "-21" - ], - "split": "dev" - }, - { - "Input": "Solve s**5/6 - 7*s**4/2 + s**3/3 + 206*s**2/3 - 180*s + 400/3 = 0 for s.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef b(s):\n\treturn s**5/6 - 7*s**4/2 + s**3/3 + 206*s**2/3 - 180*s + 400/3\ns = symbols(\"s\")\ns = solve(s**5/6 - 7*s**4/2 + s**3/3 + 206*s**2/3 - 180*s + 400/3)\nprint(s)" - ], - "Output Answer": [ - "[-5.00000000000000, 2.00000000000000, 20.0000000000000]" - ], - "split": "dev" - }, - { - "Input": "Is 1588650 a multiple of 15?", - "Output Program": [ - "from sympy import *\nprint(1588650 % 15 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Solve 3*d**3 - 87189474*d**2 + 87189471*d = 0.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef f(d):\n\treturn 3*d**3 - 87189474*d**2 + 87189471*d\nd = symbols(\"d\")\nd = solve(3*d**3 - 87189474*d**2 + 87189471*d)\nprint(d)" - ], - "Output Answer": [ - "[0, 1, 29063157]" - ], - "split": "dev" - }, - { - "Input": "Let z = 18 + -18.5. Let h = 0.1 - 0.4. Let r = 0.2 + h. What is the closest to r in -0.03, 3, z?", - "Output Program": [ - "from sympy import *\nh = 0.1 - 0.4\nr = 0.2 + h\nz = 18 + -18.5\nchoices = [-0.03, 3, z]\ntarget = r\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.03" - ], - "split": "dev" - }, - { - "Input": "Let n be 2 - (3 - 0)/3. Solve 3 - n = -2*d for d.", - "Output Program": [ - "from sympy import *\nn = 2 - (3 - 0)/3\nd = symbols(\"d\")\nd = solve([Eq(3 - n, -2*d)])[d]\nprint(d)" - ], - "Output Answer": [ - "-1.00000000000000" - ], - "split": "dev" - }, - { - "Input": "Let t = -23 - -19. Is 6 at most as big as t?", - "Output Program": [ - "from sympy import *\nt = -23 - -19\nprint(6 <= t)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "What is 3431890520 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(3431890520 ** (1 / 2))))" - ], - "Output Answer": [ - "58582" - ], - "split": "dev" - }, - { - "Input": "Determine q, given that -q**2/5 + q/5 = 0.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef a(q):\n\treturn -q**2/5 + q/5\nq = symbols(\"q\")\nq = solve(-q**2/5 + q/5)\nprint(q)" - ], - "Output Answer": [ - "[0, 1]" - ], - "split": "dev" - }, - { - "Input": "Let a(r) = -21 + 60*r**3 + 4*r**2 - 5 + 34*r**4 - 23*r**2 - 60*r. Let g(j) = -7*j**4 - 12*j**3 + 4*j**2 + 12*j + 5. Let d(x) = -2*a(x) - 11*g(x). Factor d(l).", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef g(j):\n\treturn -7*j**4 - 12*j**3 + 4*j**2 + 12*j + 5\nr = symbols(\"r\")\ndef a(r):\n\treturn -21 + 60*r**3 + 4*r**2 - 5 + 34*r**4 - 23*r**2 - 60*r\ndef d(x):\n\treturn -2*a(x) - 11*g(x)\nl = symbols(\"l\")\neq = factor(d(l))\nprint(eq)" - ], - "Output Answer": [ - "3*(l - 1)*(l + 1)**2*(3*l + 1)" - ], - "split": "dev" - }, - { - "Input": "Solve -1469 = -23*g - 1469 for g.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(-1469, -23*g - 1469)])[g]\nprint(g)" - ], - "Output Answer": [ - "0" - ], - "split": "dev" - }, - { - "Input": "Simplify ((sqrt(3200) + sqrt(3200) + -2*sqrt(3200) + sqrt(3200))/(1*sqrt(10)*2))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((sqrt(3200) + sqrt(3200) + -2*sqrt(3200) + sqrt(3200))/(1*sqrt(10)*2))**2)))" - ], - "Output Answer": [ - "80" - ], - "split": "dev" - }, - { - "Input": "Suppose -3*c + 30 = w, -6 = w - 3*w. Suppose -j = -2*z + c, z + 9 = 3*j + 1. Let f = 1151 - 1148. Solve f*r - 3*h = -4*h + 8, 4*r + 5*h = z for r.", - "Output Program": [ - "from sympy import *\nf = 1151 - 1148\nc, w = symbols(\"c w\")\nc = solve([Eq(-3*c + 30, w), Eq(-6, w - 3*w)])[c]\nz, j = symbols(\"z j\")\nz = solve([Eq(-j, -2*z + c), Eq(z + 9, 3*j + 1)])[z]\nr, h = symbols(\"r h\")\nr = solve([Eq(f*r - 3*h, -4*h + 8), Eq(4*r + 5*h, z)])[r]\nprint(r)" - ], - "Output Answer": [ - "3" - ], - "split": "dev" - }, - { - "Input": "Let f(k) be the first derivative of -k**2 - 15*k - 24. Let v be f(-6). Sort 2, 1, -1, v.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef g(k):\n\treturn -k**2 - 15*k - 24\ndef f(val):\n\treturn diff(-k**2 - 15*k - 24, k, 1).subs(k, val)\nv = f(-6)\nchoices = [2, 1, -1, v]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-3 -1 1 2" - ], - "split": "dev" - }, - { - "Input": "Suppose a = 3*a. Let u = -5 - a. Sort u, 2, 4 in descending order.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(a, 3*a)])[a]\nu = -5 - a\nchoices = [u, 2, 4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 2 -5" - ], - "split": "dev" - }, - { - "Input": "Which is smaller: 349 or 350?", - "Output Program": [ - "from sympy import *\nprint(min(349, 350))" - ], - "Output Answer": [ - "349" - ], - "split": "dev" - }, - { - "Input": "Let z(l) = 4884*l - 3922. Calculate z(1).", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef z(l):\n\treturn 4884*l - 3922\nprint(z(1))" - ], - "Output Answer": [ - "962" - ], - "split": "dev" - }, - { - "Input": "Which is smaller: -6 or -3996/713?", - "Output Program": [ - "from sympy import *\nprint(min(-6, -3996/713))" - ], - "Output Answer": [ - "-6" - ], - "split": "dev" - }, - { - "Input": "Suppose -5*t - 10 = 0, 2*r = -3*r - t + 23. Let c(g) = 2*g**2 + g. Let i be c(-2). Which is bigger: r or i?", - "Output Program": [ - "from sympy import *\nr, t = symbols(\"r t\")\nr = solve([Eq(-5*t - 10, 0), Eq(2*r, -3*r - t + 23)])[r]\ng = symbols(\"g\")\ndef c(g):\n\treturn 2*g**2 + g\ni = c(-2)\nprint(max(r, i))" - ], - "Output Answer": [ - "6" - ], - "split": "dev" - }, - { - "Input": "What is the cube root of 11635 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(11635 ** (1 / 3))))" - ], - "Output Answer": [ - "23" - ], - "split": "dev" - }, - { - "Input": "Suppose 0*u - 3131 = -101*u. Let g be 2 - ((-197)/7 + -1). Which is bigger: u or g?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(0*u - 3131, -101*u)])[u]\ng = 2 - ((-197)/7 + -1)\nprint(max(u, g))" - ], - "Output Answer": [ - "31.142857142857142" - ], - "split": "dev" - }, - { - "Input": "Which is the closest to -0.1? (a) 48546 (b) -46 (c) -5 (d) 0.4", - "Output Program": [ - "from sympy import *\nchoices = [48546, -46, -5, 0.4]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.4" - ], - "split": "dev" - }, - { - "Input": "What is the square root of 179 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(179 ** (1 / 2))))" - ], - "Output Answer": [ - "13" - ], - "split": "dev" - }, - { - "Input": "Solve -5*f + 24 = -3*q, 8*q + 18 = 11328*f - 11330*f for q.", - "Output Program": [ - "from sympy import *\nq, f = symbols(\"q f\")\nq = solve([Eq(-5*f + 24, -3*q), Eq(8*q + 18, 11328*f - 11330*f)])[q]\nprint(q)" - ], - "Output Answer": [ - "-3" - ], - "split": "dev" - }, - { - "Input": "Let n(d) = -2976*d - 1693364. Determine n(-569).", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef n(d):\n\treturn -2976*d - 1693364\nprint(n(-569))" - ], - "Output Answer": [ - "-20" - ], - "split": "dev" - }, - { - "Input": "Let o(h) = h**3 - 7*h**2 + 21*h - 52. Let a be o(5). Is 3 a factor of (18/(-12))/(a/(-42))?", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef o(h):\n\treturn h**3 - 7*h**2 + 21*h - 52\na = o(5)\nd = (18/(-12))/(a/(-42))\nprint(21 % 3 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let h = 744 - 836. Let o = h - -94. Is -37 < o?", - "Output Program": [ - "from sympy import *\nh = 744 - 836\no = h - -94\nprint(-37 < o)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Suppose 34899 + 36201 = 15*m. Is 12 a factor of m?", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\nm = solve([Eq(34899 + 36201, 15*m)])[m]\nprint(4740 % 12 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Suppose -2*f = -8*f + 30. Suppose 3*a - i = 1, 0 = 2*a - 0*a - f*i + 21. Is 2 bigger than a?", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\nf = solve([Eq(-2*f, -8*f + 30)])[f]\na, i = symbols(\"a i\")\na = solve([Eq(3*a - i, 1), Eq(0, 2*a - 0*a - f*i + 21)])[a]\nprint(2 > a)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Which is the closest to 3124461? (a) 8 (b) -3 (c) 2", - "Output Program": [ - "from sympy import *\nchoices = [8, -3, 2]\ntarget = 3124461\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "8" - ], - "split": "dev" - }, - { - "Input": "Suppose -j**3/2 + 1761*j**2/2 + 1421234*j - 2845986 = 0. What is j?", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef q(j):\n\treturn -j**3/2 + 1761*j**2/2 + 1421234*j - 2845986\nj = symbols(\"j\")\nj = solve(-j**3/2 + 1761*j**2/2 + 1421234*j - 2845986)\nprint(j)" - ], - "Output Answer": [ - "[-1023, 2, 2782]" - ], - "split": "dev" - }, - { - "Input": "Put -2, 1, -343, 3, 0 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-2, 1, -343, 3, 0]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 1 0 -2 -343" - ], - "split": "dev" - }, - { - "Input": "Let m(b) = -16*b - 24. Determine m(-2).", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef m(b):\n\treturn -16*b - 24\nprint(m(-2))" - ], - "Output Answer": [ - "8" - ], - "split": "dev" - }, - { - "Input": "Is 7893 a multiple of 82?", - "Output Program": [ - "from sympy import *\nprint(7893 % 82 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Suppose -g - 4 = -5. Suppose 3*h - 1292 = -320*h. Sort 5, g, h, -1.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(-g - 4, -5)])[g]\nh = symbols(\"h\")\nh = solve([Eq(3*h - 1292, -320*h)])[h]\nchoices = [5, g, h, -1]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1 1 4 5" - ], - "split": "dev" - }, - { - "Input": "Let x = 83880/19 + -4416. Let u = -110/57 - x. Sort u, -1/6, -2 in decreasing order.", - "Output Program": [ - "from sympy import *\nx = 83880/19 + -4416\nu = -110/57 - x\nchoices = [u, -1/6, -2]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "-0.16666666666666666 -0.6666666666668581 -2" - ], - "split": "dev" - }, - { - "Input": "Let a = 7 - 2. Suppose 2*q - a*v = 1, -3*q + 2*v = -2 - 5. Let w = 1 - -3. Sort -1, q, w in descending order.", - "Output Program": [ - "from sympy import *\na = 7 - 2\nq, v = symbols(\"q v\")\nq = solve([Eq(2*q - a*v, 1), Eq(-3*q + 2*v, -2 - 5)])[q]\nw = 1 - -3\nchoices = [-1, q, w]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 3 -1" - ], - "split": "dev" - }, - { - "Input": "Solve 2*y**4/5 + 356924*y**3/5 + 15923985792*y**2/5 - 31849399296*y/5 = 0.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef o(y):\n\treturn 2*y**4/5 + 356924*y**3/5 + 15923985792*y**2/5 - 31849399296*y/5\ny = symbols(\"y\")\ny = solve(2*y**4/5 + 356924*y**3/5 + 15923985792*y**2/5 - 31849399296*y/5)\nprint(y)" - ], - "Output Answer": [ - "[-89232, 0, 2]" - ], - "split": "dev" - }, - { - "Input": "Factor 16*p**3 + 256*p**2 - 71020*p + 1490348.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef c(p):\n\treturn 16*p**3 + 256*p**2 - 71020*p + 1490348\np = symbols(\"p\")\neq = factor(16*p**3 + 256*p**2 - 71020*p + 1490348)\nprint(eq)" - ], - "Output Answer": [ - "4*(p + 83)*(2*p - 67)**2" - ], - "split": "dev" - }, - { - "Input": "Let y = -66 - -95. Let d = y + -29.09. Suppose -z = -2*l + 4, 5*l - z - z - 8 = 0. What is the closest to l in -0.4, -2, d?", - "Output Program": [ - "from sympy import *\nl, z = symbols(\"l z\")\nl = solve([Eq(-z, -2*l + 4), Eq(5*l - z - z - 8, 0)])[l]\ny = -66 - -95\nd = y + -29.09\nchoices = [-0.4, -2, d]\ntarget = l\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.08999999999999986" - ], - "split": "dev" - }, - { - "Input": "Suppose -2*c - 10 = 4*k, -3*c + 17 = -k - 3. What is the nearest to k in 2/23, -5, -1/2?", - "Output Program": [ - "from sympy import *\nk, c = symbols(\"k c\")\nk = solve([Eq(-2*c - 10, 4*k), Eq(-3*c + 17, -k - 3)])[k]\nchoices = [2/23, -5, -1/2]\ntarget = k\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-5" - ], - "split": "dev" - }, - { - "Input": "Let j = 6 - 5. What is the nearest to 0 in 0, -3, j?", - "Output Program": [ - "from sympy import *\nj = 6 - 5\nchoices = [0, -3, j]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0" - ], - "split": "dev" - }, - { - "Input": "Let p be ((-480)/(-72))/((-3)/9). Let a be (-14)/(-8) - 1/(-4). Let w(y) = -y**3 + y**2 - y - 2. Let u be w(0). Sort p, u, a, 0 in decreasing order.", - "Output Program": [ - "from sympy import *\np = ((-480)/(-72))/((-3)/9)\ny = symbols(\"y\")\ndef w(y):\n\treturn -y**3 + y**2 - y - 2\nu = w(0)\na = (-14)/(-8) - 1/(-4)\nchoices = [p, u, a, 0]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "2.0 0 -2 -20.000000000000004" - ], - "split": "dev" - }, - { - "Input": "Let v = 4.092 - 0.092. Suppose 3*b - 8*b - m + 9 = 0, -2*b - 4*m + 18 = 0. What is the closest to 1 in -3/4, v, b?", - "Output Program": [ - "from sympy import *\nv = 4.092 - 0.092\nb, m = symbols(\"b m\")\nb = solve([Eq(3*b - 8*b - m + 9, 0), Eq(-2*b - 4*m + 18, 0)])[b]\nchoices = [-3/4, v, b]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "Let t be 58/(-8) + (-7)/(-28). Let w = t + 9. Suppose 0 = 2*d - 3*s + 2 + w, 0 = 5*s. What is the closest to 1 in d, 2/9, 2?", - "Output Program": [ - "from sympy import *\nt = 58/(-8) + (-7)/(-28)\nw = t + 9\nd, s = symbols(\"d s\")\nd = solve([Eq(0, 2*d - 3*s + 2 + w), Eq(0, 5*s)])[d]\nchoices = [d, 2/9, 2]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.2222222222222222" - ], - "split": "dev" - }, - { - "Input": "Let w be (4 + -2)/((-1)/1). Let l(y) = 3*y + 4. Let q be l(4). Suppose -6*u + q = 46. Sort u, w, 3 in increasing order.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef l(y):\n\treturn 3*y + 4\nq = l(4)\nu = symbols(\"u\")\nu = solve([Eq(-6*u + q, 46)])[u]\nw = (4 + -2)/((-1)/1)\nchoices = [u, w, 3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 -2.0 3" - ], - "split": "dev" - }, - { - "Input": "What is 441563 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(441563 ** (1 / 2))))" - ], - "Output Answer": [ - "665" - ], - "split": "dev" - }, - { - "Input": "Which is smaller: -950576 or -950585?", - "Output Program": [ - "from sympy import *\nprint(min(-950576, -950585))" - ], - "Output Answer": [ - "-950585" - ], - "split": "dev" - }, - { - "Input": "Is 1562029 a multiple of 1369?", - "Output Program": [ - "from sympy import *\nprint(1562029 % 1369 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Put 4, -0.76, -5 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [4, -0.76, -5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 -0.76 -5" - ], - "split": "dev" - }, - { - "Input": "Solve -5*i = 2*q - 27, i - 15 = -5*q - 5 for q.", - "Output Program": [ - "from sympy import *\nq, i = symbols(\"q i\")\nq = solve([Eq(-5*i, 2*q - 27), Eq(i - 15, -5*q - 5)])[q]\nprint(q)" - ], - "Output Answer": [ - "1" - ], - "split": "dev" - }, - { - "Input": "What is the closest to 0 in -12, -5, -272?", - "Output Program": [ - "from sympy import *\nchoices = [-12, -5, -272]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-5" - ], - "split": "dev" - }, - { - "Input": "Let t = -1.26 - -0.56. Is -1/3 at most t?", - "Output Program": [ - "from sympy import *\nt = -1.26 - -0.56\nprint(-1/3 <= t)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Suppose u - 18 = -4*q, -4*q + 6 = -3*q + u. Solve 0 = -5*h, 0*z - 16 = q*z + h for z.", - "Output Program": [ - "from sympy import *\nq, u = symbols(\"q u\")\nq = solve([Eq(u - 18, -4*q), Eq(-4*q + 6, -3*q + u)])[q]\nz, h = symbols(\"z h\")\nz = solve([Eq(0, -5*h), Eq(0*z - 16, q*z + h)])[z]\nprint(z)" - ], - "Output Answer": [ - "-4" - ], - "split": "dev" - }, - { - "Input": "Solve 0 = 44*o - 425 + 117 for o.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\no = solve([Eq(0, 44*o - 425 + 117)])[o]\nprint(o)" - ], - "Output Answer": [ - "7" - ], - "split": "dev" - }, - { - "Input": "Suppose 5*g - 17 = -j, -3*j - 2 = -4*g + 4. Let l be 3 - (5 + -1 - j). Let a(p) = -5*p - p**2 - 2 + 0*p**2 - l. Calculate a(-6).", - "Output Program": [ - "from sympy import *\nj, g = symbols(\"j g\")\nj = solve([Eq(5*g - 17, -j), Eq(-3*j - 2, -4*g + 4)])[j]\nl = 3 - (5 + -1 - j)\np = symbols(\"p\")\ndef a(p):\n\treturn -5*p - p**2 - 2 + 0*p**2 - l\nprint(a(-6))" - ], - "Output Answer": [ - "-9" - ], - "split": "dev" - }, - { - "Input": "Is -1/8 at least 36/7?", - "Output Program": [ - "from sympy import *\nprint(-1/8 >= 36/7)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Solve 569 + 526 = 219*p for p.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\np = solve([Eq(569 + 526, 219*p)])[p]\nprint(p)" - ], - "Output Answer": [ - "5" - ], - "split": "dev" - }, - { - "Input": "Is 30 a factor of 1883077?", - "Output Program": [ - "from sympy import *\nprint(1883077 % 30 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Is 36705/24 + 27/(-72) a composite number?", - "Output Program": [ - "from sympy import *\nx = 36705/24 + 27/(-72)\nprint(not isprime(1529))" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Put -5, 1/46, 468 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-5, 1/46, 468]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 0.021739130434782608 468" - ], - "split": "dev" - }, - { - "Input": "Solve 0 = 8*w + 4*u - 176, -16*u + 12*u + 168 = 73*w - 69*w for w.", - "Output Program": [ - "from sympy import *\nw, u = symbols(\"w u\")\nw = solve([Eq(0, 8*w + 4*u - 176), Eq(-16*u + 12*u + 168, 73*w - 69*w)])[w]\nprint(w)" - ], - "Output Answer": [ - "2" - ], - "split": "dev" - }, - { - "Input": "Suppose -2*c - 51 = -15. Is c greater than -17?", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\nc = solve([Eq(-2*c - 51, -15)])[c]\nprint(c > -17)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Let t(x) = -3*x**3 + 3*x**2 + x - 2. Let h(a) = a**2 - 2*a - 3. Let q be h(4). Let n = q - 7. Is 16 a factor of t(n)?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef t(x):\n\treturn -3*x**3 + 3*x**2 + x - 2\na = symbols(\"a\")\ndef h(a):\n\treturn a**2 - 2*a - 3\nq = h(4)\nn = q - 7\nf = t(n)\nprint(32 % 16 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let l(q) = 3*q**2 + 4*q + 5. Let r(w) = 4*w - 2*w**2 + w**2 - 1 - 5*w. Suppose -5*c + s - 23 = 0, -c = -3*c - 4*s + 4. Let o(b) = c*r(b) - l(b). Calculate o(3).", - "Output Program": [ - "from sympy import *\nc, s = symbols(\"c s\")\nc = solve([Eq(-5*c + s - 23, 0), Eq(-c, -3*c - 4*s + 4)])[c]\nq = symbols(\"q\")\ndef l(q):\n\treturn 3*q**2 + 4*q + 5\nw = symbols(\"w\")\ndef r(w):\n\treturn 4*w - 2*w**2 + w**2 - 1 - 5*w\ndef o(b):\n\treturn c*r(b) - l(b)\nprint(o(3))" - ], - "Output Answer": [ - "8" - ], - "split": "dev" - }, - { - "Input": "Is 181242768 a multiple of 1052?", - "Output Program": [ - "from sympy import *\nprint(181242768 % 1052 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let d = -875 - -13127/15. Sort 1.4, -34, d in descending order.", - "Output Program": [ - "from sympy import *\nd = -875 - -13127/15\nchoices = [1.4, -34, d]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "1.4 0.13333333333332575 -34" - ], - "split": "dev" - }, - { - "Input": "Let u = -6183 + 6180. Let w(a) = 3*a - 1. Let p be w(2). Sort 4, p, -4, u.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef w(a):\n\treturn 3*a - 1\np = w(2)\nu = -6183 + 6180\nchoices = [4, p, -4, u]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 -3 4 5" - ], - "split": "dev" - }, - { - "Input": "Solve 14 = -2*n + 26 for n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(14, -2*n + 26)])[n]\nprint(n)" - ], - "Output Answer": [ - "6" - ], - "split": "dev" - }, - { - "Input": "Sort -1.1, -3/125, 84, 4, -2.", - "Output Program": [ - "from sympy import *\nchoices = [-1.1, -3/125, 84, 4, -2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2 -1.1 -0.024 4 84" - ], - "split": "dev" - }, - { - "Input": "Let i(p) = p**3 + 6*p**2 - 9*p - 2. Let x be i(-7). Let v be (38/8 - 3) + 3/x. Let u = 1 + -4. Put 3, v, u in decreasing order.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef i(p):\n\treturn p**3 + 6*p**2 - 9*p - 2\nx = i(-7)\nv = (38/8 - 3) + 3/x\nu = 1 + -4\nchoices = [3, v, u]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 2.0 -3" - ], - "split": "dev" - }, - { - "Input": "Suppose -2*w**2/13 - 97670*w/13 + 1372476 = 0. Calculate w.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef t(w):\n\treturn -2*w**2/13 - 97670*w/13 + 1372476\nw = symbols(\"w\")\nw = solve(-2*w**2/13 - 97670*w/13 + 1372476)\nprint(w)" - ], - "Output Answer": [ - "[-49017, 182]" - ], - "split": "dev" - }, - { - "Input": "Sort -0.14, 3, 2/1243, 4 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [-0.14, 3, 2/1243, 4]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.14 0.0016090104585679806 3 4" - ], - "split": "dev" - }, - { - "Input": "Suppose -15*y + 44 = -11*y. Is y <= 11?", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ny = solve([Eq(-15*y + 44, -11*y)])[y]\nprint(y <= 11)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Let a = 64160291/1530 - 377305/9. Let z = -15804/1139 - -102/67. Let k = a + z. Is 0 at most as big as k?", - "Output Program": [ - "from sympy import *\na = 64160291/1530 - 377305/9\nz = -15804/1139 - -102/67\nk = a + z\nprint(0 <= k)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Is 2073 greater than or equal to 43?", - "Output Program": [ - "from sympy import *\nprint(2073 >= 43)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Put 477, 0, 8 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [477, 0, 8]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "477 8 0" - ], - "split": "dev" - }, - { - "Input": "What is 56724 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(56724 ** (1 / 3))))" - ], - "Output Answer": [ - "38" - ], - "split": "dev" - }, - { - "Input": "Let t = 9 + -2. Find l such that 2*l**2 - 7*l**2 + 6*l + t*l**2 - 3 + 7*l**2 = 0.", - "Output Program": [ - "from sympy import *\nt = 9 + -2\nl = symbols(\"l\")\ndef s(l):\n\treturn 2*l**2 - 7*l**2 + 6*l + t*l**2 - 3 + 7*l**2\nl = symbols(\"l\")\nl = solve(2*l**2 - 7*l**2 + 6*l + t*l**2 - 3 + 7*l**2)\nprint(l)" - ], - "Output Answer": [ - "[-1, 1/3]" - ], - "split": "dev" - }, - { - "Input": "Suppose -4*w + 2 = -2. Is w <= -1/2?", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\nw = solve([Eq(-4*w + 2, -2)])[w]\nprint(w <= -1/2)" - ], - "Output Answer": [ - "False" - ], - "split": "dev" - }, - { - "Input": "Suppose 2*f = 3*u, f + u + 10 = 5*f. Let x = 4447 + -4429. Suppose f*i = -3*i + x. Which is the nearest to 0.1? (a) -1/6 (b) i (c) -0.3", - "Output Program": [ - "from sympy import *\nf, u = symbols(\"f u\")\nf = solve([Eq(2*f, 3*u), Eq(f + u + 10, 5*f)])[f]\nx = 4447 + -4429\ni = symbols(\"i\")\ni = solve([Eq(f*i, -3*i + x)])[i]\nchoices = [-1/6, i, -0.3]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.16666666666666666" - ], - "split": "dev" - }, - { - "Input": "Suppose -4*p = p + 40. Is p greater than or equal to -58/7?", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\np = solve([Eq(-4*p, p + 40)])[p]\nprint(p >= -58/7)" - ], - "Output Answer": [ - "True" - ], - "split": "dev" - }, - { - "Input": "Suppose -2*r + 12 = -4*f, -4*r + 20 = -4*f - 0*r. Let w = -7 - -6. Let v = -0.259 - -0.059. Which is the closest to f? (a) w (b) 3 (c) v", - "Output Program": [ - "from sympy import *\nf, r = symbols(\"f r\")\nf = solve([Eq(-2*r + 12, -4*f), Eq(-4*r + 20, -4*f - 0*r)])[f]\nw = -7 - -6\nv = -0.259 - -0.059\nchoices = [w, 3, v]\ntarget = f\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -h - 4*q + 6, 30*h - 18 = 33*h - 6*q for h.", - "Output Program": [ - "from sympy import *\nh, q = symbols(\"h q\")\nh = solve([Eq(0, -h - 4*q + 6), Eq(30*h - 18, 33*h - 6*q)])[h]\nprint(h)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Put 3, -4953, 369.2, 2/9 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [3, -4953, 369.2, 2/9]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4953 0.2222222222222222 3 369.2" - ], - "split": "test" - }, - { - "Input": "Determine d so that -5*d**5 + 1135*d**4 - 3980*d**3 - 107040*d**2 = 0.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef y(d):\n\treturn -5*d**5 + 1135*d**4 - 3980*d**3 - 107040*d**2\nd = symbols(\"d\")\nd = solve(-5*d**5 + 1135*d**4 - 3980*d**3 - 107040*d**2)\nprint(d)" - ], - "Output Answer": [ - "[-8, 0, 12, 223]" - ], - "split": "test" - }, - { - "Input": "Solve -4*k = -5*a - k - 15, 0 = -4*a - 4*k - 12 for a.", - "Output Program": [ - "from sympy import *\na, k = symbols(\"a k\")\na = solve([Eq(-4*k, -5*a - k - 15), Eq(0, -4*a - 4*k - 12)])[a]\nprint(a)" - ], - "Output Answer": [ - "-3" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to 19? (a) -2 (b) 1 (c) 53 (d) 1/3 (e) -8", - "Output Program": [ - "from sympy import *\nchoices = [-2, 1, 53, 1/3, -8]\ntarget = 19\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Suppose -8*o - 35 = -x - 12*o, 0 = 2*x - 5*o - 70. Let r be (2*28/40)/(7/x). Let a(g) = -g**2 + 8*g - 2. Give a(r).", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef a(g):\n\treturn -g**2 + 8*g - 2\nx, o = symbols(\"x o\")\nx = solve([Eq(-8*o - 35, -x - 12*o), Eq(0, 2*x - 5*o - 70)])[x]\nr = (2*28/40)/(7/x)\nprint(a(r))" - ], - "Output Answer": [ - "5.00000000000000" - ], - "split": "test" - }, - { - "Input": "Let t = -255 + 202. What is the closest to 1/2 in t, 3, -2/7?", - "Output Program": [ - "from sympy import *\nt = -255 + 202\nchoices = [t, 3, -2/7]\ntarget = 1/2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.2857142857142857" - ], - "split": "test" - }, - { - "Input": "Let u = -167667 - -167666. Let s = 0.4 + 1.6. Sort s, u, -24 in decreasing order.", - "Output Program": [ - "from sympy import *\ns = 0.4 + 1.6\nu = -167667 - -167666\nchoices = [s, u, -24]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "2.0 -1 -24" - ], - "split": "test" - }, - { - "Input": "Suppose 3*p = -4*l + 763 - 734, 5*l = 6*p + 46. Let r(k) = -5*k**2 - k - 1. Let f be r(-1). Sort 3, 2, p, f in increasing order.", - "Output Program": [ - "from sympy import *\np, l = symbols(\"p l\")\np = solve([Eq(3*p, -4*l + 763 - 734), Eq(5*l, 6*p + 46)])[p]\nk = symbols(\"k\")\ndef r(k):\n\treturn -5*k**2 - k - 1\nf = r(-1)\nchoices = [3, 2, p, f]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 -1 2 3" - ], - "split": "test" - }, - { - "Input": "Let q(v) = -v**3 - 6*v**2 - 9*v. Suppose -8*x - r - 17 = -3*x, 23 = -2*x + 5*r. Calculate q(x).", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef q(v):\n\treturn -v**3 - 6*v**2 - 9*v\nx, r = symbols(\"x r\")\nx = solve([Eq(-8*x - r - 17, -3*x), Eq(23, -2*x + 5*r)])[x]\nprint(q(x))" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Solve -373*b + 73 + 86 + 91 = -378*b for b.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\nb = solve([Eq(-373*b + 73 + 86 + 91, -378*b)])[b]\nprint(b)" - ], - "Output Answer": [ - "-50" - ], - "split": "test" - }, - { - "Input": "What is the eighth root of 11032568 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(11032568 ** (1 / 8))))" - ], - "Output Answer": [ - "8" - ], - "split": "test" - }, - { - "Input": "Which is smaller: 1 or -31155/92?", - "Output Program": [ - "from sympy import *\nprint(min(1, -31155/92))" - ], - "Output Answer": [ - "-338.64130434782606" - ], - "split": "test" - }, - { - "Input": "What is the nearest to -1 in -6, -1936, 0.1?", - "Output Program": [ - "from sympy import *\nchoices = [-6, -1936, 0.1]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "test" - }, - { - "Input": "Let u = -1590 + 1595. Solve -265*c + 263*c - u*o = -16, -5*o = -10 for c.", - "Output Program": [ - "from sympy import *\nu = -1590 + 1595\nc, o = symbols(\"c o\")\nc = solve([Eq(-265*c + 263*c - u*o, -16), Eq(-5*o, -10)])[c]\nprint(c)" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Let k(r) = -872*r - 94178. What is k(-108)?", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef k(r):\n\treturn -872*r - 94178\nprint(k(-108))" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Determine h so that 4693 - 52*h**3 - 5548*h + 1091*h**2 - 12*h**2 + h**4 - 173*h**2 = 0.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef i(h):\n\treturn 4693 - 52*h**3 - 5548*h + 1091*h**2 - 12*h**2 + h**4 - 173*h**2\nh = symbols(\"h\")\nh = solve(4693 - 52*h**3 - 5548*h + 1091*h**2 - 12*h**2 + h**4 - 173*h**2)\nprint(h)" - ], - "Output Answer": [ - "[1, 13, 19]" - ], - "split": "test" - }, - { - "Input": "Suppose 414*k**3 - 993*k**2 + 346*k - 32 = 0. What is k?", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef l(k):\n\treturn 414*k**3 - 993*k**2 + 346*k - 32\nk = symbols(\"k\")\nk = solve(414*k**3 - 993*k**2 + 346*k - 32)\nprint(k)" - ], - "Output Answer": [ - "[1/6, 16/69, 2]" - ], - "split": "test" - }, - { - "Input": "Suppose -5*f - 2*a = -8*f + 19, -37 = -4*f + 5*a. Suppose 3*p**f - 4043*p**2 - p**4 + 0*p**4 - 3*p**5 + 4044*p**2 = 0. What is p?", - "Output Program": [ - "from sympy import *\nf, a = symbols(\"f a\")\nf = solve([Eq(-5*f - 2*a, -8*f + 19), Eq(-37, -4*f + 5*a)])[f]\np = symbols(\"p\")\ndef j(p):\n\treturn 3*p**f - 4043*p**2 - p**4 + 0*p**4 - 3*p**5 + 4044*p**2\np = symbols(\"p\")\np = solve(3*p**f - 4043*p**2 - p**4 + 0*p**4 - 3*p**5 + 4044*p**2)\nprint(p)" - ], - "Output Answer": [ - "[-1, -1/3, 0, 1]" - ], - "split": "test" - }, - { - "Input": "Solve 30010 + 30052 = 509*s for s.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ns = solve([Eq(30010 + 30052, 509*s)])[s]\nprint(s)" - ], - "Output Answer": [ - "118" - ], - "split": "test" - }, - { - "Input": "Let s(t) = t**2 - 30*t + 83. Calculate s(6).", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef s(t):\n\treturn t**2 - 30*t + 83\nprint(s(6))" - ], - "Output Answer": [ - "-61" - ], - "split": "test" - }, - { - "Input": "Let k = 12.29 + -11.8. Let l = 0.09 - k. Let p = -1 - -3. Sort 3, l, p in decreasing order.", - "Output Program": [ - "from sympy import *\nk = 12.29 + -11.8\nl = 0.09 - k\np = -1 - -3\nchoices = [3, l, p]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 2 -0.39999999999999847" - ], - "split": "test" - }, - { - "Input": "Determine g, given that g**3 + 59*g**2 - 1094*g - 5256 = 0.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef v(g):\n\treturn g**3 + 59*g**2 - 1094*g - 5256\ng = symbols(\"g\")\ng = solve(g**3 + 59*g**2 - 1094*g - 5256)\nprint(g)" - ], - "Output Answer": [ - "[-73, -4, 18]" - ], - "split": "test" - }, - { - "Input": "Which is the closest to -16? (a) -5 (b) 2 (c) 85612", - "Output Program": [ - "from sympy import *\nchoices = [-5, 2, 85612]\ntarget = -16\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-5" - ], - "split": "test" - }, - { - "Input": "Let i(u) = -411 + 4*u + 339 + u - u. Determine i(0).", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef i(u):\n\treturn -411 + 4*u + 339 + u - u\nprint(i(0))" - ], - "Output Answer": [ - "-72" - ], - "split": "test" - }, - { - "Input": "Put 2, -5, -1, -1410, 271 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [2, -5, -1, -1410, 271]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1410 -5 -1 2 271" - ], - "split": "test" - }, - { - "Input": "Let u(c) = c**2 - 82*c + 1256. Determine u(62).", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef u(c):\n\treturn c**2 - 82*c + 1256\nprint(u(62))" - ], - "Output Answer": [ - "16" - ], - "split": "test" - }, - { - "Input": "Let a be (-2 + -1 + -1)*-1. Suppose 8*o = 8*o - 19*o - 1140. Let k be (2*a/20)/((-3)/o). Let t(u) = u**2 - 7*u - 9. What is t(k)?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef t(u):\n\treturn u**2 - 7*u - 9\na = (-2 + -1 + -1)*-1\no = symbols(\"o\")\no = solve([Eq(8*o, 8*o - 19*o - 1140)])[o]\nk = (2*a/20)/((-3)/o)\nprint(t(k))" - ], - "Output Answer": [ - "-1.00000000000000" - ], - "split": "test" - }, - { - "Input": "Put 0.082, 5, 1, -3/29 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [0.082, 5, 1, -3/29]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 1 0.082 -0.10344827586206896" - ], - "split": "test" - }, - { - "Input": "Solve 2*k - 13 = c, -17 = -4*k + 25*c - 26*c for k.", - "Output Program": [ - "from sympy import *\nk, c = symbols(\"k c\")\nk = solve([Eq(2*k - 13, c), Eq(-17, -4*k + 25*c - 26*c)])[k]\nprint(k)" - ], - "Output Answer": [ - "5" - ], - "split": "test" - }, - { - "Input": "Suppose m - 5*q - 3 = 0, -2*m = 3*q + 5 + 28. What is the nearest to 0.1 in -1/7, m, -2/9?", - "Output Program": [ - "from sympy import *\nm, q = symbols(\"m q\")\nm = solve([Eq(m - 5*q - 3, 0), Eq(-2*m, 3*q + 5 + 28)])[m]\nchoices = [-1/7, m, -2/9]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.14285714285714285" - ], - "split": "test" - }, - { - "Input": "Let g be 16/104 - 2557/(-1716). Let h = g - -1/44. Put -0.5, h, -3 in descending order.", - "Output Program": [ - "from sympy import *\ng = 16/104 - 2557/(-1716)\nh = g - -1/44\nchoices = [-0.5, h, -3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "1.6666666666666667 -0.5 -3" - ], - "split": "test" - }, - { - "Input": "Let 114 + 166 + 11*w**2 + 40 - 7*w**2 + 96*w + 0*w**2 = 0. What is w?", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef n(w):\n\treturn 114 + 166 + 11*w**2 + 40 - 7*w**2 + 96*w + 0*w**2\nw = symbols(\"w\")\nw = solve(114 + 166 + 11*w**2 + 40 - 7*w**2 + 96*w + 0*w**2)\nprint(w)" - ], - "Output Answer": [ - "[-20, -4]" - ], - "split": "test" - }, - { - "Input": "Solve 3*r - 7*u + 11*u = -14, r - 2*u - 2 = 0 for r.", - "Output Program": [ - "from sympy import *\nr, u = symbols(\"r u\")\nr = solve([Eq(3*r - 7*u + 11*u, -14), Eq(r - 2*u - 2, 0)])[r]\nprint(r)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Solve 337*v - 47 = 322*v + 73 for v.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(337*v - 47, 322*v + 73)])[v]\nprint(v)" - ], - "Output Answer": [ - "8" - ], - "split": "test" - }, - { - "Input": "Let h = 20 - 16. Put 0, 6, h in decreasing order.", - "Output Program": [ - "from sympy import *\nh = 20 - 16\nchoices = [0, 6, h]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "6 4 0" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -p - 5*r + 3 + 8, 0 = 4*p - 3*r + 25 for p.", - "Output Program": [ - "from sympy import *\np, r = symbols(\"p r\")\np = solve([Eq(0, -p - 5*r + 3 + 8), Eq(0, 4*p - 3*r + 25)])[p]\nprint(p)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Which is smaller: -4326362 or -4326260?", - "Output Program": [ - "from sympy import *\nprint(min(-4326362, -4326260))" - ], - "Output Answer": [ - "-4326362" - ], - "split": "test" - }, - { - "Input": "Suppose 3*x = -17*x + 60. What is z in 25*z**2 - 37*z**2 - x*z**4 + 30*z**2 + 3*z**3 = 0?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\nx = solve([Eq(3*x, -17*x + 60)])[x]\nz = symbols(\"z\")\ndef u(z):\n\treturn 25*z**2 - 37*z**2 - x*z**4 + 30*z**2 + 3*z**3\nz = symbols(\"z\")\nz = solve(25*z**2 - 37*z**2 - x*z**4 + 30*z**2 + 3*z**3)\nprint(z)" - ], - "Output Answer": [ - "[-2, 0, 3]" - ], - "split": "test" - }, - { - "Input": "What is the square root of 253468392 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(253468392 ** (1 / 2))))" - ], - "Output Answer": [ - "15921" - ], - "split": "test" - }, - { - "Input": "What is the sixth root of 268163237 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(268163237 ** (1 / 6))))" - ], - "Output Answer": [ - "25" - ], - "split": "test" - }, - { - "Input": "Let h(t) = 3*t**3 + 4*t**2 + 11*t + 7. Let b(v) = -2*v**3 - v**2 - 5*v - 4. Let r(k) = 5*b(k) + 3*h(k). Is r(-7) a composite number?", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef h(t):\n\treturn 3*t**3 + 4*t**2 + 11*t + 7\nv = symbols(\"v\")\ndef b(v):\n\treturn -2*v**3 - v**2 - 5*v - 4\ndef r(k):\n\treturn 5*b(k) + 3*h(k)\nc = r(-7)\nprint(not isprime(631))" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Suppose 23*n - 12*n - 33 = 0. Solve -3*o + 3*j + 15 = -0*o, n*o = -2*j for o.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(23*n - 12*n - 33, 0)])[n]\no, j = symbols(\"o j\")\no = solve([Eq(-3*o + 3*j + 15, -0*o), Eq(n*o, -2*j)])[o]\nprint(o)" - ], - "Output Answer": [ - "2" - ], - "split": "test" - }, - { - "Input": "What is the nearest to -2/3 in 1/3, -182, 2/11, 0.1?", - "Output Program": [ - "from sympy import *\nchoices = [1/3, -182, 2/11, 0.1]\ntarget = -2/3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "test" - }, - { - "Input": "Let s(a) = a**2 + 3*a + 1. Let r = -140 + 62. Let h be ((-4)/6)/((-13)/r). Let y be s(h). Solve -y*c - 1 = -6 for c.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef s(a):\n\treturn a**2 + 3*a + 1\nr = -140 + 62\nh = ((-4)/6)/((-13)/r)\ny = s(h)\nc = symbols(\"c\")\nc = solve([Eq(-y*c - 1, -6)])[c]\nprint(c)" - ], - "Output Answer": [ - "1.00000000000000" - ], - "split": "test" - }, - { - "Input": "What is the sixth root of 291178956 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(291178956 ** (1 / 6))))" - ], - "Output Answer": [ - "26" - ], - "split": "test" - }, - { - "Input": "Let q(c) = c + 7. Let f be (-68)/11 + 6 + (-64)/11. Determine q(f).", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef q(c):\n\treturn c + 7\nf = (-68)/11 + 6 + (-64)/11\nprint(q(f))" - ], - "Output Answer": [ - "1.0" - ], - "split": "test" - }, - { - "Input": "Suppose 5*b + 2*g - 1 - 35 = 0, -21 = -5*b + 3*g. Solve -z - z = b for z.", - "Output Program": [ - "from sympy import *\nb, g = symbols(\"b g\")\nb = solve([Eq(5*b + 2*g - 1 - 35, 0), Eq(-21, -5*b + 3*g)])[b]\nz = symbols(\"z\")\nz = solve([Eq(-z - z, b)])[z]\nprint(z)" - ], - "Output Answer": [ - "-3" - ], - "split": "test" - }, - { - "Input": "Let k(f) = -4*f**3 - 10*f**2 - 11*f - 14. What is k(-3)?", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\ndef k(f):\n\treturn -4*f**3 - 10*f**2 - 11*f - 14\nprint(k(-3))" - ], - "Output Answer": [ - "37" - ], - "split": "test" - }, - { - "Input": "Solve 171*t + 5375 = -170*t + 260 for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(171*t + 5375, -170*t + 260)])[t]\nprint(t)" - ], - "Output Answer": [ - "-15" - ], - "split": "test" - }, - { - "Input": "Is 156457328743 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(156457328743))" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let s(g) be the second derivative of g**3/2 - 13*g**2/2 + 5*g. Let k be s(5). Sort 3, -3, k, 1 in ascending order.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef p(g):\n\treturn g**3/2 - 13*g**2/2 + 5*g\ndef s(val):\n\treturn diff(g**3/2 - 13*g**2/2 + 5*g, g, 2).subs(g, val)\nk = s(5)\nchoices = [3, -3, k, 1]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-3 1 2 3" - ], - "split": "test" - }, - { - "Input": "Put -4, -32, 3, 1, -3, 451 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [-4, -32, 3, 1, -3, 451]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-32 -4 -3 1 3 451" - ], - "split": "test" - }, - { - "Input": "Which is greater: 1 or 1/83616349?", - "Output Program": [ - "from sympy import *\nprint(max(1, 1/83616349))" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "What is the cube root of 163143705 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(163143705 ** (1 / 3))))" - ], - "Output Answer": [ - "546" - ], - "split": "test" - }, - { - "Input": "Let c be (-26)/(-16) + (-2 - 0). Let d = -67/216 + 5/27. Let k = -11 + 8. What is the closest to 0.1 in d, k, c?", - "Output Program": [ - "from sympy import *\nd = -67/216 + 5/27\nk = -11 + 8\nc = (-26)/(-16) + (-2 - 0)\nchoices = [d, k, c]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.125" - ], - "split": "test" - }, - { - "Input": "Is 9330 a multiple of 28?", - "Output Program": [ - "from sympy import *\nprint(9330 % 28 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let v(h) = 15*h**2 - 18*h + 1. Suppose -9*n + 7*n - 35 = 3*m, -5*n - 74 = 3*m. Let y(f) = -7*f**2 + 9*f. Let l(s) = n*y(s) - 6*v(s). What is l(7)?", - "Output Program": [ - "from sympy import *\nn, m = symbols(\"n m\")\nn = solve([Eq(-9*n + 7*n - 35, 3*m), Eq(-5*n - 74, 3*m)])[n]\nh = symbols(\"h\")\ndef v(h):\n\treturn 15*h**2 - 18*h + 1\nf = symbols(\"f\")\ndef y(f):\n\treturn -7*f**2 + 9*f\ndef l(s):\n\treturn n*y(s) - 6*v(s)\nprint(l(7))" - ], - "Output Answer": [ - "-20" - ], - "split": "test" - }, - { - "Input": "Let o = -344 - -367. Suppose 0*s + o*s - 1196 = 0. Solve s = 5*n + 47 for n.", - "Output Program": [ - "from sympy import *\no = -344 - -367\ns = symbols(\"s\")\ns = solve([Eq(0*s + o*s - 1196, 0)])[s]\nn = symbols(\"n\")\nn = solve([Eq(s, 5*n + 47)])[n]\nprint(n)" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Is 265283334 a multiple of 414?", - "Output Program": [ - "from sympy import *\nprint(265283334 % 414 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Put -2, -1/549, -25, 1/3, -53 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [-2, -1/549, -25, 1/3, -53]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-53 -25 -2 -0.0018214936247723133 0.3333333333333333" - ], - "split": "test" - }, - { - "Input": "Sort 0, 35, 4, 302 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0, 35, 4, 302]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "302 35 4 0" - ], - "split": "test" - }, - { - "Input": "What is the cube root of 4053 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(4053 ** (1 / 3))))" - ], - "Output Answer": [ - "16" - ], - "split": "test" - }, - { - "Input": "Solve -86*z - 10 = -91*z for z.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(-86*z - 10, -91*z)])[z]\nprint(z)" - ], - "Output Answer": [ - "2" - ], - "split": "test" - }, - { - "Input": "Let k = -7 + 12. Suppose k*w - 13 = 3*i - 2*i, 2*w = 4*i + 16. Let j(c) = c**3 + 3*c**2 - 3*c - 2. Is 7 a factor of j(i)?", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef j(c):\n\treturn c**3 + 3*c**2 - 3*c - 2\nk = -7 + 12\ni, w = symbols(\"i w\")\ni = solve([Eq(k*w - 13, 3*i - 2*i), Eq(2*w, 4*i + 16)])[i]\nz = j(i)\nprint(7 % 7 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let l(z) = -z**2 + 47*z - 468. Give l(33).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef l(z):\n\treturn -z**2 + 47*z - 468\nprint(l(33))" - ], - "Output Answer": [ - "-6" - ], - "split": "test" - }, - { - "Input": "Let c(k) = 2*k**3 + 80*k**2 + 81*k + 143. Determine c(-39).", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef c(k):\n\treturn 2*k**3 + 80*k**2 + 81*k + 143\nprint(c(-39))" - ], - "Output Answer": [ - "26" - ], - "split": "test" - }, - { - "Input": "Let z be 2/(33/9 + -3). Let j be (-11 + z)/(5/1). Suppose 2*n = 4*n + 4. Is n at most as big as j?", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(2*n, 4*n + 4)])[n]\nz = 2/(33/9 + -3)\nj = (-11 + z)/(5/1)\nprint(n <= j)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Factor -3*a**4 - 1214004*a**3 - 122817142668*a**2.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef q(a):\n\treturn -3*a**4 - 1214004*a**3 - 122817142668*a**2\na = symbols(\"a\")\neq = factor(-3*a**4 - 1214004*a**3 - 122817142668*a**2)\nprint(eq)" - ], - "Output Answer": [ - "-3*a**2*(a + 202334)**2" - ], - "split": "test" - }, - { - "Input": "Suppose 202 = 19*a - 64. Solve 16*q - 8 = a*q for q.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(202, 19*a - 64)])[a]\nq = symbols(\"q\")\nq = solve([Eq(16*q - 8, a*q)])[q]\nprint(q)" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Determine b, given that 1694565*b**4 + 5083707*b**3 - 6778224*b**2 - 48*b = 0.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef s(b):\n\treturn 1694565*b**4 + 5083707*b**3 - 6778224*b**2 - 48*b\nb = symbols(\"b\")\nb = solve(1694565*b**4 + 5083707*b**3 - 6778224*b**2 - 48*b)\nprint(b)" - ], - "Output Answer": [ - "[-4, -4/564855, 0, 1]" - ], - "split": "test" - }, - { - "Input": "Simplify (1*(sqrt(504)*-1 + sqrt(14))*4)/((6*2*sqrt(22) + sqrt(22))/(sqrt(11) - (sqrt(44)/sqrt(4) - sqrt(11))*-4)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((1*(sqrt(504)*-1 + sqrt(14))*4)/((6*2*sqrt(22) + sqrt(22))/(sqrt(11) - (sqrt(44)/sqrt(4) - sqrt(11))*-4)))))" - ], - "Output Answer": [ - "-20*sqrt(7)/13" - ], - "split": "test" - }, - { - "Input": "Is 73427445 a multiple of 973?", - "Output Program": [ - "from sympy import *\nprint(73427445 % 973 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Put -0.05, -0.5, -189.206341 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-0.05, -0.5, -189.206341]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "-0.05 -0.5 -189.206341" - ], - "split": "test" - }, - { - "Input": "Solve -121*j + 282*j = 3220 for j.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\nj = solve([Eq(-121*j + 282*j, 3220)])[j]\nprint(j)" - ], - "Output Answer": [ - "20" - ], - "split": "test" - }, - { - "Input": "Factor -4*r**2/7 - 11961392*r/7 - 8942181161104/7.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef a(r):\n\treturn -4*r**2/7 - 11961392*r/7 - 8942181161104/7\nr = symbols(\"r\")\neq = factor(-4*r**2/7 - 11961392*r/7 - 8942181161104/7)\nprint(eq)" - ], - "Output Answer": [ - "-1277454451586.29*(6.68818478651983e-7*r + 1.0)**2" - ], - "split": "test" - }, - { - "Input": "Let q(s) = s**3 - 6*s**2 + 6*s + 4. Let r be ((-1)/2)/(2/(-12)). Let n be (-2)/r - 22/(-6). Suppose n*g = f - 11, f + 3*f = -3*g + 14. Determine q(f).", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef q(s):\n\treturn s**3 - 6*s**2 + 6*s + 4\nr = ((-1)/2)/(2/(-12))\nn = (-2)/r - 22/(-6)\nf, g = symbols(\"f g\")\nf = solve([Eq(n*g, f - 11), Eq(f + 3*f, -3*g + 14)])[f]\nprint(q(f))" - ], - "Output Answer": [ - "9.00000000000000" - ], - "split": "test" - }, - { - "Input": "Let z be (-16)/(720/(-243)) + (-6)/(-10). Let v(d) = d**2 - 4*d - 10. Give v(z).", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef v(d):\n\treturn d**2 - 4*d - 10\nz = (-16)/(720/(-243)) + (-6)/(-10)\nprint(v(z))" - ], - "Output Answer": [ - "2.0" - ], - "split": "test" - }, - { - "Input": "Let q(s) = 2075*s - 29052. What is q(14)?", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef q(s):\n\treturn 2075*s - 29052\nprint(q(14))" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Let p(w) = 199 - 196 - 2*w**3 + 2*w**2 + 27*w**2 + 16*w. Let h be p(15). Solve h = g - 5*x, 2*g + 0*x = -x + 3 for g.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef p(w):\n\treturn 199 - 196 - 2*w**3 + 2*w**2 + 27*w**2 + 16*w\nh = p(15)\ng, x = symbols(\"g x\")\ng = solve([Eq(h, g - 5*x), Eq(2*g + 0*x, -x + 3)])[g]\nprint(g)" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Let w = 3 - 1. Let z = -106 - -102. Sort 1, z, w in increasing order.", - "Output Program": [ - "from sympy import *\nz = -106 - -102\nw = 3 - 1\nchoices = [1, z, w]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 1 2" - ], - "split": "test" - }, - { - "Input": "Solve 2*l**2/3 - 17942636*l/3 - 17942638/3 = 0 for l.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef d(l):\n\treturn 2*l**2/3 - 17942636*l/3 - 17942638/3\nl = symbols(\"l\")\nl = solve(2*l**2/3 - 17942636*l/3 - 17942638/3)\nprint(l)" - ], - "Output Answer": [ - "[-0.999999999999999, 8971319.00000000]" - ], - "split": "test" - }, - { - "Input": "Solve 161 - 162 = -z for z.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(161 - 162, -z)])[z]\nprint(z)" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Let s(z) = 2*z**3 - 45*z**2 + 29*z - 154. Determine s(22).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef s(z):\n\treturn 2*z**3 - 45*z**2 + 29*z - 154\nprint(s(22))" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "What is the cube root of 8719 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(8719 ** (1 / 3))))" - ], - "Output Answer": [ - "21" - ], - "split": "test" - }, - { - "Input": "Put 3, -1, 5, 14 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [3, -1, 5, 14]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1 3 5 14" - ], - "split": "test" - }, - { - "Input": "What is the third root of 24058513 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(24058513 ** (1 / 3))))" - ], - "Output Answer": [ - "289" - ], - "split": "test" - }, - { - "Input": "Let u(v) = -25911*v**3 + 3 + 25910*v**3 - 62*v**2 + 58*v**2 + 2*v. What is u(-3)?", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef u(v):\n\treturn -25911*v**3 + 3 + 25910*v**3 - 62*v**2 + 58*v**2 + 2*v\nprint(u(-3))" - ], - "Output Answer": [ - "-12" - ], - "split": "test" - }, - { - "Input": "Put -1/4, -29522, 1/3, 1/9, -4, 2 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [-1/4, -29522, 1/3, 1/9, -4, 2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-29522 -4 -0.25 0.1111111111111111 0.3333333333333333 2" - ], - "split": "test" - }, - { - "Input": "Sort -8, 19, -22, 4, 1 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-8, 19, -22, 4, 1]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "19 4 1 -8 -22" - ], - "split": "test" - }, - { - "Input": "Is 510936944 a multiple of 56?", - "Output Program": [ - "from sympy import *\nprint(510936944 % 56 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let d(t) = -4*t**3 - 3*t**2 - t + 6. Let h(g) = -2*g**3 + 32*g**2 - 3. Let b(y) = y**2 - 7*y + 8. Let j be b(8). Let z be h(j). Is d(z) a multiple of 5?", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef d(t):\n\treturn -4*t**3 - 3*t**2 - t + 6\ng = symbols(\"g\")\ndef h(g):\n\treturn -2*g**3 + 32*g**2 - 3\ny = symbols(\"y\")\ndef b(y):\n\treturn y**2 - 7*y + 8\nj = b(8)\nz = h(j)\nn = d(z)\nprint(90 % 5 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let j = -409 + 409. Solve j = 2*l - 2*y - 16, -4*l - 3*y = -4*y - 23 for l.", - "Output Program": [ - "from sympy import *\nj = -409 + 409\nl, y = symbols(\"l y\")\nl = solve([Eq(j, 2*l - 2*y - 16), Eq(-4*l - 3*y, -4*y - 23)])[l]\nprint(l)" - ], - "Output Answer": [ - "5" - ], - "split": "test" - }, - { - "Input": "Let f be 8/(-40*2/(-32))*(-5)/(-1). Which is the closest to -0.1? (a) -1 (b) -17/11 (c) f", - "Output Program": [ - "from sympy import *\nf = 8/(-40*2/(-32))*(-5)/(-1)\nchoices = [-1, -17/11, f]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "Let g = -4 - -4. Suppose g = 3*i - 5*l + 46, 2*i + 2*l = -l + 1. Let v = -387 - -379. Which is bigger: i or v?", - "Output Program": [ - "from sympy import *\ng = -4 - -4\ni, l = symbols(\"i l\")\ni = solve([Eq(g, 3*i - 5*l + 46), Eq(2*i + 2*l, -l + 1)])[i]\nv = -387 - -379\nprint(max(i, v))" - ], - "Output Answer": [ - "-7" - ], - "split": "test" - }, - { - "Input": "Sort -3185, 1, 2 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-3185, 1, 2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-3185 1 2" - ], - "split": "test" - }, - { - "Input": "Solve 4*b + u = -9, 2*b + 3*u + 11 = -2*b for b.", - "Output Program": [ - "from sympy import *\nb, u = symbols(\"b u\")\nb = solve([Eq(4*b + u, -9), Eq(2*b + 3*u + 11, -2*b)])[b]\nprint(b)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Let y = -0.0056 - -0.3056. Let v be (-4)/6*30/(-35). Sort y, v, 5/6 in decreasing order.", - "Output Program": [ - "from sympy import *\ny = -0.0056 - -0.3056\nv = (-4)/6*30/(-35)\nchoices = [y, v, 5/6]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.8333333333333334 0.5714285714285714 0.3" - ], - "split": "test" - }, - { - "Input": "Factor -2*m**3/3 - 10*m**2 - 48*m - 72.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef t(m):\n\treturn -2*m**3/3 - 10*m**2 - 48*m - 72\nm = symbols(\"m\")\neq = factor(-2*m**3/3 - 10*m**2 - 48*m - 72)\nprint(eq)" - ], - "Output Answer": [ - "-2*(m + 3)*(m + 6)**2/3" - ], - "split": "test" - }, - { - "Input": "What is the square root of 1579060211 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1579060211 ** (1 / 2))))" - ], - "Output Answer": [ - "39737" - ], - "split": "test" - }, - { - "Input": "Let t be (-10)/25 + 66/15. Suppose -4*a = -109 - 35. Let l be 280/a + t/18. Solve 4*h = 2*h + l for h.", - "Output Program": [ - "from sympy import *\nt = (-10)/25 + 66/15\na = symbols(\"a\")\na = solve([Eq(-4*a, -109 - 35)])[a]\nl = 280/a + t/18\nh = symbols(\"h\")\nh = solve([Eq(4*h, 2*h + l)])[h]\nprint(h)" - ], - "Output Answer": [ - "4.00000000000000" - ], - "split": "test" - }, - { - "Input": "What is 421985397 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(421985397 ** (1 / 3))))" - ], - "Output Answer": [ - "750" - ], - "split": "test" - }, - { - "Input": "Find b, given that b**2 - 42660*b + 938036 = 0.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef x(b):\n\treturn b**2 - 42660*b + 938036\nb = symbols(\"b\")\nb = solve(b**2 - 42660*b + 938036)\nprint(b)" - ], - "Output Answer": [ - "[22, 42638]" - ], - "split": "test" - }, - { - "Input": "Suppose 0 = -5*u + 2*u + 135. Suppose -2*g - 3*r = -u, 3*g - 2*r = -5*r + 72. Let a = 58 - g. Is a a composite number?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(0, -5*u + 2*u + 135)])[u]\ng, r = symbols(\"g r\")\ng = solve([Eq(-2*g - 3*r, -u), Eq(3*g - 2*r, -5*r + 72)])[g]\na = 58 - g\nprint(not isprime(31))" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Solve -f - 277 + 267 = d + 4*d + 2*f + 2*f, 5*d + f + 18 = 0 for d.", - "Output Program": [ - "from sympy import *\nd, f = symbols(\"d f\")\nd = solve([Eq(-f - 277 + 267, d + 4*d + 2*f + 2*f), Eq(5*d + f + 18, 0)])[d]\nprint(d)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Solve 20 = -25*g + 30*g for g.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(20, -25*g + 30*g)])[g]\nprint(g)" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Which is smaller: 741 or 114647/155?", - "Output Program": [ - "from sympy import *\nprint(min(741, 114647/155))" - ], - "Output Answer": [ - "739.658064516129" - ], - "split": "test" - }, - { - "Input": "What is the square root of 95088 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(95088 ** (1 / 2))))" - ], - "Output Answer": [ - "308" - ], - "split": "test" - }, - { - "Input": "Which is smaller: 0.9599 or -3?", - "Output Program": [ - "from sympy import *\nprint(min(0.9599, -3))" - ], - "Output Answer": [ - "-3" - ], - "split": "test" - }, - { - "Input": "Let l be (-1)/((-56)/18) + -12*7/112. What is the closest to -32 in 3, l, 2?", - "Output Program": [ - "from sympy import *\nl = (-1)/((-56)/18) + -12*7/112\nchoices = [3, l, 2]\ntarget = -32\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.4285714285714286" - ], - "split": "test" - }, - { - "Input": "What is w in -8*w**2/5 - 630*w + 788/5 = 0?", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef j(w):\n\treturn -8*w**2/5 - 630*w + 788/5\nw = symbols(\"w\")\nw = solve(-8*w**2/5 - 630*w + 788/5)\nprint(w)" - ], - "Output Answer": [ - "[-394.000000000000, 0.250000000000000]" - ], - "split": "test" - }, - { - "Input": "Let f(p) = -p**2 + 10*p - 28. Calculate f(6).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef f(p):\n\treturn -p**2 + 10*p - 28\nprint(f(6))" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Suppose -c - 2 = 2. Suppose -2*x = -5*z - 14, 23*x - 8 = -z + 18*x. Sort c, 5, z.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\nc = solve([Eq(-c - 2, 2)])[c]\nz, x = symbols(\"z x\")\nz = solve([Eq(-2*x, -5*z - 14), Eq(23*x - 8, -z + 18*x)])[z]\nchoices = [c, 5, z]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 -2 5" - ], - "split": "test" - }, - { - "Input": "What is v in -3*v**5 - 3582*v**4 - 742299*v**3 + 206848344*v**2 - 1018347948*v + 812245488 = 0?", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef c(v):\n\treturn -3*v**5 - 3582*v**4 - 742299*v**3 + 206848344*v**2 - 1018347948*v + 812245488\nv = symbols(\"v\")\nv = solve(-3*v**5 - 3582*v**4 - 742299*v**3 + 206848344*v**2 - 1018347948*v + 812245488)\nprint(v)" - ], - "Output Answer": [ - "[-674, 1, 4, 149]" - ], - "split": "test" - }, - { - "Input": "Determine o, given that 3*o**5/4 + 12*o**4 - 165*o**3/4 + 57*o**2/2 = 0.", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef t(o):\n\treturn 3*o**5/4 + 12*o**4 - 165*o**3/4 + 57*o**2/2\no = symbols(\"o\")\no = solve(3*o**5/4 + 12*o**4 - 165*o**3/4 + 57*o**2/2)\nprint(o)" - ], - "Output Answer": [ - "[-19, 0, 1, 2]" - ], - "split": "test" - }, - { - "Input": "Suppose -5*a - 5*c = -245, -37 = a - 2*a - 4*c. Let z = a - 56. Sort 5, z, 6, 0.", - "Output Program": [ - "from sympy import *\na, c = symbols(\"a c\")\na = solve([Eq(-5*a - 5*c, -245), Eq(-37, a - 2*a - 4*c)])[a]\nz = a - 56\nchoices = [5, z, 6, 0]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-3 0 5 6" - ], - "split": "test" - }, - { - "Input": "What is 105082967 to the power of 1/9, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(105082967 ** (1 / 9))))" - ], - "Output Answer": [ - "8" - ], - "split": "test" - }, - { - "Input": "What is 3367 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(3367 ** (1 / 2))))" - ], - "Output Answer": [ - "58" - ], - "split": "test" - }, - { - "Input": "Solve -2*g + 6*a = 5*a - 16, 6*a + 87 = 3*g for g.", - "Output Program": [ - "from sympy import *\ng, a = symbols(\"g a\")\ng = solve([Eq(-2*g + 6*a, 5*a - 16), Eq(6*a + 87, 3*g)])[g]\nprint(g)" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Put -5, -175745, 10, -4 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-5, -175745, 10, -4]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-175745 -5 -4 10" - ], - "split": "test" - }, - { - "Input": "Sort -18, -5, -19, 102 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [-18, -5, -19, 102]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-19 -18 -5 102" - ], - "split": "test" - }, - { - "Input": "Is 1 at most -476/688133?", - "Output Program": [ - "from sympy import *\nprint(1 <= -476/688133)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let f = -1 + 1. Let p be 2*(-3)/((-6)/(-8)). Let u be 10/p*(10 - 6). Which is the nearest to f? (a) -0.3 (b) 3 (c) u", - "Output Program": [ - "from sympy import *\nf = -1 + 1\np = 2*(-3)/((-6)/(-8))\nu = 10/p*(10 - 6)\nchoices = [-0.3, 3, u]\ntarget = f\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.3" - ], - "split": "test" - }, - { - "Input": "Sort 0, 84, 454, 1 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0, 84, 454, 1]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "0 1 84 454" - ], - "split": "test" - }, - { - "Input": "What is 63785106 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(63785106 ** (1 / 2))))" - ], - "Output Answer": [ - "7987" - ], - "split": "test" - }, - { - "Input": "Solve -14 = -2*m + 4*o, 4*m - 3*o = 5*m + 8 for m.", - "Output Program": [ - "from sympy import *\nm, o = symbols(\"m o\")\nm = solve([Eq(-14, -2*m + 4*o), Eq(4*m - 3*o, 5*m + 8)])[m]\nprint(m)" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Let h(y) = 73*y - 1019. Let u be h(14). Let v be (-2)/7 + 23/7. Solve 0 = v*n + 12 + u for n.", - "Output Program": [ - "from sympy import *\nv = (-2)/7 + 23/7\ny = symbols(\"y\")\ndef h(y):\n\treturn 73*y - 1019\nu = h(14)\nn = symbols(\"n\")\nn = solve([Eq(0, v*n + 12 + u)])[n]\nprint(n)" - ], - "Output Answer": [ - "-5.00000000000000" - ], - "split": "test" - }, - { - "Input": "Let h = -19 + 21. Solve d = k + h*d + 7, 0 = 4*k + 3*d + 25 for k.", - "Output Program": [ - "from sympy import *\nh = -19 + 21\nk, d = symbols(\"k d\")\nk = solve([Eq(d, k + h*d + 7), Eq(0, 4*k + 3*d + 25)])[k]\nprint(k)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Sort -5, 0, 3, -1727, -4, 0.2, 1/8.", - "Output Program": [ - "from sympy import *\nchoices = [-5, 0, 3, -1727, -4, 0.2, 1/8]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1727 -5 -4 0 0.125 0.2 3" - ], - "split": "test" - }, - { - "Input": "Which is the closest to -15/4? (a) -0.1 (b) 0.2 (c) 0.3 (d) -2 (e) -1/7", - "Output Program": [ - "from sympy import *\nchoices = [-0.1, 0.2, 0.3, -2, -1/7]\ntarget = -15/4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Put -1, 83, -174 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-1, 83, -174]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "83 -1 -174" - ], - "split": "test" - }, - { - "Input": "Let -3*f**4 - 63558*f**3 + 1526544*f**2 - 12215424*f + 32578560 = 0. Calculate f.", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\ndef p(f):\n\treturn -3*f**4 - 63558*f**3 + 1526544*f**2 - 12215424*f + 32578560\nf = symbols(\"f\")\nf = solve(-3*f**4 - 63558*f**3 + 1526544*f**2 - 12215424*f + 32578560)\nprint(f)" - ], - "Output Answer": [ - "[-21210, 8]" - ], - "split": "test" - }, - { - "Input": "Suppose -w + 5 = 0, -2*w + 9 = -z - 11. Let o = z + 31/3. Suppose 3*u**3 - 1/3*u**2 - o*u + 0 + 4/3*u**5 - 11/3*u**4 = 0. Calculate u.", - "Output Program": [ - "from sympy import *\nz, w = symbols(\"z w\")\nz = solve([Eq(-w + 5, 0), Eq(-2*w + 9, -z - 11)])[z]\no = z + 31/3\nu = symbols(\"u\")\ndef s(u):\n\treturn 3*u**3 - 1/3*u**2 - o*u + 0 + 4/3*u**5 - 11/3*u**4\nu = symbols(\"u\")\nu = solve(3*u**3 - 1/3*u**2 - o*u + 0 + 4/3*u**5 - 11/3*u**4)\nprint(u)" - ], - "Output Answer": [ - "[-0.250000000000000, 0.0, 1.00000000000000]" - ], - "split": "test" - }, - { - "Input": "Let j(y) = -y**2 - 2*y + 2. Let r be j(-2). Let w be (-88)/(-16) - 1/r. Solve 5*f = 5*l + w, 6*f = f + 4*l + 9 for f.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef j(y):\n\treturn -y**2 - 2*y + 2\nr = j(-2)\nw = (-88)/(-16) - 1/r\nf, l = symbols(\"f l\")\nf = solve([Eq(5*f, 5*l + w), Eq(6*f, f + 4*l + 9)])[f]\nprint(f)" - ], - "Output Answer": [ - "5.00000000000000" - ], - "split": "test" - }, - { - "Input": "Let i(m) = 797*m - 48923. What is i(63)?", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef i(m):\n\treturn 797*m - 48923\nprint(i(63))" - ], - "Output Answer": [ - "1288" - ], - "split": "test" - }, - { - "Input": "Let u(c) = -7*c**2 + 4*c**2 + 2*c**2 - 3 + 2*c. Let m be u(2). Put 10, -2, m in descending order.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef u(c):\n\treturn -7*c**2 + 4*c**2 + 2*c**2 - 3 + 2*c\nm = u(2)\nchoices = [10, -2, m]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "10 -2 -3" - ], - "split": "test" - }, - { - "Input": "Put -0.3, -2/17, 6, -1/3, 17/6 in descending order.", - "Output Program": [ - "from sympy import *\nchoices = [-0.3, -2/17, 6, -1/3, 17/6]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "6 2.8333333333333335 -0.11764705882352941 -0.3 -0.3333333333333333" - ], - "split": "test" - }, - { - "Input": "Let v(c) = c - 51. Let w be v(-7). Let s = 59 + w. Solve -q + s + 3 = 0 for q.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef v(c):\n\treturn c - 51\nw = v(-7)\ns = 59 + w\nq = symbols(\"q\")\nq = solve([Eq(-q + s + 3, 0)])[q]\nprint(q)" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Suppose -48 = -4*j - 2*u, 1329 = -4*j + 5*u + 1363. Solve j*w = 50 + 38 for w.", - "Output Program": [ - "from sympy import *\nj, u = symbols(\"j u\")\nj = solve([Eq(-48, -4*j - 2*u), Eq(1329, -4*j + 5*u + 1363)])[j]\nw = symbols(\"w\")\nw = solve([Eq(j*w, 50 + 38)])[w]\nprint(w)" - ], - "Output Answer": [ - "8" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -a - 4*r - 9 + 29, -5*r + 16 = -a for a.", - "Output Program": [ - "from sympy import *\na, r = symbols(\"a r\")\na = solve([Eq(0, -a - 4*r - 9 + 29), Eq(-5*r + 16, -a)])[a]\nprint(a)" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Let x be (10 - 2) + -2 - -1. Suppose -9 = 2*j + 2*z + 3, 2*z = 3*j - x. Let l be (-1794)/92 - (-22 + 2). Which is the closest to -1? (a) l (b) j (c) -1/5", - "Output Program": [ - "from sympy import *\nl = (-1794)/92 - (-22 + 2)\nx = (10 - 2) + -2 - -1\nj, z = symbols(\"j z\")\nj = solve([Eq(-9, 2*j + 2*z + 3), Eq(2*z, 3*j - x)])[j]\nchoices = [l, j, -1/5]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "Is 7677 a multiple of 3?", - "Output Program": [ - "from sympy import *\nprint(7677 % 3 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let w = 22 - 22. Suppose w = -5*j + 78 + 27. Suppose -3*m = -5*i - j, 3*i - 4*i + 5 = 4*m. Solve -m - 4 = 3*t for t.", - "Output Program": [ - "from sympy import *\nw = 22 - 22\nj = symbols(\"j\")\nj = solve([Eq(w, -5*j + 78 + 27)])[j]\nm, i = symbols(\"m i\")\nm = solve([Eq(-3*m, -5*i - j), Eq(3*i - 4*i + 5, 4*m)])[m]\nt = symbols(\"t\")\nt = solve([Eq(-m - 4, 3*t)])[t]\nprint(t)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Suppose 2*c = -5*t, -2*t - 2*t = -2*c - 18. Suppose 3*a = -0*a + 2*l - 1, -2 = 4*a - 3*l. Solve 3 - a = -t*q for q.", - "Output Program": [ - "from sympy import *\nt, c = symbols(\"t c\")\nt = solve([Eq(2*c, -5*t), Eq(-2*t - 2*t, -2*c - 18)])[t]\na, l = symbols(\"a l\")\na = solve([Eq(3*a, -0*a + 2*l - 1), Eq(-2, 4*a - 3*l)])[a]\nq = symbols(\"q\")\nq = solve([Eq(3 - a, -t*q)])[q]\nprint(q)" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "Suppose 3*n + 1 = 5*g, -4*n - 19*g - 9 = -18*g. Sort -3, 5, -136, n in descending order.", - "Output Program": [ - "from sympy import *\nn, g = symbols(\"n g\")\nn = solve([Eq(3*n + 1, 5*g), Eq(-4*n - 19*g - 9, -18*g)])[n]\nchoices = [-3, 5, -136, n]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 -2 -3 -136" - ], - "split": "test" - }, - { - "Input": "Let g(o) = -2*o - 42. Calculate g(9).", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef g(o):\n\treturn -2*o - 42\nprint(g(9))" - ], - "Output Answer": [ - "-60" - ], - "split": "test" - }, - { - "Input": "What is 17201529 to the power of 1/6, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(17201529 ** (1 / 6))))" - ], - "Output Answer": [ - "16" - ], - "split": "test" - }, - { - "Input": "Let w = -90 - -86. Let x(n) = -2*n**3 - 8*n**2 - n - 1. Let b be x(w). Solve 0 = b*i + 2*i for i.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef x(n):\n\treturn -2*n**3 - 8*n**2 - n - 1\nw = -90 - -86\nb = x(w)\ni = symbols(\"i\")\ni = solve([Eq(0, b*i + 2*i)])[i]\nprint(i)" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Suppose 3*l = -2 + 101. Let g be 48/22 + (-6)/l. Solve g*c - 9 = -3*v + 5*c, 0 = c + 5 for v.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\nl = solve([Eq(3*l, -2 + 101)])[l]\ng = 48/22 + (-6)/l\nv, c = symbols(\"v c\")\nv = solve([Eq(g*c - 9, -3*v + 5*c), Eq(0, c + 5)])[v]\nprint(v)" - ], - "Output Answer": [ - "-2.00000000000000" - ], - "split": "test" - }, - { - "Input": "Let r be -4 + ((-201)/(-16))/3. Which is the closest to 2/7? (a) -3/8 (b) 0.4 (c) r", - "Output Program": [ - "from sympy import *\nr = -4 + ((-201)/(-16))/3\nchoices = [-3/8, 0.4, r]\ntarget = 2/7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1875" - ], - "split": "test" - }, - { - "Input": "Simplify (3*sqrt(60)/sqrt(5))/sqrt(6).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((3*sqrt(60)/sqrt(5))/sqrt(6))))" - ], - "Output Answer": [ - "3*sqrt(2)" - ], - "split": "test" - }, - { - "Input": "What is h in h**5/3 - 83*h**4/3 + 1558*h**3/3 - 2468*h**2/3 - 6248*h/3 + 11200/3 = 0?", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\ndef p(h):\n\treturn h**5/3 - 83*h**4/3 + 1558*h**3/3 - 2468*h**2/3 - 6248*h/3 + 11200/3\nh = symbols(\"h\")\nh = solve(h**5/3 - 83*h**4/3 + 1558*h**3/3 - 2468*h**2/3 - 6248*h/3 + 11200/3)\nprint(h)" - ], - "Output Answer": [ - "[-2.00000000000000, 2.00000000000000, 25.0000000000000, 56.0000000000000]" - ], - "split": "test" - }, - { - "Input": "Suppose -5*g - 5 = -5*v, -1 + 0 = -5*g - v. Suppose -4*o + g*o = 5*d - 80, 0 = -5*o + d + 71. Solve -5*t = 4*x + o, -4*t - t = -4*x - 25 for t.", - "Output Program": [ - "from sympy import *\ng, v = symbols(\"g v\")\ng = solve([Eq(-5*g - 5, -5*v), Eq(-1 + 0, -5*g - v)])[g]\no, d = symbols(\"o d\")\no = solve([Eq(-4*o + g*o, 5*d - 80), Eq(0, -5*o + d + 71)])[o]\nt, x = symbols(\"t x\")\nt = solve([Eq(-5*t, 4*x + o), Eq(-4*t - t, -4*x - 25)])[t]\nprint(t)" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Let n be 2/8 - 440/(-96)*3. Let y(b) = 21 - 16*b. Let f(a) = 9*a - 11. Let l(k) = 7*f(k) + 4*y(k). Give l(n).", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef f(a):\n\treturn 9*a - 11\nb = symbols(\"b\")\ndef y(b):\n\treturn 21 - 16*b\ndef l(k):\n\treturn 7*f(k) + 4*y(k)\nn = 2/8 - 440/(-96)*3\nprint(l(n))" - ], - "Output Answer": [ - "-7.0" - ], - "split": "test" - }, - { - "Input": "Let i(l) = 1523*l + 43268. Determine i(-28).", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef i(l):\n\treturn 1523*l + 43268\nprint(i(-28))" - ], - "Output Answer": [ - "624" - ], - "split": "test" - }, - { - "Input": "Suppose -5*b + 16851 = -2*h, -99*b - 2*h - 10113 = -102*b. Is b a multiple of 76?", - "Output Program": [ - "from sympy import *\nb, h = symbols(\"b h\")\nb = solve([Eq(-5*b + 16851, -2*h), Eq(-99*b - 2*h - 10113, -102*b)])[b]\nprint(3369 % 76 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let -5*p**2 - 35*p - 60 = 0. What is p?", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef j(p):\n\treturn -5*p**2 - 35*p - 60\np = symbols(\"p\")\np = solve(-5*p**2 - 35*p - 60)\nprint(p)" - ], - "Output Answer": [ - "[-4, -3]" - ], - "split": "test" - }, - { - "Input": "Suppose 31 + 31 = 2*k. Let a be (2 - -2)*(34 + -53 - -17) - -38. Is k smaller than a?", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\nk = solve([Eq(31 + 31, 2*k)])[k]\na = (2 - -2)*(34 + -53 - -17) - -38\nprint(k < a)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let a(s) = 4*s**2 - 48 + 14 - 5*s**2 - 4*s + 4*s**2. Let j be a(-6). Let z = -97 + j. Solve -3*w + 2*w - z = 0 for w.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef a(s):\n\treturn 4*s**2 - 48 + 14 - 5*s**2 - 4*s + 4*s**2\nj = a(-6)\nz = -97 + j\nw = symbols(\"w\")\nw = solve([Eq(-3*w + 2*w - z, 0)])[w]\nprint(w)" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "Which is the closest to -0.1? (a) -2 (b) -1/28 (c) 1.77 (d) 0.3", - "Output Program": [ - "from sympy import *\nchoices = [-2, -1/28, 1.77, 0.3]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.03571428571428571" - ], - "split": "test" - }, - { - "Input": "Suppose 5*s + 0 + 5 = 0. Let u be 4/(-6) - (-24)/(-18). Put s, u, 2/3 in decreasing order.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ns = solve([Eq(5*s + 0 + 5, 0)])[s]\nu = 4/(-6) - (-24)/(-18)\nchoices = [s, u, 2/3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.6666666666666666 -1 -2.0" - ], - "split": "test" - }, - { - "Input": "Let t = -15.3 - -16. Let n = 0.3 + t. Let z = -728 + 731. Which is the closest to z? (a) -0.5 (b) n (c) 1/4", - "Output Program": [ - "from sympy import *\nz = -728 + 731\nt = -15.3 - -16\nn = 0.3 + t\nchoices = [-0.5, n, 1/4]\ntarget = z\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.9999999999999993" - ], - "split": "test" - }, - { - "Input": "Let c be 8/((-4 - 0)/(-8)). Let f be 3/1 + 52/(-4). Let z = f - -10. Solve z*m - c = 4*m for m.", - "Output Program": [ - "from sympy import *\nc = 8/((-4 - 0)/(-8))\nf = 3/1 + 52/(-4)\nz = f - -10\nm = symbols(\"m\")\nm = solve([Eq(z*m - c, 4*m)])[m]\nprint(m)" - ], - "Output Answer": [ - "-4.00000000000000" - ], - "split": "test" - }, - { - "Input": "Suppose -g - 3*q + 5 = -2, -2*g + 13 = 5*q. Solve y + 2*k - g = 0, -3*y - 2*k + 6*k - 8 = 0 for y.", - "Output Program": [ - "from sympy import *\ng, q = symbols(\"g q\")\ng = solve([Eq(-g - 3*q + 5, -2), Eq(-2*g + 13, 5*q)])[g]\ny, k = symbols(\"y k\")\ny = solve([Eq(y + 2*k - g, 0), Eq(-3*y - 2*k + 6*k - 8, 0)])[y]\nprint(y)" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Let l(x) = -2*x**3 - 25*x**2 + 55*x. Let p(m) = -m**3 - 12*m**2 + 27*m. Let g(z) = -4*l(z) + 9*p(z). Is g(-11) a multiple of 11?", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef p(m):\n\treturn -m**3 - 12*m**2 + 27*m\nx = symbols(\"x\")\ndef l(x):\n\treturn -2*x**3 - 25*x**2 + 55*x\ndef g(z):\n\treturn -4*l(z) + 9*p(z)\ny = g(-11)\nprint(110 % 11 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose 5*a - 4*q + 18 = 4*a, -3*q + 141 = -5*a. Let h be (-3)/a*-4*-15. Suppose -4*p = 2*r - 20, r + 3*p = -0*r + 15. Solve r = h*o - o for o.", - "Output Program": [ - "from sympy import *\na, q = symbols(\"a q\")\na = solve([Eq(5*a - 4*q + 18, 4*a), Eq(-3*q + 141, -5*a)])[a]\nh = (-3)/a*-4*-15\nr, p = symbols(\"r p\")\nr = solve([Eq(-4*p, 2*r - 20), Eq(r + 3*p, -0*r + 15)])[r]\no = symbols(\"o\")\no = solve([Eq(r, h*o - o)])[o]\nprint(o)" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Solve 2*n**4/13 + 4*n**3 + 2*n**2 - 312*n - 4032/13 = 0 for n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef j(n):\n\treturn 2*n**4/13 + 4*n**3 + 2*n**2 - 312*n - 4032/13\nn = symbols(\"n\")\nn = solve(2*n**4/13 + 4*n**3 + 2*n**2 - 312*n - 4032/13)\nprint(n)" - ], - "Output Answer": [ - "[-21.0000000000000, -12.0000000000000, -0.999999999999999, 8.00000000000000]" - ], - "split": "test" - }, - { - "Input": "Solve 0 = 28473*n - 28519*n + 506 for n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(0, 28473*n - 28519*n + 506)])[n]\nprint(n)" - ], - "Output Answer": [ - "11" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -5*s + 5*w - 15, -s = -27*w + 29*w + 6 for s.", - "Output Program": [ - "from sympy import *\ns, w = symbols(\"s w\")\ns = solve([Eq(0, -5*s + 5*w - 15), Eq(-s, -27*w + 29*w + 6)])[s]\nprint(s)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Let f(q) = -q**2 + 2*q - 19. Calculate f(19).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef f(q):\n\treturn -q**2 + 2*q - 19\nprint(f(19))" - ], - "Output Answer": [ - "-342" - ], - "split": "test" - }, - { - "Input": "Solve -73*q + 74*q = 2 for q.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(-73*q + 74*q, 2)])[q]\nprint(q)" - ], - "Output Answer": [ - "2" - ], - "split": "test" - }, - { - "Input": "Suppose 13 = 4*b - 10*z + 5*z, -4*z = 4. Suppose 0 = -2*h - 5*k + k - 16, -2*k = -3*h + 8. Solve 3*j - 5*o + h*o = 25, -b*j + 4*o + 18 = 0 for j.", - "Output Program": [ - "from sympy import *\nh, k = symbols(\"h k\")\nh = solve([Eq(0, -2*h - 5*k + k - 16), Eq(-2*k, -3*h + 8)])[h]\nb, z = symbols(\"b z\")\nb = solve([Eq(13, 4*b - 10*z + 5*z), Eq(-4*z, 4)])[b]\nj, o = symbols(\"j o\")\nj = solve([Eq(3*j - 5*o + h*o, 25), Eq(-b*j + 4*o + 18, 0)])[j]\nprint(j)" - ], - "Output Answer": [ - "5" - ], - "split": "test" - }, - { - "Input": "Let i(t) = t**3 - 7*t**2 + 6*t + 3. What is i(4)?", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef i(t):\n\treturn t**3 - 7*t**2 + 6*t + 3\nprint(i(4))" - ], - "Output Answer": [ - "-21" - ], - "split": "test" - }, - { - "Input": "Let s be (36648/(-24432))/(-1*(-3)/(-8)). Find u, given that s*u**2 + 4/3*u**3 + 0 - 40/3*u = 0.", - "Output Program": [ - "from sympy import *\ns = (36648/(-24432))/(-1*(-3)/(-8))\nu = symbols(\"u\")\ndef c(u):\n\treturn s*u**2 + 4/3*u**3 + 0 - 40/3*u\nu = symbols(\"u\")\nu = solve(s*u**2 + 4/3*u**3 + 0 - 40/3*u)\nprint(u)" - ], - "Output Answer": [ - "[-5.00000000000000, 0.0, 2.00000000000000]" - ], - "split": "test" - }, - { - "Input": "Let q be 5/(30/(-4))*-3. Let j(c) = 2*c**q + 0*c**2 - c + 6*c. Let w be j(-3). Let o(l) = l**3 - 3*l**2 + l + 3. Calculate o(w).", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef o(l):\n\treturn l**3 - 3*l**2 + l + 3\nq = 5/(30/(-4))*-3\nc = symbols(\"c\")\ndef j(c):\n\treturn 2*c**q + 0*c**2 - c + 6*c\nw = j(-3)\nprint(o(w))" - ], - "Output Answer": [ - "6.0" - ], - "split": "test" - }, - { - "Input": "Sort 0, 2/3, 7, -1.9, 3, -49142, -4 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [0, 2/3, 7, -1.9, 3, -49142, -4]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-49142 -4 -1.9 0 0.6666666666666666 3 7" - ], - "split": "test" - }, - { - "Input": "Simplify 5 + ((sqrt(60)/sqrt(4))/sqrt(5))**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(5 + ((sqrt(60)/sqrt(4))/sqrt(5))**2)))" - ], - "Output Answer": [ - "8" - ], - "split": "test" - }, - { - "Input": "Solve -227363*n - 5346 = -226877*n for n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(-227363*n - 5346, -226877*n)])[n]\nprint(n)" - ], - "Output Answer": [ - "-11" - ], - "split": "test" - }, - { - "Input": "What is the closest to 1 in -1/3, -4/5, -1.69, -6, -2068?", - "Output Program": [ - "from sympy import *\nchoices = [-1/3, -4/5, -1.69, -6, -2068]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.3333333333333333" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to -3/2? (a) 8230 (b) 5 (c) -0.4", - "Output Program": [ - "from sympy import *\nchoices = [8230, 5, -0.4]\ntarget = -3/2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.4" - ], - "split": "test" - }, - { - "Input": "Suppose -7*x + 15*x - 7*x = 0. Let z be x + 3*2/3. Suppose v + 5 = z*v. Solve 5*u - 3*b = 28, 0 = v*b - b + 4 for u.", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\nx = solve([Eq(-7*x + 15*x - 7*x, 0)])[x]\nz = x + 3*2/3\nv = symbols(\"v\")\nv = solve([Eq(v + 5, z*v)])[v]\nu, b = symbols(\"u b\")\nu = solve([Eq(5*u - 3*b, 28), Eq(0, v*b - b + 4)])[u]\nprint(u)" - ], - "Output Answer": [ - "5.00000000000000" - ], - "split": "test" - }, - { - "Input": "Sort 53, -5/4, -4, -0.2 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [53, -5/4, -4, -0.2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-4 -1.25 -0.2 53" - ], - "split": "test" - }, - { - "Input": "Is 97 a factor of 2046894?", - "Output Program": [ - "from sympy import *\nprint(2046894 % 97 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let l(i) = i**3 + i**2 - 209*i + 207. Give l(-18).", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef l(i):\n\treturn i**3 + i**2 - 209*i + 207\nprint(l(-18))" - ], - "Output Answer": [ - "-1539" - ], - "split": "test" - }, - { - "Input": "Solve 5*z = -3*f - 47, -10*f + 14*f = 3*z + 5 for f.", - "Output Program": [ - "from sympy import *\nf, z = symbols(\"f z\")\nf = solve([Eq(5*z, -3*f - 47), Eq(-10*f + 14*f, 3*z + 5)])[f]\nprint(f)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Suppose 11*s = 380 - 28. Let f be 8/2*16/s + 1. Suppose -f*a - 381 = -3*r, -2*r + 5*a - 32 = -289. Is r a multiple of 14?", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ns = solve([Eq(11*s, 380 - 28)])[s]\nf = 8/2*16/s + 1\nr, a = symbols(\"r a\")\nr = solve([Eq(-f*a - 381, -3*r), Eq(-2*r + 5*a - 32, -289)])[r]\nprint(126 % 14 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "What is the nearest to -0.2 in 1/7, -0.6, 2/5?", - "Output Program": [ - "from sympy import *\nchoices = [1/7, -0.6, 2/5]\ntarget = -0.2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.14285714285714285" - ], - "split": "test" - }, - { - "Input": "Solve -284*r + 560*r - 241*r - 176*r = 14100 for r.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\nr = solve([Eq(-284*r + 560*r - 241*r - 176*r, 14100)])[r]\nprint(r)" - ], - "Output Answer": [ - "-100" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to 0.1? (a) -0.5 (b) 1 (c) -0.1 (d) -7", - "Output Program": [ - "from sympy import *\nchoices = [-0.5, 1, -0.1, -7]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "test" - }, - { - "Input": "Determine p so that 5*p**4 + 175*p**3 - 16395*p**2 - 624395*p + 640610 = 0.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef m(p):\n\treturn 5*p**4 + 175*p**3 - 16395*p**2 - 624395*p + 640610\np = symbols(\"p\")\np = solve(5*p**4 + 175*p**3 - 16395*p**2 - 624395*p + 640610)\nprint(p)" - ], - "Output Answer": [ - "[-47, 1, 58]" - ], - "split": "test" - }, - { - "Input": "Suppose -5*m + 42 = 5*n - 88, n + 4*m = 29. Suppose -3*h + 0*g + n = -5*g, -3*h - 25 = 5*g. Let x(t) = t - 2. Give x(h).", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef x(t):\n\treturn t - 2\nn, m = symbols(\"n m\")\nn = solve([Eq(-5*m + 42, 5*n - 88), Eq(n + 4*m, 29)])[n]\nh, g = symbols(\"h g\")\nh = solve([Eq(-3*h + 0*g + n, -5*g), Eq(-3*h - 25, 5*g)])[h]\nprint(x(h))" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Suppose 12 = -5*u + 4*u. Let c = u - -11. Let p be 1 - (4/(-12))/c. Which is greater: -3 or p?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(12, -5*u + 4*u)])[u]\nc = u - -11\np = 1 - (4/(-12))/c\nprint(max(-3, p))" - ], - "Output Answer": [ - "0.666666666666667" - ], - "split": "test" - }, - { - "Input": "Suppose -5*l**2 - 1260*l + 2540 = 0. What is l?", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef y(l):\n\treturn -5*l**2 - 1260*l + 2540\nl = symbols(\"l\")\nl = solve(-5*l**2 - 1260*l + 2540)\nprint(l)" - ], - "Output Answer": [ - "[-254, 2]" - ], - "split": "test" - }, - { - "Input": "Let z(b) = -b**3 + 2*b**2 + b - 2. Suppose -3*h = -18 - 0. Let f(s) = 6 - 2*s. Let y be f(h). Let p be 3 + (y/2)/3. What is z(p)?", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef z(b):\n\treturn -b**3 + 2*b**2 + b - 2\ns = symbols(\"s\")\ndef f(s):\n\treturn 6 - 2*s\nh = symbols(\"h\")\nh = solve([Eq(-3*h, -18 - 0)])[h]\ny = f(h)\np = 3 + (y/2)/3\nprint(z(p))" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Let z = -1284 - -1318. Which is the closest to -1? (a) 3/4 (b) z (c) 5/2", - "Output Program": [ - "from sympy import *\nz = -1284 - -1318\nchoices = [3/4, z, 5/2]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.75" - ], - "split": "test" - }, - { - "Input": "What is 806540552 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(806540552 ** (1 / 2))))" - ], - "Output Answer": [ - "28400" - ], - "split": "test" - }, - { - "Input": "Let i(q) = -19*q**2 - 4*q - 6. Calculate i(-2).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef i(q):\n\treturn -19*q**2 - 4*q - 6\nprint(i(-2))" - ], - "Output Answer": [ - "-74" - ], - "split": "test" - }, - { - "Input": "Which is the closest to 0.14? (a) 0.28 (b) -3.8 (c) -2 (d) -3 (e) 7", - "Output Program": [ - "from sympy import *\nchoices = [0.28, -3.8, -2, -3, 7]\ntarget = 0.14\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.28" - ], - "split": "test" - }, - { - "Input": "Let z be 3*1 + 0 + -1. Suppose -9 = -11*o + 2*o. What is r in z*r - r**3 + 1 - o - r = 0?", - "Output Program": [ - "from sympy import *\nz = 3*1 + 0 + -1\no = symbols(\"o\")\no = solve([Eq(-9, -11*o + 2*o)])[o]\nr = symbols(\"r\")\ndef w(r):\n\treturn z*r - r**3 + 1 - o - r\nr = symbols(\"r\")\nr = solve(z*r - r**3 + 1 - o - r)\nprint(r)" - ], - "Output Answer": [ - "[-1, 0, 1]" - ], - "split": "test" - }, - { - "Input": "Sort 0.3, 30, 0.4, -2/87, 302 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [0.3, 30, 0.4, -2/87, 302]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.022988505747126436 0.3 0.4 30 302" - ], - "split": "test" - }, - { - "Input": "Put -150.5, -18, 0.2, 2 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [-150.5, -18, 0.2, 2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-150.5 -18 0.2 2" - ], - "split": "test" - }, - { - "Input": "Solve -5*r + 37 = l + 64, 0 = -8*l - r - 21 for l.", - "Output Program": [ - "from sympy import *\nl, r = symbols(\"l r\")\nl = solve([Eq(-5*r + 37, l + 64), Eq(0, -8*l - r - 21)])[l]\nprint(l)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Suppose 0*x - 18 = -3*x. Let r = 9 - x. Suppose -j - 95 = -r*i, -3*i + 4*j - 52 = -153. Is i a composite number?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\nx = solve([Eq(0*x - 18, -3*x)])[x]\nr = 9 - x\ni, j = symbols(\"i j\")\ni = solve([Eq(-j - 95, -r*i), Eq(-3*i + 4*j - 52, -153)])[i]\nprint(not isprime(31))" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Solve 5*k + 8 = -2, 0 = -q - k - 6 for q.", - "Output Program": [ - "from sympy import *\nq, k = symbols(\"q k\")\nq = solve([Eq(5*k + 8, -2), Eq(0, -q - k - 6)])[q]\nprint(q)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Let b = -14 + 14.3. Put 2/5, 2, b in ascending order.", - "Output Program": [ - "from sympy import *\nb = -14 + 14.3\nchoices = [2/5, 2, b]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "0.3000000000000007 0.4 2" - ], - "split": "test" - }, - { - "Input": "Let u(n) = n**2 - 12*n - 11. Let l be u(13). Suppose 0 = -2*c + 3*c + c. What is the nearest to c in -2/11, -7, l?", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\nc = solve([Eq(0, -2*c + 3*c + c)])[c]\nn = symbols(\"n\")\ndef u(n):\n\treturn n**2 - 12*n - 11\nl = u(13)\nchoices = [-2/11, -7, l]\ntarget = c\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.18181818181818182" - ], - "split": "test" - }, - { - "Input": "Simplify (2*5*((2 + sqrt(891))*-5 + sqrt(891) - sqrt(891)) + 0 + 5)*5.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((2*5*((2 + sqrt(891))*-5 + sqrt(891) - sqrt(891)) + 0 + 5)*5)))" - ], - "Output Answer": [ - "-2250*sqrt(11) - 475" - ], - "split": "test" - }, - { - "Input": "Suppose -24*d - 4*q = -25*d + 57, d = -5*q + 3. Solve -d*s = -46*s - 78 for s.", - "Output Program": [ - "from sympy import *\nd, q = symbols(\"d q\")\nd = solve([Eq(-24*d - 4*q, -25*d + 57), Eq(d, -5*q + 3)])[d]\ns = symbols(\"s\")\ns = solve([Eq(-d*s, -46*s - 78)])[s]\nprint(s)" - ], - "Output Answer": [ - "-6" - ], - "split": "test" - }, - { - "Input": "Solve 237 + 390 = -57*c for c.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\nc = solve([Eq(237 + 390, -57*c)])[c]\nprint(c)" - ], - "Output Answer": [ - "-11" - ], - "split": "test" - }, - { - "Input": "Let a = 134 - 95. Is 14 a factor of a?", - "Output Program": [ - "from sympy import *\na = 134 - 95\nprint(39 % 14 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let w(k) = -k**3 + 11*k**2 - 11*k + 9. Let g be w(10). Let i be (g/4)/(2/4). Which is the nearest to i? (a) -3/7 (b) 0.2 (c) 4", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef w(k):\n\treturn -k**3 + 11*k**2 - 11*k + 9\ng = w(10)\ni = (g/4)/(2/4)\nchoices = [-3/7, 0.2, 4]\ntarget = i\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.42857142857142855" - ], - "split": "test" - }, - { - "Input": "Factor -3*q**3 + 43782*q**2 - 159782400*q + 319389696.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef l(q):\n\treturn -3*q**3 + 43782*q**2 - 159782400*q + 319389696\nq = symbols(\"q\")\neq = factor(-3*q**3 + 43782*q**2 - 159782400*q + 319389696)\nprint(eq)" - ], - "Output Answer": [ - "-3*(q - 7296)**2*(q - 2)" - ], - "split": "test" - }, - { - "Input": "Let j = 0.648 - 0.248. Sort 1/7, -3, j, -11 in increasing order.", - "Output Program": [ - "from sympy import *\nj = 0.648 - 0.248\nchoices = [1/7, -3, j, -11]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-11 -3 0.14285714285714285 0.4" - ], - "split": "test" - }, - { - "Input": "Let s = -874 - -861. Let t be (4 - (-18)/(-4))/(-2). Which is the nearest to 1? (a) t (b) s (c) 1", - "Output Program": [ - "from sympy import *\nt = (4 - (-18)/(-4))/(-2)\ns = -874 - -861\nchoices = [t, s, 1]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to 5/2? (a) 2/7 (b) 1779 (c) 0 (d) 0.5 (e) -24", - "Output Program": [ - "from sympy import *\nchoices = [2/7, 1779, 0, 0.5, -24]\ntarget = 5/2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.5" - ], - "split": "test" - }, - { - "Input": "Let j(u) = -8*u**3 + 7*u**2 + 5*u + 8. Let x(b) = -8*b**3 + 5*b**2 + 4*b + 6. Let l(i) = -3*j(i) + 4*x(i). Let g = 0 + 1. Give l(g).", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef j(u):\n\treturn -8*u**3 + 7*u**2 + 5*u + 8\nb = symbols(\"b\")\ndef x(b):\n\treturn -8*b**3 + 5*b**2 + 4*b + 6\ndef l(i):\n\treturn -3*j(i) + 4*x(i)\ng = 0 + 1\nprint(l(g))" - ], - "Output Answer": [ - "-8" - ], - "split": "test" - }, - { - "Input": "Is 7014533 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(7014533))" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let p(o) = -2*o**3 - 44*o**2 - 1. Let a be p(-22). Is 3/1318 < a?", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef p(o):\n\treturn -2*o**3 - 44*o**2 - 1\na = p(-22)\nprint(3/1318 < a)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Suppose 4*r + 2*i - 17 = -3, -i + 16 = 5*r. Let b be 20/(-5) + r/1. Let o be (3 - 0)/((-1)/b). Solve -3*p + 5*l - 7 = 0, -o*p + 0*l - 10 = -2*l for p.", - "Output Program": [ - "from sympy import *\nr, i = symbols(\"r i\")\nr = solve([Eq(4*r + 2*i - 17, -3), Eq(-i + 16, 5*r)])[r]\nb = 20/(-5) + r/1\no = (3 - 0)/((-1)/b)\np, l = symbols(\"p l\")\np = solve([Eq(-3*p + 5*l - 7, 0), Eq(-o*p + 0*l - 10, -2*l)])[p]\nprint(p)" - ], - "Output Answer": [ - "-4.00000000000000" - ], - "split": "test" - }, - { - "Input": "Let r be ((-45)/(-10))/9*6. Suppose -r = 4*m - 3*v, v - 4 + 5 = 2*m. Suppose 3*w - 41 = 5*x, -3*w + 12 = -2*w - 2*x. Solve -w = m*d - 7 for d.", - "Output Program": [ - "from sympy import *\nw, x = symbols(\"w x\")\nw = solve([Eq(3*w - 41, 5*x), Eq(-3*w + 12, -2*w - 2*x)])[w]\nr = ((-45)/(-10))/9*6\nm, v = symbols(\"m v\")\nm = solve([Eq(-r, 4*m - 3*v), Eq(v - 4 + 5, 2*m)])[m]\nd = symbols(\"d\")\nd = solve([Eq(-w, m*d - 7)])[d]\nprint(d)" - ], - "Output Answer": [ - "-5.00000000000000" - ], - "split": "test" - }, - { - "Input": "Solve -3*h = 2*f + 54, -f - 126 = 137*h + 26 + 146 for f.", - "Output Program": [ - "from sympy import *\nf, h = symbols(\"f h\")\nf = solve([Eq(-3*h, 2*f + 54), Eq(-f - 126, 137*h + 26 + 146)])[f]\nprint(f)" - ], - "Output Answer": [ - "-24" - ], - "split": "test" - }, - { - "Input": "Factor -3*w**4 + 33*w**3 + 228*w**2 + 192*w.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef z(w):\n\treturn -3*w**4 + 33*w**3 + 228*w**2 + 192*w\nw = symbols(\"w\")\neq = factor(-3*w**4 + 33*w**3 + 228*w**2 + 192*w)\nprint(eq)" - ], - "Output Answer": [ - "-3*w*(w - 16)*(w + 1)*(w + 4)" - ], - "split": "test" - }, - { - "Input": "Let j = 219/7 - 3702/119. Which is smaller: j or -0.1?", - "Output Program": [ - "from sympy import *\nj = 219/7 - 3702/119\nprint(min(j, -0.1))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "test" - }, - { - "Input": "Which is greater: -296784/37 or -8021?", - "Output Program": [ - "from sympy import *\nprint(max(-296784/37, -8021))" - ], - "Output Answer": [ - "-8021" - ], - "split": "test" - }, - { - "Input": "Which is bigger: -2/2699 or 0?", - "Output Program": [ - "from sympy import *\nprint(max(-2/2699, 0))" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "What is the fifth root of 707214 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(707214 ** (1 / 5))))" - ], - "Output Answer": [ - "15" - ], - "split": "test" - }, - { - "Input": "Let a(t) = -22*t**3 + 38*t**2 + 122*t + 72. Let l(m) = -7*m**3 + 13*m**2 + 41*m + 24. Let k be 2/6 + (-10)/3. Let i(y) = k*a(y) + 10*l(y). Solve i(r) = 0 for r.", - "Output Program": [ - "from sympy import *\nk = 2/6 + (-10)/3\nm = symbols(\"m\")\ndef l(m):\n\treturn -7*m**3 + 13*m**2 + 41*m + 24\nt = symbols(\"t\")\ndef a(t):\n\treturn -22*t**3 + 38*t**2 + 122*t + 72\ndef i(y):\n\treturn k*a(y) + 10*l(y)\nr = symbols(\"r\")\nr = solve(i(r))\nprint(r)" - ], - "Output Answer": [ - "[-1.00000000000000, 6.00000000000000]" - ], - "split": "test" - }, - { - "Input": "Solve 3*y + 21 = 5*s, 14*y - 9*y + 5*s = 5 for y.", - "Output Program": [ - "from sympy import *\ny, s = symbols(\"y s\")\ny = solve([Eq(3*y + 21, 5*s), Eq(14*y - 9*y + 5*s, 5)])[y]\nprint(y)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Suppose 3*q**3/7 - 7806*q**2/7 - 260769*q/7 - 252960/7 = 0. What is q?", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef c(q):\n\treturn 3*q**3/7 - 7806*q**2/7 - 260769*q/7 - 252960/7\nq = symbols(\"q\")\nq = solve(3*q**3/7 - 7806*q**2/7 - 260769*q/7 - 252960/7)\nprint(q)" - ], - "Output Answer": [ - "[-32.0 + 0.e-17*I, -1.0 - 0.e-20*I, 2635.0 - 0.e-19*I]" - ], - "split": "test" - }, - { - "Input": "Let r = 8 - 5. Suppose -p + 3 = 32. Let w = -113/4 - p. Which is the nearest to 1? (a) 4 (b) w (c) r", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\np = solve([Eq(-p + 3, 32)])[p]\nw = -113/4 - p\nr = 8 - 5\nchoices = [4, w, r]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.750000000000000" - ], - "split": "test" - }, - { - "Input": "Let g = 79 + -83. Suppose 15 = -0*j - 3*j + 5*s, 0 = -3*s. Which is the closest to j? (a) 5 (b) g (c) -1/3", - "Output Program": [ - "from sympy import *\nj, s = symbols(\"j s\")\nj = solve([Eq(15, -0*j - 3*j + 5*s), Eq(0, -3*s)])[j]\ng = 79 + -83\nchoices = [5, g, -1/3]\ntarget = j\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Is 2425802 a multiple of 15?", - "Output Program": [ - "from sympy import *\nprint(2425802 % 15 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Factor -2*y**3/9 - 1184*y**2/9.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef p(y):\n\treturn -2*y**3/9 - 1184*y**2/9\ny = symbols(\"y\")\neq = factor(-2*y**3/9 - 1184*y**2/9)\nprint(eq)" - ], - "Output Answer": [ - "-2*y**2*(y + 592)/9" - ], - "split": "test" - }, - { - "Input": "Let z = -1.2 - -1. Suppose 235*b + 1721 = 3836. Put -5, 0.5, b, z in ascending order.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\nb = solve([Eq(235*b + 1721, 3836)])[b]\nz = -1.2 - -1\nchoices = [-5, 0.5, b, z]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 -0.19999999999999996 0.5 9" - ], - "split": "test" - }, - { - "Input": "Let s = -2.116 - -0.116. Put s, -5, 4, 0.3 in ascending order.", - "Output Program": [ - "from sympy import *\ns = -2.116 - -0.116\nchoices = [s, -5, 4, 0.3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-5 -2.0 0.3 4" - ], - "split": "test" - }, - { - "Input": "Let n = 47 + -45. Suppose 0 = -n*a + 27 - 3. Suppose a*b = 6*b + 384. Is 9 a factor of b?", - "Output Program": [ - "from sympy import *\nn = 47 + -45\na = symbols(\"a\")\na = solve([Eq(0, -n*a + 27 - 3)])[a]\nb = symbols(\"b\")\nb = solve([Eq(a*b, 6*b + 384)])[b]\nprint(64 % 9 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Suppose 3*j = z + 123, 3*j - 3*z = -7*z + 108. Is 4 a factor of j?", - "Output Program": [ - "from sympy import *\nj, z = symbols(\"j z\")\nj = solve([Eq(3*j, z + 123), Eq(3*j - 3*z, -7*z + 108)])[j]\nprint(40 % 4 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let l = -13 + 17. Let b be (8/(-10))/((-174)/30 - -6). Sort b, l, -3 in decreasing order.", - "Output Program": [ - "from sympy import *\nb = (8/(-10))/((-174)/30 - -6)\nl = -13 + 17\nchoices = [b, l, -3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 -3 -3.999999999999997" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to 1? (a) -0.1 (b) 4 (c) 418 (d) 0", - "Output Program": [ - "from sympy import *\nchoices = [-0.1, 4, 418, 0]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Which is bigger: -2/5 or 482527690?", - "Output Program": [ - "from sympy import *\nprint(max(-2/5, 482527690))" - ], - "Output Answer": [ - "482527690" - ], - "split": "test" - }, - { - "Input": "Solve 21*t = 15*t + 9*t for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(21*t, 15*t + 9*t)])[t]\nprint(t)" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Let r(k) = 30*k + 10. Let n be r(-3). Is 2 a factor of n/(-24) + (-4)/(-6)?", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef r(k):\n\treturn 30*k + 10\nn = r(-3)\nb = n/(-24) + (-4)/(-6)\nprint(4 % 2 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let g = 19 - 16. Suppose x + g*y + 2*y - 9 = 0, -3*x + 2*y = -10. Let q = 0.06 - -2.94. What is the closest to -4/9 in x, 1/7, q?", - "Output Program": [ - "from sympy import *\ng = 19 - 16\nx, y = symbols(\"x y\")\nx = solve([Eq(x + g*y + 2*y - 9, 0), Eq(-3*x + 2*y, -10)])[x]\nq = 0.06 - -2.94\nchoices = [x, 1/7, q]\ntarget = -4/9\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.14285714285714285" - ], - "split": "test" - }, - { - "Input": "Is -62068010 at most as big as -0.4?", - "Output Program": [ - "from sympy import *\nprint(-62068010 <= -0.4)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose -106*r + 110*r - 52 = 0. Suppose 12*o + 3 = r*o. Solve -o*d = -5*d - 5*f - 6, -5*f = -4*d - 12 for d.", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\nr = solve([Eq(-106*r + 110*r - 52, 0)])[r]\no = symbols(\"o\")\no = solve([Eq(12*o + 3, r*o)])[o]\nd, f = symbols(\"d f\")\nd = solve([Eq(-o*d, -5*d - 5*f - 6), Eq(-5*f, -4*d - 12)])[d]\nprint(d)" - ], - "Output Answer": [ - "-3" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -733*a - 9666 + 48515 for a.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\na = solve([Eq(0, -733*a - 9666 + 48515)])[a]\nprint(a)" - ], - "Output Answer": [ - "53" - ], - "split": "test" - }, - { - "Input": "Suppose 2*v = -3*v - 5*r + 65, -v + 3*r + 21 = 0. Let i be 6/v*(-5)/4. Put i, 3, 4/9 in increasing order.", - "Output Program": [ - "from sympy import *\nv, r = symbols(\"v r\")\nv = solve([Eq(2*v, -3*v - 5*r + 65), Eq(-v + 3*r + 21, 0)])[v]\ni = 6/v*(-5)/4\nchoices = [i, 3, 4/9]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-1/2 0.4444444444444444 3" - ], - "split": "test" - }, - { - "Input": "What is j in 3*j**3/8 + 279*j**2/4 - 63957*j/8 + 132057/2 = 0?", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef o(j):\n\treturn 3*j**3/8 + 279*j**2/4 - 63957*j/8 + 132057/2\nj = symbols(\"j\")\nj = solve(3*j**3/8 + 279*j**2/4 - 63957*j/8 + 132057/2)\nprint(j)" - ], - "Output Answer": [ - "[-268.000000000000, 9.00000000000000, 73.0000000000000]" - ], - "split": "test" - }, - { - "Input": "What is 240438 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(240438 ** (1 / 2))))" - ], - "Output Answer": [ - "490" - ], - "split": "test" - }, - { - "Input": "Let t(u) = u**3 - 12*u**2 - 55*u + 45. Give t(15).", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef t(u):\n\treturn u**3 - 12*u**2 - 55*u + 45\nprint(t(15))" - ], - "Output Answer": [ - "-105" - ], - "split": "test" - }, - { - "Input": "Solve 7486*a - 7481*a + 17 - 2 = -2*w, w + 2*a + 7 = 0 for w.", - "Output Program": [ - "from sympy import *\nw, a = symbols(\"w a\")\nw = solve([Eq(7486*a - 7481*a + 17 - 2, -2*w), Eq(w + 2*a + 7, 0)])[w]\nprint(w)" - ], - "Output Answer": [ - "-5" - ], - "split": "test" - }, - { - "Input": "Let a = -0.922 + -0.078. What is the closest to 10 in 1/3, 0.4, a?", - "Output Program": [ - "from sympy import *\na = -0.922 + -0.078\nchoices = [1/3, 0.4, a]\ntarget = 10\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.4" - ], - "split": "test" - }, - { - "Input": "Is (-38 + 20)/(-36)*147073*(1 + 1) a composite number?", - "Output Program": [ - "from sympy import *\np = (-38 + 20)/(-36)*147073*(1 + 1)\nprint(not isprime(147073))" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -3*b - 4*x - 235, -560*x - 550*x = -2*b - 1111*x - 150 for b.", - "Output Program": [ - "from sympy import *\nb, x = symbols(\"b x\")\nb = solve([Eq(0, -3*b - 4*x - 235), Eq(-560*x - 550*x, -2*b - 1111*x - 150)])[b]\nprint(b)" - ], - "Output Answer": [ - "-73" - ], - "split": "test" - }, - { - "Input": "Let j = 56 + -112. Let f = j - -56. Suppose 2*n + 15 = -3*b + 2*b, f = 4*n - 4*b. Let m(d) = -d - 2. Give m(n).", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef m(d):\n\treturn -d - 2\nj = 56 + -112\nf = j - -56\nn, b = symbols(\"n b\")\nn = solve([Eq(2*n + 15, -3*b + 2*b), Eq(f, 4*n - 4*b)])[n]\nprint(m(n))" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Which is smaller: -2600 or 37/3?", - "Output Program": [ - "from sympy import *\nprint(min(-2600, 37/3))" - ], - "Output Answer": [ - "-2600" - ], - "split": "test" - }, - { - "Input": "Simplify 2*(-4 + ((sqrt(104)/sqrt(4))/sqrt(2) + 5)*-4)*2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(2*(-4 + ((sqrt(104)/sqrt(4))/sqrt(2) + 5)*-4)*2)))" - ], - "Output Answer": [ - "-96 - 16*sqrt(13)" - ], - "split": "test" - }, - { - "Input": "Let z be (4 + 15/(-10))*(-4)/5. Let v be z/(0*(3 + -2) - 1). What is the closest to -0.2 in 4, v, -0.1?", - "Output Program": [ - "from sympy import *\nz = (4 + 15/(-10))*(-4)/5\nv = z/(0*(3 + -2) - 1)\nchoices = [4, v, -0.1]\ntarget = -0.2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "test" - }, - { - "Input": "Solve -5*j + 5*x + 15876 - 15926 = 0, 5*x = -j + 20 for j.", - "Output Program": [ - "from sympy import *\nj, x = symbols(\"j x\")\nj = solve([Eq(-5*j + 5*x + 15876 - 15926, 0), Eq(5*x, -j + 20)])[j]\nprint(j)" - ], - "Output Answer": [ - "-5" - ], - "split": "test" - }, - { - "Input": "Simplify (5*((sqrt(468) - 2*sqrt(468)) + 0)*4*3*-2)**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((5*((sqrt(468) - 2*sqrt(468)) + 0)*4*3*-2)**2)))" - ], - "Output Answer": [ - "6739200" - ], - "split": "test" - }, - { - "Input": "Let j = 10 - 39/4. Let w = -0.3 + 0.1. Let h = 2.027 - 0.027. Which is the closest to j? (a) w (b) h (c) -2", - "Output Program": [ - "from sympy import *\nj = 10 - 39/4\nw = -0.3 + 0.1\nh = 2.027 - 0.027\nchoices = [w, h, -2]\ntarget = j\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.19999999999999998" - ], - "split": "test" - }, - { - "Input": "Simplify (-1 + 5 + sqrt(2057)*3 + 1)**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-1 + 5 + sqrt(2057)*3 + 1)**2)))" - ], - "Output Answer": [ - "330*sqrt(17) + 18538" - ], - "split": "test" - }, - { - "Input": "Let o = 189/184 + -16387/7176. Let w = -4/3 - o. Is w smaller than 2/7?", - "Output Program": [ - "from sympy import *\no = 189/184 + -16387/7176\nw = -4/3 - o\nprint(w < 2/7)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Solve u - 4*p + 5 = -0*u, -2 = u - p for u.", - "Output Program": [ - "from sympy import *\nu, p = symbols(\"u p\")\nu = solve([Eq(u - 4*p + 5, -0*u), Eq(-2, u - p)])[u]\nprint(u)" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "Factor z**4/3 - 13*z**2/3 + 4*z.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef h(z):\n\treturn z**4/3 - 13*z**2/3 + 4*z\nz = symbols(\"z\")\neq = factor(z**4/3 - 13*z**2/3 + 4*z)\nprint(eq)" - ], - "Output Answer": [ - "z*(z - 3)*(z - 1)*(z + 4)/3" - ], - "split": "test" - }, - { - "Input": "Let c(z) = 0*z**3 - 2*z**3 + 3*z**3 + 1 + 4*z + 0*z**2 + 4*z**2. Calculate c(-3).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef c(z):\n\treturn 0*z**3 - 2*z**3 + 3*z**3 + 1 + 4*z + 0*z**2 + 4*z**2\nprint(c(-3))" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Let c be -3 - -1 - (-11)/(-1). Suppose -39*v + 67 = -52*v + 2. Put 0, c, v, 5 in decreasing order.", - "Output Program": [ - "from sympy import *\nc = -3 - -1 - (-11)/(-1)\nv = symbols(\"v\")\nv = solve([Eq(-39*v + 67, -52*v + 2)])[v]\nchoices = [0, c, v, 5]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "5 0 -5 -13.0" - ], - "split": "test" - }, - { - "Input": "Let f(g) = 3376 - 281*g. Let d be f(12). Solve d*h = -5*p - 4, -h = 3*p - 0*p + 8 for h.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef f(g):\n\treturn 3376 - 281*g\nd = f(12)\nh, p = symbols(\"h p\")\nh = solve([Eq(d*h, -5*p - 4), Eq(-h, 3*p - 0*p + 8)])[h]\nprint(h)" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Factor s**4/3 + 29870*s**3/3 + 99131892*s**2 + 328952654982*s - 329051796831.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef t(s):\n\treturn s**4/3 + 29870*s**3/3 + 99131892*s**2 + 328952654982*s - 329051796831\ns = symbols(\"s\")\neq = factor(s**4/3 + 29870*s**3/3 + 99131892*s**2 + 328952654982*s - 329051796831)\nprint(eq)" - ], - "Output Answer": [ - "(s - 1)*(s + 9957)**3/3" - ], - "split": "test" - }, - { - "Input": "Is 4 a factor of 1926?", - "Output Program": [ - "from sympy import *\nprint(1926 % 4 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let o = -35 - -34.7. What is the nearest to -0.13 in o, -5, -3?", - "Output Program": [ - "from sympy import *\no = -35 - -34.7\nchoices = [o, -5, -3]\ntarget = -0.13\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.29999999999999716" - ], - "split": "test" - }, - { - "Input": "Suppose -4*o = 5*t + 15, t - 1 = 4*o - 4. Let b be (o*(-5)/(-35))/(1 - 0). Suppose -4*n - 4 + b = 0. Let y(r) = -11*r - 1. Determine y(n).", - "Output Program": [ - "from sympy import *\nr = symbols(\"r\")\ndef y(r):\n\treturn -11*r - 1\no, t = symbols(\"o t\")\no = solve([Eq(-4*o, 5*t + 15), Eq(t - 1, 4*o - 4)])[o]\nb = (o*(-5)/(-35))/(1 - 0)\nn = symbols(\"n\")\nn = solve([Eq(-4*n - 4 + b, 0)])[n]\nprint(y(n))" - ], - "Output Answer": [ - "10" - ], - "split": "test" - }, - { - "Input": "Solve -62*w + 11419 = 13341 for w.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\nw = solve([Eq(-62*w + 11419, 13341)])[w]\nprint(w)" - ], - "Output Answer": [ - "-31" - ], - "split": "test" - }, - { - "Input": "Factor 5*k**4 + 1360*k**3 + 4050*k**2 + 4040*k + 1345.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef m(k):\n\treturn 5*k**4 + 1360*k**3 + 4050*k**2 + 4040*k + 1345\nk = symbols(\"k\")\neq = factor(5*k**4 + 1360*k**3 + 4050*k**2 + 4040*k + 1345)\nprint(eq)" - ], - "Output Answer": [ - "5*(k + 1)**3*(k + 269)" - ], - "split": "test" - }, - { - "Input": "Simplify sqrt(15)/(-5*sqrt(180)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(sqrt(15)/(-5*sqrt(180)))))" - ], - "Output Answer": [ - "-sqrt(3)/30" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to 0? (a) -2/223 (b) -1/92 (c) -0.16 (d) 0.3", - "Output Program": [ - "from sympy import *\nchoices = [-2/223, -1/92, -0.16, 0.3]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.008968609865470852" - ], - "split": "test" - }, - { - "Input": "Solve 3576*t + 336 = 3562*t for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(3576*t + 336, 3562*t)])[t]\nprint(t)" - ], - "Output Answer": [ - "-24" - ], - "split": "test" - }, - { - "Input": "Is -20/97 greater than or equal to 4948/17?", - "Output Program": [ - "from sympy import *\nprint(-20/97 >= 4948/17)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let f(g) = g**2 + 25*g + 111. Determine f(-8).", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef f(g):\n\treturn g**2 + 25*g + 111\nprint(f(-8))" - ], - "Output Answer": [ - "-25" - ], - "split": "test" - }, - { - "Input": "Suppose -11*g - 67*g = -710970. Is g a multiple of 56?", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(-11*g - 67*g, -710970)])[g]\nprint(9115 % 56 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Is 4340041 a composite number?", - "Output Program": [ - "from sympy import *\nprint(not isprime(4340041))" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Factor i**2 + 91*i - 15222.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef l(i):\n\treturn i**2 + 91*i - 15222\ni = symbols(\"i\")\neq = factor(i**2 + 91*i - 15222)\nprint(eq)" - ], - "Output Answer": [ - "(i - 86)*(i + 177)" - ], - "split": "test" - }, - { - "Input": "Let q be (-8)/(-4 + -1 - -3). Solve -q*c - 4 = 4 for c.", - "Output Program": [ - "from sympy import *\nq = (-8)/(-4 + -1 - -3)\nc = symbols(\"c\")\nc = solve([Eq(-q*c - 4, 4)])[c]\nprint(c)" - ], - "Output Answer": [ - "-2.00000000000000" - ], - "split": "test" - }, - { - "Input": "Factor 5*v**3 - 15*v**2 + 10*v.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef x(v):\n\treturn 5*v**3 - 15*v**2 + 10*v\nv = symbols(\"v\")\neq = factor(5*v**3 - 15*v**2 + 10*v)\nprint(eq)" - ], - "Output Answer": [ - "5*v*(v - 2)*(v - 1)" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to -0.1? (a) -3/8 (b) -18/5 (c) -2", - "Output Program": [ - "from sympy import *\nchoices = [-3/8, -18/5, -2]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.375" - ], - "split": "test" - }, - { - "Input": "Let m = 7 + -3. Let r = 4.99 - -0.01. Let x = r + -10. Which is the nearest to 2/3? (a) -0.3 (b) x (c) m", - "Output Program": [ - "from sympy import *\nr = 4.99 - -0.01\nx = r + -10\nm = 7 + -3\nchoices = [-0.3, x, m]\ntarget = 2/3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.3" - ], - "split": "test" - }, - { - "Input": "Simplify 2*sqrt(931) - (sqrt(304) + sqrt(19) + 3) - sqrt(152)/(1*sqrt(392)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(2*sqrt(931) - (sqrt(304) + sqrt(19) + 3) - sqrt(152)/(1*sqrt(392)))))" - ], - "Output Answer": [ - "-3 + 62*sqrt(19)/7" - ], - "split": "test" - }, - { - "Input": "Let x(a) = -a**2 + 783*a + 783. What is x(-1)?", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef x(a):\n\treturn -a**2 + 783*a + 783\nprint(x(-1))" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "What is the closest to 40 in 25.81, 5, -1/8?", - "Output Program": [ - "from sympy import *\nchoices = [25.81, 5, -1/8]\ntarget = 40\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "25.81" - ], - "split": "test" - }, - { - "Input": "Let s = 55 + -38. Suppose 0 = -4*i - 8*y + 36, 2*i - 43*y + 45*y = 16. Which is bigger: s or i?", - "Output Program": [ - "from sympy import *\ns = 55 + -38\ni, y = symbols(\"i y\")\ni = solve([Eq(0, -4*i - 8*y + 36), Eq(2*i - 43*y + 45*y, 16)])[i]\nprint(max(s, i))" - ], - "Output Answer": [ - "17" - ], - "split": "test" - }, - { - "Input": "Let w(q) = q + 1. Suppose 0 = -0*i - 3*i + 24. Let m be w(i). Solve -m = 4*c + 3 for c.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef w(q):\n\treturn q + 1\ni = symbols(\"i\")\ni = solve([Eq(0, -0*i - 3*i + 24)])[i]\nm = w(i)\nc = symbols(\"c\")\nc = solve([Eq(-m, 4*c + 3)])[c]\nprint(c)" - ], - "Output Answer": [ - "-3" - ], - "split": "test" - }, - { - "Input": "Let t be (-4 - (0 + -9))/1. Let n = 16 - 11. Solve -2 = t*z + d - n, 5*d = z - 11 for z.", - "Output Program": [ - "from sympy import *\nn = 16 - 11\nt = (-4 - (0 + -9))/1\nz, d = symbols(\"z d\")\nz = solve([Eq(-2, t*z + d - n), Eq(5*d, z - 11)])[z]\nprint(z)" - ], - "Output Answer": [ - "1.00000000000000" - ], - "split": "test" - }, - { - "Input": "What is the closest to -1 in -17, -26, 2/11, -12, -1?", - "Output Program": [ - "from sympy import *\nchoices = [-17, -26, 2/11, -12, -1]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "What is the nearest to -11/4 in -225.7, 0.4, -2/21, -2/5, 0.3?", - "Output Program": [ - "from sympy import *\nchoices = [-225.7, 0.4, -2/21, -2/5, 0.3]\ntarget = -11/4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.4" - ], - "split": "test" - }, - { - "Input": "Simplify (-1*sqrt(117))/sqrt(9) - (3 + sqrt(13) + 1).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-1*sqrt(117))/sqrt(9) - (3 + sqrt(13) + 1))))" - ], - "Output Answer": [ - "-2*sqrt(13) - 4" - ], - "split": "test" - }, - { - "Input": "Is 77 not equal to 986/13?", - "Output Program": [ - "from sympy import *\nprint(77 != 986/13)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Which is the closest to -1.9? (a) -2 (b) 3 (c) -0.4 (d) -0.3", - "Output Program": [ - "from sympy import *\nchoices = [-2, 3, -0.4, -0.3]\ntarget = -1.9\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Let u(c) = c**2 + 2*c - 44. Let i be u(-8). Solve f = 2*p - p, -i*f - 25 = p for f.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef u(c):\n\treturn c**2 + 2*c - 44\ni = u(-8)\nf, p = symbols(\"f p\")\nf = solve([Eq(f, 2*p - p), Eq(-i*f - 25, p)])[f]\nprint(f)" - ], - "Output Answer": [ - "-5" - ], - "split": "test" - }, - { - "Input": "Put 0, 4, -0.004, -23/2 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0, 4, -0.004, -23/2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-11.5 -0.004 0 4" - ], - "split": "test" - }, - { - "Input": "Let a = 21.4 - 24.4. Let m = 1 + -2. Let r = 3.211 - 3.711. Sort r, m, 2, a in descending order.", - "Output Program": [ - "from sympy import *\nr = 3.211 - 3.711\nm = 1 + -2\na = 21.4 - 24.4\nchoices = [r, m, 2, a]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "2 -0.5 -1 -3.0" - ], - "split": "test" - }, - { - "Input": "Is 1/29 greater than or equal to -1?", - "Output Program": [ - "from sympy import *\nprint(1/29 >= -1)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let w = -2 + 5. Suppose -3 - w = -3*u. Suppose l = -4 + 12. Solve l*f - 3*f + 16 = -y, u*f + 20 = 3*y for f.", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\nl = solve([Eq(l, -4 + 12)])[l]\nw = -2 + 5\nu = symbols(\"u\")\nu = solve([Eq(-3 - w, -3*u)])[u]\nf, y = symbols(\"f y\")\nf = solve([Eq(l*f - 3*f + 16, -y), Eq(u*f + 20, 3*y)])[f]\nprint(f)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Let f(q) = q - 27. Suppose -5*b = -8*s + 10*s + 4, 0 = 4*b + 4*s + 8. Give f(b).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef f(q):\n\treturn q - 27\nb, s = symbols(\"b s\")\nb = solve([Eq(-5*b, -8*s + 10*s + 4), Eq(0, 4*b + 4*s + 8)])[b]\nprint(f(b))" - ], - "Output Answer": [ - "-27" - ], - "split": "test" - }, - { - "Input": "Solve 581*h = 150*h + 264*h + 4342 for h.", - "Output Program": [ - "from sympy import *\nh = symbols(\"h\")\nh = solve([Eq(581*h, 150*h + 264*h + 4342)])[h]\nprint(h)" - ], - "Output Answer": [ - "26" - ], - "split": "test" - }, - { - "Input": "What is 86003450 to the power of 1/4, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(86003450 ** (1 / 4))))" - ], - "Output Answer": [ - "96" - ], - "split": "test" - }, - { - "Input": "Solve 5241*m - 461009 - 26404 = 0 for m.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\nm = solve([Eq(5241*m - 461009 - 26404, 0)])[m]\nprint(m)" - ], - "Output Answer": [ - "93" - ], - "split": "test" - }, - { - "Input": "Let p(x) = 59 - 155*x. Is p(-7) a multiple of 11?", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef p(x):\n\treturn 59 - 155*x\nf = p(-7)\nprint(1144 % 11 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let b = 172 + 96. Let a = b + -265. Solve 4*o + 5*t = 2*o + 16, 2*o + a*t - 12 = 0 for o.", - "Output Program": [ - "from sympy import *\nb = 172 + 96\na = b + -265\no, t = symbols(\"o t\")\no = solve([Eq(4*o + 5*t, 2*o + 16), Eq(2*o + a*t - 12, 0)])[o]\nprint(o)" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Let w(a) = 65 - 8770*a. Give w(0).", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef w(a):\n\treturn 65 - 8770*a\nprint(w(0))" - ], - "Output Answer": [ - "65" - ], - "split": "test" - }, - { - "Input": "Factor 5*g**3 + 125*g**2 - 265*g + 135.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef t(g):\n\treturn 5*g**3 + 125*g**2 - 265*g + 135\ng = symbols(\"g\")\neq = factor(5*g**3 + 125*g**2 - 265*g + 135)\nprint(eq)" - ], - "Output Answer": [ - "5*(g - 1)**2*(g + 27)" - ], - "split": "test" - }, - { - "Input": "Simplify (sqrt(18) + sqrt(18) + -1*sqrt(1152) + sqrt(1152))/((sqrt(6) - sqrt(36)/(sqrt(6)*2 + sqrt(6) - sqrt(6))) + sqrt(6) - sqrt(6)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(18) + sqrt(18) + -1*sqrt(1152) + sqrt(1152))/((sqrt(6) - sqrt(36)/(sqrt(6)*2 + sqrt(6) - sqrt(6))) + sqrt(6) - sqrt(6)))))" - ], - "Output Answer": [ - "4*sqrt(3)" - ], - "split": "test" - }, - { - "Input": "Suppose -4*g - 17 + 37 = 0. Solve 10 = -4*j + 5*n, 2 = 3*j - g*j + 4*n for j.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ng = solve([Eq(-4*g - 17 + 37, 0)])[g]\nj, n = symbols(\"j n\")\nj = solve([Eq(10, -4*j + 5*n), Eq(2, 3*j - g*j + 4*n)])[j]\nprint(j)" - ], - "Output Answer": [ - "-5" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to 0.09? (a) 8985 (b) -12 (c) -10", - "Output Program": [ - "from sympy import *\nchoices = [8985, -12, -10]\ntarget = 0.09\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-10" - ], - "split": "test" - }, - { - "Input": "Suppose 5*n = 2*m + 4, -4*n - 3*m + 26 - 32 = 0. Is -12/17 >= n?", - "Output Program": [ - "from sympy import *\nn, m = symbols(\"n m\")\nn = solve([Eq(5*n, 2*m + 4), Eq(-4*n - 3*m + 26 - 32, 0)])[n]\nprint(-12/17 >= n)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let x(i) = 4*i - 11. Let q be x(5). Let d = 14 - q. Solve 0 = u - 0*u - d for u.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef x(i):\n\treturn 4*i - 11\nq = x(5)\nd = 14 - q\nu = symbols(\"u\")\nu = solve([Eq(0, u - 0*u - d)])[u]\nprint(u)" - ], - "Output Answer": [ - "5" - ], - "split": "test" - }, - { - "Input": "Is -53 at most 3/2?", - "Output Program": [ - "from sympy import *\nprint(-53 <= 3/2)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Is -733632396 greater than or equal to -733632396?", - "Output Program": [ - "from sympy import *\nprint(-733632396 >= -733632396)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let d(o) = -6*o**3 - 50*o**2 - 124*o - 800. Give d(-7).", - "Output Program": [ - "from sympy import *\no = symbols(\"o\")\ndef d(o):\n\treturn -6*o**3 - 50*o**2 - 124*o - 800\nprint(d(-7))" - ], - "Output Answer": [ - "-324" - ], - "split": "test" - }, - { - "Input": "What is 87766 to the power of 1/3, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(87766 ** (1 / 3))))" - ], - "Output Answer": [ - "44" - ], - "split": "test" - }, - { - "Input": "Put 0.7, -1/123, 2/3, -2/11, 4 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [0.7, -1/123, 2/3, -2/11, 4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 0.7 0.6666666666666666 -0.008130081300813009 -0.18181818181818182" - ], - "split": "test" - }, - { - "Input": "Solve 5*i + 128 = 133 for i.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ni = solve([Eq(5*i + 128, 133)])[i]\nprint(i)" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Factor a**2/3 + 1333*a/3 - 1334/3.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef p(a):\n\treturn a**2/3 + 1333*a/3 - 1334/3\na = symbols(\"a\")\neq = factor(a**2/3 + 1333*a/3 - 1334/3)\nprint(eq)" - ], - "Output Answer": [ - "444.666666666667*(0.000749625187406297*a + 1.0)*(1.0*a - 1.0)" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to -704/7? (a) 3 (b) 0.1 (c) 3/5 (d) 2/5 (e) 0.35", - "Output Program": [ - "from sympy import *\nchoices = [3, 0.1, 3/5, 2/5, 0.35]\ntarget = -704/7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.1" - ], - "split": "test" - }, - { - "Input": "Let u(c) = 43*c**2 + 44*c**2 - 99*c**2 + 62 - 30*c. Let n(d) = -d**2 + d + 2. Let w(s) = 10*n(s) - u(s). Let w(y) = 0. Calculate y.", - "Output Program": [ - "from sympy import *\nc = symbols(\"c\")\ndef u(c):\n\treturn 43*c**2 + 44*c**2 - 99*c**2 + 62 - 30*c\nd = symbols(\"d\")\ndef n(d):\n\treturn -d**2 + d + 2\ndef w(s):\n\treturn 10*n(s) - u(s)\ny = symbols(\"y\")\ny = solve(w(y))\nprint(y)" - ], - "Output Answer": [ - "[-21, 1]" - ], - "split": "test" - }, - { - "Input": "Solve -5*f + 13 = m, 0 = -5*f + 3*m + 21 - 0 for f.", - "Output Program": [ - "from sympy import *\nf, m = symbols(\"f m\")\nf = solve([Eq(-5*f + 13, m), Eq(0, -5*f + 3*m + 21 - 0)])[f]\nprint(f)" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Which is smaller: 780100 or 780098?", - "Output Program": [ - "from sympy import *\nprint(min(780100, 780098))" - ], - "Output Answer": [ - "780098" - ], - "split": "test" - }, - { - "Input": "Let n(t) = -6*t**2 - 276*t - 6. Determine n(-46).", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef n(t):\n\treturn -6*t**2 - 276*t - 6\nprint(n(-46))" - ], - "Output Answer": [ - "-6" - ], - "split": "test" - }, - { - "Input": "Let i = -87 + -16. Let a = -68 - i. Solve -a = 4*s - 3*w, s + 0*s + 3*w = 10 for s.", - "Output Program": [ - "from sympy import *\ni = -87 + -16\na = -68 - i\ns, w = symbols(\"s w\")\ns = solve([Eq(-a, 4*s - 3*w), Eq(s + 0*s + 3*w, 10)])[s]\nprint(s)" - ], - "Output Answer": [ - "-5" - ], - "split": "test" - }, - { - "Input": "Let u = 2 + 5. Is u a multiple of 3?", - "Output Program": [ - "from sympy import *\nu = 2 + 5\nprint(7 % 3 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Which is smaller: -1 or -155/46?", - "Output Program": [ - "from sympy import *\nprint(min(-1, -155/46))" - ], - "Output Answer": [ - "-3.369565217391304" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -2*b - 22*b for b.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\nb = solve([Eq(0, -2*b - 22*b)])[b]\nprint(b)" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Sort -2233, -1, 34.", - "Output Program": [ - "from sympy import *\nchoices = [-2233, -1, 34]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2233 -1 34" - ], - "split": "test" - }, - { - "Input": "Are -1322783 and -1322772 non-equal?", - "Output Program": [ - "from sympy import *\nprint(-1322783 != -1322772)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let l = 17821 - 17819. Solve -l*y + 5*h = 2, 23*h = 5*y + 26*h - 26 for y.", - "Output Program": [ - "from sympy import *\nl = 17821 - 17819\ny, h = symbols(\"y h\")\ny = solve([Eq(-l*y + 5*h, 2), Eq(23*h, 5*y + 26*h - 26)])[y]\nprint(y)" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Suppose -2*w + 4 - 8 = 0. Let u(k) = -5*k**3 + k - 3. Is u(w) a multiple of 19?", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef u(k):\n\treturn -5*k**3 + k - 3\nw = symbols(\"w\")\nw = solve([Eq(-2*w + 4 - 8, 0)])[w]\nn = u(w)\nprint(35 % 19 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Suppose 0*z + 44 = -4*z. Let u be (-20)/z + (-2)/(-11). Solve 6*j - 4*j = 4*c - 20, -u*c = -3*j - 18 for j.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(0*z + 44, -4*z)])[z]\nu = (-20)/z + (-2)/(-11)\nj, c = symbols(\"j c\")\nj = solve([Eq(6*j - 4*j, 4*c - 20), Eq(-u*c, -3*j - 18)])[j]\nprint(j)" - ], - "Output Answer": [ - "-4.00000000000000" - ], - "split": "test" - }, - { - "Input": "Solve -13752*b + 13753*b - 10 = -2*h, 3*h - 2*b = 29 for h.", - "Output Program": [ - "from sympy import *\nh, b = symbols(\"h b\")\nh = solve([Eq(-13752*b + 13753*b - 10, -2*h), Eq(3*h - 2*b, 29)])[h]\nprint(h)" - ], - "Output Answer": [ - "7" - ], - "split": "test" - }, - { - "Input": "Is 129 a factor of 116488?", - "Output Program": [ - "from sympy import *\nprint(116488 % 129 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let d = -19 - -12. Let v = d + 12. Let w be ((-1)/21)/((-2)/6). Which is the closest to 0? (a) v (b) -4/5 (c) w", - "Output Program": [ - "from sympy import *\nd = -19 - -12\nv = d + 12\nw = ((-1)/21)/((-2)/6)\nchoices = [v, -4/5, w]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.14285714285714285" - ], - "split": "test" - }, - { - "Input": "Let o = -9640 - -38759/4. Let i = o - 50. Is i at most 0?", - "Output Program": [ - "from sympy import *\no = -9640 - -38759/4\ni = o - 50\nprint(i <= 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Determine g, given that -5*g**3 - 1021365*g**2 - 745970430*g + 746991800 = 0.", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef n(g):\n\treturn -5*g**3 - 1021365*g**2 - 745970430*g + 746991800\ng = symbols(\"g\")\ng = solve(-5*g**3 - 1021365*g**2 - 745970430*g + 746991800)\nprint(g)" - ], - "Output Answer": [ - "[-203540, -734, 1]" - ], - "split": "test" - }, - { - "Input": "Suppose 3*o + 150 = 4*n, 32*o - 2*n = 28*o - 190. Let x = 76 + o. Is x a multiple of 15?", - "Output Program": [ - "from sympy import *\no, n = symbols(\"o n\")\no = solve([Eq(3*o + 150, 4*n), Eq(32*o - 2*n, 28*o - 190)])[o]\nx = 76 + o\nprint(30 % 15 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let b = 549 - 563. Is b - (-56)/7 - -877 composite?", - "Output Program": [ - "from sympy import *\nb = 549 - 563\nw = b - (-56)/7 - -877\nprint(not isprime(871))" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Find n, given that -2*n**2/3 - 55748*n - 9346848 = 0.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef j(n):\n\treturn -2*n**2/3 - 55748*n - 9346848\nn = symbols(\"n\")\nn = solve(-2*n**2/3 - 55748*n - 9346848)\nprint(n)" - ], - "Output Answer": [ - "[-83454, -168]" - ], - "split": "test" - }, - { - "Input": "Find d, given that 12*d**5/7 - 346876*d**4/7 - 578204*d**3/7 + 1271964*d**2/7 - 346896*d/7 = 0.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef m(d):\n\treturn 12*d**5/7 - 346876*d**4/7 - 578204*d**3/7 + 1271964*d**2/7 - 346896*d/7\nd = symbols(\"d\")\nd = solve(12*d**5/7 - 346876*d**4/7 - 578204*d**3/7 + 1271964*d**2/7 - 346896*d/7)\nprint(d)" - ], - "Output Answer": [ - "[-3, 0, 1/3, 1, 28908]" - ], - "split": "test" - }, - { - "Input": "Let k = -3349.5 - -3272.5. Sort 0.4, -24/11, k, -3/4.", - "Output Program": [ - "from sympy import *\nk = -3349.5 - -3272.5\nchoices = [0.4, -24/11, k, -3/4]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-77.0 -2.1818181818181817 -0.75 0.4" - ], - "split": "test" - }, - { - "Input": "Let p = 56 + -45. Suppose -5*h - 5*k - p + 36 = 0, -19 = h - 5*k. Let z be (-92)/(-32) + h/8. Solve -z*s - 4 = -s for s.", - "Output Program": [ - "from sympy import *\np = 56 + -45\nh, k = symbols(\"h k\")\nh = solve([Eq(-5*h - 5*k - p + 36, 0), Eq(-19, h - 5*k)])[h]\nz = (-92)/(-32) + h/8\ns = symbols(\"s\")\ns = solve([Eq(-z*s - 4, -s)])[s]\nprint(s)" - ], - "Output Answer": [ - "-2.00000000000000" - ], - "split": "test" - }, - { - "Input": "Simplify (-1*sqrt(40)/sqrt(4))/(sqrt(350)/sqrt(7)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-1*sqrt(40)/sqrt(4))/(sqrt(350)/sqrt(7)))))" - ], - "Output Answer": [ - "-sqrt(5)/5" - ], - "split": "test" - }, - { - "Input": "Let i be 2 - ((-16)/(-4))/4. Let q(u) = -12*u**3 + 7*u**2 - 10*u - 7. Let p(v) = -8*v**3 + 5*v**2 - 7*v - 5. Let z(f) = -7*p(f) + 5*q(f). Give z(i).", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef q(u):\n\treturn -12*u**3 + 7*u**2 - 10*u - 7\nv = symbols(\"v\")\ndef p(v):\n\treturn -8*v**3 + 5*v**2 - 7*v - 5\ndef z(f):\n\treturn -7*p(f) + 5*q(f)\ni = 2 - ((-16)/(-4))/4\nprint(z(i))" - ], - "Output Answer": [ - "-5.0" - ], - "split": "test" - }, - { - "Input": "What is the third root of 7590908989 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(7590908989 ** (1 / 3))))" - ], - "Output Answer": [ - "1965" - ], - "split": "test" - }, - { - "Input": "Factor -2*b**2 + b**2 + 1 - 1 + b**4.", - "Output Program": [ - "from sympy import *\nb = symbols(\"b\")\ndef d(b):\n\treturn -2*b**2 + b**2 + 1 - 1 + b**4\nb = symbols(\"b\")\neq = factor(-2*b**2 + b**2 + 1 - 1 + b**4)\nprint(eq)" - ], - "Output Answer": [ - "b**2*(b - 1)*(b + 1)" - ], - "split": "test" - }, - { - "Input": "Solve -u = -5*s - 8, 0*s + 5*s = -5*u - 20 for s.", - "Output Program": [ - "from sympy import *\ns, u = symbols(\"s u\")\ns = solve([Eq(-u, -5*s - 8), Eq(0*s + 5*s, -5*u - 20)])[s]\nprint(s)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Put 1774/21, 1/4, -23576 in increasing order.", - "Output Program": [ - "from sympy import *\nchoices = [1774/21, 1/4, -23576]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-23576 0.25 84.47619047619048" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -55*k + 4022 - 1809 + 2627 for k.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\nk = solve([Eq(0, -55*k + 4022 - 1809 + 2627)])[k]\nprint(k)" - ], - "Output Answer": [ - "88" - ], - "split": "test" - }, - { - "Input": "Let v = 88 + -92. Let t(s) = 3*s + 11. Let o(c) = c + 4. Suppose -4*a = w + 8, -2*a - 2*a + 16 = 4*w. Let f(i) = w*o(i) - 3*t(i). Determine f(v).", - "Output Program": [ - "from sympy import *\nw, a = symbols(\"w a\")\nw = solve([Eq(-4*a, w + 8), Eq(-2*a - 2*a + 16, 4*w)])[w]\nc = symbols(\"c\")\ndef o(c):\n\treturn c + 4\ns = symbols(\"s\")\ndef t(s):\n\treturn 3*s + 11\ndef f(i):\n\treturn w*o(i) - 3*t(i)\nv = 88 + -92\nprint(f(v))" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Sort 6, 950, -0.3.", - "Output Program": [ - "from sympy import *\nchoices = [6, 950, -0.3]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-0.3 6 950" - ], - "split": "test" - }, - { - "Input": "Simplify (((sqrt(153) + -2*sqrt(153) - sqrt(153))*-4 - 4*-2*sqrt(153))*-4*-2)/(5*sqrt(99)/(-1*sqrt(176))*1).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((((sqrt(153) + -2*sqrt(153) - sqrt(153))*-4 - 4*-2*sqrt(153))*-4*-2)/(5*sqrt(99)/(-1*sqrt(176))*1))))" - ], - "Output Answer": [ - "-512*sqrt(17)/5" - ], - "split": "test" - }, - { - "Input": "Which is smaller: -2318901 or -2318905?", - "Output Program": [ - "from sympy import *\nprint(min(-2318901, -2318905))" - ], - "Output Answer": [ - "-2318905" - ], - "split": "test" - }, - { - "Input": "Suppose 0 = 2*k - 0*k. Let n be 1 - ((0 - -1) + k). Let v(u) = -u**3 + u + 1. Let c be v(-1). Is c greater than or equal to n?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef v(u):\n\treturn -u**3 + u + 1\nc = v(-1)\nk = symbols(\"k\")\nk = solve([Eq(0, 2*k - 0*k)])[k]\nn = 1 - ((0 - -1) + k)\nprint(c >= n)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose -1 = -3*p + 2*p. Let m(y) = 196*y**2. Let v be m(p). Suppose v + 35 = 3*x. Is x a composite number?", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef m(y):\n\treturn 196*y**2\np = symbols(\"p\")\np = solve([Eq(-1, -3*p + 2*p)])[p]\nv = m(p)\nx = symbols(\"x\")\nx = solve([Eq(v + 35, 3*x)])[x]\nprint(not isprime(77))" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -142*v - 3119 - 134 + 271 for v.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(0, -142*v - 3119 - 134 + 271)])[v]\nprint(v)" - ], - "Output Answer": [ - "-21" - ], - "split": "test" - }, - { - "Input": "Let y = -695 + 698. Let q be 3/15 - (-19)/5. Let s be y + -1 - (-2 + q). Solve -3*r - 3 - 3 = s for r.", - "Output Program": [ - "from sympy import *\nq = 3/15 - (-19)/5\ny = -695 + 698\ns = y + -1 - (-2 + q)\nr = symbols(\"r\")\nr = solve([Eq(-3*r - 3 - 3, s)])[r]\nprint(r)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Suppose -4*o + 1 = -3, 5*l - 8 = 2*o. Suppose -755 = -2*a + 5*z, -4*a - 135 + 1636 = -z. Suppose -3*j - l*j = -a. Is j a multiple of 15?", - "Output Program": [ - "from sympy import *\na, z = symbols(\"a z\")\na = solve([Eq(-755, -2*a + 5*z), Eq(-4*a - 135 + 1636, -z)])[a]\nl, o = symbols(\"l o\")\nl = solve([Eq(-4*o + 1, -3), Eq(5*l - 8, 2*o)])[l]\nj = symbols(\"j\")\nj = solve([Eq(-3*j - l*j, -a)])[j]\nprint(75 % 15 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "What is a in -3/2*a**3 - 3/2*a - 6*a**2 + 9 = 0?", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef k(a):\n\treturn -3/2*a**3 - 3/2*a - 6*a**2 + 9\na = symbols(\"a\")\na = solve(-3/2*a**3 - 3/2*a - 6*a**2 + 9)\nprint(a)" - ], - "Output Answer": [ - "[-3.00000000000000, -2.00000000000000, 1.00000000000000]" - ], - "split": "test" - }, - { - "Input": "What is 1084 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1084 ** (1 / 2))))" - ], - "Output Answer": [ - "33" - ], - "split": "test" - }, - { - "Input": "Let h = 1/140 + -289/1260. Let m = -324.3 + 198.4. Let o = 126 + m. Which is the nearest to -7? (a) -5 (b) o (c) h", - "Output Program": [ - "from sympy import *\nm = -324.3 + 198.4\no = 126 + m\nh = 1/140 + -289/1260\nchoices = [-5, o, h]\ntarget = -7\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-5" - ], - "split": "test" - }, - { - "Input": "Let k(w) = 12*w**2 - 973*w - 460. What is k(82)?", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef k(w):\n\treturn 12*w**2 - 973*w - 460\nprint(k(82))" - ], - "Output Answer": [ - "442" - ], - "split": "test" - }, - { - "Input": "What is 82642676 to the power of 1/4, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(82642676 ** (1 / 4))))" - ], - "Output Answer": [ - "95" - ], - "split": "test" - }, - { - "Input": "Which is smaller: -97190 or -97212?", - "Output Program": [ - "from sympy import *\nprint(min(-97190, -97212))" - ], - "Output Answer": [ - "-97212" - ], - "split": "test" - }, - { - "Input": "Is 135672885 a multiple of 339?", - "Output Program": [ - "from sympy import *\nprint(135672885 % 339 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose 3*m + 5*f = 413, -6*m - 3*f = -m - 667. Is 6 a factor of m?", - "Output Program": [ - "from sympy import *\nm, f = symbols(\"m f\")\nm = solve([Eq(3*m + 5*f, 413), Eq(-6*m - 3*f, -m - 667)])[m]\nprint(131 % 6 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Let u(d) = -d**2 + 21*d - 11. Let z(p) = -p**3 + 7*p**2 + 6*p + 24. Let t be z(8). Let a be u(t). Which is greater: 94 or a?", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef u(d):\n\treturn -d**2 + 21*d - 11\np = symbols(\"p\")\ndef z(p):\n\treturn -p**3 + 7*p**2 + 6*p + 24\nt = z(8)\na = u(t)\nprint(max(94, a))" - ], - "Output Answer": [ - "94" - ], - "split": "test" - }, - { - "Input": "Let o(y) = 9*y**2 - 94*y + 3. Determine o(11).", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ndef o(y):\n\treturn 9*y**2 - 94*y + 3\nprint(o(11))" - ], - "Output Answer": [ - "58" - ], - "split": "test" - }, - { - "Input": "Let p(u) = -5*u**3 - u. Let z be p(-1). Let m be z/(1/(3 - 4)). Is -6 bigger than m?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef p(u):\n\treturn -5*u**3 - u\nz = p(-1)\nm = z/(1/(3 - 4))\nprint(-6 > m)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Which is smaller: 427760/27 or 15843?", - "Output Program": [ - "from sympy import *\nprint(min(427760/27, 15843))" - ], - "Output Answer": [ - "15842.962962962964" - ], - "split": "test" - }, - { - "Input": "Is 3525 a multiple of 141?", - "Output Program": [ - "from sympy import *\nprint(3525 % 141 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Put 1, 3, 5, 23, -1 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [1, 3, 5, 23, -1]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "23 5 3 1 -1" - ], - "split": "test" - }, - { - "Input": "Simplify (1*(sqrt(175) + -2*sqrt(175)) + sqrt(175)*2 + -5 + 0 + sqrt(175) + 1 + 1 + sqrt(175) + 1)**2 + 0.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((1*(sqrt(175) + -2*sqrt(175)) + sqrt(175)*2 + -5 + 0 + sqrt(175) + 1 + 1 + sqrt(175) + 1)**2 + 0)))" - ], - "Output Answer": [ - "1579 - 60*sqrt(7)" - ], - "split": "test" - }, - { - "Input": "Is 27 a factor of 1471?", - "Output Program": [ - "from sympy import *\nprint(1471 % 27 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Solve -5*m + 3*m = 4, -14 = -5*o + 2*m for o.", - "Output Program": [ - "from sympy import *\no, m = symbols(\"o m\")\no = solve([Eq(-5*m + 3*m, 4), Eq(-14, -5*o + 2*m)])[o]\nprint(o)" - ], - "Output Answer": [ - "2" - ], - "split": "test" - }, - { - "Input": "Let c be (18/(-8))/((-2)/160). Suppose 4*b + w = c, 5*b - 5*w - 250 = -0*w. Let l = -19 - -29. Solve 0 = -3*q + 3*j, -5*q - 4*j - l = -b for q.", - "Output Program": [ - "from sympy import *\nl = -19 - -29\nc = (18/(-8))/((-2)/160)\nb, w = symbols(\"b w\")\nb = solve([Eq(4*b + w, c), Eq(5*b - 5*w - 250, -0*w)])[b]\nq, j = symbols(\"q j\")\nq = solve([Eq(0, -3*q + 3*j), Eq(-5*q - 4*j - l, -b)])[q]\nprint(q)" - ], - "Output Answer": [ - "4.00000000000000" - ], - "split": "test" - }, - { - "Input": "Let k = -0.080609 + 38.969609. Let w = k - -0.111. Is 1 smaller than w?", - "Output Program": [ - "from sympy import *\nk = -0.080609 + 38.969609\nw = k - -0.111\nprint(1 < w)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Which is bigger: -25381621 or -25381620?", - "Output Program": [ - "from sympy import *\nprint(max(-25381621, -25381620))" - ], - "Output Answer": [ - "-25381620" - ], - "split": "test" - }, - { - "Input": "Let n(v) = -74*v**2 + 11*v**2 - 38 - 2*v + 343*v**2 - 11 - 22. Is n(8) a composite number?", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\ndef n(v):\n\treturn -74*v**2 + 11*v**2 - 38 - 2*v + 343*v**2 - 11 - 22\nm = n(8)\nprint(not isprime(17833))" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Which is smaller: 31589/2 or 15795?", - "Output Program": [ - "from sympy import *\nprint(min(31589/2, 15795))" - ], - "Output Answer": [ - "15794.5" - ], - "split": "test" - }, - { - "Input": "Solve -247*r + 44 = -26*b - 244*r, 2*b + 6*r = 34 for b.", - "Output Program": [ - "from sympy import *\nb, r = symbols(\"b r\")\nb = solve([Eq(-247*r + 44, -26*b - 244*r), Eq(2*b + 6*r, 34)])[b]\nprint(b)" - ], - "Output Answer": [ - "-1" - ], - "split": "test" - }, - { - "Input": "Suppose -687 = 9*q - 2766. Let a = q + -350. Let g = -39 - a. Is 9 a factor of g?", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\nq = solve([Eq(-687, 9*q - 2766)])[q]\na = q + -350\ng = -39 - a\nprint(80 % 9 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Solve 0 = 7*m + b - 39, 5*b = 6*b + 4*b + 15 for m.", - "Output Program": [ - "from sympy import *\nm, b = symbols(\"m b\")\nm = solve([Eq(0, 7*m + b - 39), Eq(5*b, 6*b + 4*b + 15)])[m]\nprint(m)" - ], - "Output Answer": [ - "6" - ], - "split": "test" - }, - { - "Input": "Let j(q) = 11*q**2 - 4*q + 3. Determine j(1).", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef j(q):\n\treturn 11*q**2 - 4*q + 3\nprint(j(1))" - ], - "Output Answer": [ - "10" - ], - "split": "test" - }, - { - "Input": "Solve 3*d**3 - 75*d**2 + 258*d + 840 = 0.", - "Output Program": [ - "from sympy import *\nd = symbols(\"d\")\ndef o(d):\n\treturn 3*d**3 - 75*d**2 + 258*d + 840\nd = symbols(\"d\")\nd = solve(3*d**3 - 75*d**2 + 258*d + 840)\nprint(d)" - ], - "Output Answer": [ - "[-2, 7, 20]" - ], - "split": "test" - }, - { - "Input": "Solve 6 + 48 = -4*b + 3*r, r = 478*b + 3327 + 1447 + 964 for b.", - "Output Program": [ - "from sympy import *\nb, r = symbols(\"b r\")\nb = solve([Eq(6 + 48, -4*b + 3*r), Eq(r, 478*b + 3327 + 1447 + 964)])[b]\nprint(b)" - ], - "Output Answer": [ - "-12" - ], - "split": "test" - }, - { - "Input": "Let r(a) = -a**2 + 8*a + 3. Let w be r(9). Let u = -1 - w. Let x(p) = 5 - p. Calculate x(u).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef x(p):\n\treturn 5 - p\na = symbols(\"a\")\ndef r(a):\n\treturn -a**2 + 8*a + 3\nw = r(9)\nu = -1 - w\nprint(x(u))" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Suppose -x + 2*x = -1. Let k = -3 + x. Let s(a) = 2*a**2 - 12*a - 317. Let g be s(-10). Put g, -3, k in decreasing order.", - "Output Program": [ - "from sympy import *\na = symbols(\"a\")\ndef s(a):\n\treturn 2*a**2 - 12*a - 317\ng = s(-10)\nx = symbols(\"x\")\nx = solve([Eq(-x + 2*x, -1)])[x]\nk = -3 + x\nchoices = [g, -3, k]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "3 -3 -4" - ], - "split": "test" - }, - { - "Input": "Solve 17016*v = 17145*v - 1677 for v.", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(17016*v, 17145*v - 1677)])[v]\nprint(v)" - ], - "Output Answer": [ - "13" - ], - "split": "test" - }, - { - "Input": "What is 12831 to the power of 1/2, to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(12831 ** (1 / 2))))" - ], - "Output Answer": [ - "113" - ], - "split": "test" - }, - { - "Input": "Let 5*q**4 + 12552*q**3 - 146300*q**2 - 60528*q = 0. What is q?", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef i(q):\n\treturn 5*q**4 + 12552*q**3 - 146300*q**2 - 60528*q\nq = symbols(\"q\")\nq = solve(5*q**4 + 12552*q**3 - 146300*q**2 - 60528*q)\nprint(q)" - ], - "Output Answer": [ - "[-2522, -2/5, 0, 12]" - ], - "split": "test" - }, - { - "Input": "Let a be (-7)/(-2) + 2/4. Let p be 0 + 3/((-9)/(-12)). Let h be a/p*(-1 - -1). Solve h*t - 5*t = 20 for t.", - "Output Program": [ - "from sympy import *\np = 0 + 3/((-9)/(-12))\na = (-7)/(-2) + 2/4\nh = a/p*(-1 - -1)\nt = symbols(\"t\")\nt = solve([Eq(h*t - 5*t, 20)])[t]\nprint(t)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Is 124275 a multiple of 75?", - "Output Program": [ - "from sympy import *\nprint(124275 % 75 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose 4*b + 5*j + 38 = 0, j + 0*j + 10 = -b. Let l be (-30)/b*(-4)/(-5). Solve -3*n + l*p - 7*p = -11, -4 = -p for n.", - "Output Program": [ - "from sympy import *\nb, j = symbols(\"b j\")\nb = solve([Eq(4*b + 5*j + 38, 0), Eq(j + 0*j + 10, -b)])[b]\nl = (-30)/b*(-4)/(-5)\nn, p = symbols(\"n p\")\nn = solve([Eq(-3*n + l*p - 7*p, -11), Eq(-4, -p)])[n]\nprint(n)" - ], - "Output Answer": [ - "-3" - ], - "split": "test" - }, - { - "Input": "Which is the closest to 0.652859? (a) -4/7 (b) 0.3 (c) 5", - "Output Program": [ - "from sympy import *\nchoices = [-4/7, 0.3, 5]\ntarget = 0.652859\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.3" - ], - "split": "test" - }, - { - "Input": "Simplify (sqrt(2448) + 2*sqrt(2448)*1 - (sqrt(2448)*1 + -3)**2) + ((-1*(sqrt(153) + sqrt(153)*-2 + sqrt(153) - sqrt(153)))/sqrt(9) + 2)**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((sqrt(2448) + 2*sqrt(2448)*1 - (sqrt(2448)*1 + -3)**2) + ((-1*(sqrt(153) + sqrt(153)*-2 + sqrt(153) - sqrt(153)))/sqrt(9) + 2)**2)))" - ], - "Output Answer": [ - "-2436 + 112*sqrt(17)" - ], - "split": "test" - }, - { - "Input": "Let y(t) = -t**3 - 86*t**2 + 168*t + 6255. Give y(-87).", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\ndef y(t):\n\treturn -t**3 - 86*t**2 + 168*t + 6255\nprint(y(-87))" - ], - "Output Answer": [ - "-792" - ], - "split": "test" - }, - { - "Input": "Solve -17*j = -20*j - 15 for j.", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\nj = solve([Eq(-17*j, -20*j - 15)])[j]\nprint(j)" - ], - "Output Answer": [ - "-5" - ], - "split": "test" - }, - { - "Input": "Is 183 a factor of 410469?", - "Output Program": [ - "from sympy import *\nprint(410469 % 183 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let g be 19 + (100/(-10) - -1) + 16. Is 291/11 > g?", - "Output Program": [ - "from sympy import *\ng = 19 + (100/(-10) - -1) + 16\nprint(291/11 > g)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Is -2/145 <= -1?", - "Output Program": [ - "from sympy import *\nprint(-2/145 <= -1)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Suppose 7*y - 3*y = 16. Suppose 5*n - 22 = p, n - 2*p = p + 10. Let 4*x**3 - 10*x**3 + 6*x + 21*x**2 - 53*x**n + 13*x**y + 19*x**4 = 0. Calculate x.", - "Output Program": [ - "from sympy import *\ny = symbols(\"y\")\ny = solve([Eq(7*y - 3*y, 16)])[y]\nn, p = symbols(\"n p\")\nn = solve([Eq(5*n - 22, p), Eq(n - 2*p, p + 10)])[n]\nx = symbols(\"x\")\ndef w(x):\n\treturn 4*x**3 - 10*x**3 + 6*x + 21*x**2 - 53*x**n + 13*x**y + 19*x**4\nx = symbols(\"x\")\nx = solve(4*x**3 - 10*x**3 + 6*x + 21*x**2 - 53*x**n + 13*x**y + 19*x**4)\nprint(x)" - ], - "Output Answer": [ - "[-1, -2/7, 0, 1]" - ], - "split": "test" - }, - { - "Input": "Let m(n) = -12*n**2 - 5*n + 53. What is m(-8)?", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef m(n):\n\treturn -12*n**2 - 5*n + 53\nprint(m(-8))" - ], - "Output Answer": [ - "-675" - ], - "split": "test" - }, - { - "Input": "Which is bigger: 859 or -1.437?", - "Output Program": [ - "from sympy import *\nprint(max(859, -1.437))" - ], - "Output Answer": [ - "859" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to -0.1? (a) -31 (b) -2/7 (c) -18.7", - "Output Program": [ - "from sympy import *\nchoices = [-31, -2/7, -18.7]\ntarget = -0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.2857142857142857" - ], - "split": "test" - }, - { - "Input": "Sort 1, -3, -2, -14 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [1, -3, -2, -14]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "1 -2 -3 -14" - ], - "split": "test" - }, - { - "Input": "Let j = 17869 + -17868. What is the nearest to -1 in 5/17, -2/5, j, 4/9?", - "Output Program": [ - "from sympy import *\nj = 17869 + -17868\nchoices = [5/17, -2/5, j, 4/9]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.4" - ], - "split": "test" - }, - { - "Input": "Let y = 6/17 + 21/85. Let f = 0.1 + -0.1. Let x = 2.25 + -2.05. Sort x, y, f.", - "Output Program": [ - "from sympy import *\nx = 2.25 + -2.05\ny = 6/17 + 21/85\nf = 0.1 + -0.1\nchoices = [x, y, f]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "0.0 0.20000000000000018 0.6000000000000001" - ], - "split": "test" - }, - { - "Input": "Put 559, 398.3, 5, 3 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [559, 398.3, 5, 3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "559 398.3 5 3" - ], - "split": "test" - }, - { - "Input": "What is the eighth root of 1228 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1228 ** (1 / 8))))" - ], - "Output Answer": [ - "2" - ], - "split": "test" - }, - { - "Input": "Sort 19, -5, -2, 3, -121, 137.", - "Output Program": [ - "from sympy import *\nchoices = [19, -5, -2, 3, -121, 137]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-121 -5 -2 3 19 137" - ], - "split": "test" - }, - { - "Input": "What is the seventh root of 730032471 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(730032471 ** (1 / 7))))" - ], - "Output Answer": [ - "18" - ], - "split": "test" - }, - { - "Input": "Is -1141/6 != -1?", - "Output Program": [ - "from sympy import *\nprint(-1141/6 != -1)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose 5*p + 3*p - 16 = 0. Solve 2*z + 8 = -5*w + 1, -3*z + p*w = -18 for z.", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\np = solve([Eq(5*p + 3*p - 16, 0)])[p]\nz, w = symbols(\"z w\")\nz = solve([Eq(2*z + 8, -5*w + 1), Eq(-3*z + p*w, -18)])[z]\nprint(z)" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Let a be (45/12)/(1/24*9). Solve 6*d - d + a = 0 for d.", - "Output Program": [ - "from sympy import *\na = (45/12)/(1/24*9)\nd = symbols(\"d\")\nd = solve([Eq(6*d - d + a, 0)])[d]\nprint(d)" - ], - "Output Answer": [ - "-2.00000000000000" - ], - "split": "test" - }, - { - "Input": "Suppose -14*v = 56*v - 140. Let k(u) = -11*u**2 - 2*u + 2. What is k(v)?", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef k(u):\n\treturn -11*u**2 - 2*u + 2\nv = symbols(\"v\")\nv = solve([Eq(-14*v, 56*v - 140)])[v]\nprint(k(v))" - ], - "Output Answer": [ - "-46" - ], - "split": "test" - }, - { - "Input": "What is the closest to 0.1 in -21, 2, -4.9, -2/9, 5?", - "Output Program": [ - "from sympy import *\nchoices = [-21, 2, -4.9, -2/9, 5]\ntarget = 0.1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.2222222222222222" - ], - "split": "test" - }, - { - "Input": "Let p(j) = 2*j + 5. Suppose -7*h + 12 = -6*h + 5*r, -5*h + 12 = r. Suppose -4*u + 3*i + h*i = -215, -5*i - 265 = -5*u. Let z = -46 + u. Give p(z).", - "Output Program": [ - "from sympy import *\nj = symbols(\"j\")\ndef p(j):\n\treturn 2*j + 5\nh, r = symbols(\"h r\")\nh = solve([Eq(-7*h + 12, -6*h + 5*r), Eq(-5*h + 12, r)])[h]\nu, i = symbols(\"u i\")\nu = solve([Eq(-4*u + 3*i + h*i, -215), Eq(-5*i - 265, -5*u)])[u]\nz = -46 + u\nprint(p(z))" - ], - "Output Answer": [ - "13" - ], - "split": "test" - }, - { - "Input": "Solve -1129*k - 27 = -1138*k for k.", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\nk = solve([Eq(-1129*k - 27, -1138*k)])[k]\nprint(k)" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Sort 9, 1, -30, -10, 254 in ascending order.", - "Output Program": [ - "from sympy import *\nchoices = [9, 1, -30, -10, 254]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-30 -10 1 9 254" - ], - "split": "test" - }, - { - "Input": "What is the square root of 24802 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(24802 ** (1 / 2))))" - ], - "Output Answer": [ - "157" - ], - "split": "test" - }, - { - "Input": "Sort 23.1, 0.44, 0, -5, 5/3 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [23.1, 0.44, 0, -5, 5/3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "23.1 1.6666666666666667 0.44 0 -5" - ], - "split": "test" - }, - { - "Input": "Which is the closest to 3/2? (a) 4/3 (b) -0.2 (c) -0.1 (d) 0", - "Output Program": [ - "from sympy import *\nchoices = [4/3, -0.2, -0.1, 0]\ntarget = 3/2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1.3333333333333333" - ], - "split": "test" - }, - { - "Input": "Solve -21014*n + 21057*n - 688 = 0 for n.", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\nn = solve([Eq(-21014*n + 21057*n - 688, 0)])[n]\nprint(n)" - ], - "Output Answer": [ - "16" - ], - "split": "test" - }, - { - "Input": "Suppose 3*v = 4*w + 21, 1666*v + 34 = 1662*v - 5*w. Let l(s) = -9*s - 8. Calculate l(v).", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef l(s):\n\treturn -9*s - 8\nv, w = symbols(\"v w\")\nv = solve([Eq(3*v, 4*w + 21), Eq(1666*v + 34, 1662*v - 5*w)])[v]\nprint(l(v))" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Simplify -3*(-1*sqrt(1300) + sqrt(1300) + 0 + (sqrt(1300) - (-2*sqrt(1300) + 5 + sqrt(1300))))**2 - (-3 + 1 + (2 + sqrt(325))*-6).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(-3*(-1*sqrt(1300) + sqrt(1300) + 0 + (sqrt(1300) - (-2*sqrt(1300) + 5 + sqrt(1300))))**2 - (-3 + 1 + (2 + sqrt(325))*-6))))" - ], - "Output Answer": [ - "-15661 + 630*sqrt(13)" - ], - "split": "test" - }, - { - "Input": "Simplify ((-4*sqrt(91)*-1 + ((sqrt(91) + (-2*sqrt(91) - sqrt(91)))*2 - sqrt(91)))/(2*sqrt(84)/(sqrt(12) - sqrt(12)*-2)))**2 + 4.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(((-4*sqrt(91)*-1 + ((sqrt(91) + (-2*sqrt(91) - sqrt(91)))*2 - sqrt(91)))/(2*sqrt(84)/(sqrt(12) - sqrt(12)*-2)))**2 + 4)))" - ], - "Output Answer": [ - "133/4" - ], - "split": "test" - }, - { - "Input": "Which is the nearest to 0? (a) 1/3 (b) -1 (c) -0.1", - "Output Program": [ - "from sympy import *\nchoices = [1/3, -1, -0.1]\ntarget = 0\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "test" - }, - { - "Input": "Simplify 1 + (sqrt(112) + (sqrt(112) - (2 + sqrt(112))) + -1 - (sqrt(1575)*3 - sqrt(63))/sqrt(9)).", - "Output Program": [ - "from sympy import *\nprint(expand(simplify(1 + (sqrt(112) + (sqrt(112) - (2 + sqrt(112))) + -1 - (sqrt(1575)*3 - sqrt(63))/sqrt(9)))))" - ], - "Output Answer": [ - "-10*sqrt(7) - 2" - ], - "split": "test" - }, - { - "Input": "What is the closest to 4.5 in 1/6, 5/3, -2/11?", - "Output Program": [ - "from sympy import *\nchoices = [1/6, 5/3, -2/11]\ntarget = 4.5\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "1.6666666666666667" - ], - "split": "test" - }, - { - "Input": "Let l(x) = 19*x**2 + 724*x - 722. Give l(1).", - "Output Program": [ - "from sympy import *\nx = symbols(\"x\")\ndef l(x):\n\treturn 19*x**2 + 724*x - 722\nprint(l(1))" - ], - "Output Answer": [ - "21" - ], - "split": "test" - }, - { - "Input": "Let z(w) = 2*w**3 - 380*w**2 + 368*w + 2299. Calculate z(189).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef z(w):\n\treturn 2*w**3 - 380*w**2 + 368*w + 2299\nprint(z(189))" - ], - "Output Answer": [ - "409" - ], - "split": "test" - }, - { - "Input": "Suppose -155*v + 153*v - 10 = 0, -3*q + 2*v = -19. Solve q*w = -6 - 0 for w.", - "Output Program": [ - "from sympy import *\nq, v = symbols(\"q v\")\nq = solve([Eq(-155*v + 153*v - 10, 0), Eq(-3*q + 2*v, -19)])[q]\nw = symbols(\"w\")\nw = solve([Eq(q*w, -6 - 0)])[w]\nprint(w)" - ], - "Output Answer": [ - "-2" - ], - "split": "test" - }, - { - "Input": "Let x = -687 + 687.1. Let u = 0.5678 + -0.0678. What is the closest to 1 in 2, -19, x, u?", - "Output Program": [ - "from sympy import *\nx = -687 + 687.1\nu = 0.5678 + -0.0678\nchoices = [2, -19, x, u]\ntarget = 1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.5" - ], - "split": "test" - }, - { - "Input": "Let b(z) = 122*z - 6947. Determine b(57).", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\ndef b(z):\n\treturn 122*z - 6947\nprint(b(57))" - ], - "Output Answer": [ - "7" - ], - "split": "test" - }, - { - "Input": "Let v be 344/10 - (-2)/(-5). Suppose 0*u - v = -5*u + 4*l, 3*u + l = 17. Let c(m) = 6 - m. Let i be c(u). Solve 0 = 5*w - 5 - i for w.", - "Output Program": [ - "from sympy import *\nm = symbols(\"m\")\ndef c(m):\n\treturn 6 - m\nv = 344/10 - (-2)/(-5)\nu, l = symbols(\"u l\")\nu = solve([Eq(0*u - v, -5*u + 4*l), Eq(3*u + l, 17)])[u]\ni = c(u)\nw = symbols(\"w\")\nw = solve([Eq(0, 5*w - 5 - i)])[w]\nprint(w)" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Solve 0 = -4*g + c - 3*c - 12, 2*g = 2*c - 12 for g.", - "Output Program": [ - "from sympy import *\ng, c = symbols(\"g c\")\ng = solve([Eq(0, -4*g + c - 3*c - 12), Eq(2*g, 2*c - 12)])[g]\nprint(g)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Is (-32)/6*(-27)/6 a multiple of 24?", - "Output Program": [ - "from sympy import *\ny = (-32)/6*(-27)/6\nprint(24 % 24 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Simplify (5*(sqrt(85)/sqrt(5) + 4) - ((sqrt(102)/sqrt(3))/sqrt(2) + 2))*-4.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((5*(sqrt(85)/sqrt(5) + 4) - ((sqrt(102)/sqrt(3))/sqrt(2) + 2))*-4)))" - ], - "Output Answer": [ - "-72 - 16*sqrt(17)" - ], - "split": "test" - }, - { - "Input": "Factor 2*s**3 + 64*s**2 - 24408*s + 816480.", - "Output Program": [ - "from sympy import *\ns = symbols(\"s\")\ndef f(s):\n\treturn 2*s**3 + 64*s**2 - 24408*s + 816480\ns = symbols(\"s\")\neq = factor(2*s**3 + 64*s**2 - 24408*s + 816480)\nprint(eq)" - ], - "Output Answer": [ - "2*(s - 54)**2*(s + 140)" - ], - "split": "test" - }, - { - "Input": "Suppose 2*x - 2*m + 320 = 0, m + 3 = 2*m. Let i = x + 287. Suppose -5*h - i = -430. Is 20 a factor of h?", - "Output Program": [ - "from sympy import *\nx, m = symbols(\"x m\")\nx = solve([Eq(2*x - 2*m + 320, 0), Eq(m + 3, 2*m)])[x]\ni = x + 287\nh = symbols(\"h\")\nh = solve([Eq(-5*h - i, -430)])[h]\nprint(60 % 20 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Which is greater: 2 or 13/72?", - "Output Program": [ - "from sympy import *\nprint(max(2, 13/72))" - ], - "Output Answer": [ - "2" - ], - "split": "test" - }, - { - "Input": "Solve 6*g = o - 9, 31 = -4*g - 339*o + 338*o for g.", - "Output Program": [ - "from sympy import *\ng, o = symbols(\"g o\")\ng = solve([Eq(6*g, o - 9), Eq(31, -4*g - 339*o + 338*o)])[g]\nprint(g)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Is -1/49920 less than or equal to -1?", - "Output Program": [ - "from sympy import *\nprint(-1/49920 <= -1)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Sort -0.2, -13, -0.1, 4, -4 in decreasing order.", - "Output Program": [ - "from sympy import *\nchoices = [-0.2, -13, -0.1, 4, -4]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "4 -0.1 -0.2 -4 -13" - ], - "split": "test" - }, - { - "Input": "Are 6555 and 6555 equal?", - "Output Program": [ - "from sympy import *\nprint(6555 == 6555)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose -7*i = -33 - 30. Is 7 a factor of i?", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ni = solve([Eq(-7*i, -33 - 30)])[i]\nprint(9 % 7 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Solve -2*w + 5*r = 49, 27*w + 5*r - 189 = -53 for w.", - "Output Program": [ - "from sympy import *\nw, r = symbols(\"w r\")\nw = solve([Eq(-2*w + 5*r, 49), Eq(27*w + 5*r - 189, -53)])[w]\nprint(w)" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "What is the nearest to 11 in 3, 2, 3146?", - "Output Program": [ - "from sympy import *\nchoices = [3, 2, 3146]\ntarget = 11\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Solve -2*r + 2*l = 0, 0 = -50*l + 49*l + 1 for r.", - "Output Program": [ - "from sympy import *\nr, l = symbols(\"r l\")\nr = solve([Eq(-2*r + 2*l, 0), Eq(0, -50*l + 49*l + 1)])[r]\nprint(r)" - ], - "Output Answer": [ - "1" - ], - "split": "test" - }, - { - "Input": "Let r(g) = -5*g**2 - 241*g - 73. Determine r(-48).", - "Output Program": [ - "from sympy import *\ng = symbols(\"g\")\ndef r(g):\n\treturn -5*g**2 - 241*g - 73\nprint(r(-48))" - ], - "Output Answer": [ - "-25" - ], - "split": "test" - }, - { - "Input": "Suppose 2*x = d + 419, 5*d - 4 = 1. Is x a multiple of 30?", - "Output Program": [ - "from sympy import *\nx, d = symbols(\"x d\")\nx = solve([Eq(2*x, d + 419), Eq(5*d - 4, 1)])[x]\nprint(210 % 30 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Is 13 a factor of 1879025946?", - "Output Program": [ - "from sympy import *\nprint(1879025946 % 13 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Is 2/3 < -4679?", - "Output Program": [ - "from sympy import *\nprint(2/3 < -4679)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "What is the closest to 1.3 in -3, -72, 2?", - "Output Program": [ - "from sympy import *\nchoices = [-3, -72, 2]\ntarget = 1.3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "2" - ], - "split": "test" - }, - { - "Input": "Let z = 88 - 107. Let c be (-1 + z/(-11))*(-42)/(-168). Let b = 257/20 - 58/5. What is the closest to -0.3 in b, 0, c?", - "Output Program": [ - "from sympy import *\nb = 257/20 - 58/5\nz = 88 - 107\nc = (-1 + z/(-11))*(-42)/(-168)\nchoices = [b, 0, c]\ntarget = -0.3\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "Let s(k) = -3*k - 13. Let c be s(-5). Suppose c*j + 4*j = -42. Is -11/2 less than j?", - "Output Program": [ - "from sympy import *\nk = symbols(\"k\")\ndef s(k):\n\treturn -3*k - 13\nc = s(-5)\nj = symbols(\"j\")\nj = solve([Eq(c*j + 4*j, -42)])[j]\nprint(-11/2 < j)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - }, - { - "Input": "Solve -781*t - 5186 = 15120 for t.", - "Output Program": [ - "from sympy import *\nt = symbols(\"t\")\nt = solve([Eq(-781*t - 5186, 15120)])[t]\nprint(t)" - ], - "Output Answer": [ - "-26" - ], - "split": "test" - }, - { - "Input": "Let h(f) = 2*f**2 + 20*f + 35. What is h(-8)?", - "Output Program": [ - "from sympy import *\nf = symbols(\"f\")\ndef h(f):\n\treturn 2*f**2 + 20*f + 35\nprint(h(-8))" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Let s(u) = -u**3 + u**2 - 6. Suppose -7 = -21*b + 20*b. Suppose -4*g - 2*h = -10, 3*g - b*g = -3*h + 15. Give s(g).", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\ndef s(u):\n\treturn -u**3 + u**2 - 6\nb = symbols(\"b\")\nb = solve([Eq(-7, -21*b + 20*b)])[b]\ng, h = symbols(\"g h\")\ng = solve([Eq(-4*g - 2*h, -10), Eq(3*g - b*g, -3*h + 15)])[g]\nprint(s(g))" - ], - "Output Answer": [ - "-6" - ], - "split": "test" - }, - { - "Input": "Let j(w) = -2*w**2 - 85*w + 37. Calculate j(-43).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef j(w):\n\treturn -2*w**2 - 85*w + 37\nprint(j(-43))" - ], - "Output Answer": [ - "-6" - ], - "split": "test" - }, - { - "Input": "Solve -18*z + 85*z - 469 = 0 for z.", - "Output Program": [ - "from sympy import *\nz = symbols(\"z\")\nz = solve([Eq(-18*z + 85*z - 469, 0)])[z]\nprint(z)" - ], - "Output Answer": [ - "7" - ], - "split": "test" - }, - { - "Input": "Suppose -u + 21 = 2*o, 2*u - 4*u + 60 = -2*o. Is 107/4 less than or equal to u?", - "Output Program": [ - "from sympy import *\nu, o = symbols(\"u o\")\nu = solve([Eq(-u + 21, 2*o), Eq(2*u - 4*u + 60, -2*o)])[u]\nprint(107/4 <= u)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose 0*v = 2*v + 10. Let w = 417 + -1083. Let o = 664 + w. What is the nearest to 2 in o, -0.1, v?", - "Output Program": [ - "from sympy import *\nw = 417 + -1083\no = 664 + w\nv = symbols(\"v\")\nv = solve([Eq(0*v, 2*v + 10)])[v]\nchoices = [o, -0.1, v]\ntarget = 2\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.1" - ], - "split": "test" - }, - { - "Input": "Let q = 1335 + -1335.1. Which is the closest to q? (a) 15 (b) -5 (c) -0.04 (d) 5", - "Output Program": [ - "from sympy import *\nq = 1335 + -1335.1\nchoices = [15, -5, -0.04, 5]\ntarget = q\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.04" - ], - "split": "test" - }, - { - "Input": "Simplify (-2*sqrt(2) + 5 + sqrt(2) + -1 + -3)**2.", - "Output Program": [ - "from sympy import *\nprint(expand(simplify((-2*sqrt(2) + 5 + sqrt(2) + -1 + -3)**2)))" - ], - "Output Answer": [ - "3 - 2*sqrt(2)" - ], - "split": "test" - }, - { - "Input": "Which is greater: -11416/7 or -1630?", - "Output Program": [ - "from sympy import *\nprint(max(-11416/7, -1630))" - ], - "Output Answer": [ - "-1630" - ], - "split": "test" - }, - { - "Input": "Let y be 18/32*(-44)/33 - (-2805)/12. Sort 0, -2, y, 2.", - "Output Program": [ - "from sympy import *\ny = 18/32*(-44)/33 - (-2805)/12\nchoices = [0, -2, y, 2]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "-2 0 2 233.0" - ], - "split": "test" - }, - { - "Input": "Solve -16 = -4*a - r, -13*a - 2*r - 1692 + 1744 = 0 for a.", - "Output Program": [ - "from sympy import *\na, r = symbols(\"a r\")\na = solve([Eq(-16, -4*a - r), Eq(-13*a - 2*r - 1692 + 1744, 0)])[a]\nprint(a)" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "What is the third root of 41384097 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(41384097 ** (1 / 3))))" - ], - "Output Answer": [ - "346" - ], - "split": "test" - }, - { - "Input": "Solve 7*s - 20*s + 3*n = 131, 7*n + 50 = -2*s for s.", - "Output Program": [ - "from sympy import *\ns, n = symbols(\"s n\")\ns = solve([Eq(7*s - 20*s + 3*n, 131), Eq(7*n + 50, -2*s)])[s]\nprint(s)" - ], - "Output Answer": [ - "-11" - ], - "split": "test" - }, - { - "Input": "Let s(p) = p**2 - 8*p + 2. Give s(6).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef s(p):\n\treturn p**2 - 8*p + 2\nprint(s(6))" - ], - "Output Answer": [ - "-10" - ], - "split": "test" - }, - { - "Input": "Let l(p) = -p**3 - 4*p**2 - p + 9. Let t be (-2)/((-114)/(-12) - 9). Determine l(t).", - "Output Program": [ - "from sympy import *\np = symbols(\"p\")\ndef l(p):\n\treturn -p**3 - 4*p**2 - p + 9\nt = (-2)/((-114)/(-12) - 9)\nprint(l(t))" - ], - "Output Answer": [ - "13.0" - ], - "split": "test" - }, - { - "Input": "Let p = -1.299 + -0.701. Let g = 14 + -18. Suppose 5*s - 4*k + 0*k = 17, -k - 4 = -s. What is the nearest to s in 3, p, g?", - "Output Program": [ - "from sympy import *\ns, k = symbols(\"s k\")\ns = solve([Eq(5*s - 4*k + 0*k, 17), Eq(-k - 4, -s)])[s]\np = -1.299 + -0.701\ng = 14 + -18\nchoices = [3, p, g]\ntarget = s\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Factor i**3/4 - 9825*i**2/2 - 39307*i/4 + 14739.", - "Output Program": [ - "from sympy import *\ni = symbols(\"i\")\ndef u(i):\n\treturn i**3/4 - 9825*i**2/2 - 39307*i/4 + 14739\ni = symbols(\"i\")\neq = factor(i**3/4 - 9825*i**2/2 - 39307*i/4 + 14739)\nprint(eq)" - ], - "Output Answer": [ - "(i - 19652)*(i - 1)*(i + 3)/4" - ], - "split": "test" - }, - { - "Input": "Solve -7*u = 2*u - 45 for u.", - "Output Program": [ - "from sympy import *\nu = symbols(\"u\")\nu = solve([Eq(-7*u, 2*u - 45)])[u]\nprint(u)" - ], - "Output Answer": [ - "5" - ], - "split": "test" - }, - { - "Input": "Let k(l) = l**3 + 11*l**2 - 13*l - 6. Determine k(-12).", - "Output Program": [ - "from sympy import *\nl = symbols(\"l\")\ndef k(l):\n\treturn l**3 + 11*l**2 - 13*l - 6\nprint(k(-12))" - ], - "Output Answer": [ - "6" - ], - "split": "test" - }, - { - "Input": "What is the tenth root of 1366434 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(1366434 ** (1 / 10))))" - ], - "Output Answer": [ - "4" - ], - "split": "test" - }, - { - "Input": "Let z(w) = -4*w**2 + 64*w + 13856. Give z(-52).", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef z(w):\n\treturn -4*w**2 + 64*w + 13856\nprint(z(-52))" - ], - "Output Answer": [ - "-288" - ], - "split": "test" - }, - { - "Input": "Let c be (-6)/(-27) + (-28)/45. Let a = 3 + -4.2. Let z = -0.8 + a. Sort c, z, 0.3 in descending order.", - "Output Program": [ - "from sympy import *\nc = (-6)/(-27) + (-28)/45\na = 3 + -4.2\nz = -0.8 + a\nchoices = [c, z, 0.3]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "0.3 -0.4 -2.0" - ], - "split": "test" - }, - { - "Input": "Let u = -0.0098 + 1063.0098. Sort 1, 1/3, u.", - "Output Program": [ - "from sympy import *\nu = -0.0098 + 1063.0098\nchoices = [1, 1/3, u]\nprint(*sorted(choices, reverse=False))" - ], - "Output Answer": [ - "0.3333333333333333 1 1063.0" - ], - "split": "test" - }, - { - "Input": "What is the nearest to -1 in -3/14, -2/9, -5/9, -5, 1/9?", - "Output Program": [ - "from sympy import *\nchoices = [-3/14, -2/9, -5/9, -5, 1/9]\ntarget = -1\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-0.5555555555555556" - ], - "split": "test" - }, - { - "Input": "What is the nearest to -1/1049 in 3, -79/8, -5, 71?", - "Output Program": [ - "from sympy import *\nchoices = [3, -79/8, -5, 71]\ntarget = -1/1049\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "3" - ], - "split": "test" - }, - { - "Input": "Let a be 312/(-18) - (-2)/(-3)*1. Let f(n) = n**3 + 19*n**2 - 26*n - 1. Is f(a) a composite number?", - "Output Program": [ - "from sympy import *\nn = symbols(\"n\")\ndef f(n):\n\treturn n**3 + 19*n**2 - 26*n - 1\na = 312/(-18) - (-2)/(-3)*1\nx = f(a)\nprint(not isprime(791))" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let c(w) = w + 2. Let q be c(1). Suppose o - 9 = -q*l, -2*o = -3*l + l - 10. Let f be (-2 + 1)/(o/(-18)). Solve f*b - j + 4 = 3*j, 2*j + 12 = -2*b for b.", - "Output Program": [ - "from sympy import *\nw = symbols(\"w\")\ndef c(w):\n\treturn w + 2\nq = c(1)\no, l = symbols(\"o l\")\no = solve([Eq(o - 9, -q*l), Eq(-2*o, -3*l + l - 10)])[o]\nf = (-2 + 1)/(o/(-18))\nb, j = symbols(\"b j\")\nb = solve([Eq(f*b - j + 4, 3*j), Eq(2*j + 12, -2*b)])[b]\nprint(b)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Factor 9*q**3/7 - 3561*q**2/7 + 355191*q/7 - 582135/7.", - "Output Program": [ - "from sympy import *\nq = symbols(\"q\")\ndef n(q):\n\treturn 9*q**3/7 - 3561*q**2/7 + 355191*q/7 - 582135/7\nq = symbols(\"q\")\neq = factor(9*q**3/7 - 3561*q**2/7 + 355191*q/7 - 582135/7)\nprint(eq)" - ], - "Output Answer": [ - "83162.1428571429*(0.0050761421319797*q - 1.0)**2*(0.6*q - 1.0)" - ], - "split": "test" - }, - { - "Input": "What is the third root of 574688643 to the nearest integer?", - "Output Program": [ - "from sympy import *\nprint(int(round(574688643 ** (1 / 3))))" - ], - "Output Answer": [ - "831" - ], - "split": "test" - }, - { - "Input": "Is 9280232 a multiple of 362?", - "Output Program": [ - "from sympy import *\nprint(9280232 % 362 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Suppose 4*q - 3*s = 48, -3*q = 5*s - 5 - 31. Sort 3, 0, q in decreasing order.", - "Output Program": [ - "from sympy import *\nq, s = symbols(\"q s\")\nq = solve([Eq(4*q - 3*s, 48), Eq(-3*q, 5*s - 5 - 31)])[q]\nchoices = [3, 0, q]\nprint(*sorted(choices, reverse=True))" - ], - "Output Answer": [ - "12 3 0" - ], - "split": "test" - }, - { - "Input": "Solve 14*d + 3*t + 56 = 0, -3*d - 5*d + 15*d - 6*d - t + 4 = 0 for d.", - "Output Program": [ - "from sympy import *\nd, t = symbols(\"d t\")\nd = solve([Eq(14*d + 3*t + 56, 0), Eq(-3*d - 5*d + 15*d - 6*d - t + 4, 0)])[d]\nprint(d)" - ], - "Output Answer": [ - "-4" - ], - "split": "test" - }, - { - "Input": "Suppose 0*v - 2380 = -14*v. Is v a multiple of 34?", - "Output Program": [ - "from sympy import *\nv = symbols(\"v\")\nv = solve([Eq(0*v - 2380, -14*v)])[v]\nprint(170 % 34 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Let g = 25336.1 - 25336. Which is the nearest to 2/197? (a) 2/5 (b) g (c) -0.2 (d) -4", - "Output Program": [ - "from sympy import *\ng = 25336.1 - 25336\nchoices = [2/5, g, -0.2, -4]\ntarget = 2/197\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "0.09999999999854481" - ], - "split": "test" - }, - { - "Input": "Let g = 0.28 - 2.28. Let v = 0.3 + -1.3. Which is greater: v or g?", - "Output Program": [ - "from sympy import *\nv = 0.3 + -1.3\ng = 0.28 - 2.28\nprint(max(v, g))" - ], - "Output Answer": [ - "-1.0" - ], - "split": "test" - }, - { - "Input": "Suppose -2*z - 5*u + 16 = -u, -z - 3*u + 11 = 0. Solve -v = -z*v for v.", - "Output Program": [ - "from sympy import *\nz, u = symbols(\"z u\")\nz = solve([Eq(-2*z - 5*u + 16, -u), Eq(-z - 3*u + 11, 0)])[z]\nv = symbols(\"v\")\nv = solve([Eq(-v, -z*v)])[v]\nprint(v)" - ], - "Output Answer": [ - "0" - ], - "split": "test" - }, - { - "Input": "What is the nearest to -4 in -3.8, -0.05, 40?", - "Output Program": [ - "from sympy import *\nchoices = [-3.8, -0.05, 40]\ntarget = -4\nprint(min(choices, key=lambda x: abs(target - x)))" - ], - "Output Answer": [ - "-3.8" - ], - "split": "test" - }, - { - "Input": "Is 69 a factor of 13800?", - "Output Program": [ - "from sympy import *\nprint(13800 % 69 == 0)" - ], - "Output Answer": [ - "True" - ], - "split": "test" - }, - { - "Input": "Is 16542 a multiple of 56?", - "Output Program": [ - "from sympy import *\nprint(16542 % 56 == 0)" - ], - "Output Answer": [ - "False" - ], - "split": "test" - } - ], - "Metadata": [] -} \ No newline at end of file