diff --git "a/S2-train.txt" "b/S2-train.txt" new file mode 100644--- /dev/null +++ "b/S2-train.txt" @@ -0,0 +1,263617 @@ +Revealed O +the O +location-specific O +flow B-CONPRI +patterns E-CONPRI +and O +quantified O +the O +speeds O +of O +various O +types O +of O +flow O +. O + + +Reconstructed O +three-dimensional S-CONPRI +flow B-CONPRI +pattern E-CONPRI +under O +both O +conduction-mode O +melting S-MANP +and O +depression-mode O +melting S-MANP +. O + + +Experimentally O +analyzed O +the O +prevailing O +physical B-CONPRI +processes E-CONPRI +at O +different O +locations O +in O +the O +melt B-MATE +pool E-MATE +. O + + +Melt B-CONPRI +flow E-CONPRI +plays O +a O +critical O +role O +in O +laser B-MANP +metal I-MANP +additive I-MANP +manufacturing E-MANP +, O +yet O +the O +melt B-CONPRI +flow E-CONPRI +behavior O +within O +the O +melt B-MATE +pool E-MATE +has O +never O +been O +explicitly O +presented O +. O + + +Here O +, O +we O +report O +in-situ S-CONPRI +characterization O +of O +melt-flow B-CONPRI +dynamics E-CONPRI +in O +every O +location O +of O +the O +entire O +melt B-MATE +pool E-MATE +in O +laser B-MANP +metal I-MANP +additive I-MANP +manufacturing E-MANP +by O +populous O +and O +uniformly O +dispersed O +micro-tracers O +through O +in-situ S-CONPRI +high-resolution S-PARA +synchrotron O +x-ray B-CHAR +imaging E-CHAR +. O + + +The O +location-specific O +flow B-CONPRI +patterns E-CONPRI +in O +different O +regions O +of O +the O +melt B-MATE +pool E-MATE +are O +revealed O +and O +quantified O +under O +both O +conduction-mode O +and O +depression-mode O +melting S-MANP +. O + + +The O +physical B-CONPRI +processes E-CONPRI +at O +different O +locations O +in O +the O +melt B-MATE +pool E-MATE +are O +identified O +. O + + +The O +full-field O +melt-flow S-CONPRI +mapping O +approach O +reported O +here O +opens O +the O +way O +to O +study O +the O +detailed O +melt-flow B-CONPRI +dynamics E-CONPRI +under O +real O +additive B-MANP +manufacturing E-MANP +conditions O +. O + + +The O +results O +obtained O +provide O +crucial O +insights O +into O +laser B-MANP +additive I-MANP +manufacturing E-MANP +processes O +and O +are O +critical O +for O +developing O +reliable O +high-fidelity S-CONPRI +computational B-ENAT +models E-ENAT +. O + + +High B-PARA +resolution E-PARA +X-ray O +tomography O +was O +used O +to O +evaluate O +the O +efficiency O +of O +Hot B-MANP +Isostatic I-MANP +Pressing E-MANP +. O + + +Full O +consolidation S-CONPRI +of O +large O +internal O +cavities O +filled O +with O +unmelted O +powder S-MATE +was O +demonstrated O +. O + + +Design S-FEAT +of O +such O +cavities O +with O +unmelted O +powder S-MATE +could O +improve O +production S-MANP +rates O +by O +eliminating O +the O +need O +for O +some O +fraction S-CONPRI +of O +hatch O +melting S-MANP +in O +the O +interior O +of O +additively-manufactured O +structures O +. O + + +HIP S-MANP +is O +highly O +effective O +at O +closing O +most O +typical O +porosity S-PRO +distributions S-CONPRI +. O + + +Exceptions O +are O +highly O +interconnected O +pores S-PRO +and O +pores S-PRO +near O +the O +surface S-CONPRI +. O + + +Hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +of O +additively B-MANP +manufactured E-MANP +metals O +is O +a O +widely O +adopted O +and O +effective O +method O +to O +improve O +the O +density S-PRO +and O +microstructure S-CONPRI +homogeneity O +within O +geometrically-complex S-CONPRI +metal O +structures O +fabricated S-CONPRI +with O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +. O + + +The O +role O +of O +pores S-PRO +in O +the O +fatigue S-PRO +performance O +of O +additively B-MANP +manufactured E-MANP +metal O +parts O +is O +increasingly O +being O +recognized O +as S-MATE +a O +critical B-PRO +factor E-PRO +and O +HIP S-MANP +post-processing O +is O +now O +heralded O +as S-MATE +a O +method O +to O +eliminate O +pores S-PRO +, O +especially O +for O +high-criticality O +applications O +such O +as S-MATE +in O +the O +aerospace B-APPL +industry E-APPL +. O + + +Despite O +the O +widely O +reported O +positive O +influence O +on O +fatigue S-PRO +performance O +and O +high O +efficiency O +of O +pore S-PRO +closure O +, O +examples O +have O +been O +reported O +in O +which O +pores S-PRO +have O +not O +been O +entirely O +closed O +or O +have O +subsequently O +re-opened O +upon O +heat B-MANP +treatment E-MANP +. O + + +A O +variety O +of O +porosity S-PRO +distributions S-CONPRI +and O +types O +of O +pores S-PRO +may O +be S-MATE +present O +in O +parts O +produced O +by O +LBPF O +and O +the O +effectiveness S-CONPRI +of O +pore S-PRO +closure O +may O +differ O +depending O +on O +these O +pore S-PRO +characteristics O +. O + + +In O +this O +work O +, O +X-ray B-CHAR +tomography E-CHAR +was O +employed O +to O +provide O +insights O +into O +pore S-PRO +closure O +efficiency O +by O +HIP S-MANP +for O +an O +intentional O +and O +artificially-induced O +cavity O +as S-MATE +well O +as S-MATE +for O +a O +range S-PARA +of O +typical O +process-induced O +pores S-PRO +( O +lack O +of O +fusion S-CONPRI +, O +keyhole O +, O +contour S-FEAT +pores O +, O +etc O +. O + + +) O +in O +coupon O +samples S-CONPRI +of O +Ti6Al4V S-MATE +. O + + +The O +same O +samples S-CONPRI +were O +imaged O +non-destructively O +before O +and O +after O +HIP S-MANP +and O +aligned O +carefully O +for O +side-by-side O +viewing O +. O + + +High O +pore S-PRO +closure O +efficiency O +is O +demonstrated O +for O +all O +types O +of O +cavities O +and O +pores S-PRO +investigated O +, O +but O +near-surface O +pores S-PRO +of O +all O +types O +are O +shown O +to O +be S-MATE +problematic O +to O +varying O +degrees O +, O +in O +some O +cases O +perforating S-CONPRI +the O +superficial O +surface S-CONPRI +and O +creating O +new O +external O +notches S-FEAT +. O + + +Subsequent O +heat B-MANP +treatments E-MANP +( O +annealing S-MANP +after O +HIP S-MANP +) O +in O +some O +cases O +resulted O +in O +internal O +pore S-PRO +reopening O +for O +previously O +closed O +internal O +pores S-PRO +as S-MATE +well O +as S-MATE +a O +new O +“ O +blistering O +” O +effect O +observed O +for O +some O +near-surface O +pores S-PRO +, O +which O +the O +authors O +believe O +is O +reported O +for O +the O +first O +time O +. O + + +Implications O +of O +these O +results O +for O +quality B-CONPRI +control E-CONPRI +and O +HIP S-MANP +processing O +of O +LPBF S-MANP +parts O +are O +discussed O +. O + + +Finally O +, O +the O +utility O +of O +using O +HIP S-MANP +to O +consolidate O +intentionally-unmelted O +powder S-MATE +in O +order O +to O +improve O +production S-MANP +rates O +of O +powder B-MANP +bed I-MANP +fusion E-MANP +has O +great O +potential O +and O +is O +preliminarily O +demonstrated O +. O + + +Direct B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +systems O +are O +currently O +used O +to O +repair O +and O +maintain O +existing O +parts O +in O +the O +aerospace S-APPL +and O +automotive B-APPL +industries E-APPL +. O + + +This O +paper O +discusses O +an O +effort O +to O +scale O +up O +the O +DED S-MANP +technique O +in O +order O +to O +Additively B-MANP +Manufacture E-MANP +( O +AM S-MANP +) O +molds S-MACEQ +and O +dies S-MACEQ +used O +in O +the O +composite B-MANP +manufacturing E-MANP +industry O +. O + + +The O +US O +molds S-MACEQ +and O +dies S-MACEQ +market O +has O +been O +in O +a O +rapid O +decline O +over O +the O +last O +decade O +due O +to O +outsourcing S-CONPRI +to O +non-US O +entities O +. O + + +Oak O +Ridge O +National O +Laboratory S-CONPRI +( O +ORNL O +) O +, O +Wolf O +Robotics S-APPL +and O +Lincoln O +Electric O +have O +developed O +a O +Metal B-MANP +Big I-MANP +Area I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +MBAAM S-MANP +) O +system O +that O +uses O +a O +high B-PARA +deposition I-PARA +rate E-PARA +and O +a O +low-cost O +wire B-MATE +feedstock I-MATE +material E-MATE +. O + + +In O +this O +work O +we O +used O +the O +MBAAM S-MANP +system O +with O +a O +mild B-MATE +steel E-MATE +wire O +, O +ER70S-6 S-MATE +, O +to O +fabricate S-MANP +a O +compression B-MANP +molding E-MANP +mold O +for O +composite B-CONPRI +structures E-CONPRI +used O +in O +automotive S-APPL +and O +mass-transit S-APPL +applications O +. O + + +In O +addition O +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +AM S-MANP +structure O +were O +investigated O +, O +and O +it O +was O +found O +that O +the O +MBAAM S-MANP +process O +delivers O +parts O +with O +high O +planar O +isotropic S-PRO +behavior O +. O + + +The O +paper O +investigates S-CONPRI +the O +microstructure S-CONPRI +and O +grain S-CONPRI +of O +the O +printed O +articles O +to O +confirm O +the O +roots O +of O +the O +observed O +planar O +isotropic S-PRO +properties O +. O + + +The O +manufactured S-CONPRI +AM B-MACEQ +mold E-MACEQ +was O +used O +to O +fabricate S-MANP +50 O +composite S-MATE +parts O +with O +no O +observed O +mold S-MACEQ +deformations S-CONPRI +. O + + +Wire O +feed S-PARA +metal O +additive B-MANP +manufacturing E-MANP +offers O +advantages O +, O +such O +as S-MATE +large O +build B-PARA +volumes E-PARA +and O +high O +build B-CHAR +rates E-CHAR +, O +over O +powder B-MACEQ +bed E-MACEQ +and O +blown O +powder S-MATE +techniques O +, O +but O +it O +has O +its O +own O +disadvantages O +, O +i.e. O +, O +lower O +feature S-FEAT +resolution O +and O +bead B-CONPRI +morphology E-CONPRI +control O +issues O +. O + + +A O +new O +wire O +feed S-PARA +metal O +additive B-MANP +manufacturing I-MANP +process E-MANP +called O +Metal B-MANP +Big I-MANP +Area I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +mBAAM S-MANP +) O +uses O +a O +Gas B-MANP +Metal I-MANP +Arc I-MANP +Weld E-MANP +system O +on O +an O +articulated O +robot B-MACEQ +arm E-MACEQ +to O +increase O +build B-PARA +volume E-PARA +and O +deposition B-PARA +rate E-PARA +in O +comparison O +to O +powder B-MANP +bed I-MANP +techniques E-MANP +. O + + +The O +high B-PARA +deposition I-PARA +rate E-PARA +implies O +a O +low-resolution O +process S-CONPRI +; O +therefore O +, O +parts O +designed S-FEAT +for O +mBAAM S-MANP +must O +incorporate O +the O +use O +of O +machining S-MANP +to O +achieve O +certain O +features O +. O + + +This O +paper O +presents O +an O +introduction O +to O +how O +design B-CONPRI +rules E-CONPRI +, O +such O +as S-MATE +overhang O +constraint O +, O +large O +weld B-CONPRI +bead E-CONPRI +thickness O +, O +and O +support B-FEAT +structure E-FEAT +, O +for O +mBAAM S-MANP +interact O +in O +the O +context O +of O +an O +excavator B-MACEQ +arm E-MACEQ +case B-CONPRI +study E-CONPRI +, O +which O +was O +designed S-FEAT +using O +topology B-FEAT +optimization E-FEAT +. O + + +Interactive O +database S-ENAT +for O +mechanical B-CONPRI +properties E-CONPRI +of O +metal S-MATE +lattice B-FEAT +structures E-FEAT +. O + + +Lattice S-CONPRI +Unit-cell O +Characterization O +Interface S-CONPRI +for O +Engineering S-APPL +compiles O +69 O +sources O +. O + + +Lattice B-FEAT +structure E-FEAT +data S-CONPRI +compiled O +from O +analytical O +, O +experimental S-CONPRI +, O +and O +finite B-CONPRI +element E-CONPRI +. O + + +Data S-CONPRI +compilation O +includes O +nearly O +1650 O +experimental S-CONPRI +and O +finite B-CONPRI +element I-CONPRI +data I-CONPRI +points E-CONPRI +. O + + +Lattice B-CONPRI +data E-CONPRI +incorporates O +18 O +different O +common O +unit B-CONPRI +cell I-CONPRI +topologies E-CONPRI +. O + + +With O +the O +ever-increasing O +resolution S-PARA +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +processes O +, O +the O +ability O +to O +design S-FEAT +and O +fabricate S-MANP +cellular O +or O +lattice B-FEAT +structures E-FEAT +is O +readily O +improving O +. O + + +While O +there O +are O +few O +limits S-CONPRI +to O +the O +variety O +of O +unit B-CONPRI +cell I-CONPRI +topologies E-CONPRI +that O +can O +feasibly O +be S-MATE +manufactured O +, O +there O +is O +little O +known O +about O +the O +effect O +that O +the O +underlying O +unit B-CONPRI +cell I-CONPRI +topology E-CONPRI +has O +on O +lattice B-FEAT +structure E-FEAT +mechanical O +performance S-CONPRI +. O + + +Increased O +knowledge O +of O +lattice B-FEAT +structure E-FEAT +performance O +based O +on O +the O +unit B-CONPRI +cell I-CONPRI +topology E-CONPRI +can O +aid O +in O +appropriate O +unit B-CONPRI +cell E-CONPRI +selection O +to O +achieve O +desired O +lattice B-FEAT +structure E-FEAT +mechanical O +properties S-CONPRI +. O + + +The O +objective O +in O +this O +work O +is O +to O +compile O +metal S-MATE +additively B-MANP +manufactured E-MANP +lattice O +structure B-CHAR +characterization E-CHAR +data S-CONPRI +found O +in O +the O +literature O +into O +Ashby-style O +plots O +that O +can O +be S-MATE +used O +to O +differentiate O +unit B-CONPRI +cell I-CONPRI +topologies E-CONPRI +and O +guide O +unit B-CONPRI +cell E-CONPRI +selection O +. O + + +Data S-CONPRI +gathered O +from O +literature O +encompasses O +over O +69 O +papers O +describing O +18 O +different O +unit B-CONPRI +cell I-CONPRI +topologies E-CONPRI +. O + + +Data S-CONPRI +on O +mechanical B-CONPRI +properties E-CONPRI +such O +as S-MATE +the O +effective O +modulus O +, O +Poisson O +’ O +s S-MATE +ratio O +, O +yield B-PRO +strength E-PRO +, O +buckling B-PRO +strength E-PRO +, O +and O +plateau O +strength S-PRO +, O +of O +lattice B-FEAT +structures E-FEAT +from O +analytical O +models O +based O +on O +mathematical S-CONPRI +derivations O +, O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +, O +and O +experimental S-CONPRI +characterization O +was O +gathered O +and O +synthesized O +. O + + +In O +total O +, O +nearly O +1,650 O +data S-CONPRI +points O +for O +experimental S-CONPRI +and O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +were O +compiled O +along O +with O +a O +variety O +of O +analytical O +models O +for O +18 O +different O +unit B-CONPRI +cell I-CONPRI +topologies E-CONPRI +. O + + +The O +process S-CONPRI +of O +gathering O +the O +data S-CONPRI +from O +the O +literature O +along O +with O +the O +assumptions O +used O +to O +compile O +the O +data S-CONPRI +are O +discussed O +. O + + +A O +graphical O +user O +interface S-CONPRI +and O +database S-ENAT +were O +developed O +that O +allows O +for O +comparison O +of O +different O +lattice B-FEAT +structure E-FEAT +mechanical O +properties S-CONPRI +based O +on O +their O +unit B-CONPRI +cell I-CONPRI +topology E-CONPRI +. O + + +The O +Lattice S-CONPRI +Unit-cell O +Characterization O +Interface S-CONPRI +for O +Engineers O +( O +LUCIE O +) O +provides O +a O +simple S-MANP +format O +to O +guide O +engineers O +, O +scientists O +, O +and O +others O +towards O +understanding O +the O +relationships O +of O +the O +unit B-CONPRI +cell I-CONPRI +topology E-CONPRI +and O +the O +lattice B-FEAT +structure E-FEAT +mechanical O +properties S-CONPRI +, O +with O +the O +intent O +of O +guiding O +appropriate O +unit B-CONPRI +cell E-CONPRI +selection O +. O + + +Three O +cases O +studies O +are O +shown O +for O +using O +LUCIE O +to O +differentiate O +unit B-CONPRI +cell I-CONPRI +topologies E-CONPRI +for O +improved O +understanding O +of O +experimental S-CONPRI +and O +simulation-based O +results O +( O +Case B-CONPRI +Study E-CONPRI +1 O +) O +, O +to O +identify O +unit B-CONPRI +cell I-CONPRI +topology E-CONPRI +options O +for O +reducing O +weight S-PARA +while O +maintaining O +yield B-PRO +stress E-PRO +or O +increasing O +yield B-PRO +stress E-PRO +without O +reducing O +weight S-PARA +( O +Case B-CONPRI +Study E-CONPRI +2 O +) O +, O +and O +for O +quickly O +narrowing O +multiple O +options O +to O +an O +appropriate O +unit B-CONPRI +cell I-CONPRI +topology E-CONPRI +( O +Case B-CONPRI +Study E-CONPRI +3 O +) O +. O + + +Drop-on-demand B-MANP +jetting E-MANP +of O +metals S-MATE +offers O +a O +fully O +digital B-MANP +manufacturing E-MANP +approach O +to O +surpass O +the O +limitations O +of O +the O +current O +generation O +powder-based B-MANP +additive I-MANP +manufacturing E-MANP +technologies O +. O + + +However O +, O +research S-CONPRI +on O +this O +topic O +has O +been O +restricted O +mainly O +to O +near-net O +shaping S-MANP +of O +relatively O +low O +melting B-PARA +temperature E-PARA +metals O +. O + + +Here O +it O +is O +proposed O +a O +novel O +approach O +to O +jet O +molten B-MATE +metals E-MATE +at O +high-temperatures O +( O +> O +1000 O +°C O +) O +to O +enable O +the O +direct B-MANP +digital I-MANP +additive I-MANP +fabrication E-MANP +of O +micro- S-CHAR +to O +macro-scale O +objects O +. O + + +The O +technique O +used O +in O +our O +research S-CONPRI +– O +“ O +MetalJet O +” O +- O +is O +discussed O +by O +studying O +the O +ejection S-CONPRI +and O +the O +deposition S-CONPRI +of O +two O +example O +metals S-MATE +, O +tin S-MATE +and O +silver S-MATE +. O + + +The O +applicability O +of O +this O +new O +technology S-CONPRI +to O +additive B-MANP +manufacturing E-MANP +is O +evaluated O +through O +the O +study O +of O +the O +interface S-CONPRI +formed O +between O +the O +droplets S-CONPRI +and O +the O +substrate S-MATE +, O +the O +inter-droplets O +bonding S-CONPRI +, O +the O +microstructure S-CONPRI +and O +the O +geometrical B-CONPRI +fidelity E-CONPRI +of O +the O +printed O +objects O +. O + + +The O +research S-CONPRI +shows O +that O +the O +integrity S-CONPRI +of O +the O +samples S-CONPRI +( O +in O +terms O +of O +density S-PRO +as S-MATE +well O +as S-MATE +metallurgy O +) O +varies O +dramatically O +in O +the O +two O +investigated O +materials S-CONPRI +due O +to O +the O +different O +conditions O +that O +are O +required O +to O +melt S-CONPRI +the O +interface S-CONPRI +of O +the O +stacked O +droplets S-CONPRI +. O + + +Nevertheless O +the O +research S-CONPRI +shows O +that O +by O +a O +careful O +choice O +of O +the O +jetting S-MANP +strategy O +and O +sintering S-MANP +treatments O +3D B-CONPRI +structures E-CONPRI +of O +various O +complexity S-CONPRI +can O +be S-MATE +formed O +. O + + +This O +research S-CONPRI +paves O +the O +way O +towards O +the O +next O +generation O +metal B-MANP +additive I-MANP +manufacturing E-MANP +where O +various O +printing O +resolutions O +and O +multi-material S-CONPRI +capabilities O +could O +be S-MATE +used O +to O +obtain O +functional B-CONPRI +components E-CONPRI +for O +applications O +in O +printed B-CONPRI +electronics E-CONPRI +, O +medicine S-CONPRI +and O +the O +automotive B-APPL +sectors E-APPL +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +as S-MATE +an O +emerging O +manufacturing S-MANP +technique O +has O +been O +gradually O +accepted O +to O +manufacture S-CONPRI +end-use O +components S-MACEQ +. O + + +However O +, O +one O +of O +the O +most O +critical O +issues O +preventing O +its O +broad O +applications O +is O +build B-CHAR +failure E-CHAR +resulting O +from O +residual B-PRO +stress E-PRO +accumulation O +in O +manufacturing B-MANP +process E-MANP +. O + + +The O +goal O +of O +this O +work O +is O +to O +investigate O +the O +feasibility S-CONPRI +of O +using O +topology B-FEAT +optimization E-FEAT +to O +design S-FEAT +support O +structure S-CONPRI +to O +mitigate O +residual B-PRO +stress E-PRO +induced O +build B-CHAR +failure E-CHAR +. O + + +To O +make O +topology B-FEAT +optimization E-FEAT +computationally O +tractable O +, O +the O +inherent O +strain S-PRO +method O +is O +employed O +to O +perform O +fast O +prediction S-CONPRI +of O +residual B-PRO +stress E-PRO +in O +an O +AM S-MANP +build O +. O + + +Graded O +lattice B-FEAT +structure E-FEAT +optimization O +is O +utilized O +to O +design S-FEAT +the O +support B-FEAT +structure E-FEAT +due O +to O +the O +open-celled S-CONPRI +and O +self-supporting S-FEAT +nature O +of O +periodic O +lattice B-FEAT +structure E-FEAT +. O + + +The O +objective O +for O +the O +optimization S-CONPRI +is O +to O +minimize O +the O +mass O +of O +sacrificial O +support B-FEAT +structure E-FEAT +under O +stress S-PRO +constraint O +. O + + +By O +limiting O +the O +maximum O +stress S-PRO +under O +the O +yield B-PRO +strength E-PRO +, O +cracking S-CONPRI +resulting O +from O +residual B-PRO +stress E-PRO +can O +be S-MATE +prevented O +. O + + +To O +show O +the O +feasibility S-CONPRI +of O +the O +proposed O +method O +, O +the O +support B-FEAT +structure E-FEAT +of O +a O +double-cantilever B-MACEQ +beam E-MACEQ +and O +a O +hip B-APPL +implant E-APPL +is O +designed S-FEAT +, O +respectively O +. O + + +The O +support B-FEAT +structure E-FEAT +after O +optimization S-CONPRI +can O +achieve O +a O +weight S-PARA +reduction S-CONPRI +of O +approximately O +60 O +% O +. O + + +The O +components S-MACEQ +with O +optimized O +support B-FEAT +structures E-FEAT +no O +longer O +suffer O +from O +stress-induced B-CONPRI +cracking E-CONPRI +after O +the O +designs S-FEAT +are O +realized O +by O +AM S-MANP +, O +which O +proves O +the O +effectiveness S-CONPRI +of O +the O +proposed O +method O +. O + + +Additive S-MATE +friction O +stir O +deposition S-CONPRI +( O +AFSD O +) O +is O +an O +emerging O +solid-state S-CONPRI +metal B-MANP +additive I-MANP +manufacturing E-MANP +technology O +renowned O +for O +strong O +interface S-CONPRI +adhesion S-PRO +and O +isotropic S-PRO +mechanical O +properties S-CONPRI +. O + + +This O +is O +postulated O +to O +result O +from O +the O +material S-MATE +flow O +phenomena O +near O +the O +interface S-CONPRI +, O +but O +experimental S-CONPRI +corroboration O +has O +remained O +absent O +. O + + +Here O +, O +we O +seek O +to O +understand O +the O +interface S-CONPRI +formed O +in O +AFSD O +via O +morphological O +and O +microstructural S-CONPRI +investigation O +, O +wherein O +the O +non-planar O +interfacial O +morphology S-CONPRI +is O +characterized O +on O +the O +track-scale O +( O +centimeter O +scale O +) O +using O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +and O +the O +material S-MATE +deformation S-CONPRI +history O +is O +explored O +by O +microstructure S-CONPRI +mapping O +at O +the O +interfacial O +regions O +. O + + +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +reveals O +unique O +3D S-CONPRI +features O +at O +the O +interface S-CONPRI +with O +significant O +macroscopic S-CONPRI +material O +mixing S-CONPRI +. O + + +In O +the O +out-of-plane O +direction O +, O +the O +deposited O +material S-MATE +inserts S-MACEQ +below O +the O +initial O +substrate S-MATE +surface O +in O +the O +feed-rod O +zone O +, O +while O +the O +substrate S-MATE +surface O +surges O +upwards O +in O +the O +tool S-MACEQ +protrusion-affected O +zone O +. O + + +Complex O +3D B-CONPRI +structures E-CONPRI +like O +fins O +and O +serrations O +form O +on O +the O +advancing O +side O +, O +leading O +to O +structural O +interlocking O +; O +on O +the O +retreating O +side O +, O +the O +interface S-CONPRI +manifests O +as S-MATE +a O +smooth O +sloped O +surface S-CONPRI +. O + + +Microstructure S-CONPRI +mapping O +reveals O +a O +uniform O +thermomechanical S-CONPRI +history O +for O +the O +deposited O +material S-MATE +, O +which O +develops O +a O +homogeneous S-CONPRI +, O +almost O +fully O +recrystallized S-MANP +microstructure S-CONPRI +. O + + +The O +substrate S-MATE +surface O +develops O +partially O +recrystallized S-MANP +microstructures S-MATE +that O +are O +location-dependent O +; O +more O +intra-granular O +orientation S-CONPRI +gradients O +are O +found O +in O +the O +regions O +further O +away O +from O +the O +centerline O +of O +the O +deposition S-CONPRI +track O +. O + + +From O +these O +observations O +, O +we O +discuss O +the O +mechanisms O +for O +interfacial O +material S-MATE +flow O +and O +interface S-CONPRI +morphology O +formation O +during O +AFSD O +. O + + +Embedded B-ENAT +electronics E-ENAT +and O +sensors S-MACEQ +are O +becoming O +increasingly O +important O +for O +the O +development O +of O +Industry B-ENAT +4.0 E-ENAT +. O + + +For O +small O +components S-MACEQ +, O +space O +constraints O +lead S-MATE +to O +full O +3D B-CONPRI +integration E-CONPRI +requirements O +that O +are O +only O +achievable O +through O +Additive B-MANP +Manufacturing E-MANP +. O + + +Manufacturing S-MANP +metal O +components S-MACEQ +usually O +require O +high O +temperatures S-PARA +incompatible O +with O +electronics S-CONPRI +but O +Ultrasonic B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +UAM S-MANP +) O +can O +produce O +components S-MACEQ +with O +mechanical B-CONPRI +properties E-CONPRI +close O +to O +bulk O +, O +but O +with O +the O +integration O +of O +internal O +embedded B-ENAT +electronics E-ENAT +, O +sensors S-MACEQ +or O +optics S-APPL +. O + + +This O +paper O +describes O +a O +novel O +manufacturing S-MANP +route O +for O +embedding O +electronics S-CONPRI +with O +3D S-CONPRI +via O +connectors O +in O +an O +aluminium B-MATE +matrix E-MATE +. O + + +Metal S-MATE +foils O +with O +printed O +conductors S-MATE +and O +insulators S-MATE +were O +prepared O +separately O +from O +the O +UAM S-MANP +process S-CONPRI +thereby O +separating O +the O +electronics S-CONPRI +preparation O +from O +the O +part B-CONPRI +consolidation E-CONPRI +. O + + +A O +dual O +material S-MATE +polymer O +layer S-PARA +exhibited O +the O +best O +electrically S-CONPRI +insulating O +properties S-CONPRI +, O +while O +providing O +mechanical S-APPL +protection O +of O +printed B-MACEQ +conductive E-MACEQ +tracks O +stable O +up O +to O +100 O +°C O +. O + + +General O +design S-FEAT +and O +UAM S-MANP +process S-CONPRI +recommendations O +are O +given O +for O +3D S-CONPRI +embedded O +electronics S-CONPRI +in O +a O +metal B-CONPRI +matrix E-CONPRI +. O + + +Functionally B-MATE +graded I-MATE +metals E-MATE +fabricated S-CONPRI +using O +high-temperature O +additive B-MANP +manufacturing E-MANP +can O +form O +intermetallics S-MATE +that O +fracture S-CONPRI +during O +printing O +due O +to O +thermal B-PRO +stresses E-PRO +generated O +by O +the O +heat B-CONPRI +source E-CONPRI +. O + + +To O +address O +this O +problem O +, O +we O +introduce O +a O +new O +class O +of O +non-equilibrium B-CONPRI +phase I-CONPRI +diagrams E-CONPRI +, O +termed O +Scheil B-CONPRI +Ternary I-CONPRI +Projection E-CONPRI +( O +STeP S-CONPRI +) O +diagrams O +, O +for O +designing O +optimal O +composition B-CONPRI +gradients E-CONPRI +that O +avoid O +brittle S-PRO +phases O +. O + + +Using O +the O +Fe-Cr-Al S-MATE +ternary O +as S-MATE +a O +model S-CONPRI +system O +, O +we O +compare O +the O +phase S-CONPRI +fields O +in O +equilibrium S-CONPRI +and O +STeP B-CONPRI +diagrams E-CONPRI +to O +show O +that O +intermetallic S-MATE +phase O +fields O +are O +dramatically O +expanded O +under O +the O +rapid B-MANP +solidification E-MANP +conditions O +in O +melt-based O +additive B-MANP +manufacturing E-MANP +, O +an O +important O +effect O +that O +must O +be S-MATE +accounted O +for O +when O +designing O +composition B-CONPRI +gradients E-CONPRI +. O + + +We O +present O +the O +results O +of O +3D S-CONPRI +modeling O +of O +the O +laser S-ENAT +and O +electron B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +process O +at O +the O +mesoscale S-CONPRI +with O +an O +in-house O +developed O +advanced O +multiphysical O +numerical O +tool S-MACEQ +. O + + +The O +hydrodynamics O +and O +thermal B-PRO +conductivity E-PRO +core S-MACEQ +of O +the O +tool S-MACEQ +is O +based O +on O +the O +lattice S-CONPRI +Boltzmann O +method O +. O + + +The O +numerical O +tool S-MACEQ +takes O +into O +account O +the O +random O +distributions S-CONPRI +of O +powder B-MATE +particles E-MATE +by O +size O +in O +a O +layer S-PARA +and O +the O +propagation O +of O +the O +laser S-ENAT +( O +electron B-CONPRI +beam E-CONPRI +) O +with O +a O +full O +ray O +tracing O +( O +Monte O +Carlo O +) O +model S-CONPRI +that O +includes O +multiple O +reflections O +, O +phase S-CONPRI +transitions O +, O +thermal B-PRO +conductivity E-PRO +, O +and O +detailed O +liquid O +dynamics O +of O +the O +molten B-MATE +metal E-MATE +, O +influenced O +by O +evaporation S-CONPRI +of O +the O +metal S-MATE +and O +the O +recoil O +pressure S-CONPRI +. O + + +We O +numerically O +demonstrate O +a O +strong O +dependence O +of O +the O +net O +energy B-CHAR +absorption E-CHAR +of O +the O +incoming O +heat B-CONPRI +source E-CONPRI +beam S-MACEQ +by O +the O +powder B-MACEQ +bed E-MACEQ +and O +melt B-MATE +pool E-MATE +on O +the O +beam S-MACEQ +power O +. O + + +We O +show O +the O +ability O +of O +our O +model S-CONPRI +to O +predict O +the O +measurable O +properties S-CONPRI +of O +a O +single O +track O +on O +a O +bare O +substrate S-MATE +as S-MATE +well O +as S-MATE +on O +a O +powder S-MATE +layer S-PARA +. O + + +We O +obtain O +good O +agreement O +with O +experimental B-CONPRI +data E-CONPRI +for O +the O +depth O +, O +width O +and O +shape O +of O +a O +track O +for O +a O +number O +of O +materials S-CONPRI +and O +a O +wide O +range S-PARA +of O +energy O +source S-APPL +parameters S-CONPRI +. O + + +We O +further O +apply O +our O +model S-CONPRI +to O +the O +simulation S-ENAT +of O +the O +entire O +layer S-PARA +formation O +and O +demonstrate O +the O +strong O +dependence O +of O +the O +resulting O +layer S-PARA +morphology O +on O +the O +hatch B-PARA +spacing E-PARA +. O + + +The O +presented O +model S-CONPRI +could O +be S-MATE +very O +helpful O +for O +optimizing O +the O +additive S-MATE +process O +without O +carrying O +out O +a O +large O +number O +of O +experiments O +in O +a O +common O +trial-and-error S-CONPRI +method O +, O +developing O +process B-CONPRI +parameters E-CONPRI +for O +new O +materials S-CONPRI +, O +and O +assessing O +novel O +modalities O +of O +powder B-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +The O +particle S-CONPRI +size O +and O +shape O +distributions S-CONPRI +of O +metal B-MATE +powders E-MATE +used O +in O +additive B-MANP +manufacturing E-MANP +powder O +bed B-MANP +fusion E-MANP +processes O +are O +of O +technological O +importance O +for O +the O +final O +built O +product O +. O + + +Current O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +measurements O +of O +these O +distributions S-CONPRI +assume O +a O +spherical S-CONPRI +shape O +, O +while O +techniques O +that O +measure O +both O +size O +and O +shape O +are O +always O +two-dimensional S-CONPRI +( O +2D S-CONPRI +) O +measurements O +of O +particle B-CONPRI +projections E-CONPRI +. O + + +This O +paper O +describes O +a O +set S-APPL +of O +techniques O +using O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +, O +combined O +with O +various O +mathematical B-CONPRI +algorithms E-CONPRI +, O +to O +measure O +the O +3D S-CONPRI +size O +, O +shape O +, O +and O +internal O +porosity S-PRO +of O +individual O +particles S-CONPRI +. O + + +Calibrated S-CONPRI +by O +a O +limited O +amount O +of O +visual B-CHAR +examination E-CHAR +of O +3D B-CONPRI +images E-CONPRI +of O +individual O +particles S-CONPRI +, O +these O +techniques O +can O +classify O +powder B-MATE +particles E-MATE +as S-MATE +single O +near-spherical O +( O +SnS S-CONPRI +) O +particles S-CONPRI +, O +and O +non-spherical S-CONPRI +( O +NS S-MATE +) O +particles S-CONPRI +, O +which O +consist O +of O +either O +single O +highly O +non-spherical S-CONPRI +particles O +or O +multi-particles S-CONPRI +, O +where O +two O +or O +more O +smaller O +particles S-CONPRI +have O +been O +joined O +together O +. O + + +From O +this O +3D B-CONPRI +data E-CONPRI +, O +other O +algorithms S-CONPRI +can O +generate O +2D B-MATE +particle E-MATE +size O +and O +shape O +information O +to O +compare O +with O +the O +results O +of O +2D B-ENAT +measurement I-ENAT +techniques E-ENAT +. O + + +These O +techniques O +are O +applied O +to O +two O +metal B-MATE +powders E-MATE +composed O +of O +a O +specific O +alloy S-MATE +of O +titanium S-MATE +with O +aluminum S-MATE +and O +vanadium S-MATE +, O +denoted O +as S-MATE +Ti64 O +, O +which O +is O +in O +common O +use O +as S-MATE +a O +powder S-MATE +for O +selective B-MANP +laser E-MANP +or O +electron B-MANP +beam I-MANP +melting E-MANP +powder O +bed S-MACEQ +additive B-MANP +manufacturing E-MANP +. O + + +One O +powder S-MATE +was O +made O +with O +a O +gas-atomization B-CONPRI +process E-CONPRI +, O +the O +other O +with O +a O +plasma-atomization B-CONPRI +process E-CONPRI +, O +both O +have O +been O +recycled S-CONPRI +, O +and O +both O +pass O +the O +specifications S-PARA +for O +additive B-MANP +manufacturing E-MANP +use O +. O + + +The O +powders S-MATE +differ O +in O +the O +fraction S-CONPRI +of O +NS S-MATE +particles O +and O +porous S-PRO +particles S-CONPRI +, O +in O +their O +size O +and O +shape O +distributions S-CONPRI +, O +and O +in O +average S-CONPRI +shape O +and O +size O +statistics S-CONPRI +. O + + +The O +SnS/NS O +classification S-CONPRI +enables O +one O +to O +show O +how O +these O +classes O +contribute O +to O +the O +overall O +particle B-CONPRI +size I-CONPRI +distributions E-CONPRI +, O +even O +for O +a O +single O +powder S-MATE +type O +, O +and O +is O +useful O +for O +comparing O +different O +sources O +of O +powder S-MATE +as S-MATE +well O +as S-MATE +studying O +how O +the O +size/shape O +distributions S-CONPRI +of O +a O +powder S-MATE +might O +change O +over O +multiple O +recycling S-CONPRI +events O +. O + + +Electrochemical S-CONPRI +microstructuring O +enables O +the O +production S-MANP +of O +polymer-metal B-MATE +hybrids E-MATE +by O +means O +of O +Material B-MANP +Extrusion E-MANP +without O +the O +need O +of O +coatings S-APPL +. O + + +The O +contact S-APPL +temperature O +between O +the O +metal S-MATE +sheet O +and O +the O +deposited O +polymer S-MATE +significantly O +influences O +the O +resulting O +component S-MACEQ +behavior O +. O + + +A O +consolidation S-CONPRI +roll O +improves O +the O +filling O +of O +microstructures S-MATE +for O +low O +contact S-APPL +temperatures O +. O + + +The O +development O +towards O +higher O +individualization O +and O +functional O +density S-PRO +pushes O +the O +need O +towards O +a O +flexible B-CONPRI +production E-CONPRI +of O +multi-material S-CONPRI +and O +lightweight S-CONPRI +components S-MACEQ +. O + + +In O +this O +paper O +, O +extrusion S-MANP +based O +additive B-MANP +manufacturing E-MANP +was O +used O +to O +produce O +polymer-metal B-MATE +hybrids E-MATE +with O +polypropylene S-MATE +and O +aluminum B-MATE +alloy E-MATE +. O + + +For O +this O +purpose O +, O +a O +screw-driven B-MACEQ +extruder E-MACEQ +on O +a O +six-axis B-MACEQ +robot E-MACEQ +was O +used O +. O + + +Due O +to O +the O +adhesion S-PRO +incompatibility O +of O +polypropylene S-MATE +and O +untreated O +metals S-MATE +, O +the O +surface S-CONPRI +of O +the O +aluminum B-MATE +sheets E-MATE +was O +electrochemically S-CONPRI +micro-structured O +. O + + +The O +investigations O +show O +that O +this O +enables O +a O +mechanically O +stressable S-PRO +joint S-CONPRI +through O +the O +filling O +of O +the O +surface S-CONPRI +microstructures S-MATE +with O +polymer S-MATE +. O + + +Investigations O +on O +lap B-CONPRI +shear I-CONPRI +joints E-CONPRI +reveal O +a O +distinct O +influence O +of O +the O +contact S-APPL +temperature O +between O +the O +polymer S-MATE +and O +metal S-MATE +onto O +the O +lap B-PRO +shear I-PRO +strength E-PRO +. O + + +A O +sufficient O +contact S-APPL +temperature O +is O +required O +for O +filling O +surface S-CONPRI +microstructures S-MATE +. O + + +Thus O +, O +increased O +metal S-MATE +and O +extrusion S-MANP +temperatures O +favor O +higher O +strengths S-PRO +. O + + +Furthermore O +, O +the O +use O +of O +a O +consolidation S-CONPRI +roll O +shows O +beneficial O +influences O +in O +lower O +temperature B-PARA +ranges E-PARA +due O +to O +the O +application O +of O +higher O +pressures S-CONPRI +during O +the O +polymer S-MATE +strand O +deposition S-CONPRI +. O + + +A O +virtual B-MACEQ +binocular E-MACEQ +vision O +sensor S-MACEQ +is O +developed O +to O +monitor S-CONPRI +molten B-PARA +pool I-PARA +width E-PARA +. O + + +A O +closed-loop B-MACEQ +controller E-MACEQ +is O +designed S-FEAT +for O +molten B-PARA +pool I-PARA +width E-PARA +control O +. O + + +Comparison O +tests O +between O +open O +and O +closed-loop B-MACEQ +control E-MACEQ +are O +carried O +out O +. O + + +Gas B-MANP +metal I-MANP +arc E-MANP +( O +GMA S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +one O +of O +the O +significant O +wire B-MANP +and I-MANP +arc I-MANP +AM E-MANP +processes S-CONPRI +with O +the O +ability O +to O +produce O +large-scale O +metal S-MATE +parts O +in O +a O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +fashion S-CONPRI +. O + + +Despite O +this O +fact O +, O +techniques O +to O +realize O +process S-CONPRI +sensing O +and O +geometry S-CONPRI +control O +have O +not O +been O +perfectly O +developed O +. O + + +This O +study O +aims O +at O +molten B-PARA +pool I-PARA +width E-PARA +control O +in O +GMA B-MANP +AM E-MANP +using O +a O +passive B-CONPRI +vision I-CONPRI +sensing E-CONPRI +technique O +. O + + +A O +virtual B-ENAT +binocular I-ENAT +vision I-ENAT +sensing E-ENAT +system O +consisting O +of O +a O +biprism S-MACEQ +and O +a O +camera S-MACEQ +is O +designed S-FEAT +to O +monitor S-CONPRI +the O +molten B-PARA +pool I-PARA +geometry E-PARA +. O + + +The O +molten B-PARA +pool I-PARA +width E-PARA +in O +a O +captured O +image S-CONPRI +pair O +is O +extracted S-CONPRI +by O +a O +series O +of O +procedures O +, O +such O +as S-MATE +sensor O +calibration S-CONPRI +, O +image S-CONPRI +pair O +rectification O +, O +disparity O +calculation O +, O +and O +width O +reconstruction S-CONPRI +. O + + +A O +verification B-CHAR +test E-CHAR +is O +conducted O +and O +reveals O +that O +the O +detection O +error S-CONPRI +of O +the O +sensing B-CHAR +system E-CHAR +is O +less O +than O +3 O +% O +. O + + +To O +keep O +consistent O +layer S-PARA +width O +in O +each O +layer S-PARA +, O +the O +deviation O +of O +the O +molten B-PARA +pool I-PARA +width E-PARA +is O +compensated O +by O +designing O +a O +fuzzy B-MACEQ +intelligent I-MACEQ +controller E-MACEQ +to O +adjust O +the O +arc B-CONPRI +current E-CONPRI +in O +real O +time O +. O + + +The O +effectiveness S-CONPRI +of O +the O +controller S-MACEQ +is O +evaluated O +via O +the O +deposition S-CONPRI +of O +thin-walled B-FEAT +parts E-FEAT +. O + + +The O +results O +indicate O +that O +the O +consistency S-CONPRI +of O +the O +molten B-PARA +pool I-PARA +width E-PARA +in O +GMA B-MANP +AM E-MANP +can O +be S-MATE +improved O +when O +employing O +the O +fuzzy B-MACEQ +controller E-MACEQ +. O + + +Porosity S-PRO +in O +additively B-MANP +manufactured E-MANP +metals O +can O +reduce O +material B-PRO +strength E-PRO +and O +is O +generally O +undesirable O +. O + + +Although O +studies O +have O +shown O +relationships O +between O +process B-CONPRI +parameters E-CONPRI +and O +porosity S-PRO +, O +monitoring B-CONPRI +strategies E-CONPRI +for O +defect S-CONPRI +detection O +and O +pore S-PRO +formation O +are O +still O +needed O +. O + + +In O +this O +paper O +, O +instantaneous B-CONPRI +anomalous E-CONPRI +conditions O +are O +detected O +in-situ S-CONPRI +via O +pyrometry S-CHAR +during O +laser B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +and O +correlated S-CONPRI +with O +voids S-CONPRI +observed O +using O +post-build O +micro-computed B-CHAR +tomography E-CHAR +. O + + +Large O +two-color O +pyrometry S-CHAR +data S-CONPRI +sets O +were O +used O +to O +estimate O +instantaneous O +temperatures S-PARA +, O +melt B-MATE +pool E-MATE +orientations O +and O +aspect B-FEAT +ratios E-FEAT +. O + + +Machine B-ENAT +learning I-ENAT +algorithms E-ENAT +were O +then O +applied O +to O +processed S-CONPRI +pyrometry O +data S-CONPRI +to O +detect O +outlier O +images S-CONPRI +and O +conditions O +. O + + +It O +is O +shown O +that O +melt B-MATE +pool E-MATE +outliers O +are O +good O +predictors O +of O +voids S-CONPRI +observed O +post-build O +. O + + +With O +this O +approach O +, O +real O +time O +process B-CONPRI +monitoring E-CONPRI +can O +be S-MATE +incorporated O +into O +systems O +to O +detect O +defect S-CONPRI +and O +void S-CONPRI +formation O +. O + + +Alternatively O +, O +using O +the O +methodology S-CONPRI +presented O +here O +, O +pyrometry S-CHAR +data S-CONPRI +can O +be S-MATE +post O +processed S-CONPRI +for O +porosity S-PRO +assessment O +. O + + +This O +paper O +proposes O +an O +additive B-MANP +manufacturing E-MANP +method O +that O +combines O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +3D B-MANP +printing E-MANP +and O +an O +electroforming S-MANP +technology O +to O +fabricate S-MANP +multi-material O +structures O +composed O +of O +resin S-MATE +and O +metal S-MATE +. O + + +In O +this O +method O +, O +an O +FFF B-MACEQ +3D I-MACEQ +printer E-MACEQ +prints O +a O +resin S-MATE +mold S-MACEQ +that O +functions O +as S-MATE +a O +structural B-CONPRI +unit E-CONPRI +in O +a O +multi-material B-FEAT +structure E-FEAT +and O +as S-MATE +a O +sacrificial B-MACEQ +plastic I-MACEQ +mold E-MACEQ +for O +the O +addition O +of O +the O +metal B-MATE +material E-MATE +. O + + +This O +sacrificial O +mold S-MACEQ +is O +eventually O +removed O +. O + + +Electroforming S-MANP +the O +interior O +of O +a O +printed B-CONPRI +resin E-CONPRI +mold S-MACEQ +enables O +the O +fabrication S-MANP +of O +multi-material B-FEAT +structures E-FEAT +using O +resin S-MATE +and O +metal B-MATE +materials E-MATE +. O + + +The O +fabrication S-MANP +conditions O +for O +multi-material B-FEAT +structures E-FEAT +when O +using O +the O +proposed O +method O +were O +investigated O +and O +the O +surfaces S-CONPRI +of O +the O +resulting O +structures O +were O +evaluated O +. O + + +The O +fabrication S-MANP +conditions O +for O +the O +specified B-CONPRI +thickness E-CONPRI +per O +process S-CONPRI +and O +the O +total O +thicknesses O +from O +all O +the O +processes S-CONPRI +were O +determined O +. O + + +Furthermore O +, O +our O +results O +indicated O +that O +the O +shape O +of O +the O +side O +of O +the O +metal S-MATE +portion O +depended O +on O +the O +forming S-MANP +precision O +of O +the O +FFF B-MACEQ +3D I-MACEQ +printer E-MACEQ +. O + + +We O +present O +an O +example O +of O +the O +fabrication S-MANP +of O +a O +gear S-MACEQ +shape O +from O +resin S-MATE +and O +metal S-MATE +. O + + +X-ray B-CHAR +CT E-CHAR +and O +image B-CONPRI +analysis E-CONPRI +enable O +full O +surface B-CHAR +characterization E-CHAR +of O +LPBF S-MANP +channels O +. O + + +Novel O +methodology S-CONPRI +enables O +roughness S-PRO +profile S-FEAT +extraction O +from O +3D B-CONPRI +deviation I-CONPRI +data E-CONPRI +. O + + +360° O +roughness S-PRO +characterization O +enables O +predictive B-CONPRI +models E-CONPRI +for O +LPBF S-MANP +channels O +. O + + +The O +increasingly O +complex B-PRO +shapes E-PRO +and O +geometries S-CONPRI +being O +produced O +using O +additive B-MANP +manufacturing E-MANP +necessitate O +new O +characterization O +techniques O +that O +can O +address O +the O +corresponding O +challenges O +. O + + +Standard S-CONPRI +techniques O +for O +roughness S-PRO +and O +texture S-FEAT +measurements O +are O +inept O +at O +characterizing O +the O +internal O +surfaces S-CONPRI +in O +freeform B-CONPRI +geometries E-CONPRI +. O + + +Hence O +, O +this O +work O +presents O +a O +new O +methodology S-CONPRI +for O +extracting S-CONPRI +and O +quantitatively S-CONPRI +characterizing O +the O +roughness S-PRO +on O +internal O +surfaces S-CONPRI +. O + + +The O +methodology S-CONPRI +links O +X-ray B-CHAR +CT E-CHAR +with O +complete O +roughness S-PRO +characterization O +of O +channels O +manufactured S-CONPRI +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +through O +a O +novel O +image B-CONPRI +analysis E-CONPRI +approach O +of O +X-ray B-CHAR +CT E-CHAR +data S-CONPRI +. O + + +Global O +and O +local B-CONPRI +orientation E-CONPRI +parameters O +are O +defined O +to O +enable O +a O +full O +360° O +description O +of O +the O +roughness S-PRO +inside O +additively B-MANP +manufactured E-MANP +channels O +. O + + +X-ray B-CHAR +CT E-CHAR +data S-CONPRI +is O +analyzed O +to O +generate O +3D B-CONPRI +deviation I-CONPRI +data E-CONPRI +– O +based O +on O +which O +multiple O +local O +roughness S-PRO +profiles S-FEAT +are O +extracted S-CONPRI +and O +analyzed O +in O +accordance O +with O +the O +ISO S-MANS +4287:1997 O +standard S-CONPRI +. O + + +To O +demonstrate O +the O +proposed O +methodology S-CONPRI +, O +seven O +circular O +17-4 B-MATE +PH I-MATE +stainless I-MATE +steel E-MATE +channels O +produced O +at O +different O +inclinations S-FEAT +and O +with O +a O +diameter S-CONPRI +of O +2 O +mm S-MANP +are O +investigated O +as S-MATE +a O +case B-CONPRI +study E-CONPRI +. O + + +Qualitative S-CONPRI +and O +quantitative S-CONPRI +characterization O +of O +the O +roughness S-PRO +is O +obtained O +through O +the O +use O +of O +the O +proposed O +methodology S-CONPRI +. O + + +A O +strong O +dependence O +of O +the O +local O +roughness S-PRO +on O +the O +corresponding O +α O +and O +β O +orientations S-CONPRI +is O +found O +. O + + +A O +simple B-CONPRI +regression I-CONPRI +model E-CONPRI +is O +subsequently O +extracted S-CONPRI +from O +the O +calculated O +roughness B-PRO +values E-PRO +and O +allows O +prediction S-CONPRI +of O +Ra-values S-CONPRI +in O +the O +channels O +for O +the O +ranges O +between O +0° O +≤ O +α O +≤ O +90° O +and O +80° O +≤ O +β O +≤ O +280° O +. O + + +In O +addition O +to O +decreasing O +the O +effective O +hydraulic B-CONPRI +diameter E-CONPRI +of O +a O +cooling B-MACEQ +channel E-MACEQ +, O +the O +surface B-PRO +roughness E-PRO +also O +influences O +the O +local B-CONPRI +Nusselt I-CONPRI +number E-CONPRI +, O +which O +is O +quantified O +using O +the O +extracted S-CONPRI +regression O +model S-CONPRI +. O + + +This O +paper O +reports O +on O +the O +results O +of O +a O +round B-CHAR +robin I-CHAR +test E-CHAR +conducted O +by O +ten O +X-ray B-CHAR +micro I-CHAR +computed I-CHAR +tomography E-CHAR +( O +micro-CT S-CHAR +) O +laboratories S-CONPRI +with O +the O +same O +three O +selected O +titanium B-MATE +alloy E-MATE +( O +Ti6Al4V S-MATE +) O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +test O +parts O +. O + + +These O +parts O +were O +a O +10-mm O +cube S-CONPRI +, O +a O +60-mm O +long O +and O +40-mm O +high O +complex-shaped S-CONPRI +bracket S-MACEQ +, O +and O +a O +15-mm O +diameter S-CONPRI +rod O +. O + + +Previously O +developed O +protocols S-CONPRI +for O +micro-CT B-CHAR +analysis E-CHAR +of O +these O +parts O +were O +provided O +to O +all O +participants O +, O +including O +suggested O +scanning B-CONPRI +parameters E-CONPRI +and O +image B-CONPRI +analysis E-CONPRI +steps O +. O + + +No O +further O +information O +on O +the O +samples S-CONPRI +were O +provided O +, O +and O +they O +were O +selected O +from O +a O +variety O +of O +parts O +from O +a O +previous O +different O +type O +of O +round B-CHAR +robin E-CHAR +study O +where O +various O +L-PBF S-MANP +laboratories S-CONPRI +provided O +identical O +parts O +for O +micro-CT B-CHAR +analysis E-CHAR +at O +one O +laboratory S-CONPRI +. O + + +In O +this O +new O +micro-CT B-CHAR +round I-CHAR +robin I-CHAR +test E-CHAR +which O +involves O +various O +micro-CT S-CHAR +laboratories S-CONPRI +, O +parts O +from O +the O +previous O +work O +were O +selected O +such O +that O +each O +part O +had O +a O +different O +characteristic O +flaw S-CONPRI +type O +, O +and O +all O +laboratories S-CONPRI +involved O +in O +the O +study O +analyzed O +the O +same O +set S-APPL +of O +parts O +. O + + +The O +10-mm O +cube S-CONPRI +contained O +subsurface O +pores S-PRO +just O +under O +its O +top O +surface S-CONPRI +( O +relative O +to O +build B-PARA +direction E-PARA +) O +, O +and O +all O +participants O +could O +positively O +identify O +this O +. O + + +The O +complex O +bracket S-MACEQ +had O +contour S-FEAT +pores O +around O +its O +outer O +vertical S-CONPRI +sides O +, O +and O +was O +warped O +with O +two O +arms O +deflected O +towards O +one O +another O +. O + + +The O +15-mm O +diameter S-CONPRI +rod O +had O +a O +layered O +stop/start O +flaw S-CONPRI +, O +which O +was O +also O +positively O +identified O +by O +all O +participants O +. O + + +Differences O +were O +found O +among O +participants O +for O +quantitative S-CONPRI +evaluations O +, O +ranging O +from O +no O +quantitative B-CHAR +measurement E-CHAR +made O +, O +to O +under O +and O +overestimation S-CONPRI +of O +the O +values O +in O +all O +analyses O +attempted O +. O + + +This O +round B-CHAR +robin E-CHAR +provides O +the O +opportunity O +to O +highlight O +typical O +causes O +of O +errors S-CONPRI +in O +micro-CT B-CHAR +scanning E-CHAR +and O +image B-CONPRI +analysis E-CONPRI +as S-MATE +applied O +to O +additively B-MANP +manufactured E-MANP +parts O +. O + + +Some O +workflow B-CONPRI +variations E-CONPRI +, O +sources O +of O +error S-CONPRI +and O +ways O +to O +increase O +the O +reproducibility S-CONPRI +of O +such O +analysis O +workflows S-CONPRI +are O +discussed O +. O + + +The O +ultimate O +aim O +of O +this O +work O +is O +to O +advance O +the O +efficient O +use O +of O +micro-CT S-CHAR +facilities O +for O +process B-CONPRI +optimization E-CONPRI +and O +quality S-CONPRI +inspections S-CHAR +for O +additively B-MANP +manufactured I-MANP +products E-MANP +. O + + +The O +results O +provide O +confidence O +in O +the O +use O +of O +laboratory S-CONPRI +micro-CT O +but O +also O +indicate O +the O +need O +for O +further O +development O +of O +standards S-CONPRI +, O +protocols S-CONPRI +and O +image B-CONPRI +analysis E-CONPRI +workflows O +for O +quantitative B-CHAR +assessment E-CHAR +, O +especially O +for O +direct O +and O +quantitative S-CONPRI +comparisons O +between O +different O +laboratories S-CONPRI +. O + + +Very O +limited O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +have O +been O +developed O +for O +production S-MANP +of O +Metal B-MATE +Matrix I-MATE +Composites E-MATE +( O +MMCs S-MATE +) O +reinforced S-CONPRI +by O +ceramic S-MATE +. O + + +Most O +of O +these O +processes S-CONPRI +use O +different O +mixing S-CONPRI +techniques O +to O +mix O +metal S-MATE +and O +ceramic B-MATE +powder I-MATE +particles E-MATE +in O +order O +to O +be S-MATE +used O +in O +an O +existing O +AM B-MANP +process E-MANP +such O +as S-MATE +Selective O +Laser S-ENAT +Melting O +( O +SLM S-MANP +) O +process S-CONPRI +. O + + +The O +current O +AM B-MANP +techniques E-MANP +for O +MMCs S-MATE +fabrication S-MANP +have O +limitations O +due O +to O +material S-MATE +mixing O +and O +the O +AM B-MANP +process E-MANP +limitations O +itself O +. O + + +This O +paper O +introduces O +a O +novel O +AM S-MANP +method O +for O +fabrication S-MANP +of O +MMCs S-MATE +by O +Thermal B-MANP +Decomposition E-MANP +of O +Salts S-MATE +( O +TDS S-CHAR +) O +. O + + +In O +this O +method O +inorganic B-MATE +salts E-MATE +are O +printed O +on O +metal B-MATE +powder E-MATE +bed S-MACEQ +to O +fabricate S-MANP +green O +part O +. O + + +The O +green B-PRO +part E-PRO +undergoes O +bulk B-MANP +sintering E-MANP +. O + + +During O +bulk B-MANP +sintering E-MANP +the O +printed O +inorganic B-MATE +salts E-MATE +are O +decomposed O +to O +fine B-MATE +ceramic E-MATE +particles O +to O +form O +MMC S-MATE +. O + + +This O +process S-CONPRI +is O +capable O +of O +generating O +MMC S-MATE +structures O +with O +uniformly O +distributed O +and O +dispersed O +ultra-fine O +ceramic S-MATE +particles O +in O +the O +metal B-CONPRI +matrix E-CONPRI +with O +less O +limitations O +and O +lower O +cost O +compared O +to O +other O +existing O +AM B-MANP +techniques E-MANP +. O + + +In O +this O +paper O +, O +bronze-alumina S-MATE +MMC O +was O +fabricated S-CONPRI +and O +studied O +by O +the O +TDS B-CONPRI +process E-CONPRI +to O +validate O +the O +proposed O +process S-CONPRI +. O + + +It O +was O +also O +shown O +that O +the O +TDS B-CONPRI +process E-CONPRI +can O +be S-MATE +used O +to O +fabricate S-MANP +other O +types O +of O +MMCs S-MATE +besides O +bronze-alumina S-MATE +due O +to O +the O +nature O +of O +the O +process S-CONPRI +. O + + +Design B-CONPRI +of I-CONPRI +Experiments E-CONPRI +methodology O +was O +used O +to O +study O +and O +model S-CONPRI +the O +effects O +of O +sintering S-MANP +parameters S-CONPRI +on O +the O +properties S-CONPRI +of O +the O +bronze-alumina S-MATE +fabricated O +by O +the O +TDS B-CONPRI +process E-CONPRI +. O + + +Due O +to O +MMCs S-MATE +unique O +properties S-CONPRI +combined O +with O +AM S-MANP +benefits O +, O +this O +novel O +method O +will O +be S-MATE +of O +great O +interest O +to O +various O +industries S-APPL +such O +as S-MATE +aerospace S-APPL +applications O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +promises O +rapid O +development O +cycles O +and O +fabrication S-MANP +of O +ready-to-use S-CONPRI +, O +geometrically-complex S-CONPRI +parts O +. O + + +The O +metallic B-MACEQ +parts E-MACEQ +produced O +by O +AM S-MANP +often O +contain O +highly O +non-equilibrium O +microstructures S-MATE +, O +e.g O +. O + + +chemical O +microsegregation S-CONPRI +and O +residual B-CONPRI +dislocation E-CONPRI +networks O +. O + + +While O +such O +microstructures S-MATE +can O +enhance O +some O +material B-CONPRI +properties E-CONPRI +, O +they O +are O +often O +undesirable O +. O + + +Many O +AM B-MACEQ +parts E-MACEQ +are O +thus O +heat-treated S-MANP +after O +fabrication S-MANP +, O +a O +process S-CONPRI +that O +significantly O +slows O +production S-MANP +. O + + +This O +study O +investigated O +if O +electropulsing S-CONPRI +, O +the O +process S-CONPRI +of O +sending O +high-current-density S-CONPRI +electrical B-CONPRI +pulses E-CONPRI +through O +a O +metallic B-MACEQ +part E-MACEQ +, O +could O +be S-MATE +used O +to O +modify O +the O +microstructures S-MATE +of O +AM S-MANP +316 O +L O +stainless B-MATE +steel E-MATE +( O +SS S-MATE +) O +and O +AlSi10Mg S-MATE +parts O +fabricated S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +more O +rapidly O +than O +thermal B-MANP +annealing E-MANP +. O + + +Electropulsing S-CONPRI +has O +shown O +promise O +as S-MATE +a O +rapid O +postprocessing S-CONPRI +method O +for O +materials B-CONPRI +fabricated E-CONPRI +using O +conventional O +methods O +, O +e.g O +. O + + +casting S-MANP +and O +rolling S-MANP +, O +but O +has O +never O +been O +applied O +to O +AM B-MATE +materials E-MATE +. O + + +For O +both O +the O +materials S-CONPRI +used O +in O +this O +study O +, O +as-fabricated O +SLM S-MANP +parts O +contained O +significant O +chemical B-CONPRI +heterogeneity E-CONPRI +, O +either O +chemical O +microsegregation S-CONPRI +( O +316 B-MATE +L I-MATE +SS E-MATE +) O +or O +a O +cellular B-CONPRI +interdendritic E-CONPRI +phase O +( O +AlSi10Mg S-MATE +) O +. O + + +In O +both O +cases O +, O +annealing S-MANP +times O +on O +the O +order O +of O +hours O +at O +high O +homologous B-CHAR +temperatures E-CHAR +are O +necessary O +for O +homogenization S-MANP +. O + + +Using O +electropulsing S-CONPRI +, O +chemical O +microsegregation S-CONPRI +was O +eliminated O +in O +316 B-MATE +L I-MATE +SS E-MATE +samples O +after O +10 O +, O +16 O +ms O +electrical B-CONPRI +pulses E-CONPRI +. O + + +In O +AlSi10Mg S-MATE +parts O +, O +electropulsing S-CONPRI +produced O +spheroidized S-MANP +Si-rich O +particles S-CONPRI +after O +as S-MATE +few O +as S-MATE +15 O +, O +16 O +ms O +electrical B-CONPRI +pulses E-CONPRI +with O +a O +corresponding O +increase O +in O +ductility S-PRO +. O + + +This O +study O +demonstrated O +that O +electropulsing S-CONPRI +can O +be S-MATE +used O +to O +modify O +the O +microstructures S-MATE +of O +AM B-MANP +metals E-MANP +. O + + +Architected O +structural O +metamaterials S-MATE +, O +also O +known O +as S-MATE +lattice O +, O +truss S-MACEQ +, O +or O +acoustic B-MATE +materials E-MATE +, O +provide O +opportunities O +to O +produce O +tailored O +effective O +properties S-CONPRI +that O +are O +not O +achievable O +in O +bulk O +monolithic B-MATE +materials E-MATE +. O + + +These O +topologies S-CONPRI +are O +typically O +designed S-FEAT +under O +the O +assumption O +of O +uniform O +, O +isotropic S-PRO +base O +material B-CONPRI +properties E-CONPRI +taken O +from O +reference O +databases S-ENAT +and O +without O +consideration O +for O +sub-optimal O +as-printed O +properties S-CONPRI +or O +off-nominal O +dimensional O +heterogeneities S-CONPRI +. O + + +However O +, O +manufacturing B-CONPRI +imperfections E-CONPRI +such O +as S-MATE +surface O +roughness S-PRO +are O +present O +throughout O +the O +lattices S-CONPRI +and O +their O +constituent O +struts S-MACEQ +create O +significant O +variability S-CONPRI +in O +mechanical B-CONPRI +properties E-CONPRI +and O +part O +performance S-CONPRI +. O + + +This O +study O +utilized O +a O +customized O +tensile B-MACEQ +bar E-MACEQ +with O +a O +gauge B-MACEQ +section E-MACEQ +consisting O +of O +five O +parallel O +struts S-MACEQ +loaded O +in O +a O +stretch O +( O +tensile S-PRO +) O +orientation S-CONPRI +to O +examine O +the O +impact S-CONPRI +of O +manufacturing S-MANP +heterogeneities S-CONPRI +on O +quasi-static B-CONPRI +deformation E-CONPRI +of O +the O +struts S-MACEQ +, O +with O +a O +focus O +on O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +ductility S-PRO +. O + + +The O +customized O +tensile B-MACEQ +specimen E-MACEQ +was O +designed S-FEAT +to O +prevent O +damage S-PRO +during O +handling O +, O +despite O +the O +sub-millimeter O +thickness O +of O +each O +strut S-MACEQ +, O +and O +to O +enable O +efficient O +, O +high-throughput O +mechanical B-CHAR +testing E-CHAR +. O + + +The O +strut S-MACEQ +tensile O +specimens O +and O +reference O +monolithic S-PRO +tensile O +bars O +were O +manufactured S-CONPRI +using O +a O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +( O +also O +known O +as S-MATE +laser O +powder B-MANP +bed I-MANP +fusion E-MANP +or O +selective B-MANP +laser I-MANP +melting E-MANP +) O +process S-CONPRI +in O +a O +precipitation B-MANP +hardened E-MANP +stainless O +steel B-MATE +alloy E-MATE +, O +17-4PH S-MATE +, O +with O +minimum B-PARA +feature I-PARA +sizes E-PARA +ranging O +from O +0.5-0.82 O +mm S-MANP +, O +comparable O +to O +minimum O +allowable O +dimensions S-FEAT +for O +the O +process S-CONPRI +. O + + +Over O +70 O +tensile B-CHAR +stress-strain I-CHAR +tests E-CHAR +were O +performed O +revealing O +that O +the O +effective O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +struts S-MACEQ +were O +highly O +stochastic S-CONPRI +, O +considerably O +inferior O +to O +the O +properties S-CONPRI +of O +larger O +as-printed O +reference O +tensile B-MACEQ +bars E-MACEQ +, O +and O +well O +below O +the O +minimum O +allowable O +values O +for O +the O +alloy S-MATE +. O + + +Pre- O +and O +post-test O +non-destructive B-CHAR +analyses E-CHAR +revealed O +that O +the O +primary B-CONPRI +source E-CONPRI +of O +the O +reduced O +properties S-CONPRI +and O +increased O +variability S-CONPRI +was O +attributable O +to O +heterogeneous S-CONPRI +surface O +topography S-CHAR +with O +stress-concentrating S-CONPRI +contours S-FEAT +and O +commensurate O +reduction S-CONPRI +in O +effective O +load-bearing B-FEAT +area E-FEAT +. O + + +This O +study O +investigates S-CONPRI +the O +feasibility S-CONPRI +of O +achieving O +high B-PARA +deposition I-PARA +rate E-PARA +using O +wire B-MANP ++ I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +in O +stainless B-MATE +steel E-MATE +to O +reduce O +lead B-PARA +time E-PARA +and O +cost B-CONPRI +of I-CONPRI +manufacturing E-CONPRI +. O + + +The O +pulse O +MIG B-MANP +welding E-MANP +technique O +with O +a O +tandem B-MACEQ +torch E-MACEQ +was O +used O +for O +depositing O +martensitic B-MATE +stainless I-MATE +steel E-MATE +17-4 O +pH S-CONPRI +. O + + +The O +mechanical S-APPL +and O +metallurgical S-APPL +properties O +of O +the O +manufactured S-CONPRI +component S-MACEQ +were O +analysed O +to O +evaluate O +the O +limitations O +and O +the O +extent O +to O +which O +the O +rate B-CONPRI +of I-CONPRI +deposition E-CONPRI +reaches O +a O +maximum O +without O +any O +failure S-CONPRI +or O +defect S-CONPRI +being O +evident O +in O +the O +manufactured S-CONPRI +component S-MACEQ +. O + + +Deposition B-PARA +rate E-PARA +of O +9.5 O +kg/h O +was O +achieved O +. O + + +The O +hardness S-PRO +was O +matched O +for O +the O +as S-MATE +deposited O +condition O +. O + + +Thermal B-PRO +conductivities E-PRO +of O +metal B-MATE +powders E-MATE +for O +additive B-MANP +manufacturing E-MANP +were O +measured O +. O + + +Infiltrating B-CONPRI +gas E-CONPRI +pressure O +and O +composition S-CONPRI +influence O +the O +powder S-MATE +thermal O +conductivity S-PRO +. O + + +He O +infiltration S-CONPRI +yields O +200 O +% O +higher O +thermal B-PRO +conductivity E-PRO +than O +Ar S-ENAT +or O +N2 S-MATE +at O +1 O +atm S-CHAR +. O + + +Powder S-MATE +thermal O +conductivities O +depend O +weakly O +on O +temperature S-PARA +from O +295 O +K S-MATE +to O +470 O +K. O +Gas-enhanced O +thermal B-PRO +conductivity E-PRO +is O +consistent O +with O +an O +effective O +medium O +model S-CONPRI +. O + + +The O +thermal B-PRO +conductivities E-PRO +of O +five O +metal B-MATE +powders E-MATE +for O +powder B-MANP +bed I-MANP +additive I-MANP +manufacturing E-MANP +( O +Inconel B-MATE +718 E-MATE +, O +17-4 B-MATE +stainless I-MATE +steel E-MATE +, O +Inconel B-MATE +625 E-MATE +, O +Ti-6Al-4V S-MATE +, O +and O +316L B-MATE +stainless I-MATE +steel E-MATE +) O +were O +measured O +using O +the O +transient S-CONPRI +hot B-CHAR +wire I-CHAR +method E-CHAR +. O + + +These O +measurements O +were O +conducted O +with O +three O +infiltrating B-CONPRI +gases E-CONPRI +( O +argon S-MATE +, O +nitrogen S-MATE +, O +and O +helium S-MATE +) O +within O +a O +temperature B-PARA +range E-PARA +of O +295–470 O +K S-MATE +and O +a O +gas S-CONPRI +pressure O +range S-PARA +of O +1.4–101 O +kPa O +. O + + +The O +measurements O +of O +thermal B-PRO +conductivity E-PRO +indicate O +that O +the O +pressure S-CONPRI +and O +the O +composition S-CONPRI +of O +the O +gas S-CONPRI +have O +a O +significant O +influence O +on O +the O +effective B-PARA +thermal I-PARA +conductivity E-PARA +of O +the O +powder S-MATE +, O +but O +that O +the O +metal B-MATE +powder E-MATE +properties O +and O +temperature S-PARA +do O +not O +. O + + +Our O +measurements O +improve O +the O +accuracy S-CHAR +upon O +which O +laser S-ENAT +parameters O +can O +be S-MATE +optimized O +in O +order O +to O +improve O +thermal B-CONPRI +control E-CONPRI +of O +powder B-MACEQ +beds E-MACEQ +in O +selective B-MANP +laser I-MANP +melting I-MANP +processes E-MANP +, O +especially O +in O +overhanging O +and O +cellular O +geometries S-CONPRI +where O +heat B-CONPRI +dissipation E-CONPRI +by O +the O +powder S-MATE +is O +critical O +. O + + +A O +fundamental O +understanding O +of O +spatial O +and O +temporal O +thermal B-CONPRI +distributions E-CONPRI +is O +crucial O +for O +predicting O +solidification S-CONPRI +and O +solid-state B-CONPRI +microstructural E-CONPRI +development O +in O +parts O +made O +by O +additive B-MANP +manufacturing E-MANP +. O + + +While O +sophisticated O +numerical B-CONPRI +techniques E-CONPRI +that O +are O +based O +on O +finite B-CONPRI +element E-CONPRI +or O +finite B-CONPRI +volume I-CONPRI +methods E-CONPRI +are O +useful O +for O +gaining O +insight O +into O +these O +phenomena O +at O +the O +length B-CHAR +scale E-CHAR +of O +the O +melt B-MATE +pool E-MATE +( O +100–500 O +μm O +) O +, O +they O +are O +ill-suited O +for O +predicting O +engineering S-APPL +trends O +over O +full O +part O +cross-sections S-CONPRI +( O +> O +10 O +× O +10 O +cm O +) O +or O +many O +layers O +over O +long O +process B-CONPRI +times E-CONPRI +( O +> O +many O +days O +) O +due O +to O +the O +necessity O +of O +fully O +resolving O +the O +heat B-CONPRI +source E-CONPRI +characteristics O +. O + + +On O +the O +other O +hand O +, O +it O +is O +extremely O +difficult O +to O +resolve O +the O +highly O +dynamic S-CONPRI +nature O +of O +the O +process S-CONPRI +using O +purely O +in-situ S-CONPRI +characterization O +techniques O +[ O +1 O +] O +. O + + +This O +paper O +proposes O +a O +pragmatic O +alternative O +based O +on O +a O +semi-analytical B-CONPRI +approach E-CONPRI +to O +predicting O +the O +transient B-CONPRI +heat I-CONPRI +conduction E-CONPRI +during O +powder B-MANP +bed I-MANP +metal I-MANP +additive I-MANP +manufacturing I-MANP +processes E-MANP +. O + + +The O +model S-CONPRI +calculations O +were O +theoretically O +verified O +for O +selective B-MANP +laser I-MANP +melting E-MANP +of O +AlSi10Mg S-MATE +and O +electron B-MANP +beam I-MANP +melting E-MANP +of O +IN718 S-MATE +powders O +for O +simple S-MANP +cross-sectional B-CONPRI +geometries E-CONPRI +and O +the O +transient S-CONPRI +results O +are O +compared O +to O +steady B-CONPRI +state E-CONPRI +predictions S-CONPRI +from O +the O +Rosenthal B-CONPRI +equation E-CONPRI +. O + + +It O +is O +shown O +that O +the O +transient S-CONPRI +effects O +of O +the O +scan O +strategy O +create O +significant O +variations S-CONPRI +in O +the O +melt B-MATE +pool E-MATE +geometry S-CONPRI +and O +solid-liquid B-CONPRI +interface I-CONPRI +velocity E-CONPRI +, O +especially O +as S-MATE +the O +thermal B-CONPRI +diffusivity E-CONPRI +of O +the O +material S-MATE +decreases O +and O +the O +pre-heat S-CONPRI +of O +the O +process S-CONPRI +increases O +. O + + +With O +positive O +verification S-CONPRI +of O +the O +strategy O +, O +the O +model S-CONPRI +was O +then O +experimentally B-CONPRI +validated E-CONPRI +to O +simulate O +two O +point-melt S-CONPRI +scan O +strategies O +during O +electron B-MANP +beam I-MANP +melting E-MANP +of O +IN718 S-MATE +, O +one O +intended O +to O +produce O +a O +columnar O +and O +one O +an O +equiaxed B-CONPRI +grain E-CONPRI +structure O +. O + + +Through O +comparison O +of O +the O +solidification S-CONPRI +conditions O +( O +i.e O +. O + + +transient S-CONPRI +and O +spatial B-FEAT +variations E-FEAT +of O +thermal B-PARA +gradient E-PARA +and O +liquid-solid B-CONPRI +interface E-CONPRI +velocity O +) O +predicted S-CONPRI +by O +the O +model S-CONPRI +to O +phenomenological S-CONPRI +CET B-CONPRI +theory E-CONPRI +, O +the O +model B-CONPRI +accurately E-CONPRI +predicted O +the O +experimental S-CONPRI +grain O +structures O +. O + + +Existing O +commercial O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing O +systems O +based O +on O +powder B-MANP +bed I-MANP +fusion E-MANP +approach O +can O +normally O +only O +print S-MANP +a O +single O +material S-MATE +in O +each O +component S-MACEQ +. O + + +In O +this O +paper O +, O +functionally B-MATE +gradient I-MATE +materials E-MATE +( O +FGM S-MANP +) O +with O +composition S-CONPRI +variation O +from O +a O +copper B-MATE +alloy E-MATE +to O +a O +soda-lime B-MATE +glass E-MATE +were O +manufactured S-CONPRI +using O +a O +proprietary O +nozzle-based O +multi-material B-MANP +selective I-MANP +laser I-MANP +melting E-MANP +( O +MMSLM S-MANP +) O +system O +. O + + +An O +in B-CONPRI +situ E-CONPRI +powder O +mixing S-CONPRI +system O +was O +designed S-FEAT +to O +mix O +both O +metal S-MATE +and O +glass S-MATE +powders O +at O +selective O +ratios O +and O +the O +mixed O +powders S-MATE +were O +dispensed O +with O +an O +ultrasonic B-MACEQ +vibration I-MACEQ +powder I-MACEQ +feeding I-MACEQ +system E-MACEQ +with O +multiple O +nozzles S-MACEQ +. O + + +From O +the O +cross B-CONPRI +section E-CONPRI +analysis O +of O +the O +gradient B-CONPRI +structures E-CONPRI +, O +glass S-MATE +proportion O +increased O +gradually O +from O +the O +metallic B-MATE +matrix I-MATE +composite E-MATE +( O +MMC S-MATE +) O +, O +transition B-CONPRI +phase E-CONPRI +to O +ceramic B-MATE +matrix I-MATE +composite E-MATE +( O +CMC S-MATE +) O +. O + + +The O +pure O +copper B-MATE +alloy E-MATE +joined O +the O +MMC S-MATE +part O +and O +the O +pure O +glass S-MATE +phase O +penetrated O +into O +the O +CMC S-MATE +part O +during O +laser B-CONPRI +processing E-CONPRI +, O +which O +anchored O +the O +glass S-MATE +phase O +, O +as S-MATE +the O +main O +mechanism S-CONPRI +of O +combining O +pure B-MATE +metal E-MATE +and O +pure O +glass S-MATE +by O +FGM S-MANP +in O +3D B-APPL +printed I-APPL +parts E-APPL +. O + + +From O +results O +of O +indentation S-CONPRI +, O +tensile S-PRO +and O +shear B-CHAR +tests E-CHAR +on O +the O +gradient O +material S-MATE +samples O +, O +it O +showed O +that O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +FGM S-MANP +gradually O +changed O +from O +ductility S-PRO +( O +metal S-MATE +side O +) O +to O +brittle S-PRO +( O +glass S-MATE +side O +) O +. O + + +The O +weakest O +part O +of O +the O +FGM S-MANP +structure O +occurred O +at O +the O +interface S-CONPRI +between O +transition B-CONPRI +phase E-CONPRI +and O +the O +CMC S-MATE +, O +which O +was O +also O +the O +interface S-CONPRI +between O +the O +ductile S-PRO +and O +brittle S-PRO +phases O +. O + + +The O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +metal B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +can O +quickly O +produce O +complex O +parts O +with O +mechanical B-CONPRI +properties E-CONPRI +comparable O +to O +that O +of O +wrought B-MATE +materials E-MATE +. O + + +However O +, O +thermal B-PRO +stress E-PRO +accumulated O +during O +Metal S-MATE +PBF O +may O +induce O +part O +distortion S-CONPRI +and O +even O +cause O +failure S-CONPRI +of O +the O +entire O +process S-CONPRI +. O + + +This O +manuscript S-CONPRI +is O +the O +second O +part O +of O +two O +companion O +manuscripts S-CONPRI +that O +collectively O +present O +a O +part-scale O +simulation S-ENAT +method O +for O +fast O +prediction S-CONPRI +of O +thermal B-CONPRI +distortion E-CONPRI +in O +Metal S-MATE +PBF O +. O + + +The O +first O +part O +provides O +a O +fast O +prediction S-CONPRI +of O +the O +temperature S-PARA +history O +in O +the O +part O +via O +a O +thermal B-CONPRI +circuit I-CONPRI +network E-CONPRI +( O +TCN S-CONPRI +) O +model S-CONPRI +. O + + +This O +second O +part O +uses O +the O +temperature S-PARA +history O +from O +the O +TCN S-CONPRI +to O +inform O +a O +model S-CONPRI +of O +thermal B-CONPRI +distortion E-CONPRI +using O +a O +quasi-static B-CONPRI +thermo-mechanical I-CONPRI +model E-CONPRI +( O +QTM S-CONPRI +) O +. O + + +The O +QTM B-CONPRI +model E-CONPRI +distinguished O +two O +periods O +of O +Metal S-MATE +PBF O +, O +the O +thermal B-CONPRI +loading E-CONPRI +period O +and O +the O +stress B-CONPRI +relaxation E-CONPRI +period O +. O + + +In O +the O +thermal B-CONPRI +loading E-CONPRI +period O +, O +the O +layer-by-layer S-CONPRI +build B-PARA +cycles E-PARA +of O +Metal S-MATE +PBF O +are O +simulated O +, O +and O +the O +thermal B-PRO +stress E-PRO +accumulated O +in O +the O +build S-PARA +process O +is O +predicted S-CONPRI +. O + + +In O +the O +stress B-CONPRI +relaxation E-CONPRI +period O +, O +the O +removal O +of O +parts O +from O +the O +substrate S-MATE +is O +simulated O +, O +and O +the O +off-substrate O +part O +distortion S-CONPRI +and O +residual B-PRO +stress E-PRO +are O +predicted S-CONPRI +. O + + +Validation S-CONPRI +of O +part O +distortion S-CONPRI +predicted O +by O +the O +QTM B-CONPRI +model E-CONPRI +against O +both O +experiment S-CONPRI +and O +data S-CONPRI +in O +literature O +showed O +a O +relative B-CONPRI +error E-CONPRI +less O +than O +20 O +% O +. O + + +This O +QTM S-CONPRI +, O +together O +with O +the O +TCN S-CONPRI +, O +offers O +a O +framework S-CONPRI +for O +rapid O +, O +part-scale O +simulations S-ENAT +of O +Metal S-MATE +PBF O +that O +can O +be S-MATE +used O +to O +optimize O +the O +build S-PARA +process O +and O +parameters S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +are O +subject O +to O +lower O +stability S-PRO +compared O +to O +their O +traditional O +counterparts O +. O + + +The O +process S-CONPRI +inconsistency O +leads O +to O +anomalies S-CONPRI +in O +the O +build S-PARA +, O +which O +hinders O +AM S-MANP +’ O +s S-MATE +broader O +adoption O +to O +critical O +structural B-CONPRI +component E-CONPRI +manufacturing S-MANP +. O + + +Therefore O +, O +it O +is O +crucial O +to O +detect O +any O +process B-CONPRI +change/anomaly E-CONPRI +in O +a O +timely O +and O +accurate S-CHAR +manner O +for O +potential O +corrective O +operations O +. O + + +Real-time O +thermal B-FEAT +image E-FEAT +streams O +captured O +from O +AM B-MANP +processes E-MANP +are O +regarded O +as S-MATE +most O +informative O +signatures O +of O +the O +process S-CONPRI +stability O +. O + + +Existing O +state-of-the-art S-CONPRI +studies O +on O +thermal B-FEAT +image E-FEAT +streams O +focus O +merely O +on O +in B-CONPRI +situ E-CONPRI +sensing O +, O +feature B-ENAT +extraction E-ENAT +, O +and O +their O +relationship O +with O +process S-CONPRI +setup O +parameters S-CONPRI +and O +material B-CONPRI +properties E-CONPRI +. O + + +The O +objective O +of O +this O +paper O +is O +to O +develop O +a O +statistical B-CONPRI +process I-CONPRI +control E-CONPRI +( O +SPC S-CONPRI +) O +approach O +to O +detect O +process S-CONPRI +changes O +as S-MATE +soon O +as S-MATE +it O +occurs O +based O +on O +predefined O +distribution S-CONPRI +of O +the O +monitoring O +statistics S-CONPRI +. O + + +There O +are O +two O +major O +challenges O +: O +1 O +) O +complex O +spatial B-CONPRI +interdependence E-CONPRI +exists O +in O +the O +thermal B-FEAT +images E-FEAT +and O +current O +engineering B-CONPRI +knowledge E-CONPRI +is O +not O +sufficient O +to O +describe O +all O +the O +variability S-CONPRI +, O +and O +2 O +) O +the O +thermal B-FEAT +images E-FEAT +suffer O +from O +a O +large O +data S-CONPRI +volume O +, O +a O +low O +signal-to-noise B-PARA +ratio E-PARA +, O +and O +an O +ill O +structure S-CONPRI +with O +missing O +data S-CONPRI +. O + + +To O +tackle O +these O +challenges O +, O +multilinear B-CONPRI +principal I-CONPRI +component I-CONPRI +analysis E-CONPRI +( O +MPCA S-CONPRI +) O +approach O +is O +used O +to O +extract O +low O +dimensional O +features O +and O +residuals S-CONPRI +. O + + +Subsequently O +, O +an O +online O +dual O +control B-CONPRI +charting E-CONPRI +system O +is O +proposed O +by O +leveraging O +multivariate S-CONPRI +T2 O +and O +Q O +control B-CONPRI +charts E-CONPRI +to O +detect O +changes O +in O +extracted S-CONPRI +low O +dimensional O +features O +and O +residuals S-CONPRI +, O +respectively O +. O + + +A O +real-world O +case B-CONPRI +study E-CONPRI +of O +thin O +wall O +fabrication S-MANP +using O +a O +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS S-MANP +) O +process S-CONPRI +is O +used O +to O +illustrate O +the O +effectiveness S-CONPRI +of O +the O +proposed O +approach O +, O +and O +the O +accuracy S-CHAR +of O +process S-CONPRI +anomaly S-CONPRI +detection O +is O +validated O +based O +on O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +information O +collected O +from O +the O +final O +build S-PARA +offline O +. O + + +In O +order O +to O +establish O +modeling S-ENAT +and O +simulation S-ENAT +( O +M B-ENAT +& I-ENAT +S E-ENAT +) O +in O +support S-APPL +of O +Additive B-MANP +Manufacturing I-MANP +Processes E-MANP +( O +AMP S-MANP +) O +control O +for O +tailoring O +functional B-CONPRI +component E-CONPRI +performance O +by O +design S-FEAT +, O +a O +methodology S-CONPRI +is O +introduced O +for O +identifying O +relevant O +M B-ENAT +& I-ENAT +S E-ENAT +challenges O +. O + + +This O +exercise O +is O +meant O +to O +spur O +research S-CONPRI +addressing O +the O +specific O +issue O +of O +tailoring O +functional B-CONPRI +component E-CONPRI +performance O +by O +design S-FEAT +, O +as S-MATE +well O +as S-MATE +AMP-related S-MANP +process O +optimization S-CONPRI +more O +generally O +. O + + +A O +composition B-CONPRI +abstraction E-CONPRI +that O +connects O +process B-CONPRI +control E-CONPRI +with O +functional O +performance S-CONPRI +of O +the O +multiscale B-CONPRI +modeling E-CONPRI +processes O +is O +presented O +, O +from O +both O +the O +forward O +and O +inverse B-CONPRI +analysis E-CONPRI +perspectives O +. O + + +A O +brief O +ontology S-CONPRI +is O +introduced O +that O +describes O +the O +ordering O +of O +dependency O +and O +membership O +of O +all O +components S-MACEQ +of O +a O +model S-CONPRI +, O +which O +serves O +the O +purpose O +of O +isolating S-CONPRI +potential O +challenge O +areas S-PARA +. O + + +Certain O +features O +of O +AMPs S-MANP +that O +are O +usually O +ignored O +by O +the O +community O +during O +modeling S-ENAT +are O +a O +specific O +focus O +. O + + +Furthermore O +, O +two O +semantically S-CONPRI +reduced O +modeling S-ENAT +approaches O +involving O +continuum B-CONPRI +abstractions E-CONPRI +for O +the O +computational B-CONPRI +domains E-CONPRI +are O +presented O +. O + + +The O +solutions O +of O +the O +relevant O +system O +of O +coupled O +partial B-CONPRI +differential I-CONPRI +equations E-CONPRI +are O +used O +to O +demonstrate O +both O +the O +positive O +and O +negative O +implications O +of O +a O +series O +of O +assumptions O +routinely O +made O +in O +M B-ENAT +& I-ENAT +S E-ENAT +of O +AMPs S-MANP +. O + + +Finally O +, O +a O +discrete B-CONPRI +element I-CONPRI +method I-CONPRI +model E-CONPRI +is O +presented O +to O +highlight O +the O +challenges O +introduced O +by O +the O +specific O +nature O +of O +this O +approach O +. O + + +The O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +metal B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +can O +quickly O +produce O +complex O +parts O +with O +mechanical B-CONPRI +properties E-CONPRI +comparable O +to O +wrought B-MATE +materials E-MATE +. O + + +However O +, O +thermal B-PRO +stress E-PRO +accumulated O +during O +PBF S-MANP +induces O +part O +distortion S-CONPRI +, O +potentially O +yielding O +parts O +out O +of O +specification S-PARA +and O +frequently O +process B-CONPRI +failure E-CONPRI +. O + + +This O +manuscript S-CONPRI +is O +the O +first O +of O +two O +companion O +manuscripts S-CONPRI +that O +introduce O +a O +computationally O +efficient O +distortion S-CONPRI +and O +stress S-PRO +prediction B-CONPRI +algorithm E-CONPRI +that O +is O +designed S-FEAT +to O +drastically O +reduce O +compute B-PARA +time E-PARA +when O +integrated O +in O +to O +a O +process B-CONPRI +design I-CONPRI +optimization E-CONPRI +routine O +. O + + +In O +this O +first O +manuscript S-CONPRI +, O +we O +introduce O +a O +thermal B-CONPRI +circuit I-CONPRI +network E-CONPRI +( O +TCN S-CONPRI +) O +model S-CONPRI +to O +estimate O +the O +part O +temperature S-PARA +history O +during O +PBF S-MANP +, O +a O +major O +computational O +bottleneck S-CONPRI +in O +PBF B-CONPRI +simulation E-CONPRI +. O + + +In O +the O +TCN B-CONPRI +model E-CONPRI +, O +we O +are O +modeling S-ENAT +conductive B-CONPRI +heat I-CONPRI +transfer E-CONPRI +through O +both O +the O +part O +and O +support B-FEAT +structure E-FEAT +by O +dividing O +the O +part O +into O +thermal B-CONPRI +circuit I-CONPRI +elements E-CONPRI +( O +TCEs S-CONPRI +) O +, O +which O +consists O +of O +thermal O +nodes O +represented O +by O +thermal B-CONPRI +capacitances E-CONPRI +that O +are O +connected O +by O +resistors S-MACEQ +, O +and O +then O +building O +the O +TCN S-CONPRI +in O +a O +layer-by-layer S-CONPRI +manner O +to O +replicate O +the O +PBF S-MANP +process O +. O + + +In O +comparison O +to O +conventional O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +( O +FEM S-CONPRI +) O +thermal B-CONPRI +modeling E-CONPRI +, O +the O +TCN B-CONPRI +model E-CONPRI +predicts O +the O +temperature S-PARA +history O +of O +metal S-MATE +PBF O +AM B-MACEQ +parts E-MACEQ +with O +more O +than O +two O +orders O +of O +magnitude S-PARA +faster O +computational B-PARA +speed E-PARA +, O +while O +sacrificing O +less O +than O +15 O +% O +accuracy S-CHAR +. O + + +The O +companion O +manuscript S-CONPRI +illustrates O +how O +the O +temperature S-PARA +history O +is O +integrated O +into O +a O +thermomechanical B-CONPRI +model E-CONPRI +to O +predict O +thermal B-PRO +stress E-PRO +and O +distortion S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +set S-APPL +of O +emerging O +technologies S-CONPRI +that O +can O +produce O +physical O +objects O +with O +complex O +geometrical O +shapes O +directly O +from O +a O +digital O +model S-CONPRI +. O + + +However O +, O +achieving O +the O +full O +potential O +of O +AM S-MANP +is O +hampered O +by O +many O +challenges O +, O +including O +the O +lack O +of O +predictive B-CONPRI +models E-CONPRI +that O +correlate O +processing O +parameters S-CONPRI +with O +the O +properties S-CONPRI +of O +the O +processed S-CONPRI +part O +. O + + +We O +develop O +a O +Gaussian S-CONPRI +process-based O +predictive B-CONPRI +model E-CONPRI +for O +the O +learning O +and O +prediction S-CONPRI +of O +the O +porosity S-PRO +in O +metallic B-MACEQ +parts E-MACEQ +produced O +using O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +– O +a O +laser-based O +AM B-MANP +process E-MANP +) O +. O + + +More O +specifically O +, O +a O +spatial O +Gaussian S-CONPRI +process O +regression B-CONPRI +model E-CONPRI +is O +first O +developed O +to O +model S-CONPRI +part O +porosity S-PRO +as S-MATE +a O +function O +of O +SLM S-MANP +process B-CONPRI +parameters E-CONPRI +. O + + +Next O +, O +a O +Bayesian O +inference B-CONPRI +framework E-CONPRI +is O +used O +to O +estimate O +the O +statistical O +model S-CONPRI +parameters O +, O +and O +the O +porosity S-PRO +of O +the O +part O +at O +any O +given O +setting O +is O +predicted S-CONPRI +using O +the O +Kriging O +method O +. O + + +A O +case B-CONPRI +study E-CONPRI +is O +conducted O +to O +validate O +this O +predictive O +framework S-CONPRI +through O +predicting O +the O +porosity S-PRO +of O +17-4 B-MATE +PH I-MATE +stainless I-MATE +steel E-MATE +manufacturing O +on O +a O +ProX O +100 O +selective B-MANP +laser I-MANP +melting E-MANP +system O +. O + + +This O +paper O +presents O +a O +concept O +of O +solidifying O +small O +quantities O +of O +metal B-MATE +powders E-MATE +in O +an O +additive S-MATE +manner O +, O +using O +localized O +microwave S-ENAT +heating S-MANP +( O +LMH O +) O +. O + + +The O +experimental S-CONPRI +results O +show O +solidification S-CONPRI +of O +metal B-MATE +powders E-MATE +in O +forms O +of O +spheres O +and O +rods O +( O +of O +∼2 O +mm S-MANP +diameter S-CONPRI +) O +and O +extension O +of O +these O +rods O +by O +adding O +batches O +of O +powder S-MATE +and O +consolidating O +them O +locally O +as S-MATE +building O +blocks O +by O +LMH O +. O + + +A O +theoretical B-CONPRI +model E-CONPRI +applied O +for O +the O +LMH O +interaction O +with O +metal B-MATE +powders E-MATE +attributes O +a O +magnetic O +heating S-MANP +effect O +also O +to O +powders S-MATE +made O +of O +non-magnetic O +metals S-MATE +, O +due O +to O +eddy O +currents O +. O + + +The O +experimental S-CONPRI +observations O +and O +numerical O +results O +also O +suggest O +that O +micro-plasma O +discharges O +between O +the O +powder B-MATE +particles E-MATE +initiate O +their O +heating S-MANP +process O +. O + + +The O +additive S-MATE +LMH O +approach O +presented O +here O +is O +intended O +to O +extend O +microwave B-MANP +sintering E-MANP +capabilities O +, O +mainly O +known O +in O +volumetric O +molds S-MACEQ +, O +also O +to O +applications O +in O +the O +framework S-CONPRI +of O +rapid B-ENAT +prototyping E-ENAT +, O +additive B-MANP +manufacturing E-MANP +, O +and O +3D-printing S-MANP +. O + + +Oscillating O +laser-arc O +hybrid O +additive B-MANP +manufacturing E-MANP +( O +O-LHAM O +) O +is O +developed O +. O + + +Surface B-PRO +roughness E-PRO +of O +O-LHAM O +reduces O +to O +20 O +% O +of O +WAAM S-MANP +via O +laser-arc O +synergic O +effects O +. O + + +High O +porosity S-PRO +easily O +occurs O +within O +laser-arc O +hybrid O +additive B-MANP +manufacturing E-MANP +( O +LHAM O +) O +can O +be S-MATE +suppressed O +via O +periodical O +beam S-MACEQ +oscillation O +. O + + +O-LHAM O +has O +better O +tensile B-PRO +properties E-PRO +because O +of O +finer B-FEAT +microstructure E-FEAT +and O +lower O +texture S-FEAT +content O +. O + + +A O +novel O +additive B-MANP +manufacturing E-MANP +approach O +integrating O +an O +oscillating O +laser B-CONPRI +beam E-CONPRI +and O +a O +cold B-MANP +metal I-MANP +transfer E-MANP +arc S-CONPRI +was O +developed O +to O +balance O +the O +surface B-CHAR +accuracy E-CHAR +, O +deposition S-CONPRI +efficiency O +, O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +deposited O +parts O +. O + + +The O +new O +method O +was O +termed O +as S-MATE +oscillating O +laser-arc O +hybrid O +additive B-MANP +manufacturing E-MANP +( O +O-LHAM O +) O +. O + + +The O +sample S-CONPRI +properties S-CONPRI +of O +the O +wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +, O +laser-arc O +hybrid O +additive B-MANP +manufacturing E-MANP +( O +LHAM O +) O +, O +and O +O-LHAM O +processes S-CONPRI +were O +compared O +. O + + +First O +, O +both O +the O +surface B-PRO +roughness E-PRO +and O +minimum O +processing O +margin O +of O +the O +O-LHAM O +sample S-CONPRI +were O +reduced O +to O +20 O +% O +of O +the O +WAAM S-MANP +sample S-CONPRI +, O +because O +the O +droplet S-CONPRI +transfer O +was O +stabilized O +by O +the O +laser-arc O +synergic O +effects O +. O + + +Second O +, O +the O +grains S-CONPRI +were O +refined O +, O +and O +the O +{ O +001 O +} O +< O +100 O +> O +-cube O +texture S-FEAT +content O +was O +decreased O +to O +1.6 O +% O +, O +as S-MATE +the O +oscillation O +induced O +a O +strong O +stirring O +effect O +on O +the O +molten B-CONPRI +pool E-CONPRI +. O + + +The O +nondestructive O +X-ray S-CHAR +test O +suggested O +that O +the O +visible O +porosity S-PRO +within O +the O +O-LHAM O +sample S-CONPRI +was O +suppressed O +by O +beam S-MACEQ +oscillation O +when O +the O +periodically O +oscillated O +laser S-ENAT +keyhole O +could O +“ O +capture O +” O +the O +bubbles O +, O +while O +the O +porosity S-PRO +within O +the O +LHAM O +sample S-CONPRI +reached O +24 O +% O +. O + + +Due O +to O +the O +microstructure S-CONPRI +changes O +and O +the O +porosity S-PRO +suppression O +, O +the O +O-LHAM O +almost O +eliminated O +the O +anisotropy S-PRO +of O +tensile B-PRO +strength E-PRO +and O +improved O +the O +elongation S-PRO +by O +up O +to O +34 O +% O +. O + + +Despite O +recent O +advances O +in O +our O +understanding O +of O +the O +unique O +mechanical S-APPL +behavior O +of O +natural O +structural O +materials S-CONPRI +such O +as S-MATE +nacre O +and O +human O +bone S-BIOP +, O +traditional B-MANP +manufacturing E-MANP +strategies O +limit S-CONPRI +our O +ability O +to O +mimic S-MACEQ +such O +nature-inspired O +structures O +using O +existing O +structural O +materials S-CONPRI +and O +manufacturing B-MANP +processes E-MANP +. O + + +To O +this O +end O +, O +we O +introduce O +a O +customizable O +single-step O +approach O +for O +additively O +fabricating S-MANP +geometrically-free O +metallic-based O +structural O +composites S-MATE +showing O +directionally-tailored O +, O +location-specific O +properties S-CONPRI +. O + + +To O +exemplify O +this O +capability O +, O +we O +present O +a O +layered O +metal-ceramic O +composite S-MATE +not O +previously O +reported O +exhibiting O +significant O +directional O +and O +site-specific O +dependence O +of O +properties S-CONPRI +along O +with O +crack O +arrest O +ability O +difficult O +to O +achieve O +using O +traditional B-MANP +manufacturing E-MANP +approaches O +. O + + +Our O +results O +indicate O +that O +nature-inspired O +microstructural S-CONPRI +designs S-FEAT +towards O +directional O +properties S-CONPRI +can O +be S-MATE +realized O +in O +structural B-CONPRI +components E-CONPRI +using O +a O +novel O +additive B-MANP +manufacturing E-MANP +approach O +. O + + +Additive B-MANP +Layer I-MANP +Manufacturing E-MANP +( O +ALM S-MANP +) O +of O +metals S-MATE +is O +rapidly O +changing O +the O +landscape O +of O +industrial S-APPL +manufacturing O +. O + + +This O +paper O +presents O +the O +PALMS O +process S-CONPRI +, O +derived O +from O +electrolytic O +plasma S-CONPRI +polishing O +, O +as S-MATE +a O +solution S-CONPRI +to O +this O +problem O +. O + + +The O +viability O +of O +the O +process S-CONPRI +on O +a O +scale O +compatible O +with O +commercial O +use O +is O +demonstrated O +with O +a O +prototype S-CONPRI +industrial S-APPL +implementation O +. O + + +PALMS O +was O +applied O +on O +AISI O +316 O +stainless B-MATE +steel E-MATE +pieces O +produced O +either O +by O +ALM S-MANP +or O +by O +conventional B-MANP +machining E-MANP +( O +CM O +. O + + +) O +Surface S-CONPRI +states O +, O +microstructures S-MATE +and O +other O +properties S-CONPRI +were O +compared O +pre- O +and O +post-PALMS O +. O + + +Significant O +improvements O +in O +surface S-CONPRI +state O +were O +observed O +after O +a O +10 O +min O +treatment O +, O +with O +a O +5-fold O +reduction S-CONPRI +in O +roughness S-PRO +. O + + +ALM S-MANP +surfaces O +were O +not O +affected O +negatively O +by O +PALMS O +in O +any O +way O +measured O +, O +and O +showed O +slight O +improvements O +in O +hardness S-PRO +and O +pore B-PRO +density E-PRO +. O + + +Two O +PVD S-MANP +coatings S-APPL +( O +TiN S-MATE +and O +WCC O +) O +were O +finally O +applied O +Post-PALMS O +, O +to O +test O +the O +compatibility O +of O +the O +process S-CONPRI +with O +further O +industrially O +relevant O +surface B-MANP +treatments E-MANP +. O + + +PALMS O +enables O +good O +coating S-APPL +adhesion S-PRO +on O +ALM S-MANP +pieces O +, O +with O +improved O +friction S-CONPRI +and O +wear B-CONPRI +properties E-CONPRI +compared O +to O +their O +CM O +counterparts O +. O + + +As S-MATE +metal O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +becomes O +more O +widely O +adopted O +in O +the O +aerospace S-APPL +and O +orthopedic O +industries S-APPL +, O +there O +is O +increasing O +demand O +to O +improve O +part O +quality S-CONPRI +and O +reduce O +overall O +cost O +. O + + +The O +high O +cost O +of O +powder B-MACEQ +feedstock E-MACEQ +has O +raised O +interest O +in O +recovering O +unmelted O +powder S-MATE +in O +the O +build B-PARA +chamber E-PARA +and O +its O +reuse O +in O +subsequent O +builds S-CHAR +. O + + +While O +degradation S-CONPRI +in O +powder S-MATE +properties O +with O +recovery O +and O +reuse O +can O +cause O +degradation S-CONPRI +in O +part O +properties S-CONPRI +, O +this O +topic O +has O +received O +rather O +limited O +attention O +. O + + +In O +this O +study O +the O +properties S-CONPRI +of O +Ti6Al4V S-MATE +metal B-MATE +powder E-MATE +are O +evaluated O +over O +30 O +build B-PARA +cycles E-PARA +in O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +AM S-MANP +. O + + +The O +morphological O +, O +microstructural S-CONPRI +, O +mechanical S-APPL +, O +and O +chemical O +changes O +are O +evaluated O +in O +cross-sectioned O +powder B-MATE +particles E-MATE +and O +compared O +to O +isolated O +control O +samples S-CONPRI +to O +understand O +the O +mechanisms O +of O +degradation S-CONPRI +. O + + +Results O +show O +that O +in O +response O +to O +the O +elevated O +build B-PARA +chamber E-PARA +temperature O +, O +the O +powder S-MATE +undergoes O +a O +sub-beta-transus O +aging O +heat B-MANP +treatment E-MANP +with O +powder S-MATE +reuse O +. O + + +Based O +on O +nanoindentation S-CHAR +hardness S-PRO +measurements O +, O +the O +particles S-CONPRI +undergo O +an O +increase O +in O +near-surface O +hardness S-PRO +( O +up O +to O +2 O +GPa S-PRO +) O +with O +respect O +to O +the O +core S-MACEQ +. O + + +Moreover O +, O +tint O +etching S-MANP +revealed O +an O +oxidized S-MANP +surface O +layers O +consistent O +with O +alpha O +case O +formation O +. O + + +The O +particle S-CONPRI +hardening S-MANP +appears O +to O +result O +from O +oxygen S-MATE +diffusion S-CONPRI +during O +powder S-MATE +recovery O +and O +not O +work B-MANP +hardening E-MANP +related O +to O +the O +mechanical S-APPL +aspects O +of O +that O +process S-CONPRI +. O + + +These O +results O +demonstrate O +the O +importance O +of O +managing/mitigating O +oxidation S-MANP +of O +metal B-MATE +powder E-MATE +feedstock S-MATE +to O +improve O +its O +reusability O +and O +increasing O +its O +overall O +lifetime O +. O + + +Components S-MACEQ +manufactured O +via O +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +are O +usually O +characterised O +by O +large O +columnar B-PRO +grains E-PRO +. O + + +This O +can O +be S-MATE +mitigated O +by O +introducing O +in-process O +cold B-MANP +rolling E-MANP +; O +in O +fact O +, O +the O +associated O +local B-CONPRI +plastic I-CONPRI +deformation E-CONPRI +leads O +to O +a O +reduction S-CONPRI +of O +distortion S-CONPRI +and O +residual B-PRO +stresses E-PRO +, O +and O +to O +microstructural S-CONPRI +refinement O +. O + + +In O +this O +research S-CONPRI +, O +inter-pass O +rolling S-MANP +was O +applied O +with O +a O +load O +of O +50 O +kN O +to O +a O +tantalum S-MATE +linear O +structure S-CONPRI +to O +assess O +rolling S-MANP +’ O +s S-MATE +effectiveness S-CONPRI +in O +changing O +the O +grain B-CONPRI +structure E-CONPRI +from O +columnar O +to O +equiaxed O +, O +as S-MATE +well O +as S-MATE +in O +refining O +the O +grain B-PRO +size E-PRO +. O + + +An O +average S-CONPRI +grain O +size O +of O +650 O +μm O +has O +been O +obtained O +after O +five O +cycles O +of O +inter-pass O +rolling S-MANP +and O +deposition S-CONPRI +. O + + +When O +the O +deformed S-MANP +layer O +was O +reheated O +during O +the O +subsequent O +deposition S-CONPRI +, O +recrystallisation O +occurred O +, O +leading O +to O +the O +growth O +of O +new O +strain-free O +equiaxed B-CONPRI +grains E-CONPRI +. O + + +The O +depth O +of O +the O +refined O +region O +has O +been O +characterised O +and O +correlated S-CONPRI +to O +the O +hardness S-PRO +profile O +developed O +after O +rolling S-MANP +. O + + +Furthermore O +, O +a O +random O +texture S-FEAT +was O +formed O +after O +rolling S-MANP +, O +which O +should O +contribute O +to O +obtaining O +isotropic S-PRO +mechanical O +properties S-CONPRI +. O + + +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacture E-MANP +demonstrated O +the O +ability O +to O +deposit O +sound O +refractory B-MATE +metal E-MATE +components S-MACEQ +and O +the O +possibility O +to O +improve O +the O +microstructure S-CONPRI +when O +coupled O +with O +cold O +inter-pass O +rolling S-MANP +. O + + +An O +innovative O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +variant O +based O +on O +plastic B-PRO +deformation E-PRO +at O +high O +temperatures S-PARA +was O +developed O +. O + + +This O +new O +variant O +is O +capable O +of O +collapsing O +pores S-PRO +that O +have O +been O +formed O +during O +the O +deposition B-MANP +process E-MANP +. O + + +The O +in-situ S-CONPRI +hot O +forging S-MANP +technique O +refines O +the O +grain B-CONPRI +structure E-CONPRI +and O +improve O +mechanical B-CONPRI +properties E-CONPRI +in O +the O +deposited B-CHAR +layer E-CHAR +. O + + +In O +this O +study O +, O +we O +propose O +a O +new O +variant O +of O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +based O +on O +hot O +forging S-MANP +. O + + +During O +WAAM S-MANP +, O +the O +material S-MATE +is O +locally O +forged O +immediately O +after O +deposition S-CONPRI +, O +and O +in-situ S-CONPRI +viscoplastic O +deformation S-CONPRI +occurs O +at O +high O +temperatures S-PARA +. O + + +In O +the O +subsequent O +layer S-PARA +deposition S-CONPRI +, O +recrystallization S-CONPRI +of O +the O +previous O +solidification S-CONPRI +structure O +occurs O +that O +refines O +the O +microstructure S-CONPRI +. O + + +Because O +of O +its O +similarity O +with O +hot O +forging S-MANP +, O +this O +variant O +was O +named O +hot O +forging S-MANP +wire O +and O +arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +HF-WAAM O +) O +. O + + +A O +customized O +WAAM S-MANP +torch O +was O +developed O +, O +manufactured S-CONPRI +, O +and O +tested O +in O +the O +production S-MANP +of O +samples S-CONPRI +of O +AISI316 O +L O +stainless B-MATE +steel E-MATE +. O + + +Forging S-MANP +forces S-CONPRI +of O +17 O +N S-MATE +and O +55 O +N S-MATE +were O +applied O +to O +plastically O +deform O +the O +material S-MATE +. O + + +The O +results O +showed O +that O +this O +new O +variant O +refines O +the O +solidification B-CONPRI +microstructure E-CONPRI +and O +reduce O +texture S-FEAT +effects O +, O +as S-MATE +determined O +via O +high O +energy O +synchrotron S-ENAT +X-ray O +diffraction S-CHAR +experiments O +, O +without O +interrupting O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +Mechanical S-APPL +characterization O +was O +performed O +and O +improvements O +on O +both O +yield B-PRO +strength E-PRO +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +were O +achieved O +. O + + +Furthermore O +, O +it O +was O +observed O +that O +HF-WAAM O +significantly O +affects O +porosity S-PRO +; O +pores S-PRO +formed O +during O +the O +process S-CONPRI +were O +closed O +by O +the O +hot O +forging S-MANP +process O +. O + + +Because O +deformation S-CONPRI +occurs O +at O +high O +temperatures S-PARA +, O +the O +forces S-CONPRI +involved O +are O +small O +, O +and O +the O +WAAM S-MANP +equipment S-MACEQ +does O +not O +have O +specific O +requirements O +with O +respect O +to O +stiffness S-PRO +, O +thereby O +allowing O +the O +incorporation O +of O +this O +new O +variant O +into O +conventional O +moving O +equipment S-MACEQ +such O +as S-MATE +multi-axis O +robots S-MACEQ +or O +3-axis O +table O +used O +in O +WAAM S-MANP +. O + + +A O +bimetallic O +additively-manufactured O +structure S-CONPRI +( O +BAMS O +) O +is O +a O +type O +of O +functionally-graded O +multi-material B-FEAT +structure E-FEAT +used O +for O +achieving O +different O +complementary O +material B-CONPRI +properties E-CONPRI +within O +the O +same O +structure S-CONPRI +as S-MATE +well O +as S-MATE +cost O +optimization S-CONPRI +. O + + +Wire B-MANP ++ I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +offers O +the O +capability O +to O +fabricate S-MANP +the O +BAMS O +in O +a O +simultaneous O +or O +sequential O +way O +. O + + +To O +fully O +utilize O +the O +benefits O +of O +the O +BAMS O +, O +the O +interfacial O +joint S-CONPRI +should O +be S-MATE +strong O +, O +and O +each O +of O +the O +constituents O +should O +have O +reasonable O +mechanical B-PRO +integrity E-PRO +. O + + +For O +this O +, O +a O +BAMS O +of O +low-carbon B-MATE +steel E-MATE +and O +austenitic-stainless O +steel S-MATE +was O +fabricated S-CONPRI +using O +a O +gas-metal-arc-welding O +( O +GMAW S-MANP +) O +-based O +WAAM S-MANP +process S-CONPRI +. O + + +Then O +, O +the O +BAMS O +was O +heat-treated S-MANP +at O +a O +range S-PARA +of O +800 O +°C O +to O +1100 O +°C O +and O +30 O +min O +to O +2 O +h. O +This O +resulted O +in O +35 O +% O +and O +250 O +% O +increases O +in O +the O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +elongation S-PRO +, O +compared O +to O +the O +as-deposited O +BAMS O +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +energy-dispersive O +X-ray S-CHAR +spectroscopy S-CONPRI +( O +EDAx O +) O +, O +and O +the O +Vickers B-PRO +hardness E-PRO +test O +were O +used O +to O +characterize O +the O +BAMS O +. O + + +The O +additive B-MANP +manufacturing E-MANP +of O +metals B-MATE +and I-MATE +ceramics E-MATE +generally O +uses O +a O +concentrated O +laser B-PARA +heat E-PARA +source O +to O +form O +a O +local O +melt B-MATE +pool E-MATE +that O +moves O +quickly O +during O +the O +process S-CONPRI +. O + + +The O +material S-MATE +is O +deposited O +by O +fast O +cooling S-MANP +and O +progressive O +solidification S-CONPRI +. O + + +In O +this O +study O +, O +the O +effects O +of O +temperature B-PARA +gradient E-PARA +and O +progressive O +solidification S-CONPRI +on O +residual B-PRO +stress E-PRO +were O +analyzed O +using O +numerical O +finite-element O +models O +for O +a O +single O +rapidly O +solidifying O +bead S-CHAR +during O +the O +deposition B-MANP +process E-MANP +. O + + +Conceptual O +two- O +and O +three-dimensional S-CONPRI +finite B-CONPRI +element I-CONPRI +models E-CONPRI +are O +proposed O +, O +considering O +the O +solidification S-CONPRI +effect O +. O + + +Based O +on O +the O +numerical O +results O +, O +a O +reduced-order O +modeling S-ENAT +strategy O +was O +proposed O +to O +efficiently O +reproduce O +the O +final O +residual B-PRO +stress E-PRO +state O +of O +single-bead O +deposition B-MANP +processes E-MANP +in O +additive B-MANP +manufacturing E-MANP +, O +i.e O +. O + + +sequential O +solidification S-CONPRI +. O + + +Although O +additive B-MANP +manufacturing E-MANP +technology O +is O +available O +for O +the O +direct O +fabrication S-MANP +of O +metal S-MATE +parts O +, O +the O +process S-CONPRI +is O +still O +in O +a O +juvenile O +state O +compared O +to O +older O +metal S-MATE +fabrication S-MANP +methods O +such O +as S-MATE +sand O +casting S-MANP +. O + + +Therefore O +, O +limited O +standards S-CONPRI +are O +available O +stipulating O +the O +use O +of O +additively-manufactured O +parts O +in O +critical O +service O +conditions O +such O +as S-MATE +extreme O +environments O +or O +safety S-CONPRI +components S-MACEQ +. O + + +However O +, O +since O +sand B-MANP +casting E-MANP +is O +suited O +for O +multiple O +units O +of O +parts O +, O +the O +time O +and O +resources O +needed O +to O +produce O +a O +single O +part O +through O +sand B-MANP +casting E-MANP +is O +not O +ideal O +for O +a O +competitive O +market O +. O + + +Although O +additive B-MANP +manufacturing E-MANP +or O +“ O +3D B-MANP +printing E-MANP +” O +has O +been O +combined O +with O +metal S-MATE +casting S-MANP +in O +the O +past O +through O +“ O +rapid O +casting S-MANP +” O +to O +fabricate S-MANP +sand O +molds S-MACEQ +directly O +, O +the O +sand S-MATE +used O +is O +stipulated O +by O +the O +3D B-MACEQ +printer E-MACEQ +. O + + +The O +use O +of O +specialized O +sand S-MATE +may O +result O +in O +changes O +to O +infrastructure O +and O +large O +amounts O +of O +additional O +sand S-MATE +required O +to O +be S-MATE +stored O +on O +location O +. O + + +The O +main O +question O +we O +sought O +to O +answer O +was O +if O +traditional O +foundry S-MANP +sand O +or O +“ O +non-standard O +” O +sand S-MATE +could O +be S-MATE +used O +within O +a O +3D B-MANP +printing E-MANP +system O +? O +We O +report O +herein O +that O +the O +although O +the O +increase O +in O +surface B-PRO +roughness E-PRO +may O +be S-MATE +tolerable O +, O +the O +use O +of O +foundry S-MANP +sand O +within O +a O +3D B-MACEQ +printer E-MACEQ +produces O +molds S-MACEQ +with O +less O +than O +optimal O +results O +, O +mainly O +due O +to O +the O +absence O +of O +compaction S-MANP +. O + + +Binder S-MATE +bleeding O +via O +the O +liquid B-MATE +binder E-MATE +jetting S-MANP +process O +also O +contributes O +to O +a O +loss O +in O +dimensional O +quality S-CONPRI +. O + + +The O +behavior O +of O +high O +performance S-CONPRI +super O +duplex O +stainless B-MATE +steel E-MATE +( O +SDSS O +) O +during O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +been O +investigated O +using O +a O +novel O +arc S-CONPRI +heat O +treatment O +technique O +. O + + +Tungsten B-MANP +inert I-MANP +gas E-MANP +( O +TIG S-MANP +) O +arc S-CONPRI +pulses O +were O +applied O +on O +a O +disc O +shaped O +sample S-CONPRI +mounted O +on O +a O +water-cooled O +chamber O +to O +physically O +simulate O +AM S-MANP +thermal O +cycles O +. O + + +SDSS O +base B-MATE +metal E-MATE +and O +a O +duplicated O +additively B-MANP +manufactured E-MANP +structure O +( O +DAMS O +) O +were O +used O +as S-MATE +initial O +microstructures S-MATE +. O + + +Samples S-CONPRI +were O +melted S-CONPRI +one O +, O +five O +, O +or O +15 O +times O +by O +arc S-CONPRI +heat O +treatment O +. O + + +Microstructure S-CONPRI +characterization O +and O +modelling S-ENAT +were O +performed O +to O +study O +the O +evolution S-CONPRI +of O +microstructure S-CONPRI +and O +properties S-CONPRI +with O +successive O +AM S-MANP +cycles O +. O + + +Microstructural S-CONPRI +changes O +were O +dependent O +on O +the O +number O +of O +reheating O +cycles O +, O +cooling B-PARA +rate E-PARA +, O +and O +peak O +temperature S-PARA +. O + + +In O +particular O +, O +the O +DAMS O +austenite S-MATE +morphology O +and O +fraction S-CONPRI +changed O +after O +reheating O +to O +peak O +temperatures S-PARA +above O +700 O +°C O +. O + + +Nitrides S-MATE +and O +sigma O +were O +observed O +in O +the O +high O +and O +low O +temperature S-PARA +heat B-CONPRI +affected I-CONPRI +zones E-CONPRI +, O +respectively O +. O + + +Sensitization O +to O +corrosion S-CONPRI +was O +more O +pronounced O +in O +reheated O +DAMS O +than O +in O +the O +base B-MATE +metal E-MATE +. O + + +Hardness S-PRO +was O +increased O +more O +by O +multiple O +remelting/reheating O +than O +by O +slow O +cooling S-MANP +. O + + +It O +was O +found O +that O +AM S-MANP +thermal O +cycles O +significantly O +affect O +SDSS O +properties S-CONPRI +especially O +for O +an O +initial O +microstructure S-CONPRI +similar O +to O +that O +produced O +by O +AM S-MANP +. O + + +Additive B-MANP +manufacturing E-MANP +is O +a O +promising O +and O +rapidly O +rising O +technology S-CONPRI +in O +metal S-MATE +processing O +. O + + +In O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +, O +the O +most O +applied O +metal B-MANP +additive I-MANP +manufacturing E-MANP +process O +, O +the O +repetitive O +heating S-MANP +and O +cooling S-MANP +cycles O +induce O +severe O +strains O +in O +the O +built O +material S-MATE +, O +which O +can O +have O +a O +number O +of O +adverse O +consequences O +such O +as S-MATE +deformation O +, O +cracking S-CONPRI +and O +decreased O +fatigue B-PRO +life E-PRO +that O +might O +lead S-MATE +to O +severe O +failure S-CONPRI +even O +already O +during O +processing O +. O + + +It O +has O +been O +reported O +recently O +that O +the O +application O +of O +laser S-ENAT +shock O +peening S-MANP +( O +LSP O +) O +can O +counteract O +efficiently O +the O +named O +issues O +of O +LPBF S-MANP +through O +the O +introduction O +of O +beneficial O +compressive O +residual B-PRO +stresses E-PRO +in O +the O +surface S-CONPRI +regions O +mostly O +affected O +by O +tensile B-PRO +stresses E-PRO +from O +the O +manufacturing B-MANP +process E-MANP +. O + + +Here O +we O +demonstrate O +how O +lattice S-CONPRI +strains O +implied O +by O +LPBF S-MANP +and O +LSP O +can O +efficiently O +be S-MATE +characterized O +through O +diffraction S-CHAR +contrast O +neutron S-CONPRI +imaging S-APPL +. O + + +Despite O +the O +spatial O +resolution S-PARA +need O +with O +regards O +to O +the O +significant O +gradients O +of O +the O +stress B-PRO +distribution E-PRO +and O +the O +specific O +microstructure S-CONPRI +, O +which O +prevent O +the O +application O +of O +more O +conventional O +methods O +, O +Bragg O +edge O +imaging S-APPL +succeeds O +to O +provide O +essential O +two-dimensionally O +spatial O +resolved O +strain S-PRO +maps O +in O +full O +field O +single O +exposure S-CONPRI +measurements O +. O + + +Two-wire O +TOP-TIG O +additive B-MANP +manufacturing E-MANP +of O +titanium B-MATE +aluminide I-MATE +alloys E-MATE +was O +proposed O +. O + + +The O +Al S-MATE +wire O +was O +fed O +in O +TOP-TIG O +welding S-MANP +mode O +but O +the O +Ti6Al4V S-MATE +wire O +was O +fed O +in O +conventional O +TIG B-MANP +welding E-MANP +mode O +. O + + +The O +main O +microstructure S-CONPRI +of O +the O +as-fabricated O +component S-MACEQ +is O +α2/γ O +lamellae S-MATE +. O + + +The O +different O +Al S-MATE +content O +results O +in O +the O +different O +content O +and O +distribution S-CONPRI +of O +the O +α2 O +phase S-CONPRI +and O +the O +γ O +phase S-CONPRI +. O + + +50 O +at. O +% O +Al S-MATE +content O +provides O +better O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Titanium B-MATE +aluminide E-MATE +( O +TiAl O +) O +alloys S-MATE +are O +promising O +high-temperature O +structural O +materials S-CONPRI +in O +the O +aerospace S-APPL +field O +. O + + +Additive B-MANP +manufacturing E-MANP +is O +a O +desirable O +process S-CONPRI +for O +fabricating S-MANP +TiAl O +alloys S-MATE +. O + + +In O +the O +process S-CONPRI +of O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +of O +TiAl O +alloys S-MATE +, O +Al-based O +and O +Ti-based O +wires O +were O +used O +as S-MATE +the O +feedstocks S-MATE +. O + + +However O +, O +it O +is O +hard O +to O +ensure O +the O +two O +different O +wires O +melt S-CONPRI +synchronously O +under O +the O +heat S-CONPRI +of O +one O +single O +arc S-CONPRI +, O +so O +the O +desired O +microstructures S-MATE +with O +γ O +( O +TiAl O +) O +phase S-CONPRI +and O +α2 O +( O +Ti3Al O +) O +phase S-CONPRI +are O +hard O +to O +obtain O +. O + + +A O +two-wire O +TOP-TIG-based O +additive B-MANP +manufacturing I-MANP +process E-MANP +for O +TiAl O +alloys S-MATE +was O +proposed O +in O +this O +paper O +. O + + +The O +Ti6Al4V S-MATE +wire O +and O +pure O +Al S-MATE +wire O +were O +used O +as S-MATE +the O +feedstocks S-MATE +. O + + +The O +Al S-MATE +wire O +was O +fed O +in O +TOP-TIG O +mode O +behind O +the O +molten B-CONPRI +pool E-CONPRI +, O +while O +the O +Ti6Al4V S-MATE +wire O +was O +fed O +in O +conventional O +TIG S-MANP +mode O +in O +front O +of O +the O +molten B-CONPRI +pool E-CONPRI +. O + + +The O +two O +wires O +melt S-CONPRI +synchronously O +in O +a O +broad O +range S-PARA +of O +parameters S-CONPRI +. O + + +The O +compositions O +of O +the O +component S-MACEQ +can O +be S-MATE +controlled O +by O +adjusting O +the O +two-wire O +feeding O +speeds O +. O + + +The O +main O +microstructures S-MATE +of O +the O +as-fabricated O +component S-MACEQ +contain O +α2/γ O +lamellae S-MATE +colonies O +, O +equiaxed O +γ O +grains S-CONPRI +, O +and O +α2 O +grains S-CONPRI +. O + + +In O +the O +top O +and O +middle O +regions O +, O +when O +the O +Al S-MATE +content O +is O +45 O +at. O +% O +, O +the O +structures O +are O +full O +α2/γ O +lamellae S-MATE +; O +as S-MATE +the O +Al S-MATE +content O +increases O +to O +50 O +at. O +% O +, O +some O +equiaxed O +γ O +distributed O +at O +the O +grain B-CONPRI +boundaries E-CONPRI +; O +the O +component S-MACEQ +with O +55 O +at. O +% O +Al S-MATE +content O +exhibits O +the O +structures O +consists O +of O +equiaxed O +γ O +with O +snowflake-shaped O +α2/γ O +lamellae S-MATE +colonies O +. O + + +In O +the O +bottom O +region O +, O +all O +components S-MACEQ +exhibit O +the O +coarse O +equiaxed O +α2 O +grains S-CONPRI +with O +γ O +laths O +. O + + +As S-MATE +the O +Al S-MATE +content O +increases O +, O +the O +α2 O +phase S-CONPRI +decreases O +, O +but O +the O +γ O +phase S-CONPRI +increases O +, O +and O +from O +the O +top O +region O +to O +the O +bottom O +region O +, O +the O +proportion O +of O +the O +α2 O +increases O +by O +about O +52 O +at. O +% O +. O + + +As S-MATE +the O +Al S-MATE +content O +increases O +, O +the O +hardness S-PRO +decreases O +. O + + +The O +component S-MACEQ +with O +50 O +at. O +% O +Al S-MATE +exhibits O +the O +highest O +compressive B-PRO +strength E-PRO +with O +1762 O +MPa S-CONPRI +and O +a O +compressive O +ratio O +with O +26.1 O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +enables O +the O +fabrication S-MANP +of O +complex O +designs S-FEAT +that O +are O +difficult O +to O +create O +by O +other O +means O +. O + + +Metal S-MATE +parts O +manufactured S-CONPRI +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +can O +incorporate O +intricate O +design S-FEAT +features O +and O +demonstrate O +desirable O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +process S-CONPRI +of O +iteratively O +converging O +on O +the O +appropriate O +build B-PARA +parameters E-PARA +increases O +the O +time O +and O +cost O +of O +creating O +functional O +LPBF S-MANP +manufactured O +parts O +. O + + +This O +paper O +describes O +a O +fast O +, O +scalable O +method O +for O +part-scale O +process B-CONPRI +optimization E-CONPRI +of O +arbitrary O +geometries S-CONPRI +. O + + +The O +computational O +approach O +uses O +feature B-ENAT +extraction E-ENAT +to O +identify O +scan O +vectors O +in O +need O +of O +parameter S-CONPRI +adaptation O +and O +applies O +results O +from O +simulation-based O +feed S-PARA +forward O +control O +models O +. O + + +This O +method O +provides O +a O +framework S-CONPRI +to O +quickly O +optimize O +complex O +parts O +through O +the O +targeted O +application O +of O +models O +with O +a O +range S-PARA +of O +fidelity O +and O +by O +automating O +the O +transfer O +of O +optimization S-CONPRI +strategies O +to O +new O +part O +designs S-FEAT +. O + + +The O +computational O +approach O +and O +algorithmic O +framework S-CONPRI +are O +described O +, O +a O +software S-CONPRI +package O +is O +implemented O +, O +the O +method O +is O +applied O +to O +parts O +with O +complex O +features O +, O +and O +parts O +are O +printed O +on O +a O +customized O +open O +architecture S-APPL +LPBF O +machine S-MACEQ +. O + + +CrC-Ni O +successfully O +deposited O +onto O +an O +AM S-MANP +stainless O +steel S-MATE +using O +cold O +spray O +coating S-APPL +. O + + +The O +CrC-Ni O +coating S-APPL +reduced O +equivalent O +residual B-PRO +stresses E-PRO +in O +the O +substrate S-MATE +surface O +. O + + +CrC-Ni O +coating S-APPL +improved O +the O +surface B-PARA +quality E-PARA +of O +an O +AM S-MANP +produced O +stainless B-MATE +steel E-MATE +. O + + +Crack B-CONPRI +growth E-CONPRI +mechanism O +is O +changed O +due O +to O +the O +deposition S-CONPRI +of O +the O +CrC-Ni O +coating S-APPL +. O + + +Multiaxial O +fatigue B-PRO +life E-PRO +of O +AM S-MANP +stainless O +steel S-MATE +significantly O +improved O +by O +the O +CrC-Ni O +coating S-APPL +. O + + +Integration O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +and O +cold O +spray O +( O +CS O +) O +technologies S-CONPRI +provide O +an O +unprecedented O +opportunity O +to O +manufacture S-CONPRI +coated S-APPL +material O +systems O +with O +complex O +geometrical B-FEAT +features E-FEAT +. O + + +The O +application O +of O +these O +material S-MATE +systems O +in O +functionally O +critical O +components S-MACEQ +requires O +adequate O +structural B-PRO +integrity E-PRO +, O +particularly O +in O +the O +presence O +of O +cyclic B-PRO +loading E-PRO +. O + + +This O +work O +aims O +to O +study O +the O +multiaxial O +fatigue S-PRO +( O +axial-torsional O +cyclic B-PRO +loading E-PRO +) O +behavior O +of O +a O +coated S-APPL +material O +system O +consists O +of O +15Cr-5Ni O +PH S-CONPRI +stainless O +steel S-MATE +( O +15-5 O +PH S-CONPRI +SS O +) O +substrate S-MATE +additively B-MANP +manufactured E-MANP +by O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +with O +a O +layer S-PARA +of O +newly O +commercialized O +chromium B-MATE +carbide E-MATE +nickel O +( O +CrC-Ni O +) O +barrier O +coating S-APPL +deposited O +by O +CS O +coating S-APPL +. O + + +The O +influence O +of O +AM S-MANP +and O +CS-induced O +residual B-PRO +stresses E-PRO +on O +fatigue S-PRO +performance O +of O +test O +specimens O +was O +thoroughly O +studied O +. O + + +Additionally O +, O +the O +effect O +of O +surface B-PRO +roughness E-PRO +and O +processes S-CONPRI +induced O +defects S-CONPRI +were O +considered O +to O +explain O +the O +crack B-CONPRI +growth E-CONPRI +mechanism O +. O + + +Stresses O +assessed O +by O +synchrotron S-ENAT +X-ray O +diffraction S-CHAR +indicated O +a O +substantial O +accumulation O +of O +the O +residual B-PRO +stresses E-PRO +, O +particularly O +in O +the O +outer O +surface S-CONPRI +of O +the O +as S-MATE +fabricated O +15-5 O +PH S-CONPRI +SS O +specimens O +. O + + +The O +state O +of O +residual B-PRO +stress E-PRO +was O +changed O +notably O +following O +the O +deposition S-CONPRI +of O +CrC-Ni O +coating S-APPL +in O +the O +axial O +, O +hoop O +, O +and O +radial O +directions O +of O +the O +fatigue B-CHAR +test E-CHAR +specimen O +. O + + +Also O +, O +CS O +deposition S-CONPRI +of O +CrC-Ni O +coating S-APPL +caused O +significant O +improvement O +in O +the O +surface B-PARA +quality E-PARA +of O +the O +additively B-MANP +manufactured E-MANP +components O +. O + + +Fatigue B-CHAR +test E-CHAR +results O +indicated O +that O +the O +CS O +deposition S-CONPRI +of O +CrC-Ni O +substantially O +enhances O +the O +fatigue B-PRO +life E-PRO +of O +the O +AM-produced O +15-5 O +PH S-CONPRI +SS O +substrate S-MATE +in O +all O +loading O +conditions O +, O +particularly O +in O +the O +high O +cycle O +fatigue S-PRO +regime O +. O + + +The O +improvement O +in O +the O +fatigue B-PRO +life E-PRO +of O +the O +specimens O +with O +coating S-APPL +was O +associated O +with O +the O +reduced O +surface S-CONPRI +equivalent O +residual B-PRO +stress E-PRO +and O +improvement O +in O +the O +specimens O +' O +surface S-CONPRI +condition O +( O +i.e. O +, O +reduced O +surface B-PRO +roughness E-PRO +) O +. O + + +In O +addition O +, O +the O +fractographic B-CHAR +analysis E-CHAR +of O +the O +specimen O +indicated O +although O +the O +crack O +tends O +to O +initiate O +in O +the O +surface S-CONPRI +of O +both O +as S-MATE +fabricated O +and O +cold O +sprayed S-MANP +specimens O +, O +the O +mechanism S-CONPRI +of O +crack B-CONPRI +growth E-CONPRI +differs O +notably O +following O +the O +CS O +coating S-APPL +. O + + +While O +the O +cracks O +tend O +to O +propagate O +in O +the O +planes O +parallel O +or O +with O +a O +small O +deviation O +from O +the O +build B-PARA +layers E-PARA +of O +the O +AM S-MANP +produced O +specimens O +, O +deposition S-CONPRI +of O +CrC-Ni O +coating S-APPL +increased O +the O +deviation O +of O +crack B-CONPRI +growth E-CONPRI +plane O +from O +the O +build B-PARA +layers E-PARA +of O +the O +substrate S-MATE +. O + + +Electromagnetic O +wave O +based O +laser-powder O +particle S-CONPRI +interactions O +. O + + +Powder S-MATE +features O +are O +associated O +with O +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +New O +heat B-CONPRI +source E-CONPRI +model O +considering O +powder S-MATE +effects O +. O + + +A O +modified O +heat-source O +model S-CONPRI +based O +on O +electromagnetic O +wave O +theory O +was O +proposed O +to O +investigate O +the O +interactions O +between O +powder B-MATE +particles E-MATE +and O +a O +laser B-CONPRI +beam E-CONPRI +, O +considering O +the O +spatial B-CHAR +distribution E-CHAR +of O +particles S-CONPRI +inside O +the O +beam S-MACEQ +. O + + +The O +absorption S-CONPRI +of O +energy O +by O +these O +particles S-CONPRI +in O +laser B-MANP +directed I-MANP +energy I-MANP +deposition I-MANP +additive I-MANP +manufacturing E-MANP +was O +calculated O +using O +the O +proposed O +model S-CONPRI +, O +which O +was O +validated O +experimentally O +. O + + +Both O +numerical O +model S-CONPRI +and O +experiment S-CONPRI +were O +used O +to O +study O +the O +effects O +of O +powder S-MATE +velocities O +on O +the O +temperature S-PARA +variations O +in O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +Results O +indicate O +that O +the O +direct O +heat B-CONPRI +transfer E-CONPRI +from O +the O +laser S-ENAT +to O +a O +target O +can O +be S-MATE +increased O +if O +the O +size O +distribution S-CONPRI +is O +wider O +; O +it O +also O +increases O +with O +the O +velocity O +of O +the O +particles S-CONPRI +. O + + +However O +, O +with O +the O +increase O +of O +powder-flow O +rate O +, O +the O +rate O +of O +mass O +transfer O +decreases O +the O +heat B-CONPRI +transfer E-CONPRI +. O + + +Melt-pool O +depth O +in O +melting S-MANP +and O +re-melting O +processes S-CONPRI +can O +therefore O +be S-MATE +controlled O +by O +varying O +these O +parameters S-CONPRI +. O + + +Wire‐arc O +additive B-MANP +manufacturing E-MANP +is O +a O +metal B-MANP +additive I-MANP +manufacturing E-MANP +process O +that O +enables O +the O +production S-MANP +of O +large O +components S-MACEQ +at O +a O +high B-PARA +deposition I-PARA +rate E-PARA +. O + + +This O +process S-CONPRI +transfers O +a O +large O +amount O +of O +heat S-CONPRI +to O +the O +workpiece S-CONPRI +, O +requiring O +the O +introduction O +of O +idle O +times O +between O +the O +deposition S-CONPRI +of O +subsequent O +layers O +so O +that O +the O +workpiece S-CONPRI +cools O +down O +. O + + +This O +procedure O +prevents O +the O +workpiece S-CONPRI +from O +collapsing O +and O +ensures O +a O +suitable O +interpass B-PARA +temperature E-PARA +. O + + +The O +main O +challenge O +is O +the O +selection O +of O +such O +an O +idle O +time O +capable O +of O +ensuring O +the O +required O +interpass B-PARA +temperature E-PARA +, O +because O +the O +cooling B-PARA +rate E-PARA +of O +the O +workpiece S-CONPRI +changes O +throughout O +the O +process S-CONPRI +, O +entailing O +the O +need O +for O +a O +different O +idle O +time O +between O +the O +deposition S-CONPRI +of O +subsequent O +layers O +to O +achieve O +a O +constant O +interpass S-PARA +temperature.This O +paper O +proposes O +an O +innovative O +approach O +to O +schedule O +the O +deposition S-CONPRI +of O +interlayer O +idle O +times O +for O +wire‐arc O +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +The O +technique O +is O +based O +on O +a O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +of O +the O +thermal O +behavior O +of O +the O +workpiece S-CONPRI +, O +by O +solving O +the O +heat B-CONPRI +transfer E-CONPRI +equations O +. O + + +The O +simulation S-ENAT +data S-CONPRI +are O +processed S-CONPRI +using O +the O +developed O +algorithm S-CONPRI +to O +compute O +specific O +idle O +times O +for O +the O +deposition S-CONPRI +of O +each O +layer S-PARA +, O +thereby O +ensuring O +a O +constant O +interpass B-PARA +temperature E-PARA +. O + + +The O +effectiveness S-CONPRI +of O +the O +proposed O +technique O +is O +validated O +by O +experiments O +performed O +on O +a O +test O +case O +component S-MACEQ +. O + + +The O +temperature S-PARA +data S-CONPRI +measured O +during O +the O +process S-CONPRI +are O +compared O +with O +the O +FE S-MATE +simulation O +results O +to O +verify O +the O +accuracy S-CHAR +of O +the O +model S-CONPRI +. O + + +There O +is O +a O +growing O +interest O +in O +using O +recycled B-CONPRI +materials E-CONPRI +and O +economically O +produced O +powder S-MATE +in O +additive B-MANP +manufacturing I-MANP +processes E-MANP +. O + + +State-of-the-art S-CONPRI +powder B-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +processes O +typically O +use O +spherical S-CONPRI +powder S-MATE +that O +are O +produced O +using O +an O +atomization S-MANP +process O +. O + + +However O +, O +using O +irregularly O +shaped O +Ti-6Al-4V B-MATE +powder E-MATE +from O +the O +Hydride-Dehydride O +( O +HDH O +) O +process S-CONPRI +is O +more O +economical O +because O +fewer O +processing O +steps O +are O +required O +and O +it O +can O +use O +recycled B-CONPRI +material E-CONPRI +as S-MATE +feedstock O +. O + + +In O +this O +work O +, O +the O +use O +of O +HDH O +powder S-MATE +in O +the O +electron B-MANP +beam I-MANP +additive I-MANP +manufacturing E-MANP +( O +EBAM S-MANP +) O +process S-CONPRI +is O +investigated O +. O + + +Deposition S-CONPRI +parameters O +for O +the O +HDH O +powder S-MATE +were O +developed O +, O +followed O +by O +a O +detailed O +study O +of O +as-built O +porosity S-PRO +and O +microstructure S-CONPRI +. O + + +The O +powder S-MATE +flow O +characteristics O +were O +also O +studied O +, O +and O +the O +as-built O +part O +porosity S-PRO +was O +compared O +to O +the O +parts O +built O +using O +spherical S-CONPRI +atomized S-ENAT +powder O +. O + + +This O +work O +demonstrates O +the O +successful O +use O +of O +non-spherical S-CONPRI +HDH O +powder S-MATE +in O +the O +EBAM S-MANP +process O +. O + + +The O +extension O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +to O +non-weldable O +Ni-based O +superalloys S-MATE +remains O +a O +challenge O +for O +the O +electron B-MANP +beam I-MANP +melting E-MANP +process O +. O + + +Various O +cracking S-CONPRI +mechanisms O +, O +including O +solidification S-CONPRI +, O +liquation O +, O +strain-age O +, O +and O +ductility S-PRO +dip O +cracking S-CONPRI +, O +make O +it O +difficult O +to O +fabricate S-MANP +traditionally O +non-weldable O +Ni-based O +superalloys S-MATE +using O +the O +AM B-MANP +process E-MANP +. O + + +Because O +airfoil O +geometries S-CONPRI +are O +highly O +complicated O +, O +the O +correspondingly O +complex O +thermal O +signatures O +lead S-MATE +to O +various O +types O +of O +cracking S-CONPRI +in O +geometries S-CONPRI +that O +are O +under O +severe O +mechanical S-APPL +restraints O +during O +the O +printing B-MANP +process E-MANP +. O + + +This O +work O +aims O +to O +understand O +the O +correlations O +between O +cracking S-CONPRI +, O +scan O +strategy O +, O +and O +part O +geometry S-CONPRI +in O +airfoil O +geometries S-CONPRI +. O + + +Crack O +locations O +were O +monitored O +via O +an O +in-situ S-CONPRI +near-infrared O +camera S-MACEQ +during O +printing O +. O + + +A O +part-scale O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +( O +FEM S-CONPRI +) O +was O +used O +to O +reveal O +cracking S-CONPRI +mechanisms O +. O + + +New O +scan O +strategies O +that O +avoided O +cracking S-CONPRI +were O +utilized O +in O +an O +FEM S-CONPRI +simulation O +. O + + +The O +present O +work O +demonstrates O +the O +potential O +for O +scan O +strategy O +optimization S-CONPRI +to O +manipulate O +stress B-PRO +distribution E-PRO +and O +the O +resultant O +microstructure S-CONPRI +of O +parts O +for O +industrial S-APPL +applications O +. O + + +Recent O +work O +in O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +suggests O +that O +mechanical B-CONPRI +properties E-CONPRI +may O +vary O +with O +feature B-PARA +size E-PARA +; O +however O +, O +these O +studies O +do O +not O +provide O +a O +statistically O +robust O +description O +of O +this O +phenomenon O +, O +nor O +do O +they O +provide O +a O +clear O +causal O +mechanism S-CONPRI +. O + + +Because O +of O +the O +huge O +design B-CONPRI +freedom E-CONPRI +afforded O +by O +3D B-MANP +printing E-MANP +, O +AM B-MACEQ +parts E-MACEQ +typically O +contain O +a O +range S-PARA +of O +feature B-PARA +sizes E-PARA +, O +with O +particular O +interest O +in O +smaller O +features O +, O +so O +the O +size B-CONPRI +effect E-CONPRI +must O +be S-MATE +well O +understood O +in O +order O +to O +make O +informed O +design S-FEAT +decisions O +. O + + +This O +work O +investigates S-CONPRI +the O +effect O +of O +feature B-PARA +size E-PARA +on O +the O +stochastic S-CONPRI +mechanical S-APPL +performance O +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +tensile O +specimens O +. O + + +A O +high-throughput O +tensile B-CHAR +testing E-CHAR +method O +was O +used O +to O +characterize O +the O +effect O +of O +specimen O +size O +on O +strength S-PRO +, O +elastic B-PRO +modulus E-PRO +and O +elongation S-PRO +in O +a O +statistically O +meaningful O +way O +. O + + +The O +effective O +yield B-PRO +strength E-PRO +, O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +modulus O +decreased O +strongly O +with O +decreasing O +specimen O +size O +: O +all O +three O +properties S-CONPRI +were O +reduced O +by O +nearly O +a O +factor O +of O +two O +as S-MATE +feature O +dimensions S-FEAT +were O +scaled O +down O +from O +6.25 O +mm S-MANP +to O +0.4 O +mm S-MANP +. O + + +Hardness S-PRO +and O +microstructural B-CHAR +observations E-CHAR +indicate O +that O +this O +size O +dependence O +was O +not O +due O +to O +an O +intrinsic O +change O +in O +material B-CONPRI +properties E-CONPRI +, O +but O +instead O +the O +effects O +of O +surface B-PRO +roughness E-PRO +on O +the O +geometry S-CONPRI +of O +the O +specimens O +. O + + +Finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +using O +explicit O +representations O +of O +surface B-CONPRI +topography E-CONPRI +shows O +the O +critical O +role O +surface S-CONPRI +features O +play O +in O +creating O +stress B-CHAR +concentrations E-CHAR +that O +trigger O +deformation S-CONPRI +and O +subsequent O +fracture S-CONPRI +. O + + +The O +experimental S-CONPRI +and O +finite B-CONPRI +element E-CONPRI +results O +provide O +the O +tools S-MACEQ +needed O +to O +make O +corrections O +in O +the O +design B-CONPRI +process E-CONPRI +to O +more O +accurately S-CHAR +predict O +the O +performance S-CONPRI +of O +AM S-MANP +components O +. O + + +A O +hybrid B-CONPRI +manufacturing E-CONPRI +supply O +chain O +based O +on O +metal B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +proposed O +. O + + +Adding O +capacity S-CONPRI +to O +existing O +AM S-MANP +hubs O +is O +preferred O +over O +establishing O +new O +AM S-MANP +hubs O +at O +current O +demand O +. O + + +The O +ever-growing O +applications O +of O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +in O +the O +production S-MANP +of O +low O +volume- O +high O +value O +metal S-MATE +parts O +can O +be S-MATE +attributed O +to O +improving O +AM S-MANP +processing O +capabilities O +and O +complex O +design B-CONPRI +freedom E-CONPRI +. O + + +However O +, O +secondary O +post-processing S-CONPRI +using O +traditional O +processes S-CONPRI +such O +as S-MATE +machining O +, O +grinding S-MANP +, O +heat B-MANP +treatment E-MANP +and O +hot B-MANP +isostatic I-MANP +pressing E-MANP +, O +i.e. O +, O +Hybrid B-CONPRI +Manufacturing E-CONPRI +, O +is O +required O +to O +achieve O +Geometric B-CONPRI +Dimensioning E-CONPRI +and O +Tolerancing O +( O +GD S-MATE +& O +T O +) O +, O +surface B-FEAT +finish E-FEAT +and O +desired O +mechanical B-CONPRI +properties E-CONPRI +. O + + +It O +is O +often O +challenging O +for O +most O +traditional O +manufacturers O +to O +participate O +in O +the O +rapidly O +evolving O +supply B-CONPRI +chain E-CONPRI +of O +direct B-MANP +digital I-MANP +manufacturing E-MANP +( O +DDM S-CONPRI +) O +through O +in-house O +investments O +in O +cost O +prohibitive O +metal B-MANP +AM E-MANP +. O + + +This O +research B-CONPRI +investigates E-CONPRI +a O +system O +of O +strategically-located O +AM S-MANP +hubs O +which O +can O +integrate O +hybrid-AM O +with O +the O +capabilities O +and O +excess O +capacity S-CONPRI +in O +multiple O +traditional B-MANP +manufacturing E-MANP +facilities O +. O + + +Using O +North O +American O +Industry S-APPL +Classification S-CONPRI +System O +( O +NAICS O +) O +data S-CONPRI +for O +machine S-MACEQ +shops O +in O +the O +U.S. O +, O +an O +uncapacitated O +facility O +location O +model S-CONPRI +is O +used O +to O +determine O +the O +optimal O +locations O +for O +AM S-MANP +hub O +centers O +based O +on O +: O +( O +1 O +) O +geographical O +data S-CONPRI +, O +( O +2 O +) O +demand O +and O +( O +3 O +) O +cost O +of O +hybrid-AM O +processing O +. O + + +Results O +from O +this O +study O +have O +identified O +: O +( O +a O +) O +candidate O +US O +counties O +to O +build S-PARA +AM S-MANP +hubs O +, O +( O +b S-MATE +) O +total O +cost O +( O +fixed O +, O +operational O +and O +transportation O +) O +and O +( O +c S-MATE +) O +capacity S-CONPRI +utilization O +of O +the O +AM S-MANP +hubs O +. O + + +It O +was O +found O +that O +uncapacitated O +facility O +location O +models O +identified O +demand O +centroid O +as S-MATE +the O +optimal O +location O +and O +was O +affected O +only O +by O +AM S-MANP +utilization O +rate O +whereas O +a O +constrained O +p-median O +model S-CONPRI +identified O +22 O +AM S-MANP +hub O +locations O +as S-MATE +the O +initial O +sites O +for O +AM S-MANP +hubs O +which O +grows O +to O +44 O +AM S-MANP +hubs O +as S-MATE +demand O +increases O +. O + + +It O +was O +also O +found O +that O +transportation O +cost O +was O +not O +a O +significant O +factor O +in O +the O +hybrid-AM O +supply B-CONPRI +chain E-CONPRI +. O + + +Findings O +from O +this O +study O +will O +help O +both O +AM S-MANP +companies O +and O +traditional O +manufacturers O +to O +determine O +location O +in O +the O +U.S O +and O +key O +factors O +to O +advance O +the O +metal S-MATE +hybrid-AM O +supply B-CONPRI +chain E-CONPRI +. O + + +In O +this O +paper O +, O +maraging B-MATE +steel E-MATE +powder O +was O +deposited O +on O +top O +of O +an O +H13 B-MATE +tool I-MATE +steel E-MATE +using O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +technique O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +, O +microstructure S-CONPRI +, O +and O +interfacial O +characteristics O +of O +the O +additively B-MANP +manufactured E-MANP +MS1-H13 O +bimetals O +were O +investigated O +using O +different O +mechanical S-APPL +and O +microstructural S-CONPRI +techniques O +. O + + +Several O +uniaxial O +tensile B-CHAR +tests E-CHAR +and O +micro-hardness O +indentations O +were O +performed O +to O +identify O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +additively B-MANP +manufactured E-MANP +bimetal O +. O + + +Advanced O +electron B-CHAR +microscopy E-CHAR +techniques O +including O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +and O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +were O +used O +to O +identify O +the O +mechanism S-CONPRI +of O +interface S-CONPRI +formation O +. O + + +In O +addition O +, O +the O +microstructure S-CONPRI +of O +the O +additively B-MANP +manufactured E-MANP +maraging O +steel S-MATE +along O +with O +the O +conventionally O +fabricated S-CONPRI +substrate-H13 O +were O +studied O +. O + + +It O +was O +concluded O +that O +, O +a O +very O +narrow O +interface S-CONPRI +was O +formed O +between O +the O +additively B-MANP +manufactured E-MANP +maraging O +steel S-MATE +and O +the O +conventional O +H13 S-MATE +without O +forming S-MANP +cracks O +or O +discontinuities O +. O + + +The O +first O +deposited B-CHAR +layers E-CHAR +possessed O +the O +highest O +hardness S-PRO +due O +to O +grain B-PRO +size E-PRO +refinement O +, O +solid B-MATE +solution E-MATE +strengthening O +, O +and O +cellular O +solidification S-CONPRI +structure O +. O + + +Finally O +, O +under O +uniaxial O +tensile S-PRO +loading O +, O +the O +additively B-MANP +manufactured E-MANP +bimetal O +steel S-MATE +failed O +from O +the O +underlying O +tool S-MACEQ +steel S-MATE +, O +indicating O +a O +robust O +interface S-CONPRI +. O + + +Thermomechanical S-CONPRI +analyses O +of O +WAAM S-MANP +by O +implicit O +FEM S-CONPRI +and O +explicit O +FEM S-CONPRI +were O +compared O +. O + + +Explicit O +FEM S-CONPRI +can O +be S-MATE +greatly O +accelerated O +( O +30,000× O +) O +using O +time O +scaling O +technique O +. O + + +Real-time O +simulation S-ENAT +of O +WAAM S-MANP +was O +achieved O +for O +a O +large-scale O +build S-PARA +( O +500 O +× O +40 O +× O +5 O +mm3 O +) O +. O + + +Developed O +FEMs O +all O +showed O +high O +accuracy S-CHAR +in O +predicting O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +. O + + +This O +study O +aims O +to O +advance O +the O +structural B-CHAR +analysis E-CHAR +of O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +by O +considering O +the O +thermomechanical S-CONPRI +features O +inherent O +in O +direct B-MANP +energy I-MANP +deposition E-MANP +. O + + +Simulation S-ENAT +approaches O +including O +the O +iterative O +substructure O +method O +( O +ISM O +) O +, O +dynamic S-CONPRI +mesh O +refining O +method O +( O +DMRM O +) O +, O +and O +graphics O +processing O +unit O +( O +GPU O +) O +based O +explicit O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +( O +FEM S-CONPRI +) O +were O +developed O +for O +accelerating O +additive B-MANP +manufacturing E-MANP +stress O +analysis O +that O +is O +very O +time O +consuming O +by O +conventional O +numerical O +methods O +. O + + +The O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +of O +two O +large O +builds S-CHAR +were O +analyzed O +, O +showing O +very O +consistent O +numerical O +results O +and O +good O +agreement O +with O +experiments O +. O + + +Compared O +with O +the O +commercial O +software S-CONPRI +Abaqus S-ENAT +, O +the O +novel O +approaches O +reduced O +the O +computational O +cost O +substantially O +without O +compromising O +accuracy S-CHAR +. O + + +Such O +high-fidelity S-CONPRI +modeling O +approaches O +will O +be S-MATE +very O +useful O +for O +building O +up O +a O +digital O +twin O +of O +WAAM S-MANP +to O +reduce O +development O +time O +and O +cost O +. O + + +WAAM S-MANP +( O +Wire-Arc-Additive-Manufacturing O +) O +is O +a O +metal B-MANP +additive I-MANP +manufacturing E-MANP +process O +using O +arc B-MANP +welding E-MANP +to O +create O +large O +components S-MACEQ +with O +high B-PARA +deposition I-PARA +rate E-PARA +. O + + +The O +workpiece B-CONPRI +quality E-CONPRI +and O +the O +process S-CONPRI +productivity O +are O +strongly O +dependent O +both O +on O +the O +process B-CONPRI +parameters E-CONPRI +( O +wire O +feed S-PARA +speed O +, O +voltage O +and O +current O +) O +and O +on O +the O +selected O +deposition B-PARA +path E-PARA +. O + + +Currently O +, O +the O +CAM S-ENAT +( O +Computer-Aided-Manufacturing O +) O +software S-CONPRI +dedicated O +to O +WAAM S-MANP +rely O +on O +a O +multi-pass O +strategy O +to O +create O +the O +component S-MACEQ +layers O +, O +i.e O +. O + + +each O +layer S-PARA +is O +built O +overlapping O +multiple O +welding S-MANP +passes O +. O + + +However O +, O +since O +WAAM S-MANP +can O +create O +wide O +layers O +, O +a O +single O +pass O +strategy O +can O +improve O +the O +process S-CONPRI +efficiency O +when O +dealing O +with O +thin O +walled O +components S-MACEQ +. O + + +This O +paper O +proposes O +CAM S-ENAT +software O +dedicated O +to O +WAAM S-MANP +, O +using O +a O +single O +pass O +strategy O +. O + + +The O +proposed O +solution S-CONPRI +uses O +a O +midsurface O +representation O +of O +the O +workpiece S-CONPRI +as S-MATE +input O +, O +to O +generate O +the O +deposition S-CONPRI +toolpath O +. O + + +A O +specific O +strategy O +is O +developed O +and O +proposed O +for O +each O +one O +of O +the O +selected O +features O +, O +with O +the O +aim O +of O +minimizing O +the O +geometrical O +errors S-CONPRI +and O +to O +ensure O +the O +required O +machining B-PARA +allowances E-PARA +for O +the O +subsequent O +finishing B-MANP +operations E-MANP +. O + + +The O +effectiveness S-CONPRI +of O +the O +proposed O +strategy O +is O +verified O +manufacturing S-MANP +a O +test O +case O +. O + + +The O +Wire-Arc B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +process S-CONPRI +is O +an O +increasingly O +attractive O +method O +for O +producing O +porosity-free O +metal S-MATE +components S-MACEQ +. O + + +However O +, O +the O +residual B-PRO +stresses E-PRO +and O +distortions O +resulting O +from O +the O +WAAM S-MANP +process S-CONPRI +are O +major O +concerns O +as S-MATE +they O +not O +only O +influence O +the O +part O +tolerance S-PARA +but O +can O +also O +cause O +premature O +failure S-CONPRI +in O +the O +final O +component S-MACEQ +during O +service O +. O + + +The O +current O +paper O +presents O +a O +method O +for O +using O +neutron B-CHAR +diffraction E-CHAR +to O +measure O +residual B-PRO +stresses E-PRO +in O +Fe3Al O +intermetallic S-MATE +wall O +components S-MACEQ +that O +have O +been O +in-situ S-CONPRI +additively O +fabricated S-CONPRI +using O +the O +WAAM S-MANP +process S-CONPRI +with O +different O +post-production O +treatments O +. O + + +By O +using O +averaging O +methods O +during O +the O +experimental S-CONPRI +setup O +and O +data S-CONPRI +processing O +, O +more O +reliable O +residual B-PRO +stress E-PRO +results O +are O +obtained O +from O +the O +acquired O +neutron B-CHAR +diffraction E-CHAR +data S-CONPRI +. O + + +In O +addition O +, O +the O +present O +study O +indicates O +that O +the O +normal O +residual B-PRO +stresses E-PRO +are O +significant O +compared O +to O +normal O +butt/fillet O +welding S-MANP +samples S-CONPRI +, O +which O +is O +caused O +by O +the O +large O +temperature B-PARA +gradient E-PARA +in O +this O +direction O +during O +the O +additive S-MATE +layer O +depositions O +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +presents O +unprecedented O +opportunities O +to O +enable O +design B-CONPRI +freedom E-CONPRI +in O +parts O +that O +are O +unachievable O +via O +conventional B-MANP +manufacturing E-MANP +. O + + +However O +, O +AM-processed O +components S-MACEQ +generally O +lack O +the O +necessary O +performance S-CONPRI +metrics O +for O +widespread O +commercial O +adoption O +. O + + +We O +present O +a O +novel O +AM S-MANP +processing O +and O +design S-FEAT +approach O +using O +removable O +heat B-MACEQ +sink E-MACEQ +artifacts O +to O +tailor O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +traditionally O +low O +strength S-PRO +and O +low O +ductility S-PRO +alloys S-MATE +. O + + +The O +design S-FEAT +approach O +is O +demonstrated O +with O +the O +Fe-50 O +at. O +% O +Co S-MATE +alloy S-MATE +, O +as S-MATE +a O +model B-CONPRI +material E-CONPRI +of O +interest O +for O +electromagnetic O +applications O +. O + + +AM-processed O +components S-MACEQ +exhibited O +unprecedented O +performance S-CONPRI +, O +with O +a O +300 O +% O +increase O +in O +strength S-PRO +and O +an O +order-of-magnitude O +improvement O +in O +ductility S-PRO +relative O +to O +conventional O +wrought B-MATE +material E-MATE +. O + + +These O +results O +are O +discussed O +in O +the O +context O +of O +product O +performance S-CONPRI +, O +production S-MANP +yield O +, O +and O +manufacturing S-MANP +implications O +toward O +enabling O +the O +design S-FEAT +and O +processing O +of O +high-performance O +, O +next-generation O +components S-MACEQ +, O +and O +alloys S-MATE +. O + + +Rib-web O +structures O +are O +used O +for O +lightweight S-CONPRI +design S-FEAT +in O +various O +applications O +. O + + +The O +most O +prominent O +cases O +are O +found O +in O +aerospace S-APPL +engineering O +, O +where O +intricate O +structures O +are O +produced O +by O +forging S-MANP +and O +subsequent O +machining S-MANP +or O +by O +machining S-MANP +from O +solid O +blocks O +of O +material S-MATE +. O + + +Due O +to O +the O +large O +scrap O +rate O +involved O +in O +conventional B-MANP +manufacturing E-MANP +, O +rib-web O +structures O +are O +suitable O +applications O +for O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +. O + + +Among O +the O +AM B-MANP +processes E-MANP +, O +wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +highly O +suitable O +for O +rib-web O +structures O +due O +to O +its O +high B-PARA +deposition I-PARA +rate E-PARA +and O +the O +potential O +to O +manufacture S-CONPRI +large-size O +parts O +. O + + +In O +WAAM S-MANP +, O +the O +welding S-MANP +strategy O +greatly O +influences O +the O +properties S-CONPRI +and O +quality S-CONPRI +of O +deposited O +parts O +. O + + +With O +an O +increasing O +number O +of O +starts O +and O +stops O +, O +the O +danger O +of O +uneven O +material S-MATE +build-up O +and O +welding B-CONPRI +defects E-CONPRI +increases O +. O + + +This O +study O +presents O +a O +novel O +strategy O +for O +generating O +optimal O +tool B-CONPRI +paths E-CONPRI +for O +WAAM S-MANP +of O +lightweight S-CONPRI +rib-web O +structures O +, O +mitigating O +the O +disadvantages O +of O +discontinuous O +welding S-MANP +paths O +such O +as S-MATE +welding O +defects S-CONPRI +and O +uneven O +build-up O +. O + + +When O +two O +or O +more O +weld B-CONPRI +beads E-CONPRI +are O +deposited O +on O +each O +edge O +, O +the O +vertices S-PARA +of O +the O +rib-web O +structure S-CONPRI +may O +suffer O +from O +underfilling O +. O + + +It O +is O +shown O +that O +this O +can O +be S-MATE +avoided O +by O +a O +correction O +strategy O +, O +which O +consists O +in O +manufacturing S-MANP +the O +part O +once O +, O +evaluating O +the O +size O +of O +voids S-CONPRI +in O +the O +junctions S-APPL +, O +and O +computing O +a O +correction O +to O +deposit O +the O +required O +amount O +of O +material S-MATE +into O +the O +center O +of O +the O +junction S-APPL +. O + + +While O +this O +strategy O +may O +be S-MATE +used O +if O +a O +single O +part O +is O +considered O +, O +it O +is O +shown O +that O +the O +tool B-CONPRI +path E-CONPRI +correction O +to O +be S-MATE +applied O +to O +arbitrary O +junction S-APPL +geometries S-CONPRI +can O +be S-MATE +represented O +by O +a O +neural B-CONPRI +network E-CONPRI +that O +is O +derived O +from O +an O +experimental S-CONPRI +database S-ENAT +consisting O +of O +representative O +junction S-APPL +types O +. O + + +With O +this O +approach O +, O +paths O +for O +any O +rib-web O +geometry S-CONPRI +can O +be S-MATE +generated O +, O +which O +saves O +lead B-PARA +time E-PARA +in O +variant-rich O +production S-MANP +. O + + +Locally O +dispensing O +fine O +and O +irregular O +dry O +powders S-MATE +with O +a O +stable O +and O +continuous O +flow B-PARA +rate E-PARA +for O +additive B-MANP +manufacturing E-MANP +purposes O +is O +challenging O +. O + + +Ultrasonic B-PARA +vibration E-PARA +is O +an O +effective O +tool S-MACEQ +to O +deposit O +spherical S-CONPRI +powders S-MATE +. O + + +However O +, O +the O +existing O +single O +ultrasonic B-PARA +vibration E-PARA +actuated O +powder S-MATE +dispenser O +could O +cause O +powder S-MATE +jamming O +and O +blockage O +when O +dispensing O +irregularly O +shaped O +ceramic S-MATE +particles O +. O + + +In O +this O +study O +, O +we O +demonstrate O +a O +hybrid O +ultrasonic O +and O +motor O +vibration O +integrated O +dispensing O +method O +to O +successfully O +deposit O +irregularly O +shaped O +silicon B-MATE +carbide E-MATE +( O +SiC S-MATE +) O +powder S-MATE +and O +SiC S-MATE +and O +metal B-MATE +powder E-MATE +mixtures O +. O + + +Flow B-PARA +rate E-PARA +experiments O +on O +mixed O +SiC-316 O +L O +powders S-MATE +with O +SiC S-MATE +volume O +fractions O +of O +25 O +vol O +% O +, O +40 O +vol O +% O +, O +and O +50 O +vol O +% O +, O +indicated O +that O +the O +powder B-PARA +flow I-PARA +rate E-PARA +was O +determined O +by O +powder S-MATE +packing O +density S-PRO +after O +pre-mixing O +and O +before O +deposition S-CONPRI +. O + + +A O +lower O +packing O +density S-PRO +resulted O +in O +a O +higher O +powder B-PARA +flow I-PARA +rate E-PARA +. O + + +Both O +the O +SiC S-MATE +particle S-CONPRI +size O +and O +SiC S-MATE +volume O +fraction S-CONPRI +affected O +the O +final O +mixed O +powder S-MATE +packing O +density S-PRO +. O + + +The O +SiC-316 O +L O +mixture O +with O +40 O +vol O +% O +of O +320 O +grit O +SiC B-MATE +powder E-MATE +had O +the O +highest O +powder B-PARA +flow I-PARA +rate E-PARA +( O +37.53 O +μL/s O +) O +. O + + +Finally O +, O +the O +new O +powder S-MATE +deposition S-CONPRI +approach O +was O +successfully O +used O +for O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +manufacturing O +of O +a O +double O +helix O +structure S-CONPRI +made O +of O +a O +316 O +L O +stainless B-MATE +steel E-MATE +and O +a O +SiC-316 O +L O +mixture O +. O + + +Such O +a O +powder S-MATE +dispensing O +technology S-CONPRI +has O +the O +potential O +to O +be S-MATE +applied O +in O +powder B-MATE +materials E-MATE +involved O +in O +additive B-MANP +manufacturing E-MANP +and O +pharmacy O +industries S-APPL +. O + + +Direct O +observation O +and O +quantification O +of O +melt B-MATE +pool E-MATE +evolution S-CONPRI +during O +LPBF S-MANP +through O +in-situ S-CONPRI +x-ray O +imaging S-APPL +. O + + +Melt B-MATE +pool E-MATE +undergoes O +different O +melt S-CONPRI +regimes O +and O +exhibits O +orders-of-magnitude O +volume S-CONPRI +change O +under O +a O +constant O +input O +energy B-PARA +density E-PARA +. O + + +Laser S-ENAT +absorption S-CONPRI +variation O +under O +constant O +input O +energy B-PARA +density E-PARA +is O +an O +important O +cause O +of O +melt B-MATE +pool E-MATE +variation O +. O + + +Laser S-ENAT +absorption S-CONPRI +variation O +stems O +from O +the O +separate O +effects O +of O +laser B-PARA +power E-PARA +and O +scan B-PARA +speed E-PARA +on O +depression O +zone O +development O +. O + + +Size O +and O +shape O +of O +a O +melt B-MATE +pool E-MATE +play O +a O +critical O +role O +in O +determining O +the O +microstructure S-CONPRI +in O +additively B-MANP +manufactured E-MANP +metals O +. O + + +However O +, O +it O +is O +very O +challenging O +to O +directly O +characterize O +the O +size O +and O +shape O +of O +the O +melt B-MATE +pool E-MATE +beneath O +the O +surface S-CONPRI +of O +the O +melt B-MATE +pool E-MATE +during O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +Here O +, O +we O +report O +the O +direct O +observation O +and O +quantification O +of O +melt B-MATE +pool E-MATE +variation O +during O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +additive B-MANP +manufacturing I-MANP +process E-MANP +under O +constant O +input O +energy B-PARA +density E-PARA +by O +in-situ S-CONPRI +high-speed O +high-energy O +x-ray B-CHAR +imaging E-CHAR +. O + + +We O +show O +that O +the O +melt B-MATE +pool E-MATE +can O +undergo O +different O +melting S-MANP +regimes O +and O +both O +the O +melt B-PARA +pool I-PARA +dimension E-PARA +and O +melt B-MATE +pool E-MATE +volume O +can O +have O +orders-of-magnitude O +change O +under O +a O +constant O +input O +energy B-PARA +density E-PARA +. O + + +Our O +analysis O +shows O +that O +the O +significant O +melt B-MATE +pool E-MATE +variation O +can O +not O +be S-MATE +solely O +explained O +by O +the O +energy O +dissipation O +rate O +. O + + +We O +found O +that O +energy B-CHAR +absorption E-CHAR +changes O +significantly O +under O +a O +constant O +input O +energy B-PARA +density E-PARA +, O +which O +is O +another O +important O +cause O +of O +melt B-MATE +pool E-MATE +variation O +. O + + +Our O +further O +analysis O +reveals O +that O +the O +significant O +change O +in O +energy B-CHAR +absorption E-CHAR +originates O +from O +the O +separate O +roles O +of O +laser B-PARA +power E-PARA +and O +scan B-PARA +speed E-PARA +in O +depression O +zone O +development O +. O + + +The O +results O +reported O +here O +are O +important O +for O +understanding O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing I-MANP +process E-MANP +and O +guiding O +the O +development O +of O +better O +metrics O +for O +processing O +parameter S-CONPRI +design S-FEAT +. O + + +Successful O +round B-CHAR +robin I-CHAR +test E-CHAR +conducted O +using O +various O +additive B-APPL +manufactured I-APPL +part E-APPL +producers O +of O +the O +same O +test O +parts O +. O + + +Various O +intentional O +and O +unintentional O +defects S-CONPRI +identified O +. O + + +Porosity/defect O +distribution S-CONPRI +extends O +from O +coupon O +samples S-CONPRI +to O +complex O +parts O +in O +general O +. O + + +Micro O +computed B-CHAR +tomography E-CHAR +( O +microCT S-CHAR +) O +allows O +non-destructive O +insights O +into O +the O +quality S-CONPRI +of O +additively B-MANP +manufactured E-MANP +parts O +and O +the O +processes S-CONPRI +that O +produce O +them O +. O + + +A O +round B-CHAR +robin I-CHAR +test E-CHAR +was O +conducted O +as S-MATE +follows O +: O +a O +series O +of O +standard S-CONPRI +test O +procedures O +( O +part O +sizes O +and O +shapes O +and O +test O +protocols S-CONPRI +) O +were O +applied O +– O +using O +one O +microCT S-CHAR +system O +– O +to O +identical O +parts O +produced O +on O +a O +variety O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +systems O +( O +specifically O +laser B-MACEQ +powder I-MACEQ +bed I-MACEQ +fusion I-MACEQ +systems E-MACEQ +) O +. O + + +These O +are O +simple S-MANP +parts O +: O +a O +10 O +mm S-MANP +cube S-CONPRI +, O +a O +15 O +mm S-MANP +diameter S-CONPRI +vertical-built O +cylinder O +and O +a O +basic O +topology S-CONPRI +optimized O +example O +part O +– O +a O +bracket S-MACEQ +. O + + +The O +15 O +mm S-MANP +diameter S-CONPRI +cylinder O +acts O +as S-MATE +witness O +specimen O +for O +the O +build S-PARA +of O +the O +complex O +part O +. O + + +All O +these O +were O +produced O +in O +Ti6Al4V S-MATE +, O +and O +in O +some O +cases O +parts O +were O +provided O +with O +variations S-CONPRI +in O +process B-CONPRI +parameters E-CONPRI +or O +manufacturing S-MANP +conditions O +which O +led S-APPL +to O +different O +types O +of O +intentional O +manufacturing S-MANP +flaws S-CONPRI +or O +defects S-CONPRI +. O + + +The O +major O +result O +shown O +is O +that O +the O +analysis O +of O +a O +simple S-MANP +10 O +mm S-MANP +cube S-CONPRI +clearly O +identifies O +incorrect O +process B-CONPRI +parameters E-CONPRI +even O +for O +very O +low O +levels O +of O +porosity S-PRO +, O +with O +unique O +porosity S-PRO +distributions S-CONPRI +and O +characteristics O +. O + + +The O +witness O +specimen O +( O +15 O +mm S-MANP +cylinder O +) O +allows O +clear O +identification O +of O +layered O +stop-start O +flaws S-CONPRI +, O +at O +a O +resolution S-PARA +better O +than O +a O +complex O +part O +built O +alongside O +it O +, O +allowing O +to O +identify O +defective O +builds S-CHAR +. O + + +The O +results O +indicate O +a O +successful O +first O +step S-CONPRI +at O +standardized O +microCT S-CHAR +analysis O +procedures O +for O +improvement O +of O +processes S-CONPRI +and O +quality B-CONPRI +control E-CONPRI +in O +additive B-MANP +manufacturing E-MANP +. O + + +Understanding O +microstructural S-CONPRI +development O +in O +additive B-MANP +manufacturing E-MANP +under O +highly O +non-equilibrium O +cooling S-MANP +conditions O +and O +the O +consequent O +effects O +on O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +final O +component S-MACEQ +is O +critical O +for O +accelerating O +industrial S-APPL +adoption O +of O +these O +manufacturing S-MANP +techniques O +. O + + +In O +this O +study O +, O +simple S-MANP +but O +effective O +theoretical B-CONPRI +solidification E-CONPRI +models O +are O +recalled O +to O +evaluate O +their O +ability O +to O +predict O +of O +microstructural S-CONPRI +features O +in O +additive B-MANP +manufacturing E-MANP +applications O +. O + + +As S-MATE +a O +case B-CONPRI +study E-CONPRI +, O +the O +resulting O +solidification B-CONPRI +microstructure E-CONPRI +selection O +maps O +are O +created O +to O +predict O +the O +stable O +growth O +modality O +and O +the O +columnar O +to O +equiaxed O +transition S-CONPRI +( O +CET O +) O +of O +an O +Al-10Si-0.5Mg B-MATE +alloy E-MATE +processed O +via O +Selective B-MANP +Laser I-MANP +Melting E-MANP +. O + + +The O +potential O +of O +this O +method O +in O +microstructural S-CONPRI +predictions O +for O +additively B-MANP +manufactured I-MANP +products E-MANP +, O +as S-MATE +well O +as S-MATE +outstanding O +challenges O +and O +limitations O +, O +are O +discussed O +. O + + +The O +present O +theoretical/experimental O +investigation O +deals O +with O +the O +problem O +of O +performing O +the O +static O +assessment O +of O +notched O +components S-MACEQ +made O +of O +additively B-MANP +manufactured E-MANP +Acrylonitrile B-MATE +Butadiene I-MATE +Styrene E-MATE +( O +ABS S-MATE +) O +. O + + +The O +notch S-FEAT +strength O +of O +this O +3D-printed S-MANP +material O +was O +investigated O +by O +testing S-CHAR +a O +large O +number O +of O +specimens O +, O +with O +the O +experiments O +being O +run O +not O +only O +under O +tension O +, O +but O +also O +under O +three-point B-CHAR +bending E-CHAR +. O + + +The O +samples S-CONPRI +contained O +geometrical B-FEAT +features E-FEAT +of O +different O +sharpness O +and O +were O +manufactured S-CONPRI +( O +flat O +on O +the O +build B-MACEQ +plate E-MACEQ +) O +by O +changing O +the O +printing O +direction O +. O + + +Being O +supported O +by O +the O +experimental S-CONPRI +evidence O +, O +the O +hypothesis O +was O +formed O +that O +the O +mechanical B-CONPRI +response E-CONPRI +of O +3D-printed S-MANP +ABS O +can O +be S-MATE +modelled O +effectively O +by O +treating O +it O +as S-MATE +a O +material S-MATE +that O +is O +linear-elastic O +, O +brittle S-PRO +, O +homogenous O +and O +isotropic S-PRO +. O + + +This O +simplifying O +hypothesis O +allowed O +the O +Theory O +of O +Critical O +Distances O +to O +be S-MATE +employed O +also O +to O +assess O +static O +strength S-PRO +of O +3D-printed S-MANP +ABS O +containing O +geometrical B-FEAT +features E-FEAT +. O + + +The O +validation S-CONPRI +exercise O +based O +on O +the O +experimental S-CONPRI +results O +being O +generated O +demonstrates O +that O +this O +theory O +is O +highly O +accurate S-CHAR +, O +with O +its O +use O +leading O +to O +predictions S-CONPRI +falling O +mainly O +within O +an O +error S-CONPRI +interval O +of O +about O +±20 O +% O +. O + + +This O +level O +of O +accuracy S-CHAR +is O +certainly O +satisfactory O +especially O +because O +this O +static O +assessment O +methodology S-CONPRI +can O +be S-MATE +used O +in O +situations O +of O +engineering S-APPL +relevance O +by O +making O +use O +of O +the O +results O +obtained O +by O +solving O +standard S-CONPRI +linear-elastic O +Finite B-CONPRI +Element I-CONPRI +models E-CONPRI +. O + + +Material S-MATE +calibration S-CONPRI +was O +carried O +out O +for O +DMLS-MS1 O +and O +hybrid O +DMLS-MS1-H13 O +. O + + +Finite B-CONPRI +element E-CONPRI +modeling O +for O +Rockwell B-CHAR +hardness I-CHAR +test E-CHAR +was O +implemented O +. O + + +A O +combined O +FEM-analytical O +approach O +was O +developed O +to O +calculate O +fatigue B-PRO +life E-PRO +of O +DMLS-MS1 O +. O + + +Finite B-CONPRI +element I-CONPRI +model E-CONPRI +of O +welding S-MANP +process S-CONPRI +on O +DMLS-MS1 O +was O +accomplished O +. O + + +Fatigue B-PRO +life E-PRO +of O +welded S-MANP +DMLS-MS1 O +was O +calculated O +using O +the O +developed O +FE S-MATE +framework O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +been O +recently O +used O +to O +deposit O +metal B-MATE +powder E-MATE +on O +top O +of O +conventional O +metals S-MATE +. O + + +Of O +particular O +interest O +is O +hybrid O +additively B-MATE +manufactured I-MATE +steels E-MATE +which O +were O +found O +to O +be S-MATE +a O +suitable O +solution S-CONPRI +to O +benefit O +from O +features O +of O +each O +metal S-MATE +at O +different O +spots O +of O +a O +mechanical S-APPL +component S-MACEQ +. O + + +Due O +to O +its O +superior O +mechanical S-APPL +characteristics O +, O +maraging B-MATE +steel E-MATE +( O +MS1 O +) O +has O +recently O +attracted O +tremendous O +attention O +for O +additive B-MANP +manufacturing E-MANP +applications O +mainly O +in O +aerospace S-APPL +, O +tool S-MACEQ +and O +die S-MACEQ +, O +and O +marine B-APPL +industries E-APPL +or O +to O +be S-MATE +3D B-MANP +printed E-MANP +on O +top O +of O +other O +metals S-MATE +as S-MATE +a O +hybrid O +product O +using O +different O +techniques O +such O +as S-MATE +Direct O +Metal S-MATE +Laser B-MANP +Sintering E-MANP +( O +DMLS S-MANP +) O +. O + + +In O +this O +paper O +a O +predictive O +finite B-CONPRI +element E-CONPRI +( O +FE S-MATE +) O +model S-CONPRI +and O +a O +combined O +analytical-numerical O +framework S-CONPRI +were O +developed O +to O +evaluate O +the O +mechanical S-APPL +performance O +of O +hybrid O +additively B-MANP +manufactured E-MANP +components O +and O +facilitate O +the O +prediction S-CONPRI +of O +hardness S-PRO +and O +fatigue B-PRO +life E-PRO +of O +these O +parts O +. O + + +The O +proposed O +tools S-MACEQ +were O +employed O +in O +two O +scopes O +: O +First O +to O +simulate O +the O +indentation B-CHAR +hardness I-CHAR +test E-CHAR +of O +hybrid O +DMLS-MS1-H13 O +steels S-MATE +; O +and O +second O +to O +calculate O +fatigue S-PRO +crack O +nucleation S-CONPRI +life O +of O +maraging B-MATE +steel E-MATE +including O +defects S-CONPRI +( O +i.e O +. O + + +welding S-MANP +residual B-PRO +stresses E-PRO +) O +. O + + +Parameters S-CONPRI +such O +as S-MATE +local O +and O +global O +displacements O +, O +changes O +in O +Young O +’ O +s S-MATE +modulus O +, O +and O +hardness S-PRO +, O +high O +cycle O +fatigue B-PRO +life E-PRO +, O +welding S-MANP +temperature S-PARA +distribution S-CONPRI +, O +and O +residual B-PRO +stress E-PRO +were O +investigated O +. O + + +The O +hardness S-PRO +experiments O +were O +carried O +out O +to O +improve O +the O +reported O +data S-CONPRI +found O +in O +similar O +studies O +, O +which O +were O +used O +as S-MATE +the O +main O +resource O +to O +validate O +the O +proposed O +numerical O +framework S-CONPRI +. O + + +The O +capabilities O +of O +the O +presented O +frameworks O +enable O +this O +work O +to O +target O +existing O +ambiguities O +in O +additively B-MANP +manufactured E-MANP +mechanical O +components S-MACEQ +. O + + +A O +net-shape O +synthesis O +process S-CONPRI +has O +been O +used O +to O +convert O +different O +isovolumetric O +precursor S-MATE +mixtures O +composed O +of O +either O +100 O +vol O +% O +86/14 O +molar O +Cr/Cr2O3 O +or O +50 O +vol O +% O +86/14 O +molar O +Cr/Cr2O3 O +with O +50 O +vol O +% O +Cr3C2 O +to O +form O +multilayer O +chromium B-MATE +carbide E-MATE +materials O +suitable O +for O +reactive O +powder B-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Selective O +deposition S-CONPRI +was O +performed O +by O +patterning O +precursor S-MATE +layers O +using O +a O +masked O +high-volume O +, O +low-pressure O +slurry S-MATE +spray O +deposition S-CONPRI +technique O +. O + + +Following O +deposition S-CONPRI +, O +each O +layer S-PARA +was O +thermochemically O +converted O +to O +Cr3C2 O +at O +950 O +°C O +in O +a O +gas S-CONPRI +atmosphere O +containing O +76 O +vol. O +% O +Ar S-ENAT +, O +4 O +vol. O +% O +H2 O +, O +20 O +% O +vol. O +% O +CH4 O +. O + + +This O +process S-CONPRI +was O +repeated O +multiple O +times O +to O +construct O +layered B-CONPRI +structures E-CONPRI +representative O +of O +additively B-MANP +manufactured E-MANP +refractory O +ceramics S-MATE +. O + + +X-ray B-CHAR +diffraction E-CHAR +characterization O +and O +quantitative B-CONPRI +phase E-CONPRI +analysis O +of O +each O +converted O +layer S-PARA +indicated O +that O +the O +average S-CONPRI +phase O +fraction S-CONPRI +of O +Cr3C2 O +present O +in O +the O +multi-layered O +samples S-CONPRI +following O +conversion O +from O +Cr/Cr2O3 O +and O +Cr3C2/Cr/Cr2O3 O +precursors O +was O +94.5 O +wt O +% O +( O +SD O += O +0.92 O +) O +and O +98.8 O +wt O +% O +( O +SD O += O +0.21 O +) O +respectively O +. O + + +Despite O +the O +higher O +phase B-CONPRI +fraction E-CONPRI +of O +Cr3C2 O +produced O +by O +the O +three-component O +precursor S-MATE +system O +, O +SEM S-CHAR +imaging S-APPL +of O +the O +sample S-CONPRI +microstructures S-MATE +and O +fracture S-CONPRI +analysis O +indicated O +that O +increased O +bonding S-CONPRI +occurred O +in O +Cr3C2 O +produced O +by O +conversion O +of O +Cr/Cr2O3 O +. O + + +This O +reaction-induced O +bonding S-CONPRI +enhanced O +the O +interlayer O +mechanical B-PRO +integrity E-PRO +. O + + +The O +results O +in O +this O +work O +demonstrate O +the O +use O +of O +isovolumetric O +reaction O +synthesis O +techniques O +that O +are O +broadly O +applicable O +for O +non-oxide S-MATE +ceramic S-MATE +production O +using O +reactive O +additive B-MANP +manufacturing E-MANP +methods O +. O + + +A O +novel O +hydrodynamic O +cavitation S-CONPRI +abrasive S-MATE +finishing O +( O +HCAF O +) O +process S-CONPRI +was O +developed O +. O + + +Internal O +surface B-MANP +finishing E-MANP +was O +done O +using O +cavitation-aided O +microparticle O +abrasion O +. O + + +Synergistic O +effects O +enhanced O +the O +material S-MATE +removal O +and O +surface B-FEAT +finish E-FEAT +up O +to O +80 O +% O +. O + + +Surface B-MANP +finishing E-MANP +additive-manufactured O +( O +AM S-MANP +) O +internal O +channels O +is O +challenging O +. O + + +In O +this O +study O +, O +a O +novel O +hydrodynamic O +cavitation S-CONPRI +abrasive S-MATE +finishing O +( O +HCAF O +) O +technique O +is O +proposed O +and O +its O +feasibility S-CONPRI +for O +surface B-MANP +finishing E-MANP +is O +analyzed O +. O + + +Surface B-MANP +finishing E-MANP +is O +performed O +using O +controlled O +hydrodynamic O +cavitation S-CONPRI +erosion O +and O +microparticle O +abrasion O +phenomena O +. O + + +Various O +surface-finishing O +conditions O +were O +employed O +to O +investigate O +material S-MATE +removal O +and O +surface B-FEAT +finish E-FEAT +enhancement O +via O +synergistic O +effects O +in O +the O +HCAF O +process S-CONPRI +. O + + +To O +quantify O +the O +contributions O +from O +each O +erosion O +mechanism S-CONPRI +, O +additively B-MANP +manufactured E-MANP +AlSi10Mg O +internal O +channels O +were O +surface S-CONPRI +finished O +in O +isolated O +conditions O +of O +a O +) O +liquid O +impingement O +, O +b S-MATE +) O +absolute O +cavitation S-CONPRI +erosion O +, O +c S-MATE +) O +absolute O +abrasion O +, O +and O +d O +) O +cavitation-assisted O +microparticle O +abrasion O +. O + + +The O +erosion O +rate O +and O +total O +thickness O +loss O +were O +established O +as S-MATE +the O +measurands O +to O +quantify O +the O +intensity O +of O +the O +surface B-FEAT +finish E-FEAT +. O + + +A O +synergy O +map O +is O +proposed O +to O +quantify O +the O +contribution O +from O +the O +synergistic O +effects O +from O +hydrodynamic O +cavitation S-CONPRI +abrasive S-MATE +finishing O +. O + + +The O +synergistic O +material-removal O +mechanism S-CONPRI +is O +explained O +using O +surface B-CHAR +morphology E-CHAR +observations O +. O + + +Hydrodynamic O +cavitation S-CONPRI +gradually O +removed O +loosely O +attached O +surface B-CONPRI +asperities E-CONPRI +in O +AM S-MANP +internal O +channels O +. O + + +The O +findings O +suggest O +that O +the O +synergistic O +effects O +in O +hydrodynamic O +cavitation S-CONPRI +abrasive S-MATE +finishing O +are O +effective O +in O +enhancing O +the O +material S-MATE +removal O +and O +surface-finish O +quality S-CONPRI +of O +AM S-MANP +components O +. O + + +Tracking O +codes O +are O +embedded O +inside O +3D B-APPL +printed I-APPL +parts E-APPL +for O +product O +authentication O +. O + + +Imaging S-APPL +method O +like O +micro-CT S-CHAR +can O +retrieve O +the O +internal O +tracking O +code O +information O +. O + + +Micro-CT S-CHAR +images S-CONPRI +of O +the O +code O +present O +poor O +contrast O +and O +imaging S-APPL +artifact O +challenges O +. O + + +Pre- O +and O +post-processing S-CONPRI +enable O +automatic O +and O +robust O +image S-CONPRI +reading O +and O +verification S-CONPRI +. O + + +The O +developed O +image S-CONPRI +processing O +methods O +have O +no O +dependence O +on O +the O +original O +image S-CONPRI +. O + + +The O +layer-by-layer S-CONPRI +printing O +process S-CONPRI +of O +additive B-MANP +manufacturing E-MANP +methods O +provides O +new O +opportunities O +to O +embed O +identification O +codes O +inside O +parts O +during O +manufacture S-CONPRI +. O + + +The O +availability O +of O +reverse B-CONPRI +engineering E-CONPRI +tools O +has O +increased O +the O +risk O +of O +counterfeit O +part O +production S-MANP +and O +new O +authentication O +technologies S-CONPRI +such O +as S-MATE +the O +one O +proposed O +in O +this O +paper O +are O +required O +for O +many O +applications O +including O +aerospace B-MACEQ +components E-MACEQ +and O +medical B-APPL +implants E-APPL +and O +devices O +. O + + +The O +embedded O +codes O +are O +read O +by O +imaging S-APPL +techniques O +such O +as S-MATE +micro-Computed O +Tomography O +( O +micro-CT S-CHAR +) O +scanners O +or O +radiography S-ENAT +. O + + +The O +work O +presented O +in O +this O +paper O +is O +focused O +on O +developing O +methods O +that O +can O +improve O +the O +quality S-CONPRI +of O +the O +recovered O +micro-CT S-CHAR +scanned O +code O +images S-CONPRI +such O +that O +they O +can O +be S-MATE +interpreted O +by O +standard S-CONPRI +code O +reader O +technology S-CONPRI +. O + + +Inherent O +low O +contrast O +and O +the O +presence O +of O +imaging S-APPL +artifacts O +are O +the O +main O +challenges O +that O +need O +to O +be S-MATE +addressed O +. O + + +Image S-CONPRI +processing O +methods O +are O +developed O +to O +address O +these O +challenges O +using O +titanium S-MATE +and O +aluminum B-MATE +alloy E-MATE +specimens O +containing O +embedded O +quick O +response O +( O +QR O +) O +codes O +. O + + +The O +proposed O +techniques O +for O +recovering O +the O +embedded O +codes O +are O +based O +on O +a O +combination O +of O +Mathematical S-CONPRI +Morphology O +and O +an O +innovative O +de-noising O +algorithm S-CONPRI +based O +on O +optimal O +image S-CONPRI +filtering O +techniques O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +commonly O +referred O +to O +as S-MATE +3D B-MANP +printing E-MANP +, O +was O +originally O +used O +for O +rapid B-ENAT +prototyping E-ENAT +. O + + +However O +, O +research S-CONPRI +into O +new O +technologies S-CONPRI +has O +allowed O +AM S-MANP +to O +become O +applicable O +far O +beyond O +prototype S-CONPRI +fabrication S-MANP +. O + + +Oak O +Ridge O +National O +Laboratory S-CONPRI +( O +ORNL O +) O +, O +sponsored O +by O +the O +Office O +of O +Naval O +Research S-CONPRI +, O +has O +designed S-FEAT +and O +developed O +an O +anthropomorphic O +seven O +degree-of-freedom O +( O +DOF O +) O +dual O +arm O +hydraulic O +manipulator S-MACEQ +using O +metal B-MANP +AM E-MANP +technologies O +. O + + +The O +titanium S-MATE +manipulators S-MACEQ +are O +designed S-FEAT +for O +subsea O +use O +. O + + +This O +article O +will O +detail O +the O +novel O +AM S-MANP +design O +of O +the O +hydraulic O +manipulator S-MACEQ +system O +. O + + +It O +will O +cover O +the O +manipulators S-MACEQ +’ O +pitch O +and O +rotary O +link O +designs S-FEAT +, O +custom O +valves O +, O +hydraulic O +power S-PARA +unit O +, O +and O +the O +motivation O +for O +a O +dual O +arm O +design S-FEAT +. O + + +In O +all O +manufacturing B-MANP +processes E-MANP +, O +there O +are O +several O +factors O +for O +which O +the O +final O +product O +exhibits O +dimensional O +and O +shape O +deviations O +from O +its O +ideal O +nominal O +geometry S-CONPRI +. O + + +In O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +and O +3D B-MANP +printing E-MANP +, O +a O +part O +is O +built O +layerwise O +in O +a O +single O +manufacturing S-MANP +step O +and O +is O +often O +net-shaped O +. O + + +In O +most O +cases O +, O +no O +finishing B-MANP +operation E-MANP +is O +applied O +to O +change O +the O +dimensions S-FEAT +of O +the O +product O +, O +apart O +from O +a O +reduction S-CONPRI +of O +the O +superficial O +roughness S-PRO +through O +sandblasting O +or O +polishing S-MANP +. O + + +Therefore O +, O +knowing O +the O +dimensional B-CHAR +tolerance E-CHAR +of O +AM B-MANP +processes E-MANP +in O +advance O +is O +of O +fundamental O +importance O +, O +but O +little O +information O +is O +currently O +available O +in O +the O +literature O +. O + + +A O +benchmarking O +analysis O +of O +three O +different O +AM S-MANP +systems O +for O +polymers S-MATE +is O +presented O +in O +this O +paper O +. O + + +The O +compared O +machines S-MACEQ +are O +based O +on O +different O +AM B-MANP +techniques E-MANP +which O +are O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +, O +selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +and O +Arburg O +plastic S-MATE +freeforming O +( O +APF O +) O +. O + + +The O +dimensional B-CHAR +accuracy E-CHAR +of O +the O +machines S-MACEQ +has O +been O +defined O +using O +the O +ISO S-MANS +IT O +grades O +of O +a O +reference O +artifact O +. O + + +In O +the O +analysis O +of O +the O +benchmarking O +results O +, O +a O +specific O +focus O +is O +made O +on O +the O +importance O +of O +the O +thermal O +household O +in O +SLS S-MANP +and O +a O +parameter S-CONPRI +named O +SLS S-MANP +modulus O +is O +proposed O +to O +identify O +critical O +heat S-CONPRI +concentrations O +in O +the O +powder B-MACEQ +bed E-MACEQ +that O +may O +influence O +the O +dimensional B-CHAR +accuracy E-CHAR +of O +the O +manufactured S-CONPRI +part O +. O + + +Wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +, O +which O +is O +an O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +that O +uses O +metal B-MATE +materials E-MATE +, O +has O +a O +higher O +fabricated S-CONPRI +volume O +per O +unit O +time O +but O +a O +lower O +fabricated S-CONPRI +shape O +accuracy S-CHAR +compared O +with O +other O +methods O +. O + + +With O +this O +process S-CONPRI +, O +the O +surface B-PRO +roughness E-PRO +of O +fabricated S-CONPRI +objects O +is O +several O +hundred O +micrometers O +or O +more O +, O +and O +a O +finishing B-MANP +process E-MANP +is O +necessary O +. O + + +However O +, O +the O +fabricated S-CONPRI +objects O +after O +finishing S-MANP +can O +have O +uncut O +areas S-PARA +or O +can O +be S-MATE +overcut O +during O +the O +finishing B-MANP +process E-MANP +owing O +to O +the O +large O +difference O +between O +the O +target O +and O +actual O +fabricated S-CONPRI +shapes O +. O + + +Therefore O +, O +the O +objective O +of O +this O +study O +is O +to O +develop O +a O +cooperative O +system O +for O +WAAM S-MANP +and O +machining S-MANP +that O +includes O +a O +process S-CONPRI +that O +measures O +the O +shape O +of O +the O +fabricated S-CONPRI +object O +. O + + +First O +, O +the O +three-dimensional S-CONPRI +( O +3-D S-CONPRI +) O +shape O +of O +the O +fabricated S-CONPRI +object O +was O +measured O +by O +structure S-CONPRI +from O +motion O +( O +SfM O +) O +and O +compared O +with O +the O +3-D S-CONPRI +computer-aided O +design S-FEAT +( O +CAD S-ENAT +) O +data S-CONPRI +. O + + +Second O +, O +the O +original O +design S-FEAT +was O +modified O +, O +and O +the O +amount O +of O +material S-MATE +removed O +during O +finish O +cutting S-MANP +was O +optimized O +with O +the O +developed O +software S-CONPRI +. O + + +Finally O +, O +the O +fabricated S-CONPRI +hollow O +object O +was O +finished O +by O +milling S-MANP +to O +obtain O +a O +uniform O +wall B-FEAT +thickness E-FEAT +without O +any O +defects S-CONPRI +. O + + +A O +3-D S-CONPRI +fabricated O +object O +was O +measured O +by O +SfM O +, O +and O +it O +was O +observed O +that O +the O +measurement S-CHAR +accuracy S-CHAR +was O +sufficiently O +high O +for O +the O +requirements O +of O +the O +system O +. O + + +In O +addition O +, O +a O +fabricated S-CONPRI +hollow O +quadrangular O +pyramid O +with O +a O +closed O +shape O +was O +machined S-MANP +with O +a O +computer B-ENAT +numerical I-ENAT +control E-ENAT +( O +CNC S-ENAT +) O +machine B-MACEQ +tool E-MACEQ +with O +the O +modification O +of O +the O +work O +origin O +. O + + +As S-MATE +a O +result O +, O +the O +amount O +of O +material S-MATE +removed O +during O +finish O +cutting S-MANP +was O +optimized O +, O +and O +the O +inclined O +wall B-FEAT +thickness E-FEAT +was O +uniform O +compared O +with O +that O +without O +modification O +. O + + +In O +addition O +, O +a O +hollow O +turbine B-APPL +blade E-APPL +with O +a O +freeform S-CONPRI +shape O +was O +successfully O +finished O +without O +any O +defects S-CONPRI +. O + + +A O +wire O +arc S-CONPRI +additive B-MANP +manufactured E-MANP +sample O +with O +intentional O +defects S-CONPRI +is O +studied O +. O + + +Owing O +to O +a O +lack O +of O +standards S-CONPRI +and O +codes O +, O +a O +calibration S-CONPRI +method O +was O +introduced O +. O + + +The O +known O +size O +defects S-CONPRI +were O +used O +for O +calibration S-CONPRI +of O +the O +ultrasonic O +system O +. O + + +In O +this O +study O +, O +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacture E-MANP +( O +WAAM S-MANP +) O +was O +employed O +to O +manufacture S-CONPRI +a O +steel S-MATE +specimen O +with O +intentionally O +embedded O +defects S-CONPRI +which O +were O +subsequently O +used O +for O +calibration S-CONPRI +of O +an O +ultrasonic O +phased O +array O +system O +and O +defect S-CONPRI +sizing O +. O + + +An O +ABB O +robot S-MACEQ +was O +combined O +with O +the O +Cold B-MANP +Metal I-MANP +Transfer E-MANP +( O +CMT S-MANP +) O +Gas B-MANP +Metal I-MANP +Arc E-MANP +( O +GMA S-MANP +) O +process S-CONPRI +to O +deposit O +20 O +layers O +of O +mild B-MATE +steel E-MATE +. O + + +Tungsten-carbide O +balls O +( O +ø1-3 O +mm S-MANP +) O +were O +intentionally O +embedded O +inside O +the O +additive S-MATE +structure O +after O +the O +4th O +, O +8th O +, O +12th O +and O +18th O +layers O +to O +serve O +as S-MATE +ultrasonic O +reflectors O +, O +simulating O +defects S-CONPRI +within O +the O +WAAM S-MANP +sample S-CONPRI +. O + + +An O +ultrasonic O +phased O +array O +system O +, O +consisting O +of O +a O +5 O +MHz O +64 O +Element S-MATE +phased O +array O +transducer S-MACEQ +, O +was O +used O +to O +inspect O +the O +WAAM S-MANP +sample S-CONPRI +non-destructively O +. O + + +The O +majority O +of O +the O +reflectors O +were O +detected O +successfully O +using O +Total O +Focusing O +Method O +( O +TFM O +) O +, O +proving O +that O +the O +tungsten B-MACEQ +carbide I-MACEQ +balls E-MACEQ +were O +successfully O +embedded O +during O +the O +WAAM S-MANP +process S-CONPRI +and O +also O +that O +these O +are O +good O +ultrasonic O +reflectors O +. O + + +Owing O +to O +a O +lack O +of O +standards S-CONPRI +and O +codes O +for O +the O +ultrasonic B-CHAR +inspection E-CHAR +of O +WAAM S-MANP +samples S-CONPRI +( O +Lopez O +et O +al. O +, O +2018 O +) O +, O +a O +calibration S-CONPRI +method O +and O +step-by-step O +inspection S-CHAR +strategy O +were O +introduced O +and O +then O +used O +to O +estimate O +the O +size O +and O +shape O +of O +an O +unknown O +lack O +of O +fusion S-CONPRI +( O +LoF O +) O +indication O +. O + + +Corrosion B-PRO +behavior E-PRO +and O +biocompatibility S-PRO +of O +AM S-MANP +( O +SLM S-MANP +) O +and O +wrought B-MATE +316 I-MATE +L I-MATE +SS E-MATE +are O +evaluated O +in O +physiological O +environment O +containing O +complexing O +agent O +i.e O +. O + + +Ecorr O +for O +the O +SLM S-MANP +316 B-MATE +L I-MATE +SS E-MATE +is O +consistently O +higher O +and O +breakdown O +potential O +, O +Ebd O +, O +is O +more O +than O +3 O +times O +higher O +compared O +to O +the O +wrought S-CONPRI +. O + + +SLM S-MANP +sample S-CONPRI +exhibits O +wider O +passive O +region O +and O +higher O +charge O +transfer O +resistance S-PRO +( O +Rt S-MANP +) O +( O +approximately O +1.5 O +to O +2.5 O +times O +) O +. O + + +The O +SLM S-MANP +part O +shows O +better O +cell S-APPL +proliferation O +. O + + +In O +order O +to O +mitigate O +potential O +implant S-APPL +failures O +, O +it O +is O +essential O +to O +determine O +the O +corrosion B-PRO +behavior E-PRO +of O +biomaterials S-MATE +in O +a O +realistic O +physiological O +environment O +. O + + +In O +order O +to O +simulate O +the O +real O +oxidative O +nature O +of O +human O +body O +fluid S-MATE +, O +this O +research S-CONPRI +considers O +the O +effects O +of O +a O +complexing O +agent O +while O +determining O +the O +corrosion B-PRO +behavior E-PRO +of O +316L B-MATE +stainless I-MATE +steel E-MATE +( O +SS S-MATE +) O +that O +has O +been O +fabricated S-CONPRI +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +. O + + +the O +citrate O +ion S-CONPRI +, O +in O +Phosphate S-MATE +Buffer S-CONPRI +Saline O +( O +PBS S-MATE +) O +solution S-CONPRI +strongly O +affects O +the O +passivation S-CONPRI +behavior O +of O +316L O +SS S-MATE +by O +complex O +species O +formation O +. O + + +However O +, O +due O +to O +a O +rapid B-CONPRI +solidification I-CONPRI +process E-CONPRI +, O +the O +microstructural S-CONPRI +properties O +of O +the O +additively B-MANP +manufactured E-MANP +metal O +are O +not O +similar O +to O +that O +of O +the O +conventionally O +manufactured S-CONPRI +counterpart O +. O + + +The O +microstructure S-CONPRI +of O +the O +SLM S-MANP +316L O +SS S-MATE +contains O +refined O +sub-grains O +within O +each O +coarse O +grain S-CONPRI +and O +the O +formation O +of O +micro-inclusions O +i.e O +. O + + +The O +SLM S-MANP +316L O +SS S-MATE +had O +better O +pitting S-CONPRI +resistance O +and O +passive O +film O +stability S-PRO +. O + + +Ecorr O +for O +the O +SLM S-MANP +316L O +SS S-MATE +was O +consistently O +higher O +and O +the O +breakdown O +potential O +, O +Ebd O +, O +was O +more O +than O +three O +times O +higher O +compared O +to O +the O +wrought S-CONPRI +counterpart O +as S-MATE +determined O +by O +cyclic O +potentiodynamic B-CHAR +polarization E-CHAR +. O + + +Moreover O +, O +the O +SLM S-MANP +sample S-CONPRI +had O +a O +wider O +passive O +region O +and O +higher O +charge O +transfer O +resistance S-PRO +( O +Rt S-MANP +) O +( O +approximately O +1.5 O +to O +2.5 O +times O +) O +as S-MATE +determined O +by O +cyclic B-CHAR +voltammetry E-CHAR +and O +electrochemical S-CONPRI +impedance O +spectroscopy S-CONPRI +, O +respectively O +. O + + +In O +addition O +, O +the O +attachment O +and O +proliferation O +tendency O +of O +MC3T3-E1 O +pre-osteoblast O +cells S-APPL +were O +studied O +to O +evaluate O +biocompatibility S-PRO +. O + + +The O +SLM S-MANP +part O +had O +better O +cell S-APPL +proliferation O +. O + + +To O +summarize O +, O +in O +a O +physiological O +environment O +, O +the O +SLM S-MANP +316L O +SS S-MATE +outperformed O +the O +conventional O +wrought S-CONPRI +316L O +SS S-MATE +in O +terms O +of O +corrosion B-CONPRI +resistance E-CONPRI +and O +biocompatibility S-PRO +. O + + +Wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +has O +become O +a O +promising O +metal S-MATE +3D B-ENAT +printing I-ENAT +technology E-ENAT +for O +fabricating S-MANP +large-scale O +and O +complex-shaped S-CONPRI +components O +. O + + +One O +major O +problem O +that O +limits S-CONPRI +the O +application O +of O +WAAM S-MANP +is O +the O +difficulty O +in O +controlling O +the O +dimensional B-CHAR +accuracy E-CHAR +under O +constantly O +changing O +interlayer O +temperatures S-PARA +. O + + +During O +the O +deposition B-MANP +process E-MANP +, O +as S-MATE +the O +wall O +height O +increases O +, O +the O +heat S-CONPRI +accumulates O +on O +the O +upper O +layers O +, O +which O +leads O +to O +the O +variation S-CONPRI +of O +the O +layer S-PARA +dimensions S-FEAT +. O + + +Normal O +practices O +such O +as S-MATE +introducing O +idle O +time O +and O +actively O +cooling S-MANP +the O +workpiece S-CONPRI +to O +mitigate O +such O +problems O +lack O +efficiency O +and O +practicality O +, O +respectively O +. O + + +A O +novel O +process B-CONPRI +planning E-CONPRI +strategy O +is O +proposed O +in O +this O +paper O +and O +aims O +to O +achieve O +a O +continuous O +deposition B-MANP +process E-MANP +while O +ensuring O +dimensional B-CHAR +accuracy E-CHAR +. O + + +With O +the O +aid O +of O +a O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +, O +the O +typical O +thermal O +transfer O +cycle O +of O +the O +workpiece S-CONPRI +was O +analyzed O +and O +then O +divided O +into O +different O +stages O +. O + + +When O +depositing O +material S-MATE +, O +the O +interlayer O +temperature S-PARA +of O +the O +subsequent O +layers O +can O +be S-MATE +predicted O +using O +the O +developed O +algorithm S-CONPRI +. O + + +Hence O +, O +the O +process B-CONPRI +parameters E-CONPRI +( O +e.g. O +, O +wire O +feed S-PARA +speed O +and O +travel O +speed O +) O +can O +be S-MATE +varied O +according O +to O +the O +predicted S-CONPRI +interlayer O +temperature S-PARA +using O +the O +developed O +adaptive O +process B-CONPRI +model E-CONPRI +, O +and O +this O +will O +ensure O +the O +uniform O +layer S-PARA +dimensions S-FEAT +. O + + +The O +result O +shows O +that O +such O +technique O +succeeds O +in O +a O +continuous O +fabrication S-MANP +of O +the O +component S-MACEQ +with O +high O +accuracy S-CHAR +and O +efficiency O +. O + + +2219-Al O +specimens O +with O +no O +cracks O +and O +less O +pores S-PRO +were O +fabricated S-CONPRI +by O +novel O +laser-TIG O +hybrid O +additive B-MANP +manufacturing E-MANP +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +were O +higher O +than O +that O +fabricated S-CONPRI +by O +conventional O +TIG S-MANP +, O +CMT S-MANP +or O +SLM S-MANP +. O + + +The O +presence O +of O +laser S-ENAT +could O +refine O +grains S-CONPRI +and O +improve O +the O +uniformity O +of O +elements S-MATE +and O +eutectics O +. O + + +Owing O +to O +its O +high O +strength B-PRO +to I-PRO +weight I-PRO +ratio E-PRO +, O +Al–Cu O +alloy S-MATE +is O +extensively O +used O +in O +the O +aeronautic O +and O +aerospace B-APPL +industries E-APPL +. O + + +However O +, O +there O +are O +some O +shortcomings O +in O +the O +additive B-MANP +manufacturing E-MANP +of O +Al–Cu O +alloy S-MATE +, O +such O +as S-MATE +cracks O +and O +poor O +strength S-PRO +. O + + +In O +this O +work O +, O +Al–Cu O +( O +2219-Al O +) O +specimens O +with O +excellent O +mechanical B-CONPRI +properties E-CONPRI +were O +fabricated S-CONPRI +by O +laser-Tungsten O +Inert B-CONPRI +Gas E-CONPRI +( O +TIG S-MANP +) O +hybrid O +additive B-MANP +manufacturing E-MANP +. O + + +From O +the O +microstructural S-CONPRI +studies O +, O +the O +average S-CONPRI +grain O +size O +in O +the O +laser S-ENAT +zone O +( O +LZ O +) O +decreased O +to O +14.4 O +μm O +, O +which O +was O +approximately O +40.3 O +% O +smaller O +than O +that O +in O +the O +arc S-CONPRI +zone O +( O +AZ O +) O +. O + + +Its O +crystal B-PRO +orientation E-PRO +relationship O +was O +described O +as S-MATE +[ O +110 O +] O +α∥ O +[ O +002 O +] O +θ O +, O +( O +110 O +) O +α∥ O +( O +002 O +) O +θ O +between O +the O +α-Al O +matrix O +and O +the O +θ O +phase S-CONPRI +. O + + +Meanwhile O +, O +the O +θ′ O +phase S-CONPRI +characterized O +a O +good O +coherent O +relationship O +with O +the O +α-Al O +matrix O +, O +which O +resulted O +in O +low O +phase B-CONPRI +boundary E-CONPRI +energy O +. O + + +Furthermore O +, O +the O +deposited O +specimens O +exhibited O +a O +yield B-PRO +strength E-PRO +of O +155.5 O +± O +7.9 O +MPa S-CONPRI +and O +an O +ultimate B-PRO +tensile I-PRO +strength E-PRO +of O +301.5 O +± O +16.7 O +MPa S-CONPRI +, O +with O +an O +elongation S-PRO +of O +12.8 O +± O +2.8 O +% O +. O + + +These O +mechanical B-CONPRI +properties E-CONPRI +were O +higher O +than O +in O +specimens O +fabricated S-CONPRI +by O +TIG S-MANP +, O +CMT S-MANP +and O +SLM S-MANP +methods O +. O + + +The O +improved O +properties S-CONPRI +were O +predominately O +related O +to O +the O +smaller O +size O +of O +eutectics O +, O +the O +uniform O +distribution S-CONPRI +of O +Cu S-MATE +and O +the O +semi-coherent O +θ′ O +phases O +in O +the O +LZ O +. O + + +The O +combined O +effect O +of O +laser S-ENAT +and O +arc S-CONPRI +can O +yield O +components S-MACEQ +with O +excellent O +mechanical B-CONPRI +properties E-CONPRI +, O +promoting O +the O +material S-MATE +for O +an O +expansive O +range S-PARA +of O +applications O +. O + + +New O +microstructural S-CONPRI +features O +were O +found O +in O +the O +TiAl O +alloy S-MATE +manufactured O +using O +the O +gas S-CONPRI +tungsten O +arc S-CONPRI +welding-based O +additive B-MANP +manufacturing E-MANP +technology O +. O + + +The O +ion-irradiation O +responses O +of O +the O +new O +microstructure S-CONPRI +features O +were O +investigated O +in-situ S-CONPRI +via O +irradiation S-MANP +with O +1 O +MeV O +Kr2+ O +ions O +at O +room O +and O +873 O +K. O +Examination O +of O +the O +microstructure S-CONPRI +showed O +that O +the O +typical O +lamellar S-CONPRI +microstructure O +consisting O +of O +α2-Ti3Al O +and O +γ-TiAl O +phases O +formed O +α2/γ O +lamellar S-CONPRI +interfaces O +and O +γ/γ O +twin O +boundaries S-FEAT +. O + + +Apart O +from O +this O +, O +the O +γ O +lamellae S-MATE +were O +also O +found O +to O +form O +γ/γ O +lamellar S-CONPRI +boundaries S-FEAT +with O +the O +two O +γ O +lamellae S-MATE +in O +the O +same O +orientation S-CONPRI +or O +the O +< O +10-1 O +> O +// O +< O +411 O +> O +orientation S-CONPRI +relationship O +. O + + +This O +is O +not O +observed O +in O +the O +TiAl O +alloys S-MATE +fabricated O +using O +traditional O +alloy S-MATE +fabrication O +methods O +. O + + +Kr O +ion-irradiation O +at O +room O +and O +elevated O +temperatures S-PARA +resulted O +in O +no O +significant O +difference O +in O +the O +morphologies S-CONPRI +of O +most O +radiation-induced O +defects S-CONPRI +in O +the O +< O +411 O +> O +orientated O +γ O +lamellae S-MATE +and O +the O +< O +10-1 O +> O +orientated O +γ O +lamellae S-MATE +. O + + +However O +, O +the O +areas S-PARA +of O +the O +new O +boundaries S-FEAT +exhibited O +different O +damage S-PRO +morphologies O +in O +comparison O +with O +the O +traditional O +γ/γ O +twin O +boundaries S-FEAT +. O + + +The O +formation O +mechanisms O +of O +the O +new O +microstructural S-CONPRI +features O +formed O +in O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +and O +their O +irradiation S-MANP +behaviour O +are O +investigated O +and O +discussed O +. O + + +Additive B-MANP +manufacturing E-MANP +can O +produce O +parts O +with O +complex B-CONPRI +geometries E-CONPRI +in O +fewer O +steps O +than O +conventional O +processing O +, O +which O +leads O +to O +cost B-CONPRI +reduction E-CONPRI +and O +a O +higher O +quality S-CONPRI +of O +goods O +. O + + +One O +potential O +application O +is O +the O +production S-MANP +of O +molds S-MACEQ +and O +dies S-MACEQ +with O +conformal B-CONPRI +cooling E-CONPRI +for O +injection B-MANP +molding E-MANP +, O +die B-MANP +casting E-MANP +, O +and O +forging S-MANP +. O + + +AISI O +H13 B-MATE +tool I-MATE +steel E-MATE +is O +typically O +used O +in O +these O +applications O +because O +of O +its O +high O +hardness S-PRO +at O +elevated O +temperatures S-PARA +, O +high O +wear B-PRO +resistance E-PRO +, O +and O +good O +toughness S-PRO +. O + + +However O +, O +available O +data S-CONPRI +on O +the O +processing O +of O +H13 B-MATE +steel E-MATE +by O +additive B-MANP +manufacturing E-MANP +are O +still O +scarce O +. O + + +Thus O +, O +this O +study O +focused O +on O +the O +processability O +of O +H13 B-MATE +tool I-MATE +steel E-MATE +by O +powder B-MANP +bed I-MANP +fusion E-MANP +and O +its O +microstructural B-CHAR +characterization E-CHAR +. O + + +Laser B-PARA +power E-PARA +( O +97−216 O +W O +) O +and O +scan B-PARA +speed E-PARA +( O +300−700 O +mm/s O +) O +were O +varied O +, O +and O +the O +consolidation S-CONPRI +of O +parts O +, O +common O +defects S-CONPRI +, O +solidification S-CONPRI +structure O +, O +microstructure S-CONPRI +, O +and O +hardness S-PRO +were O +evaluated O +. O + + +Over O +the O +range S-PARA +of O +processing O +parameters S-CONPRI +, O +microstructural S-CONPRI +features O +were O +mostly O +identical O +, O +consisting O +of O +a O +predominantly O +cellular O +solidification S-CONPRI +structure O +of O +martensite S-MATE +and O +19.8 O +% O +–25.9 O +% O +of O +retained B-MATE +austenite E-MATE +. O + + +Cellular/dendritic O +solidification S-CONPRI +structure O +displayed O +C S-MATE +, O +Cr S-MATE +, O +and O +V S-MATE +segregation S-CONPRI +toward O +cell S-APPL +walls O +. O + + +The O +thermal B-PARA +cycle E-PARA +resulted O +in O +alternating O +layers O +of O +heat-affected O +zones O +, O +which O +varied O +somewhat O +in O +hardness S-PRO +and O +microstructure S-CONPRI +. O + + +Retained B-MATE +austenite E-MATE +was O +correlated S-CONPRI +to O +the O +solidification S-CONPRI +structure O +and O +displayed O +a O +preferential O +orientation S-CONPRI +with O +{ O +001 O +} O +//build O +direction O +. O + + +Density B-FEAT +and I-FEAT +porosity E-FEAT +maps O +were O +obtained O +by O +helium S-MATE +gas S-CONPRI +pycnometry O +and O +light O +optical B-CHAR +microscopy E-CHAR +, O +respectively O +, O +and O +, O +along O +with O +linear O +crack O +density S-PRO +, O +were O +used O +to O +determine O +appropriate O +processing O +parameters S-CONPRI +for O +H13 B-MATE +tool I-MATE +steel E-MATE +. O + + +Thermal B-CONPRI +diffusivity E-CONPRI +, O +thermal B-PRO +conductivity E-PRO +, O +and O +thermal O +capacity S-CONPRI +were O +measured O +to O +determine O +dimensionless O +processing O +parameters S-CONPRI +, O +which O +were O +then O +compared O +to O +others O +reported O +in O +the O +literature O +. O + + +The O +complex O +, O +nonequilibrium O +physical O +, O +chemical O +, O +and O +metallurgical S-APPL +nature O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +tends O +to O +lead S-MATE +to O +uncontrollable O +and O +unpredictable O +material S-MATE +and O +structural O +properties S-CONPRI +. O + + +In O +this O +study O +, O +we O +investigated O +a O +laser S-ENAT +opto-ultrasonic O +dual O +( O +LOUD O +) O +detection O +approach O +for O +simultaneous O +and O +real-time O +detection O +of O +elemental O +compositions O +, O +structural B-CONPRI +defects E-CONPRI +, O +and O +residual B-PRO +stress E-PRO +in O +aluminium S-MATE +( O +Al S-MATE +) O +alloy S-MATE +components O +during O +wire B-MANP ++ I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +processes S-CONPRI +. O + + +In O +this O +approach O +, O +a O +pulsed-laser O +beam S-MACEQ +was O +used O +to O +excite O +the O +surfaces S-CONPRI +of O +Al B-MATE +alloy E-MATE +samples O +to O +generate O +ultrasound O +and O +optical B-CHAR +spectra E-CHAR +. O + + +As S-MATE +a O +result O +, O +the O +compositional O +information O +can O +be S-MATE +obtained O +from O +the O +optical B-CHAR +spectra E-CHAR +, O +while O +the O +structural B-CONPRI +defects E-CONPRI +and O +residual B-PRO +stress E-PRO +distributions S-CONPRI +can O +be S-MATE +extracted O +from O +the O +ultrasonic O +signals O +. O + + +The O +silicon S-MATE +( O +Si S-MATE +) O +and O +copper S-MATE +( O +Cu S-MATE +) O +compositions O +obtained O +from O +optical S-CHAR +spectral O +analyses O +are O +consistent O +with O +those O +obtained O +from O +the O +electron-probe O +microanalyses O +( O +EPMA S-CHAR +) O +. O + + +The O +1 O +mm S-MANP +blowhole S-CONPRI +and O +the O +residual B-PRO +stress E-PRO +distribution S-CONPRI +of O +the O +sample S-CONPRI +were O +detected O +by O +the O +ultrasonic O +signals O +in O +the O +LOUD O +detection O +, O +which O +shows O +consistency S-CONPRI +with O +the O +conventional O +ultrasonic O +testing S-CHAR +( O +UT S-PRO +) O +. O + + +Both O +results O +indicate O +that O +the O +LOUD O +detection O +holds O +the O +promising O +of O +becoming O +an O +effective O +testing S-CHAR +method O +for O +AM B-MANP +processes E-MANP +to O +ensure O +quality B-CONPRI +control E-CONPRI +and O +process S-CONPRI +feedback S-PARA +. O + + +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +has O +already O +proven O +to O +be S-MATE +successful O +for O +the O +production S-MANP +of O +large O +metal S-MATE +parts O +. O + + +However O +, O +there O +are O +still O +no O +specific O +standards S-CONPRI +available O +to O +label O +the O +quality S-CONPRI +requirements O +of O +the O +parts O +produced O +by O +WAAM S-MANP +and O +this O +is O +preventing O +a O +more O +widespread O +adoption O +of O +the O +technique.A O +crucial O +step S-CONPRI +towards O +the O +quality S-CONPRI +assurance O +of O +WAAM S-MANP +parts O +will O +be S-MATE +the O +development O +of O +Non-Destructive B-CHAR +Testing E-CHAR +( O +NDT S-CONPRI +) O +systems O +capable O +of O +identifying O +defects S-CONPRI +while O +parts O +are O +being O +produced O +. O + + +In O +this O +regard O +, O +Eddy B-CHAR +Current I-CHAR +Testing E-CHAR +( O +ECT O +) O +can O +play O +a O +significant O +role O +, O +by O +allowing O +the O +inspection S-CHAR +of O +both O +ferromagnetic O +and O +non-ferromagnetic O +materials S-CONPRI +, O +with O +high O +speeds O +and O +without O +contact S-APPL +with O +the O +material S-MATE +surface O +. O + + +The O +limitation O +here O +is O +that O +commercial O +ECT O +targets O +only O +the O +inspection S-CHAR +of O +surface S-CONPRI +and O +subsurface O +defects.This O +study O +is O +focused O +on O +the O +development O +of O +a O +NDT S-CONPRI +system O +which O +includes O +customized O +ECT O +probes S-MACEQ +for O +the O +inline O +layer-by-layer S-CONPRI +detection O +of O +defects S-CONPRI +in O +aluminium S-MATE +WAAM O +samples S-CONPRI +. O + + +Results O +revealed O +that O +the O +developed O +EC O +probes S-MACEQ +were O +able O +to O +locate O +artificial O +defects S-CONPRI +: O +at O +depths O +up O +to O +5 O +mm S-MANP +; O +with O +a O +thickness O +as S-MATE +small O +as S-MATE +350 O +μm O +; O +with O +the O +probe S-MACEQ +up O +to O +5 O +mm S-MANP +away O +from O +the O +inspected O +sample S-CONPRI +surface.The O +developed O +ECT O +probes S-MACEQ +proved O +to O +surpass O +the O +limitation O +of O +commercial O +ones O +. O + + +Also O +, O +these O +probes S-MACEQ +were O +able O +to O +overcome O +the O +limitations O +caused O +by O +the O +surface B-PRO +roughness E-PRO +of O +the O +samples S-CONPRI +and O +the O +high O +temperatures S-PARA +involved O +in O +the O +deposition B-MANP +process E-MANP +. O + + +These O +preliminary O +results O +represent O +an O +important O +step S-CONPRI +for O +the O +development O +of O +NDT S-CONPRI +systems O +for O +WAAM S-MANP +. O + + +By O +using O +filaments S-MATE +comprising O +metal S-MATE +or O +ceramic B-MATE +powders E-MATE +and O +polymer B-MATE +binders E-MATE +, O +solid O +metal S-MATE +and O +ceramic S-MATE +parts O +can O +be S-MATE +created O +by O +combining O +low-cost O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +with O +debinding S-CONPRI +and O +sintering S-MANP +. O + + +In O +this O +work O +, O +we O +explored O +a O +fabrication S-MANP +route O +using O +a O +FFF S-MANP +filament O +filled O +with O +316 O +L O +steel B-MATE +powder E-MATE +at O +55 O +vol.- O +% O +. O + + +We O +investigated O +the O +printing O +, O +debinding S-CONPRI +and O +sintering S-MANP +parameters S-CONPRI +and O +optimized O +them O +with O +respect O +to O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +final O +part O +. O + + +Special O +focus O +was O +placed O +on O +debinding S-CONPRI +and O +sintering S-MANP +in O +order O +to O +obtain O +components S-MACEQ +of O +low O +residual S-CONPRI +porosity S-PRO +. O + + +Solvent O +debinding S-CONPRI +of O +the O +printed O +green B-CONPRI +bodies E-CONPRI +created O +an O +internal O +network O +of O +interconnected O +pores S-PRO +and O +was O +followed O +by O +thermal B-CHAR +debinding E-CHAR +. O + + +Thermal B-CHAR +debinding E-CHAR +allowed O +for O +complete O +removal O +of O +the O +remaining O +binder S-MATE +and O +produced O +mechanically O +stable O +brown B-CHAR +parts E-CHAR +. O + + +Sintering S-MANP +at O +1360 O +°C O +provided O +densification S-MANP +of O +the O +parts O +and O +generated O +nearly O +isotropic S-PRO +linear O +shrinkage S-CONPRI +of O +about O +20 O +% O +. O + + +Using O +optimized O +parameters S-CONPRI +, O +it O +was O +possible O +to O +fabricate S-MANP +316 O +L O +steel S-MATE +components S-MACEQ +with O +a O +density S-PRO +greater O +than O +95 O +% O +via O +the O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +, O +debinding S-CONPRI +and O +sintering S-MANP +route O +, O +with O +achievable O +deflections O +in O +a O +3-point O +bending B-CHAR +test E-CHAR +similar O +to O +rolled O +sheet B-MATE +material E-MATE +, O +albeit O +at O +lower O +strength S-PRO +. O + + +Fabricating S-MANP +a O +magnesium B-MATE +alloy E-MATE +using O +wire-and-arc-based O +additive B-MANP +manufacturing E-MANP +was O +successfully O +conducted O +. O + + +Suitable O +processing O +conditions O +for O +realizing O +a O +solid O +structure S-CONPRI +with O +few O +weld S-FEAT +defects S-CONPRI +were O +clarified O +. O + + +Fabricated S-CONPRI +object O +has O +sufficient O +tensile B-PRO +strength E-PRO +compared O +with O +the O +bulk O +material S-MATE +. O + + +Microstructure S-CONPRI +at O +the O +boundary S-FEAT +between O +the O +substrate S-MATE +and O +the O +fabricated S-CONPRI +object O +is O +finer O +than O +that O +on O +the O +top O +layer S-PARA +. O + + +Material B-CONPRI +properties E-CONPRI +, O +such O +as S-MATE +porosity O +, O +tensile B-PRO +strength E-PRO +, O +and O +microstructure S-CONPRI +, O +of O +magnesium-alloy O +components S-MACEQ +fabricated O +using O +wire-and-arc-based O +additive-manufacturing O +techniques O +, O +which O +essentially O +represent O +a O +form O +of O +arc-welding O +technology S-CONPRI +have O +been O +examined O +. O + + +In O +the O +proposed O +method O +, O +the O +wire O +material S-MATE +is O +melted S-CONPRI +by O +arc S-CONPRI +discharge O +, O +and O +the O +molten B-MATE +metal E-MATE +is O +subsequently O +solidified O +and O +accumulated O +. O + + +Magnesium S-MATE +wire O +developed O +in O +this O +study O +facilitated O +fabrication S-MANP +of O +magnesium-alloy O +components S-MACEQ +using O +the O +said O +additive-manufacturing O +process S-CONPRI +. O + + +Subsequently O +, O +combinations O +of O +fabrication S-MANP +conditions O +, O +such O +as S-MATE +the O +welding S-MANP +current O +, O +torch O +feed S-PARA +speed O +, O +and O +cross O +feed S-PARA +of O +the O +torch O +, O +were O +explored O +, O +and O +suitable O +conditions O +for O +realizing O +a O +solid O +structure S-CONPRI +with O +fewer O +weld S-FEAT +defects S-CONPRI +compared O +to O +those O +observed O +when O +using O +die-casting O +and O +other O +manufacturing S-MANP +methods O +, O +were O +determined O +. O + + +Tensile B-CHAR +tests E-CHAR +and O +microstructure S-CONPRI +observations O +were O +also O +performed O +to O +elucidate O +mechanical B-CONPRI +properties E-CONPRI +of O +magnesium B-MATE +alloy E-MATE +components S-MACEQ +fabricated O +via O +the O +said O +wire-and-arc-based O +technique O +. O + + +It O +was O +demonstrated O +that O +the O +fabricated S-CONPRI +object O +possesses O +sufficient O +tensile B-PRO +strength E-PRO +compared O +to O +the O +observed O +standard S-CONPRI +value O +of O +the O +bulk O +material S-MATE +. O + + +Furthermore O +, O +results O +from O +microstructure S-CONPRI +observations O +demonstrated O +that O +the O +higher O +the O +torch O +feed S-PARA +speed O +, O +the O +finer O +is O +the O +microstructure S-CONPRI +. O + + +Moreover O +, O +the O +observed O +microstructure S-CONPRI +at O +the O +boundary S-FEAT +between O +the O +substrate S-MATE +and O +fabricated S-CONPRI +object O +was O +finer O +compared O +to O +that O +at O +the O +top O +layer S-PARA +. O + + +WAAM S-MANP +( O +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +) O +is O +a O +metal B-MANP +AM E-MANP +( O +Additive B-MANP +Manufacturing E-MANP +) O +technology S-CONPRI +that O +allows O +high B-PARA +deposition I-PARA +rates E-PARA +and O +the O +manufacturability S-CONPRI +of O +very O +large O +components S-MACEQ +, O +compared O +to O +other O +AM B-MANP +technologies E-MANP +. O + + +Distortions O +and O +residual B-PRO +stresses E-PRO +affecting O +the O +manufactured S-CONPRI +parts O +represent O +the O +main O +drawbacks O +of O +this O +AM B-MANP +technique E-MANP +. O + + +FE S-MATE +( O +Finite B-CONPRI +Element E-CONPRI +) O +modeling S-ENAT +could O +represent O +an O +effective O +tool S-MACEQ +to O +tackle O +such O +issues O +, O +since O +it O +can O +be S-MATE +used O +to O +optimize O +process B-CONPRI +parameters E-CONPRI +, O +deposition B-PARA +paths E-PARA +and O +to O +test O +alternative O +mitigation O +strategies O +. O + + +Nevertheless O +, O +specific O +modeling S-ENAT +strategies O +are O +needed O +to O +reduce O +the O +computational O +cost O +of O +the O +process B-ENAT +simulation E-ENAT +, O +such O +as S-MATE +reducing O +the O +number O +of O +elements S-MATE +used O +in O +discretizing O +the O +model S-CONPRI +. O + + +The O +proposed O +technique O +is O +based O +on O +dividing O +the O +substrate S-MATE +in O +several O +zones O +, O +separately O +discretized O +and O +then O +connected O +by O +means O +of O +a O +double O +sided O +contact S-APPL +algorithm S-CONPRI +. O + + +This O +strategy O +allows O +to O +achieve O +a O +significant O +reduction S-CONPRI +of O +the O +number O +of O +elements S-MATE +required O +, O +without O +affecting O +their O +quality B-CONPRI +parameters E-CONPRI +. O + + +The O +geometry S-CONPRI +and O +dimension S-FEAT +of O +the O +mesh O +zones O +are O +identified O +through O +a O +dedicated O +algorithm S-CONPRI +that O +allows O +to O +achieve O +an O +accurate S-CHAR +temperature O +prediction S-CONPRI +with O +the O +minimum O +element S-MATE +number O +. O + + +The O +effectiveness S-CONPRI +of O +the O +proposed O +technique O +was O +tested O +by O +means O +of O +both O +numerical O +and O +experimental S-CONPRI +validation O +tests O +. O + + +AlCoFeNiSmTiV O +based O +new O +high O +entropy O +alloys S-MATE +were O +designed S-FEAT +and O +fabricated S-CONPRI +using O +additive B-MANP +manufacturing E-MANP +technique O +. O + + +Elevated O +temperature S-PARA +corrosion S-CONPRI +performance O +of O +these O +alloys S-MATE +were O +studied O +. O + + +Phase S-CONPRI +analysis O +results O +indicated O +the O +presence O +of O +a O +single O +FCC S-CONPRI +phase O +in O +these O +HEAs O +after O +enduring O +corrosive S-PRO +atmospheres O +. O + + +High O +entropy O +alloys S-MATE +have O +attracted O +great O +interest O +due O +to O +their O +great O +stability S-PRO +and O +exceptional O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Due O +to O +growing O +demand O +of O +novel O +engineering B-MATE +materials E-MATE +, O +which O +can O +endure O +harsh O +corrosive S-PRO +atmospheres O +, O +HEAs O +have O +been O +studied O +extensively O +to O +meet O +the O +demands O +of O +challenging O +industrial S-APPL +environments O +. O + + +Current O +manufacturing S-MANP +techniques O +of O +HEAs O +include O +arc-melting O +or O +spark B-MANP +plasma I-MANP +sintering E-MANP +, O +which O +are O +limited O +by O +factors O +such O +as S-MATE +high O +energy O +, O +grain B-CHAR +refinement E-CHAR +, O +alloying S-FEAT +, O +and O +size O +limitations O +. O + + +In O +this O +study O +we O +report O +elevated O +temperature S-PARA +corrosion B-PRO +behavior E-PRO +of O +two O +new O +HEAs O +AlCoFeNiTiV0.9Sm0.1 O +and O +AlCoFeNiV0.9Sm0.1 O +, O +produced O +by O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +, O +which O +offers O +high O +freedom O +of O +design S-FEAT +, O +fast O +prototyping S-CONPRI +, O +and O +rapid O +quenching S-MANP +rates O +that O +are O +ideal O +for O +many O +industrial S-APPL +applications O +. O + + +These O +alloys S-MATE +were O +tested O +in O +corrosive S-PRO +syngas O +atmosphere O +at O +elevated O +temperatures S-PARA +to O +explore O +their O +applicability O +in O +such O +harsh O +environments O +. O + + +Phase S-CONPRI +analysis O +results O +indicated O +the O +presence O +of O +a O +single O +FCC S-CONPRI +phase O +in O +these O +HEAs O +with O +no O +major O +surface S-CONPRI +cracks O +after O +enduring O +such O +corrosive S-PRO +atmospheres O +. O + + +These O +alloys S-MATE +exhibited O +good O +corrosion B-CONPRI +resistance E-CONPRI +as S-MATE +revealed O +by O +electrochemical S-CONPRI +testing O +methods O +. O + + +CALPHAD O +and O +DFT S-CHAR +simulations O +were O +also O +performed O +to O +reveal O +the O +phase S-CONPRI +stability O +and O +crystal B-PRO +structures E-PRO +to O +further O +corroborate O +our O +experimental S-CONPRI +results O +. O + + +Wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +an O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +that O +uses O +wire-form O +materials S-CONPRI +and O +arc S-CONPRI +discharges O +as S-MATE +the O +energy O +source S-APPL +. O + + +AM B-MANP +techniques E-MANP +can O +fabricate S-MANP +complicated O +shapes O +that O +can O +not O +be S-MATE +obtained O +via O +conventional O +processing O +. O + + +Building O +lattice B-FEAT +structures E-FEAT +inside O +components S-MACEQ +enables O +weight S-PARA +reduction S-CONPRI +while O +maintaining O +high O +strength S-PRO +. O + + +Strut S-MACEQ +shapes O +must O +be S-MATE +constructed O +to O +form O +these O +lattice B-FEAT +structures E-FEAT +using O +WAAM S-MANP +. O + + +For O +fabricating S-MANP +strut O +shapes O +with O +high O +accuracy S-CHAR +, O +the O +process B-CONPRI +parameters E-CONPRI +should O +be S-MATE +optimized O +. O + + +However O +, O +the O +relationship O +between O +layer S-PARA +geometry S-CONPRI +and O +process B-CONPRI +parameters E-CONPRI +is O +not O +clear O +. O + + +Therefore O +, O +in O +this O +study O +, O +struts S-MACEQ +were O +fabricated S-CONPRI +under O +various O +process S-CONPRI +conditions O +to O +investigate O +the O +influences O +of O +process B-CONPRI +parameters E-CONPRI +on O +the O +built O +object O +geometry S-CONPRI +. O + + +The O +results O +showed O +that O +fabrication S-MANP +of O +strut S-MACEQ +shapes O +depends O +on O +the O +heat S-CONPRI +input O +condition O +. O + + +Moreover O +, O +it O +was O +found O +that O +the O +arc S-CONPRI +discharge O +time O +had O +the O +highest O +influence O +on O +the O +layer B-PARA +height E-PARA +and O +diameter S-CONPRI +. O + + +The O +inclination B-FEAT +angle E-FEAT +of O +an O +overhanging O +shape O +had O +little O +influence O +on O +the O +dimensional B-CHAR +accuracy E-CHAR +of O +the O +built O +object O +. O + + +In O +addition O +, O +computer-aided B-ENAT +manufacturing E-ENAT +( O +CAM S-ENAT +) O +system O +was O +developed O +for O +the O +fabrication S-MANP +of O +lattice B-FEAT +structures E-FEAT +, O +and O +the O +lattice B-FEAT +structures E-FEAT +were O +successfully O +built O +using O +WAAM S-MANP +. O + + +The O +build S-PARA +accuracy S-CHAR +was O +measured O +using O +an O +x-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +scanner O +; O +the O +deviation O +in O +the O +structures O +designed S-FEAT +using O +the O +CAM S-ENAT +system O +and O +the O +actual O +fabricated S-CONPRI +structures O +measured O +using O +the O +CT S-ENAT +scanner O +was O +lower O +than O +approximately O +±2.3 O +mm S-MANP +. O + + +The O +integration O +of O +coaxial O +connectors O +into O +the O +filter S-APPL +and O +waveguide O +designs S-FEAT +via O +3D B-MANP +printing E-MANP +eliminates O +the O +need O +for O +two O +additional O +bulky O +external O +SMA-to-waveguide O +transitions O +, O +and O +allows O +for O +customizable O +integrated O +SMA-to-waveguide O +transitions O +that O +minimize O +impedance O +mismatch O +. O + + +Four O +designs S-FEAT +, O +including O +air-filled O +and O +polycarbonate S-MATE +( O +PC S-MATE +) O +dielectric-filled O +waveguides O +and O +two-pole O +filters S-APPL +, O +are O +modeled O +and O +manufactured S-CONPRI +using O +additive B-MANP +manufacturing E-MANP +to O +demonstrate O +this O +integrative O +approach O +. O + + +PC S-MATE +dielectric S-MACEQ +posts O +are O +also O +incorporated O +into O +the O +device O +to O +provide O +additional O +reinforcement S-PARA +to O +the O +coaxial O +connectors O +without O +impacting O +the O +radio B-CONPRI +frequency E-CONPRI +( O +RF O +) O +performance S-CONPRI +. O + + +This O +paper O +discusses O +the O +topology B-FEAT +optimization E-FEAT +and O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +specific O +re-design O +of O +a O +metallic S-MATE +C-frame O +as S-MATE +it O +is O +used O +in O +the O +riveting O +process S-CONPRI +in O +the O +automotive B-APPL +industry E-APPL +. O + + +The O +main O +objective O +of O +the O +optimization S-CONPRI +and O +re-design O +process S-CONPRI +is O +the O +reduction S-CONPRI +of O +the O +structural O +weight S-PARA +where O +special O +attention O +needs O +to O +be S-MATE +paid O +to O +the O +specific O +manufacturing B-MANP +process E-MANP +of O +powder B-MANP +bed I-MANP +fusion E-MANP +which O +is O +a O +powder S-MATE +based O +layerwise O +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +The O +initial O +optimization S-CONPRI +and O +AM S-MANP +specific O +re-design O +are O +performed O +under O +consideration O +of O +a O +number O +of O +free O +parameters S-CONPRI +that O +drive O +the O +performance S-CONPRI +and O +weight S-PARA +of O +the O +C-frame O +, O +and O +several O +generated O +solutions O +are O +compared O +under O +special O +consideration O +of O +the O +weight S-PARA +, O +the O +mechanical S-APPL +performance O +and O +the O +general O +manufacturability S-CONPRI +using O +powder B-MANP +bed I-MANP +fusion E-MANP +. O + + +The O +selected O +optimized O +solution S-CONPRI +then O +undergoes O +a O +final O +detailed O +re-design O +which O +focusses O +on O +given O +manufacturing S-MANP +restrictions O +. O + + +The O +mechanical S-APPL +performance O +of O +the O +optimized O +C-frame O +is O +assessed O +employing O +detailed O +finite B-CONPRI +element E-CONPRI +simulations O +by O +evaluating O +the O +stress S-PRO +and O +deformation S-CONPRI +state O +. O + + +The O +general O +manufacturability S-CONPRI +of O +the O +optimized O +part O +by O +powder B-MANP +bed I-MANP +fusion E-MANP +is O +demonstrated O +by O +the O +manufacturing S-MANP +of O +a O +scaled O +prototype S-CONPRI +. O + + +In O +order O +to O +enable O +a O +comparison O +of O +the O +new O +AM S-MANP +solution O +with O +a O +classical O +manufacturing B-MANP +process E-MANP +, O +an O +optimized O +C-frame O +geared O +towards O +classical O +milling S-MANP +is O +established O +as S-MATE +well O +. O + + +Both O +solutions O +are O +compared O +concerning O +weight S-PARA +, O +mechanical S-APPL +performance O +, O +manufacturability S-CONPRI +and O +economic O +aspects O +, O +and O +it O +can O +be S-MATE +shown O +that O +the O +AM S-MANP +solution O +offers O +a O +number O +of O +advantages O +that O +can O +not O +be S-MATE +exploited O +when O +employing O +classical O +means O +of O +manufacturing S-MANP +. O + + +This O +paper O +may O +serve O +as S-MATE +an O +introduction O +to O +the O +rather O +complex O +field O +of O +AM S-MANP +design O +of O +load O +bearing O +structures O +and O +is O +an O +illustrated O +case B-CONPRI +study E-CONPRI +thereof O +which O +can O +be S-MATE +of O +use O +for O +engineers O +working O +in O +this O +specific O +field O +that O +is O +still O +the O +topic O +of O +global O +academic O +and O +industrial S-APPL +research O +. O + + +Multifunctional O +lattice S-CONPRI +materials O +exhibit O +functionalities O +beyond O +conventional O +load-bearing S-FEAT +usage O +and O +are O +usually O +fabricated S-CONPRI +by O +additive B-MANP +manufacturing E-MANP +. O + + +This O +work O +introduces O +a O +new O +class O +of O +functional O +lattice S-CONPRI +materials O +called O +liquid B-MATE +metal E-MATE +lattice S-CONPRI +materials O +. O + + +These O +lattice S-CONPRI +materials O +consist O +of O +liquid B-MATE +metals E-MATE +and O +elastomers S-MATE +organized O +in O +a O +core-shell O +manner O +. O + + +This O +hybrid O +design S-FEAT +induces O +a O +shape B-PRO +memory I-PRO +effect E-PRO +by O +harnessing O +the O +solid-liquid O +phase S-CONPRI +transition O +of O +liquid B-MATE +metals E-MATE +. O + + +Consequently O +, O +several O +remarkable O +functionalities O +are O +achieved O +such O +as S-MATE +recoverable O +energy B-CHAR +absorption E-CHAR +, O +tunable O +rigidity O +, O +and O +reconfigurable O +behaviors O +. O + + +These O +liquid B-MATE +metal E-MATE +lattice S-CONPRI +materials O +are O +fabricated S-CONPRI +by O +using O +a O +hybrid B-CONPRI +manufacturing E-CONPRI +approach O +, O +which O +integrates O +the O +3D B-MANP +printing E-MANP +, O +vacuum B-MANP +casting E-MANP +, O +and O +conformal O +coating S-APPL +techniques O +. O + + +A O +variety O +of O +lattice B-FEAT +structures E-FEAT +are O +presented O +to O +demonstrate O +the O +capability O +of O +this O +hybrid B-CONPRI +manufacturing E-CONPRI +method O +and O +the O +functionalities O +of O +liquid B-MATE +metal E-MATE +lattice S-CONPRI +materials O +. O + + +This O +new O +class O +of O +lattice S-CONPRI +materials O +have O +promising O +applications O +in O +aerospace S-APPL +, O +robotics S-APPL +, O +tunable O +metamaterials S-MATE +, O +etc O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +tungsten S-MATE +carbide-cobalt O +( O +WC-Co O +) O +is O +explored O +starting O +with O +WC S-MATE +preforms O +shaped O +with O +binder S-MATE +jet O +additive B-MANP +manufacturing E-MANP +( O +BJAM O +) O +followed O +by O +melt B-CONPRI +infiltration E-CONPRI +of O +Co S-MATE +. O + + +The O +research S-CONPRI +objective O +is O +to O +demonstrate O +the O +ability O +to O +net-shape O +WC-Co O +composites S-MATE +through O +BJAM O +of O +a O +WC S-MATE +preform O +followed O +by O +backfilling O +with O +cobalt S-MATE +via O +pressureless O +infiltration S-CONPRI +. O + + +This O +method O +also O +has O +the O +potential O +to O +minimize O +shrinkage S-CONPRI +and O +grain B-CONPRI +growth E-CONPRI +compared O +to O +other O +AM B-MANP +techniques E-MANP +. O + + +The O +effects O +of O +sintering S-MANP +, O +Co S-MATE +content O +, O +and O +infiltration S-CONPRI +time O +on O +the O +net O +shaping S-MANP +and O +properties S-CONPRI +of O +processed S-CONPRI +composites S-MATE +are O +shown O +. O + + +The O +best O +shaped O +material S-MATE +had O +an O +average S-CONPRI +grain O +size O +of O +5.1 O +μm O +, O +32 O +vol. O +% O +Co S-MATE +, O +density S-PRO +of O +98.54 O +% O +theoretical S-CONPRI +, O +fracture S-CONPRI +toughness O +of O +23.2 O +MPa S-CONPRI +m1/2 O +, O +and O +hardness S-PRO +of O +9.0 O +GPa S-PRO +. O + + +Data S-CONPRI +presented O +illustrates O +that O +the O +proposed O +approach O +results O +in O +favorable O +ceramic-metal S-MATE +( O +cermet S-MATE +) O +properties S-CONPRI +and O +is O +viable O +for O +fabricating S-MANP +cermets S-MATE +of O +other O +material S-MATE +combinations O +. O + + +Successful O +AM S-MANP +of O +cermets S-MATE +provides O +complex B-CONPRI +geometries E-CONPRI +, O +high O +throughout O +, O +and O +low O +costs O +. O + + +Online O +nondestructive B-CHAR +testing E-CHAR +for O +quality B-CONPRI +control E-CONPRI +is O +a O +critical O +direction O +for O +research S-CONPRI +in O +additive B-MANP +manufacturing E-MANP +in O +the O +future O +. O + + +In O +this O +study O +, O +for O +the O +first O +time O +, O +optical S-CHAR +emission S-CHAR +spectroscopy O +was O +employed O +to O +probe S-MACEQ +the O +arc S-CONPRI +characteristics O +in O +the O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +of O +an O +Al B-MATE +alloy E-MATE +and O +to O +detect O +its O +structural O +features O +. O + + +The O +arc S-CONPRI +characteristics O +, O +such O +as S-MATE +spectral O +intensity O +, O +electron O +density S-PRO +, O +and O +electron O +temperature S-PARA +, O +were O +calculated O +based O +on O +the O +atomic O +emission S-CHAR +spectral O +lines O +. O + + +The O +resulting O +structural O +features O +of O +the O +deposited B-CHAR +layers E-CHAR +, O +namely O +the O +forming S-MANP +width O +, O +composition S-CONPRI +, O +grain B-PRO +size E-PRO +, O +and O +porosity S-PRO +defects S-CONPRI +, O +were O +analyzed O +, O +and O +a O +correlation O +between O +the O +arc S-CONPRI +characteristics O +and O +the O +structural O +features O +was O +proposed O +. O + + +The O +arc S-CONPRI +cathode O +size O +, O +which O +changed O +with O +the O +number O +of O +deposited B-CHAR +layers E-CHAR +, O +controlled O +the O +arc S-CONPRI +energy O +distribution S-CONPRI +. O + + +Hence O +, O +the O +forming S-MANP +width O +had O +an O +approximately O +linear O +relation O +with O +the O +spectral O +intensity O +of O +Mg S-MATE +( O +a O +constituent O +of O +the O +alloy S-MATE +used O +for O +the O +wire O +feed S-PARA +) O +and O +the O +electron O +density S-PRO +. O + + +The O +porosity S-PRO +in O +the O +alloy S-MATE +was O +observed O +to O +be S-MATE +caused O +by O +H O +, O +which O +was O +a O +dominant O +pollutant O +in O +the O +process S-CONPRI +. O + + +Furthermore O +, O +the O +correlation O +between O +the O +porosity S-PRO +and O +H O +spectral O +intensity O +was O +observed O +to O +be S-MATE +approximately O +linear O +. O + + +However O +, O +no O +significant O +correlation O +between O +the O +grain B-PRO +size E-PRO +and O +the O +spectrum O +was O +noticeable O +. O + + +The O +results O +from O +this O +study O +establish O +the O +applicability O +of O +spectral O +diagnosis O +of O +the O +forming S-MANP +size O +and O +the O +porosity S-PRO +in O +WAAM S-MANP +. O + + +Specification S-PARA +and O +analysis O +of O +the O +system O +structure S-CONPRI +and O +components S-MACEQ +of O +a O +desktop O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +system O +. O + + +Physical O +modeling S-ENAT +of O +the O +energy O +consumption O +behavior O +of O +the O +desktop O +AM S-MANP +system O +using O +function-oriented O +bond O +graph O +. O + + +Development O +of O +an O +energy O +simulation S-ENAT +tool O +for O +the O +desktop O +AM S-MANP +system O +using O +MATLAB®/Simulink® O +platform S-MACEQ +. O + + +Experimental S-CONPRI +validation O +of O +the O +simulation B-CHAR +accuracy E-CHAR +of O +the O +developed O +simulation S-ENAT +approach O +. O + + +The O +assessment O +and O +minimization O +of O +energy O +consumptions O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +are O +currently O +emerging O +research S-CONPRI +tasks O +. O + + +It O +is O +evident O +that O +the O +energy O +consumption O +of O +an O +AM B-MANP +process E-MANP +can O +be S-MATE +one O +or O +two O +orders O +of O +magnitude S-PARA +higher O +than O +conventional B-MANP +manufacturing E-MANP +processes O +. O + + +For O +improving O +the O +sustainability B-CONPRI +performance E-CONPRI +of O +AM S-MANP +, O +the O +energy O +use O +of O +AM S-MANP +should O +be S-MATE +evaluated O +and O +optimized O +in O +the O +design S-FEAT +phase O +for O +planning S-MANP +products O +and O +AM B-MANP +processes E-MANP +. O + + +In O +order O +to O +support S-APPL +the O +quantification O +and O +evaluation O +of O +the O +energy O +consumption O +of O +AM S-MANP +, O +we O +have O +developed O +an O +energy O +simulation S-ENAT +of O +a O +desktop O +AM S-MANP +system O +by O +using O +a O +physical O +modeling S-ENAT +approach O +. O + + +Moreover O +, O +experiments O +have O +been O +carried O +out O +to O +validate O +and O +confirm O +the O +simulation B-CHAR +accuracy E-CHAR +and O +reliability S-CHAR +. O + + +The O +result O +of O +the O +experimental S-CONPRI +validation O +has O +shown O +that O +the O +accuracy S-CHAR +of O +the O +developed O +simulation S-ENAT +approach O +can O +be S-MATE +up O +to O +approximately O +98 O +% O +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +is O +moving O +from O +rapid B-ENAT +prototyping E-ENAT +to O +on-demand O +manufacturing S-MANP +and O +even O +to O +serial O +production S-MANP +. O + + +Consistent O +part O +quality S-CONPRI +and O +development O +of O +a O +wider O +range S-PARA +of O +available O +materials S-CONPRI +are O +key O +for O +wider O +adoption O +. O + + +This O +requires O +control O +and O +optimization S-CONPRI +of O +various O +laser S-ENAT +and O +scanning B-CONPRI +parameters E-CONPRI +. O + + +Therefore O +, O +process B-CONPRI +modeling E-CONPRI +has O +been O +extensively O +pursued O +to O +reduce O +experimental S-CONPRI +runs O +in O +the O +search O +for O +parameters S-CONPRI +that O +produce O +dense O +, O +high-quality O +parts O +for O +the O +given O +alloy S-MATE +. O + + +However O +, O +these O +optimal O +parameters S-CONPRI +remain O +machine-specific O +if O +conditions O +defined O +by O +the O +machine S-MACEQ +architecture S-APPL +are O +not O +considered O +. O + + +Previous O +studies O +have O +shown O +that O +shielding O +gas S-CONPRI +flow O +is O +one O +such O +parameter S-CONPRI +that O +affects O +porosity S-PRO +and O +mechanical B-CONPRI +properties E-CONPRI +of O +parts O +produced O +with O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +. O + + +In O +this O +study O +, O +the O +effect O +of O +shielding O +gas S-CONPRI +flow O +velocity O +on O +porosity S-PRO +and O +melt B-MATE +pool E-MATE +geometry S-CONPRI +in O +laser B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +is O +studied O +. O + + +As S-MATE +the O +vapor O +plume O +, O +and O +how O +effectively O +it O +is O +removed O +by O +the O +shielding O +gas S-CONPRI +flow O +, O +have O +a O +significant O +effect O +on O +the O +melt B-MATE +pool E-MATE +geometry S-CONPRI +in O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +, O +models O +aiming O +at O +predicting O +the O +melt B-MATE +pool E-MATE +geometry S-CONPRI +and O +attempts O +to O +transfer O +process B-CONPRI +parameters E-CONPRI +from O +one O +machine S-MACEQ +to O +another O +should O +consider O +the O +effect O +of O +the O +shielding O +gas S-CONPRI +flow O +. O + + +Nickel B-MATE +Aluminum I-MATE +Bronze E-MATE +square O +bars O +were O +printed O +via O +wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Formation O +of O +various O +κ-phases O +were O +discussed O +and O +compared O +with O +cast S-MANP +alloy S-MATE +. O + + +Additive B-MANP +Manufactured E-MANP +( O +AM S-MANP +) O +alloy S-MATE +has O +fine O +solidification S-CONPRI +structure O +. O + + +AM-NAB O +exhibited O +superior O +tensile B-PRO +properties E-PRO +than O +the O +cast-NAB O +. O + + +As S-MATE +a O +step S-CONPRI +forward O +toward O +the O +development O +of O +the O +next O +generation O +of O +nickel B-MATE +aluminum I-MATE +bronze E-MATE +( O +NAB S-MATE +) O +components S-MACEQ +using O +wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +, O +square O +bars O +were O +printed O +in O +the O +vertical S-CONPRI +direction O +. O + + +The O +as-built O +microstructure S-CONPRI +was O +characterized O +using O +multi-scale O +electron B-CHAR +microscopy E-CHAR +techniques O +, O +where O +the O +differences O +in O +phase S-CONPRI +formation O +were O +compared O +to O +the O +reference O +cast-NAB O +based O +on O +the O +solidification S-CONPRI +characteristics O +. O + + +The O +as-cast O +microstructure S-CONPRI +typically O +consists O +of O +Cu-rich O +α-matrix O +, O +and O +four O +types O +of O +intermetallic S-MATE +particles O +referred O +to O +as S-MATE +κ-phases O +. O + + +In O +the O +WAAM-NAB O +, O +the O +formation O +of O +κI O +was O +suppressed O +due O +to O +high O +cooling B-PARA +rates E-PARA +. O + + +The O +microstructure S-CONPRI +was O +finer O +and O +the O +volume B-PARA +fraction E-PARA +of O +intermetallic S-MATE +particles O +was O +significantly O +lower O +than O +that O +of O +the O +cast-NAB O +. O + + +Based O +on O +energy B-CHAR +dispersive I-CHAR +spectroscopy E-CHAR +( O +EDS S-CHAR +) O +technique O +and O +diffraction B-CHAR +pattern E-CHAR +analysis O +using O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +TEM S-CHAR +) O +, O +the O +phases O +formed O +in O +the O +interdendritic O +regions O +were O +identified O +as S-MATE +κII O +( O +globular O +Fe3Al O +) O +and O +κIII O +( O +lamellar S-CONPRI +NiAl O +) O +, O +whereas O +numerous O +fine O +( O +5–10 O +nm O +) O +Fe-rich O +κIV O +particles S-CONPRI +were O +precipitated O +uniformly O +within O +the O +α-matrix O +. O + + +Electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +analysis O +revealed O +weak O +texture S-FEAT +on O +both O +parallel O +and O +perpendicular O +planes O +to O +the O +building B-PARA +direction E-PARA +with O +( O +100 O +) O +poles O +rotated O +away O +from O +the O +build B-PARA +direction E-PARA +. O + + +The O +WAAM-NAB O +sample S-CONPRI +exhibited O +considerably O +higher O +yield B-PRO +strength E-PRO +( O +˜88 O +MPa S-CONPRI +) O +and O +elongation S-PRO +( O +˜10 O +% O +) O +than O +the O +cast-NAB O +, O +but O +the O +gain S-PARA +in O +the O +ultimate B-PRO +tensile I-PRO +strength E-PRO +was O +marginal O +. O + + +Processing O +of O +Inconel B-MATE +718 E-MATE +and O +copper B-MATE +alloy E-MATE +GRCop-84 O +as S-MATE +a O +bimetallic O +structure S-CONPRI +using O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS S-MANP +) O +. O + + +A O +compositionally O +gradient O +layer S-PARA +with O +high O +laser B-CONPRI +energy E-CONPRI +input O +helped O +to O +process S-CONPRI +these O +bimetallic O +structures O +. O + + +The O +bimetallic O +structure S-CONPRI +resulted O +in O +high O +thermal B-CONPRI +diffusivity E-CONPRI +as S-MATE +compared O +to O +pure O +Inconel B-MATE +718 E-MATE +. O + + +Deposition S-CONPRI +of O +GRCop-84 O +Increased O +the O +thermal B-CONPRI +diffusivity E-CONPRI +of O +Inconel B-MATE +718 E-MATE +by O +∼250 O +% O +. O + + +To O +understand O +processing O +ability O +and O +measure O +resultant O +interfacial O +and O +thermal B-CONPRI +properties E-CONPRI +of O +Inconel B-MATE +718 E-MATE +and O +copper B-MATE +alloy E-MATE +GRCop-84 O +, O +bimetallic O +structures O +were O +fabricated S-CONPRI +using O +laser S-ENAT +engineering S-APPL +net O +shaping S-MANP +( O +LENS™ O +) O +, O +a O +commercially O +available O +additive B-MANP +manufacturing E-MANP +technique O +. O + + +It O +was O +hypothesized O +that O +additively O +combining O +the O +two O +aerospace S-APPL +alloys O +would O +form O +a O +unique O +bimetallic O +structure S-CONPRI +with O +improved O +thermophysical O +properties S-CONPRI +compared O +to O +the O +Inconel B-MATE +718 I-MATE +alloy E-MATE +. O + + +Two O +approaches O +were O +used O +: O +the O +direct O +deposition S-CONPRI +of O +GRCop-84 O +on O +Inconel B-MATE +718 E-MATE +and O +the O +compositional O +gradation O +of O +the O +two O +alloys S-MATE +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +energy B-CHAR +dispersive I-CHAR +spectroscopy E-CHAR +( O +EDS S-CHAR +) O +, O +X-ray B-CHAR +Diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +Vickers O +microhardness S-CONPRI +and O +flash S-MATE +thermal O +diffusivity S-CHAR +were O +used O +to O +characterize O +these O +bimetallic O +structures O +to O +validate O +our O +hypothesis O +. O + + +The O +compositional O +gradation O +approach O +showed O +a O +gradual O +transition S-CONPRI +of O +Inconel B-MATE +718 E-MATE +and O +GRCop-84 O +elements S-MATE +at O +the O +interface S-CONPRI +, O +which O +was O +also O +reflected O +in O +the O +cross-sectional O +hardness S-PRO +profile O +across O +the O +bimetallic O +interface S-CONPRI +. O + + +SEM S-CHAR +images S-CONPRI +showed O +columnar B-PRO +grain E-PRO +structures O +at O +the O +interfaces O +with O +Cr2Nb O +precipitate S-MATE +accumulation O +along O +grain B-CONPRI +boundaries E-CONPRI +and O +the O +substrate-deposit O +interface S-CONPRI +. O + + +The O +average S-CONPRI +thermal O +diffusivity S-CHAR +of O +the O +bimetallic O +structure S-CONPRI +was O +measured O +at O +11.33 O +mm2/s O +for O +the O +temperature B-PARA +range E-PARA +of O +50 O +°C–300 O +°C O +; O +a O +250 O +% O +increase O +in O +diffusivity S-CHAR +when O +compared O +to O +the O +pure O +Inconel B-MATE +718 I-MATE +alloy E-MATE +at O +3.20 O +mm2/s O +. O + + +Conductivity S-PRO +of O +the O +bimetallic O +structures O +increased O +by O +almost O +300 O +% O +compared O +to O +Inconel B-MATE +718 E-MATE +as S-MATE +well O +. O + + +Such O +structures O +with O +designed S-FEAT +compositional O +gradation O +and O +tailored O +thermal B-CONPRI +properties E-CONPRI +opens O +up O +the O +possibilities O +of O +multi-material S-CONPRI +metal B-MANP +additive I-MANP +manufacturing E-MANP +for O +next O +generation O +of O +aerospace S-APPL +structures O +. O + + +Depth-sensing O +( O +instrumented O +) O +indentation S-CONPRI +testing O +technique O +is O +a O +robust O +, O +reliable O +, O +convenient O +and O +non-destructive O +characterization O +method O +to O +study O +small-scale O +mechanical B-CONPRI +properties E-CONPRI +and O +rate-dependent O +plastic B-PRO +deformation E-PRO +in O +metals S-MATE +and O +alloys S-MATE +at O +ambient O +and O +elevated O +temperatures S-PARA +. O + + +In O +the O +present O +paper O +, O +depth-sensing O +indentation S-CONPRI +creep B-PRO +behavior E-PRO +of O +an O +additively B-MANP +manufactured E-MANP +, O +via O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +method O +, O +Ti-6Al-4V B-MATE +alloy E-MATE +is O +studied O +at O +ambient O +temperature S-PARA +. O + + +Indentation S-CONPRI +creep B-CHAR +tests E-CHAR +were O +performed O +through O +a O +dual-stage O +scheme O +( O +loading O +followed O +by O +a O +constant O +load-holding O +and O +unloading O +) O +at O +different O +peak O +loads O +of O +250 O +mN S-MATE +, O +350 O +mN S-MATE +, O +and O +450 O +mN S-MATE +with O +holding O +time O +of O +400 O +s. O +Creep S-PRO +parameters O +including O +creep S-PRO +rate O +, O +creep S-PRO +stress O +exponent O +, O +and O +indentation S-CONPRI +size O +effect O +were O +analyzed O +, O +according O +to O +the O +Oliver O +and O +Pharr O +method O +, O +at O +different O +additive B-MANP +manufacturing E-MANP +scan O +directions O +and O +scan O +sizes O +. O + + +To O +assess O +processing O +parameter/ O +microstructure/ O +creep S-PRO +property O +correlations O +in O +the O +additively B-MANP +manufacture E-MANP +Ti-6Al-4V O +alloy S-MATE +, O +microstructural S-CONPRI +quantitative O +analyses O +( O +i.e O +. O + + +optical B-CHAR +microscopy E-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +) O +were O +performed O +as S-MATE +well O +. O + + +The O +findings O +of O +this O +study O +, O +according O +to O +stress S-PRO +exponent O +values O +, O +showed O +that O +the O +controlling O +mechanism S-CONPRI +of O +the O +creep S-PRO +at O +ambient O +temperature S-PARA +for O +the O +examined O +L-PBF S-MANP +Ti-6Al-4V O +is O +mainly O +glide-controlled O +dislocation S-CONPRI +creep S-PRO +. O + + +These O +findings O +were O +compared O +against O +traditionally O +processed S-CONPRI +Ti-6Al-4V O +as S-MATE +well O +. O + + +Additively B-MANP +manufactured E-MANP +, O +short B-MATE +fiber I-MATE +reinforced I-MATE +polymer I-MATE +composites E-MATE +have O +advantages O +over O +traditional O +continuous B-MATE +fiber I-MATE +composites E-MATE +, O +which O +include O +low O +cost O +and O +design B-CONPRI +flexibility E-CONPRI +. O + + +However O +, O +these O +composites S-MATE +suffer O +from O +low O +strength S-PRO +and O +stiffness S-PRO +as S-MATE +compared O +to O +their O +continuous B-MATE +fiber E-MATE +counterparts O +due O +to O +the O +limitation O +of O +low O +fiber S-MATE +volume O +. O + + +This O +direct O +write O +additive B-MANP +manufacturing E-MANP +technique O +allowed O +us O +to O +fabricate S-MANP +short O +fiber S-MATE +reinforced O +thermoset O +composites S-MATE +in O +intricate O +geometries S-CONPRI +, O +with O +unprecedented O +high O +compression B-PRO +strength E-PRO +( O +673 O +MPa S-CONPRI +) O +, O +flexural B-PRO +strength E-PRO +( O +401 O +MPa S-CONPRI +) O +, O +flexural O +stiffness S-PRO +( O +53 O +GPa S-PRO +) O +, O +and O +fiber S-MATE +volume O +ratio O +( O +46 O +% O +) O +. O + + +Milled B-MATE +carbon I-MATE +fibers E-MATE +were O +used O +as S-MATE +the O +reinforcing B-MATE +fibers E-MATE +, O +which O +were O +considered O +too O +short O +to O +have O +the O +ability O +to O +enhance O +the O +mechanical B-PRO +strength E-PRO +of O +composites S-MATE +. O + + +However O +, O +in O +this O +study O +we O +show O +for O +the O +first O +time O +that O +milled B-MATE +carbon I-MATE +fibers E-MATE +have O +the O +ability O +to O +significantly O +reinforce O +the O +thermoset O +matrix O +and O +the O +composites S-MATE +reinforced O +with O +these O +fibers S-MATE +achieve O +mechanical S-APPL +performances O +similar O +to O +those O +of O +composites S-MATE +reinforced O +with O +longer O +fibers S-MATE +. O + + +We O +believe O +that O +a O +transformation O +takes O +place O +at O +high O +fiber S-MATE +volumes O +on O +the O +load O +transport S-CHAR +mechanism S-CONPRI +within O +the O +composites S-MATE +, O +leading O +to O +higher O +levels O +of O +strength S-PRO +and O +a O +stiffness S-PRO +enhancement O +. O + + +This O +pseudo O +transformation O +can O +give O +rise O +to O +short B-MATE +fibers E-MATE +that O +act O +as S-MATE +if O +they O +are O +longer O +, O +which O +aids O +in O +the O +effective O +transfer O +of O +tensile B-CHAR +loads E-CHAR +from O +the O +matrix O +phase S-CONPRI +to O +the O +fibers S-MATE +. O + + +This O +study O +also O +showed O +that O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +additively O +fabricated S-CONPRI +thermoset O +composites S-MATE +match O +those O +of O +ubiquitous O +, O +denser O +structural O +metals S-MATE +, O +and O +these O +properties S-CONPRI +show O +nearly O +isotropic S-PRO +behavior O +. O + + +Therefore O +, O +these O +systems O +have O +great O +potential O +to O +find O +immediate O +applications O +where O +weight S-PARA +reduction S-CONPRI +and O +component S-MACEQ +complexity S-CONPRI +are O +both O +desired O +. O + + +Lattice B-FEAT +structures E-FEAT +are O +excellent O +candidates O +for O +lightweight S-CONPRI +, O +energy O +absorbing O +applications O +such O +as S-MATE +personal O +protective O +equipment S-MACEQ +. O + + +In O +this O +paper O +we O +explore O +several O +important O +aspects O +of O +lattice B-FEAT +design E-FEAT +and O +production S-MANP +by O +metal B-MANP +additive I-MANP +manufacturing E-MANP +, O +including O +the O +choice O +of O +cell B-PRO +size E-PRO +and O +the O +application O +of O +a O +post-manufacture O +heat B-MANP +treatment E-MANP +. O + + +Key O +results O +include O +the O +characterisation O +of O +several O +failure B-PRO +modes E-PRO +in O +double O +gyroid O +lattices S-CONPRI +made O +of O +Al-Si10-Mg O +, O +the O +elimination O +of O +brittle B-CONPRI +fracture E-CONPRI +and O +low-strain O +failure S-CONPRI +by O +the O +application O +of O +a O +heat B-MANP +treatment E-MANP +, O +and O +the O +calculation O +of O +specific B-CONPRI +energy I-CONPRI +absorption E-CONPRI +under O +compressive O +deformation S-CONPRI +( O +16 O +× O +106 O +J O +m−3 O +up O +to O +50 O +% O +strain S-PRO +) O +. O + + +These O +results O +demonstrate O +the O +suitability O +of O +double O +gyroid O +lattices S-CONPRI +for O +energy O +absorbing O +applications O +, O +and O +will O +enable O +the O +design S-FEAT +and O +manufacture S-CONPRI +of O +more O +efficient O +lightweight S-CONPRI +parts O +in O +the O +future O +. O + + +Minimizing O +the O +residual B-PRO +stress E-PRO +build-up O +in O +metal-based O +additive B-MANP +manufacturing E-MANP +plays O +a O +pivotal O +role O +in O +selecting O +a O +particular O +material S-MATE +and O +technique O +for O +making O +an O +industrial S-APPL +part O +. O + + +In O +beam-based O +additive B-MANP +manufacturing E-MANP +, O +although O +a O +great O +deal O +of O +effort O +has O +been O +made O +to O +minimize O +the O +residual B-PRO +stresses E-PRO +, O +it O +is O +still O +elusive O +how O +to O +do O +so O +by O +simply O +optimizing O +the O +manufacturing S-MANP +parameters O +, O +such O +as S-MATE +beam O +size O +, O +beam S-MACEQ +power O +, O +and O +scan B-PARA +speed E-PARA +. O + + +With O +reference O +to O +the O +Ti6Al4V B-MATE +alloy E-MATE +and O +manufacturing S-MANP +by O +electron B-MANP +beam I-MANP +melting E-MANP +, O +we O +perform O +systematic O +finite B-CONPRI +element E-CONPRI +modeling O +of O +one-pass O +scanning S-CONPRI +to O +study O +the O +effects O +of O +beam S-MACEQ +size O +, O +beam S-MACEQ +power O +density S-PRO +, O +beam S-MACEQ +scan O +speed O +, O +and O +chamber O +bed S-MACEQ +temperature O +on O +the O +magnitude S-PARA +and O +distribution S-CONPRI +of O +residual B-PRO +stresses E-PRO +. O + + +Our O +study O +elucidates O +both O +qualitative S-CONPRI +and O +quantitative S-CONPRI +features O +of O +the O +residual B-PRO +stress E-PRO +fields O +originated O +by O +these O +manufacturing S-MANP +parameters O +. O + + +Our O +findings O +can O +serve O +as S-MATE +useful O +guidelines O +for O +engineers O +and O +designers O +to O +deal O +with O +residual B-PRO +stress E-PRO +build-up O +during O +additive B-MANP +manufacturing E-MANP +of O +Ti6Al4V S-MATE +. O + + +LCAs O +of O +ten O +3D B-MACEQ +printers E-MACEQ +were O +compared O +in O +different O +temporal O +& O +spatial O +utilizations O +. O + + +Utilization O +alone O +is O +not O +enough O +; O +energy O +use O +and O +print S-MANP +materials S-CONPRI +are O +also O +critical O +. O + + +Previous O +studies O +on O +the O +environmental O +impacts O +of O +polymeric O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +have O +shown O +that O +higher O +printer S-MACEQ +utilization O +dramatically O +improves O +impacts O +per O +part—so O +much O +so O +that O +it O +might O +dominate O +all O +other O +interventions O +if O +taken O +to O +an O +extreme O +. O + + +In O +this O +study O +, O +life B-CONPRI +cycle E-CONPRI +assessments O +( O +LCAs O +) O +were O +performed O +for O +an O +inkjet S-MANP +fusion S-CONPRI +printer O +with O +exceptionally O +high O +spatial O +utilization O +capacity S-CONPRI +and O +were O +compared O +to O +previous O +LCAs O +of O +nine O +printers S-MACEQ +printing O +with O +eight O +materials S-CONPRI +. O + + +Comparisons O +were O +performed O +in O +different O +utilizations O +, O +both O +temporal O +and O +spatial O +, O +to O +determine O +if O +high O +utilization O +reduces O +the O +environmental O +impact S-CONPRI +of O +AM S-MANP +more O +than O +other O +interventions O +, O +such O +as S-MATE +using O +sustainable S-CONPRI +print S-MANP +materials S-CONPRI +. O + + +For O +the O +inkjet S-MANP +fusion S-CONPRI +printer O +, O +maximum O +utilization O +dramatically O +reduced O +the O +environmental O +impact S-CONPRI +per O +part O +to O +less O +than O +1 O +% O +of O +its O +impact S-CONPRI +in O +lowest O +utilization O +; O +this O +was O +below O +the O +impacts O +of O +other O +printers S-MACEQ +in O +low O +utilizations O +. O + + +However O +, O +when O +compared O +in O +the O +same O +utilization O +scenarios O +, O +the O +inkjet S-MANP +fusion S-CONPRI +printer O +still O +caused O +a O +higher O +environmental O +impact S-CONPRI +per O +part O +than O +almost O +all O +printers S-MACEQ +, O +primarily O +due O +to O +high O +energy O +use O +. O + + +The O +lowest-impact O +printer S-MACEQ +used O +both O +high O +spatial O +utilization O +and O +low-impact O +materials S-CONPRI +that O +also O +enabled O +a O +low-energy O +printing B-MANP +process E-MANP +. O + + +Therefore O +, O +printer S-MACEQ +utilization O +is O +not O +the O +overriding O +factor O +and O +must O +be S-MATE +combined O +with O +energy O +efficiency O +and O +material S-MATE +choice O +. O + + +Ultrasonic O +cavitation S-CONPRI +abrasive S-MATE +finishing O +reduced O +Ra O +on O +metal S-MATE +additively B-MANP +manufactured E-MANP +sloping O +and O +side O +surfaces S-CONPRI +by O +up O +to O +40 O +% O +. O + + +No O +excessive O +removal O +occurs O +in O +UCAF O +as S-MATE +mass O +and O +dimensional O +changes O +induced O +by O +UCAF O +are O +dependent O +on O +the O +initial O +surface B-CHAR +morphology E-CHAR +. O + + +Internal O +surfaces S-CONPRI +of O +a O +3 O +mm S-MANP +diameter S-CONPRI +channel S-APPL +were O +finished O +to O +less O +than O +4 O +μm O +Ra O +. O + + +Moderate O +abrasive S-MATE +size O +and O +concentration O +led S-APPL +to O +a O +balance O +between O +the O +two O +mechanisms O +of O +surface B-PRO +roughness E-PRO +improvement O +. O + + +The O +poor O +and O +non-uniform O +surface B-PARA +quality E-PARA +of O +parts O +produced O +by O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +processes S-CONPRI +remains O +a O +huge O +limitation O +in O +additive B-MANP +manufacturing E-MANP +. O + + +Here O +we O +show O +that O +ultrasonic O +cavitation S-CONPRI +abrasive S-MATE +finishing O +( O +UCAF O +) O +could O +improve O +the O +surface B-FEAT +integrity E-FEAT +of O +PBF S-MANP +surfaces O +built O +at O +various O +orientations S-CONPRI +–0° O +, O +45° O +and O +90° O +. O + + +Average S-CONPRI +surface O +roughness S-PRO +, O +Ra O +, O +was O +reduced O +from O +as S-MATE +high O +as S-MATE +6.5 O +μm O +on O +side O +surfaces S-CONPRI +( O +90° O +) O +to O +3.8 O +μm O +. O + + +Surface S-CONPRI +morphological O +observations O +showed O +extensive O +removals O +of O +surface S-CONPRI +irregularities O +and O +peak O +reduction S-CONPRI +on O +sloping O +( O +45° O +) O +and O +side O +surfaces S-CONPRI +. O + + +The O +micro-hardness O +of O +the O +first O +100 O +μm O +of O +the O +surface S-CONPRI +layer S-PARA +was O +enhanced O +up O +to O +15 O +% O +post-UCAF O +. O + + +A O +parametric O +study O +further O +showed O +the O +effect O +of O +abrasive S-MATE +size O +, O +abrasive S-MATE +concentration O +, O +ultrasonic O +amplitude O +and O +working O +gap O +on O +UCAF O +’ O +s S-MATE +performance S-CONPRI +. O + + +A O +moderate O +abrasive S-MATE +size O +at O +12.5 O +μm O +and O +concentration O +level O +at O +5 O +wt O +% O +resulted O +in O +the O +lowest O +final O +Ra O +; O +as S-MATE +the O +two O +dominant O +material S-MATE +removal O +mechanisms O +– O +direct O +cavitation S-CONPRI +erosion O +and O +micro-abrasive O +impacts O +– O +were O +balanced O +. O + + +Finally O +, O +UCAF O +was O +demonstrated O +to O +result O +in O +20 O +% O +Ra O +improvement O +of O +internal O +surfaces S-CONPRI +of O +a O +3 O +mm S-MANP +diameter S-CONPRI +channel S-APPL +. O + + +Microstructure S-CONPRI +of O +an O +additively B-MANP +manufactured E-MANP +AlSi10Mg O +through O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +( O +DMLS S-MANP +) O +process S-CONPRI +is O +studied O +using O +multi-scale O +characterization O +techniques O +including O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +, O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +, O +and O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +The O +microstructure S-CONPRI +of O +DMLS-AlSi10Mg O +consists O +of O +hierarchical O +characteristics O +, O +spanning O +three O +order O +of O +magnitude S-PARA +, O +where O +nanometer S-FEAT +sized O +to O +sub-millimeter O +scaled O +features O +exist O +in O +the O +structure S-CONPRI +. O + + +These O +characteristics O +included O +grain S-CONPRI +and O +cell S-APPL +structures O +, O +nanoscale O +Si S-MATE +precipitates S-MATE +and O +pre-existing O +dislocation S-CONPRI +networks O +. O + + +Dynamic S-CONPRI +mechanical O +behavior O +of O +the O +material S-MATE +is O +studied O +using O +a O +Split O +Hopkinson O +Pressure S-CONPRI +Bar O +apparatus O +over O +a O +range S-PARA +of O +strain B-CONPRI +rates E-CONPRI +varying O +between O +800 O +s−1 O +and O +3200 O +s−1 O +. O + + +Investigation O +of O +the O +deformed S-MANP +microstructures O +reveals O +the O +role O +of O +hierarchical O +microstructure S-CONPRI +on O +the O +dynamic S-CONPRI +behavior O +of O +the O +material S-MATE +. O + + +The O +high O +strain-rate O +deformation S-CONPRI +is O +accommodated O +by O +dynamic S-CONPRI +recovery O +( O +DRV O +) O +process S-CONPRI +, O +where O +low O +angle O +grain B-CONPRI +boundaries E-CONPRI +evolve O +due O +to O +the O +generation O +of O +dislocations S-CONPRI +, O +evolution S-CONPRI +of O +dislocation S-CONPRI +networks O +, O +and O +annihilation O +of O +dislocations S-CONPRI +. O + + +Both O +cell S-APPL +walls O +and O +Si S-MATE +precipitates S-MATE +contribute O +to O +impeding O +the O +dislocation B-CONPRI +motion E-CONPRI +and O +development O +of O +dislocation S-CONPRI +networks O +. O + + +At O +high O +strain B-CONPRI +rates E-CONPRI +, O +dislocation S-CONPRI +networks O +evolve O +in O +the O +nanoscale O +DRVed O +subgrains S-CONPRI +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +rapidly O +growing O +field O +aimed O +to O +produce O +high-performance O +net-shaped O +parts O +. O + + +Therefore O +, O +bulk O +metallic B-MATE +glasses E-MATE +( O +BMGs O +) O +, O +known O +for O +their O +superlative O +mechanical B-CONPRI +properties E-CONPRI +, O +are O +of O +remarkable O +interest O +for O +integration O +with O +AM B-MANP +technology E-MANP +. O + + +In O +this O +study O +, O +we O +pioneer O +the O +utilization O +of O +commercially O +available O +BMG O +sheetmetal O +as S-MATE +feedstock O +for O +AM S-MANP +, O +using O +laser S-ENAT +foil S-MATE +printing O +( O +LFP S-MATE +) O +technology S-CONPRI +. O + + +LFP S-MATE +and O +traditional O +casting S-MANP +were O +used O +to O +produce O +samples S-CONPRI +for O +four-point O +bending S-MANP +and O +Vickers B-PRO +hardness E-PRO +measurements O +to O +rigorously O +compare O +the O +mechanical S-APPL +performance O +of O +samples S-CONPRI +resulting O +from O +these O +two O +fabrication S-MANP +techniques O +. O + + +Through O +LFP S-MATE +, O +fully O +amorphous O +BMG O +samples S-CONPRI +with O +dimensions S-FEAT +larger O +than O +the O +critical O +casting S-MANP +thickness O +of O +the O +same O +master O +alloy S-MATE +were O +successfully O +made O +, O +while O +exhibiting O +high O +yield B-PRO +strength E-PRO +and O +toughness S-PRO +in O +bending S-MANP +. O + + +This O +work O +exemplifies O +a O +potential O +method O +to O +fabricate S-MANP +high-value O +BMG O +commercial O +parts O +, O +like O +gears S-MACEQ +or O +mechanisms O +, O +where O +the O +parts O +are O +conventionally O +machined S-MANP +after O +printing O +, O +and O +greatly O +benefit O +from O +utilizing O +novel O +materials S-CONPRI +. O + + +In O +industry S-APPL +, O +Design B-FEAT +for I-FEAT +Additive I-FEAT +Manufacturing E-FEAT +( O +DfAM O +) O +is O +currently O +synonymous O +with O +expert O +knowledge O +and O +external O +consultants O +for O +many O +companies S-APPL +. O + + +Particularly O +in O +higher O +cost O +technologies S-CONPRI +, O +such O +as S-MATE +metal O +powder B-MANP +bed I-MANP +fusion E-MANP +, O +component S-MACEQ +design O +requires O +extensive O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +knowledge O +. O + + +If O +a O +part O +is O +improperly O +designed S-FEAT +, O +then O +it O +can O +cause O +thousands O +of O +dollars O +of O +lost O +time O +and O +material S-MATE +through O +a O +failed O +print S-MANP +. O + + +To O +avoid O +this O +situation O +, O +specialists O +must O +be S-MATE +consulted O +throughout O +the O +printing B-MANP +process E-MANP +; O +however O +, O +the O +shortage O +of O +trained O +personnel O +familiar O +with O +AM S-MANP +can O +create O +a O +bottleneck S-CONPRI +during O +design S-FEAT +. O + + +In O +order O +to O +help O +businesses O +identify O +candidate O +parts O +for O +Powder B-MANP +Bed I-MANP +Fusion E-MANP +( O +PBF S-MANP +) O +AM S-MANP +, O +this O +paper O +presents O +a O +DfAM O +worksheet O +to O +help O +engineers O +, O +drafters O +, O +and O +designers O +select O +good O +part O +candidates O +with O +little O +prior O +knowledge O +of O +the O +specific O +technology S-CONPRI +. O + + +This O +worksheet O +uses O +data S-CONPRI +from O +the O +literature O +to O +support S-APPL +the O +values O +used O +for O +design S-FEAT +guidance O +. O + + +Example O +components S-MACEQ +are O +shown O +to O +demonstrate O +the O +worksheet O +process S-CONPRI +. O + + +Ratings O +of O +these O +components S-MACEQ +are O +then O +compared O +with O +expert O +raters O +’ O +assessments O +of O +their O +suitability O +for O +fabrication S-MANP +with O +PBF S-MANP +from O +a O +geometric O +standpoint O +. O + + +In O +recent O +years O +, O +combining O +additive S-MATE +and O +subtractive B-MANP +manufacturing E-MANP +technologies O +has O +attracted O +much O +attention O +from O +both O +industrial S-APPL +and O +academic O +sectors O +. O + + +Thereafter O +, O +the O +design S-FEAT +of O +process B-CONPRI +planning E-CONPRI +for O +combining O +additive S-MATE +and O +subtractive B-MANP +manufacturing E-MANP +processes S-CONPRI +is O +focused O +. O + + +This O +allows O +achieving O +the O +geometry S-CONPRI +and O +quality S-CONPRI +of O +final O +part O +from O +the O +existing O +part O +. O + + +The O +methodology S-CONPRI +for O +process B-CONPRI +planning E-CONPRI +design S-FEAT +is O +developed O +in O +two O +major O +steps O +using O +the O +manufacturing S-MANP +feature S-FEAT +concept O +, O +the O +knowledge O +of O +manufacturing B-MANP +processes E-MANP +, O +technological O +requirements O +, O +and O +available O +resources O +. O + + +In O +the O +first O +step S-CONPRI +, O +manufacturing S-MANP +features O +( O +i.e O +. O + + +machining S-MANP +and O +additive B-MANP +manufacturing E-MANP +features O +) O +are O +extracted S-CONPRI +from O +the O +information O +of O +the O +existing O +and O +final O +parts O +. O + + +In O +the O +second O +step S-CONPRI +, O +the O +process B-CONPRI +planning E-CONPRI +is O +generated O +from O +extracted S-CONPRI +features O +by O +respecting O +the O +relationships O +of O +features O +and O +the O +manufacturing S-MANP +precedence O +constraints O +. O + + +Finally O +, O +a O +case B-CONPRI +study E-CONPRI +is O +used O +to O +illustrate O +the O +proposed O +methodology S-CONPRI +. O + + +Although O +vibration-assisted O +powder B-MACEQ +delivery I-MACEQ +systems E-MACEQ +have O +been O +developed O +and O +studied O +in O +the O +literature O +, O +their O +characteristics O +and O +principles O +of O +operation O +are O +generally O +not O +well O +suited O +for O +powder-based B-MANP +additive I-MANP +manufacturing E-MANP +operations O +mainly O +because O +of O +their O +powder S-MATE +flows O +and O +deposition S-CONPRI +characteristics O +. O + + +The O +flow B-PARA +rate E-PARA +, O +one O +of O +the O +key O +parameters S-CONPRI +in O +these O +processes S-CONPRI +, O +was O +used O +to O +evaluate O +the O +system O +. O + + +Its O +sensitivity S-PARA +and O +dependence O +on O +powder B-MATE +particle E-MATE +size O +, O +piezo O +excitation S-CHAR +frequency O +and O +amplitude O +, O +hopper O +volume S-CONPRI +, O +nozzle S-MACEQ +size O +, O +and O +humidity O +were O +assessed O +. O + + +The O +results O +, O +using O +316 B-MATE +L I-MATE +stainless I-MATE +steel I-MATE +powders E-MATE +, O +have O +shown O +that O +the O +mass O +powder B-PARA +flow I-PARA +rate E-PARA +can O +be S-MATE +effectively O +controlled O +and O +that O +it O +is O +most O +prominently O +influenced O +by O +the O +piezo O +excitation S-CHAR +frequency O +. O + + +Ti6Al4V S-MATE ++ O +Al12Si O +compositionally O +graded O +cylindrical S-CONPRI +structures O +were O +fabricated S-CONPRI +on O +a O +Ti6Al4V B-MATE +substrate E-MATE +using O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS™ O +) O +process S-CONPRI +. O + + +LENS™ O +fabricated S-CONPRI +materials O +had O +two O +regions O +of O +Ti6Al4V S-MATE ++ O +Al12Si O +compositions O +, O +a O +pure O +Al12Si O +, O +and O +a O +pure O +Ti6Al4V S-MATE +area S-PARA +. O + + +Microstructural S-CONPRI +changes O +were O +affected O +by O +both O +laser B-PARA +power E-PARA +and O +compositional O +variations S-CONPRI +. O + + +In O +addition O +, O +TiSi2 O +and O +Ti3Al O +phase S-CONPRI +formations O +were O +also O +identified O +in O +low O +and O +high O +laser B-PARA +power E-PARA +processed O +Ti6Al4V S-MATE ++ O +Al12Si O +sections O +, O +respectively O +. O + + +Moreover O +, O +the O +high O +laser B-PARA +power E-PARA +processed O +Ti6Al4V S-MATE ++ O +Al12Si O +section O +showed O +the O +highest O +hardness S-PRO +value O +of O +685.6 O +± O +10.6 O +HV0.1 O +, O +which O +was O +caused O +due O +to O +the O +formation O +of O +new O +intermetallic S-MATE +phases O +. O + + +This O +high O +hardness S-PRO +section O +exhibited O +brittle B-CONPRI +failure E-CONPRI +modes O +during O +compression B-CHAR +tests E-CHAR +, O +while O +the O +pure O +Al12Si O +sections O +showed O +ductile S-PRO +deformation S-CONPRI +. O + + +The O +maximum O +compressive B-PRO +strengths E-PRO +of O +Ti6Al4V S-MATE ++ O +Al12Si O +compositionally O +graded O +material S-MATE +was O +507.8 O +± O +52.0 O +MPa S-CONPRI +. O + + +Our O +results O +show O +that O +compositionally O +gradient O +bulk O +structures O +of O +Ti6Al4V S-MATE +and O +Al12Si O +can O +be S-MATE +directly O +manufactured S-CONPRI +using O +additive B-MANP +manufacturing E-MANP +, O +however O +, O +performances O +can O +vary O +significantly O +based O +on O +process B-CONPRI +parameters E-CONPRI +and O +compositional O +variations S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +enables O +highly O +complex-shaped S-CONPRI +and O +functionally O +optimized O +parts O +. O + + +However O +, O +as S-MATE +today O +’ O +s S-MATE +computer-aided B-ENAT +design E-ENAT +( O +CAD S-ENAT +) O +tools S-MACEQ +are O +still O +based O +on O +low-level O +, O +geometric O +primitives O +, O +the O +modeling S-ENAT +of O +complex B-CONPRI +geometries E-CONPRI +requires O +many O +repetitive O +, O +manual O +steps O +. O + + +As S-MATE +a O +consequence O +, O +the O +need O +for O +an O +automated O +design S-FEAT +approach O +is O +emphasized O +and O +regarded O +as S-MATE +a O +key O +enabler O +to O +quickly O +create O +different O +concepts O +, O +allow O +iterative O +design S-FEAT +changes O +, O +and O +customize O +parts O +at O +reduced O +effort O +. O + + +Topology B-FEAT +optimization E-FEAT +exists O +as S-MATE +a O +computational O +design S-FEAT +approach O +but O +usually O +demands O +a O +manual O +interpretation O +and O +redesign O +of O +a O +CAD B-ENAT +model E-ENAT +and O +may O +not O +be S-MATE +applicable O +to O +problems O +such O +as S-MATE +the O +design S-FEAT +of O +parts O +with O +multiple O +integrated O +flows O +. O + + +This O +work O +presents O +a O +computational O +design S-FEAT +synthesis O +framework S-CONPRI +to O +automate O +the O +design S-FEAT +of O +complex-shaped S-CONPRI +multi-flow O +nozzles S-MACEQ +. O + + +The O +framework S-CONPRI +provides O +AM S-MANP +users O +a O +toolbox O +with O +design S-FEAT +elements O +, O +which O +are O +used O +as S-MATE +building O +blocks O +to O +generate O +finished O +3D B-APPL +part E-APPL +geometries O +. O + + +The O +elements S-MATE +are O +organized O +in O +a O +hierarchical O +architecture S-APPL +and O +implemented O +using O +object-oriented O +programming O +. O + + +As S-MATE +the O +layout S-CONPRI +of O +the O +elements S-MATE +is O +defined O +with O +a O +visual O +interface S-CONPRI +, O +the O +process S-CONPRI +is O +accessible O +to O +non-experts O +. O + + +As S-MATE +a O +proof O +of O +concept O +, O +the O +framework S-CONPRI +is O +applied O +to O +successfully O +generate O +a O +variety O +of O +customized O +AM S-MANP +nozzles O +that O +are O +tested O +using O +co-extrusion O +of O +clay S-MATE +. O + + +Finally O +, O +the O +work O +discusses O +the O +framework S-CONPRI +’ O +s S-MATE +benefits O +and O +limitations O +, O +the O +impact S-CONPRI +on O +product B-CONPRI +development E-CONPRI +and O +novel O +AM S-MANP +applications O +, O +and O +the O +transferability O +to O +other O +domains O +. O + + +17-4PH S-MATE +stainless O +steel S-MATE +thin-walled O +samples S-CONPRI +were O +additively B-MANP +manufactured E-MANP +by O +SLM S-MANP +Samples S-CONPRI +parallel O +and O +at O +45˚ O +to O +the O +scan O +axes O +gave O +beam S-MACEQ +path O +lengths O +of O +19 O +- O +0.8 O +mm S-MANP +Longer O +beam S-MACEQ +paths O +gave O +microstructures S-MATE +comprising O +mostly O +coarse-grained O +ferrite S-MATE +The O +shortest O +beam S-MACEQ +paths O +gave O +structures O +with O +mostly O +austenite S-MATE +and O +some O +martensite S-MATE +Re-heating O +of O +ferrite S-MATE +leads O +to O +austenite S-MATE +, O +with O +martensite S-MATE +forming S-MANP +during O +cooling S-MANP +Components S-MACEQ +with O +varying O +dimensions S-FEAT +are O +found O +in O +numerous O +applications O +. O + + +The O +current O +work O +examines O +how O +microstructures S-MATE +and O +phases O +change O +for O +additively B-MANP +manufactured E-MANP +17-4PH S-MATE +thin O +walls O +as S-MATE +a O +function O +of O +laser S-ENAT +path O +length O +, O +path O +direction O +, O +and O +wall B-FEAT +thickness E-FEAT +. O + + +Two O +sample S-CONPRI +sets O +were O +designed S-FEAT +, O +each O +consisting O +of O +four O +walls O +with O +thicknesses O +of O +6.4 O +mm S-MANP +to O +0.8 O +mm S-MANP +. O + + +In O +the O +first O +set S-APPL +, O +the O +wall O +axes O +were O +parallel O +to O +the O +scan O +axes O +, O +such O +that O +the O +laser S-ENAT +path O +length O +varied O +from O +layer S-PARA +to O +layer S-PARA +with O +the O +laser S-ENAT +path O +either O +being O +parallel O +or O +perpendicular O +to O +the O +wall O +. O + + +In O +the O +second O +set S-APPL +, O +the O +walls O +lay S-CONPRI +at O +45° O +to O +the O +scan O +axes O +, O +such O +that O +the O +laser S-ENAT +path O +had O +the O +same O +length O +in O +all O +layers O +and O +gradually O +decreased O +with O +wall B-FEAT +thickness E-FEAT +. O + + +Substantial O +changes O +in O +phase S-CONPRI +stability O +and O +microstructure S-CONPRI +are O +observed O +as S-MATE +the O +wall B-FEAT +thickness E-FEAT +decreases O +, O +with O +ferritic S-MATE +phases O +and O +coarse O +grains S-CONPRI +changing O +to O +fine O +grains S-CONPRI +and O +an O +increasing O +volume B-PARA +fraction E-PARA +of O +austenite S-MATE +. O + + +These O +changes O +are O +attributed O +to O +changes O +in O +the O +local O +temperature-time O +profile S-FEAT +as S-MATE +the O +length O +of O +the O +laser S-ENAT +paths O +change O +from O +19 O +mm S-MANP +to O +0.8 O +mm S-MANP +. O + + +These O +observations O +demonstrate O +the O +range S-PARA +of O +microstructure S-CONPRI +and O +phase S-CONPRI +control O +options O +available O +in O +additive B-MANP +manufacturing E-MANP +with O +judicious O +selections O +of O +part O +layouts O +on O +build B-MACEQ +plates E-MACEQ +and O +of O +laser B-CONPRI +beam E-CONPRI +directions O +. O + + +In O +this O +paper O +, O +the O +anisotropy S-PRO +in O +the O +nickel-aluminum O +bronze S-MATE +( O +NAB S-MATE +) O +component S-MACEQ +manufactured O +by O +WAAM S-MANP +process S-CONPRI +has O +been O +shown O +and O +investigated O +by O +different O +methods O +including O +material S-MATE +and O +mechanical B-CHAR +tests E-CHAR +. O + + +The O +quenching S-MANP +and O +tempering S-MANP +heat B-MANP +treatments E-MANP +have O +been O +used O +in O +this O +paper O +to O +reduce O +the O +anisotropy S-PRO +. O + + +Results O +have O +indicated O +that O +the O +quenching S-MANP +and O +tempering S-MANP +heat B-MANP +treatments E-MANP +can O +effectively O +reduce O +the O +anisotropy S-PRO +in O +the O +NAB S-MATE +component S-MACEQ +. O + + +Results O +have O +shown O +that O +the O +additively B-MANP +manufactured E-MANP +materials O +possess O +relatively O +better O +tensile S-PRO +performances O +. O + + +In O +this O +paper O +, O +a O +nickel-aluminum O +bronze B-MATE +alloy E-MATE +component O +is O +built O +using O +wire-arc B-MANP +additive I-MANP +manufacturing I-MANP +process E-MANP +. O + + +In O +order O +to O +investigate O +the O +influence O +of O +anisotropy S-PRO +introduced O +by O +the O +wire-arc B-MANP +additive I-MANP +manufacturing I-MANP +process E-MANP +, O +the O +layer-by-layer S-CONPRI +manufactured O +components S-MACEQ +with O +different O +post-production O +heat B-MANP +treatments E-MANP +are O +characterized O +by O +optical S-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +morphologies S-CONPRI +, O +X-ray B-CHAR +diffraction E-CHAR +and O +mechanical B-CHAR +tests E-CHAR +in O +longitudinal O +, O +transverse O +and O +normal O +directions O +. O + + +Also O +, O +the O +ductility S-PRO +of O +the O +alloy S-MATE +is O +significantly O +improved O +with O +the O +designed S-FEAT +quenching O +and O +tempering S-MANP +method O +, O +and O +competitive O +mechanical B-CONPRI +properties E-CONPRI +are O +achieved O +when O +tempering S-MANP +temperature S-PARA +reaches O +650 O +°C O +. O + + +In O +addition O +, O +the O +anisotropy S-PRO +in O +the O +additively B-MANP +manufactured E-MANP +alloy O +can O +be S-MATE +effectively O +modified O +by O +the O +quenching S-MANP +and O +tempering S-MANP +heat B-MANP +treatments E-MANP +. O + + +Selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +is O +one O +of O +the O +most O +popular O +industrial S-APPL +polymer O +additive B-MANP +manufacturing I-MANP +processes E-MANP +with O +applications O +in O +aerospace S-APPL +, O +biomedical S-APPL +, O +tooling S-CONPRI +, O +prototyping S-CONPRI +, O +and O +beyond O +. O + + +SLS S-MANP +is O +capable O +of O +creating O +unique O +, O +functional O +parts O +with O +little O +waste O +and O +no O +tooling S-CONPRI +by O +using O +a O +high-powered O +laser S-ENAT +to O +selectively O +melt S-CONPRI +powdered O +polymer S-MATE +into O +desired O +shapes O +. O + + +This O +process S-CONPRI +relies O +heavily O +on O +understanding O +and O +controlling O +the O +thermodynamics O +of O +the O +polymer B-MATE +melt E-MATE +process O +. O + + +One O +of O +the O +biggest O +challenges O +SLS S-MANP +faces O +is O +lack O +of O +adequate O +process B-CONPRI +control E-CONPRI +, O +which O +leads O +to O +comparatively O +high O +component S-MACEQ +variations O +. O + + +It O +has O +been O +shown O +that O +implementing O +more O +advanced O +laser S-ENAT +control O +techniques O +enable O +a O +higher O +level O +of O +control O +over O +the O +processing O +temperatures S-PARA +and O +lead S-MATE +to O +more O +uniform O +components S-MACEQ +. O + + +Currently O +, O +there O +are O +no O +commercial O +options O +for O +a O +laser B-PARA +power E-PARA +controller S-MACEQ +that O +allows O +continuously O +variable O +power S-PARA +to O +be S-MATE +used O +as S-MATE +a O +galvanometer O +system O +adjusts O +the O +laser S-ENAT +position O +. O + + +Process B-CONPRI +consistency E-CONPRI +and O +control O +are O +bottleneck S-CONPRI +issues O +to O +wider O +insertion O +of O +powder-bed O +fusion S-CONPRI +additive B-MANP +manufacturing E-MANP +in O +the O +industrial S-APPL +shopfloor O +. O + + +Of O +particular O +interest O +is O +the O +porosity S-PRO +of O +the O +components S-MACEQ +, O +which O +remains O +the O +limiting O +factor O +to O +high-cycle O +fatigue S-PRO +performance O +. O + + +Recent O +experiments O +have O +shown O +that O +, O +with O +increasing O +energy B-PARA +density E-PARA +, O +a O +surge O +in O +porosity S-PRO +is O +seen O +in O +selectively O +laser S-ENAT +melted O +metals S-MATE +. O + + +In O +this O +high-energy O +density S-PRO +regime O +, O +porosity S-PRO +must O +originate O +from O +mechanisms O +that O +are O +different O +from O +the O +well-known O +incomplete O +melting S-MANP +in O +the O +low O +energy B-PARA +density E-PARA +regime O +. O + + +To O +shed O +light O +on O +this O +interesting O +phenomenon O +, O +this O +paper O +first O +discusses O +the O +mechanism S-CONPRI +of O +bubble O +formation O +in O +the O +melt B-MATE +pool E-MATE +and O +possible O +trapping O +during O +the O +solidification S-CONPRI +, O +and O +then O +formulates O +a O +predictive B-CONPRI +model E-CONPRI +for O +porosity S-PRO +in O +this O +regime O +. O + + +To O +compare O +with O +experimental S-CONPRI +results O +, O +we O +perform O +computer S-ENAT +modeling O +and O +simulations S-ENAT +which O +have O +been O +fully O +validated O +by O +experiments O +to O +determine O +the O +parameters S-CONPRI +in O +the O +model S-CONPRI +. O + + +We O +show O +that O +the O +model S-CONPRI +predictions O +are O +in O +good O +qualitative S-CONPRI +and O +quantitative S-CONPRI +agreement O +with O +the O +experimental S-CONPRI +measurements O +. O + + +Hence O +, O +the O +proposed O +model S-CONPRI +can O +be S-MATE +used O +as S-MATE +a O +tool S-MACEQ +to O +predict O +the O +porosity S-PRO +, O +and O +further O +to O +control O +and O +possibly O +reduce O +porosity S-PRO +in O +laser S-ENAT +powder-bed O +fusion S-CONPRI +additive B-MANP +manufacturing E-MANP +, O +paving O +the O +way O +for O +its O +wider O +adoption O +in O +manufacturing S-MANP +shopfloors O +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +uses O +a O +focused O +, O +high O +power S-PARA +laser S-ENAT +to O +repeatedly O +scan O +geometric O +patterns O +on O +thin O +layers O +of O +metal B-MATE +powder E-MATE +, O +which O +build S-PARA +up O +to O +a O +final O +, O +solid O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +part O +. O + + +This O +process S-CONPRI +is O +somewhat O +limited O +in O +that O +the O +parts O +tend O +to O +have O +poorer O +surface B-FEAT +finish E-FEAT +( O +compared O +to O +machining S-MANP +or O +grinding S-MANP +) O +and O +distortion S-CONPRI +due O +to O +residual B-PRO +stress E-PRO +, O +as S-MATE +well O +as S-MATE +multiple O +other O +deficiencies O +. O + + +Typical O +laser B-ENAT +scan E-ENAT +strategies O +are O +relatively O +simple S-MANP +and O +use O +constant O +laser B-PARA +power E-PARA +levels O +. O + + +This O +elicits O +local O +variations S-CONPRI +in O +the O +melt B-MATE +pool E-MATE +size O +, O +shape O +, O +or O +temperature S-PARA +, O +particularly O +near O +sharp O +geometric O +features O +or O +overhang S-PARA +structures O +due O +to O +the O +relatively O +higher O +thermal B-PRO +conductivity E-PRO +of O +solid O +metal S-MATE +compared O +to O +metal B-MATE +powder E-MATE +. O + + +In O +this O +paper O +, O +we O +present O +a O +new O +laser B-PARA +power E-PARA +control O +algorithm S-CONPRI +, O +which O +scales O +the O +laser B-PARA +power E-PARA +to O +a O +value O +called O +the O +geometric O +conductance O +factor O +( O +GCF O +) O +. O + + +The O +GCF O +is O +calculated O +based O +on O +the O +amount O +of O +solid O +vs. O +powder B-MATE +material E-MATE +near O +the O +melt B-MATE +pool E-MATE +. O + + +Then O +, O +we O +detail O +the O +hardware O +and O +software S-CONPRI +implementation O +on O +the O +National O +Institute O +of O +Standards S-CONPRI +and O +Technology S-CONPRI +( O +NIST O +) O +additive B-MANP +manufacturing E-MANP +metrology O +testbed O +( O +AMMT O +) O +, O +which O +includes O +co-axial O +melt B-MATE +pool E-MATE +monitoring O +using O +a O +high-speed O +camera S-MACEQ +. O + + +Six O +parts O +were O +fabricated S-CONPRI +out O +of O +nickel S-MATE +superalloy O +625 O +( O +IN625 O +) O +with O +the O +same O +nominal O +laser B-PARA +power E-PARA +, O +but O +with O +varying O +GCF O +algorithm S-CONPRI +parameters O +. O + + +We O +demonstrate O +the O +effect O +of O +tailored O +laser B-PARA +power E-PARA +on O +reducing O +the O +variability S-CONPRI +of O +melt B-MATE +pool E-MATE +intensity O +measured O +throughout O +the O +3D S-CONPRI +build O +. O + + +Finally O +, O +we O +contrast O +the O +difference O +between O +the O +‘ O +optimized O +’ O +part O +vs. O +the O +standard S-CONPRI +build B-PARA +parameters E-PARA +, O +including O +the O +deflection O +of O +the O +final O +part O +top O +surface S-CONPRI +near O +the O +overhang S-PARA +and O +the O +variation S-CONPRI +of O +surface B-FEAT +finish E-FEAT +on O +the O +down-facing O +surfaces S-CONPRI +. O + + +Ultimately O +, O +the O +improvements O +to O +the O +in-situ S-CONPRI +process O +monitoring O +and O +part O +qualities O +demonstrate O +the O +utility O +and O +future O +potential O +tuning O +and O +optimizing O +more O +complex O +laser B-ENAT +scan E-ENAT +strategies O +. O + + +Powder-fed O +laser B-MANP +additive I-MANP +manufacturing E-MANP +( O +LAM S-MANP +) O +based O +on O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +technology S-CONPRI +is O +used O +to O +produce O +S316-L O +austenitic S-MATE +, O +and O +S410-L O +martensitic B-MATE +stainless I-MATE +steel E-MATE +structures O +by O +3D-printing S-MANP +through O +a O +layer-upon-layer O +fashion S-CONPRI +. O + + +The O +microstructural S-CONPRI +features O +and O +crystallographic O +textural O +components S-MACEQ +are O +studied O +via O +electron O +backscattering O +diffraction S-CHAR +( O +EBSD S-CHAR +) O +analysis O +, O +hardness S-PRO +indentation O +and O +tensile B-CHAR +testing E-CHAR +. O + + +The O +results O +are O +compared O +with O +commercial O +rolled O +sheets S-MATE +of O +austenitic S-MATE +and O +martensitic B-MATE +stainless I-MATE +steels E-MATE +. O + + +A O +well-developed O +< O +200 O +> O +direction O +solidification S-CONPRI +texture O +( O +with O +a O +J-index O +of O +∼11.5 O +) O +is O +observed O +for O +the O +austenitic S-MATE +structure O +produced O +by O +the O +LAM S-MANP +process O +, O +compared O +to O +a O +J-index O +of O +∼2.0 O +for O +the O +commercial O +austenitic S-MATE +rolled O +sheet S-MATE +. O + + +Such O +a O +texture S-FEAT +in O +the O +LAM S-MANP +process O +is O +caused O +by O +equiaxed B-CONPRI +grain E-CONPRI +formation O +in O +the O +middle O +of O +each O +layer S-PARA +followed O +by O +columnar O +growth O +during O +layer-upon-layer O +deposition S-CONPRI +. O + + +A O +quite O +strong O +preferred O +orientation S-CONPRI +( O +J-index O +of O +17.5 O +) O +is O +noticed O +for O +martensitic O +steel S-MATE +developed O +by O +LAM S-MANP +. O + + +Large O +laths O +of O +martensite S-MATE +exhibit O +a O +dominant O +textural O +component S-MACEQ +of O +{ O +011 O +} O +< O +111 O +> O +in O +the O +α-phase O +, O +which O +is O +mainly O +controlled O +by O +transformation O +during O +layer-by-layer B-CONPRI +deposition E-CONPRI +. O + + +On O +the O +other O +hand O +, O +the O +martensitic O +commercial O +sheet S-MATE +consists O +of O +equiaxed B-CONPRI +grains E-CONPRI +without O +any O +preferred O +orientation S-CONPRI +or O +completely O +random O +orientations S-CONPRI +. O + + +In O +the O +case O +of O +the O +austenitic S-MATE +steel O +, O +mechanical B-CONPRI +properties E-CONPRI +such O +as S-MATE +tensile O +strength S-PRO +, O +hardness S-PRO +and O +ductility S-PRO +were O +severely O +deteriorated O +during O +the O +LAM S-MANP +deposition S-CONPRI +. O + + +A O +ductility S-PRO +loss O +of O +about O +50 O +% O +is O +recorded O +compared O +to O +the O +commercially O +rolled O +sheets S-MATE +that O +is O +attributed O +to O +the O +cast/solidified O +structure S-CONPRI +. O + + +However O +, O +LAM S-MANP +manufacturing O +of O +martensitic B-MATE +stainless I-MATE +steel E-MATE +structures O +leads O +to O +a O +considerably O +enhanced O +mechanical B-PRO +strength E-PRO +( O +more O +than O +double O +) O +at O +the O +expense O +of O +reduced O +ductility S-PRO +, O +because O +of O +martensitic O +phase S-CONPRI +transformations O +under O +higher O +cooling B-PARA +rates E-PARA +. O + + +Electrophoretic B-MANP +deposition E-MANP +( O +EPD O +) O +is O +a O +widely O +used O +industrial S-APPL +coating S-APPL +technique O +for O +depositing O +polymer S-MATE +, O +ceramic S-MATE +, O +and O +metal S-MATE +thin O +films O +. O + + +Recently O +, O +there O +has O +been O +interested O +in O +using O +EPD O +for O +additive B-MANP +manufacturing E-MANP +using O +reconfigurable O +electrodes S-MACEQ +. O + + +We O +demonstrate O +a O +resolution S-PARA +limit S-CONPRI +of O +10 O +μm O +for O +the O +deposited O +feature S-FEAT +, O +which O +corresponds O +to O +the O +limits S-CONPRI +of O +the O +optical S-CHAR +system O +. O + + +Furthermore O +, O +the O +first O +3D S-CONPRI +overhanging O +structure S-CONPRI +made O +with O +EPD O +is O +presented O +, O +which O +points O +to O +the O +ability O +to O +create O +architected O +cellular B-MATE +materials E-MATE +. O + + +These O +improvements O +open O +the O +possibility O +for O +EPD O +to O +be S-MATE +a O +true O +3D S-CONPRI +additive O +manufacturing S-MANP +technique O +. O + + +Addresses O +thermal B-MANP +annealing E-MANP +of O +additively B-MANP +manufactured E-MANP +polymer O +parts O +. O + + +Demonstrates O +significant O +enhancement O +in O +thermal B-PRO +conductivity E-PRO +. O + + +Data S-CONPRI +quantify O +dependence O +of O +enhancement O +on O +annealing S-MANP +time O +and O +temperature S-PARA +. O + + +Develops O +a O +theoretical S-CONPRI +thermal O +model S-CONPRI +, O +with O +good O +agreement O +with O +measurements O +. O + + +Results O +may O +help O +improve O +thermal O +performance S-CONPRI +of O +polymer S-MATE +AM B-MACEQ +parts E-MACEQ +. O + + +While O +additive B-MANP +manufacturing E-MANP +offers O +significant O +advantages O +compared O +to O +traditional B-MANP +manufacturing E-MANP +technologies S-CONPRI +, O +deterioration O +in O +thermal O +and O +mechanical B-CONPRI +properties E-CONPRI +compared O +to O +properties S-CONPRI +of O +the O +underlying O +materials S-CONPRI +is O +a O +serious O +concern O +. O + + +In O +the O +context O +of O +polymer B-MANP +extrusion E-MANP +based O +additive B-MANP +manufacturing E-MANP +, O +post-process S-CONPRI +approaches O +, O +such O +as S-MATE +thermal O +annealing S-MANP +have O +been O +reported O +for O +improving O +mechanical B-CONPRI +properties E-CONPRI +based O +on O +reptation O +of O +polymer S-MATE +chains O +and O +enhanced O +filament-to-filament O +adhesion S-PRO +. O + + +However O +, O +there O +is O +a O +lack O +of O +similar O +work O +for O +improving O +thermal B-CONPRI +properties E-CONPRI +such O +as S-MATE +thermal O +conductivity S-PRO +. O + + +This O +paper O +reports O +significant O +enhancement O +in O +build-direction O +thermal B-PRO +conductivity E-PRO +of O +polymer B-MANP +extrusion E-MANP +based O +parts O +as S-MATE +a O +result O +of O +thermal B-MANP +annealing E-MANP +. O + + +A O +theoretical B-CONPRI +model E-CONPRI +based O +on O +Arrhenius O +kinetics O +for O +neck O +growth O +and O +a O +heat B-CONPRI +transfer E-CONPRI +model O +for O +the O +consequent O +impact S-CONPRI +on O +inter-layer O +thermal O +contact S-APPL +resistance O +is O +developed O +. O + + +Predicted S-CONPRI +thermal O +conductivity S-PRO +enhancement O +is O +found O +to O +be S-MATE +in O +good O +agreement O +with O +experimental B-CONPRI +data E-CONPRI +for O +a O +wide O +range S-PARA +of O +annealing S-MANP +temperature O +and O +time O +. O + + +The O +theoretical B-CONPRI +model E-CONPRI +may O +play O +a O +key O +role O +in O +developing O +practical O +thermal B-MANP +annealing E-MANP +strategies O +that O +account O +for O +the O +multiple O +constraints O +involved O +in O +annealing S-MANP +of O +polymer S-MATE +parts O +. O + + +This O +work O +may O +facilitate O +the O +use O +of O +polymer B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +for O +producing O +enhanced O +thermal B-PRO +conductivity E-PRO +parts O +capable O +of O +withstanding O +thermal O +loads O +. O + + +Additively B-MANP +manufactured E-MANP +metamaterials O +such O +as S-MATE +lattices O +offer O +unique O +physical B-PRO +properties E-PRO +such O +as S-MATE +high O +specific B-PRO +strengths E-PRO +and O +stiffnesses O +. O + + +However O +, O +additively B-MANP +manufactured E-MANP +parts O +, O +including O +lattices S-CONPRI +, O +exhibit O +a O +higher O +variability S-CONPRI +in O +their O +mechanical B-CONPRI +properties E-CONPRI +than O +wrought B-MATE +materials E-MATE +, O +placing O +more O +stringent O +demands O +on O +inspection S-CHAR +, O +part O +quality S-CONPRI +verification O +, O +and O +product O +qualification O +. O + + +Previous O +research S-CONPRI +on O +anomaly S-CONPRI +detection O +has O +primarily O +focused O +on O +using O +in-situ S-CONPRI +monitoring O +of O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +or O +post-process S-CONPRI +( O +ex-situ O +) O +x-ray B-CHAR +computed I-CHAR +tomography E-CHAR +. O + + +In O +this O +work O +, O +we O +show O +that O +convolutional O +neural B-CONPRI +networks E-CONPRI +( O +CNN O +) O +, O +a O +machine B-ENAT +learning I-ENAT +algorithm E-ENAT +, O +can O +directly O +predict O +the O +energy O +required O +to O +compressively O +deform O +gyroid O +and O +octet O +truss S-MACEQ +metamaterials S-MATE +using O +only O +optical S-CHAR +images S-CONPRI +. O + + +Using O +the O +tiled O +nature O +of O +engineered O +lattices S-CONPRI +, O +the O +relatively O +small O +data S-CONPRI +set O +( O +43 O +to O +48 O +lattices S-CONPRI +) O +can O +be S-MATE +augmented O +by O +systematically O +subdividing O +the O +original O +image S-CONPRI +into O +many O +smaller O +sub-images O +. O + + +During O +testing S-CHAR +of O +the O +CNN O +, O +the O +prediction S-CONPRI +from O +these O +sub-images O +can O +be S-MATE +combined O +using O +an O +ensemble-like O +technique O +to O +predict O +the O +deformation S-CONPRI +work O +of O +the O +entire O +lattice S-CONPRI +. O + + +This O +approach O +provides O +a O +fast O +and O +inexpensive O +screening O +tool S-MACEQ +for O +predicting O +properties S-CONPRI +of O +3D B-MANP +printed E-MANP +lattices O +. O + + +Importantly O +, O +this O +artificial O +intelligence O +strategy O +goes O +beyond O +‘ O +inspection S-CHAR +’ O +, O +since O +it O +accurately S-CHAR +estimates O +product O +performance S-CONPRI +metrics O +, O +not O +just O +the O +existence O +of O +defects S-CONPRI +. O + + +Plaster O +Binder B-MANP +Jetting E-MANP +( O +BJ S-MANP +) O +is O +one O +of O +the O +major O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +which O +has O +been O +in O +use O +since O +the O +1990s O +. O + + +It O +has O +many O +advantages O +such O +as S-MATE +the O +ability O +to O +print S-MANP +in O +full O +color O +CMY O +( O +K S-MATE +) O +, O +no O +support B-FEAT +structures E-FEAT +, O +and O +is O +relatively O +faster O +and O +less O +expensive O +when O +compared O +to O +other O +AM B-MANP +technologies E-MANP +. O + + +Since O +there O +is O +no O +phase S-CONPRI +transformation O +( O +e.g O +. O + + +powder S-MATE +to O +molten B-CONPRI +pool E-CONPRI +in O +powder B-MANP +bed I-MANP +fusion E-MANP +, O +directed B-MANP +energy I-MANP +deposition E-MANP +) O +, O +BJ S-MANP +does O +not O +require O +support B-FEAT +structures E-FEAT +and O +enables O +higher O +packing O +density S-PRO +in O +the O +build B-PARA +volume E-PARA +. O + + +However O +, O +relatively O +lower O +mechanical B-PRO +strength E-PRO +when O +compared O +to O +other O +AM B-MANP +processes E-MANP +has O +mostly O +limited O +it O +to O +non-functional O +applications O +such O +as S-MATE +prototyping O +. O + + +This O +paper O +investigates S-CONPRI +novel O +methods O +to O +improve O +the O +mechanical S-APPL +and O +temperature S-PARA +performance S-CONPRI +of O +plaster O +BJ S-MANP +additive B-APPL +manufactured I-APPL +parts E-APPL +via O +improved O +infiltration S-CONPRI +processes O +and O +incorporation O +of O +infiltrants O +with O +higher O +strength S-PRO +. O + + +Potential O +applications O +include O +functional O +end O +use O +products O +, O +including O +tooling S-CONPRI +, O +jigs S-MACEQ +and O +fixtures O +for O +higher O +temperature S-PARA +applications O +. O + + +Three O +2-part O +epoxy S-MATE +resin O +systems O +were O +evaluated O +as S-MATE +infiltrants O +in O +comparison O +to O +epoxy S-MATE +and O +cyanoacrylate O +( O +CA S-MATE +) O +resins S-MATE +recommended O +by O +the O +original O +equipment S-MACEQ +manufacturer O +( O +OEM O +) O +. O + + +Multiple O +impregnation S-MANP +methods O +including O +hot O +and O +wet O +vacuum O +were O +evaluated O +on O +their O +infiltration B-CONPRI +effectiveness E-CONPRI +. O + + +The O +best O +impregnation S-MANP +method O +was O +then O +used O +to O +prepare O +tensile S-PRO +, O +flexural O +and O +compressive O +samples S-CONPRI +for O +additional O +evaluation O +of O +each O +resin S-MATE +. O + + +Both O +resins S-MATE +and O +infiltrated O +samples S-CONPRI +were O +individually O +evaluated O +using O +Differential O +Scanning S-CONPRI +Calorimetry O +( O +DSC S-CHAR +) O +to O +determine O +glass B-CONPRI +transition I-CONPRI +temperatures E-CONPRI +and O +other O +thermal O +events O +. O + + +Infiltrated O +specimens O +of O +the O +best O +performing O +resins S-MATE +were O +evaluated O +for O +Heat B-CONPRI +Deflection E-CONPRI +Temperature O +( O +HDT O +) O +performance S-CONPRI +utilizing O +Dynamic B-CONPRI +Mechanical I-CONPRI +Analysis E-CONPRI +( O +DMA S-CONPRI +) O +. O + + +It O +was O +found O +that O +infiltration S-CONPRI +is O +anisotropic S-PRO +, O +with O +the O +higher O +penetration B-PARA +depth E-PARA +from O +the O +sides O +( O +between O +layers O +) O +than O +top O +and O +bottom O +( O +across O +layers O +) O +. O + + +Vacuum O +impregnation S-MANP +resulted O +in O +the O +highest O +infiltration S-CONPRI +depth O +by O +fully O +impregnating O +the O +25 O +mm S-MANP +cubic O +samples S-CONPRI +. O + + +The O +best O +performing O +epoxy S-MATE +showed O +a O +10 O +% O +increase O +in O +mechanical B-PRO +strength E-PRO +over O +the O +OEM O +epoxy S-MATE +at O +76 O +% O +reduction S-CONPRI +in O +cost O +. O + + +The O +OEM O +cyanoacrylate O +had O +the O +lowest O +mechanical B-PRO +strength E-PRO +across O +all O +tests O +. O + + +DSC S-CHAR +analysis O +revealed O +that O +the O +plaster O +and O +gypsum S-MATE +base O +material S-MATE +will O +start O +to O +dehydrate O +above O +100 O +°C O +and O +will O +ultimately O +limit S-CONPRI +the O +parts O +’ O +high O +temperature S-PARA +capabilities O +. O + + +The O +OEM O +epoxy S-MATE +showed O +the O +highest O +HDT O +. O + + +High O +residual B-PRO +stresses E-PRO +are O +typical O +in O +additively B-MANP +manufactured E-MANP +metals O +and O +can O +reach O +levels O +as S-MATE +high O +as S-MATE +the O +yield B-PRO +strength E-PRO +, O +leading O +to O +distortions O +and O +even O +cracks O +. O + + +Here O +, O +an O +in B-CONPRI +situ E-CONPRI +method O +for O +controlling O +residual B-PRO +stress E-PRO +during O +laser B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +was O +demonstrated O +. O + + +By O +illuminating O +the O +surface S-CONPRI +of O +a O +build S-PARA +with O +homogeneously O +intense O +, O +shaped O +light O +from O +a O +set S-APPL +of O +laser S-ENAT +diodes S-APPL +, O +the O +thermal O +history O +was O +controlled O +thereby O +reducing O +the O +residual B-PRO +stress E-PRO +in O +as-built O +parts O +. O + + +316L B-MATE +stainless I-MATE +steel E-MATE +bridge-shaped O +parts O +were O +built O +to O +characterize O +the O +effect O +of O +in B-CONPRI +situ E-CONPRI +annealing S-MANP +on O +the O +residual B-PRO +stress E-PRO +. O + + +A O +reduction S-CONPRI +in O +the O +overall O +residual B-PRO +stress E-PRO +value O +of O +up O +to O +90 O +% O +was O +realized O +without O +altering O +the O +as-built O +grain B-CONPRI +structure E-CONPRI +( O +no O +grain B-CONPRI +growth E-CONPRI +) O +. O + + +Some O +annealing S-MANP +effects O +on O +the O +cellular-dendritic O +solidification S-CONPRI +structure O +( O +patterns O +of O +higher O +solute O +content O +) O +occurred O +in O +areas S-PARA +that O +experienced O +prolonged O +exposure S-CONPRI +to O +elevated O +temperature S-PARA +. O + + +A O +comparison O +of O +the O +in B-CONPRI +situ E-CONPRI +process O +to O +conventional O +post-build O +annealing S-MANP +demonstrated O +equivalent O +stress S-PRO +reduction S-CONPRI +compared O +to O +rule-of-thumb O +thermal B-MANP +treatments E-MANP +. O + + +Use O +of O +this O +method O +could O +reduce O +or O +remove O +the O +need O +for O +post B-CONPRI +processing E-CONPRI +to O +remove O +residual B-PRO +stresses E-PRO +. O + + +Metallic S-MATE +cellular O +solids O +are O +a O +class O +of O +materials S-CONPRI +known O +for O +their O +high O +specific O +mechanical B-CONPRI +properties E-CONPRI +, O +being O +desirable O +in O +applications O +where O +a O +combination O +of O +high O +strength S-PRO +or O +stiffness S-PRO +and O +low O +density S-PRO +are O +important O +. O + + +These O +lightweight S-CONPRI +materials O +are O +often O +stochastic S-CONPRI +and O +manufactured S-CONPRI +by O +foaming O +or O +casting S-MANP +. O + + +If O +regular O +( O +periodic O +) O +lattice B-FEAT +structures E-FEAT +are O +desired O +, O +they O +may O +be S-MATE +manufactured O +by O +metallic B-MANP +additive I-MANP +manufacturing E-MANP +techniques O +. O + + +However O +, O +these O +have O +characteristic O +issues O +, O +such O +as S-MATE +un-melted O +powders S-MATE +, O +porosity S-PRO +and O +heterogeneous S-CONPRI +microstructures O +. O + + +This O +study O +reports O +a O +novel O +low-cost O +route O +for O +producing O +regular O +lattice B-FEAT +structures E-FEAT +by O +an O +additive B-MANP +manufacturing E-MANP +assisted O +investment B-MANP +casting E-MANP +technique O +. O + + +Fused B-MANP +filament I-MANP +fabrication E-MANP +is O +used O +to O +produce O +the O +lattice B-FEAT +structure E-FEAT +pattern O +which O +is O +infiltrated O +with O +plaster O +. O + + +The O +pattern S-CONPRI +is O +then O +burnt O +off O +and O +the O +aluminum S-MATE +is O +cast S-MANP +in O +vacuum O +. O + + +In O +this O +way O +we O +can O +manufacture S-CONPRI +non-stochastic O +metallic S-MATE +lattices S-CONPRI +having O +fine O +struts/ribs O +( O +0.6 O +mm S-MANP +cross-section O +using O +a O +0.4 O +mm S-MANP +nozzle O +) O +and O +relative B-PRO +densities E-PRO +down O +to O +0.036 O +. O + + +X-ray B-CHAR +micro I-CHAR +computed I-CHAR +tomography E-CHAR +( O +μCT O +) O +showed O +that O +as-cast O +A356 O +Aluminium B-MATE +alloy E-MATE +frameworks O +have O +high O +dimensional B-CHAR +tolerances E-CHAR +and O +fine O +detail O +control O +. O + + +Frameworks O +based O +on O +units O +of O +six O +connected O +struts S-MACEQ +ranging O +from O +intruding O +( O +auxetic O +) O +to O +protruding O +( O +hexagonal S-FEAT +) O +strut S-MACEQ +angles O +are O +studied O +. O + + +Vertical S-CONPRI +struts S-MACEQ +are O +finer O +than O +expected O +, O +reducing O +their O +moment O +of O +area S-PARA +which O +could O +impact S-CONPRI +their O +compressive B-PRO +strength E-PRO +. O + + +This O +new O +, O +low O +cost O +, O +route O +for O +producing O +high O +precision S-CHAR +metallic S-MATE +cellular O +lattices S-CONPRI +offers O +an O +attractive O +alternative O +to O +other O +additive B-MANP +manufacturing E-MANP +techniques O +( O +e.g O +. O + + +selective B-MANP +laser E-MANP +and O +electron B-MANP +beam I-MANP +melting E-MANP +) O +. O + + +Fine O +equiaxed O +dendrites S-BIOP +and O +discrete O +Laves B-CONPRI +phase E-CONPRI +were O +obtained O +using O +alow O +pulse O +frequency O +. O + + +Discrete O +distribution S-CONPRI +of O +δ-phase O +and O +high-density O +precipitation S-CONPRI +of O +γ″-Ni3Nb O +were O +obtained O +. O + + +A O +good O +combination O +of O +strength S-PRO +and O +ductility S-PRO +was O +obtained O +by O +optimizing O +the O +microstructures S-MATE +. O + + +Controlling O +of O +Nb-rich O +intermetallics S-MATE +is O +an O +important O +topic O +for O +laser B-MANP +additive I-MANP +manufacturing E-MANP +( O +LAM S-MANP +) O +of O +Inconel B-MATE +718 E-MATE +. O + + +In O +the O +present O +work O +, O +a O +novel O +quasi-continuous-wave O +LAM S-MANP +( O +QCW-LAM O +) O +with O +different O +pulse O +frequencies O +is O +used O +to O +control O +the O +morphology S-CONPRI +, O +distribution S-CONPRI +and O +amount O +of O +Nb-rich O +phases O +of O +Inconel B-MATE +718 E-MATE +. O + + +The O +results O +show O +that O +dispersively O +distributed O +Nb-rich O +Laves B-CONPRI +phases E-CONPRI +are O +produced O +by O +introducing O +equiaxed O +dendrites S-BIOP +at O +a O +low O +pulse O +frequency O +while O +a O +high O +pulse O +frequency O +results O +in O +coarse O +and O +chain-like O +Laves B-CONPRI +phases E-CONPRI +. O + + +The O +samples S-CONPRI +featured O +by O +fine O +and O +discrete O +Laves B-CONPRI +phases E-CONPRI +show O +a O +good O +response O +to O +the O +post O +solution-aging O +treatment O +in O +which O +the O +dissolution O +of O +Laves-phase O +and O +subsequently O +discrete O +precipitations O +of O +δ-phase O +as S-MATE +well O +as S-MATE +high-density O +precipitation S-CONPRI +of O +γ″-Ni3Nb O +strengthening B-CONPRI +phase E-CONPRI +are O +promoted O +. O + + +Thus O +, O +a O +good O +combination O +of O +strength S-PRO +and O +ductility S-PRO +is O +achieved O +for O +the O +QCW-LAM O +fabricated S-CONPRI +Inconel O +718 O +. O + + +This O +study O +shows O +a O +desired O +mechanical B-CONPRI +property E-CONPRI +can O +be S-MATE +obtained O +by O +synergistically O +optimizing O +the O +microstructures S-MATE +in O +which O +various O +Nb-rich O +phases O +are O +involved O +even O +though O +the O +formation O +of O +brittle S-PRO +Laves O +phases O +is O +hardly O +avoided O +during O +LAM S-MANP +of O +Inconel B-MATE +718 E-MATE +. O + + +This O +paper O +discusses O +the O +effects O +of O +process B-CONPRI +parameters E-CONPRI +in O +TIG S-MANP +based O +WAAM S-MANP +for O +specimens O +created O +using O +Hastelloy S-MATE +X O +alloy S-MATE +( O +Haynes O +International O +) O +welding S-MANP +wire O +and O +304 O +stainless-steel O +plate O +as S-MATE +the O +substrate S-MATE +. O + + +The O +Taguchi B-CONPRI +method E-CONPRI +and O +ANOVA O +were O +used O +to O +determine O +the O +effects O +of O +travel O +speed O +, O +wire O +feed S-PARA +rate O +, O +current O +, O +and O +argon S-MATE +flow O +rate O +on O +the O +responses O +including O +bead S-CHAR +shape O +and O +size O +, O +bead S-CHAR +roughness O +, O +oxidation S-MANP +levels O +, O +melt S-CONPRI +through O +depth O +, O +and O +the O +microstructure S-CONPRI +. O + + +Increasing O +travel O +speed O +or O +decreasing O +current O +caused O +a O +decrease O +in O +melt S-CONPRI +through O +depth O +and O +an O +increase O +in O +roughness S-PRO +. O + + +No O +observable O +interface S-CONPRI +between O +the O +layers O +was O +present O +suggesting O +a O +complete O +fusion S-CONPRI +between O +layers O +with O +no O +oxidation S-MANP +. O + + +The O +zones O +were O +characterized O +by O +the O +size O +and O +distribution S-CONPRI +of O +the O +molybdenum B-MATE +carbide E-MATE +formations O +within O +the O +matrix O +grain S-CONPRI +formations O +. O + + +Reactive-deposition O +additive B-MANP +manufacturing E-MANP +was O +employed O +to O +manufacture S-CONPRI +titanium-based O +metal B-MATE +matrix I-MATE +composites E-MATE +for O +improving O +the O +wear B-PRO +resistance E-PRO +and O +temperature S-PARA +capability O +of O +commercially O +pure O +titanium S-MATE +( O +CPTi O +) O +; O +a O +standard S-CONPRI +material S-MATE +in O +the O +aerospace S-APPL +, O +biomedical S-APPL +, O +and O +marine B-APPL +industries E-APPL +, O +among O +others O +. O + + +Composites S-MATE +were O +manufactured S-CONPRI +by O +leveraging O +in B-CONPRI +situ E-CONPRI +high-temperature O +reactions O +between O +CPTi O +, O +zirconium S-MATE +( O +Zr S-MATE +) O +, O +and O +boron B-MATE +nitride E-MATE +( O +BN S-MATE +) O +powders S-MATE +during O +laser-based O +directed-energy-deposition O +( O +DED S-MANP +) O +3D-printing S-MANP +. O + + +The O +effect O +of O +Zr S-MATE +and O +BN S-MATE +on O +the O +processability O +, O +phase S-CONPRI +formation O +( O +s S-MATE +) O +, O +surface S-CONPRI +wear O +, O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +3D-printed S-MANP +titanium O +was O +studied O +by O +printing O +commercially-pure O +titanium S-MATE +with O +premixed O +additions O +of O +20 O +wt O +% O +Zr S-MATE +and O +10 O +wt O +% O +BN S-MATE +using O +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS™ O +) O +. O + + +In O +the O +as-printed O +BN-containing O +structures O +, O +phase S-CONPRI +analysis O +revealed O +reinforcing O +ceramic S-MATE +phases O +TiN S-MATE +, O +TiB O +, O +and O +TiB2 O +, O +whose O +presence O +was O +substantiated O +through O +first-principles O +analysis O +. O + + +The O +combined O +addition O +of O +Zr S-MATE +and O +BN S-MATE +produced O +a O +Ti-Zr O +alloy S-MATE +matrix O +with O +BN-particle O +and O +in B-CONPRI +situ E-CONPRI +phase-reinforced O +microstructure S-CONPRI +with O +450 O +% O +higher O +hardness S-PRO +( O +from O +318 O +± O +26 O +HV0.1/15 O +to O +1424 O +± O +361 O +HV0.5/15 O +) O +, O +a O +stabilized O +sliding−COF O +within O +50 O +m O +of O +reciprocating O +wear S-CONPRI +testing S-CHAR +, O +and O +9x O +lower O +final O +wear S-CONPRI +rate O +in O +comparison O +to O +LENS™ O +deposited O +titanium S-MATE +. O + + +Zr-addition O +alone O +revealed O +a O +combined O +alloyed O +and O +particle-reinforced O +composite S-MATE +with O +12 O +% O +higher O +hardness S-PRO +, O +23 O +% O +higher O +compressive O +yield B-PRO +strength E-PRO +, O +and O +an O +11 O +% O +decrease O +in O +final O +wear S-CONPRI +rate O +compared O +to O +LENS™-produced O +titanium S-MATE +. O + + +Our O +results O +demonstrate O +that O +reactive-deposition O +based O +additive B-MANP +manufacturing E-MANP +can O +be S-MATE +exploited O +to O +create O +unique O +coatings S-APPL +and O +net-shape O +alloyed O +structures O +to O +enhance O +the O +surface S-CONPRI +and O +bulk O +properties S-CONPRI +of O +standard S-CONPRI +engineering B-MATE +materials E-MATE +such O +as S-MATE +titanium O +. O + + +We O +propose O +a O +simple S-MANP +method O +to O +construct O +a O +process S-CONPRI +map O +for O +additive B-MANP +manufacturing E-MANP +using O +a O +support S-APPL +vector O +machine S-MACEQ +. O + + +By O +observing O +the O +surface S-CONPRI +of O +the O +built O +parts O +and O +classifying O +them O +into O +two O +classes O +( O +good O +or O +bad O +) O +, O +this O +method O +enables O +a O +process S-CONPRI +map O +to O +be S-MATE +constructed O +in O +order O +to O +predict O +a O +process S-CONPRI +condition O +that O +is O +effective O +at O +fabricating S-MANP +a O +part O +with O +low O +pore B-PRO +density E-PRO +. O + + +This O +proposed O +method O +is O +demonstrated O +in O +a O +biomedical S-APPL +CoCr O +alloy S-MATE +system O +. O + + +This O +study O +also O +shows O +that O +the O +value O +of O +a O +decision O +function O +in O +a O +support S-APPL +vector O +machine S-MACEQ +has O +a O +physical O +meaning O +( O +at O +least O +in O +the O +proposed O +method O +) O +and O +is O +a O +semi-quantitative O +guideline O +for O +porosity B-PRO +density E-PRO +of O +parts O +fabricated S-CONPRI +by O +additive B-MANP +manufacturing E-MANP +. O + + +In O +binder B-MANP +jetting I-MANP +additive I-MANP +manufacturing E-MANP +( O +BJAM O +) O +, O +the O +part O +geometry S-CONPRI +is O +generated O +via O +a O +binding O +agent O +during O +printing O +and O +structural B-PRO +integrity E-PRO +is O +imparted O +during O +sintering S-MANP +at O +a O +later O +stage O +. O + + +This O +separation O +between O +shape O +generation O +and O +thermal O +processing O +allows O +the O +sintering S-MANP +process S-CONPRI +to O +be S-MATE +uniquely O +controlled O +and O +the O +final O +microstructural S-CONPRI +characteristics O +to O +be S-MATE +tailored O +. O + + +The O +separation O +between O +the O +printing O +and O +consolidation S-CONPRI +steps O +offers O +a O +unique O +opportunity O +to O +print S-MANP +responsive O +materials S-CONPRI +that O +are O +later O +“ O +activated O +” O +by O +temperature S-PARA +and/or O +environment O +. O + + +This O +concept O +is O +preliminarily O +demonstrated O +using O +a O +foaming O +copper S-MATE +feedstock O +, O +such O +that O +the O +copper S-MATE +is O +printed O +, O +sintered S-MANP +and O +then O +foamed O +via O +intraparticle O +expansion O +in O +separate O +steps O +. O + + +The O +integration O +of O +foaming O +feedstock S-MATE +in O +BJAM O +could O +allow O +for O +creation O +of O +ultra-lightweight O +structures O +that O +offer O +hierarchical O +porosity S-PRO +, O +graded O +density S-PRO +, O +and/or O +tailored O +absorption S-CONPRI +properties O +. O + + +This O +work O +investigates S-CONPRI +processing O +protocol S-CONPRI +for O +copper S-MATE +foam O +structures O +to O +achieve O +the O +highest O +porosity S-PRO +. O + + +The O +copper S-MATE +feedstock O +was O +prepared O +by O +distributing O +copper B-MATE +oxides E-MATE +through O +the O +copper S-MATE +matrix O +via O +mechanical B-MANP +milling E-MANP +, O +and O +that O +powder S-MATE +was O +then O +printed O +into O +a O +green O +geometry S-CONPRI +through O +BJAM O +. O + + +The O +printed O +green B-PRO +parts E-PRO +were O +then O +heat S-CONPRI +treated O +using O +different O +thermal B-PARA +cycles E-PARA +to O +investigate O +the O +porosity S-PRO +evolution S-CONPRI +relative O +to O +various O +heating S-MANP +conditions O +. O + + +The O +heat S-CONPRI +treated O +parts O +were O +then O +examined O +for O +their O +resulting O +properties S-CONPRI +including O +porosity S-PRO +, O +microstructural B-CONPRI +evolution E-CONPRI +, O +and O +volumetric O +shrinkage S-CONPRI +. O + + +Parts O +that O +were O +initially O +sintered S-MANP +in O +air O +and O +then O +annealed O +in O +a O +hydrogen O +atmosphere O +led S-APPL +to O +higher O +porosity S-PRO +compared O +to O +those O +sintered S-MANP +in O +hydrogen O +alone O +. O + + +Anisotropy S-PRO +in O +linear O +shrinkage S-CONPRI +in O +X O +, O +Y S-MATE +, O +and O +Z O +direction O +was O +also O +observed O +in O +the O +heat S-CONPRI +treated O +parts O +with O +the O +largest O +linear O +shrinkage S-CONPRI +occurring O +in O +the O +Z O +direction O +. O + + +Additive B-MANP +manufacturing E-MANP +that O +allows O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +shaping O +of O +complex B-CONPRI +structures E-CONPRI +is O +of O +rapidly O +increasing O +interest O +in O +production S-MANP +technology O +. O + + +A O +particularly O +rapid B-ENAT +prototyping E-ENAT +technique O +of O +additive B-MANP +manufacturing E-MANP +is O +laser B-CONPRI +beam E-CONPRI +melting O +( O +LBM O +) O +. O + + +This O +3D B-MANP +printing E-MANP +method O +is O +based O +on O +a O +powder B-MANP +bed I-MANP +fusion E-MANP +technique O +, O +using O +a O +high-powered O +laser S-ENAT +to O +melt S-CONPRI +and O +consolidate O +metallic B-MATE +powders E-MATE +. O + + +The O +process S-CONPRI +needs O +a O +tightly O +controlled O +atmosphere O +of O +inert B-CONPRI +gas E-CONPRI +, O +which O +requires O +a O +confined O +space O +of O +a O +building B-PARA +chamber E-PARA +. O + + +This O +and O +more O +process S-CONPRI +related O +factors O +like O +elevated O +temperatures S-PARA +, O +laser S-ENAT +radiation O +or O +the O +resulting O +light O +intensity O +caused O +by O +the O +melting S-MANP +of O +metals S-MATE +, O +make O +a O +closed-loop O +quality B-CONPRI +control E-CONPRI +very O +ambitious O +. O + + +In O +this O +paper O +, O +we O +propose O +a O +new O +in-process O +approach O +for O +quality B-CONPRI +control E-CONPRI +with O +high O +precision S-CHAR +metrology S-CONPRI +based O +on O +structured O +light O +. O + + +The O +precise O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +dimensional O +measurement S-CHAR +of O +both O +the O +printed O +part O +and O +the O +powder S-MATE +deposition S-CONPRI +, O +allows O +for O +process S-CONPRI +assessment O +in- O +or O +off-line O +. O + + +For O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +additive B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +metals S-MATE +, O +residual S-CONPRI +stress-induced O +cracking S-CONPRI +often O +occurs O +at O +the O +interface S-CONPRI +between O +the O +solid O +and O +lattice S-CONPRI +support O +, O +and O +hence O +it O +is O +important O +to O +characterize O +the O +as-built O +critical O +J-integral O +of O +the O +interface S-CONPRI +to O +prevent O +cracking S-CONPRI +to O +occur O +. O + + +However O +, O +the O +standard S-CONPRI +testing O +method O +for O +the O +critical O +J-integral O +of O +the O +interface S-CONPRI +( O +ASTM O +E1820-01 O +) O +does O +not O +work O +well O +in O +this O +situation O +for O +four O +reasons O +: O +1 O +) O +standard S-CONPRI +test O +blocks O +consisting O +of O +half O +solid O +and O +half O +lattice S-CONPRI +support O +crack O +during O +the O +printing B-MANP +process E-MANP +; O +2 O +) O +even O +after O +reinforcing O +the O +block O +with O +side O +walls O +to O +prevent O +cracking S-CONPRI +, O +post-stress O +relief O +causes O +the O +yield B-PRO +strength E-PRO +to O +change O +significantly O +, O +which O +would O +affect O +J-integral O +significantly O +; O +3 O +) O +post-build O +machining S-MANP +processes O +to O +obtain O +the O +required O +standard S-CONPRI +specimen O +geometry S-CONPRI +release O +a O +significant O +amount O +of O +residual B-PRO +stress E-PRO +, O +which O +also O +gives O +incorrect O +J-integral O +value O +; O +4 O +) O +the O +interface S-CONPRI +is O +so O +brittle S-PRO +that O +it O +is O +very O +difficult O +to O +machine S-MACEQ +it O +to O +the O +required O +standard S-CONPRI +configuration S-CONPRI +. O + + +Hence O +a O +more O +effective O +method O +that O +combines O +printing O +experiments O +and O +residual B-PRO +stress E-PRO +simulation O +is O +proposed O +to O +determine O +the O +as-built O +critical O +J-integral O +of O +the O +interface S-CONPRI +. O + + +Next O +, O +the O +experimentally-validated O +modified B-CONPRI +inherent I-CONPRI +strain I-CONPRI +method E-CONPRI +is O +utilized O +to O +simulate O +residual B-PRO +stress E-PRO +and O +compute O +the O +critical O +J-integral O +at O +where O +the O +interfacial O +cracking S-CONPRI +occurs O +. O + + +The O +proposed O +method O +is O +subsequently O +validated O +using O +the O +obtained O +critical O +J-integral O +to O +predict O +cracking S-CONPRI +in O +different O +geometries S-CONPRI +. O + + +This O +method O +eliminates O +the O +uncertainties O +associated O +with O +stress B-CONPRI +relaxation E-CONPRI +by O +heat B-MANP +treatment E-MANP +and O +machining S-MANP +on O +mechanical B-CONPRI +properties E-CONPRI +, O +as S-MATE +well O +as S-MATE +sheds O +light O +on O +crack O +prediction S-CONPRI +for O +as-built O +L-PBF S-MANP +components S-MACEQ +. O + + +This O +study O +aims O +to O +investigate O +the O +fabrication S-MANP +feasibility O +of O +a O +conventionally O +rolled O +low-carbon O +low-alloy O +shipbuilding O +steel S-MATE +plate O +( O +EH36 O +) O +by O +emerging O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +technology S-CONPRI +using O +ER70S O +feedstock S-MATE +wire O +. O + + +Following O +the O +fabrication S-MANP +process O +, O +different O +heat B-MANP +treatment E-MANP +cycles O +, O +including O +air-cooling O +and O +water-quenching O +from O +the O +intercritical O +austenitizing S-MANP +temperature O +of O +800 O +°C O +, O +were O +applied O +to O +both O +conventionally O +rolled O +and O +WAAM S-MANP +samples S-CONPRI +. O + + +Microstructural S-CONPRI +features O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +both O +rolled O +and O +WAAM S-MANP +fabricated S-CONPRI +ship O +plates O +were O +comprehensively O +characterized O +and O +compared O +before O +and O +after O +different O +heat B-MANP +treatment E-MANP +cycles O +. O + + +Both O +air-cooling O +and O +water-quenching O +heat B-MANP +treatments E-MANP +resulted O +in O +the O +formation O +of O +hard O +martensite-austenite O +( O +MA O +) O +constituents O +in O +the O +microstructure S-CONPRI +of O +the O +rolled O +ship O +plate O +, O +leading O +to O +the O +increased O +hardness S-PRO +and O +tensile B-PRO +strength E-PRO +and O +reduced O +ductility S-PRO +of O +the O +component S-MACEQ +. O + + +On O +the O +other O +hand O +, O +air-cooling O +heat B-MANP +treatment E-MANP +was O +found O +to O +homogenize O +the O +microstructure S-CONPRI +of O +the O +WAAM S-MANP +ship O +plate O +, O +causing O +a O +slight O +decrease O +in O +the O +hardness S-PRO +and O +tensile B-PRO +strength E-PRO +, O +while O +the O +water-quenching O +cycle O +led S-APPL +to O +the O +formation O +of O +acicular O +ferrite S-MATE +and O +intergranular O +pearlite S-MATE +, O +contributing O +to O +the O +improved O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +part O +. O + + +Therefore O +, O +the O +enhanced O +mechanical B-PRO +integrity E-PRO +of O +the O +water-quenched O +WAAM S-MANP +component S-MACEQ +as S-MATE +compared O +to O +its O +rolled O +counterpart O +verified O +the O +fabrication S-MANP +feasibility O +of O +the O +ship O +plates O +by O +the O +WAAM S-MANP +. O + + +The O +ability O +to O +combine O +multiple O +materials S-CONPRI +( O +MM S-MANP +) O +into O +a O +single O +component S-MACEQ +to O +expand O +its O +range S-PARA +of O +functional O +properties S-CONPRI +is O +of O +tremendous O +value O +to O +the O +ceaseless O +optimization S-CONPRI +of O +engineering S-APPL +systems O +. O + + +Although O +fusion S-CONPRI +and O +solid-state S-CONPRI +joining S-MANP +techniques O +have O +been O +typically O +used O +to O +join O +dissimilar O +metals S-MATE +, O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +the O +potential O +to O +produce O +MM S-MANP +parts O +with O +a O +complex O +spatial B-CHAR +distribution E-CHAR +of O +materials S-CONPRI +and O +properties S-CONPRI +that O +is O +otherwise O +unachievable O +. O + + +In O +this O +work O +, O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +was O +used O +to O +manufacture S-CONPRI +MM O +parts O +which O +feature S-FEAT +steep O +material S-MATE +transitions O +from O +316L B-MATE +stainless I-MATE +steel E-MATE +( O +SS S-MATE +) O +to O +Ti-6Al-4V S-MATE +( O +TiA O +) O +through O +an O +interlayer O +of O +HOVADUR® O +K220 O +copper–alloy O +( O +CuA O +) O +. O + + +The O +microstructure S-CONPRI +in O +both O +the O +CuA/SS O +and O +TiA/CuA O +interfaces O +were O +examined O +in O +detail O +and O +the O +latter O +was O +found O +to O +be S-MATE +the O +critical O +interface S-CONPRI +as S-MATE +it O +contained O +three O +detrimental O +phases O +( O +i.e O +. O + + +L21 O +ordered O +phase S-CONPRI +, O +amorphous O +phase S-CONPRI +, O +and O +Ti2Cu O +) O +which O +limit S-CONPRI +the O +mechanical B-PRO +strength E-PRO +of O +the O +overall O +MM S-MANP +part O +. O + + +By O +making O +use O +of O +the O +non-homogeneity O +within O +the O +melt B-MATE +pool E-MATE +and O +limiting O +the O +laser B-CONPRI +energy E-CONPRI +input O +, O +the O +relatively O +tougher O +interfacial O +α′-Ti O +phase S-CONPRI +can O +be S-MATE +increased O +at O +the O +expense O +of O +other O +brittle S-PRO +phases O +, O +forming S-MANP +what O +is O +essentially O +a O +composite B-CONPRI +structure E-CONPRI +at O +the O +TiA/CuA O +interface S-CONPRI +. O + + +During O +tensile B-CHAR +testing E-CHAR +, O +the O +interfacial O +α′-Ti O +phase S-CONPRI +is O +capable O +of O +deflecting O +cracks O +from O +the O +relatively O +brittle S-PRO +TiA/CuA O +interface S-CONPRI +towards O +the O +ductile S-PRO +CuA O +interlayer O +and O +an O +overall O +tensile B-PRO +strength E-PRO +in O +excess O +of O +500 O +MPa S-CONPRI +can O +be S-MATE +obtained O +. O + + +This O +method O +of O +introducing O +an O +interfacial O +composite B-CONPRI +structure E-CONPRI +to O +improve O +MM S-MANP +bonding S-CONPRI +is O +envisioned O +to O +be S-MATE +applicable O +for O +the O +SLM S-MANP +of O +other O +metallic S-MATE +combinations O +as S-MATE +well O +. O + + +A O +stereolithographic O +approach O +based O +on O +thiol-ene O +click O +chemistry S-CONPRI +is O +developed O +to O +3D B-MANP +print E-MANP +preceramic O +polymers S-MATE +into O +infusible O +thermosets O +. O + + +Three O +classes O +of O +preceramic O +polymers S-MATE +, O +including O +siloxane O +, O +carbosilane O +and O +carbosilazane O +, O +are O +additively B-MANP +manufactured E-MANP +. O + + +Upon O +pyrolysis S-MANP +, O +thermosets O +transform O +into O +glassy O +ceramics S-MATE +with O +uniform O +shrinkage S-CONPRI +and O +high O +density S-PRO +. O + + +A O +fabricated S-CONPRI +SiOC O +honeycomb S-CONPRI +exhibits O +a O +significantly O +higher O +compressive B-PRO +strength E-PRO +to O +weight S-PARA +ratio O +in O +comparison O +to O +other O +porous S-PRO +ceramics S-MATE +. O + + +Here O +we O +introduce O +a O +versatile O +stereolithographic O +route O +to O +produce O +three O +different O +kinds O +of O +Si-containing O +thermosets O +that O +yield O +high O +performance S-CONPRI +ceramics S-MATE +upon O +thermal B-MANP +treatment E-MANP +. O + + +Due O +to O +the O +rapidity O +and O +efficiency O +of O +the O +thiol-ene O +click O +reactions O +, O +this O +additive B-MANP +manufacturing I-MANP +process E-MANP +can O +be S-MATE +effectively O +carried O +out O +using O +conventional O +light B-MACEQ +sources E-MACEQ +on O +benchtop O +printers S-MACEQ +. O + + +Through O +pyrolysis S-MANP +the O +thermosets O +transform O +into O +glassy O +ceramics S-MATE +with O +uniform O +shrinkage S-CONPRI +and O +high O +density S-PRO +. O + + +The O +obtained O +ceramic S-MATE +structures O +are O +nearly O +fully B-PARA +dense E-PARA +, O +have O +smooth B-CONPRI +surfaces E-CONPRI +, O +and O +are O +free O +from O +macroscopic S-CONPRI +voids O +and O +defects S-CONPRI +. O + + +A O +fabricated S-CONPRI +SiOC O +honeycomb S-CONPRI +was O +shown O +to O +exhibit O +a O +significantly O +higher O +compressive B-PRO +strength E-PRO +to O +weight S-PARA +ratio O +in O +comparison O +to O +other O +porous S-PRO +ceramics S-MATE +. O + + +Schematic O +representation O +of O +the O +stereolithographic O +additive B-MANP +manufacturing E-MANP +of O +preceramic O +polymers S-MATE +into O +intricately O +patterned O +thermosets O +assisted O +by O +thiol-ene O +click O +chemistry S-CONPRI +and O +their O +subsequent O +conversion O +into O +ceramics.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +189 O +Advances O +in O +multi-material B-MANP +additive I-MANP +manufacturing E-MANP +have O +enabled O +advancements O +in O +the O +manufacture S-CONPRI +of O +composite B-MATE +materials E-MATE +. O + + +In O +this O +work O +, O +a O +family O +of O +thermite-based O +reactive B-MATE +materials E-MATE +is O +created O +and O +evaluated O +for O +the O +suitability O +as S-MATE +composite O +energetic O +structures O +. O + + +The O +burn O +rate O +with O +respect O +to O +binder S-MATE +ratio O +is O +observed O +to O +be S-MATE +highly O +predictable S-CONPRI +and O +exponential O +( O +coefficients O +of O +determination O +of O +rTi2=0.984 O +and O +rAl2=0.973 O +) O +, O +with O +composites S-MATE +transitioning O +from O +one O +binder S-MATE +mass O +fraction S-CONPRI +to O +another O +. O + + +To O +create O +composites S-MATE +, O +a O +single O +layered O +syringe S-MACEQ +and O +nozzle S-MACEQ +are O +used O +in O +conjunction O +with O +continuous O +filament S-MATE +direct O +ink S-MATE +writing O +. O + + +The O +resulting O +prints O +show O +success O +in O +composite B-CONPRI +structure E-CONPRI +with O +a O +transition S-CONPRI +zone O +between O +printed O +materials S-CONPRI +. O + + +These O +results O +show O +both O +a O +variety O +of O +thermite-based O +energetics O +with O +easily O +modifiable O +reaction B-PARA +rates E-PARA +and O +a O +technique O +to O +print S-MANP +said O +reactive B-MATE +materials E-MATE +to O +create O +composite B-CONPRI +structures E-CONPRI +. O + + +Space O +agencies O +are O +looking O +for O +advanced O +technologies S-CONPRI +to O +build S-PARA +light O +weight S-PARA +and O +stiff O +payload O +components S-MACEQ +to O +bear O +space O +environment O +and O +launch O +loads O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +techniques O +like O +Direct B-MANP +Metal I-MANP +Laser I-MANP +Sintering E-MANP +( O +DMLS S-MANP +) O +is O +one O +of O +the O +suitable O +option O +which O +can O +be S-MATE +explored O +for O +space O +applications O +. O + + +This O +paper O +highlights O +the O +development O +process S-CONPRI +of O +Antenna O +Feed S-PARA +Array O +( O +AFA O +) O +using O +DMLS S-MANP +as S-MATE +an O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technique O +. O + + +Such O +horns O +are O +preferred O +for O +this O +development O +as S-MATE +they O +are O +the O +prime O +choice O +for O +feed S-PARA +elements S-MATE +in O +High O +Throughput S-CHAR +satellites O +( O +HTS O +) O +that O +employ O +Multibeam O +Antennas O +. O + + +In O +the O +development O +process S-CONPRI +, O +certain O +design B-CONPRI +rules E-CONPRI +of O +AM S-MANP +are O +adopted O +based O +on O +consideration O +to O +produce O +self-sustaining O +structures O +. O + + +AFA O +realized O +by O +DMLS S-MANP +is O +evaluated O +by O +functional O +testing S-CHAR +, O +vibration O +testing S-CHAR +for O +space O +qualification O +test O +levels O +. O + + +Variations S-CONPRI +in O +local O +processing O +parameters S-CONPRI +and O +conditions O +in O +additively B-MANP +manufactured E-MANP +materials O +make O +mechanical B-CONPRI +properties E-CONPRI +difficult O +to O +characterize O +. O + + +Microtensile O +testing S-CHAR +is O +providing O +a O +wealth O +of O +information O +on O +these O +local O +property B-CONPRI +variations E-CONPRI +. O + + +Here O +we O +utilize O +spatial O +autocorrelation O +techniques O +to O +show O +autocorrelation O +of O +grain B-PRO +sizes E-PRO +and O +mechanical B-CONPRI +properties E-CONPRI +with O +build B-PARA +height E-PARA +in O +a O +specially-designed O +, O +additively B-MANP +manufactured E-MANP +AlSi10Mg O +part O +. O + + +This O +result O +suggests O +that O +, O +at O +least O +in O +some O +cases O +, O +an O +interplay O +between O +local O +part O +geometry S-CONPRI +and O +the O +fabrication S-MANP +process O +occurs O +that O +affects O +local O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Complex O +thermal O +behaviour O +during O +fabrication S-MANP +plays O +an O +import O +role O +in O +the O +geometrical O +formation O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +Ti6Al4V S-MATE +components S-MACEQ +manufactured O +using O +Wire B-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +technology S-CONPRI +. O + + +In O +this O +study O +, O +through O +in-situ S-CONPRI +temperature O +measurement S-CHAR +, O +the O +heat B-PRO +accumulation E-PRO +and O +thermal O +behaviour O +during O +the O +gas S-CONPRI +tungsten O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +GT-WAAM O +) O +process S-CONPRI +are O +presented O +. O + + +The O +effects O +of O +heat B-PRO +accumulation E-PRO +on O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +additively B-MANP +manufactured E-MANP +Ti6Al4V O +parts O +were O +studied O +by O +means O +of O +optical B-CHAR +microscopy E-CHAR +( O +OM S-CHAR +) O +, O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +energy B-CHAR +dispersive I-CHAR +spectrometer E-CHAR +( O +EDS S-CHAR +) O +and O +standard S-CONPRI +tensile O +tests O +, O +aiming O +to O +explore O +the O +feasibility S-CONPRI +of O +fabricating S-MANP +Ti6Al4V O +parts O +by O +GT-WAAM O +using O +localized O +gas S-CONPRI +shielding O +. O + + +The O +results O +show O +that O +due O +to O +the O +influences O +of O +thermal O +accumulation O +, O +the O +layer S-PARA +’ O +s S-MATE +surface O +oxidation S-MANP +, O +microstructural B-CONPRI +evolution E-CONPRI +, O +grain B-PRO +size E-PRO +, O +and O +crystalline O +phase S-CONPRI +vary O +along O +the O +building B-PARA +direction E-PARA +of O +the O +as-fabricated O +wall O +, O +which O +creates O +variations S-CONPRI +in O +mechanical B-CONPRI +properties E-CONPRI +and O +fracture S-CONPRI +features O +. O + + +It O +has O +also O +been O +found O +that O +it O +is O +necessary O +to O +maintain O +the O +process S-CONPRI +interpass B-PARA +temperature E-PARA +below O +200 O +°C O +to O +ensure O +an O +acceptable O +quality S-CONPRI +of O +Ti6Al4V S-MATE +part O +fabricated S-CONPRI +using O +only O +localized O +gas S-CONPRI +shielding O +in O +an O +otherwise O +open O +atmosphere O +. O + + +This O +research S-CONPRI +provides O +a O +better O +understanding O +of O +the O +effects O +of O +heat B-PRO +accumulation E-PRO +on O +targeted O +deposition S-CONPRI +properties O +during O +the O +WAAM S-MANP +process S-CONPRI +, O +which O +will O +benefit O +future O +process B-CONPRI +control E-CONPRI +, O +improvement O +, O +and O +optimization S-CONPRI +. O + + +A O +novel O +binder-free S-CONPRI +3D B-MANP +printing E-MANP +method O +with O +zero O +process B-MATE +contaminants E-MATE +is O +developed O +. O + + +The O +first O +ever O +study O +on O +employing O +microwave S-ENAT +( O +MW S-CONPRI +) O +sintering S-MANP +for O +inkjet B-MANP +3D I-MANP +printing E-MANP +. O + + +Reduction S-CONPRI +of O +sintering B-PARA +time E-PARA +up O +to O +four O +times O +compared O +to O +conventional O +sintering S-MANP +. O + + +Discussion O +on O +thermal O +and O +non-thermal O +effects O +in O +MW B-MANP +sintering E-MANP +of O +3D B-APPL +printed I-APPL +parts E-APPL +. O + + +3D B-MANP +printing E-MANP +( O +3DP S-MANP +) O +is O +a O +two-step O +additive B-MANP +manufacturing E-MANP +technique O +( O +AM S-MANP +) O +in O +which O +additively B-MANP +manufactured E-MANP +green O +parts O +in O +the O +first O +step S-CONPRI +are O +transformed O +into O +functional O +parts O +during O +the O +second O +step S-CONPRI +. O + + +Here O +we O +use O +capillary-mediated B-MANP +binderless I-MANP +3DP E-MANP +as S-MATE +a O +novel O +method O +to O +additively B-MANP +manufacture E-MANP +green O +parts O +of O +Mg-5.06Zn-0.15 B-MATE +Zr E-MATE +powder O +. O + + +A O +unified O +perspective O +on O +the O +development O +steps O +of O +process B-CONPRI +parameters E-CONPRI +to O +obtain O +sufficient O +handling B-PRO +strength E-PRO +and O +a O +high O +level O +of O +dimensional B-CHAR +accuracy E-CHAR +in O +the O +green B-PRO +parts E-PRO +without O +compromising O +its O +chemical B-CONPRI +composition E-CONPRI +is O +established O +by O +using O +a O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +, O +X-ray B-CHAR +micro-tomography E-CHAR +, O +vibrational B-ENAT +spectroscopy E-ENAT +, O +and O +chemical B-CHAR +analysis E-CHAR +. O + + +For O +the O +first O +time O +, O +microwave S-ENAT +( O +MW S-CONPRI +) O +sintering S-MANP +is O +successfully O +used O +for O +densification S-MANP +of O +the O +green B-PRO +parts E-PRO +with O +centimeter-scale B-CONPRI +dimensions E-CONPRI +in O +which O +the O +primary O +chemical B-CONPRI +composition E-CONPRI +of O +the O +Mg-Zn-Zr B-MATE +powder E-MATE +is O +retrieved O +from O +the O +green B-PRO +parts E-PRO +, O +resulting O +in O +a O +compositionally O +zero-sum O +AM B-MANP +process E-MANP +. O + + +It O +is O +found O +that O +swelling S-CONPRI +leads O +to O +loss O +of O +shape B-CONPRI +fidelity E-CONPRI +during O +MW B-MANP +sintering E-MANP +of O +the O +green B-PRO +parts E-PRO +at O +temperatures S-PARA +≥ O +510 O +°C O +. O + + +As S-MATE +discussed O +in O +the O +context O +of O +thermal O +and O +non-thermal O +effects O +, O +MW S-CONPRI +significantly O +reduced O +sintering B-PARA +time E-PARA +by O +a O +factor O +of O +three O +to O +four O +times O +when O +compared O +to O +sintering S-MANP +in O +a O +conventional B-MACEQ +furnace E-MACEQ +. O + + +The O +results O +of O +this O +study O +suggest O +the O +notion O +of O +capillary-mediated B-MANP +binderless I-MANP +3DP E-MANP +as S-MATE +well O +as S-MATE +MW O +sintering S-MANP +as S-MATE +a O +potential O +alternative O +for O +the O +first O +and O +second O +steps O +of O +3DP S-MANP +, O +respectively O +. O + + +Wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +of O +HSLA O +steel S-MATE +was O +performed O +. O + + +Microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +were O +related O +to O +the O +thermal B-PARA +cycles E-PARA +. O + + +No O +preferential O +texture S-FEAT +was O +developed O +, O +leading O +to O +near-isotropic O +mechanical B-CONPRI +properties E-CONPRI +. O + + +As-built O +parts O +exhibited O +excellent O +ductility S-PRO +and O +high O +mechanical B-PRO +strength E-PRO +. O + + +Wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +a O +viable O +technique O +for O +the O +manufacture S-CONPRI +of O +large O +and O +complex O +dedicated O +parts O +used O +in O +structural O +applications O +. O + + +High-strength O +low-alloy O +( O +HSLA O +) O +steels S-MATE +are O +well-known O +for O +their O +applications O +in O +the O +tool S-MACEQ +and O +die S-MACEQ +industries O +and O +as S-MATE +power-plant O +components S-MACEQ +. O + + +The O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +as-built O +parts O +are O +investigated O +, O +and O +are O +correlated S-CONPRI +with O +the O +thermal B-PARA +cycles E-PARA +involved O +in O +the O +process S-CONPRI +. O + + +The O +heat S-CONPRI +input O +is O +found O +to O +affect O +the O +cooling B-PARA +rates E-PARA +, O +interlayer O +temperatures S-PARA +, O +and O +residence O +times O +in O +the O +800–500 O +°C O +interval O +when O +measured O +using O +an O +infrared S-CONPRI +camera S-MACEQ +. O + + +The O +microstructural B-CHAR +characterization E-CHAR +performed O +by O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +reveals O +that O +the O +microstructural S-CONPRI +constituents O +of O +the O +sample S-CONPRI +remain O +unchanged O +. O + + +i.e. O +, O +the O +same O +microstructural S-CONPRI +constituents—ferrite O +, O +bainite S-MATE +, O +martensite S-MATE +, O +and O +retained B-MATE +austenite E-MATE +are O +present O +for O +all O +heat S-CONPRI +inputs O +. O + + +Electron O +backscattered O +diffraction S-CHAR +analysis O +shows O +that O +no O +preferential O +texture S-FEAT +has O +been O +developed O +in O +the O +samples S-CONPRI +. O + + +Because O +of O +the O +homogeneity O +in O +the O +microstructural S-CONPRI +features O +of O +the O +as-built O +parts O +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +as-built O +parts O +are O +found O +to O +be S-MATE +nearly O +isotropic S-PRO +. O + + +Mechanical B-CHAR +testing E-CHAR +of O +samples S-CONPRI +shows O +excellent O +ductility S-PRO +and O +high O +mechanical B-PRO +strength E-PRO +. O + + +This O +is O +the O +first O +study O +elucidating O +on O +the O +effect O +of O +thermal B-PARA +cycles E-PARA +on O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +during O +WAAM S-MANP +of O +HSLA O +steel S-MATE +. O + + +Components S-MACEQ +produced O +by O +near B-MANP +net I-MANP +shape I-MANP +additive I-MANP +manufacturing E-MANP +processes O +often O +require O +subsequent O +subtractive B-MANP +finishing I-MANP +operations E-MANP +to O +satisfy O +requisite O +surface B-FEAT +finish E-FEAT +and O +geometric B-FEAT +tolerances E-FEAT +. O + + +It O +is O +well O +established O +that O +the O +microstructure S-CONPRI +and O +properties S-CONPRI +of O +the O +as-built O +component S-MACEQ +are O +sensitive O +to O +the O +additive S-MATE +processing O +history O +. O + + +Therefore O +, O +downstream O +secondary O +processes S-CONPRI +may O +be S-MATE +affected O +by O +the O +as-built O +components S-MACEQ +’ O +mechanical S-APPL +behavior O +. O + + +In O +this O +work O +we O +study O +the O +sensitivity S-PARA +of O +secondary O +machining S-MANP +operations O +on O +CoCrMo O +samples S-CONPRI +produced O +via O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +. O + + +Utilizing O +novel O +high-throughput O +mechanical B-CHAR +testing E-CHAR +, O +microstructure S-CONPRI +characterization O +, O +and O +a O +rigorous O +statistical O +analysis O +we O +investigate O +the O +degree O +of O +material S-MATE +anisotropy S-PRO +present O +in O +the O +as-built O +material S-MATE +. O + + +We O +then O +study O +the O +effects O +of O +this O +anisotropy S-PRO +on O +secondary O +processing O +via O +slot O +milling S-MANP +experiments O +. O + + +Our O +results O +indicate O +that O +mechanical B-PRO +anisotropy E-PRO +is O +driven O +by O +both O +the O +morphology S-CONPRI +of O +the O +microstructure S-CONPRI +as S-MATE +well O +as S-MATE +crystallographic O +texture S-FEAT +. O + + +The O +machining S-MANP +force S-CONPRI +response O +is O +correspondingly O +sensitive O +to O +these O +sources O +of O +anisotropy S-PRO +, O +which O +has O +the O +potential O +to O +impact S-CONPRI +how O +manufacturers O +finish O +additively O +built O +parts O +. O + + +This O +study O +presents O +a O +detailed O +characterization O +of O +room O +temperature S-PARA +bulk O +microstructure S-CONPRI +and O +texture S-FEAT +of O +additively B-MANP +manufactured E-MANP +Ti-6Al-4V O +alloy S-MATE +samples O +with O +the O +neutron S-CONPRI +time-of-flight O +diffractometer O +HIPPO O +. O + + +A O +comparison O +is O +made O +between O +samples S-CONPRI +that O +were O +manufactured S-CONPRI +by O +two O +different O +methods O +utilizing O +selective B-MANP +laser I-MANP +melting E-MANP +and O +electron B-MANP +beam I-MANP +melting E-MANP +. O + + +Analysis O +of O +the O +orientation S-CONPRI +distribution S-CONPRI +function O +shows O +a O +dependency O +upon O +the O +particular O +fabrication S-MANP +technique O +used O +as S-MATE +well O +as S-MATE +on O +the O +location O +within O +the O +built O +body O +and O +orientation S-CONPRI +relative O +to O +the O +build B-PARA +direction E-PARA +. O + + +It O +is O +shown O +that O +the O +texture S-FEAT +components S-MACEQ +strength O +in O +the O +hexagonal S-FEAT +phase O +depends O +on O +the O +relative O +tilt B-FEAT +angle E-FEAT +between O +the O +build B-PARA +direction E-PARA +and O +that O +the O +overall O +texture S-FEAT +of O +samples S-CONPRI +prepared O +with O +the O +electron B-CONPRI +beam E-CONPRI +method O +is O +weaker O +than O +those O +prepared O +with O +the O +selective B-MANP +laser I-MANP +melting E-MANP +. O + + +Such O +knowledge O +on O +the O +bulk O +microstructure S-CONPRI +allows O +to O +optimize O +additive B-MANP +manufacturing I-MANP +process E-MANP +parameters O +. O + + +One O +rapidly O +advancing O +technology S-CONPRI +with O +high O +space O +resource O +utilization O +potential O +is O +additive B-MANP +manufacturing E-MANP +. O + + +Additive B-MANP +manufacturing E-MANP +is O +already O +prevalent O +in O +the O +aerospace B-APPL +industry E-APPL +and O +is O +an O +enabling O +technology S-CONPRI +of O +significant O +potential O +for O +weight S-PARA +savings O +, O +cost B-CONPRI +reduction E-CONPRI +, O +tool S-MACEQ +repair O +, O +and O +just-in-time O +manufacturing S-MANP +. O + + +In O +the O +last O +few O +years O +, O +institutions O +such O +as S-MATE +ASTM O +International O +and O +NASA O +have O +released O +standards S-CONPRI +for O +additive B-MANP +manufacturing E-MANP +, O +but O +research S-CONPRI +done O +in O +the O +field O +of O +additive B-MANP +manufacturing E-MANP +with O +space O +resources O +is O +still O +in O +its O +infancy O +. O + + +Among O +the O +technologies S-CONPRI +under O +investigation O +, O +powder B-MANP +bed I-MANP +fusion E-MANP +technologies O +for O +melting S-MANP +regolith O +show O +particular O +promise O +due O +to O +their O +efficiency O +and O +freedom O +from O +binder S-MATE +material O +. O + + +As S-MATE +strict O +material S-MATE +and O +process B-CONPRI +control E-CONPRI +is O +difficult O +with O +space O +resource O +utilization O +focused O +technology S-CONPRI +, O +the O +lessons O +learned O +by O +terrestrial O +manufacturing S-MANP +experts O +are O +still O +being O +adapted O +for O +use O +in O +the O +burgeoning O +field.Proposed O +is O +a O +framework S-CONPRI +for O +adapting O +existing O +standards S-CONPRI +for O +use O +with O +space O +resources O +by O +identifying O +specific O +risks O +and O +fundamental O +factors O +for O +part O +quality S-CONPRI +, O +determining O +part O +criticality O +, O +and O +documenting O +material S-MATE +, O +process B-CONPRI +controls E-CONPRI +, O +environmental O +conditions O +, O +and O +other O +influencing O +factors O +. O + + +This O +research S-CONPRI +explored O +the O +influences O +of O +shielding O +gases O +on O +the O +appearance O +of O +weld B-CONPRI +beads E-CONPRI +and O +the O +microstructures S-MATE +and O +mechanical B-CONPRI +properties E-CONPRI +of O +thin-wall O +samples S-CONPRI +using O +conventional O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +as S-MATE +the O +heat B-CONPRI +source E-CONPRI +by O +using O +5356 O +aluminium B-MATE +alloy E-MATE +welding O +wire O +as S-MATE +the O +raw B-MATE +materials E-MATE +and O +nitrogen S-MATE +( O +N2 S-MATE +) O +and O +argon S-MATE +( O +Ar S-ENAT +) O +as S-MATE +the O +shielding O +gases O +. O + + +The O +results O +showed O +that O +under O +the O +same O +parameters S-CONPRI +and O +after O +mono-layer O +single-bead O +welding S-MANP +was O +performed O +using O +N2 S-MATE +as S-MATE +the O +shielding O +gas S-CONPRI +, O +the O +bead S-CHAR +height O +was O +higher O +, O +the O +bead B-CHAR +width E-CHAR +was O +narrower O +, O +and O +the O +penetration B-PARA +depth E-PARA +was O +shallower O +. O + + +The O +grain B-PRO +size E-PRO +of O +the O +thin-wall O +sample S-CONPRI +protected O +by O +N2 S-MATE +was O +43.5–47.8 O +% O +smaller O +than O +that O +obtained O +under O +Ar S-ENAT +protection O +. O + + +However O +, O +the O +sample S-CONPRI +protected O +by O +N2 S-MATE +contained O +many O +flaky O +nitrides S-MATE +, O +whose O +presence O +improved O +the O +microhardness S-CONPRI +but O +reduced O +the O +ultimate B-PRO +tensile I-PRO +strength E-PRO +( O +UTS S-PRO +) O +and O +plasticity S-PRO +. O + + +The O +average S-CONPRI +UTS O +of O +the O +thin-wall O +sample S-CONPRI +protected O +by O +N2 S-MATE +in O +the O +horizontal O +direction O +was O +82.5 O +% O +of O +the O +UTS S-PRO +of O +the O +samples S-CONPRI +shielded O +using O +Ar S-ENAT +. O + + +However O +, O +the O +average S-CONPRI +elongation O +in O +the O +horizontal O +direction O +of O +the O +samples S-CONPRI +protected O +by O +N2 S-MATE +was O +18.6 O +% O +of O +that O +of O +the O +samples S-CONPRI +shielded O +by O +Ar S-ENAT +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +sample S-CONPRI +protected O +by O +argon S-MATE +were O +more O +excellent O +. O + + +An O +eco-design O +for O +AM S-MANP +framework O +based O +on O +energy O +performance S-CONPRI +assessment O +has O +been O +proposed O +. O + + +A O +simulation S-ENAT +tool O +has O +been O +proposed O +to O +predict O +energy O +consumption O +of O +AM S-MANP +. O + + +Design S-FEAT +mechanisms O +and O +the O +workflow S-CONPRI +for O +eco-design O +for O +AM S-MANP +have O +been O +discussed O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +been O +considered O +as S-MATE +a O +promising O +technology S-CONPRI +with O +higher O +resource O +efficiency O +and O +better O +ecological O +benefits O +in O +production B-ENAT +systems E-ENAT +. O + + +If O +the O +parameters S-CONPRI +are O +not O +designed S-FEAT +appropriately O +, O +the O +ecological O +performance S-CONPRI +of O +AM S-MANP +can O +be S-MATE +worse O +than O +conventional B-MANP +manufacturing E-MANP +processes O +. O + + +To O +ensure O +the O +ecological O +benefits O +of O +AM S-MANP +, O +eco-design O +based O +on O +Life B-CONPRI +Cycle E-CONPRI +Assessment O +( O +LCA O +) O +is O +a O +promising O +approach O +to O +analyze O +and O +minimize O +the O +environmental O +impacts O +of O +AM S-MANP +. O + + +However O +, O +LCA O +can O +only O +be S-MATE +carried O +out O +at O +the O +later O +stage O +of O +the O +design B-CONPRI +process E-CONPRI +after O +most O +design S-FEAT +and O +decision O +operations O +are O +already O +made O +because O +the O +implementation O +of O +LCA O +requires O +detailed O +process S-CONPRI +and O +inventory O +information O +of O +the O +entire O +life B-CONPRI +cycle E-CONPRI +. O + + +If O +users O +attempt O +to O +optimize O +the O +ecological O +performance S-CONPRI +of O +their O +design S-FEAT +solutions O +, O +they O +need O +to O +repeat O +almost O +the O +entire O +design B-CONPRI +process E-CONPRI +. O + + +The O +proposed O +approach O +uses O +a O +holistic O +framework S-CONPRI +consisting O +of O +three O +parts O +: O +a O +simulation S-ENAT +tool O +for O +energy O +consumption O +prediction S-CONPRI +of O +AM S-MANP +, O +an O +assessment O +model S-CONPRI +for O +energy O +performance S-CONPRI +of O +AM S-MANP +, O +and O +general O +workflows S-CONPRI +of O +eco-design O +for O +AM S-MANP +. O + + +Since O +the O +energy O +performance S-CONPRI +quantification O +and O +assessment O +of O +AM S-MANP +require O +less O +process S-CONPRI +information O +, O +it O +can O +be S-MATE +integrated O +earlier O +and O +easier O +into O +the O +eco-design O +for O +AM S-MANP +. O + + +Additionally O +, O +an O +example O +of O +use O +case O +is O +provided O +that O +confirms O +the O +feasibility S-CONPRI +of O +this O +framework S-CONPRI +. O + + +By O +employing O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +, O +we O +demonstrate O +how O +Sn3Ag4Ti O +alloy S-MATE +can O +robustly O +bond O +to O +silicon S-MATE +via O +additive B-MANP +manufacturing E-MANP +. O + + +With O +this O +technology S-CONPRI +, O +heat S-CONPRI +removal O +devices O +( O +e.g. O +, O +vapor O +chamber O +evaporators O +, O +heat S-CONPRI +pipes O +, O +micro-channels O +) O +can O +be S-MATE +directly O +printed O +onto O +the O +electronic O +package O +without O +using O +thermal O +interface S-CONPRI +materials O +. O + + +This O +reduces O +operating O +temperature S-PARA +, O +saving O +power S-PARA +and O +reducing O +electronic-waste O +. O + + +The O +bonding S-CONPRI +of O +common O +metal B-MATE +alloys E-MATE +used O +in O +additive B-MANP +manufacturing E-MANP +onto O +silicon S-MATE +is O +relatively O +weak O +and O +generally O +possesses O +high O +contact S-APPL +angles O +( O +poor O +wetting O +and O +interfacial O +strength S-PRO +) O +. O + + +By O +using O +the O +proper O +interlayer O +material S-MATE +, O +wettability S-CONPRI +and O +reactivity O +with O +the O +silicon S-MATE +substrate O +increase O +drastically O +. O + + +Unlike O +conventional O +dissimilar O +material S-MATE +brazing S-APPL +that O +can O +take O +tens O +of O +minutes O +to O +form O +a O +strong O +bond O +, O +this O +study O +demonstrates O +how O +this O +kinetic O +limitation O +can O +be S-MATE +overcome O +to O +form O +a O +good O +bond O +in O +sub-milliseconds O +via O +intense O +laser S-ENAT +heating S-MANP +. O + + +The O +mechanism S-CONPRI +for O +rapid O +bonding S-CONPRI +lies O +in O +using O +an O +alloy S-MATE +that O +can O +form O +a O +strong O +intermetallic S-MATE +bond O +to O +the O +substrate S-MATE +at O +a O +low O +temperature S-PARA +, O +and O +exposing O +the O +sample S-CONPRI +multiple O +times O +to O +give O +sufficient O +diffusion S-CONPRI +time O +for O +a O +strong O +bond O +. O + + +Bonding S-CONPRI +of O +Sn3Ag4Ti O +to O +silicon S-MATE +occurs O +through O +the O +formation O +of O +a O +thin O +( O +∼μm O +) O +titanium-silicide O +interfacial O +layer S-PARA +that O +makes O +the O +silicon S-MATE +wettable O +to O +the O +Sn3Ag4Ti O +. O + + +These O +printed O +parts O +are O +mechanically O +resistant O +to O +thermal B-PARA +cycling E-PARA +, O +with O +no O +mechanical B-PRO +failures E-PRO +visible O +after O +over O +a O +week O +of O +continuous O +thermal B-PARA +cycling E-PARA +( O +−40 O +°C O +and O +130 O +°C O +) O +. O + + +Additively B-MANP +manufactured E-MANP +low O +porosity S-PRO +equiatomic O +CoCrFeMnNi O +alloy S-MATE +parts O +. O + + +Parts O +are O +single O +phase S-CONPRI +with O +inter-cellular O +regions O +enriched O +in O +Mn S-MATE +and O +Ni S-MATE +. O + + +Tensile B-PRO +properties E-PRO +exceeded O +most O +previous O +work O +on O +similar O +alloys S-MATE +. O + + +Initiation O +of O +pitting S-CONPRI +for O +CoCrFeMnNi O +alloy S-MATE +was O +comparable O +to O +304 O +L O +stainless B-MATE +steel E-MATE +. O + + +This O +study O +investigates S-CONPRI +the O +mechanical S-APPL +and O +corrosion B-PRO +properties E-PRO +of O +as-built O +and O +annealed O +equiatomic O +CoCrFeMnNi O +alloy S-MATE +produced O +by O +laser-based O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +The O +high O +cooling B-PARA +rates E-PARA +of O +DED S-MANP +produced O +a O +single-phase O +, O +cellular O +microstructure S-CONPRI +with O +cells S-APPL +on O +the O +order O +of O +4 O +μm O +in O +diameter S-CONPRI +and O +inter-cellular O +regions O +that O +were O +enriched O +in O +Mn S-MATE +and O +Ni S-MATE +. O + + +Annealing S-MANP +created O +a O +chemically O +homogeneous S-CONPRI +recrystallized O +microstructure S-CONPRI +with O +a O +high O +density S-PRO +of O +annealing S-MANP +twins O +. O + + +The O +average S-CONPRI +yield O +strength S-PRO +of O +the O +as-built O +condition O +was O +424 O +MPa S-CONPRI +and O +exceeded O +the O +annealed O +condition O +( O +232 O +MPa S-CONPRI +) O +, O +however O +; O +the O +strain B-MANP +hardening E-MANP +rate O +was O +lower O +for O +the O +as-built O +material S-MATE +stemming O +from O +higher O +dislocation B-PRO +density E-PRO +associated O +with O +DED S-MANP +parts O +and O +the O +fine O +cell B-PRO +size E-PRO +. O + + +In O +general O +, O +the O +yield B-PRO +strength E-PRO +, O +ultimate B-PRO +tensile I-PRO +strength E-PRO +, O +and O +elongation-to-failure O +for O +the O +as-built O +material S-MATE +exceeded O +values O +from O +previous O +studies O +that O +explored O +other O +AM B-MANP +techniques E-MANP +to O +produce O +the O +CoCrFeMnNi O +alloy S-MATE +. O + + +Ductile B-CONPRI +fracture E-CONPRI +occurred O +for O +all O +specimens O +with O +dimple O +initiation O +associated O +with O +nanoscale O +oxide B-MATE +inclusions E-MATE +. O + + +The O +breakdown O +potential O +( O +onset O +of O +pitting B-CONPRI +corrosion E-CONPRI +) O +was O +similar O +for O +the O +as-built O +and O +annealed O +conditions O +at O +0.40 O +VAg/AgCl O +when O +immersed O +in O +0.6 O +M O +NaCl S-MATE +. O + + +A O +passive O +oxide S-MATE +film O +depleted O +in O +Cr S-MATE +cations O +with O +substantial O +incorporation O +of O +Mn S-MATE +cations O +is O +proposed O +as S-MATE +the O +primary O +mechanism S-CONPRI +for O +local O +corrosion S-CONPRI +susceptibility O +of O +the O +CoCrFeMnNi O +alloy S-MATE +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +enables O +the O +fabrication S-MANP +of O +complex O +lattice B-FEAT +structures E-FEAT +, O +for O +which O +a O +single O +part O +may O +have O +hundreds O +or O +thousands O +of O +individual O +geometric O +features O +. O + + +Conventional O +methods O +for O +measuring O +part O +geometry S-CONPRI +and O +performing O +quality B-CONPRI +control E-CONPRI +, O +which O +typically O +use O +a O +small O +number O +of O +low-dimensional O +measurements O +, O +are O +not O +well O +suited O +for O +lattice B-FEAT +structures E-FEAT +. O + + +This O +paper O +describes O +a O +method O +for O +scanning S-CONPRI +and O +automatically O +extracting S-CONPRI +individual O +features O +of O +the O +lattice S-CONPRI +and O +applies O +this O +method O +to O +characterize O +AM S-MANP +lattice O +structures O +in O +both O +two-dimensional S-CONPRI +and O +three-dimensional B-CONPRI +lattices E-CONPRI +. O + + +The O +research S-CONPRI +measured O +94 O +lattice S-CONPRI +parts O +fabricated S-CONPRI +from O +3 O +materials S-CONPRI +in O +9 O +different O +designs S-FEAT +using O +either O +a O +high-resolution S-PARA +document O +scanner O +or O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +. O + + +A O +statistical O +analysis O +considered O +manufacturing S-MANP +variances O +as S-MATE +a O +function O +of O +material S-MATE +type O +and O +part O +design S-FEAT +on O +a O +subset O +of O +the O +data S-CONPRI +, O +comprising O +the O +size O +and O +location O +of O +over O +15,000 O +individual O +features O +. O + + +We O +studied O +the O +geometric O +variations S-CONPRI +of O +these O +struts S-MACEQ +in O +uniform O +, O +hierarchical O +and O +gradated O +parts O +. O + + +For O +a O +single O +design S-FEAT +and O +material S-MATE +, O +the O +standard B-CHAR +deviation E-CHAR +of O +lattice S-CONPRI +feature B-PARA +size E-PARA +is O +quite O +small O +. O + + +For O +example O +, O +a O +lattice S-CONPRI +strut O +with O +thickness O +0.5 O +mm S-MANP +has O +a O +standard B-CHAR +deviation E-CHAR +of O +30 O +μm O +. O + + +However O +, O +when O +the O +same O +process S-CONPRI +is O +used O +to O +manufacture S-CONPRI +multiple O +parts O +having O +different O +designs S-FEAT +and O +from O +different O +materials S-CONPRI +, O +the O +standard B-CHAR +deviation E-CHAR +of O +feature B-PARA +size E-PARA +can O +be S-MATE +larger O +by O +2X O +or O +more O +. O + + +This O +type O +of O +automated B-ENAT +measurement E-ENAT +and O +analysis O +may O +allow O +for O +rigorous O +monitoring O +, O +qualification O +and O +control O +of O +AM S-MANP +lattice O +parts O +in O +production S-MANP +. O + + +The O +adhesion S-PRO +and O +merging O +of O +adjacent O +filaments S-MATE +in O +polymer B-MANP +extrusion E-MANP +based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +plays O +a O +key O +role O +in O +determining O +the O +thermal O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +built O +part O +. O + + +It O +is O +well O +known O +that O +maintaining O +the O +deposited O +filaments S-MATE +at O +a O +high O +temperature S-PARA +aids O +in O +the O +process S-CONPRI +of O +adhesion S-PRO +and O +merging O +. O + + +While O +external O +mechanisms O +such O +as S-MATE +laser O +and O +infrared S-CONPRI +heating S-MANP +have O +been O +used O +in O +the O +past O +to O +heat S-CONPRI +up O +deposited O +filaments S-MATE +, O +this O +paper O +presents O +a O +simpler O +, O +less O +invasive O +and O +in B-CONPRI +situ E-CONPRI +mechanism O +for O +heating S-MANP +of O +previously O +deposited B-CHAR +layers E-CHAR +using O +a O +hot O +metal S-MATE +block O +integrated O +with O +and O +rastering O +together O +with O +the O +filament-dispensing O +nozzle S-MACEQ +. O + + +Infrared S-CONPRI +thermography O +based O +quantitative B-CHAR +measurement E-CHAR +of O +temperature S-PARA +field O +along O +the O +raster O +line O +is O +carried O +out O +for O +two O +configurations O +– O +a O +preheater O +and O +a O +postheater O +traveling O +ahead O +of O +or O +behind O +the O +nozzle S-MACEQ +respectively O +. O + + +In O +each O +case O +, O +significant O +temperature S-PARA +rise O +in O +the O +deposited O +filaments S-MATE +is O +shown O +. O + + +The O +measured O +temperature S-PARA +rise O +is O +shown O +to O +be S-MATE +a O +function O +of O +process B-CONPRI +parameters E-CONPRI +such O +as S-MATE +raster O +speed O +and O +heater-to-base O +gap O +. O + + +Experimental S-CONPRI +measurements O +are O +shown O +to O +agree O +well O +with O +theoretical S-CONPRI +and O +simulation S-ENAT +models O +. O + + +Cross-section O +imaging S-APPL +of O +samples S-CONPRI +printed O +without O +and O +with O +the O +in B-CONPRI +situ E-CONPRI +heating S-MANP +clearly O +show O +significant O +improvement O +in O +neck O +growth O +and O +filament-to-filament O +merging O +compared O +to O +the O +baseline O +case O +. O + + +Improvement O +in O +thermal O +and O +structural B-CHAR +performance E-CHAR +of O +printed O +samples S-CONPRI +is O +also O +demonstrated O +. O + + +The O +improved O +temperature S-PARA +field O +and O +consequently O +enhanced O +filament S-MATE +adhesion S-PRO +reported O +here O +may O +help O +design S-FEAT +and O +build S-PARA +parts O +with O +superior O +thermal O +and O +mechanical B-CONPRI +properties E-CONPRI +using O +polymer S-MATE +AM S-MANP +. O + + +Pore S-PRO +structures O +of O +additively B-MANP +manufactured E-MANP +metal O +parts O +were O +investigated O +with O +X-ray B-CHAR +Computed I-CHAR +Tomography E-CHAR +( O +XCT O +) O +. O + + +Disks O +made O +of O +a O +cobalt-chrome O +alloy S-MATE +were O +produced O +using O +laser-based O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +processes S-CONPRI +. O + + +The O +additive B-MANP +manufacturing E-MANP +processing O +parameters S-CONPRI +( O +scan B-PARA +speed E-PARA +and O +hatch B-PARA +spacing E-PARA +) O +were O +varied O +in O +order O +to O +have O +porosities S-PRO +varying O +from O +0.1 O +% O +to O +70 O +% O +so O +as S-MATE +to O +see O +the O +effects O +of O +processing O +parameters S-CONPRI +on O +the O +formation O +of O +pores S-PRO +and O +cracks O +. O + + +The O +XCT O +images S-CONPRI +directly O +show O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +pore S-PRO +structure O +, O +along O +with O +cracks O +. O + + +Qualitative S-CONPRI +visualization O +is O +useful O +; O +however O +, O +quantitative S-CONPRI +results O +depend O +on O +accurately S-CHAR +segmenting O +the O +XCT O +images S-CONPRI +. O + + +Methods O +of O +segmentation O +and O +image B-CONPRI +analysis E-CONPRI +were O +carefully O +developed O +based O +, O +as S-MATE +much O +as S-MATE +possible O +, O +on O +aspects O +of O +the O +images S-CONPRI +themselves O +. O + + +These O +enabled O +quantitative S-CONPRI +measures O +of O +porosity S-PRO +, O +including O +how O +porosity S-PRO +varies O +in O +and O +across O +the O +build B-PARA +direction E-PARA +, O +pore B-PARA +size E-PARA +distribution S-CONPRI +, O +how O +pore S-PRO +structure O +varies O +between O +parts O +with O +similar O +porosity S-PRO +levels O +but O +different O +processing O +parameters S-CONPRI +, O +pore S-PRO +shape O +, O +and O +particle B-CONPRI +size I-CONPRI +distribution E-CONPRI +of O +un-melted O +powder S-MATE +trapped O +in O +pores S-PRO +. O + + +These O +methods O +could O +possibly O +serve O +as S-MATE +the O +basis O +for O +standard S-CONPRI +segmentation O +and O +image B-CONPRI +analysis E-CONPRI +methods O +for O +metallic S-MATE +additively B-MANP +manufactured E-MANP +parts O +, O +enabling O +accurate S-CHAR +and O +reliable O +defect S-CONPRI +detection O +and O +quantitative S-CONPRI +measures O +of O +pore S-PRO +structure O +, O +which O +are O +critical O +aspects O +of O +qualification O +and O +certification O +. O + + +The O +aluminium B-MATE +alloy E-MATE +wire O +2319 O +is O +commonly O +used O +for O +Wire B-MANP ++ I-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +. O + + +It O +is O +oversaturated O +with O +copper S-MATE +, O +like O +other O +alloys S-MATE +of O +the O +precipitation B-MANP +hardening E-MANP +2 O +# O +# O +# O +series O +, O +which O +are O +used O +for O +structural O +applications O +in O +aviation O +. O + + +Residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +are O +one O +of O +the O +biggest O +challanges O +in O +metal B-MANP +additive I-MANP +manufacturing E-MANP +, O +however O +this O +topic O +is O +not O +widely O +investigated O +for O +aluminium B-MATE +alloys E-MATE +. O + + +Neutron B-CHAR +diffraction E-CHAR +measurements O +showed O +that O +the O +as-built O +component S-MACEQ +can O +contain O +constant O +tensile B-PRO +residual I-PRO +stresses E-PRO +along O +the O +height O +of O +the O +wall O +, O +which O +can O +reach O +the O +materials S-CONPRI +' O +yield B-PRO +strength E-PRO +. O + + +These O +stresses O +cause O +bending S-MANP +distortion O +after O +unclamping O +the O +part O +from O +the O +build B-MACEQ +platform E-MACEQ +. O + + +Two O +different O +rolling S-MANP +techniques O +were O +used O +to O +control O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +. O + + +Vertical S-CONPRI +rolling S-MANP +was O +applied O +inter-pass O +on O +top O +of O +the O +wall O +to O +deform O +each O +layer S-PARA +after O +its O +deposition S-CONPRI +. O + + +This O +technique O +virtually O +elimiated O +the O +distortion S-CONPRI +, O +but O +produced O +a O +characteristic O +residual B-PRO +stress E-PRO +profile S-FEAT +. O + + +Side O +rolling S-MANP +instead O +was O +applied O +on O +the O +side O +surface S-CONPRI +of O +the O +wall O +, O +after O +it O +has O +been O +completed O +. O + + +An O +interesting O +observation O +from O +the O +neutron B-CHAR +diffraction E-CHAR +measurements O +of O +the O +stress-free O +reference O +was O +the O +significantly O +larger O +FCC S-CONPRI +aluminium S-MATE +unit O +cell S-APPL +dimension O +in O +the O +inter-pass O +rolled O +walls O +as S-MATE +compared O +to O +the O +as-build O +condition O +. O + + +This O +is O +a O +result O +of O +less O +copper S-MATE +in O +solid B-MATE +solution E-MATE +with O +aluminium S-MATE +, O +indicating O +greater O +precipitation S-CONPRI +and O +thus O +, O +potentially O +contibuting O +to O +improve O +the O +strenght O +of O +the O +material S-MATE +. O + + +This O +work O +demonstrates O +the O +feasibility S-CONPRI +of O +fabricating S-MANP +bulk O +nanostructured O +high O +modulus O +steels S-MATE +in-situ S-CONPRI +by O +additive B-MANP +manufacturing E-MANP +. O + + +This O +ideal O +match O +of O +novel O +processes S-CONPRI +and O +alloy S-MATE +concepts O +opens O +up O +new O +pathways O +for O +lightweight S-CONPRI +design S-FEAT +by O +producing O +light O +, O +stiff O +, O +strong O +and O +ductile S-PRO +components S-MACEQ +with O +minimal O +geometric O +restraints O +. O + + +On O +the O +example O +of O +an O +Fe S-MATE +– O +Ti S-MATE +– O +B S-MATE +alloy S-MATE +, O +a O +conventional O +processing O +sequence O +of O +melting S-MANP +and O +casting S-MANP +pre-alloys O +, O +gas-atomisation O +and O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +selective B-MANP +laser I-MANP +melting E-MANP +) O +led S-APPL +to O +finely O +dispersed O +metastable S-PRO +particle O +and O +matrix O +phases O +. O + + +A O +simple B-MANP +annealing E-MANP +step O +transformed O +them O +into O +the O +desired O +equilibrium S-CONPRI +constituents O +of O +ductile S-PRO +ferrite O +( O +matrix O +) O +and O +light O +and O +stiff O +TiB2 O +( O +particles S-CONPRI +) O +, O +with O +only O +minimal O +changes O +in O +particle S-CONPRI +size O +( O +about O +20–150 O +nm O +in O +diameter S-CONPRI +) O +and O +distribution S-CONPRI +( O +mainly O +on O +the O +matrix O +grain B-CONPRI +boundaries E-CONPRI +) O +. O + + +This O +nano-scaled O +composite B-CONPRI +structure E-CONPRI +promises O +an O +extremely O +attractive O +property S-CONPRI +profile S-FEAT +, O +i.e O +. O + + +an O +increased O +stiffness/ratio O +at O +elevated O +strength S-PRO +and O +without O +deteriorated O +ductility S-PRO +. O + + +However O +, O +the O +not O +yet O +optimized O +parameters S-CONPRI +of O +the O +laser S-ENAT +fusion S-CONPRI +process O +led S-APPL +to O +the O +formation O +of O +few O +pores S-PRO +and O +cracks O +, O +which O +prevented O +the O +complete O +assessment O +of O +the O +property S-CONPRI +profile S-FEAT +of O +the O +manufactured S-CONPRI +samples O +. O + + +Material S-MATE +and O +processing O +strategies O +for O +the O +further O +development O +of O +this O +promising O +lightweight S-CONPRI +design S-FEAT +approach O +– O +including O +the O +suitability O +of O +other O +powder B-MANP +metallurgy E-MANP +processing O +routes O +– O +are O +outlined O +and O +discussed O +. O + + +Metal B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +have O +made O +it O +possible O +to O +build S-PARA +parts O +with O +complex O +geometric O +features O +by O +adopting O +a O +layer-by-layer S-CONPRI +approach O +. O + + +However O +, O +additional O +support B-FEAT +structures E-FEAT +are O +needed O +to O +support S-APPL +overhanging O +surfaces S-CONPRI +and O +reduce O +distortion S-CONPRI +that O +may O +occur O +in O +these O +parts O +. O + + +This O +increases O +the O +overall O +build B-PARA +time E-PARA +of O +the O +part O +and O +leads O +to O +additional O +post B-CONPRI +processing E-CONPRI +efforts O +for O +removal B-MANP +of I-MANP +support E-MANP +structures O +. O + + +Further O +, O +support B-FEAT +structures E-FEAT +have O +a O +detrimental O +effect O +on O +the O +surface B-FEAT +finish E-FEAT +on O +the O +areas S-PARA +of O +the O +part O +that O +come O +in O +contact S-APPL +with O +the O +supports S-APPL +. O + + +Thus O +, O +minimizing O +the O +need O +for O +support B-FEAT +structures E-FEAT +and O +ensuring O +its O +maximum O +removal O +is O +essential O +for O +an O +efficient O +part O +build S-PARA +in O +AM S-MANP +. O + + +Part O +build B-PARA +orientation E-PARA +is O +the O +main O +parameter S-CONPRI +that O +influences O +the O +need O +for O +support B-FEAT +structures E-FEAT +to O +build S-PARA +a O +part O +. O + + +This O +paper O +presents O +an O +approach O +to O +identify O +the O +best O +build B-PARA +orientation E-PARA +for O +a O +part O +such O +that O +the O +overall O +part O +build B-PARA +time E-PARA +is O +minimized O +while O +ensuring O +maximum O +removal B-MANP +of I-MANP +supports E-MANP +and O +minimizing O +the O +contact S-APPL +area S-PARA +between O +the O +part O +surface S-CONPRI +and O +supports S-APPL +. O + + +A O +hierarchical O +octree O +data S-CONPRI +structure O +has O +been O +used O +to O +analyze O +support S-APPL +accessibility O +and O +the O +area S-PARA +of O +support S-APPL +in O +contact S-APPL +with O +part O +. O + + +A O +2D S-CONPRI +setup O +map O +highlighting O +the O +feasible O +directions O +of O +setups O +for O +support S-APPL +removal O +has O +also O +been O +presented O +. O + + +The O +estimation O +for O +overhang B-PARA +angle E-PARA +of O +a O +3D S-CONPRI +structural O +surface S-CONPRI +is O +established O +by O +fitting O +the O +local B-CONPRI +element I-CONPRI +density I-CONPRI +distribution E-CONPRI +with O +a O +density S-PRO +hyperplane O +in O +ℝ4 O +space O +. O + + +The O +3D S-CONPRI +hanging O +feature S-FEAT +issue O +is O +resolved O +by O +the O +combination O +of O +horizontal O +minimum O +length O +constraint O +and O +overhang B-PARA +angle E-PARA +constraint O +. O + + +A O +constraint-based O +approach O +for O +3D S-CONPRI +topology O +optimization S-CONPRI +with O +a O +large O +number O +of O +element-wise O +constraints O +is O +proposed O +to O +obtain O +an O +accurate S-CHAR +solution O +. O + + +This O +paper O +studies O +additive B-MANP +manufacturing E-MANP +oriented O +structural O +topology B-FEAT +optimization E-FEAT +with O +SIMP O +approach O +and O +aims O +at O +3D S-CONPRI +high-resolution O +printable O +structural O +topology S-CONPRI +design S-FEAT +with O +overhang S-PARA +and O +horizontal O +minimum O +length O +control O +for O +minimum O +compliance.To O +start O +with O +, O +we O +construct O +a O +hyperplane O +in O +ℝ4 O +by O +fitting O +a O +local B-CONPRI +element I-CONPRI +density I-CONPRI +distribution E-CONPRI +in O +the O +18 O +Elements S-MATE +Scheme O +, O +use O +its O +gradient O +to O +estimate O +the O +overhang B-PARA +angle E-PARA +, O +the O +directional-dependent O +overhang B-PARA +angle E-PARA +and O +formulate O +the O +corresponding O +constraints O +. O + + +Next O +, O +we O +propose O +a O +Horizontal O +Square O +Scheme O +and O +four O +support S-APPL +sets O +around O +the O +concerned O +element S-MATE +. O + + +The O +horizontal O +minimum O +length O +was O +controlled O +by O +forbidding O +the O +concerned O +element S-MATE +’ O +s S-MATE +density S-PRO +to O +be S-MATE +larger O +than O +the O +average S-CONPRI +density O +of O +the O +elements S-MATE +in O +one O +of O +the O +support S-APPL +sets O +. O + + +By O +combining O +these O +two O +constraints O +, O +the O +hanging O +feature S-FEAT +is O +well O +suppressed.A O +new O +implementation O +scheme O +with O +an O +improved O +weight S-PARA +function O +is O +proposed O +to O +meet O +these O +element S-MATE +wise O +AM S-MANP +constraints O +well O +. O + + +To O +get O +high B-PARA +resolution E-PARA +structural O +boundaries S-FEAT +with O +low O +computational O +efforts O +, O +this O +paper O +applies O +the O +multiresolution O +topology B-FEAT +optimization E-FEAT +( O +MTOP O +) O +method.The O +structural O +TO O +problem O +is O +solved O +by O +MMA O +. O + + +A O +number O +of O +numerical O +examples O +and O +AM S-MANP +experiments O +show O +the O +effectiveness S-CONPRI +of O +this O +method O +. O + + +The O +present O +approach O +works O +efficiently O +when O +the O +building B-PARA +direction E-PARA +is O +in O +slight O +misalignment O +with O +the O +vertical S-CONPRI +direction O +. O + + +The O +columnar O +to O +equiaxed O +transition S-CONPRI +( O +CET O +) O +of O +grain B-CONPRI +structures E-CONPRI +associated O +with O +processing O +conditions O +has O +been O +observed O +during O +metallic B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +However O +, O +the O +formation O +mechanisms O +of O +these O +grain B-CONPRI +structures E-CONPRI +have O +not O +been O +well O +understood O +under O +rapid B-MANP +solidification E-MANP +conditions O +, O +especially O +for O +AM S-MANP +of O +superalloys S-MATE +. O + + +This O +paper O +aims O +to O +uncover O +the O +underlying O +mechanisms O +that O +govern O +the O +CET O +of O +AM B-MANP +metals E-MANP +, O +using O +a O +well-tested O +multiscale O +phase-field O +model S-CONPRI +where O +heterogeneous B-CONPRI +nucleation E-CONPRI +, O +grain S-CONPRI +selection O +and O +grain S-CONPRI +epitaxial S-PRO +growth O +are O +considered O +. O + + +Using O +In718 S-MATE +as S-MATE +an O +example O +, O +the O +simulated O +results O +show O +that O +the O +CET O +is O +critically O +controlled O +by O +the O +undercooling O +, O +involving O +constitutional O +supercooling S-CONPRI +, O +thermal O +and O +curvature O +undercoolings O +in O +the O +melt B-MATE +pool E-MATE +, O +which O +dictates O +the O +extent O +of O +heterogeneous B-CONPRI +nucleation E-CONPRI +with O +respect O +to O +the O +grain S-CONPRI +epitaxial S-PRO +growth O +during O +rapid B-MANP +solidification E-MANP +. O + + +Laser B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +LAM S-MANP +) O +of O +light B-MATE +metals E-MATE +such O +as S-MATE +high-strength O +Al-based O +alloys S-MATE +offers O +tremendous O +potential O +for O +e.g O +. O + + +weight S-PARA +reduction S-CONPRI +and O +associated O +reduced O +fuel O +consumptions O +for O +the O +transportation O +industry S-APPL +. O + + +Typically O +, O +commercial O +Sc-containing O +alloys S-MATE +, O +such O +as S-MATE +Scalmalloy® O +, O +rely O +on O +precipitation B-MANP +hardening E-MANP +to O +increase O +their O +strength S-PRO +. O + + +Conventional O +processing O +involves O +controlled O +ageing O +during O +which O +ordered O +and O +coherent O +Al3Sc O +precipitates S-MATE +form O +from O +a O +Sc-supersaturated O +solid B-MATE +solution E-MATE +. O + + +Here O +we O +show O +how O +the O +intrinsic O +heat B-MANP +treatment E-MANP +( O +IHT O +) O +of O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +can O +be S-MATE +used O +to O +trigger O +the O +precipitation S-CONPRI +of O +Al3Sc O +already O +during O +the O +LAM S-MANP +process O +. O + + +High O +number O +densities O +of O +1023 O +nano-precipitates O +per O +m3 O +can O +be S-MATE +realized O +through O +solid-state B-CONPRI +phase E-CONPRI +transformation O +from O +the O +supersaturated O +Al-Sc O +matrix O +that O +results O +from O +the O +fast O +cooling B-PARA +rate E-PARA +in O +LAM S-MANP +. O + + +Yet O +, O +the O +IHT O +causes O +precipitates S-MATE +to O +coarsen O +, O +hence O +reducing O +their O +strengthening S-MANP +effect O +. O + + +We O +implement O +alternative O +solidification S-CONPRI +conditions O +to O +exploit O +the O +IHT O +to O +form O +a O +Zr-rich O +shell S-MACEQ +around O +the O +Al3Sc O +precipitates S-MATE +that O +prevents O +coarsening O +. O + + +Our O +approach O +is O +applicable O +to O +a O +wide O +range S-PARA +of O +precipitation-hardened O +alloys S-MATE +to O +trigger O +in-situ S-CONPRI +precipitation O +during O +LAM S-MANP +. O + + +Thermo-mechanical S-CONPRI +finite B-CONPRI +element E-CONPRI +modeling O +of O +additive B-MANP +manufacturing I-MANP +processes E-MANP +, O +such O +as S-MATE +Directed O +Energy O +Deposition S-CONPRI +and O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +, O +has O +been O +widely O +applied O +for O +the O +prediction S-CONPRI +and O +mitigation O +of O +part O +distortion S-CONPRI +. O + + +However O +, O +as S-MATE +the O +size O +of O +modeled O +geometries S-CONPRI +gets O +larger O +, O +the O +number O +of O +nodes O +and O +elements S-MATE +required O +in O +the O +finite B-CONPRI +element E-CONPRI +mesh O +increases O +significantly O +. O + + +Because O +runtime O +will O +increase O +as S-MATE +more O +nodes O +are O +added O +, O +it O +is O +not O +practical O +to O +conduct O +full O +simulations S-ENAT +of O +large O +builds S-CHAR +using O +standard S-CONPRI +static O +meshes O +. O + + +Advanced O +meshing O +strategy O +is O +required O +to O +reduce O +the O +run O +time O +and O +to O +retain O +the O +accuracy S-CHAR +of O +the O +prediction S-CONPRI +. O + + +In O +this O +work O +, O +a O +mesh O +coarsening O +strategy O +is O +evaluated O +for O +predicting O +temperature S-PARA +, O +distortion S-CONPRI +, O +and O +residual B-PRO +stress E-PRO +in O +additive B-MANP +manufacturing E-MANP +, O +aiming O +to O +achieve O +feasible O +run O +times O +with O +reasonable O +accuracy S-CHAR +on O +large O +builds S-CHAR +. O + + +Directed B-MANP +Energy I-MANP +Deposition E-MANP +of O +thin O +wall O +geometries S-CONPRI +built O +from O +Inconel® O +625 O +and O +Ti6Al4V S-MATE +is O +used O +as S-MATE +a O +reference O +and O +models O +with O +2 O +levels O +of O +Octree O +mesh O +coarsening O +are O +investigated O +. O + + +The O +thermal O +history O +, O +in B-CONPRI +situ E-CONPRI +distortion S-CONPRI +, O +residual B-PRO +stress E-PRO +, O +and O +run O +times O +are O +compared O +with O +previously O +experimentally B-CONPRI +validated E-CONPRI +static O +mesh O +results O +. O + + +Two O +levels O +of O +mesh O +coarsening O +is O +found O +to O +be S-MATE +the O +most O +effective O +case O +for O +both O +materials S-CONPRI +reducing O +the O +computational O +time O +by O +75 O +% O +while O +reporting O +less O +than O +2.5 O +% O +error S-CONPRI +for O +the O +peak O +distortion S-CONPRI +and O +negligible O +error S-CONPRI +for O +the O +thermal O +history O +difference O +as S-MATE +compared O +to O +the O +static O +mesh O +. O + + +Keeping O +two O +fine O +layers O +of O +elements S-MATE +underneath O +the O +heat B-CONPRI +source E-CONPRI +is O +found O +to O +be S-MATE +the O +most O +efficient O +in O +terms O +of O +prediction S-CONPRI +accuracy S-CHAR +and O +run O +time O +. O + + +Cork S-MATE +powder O +residues O +were O +used O +to O +produce O +a O +biodegradable O +filament S-MATE +for O +additive B-MANP +manufacturing E-MANP +. O + + +The O +addition O +of O +a O +maleic O +anhydride-based O +coupling O +agent O +to O +the O +PLA S-MATE +matrix O +improved O +the O +mechanical S-APPL +behavior O +of O +CPC O +. O + + +A O +cork-like O +filament S-MATE +fully O +biodegradable O +and O +filled O +with O +low O +granulometry O +cork S-MATE +powder O +residues O +was O +developed O +. O + + +Cork-polymer O +composites S-MATE +( O +CPC O +) O +were O +prepared O +using O +a O +Brabender O +type O +mixer O +incorporating O +15 O +% O +( O +w/w O +) O +of O +cork S-MATE +powder O +( O +corresponding O +to O +55 O +% O +( O +v/v O +) O +) O +and O +having O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +as S-MATE +matrix O +. O + + +In O +order O +to O +promote O +a O +chemical O +adhesion S-PRO +between O +cork S-MATE +particles O +and O +PLA S-MATE +, O +the O +effect O +of O +maleic O +anhydride O +grafted O +PLA S-MATE +( O +MAgPLA O +) O +was O +studied O +. O + + +Fourier B-ENAT +Transform I-ENAT +Infrared E-ENAT +– O +Attenuated O +Total O +Reflection S-CHAR +( O +FTIR-ATR O +) O +analysis O +was O +used O +to O +evaluate O +the O +functionalization O +of O +MAgPLA O +onto O +the O +polymeric O +chain O +. O + + +The O +addition O +of O +MAgPLA O +enhanced O +the O +mechanical S-APPL +behavior O +by O +increasing O +tensile B-PRO +properties E-PRO +while O +improving O +the O +dispersion S-CONPRI +of O +cork S-MATE +particles O +within O +PLA S-MATE +matrix O +. O + + +In O +addition O +, O +cork S-MATE +particles O +and O +MAgPLA O +acted O +as S-MATE +nucleating O +agents O +during O +PLA S-MATE +melting S-MANP +process O +. O + + +To O +evaluate O +the O +printability S-PARA +of O +the O +developed O +CPC O +filament S-MATE +, O +specimens O +were O +printed O +by O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +and O +compared O +to O +those O +obtained O +by O +injection B-MANP +molding E-MANP +( O +IM O +) O +. O + + +FFF S-MANP +allowed O +to O +preserve O +the O +cork S-MATE +alveolar O +structure S-CONPRI +in O +the O +specimens O +, O +benefiting O +CPC O +mechanical S-APPL +behavior O +. O + + +3D B-APPL +parts E-APPL +could O +be S-MATE +printed O +with O +the O +CPC O +filament S-MATE +thereby O +demonstrating O +the O +usefulness O +of O +the O +fully O +biodegradable O +cork-based O +filament S-MATE +here O +developed O +. O + + +3D B-APPL +printed I-APPL +parts E-APPL +exhibit O +unique O +characteristics O +, O +such O +as S-MATE +a O +nonplastic O +and O +warm O +touch O +, O +a O +natural O +colour O +and O +the O +release O +of O +a O +pleasant O +odour O +during O +the O +printing B-MANP +process E-MANP +. O + + +AISI O +316L O +steel S-MATE +was O +tested O +under O +high O +Hertzian O +loads O +at O +different O +temperatures S-PARA +. O + + +The O +3D B-MANP +printed E-MANP +material O +presents O +higher O +wear B-PRO +resistance E-PRO +. O + + +The O +triboxides O +present O +the O +same O +chemical B-CONPRI +composition E-CONPRI +. O + + +The O +material S-MATE +produced O +using O +SLM S-MANP +presents O +a O +thinner O +strain-hardened O +layer S-PARA +. O + + +The O +3D B-MANP +printed E-MANP +material O +begins O +dynamic S-CONPRI +recrystallization O +at O +higher O +temperatures S-PARA +. O + + +This O +material S-MATE +is O +also O +suitable O +for O +use O +in O +the O +3D B-MANP +printing E-MANP +of O +metal S-MATE +components.In O +this O +study O +, O +the O +wear S-CONPRI +behavior O +of O +AISI O +316L O +steel S-MATE +produced O +using O +Selective B-MANP +Laser I-MANP +Melting E-MANP +technology O +was O +investigated O +in O +order O +to O +determine O +its O +metallurgical S-APPL +evolution S-CONPRI +under O +high O +Hertzian O +stress S-PRO +. O + + +The O +results O +were O +compared O +to O +AISI O +316L O +that O +was O +classically O +forged.A O +preliminary O +mechanical S-APPL +and O +microstructural B-CHAR +characterization E-CHAR +was O +carried O +out O +in O +order O +to O +characterize O +the O +material S-MATE +and O +compare O +the O +properties S-CONPRI +of O +3D B-MANP +printed E-MANP +with O +material S-MATE +that O +has O +been O +forged O +. O + + +The O +wear S-CONPRI +rates O +were O +then O +calculated O +using O +a O +stylus B-MACEQ +profilometer E-MACEQ +. O + + +The O +wear S-CONPRI +tracks O +were O +characterized O +in O +the O +top O +view O +to O +determine O +the O +composition S-CONPRI +of O +the O +triboxide O +layer S-PARA +using O +SEM-EDXS O +and O +Raman B-CHAR +spectroscopy E-CHAR +. O + + +Cross B-CONPRI +sections E-CONPRI +of O +the O +samples S-CONPRI +were O +then O +used O +to O +conduct O +SEM S-CHAR +analysis O +in O +order O +to O +determine O +the O +thickness O +of O +the O +tribolayer O +and O +the O +characteristics O +of O +the O +strain S-PRO +hardened S-MANP +layer O +. O + + +EBSD S-CHAR +mapping O +was O +also O +conducted O +on O +the O +same O +samples S-CONPRI +to O +determine O +the O +regions O +in O +which O +recrystallization S-CONPRI +had O +taken O +place.The O +results O +showed O +that O +the O +3D B-MANP +printed E-MANP +material O +has O +lower O +wear S-CONPRI +rates O +than O +the O +forged O +material S-MATE +, O +due O +to O +the O +finer B-FEAT +microstructure E-FEAT +of O +the O +material S-MATE +produced O +by O +3D S-CONPRI +. O + + +In O +addition O +, O +the O +triboxides O +formed O +on O +the O +additively B-MANP +manufactured E-MANP +component O +were O +finer O +, O +although O +the O +nature O +of O +the O +oxide S-MATE +was O +the O +same O +. O + + +The O +3D B-MANP +printed E-MANP +material O +showed O +a O +dynamic S-CONPRI +recrystallization O +at O +600 O +°C O +, O +while O +the O +forged O +material S-MATE +started O +to O +recrystallize O +at O +200 O +°C O +. O + + +Medium O +powered O +LPBF S-MANP +machines O +can O +process S-CONPRI +pure O +Cu S-MATE +to O +an O +acceptable O +level O +. O + + +Resistivity S-PRO +of O +as-built O +Cu S-MATE +increases O +by O +33 O +% O +depending O +on O +build B-PARA +orientation E-PARA +. O + + +Resistivity S-PRO +can O +be S-MATE +reduced O +by O +over O +50 O +% O +from O +as-built O +conditions O +via O +heat B-MANP +treatment E-MANP +. O + + +Electrical B-CHAR +resistivity E-CHAR +values O +once O +heat S-CONPRI +treated O +are O +lower O +than O +AlSi10Mg S-MATE +values O +. O + + +Pure O +copper S-MATE +is O +an O +excellent O +thermal O +and O +electrical S-APPL +conductor S-MATE +, O +however O +, O +attempts O +to O +process S-CONPRI +it O +with O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +have O +seen O +various O +levels O +of O +success O +. O + + +While O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +has O +successfully O +processed S-CONPRI +pure O +copper S-MATE +to O +high O +densities O +, O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +has O +had O +difficulties O +achieving O +the O +same O +results O +without O +the O +use O +of O +very O +high O +power S-PARA +lasers O +. O + + +This O +requirement O +has O +hampered O +the O +exploration O +of O +using O +LPBF S-MANP +with O +pure O +copper S-MATE +as S-MATE +most O +machines S-MACEQ +are O +equipped O +with O +lasers O +that O +have O +low O +to O +medium O +laser B-PARA +power E-PARA +densities O +. O + + +In O +this O +work O +, O +experiments O +were O +conducted O +to O +process S-CONPRI +pure O +copper S-MATE +with O +a O +200 O +W O +LPBF S-MANP +machine O +with O +a O +small O +laser S-ENAT +spot O +diameter S-CONPRI +resulting O +in O +an O +above O +average S-CONPRI +laser O +power S-PARA +density S-PRO +in O +order O +to O +maximise O +density S-PRO +and O +achieve O +low O +electrical B-CHAR +resistivity E-CHAR +. O + + +The O +effects O +of O +initial O +build B-PARA +orientation E-PARA +and O +post O +heat B-MANP +treatment E-MANP +were O +also O +investigated O +to O +explore O +their O +influence O +on O +electrical B-CHAR +resistivity E-CHAR +. O + + +It O +was O +found O +that O +despite O +issues O +with O +high O +porosity S-PRO +, O +heat S-CONPRI +treated O +specimens O +had O +a O +lower O +electrical B-CHAR +resistivity E-CHAR +than O +other O +common O +AM B-MATE +materials E-MATE +such O +as S-MATE +the O +aluminium B-MATE +alloy I-MATE +AlSi10Mg E-MATE +. O + + +By O +conducting O +these O +tests O +, O +it O +was O +found O +that O +despite O +having O +approximately O +double O +the O +resistivity S-PRO +of O +commercially O +pure O +copper S-MATE +, O +the O +resistivity S-PRO +was O +sufficiently O +low O +enough O +to O +demonstrate O +the O +potential O +to O +use O +AM S-MANP +to O +process S-CONPRI +copper S-MATE +suitable O +for O +electrical B-APPL +applications E-APPL +. O + + +Large O +Area S-PARA +Additive B-MANP +Manufacturing E-MANP +now O +enables O +the O +fabrication S-MANP +of O +structures O +that O +are O +dramatically O +more O +substantial O +than O +those O +produced O +with O +standard S-CONPRI +3D B-MANP +printing E-MANP +. O + + +As S-MATE +the O +use O +of O +support B-FEAT +structure E-FEAT +is O +generally O +not O +appropriate O +when O +printing O +at O +these O +scales O +, O +understanding O +the O +limits S-CONPRI +of O +overhanging B-FEAT +feature E-FEAT +angles O +is O +necessary O +to O +establish O +the O +economic O +case O +for O +using O +large O +3D B-MANP +printing E-MANP +. O + + +Additionally O +, O +understanding O +the O +physics S-CONPRI +of O +the O +process S-CONPRI +is O +paramount O +to O +avoiding O +expensive O +failed O +prints O +. O + + +Rapid O +sequential O +layers O +can O +result O +in O +slumping O +as S-MATE +the O +structure S-CONPRI +retains O +excessive O +heat S-CONPRI +when O +the O +next O +layer S-PARA +is O +printed O +. O + + +The O +model S-CONPRI +can O +be S-MATE +used O +to O +insert S-MACEQ +additional O +dwell B-PARA +times E-PARA +after O +each O +layer S-PARA +so O +that O +the O +next O +layer S-PARA +of O +printing O +initiates O +after O +the O +previous O +layer S-PARA +is O +sufficiently O +cool O +such O +that O +the O +existing O +structure S-CONPRI +is O +appropriately O +solidified O +. O + + +Inputs O +to O +the O +model S-CONPRI +include O +the O +feedstock B-MATE +material E-MATE +, O +the O +number O +of O +beads S-CHAR +in O +the O +overhanging O +wall O +, O +the O +angle O +of O +overhang S-PARA +and O +the O +threshold O +of O +failure S-CONPRI +represented O +as S-MATE +out-of-plane O +displacement O +from O +the O +intended O +geometry S-CONPRI +. O + + +The O +proposed O +thermal O +model S-CONPRI +can O +then O +be S-MATE +used O +with O +slicing S-CONPRI +software O +to O +insert S-MACEQ +pauses O +a O +priori O +, O +or O +can O +be S-MATE +leveraged O +during O +the O +print S-MANP +in O +conjunction O +with O +infrared S-CONPRI +imaging S-APPL +in O +order O +to O +provide O +in B-CONPRI +situ E-CONPRI +process O +control O +to O +improve O +quality S-CONPRI +and O +yield O +. O + + +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +as S-MATE +an O +additive B-MANP +manufacturing I-MANP +process E-MANP +can O +fabricate S-MANP +near O +to O +net B-MANP +shape E-MANP +metallic S-MATE +components S-MACEQ +directly O +from O +Computer B-ENAT +aided I-ENAT +design E-ENAT +models O +, O +which O +may O +be S-MATE +difficult O +to O +fabricate S-MANP +using O +conventional B-MANP +manufacturing E-MANP +methods O +. O + + +In O +this O +work O +, O +the O +powdered B-MATE +metals E-MATE +used O +as S-MATE +the O +raw B-MATE +material E-MATE +feedstock S-MATE +in O +the O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +were O +studied O +. O + + +SLM B-MANP +manufacturing E-MANP +processibility O +of O +nickel S-MATE +based O +super B-MATE +alloy E-MATE +, O +powders S-MATE +related O +to O +the O +particle B-CONPRI +Size I-CONPRI +Distribution E-CONPRI +( O +PSD O +) O +, O +flow O +ability O +, O +mechanical B-CONPRI +properties E-CONPRI +and O +microstructures S-MATE +was O +investigated O +. O + + +Different O +powder S-MATE +characterisation O +methods O +were O +also O +investigated O +to O +establish O +which O +might O +be S-MATE +most O +useful O +for O +SLM S-MANP +application O +. O + + +Three O +different O +Inconel B-MATE +625 E-MATE +( O +IN625 O +) O +powder B-MACEQ +feedstock E-MACEQ +materials S-CONPRI +have O +been O +accounted O +for O +this O +study O +. O + + +Firstly O +, O +three O +different O +IN625 O +powders S-MATE +were O +fully O +characterised O +for O +chemical B-CONPRI +composition E-CONPRI +, O +particle B-CONPRI +size I-CONPRI +distribution E-CONPRI +and O +flow O +ability O +using O +different O +types O +of O +characterisation O +techniques O +. O + + +It O +has O +been O +found O +that O +the O +presence O +of O +any O +significant O +proportion O +of O +powder B-MATE +particles E-MATE +smaller O +than O +10-μm O +diameter S-CONPRI +, O +leads O +to O +severe O +agglomeration O +and O +make O +SLM S-MANP +processing O +difficult O +. O + + +Secondly O +, O +coupons O +were O +manufactured S-CONPRI +using O +SLM S-MANP +from O +each O +powder S-MATE +with O +different O +process B-CONPRI +parameter E-CONPRI +, O +which O +were O +analysed O +for O +porosity S-PRO +and O +mechanical B-CONPRI +behaviour E-CONPRI +. O + + +Next O +, O +the O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +electron O +back O +scattering O +diffraction S-CHAR +( O +EBSD S-CHAR +) O +are O +employed O +to O +investigate O +the O +microstructures S-MATE +. O + + +Finally O +, O +data S-CONPRI +analysis O +was O +employed O +on O +the O +data S-CONPRI +collected O +by O +metal B-MATE +powders E-MATE +characterization O +, O +SLM B-MANP +manufacturing E-MANP +, O +SEM/EBSD O +study O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +IN625 O +. O + + +It O +has O +been O +observed O +that O +the O +powder S-MATE +characteristics O +, O +as S-MATE +well O +as S-MATE +SLM O +process B-CONPRI +parameters E-CONPRI +influences O +on O +the O +quality S-CONPRI +of O +the O +IN625 O +fabricated S-CONPRI +. O + + +Binder B-MANP +jetting I-MANP +additive I-MANP +manufacturing E-MANP +( O +BJAM O +) O +is O +a O +comparatively O +low-cost O +process S-CONPRI +that O +enables O +manufacturing S-MANP +of O +complex O +and O +customizable O +metal S-MATE +parts O +. O + + +This O +process S-CONPRI +is O +applied O +to O +low-cost O +water-atomized O +iron S-MATE +powder O +with O +the O +goal O +of O +understanding O +the O +effects O +of O +printing O +parameters S-CONPRI +and O +sintering S-MANP +schedule O +on O +maximizing O +the O +green O +and O +sintered S-MANP +densities O +of O +manufactured S-CONPRI +samples O +, O +respectively O +. O + + +The O +powder S-MATE +is O +characterized O +by O +using O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +and O +particle S-CONPRI +size O +analysis O +( O +Camsizer O +X2 O +) O +. O + + +In O +the O +AM B-MANP +process E-MANP +, O +the O +effects O +of O +powder S-MATE +compaction S-MANP +, O +layer B-PARA +thickness E-PARA +, O +and O +liquid B-MATE +binder E-MATE +level O +on O +green B-PRO +part E-PRO +density S-PRO +are O +investigated O +. O + + +Post-process B-CONPRI +heat E-CONPRI +treatment O +is O +applied O +to O +selected O +samples S-CONPRI +, O +and O +suitable O +debinding S-CONPRI +parameters O +are O +studied O +by O +using O +thermo-gravimetric O +analysis O +( O +TGA S-CHAR +) O +. O + + +Sintering S-MANP +at O +various O +temperatures S-PARA +and O +durations O +results O +in O +densities O +of O +up O +to O +91.3 O +% O +. O + + +Image S-CONPRI +processing O +of O +x-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +μCT O +) O +scans O +of O +the O +samples S-CONPRI +reveals O +that O +porosity S-PRO +distribution S-CONPRI +is O +affected O +by O +powder S-MATE +spreading O +, O +and O +gradients O +in O +pore S-PRO +distribution S-CONPRI +in O +the O +sample S-CONPRI +are O +largely O +reduced O +after O +sintering S-MANP +. O + + +The O +results O +indicate O +that O +the O +sintering S-MANP +temperature O +and O +time O +might O +be S-MATE +tailored O +to O +achieve O +target O +densities O +anywhere O +in O +the O +range S-PARA +of O +64 O +% O +and O +91 O +% O +, O +with O +possibly O +higher O +densities O +by O +increasing O +sintering B-PARA +time E-PARA +. O + + +Binder-jetting O +, O +an O +additive B-MANP +manufacturing I-MANP +process E-MANP +and O +relatively O +low-cost B-PRO +technology E-PRO +is O +utilized O +to O +deposit O +complex-shaped S-CONPRI +thin O +ceramic B-MACEQ +cores E-MACEQ +. O + + +In O +this O +study O +, O +for O +enhancing O +sintering S-MANP +quality S-CONPRI +, O +a O +decomposable O +binder S-MATE +was O +prepared O +using O +binder-jetting O +by O +dispersing O +different O +contents O +of O +zirconium S-MATE +basic O +carbonate O +( O +ZBC O +) O +into O +an O +inorganic O +colloidal B-MATE +binder E-MATE +. O + + +The O +effects O +of O +different O +ZBC O +contents O +on O +the O +printability S-PARA +of O +the O +binder S-MATE +and O +the O +performance S-CONPRI +characteristics O +of O +the O +ceramic B-MACEQ +cores E-MACEQ +by O +binder-jetting O +were O +investigated O +. O + + +The O +results O +show O +that O +the O +surface B-PRO +tension E-PRO +of O +the O +binder S-MATE +decreases O +with O +the O +increasing O +of O +ZBC O +contents O +, O +indicating O +that O +the O +addition O +of O +ZBC O +particles S-CONPRI +perturbs O +the O +interaction O +between O +water O +molecules O +. O + + +The O +presence O +of O +newly O +generated O +ZrO2 S-MATE +particles S-CONPRI +decomposed O +by O +ZBC O +demonstrated O +a O +significant O +effect O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +ceramic B-MACEQ +cores E-MACEQ +. O + + +The O +sintered S-MANP +density S-PRO +increased O +by O +about O +44 O +% O +, O +the O +bending B-PRO +strength E-PRO +improved O +from O +60 O +to O +79 O +MPa S-CONPRI +, O +and O +linear O +shrinkage S-CONPRI +decreased O +from O +20 O +to O +13 O +% O +after O +sintering S-MANP +at O +1500 O +°C O +as S-MATE +the O +ZBC O +content O +was O +increased O +from O +0 O +to O +35 O +wt O +% O +. O + + +Purposely O +introduced O +gas S-CONPRI +pores O +in O +wire B-MANP ++ I-MANP +arc I-MANP +additive I-MANP +manufactured E-MANP +titanium S-MATE +( O +WAAM S-MANP +Ti-6Al-4 B-MATE +V E-MATE +) O +. O + + +Interrupted O +fatigue B-CHAR +testing E-CHAR +with O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +scanning S-CONPRI +at O +intervals O +. O + + +Changes O +in O +porosity S-PRO +morphology S-CONPRI +observed O +with O +fatigue S-PRO +loading O +cycles O +. O + + +Cyclic O +stress-strain O +response O +in O +the O +vicinity O +of O +gas S-CONPRI +pores O +calculated O +by O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +. O + + +Fatigue B-PRO +life E-PRO +predicted O +using O +the O +traditional O +notch S-FEAT +fatigue S-PRO +approach O +. O + + +Porosity S-PRO +defects S-CONPRI +remain O +a O +challenge O +to O +the O +structural B-PRO +integrity E-PRO +of O +additive B-MANP +manufactured E-MANP +materials O +, O +particularly O +for O +parts O +under O +fatigue S-PRO +loading O +applications O +. O + + +Although O +the O +wire B-MANP ++ I-MANP +arc I-MANP +additive I-MANP +manufactured E-MANP +Ti-6Al-4 B-MATE +V E-MATE +builds S-CHAR +are O +typically O +fully B-PARA +dense E-PARA +, O +occurrences O +of O +isolated O +pores S-PRO +may O +not O +be S-MATE +completely O +avoided O +due O +to O +feedstock S-MATE +contamination O +. O + + +This O +study O +used O +contaminated O +wires O +to O +build S-PARA +the O +gauge B-MACEQ +section E-MACEQ +of O +fatigue S-PRO +specimens O +to O +purposely O +introduce O +spherical B-PRO +gas I-PRO +pores E-PRO +in O +the O +size O +range S-PARA +of O +120–250 O +micrometres O +. O + + +Changes O +in O +the O +defect S-CONPRI +morphology O +were O +monitored O +via O +interrupted O +fatigue B-CHAR +testing E-CHAR +with O +periodic O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +scanning S-CONPRI +. O + + +Prior O +to O +specimen O +failure S-CONPRI +, O +the O +near O +surface S-CONPRI +pores S-PRO +grew O +by O +approximately O +a O +factor O +of O +2 O +and O +tortuous O +fatigue S-PRO +cracks O +were O +initiated O +and O +propagated O +towards O +the O +nearest O +free B-CONPRI +surface E-CONPRI +. O + + +Elastic-plastic O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +showed O +cyclic O +plastic B-PRO +deformation E-PRO +at O +the O +pore S-PRO +root O +as S-MATE +a O +result O +of O +stress B-CHAR +concentration E-CHAR +; O +consequently O +for O +an O +applied O +tension-tension O +cyclic B-PRO +stress E-PRO +( O +stress S-PRO +ratio O +0.1 O +) O +, O +the O +local O +stress S-PRO +at O +the O +pore S-PRO +root O +became O +a O +tension-compression O +nature O +( O +local O +stress S-PRO +ratio O +−1.0 O +) O +. O + + +Fatigue B-PRO +life E-PRO +was O +predicted S-CONPRI +using O +the O +notch S-FEAT +fatigue S-PRO +approach O +and O +validated O +with O +experimental S-CONPRI +test O +results O +. O + + +Processing-structure-property O +relationships O +in O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +are O +complex O +, O +non-linear O +, O +and O +poorly O +understood O +. O + + +In O +this O +work O +, O +we O +designed S-FEAT +an O +informatics O +workflow S-CONPRI +for O +the O +collection O +of O +high O +pedigree O +data S-CONPRI +from O +each O +stage O +of O +the O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +printing B-MANP +process E-MANP +. O + + +In O +conjunction O +with O +a O +design B-CONPRI +of I-CONPRI +experiments E-CONPRI +, O +we O +applied O +the O +workflow S-CONPRI +to O +investigate O +the O +influences O +of O +processing O +parameters S-CONPRI +on O +weld B-PRO +strength E-PRO +across O +three O +commercially O +available O +FFF S-MANP +printers O +. O + + +Environmental O +, O +material S-MATE +, O +and O +print S-MANP +conditions O +that O +may O +impact S-CONPRI +performance O +were O +monitored O +to O +ensure O +that O +relevant O +data S-CONPRI +were O +collected O +in O +a O +consistent O +manner O +. O + + +Acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +filament S-MATE +was O +used O +to O +print S-MANP +ASTM O +D638-14 O +Type O +V S-MATE +tensile B-MACEQ +bars E-MACEQ +. O + + +Data S-CONPRI +were O +analyzed O +using O +multivariate S-CONPRI +statistical O +techniques O +, O +including O +principal O +component S-MACEQ +analysis O +. O + + +The O +magnitude S-PARA +of O +the O +effects O +of O +extrusion S-MANP +temperature O +, O +layer B-PARA +thickness E-PARA +, O +print S-MANP +bed S-MACEQ +temperature O +, O +and O +print S-MANP +speed O +on O +the O +tensile B-PRO +properties E-PRO +of O +the O +final O +print S-MANP +were O +determined O +. O + + +The O +results O +demonstrated O +that O +printer S-MACEQ +selection O +is O +important O +and O +changes O +the O +impact S-CONPRI +of O +print S-MANP +parameters S-CONPRI +. O + + +Non-destructive O +dielectric S-MACEQ +imaging O +during O +additive B-MANP +manufacturing E-MANP +. O + + +3D S-CONPRI +characterization O +of O +relative O +dielectric S-MACEQ +permittivity O +within O +printed O +devices O +. O + + +Integrated O +, O +in-line O +quality B-CONPRI +control E-CONPRI +technique O +for O +AM B-MANP +processes E-MANP +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +techniques O +are O +used O +increasingly O +for O +the O +direct O +fabrication S-MANP +of O +microwave S-ENAT +devices O +, O +such O +as S-MATE +graded O +index O +lenses O +and O +dielectric S-MACEQ +resonator O +antennas O +, O +which O +have O +spatially-varying O +dielectric S-MACEQ +properties O +( O +i.e O +. O + + +However O +, O +there O +is O +no O +effective O +method O +to O +characterize O +the O +spatial B-CHAR +distribution E-CHAR +of O +permittivity O +within O +the O +printed O +component S-MACEQ +, O +either O +during O +manufacture S-CONPRI +or O +once O +the O +component S-MACEQ +is O +complete O +. O + + +Therefore O +it O +is O +not O +possible O +to O +confirm O +the O +extent O +to O +which O +the O +manufactured S-CONPRI +spatial O +distribution S-CONPRI +of O +permittivity O +meets O +the O +intended O +design S-FEAT +. O + + +We O +report O +the O +integration O +of O +a O +novel O +split O +ring O +resonator S-APPL +( O +SRR O +) O +surface S-CONPRI +mapping O +technique O +directly O +into O +an O +AM B-MANP +process E-MANP +to O +make O +non-destructive O +in-line O +measurements O +of O +the O +local O +relative O +dielectric S-MACEQ +permittivity O +( O +ϵr O +) O +within O +3D B-APPL +objects E-APPL +as O +they O +are O +formed O +. O + + +We O +then O +reconstruct O +these O +data S-CONPRI +into O +3D S-CONPRI +dielectric O +“ O +images S-CONPRI +” O +of O +the O +printed O +component S-MACEQ +. O + + +Detailed O +insights O +into O +the O +dielectric S-MACEQ +imaging O +principle O +, O +data S-CONPRI +processing/analysis O +, O +as S-MATE +well O +as S-MATE +limitations O +and O +opportunities O +related O +to O +the O +technique O +are O +described O +. O + + +The O +work O +aims O +to O +accelerate O +the O +design-make-test O +cycle O +for O +advanced O +microwave S-ENAT +devices O +, O +and O +suggests O +the O +possibility O +for O +real-time O +, O +closed-loop B-MACEQ +control E-MACEQ +of O +dielectric S-MACEQ +properties O +during O +AM S-MANP +. O + + +Variation S-CONPRI +of O +texture S-FEAT +in O +Ti-6Al-4V S-MATE +samples S-CONPRI +produced O +by O +three O +different O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +has O +been O +studied O +by O +neutron S-CONPRI +time-of-flight O +( O +TOF O +) O +diffraction S-CHAR +. O + + +The O +investigated O +AM B-MANP +processes E-MANP +were O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +, O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +and O +laser S-ENAT +metal O +wire O +deposition S-CONPRI +( O +LMwD O +) O +. O + + +Additionally O +, O +for O +the O +LMwD O +material S-MATE +separate O +measurements O +were O +done O +on O +samples S-CONPRI +from O +the O +top O +and O +bottom O +pieces O +in O +order O +to O +detect O +potential O +texture S-FEAT +variations O +between O +areas S-PARA +close O +to O +and O +distant O +from O +the O +supporting O +substrate S-MATE +in O +the O +manufacturing B-MANP +process E-MANP +. O + + +Electron O +backscattered O +diffraction S-CHAR +( O +EBSD S-CHAR +) O +was O +also O +performed O +on O +material S-MATE +parallel O +and O +perpendicular O +to O +the O +build B-PARA +direction E-PARA +to O +characterize O +the O +microstructure S-CONPRI +. O + + +Understanding O +the O +context O +of O +texture S-FEAT +for O +AM B-MANP +processes E-MANP +is O +of O +significant O +relevance O +as S-MATE +texture O +can O +be S-MATE +linked O +to O +anisotropic S-PRO +mechanical O +behavior O +. O + + +It O +was O +found O +that O +LMwD O +had O +the O +strongest O +texture S-FEAT +while O +the O +two O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +processes S-CONPRI +EBM S-MANP +and O +SLM S-MANP +displayed O +comparatively O +weaker O +texture S-FEAT +. O + + +The O +texture S-FEAT +of O +EBM S-MANP +and O +SLM S-MANP +was O +of O +the O +same O +order O +of O +magnitude S-PARA +. O + + +These O +results O +correlate O +well O +with O +previous O +microstructural S-CONPRI +studies O +. O + + +Additionally O +, O +texture S-FEAT +variations O +were O +found O +in O +the O +LMwD O +sample S-CONPRI +, O +where O +the O +part O +closest O +to O +the O +substrate S-MATE +featured O +stronger O +texture S-FEAT +than O +the O +corresponding O +top O +part O +. O + + +The O +crystal O +direction O +of O +the O +α O +phase S-CONPRI +with O +the O +strongest O +texture S-FEAT +component S-MACEQ +was O +[ O +112¯3 O +] O +. O + + +Carries O +out O +in B-CONPRI +situ E-CONPRI +high O +speed O +imaging S-APPL +of O +polymer B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Measures O +thermal B-PRO +conductivity E-PRO +of O +built O +part O +as S-MATE +a O +function O +of O +process B-CONPRI +parameters E-CONPRI +. O + + +Develops O +correlation O +between O +process S-CONPRI +, O +microstructure S-CONPRI +and O +thermal B-CONPRI +properties E-CONPRI +. O + + +Results O +show O +strong O +dependence O +of O +thermal B-CONPRI +property E-CONPRI +on O +raster O +speed O +& O +layer B-PARA +height E-PARA +. O + + +Results O +may O +be S-MATE +helpful O +for O +process B-CONPRI +optimization E-CONPRI +to O +obtain O +novel O +, O +functional O +parts O +. O + + +Additive B-MANP +manufacturing E-MANP +has O +gained O +significant O +research S-CONPRI +attention O +due O +to O +multiple O +advantages O +over O +traditional B-MANP +manufacturing E-MANP +technologies S-CONPRI +. O + + +A O +fundamental O +understanding O +of O +the O +relationships O +between O +process B-CONPRI +parameters E-CONPRI +, O +microstructure S-CONPRI +and O +functional O +properties S-CONPRI +of O +built O +parts O +is O +critical O +for O +optimizing O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +and O +building O +parts O +with O +desired O +properties S-CONPRI +. O + + +This O +is O +also O +critical O +for O +a O +multi-functional O +part O +where O +the O +process S-CONPRI +needs O +to O +be S-MATE +optimized O +with O +respect O +to O +disparate O +performance S-CONPRI +requirements O +such O +as S-MATE +mechanical O +strength S-PRO +and O +thermal B-PRO +conductivity E-PRO +. O + + +This O +paper O +presents O +in B-CONPRI +situ E-CONPRI +high O +speed O +imaging S-APPL +and O +build-direction O +thermal B-PRO +conductivity E-PRO +measurements O +of O +polymer B-MANP +extrusion E-MANP +based O +additively B-MANP +manufactured E-MANP +parts O +in O +order O +to O +understand O +the O +effect O +of O +process B-CONPRI +parameters E-CONPRI +such O +as S-MATE +raster O +speed O +, O +infill B-PARA +percentage E-PARA +and O +layer B-PARA +height E-PARA +on O +build-direction O +thermal B-PRO +conductivity E-PRO +. O + + +Measurements O +of O +thermal B-PRO +conductivity E-PRO +using O +a O +one-dimensional O +heat B-CONPRI +flux E-CONPRI +method O +are O +correlated S-CONPRI +with O +in B-CONPRI +situ E-CONPRI +process O +images S-CONPRI +obtained O +from O +a O +high O +speed O +camera S-MACEQ +as S-MATE +well O +as S-MATE +cross O +section O +images S-CONPRI +of O +the O +built O +part O +. O + + +Results O +indicate O +strong O +dependence O +of O +build-direction O +thermal B-PRO +conductivity E-PRO +on O +raster O +speed O +, O +layer B-PARA +thickness E-PARA +and O +infill B-PARA +percentage E-PARA +, O +which O +is O +corroborated O +by O +high O +speed O +imaging S-APPL +of O +the O +printing B-MANP +process E-MANP +at O +different O +values O +of O +these O +process B-CONPRI +parameters E-CONPRI +. O + + +Key O +trade-offs O +between O +process S-CONPRI +throughput O +and O +thermal B-CONPRI +properties E-CONPRI +are O +also O +identified O +. O + + +In O +addition O +to O +enhancing O +our O +fundamental O +understanding O +of O +polymer B-MANP +extrusion E-MANP +based O +additive B-MANP +manufacturing E-MANP +and O +its O +influence O +on O +thermal B-CONPRI +properties E-CONPRI +of O +built O +parts O +, O +results O +presented O +here O +may O +facilitate O +process B-CONPRI +optimization E-CONPRI +towards O +parts O +with O +desired O +thermal O +and O +multi-functional O +properties S-CONPRI +. O + + +Lightweight S-CONPRI +design S-FEAT +is O +an O +area S-PARA +of O +mechanical B-APPL +engineering E-APPL +that O +becomes O +increasingly O +important O +in O +many O +industries S-APPL +, O +as S-MATE +they O +pursue O +reduced O +mass O +and O +more O +efficient O +parts O +. O + + +A O +special O +class O +of O +materials S-CONPRI +for O +load-bearing S-FEAT +structures O +are O +metallic S-MATE +cellular B-MATE +materials E-MATE +with O +cubic O +unit B-CONPRI +cells E-CONPRI +, O +which O +can O +be S-MATE +manufactured O +conveniently O +through O +laser B-CONPRI +beam E-CONPRI +melting O +( O +LBM O +) O +. O + + +Such O +materials S-CONPRI +exhibit O +a O +rather O +complex O +microstructure S-CONPRI +and O +can O +be S-MATE +analysed O +using O +analytical O +and O +numerical O +methods O +wherein O +the O +determination O +of O +properties S-CONPRI +such O +as S-MATE +relative O +density S-PRO +, O +effective O +elastic B-PRO +and I-PRO +yield I-PRO +strength E-PRO +properties O +is O +of O +special O +interest O +. O + + +This O +paper O +addresses O +closed-form O +analytical O +methods O +based O +on O +beam S-MACEQ +theories O +for O +the O +determination O +of O +the O +effective O +properties S-CONPRI +of O +additively B-MANP +manufactured E-MANP +microstructures O +such O +as S-MATE +lattices O +, O +and O +a O +comparison O +with O +experimental S-CONPRI +results O +[ O +1 O +] O +, O +[ O +2 O +] O +which O +leads O +to O +excellent O +agreements O +for O +relative B-PRO +densities E-PRO +lower O +than O +40 O +% O +, O +although O +results O +reveal O +a O +great O +dependency O +on O +the O +manufacturing S-MANP +strategy O +. O + + +Lastly O +, O +a O +classification S-CONPRI +concerning O +the O +topology S-CONPRI +of O +the O +cellular O +units O +is O +presented O +as S-MATE +well O +in O +order O +to O +help O +the O +engineer O +choose O +appropriate O +geometries S-CONPRI +for O +specific O +application O +purposes O +. O + + +In O +conclusion O +, O +this O +structural O +concept O +may O +be S-MATE +applied O +in O +many O +fields O +such O +as S-MATE +bioengineering O +and O +in O +functional B-MATE +graded I-MATE +materials E-MATE +as S-MATE +they O +are O +applied O +in O +lightweight S-CONPRI +engineering S-APPL +. O + + +Polymeric O +Pellet-Based O +Additive B-MANP +Manufacturing E-MANP +( O +PPBAM O +) O +systems O +are O +increasing O +in O +the O +field O +of O +3D B-MANP +printing E-MANP +as O +a O +result O +of O +the O +evolution S-CONPRI +of O +additive B-ENAT +technologies E-ENAT +as O +their O +development O +process S-CONPRI +consolidates O +and O +expands O +. O + + +New O +opportunities O +for O +industrial S-APPL +integration O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +are O +identified O +, O +including O +AM S-MANP +of O +large O +polymeric O +parts O +. O + + +The O +PPBAM O +process S-CONPRI +consists O +of O +adapting O +a O +pellet-fed O +extrusion S-MANP +mechanism O +to O +a O +displacement O +system O +, O +either O +a O +Cartesian O +mechanism S-CONPRI +or O +a O +robotic B-MACEQ +arm E-MACEQ +system O +, O +building O +parts O +in O +a O +multi-layered O +approach O +. O + + +This O +use O +is O +justified O +by O +the O +extruded S-MANP +filament O +sizes O +required O +and O +the O +material S-MATE +costs O +when O +facing S-MANP +large-format O +prints O +. O + + +In O +this O +article O +, O +a O +pellet S-CONPRI +extrusion S-MANP +based O +printer S-MACEQ +prototype O +is O +presented O +together O +with O +a O +case B-CONPRI +study E-CONPRI +. O + + +The O +case B-CONPRI +study E-CONPRI +consists O +of O +the O +development O +of O +a O +two O +cubic O +meter S-MANS +capacity S-CONPRI +plastic O +part O +for O +the O +naval O +industry S-APPL +with O +a O +topology B-FEAT +optimization E-FEAT +design S-FEAT +approach O +and O +material S-MATE +selection O +and O +validation B-CONPRI +methodology E-CONPRI +for O +a O +large-volume O +pellet S-CONPRI +based O +extrusion S-MANP +system O +. O + + +Two O +functional B-CONPRI +prototypes E-CONPRI +were O +developed O +with O +the O +selected O +materials S-CONPRI +from O +the O +explained O +methodology S-CONPRI +a O +PLA S-MATE +and O +a O +flame B-MATE +retardant E-MATE +ABS S-MATE +, O +and O +post O +processed S-CONPRI +to O +full O +fill O +the O +actual O +product´s O +specifications S-PARA +. O + + +The O +first O +report O +on O +the O +fatigue S-PRO +behavior O +of O +additively O +manfacutred O +( O +AM S-MANP +) O +biodegradable O +porous S-PRO +Mg B-MATE +alloy E-MATE +( O +WE43 O +) O +and O +how O +it O +is O +affected O +by O +biodegradation O +. O + + +Biodegradation O +decreased O +the O +fatigue B-PRO +strength E-PRO +of O +the O +porous B-MATE +material E-MATE +from O +30 O +% O +to O +20 O +% O +of O +its O +yield B-PRO +strength E-PRO +. O + + +Moreover O +, O +cyclic B-PRO +loading E-PRO +significantly O +increased O +its O +biodegradation O +rate O +. O + + +The O +mechanistic O +aspects O +of O +how O +biodegradation O +and O +cyclic B-PRO +loading E-PRO +interacted O +with O +each O +other O +on O +both O +micro O +and O +macro B-CONPRI +scales E-CONPRI +were O +revealed O +. O + + +Additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +biodegradable B-MATE +metals E-MATE +with O +topologically S-CONPRI +ordered O +porous S-PRO +structures O +hold O +unprecedented O +promise O +as S-MATE +potential O +bone S-BIOP +substitutes O +. O + + +There O +is O +, O +however O +, O +no O +information O +available O +in O +the O +literature O +regarding O +their O +mechanical S-APPL +performance O +under O +cyclic B-PRO +loading E-PRO +or O +the O +interactions O +between O +biodegradation O +and O +cyclic B-PRO +loading E-PRO +. O + + +We O +therefore O +used O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +to O +fabricate S-MANP +porous O +magnesium B-MATE +alloy E-MATE +( O +WE43 O +) O +scaffolds S-FEAT +based O +on O +diamond S-MATE +unit O +cells S-APPL +. O + + +The O +microstructure S-CONPRI +of O +the O +resulting O +material S-MATE +was O +examined O +using O +electron O +back-scattered O +diffraction S-CHAR +, O +scanning B-CHAR +transmission I-CHAR +electron I-CHAR +microscopy E-CHAR +, O +and O +X-ray B-CHAR +diffraction E-CHAR +. O + + +The O +fatigue S-PRO +behaviors O +of O +the O +material S-MATE +in O +air O +and O +in O +revised O +simulated O +body O +fluid S-MATE +( O +r-SBF O +) O +were O +evaluated O +and O +compared O +. O + + +Biodegradation O +decreased O +the O +fatigue B-PRO +strength E-PRO +of O +the O +porous B-MATE +material E-MATE +from O +30 O +% O +to O +20 O +% O +of O +its O +yield B-PRO +strength E-PRO +. O + + +Moreover O +, O +cyclic B-PRO +loading E-PRO +significantly O +increased O +its O +biodegradation O +rate O +. O + + +The O +mechanistic O +aspects O +of O +how O +biodegradation O +and O +cyclic B-PRO +loading E-PRO +interacted O +with O +each O +other O +on O +different O +scales O +were O +revealed O +as S-MATE +well O +. O + + +In O +addition O +, O +dislocations S-CONPRI +became O +more O +tangled O +after O +the O +fatigue B-CHAR +tests E-CHAR +. O + + +On O +the O +macro-scale O +, O +cracks O +preferred O +initiating O +at O +the O +strut S-MACEQ +junctions S-APPL +where O +tensile B-PRO +stress E-PRO +concentrations O +were O +present O +, O +as S-MATE +revealed O +by O +the O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +of O +the O +porous B-MATE +material E-MATE +under O +compressive B-PRO +loading E-PRO +. O + + +Further O +improvements O +in O +the O +biodegradation-affected O +fatigue S-PRO +performance O +of O +the O +AM S-MANP +porous O +Mg B-MATE +alloy E-MATE +may O +therefore O +be S-MATE +realized O +by O +optimizing O +both O +the O +topological B-FEAT +design E-FEAT +of O +the O +porous S-PRO +structure O +and O +the O +laser-processing O +parameters S-CONPRI +that O +determine O +the O +microstructure S-CONPRI +of O +the O +SLM S-MANP +porous B-MATE +material E-MATE +. O + + +Additive B-MANP +manufacturing E-MANP +workflow O +was O +employed O +for O +fabrication S-MANP +of O +patient-specific O +fracture S-CONPRI +fixation O +implants S-APPL +. O + + +Orthotropic S-MATE +material B-CONPRI +properties E-CONPRI +of O +AM S-MANP +implants O +along O +with O +their O +biomechanical S-APPL +behavior O +were O +investigated O +using O +experimental S-CONPRI +and O +computational B-ENAT +methods E-ENAT +. O + + +medial O +fracture S-CONPRI +gap O +displacement O +) O +by O +47.2 O +% O +and O +risk O +of O +screw S-MACEQ +cut-out O +by O +14.6 O +% O +when O +compared O +to O +the O +conventional O +plate O +design S-FEAT +. O + + +Recent O +advancements O +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +have O +motivated O +researchers O +to O +consider O +this O +fabrication S-MANP +technique O +as S-MATE +a O +solution S-CONPRI +for O +challenges O +in O +patient-specific O +orthopaedic S-APPL +needs O +. O + + +Although O +there O +is O +an O +increasing O +trend S-CONPRI +in O +the O +applications O +of O +AM S-MANP +in O +medical S-APPL +fields O +, O +there O +is O +a O +critical O +need O +to O +understand O +the O +biomechanical S-APPL +performance O +of O +AM S-MANP +implants O +. O + + +In O +particular O +, O +design S-FEAT +opportunities O +, O +anisotropic B-PRO +material I-PRO +properties E-PRO +and O +resulting O +stability S-PRO +of O +AM S-MANP +implant O +constructs O +for O +large O +bone B-BIOP +defects E-BIOP +such O +as S-MATE +osteosarcoma O +, O +comminuted O +fractures O +and O +infections O +are O +unexplored O +. O + + +This O +study O +aims O +to O +evaluate O +metal B-MANP +AM E-MANP +for O +complex O +fracture S-CONPRI +fixation O +using O +both O +computational O +and O +experimental S-CONPRI +methods O +. O + + +In O +addition O +, O +this O +research S-CONPRI +highlights O +the O +role O +of O +AM S-MANP +in O +the O +entire O +workflow S-CONPRI +to O +fabricate S-MANP +metal O +AM S-MANP +fixation O +plates O +for O +treatment O +of O +comminuted O +proximal O +humerus O +fractures O +. O + + +A O +new O +AM-centric O +patient-specific O +implant S-APPL +design S-FEAT +for O +reducing O +common O +postoperative O +complications O +such O +as S-MATE +varus O +collapse O +and O +screw S-MACEQ +cutout O +is O +investigated O +. O + + +Biocompatible S-PRO +316L B-MATE +stainless I-MATE +steel E-MATE +specimens O +processed S-CONPRI +in O +laser-powder O +bed B-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +is O +subjected O +to O +tensile B-CHAR +testing E-CHAR +and O +post-hoc O +microhardness S-CONPRI +to O +obtain O +orthotropic S-MATE +material B-CONPRI +properties E-CONPRI +of O +the O +AM S-MANP +implants O +. O + + +Subsequently O +, O +risk O +of O +screw S-MACEQ +cut-out O +is O +evaluated O +using O +finite B-CHAR +element I-CHAR +modelling E-CHAR +( O +FEM S-CONPRI +) O +of O +AM S-MANP +implant-bone O +constructs O +. O + + +medial O +fracture S-CONPRI +gap O +displacement O +) O +by O +47.2 O +% O +and O +risk O +of O +screw S-MACEQ +cut-out O +by O +14.6 O +% O +when O +compared O +to O +the O +conventional O +plate O +design S-FEAT +. O + + +Findings O +from O +this O +study O +can O +be S-MATE +extended O +to O +other O +patient O +anatomy O +, O +loading O +conditions O +, O +and O +AM B-MANP +processes E-MANP +. O + + +The O +feasibility S-CONPRI +of O +a O +hybrid O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +method O +combining O +material B-MANP +extrusion E-MANP +and O +powder B-MANP +bed I-MANP +binder I-MANP +jetting E-MANP +( O +PBBJ O +) O +techniques O +for O +fabrication S-MANP +of O +structures O +made O +of O +silicone S-MATE +( O +polysiloxane O +) O +is O +investigated O +in O +this O +paper O +. O + + +A O +full O +factorial O +experimental B-CONPRI +design E-CONPRI +was O +conducted O +to O +maximize O +the O +geometrical O +accuracy S-CHAR +of O +the O +parts O +. O + + +The O +rheological S-PRO +and O +morphological O +properties S-CONPRI +of O +the O +silicone B-MATE +powders E-MATE +, O +the O +thermal O +characteristics O +of O +the O +liquid O +silicone B-MATE +binder E-MATE +, O +and O +mechanical S-APPL +characterization O +the O +additively B-MANP +manufactured E-MANP +parts O +are O +reported O +. O + + +Using O +this O +hybrid O +AM S-MANP +method O +, O +porous S-PRO +cylindrical S-CONPRI +structures O +( O +5 O +mm S-MANP +diameter S-CONPRI +( O +D O +) O +× O +3 O +mm S-MANP +height O +( O +H O +) O +) O +with O +potential O +applications O +in O +biomedical B-APPL +industry E-APPL +were O +additively B-MANP +manufactured E-MANP +. O + + +The O +final O +structures O +are O +composed O +of O +∼60 O +% O +silicone B-MATE +powder E-MATE +, O +∼ O +30 O +% O +silicone B-MATE +binder E-MATE +, O +and O +< O +10 O +% O +air O +voids S-CONPRI +. O + + +These O +three O +phases O +are O +distributed O +throughout O +the O +structure S-CONPRI +in O +a O +non-uniform O +fashion S-CONPRI +. O + + +Powder B-MANP +bed I-MANP +binder I-MANP +jetting I-MANP +additive I-MANP +manufacturing E-MANP +was O +used O +for O +the O +first O +time O +to O +produce O +porous S-PRO +silicone O +( O +polysiloxane O +) O +structures.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +285 O +Additive B-MANP +manufacturing E-MANP +of O +soft O +magnetic O +materials S-CONPRI +and O +components S-MACEQ +based O +on O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +offers O +new O +opportunities O +for O +soft O +magnetic O +core S-MACEQ +materials O +in O +efficient O +energy O +converters O +. O + + +For O +more O +favorable O +material S-MATE +compositions O +like O +FeSi6.7 O +( O +strategy O +1 O +) O +with O +larger O +electrical B-CHAR +resistivity E-CHAR +and O +close-to-zero O +magnetostriction S-PRO +a O +maximum O +permeability S-PRO +of O +μmax O += O +31,000 O +, O +minimum O +coercivity O +of O +Hc O += O +16 O +A/m O +and O +hysteresis S-PRO +losses O +of O +0.7 O +W/kg O +at O +1 O +T O +and O +50 O +Hz O +have O +been O +realized O +. O + + +Feasibility S-CONPRI +, O +functionality O +and O +potential O +of O +the O +different O +strategies O +( O +and O +combinations O +thereof O +) O +are O +discussed O +based O +on O +first O +prototypes S-CONPRI +and O +supporting O +simulations S-ENAT +. O + + +The O +results O +are O +compared O +to O +conventional O +electrical S-APPL +steel O +and O +SMC O +( O +soft O +magnetic O +composites S-MATE +) O +. O + + +This O +work O +investigates S-CONPRI +the O +feasibility S-CONPRI +of O +a O +binderless O +, O +extrusion-based O +additive B-MANP +manufacturing E-MANP +approach O +to O +fabricate S-MANP +alumina S-MATE +( O +Al2O3 S-MATE +) O +parts O +from O +nanopowder O +. O + + +Traditional O +manufacture S-CONPRI +of O +ceramics S-MATE +with O +subtractive S-MANP +methods O +is O +limited O +due O +to O +their O +inherent O +hardness S-PRO +and O +brittleness O +, O +inevitably O +leading O +to O +ceramic S-MATE +parts O +with O +less-than-optimal O +geometries S-CONPRI +for O +the O +specific O +application O +. O + + +With O +an O +additive B-MANP +manufacturing E-MANP +approach O +, O +ceramic S-MATE +parts O +with O +complex O +3D B-FEAT +geometries E-FEAT +, O +including O +overhangs S-PARA +or O +hollow O +enclosures O +, O +become O +possible O +. O + + +These O +complex O +ceramic S-MATE +parts O +are O +highly O +valuable O +in O +heat B-MACEQ +exchanger E-MACEQ +, O +condenser O +, O +biomedical S-APPL +implant O +, O +chemical O +reactant O +vessel O +, O +and O +electrical S-APPL +isolation O +applications O +. O + + +This O +research S-CONPRI +employed O +direct O +coagulation S-CONPRI +of O +alumina S-MATE +nanopowder O +slurries O +with O +the O +polyvalent O +salt S-MATE +tri-ammonium O +citrate O +providing O +the O +solidification B-CONPRI +mechanism E-CONPRI +in O +an O +extrusion-based O +printing B-MANP +process E-MANP +. O + + +The O +viscosity S-PRO +of O +the O +slurries O +was O +adjusted O +from O +∼35 O +Pa-s O +to O +∼1000 O +Pa-s O +by O +adjusting O +pH S-CONPRI +from O +∼9 O +to O +∼4 O +, O +resulting O +in O +a O +paste O +that O +is O +suitable O +for O +extrusion S-MANP +, O +which O +retains O +near-net O +geometry S-CONPRI +. O + + +It O +was O +shown O +that O +the O +direct O +coagulation S-CONPRI +approach O +can O +be S-MATE +used O +to O +create O +a O +suspension O +with O +tuneable O +flow O +characteristics O +and O +coagulation S-CONPRI +rate O +, O +and O +a O +mechanism S-CONPRI +describing O +the O +process S-CONPRI +was O +proposed O +. O + + +The O +direct O +coagulation S-CONPRI +printing O +( O +DCP O +) O +method O +is O +described O +in O +detail O +, O +including O +how O +slurry S-MATE +is O +extruded S-MANP +, O +solidified O +, O +and O +printed O +in O +complex B-CONPRI +geometries E-CONPRI +, O +and O +sintered S-MANP +to O +full O +density S-PRO +. O + + +Parts O +were O +printed O +with O +a O +sintered S-MANP +resolution S-PARA +of O +450 O +μm O +and O +green O +densities O +as S-MATE +high O +as S-MATE +65 O +% O +. O + + +Mechanical B-CONPRI +properties E-CONPRI +were O +characterized O +with O +a O +comparison O +to O +different O +materials S-CONPRI +and O +methods O +from O +literature O +, O +showing O +hardness S-PRO +and O +flexural O +modulus O +up O +to O +∼1800 O +HV O +and O +400 O +GPa S-PRO +, O +respectively O +. O + + +Heat B-CONPRI +transfer E-CONPRI +in O +standoff S-MACEQ +region O +between O +nozzle S-MACEQ +tip O +and O +bed S-MACEQ +is O +critical O +. O + + +Carries O +out O +infrared S-CONPRI +based O +temperature S-PARA +measurement S-CHAR +in O +standoff S-MACEQ +region O +. O + + +Develops O +analytical O +model S-CONPRI +to O +predict O +temperature S-PARA +distribution S-CONPRI +in O +standoff S-MACEQ +region O +. O + + +Shows O +good O +agreement O +between O +measurements O +and O +model S-CONPRI +in O +wide O +range S-PARA +of O +parameters S-CONPRI +. O + + +Contributes O +towards O +accurate S-CHAR +thermal O +design S-FEAT +of O +polymer B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Dispensing O +of O +a O +polymer B-MATE +filament E-MATE +above O +its O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +is O +a O +critical O +step S-CONPRI +in O +several O +polymer-based O +additive B-MANP +manufacturing E-MANP +techniques O +. O + + +While O +the O +nozzle S-MACEQ +assembly S-MANP +heats O +up O +the O +filament S-MATE +prior O +to O +dispense O +, O +it O +is O +important O +to O +minimize O +cooling S-MANP +down O +of O +the O +filament S-MATE +in O +the O +standoff S-MACEQ +distance O +between O +the O +nozzle S-MACEQ +tip O +and O +bed S-MACEQ +. O + + +While O +heat B-CONPRI +transfer E-CONPRI +processes O +within O +the O +nozzle S-MACEQ +assembly S-MANP +, O +such O +as S-MATE +filament O +melting S-MANP +, O +and O +on O +the O +bed S-MACEQ +, O +such O +as S-MATE +thermally-driven O +filament-to-filament O +adhesion S-PRO +, O +have O +been O +well O +studied O +, O +there O +is O +a O +lack O +of O +work O +on O +heat B-CONPRI +transfer E-CONPRI +in O +the O +filament S-MATE +in O +the O +standoff S-MACEQ +region O +. O + + +This O +paper O +presents O +infrared S-CONPRI +thermography O +based O +measurement S-CHAR +of O +temperature S-PARA +distribution S-CONPRI +in O +the O +filament S-MATE +in O +the O +standoff S-MACEQ +region O +, O +and O +an O +analytical O +model S-CONPRI +for O +heat B-CONPRI +transfer E-CONPRI +in O +this O +region O +. O + + +The O +analytical O +model S-CONPRI +, O +based O +on O +a O +balance O +between O +thermal O +advection O +and O +convective/radiative O +heat S-CONPRI +loss O +predicts O +an O +exponentially O +decaying O +temperature S-PARA +distribution S-CONPRI +, O +the O +nature O +of O +which O +is O +governed O +by O +the O +characteristic O +length O +, O +a O +parameter S-CONPRI +that O +combines O +multiple O +process B-CONPRI +parameters E-CONPRI +such O +as S-MATE +mass O +flowrate O +, O +filament B-PARA +diameter E-PARA +, O +heat B-CONPRI +capacity E-CONPRI +and O +cooling S-MANP +conditions O +. O + + +Experimental B-CONPRI +data E-CONPRI +in O +a O +wide O +range S-PARA +of O +process B-CONPRI +parameters E-CONPRI +are O +found O +to O +be S-MATE +in O +very O +good O +agreement O +with O +the O +analytical O +model S-CONPRI +. O + + +The O +thermal O +design B-CONPRI +space E-CONPRI +for O +ensuring O +minimal O +temperature S-PARA +drop O +in O +the O +standoff S-MACEQ +region O +is O +explored O +based O +on O +the O +analytical O +model S-CONPRI +. O + + +Experimental B-CONPRI +data E-CONPRI +and O +theoretical S-CONPRI +modeling S-ENAT +presented O +here O +improve O +our O +fundamental O +understanding O +of O +heat B-CONPRI +transfer E-CONPRI +in O +polymer B-MANP +additive I-MANP +manufacturing E-MANP +, O +and O +may O +contribute O +towards O +design S-FEAT +tools O +for O +thermal O +optimization S-CONPRI +of O +these O +processes S-CONPRI +. O + + +A O +complete O +understanding O +of O +processing-structure-property-performance O +relationship O +of O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +components S-MACEQ +are O +critical O +from O +an O +application O +standpoint O +. O + + +Therefore O +, O +in O +the O +current O +investigation O +, O +a O +comprehensive O +microstructural B-CHAR +characterization E-CHAR +and O +mechanical B-CONPRI +properties E-CONPRI +( O +tensile S-PRO +, O +fatigue S-PRO +and O +impact S-CONPRI +toughness O +) O +evaluation O +of O +nickel B-MATE +alloy E-MATE +718 O +AM S-MANP +by O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +technique O +have O +been O +performed O +. O + + +AM S-MANP +builds O +were O +made O +from O +powders S-MATE +manufactured S-CONPRI +via O +different O +atomization S-MANP +conditions O +. O + + +Although O +the O +standard S-CONPRI +post-heat O +treatment O +procedure O +led S-APPL +to O +the O +removal O +of O +severe O +interdendritic O +segregation S-CONPRI +both O +grain B-CONPRI +boundary E-CONPRI +and O +intra-grain O +precipitation S-CONPRI +of O +δ O +phase S-CONPRI +occurred O +. O + + +Regardless O +of O +δ O +phase S-CONPRI +presence O +, O +axial O +fatigue S-PRO +properties O +of O +both O +the O +AM S-MANP +builds O +were O +similar O +to O +design S-FEAT +handbook O +wrought S-CONPRI +fatigue S-PRO +data S-CONPRI +. O + + +However O +, O +due O +to O +the O +δ O +phase S-CONPRI +, O +impact S-CONPRI +toughness O +properties S-CONPRI +were O +comparable O +to O +the O +wrought B-MATE +material E-MATE +conditions O +that O +exhibited O +δ O +phase S-CONPRI +. O + + +Fractured O +surfaces S-CONPRI +of O +Charpy O +impact S-CONPRI +samples O +exhibited O +crack B-CONPRI +propagation E-CONPRI +extensively O +along O +the O +boundaries S-FEAT +decorated O +by O +δ O +precipitates S-MATE +. O + + +Variability S-CONPRI +in O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +additively B-MANP +manufactured E-MANP +metal O +parts O +is O +a O +key O +concern O +for O +their O +application O +in O +service O +. O + + +One O +of O +the O +parameters S-CONPRI +affecting O +the O +above-mentioned O +property S-CONPRI +is O +solidification S-CONPRI +texture O +which O +is O +driven O +by O +scan B-PARA +patterns E-PARA +and O +other O +process S-CONPRI +variables O +. O + + +Understanding O +of O +how O +these O +textures O +arise O +in O +the O +AM B-MANP +process E-MANP +can O +provide O +a O +pathway O +to O +control O +these O +features O +which O +ultimately O +decide O +the O +final O +structural O +material B-CONPRI +properties E-CONPRI +. O + + +In O +this O +work O +, O +a O +Cellular O +Automata O +( O +CA S-MATE +) O +based O +two-dimensional B-CONPRI +microstructure E-CONPRI +model S-CONPRI +is O +formulated O +and O +implemented O +to O +understand O +grain B-CONPRI +evolution E-CONPRI +in O +AM S-MANP +. O + + +Grain B-CONPRI +evolution E-CONPRI +in O +multilayer O +depositions O +using O +various O +scan B-PARA +patterns E-PARA +in O +Directed B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +, O +Metal S-MATE +Laser S-ENAT +Sintering/Selective O +Laser S-ENAT +Melting O +( O +MLS/SLM O +) O +, O +and O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +is O +presented O +and O +qualitatively O +compared O +with O +reported O +literature O +. O + + +Results O +show O +strong O +correlation O +of O +scan B-PARA +patterns E-PARA +with O +evolving O +grain S-CONPRI +orientations O +. O + + +Variability S-CONPRI +in O +grain B-PRO +size E-PRO +and O +orientation B-CONPRI +evolution E-CONPRI +during O +SLM S-MANP +and O +EBM S-MANP +processing O +of O +metallic B-MATE +materials E-MATE +showed O +direct O +influence O +by O +exposure S-CONPRI +to O +different O +cooling B-PARA +rates E-PARA +and O +thermal B-PARA +gradients E-PARA +. O + + +The O +similarities O +between O +the O +simulated O +and O +reported O +results O +lead S-MATE +us O +to O +conclude O +CA S-MATE +based O +modeling S-ENAT +for O +predicting O +grain S-CONPRI +orientation O +and O +size O +in O +metal B-MANP +AM E-MANP +processes O +is O +useful O +for O +prediction S-CONPRI +of O +continuum S-CONPRI +level O +structural O +properties S-CONPRI +at O +global O +and O +local O +length B-CHAR +scales E-CHAR +. O + + +This O +paper O +presents O +the O +methodology S-CONPRI +and O +findings O +of O +a O +novel O +piece O +of O +research S-CONPRI +with O +the O +purpose O +of O +understanding O +and O +mitigating O +distortion S-CONPRI +caused O +by O +the O +combined O +processes S-CONPRI +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +and O +post O +machining S-MANP +to O +final O +specifications S-PARA +. O + + +The O +research S-CONPRI +work O +started O +with O +the O +AM S-MANP +building O +of O +a O +stainless B-MATE +steel E-MATE +316 O +L O +industrial S-APPL +impeller O +that O +was O +then O +machined S-MANP +by O +removing O +around O +0.5 O +mm S-MANP +from O +certain O +surfaces S-CONPRI +of O +the O +impeller O +’ O +s S-MATE +blades O +and O +hub O +. O + + +Distortion S-CONPRI +and O +residual B-PRO +stresses E-PRO +were O +experimentally O +measured.The O +manufacture S-CONPRI +of O +the O +impeller O +by O +AM S-MANP +and O +then O +machining S-MANP +was O +numerically O +simulated O +by O +applying O +the O +finite B-CONPRI +element E-CONPRI +( O +FE S-MATE +) O +method O +. O + + +Distortion S-CONPRI +and O +residual B-PRO +stresses E-PRO +were O +simulated O +and O +validated O +. O + + +The O +FE S-MATE +distortion S-CONPRI +was O +then O +used O +in O +a O +numerical O +procedure O +to O +reverse O +distortion S-CONPRI +directions O +in O +order O +to O +produce O +a O +new O +impeller O +with O +mitigated O +distortion S-CONPRI +. O + + +A O +2-stage O +hybrid B-CONPRI +manufacturing E-CONPRI +supply O +chain O +based O +on O +metal B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +proposed O +which O +includes O +AM S-MANP +hubs O +, O +Heat B-MANP +Treatment E-MANP +( O +HT O +) O +facilities O +and O +machine S-MACEQ +shops O +. O + + +p-median O +models O +are O +applied O +to O +identify O +the O +optimal O +location O +for O +metal B-MANP +AM E-MANP +hubs O +in O +the O +U.S. O +that O +would O +serve O +as S-MATE +near-net O +manufacturers O +to O +supply O +processed S-CONPRI +build B-MACEQ +plates E-MACEQ +to O +HT O +facilities O +who O +will O +ship O +it O +to O +machine S-MACEQ +shops O +after O +HT O +. O + + +Fewer O +number O +of O +heat B-MANP +treatment E-MANP +facilities O +require O +concentrated O +locations O +and O +fewer O +AM S-MANP +hubs O +. O + + +Hybrid B-CONPRI +Manufacturing E-CONPRI +is O +defined O +as S-MATE +the O +integration O +of O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +, O +specifically O +metal B-MANP +AM E-MANP +, O +with O +traditional B-MANP +manufacturing E-MANP +post-processing S-CONPRI +such O +as S-MATE +heat O +treatment O +and O +machining S-MANP +. O + + +Hybrid O +AM S-MANP +enables O +Small O +and O +Medium O +Enterprises O +( O +SME O +) O +who O +can O +offer O +post-processing S-CONPRI +services O +to O +integrate O +into O +the O +growing O +AM S-MANP +supply O +chain O +. O + + +Most O +near-net O +metal B-MANP +AM E-MANP +parts O +require O +heat B-MANP +treatment E-MANP +processes O +( O +e.g O +. O + + +residual B-PRO +stress E-PRO +relieving/annealing O +) O +before O +machining S-MANP +to O +achieve O +final O +engineering S-APPL +specification O +. O + + +This O +research B-CONPRI +investigates E-CONPRI +a O +two-stage O +facility O +model S-CONPRI +to O +optimize O +the O +locations O +and O +capacities O +for O +new O +metal B-MANP +AM E-MANP +hubs O +which O +require O +two O +sequential O +post-processing S-CONPRI +services O +: O +heat B-MANP +treatment E-MANP +and O +machining S-MANP +. O + + +Using O +North O +American O +Industry S-APPL +Classification S-CONPRI +System O +( O +NAICS O +) O +data S-CONPRI +for O +machine S-MACEQ +shops O +and O +heat B-MANP +treatment E-MANP +facilities O +in O +the O +U.S. O +, O +a O +p-median O +location O +model S-CONPRI +is O +used O +to O +determine O +the O +optimal O +locations O +for O +AM S-MANP +hub O +centers O +based O +on O +: O +( O +1 O +) O +geographical O +data S-CONPRI +, O +( O +2 O +) O +demand O +and O +( O +3 O +) O +fixed O +and O +operational O +costs O +of O +hybrid-AM O +processing O +. O + + +Results O +from O +this O +study O +have O +identified O +: O +( O +a O +) O +candidate O +US O +counties O +to O +locate O +metal B-MANP +AM E-MANP +hubs O +, O +( O +b S-MATE +) O +total O +cost O +( O +fixed O +, O +operational O +and O +transportation O +) O +, O +( O +c S-MATE +) O +capacity S-CONPRI +utilization O +of O +the O +AM S-MANP +hubs O +and O +( O +d O +) O +demand O +assignments O +across O +machine S-MACEQ +shops O +– O +heat B-MANP +treatment E-MANP +facilities O +– O +AM S-MANP +hubs O +. O + + +It O +was O +found O +that O +2-stage O +p-Median O +model S-CONPRI +identified O +22 O +A O +M O +hub O +locations O +as S-MATE +the O +initial O +sites O +for O +AM S-MANP +hubs O +which O +grows O +to O +35 O +A O +M O +hubs O +as S-MATE +demand O +increases O +. O + + +It O +was O +also O +found O +that O +relatively O +fewer O +number O +of O +heat B-MANP +treatment E-MANP +facilities O +than O +machine S-MACEQ +shops O +resulted O +in O +a O +more O +concentrated O +locations O +of O +AM S-MANP +hubs O +. O + + +In O +addition O +, O +transportation O +costs O +were O +not O +adversely O +affected O +by O +the O +inclusion S-MATE +of O +as-build O +plates O +and O +showed O +that O +including O +heat B-MANP +treatment E-MANP +facilities O +as S-MATE +part O +of O +the O +hybrid O +AM S-MANP +supply O +chain O +will O +be S-MATE +mutually O +beneficial O +to O +all O +stakeholders O +of O +metal S-MATE +hybrid O +AM S-MANP +supply O +chain O +, O +i.e O +. O + + +AM S-MANP +→ O +Heat B-MANP +treatment E-MANP +→ O +Machining S-MANP +. O + + +Wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +a O +promising O +direct B-MANP +energy I-MANP +deposition E-MANP +technology O +to O +produce O +high-value O +material S-MATE +components S-MACEQ +with O +a O +low O +buy-to-fly O +ratio O +. O + + +WAAM S-MANP +is O +able O +to O +produce O +thin-walled O +structures O +of O +large O +scale O +and O +also O +truss S-MACEQ +structures O +without O +any O +support S-APPL +. O + + +To O +manufacture S-CONPRI +complex O +parts O +, O +process S-CONPRI +reliability O +and O +repeatability S-CONPRI +are O +still O +a O +necessity O +and O +this O +often O +leads O +to O +long O +developing O +times O +. O + + +In O +this O +paper O +, O +a O +method O +is O +proposed O +to O +automatically O +manufacture S-CONPRI +complex O +truss S-MACEQ +structures O +with O +point O +by O +point O +arc B-MANP +additive I-MANP +manufacturing E-MANP +and O +a O +six O +axis O +robot S-MACEQ +. O + + +Computer B-ENAT +aided I-ENAT +manufacturing E-ENAT +( O +CAM S-ENAT +) O +software S-CONPRI +is O +designed S-FEAT +to O +manage O +( O +i O +) O +material S-MATE +deposition S-CONPRI +at O +intersections O +and O +( O +ii O +) O +collisions O +between O +the O +part O +under O +construction S-APPL +and O +the O +torch O +. O + + +Because O +it O +is O +difficult O +to O +model S-CONPRI +the O +deposition B-MANP +process E-MANP +, O +the O +bead B-CHAR +geometry E-CHAR +is O +monitored O +using O +video O +imaging S-APPL +. O + + +Image S-CONPRI +treatment O +program O +detects O +the O +contour S-FEAT +of O +the O +deposit O +and O +computes O +its O +current O +position O +. O + + +With O +this O +position O +, O +the O +CAM S-ENAT +software O +corrects O +the O +geometry S-CONPRI +of O +the O +part O +for O +future O +deposition S-CONPRI +. O + + +Simple S-MANP +case B-CONPRI +studies E-CONPRI +are O +tested O +to O +validate O +the O +algorithm S-CONPRI +. O + + +Two O +solid O +free O +form O +geometries S-CONPRI +designed S-FEAT +by O +topology B-FEAT +optimization E-FEAT +are O +manufactured S-CONPRI +with O +this O +skeleton O +arc B-MANP +additive I-MANP +manufacturing E-MANP +process O +. O + + +Ti-6Al-4V B-MATE +powders E-MATE +from O +six O +different O +vendors O +were O +compared O +with O +respect O +to O +their O +microstructures S-MATE +, O +size-distributions O +, O +chemistries O +, O +surface S-CONPRI +appearances O +, O +flow O +behavior O +, O +and O +packing O +densities O +. O + + +The O +analysis O +approaches O +followed O +closely O +ASTM O +F3049 O +, O +the O +standard S-CONPRI +guide O +for O +characterization O +of O +additive B-MANP +manufacturing E-MANP +metal O +powders S-MATE +. O + + +Chemistries O +, O +including O +impurity S-PRO +content O +, O +agreed O +well O +with O +the O +standard S-CONPRI +requirements O +. O + + +Powder B-MATE +particle E-MATE +microstructures S-MATE +revealed O +acicular O +alpha O +prime O +for O +all O +vendors O +. O + + +Quantificational O +analysis O +of O +porosity S-PRO +in O +the O +WAAM S-MANP +2319 O +alloy S-MATE +was O +revealed O +by O +XCT O +. O + + +The O +formation O +and O +evolution S-CONPRI +of O +micropores O +are O +affected O +by O +microstructures S-MATE +. O + + +Evolution S-CONPRI +mechanisms O +include O +particles S-CONPRI +dissolution O +, O +H O +pore S-PRO +precipitation O +and O +growth O +. O + + +Majority O +of O +the O +micropores O +were O +adjacent O +to O +second B-MATE +phase I-MATE +particles E-MATE +. O + + +Given O +its O +detrimental O +influence O +on O +mechanical B-CONPRI +properties E-CONPRI +, O +porosity S-PRO +defect S-CONPRI +is O +a O +major O +problem O +for O +wire B-MANP ++ I-MANP +arc I-MANP +additively I-MANP +manufactured E-MANP +( O +WAAM S-MANP +) O +Al S-MATE +components O +. O + + +We O +performed O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +, O +optical B-CHAR +microscopy E-CHAR +, O +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +to O +observe O +the O +spatial B-CHAR +distribution E-CHAR +, O +size O +, O +and O +shape O +of O +micropores O +and O +reveal O +their O +formation O +and O +evolution S-CONPRI +mechanisms O +during O +the O +deposition S-CONPRI +and O +heat B-MANP +treatment E-MANP +of O +the O +WAAM S-MANP +2319 O +Al B-MATE +alloys E-MATE +. O + + +Key O +findings O +demonstrated O +that O +thehydrogenmicropores O +and O +solidification S-CONPRI +microvoids O +existed O +in O +as-deposited O +alloys S-MATE +. O + + +The O +amounts O +and O +morphologies S-CONPRI +of O +hydrogen O +micropores O +and O +solidification S-CONPRI +microvoids O +varied O +from O +the O +top O +, O +middle O +, O +and O +bottom O +of O +the O +wall O +sample S-CONPRI +because O +of O +the O +distinct O +microstructure S-CONPRI +and O +second-phase O +distribution S-CONPRI +in O +each O +section O +. O + + +After O +the O +heat B-MANP +treatment E-MANP +, O +a O +significant O +variation S-CONPRI +in O +micropores O +involving O +three O +main O +evolution S-CONPRI +mechanisms O +, O +namely O +, O +hydrogen O +micropore O +precipitation S-CONPRI +, O +phase B-CONPRI +particle E-CONPRI +dissolution O +, O +and O +micropore O +growth O +, O +was O +observed O +. O + + +Results O +of O +this O +research S-CONPRI +may O +provide O +a O +solid O +foundation O +for O +the O +safe O +application O +of O +WAAM S-MANP +Al B-MATE +alloy E-MATE +structures O +. O + + +In O +this O +study O +, O +the O +heterogeneous S-CONPRI +anisotropic S-PRO +microstructure O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +additively B-MANP +manufactured E-MANP +( O +CoCrFeMnNi O +) O +99C1 O +high-entropy O +alloy S-MATE +( O +HEA O +) O +are O +comprehensively O +investigated O +using O +experimental S-CONPRI +and O +theoretical S-CONPRI +analyses O +. O + + +For O +the O +present O +alloys S-MATE +, O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +produced O +orthogonally O +anisotropic S-PRO +microstructure O +with O +not O +only O +strong O +macroscopic S-CONPRI +morphological O +but O +also O +sharp O +microscopic O +crystallographic O +textures O +. O + + +Moreover O +, O +due O +to O +the O +complex O +thermal B-PARA +gradient E-PARA +and O +history O +in O +the O +melt B-MATE +pools E-MATE +, O +the O +columnar B-PRO +grains E-PRO +were O +heterogeneously S-CONPRI +evolved O +along O +the O +building B-PARA +direction E-PARA +with O +alternatively O +arranged O +layers O +of O +fine O +and O +coarse O +grains S-CONPRI +parallel O +to O +the O +laser S-ENAT +scanning O +direction O +. O + + +This O +unique O +morphological O +texture S-FEAT +played O +a O +dominant O +factor O +for O +the O +big O +difference O +in O +tensile B-PRO +properties E-PRO +between O +different O +loading O +directions O +in O +the O +early O +stage O +of O +deformation S-CONPRI +. O + + +In O +particular O +, O +the O +alternatively O +arrangement O +of O +fine O +and O +coarse O +grains S-CONPRI +could O +generate O +high O +hetero-deformation O +induced O +( O +HDI O +) O +hardening S-MANP +along O +the O +scanning S-CONPRI +direction O +in O +the O +as-built O +samples S-CONPRI +by O +profuse O +evolution S-CONPRI +of O +geometrically O +necessary O +dislocation S-CONPRI +at O +the O +boundaries S-FEAT +of O +each O +layer S-PARA +. O + + +On O +the O +other O +hand O +, O +upon O +the O +last O +stage O +of O +plastic B-PRO +deformation E-PRO +, O +the O +crystallographic O +texture S-FEAT +played O +a O +crucial O +role O +in O +directional O +flow O +behavior O +by O +modulating O +twinning S-CONPRI +activity O +. O + + +The O +combined O +contribution O +of O +the O +various O +anisotropic S-PRO +microstructural O +factors O +to O +the O +tensile B-PRO +properties E-PRO +of O +the O +SLM-processed O +HEAs O +was O +clarified O +both O +qualitatively O +and O +quantitatively S-CONPRI +. O + + +This O +work O +will O +shed O +light O +on O +effective O +utilization O +of O +both O +heterogeneity S-CONPRI +and O +anisotropy S-PRO +of O +the O +structural O +parts O +for O +customized O +performance S-CONPRI +via O +expanding O +multi-scale O +freedom O +of O +design S-FEAT +in O +additive B-MANP +manufacturing E-MANP +. O + + +IN625 O +grains S-CONPRI +grew O +epitaxially O +on O +the O +fine O +grains S-CONPRI +of O +SS316L O +forming S-MANP +Type-I O +interface S-CONPRI +. O + + +Bidirectional O +nucleation S-CONPRI +from O +IN625 O +and O +mushy B-CONPRI +zone E-CONPRI +at O +SS316L O +formed O +Type-II O +interface S-CONPRI +. O + + +Cracking S-CONPRI +was O +formed O +at O +Type-II O +interface S-CONPRI +and O +in O +the O +SS316L O +tracks O +. O + + +Cracking S-CONPRI +mechanisms O +include O +solidification S-CONPRI +, O +liquidation O +, O +and O +ductility S-PRO +dip O +cracking S-CONPRI +. O + + +This O +research S-CONPRI +illustrates O +the O +rationale O +of O +adopting O +a O +preferred O +printing O +sequence O +by O +examining O +crack O +generation O +predominated O +by O +resultant O +interfaces O +and O +microstructural S-CONPRI +inhomogeneity O +, O +through O +underlying O +governing O +mechanisms O +in O +directed B-MANP +energy I-MANP +deposition E-MANP +of O +316L O +stainless O +steel/Inconel O +625 O +( O +SS316L/IN625 O +) O +bimetals O +. O + + +For O +this O +purpose O +, O +microstructural S-CONPRI +and O +crystallographic O +characterizations O +augmented O +by O +numerical B-ENAT +simulations E-ENAT +were O +employed O +on O +additively B-MANP +manufactured E-MANP +two O +distinct O +interfaces O +, O +i.e O +. O + + +Type-I O +( O +IN625 O +deposition S-CONPRI +on O +SS316L O +) O +and O +Type-II O +( O +SS316L O +deposition S-CONPRI +on O +IN625 O +) O +. O + + +Changing O +the O +printing O +sequence O +generated O +these O +two O +types O +of O +interfaces O +with O +unique O +morphologies S-CONPRI +, O +which O +was O +found O +attributable O +to O +the O +compositional O +variations S-CONPRI +and O +mismatch O +in O +thermal B-CONPRI +properties E-CONPRI +. O + + +Type-I O +interface S-CONPRI +was O +typified O +by O +gradual-change O +composition S-CONPRI +in O +the O +transition S-CONPRI +zone O +, O +causing O +the O +IN625 O +grains S-CONPRI +to O +grow O +epitaxially O +on O +the O +grains S-CONPRI +of O +SS316L O +. O + + +Type-II O +interface S-CONPRI +was O +characterized O +as S-MATE +a O +compositional O +sudden-change O +zone O +( O +CSCZ O +) O +adjacent O +to O +SS316L O +, O +leading O +to O +merging O +bidirectional O +nucleation S-CONPRI +and O +grain B-CONPRI +growth E-CONPRI +from O +the O +bottom O +IN625 O +and O +upper O +CSCZ O +, O +and O +lack O +of O +epitaxial S-PRO +growth O +. O + + +Additionally O +, O +high O +cracking S-CONPRI +susceptibility O +occurred O +near O +the O +Type-II O +interface S-CONPRI +rather O +than O +the O +Type-I O +interface S-CONPRI +, O +which O +was O +related O +to O +solidification S-CONPRI +and O +liquidation O +cracking S-CONPRI +, O +and O +further O +promoted O +ductility S-PRO +dip O +cracking S-CONPRI +. O + + +This O +research S-CONPRI +will O +provide O +a O +guideline O +for O +the O +additive B-MANP +manufacturing E-MANP +of O +bimetals O +with O +the O +consideration O +of O +printing O +sequence O +to O +control O +interface S-CONPRI +formation O +for O +a O +crack-free O +structure S-CONPRI +. O + + +X-ray S-CHAR +μCT O +used O +for O +non-destructive O +measurement S-CHAR +of O +porosity S-PRO +through O +the O +multiple O +stages O +of O +the O +CEAM O +. O + + +Porosity S-PRO +was O +quantified O +and O +mapped O +within O +the O +parts O +by O +using O +image B-CONPRI +analysis E-CONPRI +. O + + +Vertical S-CONPRI +and O +radial O +gradient O +of O +porosity S-PRO +and O +pore B-PARA +size E-PARA +observed O +in O +green O +, O +de-bound O +and O +sintered S-MANP +samples S-CONPRI +. O + + +The O +microscopic O +and O +macroscopic S-CONPRI +quality O +of O +samples S-CONPRI +improves O +through O +the O +process S-CONPRI +stages O +. O + + +Ceramic S-MATE +Extrusion O +Additive B-MANP +Manufacturing E-MANP +( O +CEAM O +) O +enables O +the O +die-less O +fabrication S-MANP +of O +small O +ceramic S-MATE +parts O +, O +with O +a O +process B-ENAT +chain E-ENAT +that O +includes O +four O +consecutive O +stages O +: O +the O +3D B-MANP +printing E-MANP +, O +solvent O +de-binding O +, O +thermal O +de-binding O +, O +and O +sintering S-MANP +. O + + +The O +3D B-MANP +printing E-MANP +process O +was O +implemented O +through O +Ephestus O +, O +a O +specially O +developed O +EAM O +machine S-MACEQ +for O +the O +manufacturing S-MANP +of O +parts O +from O +alumina S-MATE +feedstock O +. O + + +A O +test O +part O +was O +designed S-FEAT +, O +and O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +μ-CT O +) O +was O +used O +to O +quantify O +its O +characteristics O +through O +the O +processing O +stages O +of O +the O +EAM O +. O + + +The O +porosity S-PRO +distribution S-CONPRI +and O +the O +distribution S-CONPRI +of O +void S-CONPRI +size O +and O +shape O +were O +determined O +throughout O +the O +samples S-CONPRI +at O +each O +stage O +, O +using O +image B-CONPRI +analysis E-CONPRI +techniques O +. O + + +Furthermore O +, O +the O +evolution S-CONPRI +of O +some O +macroscopic S-CONPRI +quality O +properties S-CONPRI +was O +measured.The O +results O +show O +that O +both O +microscopic O +( O +porosity S-PRO +) O +and O +macroscopic S-CONPRI +( O +geometry S-CONPRI +, O +density S-PRO +) O +properties S-CONPRI +of O +the O +samples S-CONPRI +improve O +through O +the O +process S-CONPRI +stages O +. O + + +A O +vertical S-CONPRI +gradient O +of O +porosity S-PRO +is O +present O +in O +green O +and O +de-bound O +samples S-CONPRI +, O +with O +porosity S-PRO +decreasing O +with O +increasing O +sample S-CONPRI +height O +. O + + +After O +sintering S-MANP +, O +the O +vertical S-CONPRI +gradient O +of O +porosity S-PRO +disappears O +. O + + +The O +sphericity O +and O +the O +diameter S-CONPRI +of O +voids S-CONPRI +are O +negatively O +correlated S-CONPRI +and O +dispersed O +over O +a O +wide O +range S-PARA +in O +the O +green O +state O +. O + + +The O +sintering S-MANP +process S-CONPRI +has O +a O +homogenization S-MANP +effect O +on O +the O +void S-CONPRI +shape O +distribution S-CONPRI +. O + + +The O +geometrical O +deviation O +from O +the O +nominal O +designed S-FEAT +dimensions O +and O +the O +surface B-PARA +quality E-PARA +of O +parts O +improves O +when O +moving O +from O +the O +green O +to O +the O +sintered S-MANP +state O +. O + + +Experimental S-CONPRI +investigation O +of O +porosities S-PRO +in O +additive B-MANP +manufactured E-MANP +ceramics O +parts.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +178 O +In O +this O +paper O +, O +the O +authors O +explore O +the O +use O +of O +impedance-based O +monitoring O +techniques O +for O +in-situ S-CONPRI +detection O +of O +additive B-MANP +manufacturing E-MANP +build O +defects S-CONPRI +. O + + +By O +physically O +coupling O +a O +piezoceramic O +( O +PZT S-MATE +) O +sensor S-MACEQ +to O +the O +part O +being O +fabricated S-CONPRI +, O +the O +measured O +electrical S-APPL +impedance O +of O +the O +PZT S-MATE +can O +be S-MATE +directly O +linked O +to O +the O +mechanical S-APPL +impedance O +of O +the O +part O +. O + + +It O +is O +hypothesized O +that O +one O +can O +detect O +build S-PARA +defects O +in O +geometry S-CONPRI +or O +material B-CONPRI +properties E-CONPRI +in-situ S-CONPRI +by O +comparing O +the O +signatures O +collected O +during O +printing O +of O +parts O +with O +that O +of O +a O +defect-free O +control O +sample S-CONPRI +. O + + +In O +this O +paper O +, O +the O +authors O +explore O +the O +layer-to-layer O +sensitivity S-PARA +for O +both O +PZT S-MATE +sensors O +embedded O +into O +printed O +parts O +and O +for O +a O +fixture-based O +PZT S-MATE +sensor O +. O + + +For O +this O +work O +, O +this O +concept O +is O +evaluated O +in O +context O +of O +material B-MANP +jetting E-MANP +. O + + +A O +set S-APPL +of O +control O +samples S-CONPRI +is O +created O +and O +used O +to O +establish O +a O +baseline O +signature O +. O + + +( O +e.g. O +, O +internal B-CONPRI +voids E-CONPRI +) O +are O +fabricated S-CONPRI +and O +their O +layer-to-layer O +signatures O +are O +compared O +to O +a O +control O +sample S-CONPRI +. O + + +Using O +this O +technique O +, O +the O +authors O +demonstrate O +an O +ability O +to O +track O +print S-MANP +progress O +and O +detect O +defects S-CONPRI +as S-MATE +they O +occur O +. O + + +For O +embedded O +sensors S-MACEQ +the O +defects S-CONPRI +were O +detectable O +at O +2.28 O +% O +of O +the O +part O +volume S-CONPRI +( O +95.6 O +mm3 O +) O +and O +by O +fixture-based O +sensors S-MACEQ +when O +it O +affected O +1.38 O +% O +of O +the O +part O +volume S-CONPRI +. O + + +Surface B-PRO +roughness E-PRO +of O +an O +as S-MATE +produced O +AM S-MANP +component O +is O +very O +high O +, O +which O +prohibits O +the O +direct O +utilization O +of O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +components S-MACEQ +for O +the O +intended O +applications O +. O + + +Reducing O +surface B-PRO +roughness E-PRO +is O +exponentially O +more O +challenging O +for O +the O +internal O +surfaces S-CONPRI +of O +an O +AM S-MANP +component O +. O + + +This O +paper O +reports O +our O +research S-CONPRI +in O +the O +area S-PARA +of O +postprocessing S-CONPRI +of O +interior O +surfaces S-CONPRI +of O +an O +AM S-MANP +component O +. O + + +We O +have O +investigated O +electropolishing S-MANP +and O +chemical B-MANP +polishing E-MANP +( O +chempolishing O +) O +methods O +to O +reduce O +the O +surface B-PRO +roughness E-PRO +of O +the O +internal O +surface S-CONPRI +. O + + +We O +found O +that O +chempolishing O +was O +effective O +in O +simultaneously O +reducing O +the O +internal O +and O +external O +surface B-PRO +roughness E-PRO +of O +316 O +steel S-MATE +AM S-MANP +components O +. O + + +Chempolishing O +is O +found O +suitable O +for O +any O +complicated O +AM S-MANP +shape O +and O +geometry S-CONPRI +. O + + +Our O +electropolishing S-MANP +methodology O +was O +effective O +in O +reducing O +the O +surface B-PRO +roughness E-PRO +of O +the O +internal O +or O +external O +surfaces S-CONPRI +provided O +that O +a O +counter O +electrode S-MACEQ +could O +be S-MATE +positioned O +in O +the O +proximity O +of O +the O +surface S-CONPRI +to O +be S-MATE +polished O +. O + + +We O +have O +performed O +optical S-CHAR +profilometry O +, O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +, O +and O +contact S-APPL +angle O +measurement S-CHAR +study O +to O +investigate O +the O +difference O +between O +electropolishing S-MANP +and O +chemical B-MANP +polishing E-MANP +methods O +. O + + +Modelling S-ENAT +of O +wire-arc B-MANP +additive I-MANP +manufacturing I-MANP +process E-MANP +is O +an O +effective O +way O +for O +adapting O +the O +optimum O +parameters S-CONPRI +as S-MATE +well O +as S-MATE +understanding O +and O +managing O +the O +sequences O +of O +layer-by-layer B-CONPRI +deposition E-CONPRI +. O + + +Some O +of O +these O +parameters S-CONPRI +such O +as S-MATE +toolpath O +, O +deposition S-CONPRI +intervals O +and O +heat B-CONPRI +source E-CONPRI +power O +play O +important O +roles O +in O +improving O +the O +process S-CONPRI +viability O +and O +cost O +efficiency O +. O + + +In O +this O +article O +, O +we O +have O +studied O +Al-5Mg O +, O +Al-3Si O +alloys S-MATE +as O +demonstrators O +, O +from O +both O +experimental S-CONPRI +and O +modelling S-ENAT +perspectives O +, O +to O +benchmark S-MANS +different O +deposition S-CONPRI +parameters O +and O +provided O +guidelines O +for O +optimising O +the O +process S-CONPRI +conditions O +. O + + +Physical O +values O +such O +as S-MATE +total O +distortion S-CONPRI +and O +residual B-PRO +stress E-PRO +were O +selected O +as S-MATE +indicators O +for O +the O +manufacturability S-CONPRI +of O +the O +structure S-CONPRI +. O + + +The O +simulations S-ENAT +were O +performed O +by O +Simufact O +Welding S-MANP +software S-CONPRI +, O +that O +is O +outfitted O +with O +the O +MARC O +solver O +and O +the O +experiments O +were O +executed O +in O +a O +robotic O +cell S-APPL +. O + + +We O +have O +introduced O +a O +method O +for O +optimising O +the O +process B-CONPRI +parameters E-CONPRI +based O +on O +the O +heat B-CONPRI +source E-CONPRI +power O +modification O +and O +selection O +of O +unique O +parameters S-CONPRI +for O +each O +deposition B-PARA +layer E-PARA +. O + + +This O +was O +performed O +by O +monitoring O +the O +evolution S-CONPRI +of O +the O +molten B-CONPRI +pool E-CONPRI +size O +and O +geometry S-CONPRI +when O +building O +a O +wall O +structure S-CONPRI +. O + + +The O +results O +suggest O +that O +achieving O +an O +uninterrupted O +deposition B-MANP +process E-MANP +entails O +modification O +of O +the O +heat S-CONPRI +input O +for O +each O +layer S-PARA +. O + + +Thus O +, O +a O +simple S-MANP +analytical O +method O +was O +proposed O +to O +estimate O +the O +heat S-CONPRI +input O +reduction S-CONPRI +coefficient O +for O +a O +wall O +structure S-CONPRI +as S-MATE +a O +function O +of O +molten B-PARA +pool I-PARA +geometry E-PARA +and O +the O +height O +at O +which O +, O +a O +new O +layer S-PARA +is O +being O +deposited O +. O + + +It O +was O +also O +shown O +that O +a O +generic O +selection O +of O +parameters S-CONPRI +for O +aluminium B-MATE +alloys E-MATE +may O +impair O +the O +eventual O +quality S-CONPRI +for O +some O +of O +the O +alloys S-MATE +due O +to O +their O +inherent O +physical B-PRO +properties E-PRO +such O +as S-MATE +high O +temperature S-PARA +flowability O +. O + + +In O +the O +current O +investigation O +, O +an O +ultrasonic O +imaging S-APPL +system O +originally O +developed O +for O +visualization O +of O +microstructures S-MATE +in O +sheet B-MATE +metals E-MATE +, O +with O +capabilities O +of O +generating O +plane O +two-dimensional B-CONPRI +images E-CONPRI +at O +spatial O +resolutions O +between O +1 O +and O +200 O +μm O +, O +was O +used O +to O +quantitatively S-CONPRI +evaluate O +a O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +processed B-CONPRI +3D E-CONPRI +test O +part O +. O + + +For O +the O +ultrasonic O +system O +, O +a O +custom O +software S-CONPRI +program O +was O +written O +to O +control O +all O +components S-MACEQ +of O +the O +inspection S-CHAR +schemes O +in O +a O +continuous O +scan O +mode O +, O +including O +the O +movement O +of O +three O +orthogonal O +translational O +stages O +, O +as S-MATE +well O +as S-MATE +display O +a O +live O +ultrasonic O +image S-CONPRI +during O +scanning S-CONPRI +and O +provide O +tools S-MACEQ +for O +advanced O +post-processing S-CONPRI +of O +the O +recorded O +ultrasonic O +signals O +. O + + +Prior O +to O +collecting O +ultrasonic O +data S-CONPRI +for O +a O +selected O +test O +specimen O +, O +an O +optical S-CHAR +flat O +reference O +standard S-CONPRI +was O +used O +to O +characterize O +the O +ultrasonic O +probes S-MACEQ +and O +to O +quantify O +the O +system O +’ O +s S-MATE +mechanical S-APPL +stability O +, O +repeatability S-CONPRI +, O +and O +accuracy S-CHAR +when O +measuring O +the O +physical O +dimensions S-FEAT +of O +features O +. O + + +Ultrasonic O +data S-CONPRI +collected O +at O +different O +spatial O +resolutions O +were O +used O +to O +characterize O +a O +part O +’ O +s S-MATE +surface O +flatness S-PRO +, O +internal O +defects S-CONPRI +, O +and O +fusion S-CONPRI +conditions O +; O +and O +to O +measure O +the O +physical O +dimensions S-FEAT +of O +intended O +features O +. O + + +Finally O +, O +a O +suggestion O +is O +made O +for O +adopting O +a O +process S-CONPRI +to O +qualify O +or O +certify O +FFF S-MANP +based O +additive B-MACEQ +manufacturing I-MACEQ +machines E-MACEQ +in O +the O +market O +by O +applying O +a O +reliable O +NDE O +validation S-CONPRI +method O +to O +a O +standardized O +part O +with O +various O +features O +of O +different O +shapes O +and O +physical O +dimensions S-FEAT +. O + + +Successful O +printing O +of O +high-performance O +material S-MATE +with O +suitable O +properties S-CONPRI +using O +additive B-MANP +manufacturing E-MANP +methods O +such O +as S-MATE +Fused O +Filament S-MATE +Fabrication S-MANP +( O +FFF S-MANP +) O +can O +create O +many O +advanced O +applications O +in O +industries S-APPL +. O + + +However O +, O +the O +high O +viscosity S-PRO +of O +high-performance O +polymers S-MATE +causes O +complications O +during O +the O +FFF S-MANP +process O +and O +reduces O +the O +final O +print B-CONPRI +quality E-CONPRI +. O + + +To O +overcome O +this O +challenge O +, O +Inorganic O +Fullerene S-MATE +Tungsten O +Sulphide O +( O +IF-WS2 O +) O +nanoparticles S-CONPRI +are O +applied O +in O +this O +study O +to O +enhance O +the O +flowability O +of O +poly-ether-ketone-ketone O +( O +PEEK S-MATE +) O +without O +compromising O +its O +mechanical S-APPL +and O +thermal B-CONPRI +properties E-CONPRI +. O + + +In O +the O +first O +step S-CONPRI +, O +different O +loadings O +of O +IF-WS2 O +nanoparticles S-CONPRI +are O +melt S-CONPRI +compounded O +with O +PEEK S-MATE +and O +the O +nanocomposites O +are O +characterized O +. O + + +SEM S-CHAR +and O +EDX S-CHAR +images O +of O +fractured O +surfaces S-CONPRI +indicate O +that O +a O +good O +dispersion S-CONPRI +of O +nanoparticles S-CONPRI +is O +achieved O +without O +any O +pre-treatment O +or O +pre-dispersion O +. O + + +A O +reduction S-CONPRI +in O +melt S-CONPRI +viscosity O +of O +25 O +% O +, O +and O +a O +simultaneous O +growth O +in O +storage O +modulus O +, O +crystallization S-CONPRI +and O +degradation S-CONPRI +temperature O +of O +about O +60 O +% O +, O +53 O +% O +and O +100 O +°C O +is O +found O +with O +addition O +of O +2 O +wt O +% O +IF-WS2 O +to O +PEEK S-MATE +, O +respectively O +. O + + +This O +great O +achievement O +is O +mainly O +ascribed O +to O +the O +unique O +characteristics O +of O +IF-WS2 O +nanoparticles S-CONPRI +, O +acting O +as S-MATE +both O +reinforcing O +and O +lubricating O +agents O +, O +indicated O +by O +a O +reduction S-CONPRI +in O +coefficient B-PRO +of I-PRO +friction E-PRO +. O + + +There O +is O +no O +significant O +increase O +of O +crystallization S-CONPRI +and O +melting B-PARA +temperatures E-PARA +with O +the O +addition O +of O +IF-WS2 O +nanoparticles S-CONPRI +, O +which O +is O +beneficial O +in O +the O +FFF S-MANP +process O +. O + + +In O +the O +second O +step S-CONPRI +, O +the O +PEEK S-MATE +nanocomposite O +filaments S-MATE +are O +printed O +via O +FFF S-MANP +. O + + +The O +print B-CONPRI +quality E-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +printed O +PEEK S-MATE +are O +also O +improved O +with O +the O +incorporation O +of O +IF-WS2 O +nanoparticles S-CONPRI +. O + + +Hence O +, O +incorporation O +of O +IF-WS2 O +nanoparticles S-CONPRI +into O +PEEK S-MATE +via O +melt S-CONPRI +compounding O +is O +an O +effective O +approach O +for O +the O +development O +of O +suitable O +high-performance O +engineering B-MATE +materials E-MATE +for O +FFF S-MANP +. O + + +Dislocation S-CONPRI +structures O +, O +chemical O +segregation S-CONPRI +, O +γ′ O +, O +γ″ O +, O +δ O +precipitates S-MATE +, O +and O +Laves B-CONPRI +phase E-CONPRI +were O +quantified O +within O +the O +microstructures S-MATE +of O +Inconel B-MATE +718 E-MATE +( O +IN718 S-MATE +) O +produced O +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +and O +subjected O +to O +standard S-CONPRI +, O +direct O +aging O +, O +and O +modified O +multi-step O +heat B-MANP +treatments E-MANP +. O + + +Additionally O +, O +heat-treated S-MANP +samples O +still O +attached O +to O +the O +build B-MACEQ +plates E-MACEQ +vs. O +those O +removed O +were O +also O +documented O +for O +a O +standard S-CONPRI +heat B-MANP +treatment E-MANP +. O + + +The O +effects O +of O +the O +different O +resulting O +microstructures S-MATE +on O +room O +temperature S-PARA +strengths S-PRO +and O +elongations O +to O +failure S-CONPRI +are O +revealed O +. O + + +Knowledge O +derived O +from O +these O +process-structure-property O +relationships O +was O +used O +to O +engineer O +a O +super-solvus O +solution S-CONPRI +anneal O +at O +1020 O +°C O +for O +15 O +min O +, O +followed O +by O +aging O +at O +720 O +°C O +for O +24 O +h O +heat B-MANP +treatment E-MANP +for O +AM-IN718 O +that O +eliminates O +Laves S-CONPRI +and O +δ O +phases O +, O +preserves O +AM-specific O +dislocation S-CONPRI +cells S-APPL +that O +are O +shown O +to O +be S-MATE +stabilized O +by O +MC S-MATE +carbide S-MATE +particles O +, O +and O +precipitates S-MATE +dense O +γ′ O +and O +γ″ O +nanoparticle O +populations O +. O + + +This O +“ O +optimized O +for O +AM-IN718 O +heat B-MANP +treatment E-MANP +” O +results O +in O +superior O +properties S-CONPRI +relative O +to O +wrought/additively O +manufactured S-CONPRI +, O +then O +industry-standard O +heat S-CONPRI +treated O +IN718 S-MATE +: O +relative O +increases O +of O +7/10 O +% O +in O +yield B-PRO +strength E-PRO +, O +2/7 O +% O +in O +ultimate B-PRO +strength E-PRO +, O +and O +23/57 O +% O +in O +elongation S-PRO +to O +failure S-CONPRI +are O +realized O +, O +respectively O +, O +regardless O +of O +as-printed O +vs. O +machined S-MANP +surface O +finishes O +. O + + +In O +this O +work O +the O +effect O +of O +manufacturing S-MANP +strategy O +and O +post O +process S-CONPRI +treatment O +on O +the O +high O +strain B-CONPRI +rate E-CONPRI +( O +HSR O +) O +compressive O +deformation S-CONPRI +behavior O +of O +additively B-MANP +manufactured E-MANP +powder O +bed B-MANP +fusion E-MANP +17-4PH S-MATE +stainless O +steel S-MATE +is O +studied O +. O + + +Specimens O +were O +fabricated S-CONPRI +using O +three O +different O +laser S-ENAT +vector O +path O +strategies O +to O +impart O +different O +thermal O +histories O +and O +resulting O +microstructures S-MATE +in O +the O +material S-MATE +. O + + +The O +effect O +of O +post B-CONPRI +processing E-CONPRI +in O +the O +form O +of O +hot B-MANP +isostatic I-MANP +pressing E-MANP +and O +heat B-MANP +treatment E-MANP +and O +their O +effect O +on O +HSR O +compressive O +deformation S-CONPRI +response O +of O +the O +material S-MATE +was O +studied O +. O + + +Defect S-CONPRI +characteristics O +were O +quantified O +using O +x-ray B-CHAR +micro I-CHAR +computed I-CHAR +tomography E-CHAR +. O + + +It O +was O +found O +that O +the O +laser S-ENAT +vector O +strategy O +had O +a O +strong O +influence O +on O +the O +development O +of O +microstructure S-CONPRI +and O +defect S-CONPRI +characteristics O +and O +spatial B-CHAR +distribution E-CHAR +in O +the O +materials S-CONPRI +which O +strongly O +influence O +the O +HSR O +response O +and O +the O +HSR O +compressive O +flow B-PRO +stresses E-PRO +of O +the O +materials S-CONPRI +varied O +by O +as S-MATE +much O +as S-MATE +43 O +% O +in O +the O +regimes O +tested O +. O + + +This O +work O +proposes O +a O +finite B-CONPRI +element E-CONPRI +( O +FE S-MATE +) O +analysis O +workflow S-CONPRI +to O +simulate O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +additive B-MANP +manufacturing E-MANP +at O +a O +macroscopic S-CONPRI +length B-CHAR +scale E-CHAR +( O +i.e O +. O + + +part O +length B-CHAR +scale E-CHAR +) O +and O +to O +predict O +thermal O +conditions O +during O +manufacturing S-MANP +, O +as S-MATE +well O +as S-MATE +distortions O +, O +strength S-PRO +and O +residual B-PRO +stresses E-PRO +at O +the O +completion O +of O +manufacturing S-MANP +. O + + +The O +proposed O +analysis O +method O +incorporates O +a O +multi-step O +FE S-MATE +workflow O +to O +elucidate O +the O +thermal O +and O +mechanical B-CONPRI +responses E-CONPRI +in O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS S-MANP +) O +manufacturing S-MANP +. O + + +For O +each O +time O +step S-CONPRI +, O +a O +thermal O +element S-MATE +activation O +scheme O +captures O +the O +material S-MATE +deposition B-MANP +process E-MANP +. O + + +Then O +, O +activated O +elements S-MATE +and O +their O +associated O +geometry S-CONPRI +are O +analyzed O +first O +thermally O +for O +heat S-CONPRI +flow O +due O +to O +radiation S-MANP +, O +convection O +, O +and O +conduction O +, O +and O +then O +mechanically O +for O +the O +resulting O +stresses O +, O +displacements O +, O +and O +material B-CONPRI +property E-CONPRI +evolution S-CONPRI +. O + + +Simulations S-ENAT +agree O +with O +experimentally O +measured O +in B-CONPRI +situ E-CONPRI +thermal O +measurements O +for O +simple S-MANP +cylindrical S-CONPRI +build S-PARA +geometries O +, O +as S-MATE +well O +as S-MATE +general O +trends S-CONPRI +of O +local O +hardness S-PRO +distribution S-CONPRI +and O +plastic S-MATE +strain O +accumulation O +( O +represented O +by O +relative O +distribution S-CONPRI +of O +geometrically O +necessary O +dislocations S-CONPRI +) O +. O + + +Residual B-PRO +stresses E-PRO +play O +an O +important O +role O +for O +the O +structural B-PRO +integrity E-PRO +of O +engineering S-APPL +components S-MACEQ +. O + + +In O +this O +study O +residual B-PRO +stresses E-PRO +were O +determined O +in O +titanium B-MATE +alloy E-MATE +( O +Ti-6Al-4V S-MATE +) O +and O +Inconel B-MATE +718 E-MATE +samples O +produced O +using O +selective-laser-melting O +( O +SLM S-MANP +) O +additive B-MANP +manufacturing E-MANP +. O + + +The O +contour S-FEAT +method O +and O +a O +numerical B-ENAT +simulation E-ENAT +approach O +( O +inherent-strain-based O +method O +) O +were O +used O +to O +determine O +the O +residual B-PRO +stress E-PRO +distributions S-CONPRI +. O + + +The O +inherent-strain-based O +method O +reduces O +the O +computational O +time O +compared O +to O +weakly-coupled O +thermo-mechanical S-CONPRI +simulations S-ENAT +. O + + +Results O +showed O +the O +presence O +of O +high O +tensile B-PRO +residual I-PRO +stresses E-PRO +at O +and O +near O +the O +surface S-CONPRI +of O +both O +titanium S-MATE +and O +Inconel B-MATE +alloys E-MATE +samples O +, O +whereas O +compressive O +residual B-PRO +stresses E-PRO +were O +seen O +at O +the O +center O +region O +. O + + +A O +good O +agreement O +was O +seen O +between O +the O +results O +obtained O +from O +contour S-FEAT +method O +and O +the O +numerical B-ENAT +simulation E-ENAT +, O +particularly O +1 O +mm S-MANP +below O +the O +surface S-CONPRI +of O +the O +samples S-CONPRI +. O + + +This O +study O +presents O +an O +automated O +thresholding O +method O +for O +analyzing O +and O +quantifying O +the O +internal O +composition S-CONPRI +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +parts O +using O +computed B-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +data S-CONPRI +. O + + +A O +mixed O +skewed-Gaussian O +distribution S-CONPRI +( O +MSGD O +) O +algorithm S-CONPRI +, O +derived O +from O +a O +statistical O +image B-CONPRI +analysis E-CONPRI +technique O +called O +Mixed O +Gaussian S-CONPRI +Distribution S-CONPRI +( O +MGD O +) O +clustering O +, O +integrates O +a O +mixture O +of O +skewed-Gaussian O +distributions S-CONPRI +to O +model S-CONPRI +the O +internal O +phases O +from O +CT S-ENAT +data O +. O + + +The O +parameters S-CONPRI +of O +the O +MSGD O +algorithm S-CONPRI +( O +i.e O +. O + + +probability S-CONPRI +, O +mean O +, O +standard B-CHAR +deviation E-CHAR +, O +and O +skew O +) O +are O +inferred O +from O +the O +measured O +grayscale O +histogram O +using O +least-squares O +fitting O +and O +are O +assigned O +to O +phases O +present O +in O +the O +CT S-ENAT +data O +. O + + +From O +the O +MSGD O +fitted O +and O +thresholded O +CT S-ENAT +data O +, O +phase S-CONPRI +volume O +percentages O +and O +spatial B-FEAT +variations E-FEAT +of O +density S-PRO +of O +the O +phases O +are O +quantified O +. O + + +The O +MSGD O +algorithm S-CONPRI +was O +validated O +using O +previously O +reported O +CT S-ENAT +analysis O +and O +experimental S-CONPRI +porosity O +measurements O +of O +two O +Cobalt B-MATE +Chrome E-MATE +( O +CoCr O +) O +specimens O +( O +∼1 O +% O +and O +∼13 O +% O +porosity S-PRO +) O +fabricated S-CONPRI +by O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +. O + + +Compared O +with O +the O +1.1 O +% O +and O +13.7 O +% O +porosity S-PRO +of O +the O +specimens O +measured O +by O +the O +Archimedes B-CHAR +method E-CHAR +, O +the O +MSGD O +method O +predicted S-CONPRI +a O +porosity S-PRO +of O +1.6 O +% O ++/− O +0.7 O +% O +and O +14.5 O +% O ++/− O +1.9 O +% O +, O +a O +measured O +increase O +of O +0.5 O +% O +and O +0.8 O +% O +, O +respectively O +. O + + +These O +results O +show O +a O +similarity O +in O +predicted S-CONPRI +porosity S-PRO +between O +Archimedes O +and O +MSGD O +method O +indicating O +that O +CT S-ENAT +and O +the O +MSGD O +method O +may O +provide O +a O +reasonable O +estimate O +for O +part O +porosity S-PRO +. O + + +Developed O +a O +design S-FEAT +and O +fabrication S-MANP +workflow O +for O +DM-based O +FGM S-MANP +structures O +. O + + +The O +workflow S-CONPRI +integrates O +material S-MATE +as S-MATE +well O +as S-MATE +structural O +design S-FEAT +with O +fabrication S-MANP +. O + + +Used O +a O +simplified O +regression-based O +model S-CONPRI +to O +predict O +the O +mechanical S-APPL +behavior O +of O +DMs O +. O + + +Experimentally B-CONPRI +validated E-CONPRI +the O +workflow S-CONPRI +with O +the O +help O +of O +voxel S-CONPRI +printed O +FGM S-MANP +structures O +. O + + +Voxel-based O +multimaterial B-MANP +jetting I-MANP +additive I-MANP +manufacturing E-MANP +allows O +fabrication S-MANP +of O +digital B-CONPRI +materials E-CONPRI +( O +DMs O +) O +at O +the O +meso-scale O +( O +∼1 O +mm S-MANP +) O +by O +controlling O +the O +deposition S-CONPRI +patterns O +of O +soft O +elastomeric O +and O +rigid O +glassy O +polymers S-MATE +at O +the O +voxel-scale O +( O +∼90 O +μm O +) O +. O + + +The O +digital B-CONPRI +materials E-CONPRI +can O +then O +be S-MATE +used O +to O +create O +heterogeneous S-CONPRI +functionally B-MATE +graded I-MATE +material E-MATE +( O +FGM S-MANP +) O +structures O +at O +the O +macro-scale O +( O +∼10 O +mm S-MANP +) O +programmed O +to O +behave O +in O +a O +predefined O +manner O +. O + + +This O +offers O +huge O +potential O +for O +design S-FEAT +and O +fabrication S-MANP +of O +novel O +and O +complex O +bespoke O +mechanical S-APPL +structures.This O +paper O +presents O +a O +complete O +design S-FEAT +and O +manufacturing S-MANP +workflow O +that O +simultaneously O +integrates O +material S-MATE +design S-FEAT +, O +structural B-FEAT +design E-FEAT +, O +and O +product O +fabrication S-MANP +of O +FGM S-MANP +structures O +based O +on O +digital B-CONPRI +materials E-CONPRI +. O + + +This O +is O +enabled O +by O +a O +regression B-CONPRI +analysis E-CONPRI +of O +the O +experimental B-CONPRI +data E-CONPRI +on O +mechanical S-APPL +performance O +of O +the O +DMs O +i.e. O +, O +Young O +’ O +s S-MATE +modulus O +, O +tensile B-PRO +strength E-PRO +and O +elongation S-PRO +at O +break O +. O + + +This O +allows O +us O +to O +express O +the O +material S-MATE +behavior O +simply O +as S-MATE +a O +function O +of O +the O +microstructural S-CONPRI +descriptors O +( O +in O +this O +case O +, O +just O +volume B-PARA +fraction E-PARA +) O +without O +having O +to O +understand O +the O +underlying O +microstructural S-CONPRI +mechanics O +while O +simultaneously O +connecting O +it O +to O +the O +process S-CONPRI +parameters.Our O +proposed O +design S-FEAT +and O +manufacturing B-MANP +approach E-MANP +is O +then O +demonstrated O +and O +validated O +in O +two O +series O +of O +design S-FEAT +exercises O +to O +devise O +complex O +FGM S-MANP +structures O +. O + + +First O +, O +we O +design S-FEAT +, O +computationally O +predict O +and O +experimentally O +validate O +the O +behavior O +of O +prescribed O +designs S-FEAT +of O +FGM S-MANP +tensile O +structures O +with O +different O +material B-CONPRI +gradients E-CONPRI +. O + + +Second O +, O +we O +present O +a O +design S-FEAT +automation S-CONPRI +approach O +for O +optimal O +FGM S-MANP +structures O +. O + + +The O +comparison O +between O +the O +simulations S-ENAT +and O +the O +experiments O +with O +the O +FGM S-MANP +structures O +shows O +that O +the O +presented O +design S-FEAT +and O +fabrication S-MANP +workflow O +based O +on O +our O +modeling S-ENAT +approach O +for O +DMs O +at O +meso-scale O +can O +be S-MATE +effectively O +used O +to O +design S-FEAT +and O +predict O +the O +performance S-CONPRI +of O +FGMs O +at O +macro-scale O +. O + + +Porous S-PRO +titanium O +and O +tantalum S-MATE +structures O +were O +fabricated S-CONPRI +by O +additive B-MANP +manufacturing E-MANP +with O +30 O +% O +volume B-PARA +fraction E-PARA +designed S-FEAT +porosity O +. O + + +Nanotubes S-CONPRI +were O +formed O +on O +the O +surface S-CONPRI +of O +the O +porous S-PRO +titanium O +using O +anodization S-MANP +process O +( O +TNT S-MATE +) O +. O + + +Porous S-PRO +TNT O +and O +porous S-PRO +Ta O +showed O +comparable O +new O +bone S-BIOP +formation O +as S-MATE +early O +as S-MATE +5 O +weeks O +after O +surgery S-APPL +in O +a O +rat O +distal O +femur O +model S-CONPRI +. O + + +Our O +findings O +for O +TNT S-MATE +pave O +a O +way O +to O +avoid O +high O +manufacturing B-CONPRI +cost E-CONPRI +related O +to O +biomedical B-APPL +application E-APPL +of O +tantalum S-MATE +. O + + +Material B-CONPRI +properties E-CONPRI +of O +implants S-APPL +such O +as S-MATE +volume O +porosity S-PRO +and O +nanoscale O +surface B-MANP +modification E-MANP +have O +been O +shown O +to O +enhance O +cell-material O +interactions O +in O +vitro O +and O +osseointegration S-PRO +in O +vivo O +. O + + +Porous S-PRO +tantalum O +( O +Ta S-MATE +) O +and O +titanium S-MATE +( O +Ti S-MATE +) O +coatings S-APPL +are O +widely O +used O +for O +non-cemented O +implants S-APPL +, O +which O +are O +fabricated S-CONPRI +using O +different O +processing O +routes O +. O + + +In O +recent O +years O +, O +some O +of O +those O +implants S-APPL +are O +being O +manufactured S-CONPRI +using O +additive B-MANP +manufacturing E-MANP +. O + + +However O +, O +limited O +knowledge O +is O +available O +on O +direct O +comparison O +of O +additively B-MANP +manufactured E-MANP +porous O +Ta S-MATE +and O +Ti S-MATE +structures O +towards O +early O +stage O +osseointegration S-PRO +. O + + +In O +this O +study O +, O +we O +have O +fabricated S-CONPRI +porous O +Ta S-MATE +and O +Ti6Al4V S-MATE +( O +Ti64 S-MATE +) O +implants S-APPL +using O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS™ O +) O +with O +similar O +volume B-PARA +fraction E-PARA +porosity S-PRO +to O +compare O +the O +influence O +of O +surface S-CONPRI +characteristics O +and O +material S-MATE +chemistry S-CONPRI +on O +in O +vivo O +response O +using O +a O +rat O +distal O +femur O +model S-CONPRI +for O +5 O +and O +12 O +weeks O +. O + + +We O +have O +also O +assessed O +whether O +surface B-MANP +modification E-MANP +on O +Ti64 S-MATE +can O +elicit O +similar O +in O +vivo O +response O +as S-MATE +porous O +Ta S-MATE +in O +a O +rat O +distal O +femur O +model S-CONPRI +for O +5 O +and O +12 O +weeks O +. O + + +The O +harvested O +implants S-APPL +were O +histologically O +analyzed O +for O +osteoid O +surface S-CONPRI +per O +bone S-BIOP +surface O +. O + + +Field B-CHAR +emission I-CHAR +scanning I-CHAR +electron I-CHAR +microscopy E-CHAR +( O +FESEM S-CHAR +) O +was O +done O +to O +assess O +the O +bone-implant B-FEAT +interface E-FEAT +. O + + +The O +results O +presented O +here O +indicate O +comparable O +performance S-CONPRI +of O +porous S-PRO +Ta O +and O +surface B-MANP +modified E-MANP +porous S-PRO +Ti64 O +implants S-APPL +towards O +early O +stage O +osseointegration S-PRO +at O +5 O +weeks O +post O +implantation S-MANP +through O +seamless O +bone-material O +interlocking O +. O + + +Design B-FEAT +for I-FEAT +Additive I-FEAT +Manufacturing E-FEAT +( O +DfAM O +) O +allows O +optimising O +parts O +by O +integrating O +complexity S-CONPRI +. O + + +DfAM O +adds O +value O +to O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +manufacturing S-MANP +in O +terms O +of O +cost O +, O +manufacturing S-MANP +lead B-PARA +time E-PARA +, O +and O +productivity S-CONPRI +. O + + +Material S-MATE +usage O +is O +the O +main O +cost O +driver O +in O +metal S-MATE +PBF O +and O +is O +determined O +by O +part O +volume S-CONPRI +and O +lattice S-CONPRI +volume O +fraction S-CONPRI +. O + + +DfAM O +can O +reduce O +the O +manufacturing B-CONPRI +cost E-CONPRI +by O +53.7 O +% O +, O +manufacturing S-MANP +time O +by O +54.3 O +% O +, O +and O +overall O +weight S-PARA +by O +52.5 O +% O +. O + + +DfAM O +is O +necessary O +to O +increase O +the O +economic O +feasibility S-CONPRI +of O +AM S-MANP +business O +cases O +. O + + +The O +cost-effectiveness O +of O +metal B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +systems O +in O +high-throughput O +production S-MANP +are O +dominated O +by O +the O +high O +cost O +of O +metallic B-MATE +powder E-MATE +materials S-CONPRI +. O + + +Metal S-MATE +PBF O +technologies S-CONPRI +become O +more O +competitive O +in O +production S-MANP +scenarios O +when O +Design B-FEAT +for I-FEAT +Additive I-FEAT +Manufacturing E-FEAT +( O +DfAM O +) O +is O +integrated O +to O +embed O +functionality O +through O +shape B-FEAT +complexity E-FEAT +, O +weight S-PARA +, O +and O +material S-MATE +reduction O +through O +topology B-FEAT +optimization E-FEAT +and O +lattice S-CONPRI +structures.This O +study O +investigates S-CONPRI +the O +value O +of O +DfAM O +in O +terms O +of O +unit O +cost O +and O +manufacturing S-MANP +time O +reduction S-CONPRI +. O + + +Input O +design S-FEAT +parameters O +, O +such O +as S-MATE +lattice O +design-type O +, O +part O +size O +, O +volume B-PARA +fraction E-PARA +, O +material S-MATE +type O +and O +production S-MANP +volumes O +are O +included O +in O +a O +Design-of-Experiment O +to O +model S-CONPRI +their O +impact S-CONPRI +. O + + +The O +performance S-CONPRI +variables O +for O +cost O +and O +manufacturing S-MANP +time O +were O +assessed O +for O +two O +scenarios O +: O +( O +i O +) O +outsourcing S-CONPRI +scenario O +using O +an O +online O +quotation O +system O +, O +and O +( O +ii O +) O +in-house O +scenario O +utilizing O +a O +decision O +support S-APPL +system O +( O +DSS O +) O +for O +metal S-MATE +PBF.The O +results O +indicate O +that O +the O +size O +of O +the O +part O +and O +the O +lattice S-CONPRI +volume O +fraction S-CONPRI +are O +the O +most O +significant O +parameters S-CONPRI +that O +contribute O +to O +time O +and O +cost O +savings O +. O + + +This O +study O +shows O +that O +full O +utilization O +of O +build B-MACEQ +platforms E-MACEQ +by O +volume-optimized O +parts O +, O +high O +production S-MANP +volumes O +, O +and O +reduction S-CONPRI +of O +volume B-PARA +fraction E-PARA +lead S-MATE +to O +substantial O +benefits O +for O +metal S-MATE +PBF O +industrialization O +. O + + +Integration O +of O +DfAM O +and O +lattice B-FEAT +designs E-FEAT +for O +lightweight S-CONPRI +part O +production S-MANP +can O +decrease O +the O +unit O +cost O +of O +production S-MANP +down O +to O +70.6 O +% O +and O +manufacturing S-MANP +time O +can O +be S-MATE +reduced O +significantly O +down O +to O +71.7 O +% O +depending O +on O +the O +manufacturing S-MANP +scenarios O +and O +design S-FEAT +constraints O +when O +comparing O +to O +solid O +infill S-PARA +designs S-FEAT +. O + + +The O +study O +also O +provides O +a O +case O +example O +of O +a O +bracket S-MACEQ +design O +whose O +cost O +is O +reduced O +by O +53.7 O +% O +, O +manufacturing S-MANP +time O +is O +reduced O +by O +54.3 O +% O +, O +and O +the O +overall O +weight S-PARA +is O +reduced O +significantly O +with O +the O +use O +of O +lattices S-CONPRI +structures O +and O +topology B-FEAT +optimization E-FEAT +. O + + +The O +capability O +to O +manufacture S-CONPRI +items O +in O +space O +is O +an O +exploration O +enabling O +advancement O +, O +and O +will O +be S-MATE +crucial O +for O +sustainable S-CONPRI +human O +exploration O +as S-MATE +we O +progress O +beyond O +Earth O +orbit O +. O + + +The O +extrusion S-MANP +based O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +method O +using O +thermoplastics S-MATE +represents O +a O +robust O +and O +simple S-MANP +methodology S-CONPRI +applicable O +to O +printing O +parts O +for O +both O +current O +and O +future O +human O +spaceflight O +exploration O +missions O +. O + + +Understanding O +the O +performance S-CONPRI +and O +behaviour O +of O +the O +FFF S-MANP +process O +under O +varying O +gravity O +loads O +is O +therefore O +an O +important O +knowledge O +gap O +that O +needs O +to O +be S-MATE +addressed O +in O +order O +to O +fully O +appreciate O +the O +characteristics O +of O +space O +manufactured S-CONPRI +elements S-MATE +. O + + +In O +this O +study O +, O +we O +detail O +an O +experiment S-CONPRI +conducted O +on O +a O +parabolic O +flight O +campaign O +( O +PFC O +) O +wherein O +we O +produced O +a O +number O +of O +FFF S-MANP +polylactic O +acid O +( O +PLA S-MATE +) O +polymer S-MATE +test O +articles O +and O +compared O +them O +to O +terrestrially O +fabricated S-CONPRI +articles O +. O + + +We O +report O +on O +the O +methodology S-CONPRI +and O +the O +operational O +parameters S-CONPRI +used O +, O +as S-MATE +well O +as S-MATE +presenting O +an O +analysis O +of O +the O +samples S-CONPRI +via O +optical B-CHAR +microscopy E-CHAR +and O +tomography O +. O + + +Compressive O +, O +tensile S-PRO +and O +other O +technical O +properties S-CONPRI +are O +reported O +herein O +. O + + +An O +approach O +to O +teaching O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +course O +for O +engineering S-APPL +students O +is O +suggested O +. O + + +A O +pedagogical O +model S-CONPRI +was O +developed O +, O +based O +on O +PDL O +strategy O +, O +for O +a O +14-week O +AM S-MANP +course O +. O + + +The O +students O +designed S-FEAT +and O +3D B-MANP +printed E-MANP +devices O +helping O +people O +with O +disabilities O +. O + + +The O +projects O +served O +as S-MATE +useful O +collaborative O +learning O +experiences O +for O +AM S-MANP +education O +. O + + +The O +course O +demonstrates O +the O +potential O +of O +AM B-MANP +technologies E-MANP +as O +innovative O +environment O +. O + + +The O +present O +study O +suggests O +an O +approach O +to O +teaching O +a O +novel O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +course O +for O +engineering S-APPL +students O +at O +the O +graduate O +level O +, O +developed O +in O +2015 O +and O +taught O +currently O +at O +Afeka O +Academic O +College O +of O +Engineering S-APPL +. O + + +The O +proposed O +course O +is O +dedicated O +to O +the O +fundamentals O +, O +methods O +, O +materials S-CONPRI +, O +standards S-CONPRI +and O +industrial S-APPL +applications O +of O +AM S-MANP +, O +and O +involves O +introduction O +lectures O +, O +special O +topic O +lectures O +organized O +with O +industry S-APPL +and O +academic O +experts O +, O +laboratory S-CONPRI +training O +and O +final O +engineering S-APPL +projects O +. O + + +The O +first O +project O +proposed O +by O +the O +students O +was O +to O +develop O +and O +build S-PARA +an O +opener O +for O +medicine S-CONPRI +containers O +; O +the O +second O +was O +to O +design S-FEAT +and O +build S-PARA +a O +device O +for O +pouring O +liquids O +for O +people O +with O +Parkinson O +’ O +s S-MATE +disease O +; O +and O +the O +third O +was O +to O +design S-FEAT +and O +construct O +a O +3D S-CONPRI +puzzle O +for O +blind O +or O +visually O +impaired O +people O +. O + + +All O +three O +projects O +were O +designed S-FEAT +with O +a O +computer-aided B-ENAT +design E-ENAT +program O +and O +then O +printed O +using O +the O +ABS B-MATE +material E-MATE +. O + + +Quality B-CONPRI +control E-CONPRI +( O +three-point B-CHAR +bending I-CHAR +tests E-CHAR +and O +light O +microscopy S-CHAR +) O +was O +routinely O +conducted O +on O +standard S-CONPRI +specimens O +printed O +on O +the O +same O +tray O +with O +the O +components S-MACEQ +. O + + +The O +learning O +process S-CONPRI +included O +two O +iteration O +steps O +that O +were O +executed O +to O +improve O +and O +optimize O +the O +structural B-FEAT +design E-FEAT +. O + + +The O +final O +3D B-MANP +printed E-MANP +objects O +, O +the O +students O +’ O +presentations O +, O +their O +experience O +, O +as S-MATE +reflected O +in O +their O +final O +reports O +, O +and O +their O +personal O +written O +evaluations O +, O +lead S-MATE +to O +the O +conclusion O +that O +the O +projects O +served O +as S-MATE +useful O +learning O +experience O +for O +engineering S-APPL +education O +. O + + +Here O +we O +report O +a O +pre-fractal O +antenna O +design S-FEAT +based O +on O +the O +Sierpinski O +tetrahedron O +that O +has O +been O +developed O +with O +additive B-MANP +manufacturing E-MANP +. O + + +The O +Sierpinski O +tetrahedron-based O +antenna O +was O +simulated O +with O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +( O +FEM S-CONPRI +) O +modeling S-ENAT +and O +experimentally O +tested O +to O +highlight O +its O +potential O +for O +wideband O +communications O +. O + + +The O +Sierpinski O +tetrahedron-based O +antennas O +were O +fabricated S-CONPRI +by O +two O +methods O +, O +the O +first O +involves O +printing O +the O +antenna O +out O +of O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +, O +followed O +by O +spin O +casting S-MANP +a O +coating S-APPL +of O +an O +ABS S-MATE +solution O +containing O +graphene S-MATE +flakes S-CONPRI +produced O +through O +electrochemical S-CONPRI +exfoliation O +, O +the O +second O +method O +involves O +3D B-MANP +printing E-MANP +the O +antenna O +from O +graphene-impregnated O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +filament S-MATE +directly O +without O +any O +coating S-APPL +. O + + +These O +antennas O +incorporate O +the O +advantages O +of O +3D B-MANP +printing E-MANP +which O +allows O +for O +rapid B-ENAT +prototyping E-ENAT +and O +the O +development O +of O +devices O +with O +complex B-CONPRI +geometries E-CONPRI +. O + + +Due O +to O +these O +manufacturing S-MANP +advantages O +, O +self-similar O +antennas O +like O +the O +Sierpinski O +tetrahedron O +can O +be S-MATE +realized O +which O +provide O +increased O +gain S-PARA +and O +multi-band O +performance S-CONPRI +. O + + +Lattice B-FEAT +structures E-FEAT +fabricated S-CONPRI +via O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +offer O +improved O +performance S-CONPRI +over O +traditional B-MANP +manufacturing E-MANP +methods O +, O +however O +, O +predicting O +their O +mechanical B-CONPRI +behaviour E-CONPRI +both O +accurately S-CHAR +and O +with O +acceptable O +computational B-CONPRI +efficiency E-CONPRI +remains O +a O +challenge O +. O + + +AM S-MANP +associated O +defects S-CONPRI +combined O +with O +multiple O +high O +aspect-ratio O +strut S-MACEQ +elements S-MATE +require O +fine O +3D S-CONPRI +finite-element O +( O +FE S-MATE +) O +meshes O +; O +resulting O +in O +high O +computational O +complexity S-CONPRI +that O +limits S-CONPRI +the O +number O +of O +lattice B-FEAT +unit E-FEAT +cells S-APPL +that O +can O +be S-MATE +practically O +simulated O +. O + + +Alternatively O +, O +Euler-Bernoulli O +or O +Timoshenko O +beam S-MACEQ +elements O +can O +be S-MATE +specified O +to O +reduce O +computational O +complexity S-CONPRI +. O + + +However O +, O +these O +beam S-MACEQ +elements O +are O +typically O +based O +on O +idealised O +representations O +that O +exclude O +AM S-MANP +associated O +defects S-CONPRI +. O + + +This O +research S-CONPRI +proposes O +a O +novel O +method O +which O +combines O +data S-CONPRI +driven O +AM S-MANP +defect O +modelling S-ENAT +, O +Markov O +Chains O +and O +Monte O +Carlo O +( O +MCS O +) O +simulation S-ENAT +techniques O +to O +predict O +the O +stiffness S-PRO +of O +an O +AM S-MANP +lattice O +structure S-CONPRI +. O + + +Furthermore O +, O +this O +method O +accommodates O +stochastic B-CONPRI +distributions E-CONPRI +of O +AM S-MANP +associated O +defects S-CONPRI +within O +computationally O +effective O +beam S-MACEQ +models O +; O +thereby O +enabling O +the O +simulation S-ENAT +of O +large-scale O +lattice B-FEAT +structures E-FEAT +at O +a O +relatively O +low O +computational O +cost O +. O + + +The O +proposed O +method O +is O +aimed O +at O +reliability S-CHAR +analysis O +or O +a O +probabilistic O +approach O +to O +structural B-CHAR +analysis E-CHAR +of O +AM S-MANP +lattice O +structures O +. O + + +The O +combination O +of O +generating O +AM S-MANP +strut O +digital O +realisations O +and O +MCS O +, O +resulted O +in O +a O +variety O +of O +possible O +strut S-MACEQ +deformation S-CONPRI +shapes O +and O +effective O +diameters O +under O +axial O +compression S-PRO +. O + + +The O +propagation O +of O +effective O +diameter S-CONPRI +variability O +to O +the O +lattice-scale O +level O +displayed O +the O +possible O +variation S-CONPRI +in O +the O +mechanical B-CONPRI +response E-CONPRI +of O +AM S-MANP +lattice O +structure S-CONPRI +. O + + +Simulations S-ENAT +are O +validated O +and O +insight O +into O +how O +a O +lattice B-FEAT +structures E-FEAT +unit O +cell B-CONPRI +topology E-CONPRI +affects O +simulation B-CHAR +accuracy E-CHAR +is O +discussed O +. O + + +The O +use O +of O +laser B-MANP +additive I-MANP +manufacturing E-MANP +based O +on O +melting S-MANP +of O +injected O +zirconium B-MATE +powder E-MATE +under O +localized O +shielding O +was O +evaluated O +in O +terms O +of O +microstructures S-MATE +and O +mechanical B-CONPRI +properties E-CONPRI +of O +thin O +wall O +structures O +. O + + +The O +material S-MATE +was O +characterized O +in O +both O +the O +laser S-ENAT +travel O +and O +the O +build B-PARA +directions E-PARA +. O + + +The O +microstructures S-MATE +, O +tensile B-PRO +properties E-PRO +and O +fracture S-CONPRI +behavior O +were O +assessed O +for O +deposits O +made O +using O +as-received O +and O +recycled S-CONPRI +powder S-MATE +. O + + +Electron O +backscattered O +diffraction S-CHAR +and O +transmission S-CHAR +electron O +microcopy O +revealed O +a O +fine O +structure S-CONPRI +of O +Zr-α O +laths O +with O +nano-scale S-CONPRI +iron-rich O +precipitates S-MATE +at O +the O +lath O +interfaces O +. O + + +The O +properties S-CONPRI +of O +the O +fabricated S-CONPRI +components S-MACEQ +, O +which O +were O +made O +using O +new O +as-received O +powder S-MATE +were O +comparable O +to O +a O +Zr-2.5Nb O +alloy S-MATE +substrate O +, O +with O +yield B-PRO +strengths E-PRO +of O +over O +569 O +MPa S-CONPRI +and O +uniform O +strains O +up O +to O +the O +ultimate O +tensile B-PRO +stress E-PRO +ranging O +from O +8.5 O +to O +9.9 O +% O +. O + + +However O +, O +when O +recycled S-CONPRI +powder S-MATE +was O +used O +, O +the O +ductility S-PRO +dropped O +with O +total O +strains O +to O +failure S-CONPRI +of O +1.0–7.5 O +% O +, O +as S-MATE +a O +result O +of O +porosity S-PRO +and O +unmelted O +powder B-MATE +particles E-MATE +serving O +as S-MATE +brittle O +inclusions S-MATE +in O +the O +deposited O +material S-MATE +. O + + +3D B-MANP +printed E-MANP +AlSi10Mg O +can O +be S-MATE +used O +in O +electrical B-APPL +applications E-APPL +once O +heat S-CONPRI +treated O +Electrical B-CHAR +resistivity E-CHAR +values O +once O +heat S-CONPRI +treated O +are O +comparable O +to O +cast S-MANP +alloy S-MATE +values O +Resistivity S-PRO +of O +as-built O +AlSi10Mg S-MATE +increases O +by O +27 O +% O +depending O +on O +build B-PARA +orientation E-PARA +Heat O +treatment O +can O +reduce O +as-built O +resistivity S-PRO +by O +33 O +% O +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +opens O +up O +a O +design B-CONPRI +freedom E-CONPRI +beyond O +the O +limits S-CONPRI +of O +traditional B-MANP +manufacturing E-MANP +techniques O +. O + + +Electrical S-APPL +windings O +created O +through O +AM S-MANP +could O +lead S-MATE +to O +more O +powerful O +and O +compact S-MANP +electric O +motors O +, O +but O +only O +if O +the O +electrical B-CONPRI +properties E-CONPRI +of O +the O +AM S-MANP +printed O +part O +can O +be S-MATE +shown O +to O +be S-MATE +similar O +to O +conventionally O +manufactured S-CONPRI +systems O +. O + + +Until O +now O +, O +no O +study O +has O +reported O +on O +the O +suitability O +of O +AM B-MACEQ +parts E-MACEQ +for O +electrical B-APPL +applications E-APPL +as S-MATE +there O +are O +few O +appropriate O +materials S-CONPRI +available O +to O +AM S-MANP +for O +this O +purpose O +. O + + +AlSi10Mg S-MATE +is O +a O +relatively O +good O +electrical S-APPL +conductor S-MATE +that O +does O +not O +have O +the O +same O +reported O +issues O +associated O +with O +processing O +pure O +aluminium S-MATE +or O +copper S-MATE +via O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +. O + + +Here O +, O +experiments O +were O +conducted O +to O +test O +the O +effects O +of O +geometry S-CONPRI +and O +heat B-MANP +treatments E-MANP +on O +the O +resistivity S-PRO +of O +AlSi10Mg S-MATE +processed O +by O +SLM S-MANP +. O + + +It O +was O +found O +that O +post O +heat B-MANP +treatments E-MANP +resulted O +in O +a O +resistivity S-PRO +that O +was O +33 O +% O +lower O +than O +the O +as-built O +material S-MATE +. O + + +The O +heat B-MANP +treatment E-MANP +also O +eliminated O +variance O +in O +the O +resistivity S-PRO +of O +as-built O +parts O +due O +to O +initial O +build B-PARA +orientation E-PARA +. O + + +By O +conducting O +these O +tests O +, O +it O +was O +found O +that O +, O +with O +this O +material S-MATE +, O +there O +is O +no O +penalty O +in O +terms O +of O +higher O +resistivity S-PRO +for O +using O +AM S-MANP +in O +electrical B-APPL +applications E-APPL +, O +thus O +allowing O +more O +design B-CONPRI +freedom E-CONPRI +in O +future O +electrical B-APPL +applications E-APPL +. O + + +Future O +exploration O +missions O +beyond O +low-Earth O +orbit O +would O +significantly O +benefit O +from O +a O +closed O +loop O +recyclable S-CONPRI +Additive B-MANP +Manufactured E-MANP +capability O +, O +allowing O +the O +production S-MANP +of O +general O +purpose O +tools S-MACEQ +and O +items O +in O +a O +time O +and O +cost O +effective O +manner O +. O + + +To O +realize O +this O +ambition O +, O +we O +present O +a O +feasibility S-CONPRI +study O +of O +a O +Solvent-Cast O +Direct-Write O +method O +using O +Polyvinyl O +Alcohol O +as S-MATE +biodegradable O +material S-MATE +. O + + +Process B-CONPRI +parameters E-CONPRI +such O +as S-MATE +solution O +viscosity S-PRO +, O +evaporation B-CHAR +rate E-CHAR +, O +print S-MANP +pressure S-CONPRI +and O +scan B-PARA +speed E-PARA +are O +optimized O +in O +order O +to O +achieve O +a O +consistent O +and O +reliable O +print S-MANP +outcome O +. O + + +We O +demonstrate O +the O +process S-CONPRI +by O +fabricating S-MANP +test O +complex B-CONPRI +geometries E-CONPRI +of O +sample S-CONPRI +specimens O +. O + + +Moreover O +, O +we O +report O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +printed O +geometries S-CONPRI +as S-MATE +well O +as S-MATE +the O +recyclability S-CONPRI +aspects O +. O + + +The O +aerospace S-APPL +, O +automotive S-APPL +and O +medical B-APPL +industries E-APPL +are O +suffering O +from O +significant O +number O +of O +counterfeited O +metallic S-MATE +products O +that O +not O +only O +have O +caused O +financial O +losses O +but O +also O +endanger O +lives O +. O + + +The O +rapid O +development O +of O +additive B-MANP +manufacturing E-MANP +technologies O +makes O +such O +a O +situation O +even O +worse O +. O + + +In O +this O +investigation O +, O +we O +successfully O +applied O +a O +novel O +hybrid O +powder S-MATE +delivery O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +approach O +to O +embed O +dissimilar O +tagging O +material S-MATE +( O +Cu10Sn O +copper B-MATE +alloy E-MATE +) O +safety S-CONPRI +features O +( O +e.g O +. O + + +QR O +code O +) O +into O +metallic S-MATE +components S-MACEQ +made O +of O +316 O +L O +stainless B-MATE +steel E-MATE +. O + + +X-ray B-CHAR +imaging E-CHAR +was O +found O +to O +be S-MATE +a O +suitable O +method O +for O +the O +identification O +of O +the O +embedded O +safety S-CONPRI +features O +up O +to O +15 O +mm S-MANP +in O +depth O +. O + + +X-ray S-CHAR +fluorescence S-CHAR +was O +used O +for O +the O +chemical B-CONPRI +composition E-CONPRI +identification O +of O +the O +imbedded O +security O +tagging O +material S-MATE +. O + + +A O +criterion O +for O +the O +selection O +of O +tagging O +material S-MATE +, O +its O +dimensions S-FEAT +and O +imbedding O +depth O +is O +proposed O +. O + + +The O +multiple O +material S-MATE +SLM O +technology S-CONPRI +was O +shown O +to O +offer O +the O +potential O +to O +be S-MATE +integrated O +into O +metallic S-MATE +component S-MACEQ +production O +for O +embedding O +anti-counterfeiting O +features O +. O + + +The O +development O +of O +cooling S-MANP +devices O +is O +important O +for O +many O +industrial S-APPL +products O +, O +and O +the O +lattice B-FEAT +structure E-FEAT +fabricated S-CONPRI +by O +additive B-MANP +manufacturing E-MANP +is O +expected O +to O +be S-MATE +useful O +for O +effective O +liquid O +cooling S-MANP +. O + + +However O +, O +lattice B-FEAT +density E-FEAT +should O +be S-MATE +carefully O +designed S-FEAT +for O +an O +effective O +arrangement O +of O +coolant S-MATE +flow O +. O + + +In O +this O +research S-CONPRI +, O +we O +optimize O +the O +lattice B-FEAT +density E-FEAT +distribution S-CONPRI +using O +a O +lattice B-FEAT +structure E-FEAT +approximation O +and O +the O +gradient O +method O +. O + + +Fluid B-PRO +flow E-PRO +is O +approximated O +by O +deriving O +effective O +properties S-CONPRI +from O +the O +Darcy–Forchheimer O +law O +and O +analyzing O +the O +flow O +according O +to O +the O +Brinkman–Forchheimer O +equation O +. O + + +We O +use O +a O +simple S-MANP +basic O +lattice S-CONPRI +shape O +composed O +of O +pillars O +, O +optimizing O +only O +its O +density B-PRO +distribution E-PRO +by O +setting O +the O +pillar O +diameter S-CONPRI +as S-MATE +the O +design S-FEAT +variable O +. O + + +Steady-state O +pressure S-CONPRI +and O +temperature S-PARA +reductions O +are O +treated O +as S-MATE +multi-objective O +functions O +. O + + +Through O +2D S-CONPRI +and O +3D S-CONPRI +numerical O +studies O +, O +we O +discuss O +the O +validity O +and O +limitations O +of O +the O +proposed O +method O +. O + + +Although O +observable O +errors S-CONPRI +in O +accuracy S-CHAR +exist O +between O +the O +results O +obtained O +from O +the O +optimization S-CONPRI +and O +full O +scale O +models O +, O +relative O +performance B-CONPRI +optimization E-CONPRI +was O +considered O +successful O +. O + + +Additive B-MANP +manufacturing E-MANP +has O +seen O +large O +growth O +due O +to O +its O +numerous O +process S-CONPRI +advantages O +, O +yet O +some O +undesirable O +defects S-CONPRI +in O +additive B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +products O +include O +pores S-PRO +and O +micro-cracks S-CONPRI +. O + + +These O +defects S-CONPRI +weaken O +the O +high O +temperature S-PARA +oxidation B-PRO +resistance E-PRO +of O +the O +final O +parts O +. O + + +In O +this O +work O +, O +laser S-ENAT +shock O +peening S-MANP +( O +LSP O +) O +is O +used O +as S-MATE +a O +post-treatment S-MANP +method O +to O +change O +the O +surface S-CONPRI +characteristics O +of O +selective B-MANP +laser I-MANP +melted E-MANP +( O +SLM S-MANP +) O +nano-TiC O +particle-reinforced O +Inconel B-MATE +625 E-MATE +nanocomposites O +( O +TiC/IN625 O +) O +. O + + +The O +effects O +of O +LSP O +on O +surface B-CHAR +morphology E-CHAR +, O +residual B-PRO +stress E-PRO +, O +microhardness S-CONPRI +, O +microstructure S-CONPRI +, O +and O +high O +temperature S-PARA +oxidation S-MANP +behavior O +of O +fabricated S-CONPRI +parts O +are O +studied O +. O + + +The O +results O +indicate O +pores S-PRO +in O +the O +as-built O +sample S-CONPRI +can O +be S-MATE +closed O +by O +the O +severe O +plastic B-PRO +deformation E-PRO +, O +which O +is O +induced O +by O +LSP O +. O + + +The O +maximum O +hardness S-PRO +is O +found O +to O +reach O +462 O +± O +7 O +HV O +with O +a O +∼ O +460 O +μm O +hardened S-MANP +layer O +, O +and O +the O +surface S-CONPRI +stress S-PRO +state O +transforms O +from O +tensile S-PRO +to O +compressive O +after O +LSP O +. O + + +The O +full O +width O +at O +half O +maximum O +( O +FWHM O +) O +values O +of O +the O +( O +111 O +) O +and O +( O +200 O +) O +diffraction S-CHAR +broaden O +, O +which O +can O +be S-MATE +attributed O +to O +grain B-CHAR +refinement E-CHAR +and O +an O +increase O +in O +lattice S-CONPRI +strain O +in O +the O +LSP O +samples S-CONPRI +. O + + +Dislocation S-CONPRI +walls O +and O +dislocation S-CONPRI +tangles O +with O +high O +dislocation B-PRO +density E-PRO +form O +in O +the O +LSP O +sample S-CONPRI +. O + + +Compared O +with O +as-built O +sample S-CONPRI +, O +the O +LSP O +samples S-CONPRI +exhibit O +lower O +mass O +gain S-PARA +after O +oxidation S-MANP +at O +900 O +°C O +for O +100 O +h O +, O +indicating O +that O +LSP O +samples S-CONPRI +have O +greater O +oxidation B-PRO +resistance E-PRO +at O +high O +temperature S-PARA +. O + + +The O +underlying O +mechanism S-CONPRI +governing O +the O +high O +temperature S-PARA +oxidation B-PRO +resistance E-PRO +is O +proposed O +based O +on O +the O +experimental S-CONPRI +results O +. O + + +This O +study O +shows O +that O +LSP O +can O +be S-MATE +used O +as S-MATE +an O +effective O +method O +to O +modify O +the O +surface S-CONPRI +characteristics O +of O +SLM S-MANP +TiC/IN625 O +. O + + +Many O +applications O +require O +structures O +composed O +of O +layers O +of O +heterogeneous S-CONPRI +materials O +and O +prefabricated O +components S-MACEQ +embedded O +between O +the O +layers O +. O + + +The O +existing O +additive B-MANP +manufacturing I-MANP +process E-MANP +based O +on O +layered O +object O +manufacturing S-MANP +is O +not O +able O +to O +handle O +multiple O +layer S-PARA +materials O +and O +can O +not O +embed O +prefabricated O +components S-MACEQ +. O + + +Moreover O +, O +the O +existing O +process S-CONPRI +imposes O +restrictions O +on O +the O +material S-MATE +options O +. O + + +This O +significantly O +limits S-CONPRI +the O +type O +of O +heterogeneous S-CONPRI +structures O +that O +can O +be S-MATE +manufactured O +using O +traditional O +additive B-MANP +manufacturing E-MANP +. O + + +This O +paper O +presents O +an O +extension O +of O +sheet B-MANP +lamination E-MANP +object O +manufacturing B-MANP +process E-MANP +by O +using O +a O +robotic O +cell S-APPL +to O +perform O +the O +sheet S-MATE +manipulation O +and O +handling O +. O + + +It O +makes O +the O +following O +three O +advances O +: O +( O +1 O +) O +enabling O +the O +use O +of O +multi-material S-CONPRI +layers O +and O +inclusion S-MATE +of O +prefabricated O +components S-MACEQ +between O +the O +layers O +, O +( O +2 O +) O +developing O +an O +algorithmic O +foundation O +to O +facilitate O +automated O +generation O +of O +robot S-MACEQ +instructions O +, O +and O +( O +3 O +) O +identifying O +the O +relevant O +process S-CONPRI +constraints O +related O +to O +speed O +, O +accuracy S-CHAR +, O +and O +strength S-PRO +. O + + +We O +demonstrate O +the O +system O +capabilities O +by O +using O +three O +case B-CONPRI +studies E-CONPRI +. O + + +Pure O +Zn S-MATE +bulk O +samples S-CONPRI +of O +good O +formation O +quality S-CONPRI +and O +high O +tensile B-PRO +properties E-PRO +were O +produced O +. O + + +The O +effect O +of O +scanning B-PARA +speed E-PARA +on O +grain B-PRO +size E-PRO +, O +morphology S-CONPRI +and O +texture S-FEAT +was O +clarified O +. O + + +Crystallographic O +effects O +resulted O +to O +strong O +anisotropy S-PRO +in O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +existence O +of O +tiny O +pores S-PRO +in O +LPBF S-MANP +samples O +influenced O +corrosion B-PRO +behavior E-PRO +. O + + +Corrosion S-CONPRI +rate O +increased O +with O +increasing O +scanning B-PARA +speed E-PARA +at O +the O +initial O +stage O +of O +immersion O +, O +and O +the O +gap O +narrowed O +as S-MATE +immersion O +time O +passed O +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +has O +been O +previously O +used O +to O +produce O +customized O +medical B-APPL +implants E-APPL +from O +biodegradable O +Zn S-MATE +and O +its O +alloys S-MATE +. O + + +In O +this O +study O +, O +we O +investigated O +the O +effect O +of O +the O +grain B-CONPRI +structure E-CONPRI +on O +the O +mechanical B-CONPRI +properties E-CONPRI +and O +in O +vitro O +corrosion B-PRO +behavior E-PRO +of O +pure O +Zn S-MATE +samples S-CONPRI +, O +by O +varying O +the O +scanning B-PARA +speed E-PARA +and O +building B-PARA +direction E-PARA +during O +the O +LPBF S-MANP +process O +. O + + +Increasing O +the O +scanning B-PARA +speed E-PARA +from O +300 O +to O +700 O +mm/s O +resulted O +in O +finer O +grains S-CONPRI +, O +irregular O +grain S-CONPRI +morphology O +, O +and O +a O +weaker O +grain S-CONPRI +texture O +, O +which O +enhanced O +the O +strength S-PRO +and O +ductility S-PRO +. O + + +Vertically O +built O +LPBF S-MANP +Zn O +tensile S-PRO +samples S-CONPRI +had O +higher O +strength S-PRO +and O +ductility S-PRO +compared O +with O +horizontally O +built O +samples S-CONPRI +, O +indicating O +strong O +anisotropy S-PRO +of O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Electrochemical B-CHAR +tests E-CHAR +revealed O +that O +the O +in O +vitro O +corrosion B-PRO +behavior E-PRO +was O +not O +strongly O +correlated S-CONPRI +with O +the O +scanning B-PARA +speed E-PARA +. O + + +This O +was O +attributable O +to O +the O +random O +distribution S-CONPRI +of O +tiny O +pores S-PRO +on O +the O +surface S-CONPRI +of O +the O +LPBF S-MANP +samples O +, O +although O +immersion O +tests O +showed O +that O +the O +sample S-CONPRI +prepared O +with O +the O +highest O +scanning B-PARA +speed E-PARA +exhibited O +the O +highest O +corrosion S-CONPRI +rate O +. O + + +With O +increasing O +immersion O +time O +in O +Hank O +’ O +s S-MATE +solution O +, O +the O +Zn2+ O +concentrations O +of O +the O +samples S-CONPRI +produced O +with O +different O +scanning B-PARA +speeds E-PARA +increased O +, O +their O +pH S-CONPRI +stabilized O +, O +and O +the O +differences O +between O +the O +corrosion S-CONPRI +rates O +narrowed O +. O + + +The O +effects O +of O +the O +processing O +parameters S-CONPRI +on O +the O +final O +performance S-CONPRI +of O +the O +samples S-CONPRI +could O +be S-MATE +well O +explained O +by O +the O +grain B-CONPRI +structures E-CONPRI +. O + + +The O +findings O +of O +this O +study O +afford O +bases O +for O +selecting O +the O +processing O +parameters S-CONPRI +for O +optimizing O +the O +properties S-CONPRI +of O +LPBF-produced O +Zn S-MATE +parts O +for O +biodegradable O +applications O +. O + + +Existing O +powder B-MACEQ +feedstock E-MACEQ +metrics O +for O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +are O +related O +to O +packing O +efficiency O +and O +flowability O +, O +and O +newer O +techniques O +, O +such O +as S-MATE +powder O +rheometry O +and O +dynamic S-CONPRI +avalanche O +testing S-CHAR +, O +have O +received O +recent O +attention O +in O +the O +literature O +. O + + +To O +date O +, O +however O +, O +no O +powder S-MATE +characterization O +technique O +is O +able O +to O +predict O +the O +spreadability O +of O +AM S-MANP +feedstock O +. O + + +This O +study O +endeavored O +to O +establish O +viable O +powder S-MATE +spreadability O +metrics O +through O +the O +development O +of O +a O +spreadability O +testing S-CHAR +rig O +that O +emulates O +the O +recoating O +conditions O +present O +in O +commercial O +PBF B-MANP +AM E-MANP +systems O +. O + + +As S-MATE +no O +metrics O +for O +spreadability O +currently O +exist O +, O +four O +potential O +metrics O +were O +evaluated O +in O +a O +3∙23 O +split O +plot O +experimental B-CONPRI +design E-CONPRI +. O + + +These O +four O +metrics O +were O +: O +( O +1 O +) O +the O +percentage O +of O +the O +build B-MACEQ +plate E-MACEQ +covered O +by O +spread S-CONPRI +powder S-MATE +, O +( O +2 O +) O +the O +rate O +of O +powder S-MATE +deposition S-CONPRI +, O +( O +3 O +) O +the O +average S-CONPRI +avalanching O +angle O +of O +the O +powder S-MATE +, O +and O +( O +4 O +) O +the O +rate O +of O +change O +of O +the O +avalanching O +angle O +. O + + +Three O +samples S-CONPRI +of O +gas B-MANP +atomized E-MANP +, O +Al-10Si-0.5 O +Mg S-MATE +PBF O +powder S-MATE +representing O +differing O +degrees O +of O +quality S-CONPRI +were O +used O +as S-MATE +the O +levels O +of O +the O +powder S-MATE +quality O +input O +variable O +. O + + +As S-MATE +no O +powder S-MATE +quality O +metrics O +have O +been O +shown O +to O +be S-MATE +indicative O +of O +powder S-MATE +spreadability O +in O +PBF S-MANP +, O +various O +bulk O +powder S-MATE +characteristics O +were O +used O +as S-MATE +the O +powder S-MATE +quality O +indicator O +during O +ANOVA O +. O + + +Of O +the O +four O +metrics O +tested O +, O +the O +average S-CONPRI +avalanching O +angle O +, O +while O +statistically O +dependent O +of O +the O +powders S-MATE +angle O +of O +repose O +, O +showed O +poor O +correlation O +with O +experimental B-CONPRI +data E-CONPRI +. O + + +poor O +build B-MACEQ +plate E-MACEQ +coverage O +and O +powder S-MATE +clumping O +, O +as S-MATE +measured O +by O +the O +viable O +spreading O +metrics O +. O + + +Other O +processing O +parameters S-CONPRI +, O +such O +as S-MATE +the O +recoating O +speed O +and O +the O +recoater B-MACEQ +blade E-MACEQ +material S-MATE +were O +shown O +to O +also O +influence O +the O +spread B-CONPRI +quality E-CONPRI +. O + + +A O +design S-FEAT +strategy O +for O +lattice S-CONPRI +cell S-APPL +configurations O +beyond O +Maxwell B-CONPRI +criterion E-CONPRI +. O + + +Established O +theoretical B-CONPRI +models E-CONPRI +to O +predict O +compressive O +modulus O +and O +strength S-PRO +. O + + +Compressive B-CHAR +tests E-CHAR +and O +μ-CT O +to O +assess O +mechanical B-CONPRI +properties E-CONPRI +and O +defects S-CONPRI +. O + + +A O +finite B-CONPRI +element E-CONPRI +modeling O +method O +based O +on O +inherent O +manufacturing S-MANP +defects S-CONPRI +. O + + +A O +comparison O +of O +experimental S-CONPRI +and O +theoretical S-CONPRI +results O +rendered O +minimal O +deviation O +. O + + +The O +development O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +exhibits O +potential O +for O +the O +design S-FEAT +and O +manufacturing S-MANP +of O +complex O +lattice B-FEAT +structures E-FEAT +. O + + +Herein O +, O +a O +novel O +design S-FEAT +strategy O +is O +proposed O +for O +the O +lattice B-FEAT +unit E-FEAT +cell S-APPL +configurations O +, O +including O +triangular O +prism O +( O +T O +) O +, O +quadrangular O +prism O +( O +Q O +) O +and O +hexagonal S-FEAT +prism O +( O +H O +) O +, O +by O +considering O +the O +tight O +spatial O +arrangement O +and O +manufacturing B-CONPRI +constraints E-CONPRI +. O + + +Moreover O +, O +the O +influence O +of O +altering O +the O +degree O +of O +freedom O +of O +nodes O +, O +caused O +by O +additional O +struts S-MACEQ +, O +on O +mechanical S-APPL +performance O +and O +energy B-CHAR +absorption I-CHAR +capacity E-CHAR +is O +systematically O +investigated O +by O +theoretical S-CONPRI +modeling S-ENAT +, O +experimental S-CONPRI +characterization O +and O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +. O + + +A O +series O +of O +lattice B-FEAT +core E-FEAT +sandwich O +panels O +is O +designed S-FEAT +and O +manufactured S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +. O + + +X-ray B-CHAR +micro-computed I-CHAR +tomography E-CHAR +( O +μ-CT O +) O +is O +carried O +out O +to O +obtain O +the O +realistic O +geometrical O +information O +. O + + +Quasi-static S-CONPRI +uniaxial O +compressive B-CHAR +tests E-CHAR +are O +performed O +to O +investigate O +the O +failure B-PRO +mechanism E-PRO +and O +mechanical S-APPL +performance O +. O + + +The O +results O +reveal O +that O +the O +joint S-CONPRI +connectivity O +of O +the O +unit B-CONPRI +cell E-CONPRI +increased O +with O +the O +increase O +of O +the O +number O +of O +the O +struts S-MACEQ +, O +resulting O +in O +superior O +compressive O +modulus O +and O +ultimate B-PRO +strength E-PRO +. O + + +The O +main O +deformation S-CONPRI +mode O +of O +cells S-APPL +is O +gradually O +changed O +from O +bending-dominated O +to O +stretch-dominated O +with O +the O +increase O +of O +the O +joint S-CONPRI +connectivity O +. O + + +The O +proposed O +design S-FEAT +ensures O +the O +performance B-CONPRI +consistency E-CONPRI +of O +the O +manufactured S-CONPRI +struts O +and O +facilitates O +the O +theoretical B-CONPRI +predictions E-CONPRI +and O +analysis O +. O + + +Furthermore O +, O +the O +specific B-CONPRI +energy I-CONPRI +absorption E-CONPRI +of O +the O +structure S-CONPRI +also O +increased O +with O +the O +increase O +of O +joint S-CONPRI +connectivity O +. O + + +In O +the O +case O +of O +unit B-CONPRI +cells E-CONPRI +with O +different O +configurations O +, O +T O +series O +rendered O +superior O +specific B-PRO +strength E-PRO +and O +specific B-CONPRI +energy I-CONPRI +absorption E-CONPRI +, O +whereas O +Q O +series O +exhibited O +excellent O +specific B-PRO +stiffness E-PRO +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +rapidly O +moving O +from O +research S-CONPRI +to O +commercial O +applications O +due O +to O +its O +ability O +to O +produce O +geometric O +features O +difficult O +or O +impossible O +to O +generate O +by O +conventional B-MANP +machining E-MANP +. O + + +Fielded O +components S-MACEQ +need O +to O +endure O +fatigue S-PRO +loadings O +over O +long O +operational O +lifetimes O +. O + + +This O +work O +evaluates O +the O +ability O +of O +shot O +and O +laser B-MANP +peening E-MANP +to O +enhance O +the O +fatigue S-PRO +lifetime O +and O +strength S-PRO +of O +AM B-MACEQ +parts E-MACEQ +. O + + +As S-MATE +previously O +shown O +, O +peening S-MANP +processes O +induce O +beneficial O +microstructure S-CONPRI +and O +residual B-PRO +stress E-PRO +enhancement O +; O +this O +work O +takes O +a O +step S-CONPRI +to O +demonstrate O +the O +fatigue S-PRO +enhancement O +of O +peening S-MANP +including O +for O +the O +case O +of O +geometric O +stress S-PRO +risers S-MACEQ +as S-MATE +expected O +for O +fielded O +AM S-MANP +components O +. O + + +We O +present O +AM S-MANP +sample O +fatigue S-PRO +results O +with O +and O +without O +a O +stress S-PRO +riser S-MACEQ +using O +untreated O +baseline O +samples S-CONPRI +and O +shot O +and O +laser B-MANP +peening E-MANP +surface O +treatments O +. O + + +Laser B-MANP +peening E-MANP +is O +clearly O +shown O +to O +provide O +superior O +fatigue B-PRO +life E-PRO +and O +strength S-PRO +. O + + +We O +also O +investigated O +the O +ability O +of O +analysis O +to O +select O +laser B-MANP +peening E-MANP +parameters O +and O +coverage O +that O +can O +shape O +and/or O +correctively O +reshape O +AM S-MANP +components O +to O +a O +high O +degree O +of O +precision S-CHAR +. O + + +We O +demonstrated O +this O +potential O +by O +shaping S-MANP +and O +shape O +correction O +using O +our O +finite B-CONPRI +element E-CONPRI +based O +predictive O +modeling S-ENAT +and O +highly O +controlled O +laser B-MANP +peening E-MANP +. O + + +The O +present O +work O +addressed O +the O +challenges O +of O +identifying O +applicable O +Non-Destructive B-CHAR +Testing E-CHAR +( O +NDT S-CONPRI +) O +techniques O +suitable O +for O +inspection S-CHAR +and O +materials S-CONPRI +characterization O +techniques O +for O +Wire B-MANP +and I-MANP +Arc I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +parts O +. O + + +With O +the O +view O +of O +transferring O +WAAM S-MANP +to O +the O +industry S-APPL +and O +qualifying O +the O +manufacturing B-MANP +process E-MANP +for O +applications O +such O +as S-MATE +structural O +components S-MACEQ +, O +the O +quality S-CONPRI +of O +the O +produced O +parts O +needs O +to O +be S-MATE +assured O +. O + + +Thus O +, O +the O +main O +objective O +of O +this O +paper O +is O +to O +review O +the O +main O +NDT S-CONPRI +techniques O +and O +assess O +the O +capability O +of O +detecting O +WAAM S-MANP +defects S-CONPRI +, O +for O +inspection S-CHAR +either O +in O +a O +monitoring O +, O +in-process O +or O +post-process S-CONPRI +scenario O +. O + + +Radiography S-ENAT +and O +ultrasonic O +testing S-CHAR +were O +experimentally O +tested O +on O +reference O +specimens O +in O +order O +to O +compare O +the O +techniques O +capabilities O +. O + + +Metallographic O +, O +hardness S-PRO +and O +electrical B-PRO +conductivity E-PRO +analysis O +were O +also O +applied O +to O +the O +same O +specimens O +for O +material S-MATE +characterization O +. O + + +Experimental S-CONPRI +outcomes O +prove O +that O +typical O +WAAM S-MANP +defects S-CONPRI +can O +be S-MATE +detected O +by O +the O +referred O +techniques O +. O + + +The O +electrical B-PRO +conductivity E-PRO +measurement O +may O +complement O +or O +substitute O +some O +destructive O +methods O +used O +in O +AM S-MANP +processing O +. O + + +Compressive O +creep S-PRO +properties O +of O +AlSi10Mg S-MATE +parts O +produced O +by O +additive B-MANP +manufacturing E-MANP +selective O +laser S-ENAT +melting O +( O +AM-SLM O +) O +were O +studied O +using O +a O +spark B-MANP +plasma I-MANP +sintering E-MANP +( O +SPS S-MANP +) O +apparatus O +, O +capable O +of O +performing O +uniaxial O +compressive O +creep B-CHAR +tests E-CHAR +. O + + +Stress S-PRO +relief-treated O +specimens O +were O +tested O +under O +an O +applied O +stress S-PRO +of O +100–130 O +MPa S-CONPRI +in O +the O +175–225 O +°C O +temperature B-PARA +range E-PARA +. O + + +The O +creep S-PRO +parameters O +( O +i.e. O +, O +stress S-PRO +exponent O +n S-MATE +and O +apparent O +activation O +energy O +Q O +) O +, O +were O +empirically O +determined O +. O + + +The O +experimental S-CONPRI +results O +, O +together O +with O +microstructural S-CONPRI +examination O +of O +specimens O +, O +indicate O +that O +plastic B-PRO +deformation E-PRO +was O +controlled O +by O +dislocation S-CONPRI +activity O +. O + + +Furthermore O +, O +it O +is O +suggested O +that O +the O +annihilation O +process S-CONPRI +of O +dislocations S-CONPRI +during O +creep S-PRO +was O +enhanced O +by O +the O +electric O +current O +. O + + +This O +experimental S-CONPRI +study O +investigates S-CONPRI +the O +combined O +effect O +of O +the O +three O +primary O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +build B-PARA +orientations E-PARA +( O +0° O +, O +45° O +, O +and O +90° O +) O +and O +an O +extensive O +array O +of O +heat B-MANP +treatment E-MANP +plans O +on O +the O +plastic S-MATE +anisotropy S-PRO +of O +maraging B-MATE +steel E-MATE +300 O +( O +MS1 O +) O +fabricated S-CONPRI +on O +the O +EOSINT O +M280 O +Direct B-MANP +Metal I-MANP +Laser I-MANP +Sintering E-MANP +( O +DMLS S-MANP +) O +system O +. O + + +The O +alloy S-MATE +'s O +microstructure S-CONPRI +, O +hardness S-PRO +, O +tensile B-PRO +properties E-PRO +and O +plastic S-MATE +strain O +behaviour O +have O +been O +examined O +for O +various O +strengthening S-MANP +heat-treatment O +plans O +to O +assess O +the O +influence O +of O +the O +time O +and O +temperature S-PARA +combinations O +on O +plastic S-MATE +anisotropy S-PRO +and O +mechanical B-CONPRI +properties E-CONPRI +( O +e.g O +. O + + +strength S-PRO +, O +ductility S-PRO +) O +. O + + +A O +comprehensive O +visual O +representation O +of O +the O +material S-MATE +'s O +overall O +mechanical B-CONPRI +properties E-CONPRI +, O +for O +all O +three O +AM S-MANP +build O +orientations S-CONPRI +, O +against O +the O +various O +heat B-MANP +treatment E-MANP +plans O +is O +offered O +through O +time O +– O +temperature S-PARA +contour S-FEAT +maps O +. O + + +Considerable O +plastic S-MATE +anisotropy S-PRO +has O +been O +confirmed O +in O +the O +as-built O +condition O +, O +which O +can O +be S-MATE +reduced O +by O +aging O +heat-treatment O +, O +as S-MATE +verified O +in O +this O +study O +. O + + +However O +, O +it O +has O +identified O +that O +a O +degree O +of O +transverse O +strain B-PRO +anisotropy E-PRO +is O +likely O +to O +remain O +due O +to O +the O +AM S-MANP +alloy S-MATE +'s O +fabrication S-MANP +history O +, O +a O +finding O +that O +has O +not O +been O +previously O +reported O +in O +the O +literature O +. O + + +Moreover O +, O +the O +heat B-MANP +treatment E-MANP +plan O +( O +6h O +at O +490 O +°C O +) O +recommended O +by O +the O +DMLS S-MANP +system O +manufacturer S-CONPRI +has O +been O +found O +not O +to O +be S-MATE +the O +optimal O +in O +terms O +of O +achieving O +high O +strength S-PRO +, O +hardness S-PRO +, O +ductility S-PRO +and O +low O +anisotropy S-PRO +for O +the O +MS1 O +material S-MATE +. O + + +With O +the O +use O +of O +the O +comprehensive O +experimental B-CONPRI +data E-CONPRI +collected O +and O +analysed O +in O +this O +study O +, O +and O +presented O +in O +the O +constructed O +contour S-FEAT +maps O +, O +the O +alloy S-MATE +'s O +heat B-MANP +treatment E-MANP +parameters O +( O +time O +, O +temperature S-PARA +) O +can O +be S-MATE +tailored O +to O +meet O +the O +desired O +strength/ductility/anisotropy O +design S-FEAT +requirements O +, O +either O +for O +research S-CONPRI +or O +part O +production S-MANP +purposes O +. O + + +We O +have O +investigated O +the O +relationship O +between O +structure S-CONPRI +and O +thermal B-PRO +conductivity E-PRO +in O +additively B-MANP +manufactured E-MANP +interpenetrating O +A356/316L O +composites S-MATE +. O + + +We O +used O +X-ray S-CHAR +microcomputed O +tomography O +to O +characterize O +the O +pore S-PRO +structure O +in O +as-fabricated O +composites S-MATE +, O +finding O +microporosity S-PRO +in O +both O +constituents O +as S-MATE +well O +as S-MATE +a O +50 O +μm O +thick O +layer S-PARA +of O +interfacial O +porosity S-PRO +separating O +the O +constituents O +. O + + +We O +measured O +the O +thermal B-PRO +conductivity E-PRO +of O +a O +43 O +vol O +% O +316L O +composite S-MATE +to O +be S-MATE +53 O +Wm−1K−1 O +, O +which O +is O +significantly O +less O +than O +that O +predicted S-CONPRI +by O +a O +simple S-MANP +rule-of-mixtures O +approximation O +, O +presumably O +because O +of O +the O +residual S-CONPRI +porosity S-PRO +. O + + +Motivated O +by O +these O +experimental S-CONPRI +results O +we O +used O +periodic O +homogenization S-MANP +theory O +to O +determine O +the O +combined O +effects O +of O +porosity S-PRO +and O +unit B-CONPRI +cell E-CONPRI +structure S-CONPRI +on O +the O +effective B-PARA +thermal I-PARA +conductivity E-PARA +. O + + +This O +analysis O +showed O +that O +in O +fully B-PARA +dense E-PARA +composites S-MATE +, O +the O +topology S-CONPRI +of O +the O +constituents O +has O +a O +weak O +effect O +on O +the O +thermal B-PRO +conductivity E-PRO +, O +whereas O +in O +composites S-MATE +with O +interfacial O +porosity S-PRO +, O +the O +size O +and O +structure S-CONPRI +of O +the O +unit B-CONPRI +cell E-CONPRI +strongly O +influence O +the O +thermal B-PRO +conductivity E-PRO +. O + + +We O +also O +found O +that O +an O +approximation O +formula O +of O +the O +strong O +contrast O +expansion O +method O +gives O +excellent O +estimates O +of O +the O +effective B-PARA +thermal I-PARA +conductivity E-PARA +of O +these O +composites S-MATE +, O +providing O +a O +powerful O +tool S-MACEQ +for O +designing O +functionally B-CONPRI +graded E-CONPRI +composites S-MATE +and O +for O +identifying O +mesostructures O +with O +optimal O +thermal B-PRO +conductivity E-PRO +values O +. O + + +In O +this O +work O +, O +the O +performance S-CONPRI +of O +a O +focus O +variation S-CONPRI +instrument O +for O +measurement S-CHAR +of O +areal O +topography S-CHAR +of O +metal S-MATE +additive S-MATE +surfaces O +was O +investigated O +. O + + +Samples S-CONPRI +were O +produced O +using O +both O +laser S-ENAT +and O +electron B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +processes O +with O +some O +of O +the O +most O +common O +additive S-MATE +materials O +: O +Al-Si-10Mg O +, O +Inconel B-MATE +718 E-MATE +and O +Ti-6Al-4V S-MATE +. O + + +Surfaces S-CONPRI +parallel O +and O +orthogonal O +to O +the O +build B-PARA +direction E-PARA +were O +investigated O +. O + + +Measurement S-CHAR +performance O +was O +qualified O +by O +visually O +inspecting O +the O +topographic O +models O +obtained O +from O +measurement S-CHAR +and O +quantified O +by O +computing O +the O +number O +of O +non-measured O +data S-CONPRI +points O +, O +by O +estimating O +local O +repeatability B-CONPRI +error E-CONPRI +in O +topography S-CHAR +height O +determination O +and O +by O +computing O +the O +value O +of O +the O +areal O +field O +texture S-FEAT +parameter S-CONPRI +Sa O +. O + + +Variations S-CONPRI +captured O +through O +such O +indicators O +were O +investigated O +as S-MATE +focus O +variation-specific O +measurement S-CHAR +control O +parameters S-CONPRI +were O +varied O +. O + + +Changes O +in O +magnification S-CONPRI +, O +illumination O +type O +, O +vertical S-CONPRI +resolution S-PARA +and O +lateral O +resolution S-PARA +were O +investigated O +. O + + +The O +experimental S-CONPRI +campaign O +was O +created O +through O +full O +factorial B-CONPRI +design E-CONPRI +of O +experiments O +, O +and O +regression B-CONPRI +models E-CONPRI +were O +used O +to O +link O +the O +selected O +measurement S-CHAR +process O +control O +parameters S-CONPRI +to O +the O +measured O +performance S-CONPRI +indicators O +. O + + +The O +results O +indicate O +that O +focus O +variation S-CONPRI +microscopy S-CHAR +measurement S-CHAR +of O +metal S-MATE +additive S-MATE +surfaces O +is O +robust O +to O +changes O +of O +the O +measurement S-CHAR +control O +parameters S-CONPRI +when O +the O +Sa O +texture S-FEAT +parameter S-CONPRI +is O +considered O +, O +with O +variations S-CONPRI +confined O +to O +sub-micrometre O +scales O +and O +within O +5 O +% O +of O +the O +average S-CONPRI +parameter O +value O +for O +the O +same O +surface S-CONPRI +and O +objective O +. O + + +The O +number O +of O +non-measured O +points O +and O +the O +local O +repeatability B-CONPRI +error E-CONPRI +were O +more O +affected O +by O +the O +choice O +of O +measurement S-CHAR +control O +parameters S-CONPRI +. O + + +However O +, O +such O +changes O +could O +be S-MATE +predicted O +by O +the O +regression B-CONPRI +models E-CONPRI +, O +and O +proved O +consistent O +once O +material S-MATE +, O +type O +of O +additive S-MATE +process O +and O +orientation S-CONPRI +of O +the O +measured O +surface S-CONPRI +are O +set S-APPL +. O + + +Hot B-MANP +Isostatic I-MANP +Pressing E-MANP +( O +HIP S-MANP +) O +is O +a O +technique O +of O +applying O +high O +pressures S-CONPRI +through O +a O +fluid S-MATE +medium O +at O +high O +temperatures S-PARA +to O +enclosed O +powders S-MATE +, O +castings O +and O +pre-sintered S-PRO +metal S-MATE +parts O +to O +eliminate O +porosity S-PRO +. O + + +Due O +to O +uniform O +volumetric O +shrinkage S-CONPRI +expected O +from O +this O +process S-CONPRI +, O +it O +can O +be S-MATE +a O +useful O +post-processing S-CONPRI +technique O +for O +complex-geometry O +parts O +fabricated S-CONPRI +using O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +techniques O +. O + + +In O +order O +for O +the O +technique O +to O +work O +effectively O +, O +parts O +are O +typically O +required O +to O +have O +a O +minimum O +density S-PRO +of O +92 O +% O +, O +where O +surface S-CONPRI +porosity S-PRO +is O +closed O +. O + + +While O +HIP S-MANP +has O +been O +used O +in O +conjunction O +with O +powder B-MANP +bed I-MANP +fusion I-MANP +AM I-MANP +processes E-MANP +, O +its O +use O +for O +parts O +made O +using O +Binder B-MANP +Jetting E-MANP +( O +BJ S-MANP +) O +has O +not O +been O +investigated O +in O +detail O +due O +to O +the O +limitations O +of O +BJ S-MANP +in O +fabricating S-MANP +sufficiently O +high-density O +parts O +without O +infiltration S-CONPRI +. O + + +In O +this O +work O +, O +detailed O +investigations O +on O +the O +effect O +of O +HIP S-MANP +on O +BJ S-MANP +parts O +printed O +from O +three O +different O +powder S-MATE +configurations O +, O +which O +led S-APPL +to O +varying O +levels O +of O +porosity S-PRO +, O +are O +performed O +. O + + +The O +effects O +of O +HIP S-MANP +on O +the O +density S-PRO +, O +microstructure S-CONPRI +, O +tensile B-PRO +strength E-PRO +, O +and O +ductility S-PRO +of O +the O +resulting O +parts O +is O +reported O +. O + + +A O +maximum O +density S-PRO +of O +97.32 O +% O +was O +achieved O +by O +HIP S-MANP +of O +printed O +and O +sintered S-MANP +parts O +created O +via O +bimodal O +powders S-MATE +. O + + +Both O +the O +tensile B-PRO +strength E-PRO +and O +ductility S-PRO +were O +found O +to O +improve O +following O +HIP S-MANP +, O +which O +suggests O +that O +the O +reduction S-CONPRI +in O +porosity S-PRO +is O +predominant O +compared O +to O +the O +detrimental O +effects O +of O +grain S-CONPRI +coarsening O +. O + + +Control O +of O +the O +atomic B-PRO +structure E-PRO +, O +as S-MATE +measured O +by O +the O +extent O +of O +the O +embrittling O +B2 O +chemically O +ordered O +phase S-CONPRI +, O +is O +demonstrated O +in O +intermetallic B-MATE +alloys E-MATE +through O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +and O +characterized O +using O +high O +fidelity O +neutron B-CHAR +diffraction E-CHAR +. O + + +As S-MATE +a O +layer-by-layer S-CONPRI +rapid O +solidification B-MANP +process E-MANP +, O +AM S-MANP +was O +employed O +to O +suppress O +the O +extent O +of O +chemically O +ordered O +B2 O +phases O +in O +a O +soft O +ferromagnetic O +Fe-Co O +alloy S-MATE +, O +as S-MATE +a O +model B-CONPRI +material E-CONPRI +system O +of O +interest O +to O +electromagnetic O +applications O +. O + + +The O +extent O +of O +atomic O +ordering O +was O +found O +to O +be S-MATE +insensitive O +to O +the O +spatial O +location O +within O +specimens O +and O +suggests O +that O +the O +thermal O +conditions O +within O +only O +a O +few O +AM S-MANP +layers O +were O +most O +influential O +in O +controlling O +the O +microstructure S-CONPRI +, O +in O +agreement O +with O +the O +predictions S-CONPRI +from O +a O +thermal O +model S-CONPRI +for O +welding S-MANP +. O + + +Analysis O +of O +process B-CONPRI +parameter E-CONPRI +effects O +on O +ordering O +found O +that O +suppression O +of O +B2 O +phase S-CONPRI +was O +the O +result O +of O +an O +increased O +average S-CONPRI +cooling O +rate O +during O +processing O +. O + + +AM S-MANP +processing O +parameters S-CONPRI +, O +namely O +interlayer O +interval O +time O +and O +build S-PARA +velocity O +, O +were O +used O +to O +systematically O +control O +the O +relative O +fraction S-CONPRI +of O +ordered O +B2 O +phase S-CONPRI +in O +specimens O +from O +0.49 O +to O +0.72 O +. O + + +Hardness S-PRO +of O +AM S-MANP +specimens O +was O +more O +than O +150 O +% O +higher O +than O +conventionally O +processed S-CONPRI +bulk O +material S-MATE +. O + + +Implications O +for O +tailoring O +microstructures S-MATE +of O +intermetallic B-MATE +alloys E-MATE +are O +discussed O +. O + + +Wire–arc O +additive B-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +is O +an O +emergent O +method O +for O +the O +production S-MANP +and O +repair O +of O +high O +value O +components S-MACEQ +. O + + +Introduction O +of O +plastic S-MATE +strain O +by O +inter-pass O +rolling S-MANP +has O +been O +shown O +to O +produce O +grain B-CHAR +refinement E-CHAR +and O +improve O +mechanical B-CONPRI +properties E-CONPRI +, O +however O +suitable O +quality B-CONPRI +control E-CONPRI +techniques O +are O +required O +to O +demonstrate O +the O +refinement O +non-destructively O +. O + + +Specifically O +, O +undeformed O +and O +rolled O +specimens O +have O +been O +analysed O +by O +spatially O +resolved O +acoustic O +spectroscopy S-CONPRI +( O +SRAS O +) O +, O +allowing O +the O +efficacy O +of O +the O +rolling B-MANP +process E-MANP +to O +be S-MATE +observed O +in O +velocity O +maps O +. O + + +The O +work O +has O +three O +primary O +outcomes O +( O +i O +) O +differentiation O +of O +texture S-FEAT +due O +to O +rolling S-MANP +force S-CONPRI +, O +( O +ii O +) O +understanding O +the O +acoustic O +wave O +velocity O +response O +in O +the O +textured O +material S-MATE +including O +the O +underlying O +crystallography S-MANP +, O +( O +iii O +) O +extraction O +of O +an O +additional O +build S-PARA +metric O +such O +as S-MATE +layer O +height O +from O +acoustic O +maps O +and O +further O +useful O +material S-MATE +information O +such O +as S-MATE +minimum O +stiffness S-PRO +direction O +. O + + +Variations S-CONPRI +in O +acoustic O +response O +due O +to O +grain B-CHAR +refinement E-CHAR +and O +crystallographic O +orientation S-CONPRI +have O +been O +explored O +. O + + +This O +allowed O +prior-β O +grains S-CONPRI +to O +be S-MATE +resolved O +. O + + +A O +basic O +algorithm S-CONPRI +has O +been O +proposed O +for O +the O +automated B-ENAT +measurement E-ENAT +, O +which O +could O +be S-MATE +used O +for O +in-line O +closed B-CONPRI +loop I-CONPRI +control E-CONPRI +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +professionals O +often O +throw O +around O +the O +notion O +that O +complexity S-CONPRI +is O +free O +. O + + +Indeed O +, O +complexity S-CONPRI +is O +much O +easier O +and O +potentially O +cheaper O +to O +achieve O +through O +AM S-MANP +than O +through O +traditional B-MANP +manufacturing E-MANP +, O +but O +it O +is O +not O +free O +. O + + +Upon O +attempting O +to O +manufacture S-CONPRI +complex O +designs S-FEAT +, O +it O +is O +quickly O +found O +that O +certain O +features O +, O +or O +topologies S-CONPRI +, O +are O +more O +manufacturable S-CONPRI +than O +others O +, O +with O +sacrificial O +support B-MATE +material E-MATE +required O +for O +many O +complex O +designs S-FEAT +. O + + +This O +will O +significantly O +increase O +machining S-MANP +costs O +. O + + +Topology B-FEAT +Optimization E-FEAT +( O +TO O +) O +is O +a O +freeform S-CONPRI +computational O +design S-FEAT +methodology O +which O +is O +ideal O +for O +designing O +lightweight B-MACEQ +structures E-MACEQ +through O +a O +combination O +of O +modeling S-ENAT +and O +rigorous O +optimization S-CONPRI +. O + + +While O +AM S-MANP +can O +realize O +many O +complex O +topologies S-CONPRI +, O +there O +still O +remain O +AM S-MANP +manufacturing O +limitations O +( O +such O +as S-MATE +overhangs O +) O +, O +which O +require O +customized O +TO O +design S-FEAT +algorithms S-CONPRI +beyond O +freeform S-CONPRI +TO O +. O + + +In O +this O +work O +, O +a O +projection-based O +TO O +methodology S-CONPRI +is O +presented O +to O +design S-FEAT +for O +3D S-CONPRI +self-supporting O +structures O +– O +i.e O +. O + + +structures O +that O +do O +not O +require O +sacrificial O +support B-MATE +material E-MATE +. O + + +The O +foundation O +of O +the O +presented O +methodology S-CONPRI +is O +a O +2D S-CONPRI +overhang O +projection O +framework S-CONPRI +. O + + +In O +addition O +to O +expanding O +the O +methodology S-CONPRI +to O +three O +dimensions S-FEAT +, O +the O +algorithm S-CONPRI +is O +drastically O +improved O +through O +( O +1 O +) O +adopting O +a O +new O +overhang S-PARA +mapping O +scheme O +which O +allows O +for O +exact O +specification S-PARA +of O +allowable O +overhang B-PARA +angle E-PARA +, O +and O +( O +2 O +) O +implementing O +an O +adjoint O +approach O +to O +sensitivity S-PARA +calculations O +to O +speed O +up O +calculation O +drastically O +and O +to O +allow O +for O +scalability O +. O + + +Using O +several O +examples O +, O +it O +is O +shown O +that O +the O +presented O +methodology S-CONPRI +generates O +self-supporting S-FEAT +structures O +( O +given O +a O +prescribed O +printable O +overhang B-PARA +angle E-PARA +) O +which O +are O +entirely O +manufacturable S-CONPRI +without O +any O +added O +sacrificial O +support B-MATE +material E-MATE +. O + + +Upon O +printing O +a O +couple O +topologies S-CONPRI +with O +mixed O +success O +, O +further O +customization O +of O +the O +algorithm S-CONPRI +is O +proposed O +for O +situations O +where O +multiple O +directional-dependent O +overhang B-PARA +angles E-PARA +are O +possible O +in O +a O +single O +AM S-MANP +system O +. O + + +An O +analytical O +process B-CONPRI +model E-CONPRI +for O +predicting O +the O +layer B-PARA +height E-PARA +and O +wall O +width O +from O +the O +process B-CONPRI +parameters E-CONPRI +was O +developed O +for O +wire B-MANP ++ I-MANP +arc I-MANP +additive I-MANP +manufacture E-MANP +of O +Ti-6Al-4V S-MATE +, O +which O +includes O +inter-pass O +temperature S-PARA +and O +material B-CONPRI +properties E-CONPRI +. O + + +Capillarity O +theory O +predicted S-CONPRI +that O +cylindrical S-CONPRI +deposits O +were O +produced O +where O +the O +wall O +width O +was O +less O +than O +12 O +mm S-MANP +( O +radius O +< O +6 O +mm S-MANP +) O +due O +to O +the O +large O +value O +of O +the O +surface B-PRO +tension E-PRO +. O + + +Power S-PARA +was O +predicted S-CONPRI +with O +an O +accuracy S-CHAR +of O +±20 O +% O +for O +a O +wide O +range S-PARA +of O +conditions O +for O +pulsed O +TIG S-MANP +and O +plasma B-CONPRI +deposition E-CONPRI +. O + + +Interesting O +differences O +in O +the O +power S-PARA +requirements O +were O +observed O +where O +a O +surface S-CONPRI +depression O +was O +produced O +with O +the O +plasma S-CONPRI +process O +due O +to O +differences O +in O +melting S-MANP +efficiency O +and/or O +convection O +effects O +. O + + +Finally O +, O +it O +was O +estimated O +the O +impact S-CONPRI +of O +controlling O +the O +workpiece S-CONPRI +temperature S-PARA +on O +the O +accuracy S-CHAR +of O +the O +deposit O +geometry S-CONPRI +. O + + +Processing O +of O +Si S-MATE +and O +hydroxyapatite S-MATE +reinforced O +Ti6Al4Vmatrix O +compositesusinglaser-based O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +from O +powder B-MATE +blends E-MATE +. O + + +Si S-MATE +addition O +helped O +form O +in B-CONPRI +situ E-CONPRI +reactive O +phases O +of O +titanium B-MATE +silicides E-MATE +and O +vanadium S-MATE +silicides S-MATE +Composites S-MATE +showed O +higher O +hardness S-PRO +, O +lower O +coefficient B-PRO +of I-PRO +friction E-PRO +and O +better O +wear B-PRO +resistance E-PRO +. O + + +Directed-energy O +deposition S-CONPRI +( O +DED S-MANP +) O +-based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +was O +explored O +for O +composite S-MATE +development O +using O +silicon S-MATE +( O +Si S-MATE +) O +and O +hydroxyapatite S-MATE +( O +HA O +) O +in O +Ti-6Al-4 B-MATE +V E-MATE +( O +Ti64 S-MATE +) O +matrix O +for O +articulating O +surfaces S-CONPRI +of O +load-bearing S-FEAT +implants S-APPL +. O + + +Specifically O +, O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENSTM O +) O +– O +a O +commercially O +available O +DED-based O +AM B-MANP +technique E-MANP +– O +was O +used O +to O +fabricate S-MANP +composites S-MATE +from O +premixed-feedstock O +powders S-MATE +. O + + +The O +AM S-MANP +’ O +d O +composites S-MATE +proved O +to O +not O +only O +improve O +upon O +Ti64 S-MATE +’ O +s S-MATE +mechanical B-CONPRI +properties E-CONPRI +but O +also O +produced O +an O +in-situ S-CONPRI +Si-based O +tribofilm O +during O +tribological S-CONPRI +testing S-CHAR +that O +minimized O +wear S-CONPRI +induced O +damage S-PRO +. O + + +Additionally O +, O +it O +was O +found O +that O +with O +the O +introduction O +of O +Si S-MATE +, O +titanium B-MATE +silicides E-MATE +and O +vanadium S-MATE +silicides S-MATE +were O +formed O +; O +allowing O +for O +114 O +% O +increased O +hardness S-PRO +, O +decreased O +coefficient B-PRO +of I-PRO +friction E-PRO +( O +COF O +) O +and O +a O +reduction S-CONPRI +of O +wear S-CONPRI +rate O +of O +38.1 O +% O +and O +70.8 O +% O +, O +respectively O +, O +for O +a O +10 O +wt. O +% O +Si S-MATE +presence O +. O + + +The O +produced O +composites S-MATE +also O +displayed O +a O +positive O +shift O +in O +open-circuit O +potential O +( O +OCP O +) O +during O +linear O +wear S-CONPRI +, O +along O +with O +a O +reduction S-CONPRI +in O +the O +change O +of O +OCP O +from O +idle O +to O +linear O +wear S-CONPRI +conditions O +. O + + +Additionally O +, O +contact S-APPL +resistance O +( O +CR S-MATE +) O +values O +increased O +with O +a O +maximum O +value O +of O +1500 O +ohms O +due O +to O +the O +formation O +of O +Si-based O +tribofilm O +on O +the O +wear S-CONPRI +surface S-CONPRI +. O + + +Such O +composite S-MATE +development O +approach O +using O +DED-based O +AM S-MANP +can O +open O +up O +the O +possibilities O +of O +innovating O +next-generation O +implants S-APPL +that O +are O +designed S-FEAT +and O +manufactured S-CONPRI +via O +multi-material S-CONPRI +AM S-MANP +. O + + +We O +investigate O +experimentally O +and O +numerically O +the O +influence O +of O +the O +processing O +conditions O +on O +the O +cross-section O +of O +a O +strand O +printed O +by O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +The O +parts O +manufactured S-CONPRI +by O +this O +method O +generally O +suffer O +from O +a O +poor O +surface B-FEAT +finish E-FEAT +and O +a O +low O +dimensional B-CHAR +accuracy E-CHAR +, O +coming O +from O +the O +lack O +of O +control O +over O +the O +shape O +of O +the O +printed O +strands O +. O + + +Using O +optical B-CHAR +microscopy E-CHAR +, O +we O +have O +measured O +the O +cross-sections S-CONPRI +of O +the O +extruded S-MANP +strands O +, O +for O +different O +layer B-PARA +heights E-PARA +and O +printing B-PARA +speeds E-PARA +. O + + +For O +the O +first O +time O +, O +we O +have O +compared O +the O +measurements O +of O +strands O +’ O +cross-sections S-CONPRI +to O +the O +numerical O +results O +of O +a O +three-dimensional S-CONPRI +computational B-CHAR +fluid I-CHAR +dynamics E-CHAR +model O +of O +the O +deposition S-CONPRI +flow O +. O + + +The O +proposed O +numerical O +model S-CONPRI +shows O +good O +agreement O +with O +the O +experimental S-CONPRI +results O +and O +is O +able O +to O +capture O +the O +changes O +of O +the O +strand O +morphology S-CONPRI +observed O +for O +the O +different O +processing O +conditions O +. O + + +The O +combination O +of O +additive B-MANP +manufacturing E-MANP +principles O +and O +electron B-CONPRI +beam E-CONPRI +( O +EB O +) O +technology S-CONPRI +allows O +complex O +metal S-MATE +parts O +, O +featuring O +excellent O +quality S-CONPRI +material S-MATE +, O +to O +be S-MATE +produced O +, O +whenever O +traditional O +methods O +are O +expensive O +or O +difficult O +to O +apply O +. O + + +Today O +, O +the O +optimization S-CONPRI +of O +process B-CONPRI +parameters E-CONPRI +, O +for O +a O +given O +metal B-MATE +powder E-MATE +, O +is O +generally O +attained O +through O +an O +empirical S-CONPRI +trial O +and O +error S-CONPRI +approach O +. O + + +Process B-ENAT +simulation E-ENAT +can O +be S-MATE +used O +as S-MATE +a O +tool S-MACEQ +for O +decision-making O +and O +process B-CONPRI +optimization E-CONPRI +, O +since O +a O +virtual O +analysis O +can O +help O +to O +facilitate O +the O +possibility O +of O +exploring O +“ O +what O +if O +” O +scenarios O +. O + + +In O +this O +work O +, O +a O +new O +type O +of O +modelling S-ENAT +has O +been O +introduced O +for O +energy O +source S-APPL +and O +powder B-MATE +material E-MATE +properties O +and O +it O +has O +been O +included O +in O +a O +thermal O +numerical O +model S-CONPRI +in O +order O +to O +improve O +the O +effectiveness S-CONPRI +and O +reliability S-CHAR +of O +Electon O +Beam S-MACEQ +Melting O +( O +EBM S-MANP +) O +FE S-MATE +simulation O +. O + + +Several O +specific O +subroutines O +have O +been O +developed O +to O +automatically O +calculate O +the O +powder S-MATE +properties O +as S-MATE +temperature O +functions O +, O +and O +to O +consider O +the O +position O +of O +the O +beam S-MACEQ +during O +scanning S-CONPRI +as S-MATE +well O +as S-MATE +the O +material S-MATE +state O +changes O +from O +powder S-MATE +to O +liquid O +in O +the O +melting S-MANP +phase O +and O +from O +liquid O +to O +solid O +during O +cooling S-MANP +. O + + +A O +comparison O +of O +the O +numerical O +results O +and O +experimental B-CONPRI +data E-CONPRI +taken O +from O +literature O +has O +shown O +a O +good O +forecasting O +capability O +. O + + +The O +average S-CONPRI +deviations O +of O +the O +simulation S-ENAT +from O +an O +experimental S-CONPRI +scan O +line O +width O +have O +been O +found O +to O +be S-MATE +below O +about O +15 O +% O +. O + + +ISO B-MANS +25178-2 E-MANS +surface O +texture S-FEAT +from O +X-ray B-CHAR +CT E-CHAR +, O +interlaboratory O +comparison O +, O +is O +presented O +. O + + +Less O +than O +0.5 O +% O +Sa O +areal O +roughness S-PRO +between O +metrology S-CONPRI +CT S-ENAT +and O +focus O +variation S-CONPRI +values O +. O + + +Artefact O +design S-FEAT +allows O +separation O +of O +surface S-CONPRI +determination O +and O +scaling O +errors S-CONPRI +. O + + +The O +study O +compared O +the O +results O +obtained O +for O +the O +extraction O +of O +areal O +surface B-FEAT +texture E-FEAT +data S-CONPRI +per O +ISO B-MANS +25178-2 E-MANS +from O +five O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +volume S-CONPRI +measurements O +from O +each O +of O +four O +laboratories S-CONPRI +. O + + +Two O +Ti6Al4V S-MATE +ELI O +( O +extra-low O +interstitial O +) O +components S-MACEQ +were O +included O +in O +each O +of O +the O +CT S-ENAT +acquisitions O +. O + + +The O +first O +component S-MACEQ +was O +an O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +cube S-CONPRI +manufactured O +using O +an O +Arcam O +Q10 O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +machine S-MACEQ +. O + + +Surface B-FEAT +texture E-FEAT +data S-CONPRI +was O +extracted S-CONPRI +from O +CT S-ENAT +scans O +of O +this O +part O +. O + + +The O +values O +of O +selected O +parameters S-CONPRI +per O +ISO B-MANS +25178-2 E-MANS +are O +reported O +, O +including O +Sa O +, O +the O +arithmetic B-CONPRI +mean E-CONPRI +height O +, O +for O +which O +the O +values O +from O +the O +Nikon O +MCT O +225 O +metrology S-CONPRI +CT S-ENAT +measurements O +were O +all O +within O +0.5 O +% O +of O +the O +mean O +reference O +focus O +variation S-CONPRI +measurement S-CHAR +. O + + +CT S-ENAT +resolution O +requirements O +are O +discussed O +. O + + +The O +second O +component S-MACEQ +was O +a O +machined S-MANP +dimensional O +test O +artefact O +designed S-FEAT +to O +facilitate O +independent O +analysis O +of O +CT S-ENAT +global O +voxel S-CONPRI +scaling O +errors S-CONPRI +and O +surface S-CONPRI +determination O +errors S-CONPRI +. O + + +The O +results O +of O +mathematical S-CONPRI +global O +scaling O +and O +surface S-CONPRI +determination O +correction O +of O +the O +dimensional O +artefact O +data S-CONPRI +is O +reported O +. O + + +The O +dimensional O +test O +artefact O +errors S-CONPRI +for O +the O +XT O +H O +225 O +commercial O +CT S-ENAT +for O +length O +, O +outside O +diameter S-CONPRI +and O +inside O +diameter S-CONPRI +reduced O +from O +-0.27 O +% O +, O +-0.83 O +% O +and O +-0.54 O +% O +respectively O +to O +less O +than O +0.02 O +% O +after O +performing O +mathematical S-CONPRI +correction O +. O + + +This O +work O +will O +assist O +the O +development O +of O +surface B-FEAT +texture E-FEAT +correction O +protocols S-CONPRI +, O +help O +define O +surface-from-CT O +measurement S-CHAR +envelope O +limits S-CONPRI +and O +provide O +valuable O +information O +for O +an O +expanded O +Stage O +2 O +interlaboratory O +comparison O +, O +which O +will O +include O +a O +more O +diverse O +range S-PARA +of O +CT S-ENAT +systems O +and O +technologies S-CONPRI +, O +further O +expanding O +the O +surface-from-CT O +knowledge O +base O +. O + + +Bimetallic O +structures O +belong O +to O +a O +class O +of O +multi-material B-FEAT +structures E-FEAT +, O +and O +they O +potentially O +offer O +unique O +solutions O +to O +many O +engineering S-APPL +problems O +. O + + +In O +this O +work O +, O +bimetallic O +structures O +of O +Inconel B-MATE +718 E-MATE +and O +Ti6Al4V S-MATE +( O +Ti64 S-MATE +) O +alloys S-MATE +were O +processed S-CONPRI +using O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS™ O +) O +. O + + +During O +LENS™ O +processing O +, O +three O +build B-CONPRI +strategies E-CONPRI +were O +attempted O +: O +direct O +deposition S-CONPRI +, O +compositional O +gradation O +and O +use O +of O +an O +intermediate O +bond O +layer S-PARA +. O + + +Inconel B-MATE +718 E-MATE +and O +Ti64 B-MATE +alloys E-MATE +exhibit O +thermal B-CONPRI +properties E-CONPRI +mismatch O +along O +with O +brittle S-PRO +intermetallic O +phase S-CONPRI +formation O +at O +the O +interface S-CONPRI +resulting O +in O +delamination S-CONPRI +. O + + +For O +a O +successful O +build S-PARA +, O +the O +use O +of O +a O +compositional O +bond O +layer S-PARA +( O +CBL O +) O +was O +employed O +, O +which O +was O +a O +mixture O +of O +a O +third O +material S-MATE +- O +Vanadium B-MATE +Carbide E-MATE +- O +with O +the O +parent O +alloys S-MATE +to O +form O +an O +intermediate O +layer S-PARA +used O +in O +bonding S-CONPRI +the O +two O +immiscible O +alloys S-MATE +. O + + +A O +crack-free O +bimetallic O +structure S-CONPRI +of O +Inconel B-MATE +718 E-MATE +and O +Ti64 S-MATE +was O +demonstrated O +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +energy B-CHAR +dispersive I-CHAR +spectroscopy E-CHAR +( O +EDS S-CHAR +) O +, O +X-ray B-CHAR +diffraction E-CHAR +and O +Vickers B-PRO +hardness E-PRO +were O +used O +to O +characterize O +these O +bimetallic O +structures O +. O + + +XRD S-CHAR +analysis O +indicated O +presence O +of O +Cr3C2 O +phases O +. O + + +CBL O +improved O +the O +bonding B-PRO +strength E-PRO +by O +avoiding O +formation O +of O +brittle S-PRO +intermetallic O +phases O +such O +as S-MATE +TiNi3 O +and O +Ti2Ni O +as S-MATE +well O +as S-MATE +reducing O +thermal B-PRO +stresses E-PRO +at O +the O +interface S-CONPRI +. O + + +Our O +results O +successfully O +demonstrate O +the O +formation O +of O +Inconel B-MATE +718 E-MATE +and O +Ti64 S-MATE +bimetallic O +structures O +using O +a O +laser-based O +commercially O +available O +additive B-MANP +manufacturing E-MANP +approach O +. O + + +Additive B-MANP +manufacturing E-MANP +, O +also O +known O +as S-MATE +3D B-MANP +printing E-MANP +, O +is O +a O +new O +technology S-CONPRI +that O +obliterates O +the O +geometrical B-FEAT +limits E-FEAT +of O +the O +produced O +workpieces O +and O +promises O +low O +running O +costs O +as S-MATE +compared O +to O +traditional B-MANP +manufacturing E-MANP +methods O +. O + + +Hence O +, O +additive B-MANP +manufacturing E-MANP +technology O +has O +high O +expectations O +in O +industry S-APPL +. O + + +Unfortunately O +, O +the O +lack O +of O +a O +proper O +quality S-CONPRI +monitoring O +prohibits O +the O +penetration S-CONPRI +of O +this O +technology S-CONPRI +into O +an O +extensive O +practice O +. O + + +This O +work O +investigates S-CONPRI +the O +feasibility S-CONPRI +of O +using O +acoustic B-CONPRI +emission E-CONPRI +for O +quality S-CONPRI +monitoring O +and O +combines O +a O +sensitive O +acoustic B-CONPRI +emission E-CONPRI +sensor O +with O +machine S-MACEQ +learning O +. O + + +The O +acoustic O +signals O +were O +recorded O +using O +a O +fiber S-MATE +Bragg O +grating O +sensor S-MACEQ +during O +the O +powder B-MANP +bed I-MANP +additive I-MANP +manufacturing E-MANP +process O +in O +a O +commercially O +available O +selective B-MANP +laser I-MANP +melting E-MANP +machine S-MACEQ +. O + + +The O +process B-CONPRI +parameters E-CONPRI +were O +intentionally O +tuned O +to O +invoke O +different O +processing O +regimes O +that O +lead S-MATE +to O +the O +formation O +of O +different O +types O +and O +concentrations O +of O +pores S-PRO +( O +1.42 O +± O +0.85 O +% O +, O +0.3 O +± O +0.18 O +% O +and O +0.07 O +± O +0.02 O +% O +) O +inside O +the O +workpiece S-CONPRI +. O + + +The O +classifier O +, O +based O +on O +spectral O +convolutional O +neural B-CONPRI +network E-CONPRI +, O +was O +trained O +to O +differentiate O +the O +acoustic O +features O +of O +dissimilar O +quality S-CONPRI +. O + + +In O +view O +of O +the O +narrow O +range S-PARA +of O +porosity S-PRO +, O +the O +results O +can O +be S-MATE +considered O +as S-MATE +promising O +and O +they O +showed O +the O +feasibility S-CONPRI +of O +the O +quality S-CONPRI +monitoring O +using O +acoustic B-CONPRI +emission E-CONPRI +with O +the O +sub-layer O +spatial O +resolution S-PARA +. O + + +An O +automated O +python O +script O +to O +slice S-CONPRI +a O +macro-scale O +part O +into O +micro-scale S-CONPRI +layers O +and O +assign O +boundary B-CONPRI +conditions E-CONPRI +steps O +for O +each O +layer S-PARA +is O +presented O +. O + + +Key O +parameter S-CONPRI +interdependencies O +of O +resolution S-PARA +, O +energy O +and O +time O +are O +investigated O +in O +a O +series O +of O +layer-scaling O +thermomechanical B-CONPRI +process E-CONPRI +models O +. O + + +Guidelines O +for O +simulation S-ENAT +the O +thermal O +and O +stress S-PRO +results O +of O +higher B-PARA +resolution E-PARA +by O +lower O +resolution S-PARA +for O +the O +LPBF S-MANP +modelling O +are O +proposed O +. O + + +A O +novel O +efficient O +method O +for O +simulating O +powder-solid O +heat B-CONPRI +conduction E-CONPRI +by O +interface S-CONPRI +surface O +convection O +is O +presented O +. O + + +The O +Laser B-CONPRI +Beam E-CONPRI +Powder O +Bed B-MANP +Fusion E-MANP +( O +PBF-LB O +) O +category O +of O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +currently O +receiving O +much O +attention O +for O +computational O +process S-CONPRI +modelling S-ENAT +. O + + +Major O +challenges O +exist O +in O +how O +to O +reconcile O +resolution S-PARA +, O +energy O +and O +time O +in O +a O +real O +build S-PARA +, O +with O +the O +practical O +limitations O +of O +resolution S-PARA +( O +layer B-PARA +height E-PARA +and O +mesh O +resolution S-PARA +) O +, O +energy O +( O +heat S-CONPRI +format O +and O +magnitude S-PARA +) O +and O +time O +( O +heating S-MANP +and O +cooling S-MANP +step O +times O +) O +in O +the O +computational O +space O +. O + + +A O +novel O +thermomechanical S-CONPRI +PBF-LB O +process B-CONPRI +model E-CONPRI +including O +an O +efficient O +powder-interface O +heat S-CONPRI +loss O +mechanism S-CONPRI +was O +developed O +. O + + +The O +effect O +of O +variations S-CONPRI +in O +layer B-PARA +height E-PARA +( O +layer S-PARA +scaling O +) O +, O +energy O +and O +time O +on O +the O +temperature S-PARA +and O +stress S-PRO +evolution S-CONPRI +was O +investigated O +. O + + +The O +influence O +of O +heating S-MANP +step O +time O +and O +cooling S-MANP +step O +time O +was O +characterised O +and O +the O +recommended O +ratio O +of O +element B-PARA +size E-PARA +to O +layer S-PARA +scaling O +was O +presented O +, O +based O +on O +a O +macroscale B-CONPRI +2D E-CONPRI +model O +. O + + +The O +layer S-PARA +scaling O +method O +was O +effective O +when O +scaling O +up O +to O +4 O +times O +the O +layer B-PARA +thickness E-PARA +and O +appropriately O +also O +scaling O +the O +cooling S-MANP +step O +time O +. O + + +This O +research S-CONPRI +provides O +guidelines O +and O +a O +framework S-CONPRI +for O +layer S-PARA +scaling O +for O +finite B-CHAR +element I-CHAR +modelling E-CHAR +of O +the O +PBF-LB O +process S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +rapidly O +growing O +technology S-CONPRI +that O +enables O +the O +fast O +production S-MANP +of O +complex O +and O +near-net-shaped O +( O +NNS O +) O +components S-MACEQ +. O + + +Among O +the O +many O +applicable O +AM S-MANP +methods O +( O +particularly O +powder B-MACEQ +bed E-MACEQ +technologies O +) O +, O +electron-beam O +melting S-MANP +( O +EBM S-MANP +) O +is O +gaining O +increased O +interest O +mainly O +in O +aerospace S-APPL +and O +medical B-APPL +industries E-APPL +, O +due O +to O +its O +inherent O +advantages O +for O +the O +printing O +of O +Ti-6Al-4V B-MATE +alloy E-MATE +. O + + +Although O +major O +strides O +have O +been O +made O +towards O +understanding O +the O +effect O +of O +hot O +isostatic O +pressure S-CONPRI +( O +HIP S-MANP +) O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +Ti-6Al-4V S-MATE +produced O +by O +AM S-MANP +, O +its O +effect O +on O +corrosion S-CONPRI +performance O +remains O +relatively O +unexplored O +. O + + +To O +date O +, O +the O +reported O +corrosion S-CONPRI +studies O +remain O +essentially O +limited O +to O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +, O +while O +the O +corrosion B-PRO +behavior E-PRO +of O +EBM S-MANP +Ti-6Al-4V O +and O +particularly O +HIPed O +EBM S-MANP +Ti-6Al-4V O +have O +not O +been O +fully O +realized O +. O + + +This O +paper O +provides O +a O +detailed O +analysis O +of O +this O +corrosion S-CONPRI +performance O +, O +including O +the O +stress-corrosion O +susceptibility S-PRO +of O +EBM S-MANP +Ti-6Al-4V O +in O +as-build O +condition O +and O +after O +HIP B-MANP +heat I-MANP +treatment E-MANP +. O + + +Microstructure S-CONPRI +and O +phase S-CONPRI +identifications O +were O +examined O +by O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +and O +X-ray B-CHAR +diffraction I-CHAR +analysis E-CHAR +. O + + +Corrosion S-CONPRI +performance O +was O +evaluated O +by O +electrochemical B-CHAR +measurements E-CHAR +, O +including O +open-circuit O +potential O +( O +OCP O +) O +, O +potentiodynamic B-CHAR +polarization E-CHAR +analysis O +and O +impedance B-CHAR +spectroscopy E-CHAR +( O +EIS S-CHAR +) O +, O +as S-MATE +well O +as S-MATE +stress-corrosion O +examination O +in O +terms O +of O +slow O +strain-rate O +testing S-CHAR +( O +SSRT S-CONPRI +) O +. O + + +All O +of O +the O +corrosion S-CONPRI +tests O +were O +carried O +out O +in O +a O +3.5 O +wt. O +% O +NaCl S-MATE +solution O +at O +ambient O +temperature S-PARA +. O + + +Owing O +to O +the O +natural O +excellent O +corrosion B-CONPRI +resistance E-CONPRI +of O +Ti-6Al-4V S-MATE +, O +the O +obtained O +results O +revealed O +that O +the O +HIP S-MANP +process O +has O +only O +a O +slight O +positive O +effect O +on O +the O +corrosion B-CONPRI +resistance E-CONPRI +of O +Ti-6Al-4V S-MATE +produced O +by O +EBM S-MANP +. O + + +This O +minor O +improvement O +may O +be S-MATE +related O +to O +the O +improved O +efficiency O +of O +the O +passivation S-CONPRI +layer S-PARA +that O +was O +attributed O +to O +the O +increased O +β-phase O +content O +and O +the O +reduction S-CONPRI +of O +α/β O +interfaces O +. O + + +In O +terms O +of O +stress S-PRO +corrosion S-CONPRI +sensitivity O +, O +the O +HIPed O +specimens O +exhibited O +extended O +time-to-failure O +( O +TTF O +) O +at O +the O +low O +strain B-CONPRI +rate E-CONPRI +at O +2.5 O +10-7 O +1/sec O +, O +where O +the O +effect O +of O +the O +corrosive S-PRO +environment O +was O +more O +dominant O +. O + + +We O +study O +linearity S-CONPRI +assumptions O +in O +the O +transient B-CONPRI +macroscale E-CONPRI +mechanical S-APPL +aspect O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process B-ENAT +simulation E-ENAT +. O + + +Linearity S-CONPRI +assumptions O +are O +often O +resorted O +to O +in O +combination O +with O +calibrated S-CONPRI +inelastic O +deformation S-CONPRI +components S-MACEQ +to O +arrive O +at O +computationally O +tractable O +yet O +reasonably O +accurate S-CHAR +AM O +process B-CONPRI +models E-CONPRI +. O + + +We O +point O +out O +that O +linearity S-CONPRI +assumptions O +permit O +the O +independent O +computation S-CONPRI +of O +the O +response O +increment O +in O +each O +step S-CONPRI +of O +the O +AM B-MANP +process E-MANP +, O +and O +the O +total O +mechanical B-CONPRI +response E-CONPRI +is O +the O +superposition O +of O +all O +the O +process-step O +increments O +. O + + +In O +effect O +, O +process-step O +increments O +are O +computed O +with O +respect O +to O +the O +stress-free O +reference O +configuration S-CONPRI +in O +each O +step S-CONPRI +. O + + +The O +implication O +is O +that O +the O +mechanical B-CONPRI +response E-CONPRI +increment O +in O +each O +linearised O +AM B-MANP +process E-MANP +step O +may O +be S-MATE +computed O +in O +parallel O +. O + + +geometric O +or O +material S-MATE +) O +is O +modelled O +. O + + +Distortions O +in O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +Laser B-MANP +Metal I-MANP +Deposition E-MANP +( O +LMD S-MANP +) O +occur O +in O +the O +newly-built O +component S-MACEQ +due O +to O +rapid O +heating S-MANP +and O +solidification S-CONPRI +and O +can O +lead S-MATE +to O +shape O +deviations O +and O +cracking S-CONPRI +. O + + +Digital B-CONPRI +Image I-CONPRI +Correlation E-CONPRI +( O +DIC S-CONPRI +) O +is O +applied O +together O +with O +optical S-CHAR +filters S-APPL +to O +measure O +in-situ S-CONPRI +distortions O +directly O +on O +a O +wall O +geometry S-CONPRI +produced O +with O +LMD S-MANP +. O + + +The O +wall O +shows O +cyclic O +expansion O +and O +shrinking O +with O +the O +edges O +bending S-MANP +inward O +and O +the O +top O +of O +the O +sample S-CONPRI +exhibiting O +a O +slight O +u‐shape O +as S-MATE +residual O +distortions O +. O + + +Subsequently O +, O +a O +structural O +Finite B-CONPRI +Element I-CONPRI +Analysis E-CONPRI +( O +FEA O +) O +of O +the O +experiment S-CONPRI +is O +established O +, O +calibrated S-CONPRI +against O +experimental S-CONPRI +temperature O +profiles S-FEAT +and O +used O +to O +predict O +the O +in-situ S-CONPRI +distortions O +of O +the O +sample S-CONPRI +. O + + +A O +comparison O +of O +the O +experimental S-CONPRI +and O +numerical O +results O +reveals O +a O +good O +agreement O +in O +length O +direction O +of O +the O +sample S-CONPRI +and O +quantitative S-CONPRI +deviations O +in O +height O +direction O +, O +which O +are O +attributed O +to O +the O +material S-MATE +model O +used O +. O + + +The O +suitability O +of O +the O +novel O +experimental S-CONPRI +approach O +for O +measurements O +on O +an O +AM S-MANP +sample O +is O +shown O +and O +the O +potential O +for O +the O +validated O +numerical O +model S-CONPRI +as S-MATE +a O +predictive O +tool S-MACEQ +to O +reduce O +trial-and-error S-CONPRI +and O +improve O +part O +quality S-CONPRI +is O +evaluated O +. O + + +In O +this O +paper O +we O +investigate O +the O +use O +of O +passive B-CONPRI +stabilization E-CONPRI +to O +support S-APPL +stereolithography S-MANP +( O +SLA S-MACEQ +) O +printing O +aboard O +a O +moving B-MACEQ +vessel E-MACEQ +at O +sea O +. O + + +3D B-MANP +printing E-MANP +is O +a O +useful O +technology S-CONPRI +onboard O +a O +seagoing S-APPL +vessel O +to O +support S-APPL +engineering B-CONPRI +development E-CONPRI +, O +shipboard B-CONPRI +maintenance E-CONPRI +, O +and O +other O +applications O +when O +land-based B-CONPRI +manufacturing E-CONPRI +resources O +are O +unavailable O +. O + + +SLA S-MACEQ +printed O +material S-MATE +is O +particularly O +suited O +for O +underwater B-APPL +applications E-APPL +requiring O +sealed B-MACEQ +housings E-MACEQ +, O +since O +SLA B-MACEQ +printers E-MACEQ +are O +capable O +of O +producing O +high-resolution S-PARA +models O +that O +are O +fully O +solid O +and O +impervious S-CONPRI +to O +water O +. O + + +Hydrostatic B-PARA +pressure E-PARA +can O +quickly O +compromise O +parts O +created O +using O +standard S-CONPRI +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +3D B-MANP +printing E-MANP +. O + + +However O +, O +the O +dynamic S-CONPRI +environment O +onboard O +a O +moving B-MACEQ +vessel E-MACEQ +could O +impact S-CONPRI +the O +ability O +of O +an O +SLA B-MACEQ +printer E-MACEQ +to O +selectively O +cure S-CONPRI +voxels O +in O +a O +liquid B-CONPRI +resin I-CONPRI +bath E-CONPRI +as S-MATE +it O +undergoes O +constant O +motion O +, O +and O +can O +cause O +spilling S-CONPRI +over O +the O +walls O +of O +the O +resin B-CONPRI +tank E-CONPRI +. O + + +Using O +passive B-MACEQ +stabilization I-MACEQ +platforms E-MACEQ +onboard O +moving O +research B-MACEQ +vessels E-MACEQ +, O +we O +successfully O +printed O +a O +number O +of O +parts O +with O +no O +discernable S-CONPRI +differences O +from O +those O +produced O +in O +a O +traditional O +land-based B-CONPRI +laboratory E-CONPRI +. O + + +As S-MATE +a O +practical O +demonstration O +of O +this O +capability O +, O +we O +printed O +at O +sea O +underwater B-MACEQ +pressure I-MACEQ +housings E-MACEQ +that O +remained O +sealed O +to O +200 O +m O +water B-CONPRI +depth E-CONPRI +with O +functional O +integrated B-MACEQ +internal I-MACEQ +electronics E-MACEQ +. O + + +No O +post-print B-MANP +machining E-MANP +was O +required O +to O +create O +the O +sealed B-MACEQ +housings E-MACEQ +. O + + +This O +work O +lays O +the O +foundation O +for O +lithographic B-MANP +3D I-MANP +printing E-MANP +in O +seagoing B-APPL +oceanographic E-APPL +and O +naval B-APPL +applications E-APPL +, O +and O +additionally O +presents O +an O +economical O +approach O +for O +producing O +custom O +waterproof S-CONPRI +pressure B-MACEQ +housings E-MACEQ +in O +the O +field O +. O + + +Direct O +printing O +of O +microstructures S-MATE +using O +material B-MANP +jetting E-MANP +based O +additive B-MANP +manufacturing E-MANP +( O +3D B-MANP +printing E-MANP +) O +onto O +PMMA O +substrates O +. O + + +Substrate S-MATE +surface O +free O +energy O +contributes O +to O +both O +microstructure S-CONPRI +resolution O +and O +adhesion S-PRO +. O + + +Surface B-MANP +modification E-MANP +is O +an O +effective O +mechanism S-CONPRI +to O +tailor O +build S-PARA +– O +substrate S-MATE +interactions O +. O + + +The O +ability O +to O +directly O +print S-MANP +3D S-CONPRI +microstructures O +across O +the O +surface S-CONPRI +of O +large O +dimension S-FEAT +substrates O +opens O +up O +numerous O +possibilities O +not O +feasible O +with O +conventional O +2D S-CONPRI +or O +2.5D O +printing O +or O +coating S-APPL +techniques O +. O + + +Demonstrated O +herein O +is O +a O +method O +to O +print S-MANP +3D S-CONPRI +microstructures O +onto O +clear O +poly O +( O +methyl O +methacrylate O +) O +( O +PMMA O +) O +plates O +using O +material B-MANP +jetting E-MANP +technologies O +. O + + +Contact S-APPL +angle O +and O +profilometry O +analysis O +indicated O +that O +the O +VeroCyan™ O +photopolymer S-MATE +had O +enhanced O +wetting O +of O +the O +PMMA O +surface S-CONPRI +leading O +to O +greater O +droplet S-CONPRI +spreading O +affecting O +the O +geometries S-CONPRI +printed O +compared O +to O +VeroCyan™ O +integrated O +models O +. O + + +The O +surface S-CONPRI +chemistry S-CONPRI +and O +wetting O +behaviour O +played O +a O +crucial O +role O +in O +influencing O +interfacial O +interactions O +with O +the O +VeroCyan™ O +photopolymer S-MATE +hence O +its O +adhesion S-PRO +to O +the O +PMMA O +surface S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +has O +facilitated O +fabrication S-MANP +of O +complex O +and O +patient-specific O +metallic S-MATE +meta-biomaterials O +that O +offer O +an O +unprecedented O +collection O +of O +mechanical S-APPL +, O +mass O +transport S-CHAR +, O +and O +biological O +properties S-CONPRI +as S-MATE +well O +as S-MATE +a O +fully O +interconnected O +porous S-PRO +structure O +. O + + +However O +, O +applying O +meta-biomaterials O +for O +addressing O +unmet O +clinical O +needs O +in O +orthopedic O +surgery S-APPL +requires O +additional O +surface S-CONPRI +functionalities O +that O +should O +be S-MATE +induced O +through O +tailor-made O +coatings S-APPL +. O + + +Here O +, O +we O +developed O +multi-functional O +layer-by-layer S-CONPRI +coatings S-APPL +to O +simultaneously O +prevent O +implant-associated O +infections O +and O +stimulate O +bone B-CONPRI +tissue I-CONPRI +regeneration E-CONPRI +. O + + +We O +applied O +multiple O +layers O +of O +gelatin- O +and O +chitosan-based O +coatings S-APPL +containing O +either O +bone S-BIOP +morphogenetic O +protein O +( O +BMP O +) O +-2 O +or O +vancomycin O +on O +the O +surface S-CONPRI +of O +selective B-MANP +laser I-MANP +melted E-MANP +porous S-PRO +structures O +made O +from O +commercial O +pure O +Titanium S-MATE +( O +CP O +Ti S-MATE +) O +and O +designed S-FEAT +using O +a O +triply B-CONPRI +periodic I-CONPRI +minimal I-CONPRI +surface E-CONPRI +( O +i.e. O +, O +sheet S-MATE +gyroid O +) O +. O + + +The O +additive B-MANP +manufacturing I-MANP +process E-MANP +resulted O +in O +a O +porous S-PRO +structure O +and O +met O +the O +the O +design S-FEAT +values O +comparatively O +. O + + +X-ray B-CHAR +photoelectron I-CHAR +spectroscopy E-CHAR +spectra O +confirmed O +the O +presence O +and O +composition S-CONPRI +of O +the O +coating S-APPL +layers O +. O + + +The O +osteogenic O +differentiation O +of O +mesenchymal B-MATE +stem I-MATE +cells E-MATE +was O +enhanced O +, O +as S-MATE +shown O +by O +two-fold O +increase O +in O +the O +alkaline O +phosphatase O +activity O +and O +up O +to O +four-fold O +increase O +in O +the O +mineralization O +of O +all O +experimental S-CONPRI +groups O +containing O +BMP-2 O +. O + + +Eight-week O +subcutaneous S-BIOP +implantation S-MANP +in O +vivo O +showed O +no O +signs O +of O +a O +foreign O +body O +response O +, O +while O +connective O +tissue O +ingrowth O +was O +promoted O +by O +the O +layer-by-layer S-CONPRI +coating S-APPL +. O + + +These O +results O +unequivocally O +confirm O +the O +superior O +multi-functional O +performance S-CONPRI +of O +the O +developed O +biomaterials S-MATE +. O + + +The O +feasibility S-CONPRI +of O +in B-CONPRI +situ E-CONPRI +quantitative O +multielemental O +analysis O +during O +additive B-MANP +manufacturing I-MANP +process E-MANP +has O +been O +demonstrated O +for O +the O +first O +time O +. O + + +The O +specially O +designed S-FEAT +laser O +induced O +breakdown O +spectroscopy S-CONPRI +( O +LIBS O +) O +instrument O +was O +equipped O +the O +laser B-MANP +cladding E-MANP +head O +installed O +at O +an O +industrial B-MACEQ +robot E-MACEQ +. O + + +Melt B-MATE +pool E-MATE +surface O +sampling S-CONPRI +by O +LIBS O +probe S-MACEQ +was O +demonstrated O +to O +be S-MATE +the O +only O +choice O +for O +quantitative S-CONPRI +elemental B-CHAR +analysis E-CHAR +. O + + +On-line O +LIBS O +quantitative S-CONPRI +analysis O +of O +carbon S-MATE +and O +tungsten S-MATE +has O +been O +demonstrated O +during O +the O +synthesis O +of O +wear S-CONPRI +resistant O +coatings S-APPL +. O + + +Online O +LIBS O +results O +were O +in O +good O +agreement O +with O +offline O +analysis O +by O +conventional O +techniques O +( O +EDX S-CHAR +, O +XRF O +and O +combustion O +infrared B-CHAR +absorption E-CHAR +method O +) O +. O + + +The O +feasibility S-CONPRI +of O +in B-CONPRI +situ E-CONPRI +quantitative O +multi-elemental O +analysis O +during O +the O +additive B-MANP +manufacturing I-MANP +process E-MANP +has O +been O +demonstrated O +for O +the O +first O +time O +using O +laser S-ENAT +induced O +breakdown O +spectroscopy S-CONPRI +( O +LIBS O +) O +. O + + +The O +coaxial O +laser B-MANP +cladding E-MANP +technique O +was O +utilized O +for O +the O +production S-MANP +of O +highly O +wear-resistant O +coatings S-APPL +( O +nickel B-MATE +alloy E-MATE +reinforced O +with O +tungsten B-MATE +carbide E-MATE +grains S-CONPRI +) O +. O + + +High-quality O +production S-MANP +as S-MATE +well O +as S-MATE +gradient O +composition S-CONPRI +coating S-APPL +synthesis O +required O +an O +online O +technique O +for O +quantitative S-CONPRI +elemental B-CHAR +analysis E-CHAR +. O + + +A O +low-weight O +, O +compact S-MANP +LIBS O +probe S-MACEQ +was O +designed S-FEAT +to O +equip O +the O +laser B-MANP +cladding E-MANP +head O +installed O +at O +an O +industrial B-MACEQ +robot E-MACEQ +. O + + +Hot O +solidified O +clad O +as S-MATE +well O +as S-MATE +a O +melt B-MATE +pool E-MATE +surface O +was O +sampled O +by O +the O +LIBS O +probe S-MACEQ +but O +meaningful O +analytical O +results O +were O +achieved O +only O +for O +the O +latter O +case O +due O +to O +non-uniform O +distribution S-CONPRI +of O +tungsten B-MATE +carbide E-MATE +grains S-CONPRI +in O +the O +upper O +surface S-CONPRI +layer S-PARA +. O + + +LIBS O +sampling S-CONPRI +inside O +the O +melt B-MATE +pool E-MATE +did O +not O +affect O +the O +clad O +properties S-CONPRI +according O +to O +optical B-CHAR +microscopy E-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +measurements O +. O + + +On-line O +LIBS O +quantitative S-CONPRI +analysis O +of O +key O +components S-MACEQ +( O +carbon S-MATE +and O +tungsten S-MATE +) O +was O +demonstrated O +during O +the O +synthesis O +of O +highly O +wear-resistant O +coatings S-APPL +and O +obtained O +results O +were O +in O +good O +agreement O +with O +offline O +analysis O +performed O +by O +electron O +energy B-CHAR +dispersive I-CHAR +X-ray I-CHAR +spectroscopy E-CHAR +, O +X-ray S-CHAR +fluorescence S-CHAR +spectroscopy O +, O +and O +the O +combustion O +infrared B-CHAR +absorption E-CHAR +method O +. O + + +In B-CONPRI +situ E-CONPRI +quantitative O +multielemental O +analysis O +by O +LIBS O +is O +a O +perspective O +control O +or/and O +feedback S-PARA +tool O +to O +improve O +quality S-CONPRI +of O +compositionally O +graded O +materials S-CONPRI +in O +additive B-MANP +manufacturing E-MANP +. O + + +Our O +objective O +herein O +is O +to O +investigate O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +to O +fabricate S-MANP +application-optimized O +machine-tools O +that O +perform O +comparably O +to O +commercially-available O +products O +. O + + +To O +demonstrate O +this O +technology S-CONPRI +, O +multi-layer O +Stellite™ O +( O +Co-Cr-W O +superalloy O +) O +structures O +were O +deposited O +on O +a O +stainless-steel O +substrate S-MATE +via O +directed B-MANP +energy I-MANP +deposition E-MANP +technique O +to O +be S-MATE +used O +as S-MATE +a O +tool S-MACEQ +for O +cutting S-MANP +applications O +requiring O +high-temperature O +strength S-PRO +and O +ductility S-PRO +, O +an O +area S-PARA +where O +conventional O +carbide S-MATE +and O +high-speed O +steel S-MATE +tools O +are O +challenged O +. O + + +The O +as-printed O +structures O +were O +free O +of O +large-scale O +defects S-CONPRI +and O +voids S-CONPRI +, O +and O +were O +further O +characterized O +and O +compared O +to O +commercial O +Blackalloy O +525 O +barstock O +( O +B525 O +) O +, O +a O +Co-Cr-W O +alloy S-MATE +tool O +of O +similar O +composition S-CONPRI +. O + + +The O +Stellite™ O +contained O +mostly O +Co-rich O +( O +α-phase O +) O +dendrites S-BIOP +, O +as S-MATE +well O +as S-MATE +inter-dendritic O +Cr7C3 O +and O +Cr23C6 O +phases O +. O + + +The O +B525 O +composition S-CONPRI +consisted O +of O +a O +range S-PARA +of O +lamellar-eutectic O +microstructure S-CONPRI +comprised O +of O +Co-phase O +with O +W6C O +reinforcement S-PARA +. O + + +During O +a O +turning S-MANP +operation O +of O +SS304L O +, O +the O +Stellite™ O +6 O +tool S-MACEQ +demonstrated O +consistent O +chip S-MATE +formation O +and O +more O +consistent O +rake-face O +and O +cratering O +wear S-CONPRI +in O +comparison O +to O +the O +B525 O +tool S-MACEQ +, O +indicating O +its O +adequacy O +for O +service O +in O +this O +application O +. O + + +Our O +results O +demonstrate O +for O +the O +first O +time O +that O +directed-energy-deposition O +can O +be S-MATE +utilized O +to O +fabricate S-MANP +advanced O +cutting B-APPL +tool E-APPL +concepts O +for O +job-specific O +applications O +. O + + +The O +influence O +of O +geometry S-CONPRI +and O +scan B-PARA +pattern E-PARA +on O +the O +microstructure B-CONPRI +evolution E-CONPRI +and O +magnetic O +performance S-CONPRI +of O +additively B-MANP +manufactured E-MANP +Fe-3Si O +components S-MACEQ +was O +investigated O +. O + + +To O +reduce O +eddy O +current O +losses O +, O +novel O +geometries S-CONPRI +were O +designed S-FEAT +and O +built O +and O +the O +microstructure S-CONPRI +and O +properties S-CONPRI +of O +these O +samples S-CONPRI +were O +characterized O +. O + + +The O +laser B-ENAT +scan E-ENAT +pattern O +was O +shown O +to O +strongly O +influence O +both O +the O +as-built O +grain B-CONPRI +structure E-CONPRI +and O +strength S-PRO +of O +the O +crystallographic O +texture S-FEAT +, O +resulting O +in O +measurable O +changes O +in O +the O +as-built O +magnetic O +performance S-CONPRI +. O + + +In O +thin O +wall O +samples S-CONPRI +, O +heat B-MANP +treatment E-MANP +resulted O +in O +an O +increase O +in O +the O +maximum O +relative O +magnetic O +permeability S-PRO +and O +decrease O +in O +power S-PARA +losses O +in O +most O +samples S-CONPRI +, O +consistent O +with O +grain B-CONPRI +growth E-CONPRI +. O + + +Compared O +to O +simple S-MANP +parallel O +plate O +construction S-APPL +and O +a O +mesh O +structure S-CONPRI +, O +a O +novel O +cross-section O +design S-FEAT +based O +on O +the O +Hilbert O +space O +filling O +curve O +was O +found O +to O +produce O +the O +lowest O +power S-PARA +losses O +. O + + +The O +mechanisms O +behind O +these O +results O +were O +explored O +using O +a O +combination O +of O +heat B-CONPRI +conduction E-CONPRI +and O +electromagnetic O +simulations S-ENAT +, O +providing O +a O +route O +for O +future O +component S-MACEQ +and O +process B-CONPRI +optimization E-CONPRI +. O + + +In O +this O +study O +, O +a O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +route O +of O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +was O +applied O +to O +fabricate S-MANP +carbon B-MATE +nanotubes E-MATE +( O +CNTs S-MATE +) O +reinforced S-CONPRI +Al-based O +nanocomposites O +with O +tailored O +microstructures S-MATE +and O +excellent O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +densification S-MANP +behavior O +, O +microstructure S-CONPRI +features O +and O +mechanical B-CONPRI +properties E-CONPRI +were O +investigated O +and O +the O +relationship O +between O +process S-CONPRI +and O +property S-CONPRI +was O +established O +. O + + +The O +results O +showed O +that O +the O +applied O +laser B-PARA +power E-PARA +and O +scan B-PARA +speed E-PARA +were O +the O +governing O +factors O +of O +the O +densification S-MANP +behavior O +of O +SLM-processed O +Al-based O +nanocomposites O +. O + + +SLM S-MANP +processing O +of O +0.5 O +wt. O +% O +CNTs/AlSi10Mg O +nanocomposite O +powder S-MATE +led S-APPL +to O +the O +formation O +of O +three O +typical O +microstructures S-MATE +including O +the O +primary O +Al9Si O +cellular O +dendrites S-BIOP +decorated O +with O +fibrous S-PRO +Si O +, O +the O +in B-CONPRI +situ E-CONPRI +Al4C3 O +covered O +on O +CNTs S-MATE +, O +and O +the O +precipitated O +Si S-MATE +inside O +the O +cellular B-CONPRI +grains E-CONPRI +. O + + +As S-MATE +the O +optimal O +SLM S-MANP +processing O +parameters S-CONPRI +of O +laser B-PARA +power E-PARA +of O +350 O +W O +and O +scan B-PARA +speed E-PARA +of O +2.0 O +m/s O +were O +applied O +, O +the O +fully B-PARA +dense E-PARA +SLM-processed O +CNTs/Al-based O +nanocomposites O +exhibited O +high O +microhardness S-CONPRI +of O +154.12 O +HV0.2 O +, O +tensile B-PRO +strength E-PRO +of O +420.8 O +MPa S-CONPRI +and O +elongation S-PRO +of O +8.87 O +% O +, O +due O +to O +the O +formation O +of O +high O +densification S-MANP +and O +ultrafine O +microstructure S-CONPRI +. O + + +The O +grain B-CHAR +refinement E-CHAR +effect O +, O +Orowan B-CONPRI +looping E-CONPRI +system O +and O +load O +transfer O +are O +considered O +as S-MATE +three O +strengthening B-CONPRI +mechanisms E-CONPRI +occurred O +simultaneously O +during O +tensile B-CHAR +tests E-CHAR +, O +leading O +to O +excellent O +mechanical B-CONPRI +properties E-CONPRI +of O +SLM-processed O +CNTs/Al-based O +nanocomposites O +. O + + +A O +skeleton O +sand S-MATE +mold S-MACEQ +which O +includes O +lattice-shell O +type O +, O +rib O +enforced O +type O +and O +air O +pockets O +structure S-CONPRI +was O +presented O +. O + + +These O +sand S-MATE +molds S-MACEQ +can O +save O +mold S-MACEQ +sand O +and O +control O +the O +time O +of O +casting S-MANP +. O + + +These O +sand S-MATE +molds S-MACEQ +make O +it O +possible O +to O +adjust O +the O +cooling S-MANP +and O +solidification S-CONPRI +conditions O +of O +castings O +. O + + +These O +sand S-MATE +molds S-MACEQ +can O +improve O +production S-MANP +efficiency O +, O +and O +reduce O +deformation S-CONPRI +, O +residual B-PRO +stress E-PRO +and O +defects S-CONPRI +of O +castings O +. O + + +The O +advance O +of O +additive B-MANP +manufacturing E-MANP +drives O +the O +design S-FEAT +of O +molds S-MACEQ +for O +castings O +. O + + +The O +shell S-MACEQ +forms O +the O +cavity O +for O +a O +casting S-MANP +and O +the O +surrounding O +ribs O +or O +lattices S-CONPRI +support O +and O +enforce O +the O +shell S-MACEQ +. O + + +This O +type O +of O +mold S-MACEQ +structure O +design S-FEAT +results O +in O +fast O +and O +uniform O +cooling S-MANP +of O +a O +casting S-MANP +, O +which O +can O +improve O +production S-MANP +efficiency O +and O +reduce O +the O +deformation S-CONPRI +and O +residual B-PRO +stress E-PRO +of O +a O +casting S-MANP +. O + + +In O +addition O +, O +it O +provides O +more O +space O +and O +flexibility S-PRO +to O +adjust O +the O +cooling S-MANP +conditions O +of O +interested O +locations O +of O +a O +casting S-MANP +. O + + +The O +thickness O +of O +the O +shell S-MACEQ +can O +be S-MATE +varied O +according O +to O +the O +local O +geometries S-CONPRI +of O +a O +casting S-MANP +. O + + +The O +support S-APPL +is O +designed S-FEAT +based O +on O +the O +hydrostatic B-PARA +pressure E-PARA +before O +solidification S-CONPRI +and O +the O +weight S-PARA +after O +solidification S-CONPRI +. O + + +An O +air O +pocket O +( O +hollow O +structure S-CONPRI +) O +in O +the O +shell S-MACEQ +was O +designed S-FEAT +for O +the O +riser S-MACEQ +to O +postpone O +its O +solidification S-CONPRI +and O +then O +facilitate O +shrinkage S-CONPRI +feeding O +. O + + +The O +experimental S-CONPRI +results O +revealed O +that O +the O +new O +design S-FEAT +of O +sand S-MATE +molds S-MACEQ +saved O +at O +least O +60 O +% O +sand S-MATE +and O +shortened O +the O +shakeout O +time O +by O +at O +least O +20 O +% O +. O + + +Local O +hollow O +structure S-CONPRI +prolonged O +its O +solidification B-MANP +process E-MANP +by O +approximately O +15 O +% O +. O + + +For O +the O +first O +time O +, O +a O +method O +of O +comparing O +quantitatively B-CHAR +measurement E-CHAR +apparatus O +for O +additive B-MANP +manufacture E-MANP +is O +defined O +. O + + +Novel O +instrumentation O +is O +subject O +to O +this O +analysis O +by O +way O +of O +case B-CONPRI +studies E-CONPRI +. O + + +Results O +allow O +researchers O +and O +industrial S-APPL +users O +alike O +to O +quickly O +assess O +the O +compatibility O +of O +an O +NDE O +technique O +with O +additive B-MANP +manufacturing I-MANP +processes E-MANP +. O + + +Cs O +and O +Ct S-ENAT +, O +the O +spatial O +and O +temporal O +capability O +, O +respectively O +, O +are O +shown O +to O +be S-MATE +useful O +analysis O +methods O +for O +integration O +feasibility S-CONPRI +efforts O +. O + + +Unlike O +more O +established O +subtractive S-MANP +or O +constant O +volume S-CONPRI +manufacturing B-MANP +technologies E-MANP +, O +additive B-MANP +manufacturing E-MANP +methods O +suffer O +from O +a O +lack O +of O +in-situ S-CONPRI +monitoring O +methodologies O +which O +can O +provide O +information O +relating O +to O +process B-CONPRI +performance E-CONPRI +and O +the O +formation O +of O +defects S-CONPRI +. O + + +In-process O +evaluation O +for O +additive B-MANP +manufacturing E-MANP +is O +becoming O +increasingly O +important O +in O +order O +to O +assure O +the O +integrity S-CONPRI +of O +parts O +produced O +in O +this O +way O +. O + + +This O +paper O +addresses O +the O +generic O +performance S-CONPRI +of O +inspection S-CHAR +methods O +suitable O +for O +additive B-MANP +manufacturing E-MANP +. O + + +Key O +process S-CONPRI +and O +measurement S-CHAR +parameters O +are O +explored O +and O +the O +impacts O +these O +have O +upon O +production S-MANP +rates O +are O +defined O +. O + + +A O +new O +method O +of O +benchmarking O +in-situ S-CONPRI +inspection O +instruments O +and O +characterising O +their O +suitability O +for O +additive B-MANP +manufacturing I-MANP +processes E-MANP +is O +presented O +to O +act O +as S-MATE +a O +design S-FEAT +tool O +to O +accommodate O +end O +user O +requirements O +. O + + +Two O +inspection S-CHAR +examples O +are O +presented O +: O +spatially O +resolved O +acoustic O +spectroscopy S-CONPRI +and O +optical S-CHAR +coherence O +tomography O +for O +scanning S-CONPRI +selective O +laser S-ENAT +melting O +and O +selective B-MANP +laser I-MANP +sintering E-MANP +parts O +, O +respectively O +. O + + +Observations O +made O +from O +the O +analyses O +presented O +show O +that O +the O +spatial O +capability O +arising O +from O +scanning B-CONPRI +parameters E-CONPRI +affects O +the O +temporal O +penalty O +and O +hence O +impact S-CONPRI +upon O +production S-MANP +rates O +. O + + +A O +case B-CONPRI +study E-CONPRI +, O +created O +from O +simulated O +data S-CONPRI +, O +has O +been O +used O +to O +outline O +the O +spatial O +performance S-CONPRI +of O +a O +generic O +nondestructive O +evaluation O +method O +and O +to O +show O +how O +a O +decrease O +in O +data S-CONPRI +capture O +resolution S-PARA +reduces O +the O +accuracy S-CHAR +of O +measurement S-CHAR +. O + + +While O +copper S-MATE +is O +a O +potent O +strengthener O +in O +titanium B-MATE +alloys E-MATE +, O +its O +use O +in O +commercial O +alloys S-MATE +has O +been O +severely O +restricted O +due O +to O +the O +strong O +tendency O +for O +segregation S-CONPRI +during O +solidification S-CONPRI +, O +leading O +to O +heterogeneous S-CONPRI +microstructures O +and O +what O +has O +often O +been O +referred O +to O +as S-MATE +the O +“ O +beta-fleck O +” O +problem O +. O + + +This O +problem O +can O +be S-MATE +largely O +obviated O +by O +using O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +for O +processing O +Ti-Cu O +alloys S-MATE +. O + + +This O +study O +focuses O +on O +AM S-MANP +of O +a O +binary S-CONPRI +Ti-4Cu O +and O +a O +ternary O +Ti-4Cu-4Al O +alloy S-MATE +using O +the O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS S-MANP +) O +process S-CONPRI +. O + + +The O +influence O +of O +post-deposition O +annealing B-MANP +treatments E-MANP +and O +the O +subsequent O +cooling B-PARA +rate E-PARA +on O +the O +microstructure S-CONPRI +and O +tensile B-PRO +properties E-PRO +of O +these O +alloys S-MATE +has O +been O +investigated O +in O +detail O +. O + + +The O +phase B-CONPRI +fraction E-CONPRI +of O +the O +eutectoid S-CONPRI +alpha O ++ O +Ti2Cu O +product O +is O +dependent O +on O +the O +cooling B-PARA +rate E-PARA +from O +above O +the O +beta O +transus O +temperature S-PARA +. O + + +Additionally O +, O +the O +Ti2Cu O +phase S-CONPRI +exhibited O +a O +far-from O +equilibrium B-CONPRI +composition E-CONPRI +in O +case O +of O +the O +water-quenched O +Ti-4Cu-4Al O +alloy S-MATE +. O + + +Both O +the O +yield B-PRO +stress E-PRO +( O +∼550−650 O +MPa S-CONPRI +) O +as S-MATE +well O +as S-MATE +the O +ductility S-PRO +( O +∼15–18 O +% O +) O +were O +also O +higher O +in O +case O +of O +the O +ternary B-MATE +alloy E-MATE +. O + + +The O +high O +strengths S-PRO +exhibited O +by O +the O +water-quenched O +samples S-CONPRI +of O +both O +alloys S-MATE +, O +while O +maintaining O +appreciable O +tensile B-PRO +ductility E-PRO +, O +could O +be S-MATE +attributed O +to O +clustering O +of O +Cu S-MATE +within O +the O +α O +laths O +, O +revealed O +by O +atom B-CHAR +probe I-CHAR +tomography E-CHAR +. O + + +Powder B-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +, O +such O +as S-MATE +electron O +beam S-MACEQ +melting O +( O +EBM S-MANP +) O +and O +selective B-MANP +laser I-MANP +melting E-MANP +, O +has O +attracted O +tremendous O +academic O +and O +industrial S-APPL +interests O +because O +of O +its O +capacity S-CONPRI +to O +fabricate S-MANP +components S-MACEQ +with O +greater O +complexity S-CONPRI +compared O +with O +traditional O +processes S-CONPRI +, O +without O +significantly O +increasing O +the O +cost O +. O + + +It O +provides O +significantly O +higher O +design B-CONPRI +freedom E-CONPRI +to O +the O +designers O +and O +can O +make O +the O +built O +components S-MACEQ +closer O +to O +the O +optimum O +design S-FEAT +in O +theory O +when O +compared O +with O +traditional O +processes S-CONPRI +. O + + +However O +, O +the O +mechanical S-APPL +performance O +of O +the O +new O +design S-FEAT +fabricated O +by O +AM S-MANP +has O +not O +been O +clarified O +yet O +. O + + +Here O +, O +we O +report O +the O +fabrication S-MANP +and O +tensile S-PRO +deformation S-CONPRI +behavior O +of O +the O +EBM-built O +lightweight S-CONPRI +car S-CHAR +suspension O +double O +wishbone O +for O +both O +conventional O +and O +optimized O +designs S-FEAT +. O + + +EBM S-MANP +process O +is O +an O +effective O +method O +to O +produce O +a O +highly-dense O +Ti-6Al-4V S-MATE +lightweight S-CONPRI +design S-FEAT +component S-MACEQ +with O +good O +reproducibility S-CONPRI +and O +fine O +α/β O +duplex O +microstructure S-CONPRI +. O + + +A O +poor O +mechanical S-APPL +performance O +in O +the O +optimized O +design S-FEAT +is O +observed O +, O +which O +results O +from O +the O +build S-PARA +thickness-dependent O +mechanical S-APPL +performance O +that O +is O +caused O +by O +both O +various O +microstructures S-MATE +and O +rough O +surfaces S-CONPRI +in O +the O +Ti-6Al-4V S-MATE +parts O +. O + + +Notably O +, O +the O +rough O +surface S-CONPRI +plays O +a O +dominant O +role O +in O +premature O +failure S-CONPRI +when O +the O +build S-PARA +thickness O +is O +below O +2 O +mm S-MANP +. O + + +Based O +on O +these O +findings O +, O +the O +degraded O +mechanical S-APPL +performance O +in O +the O +optimized O +design S-FEAT +is O +discussed O +. O + + +The O +experimental S-CONPRI +results O +and O +analyses O +provide O +a O +guideline O +for O +the O +design S-FEAT +of O +lightweight B-MACEQ +structures E-MACEQ +that O +are O +mainly O +comprised O +of O +thin O +walls O +and/or O +struts S-MACEQ +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +allows O +engineers O +to O +design S-FEAT +and O +manufacture S-CONPRI +complex O +weight S-PARA +saving O +lattice B-FEAT +structures E-FEAT +with O +relative O +ease O +. O + + +A O +non-destructive B-CHAR +testing E-CHAR +and O +evaluation O +method O +used O +to O +assess O +material B-CONPRI +properties E-CONPRI +and O +quality S-CONPRI +is O +the O +focus O +of O +this O +paper O +, O +namely O +acoustic O +resonance O +( O +AR S-ENAT +) O +testing S-CHAR +. O + + +For O +this O +research S-CONPRI +, O +AR S-ENAT +testing O +was O +conducted O +on O +weight S-PARA +saving O +lattice B-FEAT +structures E-FEAT +( O +fine O +and O +coarse O +) O +manufactured S-CONPRI +by O +powder B-MANP +bed I-MANP +fusion E-MANP +. O + + +The O +suitability O +of O +AR S-ENAT +testing O +was O +assessed O +through O +a O +combined O +approach O +of O +experimental S-CONPRI +testing O +and O +FE S-MATE +modelling O +. O + + +A O +sensitivity S-PARA +study O +was O +conducted O +on O +the O +FE S-MATE +model O +to O +quantify O +the O +influence O +of O +element S-MATE +coarseness O +on O +the O +resonant O +frequency O +prediction S-CONPRI +and O +this O +needs O +to O +be S-MATE +taken O +into O +account O +in O +the O +application O +and O +analysis O +of O +the O +technique O +. O + + +The O +AR S-ENAT +and O +FE S-MATE +modelling O +modulus B-PRO +of I-PRO +elasticity E-PRO +values O +were O +validated O +using O +specimens O +of O +known O +properties S-CONPRI +. O + + +There O +was O +fair O +agreement O +between O +the O +FE S-MATE +and O +compression B-CHAR +test E-CHAR +extracted O +values O +of O +effective O +modulus O +for O +the O +coarse O +lattice S-CONPRI +. O + + +For O +the O +fine O +lattice S-CONPRI +, O +there O +was O +agreement O +in O +the O +values O +of O +effective O +modulus O +extracted S-CONPRI +from O +AR S-ENAT +, O +3-point O +bend O +, O +and O +compression S-PRO +experimental O +tests O +carried O +out O +. O + + +It O +was O +found O +that O +loose O +powder S-MATE +fusing S-CONPRI +from O +AM S-MANP +resulted O +in O +the O +fine O +lattice B-FEAT +structure E-FEAT +having O +a O +higher O +density S-PRO +( O +at O +least O +1.5 O +times O +greater O +) O +than O +calculated O +due O +to O +the O +effect O +of O +loose O +powder S-MATE +adhesion S-PRO +. O + + +This O +effect O +resulted O +in O +an O +increased O +stiffness S-PRO +of O +the O +fine O +lattice B-FEAT +structure E-FEAT +. O + + +AR S-ENAT +can O +be S-MATE +used O +as S-MATE +a O +measure O +of O +determining O +loose O +powder S-MATE +adhesion S-PRO +and O +other O +unique O +structural O +characteristics O +resulting O +from O +AM S-MANP +. O + + +Increasing O +performance S-CONPRI +requirements O +of O +advanced O +components S-MACEQ +demands O +versatile O +fabrication S-MANP +techniques O +to O +meet O +application-specific O +needs O +. O + + +Composite B-MATE +material E-MATE +processing O +via O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +offers O +high O +processing-flexibility O +and O +limited O +tooling S-CONPRI +requirements O +to O +meet O +this O +need O +, O +but O +limited O +information O +exists O +on O +the O +processing-property O +relationships O +for O +these O +materials S-CONPRI +as S-MATE +well O +as S-MATE +how O +to O +exploit O +them O +for O +application-specific O +needs O +. O + + +In O +this O +study O +, O +Ti/B4C O ++ O +BN S-MATE +composites O +are O +developed O +for O +high-temperature O +applications O +by O +designed-incorporation O +of O +ceramic B-MATE +reinforcement E-MATE +( O +5 O +wt O +% O +total O +) O +into O +commercially-pure O +titanium S-MATE +to O +form O +combined O +particle S-CONPRI +and O +in B-CONPRI +situ E-CONPRI +reinforcing O +phases O +. O + + +We O +combine O +both O +B4C S-MATE +( O +limited O +reactivity O +with O +matrix O +) O +and O +BN S-MATE +( O +high O +reactivity O +with O +matrix O +) O +reinforcements O +to O +understand O +the O +processing O +characteristics O +, O +in B-CONPRI +situ E-CONPRI +phase O +formations O +, O +and O +combinatorial O +effect O +of O +the O +multiphase O +microstructures S-MATE +on O +thermomechanical B-CONPRI +properties E-CONPRI +and O +high-temperature O +oxidation B-PRO +resistance E-PRO +. O + + +Combined O +reinforcement S-PARA +in O +this O +new O +composite B-MATE +material E-MATE +leads O +to O +superior O +yield B-PRO +strength E-PRO +and O +wear B-PRO +resistance E-PRO +in O +comparison O +to O +the O +other O +compositions O +and O +matrix O +, O +as S-MATE +well O +as S-MATE +comparable O +oxidation S-MANP +characteristics O +to O +commercially-developed O +high O +temperature S-PARA +titanium O +alloys S-MATE +, O +alleviating O +the O +need O +for O +multiple O +rare-earth O +alloying B-MATE +elements E-MATE +that O +significantly O +raises O +costs O +for O +manufacturers O +. O + + +Tubular S-FEAT +structures O +are O +fabricated S-CONPRI +to O +demonstrate O +the O +ease O +of O +site-specific O +composition S-CONPRI +and O +dimensional O +tolerancing O +using O +this O +method O +. O + + +Our O +results O +indicate O +that O +tailored O +ceramic B-MATE +reinforcement E-MATE +in O +titanium S-MATE +via O +laser-based O +AM S-MANP +could O +lead S-MATE +to O +significantly O +enhanced O +engineering S-APPL +structures O +, O +particularly O +for O +developing O +higher O +temperature S-PARA +titanium-based O +materials S-CONPRI +. O + + +Previous O +research S-CONPRI +on O +the O +powder B-MANP +bed I-MANP +fusion I-MANP +electron I-MANP +beam I-MANP +additive I-MANP +manufacturing E-MANP +of O +Inconel B-MATE +718 E-MATE +has O +established O +a O +definite O +correlation O +between O +the O +processing O +conditions O +and O +the O +solidification B-CONPRI +microstructure E-CONPRI +of O +components S-MACEQ +. O + + +However O +, O +the O +direct O +role O +of O +physical O +phenomena O +such O +as S-MATE +fluid O +flow O +and O +vaporization O +on O +determining O +the O +solidification B-CONPRI +morphology E-CONPRI +have O +not O +been O +investigated O +quantitatively S-CONPRI +. O + + +Here O +we O +investigate O +the O +transient S-CONPRI +and O +spatial O +evolution S-CONPRI +of O +the O +fusion B-CONPRI +zone E-CONPRI +geometry O +, O +temperature B-PARA +gradients E-PARA +, O +and O +solidification S-CONPRI +growth O +rates O +during O +pulsed O +electron B-MANP +beam I-MANP +melting E-MANP +of O +the O +powder B-MACEQ +bed E-MACEQ +with O +a O +focus O +on O +the O +role O +of O +key O +physical O +phenomena O +. O + + +The O +effect O +of O +spot O +density S-PRO +during O +pulsing O +, O +which O +relates O +to O +the O +amount O +of O +heating S-MANP +of O +the O +build B-PARA +area E-PARA +during O +processing O +, O +on O +the O +columnar-to-equiaxed O +transition S-CONPRI +of O +the O +solidification S-CONPRI +structure O +was O +studied O +both O +experimentally O +and O +theoretically O +. O + + +Predictions S-CONPRI +and O +the O +evaluation O +of O +the O +role O +of O +heat B-CONPRI +transfer E-CONPRI +and O +fluid B-PRO +flow E-PRO +were O +established O +using O +existing O +solidification S-CONPRI +theories O +combined O +with O +transient S-CONPRI +, O +three-dimensional S-CONPRI +numerical O +heat B-CONPRI +transfer E-CONPRI +and O +fluid B-PRO +flow E-PRO +modeling O +. O + + +Metallurgical S-APPL +characteristics O +of O +the O +alloy S-MATE +’ O +s S-MATE +solidification O +are O +extracted S-CONPRI +from O +the O +transient S-CONPRI +temperature S-PARA +fields O +, O +and O +microstructure S-CONPRI +is O +predicted S-CONPRI +and O +validated O +using O +optical S-CHAR +images S-CONPRI +and O +electron O +backscattered O +diffraction S-CHAR +data S-CONPRI +from O +the O +experimental S-CONPRI +results O +. O + + +While O +conductive B-CONPRI +heat I-CONPRI +transfer E-CONPRI +dominates O +in O +the O +mushy O +region O +, O +both O +the O +pool O +geometry S-CONPRI +and O +the O +solidification B-CONPRI +parameters E-CONPRI +are O +affected O +by O +convective O +heat B-CONPRI +transfer E-CONPRI +. O + + +Finally O +, O +increased O +spot O +density S-PRO +during O +processing O +is O +shown O +to O +increase O +the O +time O +of O +solidification S-CONPRI +, O +lowering O +temperature B-PARA +gradients E-PARA +and O +increasing O +the O +probability S-CONPRI +of O +equiaxed B-CONPRI +grain E-CONPRI +formation O +. O + + +In O +this O +paper O +we O +have O +used O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +to O +manufacture S-CONPRI +and O +characterize O +metal S-MATE +microwave O +components S-MACEQ +. O + + +Here O +we O +focus O +on O +a O +2.5 O +GHz O +microwave S-ENAT +cavity O +resonator S-APPL +, O +manufactured S-CONPRI +by O +PBF S-MANP +from O +the O +alloy S-MATE +AlSi10Mg O +. O + + +Of O +particular O +interest O +is O +its O +thermal B-PRO +expansion I-PRO +coefficient E-PRO +, O +especially O +since O +many O +microwave S-ENAT +applications O +for O +PBF S-MANP +produced O +components S-MACEQ +will O +be S-MATE +in O +satellite O +systems O +where O +extreme O +ranges O +of O +temperature S-PARA +are O +experienced O +. O + + +We O +exploit O +the O +inherent O +resonant O +frequency O +dependence O +on O +cavity O +geometry S-CONPRI +, O +using O +a O +number O +of O +TM O +cavity O +modes O +, O +to O +determine O +the O +thermal B-PRO +expansion I-PRO +coefficient E-PRO +over O +the O +temperature B-PARA +range E-PARA +6–450 O +K. O +Our O +results O +compare O +well O +with O +literature O +values O +and O +show O +that O +the O +material S-MATE +under O +test O +exhibits O +lower O +thermal B-CONPRI +expansion E-CONPRI +when O +compared O +with O +a O +bulk O +aluminium B-MATE +alloy E-MATE +alternative O +( O +6063 O +) O +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +is O +an O +emerging O +method O +to O +fabricate S-MANP +components S-MACEQ +used O +in O +the O +aerospace S-APPL +and O +biomedical B-APPL +industries E-APPL +. O + + +However O +, O +one O +of O +the O +significant O +challenges O +in O +this O +approach O +is O +the O +surface B-PARA +quality E-PARA +of O +the O +fabricated S-CONPRI +components S-MACEQ +. O + + +After O +metal B-MANP +additive I-MANP +manufacturing E-MANP +operations O +, O +post-processing S-CONPRI +is O +essential O +to O +meet O +the O +expected O +surface B-PARA +quality E-PARA +. O + + +This O +study O +presents O +the O +surface S-CONPRI +characteristics O +of O +as-built O +specimens O +manufactured S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +, O +where O +improvement O +of O +the O +surface S-CONPRI +can O +be S-MATE +achieved O +by O +post-processing S-CONPRI +operations O +. O + + +The O +post-processing S-CONPRI +operations O +in O +focus O +are O +finish B-MANP +machining E-MANP +( O +FM O +) O +, O +vibratory O +surface B-MANP +finishing E-MANP +( O +VSF O +) O +and O +drag S-MACEQ +finishing O +( O +DF O +) O +operations O +. O + + +Surface B-CONPRI +topography E-CONPRI +, O +average S-CONPRI +surface O +roughness S-PRO +, O +microhardness S-CONPRI +, O +microstructure S-CONPRI +and O +XRD S-CHAR +analysis O +have O +been O +carried O +out O +to O +examine O +the O +surface S-CONPRI +characteristics O +resulting O +from O +the O +post-processing S-CONPRI +operations O +. O + + +This O +study O +demonstrates O +that O +the O +drag S-MACEQ +finishing O +operation O +can O +be S-MATE +used O +for O +post-processing S-CONPRI +to O +meet O +the O +surface B-PARA +quality E-PARA +requirement O +of O +SLM S-MANP +manufactured S-CONPRI +parts O +. O + + +In-process O +deformation S-CONPRI +methods O +such O +as S-MATE +rolling O +can O +be S-MATE +used O +to O +refine O +the O +large O +columnar B-PRO +grains E-PRO +that O +form O +when O +wire B-MANP ++ I-MANP +arc I-MANP +additively I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +titanium B-MATE +alloys E-MATE +. O + + +Due O +to O +the O +laterally O +restrained O +geometry S-CONPRI +, O +application O +to O +thick O +walls O +and O +intersecting O +features O +required O +the O +development O +of O +a O +new O +‘ O +inverted O +profile S-FEAT +’ O +roller S-MACEQ +. O + + +A O +larger O +radii O +roller S-MACEQ +increased O +the O +extent O +of O +the O +recrystallised O +area S-PARA +, O +providing O +a O +more O +uniform O +grain B-PRO +size E-PRO +, O +and O +higher O +loads O +increased O +the O +amount O +of O +refinement O +. O + + +Electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +showed O +that O +the O +majority O +of O +the O +strain S-PRO +is O +generated O +toward O +the O +edges O +of O +the O +rolled O +groove O +, O +up O +to O +3 O +mm S-MANP +below O +the O +rolled O +surface S-CONPRI +. O + + +These O +results O +will O +help O +facilitate O +future O +optimisation O +of O +the O +rolling B-MANP +process E-MANP +and O +industrialisation O +of O +WAAM S-MANP +for O +large-scale O +titanium S-MATE +components S-MACEQ +. O + + +In O +this O +contribution O +, O +a O +simplified O +macroscopic S-CONPRI +and O +semi-analytical O +thermal B-CHAR +analysis E-CHAR +of O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +is O +presented O +to O +obtain O +computationally O +efficient O +simulations S-ENAT +of O +the O +entire O +process S-CONPRI +. O + + +Solidification S-CONPRI +and O +solid-state B-CONPRI +phase E-CONPRI +transitions O +are O +taken O +into O +account O +. O + + +The O +model S-CONPRI +is O +derived O +for O +laser S-ENAT +metal O +powder S-MATE +directed B-MANP +energy I-MANP +deposition E-MANP +, O +although O +it O +can O +be S-MATE +simply O +adapted O +for O +other O +focused O +thermal B-CONPRI +energy E-CONPRI +( O +e.g. O +, O +electron B-CONPRI +beam E-CONPRI +, O +or O +plasma B-CONPRI +arc E-CONPRI +) O +. O + + +The O +gas S-CONPRI +flow O +used O +for O +carrying O +the O +powder S-MATE +significantly O +influences O +cooling S-MANP +conditions O +, O +which O +is O +included O +in O +the O +model S-CONPRI +. O + + +The O +proposed O +simulation S-ENAT +strategy O +applies O +to O +multilayer O +composites S-MATE +with O +a O +wide O +range S-PARA +of O +shapes O +in O +the O +horizontal O +plane O +and O +arbitrary O +laser S-ENAT +scanning O +strategies O +( O +continuous O +way O +, O +back O +and O +forth O +, O +etc. O +) O +. O + + +The O +proposed O +work O +provides O +a O +simple S-MANP +tool O +to O +study O +the O +influence O +of O +most O +process B-CONPRI +parameters E-CONPRI +, O +design S-FEAT +in O +situ O +experiments O +and O +in O +turn O +develop O +optimization S-CONPRI +loops O +to O +reach O +material S-MATE +requirements O +and O +specific O +microstructures S-MATE +. O + + +In B-CONPRI +situ E-CONPRI +pyrometer O +measurements O +have O +been O +compared O +to O +the O +model S-CONPRI +, O +and O +good O +agreement O +has O +been O +observed O +with O +2.6 O +% O +error S-CONPRI +in O +average S-CONPRI +. O + + +The O +model S-CONPRI +is O +used O +to O +demonstrate O +the O +effect O +of O +various O +process B-CONPRI +parameters E-CONPRI +for O +a O +simple S-MANP +cylindrical S-CONPRI +geometry O +and O +a O +more O +complex O +auxetic O +cell S-APPL +. O + + +Additive B-MANP +manufacturing E-MANP +using O +nanoparticles S-CONPRI +( O +NPs O +) O +is O +a O +growing O +field O +due O +to O +the O +ever-increasing O +demand O +for O +parts O +with O +smaller O +and O +smaller O +features O +. O + + +Of O +particular O +interest O +are O +copper S-MATE +nanoparticles O +( O +Cu S-MATE +NPs O +) O +due O +to O +the O +ubiquitous O +use O +of O +Cu S-MATE +in O +microelectronics S-CONPRI +applications O +. O + + +There O +are O +numerous O +methods O +currently O +available O +to O +synthesize O +Cu S-MATE +NPs O +in O +both O +powder S-MATE +and O +ink S-MATE +forms O +. O + + +However O +, O +the O +effect O +of O +how O +the O +NPs O +are O +manufactured S-CONPRI +on O +the O +sintering S-MANP +properties S-CONPRI +of O +the O +NPs O +produced O +is O +not O +well O +understood O +. O + + +This O +paper O +shows O +that O +NP O +size O +, O +morphology S-CONPRI +, O +and O +synthesis O +method O +can O +have O +a O +significant O +effect O +on O +the O +sintering S-MANP +temperature O +and O +sintering S-MANP +quality S-CONPRI +for O +Cu S-MATE +NPs O +. O + + +In O +addition O +, O +surface S-CONPRI +coatings S-APPL +and O +surfactants O +used O +in O +Cu S-MATE +NP O +inks O +can O +help O +to O +reduce O +agglomeration O +in O +the O +dried S-MANP +NP O +samples S-CONPRI +, O +prevent O +oxidation S-MANP +of O +the O +Cu S-MATE +NPs O +, O +and O +restrict O +the O +sintering S-MANP +of O +the O +Cu S-MATE +NPs O +at O +lower O +temperatures S-PARA +due O +to O +the O +need O +to O +thermally O +remove O +the O +surface S-CONPRI +coatings S-APPL +before O +sintering S-MANP +can O +occur O +. O + + +Therefore O +, O +these O +coatings S-APPL +improve O +the O +Cu S-MATE +NP O +packing O +density S-PRO +and O +increase O +the O +temperature S-PARA +required O +for O +necking S-CONPRI +to O +occur O +which O +leads O +to O +better O +sintering S-MANP +of O +the O +Cu S-MATE +NP O +ink S-MATE +samples O +. O + + +It O +is O +also O +observed O +in O +this O +paper O +that O +most O +of O +these O +surface S-CONPRI +coatings S-APPL +are O +removed O +during O +the O +sintering S-MANP +processes S-CONPRI +leaving O +the O +sintered S-MANP +parts O +with O +a O +much O +higher O +Cu S-MATE +percentage O +than O +contained O +in O +the O +original O +NPs O +. O + + +However O +, O +at O +temperatures S-PARA +near O +the O +melting B-PARA +temperature E-PARA +of O +the O +Cu S-MATE +NPs O +, O +the O +surface S-CONPRI +coatings S-APPL +can O +start O +to O +graphitize O +and O +hinder O +the O +fusion S-CONPRI +of O +the O +NPs O +. O + + +Therefore O +, O +the O +optimal O +sintering S-MANP +conditions O +for O +Cu S-MATE +NP O +inks O +are O +at O +temperature S-PARA +high O +enough O +to O +break O +down O +the O +polymer S-MATE +surface O +coating S-APPL +on O +the O +NPs O +but O +low O +enough O +that O +the O +Cu S-MATE +NPs O +do O +not O +start O +to O +melt S-CONPRI +and O +that O +graphitizing O +of O +the O +surface S-CONPRI +coatings S-APPL +does O +not O +start O +to O +occur O +. O + + +In O +the O +present O +study O +, O +420 B-MATE +stainless I-MATE +steel E-MATE +parts O +with O +different O +porosities S-PRO +in O +the O +range S-PARA +of O +∼6 O +% O +to O +∼ O +54 O +% O +were O +fabricated S-CONPRI +via O +the O +binder S-MATE +jet O +printing B-ENAT +technology E-ENAT +followed O +by O +pre-sintering S-MANP +between O +1000 O +and O +1400 O +°C O +. O + + +Initially O +, O +during O +the O +pre-sintering S-MANP +at O +1150 O +°C O +, O +evidences O +of O +neck O +formation O +between O +the O +420 B-MATE +stainless I-MATE +steel E-MATE +particles O +were O +observed O +. O + + +Later O +, O +when O +pre-sintered S-PRO +at O +higher O +temperature S-PARA +between O +1300 O +and O +1350 O +°C O +, O +the O +parts O +were O +found O +with O +3D S-CONPRI +interconnected O +open-porous O +channels O +. O + + +Finally O +, O +pre-sintering S-MANP +at O +1400 O +°C O +led S-APPL +to O +closed/isolated O +pores S-PRO +within O +the O +parts O +. O + + +Subsequent O +bronze S-MATE +infiltration O +into O +the O +as-built O +( O +without O +pre-sintering S-MANP +) O +and O +pre-sintered S-PRO +( O +< O +1350 O +°C O +) O +420 B-MATE +stainless I-MATE +steel E-MATE +parts O +with O +open O +porous S-PRO +channels O +were O +carried O +out O +successfully O +and O +their O +corresponding O +microstructures S-MATE +and O +mechanical B-CONPRI +properties E-CONPRI +were O +presented O +and O +discussed O +. O + + +Relatively O +more O +uniform O +bronze S-MATE +infiltration O +was O +able O +to O +be S-MATE +achieved O +for O +the O +parts O +pre-sintered S-PRO +between O +1300 O +and O +1350 O +°C O +due O +to O +the O +presence O +of O +3D S-CONPRI +interconnected O +open-porous O +channels O +. O + + +When O +compared O +to O +the O +as-built O +parts O +, O +the O +combination O +of O +pre-sintering S-MANP +at O +1350 O +°C O +and O +subsequent O +bronze S-MATE +infiltration O +led S-APPL +to O +a O +significant O +increase O +in O +the O +tensile B-PRO +properties E-PRO +exhibiting O +a O +maximum O +tensile S-PRO +yield O +strength S-PRO +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +of O +∼ O +647 O +and O +∼ O +1053 O +MPa S-CONPRI +, O +respectively O +. O + + +The O +fractured O +surfaces S-CONPRI +indicated O +a O +typical O +brittle S-PRO +mode O +of O +fracture S-CONPRI +with O +cleavages O +on O +the O +420 B-MATE +stainless I-MATE +steel E-MATE +matrix O +whereas O +dimples O +and O +ridges O +were O +observed O +within O +the O +bronze S-MATE +phase O +. O + + +Characterization O +of O +the O +local O +deformation S-CONPRI +of O +the O +microstructure S-CONPRI +of O +316L B-MATE +stainless I-MATE +steel E-MATE +single-track O +thickness O +walls O +. O + + +EBSD S-CHAR +and O +DIC S-CONPRI +analysis O +of O +material B-MATE +elements E-MATE +under O +in B-CONPRI +situ E-CONPRI +SEM O +tensile S-PRO +loading O +. O + + +Crystallographic O +morphology S-CONPRI +and O +texture S-FEAT +aligned O +with O +heat B-CONPRI +flow I-CONPRI +pattern E-CONPRI +induced O +by O +printing O +strategy O +. O + + +Statistical O +analysis O +of O +morphology S-CONPRI +and O +strain S-PRO +patterns O +for O +small O +and O +large O +grains S-CONPRI +. O + + +Relationship O +between O +grain S-CONPRI +'s O +morphology S-CONPRI +, O +strain S-PRO +patterns O +and O +anisotropy S-PRO +of O +macroscopic S-CONPRI +behavior O +. O + + +In O +additive B-MANP +manufacturing E-MANP +, O +the O +process B-CONPRI +parameters E-CONPRI +have O +a O +direct O +impact S-CONPRI +on O +the O +microstructure S-CONPRI +of O +the O +material S-MATE +and O +consequently O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +manufactured S-CONPRI +parts O +. O + + +The O +purpose O +of O +this O +paper O +is O +to O +explore O +this O +relation O +by O +characterizing O +the O +local O +microstructural S-CONPRI +response O +via O +in B-CONPRI +situ E-CONPRI +tensile O +test O +under O +a O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +combined O +with O +high B-PARA +resolution E-PARA +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +HR-DIC O +) O +and O +Electron B-CHAR +Backscatter I-CHAR +Diffraction E-CHAR +( O +EBSD S-CHAR +) O +maps O +. O + + +The O +specimens O +under O +scrutiny O +were O +extracted S-CONPRI +from O +bidirectionally-printed O +single-track O +thickness O +316L B-MATE +stainless I-MATE +steel E-MATE +walls O +built O +by O +directed B-MANP +energy I-MANP +deposition E-MANP +. O + + +The O +morphologic O +and O +crystallographic O +textures O +of O +the O +grains S-CONPRI +were O +characterized O +by O +statistical O +analysis O +and O +associated O +with O +the O +particular O +heat B-CONPRI +flow I-CONPRI +pattern E-CONPRI +of O +the O +process S-CONPRI +. O + + +Grains S-CONPRI +were O +sorted O +according O +to O +their O +size O +into O +large O +columnar B-PRO +grains E-PRO +located O +within O +the O +printed O +layer S-PARA +and O +small O +equiaxed B-CONPRI +grains E-CONPRI +located O +at O +the O +interfaces O +between O +successive O +layers O +. O + + +In B-CONPRI +situ E-CONPRI +tensile O +experiments O +were O +performed O +with O +a O +loading O +direction O +either O +perpendicular O +or O +along O +the O +printing O +direction O +and O +exhibit O +different O +mechanisms O +of O +deformation S-CONPRI +. O + + +A O +statistical O +analysis O +of O +the O +average S-CONPRI +deformation O +per O +grain S-CONPRI +indicates O +that O +for O +a O +tensile S-PRO +loading O +along O +the O +building B-PARA +direction E-PARA +, O +small O +grains S-CONPRI +deform O +less O +than O +the O +large O +ones O +. O + + +In O +addition O +, O +HR-DIC O +combined O +with O +EBSD S-CHAR +maps O +showed O +strain S-PRO +localization O +situated O +at O +the O +interface S-CONPRI +between O +layers O +in O +the O +absence O +of O +small O +grains S-CONPRI +either O +individual O +or O +in O +clusters O +. O + + +For O +tensile B-CHAR +loads E-CHAR +along O +the O +printing O +direction O +, O +the O +strain S-PRO +localization O +was O +present O +in O +several O +particular O +large O +grains S-CONPRI +. O + + +These O +observations O +permit O +to O +justify O +the O +differences O +in O +yield O +and O +ultimate B-PRO +strength E-PRO +noticed O +during O +macroscopic S-CONPRI +tensile O +tests O +for O +both O +configurations O +. O + + +Moreover O +, O +they O +indicate O +that O +an O +optimization S-CONPRI +of O +the O +process B-CONPRI +parameters E-CONPRI +could O +trigger O +the O +control O +of O +microstructure S-CONPRI +and O +consequently O +the O +macroscopic S-CONPRI +mechanical O +behavior O +. O + + +Strategies O +for O +fabricating S-MANP +iron-based O +materials S-CONPRI +with O +high O +strength S-PRO +and O +ductility S-PRO +are O +rare O +despite O +intense O +research S-CONPRI +efforts O +within O +the O +last O +decades O +. O + + +This O +study O +provides O +a O +novel O +approach O +to O +achieve O +the O +synthesis O +of O +highly O +strong O +and O +ductile S-PRO +iron-based O +composites S-MATE +reinforced O +with O +a O +high O +weight S-PARA +fraction S-CONPRI +of O +WC S-MATE +particles S-CONPRI +( O +20 O +wt O +% O +) O +utilizing O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +as S-MATE +processing O +technique O +. O + + +Thereby O +, O +the O +LPBF-fabricated O +composite B-MATE +material E-MATE +has O +a O +multi-phase O +microstructure S-CONPRI +consisting O +of O +ductile S-PRO +austenite S-MATE +( O +main O +phase S-CONPRI +) O +, O +highly O +strong O +martensite S-MATE +and O +carbidic O +precipitations O +extending O +across O +different O +length-scales O +. O + + +The O +precipitation S-CONPRI +of O +( O +Fe S-MATE +, O +W O +) O +3C O +type O +carbide S-MATE +at O +the O +Fe/WC O +interface S-CONPRI +is O +well O +controlled O +. O + + +Thus O +, O +a O +very O +thin O +reaction O +layer S-PARA +( O +< O +500 O +nm O +) O +forms O +between O +the O +WC S-MATE +particles S-CONPRI +and O +iron-based O +matrix O +. O + + +These O +iron-based O +composites S-MATE +synthesized O +by O +LPBF S-MANP +show O +an O +excellent O +compressive B-PRO +strength E-PRO +of O +about O +2833 O +MPa S-CONPRI +and O +large O +fracture S-CONPRI +strain O +of O +about O +32 O +% O +. O + + +The O +following O +mechanisms O +contribute O +to O +the O +improved O +mechanical B-CONPRI +properties E-CONPRI +: O +( O +1 O +) O +multiphase O +material S-MATE +system O +, O +( O +2 O +) O +grain B-CHAR +refinement E-CHAR +, O +( O +3 O +) O +substructures O +, O +( O +4 O +) O +coherent O +multiscale O +interfaces O +and O +( O +5 O +) O +nano-precipitations O +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +is O +a O +proven O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +for O +producing O +metallic S-MATE +components S-MACEQ +with O +complex B-PRO +shapes E-PRO +using O +layer-by-layer S-CONPRI +manufacture O +principle O +. O + + +However O +, O +the O +fabrication S-MANP +of O +crack-free O +high-performance O +Ni-based O +superalloys S-MATE +such O +as S-MATE +Hastelloy O +X O +( O +HX O +) O +using O +LPBF S-MANP +technology O +remains O +a O +challenge O +because O +of O +these O +materials S-CONPRI +’ O +susceptibility S-PRO +to O +hot B-CONPRI +cracking E-CONPRI +. O + + +This O +paper O +addresses O +the O +above O +problem O +by O +proposing O +a O +novel O +method O +of O +introducing O +1 O +wt. O +% O +titanium B-MATE +carbide E-MATE +( O +TiC O +) O +nanoparticles S-CONPRI +. O + + +The O +findings O +reveal O +that O +the O +addition O +of O +TiC O +nanoparticles S-CONPRI +results O +in O +the O +elimination O +of O +microcracks S-CONPRI +in O +the O +LPBF-fabricated O +enhanced O +HX O +samples S-CONPRI +; O +i.e O +. O + + +the O +0.65 O +% O +microcracks S-CONPRI +that O +were O +formed O +in O +the O +as-fabricated O +original O +HX O +were O +eliminated O +in O +the O +as-fabricated O +enhanced O +HX O +, O +despite O +the O +0.14 O +% O +residual S-CONPRI +pores S-PRO +formed O +. O + + +It O +also O +contributes O +to O +a O +21.8 O +% O +increase O +in O +low-angle O +grain B-CONPRI +boundaries E-CONPRI +( O +LAGBs O +) O +and O +a O +98 O +MPa S-CONPRI +increase O +in O +yield B-PRO +strength E-PRO +. O + + +The O +study O +revealed O +that O +segregated O +carbides S-MATE +were O +unable O +to O +trigger O +hot B-CONPRI +cracking E-CONPRI +without O +sufficient O +thermal O +residual B-PRO +stresses E-PRO +; O +the O +significantly O +increased O +subgrains S-CONPRI +and O +low-angle O +grain B-CONPRI +boundaries E-CONPRI +played O +a O +key O +role O +in O +the O +hot B-CONPRI +cracking E-CONPRI +elimination O +. O + + +These O +findings O +offer O +a O +new O +perspective O +on O +the O +elimination O +of O +hot B-CONPRI +cracking E-CONPRI +of O +nickel-based B-MATE +superalloys E-MATE +and O +other O +industrially O +relevant O +crack-susceptible O +alloys S-MATE +. O + + +The O +findings O +also O +have O +significant O +implications O +for O +the O +design S-FEAT +of O +new O +alloys S-MATE +, O +particularly O +for O +high-temperature O +industrial S-APPL +applications O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +the O +potential O +to O +construct O +complex B-CONPRI +geometries E-CONPRI +through O +the O +simple S-MANP +and O +highly O +repetitive O +process S-CONPRI +of O +layer-by-layer B-CONPRI +deposition E-CONPRI +. O + + +The O +process S-CONPRI +is O +repetitive O +and O +fully O +automated O +, O +but O +the O +interactions O +between O +layers O +during O +deposition S-CONPRI +are O +tightly O +coupled O +. O + + +To O +unravel O +these O +interactions O +, O +the O +computational B-ENAT +models E-ENAT +of O +the O +manufacturing B-MANP +process E-MANP +are O +critically O +needed O +. O + + +However O +, O +current O +state-of-the-art S-CONPRI +physics-based B-CONPRI +models E-CONPRI +are O +computationally O +demanding O +and O +can O +not O +be S-MATE +used O +for O +any O +realistic O +optimization S-CONPRI +. O + + +To O +address O +this O +challenge O +, O +we O +built O +a O +surrogate O +model S-CONPRI +( O +SM S-MATE +) O +of O +thermal B-CONPRI +profiles E-CONPRI +that O +significantly O +reduced O +the O +computational O +cost O +. O + + +We O +built O +this O +model S-CONPRI +based O +on O +the O +observation O +that O +any O +AM B-MANP +process E-MANP +exhibits O +a O +high O +level O +of O +redundancy O +and O +periodicity O +, O +making O +it O +an O +ideal O +problem O +for O +machine S-MACEQ +learning O +and O +surrogate O +modeling.We O +introduced O +a O +unique O +geometry S-CONPRI +representation O +that O +is O +the O +key O +insight O +for O +this O +work O +. O + + +Rather O +than O +directly O +using O +the O +part O +geometry S-CONPRI +, O +we O +directly O +use O +the O +GCode O +and O +translate O +it O +into O +a O +set S-APPL +of O +features O +( O +local O +distances O +from O +heat B-CONPRI +sources E-CONPRI +, O +e.g. O +, O +extruder S-MACEQ +, O +and O +sinks O +, O +e.g. O +, O +cooling S-MANP +surfaces O +) O +. O + + +This O +set S-APPL +of O +features O +is O +directly O +used O +as S-MATE +an O +input O +for O +the O +SM S-MATE +of O +thermal O +history O +. O + + +Since O +this O +set S-APPL +can O +be S-MATE +calculated O +a O +priori O +from O +GCode O +, O +the O +explicit O +geometry S-CONPRI +considerations O +are O +largely O +factored O +out O +. O + + +Moreover O +, O +we O +leveraged O +the O +analytical B-CONPRI +solution E-CONPRI +to O +the O +moving O +heat B-CONPRI +source E-CONPRI +model O +to O +determine O +heat S-CONPRI +influence O +zone O +( O +HIZ O +) O +. O + + +We O +showed O +that O +for O +fused B-MANP +filament I-MANP +fabrication E-MANP +, O +the O +size O +of O +HIZ O +is O +small O +; O +thus O +, O +the O +number O +of O +input O +variables O +for O +the O +SM S-MATE +is O +small O +as S-MATE +well.To O +build S-PARA +the O +SM S-MATE +, O +we O +first O +generated O +the O +thermal O +data S-CONPRI +using O +a O +physics-based B-CONPRI +model E-CONPRI +and O +use O +it O +to O +train O +an O +artificial B-ENAT +neural I-ENAT +network E-ENAT +model O +. O + + +We O +trained O +the O +SM S-MATE +and O +demonstrate O +its O +high O +predictive O +power S-PARA +and O +low O +computational O +cost O +. O + + +With O +such O +performance S-CONPRI +, O +this O +model S-CONPRI +opens O +the O +possibility O +of O +optimization S-CONPRI +as S-MATE +well O +as S-MATE +process O +planning S-MANP +, O +and O +in B-CONPRI +situ E-CONPRI +monitoring O +for O +closed-loop B-MACEQ +control E-MACEQ +. O + + +In O +the O +context O +of O +additive B-MANP +manufacturing E-MANP +, O +there O +is O +an O +exponential O +use O +of O +thermoplastic B-MATE +materials E-MATE +in O +the O +industrial S-APPL +and O +public O +open-source S-CONPRI +additive B-MANP +manufacturing E-MANP +sector O +, O +leading O +to O +an O +increase O +in O +global O +polymer S-MATE +consumption O +and O +waste O +generation O +. O + + +However O +, O +the O +coupling O +of O +the O +open-source S-CONPRI +3D B-MACEQ +printers E-MACEQ +with O +polymer S-MATE +processing O +could O +potentially O +offer O +the O +basis O +for O +a O +new O +paradigm O +of O +distributed O +recycling B-CONPRI +process E-CONPRI +. O + + +It O +could O +be S-MATE +a O +complementary O +alternative O +to O +the O +traditional O +paradigm O +of O +centralized O +recycling S-CONPRI +of O +polymers S-MATE +, O +which O +is O +often O +uneconomical O +and O +energy O +intensive O +due O +to O +transportation O +embodied O +energy O +. O + + +In O +order O +to O +achieve O +this O +goal O +, O +a O +first O +step S-CONPRI +is O +to O +prove O +the O +technical O +feasibility S-CONPRI +to O +recycle O +thermoplastic B-MATE +material E-MATE +intended O +for O +open-source S-CONPRI +3D B-MANP +printing E-MANP +feedstock.The O +contribution O +of O +the O +present O +study O +is O +twofold O +: O +first O +, O +a O +general O +methodology S-CONPRI +to O +evaluate O +the O +recyclability S-CONPRI +of O +thermoplastics S-MATE +used O +as S-MATE +feedstock O +in O +open-source S-CONPRI +3D B-MANP +printing E-MANP +machines O +is O +proposed O +. O + + +Then O +, O +the O +proposed O +methodology S-CONPRI +is O +applied O +to O +the O +recycling S-CONPRI +study O +of O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +material S-MATE +addressed O +to O +the O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +technique O +, O +which O +is O +currently O +the O +most O +widely O +used O +. O + + +The O +main O +results O +of O +this O +application O +contribute O +to O +the O +understanding O +of O +the O +influence O +of O +the O +material S-MATE +'s O +physico-chemical O +degradation S-CONPRI +on O +its O +mechanical B-CONPRI +properties E-CONPRI +as S-MATE +well O +as S-MATE +its O +potential O +distributed O +recyclability S-CONPRI +. O + + +Additively B-MANP +manufactured E-MANP +internal O +lattice B-FEAT +structures E-FEAT +offer O +a O +unique O +approach O +to O +lightweight S-CONPRI +components S-MACEQ +and O +adding O +multi-functionality O +. O + + +Design S-FEAT +methods O +for O +parts O +based O +on O +lattices S-CONPRI +are O +emerging O +and O +include O +a O +family O +of O +topology B-FEAT +optimization E-FEAT +schemes O +for O +tailoring O +local O +cell B-FEAT +density E-FEAT +to O +service O +loadings O +. O + + +In O +order O +to O +gain S-PARA +confidence O +, O +these O +methods O +must O +be S-MATE +validated O +in O +a O +controlled O +manner O +. O + + +In O +this O +paper O +, O +we O +report O +optimization S-CONPRI +, O +analysis O +, O +manufacturing S-MANP +, O +and O +mechanical B-CHAR +test E-CHAR +validation O +of O +a O +casing-like O +test O +article O +. O + + +The O +test O +article O +was O +optimized O +using O +a O +stress-based O +homogenized S-MANP +topology O +optimization S-CONPRI +approach O +and O +achieved O +a O +53 O +% O +weight S-PARA +reduction S-CONPRI +versus O +a O +solid O +, O +fully-dense O +casing O +with O +the O +same O +form O +factor O +. O + + +The O +optimized O +geometry S-CONPRI +was O +studied O +with O +high-fidelity B-CONPRI +finite I-CONPRI +element I-CONPRI +analysis E-CONPRI +and O +then O +additively B-MANP +manufactured E-MANP +. O + + +Mechanical B-CHAR +testing E-CHAR +was O +performed O +and O +demonstrated O +good O +correlation O +between O +the O +homogenized S-MANP +finite B-CONPRI +element I-CONPRI +model E-CONPRI +used O +for O +optimization S-CONPRI +, O +the O +high-fidelity B-CONPRI +finite I-CONPRI +element I-CONPRI +model E-CONPRI +, O +and O +experimental S-CONPRI +results O +. O + + +The O +findings O +validate O +the O +optimization S-CONPRI +approach O +for O +the O +particular O +use O +and O +load O +case O +and O +start O +to O +build S-PARA +confidence O +in O +the O +approach O +as S-MATE +an O +accepted O +method O +. O + + +This O +work O +explores O +the O +feasibility S-CONPRI +of O +using O +the O +Abrasive S-MATE +Fluidized O +Bed S-MACEQ +( O +AFB O +) O +method O +to O +finish O +flat O +AlSi10Mg S-MATE +substrates O +manufactured S-CONPRI +by O +Direct B-MANP +Metal I-MANP +Laser I-MANP +Sintering E-MANP +( O +DMLS S-MANP +) O +. O + + +Finishing S-MANP +was O +performed O +by O +rotating O +the O +substrates O +inside O +a O +fluidized B-CONPRI +bed E-CONPRI +of O +abrasives S-MATE +at O +high O +speeds O +. O + + +The O +interaction O +between O +the O +fluidized O +abrasives S-MATE +and O +AlSi10Mg S-MATE +substrates O +has O +been O +investigated O +to O +analyze O +the O +influence O +of O +the O +operational O +parameters S-CONPRI +, O +namely O +, O +abrasive S-MATE +type O +and O +rotational O +speed O +, O +on O +the O +finishing S-MANP +performance O +. O + + +The O +morphological O +features O +of O +the O +substrates O +and O +geometrical O +tolerances S-PARA +have O +been O +inspected O +by O +field O +emission S-CHAR +gun–scanning O +electron B-CHAR +microscopy E-CHAR +( O +FEG–SEM O +) O +and O +contact S-APPL +gauge O +profilometry O +. O + + +After O +short O +finishing S-MANP +cycles O +, O +the O +substrates O +featured O +a O +smoother O +surface B-CHAR +morphology E-CHAR +, O +while O +the O +edges O +were O +only O +influenced O +slightly O +by O +the O +abrasive S-MATE +impacts O +. O + + +Abrasive S-MATE +Fluidized O +Bed S-MACEQ +( O +AFB O +) O +can O +therefore O +be S-MATE +considered O +a O +potential O +easy-to-automate O +, O +low O +cost O +, O +low O +time O +consuming O +and O +sustainable S-CONPRI +finishing S-MANP +technology O +for O +metal S-MATE +parts O +obtained O +through O +additive B-MANP +manufacturing E-MANP +. O + + +A O +texture S-FEAT +prediction S-CONPRI +method O +was O +proposed O +for O +epitaxial B-PRO +columnar I-PRO +grains E-PRO +in O +SLM S-MANP +. O + + +The O +texture S-FEAT +prediction S-CONPRI +method O +was O +combined O +with O +the O +melt B-MATE +pool E-MATE +prediction O +. O + + +Process S-CONPRI +and O +microstructure S-CONPRI +were O +linked O +quantitatively S-CONPRI +for O +the O +metal S-MATE +SLM O +AM B-MANP +process E-MANP +. O + + +Texture S-FEAT +evolution S-CONPRI +with O +the O +number B-PARA +of I-PARA +layers E-PARA +for O +SLM S-MANP +AlSi10Mg S-MATE +was O +simulated O +. O + + +The O +simulated O +texture S-FEAT +showed O +pattern S-CONPRI +and O +intensity O +similar O +to O +experiment S-CONPRI +results O +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +such O +as S-MATE +selective O +laser S-ENAT +melting O +( O +SLM S-MANP +) O +has O +the O +powerful O +capability O +to O +produce O +very O +different O +microstructural S-CONPRI +features O +, O +hence O +different O +mechanical B-CONPRI +properties E-CONPRI +in O +metals S-MATE +using O +the O +same O +feedstock B-MATE +material E-MATE +but O +different O +values O +of O +process B-CONPRI +parameters E-CONPRI +. O + + +The O +lack O +of O +a O +reliable O +theoretical B-CONPRI +model E-CONPRI +of O +the O +processing-microstructure O +relationship O +of O +AM B-MATE +material E-MATE +is O +preventing O +AM B-MANP +technology E-MANP +from O +being O +widely O +adopted O +by O +the O +manufacturing S-MANP +community O +. O + + +Hence O +, O +the O +goal O +of O +this O +work O +is O +to O +establish O +the O +link O +between O +the O +microstructure S-CONPRI +( O +texture S-FEAT +) O +and O +the O +process B-CONPRI +parameters E-CONPRI +( O +laser B-PARA +power E-PARA +, O +scanning B-PARA +speed E-PARA +, O +preheat O +and O +scanning B-CONPRI +strategy E-CONPRI +) O +of O +a O +metal S-MATE +SLM O +process S-CONPRI +. O + + +To O +achieve O +the O +above O +goal O +, O +a O +quantitative S-CONPRI +semi-empirical O +method O +is O +proposed O +to O +predict O +the O +texture S-FEAT +of O +the O +epitaxial B-PRO +columnar I-PRO +grains E-PRO +grown O +from O +polycrystal O +substrates O +. O + + +Combined O +with O +the O +melt B-MATE +pool E-MATE +prediction O +by O +the O +Rosenthal B-CONPRI +solution E-CONPRI +, O +the O +processing O +and O +microstructure S-CONPRI +were O +linked O +together O +quantitatively S-CONPRI +. O + + +The O +proposed O +method O +is O +used O +to O +estimate O +the O +texture S-FEAT +evolution S-CONPRI +with O +the O +number B-PARA +of I-PARA +layers E-PARA +for O +EOS-DMLS-processed O +AlSi10Mg S-MATE +( O +unidirectional B-CONPRI +scanning E-CONPRI +direction O +in O +one O +layer S-PARA +and O +no O +rotation O +of O +scanning S-CONPRI +direction O +between O +layers O +) O +. O + + +The O +texture S-FEAT +reaches O +a O +steady B-CONPRI +state E-CONPRI +after O +five O +layers O +, O +and O +the O +steady B-CONPRI +state E-CONPRI +texture O +has O +similar O +pattern S-CONPRI +and O +intensity O +to O +that O +obtained O +from O +the O +experiment S-CONPRI +using O +the O +same O +process B-CONPRI +parameter E-CONPRI +values O +and O +scanning B-CONPRI +strategy E-CONPRI +. O + + +The O +severe O +thermal B-PARA +gradients E-PARA +associated O +with O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +generate O +large O +residual B-PRO +stresses E-PRO +( O +RS O +) O +that O +geometrically O +distort O +and O +otherwise O +alter O +the O +performance S-CONPRI +of O +printed O +parts O +. O + + +Despite O +broad O +research S-CONPRI +interest O +in O +this O +field O +, O +it O +has O +remained O +challenging O +to O +measure O +warpage S-CONPRI +in O +general O +as S-MATE +well O +as S-MATE +RS O +distributions S-CONPRI +in O +situ O +, O +which O +has O +obfuscated O +the O +mechanisms O +of O +stress S-PRO +formation O +during O +the O +printing B-MANP +process E-MANP +. O + + +In O +pursuit O +of O +this O +goal O +, O +we O +have O +developed O +a O +non-destructive O +framework S-CONPRI +for O +RS B-CHAR +measurement E-CHAR +in O +SLM S-MANP +parts O +using O +three-dimensional S-CONPRI +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +3D-DIC O +) O +to O +capture O +in B-CONPRI +situ E-CONPRI +surface O +distortion S-CONPRI +. O + + +A O +two-dimensional S-CONPRI +analytical O +model S-CONPRI +was O +developed O +to O +convert O +DIC S-CONPRI +surface O +curvature O +measurements O +to O +estimates O +of O +in-plane O +residual B-PRO +stresses E-PRO +. O + + +Experimental S-CONPRI +validation O +using O +stainless B-MATE +steel E-MATE +316 O +L O +“ O +inverted-cone O +” O +parts O +demonstrated O +that O +residual B-PRO +stress E-PRO +varied O +across O +the O +surface S-CONPRI +of O +the O +printed O +part O +, O +and O +strongly O +interacted O +with O +the O +component S-MACEQ +geometry O +. O + + +The O +3D-DIC O +based O +RS B-CHAR +measurements E-CHAR +were O +validated O +by O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +with O +an O +average S-CONPRI +error O +of O +6 O +% O +between O +measured O +and O +analytically O +derived O +stresses O +. O + + +Systematic O +variation S-CONPRI +in O +RS O +was O +attributed O +to O +the O +sector-based O +laser S-ENAT +raster O +strategy O +, O +which O +was O +supported O +by O +complementary O +finite B-CONPRI +element E-CONPRI +calculations O +. O + + +Calculations O +showed O +that O +the O +heterogeneous S-CONPRI +RS O +distribution S-CONPRI +in O +the O +parts O +emerged O +from O +the O +sequential O +re-heating O +and O +cooling S-MANP +of O +the O +new O +surface S-CONPRI +, O +and O +changed O +dynamically O +between O +layers O +. O + + +The O +unique O +DIC S-CONPRI +based O +RS O +methodology S-CONPRI +brings O +substantial O +benefits O +over O +alternatively O +proposed O +in B-CONPRI +situ E-CONPRI +AM S-MANP +RS O +measurements O +, O +and O +should O +facilitate O +enhanced O +process B-CONPRI +optimization E-CONPRI +and O +understanding O +leading O +towards O +AM B-MACEQ +part E-MACEQ +qualification O +. O + + +The O +interior O +porous S-PRO +defects S-CONPRI +formed O +during O +the O +layer-by-layer S-CONPRI +fabrication S-MANP +process O +have O +attracted O +increasing O +attention O +for O +different O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +techniques O +and O +are O +regarded O +as S-MATE +a O +crucial O +factor O +affecting O +the O +overall O +performance S-CONPRI +. O + + +In O +this O +work O +, O +aiming O +at O +the O +cold O +spray O +Ti6Al4V S-MATE +bulk O +materials S-CONPRI +, O +the O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +treatment O +is O +adopted O +to O +reduce O +the O +interior O +defects S-CONPRI +, O +adjust O +the O +microstructure S-CONPRI +, O +and O +improve O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +To O +characterize O +the O +pore S-PRO +morphologies S-CONPRI +and O +porosity S-PRO +evolution S-CONPRI +, O +the O +CS O +Ti6Al4V S-MATE +sample S-CONPRI +is O +characterized O +by O +optical B-CHAR +microscopy E-CHAR +and O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +XCT O +) O +. O + + +The O +3D S-CONPRI +reconstructions O +by O +XCT O +show O +that O +the O +fully B-PARA +dense E-PARA +Ti6Al4V O +alloy S-MATE +can O +be S-MATE +obtained O +through O +the O +high O +temperature S-PARA +diffusion S-CONPRI +and O +high O +pressure S-CONPRI +compacting O +of O +the O +HIP S-MANP +sample O +. O + + +After O +the O +HIP S-MANP +treatment O +, O +the O +severely O +deformed S-MANP +grains O +experience O +an O +obvious O +growth O +with O +the O +uniformly O +distributed O +β O +precipitates S-MATE +around O +equiaxed O +α O +grains S-CONPRI +. O + + +The O +tensile B-CHAR +test E-CHAR +shows O +that O +the O +strength S-PRO +of O +CS O +Ti6Al4V B-MATE +alloys E-MATE +can O +be S-MATE +largely O +improved O +by O +the O +enhanced O +diffusion S-CONPRI +and O +resultant O +metallurgical B-CONPRI +bonding E-CONPRI +. O + + +With O +the O +HIP S-MANP +treatment O +, O +the O +CS O +samples S-CONPRI +exhibit O +highly O +densified S-MANP +morphology O +and O +adjusted O +microstructure S-CONPRI +that O +can O +benefit O +the O +improvement O +of O +mechanical B-CONPRI +properties E-CONPRI +. O + + +A O +number O +of O +strategies O +that O +enable O +lattice B-FEAT +structures E-FEAT +to O +be S-MATE +derived O +from O +Topology B-FEAT +Optimisation E-FEAT +( O +TO O +) O +results O +suitable O +for O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +are O +presented O +. O + + +The O +proposed O +strategies O +are O +evaluated O +for O +mechanical S-APPL +performance O +and O +assessed O +for O +AM S-MANP +specific O +design S-FEAT +related O +manufacturing S-MANP +considerations O +. O + + +Results O +from O +Finite B-CONPRI +Element E-CONPRI +( O +FE S-MATE +) O +analysis O +for O +the O +two O +loading O +scenarios O +considered O +: O +intended O +loading O +, O +and O +variability S-CONPRI +in O +loading O +, O +provide O +insight O +into O +the O +solution S-CONPRI +optimality O +and O +robustness S-PRO +of O +the O +design S-FEAT +strategies O +. O + + +Lattice S-CONPRI +strategies O +that O +capitalised O +on O +TO O +results O +were O +found O +to O +be S-MATE +considerably O +( O +∼40–50 O +% O +) O +superior O +in O +terms O +of O +specific B-PRO +stiffness E-PRO +when O +compared O +to O +the O +structures O +where O +this O +was O +not O +the O +case O +. O + + +The O +Graded O +strategy O +was O +found O +to O +be S-MATE +the O +most O +desirable O +from O +both O +the O +design S-FEAT +and O +manufacturing S-MANP +perspective O +. O + + +The O +presented O +pros-and-cons O +for O +the O +various O +proposed O +design S-FEAT +strategies O +aim O +to O +provide O +insight O +into O +their O +suitability O +in O +meeting O +the O +challenges O +faced S-MANP +by O +the O +AM S-MANP +design O +community O +. O + + +Accompanying O +the O +increasing O +advances O +and O +interest O +in O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +is O +an O +increasing O +demand O +for O +an O +industrial S-APPL +workforce O +that O +is O +knowledgeable O +about O +the O +technologies S-CONPRI +and O +how O +to O +apply O +them O +to O +solve O +real-world O +problems O +. O + + +As S-MATE +a O +step S-CONPRI +towards O +addressing O +this O +knowledge O +gap O +, O +a O +workshop O +was O +held O +at O +the O +National O +Science O +Foundation O +( O +NSF O +) O +to O +discuss O +the O +educational O +needs O +to O +prepare O +industry S-APPL +for O +AM S-MANP +and O +its O +use O +in O +different O +fields O +. O + + +The O +workshop O +participants O +– O +66 O +representatives O +from O +academia O +, O +industry S-APPL +, O +and O +government O +– O +identified O +several O +key O +educational O +themes O +: O +( O +1 O +) O +AM B-MANP +processes E-MANP +and O +process/material O +relationships O +, O +( O +2 O +) O +engineering S-APPL +fundamentals O +with O +an O +emphasis O +on O +materials S-CONPRI +science O +and O +manufacturing S-MANP +, O +( O +3 O +) O +professional O +skills O +for O +problem O +solving O +and O +critical O +thinking O +, O +( O +4 O +) O +design S-FEAT +practices O +and O +tools S-MACEQ +that O +leverage O +the O +design B-CONPRI +freedom E-CONPRI +enabled O +by O +AM S-MANP +, O +and O +( O +5 O +) O +cross-functional O +teaming O +and O +ideation O +techniques O +to O +nurture O +creativity O +. O + + +First O +, O +ensure O +that O +all O +AM S-MANP +curricula O +provide O +students O +with O +an O +understanding O +of O +( O +i O +) O +AM S-MANP +and O +traditional B-MANP +manufacturing E-MANP +processes S-CONPRI +to O +enable O +them O +to O +effectively O +select O +the O +appropriate O +process S-CONPRI +for O +product O +realization O +; O +( O +ii O +) O +the O +relationships O +between O +AM B-MANP +processes E-MANP +and O +material B-CONPRI +properties E-CONPRI +; O +and O +( O +iii O +) O +“ O +Design S-FEAT +for O +AM S-MANP +” O +, O +including O +computational B-CONPRI +tools E-CONPRI +for O +AM S-MANP +design O +as S-MATE +well O +as S-MATE +frameworks O +for O +process B-CONPRI +selection E-CONPRI +, O +costing O +, O +and O +solution S-CONPRI +generation O +that O +take O +advantage O +of O +AM S-MANP +capabilities O +. O + + +Second O +, O +establish O +a O +national O +network O +for O +AM S-MANP +education O +that O +, O +by O +leveraging O +existing O +“ O +distributed O +” O +educational O +models O +and O +NSF O +’ O +s S-MATE +Advanced O +Technology S-CONPRI +Education O +( O +ATE O +) O +Programs O +, O +provides O +open O +source S-APPL +resources O +as S-MATE +well O +as S-MATE +packaged O +activities O +, O +courses O +, O +and O +curricula O +for O +all O +educational O +levels O +( O +K-Gray O +) O +. O + + +Fourth O +, O +provide O +support S-APPL +for O +collaborative O +and O +community-oriented O +maker O +spaces O +that O +promote O +awareness O +of O +AM S-MANP +among O +the O +public O +and O +provide O +AM S-MANP +training O +programs O +for O +incumbent O +workers O +in O +industry S-APPL +and O +students O +seeking O +alternative O +pathways O +to O +gain S-PARA +AM S-MANP +knowledge O +and O +experience O +. O + + +The O +dynamic S-CONPRI +tensile O +properties S-CONPRI +of O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +and O +cast S-MANP +Al-10Si-Mg O +alloy S-MATE +were O +investigated O +using O +high-speed O +synchrotron S-ENAT +X-ray O +imaging S-APPL +coupled O +with O +a O +modified O +Kolsky O +bar O +apparatus O +. O + + +A O +controlled O +tensile S-PRO +loading O +( O +strain B-CONPRI +rate E-CONPRI +≈ O +750 O +s−1 O +) O +was O +applied O +using O +the O +Kolsky O +bar O +apparatus O +and O +the O +deformation S-CONPRI +and O +fracture S-CONPRI +behavior O +were O +recorded O +using O +the O +high-speed O +X-ray B-CHAR +imaging E-CHAR +setup O +. O + + +The O +synchrotron S-ENAT +X-ray O +computed B-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +and O +high-speed O +imaging S-APPL +results O +worked O +together O +to O +identify O +the O +location O +of O +the O +critical O +flaw S-CONPRI +and O +to O +capture O +the O +dynamics O +of O +crack B-CONPRI +propagation E-CONPRI +. O + + +In O +all O +experiments O +, O +the O +critical O +flaw S-CONPRI +was O +located O +on O +the O +surface S-CONPRI +of O +each O +specimen O +. O + + +The O +AM S-MANP +specimens O +showed O +significantly O +higher O +crack B-CONPRI +propagation E-CONPRI +speed O +, O +yield B-PRO +strength E-PRO +, O +ultimate B-PRO +tensile I-PRO +strength E-PRO +, O +strain B-MANP +hardening E-MANP +coefficient O +, O +and O +yet O +lower O +ductility S-PRO +compared O +to O +the O +cast S-MANP +specimens O +under O +dynamic S-CONPRI +tension O +. O + + +Although O +the O +strength S-PRO +values O +were O +higher O +for O +the O +AM S-MANP +specimens O +, O +the O +critical O +mode O +I O +stress S-PRO +intensity O +factors O +were O +comparable O +for O +both O +specimens O +. O + + +The O +microstructures S-MATE +of O +the O +samples S-CONPRI +were O +characterized O +by O +CT S-ENAT +and O +scanning S-CONPRI +electron O +microcopy O +. O + + +The O +correlation O +between O +the O +dynamic S-CONPRI +fracture O +behavior O +of O +the O +samples S-CONPRI +and O +the O +microstructure S-CONPRI +of O +the O +samples S-CONPRI +is O +analyzed O +and O +discussed O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +uniquely O +suitable O +for O +healthcare O +applications O +due O +to O +its O +design B-CONPRI +flexibility E-CONPRI +and O +cost O +effectiveness S-CONPRI +for O +creating O +complex B-CONPRI +geometries E-CONPRI +. O + + +Successful O +arthroplasty O +requires O +integration O +of O +the O +prosthetic S-APPL +implant S-APPL +with O +the O +bone S-BIOP +to O +replace O +the O +damaged O +joint S-CONPRI +. O + + +Bone-mimetic O +biomaterials S-MATE +are O +utilised O +due O +to O +their O +mechanical B-CONPRI +properties E-CONPRI +and O +porous S-PRO +structure O +that O +allows O +bone B-CONPRI +ingrowth E-CONPRI +and O +implant S-APPL +fixation O +. O + + +The O +predictability O +of O +predetermined O +interconnected O +porous S-PRO +structures O +produced O +by O +AM S-MANP +ensures O +the O +required O +shape O +, O +size O +and O +properties S-CONPRI +that O +are O +suitable O +for O +tissue O +ingrowth O +and O +prevention O +of O +the O +implant S-APPL +loosening O +. O + + +The O +quality S-CONPRI +of O +the O +manufacturing B-MANP +process E-MANP +needs O +to O +be S-MATE +established O +before O +the O +utilisation O +of O +the O +parts O +in O +healthcare O +. O + + +This O +paper O +demonstrates O +a O +novel O +examination O +method O +of O +acetabular O +hip B-MACEQ +prosthesis E-MACEQ +cups O +based O +on O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +and O +image S-CONPRI +processing O +. O + + +The O +method O +was O +developed O +based O +on O +an O +innovative O +hip B-MACEQ +prosthesis E-MACEQ +acetabular O +cup O +prototype S-CONPRI +with O +a O +prescribed O +non-uniform O +lattice B-FEAT +structure E-FEAT +forming S-MANP +struts O +over O +the O +surface S-CONPRI +, O +with O +the O +interconnected O +porosity S-PRO +encouraging O +bone S-BIOP +adhesion S-PRO +. O + + +This O +non-destructive O +, O +non-contact O +examination O +method O +can O +provide O +information O +of O +the O +interconnectivity O +of O +the O +porous S-PRO +structure O +, O +the O +standard B-CHAR +deviation E-CHAR +of O +the O +size O +of O +the O +pores S-PRO +and O +struts S-MACEQ +, O +the O +local O +thickness O +of O +the O +lattice B-FEAT +structure E-FEAT +in O +its O +size O +and O +spatial B-CHAR +distribution E-CHAR +. O + + +Fatigue S-PRO +limit O +of O +L-PBF S-MANP +maraging O +steels S-MATE +was O +characterized O +by O +infrared S-CONPRI +thermography O +. O + + +Different O +manufacturing S-MANP +strategies O +led S-APPL +to O +varying O +fatigue S-PRO +limit O +values O +. O + + +Printing B-MANP +process E-MANP +optimization S-CONPRI +with O +respect O +to O +fatigue S-PRO +performance O +can O +be S-MATE +envisaged O +. O + + +This O +paper O +deals O +with O +the O +fatigue S-PRO +performance O +of O +maraging B-MATE +steels E-MATE +manufactured S-CONPRI +by O +Powder B-MANP +Bed I-MANP +Fusion E-MANP +using O +a O +laser B-CONPRI +beam E-CONPRI +( O +L-PBF S-MANP +) O +. O + + +The O +objective O +of O +the O +study O +was O +to O +develop O +a O +method O +for O +the O +rapid O +and O +reliable O +characterization O +of O +the O +produced O +material S-MATE +’ O +s S-MATE +fatigue S-PRO +limit O +using O +infrared S-CONPRI +( O +IR S-CHAR +) O +thermography O +. O + + +Next O +, O +fatigue B-CHAR +tests E-CHAR +instrumented O +by O +IR S-CHAR +camera S-MACEQ +were O +processed S-CONPRI +using O +heat B-CONPRI +source E-CONPRI +reconstruction O +to O +measure O +the O +mechanical S-APPL +dissipation O +due O +to O +fatigue B-PRO +damage E-PRO +. O + + +A O +statistical O +model S-CONPRI +was O +then O +proposed O +to O +identify O +the O +fatigue S-PRO +limit O +of O +the O +material S-MATE +. O + + +Finally O +, O +a O +practical O +application O +was O +performed O +to O +compare O +different O +manufacturing S-MANP +strategies O +using O +the O +same O +powder S-MATE +, O +opening O +perspectives O +for O +the O +rapid O +optimization S-CONPRI +of O +the O +printing B-MANP +process E-MANP +with O +respect O +to O +the O +fatigue S-PRO +performance O +of O +the O +parts O +produced O +. O + + +Magnetically O +isotropic S-PRO +bonded O +magnets S-APPL +with O +a O +high O +loading O +fraction S-CONPRI +of O +70 O +vol. O +% O +Nd-Fe-B O +are O +fabricated S-CONPRI +via O +an O +extrusion-based O +additive B-MANP +manufacturing E-MANP +, O +or O +3D B-MANP +printing E-MANP +system O +that O +enables O +rapid O +production S-MANP +of O +large O +parts O +. O + + +The O +density S-PRO +of O +the O +printed O +magnet S-APPL +is O +∼ O +5.2 O +g/cm3 O +. O + + +The O +as-printed O +magnets S-APPL +are O +then O +coated S-APPL +with O +two O +types O +of O +polymers S-MATE +, O +both O +of O +which O +improve O +the O +thermal B-PRO +stability E-PRO +as S-MATE +revealed O +by O +flux S-MATE +aging O +loss O +measurements O +. O + + +Tensile B-CHAR +tests E-CHAR +performed O +at O +25 O +°C O +and O +100 O +°C O +show O +that O +the O +ultimate O +tensile B-PRO +stress E-PRO +( O +UTS S-PRO +) O +increases O +with O +increasing O +loading O +fraction S-CONPRI +of O +the O +magnet S-APPL +powder O +, O +and O +decreases O +with O +increasing O +temperature S-PARA +. O + + +AC O +magnetic B-CHAR +susceptibility E-CHAR +and O +resistivity S-PRO +measurements O +show O +that O +the O +3D B-MANP +printed E-MANP +Nd-Fe-B O +bonded O +magnets S-APPL +exhibit O +extremely O +low O +eddy O +current O +loss O +and O +high O +resistivity S-PRO +. O + + +Finally O +, O +we O +demonstrate O +the O +performance S-CONPRI +of O +the O +3D B-MANP +printed E-MANP +magnets O +in O +a O +DC S-CHAR +motor O +configuration S-CONPRI +via O +back O +electromotive O +force S-CONPRI +measurements O +. O + + +During O +solidification S-CONPRI +of O +many O +so-called O +high-performance O +engineering S-APPL +alloys S-MATE +, O +such O +as S-MATE +6000 O +and O +7000 O +series O +aluminum B-MATE +alloys E-MATE +, O +which O +are O +also O +unweldable O +autogenously O +, O +volumetric O +solidification B-CONPRI +shrinkage E-CONPRI +and O +thermal O +contraction S-CONPRI +produces O +voids S-CONPRI +and O +cracks O +. O + + +During O +additive B-MANP +manufacturing E-MANP +processing O +, O +these O +defects S-CONPRI +can O +span O +the O +length O +of O +columnar B-PRO +grains E-PRO +, O +as S-MATE +well O +as S-MATE +intergranular O +regions O +. O + + +In O +this O +research S-CONPRI +, O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +of O +aluminum B-MATE +alloy E-MATE +( O +AA O +) O +6061 O +used O +powder B-MACEQ +bed E-MACEQ +heating S-MANP +at O +500 O +°C O +in O +combination O +with O +other O +experimentally O +determined O +processing O +parameters S-CONPRI +to O +produce O +crack-free O +components S-MACEQ +. O + + +In O +addition O +, O +melt-pool O +banding O +, O +which O +is O +a O +normal O +solidification S-CONPRI +feature S-FEAT +in O +LPBF S-MANP +, O +was O +eliminated O +, O +illustrating O +solidification B-MANP +process E-MANP +modification O +as S-MATE +a O +consequence O +of O +powder B-MACEQ +bed E-MACEQ +heating S-MANP +. O + + +Corresponding O +microindentation O +hardness S-PRO +and O +tensile B-CHAR +testing E-CHAR +of O +the O +as-fabricated O +AA6061 S-MATE +components O +indicated O +an O +average S-CONPRI +Vickers O +hardness S-PRO +of O +HV O +54 O +, O +and O +tensile S-PRO +yield O +, O +ultimate B-PRO +strength E-PRO +, O +and O +elongation B-PRO +values E-PRO +of O +60 O +MPa S-CONPRI +, O +130 O +MPa S-CONPRI +, O +and O +15 O +% O +, O +respectively O +. O + + +These O +mechanical B-CONPRI +properties E-CONPRI +and O +those O +of O +heat S-CONPRI +treated O +parts O +showed O +values O +comparable O +to O +annealed O +and O +T6 O +heat S-CONPRI +treated O +wrought S-CONPRI +products O +, O +respectively O +. O + + +X-ray B-CHAR +diffraction E-CHAR +and O +optical B-CHAR +microscopy E-CHAR +revealed O +columnar B-PRO +grain E-PRO +growth O +in O +the O +build B-PARA +direction E-PARA +with O +the O +as-fabricated O +, O +powder-bed O +heated O +product O +microstructure S-CONPRI +characterized O +by O +[ O +100 O +] O +textured O +, O +elongated O +grains S-CONPRI +( O +∼ O +25 O +μm O +wide O +by O +400 O +μm O +in O +length O +) O +, O +and O +both O +intragranular O +and O +intergranular O +, O +noncoherent O +Al-Si-O O +precipitates S-MATE +which O +did O +not O +contribute O +significantly O +to O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +results O +of O +this O +study O +are O +indicative O +that O +powder B-MACEQ +bed E-MACEQ +heating S-MANP +may O +be S-MATE +used O +to O +assist O +with O +successful O +fabrication S-MANP +of O +AA6061 S-MATE +and O +other O +alloy S-MATE +systems O +susceptible O +to O +additive B-CONPRI +manufacturing I-CONPRI +solidification E-CONPRI +cracking O +. O + + +Recent O +developments O +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +involving O +heat S-CONPRI +and O +mass O +deposition S-CONPRI +have O +exposed O +the O +need O +for O +computationally O +efficient O +modeling S-ENAT +of O +thermal O +field O +histories O +. O + + +This O +is O +due O +to O +the O +effect O +of O +such O +histories O +on O +resulting O +morphologies S-CONPRI +and O +quantities O +of O +interest O +, O +such O +as S-MATE +micro- O +and O +meso-structure O +, O +residual S-CONPRI +strains O +and O +stresses O +, O +as S-MATE +well O +as S-MATE +on O +material S-MATE +and O +structural O +properties S-CONPRI +and O +associated O +functional O +performance S-CONPRI +at O +the O +macro-scale O +. O + + +Consequently O +, O +in O +this O +paper O +, O +analytic O +solutions O +are O +enriched O +and O +then O +used O +to O +model S-CONPRI +the O +thermal O +aspects O +of O +AM S-MANP +, O +in O +a O +manner O +that O +demonstrates O +both O +high O +computational O +performance S-CONPRI +and O +fidelity O +required O +to O +enable O +“ O +in O +the O +loop O +” O +use O +for O +feedback S-PARA +control O +of O +AM B-MANP +processes E-MANP +. O + + +It O +is O +first O +shown O +that O +the O +utility O +of O +existing O +analytical B-CONPRI +solutions E-CONPRI +is O +limited O +due O +to O +their O +underlying O +assumptions O +, O +some O +of O +which O +are O +their O +derivation O +based O +on O +a O +homogeneous S-CONPRI +semi-infinite O +domain S-CONPRI +and O +temperature S-PARA +independent O +material B-CONPRI +properties E-CONPRI +among O +others O +. O + + +These O +solutions O +must O +therefore O +be S-MATE +enriched O +in O +order O +to O +capture O +the O +actual O +thermal O +physics S-CONPRI +associated O +with O +the O +relevant O +AM B-MANP +processes E-MANP +. O + + +Enrichments O +introduced O +herein O +include O +the O +handling O +of O +strong O +nonlinear O +variations S-CONPRI +in O +material B-CONPRI +properties E-CONPRI +due O +to O +their O +dependence O +on O +temperature S-PARA +, O +finite O +non-convex O +solution S-CONPRI +domains O +, O +behavior O +of O +heat B-CONPRI +sources E-CONPRI +very O +near O +domain S-CONPRI +boundaries S-FEAT +, O +and O +mass O +accretion O +coupled O +to O +the O +thermal O +problem O +. O + + +Design B-FEAT +for I-FEAT +additive I-FEAT +manufacturing E-FEAT +( O +AM S-MANP +) O +requires O +knowledge O +of O +the O +constraints O +associated O +with O +your O +targeted O +AM B-MANP +process E-MANP +. O + + +One O +important O +design S-FEAT +concern O +is O +the O +unintentional O +trapping O +of O +parasitic O +mass O +in O +occluded O +void B-CONPRI +geometries E-CONPRI +with O +either O +uncured O +or O +non-solidified O +material S-MATE +, O +or O +in O +some O +cases O +, O +sacrificial O +support B-MATE +material E-MATE +. O + + +These O +occluded O +features O +create O +the O +need O +to O +physically O +alter O +the O +optimal O +topology S-CONPRI +to O +remove O +the O +material S-MATE +. O + + +In O +this O +work O +, O +a O +projection-based O +topology B-FEAT +optimization E-FEAT +design S-FEAT +formulation O +is O +proposed O +to O +eliminate O +occluded O +void S-CONPRI +topological O +features O +in O +optimal O +AM S-MANP +designs O +. O + + +The O +algorithm S-CONPRI +is O +based O +on O +the O +combination O +and O +enhancement O +of O +two O +existing O +algorithms S-CONPRI +: O +a O +projection-based O +, O +overhang-constrained O +algorithm S-CONPRI +to O +design S-FEAT +self-supporting O +structures O +in O +AM S-MANP +, O +and O +a O +void S-CONPRI +projection O +algorithm S-CONPRI +to O +design S-FEAT +topologies O +through O +control O +of O +the O +void B-CONPRI +phase E-CONPRI +. O + + +The O +combined O +algorithm S-CONPRI +results O +in O +topologies S-CONPRI +with O +void S-CONPRI +regions O +that O +always O +possess O +an O +exit O +path O +to O +predefined O +outer O +surfaces S-CONPRI +– O +i.e O +. O + + +Solutions O +are O +first O +demonstrated O +in O +two O +dimensions S-FEAT +, O +with O +increasing O +design B-CONPRI +freedom E-CONPRI +allowed O +through O +algorithm S-CONPRI +enhancements O +. O + + +The O +algorithm S-CONPRI +is O +then O +adapted O +to O +3D S-CONPRI +, O +adopting O +a O +multi-phase O +TO O +approach O +to O +not O +only O +regain O +control O +of O +the O +solid O +phase S-CONPRI +length B-CHAR +scale E-CHAR +, O +but O +also O +to O +drive O +toward O +superior O +performing O +topologies S-CONPRI +with O +minimal O +impact S-CONPRI +on O +the O +part O +performance S-CONPRI +. O + + +Steel S-MATE +– O +Inconel S-MATE +multi-scale O +multilayer O +by O +liquid B-MATE +metal E-MATE +dispersed O +powder B-MANP +bed I-MANP +fusion E-MANP +. O + + +Nano-scale B-CONPRI +microstructural E-CONPRI +design S-FEAT +by O +reactive O +additive B-MANP +manufacturing E-MANP +. O + + +Gradients O +of O +microstructure S-CONPRI +, O +texture S-FEAT +, O +residual B-PRO +stresses E-PRO +and O +chemical B-CONPRI +composition E-CONPRI +. O + + +Zig-zag O +columnar B-PRO +grains E-PRO +, O +grain B-CONPRI +boundaries E-CONPRI +and O +crack O +formation O +. O + + +Multi-scale O +correlative O +characterization O +of O +additively B-MANP +manufactured E-MANP +gradient O +structures O +. O + + +Synthesis O +of O +multi-metal O +hybrid O +structures O +with O +narrow O +heat B-CONPRI +affected I-CONPRI +zones E-CONPRI +, O +limited O +residual B-PRO +stresses E-PRO +and O +secondary O +phase S-CONPRI +occurrence O +represents O +a O +serious O +scientific O +and O +technological O +challenge O +. O + + +In O +this O +work O +, O +liquid O +dispersed O +metal B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +was O +used O +to O +additively B-MANP +manufacture E-MANP +a O +multilayered O +structure S-CONPRI +based O +on O +alternating O +Inconel B-MATE +625 I-MATE +alloy E-MATE +( O +IN625 O +) O +and O +316L B-MATE +stainless I-MATE +steel E-MATE +( O +316L O +) O +layers O +on O +a O +316L O +base O +plate O +. O + + +Analytical O +scanning S-CONPRI +and O +transmission B-CHAR +electron I-CHAR +microscopies E-CHAR +, O +high-energy O +synchrotron S-ENAT +X-ray O +diffraction S-CHAR +and O +nanoindentation S-CHAR +analysis O +reveal O +sharp O +compositional O +, O +structural O +and O +microstructural S-CONPRI +boundaries S-FEAT +between O +alternating O +60 O +μm O +thick O +alloys S-MATE +’ O +sub-regions O +and O +unique O +microstructures S-MATE +at O +macro- O +, O +micro- S-CHAR +and O +nano-scales S-FEAT +. O + + +The O +periodic O +occurrence O +of O +IN625 O +and O +316L O +sub-regions O +is O +correlated S-CONPRI +with O +a O +cross-sectional O +hardness S-PRO +increase O +and O +decrease O +and O +compressive B-PRO +stress E-PRO +decrease O +and O +increase O +, O +respectively O +. O + + +The O +laser S-ENAT +scanning O +strategy O +induced O +a O +growth O +of O +elongated O +grains S-CONPRI +separated O +by O +zig-zag O +low-angle O +grain B-CONPRI +boundaries E-CONPRI +, O +which O +correlate O +with O +the O +occurrence O +of O +zig-zag O +cracks O +propagating O +in O +the O +growth O +direction O +. O + + +The O +occurrence O +of O +the O +C-like O +stress S-PRO +gradient O +with O +a O +pronounced O +surface S-CONPRI +tensile O +stress S-PRO +of O +about O +500 O +MPa S-CONPRI +is O +interpreted O +by O +the O +temperature B-CONPRI +gradient I-CONPRI +mechanism E-CONPRI +model S-CONPRI +. O + + +Chemical B-CHAR +analysis E-CHAR +indicates O +a O +formation O +of O +reinforcing O +spherical S-CONPRI +chromium-metal-oxide O +nano-dispersoids O +and O +demonstrates O +a O +possibility O +for O +reactive O +additive B-MANP +manufacturing E-MANP +and O +microstructural S-CONPRI +design S-FEAT +at O +the O +nanoscale O +, O +as S-MATE +a O +remarkable O +attribute O +of O +the O +deposition B-MANP +process E-MANP +. O + + +Finally O +, O +the O +study O +shows O +that O +the O +novel O +approach O +represents O +an O +effective O +tool S-MACEQ +to O +combine O +dissimilar O +metallic B-MATE +alloys E-MATE +into O +unique O +bionic O +hierarchical O +microstructures S-MATE +with O +possible O +synergetic O +properties S-CONPRI +. O + + +Binder B-MANP +jetting E-MANP +( O +BJ S-MANP +) O +is O +a O +high O +build-rate O +additive B-MANP +manufacturing I-MANP +process E-MANP +with O +growing O +commercial O +interest O +. O + + +Growth O +in O +BJ S-MANP +applications O +is O +driven O +by O +the O +use O +of O +finer O +powders S-MATE +and O +improved O +post-processing S-CONPRI +methods O +that O +can O +produce O +dense O +, O +homogenous O +final O +parts O +. O + + +This O +paper O +considers O +the O +impact S-CONPRI +of O +in-process O +drying S-MANP +, O +part O +geometry S-CONPRI +, O +and O +droplet B-PARA +size E-PARA +on O +a O +key O +printing O +parameter S-CONPRI +: O +binder S-MATE +saturation O +. O + + +Parts O +of O +varying O +thicknesses O +are O +printed O +with O +a O +range S-PARA +of O +saturation O +levels O +under O +various O +heating S-MANP +conditions O +. O + + +In O +unheated O +powder B-MACEQ +beds E-MACEQ +, O +part O +mass O +increases O +linearly O +with O +printing O +saturation O +levels O +across O +the O +range S-PARA +tested O +( O +30 O +% O +–130 O +% O +) O +. O + + +However O +, O +when O +the O +powder S-MATE +is O +heated O +between O +layers O +, O +there O +is O +a O +wide O +range S-PARA +of O +print S-MANP +saturation O +levels O +( O +30–80 O +% O +) O +over O +which O +increasing O +binder S-MATE +saturation O +or O +droplet S-CONPRI +volume O +does O +not O +increase O +the O +part O +mass O +. O + + +This O +stable O +part O +mass O +corresponds O +to O +accurate S-CHAR +part O +geometries S-CONPRI +without O +bleeding O +and O +is O +likely O +due O +to O +enhanced O +evaporation S-CONPRI +of O +the O +binder S-MATE +solvent O +between O +layers O +. O + + +Smaller O +droplet S-CONPRI +volume O +( O +42 O +pl S-CHAR +) O +was O +also O +shown O +to O +decrease O +saturation O +levels O +in O +unheated O +powder B-MACEQ +bed E-MACEQ +and O +in O +single O +layer S-PARA +parts O +. O + + +The O +differences O +in O +part O +mass O +with O +print S-MANP +saturation O +and O +droplet S-CONPRI +volume O +are O +most O +pronounced O +in O +thin O +parts O +. O + + +These O +observations O +lead S-MATE +to O +a O +simple S-MANP +method O +for O +determining O +an O +appropriate O +print S-MANP +saturation O +parameter S-CONPRI +for O +a O +powder/binder O +combination O +in O +thick O +parts O +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +widely O +gaining O +popularity O +as S-MATE +an O +alternative O +manufacturing S-MANP +technique O +for O +complex O +and O +customised O +parts O +. O + + +AM B-MATE +materials E-MATE +are O +used O +for O +various O +medical B-APPL +applications E-APPL +in O +both O +metal S-MATE +and O +polymer S-MATE +options O +. O + + +Adenosine O +Triphosphate O +( O +ATP O +) O +bioluminescence O +technology S-CONPRI +is O +a O +rapid O +, O +user-friendly O +method O +of O +quantifying O +surface S-CONPRI +cleanliness O +and O +was O +used O +in O +this O +study O +to O +gather O +quantitative B-CONPRI +data E-CONPRI +on O +levels O +of O +contamination O +on O +AM B-MATE +materials E-MATE +at O +three O +different O +stage O +processes S-CONPRI +: O +post O +build S-PARA +, O +post O +cleaning S-MANP +and O +post O +sterilization O +. O + + +The O +surface S-CONPRI +cleanliness O +of O +eleven O +AM B-MATE +materials E-MATE +, O +three O +metals S-MATE +and O +eight O +polymers S-MATE +, O +was O +tested O +. O + + +ATP O +bioluminescence O +provided O +the O +sensitivity S-PARA +to O +evaluate O +different O +material S-MATE +surface O +characteristics O +, O +and O +specifically O +the O +impact S-CONPRI +of O +surface B-MANP +finishing E-MANP +techniques O +on O +overall O +cleanliness O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +provides O +flexibility S-PRO +in O +creating O +novel O +metal-matrix O +composites S-MATE +( O +MMCs S-MATE +) O +with O +unique O +microstructures S-MATE +and O +enhanced O +mechanical B-CONPRI +properties E-CONPRI +over O +conventionally O +manufactured S-CONPRI +MMGs O +. O + + +In O +this O +study O +, O +a O +Zr-based O +metallic B-MATE +glass E-MATE +( O +MG S-MATE +) O +decorated O +Ti6Al4V S-MATE +( O +Ti64 S-MATE +) O +composite S-MATE +with O +a O +unique O +hybrid O +nanostructure O +and O +enhanced O +mechanical B-CONPRI +properties E-CONPRI +and O +wear B-PRO +resistance E-PRO +was O +fabricated S-CONPRI +using O +SLM S-MANP +. O + + +The O +results O +revealed O +that O +a O +near-full O +dense O +and O +crack-free O +Ti-based O +composite S-MATE +was O +produced O +, O +with O +its O +reinforcements O +consisting O +of O +ultrafine O +β O +dendrites S-BIOP +set O +with O +partially O +crystallized O +MG S-MATE +nanobands O +uniformly O +distributed O +along O +the O +boundaries S-FEAT +of O +the O +melt B-MATE +pool E-MATE +. O + + +The O +addition O +of O +MG S-MATE +significantly O +affected O +the O +solidification S-CONPRI +behavior O +of O +the O +Ti-liquid O +because O +of O +its O +higher O +dynamic S-CONPRI +viscosity O +and O +density S-PRO +as S-MATE +well O +as S-MATE +compositional O +effect O +on O +the O +phase S-CONPRI +stability O +. O + + +With O +such O +a O +unique O +nanostructured O +reinforcement S-PARA +, O +the O +Ti64/MG O +composite S-MATE +exhibited O +an O +enhanced O +yield B-PRO +strength E-PRO +( O +> O +1 O +GPa S-PRO +) O +with O +reasonable O +ductility S-PRO +and O +fracture S-CONPRI +toughness O +. O + + +On O +the O +basis O +of O +the O +result O +of O +a O +theoretical S-CONPRI +analysis O +, O +we O +attributed O +the O +main O +strengthening B-CONPRI +mechanism E-CONPRI +to O +Orowan O +strengthening S-MANP +. O + + +The O +wear B-PRO +resistance E-PRO +was O +also O +much O +improved O +in O +the O +Ti64/MG O +composite S-MATE +, O +arising O +from O +the O +higher O +hardness S-PRO +of O +the O +nanostructured O +reinforcement S-PARA +and O +the O +formation O +of O +a O +more O +protective O +tribo-oxide O +layer S-PARA +during O +sliding O +. O + + +The O +confinement O +of O +the O +3D S-CONPRI +distributed O +reinforcement S-PARA +phase S-CONPRI +played O +a O +crucial O +role O +in O +preventing O +the O +delamination S-CONPRI +of O +the O +tribo-layer O +on O +the O +matrix O +. O + + +This O +work O +opens O +a O +pathway O +to O +the O +design S-FEAT +of O +novel O +additively B-MANP +manufactured E-MANP +MMCs O +with O +outstanding O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Fatigue S-PRO +of O +laser B-CONPRI +beam E-CONPRI +powder O +bed S-MACEQ +fused O +( O +LB-PBF O +) O +316 O +L O +stainless B-MATE +steel E-MATE +is O +investigated O +. O + + +Effects O +of O +build B-PARA +orientation E-PARA +and O +surface B-PRO +roughness E-PRO +are O +examined O +. O + + +Fractography S-CHAR +and O +failure S-CONPRI +analysis O +on O +fatigue S-PRO +specimens O +are O +conducted O +. O + + +A O +fracture S-CONPRI +mechanics-based O +approach O +is O +employed O +to O +explain O +the O +fatigue S-PRO +results O +. O + + +The O +effects O +of O +layer S-PARA +orientation O +and O +surface B-PRO +roughness E-PRO +on O +the O +mechanical B-CONPRI +properties E-CONPRI +and O +fatigue B-PRO +life E-PRO +of O +316L B-MATE +stainless I-MATE +steel E-MATE +( O +SS S-MATE +) O +fabricated S-CONPRI +via O +a O +laser B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +( O +LB-PBF O +) O +additive B-MANP +manufacturing I-MANP +process E-MANP +were O +investigated O +. O + + +Quasi-static S-CONPRI +tensile O +and O +uniaxial O +fatigue B-CHAR +tests E-CHAR +were O +conducted O +on O +LB-PBF O +316L O +SS S-MATE +specimens O +fabricated S-CONPRI +in O +vertical S-CONPRI +and O +diagonal O +directions O +in O +their O +as-built O +surface S-CONPRI +condition O +, O +as S-MATE +well O +as S-MATE +in O +horizontal O +, O +vertical S-CONPRI +, O +and O +diagonal O +directions O +where O +the O +surface S-CONPRI +had O +been O +machined S-MANP +to O +remove O +any O +effects O +of O +surface B-PRO +roughness E-PRO +. O + + +Similarly O +, O +in O +the O +as-built O +condition O +, O +vertical S-CONPRI +specimens O +demonstrated O +better O +fatigue S-PRO +resistance O +when O +compared O +to O +diagonal O +specimens O +. O + + +Furthermore O +, O +the O +detrimental O +effects O +of O +surface B-PRO +roughness E-PRO +on O +fatigue B-PRO +life E-PRO +of O +LB-PBF O +316L O +SS S-MATE +specimens O +was O +not O +significant O +, O +which O +may O +be S-MATE +due O +to O +the O +presence O +of O +large O +internal O +defects S-CONPRI +in O +the O +specimens O +. O + + +Anisotropy S-PRO +of O +LB-PBF O +316L O +SS S-MATE +specimens O +was O +attributed O +to O +the O +variation S-CONPRI +in O +layer S-PARA +orientation O +, O +affecting O +defects S-CONPRI +’ O +directionality O +with O +respect O +to O +the O +loading O +direction O +. O + + +These O +defect S-CONPRI +characteristics O +can O +significantly O +influence O +the O +stress B-CHAR +concentration E-CHAR +and O +, O +consequently O +, O +fatigue S-PRO +behavior O +of O +additive B-APPL +manufactured I-APPL +parts E-APPL +. O + + +Therefore O +, O +the O +elastic-plastic O +energy O +release O +rates O +, O +a O +fracture S-CONPRI +mechanics-based O +concept O +that O +incorporates O +size O +, O +location O +, O +and O +projected O +area S-PARA +of O +defects S-CONPRI +on O +the O +loading O +plane O +, O +were O +determined O +to O +correlate O +the O +fatigue S-PRO +data S-CONPRI +and O +acceptable O +results O +were O +achieved O +. O + + +As-built O +microstructure S-CONPRI +of O +L-PBF B-MANP +AM E-MANP +consists O +of O +fine O +dendrites S-BIOP +and O +precipitates S-MATE +. O + + +Precipitates S-MATE +comprise O +mostly O +Laves B-CONPRI +phase E-CONPRI +and O +small O +amount O +of O +NbC O +carbide S-MATE +. O + + +Uniformly O +distributed O +hardness S-PRO +for O +samples S-CONPRI +built O +with O +and O +without O +support S-APPL +. O + + +Calculations O +show O +heat S-CONPRI +build-up O +of O +487 O +K S-MATE +with O +support S-APPL +versus O +353 O +K S-MATE +without O +support S-APPL +. O + + +Solidification B-PARA +cooling I-PARA +rate E-PARA +6.57 O +× O +105 O +K/s O +with O +support S-APPL +versus O +8.45 O +× O +105 O +K/s O +without O +. O + + +INCONEL® O +718 O +cubes O +with O +and O +without O +structural O +support S-APPL +were O +built O +by O +laser-powder O +bed B-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +. O + + +The O +effect O +of O +support S-APPL +on O +the O +as-built O +microstructure S-CONPRI +was O +studied O +based O +on O +the O +microstructural S-CONPRI +characteristics O +and O +micro-hardness O +variations S-CONPRI +. O + + +Specifically O +, O +the O +microstructure S-CONPRI +was O +examined O +by O +optical B-CHAR +microscopy E-CHAR +, O +and O +scanning S-CONPRI +and O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +The O +precipitates S-MATE +were O +identified O +via O +selected O +area S-PARA +diffraction O +supplemented O +by O +high-resolution S-PARA +energy B-CHAR +dispersive I-CHAR +X-ray I-CHAR +spectroscopy E-CHAR +. O + + +Micro-hardness O +distributions S-CONPRI +on O +cross B-CONPRI +sections E-CONPRI +parallel O +and O +perpendicular O +to O +the O +build B-PARA +direction E-PARA +were O +mapped O +. O + + +In O +addition O +, O +analytical O +equations O +, O +taking O +into O +account O +various O +laser B-CONPRI +processing E-CONPRI +parameters O +, O +material B-CONPRI +properties E-CONPRI +and O +support S-APPL +geometries S-CONPRI +, O +were O +developed O +to O +calculate O +the O +heat S-CONPRI +build-up O +and O +cooling S-MANP +conditions O +during O +L-PBF S-MANP +. O + + +The O +results O +of O +microstructure S-CONPRI +characterization O +and O +analytical O +calculation O +showed O +a O +marginal O +effect O +of O +the O +support S-APPL +on O +the O +local O +microstructure S-CONPRI +and O +hardness S-PRO +due O +to O +the O +low O +heat S-CONPRI +input O +in O +L-PBF S-MANP +. O + + +Moreover O +, O +the O +comprehensive O +set S-APPL +of O +microstructure B-CONPRI +data E-CONPRI +is O +useful O +for O +future O +work O +of O +modelling S-ENAT +processing-microstructure O +relation O +as S-MATE +well O +as S-MATE +optimizing O +post-fabrication O +heat B-MANP +treatment E-MANP +. O + + +The O +ability O +to O +simulate O +the O +thermal O +, O +mechanical S-APPL +, O +and O +material S-MATE +response O +in O +additive B-MANP +manufacturing E-MANP +offers O +tremendous O +utility O +for O +gaining O +a O +deeper O +understanding O +of O +the O +process S-CONPRI +, O +while O +also O +having O +significant O +practical O +application O +. O + + +The O +approach O +and O +progress O +in O +establishing O +an O +integrated O +computational O +system O +for O +simulating O +additive B-MANP +manufacturing E-MANP +of O +metallic S-MATE +components S-MACEQ +are O +discussed O +, O +with O +the O +primary O +focus O +directed O +at O +the O +computational O +intensive O +components S-MACEQ +, O +which O +include O +the O +process S-CONPRI +and O +material S-MATE +models O +. O + + +SRAS O +optical S-CHAR +data S-CONPRI +was O +used O +for O +defect S-CONPRI +characterisation O +of O +an O +SLM S-MANP +layer S-PARA +. O + + +A O +bespoke O +algorithm S-CONPRI +was O +developed O +to O +target O +defects S-CONPRI +for O +rework O +. O + + +A O +hatch O +pattern S-CONPRI +rework O +showed O +to O +be S-MATE +the O +most O +effective O +method O +for O +rework O +. O + + +A O +general O +framework S-CONPRI +for O +targeted O +rework O +in O +AM B-MANP +processes E-MANP +is O +presented O +. O + + +A O +major O +factor O +limiting O +the O +adoption O +of O +powder-bed-fusion O +additive B-MANP +manufacturing E-MANP +for O +production S-MANP +of O +parts O +is O +the O +control O +of O +build S-PARA +process O +defects S-CONPRI +and O +the O +effect O +these O +have O +upon O +the O +certification O +of O +parts O +for O +structural O +applications O +. O + + +In O +response O +to O +this O +, O +new O +methods O +for O +detecting O +defects S-CONPRI +and O +to O +monitor S-CONPRI +process O +performance S-CONPRI +are O +being O +developed O +. O + + +However O +, O +effective O +utilisation O +of O +such O +methods O +to O +rework O +parts O +in O +process S-CONPRI +has O +yet O +to O +be S-MATE +demonstrated.This O +study O +investigates S-CONPRI +the O +use O +of O +spatially O +resolved O +acoustic O +spectroscopy S-CONPRI +( O +SRAS O +) O +scan O +data S-CONPRI +to O +inform O +repair O +strategies O +within O +a O +commercial O +selective B-MANP +laser I-MANP +melting E-MANP +machine S-MACEQ +. O + + +New O +methodologies O +which O +allow O +for O +rework O +of O +the O +most O +common O +defects S-CONPRI +observed O +in O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +manufacturing S-MANP +are O +proposed O +and O +demonstrated O +. O + + +Three O +rework O +methodologies O +are O +applied O +to O +targeted O +surface S-CONPRI +breaking O +pores S-PRO +: O +a O +hatch O +pattern S-CONPRI +, O +a O +spiral O +pattern S-CONPRI +and O +a O +single O +shot O +exposure S-CONPRI +. O + + +The O +work O +presented O +shows O +that O +it O +is O +possible O +to O +correct O +surface S-CONPRI +breaking O +pores S-PRO +using O +targeted O +re-melting O +, O +reducing O +the O +depth O +of O +defects S-CONPRI +whilst O +minimising O +changes O +in O +local O +texture S-FEAT +. O + + +This O +work O +is O +part O +of O +a O +programme O +to O +develop O +a O +method O +by O +which O +defects S-CONPRI +can O +be S-MATE +detected O +and O +the O +part O +reworked O +in-process O +during O +SLM S-MANP +to O +enable O +defect S-CONPRI +specification O +targets O +to O +be S-MATE +met O +. O + + +Despite O +the O +rapid O +adoption O +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +Additive B-MANP +Manufacturing E-MANP +by O +industry S-APPL +, O +current O +processes S-CONPRI +remain O +largely O +open-loop O +, O +with O +limited O +real-time O +monitoring O +capabilities O +. O + + +While O +some O +machines S-MACEQ +offer O +powder B-MACEQ +bed E-MACEQ +visualization O +during O +builds S-CHAR +, O +they O +lack O +automated O +analysis O +capability O +. O + + +This O +work O +presents O +an O +approach O +for O +in-situ S-CONPRI +monitoring O +and O +analysis O +of O +powder B-MACEQ +bed E-MACEQ +images S-CONPRI +with O +the O +potential O +to O +become O +a O +component S-MACEQ +of O +a O +real-time O +control B-MACEQ +system E-MACEQ +in O +an O +LPBF S-MANP +machine O +. O + + +Specifically O +, O +a O +computer B-CONPRI +vision I-CONPRI +algorithm E-CONPRI +is O +used O +to O +automatically O +detect O +and O +classify O +anomalies S-CONPRI +that O +occur O +during O +the O +powder S-MATE +spreading O +stage O +of O +the O +process S-CONPRI +. O + + +Anomaly S-CONPRI +detection O +and O +classification S-CONPRI +are O +implemented O +using O +an O +unsupervised O +machine B-ENAT +learning I-ENAT +algorithm E-ENAT +, O +operating O +on O +a O +moderately-sized O +training O +database S-ENAT +of O +image S-CONPRI +patches O +. O + + +The O +performance S-CONPRI +of O +the O +final O +algorithm S-CONPRI +is O +evaluated O +, O +and O +its O +usefulness O +as S-MATE +a O +standalone O +software S-CONPRI +package O +is O +demonstrated O +with O +several O +case B-CONPRI +studies E-CONPRI +. O + + +The O +mechanical S-APPL +, O +metallurgical S-APPL +and O +corrosion B-PRO +properties E-PRO +of O +Alloy S-MATE +625 O +produced O +using O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +manufacturing B-MANP +process E-MANP +were O +investigated O +and O +compared O +with O +typical O +performance S-CONPRI +of O +the O +alloy S-MATE +produced O +using O +conventional O +forging S-MANP +processes O +. O + + +Test O +specimens O +were O +produced O +near B-MANP +net I-MANP +shape E-MANP +along O +with O +several O +demonstration O +pieces O +that O +were O +produced O +to O +examine O +the O +geometric O +complexity S-CONPRI +that O +could O +be S-MATE +achieved O +with O +the O +process S-CONPRI +. O + + +The O +additively B-MANP +manufactured E-MANP +specimens O +exhibited O +strength S-PRO +, O +fracture S-CONPRI +toughness O +and O +impact S-CONPRI +toughness O +that O +was O +equal O +to O +or O +better O +than O +properties S-CONPRI +typically O +achieved O +for O +wrought S-CONPRI +product O +. O + + +There O +was O +no O +evidence O +of O +stress B-CONPRI +corrosion I-CONPRI +cracking E-CONPRI +susceptibility O +in O +3.5 O +% O +NaCl S-MATE +solution O +at O +stress S-PRO +intensities O +up O +to O +70 O +ksi-in1/2 O +after O +700 O +h O +exposure S-CONPRI +. O + + +The O +microstructure S-CONPRI +was O +equiaxed O +in O +the O +plane O +of O +the O +powder B-MACEQ +bed I-MACEQ +build I-MACEQ +platform E-MACEQ +( O +X–Y O +) O +and O +exhibited O +a O +columnar O +shape O +in O +the O +Z O +direction O +although O +there O +was O +not O +any O +significant O +evidence O +of O +anisotropy S-PRO +in O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +high O +hardness S-PRO +, O +melting B-PARA +temperature E-PARA +and O +environmental O +resistance S-PRO +of O +most O +ceramic B-MATE +materials E-MATE +makes O +them O +well-suited O +for O +propulsion O +, O +tribilogical O +and O +protective O +applications O +. O + + +However O +, O +these O +same O +attributes O +pose O +difficulties O +for O +manufacturing S-MANP +and O +machining S-MANP +of O +ceramics S-MATE +and O +ultimately O +limit S-CONPRI +the O +achievable O +design B-CONPRI +space E-CONPRI +of O +these O +materials S-CONPRI +. O + + +Recently O +, O +a O +new O +class O +of O +preceramic O +photopolymers S-MATE +has O +been O +developed O +that O +enables O +additive B-MANP +manufacturing E-MANP +of O +ceramics S-MATE +using O +commercially O +available O +stereolithography S-MANP +systems O +. O + + +By O +consolidating O +preceramic O +monomers O +via O +layer-wise O +exposure S-CONPRI +to O +ultraviolet B-CONPRI +light E-CONPRI +and O +subsequently O +pyrolyzing O +under O +an O +inert O +atmosphere O +to O +form O +a O +ceramic S-MATE +, O +this O +method O +allows O +for O +complex B-CONPRI +geometry E-CONPRI +parts O +that O +can O +not O +be S-MATE +produced O +with O +traditional O +sintering S-MANP +, O +pressing S-MANP +or O +vapor O +infiltration S-CONPRI +processes O +. O + + +To O +this O +end O +, O +we O +present O +x-ray B-CHAR +micro-computed I-CHAR +tomography E-CHAR +( O +micro-CT S-CHAR +) O +measurements O +of O +the O +dimensional O +stability S-PRO +and O +uniformity O +of O +additively B-MANP +manufactured E-MANP +silicon-based O +ceramics S-MATE +as S-MATE +a O +function O +of O +geometry S-CONPRI +and O +processing O +conditions O +. O + + +Laser S-ENAT +polishing O +( O +LP O +) O +is O +an O +emerging O +technique O +with O +the O +potential O +to O +be S-MATE +used O +for O +post-build O +, O +or O +in-situ S-CONPRI +, O +precision S-CHAR +smoothing O +of O +rough O +, O +fatigue-initiation O +prone O +, O +surfaces S-CONPRI +of O +additive B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +components S-MACEQ +. O + + +LP O +uses O +a O +laser S-ENAT +to O +re-melt O +a O +thin O +surface S-CONPRI +layer S-PARA +and O +smooths O +the O +surface S-CONPRI +by O +exploiting O +surface B-PRO +tension E-PRO +effects O +in O +the O +melt B-MATE +pool E-MATE +. O + + +However O +, O +rapid O +re-solidification O +of O +the O +melted S-CONPRI +surface O +layer S-PARA +and O +the O +associated O +substrate S-MATE +thermal O +exposure S-CONPRI +can O +significantly O +modify O +the O +subsurface O +material S-MATE +. O + + +This O +study O +has O +used O +an O +electron B-CONPRI +beam E-CONPRI +melted O +( O +EBM S-MANP +) O +Ti6Al4V S-MATE +component S-MACEQ +, O +representing O +the O +worst O +case O +scenario O +in O +terms O +of O +roughness S-PRO +for O +a O +powder B-MACEQ +bed E-MACEQ +process O +, O +as S-MATE +an O +example O +to O +investigate O +these O +issues O +and O +evaluate O +the O +capability O +of O +the O +LP O +technique O +for O +improving O +the O +surface B-PARA +quality E-PARA +of O +AM B-MACEQ +parts E-MACEQ +. O + + +Experiments O +have O +shown O +that O +the O +surface B-PRO +roughness E-PRO +can O +be S-MATE +reduced O +to O +below O +Sa O += O +0.51 O +μm O +, O +which O +is O +comparable O +to O +a O +CNC S-ENAT +machined O +surface S-CONPRI +, O +and O +high O +stress S-PRO +concentrating O +defects S-CONPRI +inherited O +from O +the O +AM B-MANP +process E-MANP +were O +removed O +by O +LP O +. O + + +However O +, O +the O +re-melted O +layer S-PARA +underwent O +a O +change O +in O +texture S-FEAT +, O +grain B-CONPRI +structure E-CONPRI +, O +and O +a O +martensitic O +transformation O +, O +which O +was O +subsequently O +tempered S-MANP +in-situ S-CONPRI +by O +repeated O +beam S-MACEQ +rastering O +and O +resulted O +in O +a O +small O +increase O +in O +sub-surface O +hardness S-PRO +. O + + +In O +addition O +, O +a O +high O +level O +of O +near-surface O +tensile B-PRO +residual I-PRO +stresses E-PRO +was O +generated O +by O +the O +process S-CONPRI +, O +although O +they O +could O +be S-MATE +relaxed O +to O +near O +zero O +by O +a O +standard S-CONPRI +stress O +relief O +heat B-MANP +treatment E-MANP +. O + + +Currently O +, O +additive B-MANP +manufacturing E-MANP +is O +a O +rapidly O +growing O +technique O +that O +should O +be S-MATE +explored O +for O +the O +development O +of O +various O +composites S-MATE +and O +alloys S-MATE +. O + + +Graphene S-MATE +is O +also O +simultaneously O +gaining O +considerable O +attention O +as S-MATE +a O +reinforcement S-PARA +material S-MATE +for O +metals S-MATE +due O +to O +its O +superior O +properties S-CONPRI +. O + + +In O +this O +study O +, O +a O +graphene/AlSi10Mg O +composite S-MATE +was O +developed O +using O +the O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +technique O +. O + + +The O +effect O +of O +graphene S-MATE +reinforcement O +and O +laser B-PARA +power E-PARA +variation O +was O +studied O +on O +the O +basis O +of O +the O +porosity S-PRO +, O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +composite S-MATE +. O + + +First O +, O +graphene S-MATE +( O +0.1 O +and O +0.2 O +wt. O +% O +) O +was O +mixed O +in O +AlSi10Mg S-MATE +powder O +by O +conducting O +low-energy O +ball B-MANP +milling E-MANP +. O + + +The O +resultant O +mixture O +was O +used O +for O +PBF S-MANP +at O +laser B-PARA +power E-PARA +values O +of O +200 O +, O +300 O +and O +400 O +W. O +The O +prepared O +samples S-CONPRI +were O +characterised O +by O +synchrotron-based O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +to O +observe O +their O +pore S-PRO +distribution S-CONPRI +and O +morphology S-CONPRI +. O + + +The O +observation O +results O +reveal O +that O +the O +energy O +( O +laser B-PARA +power E-PARA +) O +required O +for O +appropriate O +melting S-MANP +of O +the O +powder S-MATE +was O +increased O +after O +graphene S-MATE +incorporation O +. O + + +Electron O +backscattered O +diffraction S-CHAR +analysis O +revealed O +grain B-CHAR +refinement E-CHAR +and O +increase O +in O +fraction S-CONPRI +of O +high O +angle O +grain B-CONPRI +boundaries E-CONPRI +due O +to O +progressive O +addition O +of O +graphene S-MATE +. O + + +The O +strain S-PRO +developed O +after O +graphene S-MATE +incorporation O +was O +also O +validated O +using O +X-ray B-CHAR +diffraction I-CHAR +analysis E-CHAR +. O + + +The O +uniform O +distribution S-CONPRI +of O +graphene S-MATE +and O +its O +structural O +inherency O +was O +confirmed O +by O +Raman B-CHAR +analysis E-CHAR +. O + + +Moreover O +, O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +revealed O +a O +suitable O +graphene-matrix O +interface S-CONPRI +. O + + +The O +tensile B-PRO +properties E-PRO +were O +significantly O +influenced O +by O +the O +porosity S-PRO +induced O +in O +the O +samples S-CONPRI +irrespective O +of O +graphene S-MATE +reinforcement O +. O + + +However O +, O +a O +yield B-PRO +strength E-PRO +increase O +of O +22 O +% O +was O +observed O +in O +the O +composite S-MATE +compared O +with O +the O +strength S-PRO +of O +unreinforced O +sample S-CONPRI +of O +equivalent O +density S-PRO +. O + + +Hardness S-PRO +increased O +progressively O +with O +the O +graphene S-MATE +content O +and O +was O +unaffected O +by O +variation S-CONPRI +in O +the O +laser B-PARA +power E-PARA +. O + + +Material B-MANP +jetting I-MANP +3D I-MANP +printing E-MANP +is O +an O +additive B-MANP +manufacturing E-MANP +technique O +that O +allows O +producing O +complex O +parts O +without O +tooling S-CONPRI +and O +minimum O +material S-MATE +wastage O +. O + + +In O +this O +study O +, O +orientation S-CONPRI +control O +of O +randomly O +shaped O +, O +anisotropic S-PRO +hard O +magnetic O +ferrite S-MATE +particles O +is O +demonstrated O +for O +material S-MATE +jetting-based O +additive B-MANP +manufacturing I-MANP +processes E-MANP +using O +a O +developed O +particle S-CONPRI +alignment O +configuration S-CONPRI +. O + + +Strontium O +ferrite S-MATE +and O +PR-48 O +photosensitive B-MATE +resin E-MATE +were O +used O +as S-MATE +the O +base O +materials S-CONPRI +. O + + +An O +automated O +experimental S-CONPRI +setup O +with O +two O +neodymium S-MATE +permanent O +cube S-CONPRI +magnets O +capable O +of O +generating O +a O +dipolar O +magnetic B-CONPRI +field E-CONPRI +was O +built O +to O +align O +magnetic O +particles S-CONPRI +in O +the O +resin S-MATE +. O + + +Particle S-CONPRI +alignment O +was O +characterized O +for O +directionality O +using O +images S-CONPRI +obtained O +through O +real O +time O +optical B-CHAR +microscopy E-CHAR +. O + + +The O +orientation S-CONPRI +of O +magnetic O +particles S-CONPRI +was O +observed O +to O +be S-MATE +dependent O +on O +the O +distance O +of O +separation O +between O +the O +cube S-CONPRI +magnets O +and O +the O +magnetization O +time O +. O + + +X-ray B-CHAR +diffraction E-CHAR +was O +used O +to O +indicate O +the O +c-axis O +alignment O +of O +the O +hexagonal S-FEAT +strontium O +ferrite S-MATE +particles O +in O +the O +cured S-MANP +specimens O +. O + + +The O +influence O +of O +process B-CONPRI +parameters E-CONPRI +on O +particle S-CONPRI +orientation S-CONPRI +was O +evaluated O +, O +employing O +a O +full O +factorial O +experiment S-CONPRI +analysis O +. O + + +This O +fundamental O +research S-CONPRI +serves O +as S-MATE +a O +basis O +for O +constructing O +and O +optimizing O +the O +magnetic O +particle S-CONPRI +alignment O +setup O +for O +additive B-MANP +manufacturing I-MANP +processes E-MANP +. O + + +Measurements O +of O +the O +temperature S-PARA +and O +distortion S-CONPRI +evolution O +during O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +are O +taken O +as S-MATE +a O +function O +of O +time O +. O + + +In B-CONPRI +situ E-CONPRI +measurements O +have O +proven O +vital O +to O +the O +development O +and O +validation S-CONPRI +of O +FE S-MATE +( O +finite B-CONPRI +element E-CONPRI +) O +models O +for O +alternate O +forms O +of O +additive B-MANP +manufacturing E-MANP +. O + + +Due O +to O +powder S-MATE +obscuring O +all O +but O +the O +top O +layer S-PARA +of O +the O +part O +in O +LPBF S-MANP +, O +many O +non-contact O +measurement S-CHAR +techniques O +used O +for O +in B-CONPRI +situ E-CONPRI +measurement O +of O +additive B-MANP +manufacturing I-MANP +processes E-MANP +are O +impossible O +. O + + +Therefore O +, O +an O +enclosed O +instrumented O +system O +is O +designed S-FEAT +to O +allow O +for O +the O +in B-CONPRI +situ E-CONPRI +measurement O +of O +temperature S-PARA +and O +distortion S-CONPRI +in O +an O +LPBF S-MANP +machine O +without O +the O +need O +for O +altering O +the O +machine S-MACEQ +or O +the O +build S-PARA +process O +. O + + +By O +instrumenting O +a O +substrate S-MATE +from O +underneath O +, O +the O +spread S-CONPRI +powder S-MATE +does O +not O +affect O +measurements O +. O + + +Default O +processing O +parameters S-CONPRI +for O +the O +EOS S-APPL +M280 O +machine S-MACEQ +prescribe O +a O +rotating O +scan B-PARA +pattern E-PARA +of O +67° O +for O +each O +layer S-PARA +. O + + +One O +test O +is O +completed O +using O +the O +default O +rotating O +scan B-PARA +pattern E-PARA +and O +a O +second O +is O +completed O +using O +a O +constant O +scan B-PARA +pattern E-PARA +. O + + +Experimental S-CONPRI +observations O +for O +the O +build S-PARA +geometry O +tested O +showed O +that O +for O +Inconel® O +718 O +and O +a O +constant O +scan B-PARA +pattern E-PARA +produce O +results O +in O +a O +37.6 O +% O +increase O +in O +distortion S-CONPRI +as S-MATE +compared O +with O +a O +rotated O +scan B-PARA +pattern E-PARA +. O + + +The O +in B-CONPRI +situ E-CONPRI +measurements O +also O +show O +that O +the O +thermal B-PARA +cycles E-PARA +caused O +by O +the O +processing O +of O +a O +layer S-PARA +can O +impact S-CONPRI +the O +distortion S-CONPRI +accumulated O +during O +the O +deposition S-CONPRI +of O +the O +previous O +layers O +. O + + +The O +amount O +of O +distortion S-CONPRI +built O +per O +layer S-PARA +between O +the O +rotating O +and O +constant O +scan B-PARA +pattern E-PARA +cases O +highlights O +inter-layer O +effects O +not O +previously O +discovered O +in O +LPBF S-MANP +. O + + +The O +demonstrated O +inter-layer O +effects O +in O +the O +LPBF S-MANP +process O +should O +be S-MATE +considered O +in O +the O +development O +of O +thermo-mechanical B-CONPRI +models E-CONPRI +of O +the O +LPBF S-MANP +process O +. O + + +Increasing O +demand O +for O +high-quality O +additive B-APPL +manufactured I-APPL +parts E-APPL +in O +the O +aerospace S-APPL +, O +automotive S-APPL +, O +medical S-APPL +, O +and O +oil S-MATE +and O +gas S-CONPRI +industries O +requires O +careful O +control O +of O +the O +part O +microstructure S-CONPRI +, O +residual B-PRO +stress E-PRO +, O +and O +density S-PRO +homogeneity O +. O + + +In O +order O +to O +improve O +part O +quality S-CONPRI +, O +partial O +remelting O +of O +the O +as-built O +material S-MATE +during O +subsequent O +beam S-MACEQ +scans O +is O +desirable O +. O + + +Here O +, O +we O +make O +use O +of O +computer B-CONPRI +simulations E-CONPRI +to O +explicitly O +study O +remelting O +in O +laser- O +or O +electron O +beam-melting O +additive B-MANP +manufacturing E-MANP +. O + + +By O +explicitly O +implementing O +phase S-CONPRI +transformations O +between O +the O +powder S-MATE +, O +the O +liquid O +, O +and O +the O +bulk O +, O +we O +track O +the O +amount O +of O +material S-MATE +that O +is O +subject O +to O +remelting O +. O + + +The O +influence O +of O +the O +beam S-MACEQ +parameters O +, O +such O +as S-MATE +the O +beam S-MACEQ +size O +, O +scan B-PARA +speed E-PARA +and O +power S-PARA +, O +are O +investigated O +and O +both O +the O +cases O +of O +an O +exponential O +as S-MATE +well O +as S-MATE +a O +linear O +beam S-MACEQ +absorption S-CONPRI +profile O +are O +considered O +. O + + +We O +find O +that O +, O +at O +constant O +beam S-MACEQ +cross O +section O +, O +there O +is O +an O +optimal O +beam S-MACEQ +shape O +for O +remelting O +. O + + +Calculations O +are O +presented O +for O +the O +model S-CONPRI +case O +of O +AISI O +316L B-MATE +stainless I-MATE +steel E-MATE +but O +can O +be S-MATE +extended O +to O +a O +wide O +class O +of O +metals S-MATE +. O + + +Binder B-MANP +jetting E-MANP +technology O +enables O +the O +production S-MANP +of O +sand B-MANP +casting E-MANP +molds S-MACEQ +and O +cores S-MACEQ +without O +a O +pattern S-CONPRI +. O + + +Real-time O +inertial O +measurement S-CHAR +is O +demonstrated O +with O +encapsulated S-CONPRI +wireless O +sensors S-MACEQ +in O +sand S-MATE +cores S-MACEQ +. O + + +In O +this O +work O +, O +real-time O +in-process O +monitoring O +of O +core S-MACEQ +motion O +in O +metal S-MATE +castings O +is O +demonstrated O +through O +the O +use O +of O +two O +emerging O +technologies S-CONPRI +. O + + +3D S-CONPRI +sand O +printing O +( O +3DSP O +) O +is O +a O +binder B-MANP +jetting I-MANP +additive I-MANP +manufacturing E-MANP +process O +that O +is O +quickly O +manifesting O +itself O +as S-MATE +a O +technological O +disrupter O +in O +the O +metal S-MATE +casting S-MANP +industry O +. O + + +Based O +on O +its O +direct B-MANP +digital I-MANP +manufacturing E-MANP +principle O +, O +3DSP O +enables O +complex O +mold S-MACEQ +and O +core S-MACEQ +design O +freedom O +that O +has O +been O +previously O +unavailable O +to O +foundry S-MANP +engineers O +. O + + +In O +addition O +, O +the O +miniaturization O +and O +affordability O +of O +electronics S-CONPRI +and O +sensing S-APPL +equipment S-MACEQ +is O +rapidly O +accelerating O +. O + + +An O +experimental S-CONPRI +casting S-MANP +and O +mold S-MACEQ +were O +designed S-FEAT +in O +this O +research S-CONPRI +to O +demonstrate O +and O +evaluate O +wireless O +sensing S-APPL +of O +core S-MACEQ +shifts O +. O + + +With O +the O +use O +of O +3D S-CONPRI +sand O +printing O +, O +precisely O +sized O +and O +located O +pockets O +were O +manufactured S-CONPRI +inside O +of O +cores S-MACEQ +. O + + +Miniature O +wireless O +Bluetooth O +sensors S-MACEQ +capable O +of O +measuring O +acceleration O +and O +rotation O +were O +then O +embedded O +inside O +the O +cores S-MACEQ +. O + + +From O +these O +, O +high O +fidelity O +data S-CONPRI +were O +captured O +wirelessly O +from O +the O +sensors S-MACEQ +during O +the O +casting S-MANP +process O +. O + + +With O +strategically O +designed S-FEAT +core B-MACEQ +prints E-MACEQ +designed O +to O +allow O +varying O +levels O +of O +core S-MACEQ +motion O +, O +it O +is O +shown O +that O +core S-MACEQ +shifts O +can O +be S-MATE +measured O +and O +discriminated O +during O +casting S-MANP +in O +real O +time O +. O + + +The O +fracture S-CONPRI +properties O +( O +stress S-PRO +intensity O +factor O +and O +energy O +release O +rate O +) O +of O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +and O +its O +short B-MATE +carbon I-MATE +fiber E-MATE +( O +CF O +) O +reinforced S-CONPRI +composites S-MATE +have O +been O +studied O +. O + + +The O +effects O +of O +CF O +reinforcement S-PARA +, O +nozzle S-MACEQ +geometry S-CONPRI +and O +bead S-CHAR +lay-up O +orientations S-CONPRI +in O +fracture S-CONPRI +properties O +, O +void S-CONPRI +contents O +, O +and O +interfacial B-CONPRI +bonding E-CONPRI +were O +investigated O +. O + + +The O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +-based O +AM S-MANP +specimens O +using O +both O +circular O +and O +square O +shaped O +nozzle S-MACEQ +were O +printed O +and O +compared O +with O +the O +conventional O +compression S-PRO +molded O +( O +CM O +) O +samples S-CONPRI +. O + + +Compact S-MANP +tension O +( O +CT S-ENAT +) O +specimens O +with O +different O +CF O +concentrations O +( O +0 O +wt. O +% O +, O +3 O +wt O +. O + + +% O +, O +5 O +wt. O +% O +, O +7 O +wt. O +% O +and O +10 O +wt. O +% O +) O +were O +printed O +with O +two O +bead S-CHAR +lay-up O +orientations S-CONPRI +( O +450/-450 O +and O +00/900 O +) O +using O +PLA S-MATE +and O +CF/PLA O +composite S-MATE +filaments O +. O + + +The O +results O +show O +significant O +improvement O +in O +fracture S-CONPRI +toughness O +and O +fracture S-CONPRI +energy O +for O +CF/PLA O +composites S-MATE +in O +comparison O +to O +neat O +PLA S-MATE +. O + + +The O +increase O +in O +fracture S-CONPRI +energy O +was O +observed O +to O +be S-MATE +about O +77 O +% O +for O +00/900 O +and O +88 O +% O +for O +450/-450 O +bead S-CHAR +orientations O +, O +respectively O +for O +the O +same O +fiber B-FEAT +reinforcement E-FEAT +( O +5 O +wt O +. O + + +Such O +improvement O +in O +fracture S-CONPRI +properties O +is O +expected O +to O +be S-MATE +higher O +for O +all O +900 O +bead S-CHAR +orientations O +. O + + +The O +samples S-CONPRI +printed O +by O +square-shaped O +nozzle S-MACEQ +showed O +enhanced O +fracture S-CONPRI +toughness O +with O +less O +inter-bead O +voids S-CONPRI +and O +larger O +bonded O +areas S-PARA +in O +comparison O +to O +the O +circular-shaped O +nozzle S-MACEQ +. O + + +Although O +the O +fracture S-CONPRI +toughness O +showed O +very O +negligible O +differences O +between O +00/900 O +and O +450/-450 O +specimens O +, O +distinguishable O +variation S-CONPRI +may O +be S-MATE +seen O +in O +the O +case O +of O +00 O +and O +900 O +bead S-CHAR +orientations O +. O + + +The O +crack B-CONPRI +propagation E-CONPRI +path O +and O +fracture S-CONPRI +mechanisms O +were O +studied O +using O +optical B-CHAR +microscopy E-CHAR +( O +OM S-CHAR +) O +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +examinations O +. O + + +Fractography S-CHAR +revealed O +different O +modes O +of O +failure S-CONPRI +with O +a O +very O +high O +fiber B-FEAT +orientation E-FEAT +along O +the O +printing O +direction O +and O +a O +relatively O +higher O +void S-CONPRI +contents O +for O +7 O +and O +10 O +wt O +. O + + +% O +fiber B-FEAT +reinforcement E-FEAT +. O + + +The O +advent O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +also O +often O +referred O +to O +as S-MATE +3D B-MANP +printing E-MANP +, O +has O +enabled O +the O +rapid O +production S-MANP +of O +parts O +with O +complex B-CONPRI +geometries E-CONPRI +that O +are O +either O +labor-intensive O +or O +unrealizable O +by O +traditional B-MANP +manufacturing E-MANP +methods O +. O + + +Many O +existing O +3D B-ENAT +printing I-ENAT +technologies E-ENAT +, O +however O +, O +only O +allow O +one O +material S-MATE +to O +be S-MATE +printed O +at O +one O +time O +, O +while O +many O +applications O +require O +the O +integration O +of O +different O +materials S-CONPRI +, O +which O +sometimes O +can O +not O +be S-MATE +printed O +by O +one O +AM B-MANP +technology E-MANP +. O + + +In O +this O +paper O +, O +a O +novel O +multi-material S-CONPRI +multi-method O +( O +m4 S-MANP +) O +3D B-MACEQ +printer E-MACEQ +comprised O +of O +multiple O +AM B-MANP +technologies E-MANP +is O +presented O +as S-MATE +a O +solution S-CONPRI +to O +the O +current O +limitations O +. O + + +This O +printer S-MACEQ +fosters O +the O +advancement O +of O +AM S-MANP +by O +combining O +materials S-CONPRI +traditionally O +unable O +to O +be S-MATE +printed O +concurrently O +while O +adding O +functionality O +to O +printed O +parts O +. O + + +The O +m4 S-MANP +3D B-MACEQ +printer E-MACEQ +integrates O +four O +AM B-MANP +technologies E-MANP +and O +two O +complementary O +technologies S-CONPRI +onto O +one O +single O +platform S-MACEQ +, O +including O +inkjet S-MANP +( O +IJ O +) O +, O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +, O +direct O +ink S-MATE +writing O +( O +DIW S-MANP +) O +, O +and O +aerosol O +jetting S-MANP +( O +AJ O +) O +, O +along O +with O +robotic B-MACEQ +arms E-MACEQ +for O +pick-and-place O +( O +PnP O +) O +and O +photonic O +curing S-MANP +for O +intense O +pulsed O +light O +( O +IPL O +) O +sintering S-MANP +. O + + +The O +integration O +of O +these O +AM B-MANP +technologies E-MANP +and O +PnP O +into O +a O +single O +platform S-MACEQ +allows O +for O +rapid B-MANP +fabrication E-MANP +of O +complex O +devices O +, O +providing O +a O +wide O +range S-PARA +of O +functionalities O +with O +applications O +ranging O +from O +soft B-APPL +robotics E-APPL +and O +flexible O +electronics S-CONPRI +to O +medical B-APPL +devices E-APPL +. O + + +Magnesium B-MATE +alloys E-MATE +are O +highly O +attractive O +in O +aerospace S-APPL +and O +auto O +industries S-APPL +due O +to O +their O +high O +strength-to-weight O +ratio O +. O + + +Additive B-MANP +manufacturing E-MANP +of O +Mg B-MATE +alloys E-MATE +can O +further O +save O +cost O +from O +materials S-CONPRI +and O +machining S-MANP +time O +. O + + +This O +paper O +investigates S-CONPRI +the O +microstructure S-CONPRI +and O +dynamic S-CONPRI +mechanical O +behavior O +of O +WE-43 O +Mg B-MATE +alloy E-MATE +built O +through O +the O +powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +. O + + +Samples S-CONPRI +from O +four O +different O +combinations O +of O +processing O +parameters S-CONPRI +were O +built O +. O + + +These O +builds S-CHAR +were O +studied O +in O +both O +as-built O +and O +hot O +isostatically O +pressed S-MANP +conditions O +. O + + +The O +resultant O +complex O +microstructures S-MATE +were O +studied O +under O +scanning S-CONPRI +and O +transmission B-CHAR +electron I-CHAR +microscopes E-CHAR +while O +their O +dynamic S-CONPRI +mechanical O +behavior O +was O +evaluated O +using O +a O +split-Hopkinson O +pressure S-CONPRI +bar O +testing S-CHAR +system O +. O + + +Effects O +of O +initial O +porosity S-PRO +and O +microstructural B-CONPRI +evolution E-CONPRI +during O +HIP S-MANP +treatment O +on O +mechanical B-CONPRI +response E-CONPRI +are O +discussed O +. O + + +Any O +literature O +investigation O +of O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +L-PBF S-MANP +) O +manufacturing S-MANP +of O +metal S-MATE +parts O +would O +reveal O +that O +the O +development O +of O +internal B-PRO +stresses E-PRO +is O +a O +serious O +limitation O +in O +the O +application O +of O +this O +technology S-CONPRI +. O + + +Researchers O +have O +used O +a O +variety O +of O +different O +methods O +to O +quantify O +this O +stress S-PRO +and O +investigate O +scanning B-CONPRI +strategies E-CONPRI +aimed O +at O +reducing O +or O +distributing O +this O +stress S-PRO +more O +evenly O +in O +the O +part O +. O + + +These O +techniques O +provide O +a O +rapid O +method O +to O +give O +a O +quantitative S-CONPRI +comparison O +of O +scan O +strategies O +and O +parameters S-CONPRI +. O + + +Non-destructive O +diffraction S-CHAR +based O +methods O +can O +be S-MATE +used O +to O +calculate O +the O +profile S-FEAT +of O +stress S-PRO +in O +a O +part O +but O +these O +are O +often O +prohibitively O +expensive O +or O +difficult O +to O +use O +on O +a O +large O +scale O +. O + + +This O +study O +presents O +a O +methodology S-CONPRI +which O +combines O +deflection O +based O +methods O +with O +either O +the O +hole B-MANP +drilling E-MANP +or O +contour S-FEAT +methods O +. O + + +Results O +show O +that O +these O +experiments O +can O +be S-MATE +completed O +in O +a O +cost O +effective O +manner O +, O +with O +standard S-CONPRI +lab O +based O +equipment S-MACEQ +to O +generate O +a O +through O +thickness O +measurement S-CHAR +of O +residual B-PRO +stress E-PRO +. O + + +To O +benefit O +from O +the O +fascinating O +properties S-CONPRI +of O +multi-material B-FEAT +structures E-FEAT +, O +the O +interfacial O +joint S-CONPRI +should O +exhibit O +good O +mechanical B-PRO +strength E-PRO +. O + + +Evaluating O +the O +shear B-PRO +strength E-PRO +of O +a O +bimetallic O +joint S-CONPRI +via O +conventional O +methods O +is O +usually O +complex O +, O +and O +in O +most O +cases O +produces O +unreliable O +data S-CONPRI +due O +to O +induced O +bending S-MANP +stress O +among O +others O +. O + + +In O +this O +work O +, O +a O +novel O +single-shear O +test O +device O +was O +designed S-FEAT +and O +fabricated S-CONPRI +to O +measure O +shear B-PRO +strength E-PRO +of O +bimetallic O +joints O +. O + + +The O +device O +was O +first O +standardized O +by O +shearing S-MANP +standard O +materials S-CONPRI +, O +and O +the O +results O +were O +in O +good O +agreement O +with O +published O +data S-CONPRI +. O + + +Subsequently O +, O +the O +shear B-PRO +strength E-PRO +of O +Inconel S-MATE +718/copper O +alloy S-MATE +( O +GRCop-84 O +) O +bimetallic O +joint S-CONPRI +built O +via O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS™ O +) O +was O +evaluated O +. O + + +Compression B-CHAR +test E-CHAR +on O +the O +bimetallic O +joint S-CONPRI +was O +carried O +out O +as S-MATE +well O +for O +more O +mechanical S-APPL +characterization O +. O + + +Both O +shear O +and O +compressive O +yield B-PRO +strengths E-PRO +of O +the O +bimetallic O +joints O +were O +compared O +with O +the O +base O +materials S-CONPRI +in O +addition O +to O +influence O +of O +thermal B-PARA +cycling E-PARA +on O +the O +joint S-CONPRI +strength O +. O + + +Inconel S-MATE +718/GRCop-84 O +bimetallic-joint O +shear B-PRO +strength E-PRO +was O +220 O +± O +18 O +MPa S-CONPRI +and O +231 O +± O +27 O +MPa S-CONPRI +for O +as-printed O +sample S-CONPRI +and O +after O +thermal B-PARA +cycling E-PARA +, O +respectively O +. O + + +Likewise O +, O +the O +bimetallic O +yield B-PRO +strength E-PRO +after O +compression B-CHAR +test E-CHAR +was O +232 O +± O +3 O +MPa S-CONPRI +and O +337 O +± O +15 O +MPa S-CONPRI +. O + + +No O +cracking S-CONPRI +through O +or O +along O +the O +interface S-CONPRI +was O +observed O +even O +after O +thermal B-PARA +cycling E-PARA +, O +which O +indicates O +no O +thermal O +degradation S-CONPRI +at O +the O +bimetallic O +interfacial O +joint S-CONPRI +. O + + +Increase O +in O +compressive O +yield B-PRO +strength E-PRO +after O +thermal B-PARA +cycling E-PARA +could O +be S-MATE +attributed O +to O +precipitation S-CONPRI +of O +Cr2Nb O +particles S-CONPRI +in O +GRCop-84 O +matrix O +along O +with O +strengthening S-MANP +due O +to O +gamma O +phases O +in O +Inconel B-MATE +718 E-MATE +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +and O +backscatter O +electron O +imaging S-APPL +were O +used O +to O +examine O +the O +interfacial O +microstructures S-MATE +and O +failure B-PRO +modes E-PRO +. O + + +EDS S-CHAR +was O +used O +as S-MATE +well O +to O +analyze O +the O +interface S-CONPRI +elemental O +composition S-CONPRI +. O + + +The O +development O +of O +the O +single-shear O +test O +device O +can O +provide O +an O +added O +opportunity O +to O +effectively O +evaluate O +mechanical S-APPL +behavior O +, O +reliability S-CHAR +and O +performance S-CONPRI +of O +additively B-MANP +manufactured E-MANP +multi-material O +structures O +through O +bond B-CONPRI +strength E-CONPRI +analysis O +. O + + +In O +this O +work O +, O +we O +develop O +a O +simple S-MANP +model S-CONPRI +to O +determine O +the O +upper O +bound O +of O +feed S-PARA +rates O +that O +do O +not O +cause O +jamming O +in O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +, O +also O +known O +as S-MATE +fused O +deposition B-CONPRI +modeling E-CONPRI +( O +FDM S-MANP +) O +™ O +or O +fused-filament B-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +We O +first O +derive O +a O +relation O +between O +the O +tube O +temperature S-PARA +and O +Péclet O +number O +for O +the O +solid O +portion O +of O +polymer B-MATE +filaments E-MATE +. O + + +We O +focus O +on O +the O +boundary S-FEAT +between O +the O +solid O +and O +molten O +polymer S-MATE +in O +the O +heated O +portion O +of O +the O +tube O +. O + + +We O +find O +the O +Péclet O +number O +that O +corresponds O +to O +the O +point O +at O +which O +this O +boundary S-FEAT +makes O +contact S-APPL +with O +the O +nozzle S-MACEQ +, O +and O +identify O +this O +as S-MATE +the O +upper O +bound O +of O +the O +feed S-PARA +rate O +. O + + +We O +compare O +our O +predictions S-CONPRI +to O +experimental S-CONPRI +results O +. O + + +We O +find O +good O +agreement O +for O +tube O +temperatures S-PARA +sufficiently O +above O +the O +glass-transition O +temperature S-PARA +, O +which O +is O +the O +temperature S-PARA +region O +of O +typical O +additive B-MANP +manufacturing E-MANP +. O + + +Additive B-MANP +manufacturing E-MANP +potential O +of O +cold O +spray O +technology S-CONPRI +was O +used O +to O +fabricate S-MANP +freestanding O +samples S-CONPRI +of O +a O +copper B-MATE +alloy E-MATE +. O + + +Different O +volume B-PARA +fractions E-PARA +of O +micro O +and O +nanocrystalline O +powder B-MATE +particles E-MATE +were O +used O +to O +obatin O +a O +bimodal O +structure S-CONPRI +with O +heterogeneous S-CONPRI +arrangement O +of O +crystalline O +phases O +. O + + +The O +effects O +of O +volume B-PARA +fractions E-PARA +of O +each O +phase S-CONPRI +were O +investigated O +on O +the O +microstructural S-CONPRI +arrangement O +, O +porosity S-PRO +, O +microhardness S-CONPRI +, O +residual B-PRO +stresses E-PRO +, O +and O +mechanical B-PRO +strength E-PRO +of O +the O +deposited O +materials S-CONPRI +. O + + +A O +series O +of O +finite B-CONPRI +element E-CONPRI +simulations O +were O +developed O +and O +validated O +by O +experimental B-CONPRI +data E-CONPRI +to O +describe O +the O +influence O +of O +volume B-PARA +fraction E-PARA +, O +morphology S-CONPRI +, O +and O +spatial B-CHAR +distribution E-CHAR +of O +the O +phases O +on O +the O +global O +strength S-PRO +of O +the O +samples S-CONPRI +under O +tensile S-PRO +loading O +. O + + +The O +obtained O +results O +evidence O +the O +possibility O +of O +tailoring O +the O +mechanical B-CONPRI +response E-CONPRI +of O +freestanding O +cold O +spray O +deposits O +, O +adopting O +a O +heterogeneous S-CONPRI +phase O +structure S-CONPRI +. O + + +Optimized O +fabrication S-MANP +parameters O +and O +post-processing S-CONPRI +strategies O +should O +be S-MATE +studied O +to O +further O +enhance O +the O +performance S-CONPRI +of O +the O +designed S-FEAT +bimodal O +materials S-CONPRI +and O +overcome O +the O +intrinsic O +brittleness O +of O +cold O +spray O +deposits O +. O + + +In O +this O +article O +, O +we O +propose O +a O +model S-CONPRI +that O +can O +account O +for O +the O +effect O +of O +porosity S-PRO +and O +high O +surface B-PRO +roughness E-PRO +on O +the O +fatigue S-PRO +crack O +initiation O +of O +AM S-MANP +Ti6Al4V O +alloys S-MATE +in O +moderate O +and O +high O +cycle O +fatigue S-PRO +regimes O +. O + + +Within O +these O +fatigue S-PRO +regimes O +, O +the O +applied O +force S-CONPRI +to O +the O +component S-MACEQ +is O +below O +the O +yield B-PRO +stress E-PRO +, O +however O +, O +defective O +features O +, O +viz. O +, O +porosity S-PRO +and O +high O +surface B-PRO +roughness E-PRO +, O +can O +act O +as S-MATE +stress O +raisers O +. O + + +As S-MATE +a O +consequence O +, O +local O +plasticity S-PRO +can O +occur O +. O + + +To O +capture O +this O +phenomenon O +, O +a O +nonlinear O +isotropic S-PRO +kinematic O +hardening S-MANP +elasto-plasticity O +model S-CONPRI +is O +employed O +in O +our O +finite B-CONPRI +element E-CONPRI +( O +FE S-MATE +) O +model S-CONPRI +. O + + +For O +creating O +the O +geometry S-CONPRI +of O +the O +FE S-MATE +models O +, O +inputs O +from O +fractography S-CHAR +analyses O +and O +surface B-PRO +roughness E-PRO +measurements O +are O +needed O +. O + + +From O +fractography S-CHAR +analyses O +, O +the O +shape O +of O +pores S-PRO +formed O +by O +gas S-CONPRI +bubbles O +during O +manufacture S-CONPRI +appears O +quite O +regular O +. O + + +Thus O +, O +these O +pores S-PRO +are O +modeled O +as S-MATE +circles O +in O +FE S-MATE +models O +. O + + +The O +size O +of O +these O +pores S-PRO +and O +their O +distance O +to O +a O +free B-CONPRI +surface E-CONPRI +of O +the O +tested O +specimens O +are O +extracted S-CONPRI +from O +Scanning B-MACEQ +Electron I-MACEQ +Microscope E-MACEQ +images S-CONPRI +. O + + +Moreover O +, O +it O +has O +been O +mentioned O +in O +the O +literature O +that O +statistical O +parameters S-CONPRI +of O +surface B-PRO +roughness E-PRO +can O +not O +fully O +describe O +the O +detrimental O +effect O +of O +this O +type O +of O +defect S-CONPRI +to O +the O +fatigue B-PRO +life E-PRO +of O +the O +associated O +component S-MACEQ +. O + + +Thus O +, O +in O +our O +FE S-MATE +model O +, O +the O +surface B-CONPRI +topography E-CONPRI +, O +which O +was O +measured O +using O +stylus-based O +profilometer S-MACEQ +, O +is O +explicitly O +modeled O +. O + + +The O +finite B-CONPRI +element E-CONPRI +results O +are O +then O +post-processed O +by O +our O +in-house O +software S-CONPRI +to O +extract O +the O +Smith–Watson–Topper O +( O +SWT O +) O +fatigue S-PRO +indicator O +parameter S-CONPRI +( O +FIP O +) O +. O + + +The O +SWT O +parameter S-CONPRI +is O +calculated O +at O +each O +element S-MATE +centroid O +of O +the O +FE S-MATE +mesh O +, O +i.e. O +, O +the O +local O +indicator O +. O + + +Afterward O +, O +an O +average S-CONPRI +value O +of O +the O +SWT O +parameter S-CONPRI +over O +a O +so-called O +critical O +area S-PARA +whose O +center O +is O +located O +at O +the O +considered O +centroid O +is O +also O +calculated O +, O +i.e. O +, O +the O +average S-CONPRI +indicator O +. O + + +The O +results O +show O +that O +the O +local O +SWT O +indicator O +is O +too O +conservative O +in O +predicting O +the O +fatigue B-PRO +life E-PRO +of O +the O +AM S-MANP +Ti64 O +alloys S-MATE +while O +the O +average S-CONPRI +SWT O +one O +can O +provide O +good O +results O +. O + + +A O +complete O +metallurgical S-APPL +and O +mechanical S-APPL +assessment O +of O +additively-manufactured O +maraging S-MANP +tool O +steels S-MATE +has O +been O +undertaken O +, O +beginning O +with O +the O +initial O +powder S-MATE +and O +ending O +at O +hybrid O +builds S-CHAR +. O + + +The O +effect O +of O +powder S-MATE +recycling O +on O +powder S-MATE +characteristics O +is O +investigated O +using O +flowability O +, O +size O +distribution S-CONPRI +, O +and O +density B-CHAR +measurements E-CHAR +. O + + +Virgin O +and O +re-used O +powder S-MATE +have O +similar O +characteristics O +in O +terms O +of O +size O +distribution S-CONPRI +and O +chemical O +and O +phase S-CONPRI +homogeneity O +, O +but O +no O +flowability O +. O + + +A O +microstructural B-CHAR +characterization E-CHAR +of O +the O +as-built O +and O +heat-treated S-MANP +samples O +is O +undertaken O +, O +showing O +the O +phase B-CONPRI +evolution E-CONPRI +, O +and O +the O +formation O +of O +porosity S-PRO +between O +build B-PARA +layers E-PARA +. O + + +The O +age-hardening O +response O +of O +the O +alloy S-MATE +at O +490 O +°C O +and O +650 O +°C O +is O +demonstrated O +to O +be S-MATE +similar O +to O +the O +material S-MATE +in O +the O +wrought S-CONPRI +condition O +. O + + +Finally O +, O +hybrid O +build S-PARA +scenarios O +are O +examined O +– O +maraging B-MATE +steel E-MATE +powder O +deposited O +onto O +C300 O +maraging B-MATE +steel E-MATE +, O +as S-MATE +well O +as S-MATE +H13 O +tool S-MACEQ +steel S-MATE +substrates O +– O +using O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +. O + + +In O +both O +cases O +, O +the O +interface S-CONPRI +remains O +coherent O +without O +any O +sign O +of O +de-bonding O +during O +tensile S-PRO +deformation S-CONPRI +. O + + +In O +the O +case O +of O +the O +maraging B-MATE +steel E-MATE +powder O +/ O +C300 O +substrate S-MATE +, O +the O +deformation S-CONPRI +is O +homogeneous S-CONPRI +throughout O +until O +failure S-CONPRI +localizes O +away O +from O +the O +interface S-CONPRI +. O + + +In O +the O +case O +of O +the O +maraging B-MATE +steel E-MATE +powder O +/ O +H13 S-MATE +substrate O +, O +the O +deformation S-CONPRI +is O +predominantly O +within O +the O +substrate S-MATE +until O +failure S-CONPRI +localizes O +at O +the O +interface S-CONPRI +. O + + +A O +heat B-MANP +treatment E-MANP +strategy O +for O +the O +maraging B-MATE +steel E-MATE +powder O +/ O +H13 B-MATE +tool I-MATE +steel E-MATE +substrate O +is O +proposed O +. O + + +The O +effect O +of O +electrode S-MACEQ +positive O +time O +cycle O +( O +% O +EP O +) O +of O +the O +alternating O +current O +TIG B-MANP +process E-MANP +has O +been O +investigated O +for O +aluminium S-MATE +wire O ++ O +arc S-CONPRI +additive B-MANP +manufacture E-MANP +of O +linear O +walls O +. O + + +The O +study O +considered O +the O +effect O +on O +oxide S-MATE +removal O +, O +linear O +wall O +dimensions S-FEAT +, O +microstructure S-CONPRI +, O +mechanical B-CONPRI +properties E-CONPRI +as S-MATE +well O +as S-MATE +the O +effect O +on O +electrode S-MACEQ +wear O +. O + + +Microstructure S-CONPRI +analysis O +showed O +a O +noticeable O +increase O +in O +the O +grain B-PRO +size E-PRO +for O +higher O +% O +EP O +. O + + +The O +study O +also O +showed O +that O +% O +EP O +had O +no O +significant O +effect O +on O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +study O +also O +indicated O +that O +there O +could O +be S-MATE +other O +contributing O +factors O +to O +wall O +dimensions S-FEAT +. O + + +For O +aluminium S-MATE +wire O ++ O +arc S-CONPRI +additive B-MANP +manufacture E-MANP +of O +linear O +walls O +, O +minimum O +cleaning S-MANP +ranged O +between O +10 O +% O +EP O +and O +20 O +% O +EP O +. O + + +Reverted O +austenite S-MATE +is O +a O +metastable S-PRO +phase O +that O +can O +be S-MATE +used O +in O +maraging B-MATE +steels E-MATE +to O +increase O +ductility S-PRO +via O +transformation-induced O +plasticity S-PRO +or O +TRIP O +effect O +. O + + +In O +the O +present O +study O +, O +18Ni O +maraging B-MATE +steel E-MATE +samples O +were O +built O +by O +selective B-MANP +laser I-MANP +melting E-MANP +, O +homogenized S-MANP +at O +820 O +°C O +and O +then O +subjected O +to O +different O +isothermal S-CONPRI +tempering O +cycles O +aiming O +for O +martensite-to-austenite O +reversion O +. O + + +Thermodynamic O +simulations S-ENAT +were O +used O +to O +estimate O +the O +inter-critical O +austenite S-MATE ++ O +ferrite S-MATE +field O +and O +to O +interpret O +the O +results O +obtained O +after O +tempering S-MANP +. O + + +In-situ S-CONPRI +synchrotron O +X-ray B-CHAR +diffraction E-CHAR +was O +performed O +during O +the O +heating S-MANP +, O +soaking O +and O +cooling S-MANP +of O +the O +samples S-CONPRI +to O +characterize O +the O +martensite-to-austenite O +reversion O +kinetics O +and O +the O +reverted O +austenite S-MATE +stability O +upon O +cooling S-MANP +to O +room O +temperature S-PARA +. O + + +The O +reverted O +austenite S-MATE +size O +and O +distribution S-CONPRI +were O +measured O +by O +Electron O +Backscattered O +Diffraction S-CHAR +. O + + +Results O +showed O +that O +the O +selected O +soaking O +temperatures S-PARA +of O +610 O +°C O +and O +650 O +°C O +promoted O +significant O +and O +gradual O +martensite-to-austenite O +reversion O +with O +high O +thermal B-PRO +stability E-PRO +. O + + +Tempering S-MANP +at O +690 O +°C O +caused O +massive O +and O +complete O +austenitization O +, O +resulting O +in O +low O +austenite S-MATE +stability O +upon O +cooling S-MANP +due O +to O +compositional O +homogenization S-MANP +. O + + +The O +process S-CONPRI +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +rapidly O +developed O +over O +the O +past O +two O +decades O +and O +is O +now O +addressing O +the O +needs O +of O +industry S-APPL +for O +fast O +production S-MANP +of O +samples S-CONPRI +with O +tailored O +properties S-CONPRI +and O +complex B-CONPRI +geometries E-CONPRI +. O + + +One O +of O +the O +most O +common O +alloys S-MATE +fabricated O +from O +powder S-MATE +using O +the O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +L-PBF S-MANP +) O +method O +is O +AlSi10Mg S-MATE +. O + + +The O +effects O +of O +the O +inherent O +anisotropy S-PRO +and O +existing O +porosity S-PRO +in O +AM S-MANP +AlSi10Mg S-MATE +were O +investigated O +in O +terms O +of O +thermophysical O +properties S-CONPRI +, O +namely O +thermal B-PRO +conductivity E-PRO +, O +diffusivity S-CHAR +, O +heat B-CONPRI +capacity E-CONPRI +and O +thermal B-CONPRI +expansion E-CONPRI +. O + + +In O +both O +cases O +, O +the O +sample S-CONPRI +showed O +abnormal O +thermal B-CONPRI +expansion E-CONPRI +and O +conductivity S-PRO +, O +as S-MATE +compared O +to O +a O +conventionally O +fabricated S-CONPRI +sample O +. O + + +After O +heat B-MANP +treatment E-MANP +, O +macro- O +and O +microstructure S-CONPRI +analysis O +confirmed O +that O +thermally O +induced O +porosity S-PRO +( O +TIP O +) O +had O +occurred O +. O + + +The O +anisotropic S-PRO +behaviors O +of O +thermal B-PRO +conductivity E-PRO +, O +diffusivity S-CHAR +and O +thermal B-CONPRI +expansion E-CONPRI +were O +found O +to O +be S-MATE +related O +to O +the O +texture S-FEAT +, O +preferred O +orientation S-CONPRI +and O +pore S-PRO +distribution S-CONPRI +of O +the O +aluminum S-MATE +grains O +in O +the O +L-PBF-treated O +samples S-CONPRI +. O + + +Design B-FEAT +for I-FEAT +additive I-FEAT +manufacturing E-FEAT +( O +DFAM O +) O +guidelines O +are O +important O +for O +helping O +designers O +avoid O +iterations O +and O +leverage O +the O +design B-CONPRI +freedoms E-CONPRI +afforded O +by O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +This O +paper O +describes O +how O +quantitative S-CONPRI +design S-FEAT +guidelines O +are O +compiled O +for O +a O +polymer S-MATE +selective O +laser B-MANP +sintering E-MANP +( O +SLS S-MANP +) O +process S-CONPRI +via O +a O +metrology S-CONPRI +study O +. O + + +As S-MATE +part O +of O +the O +metrology S-CONPRI +study O +, O +a O +test O +part O +is O +designed S-FEAT +to O +focus O +specifically O +on O +geometric O +resolution S-PARA +and O +accuracy S-CHAR +of O +the O +polymer S-MATE +SLS O +process S-CONPRI +. O + + +The O +test O +part O +is O +compact S-MANP +, O +allowing O +it O +to O +be S-MATE +easily O +inserted O +into O +existing O +SLS S-MANP +builds S-CHAR +and O +therefore O +eliminating O +the O +need O +for O +dedicated O +metrology S-CONPRI +builds S-CHAR +. O + + +To O +build S-PARA +a O +statistical O +foundation O +upon O +which O +design S-FEAT +guidelines O +can O +be S-MATE +compiled O +, O +multiple O +copies O +of O +the O +test O +part O +are O +fabricated S-CONPRI +within O +existing O +commercial O +builds S-CHAR +in O +a O +factorial O +study O +with O +materials S-CONPRI +, O +build B-PARA +orientations E-PARA +, O +and O +locations O +within O +the O +build B-PARA +chamber E-PARA +as S-MATE +control O +factors O +. O + + +Enhancing O +the O +corrosion B-CONPRI +resistance E-CONPRI +and O +improving O +the O +biological O +response O +to O +316 O +L O +stainless B-MATE +steel E-MATE +is O +a O +long-standing O +and O +active O +area S-PARA +of O +biomedical S-APPL +research O +. O + + +Here O +, O +we O +analyzed O +the O +structure S-CONPRI +and O +corrosion S-CONPRI +tendency O +of O +selective B-MANP +laser E-MANP +melted-additively O +manufactured S-CONPRI +( O +AM S-MANP +) O +316 O +L O +stainless B-MATE +steel E-MATE +( O +AM S-MANP +316L O +SS S-MATE +) O +and O +its O +wrought S-CONPRI +counterpart O +. O + + +SEM S-CHAR +analysis O +showed O +a O +fine O +( O +500–800 O +nm O +) O +interconnected O +sub-granular O +structure S-CONPRI +for O +the O +AM S-MANP +316L O +SS S-MATE +, O +but O +a O +polygonal O +coarse-grained O +structure S-CONPRI +for O +the O +wrought B-CONPRI +sample E-CONPRI +. O + + +Relative O +to O +the O +wrought B-CONPRI +sample E-CONPRI +, O +the O +AM S-MANP +316L O +SS S-MATE +also O +exhibited O +a O +higher O +charge O +transfer O +resistance S-PRO +and O +higher O +breakdown O +potential O +( O +˜1000 O +mV O +vs. O +SCE O +) O +when O +tested O +in O +biological O +electrolytes S-APPL +, O +which O +included O +human O +serum O +, O +PBS S-MATE +, O +and O +0.9 O +M O +NaCl S-MATE +. O + + +A O +higher O +pitting S-CONPRI +resistance O +( O +extended O +passive O +region O +) O +and O +improved O +stability S-PRO +of O +the O +AM S-MANP +316L O +SS S-MATE +was O +attributed O +to O +its O +dense O +structure S-CONPRI +of O +oxide S-MATE +film O +and O +refined O +microstructure S-CONPRI +. O + + +Finally O +, O +material S-MATE +compatibility O +with O +pre-osteoblasts O +was O +analyzed O +. O + + +Large O +cytoplasmic O +extension O +of O +osteoblast B-BIOP +cells E-BIOP +and O +retention O +of O +stiller O +morphology S-CONPRI +was O +observed O +when O +cells S-APPL +were O +cultured O +on O +the O +AM S-MANP +316L O +SS S-MATE +as S-MATE +compared O +to O +its O +wrought S-CONPRI +counterpart O +, O +suggesting O +that O +the O +AM S-MANP +316L O +SS S-MATE +was O +a O +better O +substrate S-MATE +for O +cell S-APPL +spreading O +and O +differentiation O +. O + + +Runx2 O +, O +an O +anti–proliferative O +marker O +indicative O +of O +differentiation O +, O +was O +equivalent O +in O +cells S-APPL +cultured O +on O +either O +samples S-CONPRI +, O +but O +overall O +more O +cells S-APPL +were O +present O +on O +the O +AM S-MANP +316L O +SS S-MATE +. O + + +Given O +its O +higher O +corrosion B-CONPRI +resistance E-CONPRI +and O +ability O +to O +support S-APPL +osteoblast S-BIOP +adherence O +, O +spreading O +and O +differentiation O +, O +the O +AM S-MANP +316L O +SS S-MATE +has O +potential O +for O +use O +in O +the O +biomedical B-APPL +industry E-APPL +. O + + +Simulations S-ENAT +of O +the O +material S-MATE +deposition S-CONPRI +in O +extrusion-based O +additive B-MANP +manufacturing E-MANP +. O + + +Prediction S-CONPRI +of O +the O +strand O +cross-section O +as S-MATE +function O +of O +the O +processing O +parameters S-CONPRI +. O + + +Negative O +linear O +relationship O +between O +the O +printing O +force S-CONPRI +and O +the O +printing B-PARA +speed E-PARA +. O + + +We O +propose O +a O +numerical O +model S-CONPRI +to O +simulate O +the O +extrusion S-MANP +of O +a O +strand O +of O +semi-molten S-PRO +material S-MATE +on O +a O +moving O +substrate S-MATE +, O +within O +the O +computation S-CONPRI +fluid O +dynamics O +paradigm O +. O + + +According O +to O +the O +literature O +, O +the O +deposition S-CONPRI +flow O +of O +the O +strands O +has O +an O +impact S-CONPRI +on O +the O +inter-layer O +bond O +formation O +in O +extrusion-based O +additive B-MANP +manufacturing E-MANP +, O +as S-MATE +well O +as S-MATE +the O +surface B-PRO +roughness E-PRO +of O +the O +fabricated S-CONPRI +part O +. O + + +Under O +the O +assumptions O +of O +an O +isothermal S-CONPRI +Newtonian O +fluid S-MATE +and O +a O +creeping O +laminar O +flow O +, O +the O +deposition S-CONPRI +flow O +is O +controlled O +by O +two O +parameters S-CONPRI +: O +the O +gap O +distance O +between O +the O +extrusion S-MANP +nozzle O +and O +the O +substrate S-MATE +, O +and O +the O +velocity O +ratio O +of O +the O +substrate S-MATE +to O +the O +average S-CONPRI +velocity O +of O +the O +flow O +inside O +the O +nozzle S-MACEQ +. O + + +The O +numerical B-ENAT +simulation E-ENAT +fully O +resolves O +the O +deposition S-CONPRI +flow O +and O +provides O +the O +cross-section O +of O +the O +printed O +strand O +. O + + +The O +adoption O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +for O +fabricating S-MANP +biomedical S-APPL +implants O +at O +hospitals O +provides O +many O +potential O +benefits O +. O + + +Relative O +to O +biomedical S-APPL +implants O +fabricated S-CONPRI +via O +traditional B-MANP +manufacturing E-MANP +( O +TM O +) O +, O +typically O +available O +by O +suppliers O +out O +of O +the O +immediate O +region O +, O +biomedical S-APPL +implants O +fabricated S-CONPRI +through O +AM S-MANP +provides O +an O +opportunity O +to O +receive O +more O +patient-specific O +, O +customized O +parts O +with O +faster O +response O +, O +a O +lower O +inventory O +level O +, O +and O +reduced O +delivery O +costs O +. O + + +Despite O +the O +promising O +features O +of O +AM B-MANP +technologies E-MANP +, O +the O +make-or-buy O +decisions O +are O +not O +straightforward O +and O +require O +careful O +investigation O +due O +to O +the O +relatively O +high O +AM B-MACEQ +machine E-MACEQ +and O +production B-CONPRI +costs E-CONPRI +. O + + +No O +research S-CONPRI +efforts O +, O +to O +the O +best O +of O +our O +knowledge O +, O +have O +been O +dedicated O +to O +the O +quantitative S-CONPRI +analysis O +of O +the O +costs O +of O +supply B-CONPRI +chains E-CONPRI +integrated O +with O +AM S-MANP +facilities O +, O +e.g. O +, O +inventory O +cost O +, O +transportation O +cost O +, O +product O +lead B-PARA +time E-PARA +, O +etc O +. O + + +In O +this O +study O +, O +we O +propose O +a O +stochastic S-CONPRI +cost B-CONPRI +model E-CONPRI +to O +quantify O +the O +supply-chain O +level O +costs O +associated O +with O +the O +production S-MANP +of O +biomedical S-APPL +implants O +using O +AM B-MANP +techniques E-MANP +, O +and O +investigate O +the O +economic O +feasibility S-CONPRI +of O +using O +such O +technologies S-CONPRI +to O +fabricate S-MANP +biomedical S-APPL +implants O +at O +the O +sites O +of O +hospitals O +. O + + +The O +problem O +is O +formulated O +in O +the O +form O +of O +a O +stochastic S-CONPRI +programming O +model S-CONPRI +, O +which O +determines O +the O +number O +of O +AM S-MANP +facilities O +to O +be S-MATE +established O +and O +volume S-CONPRI +of O +product O +flow O +between O +manufacturing S-MANP +facilities O +and O +hospitals O +. O + + +A O +customized O +Sample S-CONPRI +Average B-CONPRI +Algorithm E-CONPRI +( O +SAA O +) O +is O +developed O +to O +obtain O +the O +solutions O +. O + + +We O +apply O +the O +cost B-CONPRI +model E-CONPRI +to O +a O +real-world O +case B-CONPRI +study E-CONPRI +that O +focuses O +on O +the O +use O +of O +biomedical S-APPL +implants O +for O +hospitals O +in O +the O +state O +of O +Mississippi O +( O +MS O +) O +, O +and O +identify O +the O +conditions O +and O +cost O +parameters S-CONPRI +that O +have O +significant O +impact S-CONPRI +on O +the O +economic O +feasibility S-CONPRI +of O +AM S-MANP +. O + + +We O +find O +that O +the O +ratio O +between O +the O +unit O +production B-CONPRI +costs E-CONPRI +of O +AM S-MANP +and O +TM O +( O +ATR O +) O +, O +as S-MATE +well O +as S-MATE +product O +lead B-PARA +time E-PARA +and O +demands O +, O +are O +key O +cost O +parameters S-CONPRI +that O +determine O +the O +economic O +feasibility S-CONPRI +of O +AM S-MANP +. O + + +Popular O +dialogue O +around O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +often O +assumes O +that O +AM S-MANP +will O +cause O +a O +move O +from O +centralized O +to O +distributed O +manufacturing S-MANP +. O + + +We O +combine O +a O +Process-Based O +Cost B-CONPRI +Model E-CONPRI +and O +an O +optimization B-CONPRI +model E-CONPRI +to O +analyze O +the O +optimal O +location O +and O +number O +of O +manufacturing S-MANP +sites O +, O +and O +the O +tradeoffs O +between O +production S-MANP +, O +transportation O +and O +inventory O +costs O +. O + + +We O +use O +as S-MATE +a O +case B-CONPRI +study E-CONPRI +the O +commercial O +aviation O +maintenance O +market O +and O +a O +titanium S-MATE +jet O +engine O +bracket S-MACEQ +as S-MATE +an O +exemplar O +of O +a O +class O +of O +parts O +that O +are O +not O +flight-critical O +. O + + +We O +run O +our O +analysis O +for O +three O +different O +scenarios O +, O +one O +corresponding O +to O +the O +current O +state O +of O +the O +technology S-CONPRI +, O +and O +two O +which O +represent O +potential O +improvements O +in O +AM B-MANP +technology E-MANP +. O + + +Our O +results O +suggest O +that O +the O +cost-minimizing O +number O +of O +manufacturing S-MANP +locations O +does O +not O +vary O +significantly O +when O +taking O +into O +account O +a O +range S-PARA +of O +plausible O +improvements O +in O +the O +technology S-CONPRI +. O + + +In O +this O +case O +, O +distributed O +manufacturing S-MANP +is O +only O +favorable O +for O +a O +set S-APPL +of O +non-critical O +components S-MACEQ +that O +can O +be S-MATE +produced O +on O +the O +same O +equipment S-MACEQ +with O +minimal O +certification O +requirements O +and O +whose O +annual O +demand O +is O +in O +the O +tens O +of O +thousands O +. O + + +Distributed O +manufacturing S-MANP +is O +attractive O +at O +lower O +volumes O +for O +components S-MACEQ +that O +require O +no O +hot B-MANP +isostatic I-MANP +pressing E-MANP +. O + + +Through O +the O +combination O +of O +in-situ S-CONPRI +alloying S-FEAT +and O +additive B-MANP +manufacturing E-MANP +with O +gas B-MANP +tungsten I-MANP +arc I-MANP +welding E-MANP +, O +a O +new O +approach O +to O +fabricating S-MANP +titanium O +aluminide O +alloys S-MATE +is O +proposed O +. O + + +This O +innovative O +and O +low O +cost O +process S-CONPRI +has O +many O +similarities O +to O +multipass O +welding S-MANP +. O + + +It O +has O +been O +a O +generally O +accepted O +practice O +to O +maintain O +a O +specified O +interpass B-PARA +temperature E-PARA +when O +multipass O +welding S-MANP +many O +different O +alloys S-MATE +to O +prevent O +defects S-CONPRI +such O +as S-MATE +cracks O +. O + + +Increasing O +the O +interpass B-PARA +temperature E-PARA +can O +facilitate O +phase S-CONPRI +transformation O +by O +extending O +the O +high O +temperature S-PARA +period O +and O +produce O +the O +desired O +weld S-FEAT +microstructure.This O +study O +examines O +the O +influence O +of O +different O +interpass B-PARA +temperatures E-PARA +on O +in-situ S-CONPRI +alloyed O +and O +additively B-MANP +manufactured E-MANP +γ-TiAl O +alloy S-MATE +. O + + +The O +microstructure S-CONPRI +, O +chemical B-CONPRI +composition E-CONPRI +, O +phase S-CONPRI +constitution O +and O +microhardness S-CONPRI +of O +all O +the O +test O +components S-MACEQ +were O +respectively O +examined O +by O +using O +light O +microscopy S-CHAR +, O +SEM-EDS O +, O +X-ray B-CHAR +diffraction E-CHAR +and O +a O +Duromain O +70 O +Hardness S-PRO +Tester O +. O + + +No O +appreciable O +changes O +in O +microstructure S-CONPRI +and O +composition S-CONPRI +were O +found O +as S-MATE +interpass O +temperature S-PARA +was O +changed O +. O + + +However O +, O +as S-MATE +the O +interpass B-PARA +temperature E-PARA +was O +increased O +from O +100 O +°C O +to O +400 O +°C O +, O +a O +decrease O +of O +α2 O +phase B-CONPRI +fraction E-CONPRI +was O +observed O +due O +to O +the O +lower O +cooling B-PARA +rate E-PARA +. O + + +Consequently O +, O +the O +microhardness S-CONPRI +value O +also O +decreased O +. O + + +A O +further O +increase O +of O +interpass B-PARA +temperature E-PARA +to O +500 O +°C O +produced O +only O +minor O +reductions O +in O +the O +brittle S-PRO +α2 O +phase B-CONPRI +fraction E-CONPRI +and O +the O +microhardness S-CONPRI +value O +. O + + +In O +view O +of O +these O +results O +, O +a O +suitable O +interpass B-PARA +temperature E-PARA +was O +found O +for O +producing O +crack-free O +components S-MACEQ +. O + + +Increasingly O +, O +metal S-MATE +parts O +made O +by O +additive B-MANP +manufacturing E-MANP +are O +produced O +using O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +. O + + +In O +this O +paper O +we O +report O +upon O +the O +combined O +effects O +of O +PBF S-MANP +parameters S-CONPRI +, O +including O +power S-PARA +and O +scan B-PARA +speed E-PARA +, O +in O +layer-by-layer S-CONPRI +manufacturing O +of O +gas B-MANP +atomized E-MANP +non-modulated O +( O +NM O +) O +Ni-Mn-Ga O +alloy S-MATE +. O + + +The O +effects O +of O +process B-CONPRI +parameters E-CONPRI +upon O +PBF S-MANP +is O +studied O +by O +applying O +nine O +different O +parameter S-CONPRI +sets O +in O +the O +as-printed O +state O +and O +after O +homogenization S-MANP +and O +ordering O +. O + + +The O +chemical B-CONPRI +composition E-CONPRI +of O +the O +samples S-CONPRI +is O +analyzed O +using O +EDX S-CHAR +attached O +to O +an O +SEM S-CHAR +, O +and O +the O +crystal B-PRO +structures E-PRO +are O +determined O +by O +X-ray B-CHAR +diffraction E-CHAR +. O + + +The O +phase S-CONPRI +transformation O +temperatures S-PARA +are O +measured O +using O +a O +low-field O +ac O +susceptibility S-PRO +measurement S-CHAR +system O +and O +the O +magnetic O +properties S-CONPRI +are O +measured O +with O +a O +vibrating O +sample S-CONPRI +magnetometer O +( O +VSM S-CHAR +) O +. O + + +Before O +the O +heat-treatment O +, O +all O +as-printed O +samples S-CONPRI +showed O +paramagnetic O +behavior O +with O +low O +magnetization O +and O +no O +phase S-CONPRI +transformations O +could O +be S-MATE +observed O +in O +the O +susceptibility S-PRO +measurements O +. O + + +After O +annealing S-MANP +, O +the O +samples S-CONPRI +recovered O +the O +ferromagnetic O +behavior O +with O +comparable O +magnetization O +to O +annealed O +gas B-MANP +atomized E-MANP +powder O +. O + + +The O +as-printed O +samples S-CONPRI +were O +composed O +of O +a O +mixture O +of O +different O +crystal B-PRO +structures E-PRO +. O + + +However O +, O +after O +annealing S-MANP +the O +original O +NM O +structure S-CONPRI +with O +a O += O +b S-MATE += O +5.47 O +Å O +and O +c S-MATE += O +6.66 O +Å O +with O +a O +c/a O +-ratio O +of O +1.22 O +was O +recovered O +and O +crystallographic O +twins O +could O +be S-MATE +observed O +in O +an O +SEM S-CHAR +. O + + +Expanding O +on O +prior O +process S-CONPRI +mapping O +work O +by O +the O +authors O +, O +multiple O +melt B-MATE +pool E-MATE +cross-sections S-CONPRI +are O +measured O +at O +multiple O +process B-CONPRI +parameter E-CONPRI +combinations O +for O +the O +Inconel B-MATE +718 I-MATE +alloy E-MATE +in O +a O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +L-PBF S-MANP +) O +process S-CONPRI +. O + + +Collection O +of O +such O +data S-CONPRI +enables O +the O +study O +of O +the O +variability S-CONPRI +of O +melt B-MATE +pool E-MATE +geometry S-CONPRI +( O +e.g O +. O + + +width O +, O +depth O +, O +and O +cross-sectional O +area S-PARA +) O +across O +process S-CONPRI +space O +. O + + +Furthermore O +, O +the O +statistical O +distribution S-CONPRI +of O +the O +measured O +melt B-MATE +pool E-MATE +geometries S-CONPRI +is O +compared O +to O +that O +of O +an O +equivalent O +normal O +distribution S-CONPRI +and O +intriguing O +outliers O +are O +observed O +. O + + +The O +cross-sectional O +morphology S-CONPRI +of O +the O +melt B-MATE +pools E-MATE +are O +associated O +with O +defects S-CONPRI +such O +as S-MATE +keyholing O +porosity S-PRO +and O +balling O +and O +the O +variability S-CONPRI +of O +the O +defects S-CONPRI +is O +quantified O +. O + + +The O +final O +product O +of O +this O +work O +is O +a O +robust O +description O +of O +L-PBF S-MANP +In718 S-MATE +melt O +pool O +behavior O +, O +based O +on O +ex-situ O +observations O +, O +which O +can O +be S-MATE +linked O +to O +in-situ S-CONPRI +observations O +of O +melt B-MATE +pool E-MATE +morphology O +in O +future O +work O +. O + + +This O +study O +evaluates O +the O +performance S-CONPRI +of O +continuous O +carbon S-MATE +, O +Kevlar S-MATE +and O +glass B-MATE +fibre E-MATE +reinforced O +composites S-MATE +manufactured O +using O +the O +fused B-CONPRI +deposition E-CONPRI +modelling O +( O +FDM S-MANP +) O +additive B-MANP +manufacturing E-MANP +technique O +. O + + +The O +fibre S-MATE +reinforced O +nylon B-MATE +composites E-MATE +were O +fabricated S-CONPRI +using O +a O +Markforged O +Mark O +One O +3D B-MANP +printing E-MANP +system O +. O + + +The O +mechanical S-APPL +performance O +of O +the O +composites S-MATE +was O +evaluated O +both O +in O +tension O +and O +flexure S-MACEQ +. O + + +The O +influence O +of O +fibre S-MATE +orientation O +, O +fibre S-MATE +type O +and O +volume B-PARA +fraction E-PARA +on O +mechanical B-CONPRI +properties E-CONPRI +were O +also O +investigated O +. O + + +The O +results O +were O +compared O +with O +that O +of O +both O +non-reinforced O +nylon S-MATE +control O +specimens O +, O +and O +known O +material B-CONPRI +property E-CONPRI +values O +from O +literature O +. O + + +It O +was O +demonstrated O +that O +of O +the O +fibres S-MATE +investigated O +, O +those O +fabricated S-CONPRI +using O +carbon B-MATE +fibre E-MATE +yielded O +the O +largest O +increase O +in O +mechanical B-PRO +strength E-PRO +per O +fibre S-MATE +volume O +. O + + +Its O +tensile B-PRO +strength E-PRO +values O +were O +up O +to O +6.3 O +times O +higher O +than O +those O +obtained O +with O +the O +non-reinforced O +nylon S-MATE +polymer O +. O + + +As S-MATE +the O +carbon S-MATE +and O +glass B-MATE +fibre E-MATE +volume O +fraction S-CONPRI +increased O +so O +too O +did O +the O +level O +of O +air O +inclusion S-MATE +in O +the O +composite S-MATE +matrix O +, O +which O +impacted O +on O +mechanical S-APPL +performance O +. O + + +As S-MATE +a O +result O +, O +a O +maximum O +efficiency O +in O +tensile B-PRO +strength E-PRO +was O +observed O +in O +glass S-MATE +specimen O +as S-MATE +fibre O +content O +approached O +22.5 O +% O +, O +with O +higher O +fibre S-MATE +contents O +( O +up O +to O +33 O +% O +) O +, O +yielding O +only O +minor O +increases O +in O +strength S-PRO +. O + + +Approaches O +used O +in O +Computational O +Welding S-MANP +Mechanics O +are O +applicable O +for O +additive B-MANP +Manufacturing E-MANP +. O + + +The O +model S-CONPRI +sizes O +pose O +additional O +challenges O +in O +case O +of O +simulating O +AM S-MANP +. O + + +Models O +must O +couple O +microstructural S-CONPRI +and O +material S-MATE +behavior O +. O + + +The O +paper O +describes O +the O +application O +of O +modeling S-ENAT +approaches O +used O +in O +Computational O +Welding S-MANP +Mechanics O +( O +CWM O +) O +applicable O +for O +simulating O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +It O +focuses O +on O +the O +approximation O +of O +the O +behavior O +in O +the O +process S-CONPRI +zone O +and O +the O +behavior O +of O +the O +solid O +material S-MATE +, O +particularly O +in O +the O +context O +of O +changing O +microstructure S-CONPRI +. O + + +Two O +examples O +are O +shown O +, O +one O +for O +the O +precipitation B-MANP +hardening E-MANP +Alloy S-MATE +718 O +and O +one O +for O +Ti-6Al-4V S-MATE +. O + + +The O +latter O +alloy S-MATE +is O +subject O +to O +phase S-CONPRI +changes O +due O +to O +the O +thermal B-PARA +cycling E-PARA +. O + + +A O +model S-CONPRI +for O +additive B-MANP +manufacturing E-MANP +by O +selective B-MANP +laser I-MANP +melting E-MANP +of O +a O +powder B-MACEQ +bed E-MACEQ +with O +application O +to O +alumina S-MATE +ceramic O +is O +presented O +. O + + +Based O +on O +Beer–Lambert O +law O +, O +a O +volume S-CONPRI +heat B-CONPRI +source E-CONPRI +model O +taking O +into O +account O +the O +material S-MATE +absorption S-CONPRI +is O +derived O +. O + + +The O +level O +set S-APPL +method O +is O +used O +to O +track O +the O +shape O +of O +deposed O +bead S-CHAR +. O + + +Shrinkage S-CONPRI +during O +consolidation S-CONPRI +from O +powder S-MATE +to O +liquid O +and O +compact S-MANP +medium O +is O +modeled O +by O +a O +compressible O +Newtonian O +constitutive O +law O +. O + + +A O +semi-implicit O +formulation O +of O +surface B-PRO +tension E-PRO +is O +used O +, O +which O +permits O +a O +stable O +resolution S-PARA +to O +capture O +the O +liquid/gas O +interface S-CONPRI +. O + + +The O +influence O +of O +different O +process B-CONPRI +parameters E-CONPRI +on O +temperature S-PARA +distribution S-CONPRI +, O +melt B-MATE +pool E-MATE +profiles O +and O +bead S-CHAR +shapes O +is O +discussed O +. O + + +The O +effects O +of O +liquid O +viscosity S-PRO +and O +surface B-PRO +tension E-PRO +on O +melt B-MATE +pool E-MATE +dynamics O +are O +investigated O +. O + + +Three O +dimensional O +simulations S-ENAT +of O +several O +passes O +are O +also O +presented O +to O +study O +the O +influence O +of O +the O +scanning B-CONPRI +strategy E-CONPRI +. O + + +A O +wire-arc B-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +system O +is O +used O +to O +fabricate S-MANP +iron O +rich O +Fe–Al O +intermetallics S-MATE +with O +25 O +at O +% O +aluminum S-MATE +content O +. O + + +The O +alloy S-MATE +is O +produced O +in B-CONPRI +situ E-CONPRI +through O +controlled O +addition O +of O +the O +elemental O +iron S-MATE +and O +aluminum S-MATE +components O +into O +the O +welding S-MANP +process S-CONPRI +. O + + +The O +properties S-CONPRI +of O +the O +fabricated S-CONPRI +material O +are O +assessed O +using O +optical S-CHAR +microstructure S-CONPRI +analysis O +, O +hardness S-PRO +testing O +, O +tensile B-CHAR +testing E-CHAR +, O +X-ray B-CHAR +diffraction E-CHAR +phase S-CONPRI +characterization O +and O +electron O +dispersive O +spectrometry O +. O + + +It O +is O +shown O +that O +the O +WAAM B-MACEQ +system E-MACEQ +is O +capable O +of O +producing O +iron S-MATE +rich O +Fe–Al O +intermetallics S-MATE +with O +higher O +yield B-PRO +strength E-PRO +and O +similar O +room O +temperature S-PARA +ductility S-PRO +when O +compared O +to O +equivalent O +materials S-CONPRI +produced O +using O +powder B-MANP +metallurgy E-MANP +. O + + +Support B-FEAT +structures E-FEAT +are O +required O +in O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +of O +metallic S-MATE +components S-MACEQ +with O +overhanging B-CONPRI +structures E-CONPRI +in O +order O +to O +reinforce O +and O +anchor O +the O +part O +, O +preventing O +warping S-CONPRI +during O +fabrication S-MANP +. O + + +In O +this O +study O +, O +we O +tested O +the O +tensile S-PRO +structural O +strength S-PRO +of O +support B-FEAT +structures E-FEAT +with O +four O +different O +2-dimensional O +lattice B-CONPRI +geometries E-CONPRI +by O +fabricating S-MANP +samples O +composed O +of O +solid O +material S-MATE +on O +the O +bottom O +, O +followed O +by O +support B-MATE +material E-MATE +in O +the O +middle O +, O +followed O +by O +solid O +material S-MATE +on O +the O +top O +. O + + +The O +support B-FEAT +structure E-FEAT +regions O +were O +fabricated S-CONPRI +with O +a O +lower O +linear O +heat S-CONPRI +input O +than O +the O +solid O +material S-MATE +, O +providing O +deliberate O +geometrical O +stress B-CHAR +concentrations E-CHAR +to O +enable O +the O +removal B-MANP +of I-MANP +support E-MANP +material S-MATE +after O +processing O +. O + + +These O +samples S-CONPRI +were O +subjected O +to O +tension O +in O +the O +vertical S-CONPRI +direction O +to O +measure O +the O +strengths S-PRO +of O +the O +support S-APPL +structure-solid O +material S-MATE +interfaces O +. O + + +Two O +strengths S-PRO +were O +computed O +: O +an O +effective O +structural O +strength S-PRO +defined O +as S-MATE +the O +total O +force S-CONPRI +that O +the O +structure S-CONPRI +withstood O +normalized O +by O +the O +full O +cross-sectional O +area S-PARA +, O +and O +a O +ligament O +structural O +strength S-PRO +, O +defined O +as S-MATE +the O +effective O +structural O +strength S-PRO +normalized O +by O +the O +density S-PRO +of O +the O +solid O +material S-MATE +, O +thereby O +ignoring O +the O +volume S-CONPRI +of O +the O +surrounding O +powder S-MATE +and O +voids S-CONPRI +that O +do O +not O +contribute O +to O +the O +strength S-PRO +of O +the O +lattice S-CONPRI +. O + + +The O +effective O +structural O +strength S-PRO +was O +14–32 O +% O +of O +the O +strength S-PRO +of O +fully B-PARA +dense E-PARA +Ti-6Al-4V O +made O +by O +PBF S-MANP +and O +the O +ligament O +structural O +strength S-PRO +was O +34–49 O +% O +of O +the O +strength S-PRO +of O +fully B-PARA +dense E-PARA +material O +. O + + +These O +interface S-CONPRI +strengths O +are O +lower O +than O +that O +of O +fully-dense O +material S-MATE +due O +to O +the O +stress B-CHAR +concentrations E-CHAR +at O +the O +support S-APPL +structure-solid O +material S-MATE +interfaces O +, O +not O +any O +intrinsic O +difference O +in O +the O +intrinsic O +strength S-PRO +of O +support B-FEAT +structure E-FEAT +versus O +solid O +material S-MATE +. O + + +These O +results O +can O +be S-MATE +used O +to O +tailor O +the O +support B-FEAT +structure E-FEAT +geometry S-CONPRI +to O +balance O +sufficient O +anchoring O +strength S-PRO +during O +fabrication S-MANP +and O +ease O +of O +part O +removal O +and O +subsequent O +machining S-MANP +during O +post-processing S-CONPRI +. O + + +In-situ S-CONPRI +detection O +of O +processing O +defects S-CONPRI +is O +a O +critical O +challenge O +for O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion I-MANP +Additive I-MANP +Manufacturing E-MANP +. O + + +Many O +of O +these O +defects S-CONPRI +are O +related O +to O +interactions O +between O +the O +recoater B-MACEQ +blade E-MACEQ +, O +which O +spreads O +the O +powder S-MATE +, O +and O +the O +powder B-MACEQ +bed E-MACEQ +. O + + +This O +work O +leverages O +Deep O +Learning O +, O +specifically O +a O +Convolutional O +Neural B-CONPRI +Network E-CONPRI +( O +CNN O +) O +, O +for O +autonomous O +detection O +and O +classification S-CONPRI +of O +many O +of O +these O +spreading O +anomalies S-CONPRI +. O + + +Importantly O +, O +the O +input O +layer S-PARA +of O +the O +CNN O +is O +modified O +to O +enable O +the O +algorithm S-CONPRI +to O +learn O +both O +the O +appearance O +of O +the O +powder B-MACEQ +bed E-MACEQ +anomalies S-CONPRI +as O +well O +as S-MATE +key O +contextual O +information O +at O +multiple O +size O +scales O +. O + + +These O +modifications O +to O +the O +CNN O +architecture S-APPL +are O +shown O +to O +improve O +the O +flexibility S-PRO +and O +overall O +classification S-CONPRI +accuracy S-CHAR +of O +the O +algorithm S-CONPRI +while O +mitigating O +many O +human O +biases O +. O + + +A O +case B-CONPRI +study E-CONPRI +is O +used O +to O +demonstrate O +the O +utility O +of O +the O +presented O +methodology S-CONPRI +and O +the O +overall O +performance S-CONPRI +is O +shown O +to O +be S-MATE +superior O +to O +that O +of O +methodologies O +previously O +reported O +by O +the O +authors O +. O + + +The O +observation O +of O +sub-grained O +cellular O +features O +in O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +/selectively O +laser S-ENAT +melted O +( O +SLM S-MANP +) O +316L B-MATE +stainless I-MATE +steel E-MATE +components O +has O +remained O +an O +interesting O +, O +though O +incompletely O +understood O +phenomenon O +. O + + +However O +, O +the O +recently O +observed O +correlation O +linking O +the O +presence O +of O +these O +features O +with O +significantly O +enhanced O +mechanical B-PRO +strength E-PRO +in O +SLM S-MANP +316L O +materials S-CONPRI +has O +driven O +a O +renewed O +interest O +and O +effort O +toward O +elucidating O +the O +mechanism S-CONPRI +( O +s S-MATE +) O +by O +which O +they O +are O +formed O +. O + + +These O +phenomena O +include O +SLM-induced O +intrinsic O +strain-aging O +, O +Cottrell O +atmosphere O +formation O +, O +and O +twin-boundary O +enhanced O +mass B-CONPRI +diffusion E-CONPRI +to O +structural B-CONPRI +defects E-CONPRI +. O + + +Furthermore O +, O +evidence O +is O +provided O +to O +support S-APPL +the O +proposed O +theory O +that O +the O +observed O +chemical B-CONPRI +heterogeneity E-CONPRI +coincident O +with O +dislocation S-CONPRI +cell S-APPL +structures O +is O +actually O +the O +result O +of O +local O +, O +strain S-PRO +energy B-PARA +density E-PARA +induced O +solid B-CONPRI +state I-CONPRI +diffusion E-CONPRI +. O + + +Numerical B-ENAT +simulation E-ENAT +of O +residual B-CONPRI +deformation E-CONPRI +in O +metallic S-MATE +components S-MACEQ +with O +dense O +lattice S-CONPRI +support O +structures O +by O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +additive B-MANP +manufacturing I-MANP +process E-MANP +has O +been O +a O +significant O +challenge O +due O +to O +the O +very O +high O +computational O +expense O +in O +performing O +both O +finite B-CONPRI +element E-CONPRI +meshing O +and O +analysis O +. O + + +In O +this O +work O +, O +the O +modified B-CONPRI +inherent I-CONPRI +strain I-CONPRI +method E-CONPRI +is O +extended O +to O +enable O +efficient O +residual B-CONPRI +deformation E-CONPRI +simulation O +of O +l-PBF S-MANP +components S-MACEQ +with O +lattice S-CONPRI +support O +structures O +. O + + +The O +asymptotic O +homogenization B-MANP +method E-MANP +is O +employed O +to O +obtain O +the O +equivalent O +mechanical B-CONPRI +properties E-CONPRI +including O +the O +anisotropic S-PRO +elastic O +modulus O +and O +inherent O +strains O +given O +the O +topological O +configuration S-CONPRI +and O +laser S-ENAT +scanning O +strategy O +of O +the O +thin-walled O +lattice S-CONPRI +support O +structures O +. O + + +A O +key O +finding O +is O +that O +the O +in-plane O +homogenized S-MANP +inherent O +strain S-PRO +values O +decrease O +with O +increasing O +volume S-CONPRI +density S-PRO +, O +which O +can O +be S-MATE +attributed O +to O +the O +directional O +dependence O +of O +inherent O +strains O +for O +the O +AM-processed O +material S-MATE +. O + + +Based O +on O +the O +homogenized S-MANP +mechanical O +properties S-CONPRI +and O +inherent O +strains O +, O +the O +thin-walled O +lattice S-CONPRI +support O +structures O +can O +be S-MATE +considered O +to O +be S-MATE +an O +effective O +solid O +continuum S-CONPRI +so O +that O +the O +simulation S-ENAT +can O +be S-MATE +accelerated O +significantly O +to O +obtain O +residual B-CONPRI +deformation E-CONPRI +. O + + +Good O +accuracy S-CHAR +of O +the O +homogenized S-MANP +mechanical O +property S-CONPRI +and O +inherent O +strains O +is O +validated O +by O +comparing O +the O +simulated O +residual B-CONPRI +deformation E-CONPRI +with O +experimental B-CONPRI +deformation E-CONPRI +measurement O +of O +several O +lattice S-CONPRI +structured O +beams O +of O +different O +volume S-CONPRI +densities O +. O + + +In O +addition O +, O +the O +scalability O +of O +the O +proposed O +method O +is O +also O +verified O +through O +application O +to O +a O +complex O +L-PBF S-MANP +component S-MACEQ +fabricated O +with O +thin-walled O +support B-FEAT +structures E-FEAT +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +promises O +great O +potential O +benefits O +for O +industrial S-APPL +manufacturers O +who O +require O +low O +volume S-CONPRI +and O +functional O +, O +highly O +complex O +, O +end-use O +products O +. O + + +Commercial O +adoption O +of O +AM S-MANP +has O +been O +slow O +due O +to O +factors O +such O +as S-MATE +quality O +control O +, O +production S-MANP +rates O +, O +and O +repeatability S-CONPRI +. O + + +However O +, O +given O +AM S-MANP +'s O +potential O +, O +numerous O +research S-CONPRI +efforts O +are O +underway O +to O +improve O +the O +quality S-CONPRI +of O +the O +product O +realization O +process S-CONPRI +. O + + +A O +major O +area S-PARA +of O +opportunity O +is O +to O +complement O +existing O +efforts O +with O +advancements O +in O +end-to-end O +digital O +implementations O +of O +AM B-MANP +processes E-MANP +. O + + +Systematically O +configured O +digital O +implementations O +would O +facilitate O +informational O +transformations O +through O +standard S-CONPRI +interfaces O +, O +streamlining O +the O +AM S-MANP +digital O +spectrum O +. O + + +Here O +, O +we O +propose O +the O +development O +of O +a O +federated O +, O +information O +systems O +architecture S-APPL +for O +additive B-MANP +manufacturing E-MANP +. O + + +We O +establish O +an O +information O +requirements O +workflow S-CONPRI +for O +streamlining O +information O +throughput S-CHAR +during O +product O +realization O +. O + + +The O +architecture S-APPL +is O +delivered O +through O +the O +development O +of O +a O +solution S-CONPRI +stack O +, O +including O +the O +identification O +of O +areas S-PARA +where O +advancements O +in O +information O +representations O +will O +have O +the O +highest O +impact S-CONPRI +. O + + +Common O +data S-CONPRI +structures O +and O +interfaces O +will O +allow O +developers O +and O +end O +users O +of O +additive B-MANP +manufacturing E-MANP +technologies O +to O +simplify O +, O +coordinate S-PARA +, O +validate O +, O +and O +verify O +end-to-end O +digital O +implementations O +. O + + +This O +paper O +investigates S-CONPRI +the O +development O +of O +a O +novel O +high O +temperature S-PARA +polymer B-MATE +composite E-MATE +material S-MATE +by O +modifying O +polyetherimide O +( O +PEI O +) O +ULTEM™ O +1010 O +with O +the O +addition O +of O +functional O +additives S-MATE +and O +processing O +it O +into O +filaments S-MATE +for O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +Through O +twin-screw O +extrusion S-MANP +, O +four O +different O +formulations O +were O +obtained O +using O +combinations O +of O +hollow O +glass S-MATE +microspheres O +, O +nanoclay O +, O +and O +non-halogenated O +flame-retardant O +additives S-MATE +. O + + +These O +additives S-MATE +were O +designed S-FEAT +to O +create O +a O +material S-MATE +that O +exhibits O +low O +density S-PRO +, O +high O +char O +yield O +, O +and O +low O +flammability O +. O + + +Filament S-MATE +quality O +was O +characterized O +and O +reported O +. O + + +SiC S-MATE +particles S-CONPRI +were O +added O +in-situ S-CONPRI +during O +WAAM S-MANP +of O +an O +high B-MATE +strength I-MATE +low I-MATE +alloy I-MATE +steel E-MATE +. O + + +Cementite S-MATE +formed O +in O +the O +SiC-containing O +parts O +due O +to O +SiC S-MATE +dissociation O +in O +the O +melt B-MATE +pool E-MATE +. O + + +Non-melted O +SiC S-MATE +particles S-CONPRI +acted O +as S-MATE +nucleating O +agents O +promoting O +grain B-CHAR +refinement E-CHAR +. O + + +Improved O +mechanical B-CONPRI +properties E-CONPRI +were O +obtained O +upon O +the O +use O +of O +SiC S-MATE +. O + + +In O +this O +work O +, O +SiC S-MATE +particles S-CONPRI +were O +added O +to O +the O +molten B-CONPRI +pool E-CONPRI +during O +WAAM S-MANP +of O +a O +high B-MATE +strength I-MATE +low I-MATE +alloy I-MATE +steel E-MATE +. O + + +The O +introduction O +of O +these O +high O +melting B-PRO +point E-PRO +particles O +promoted O +grain B-CHAR +refinement E-CHAR +, O +and O +the O +precipitation S-CONPRI +of O +Fe3C O +due O +to O +SiC S-MATE +dissociation O +. O + + +The O +microstructural B-CONPRI +evolution E-CONPRI +was O +studied O +by O +optical S-CHAR +and O +electron B-CHAR +microscopy E-CHAR +techniques O +and O +high O +energy O +synchrotron S-ENAT +X-ray O +diffraction S-CHAR +. O + + +Additionally O +, O +mechanical B-CHAR +testing E-CHAR +and O +hardness S-PRO +profiles O +were O +obtained O +for O +the O +SiC-containing O +and O +SiC-free O +parts O +. O + + +An O +improvement O +in O +the O +mechanical B-PRO +strength E-PRO +of O +the O +SiC-added O +WAAM S-MANP +parts O +was O +observed O +, O +which O +was O +attributed O +to O +the O +refined O +grain B-CONPRI +structure E-CONPRI +and O +finely O +dispersed O +Fe3C O +. O + + +The O +present O +study O +systematically O +investigated O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +wire-based O +( O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +, O +known O +as S-MATE +WAAM O +) O +deposition S-CONPRI +of O +steel B-MATE +metals E-MATE +, O +both O +stainless B-MATE +steel E-MATE +304 O +and O +mild B-MATE +steel E-MATE +ER70S O +. O + + +Graded O +material B-CONPRI +properties E-CONPRI +of O +stainless B-MATE +steel E-MATE +304 O +were O +observed O +for O +wear S-CONPRI +and O +hardness S-PRO +in O +the O +direction O +of O +deposition S-CONPRI +and O +in O +Z O +height O +, O +due O +to O +variations S-CONPRI +in O +local O +thermal O +histories O +of O +the O +metal S-MATE +. O + + +The O +yield O +and O +ultimate B-PRO +strength E-PRO +, O +however O +, O +were O +not O +found O +to O +be S-MATE +statistically O +significantly O +different O +( O +p S-MATE += O +0.55 O +) O +along O +the O +direction O +of O +deposition S-CONPRI +for O +SS304 O +. O + + +During O +wear S-CONPRI +testing S-CHAR +, O +a O +grain B-CHAR +refinement E-CHAR +was O +observed O +directly O +beneath O +the O +wear S-CONPRI +scar O +in O +these O +materials S-CONPRI +in O +a O +focused O +ion S-CONPRI +beam S-MACEQ +channel O +observed O +under O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +Additionally O +, O +no O +significant O +difference O +in O +yield B-PRO +strength E-PRO +was O +observed O +in O +printed O +mild B-MATE +steel E-MATE +( O +ER70S O +) O +between O +vertical S-CONPRI +and O +horizontal B-BIOP +specimens E-BIOP +. O + + +The O +observed O +graded O +mechanical B-CONPRI +properties E-CONPRI +in O +stainless B-MATE +steel E-MATE +304 O +allow O +the O +opportunity O +for O +varying O +the O +processing O +conditions O +to O +design S-FEAT +parts O +with O +locally O +optimized O +or O +functionally B-CONPRI +graded E-CONPRI +mechanical O +properties S-CONPRI +. O + + +Lattice B-FEAT +structures E-FEAT +are O +frequently O +found O +in O +nature O +and O +engineering S-APPL +due O +to O +their O +myriad O +attractive O +properties S-CONPRI +, O +with O +applications O +ranging O +from O +molecular O +to O +architectural O +scales O +. O + + +Lattices S-CONPRI +have O +also O +become O +a O +key O +concept O +in O +additive B-MANP +manufacturing E-MANP +, O +which O +enables O +precise B-MANP +fabrication E-MANP +of O +complex O +lattices S-CONPRI +that O +would O +not O +be S-MATE +possible O +otherwise O +. O + + +While O +design S-FEAT +and O +simulation S-ENAT +tools O +for O +stiff O +lattices S-CONPRI +are O +common O +, O +here O +we O +present O +a O +digital O +design S-FEAT +and O +nonlinear O +simulation S-ENAT +approach O +for O +additive B-MANP +manufacturing E-MANP +of O +soft O +lattices S-CONPRI +structures O +subject O +to O +large O +deformations S-CONPRI +and O +instabilities O +, O +for O +which O +applications O +in O +soft B-APPL +robotics E-APPL +, O +healthcare O +, O +personal O +protection O +, O +energy B-CHAR +absorption E-CHAR +, O +fashion S-CONPRI +and O +design S-FEAT +are O +rapidly O +emerging O +. O + + +Our O +framework S-CONPRI +enables O +design S-FEAT +of O +soft O +lattices S-CONPRI +with O +curved O +members O +conforming O +to O +freeform B-CONPRI +geometries E-CONPRI +, O +and O +with O +variable O +, O +gradually O +changing O +member O +thickness O +and O +material S-MATE +, O +allowing O +the O +local O +control O +of O +stiffness S-PRO +. O + + +We O +model S-CONPRI +the O +lattice S-CONPRI +members O +as S-MATE +3D S-CONPRI +curved O +rods O +and O +using O +a O +spline-based O +isogeometric O +method O +that O +allows O +the O +efficient O +simulation S-ENAT +of O +nonlinear O +, O +large O +deformation S-CONPRI +behavior O +of O +these O +structures O +directly O +from O +the O +CAD S-ENAT +geometries O +. O + + +Furthermore O +, O +we O +enhance O +the O +formulation O +with O +a O +new O +joint S-CONPRI +stiffening O +approach O +, O +which O +is O +based O +on O +parameters S-CONPRI +derived O +from O +the O +actual O +node O +geometries S-CONPRI +. O + + +Simulation S-ENAT +results O +are O +verified O +against O +experiments O +with O +soft O +lattices S-CONPRI +realized O +by O +PolyJet B-CONPRI +multi-material E-CONPRI +polymer O +3D B-MANP +printing E-MANP +, O +highlighting O +the O +potential O +for O +simulation-driven S-ENAT +, O +digital O +design S-FEAT +and O +application O +of O +non-uniform O +and O +curved O +soft O +lattice B-FEAT +structures E-FEAT +. O + + +Premelting O +electron O +beam-assisted O +freeform B-MANP +fabrication E-MANP +( O +PEBF3 O +) O +method O +is O +proposed O +for O +the O +first O +time O +. O + + +Al S-MATE +and O +Ti S-MATE +are O +joined O +by O +PEBF3 O +with O +no O +defects S-CONPRI +. O + + +Meanwhile O +, O +TiAl3 O +reinforced S-CONPRI +aluminum S-MATE +matrix O +composites S-MATE +are O +obtained O +. O + + +TiAl3 O +reinforced S-CONPRI +aluminum S-MATE +matrix O +composites S-MATE +have O +better O +wear B-PRO +resistance E-PRO +than O +aluminum B-MATE +alloy E-MATE +with O +no O +TiAl3 O +. O + + +The O +reasons O +for O +the O +friction S-CONPRI +coefficient O +of O +the O +deposition S-CONPRI +with O +TiAl3 O +changes O +periodically O +are O +explained O +and O +verified O +. O + + +Premelting O +electron O +beam-assisted O +freeform B-MANP +fabrication E-MANP +, O +as S-MATE +a O +new O +method O +to O +avoid O +the O +direct O +coupling O +of O +wire-beam-molten O +pool O +during O +electron B-MANP +beam I-MANP +freeform I-MANP +fabrication E-MANP +, O +is O +proposed O +for O +the O +first O +time O +. O + + +The O +three O +factors O +referring O +to O +wire O +, O +beam S-MACEQ +and O +molten B-CONPRI +pool E-CONPRI +, O +are O +decomposed O +into O +two O +factors O +as S-MATE +wire O +and O +beam S-MACEQ +. O + + +The O +liquid B-MATE +metal E-MATE +is O +formed O +in O +the O +diversion O +nozzle S-MACEQ +, O +as S-MATE +the O +wire O +is O +heated O +and O +melted S-CONPRI +inside O +it O +by O +an O +electron B-CONPRI +beam E-CONPRI +, O +and O +, O +subsequently O +, O +is O +transferred O +to O +the O +substrate S-MATE +with O +solidification B-MANP +process E-MANP +. O + + +Finally O +, O +a O +continuous O +and O +stable O +process S-CONPRI +of O +premelting O +electron O +beam-assisted O +freeform B-MANP +fabrication E-MANP +is O +achieved O +. O + + +When O +an O +aluminum B-MATE +alloy E-MATE +was O +deposited O +on O +a O +TC4 O +substrate S-MATE +by O +premelting O +electron O +beam-assisted O +freeform B-MANP +fabrication E-MANP +, O +the O +TC4 O +base B-MATE +metal E-MATE +did O +not O +melt S-CONPRI +because O +the O +electron B-CONPRI +beam E-CONPRI +did O +not O +directly O +act O +on O +the O +TC4 O +substrate S-MATE +. O + + +There O +is O +no O +stirring O +of O +the O +electron B-CONPRI +beam E-CONPRI +inside O +the O +liquid O +deposition S-CONPRI +body O +, O +and O +the O +dissolution O +and O +diffusion S-CONPRI +of O +elemental O +Ti S-MATE +exists O +, O +which O +ensures O +the O +effective O +connection O +between O +the O +deposition S-CONPRI +and O +the O +TC4 O +substrate S-MATE +. O + + +Although O +TiAl3 O +intermetallic B-MATE +compounds E-MATE +were O +generated O +in O +the O +deposition S-CONPRI +, O +the O +interface S-CONPRI +between O +TiAl3 O +and O +the O +Al S-MATE +matrix O +was O +coherent O +, O +as S-MATE +( O +101 O +) O +TiAl3// O +( O +020 O +) O +Al S-MATE +was O +clearly O +detected O +in O +the O +center O +of O +the O +deposition S-CONPRI +. O + + +There O +are O +no O +cracks O +or O +other O +defects S-CONPRI +in O +the O +deposition S-CONPRI +. O + + +The O +acicular O +TiAl3 O +intermetallic B-MATE +compounds E-MATE +are O +dispersed O +in O +the O +deposition S-CONPRI +, O +which O +improves O +the O +wear B-PRO +resistance E-PRO +of O +the O +deposition S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +enables O +production S-MANP +of O +geometrically-complex S-CONPRI +elastomeric O +structures O +. O + + +The O +elastic B-CONPRI +recovery E-CONPRI +and O +strain-rate O +dependence O +of O +these O +materials S-CONPRI +means O +they O +are O +ideal O +for O +use O +in O +dynamic S-CONPRI +, O +repetitive O +mechanical B-CONPRI +loading E-CONPRI +. O + + +Their O +process-dependence O +, O +and O +the O +frequent O +emergence O +of O +new O +AM S-MANP +elastomers O +, O +commonly O +necessitates O +full O +material S-MATE +characterisation O +; O +however O +, O +accessing O +specialised O +equipment S-MACEQ +means O +this O +is O +often O +a O +time-consuming O +and O +expensive O +process S-CONPRI +. O + + +This O +work O +presents O +an O +innovative O +equi-biaxial O +rig O +that O +enables O +full O +characterisation O +via O +a O +conventional O +material S-MATE +testing O +machine S-MACEQ +( O +supplementing O +uni-axial O +tension O +and O +planar O +tension B-CHAR +tests E-CHAR +) O +. O + + +Combined O +with O +stress B-CONPRI +relaxation E-CONPRI +data S-CONPRI +, O +this O +provides O +a O +novel O +route O +for O +hyperelastic O +material S-MATE +modelling O +with O +viscoelastic S-PRO +components S-MACEQ +. O + + +This O +approach O +was O +validated O +by O +recording O +the O +force-displacement O +and O +deformation S-CONPRI +histories O +from O +finite B-CHAR +element I-CHAR +modelling E-CHAR +a O +honeycomb B-FEAT +structure E-FEAT +. O + + +These O +data S-CONPRI +compared O +favourably O +to O +experimental S-CONPRI +quasistatic O +and O +dynamic S-CONPRI +compression S-PRO +testing O +, O +validating O +this O +novel O +and O +convenient O +route O +for O +characterising O +complex O +elastomeric O +materials S-CONPRI +. O + + +Supported O +by O +data S-CONPRI +describing O +the O +potential O +for O +high O +build-quality O +production S-MANP +using O +an O +AM B-MANP +process E-MANP +with O +low O +barriers O +to O +entry O +, O +this O +study O +should O +serve O +to O +encourage O +greater O +exploitation O +of O +this O +emerging O +manufacturing B-MANP +process E-MANP +for O +fabricating S-MANP +elastomeric O +structures O +within O +industrial S-APPL +communities O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +allows O +for O +layer-by-layer S-CONPRI +fabrication S-MANP +of O +complex O +metallic B-MACEQ +parts E-MACEQ +with O +features O +typically O +unobtainable O +via O +conventional B-MANP +manufacturing E-MANP +. O + + +For O +heat B-MACEQ +exchangers E-MACEQ +, O +such O +complex O +features O +are O +desirable O +for O +enhancing O +their O +heat B-CONPRI +transfer E-CONPRI +capability O +and O +conformability O +to O +specific O +applications O +. O + + +In O +this O +case B-CONPRI +study E-CONPRI +, O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +, O +a O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +process O +, O +was O +utilized O +to O +fabricate S-MANP +a O +compact S-MANP +( O +5.08 O +cm O +× O +3.81 O +cm O +× O +1.58 O +cm O +) O +flat-plate O +oscillating O +heat S-CONPRI +pipe O +( O +FP-OHP O +) O +with O +innovative O +design S-FEAT +features O +, O +including O +a O +Ti–6Al–4V O +casing O +and O +a O +closed-loop O +, O +circular O +mini-channel O +( O +1.53 O +mm S-MANP +in O +diameter S-CONPRI +) O +consisting O +of O +four O +interconnected O +layers O +. O + + +Venting O +holes O +were O +integrated O +to O +intersect O +each O +layer S-PARA +to O +allow O +for O +a O +unique O +layer-by-layer S-CONPRI +, O +plug-and-pressurize O +de-powdering S-PRO +procedure O +. O + + +The O +device O +channel S-APPL +surface O +was O +inspected O +via O +Scanning B-CHAR +Electron I-CHAR +Microscopy E-CHAR +( O +SEM S-CHAR +) O +– O +and O +it O +was O +found O +that O +the O +channel S-APPL +wall O +consisted O +of O +partially O +un-melted O +particles S-CONPRI +, O +as S-MATE +well O +as S-MATE +amorphous O +melt S-CONPRI +regions O +; O +surface S-CONPRI +characteristics O +influential O +on O +surface/fluid O +capillarity O +and O +heat B-CONPRI +transfer E-CONPRI +. O + + +This O +study O +also O +highlights O +important O +design S-FEAT +and O +manufacturing S-MANP +concerns O +encountered O +during O +SLM S-MANP +of O +channel-embedded O +parts O +, O +such O +as S-MATE +channel O +surface B-PARA +quality E-PARA +and O +de-powdering S-PRO +. O + + +The O +Ti–6Al–4V O +FP-OHP O +was O +found O +to O +operate O +successfully O +with O +an O +effective B-PARA +thermal I-PARA +conductivity E-PARA +of O +approximately O +110 O +W/m O +K S-MATE +at O +a O +power S-PARA +input O +of O +50 O +W O +; O +demonstrating O +a O +400–500 O +% O +increase O +relative O +to O +solid O +Ti–6Al–4V O +. O + + +This O +paper O +addresses O +a O +comprehensive O +analytical O +model S-CONPRI +for O +the O +laser S-ENAT +powder-fed O +additive B-MANP +manufacturing E-MANP +( O +LPF-AM O +) O +process S-CONPRI +, O +also O +known O +as S-MATE +directed O +energy O +deposition S-CONPRI +AM S-MANP +. O + + +The O +model S-CONPRI +analytically O +couples O +the O +moving O +laser B-CONPRI +beam E-CONPRI +with O +Gaussian S-CONPRI +energy O +distribution S-CONPRI +, O +the O +powder S-MATE +stream O +and O +the O +semi-infinite O +substrate S-MATE +together O +, O +while O +considering O +the O +attenuated O +laser B-PARA +power E-PARA +intensity O +distribution S-CONPRI +, O +the O +heated O +powder S-MATE +spatial O +distribution S-CONPRI +and O +the O +melt B-MATE +pool E-MATE +3D S-CONPRI +shape O +with O +its O +boundary S-FEAT +variation O +. O + + +The O +particles S-CONPRI +concentration O +on O +transverse O +plane O +is O +modeled O +with O +Gaussian S-CONPRI +distribution S-CONPRI +based O +on O +optical B-CHAR +measurement E-CHAR +. O + + +The O +model S-CONPRI +can O +effectively O +be S-MATE +used O +for O +process S-CONPRI +development/optimization O +and O +controller S-MACEQ +design O +, O +while O +predicting O +adequate O +clad O +geometry S-CONPRI +as S-MATE +well O +as S-MATE +the O +catchment O +efficiency O +rapidly O +. O + + +Experimental S-CONPRI +validation O +through O +the O +deposition S-CONPRI +of O +Inconel B-MATE +625 E-MATE +proves O +the O +model S-CONPRI +can O +accurately S-CHAR +predict O +the O +clad O +geometry S-CONPRI +and O +catchment O +efficiency O +in O +the O +range S-PARA +of O +specific B-PRO +energy E-PRO +that O +is O +corresponding O +to O +high O +clad O +quality S-CONPRI +( O +maximum O +percentage O +difference O +is O +6.2 O +% O +for O +clad O +width O +, O +7.8 O +% O +for O +clad O +height O +and O +6.8 O +% O +for O +catchment O +efficiency O +) O +. O + + +To O +produce O +complex O +functional O +devices O +while O +eliminating O +the O +need O +for O +assembly S-MANP +calls O +for O +a O +multi-material B-MANP +additive I-MANP +manufacturing E-MANP +technology O +. O + + +This O +paper O +presented O +a O +3D-printing S-MANP +system O +that O +integrated O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +and O +laser-based O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +to O +produce O +hybrid O +metal S-MATE +and O +polymer S-MATE +components S-MACEQ +. O + + +PBF-printed O +metal S-MATE +and O +FFF-printed O +polymer S-MATE +, O +both O +of O +which O +differ O +in O +material B-CONPRI +properties E-CONPRI +, O +were O +joined O +through O +PBF-printed O +interlocking O +structures O +, O +with O +their O +joining S-MANP +strength O +enhanced O +by O +laser S-ENAT +heating S-MANP +. O + + +Tensile S-PRO +and O +shear B-CHAR +tests E-CHAR +confirmed O +good O +joint S-CONPRI +strength O +of O +the O +printed O +metal/polymer O +components S-MACEQ +, O +which O +were O +created O +without O +adhesives S-MATE +. O + + +In O +addition O +, O +metal B-MATE +powder E-MATE +deposition S-CONPRI +onto O +the O +top O +of O +polymer S-MATE +substrates O +through O +laser S-ENAT +melting O +was O +demonstrated O +. O + + +Finally O +, O +several O +3D S-CONPRI +components O +consisting O +of O +hybrid O +stainless B-MATE +steel E-MATE +( O +SS S-MATE +316L O +) O +, O +copper S-MATE +( O +Cu10Sn O +) O +and O +polymer S-MATE +( O +PLA S-MATE +, O +PET O +) O +were O +successfully O +printed O +and O +their O +potential O +applications O +were O +discussed O +. O + + +Depending O +on O +the O +available O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +system O +, O +and O +the O +intended O +application O +, O +the O +use O +of O +highly-optimized O +LPBF S-MANP +parameters O +to O +fabricate S-MANP +near-perfect O +density S-PRO +alloys S-MATE +may O +not O +be S-MATE +feasible O +, O +economical O +or O +required O +. O + + +Thus O +, O +it O +is O +important O +to O +understand O +how O +sub-optimal O +density S-PRO +and O +microstructure S-CONPRI +can O +simultaneously O +affect O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +alloys S-MATE +. O + + +Here O +we O +study O +the O +microstructure S-CONPRI +and O +properties S-CONPRI +of O +an O +AlSi10Mg B-MATE +alloy E-MATE +fabricated O +with O +sub-optimal O +parameters S-CONPRI +and O +investigate O +the O +effectiveness S-CONPRI +of O +post-processing S-CONPRI +by O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +and O +T6 O +heat B-MANP +treatment E-MANP +. O + + +Defects S-CONPRI +were O +characterized O +using O +micro-computed B-CHAR +tomography E-CHAR +while O +the O +microstructure S-CONPRI +was O +analysed O +using O +transmission S-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +The O +as-built O +microstructure S-CONPRI +features O +dendritically-arranged O +nano-crystalline O +Si S-MATE +particles S-CONPRI +that O +are O +favourable O +for O +high O +hardness S-PRO +, O +strength S-PRO +and O +impact S-CONPRI +toughness O +while O +T6 O +generally O +caused O +these O +properties S-CONPRI +to O +degrade O +. O + + +HIP S-MANP +was O +unable O +to O +close O +large O +defects S-CONPRI +due O +to O +trapped O +gases O +, O +which O +limited O +fatigue B-PRO +life E-PRO +improvements O +. O + + +Defects S-CONPRI +oriented O +normal O +to O +the O +loading O +axis O +( O +or O +parallel O +to O +the O +fracture S-CONPRI +plane O +) O +are O +very O +detrimental O +, O +but O +when O +oriented O +favourably O +, O +the O +alloy S-MATE +was O +still O +able O +to O +achieve O +comparable O +strength S-PRO +and O +ductility S-PRO +to O +results O +reported O +in O +literature O +for O +LPBF-fabricated O +AlSi10Mg B-MATE +alloys E-MATE +. O + + +Interestingly O +, O +the O +anisotropic S-PRO +nano-crystalline O +Si S-MATE +structures O +of O +the O +as-built O +alloy S-MATE +resulted O +in O +substantially O +improved O +toughness S-PRO +even O +when O +defects S-CONPRI +were O +oriented O +unfavourably O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +are O +being O +frequently O +used O +in O +industry S-APPL +as S-MATE +they O +allow O +the O +manufacture S-CONPRI +of O +complex O +parts O +with O +reduced O +lead B-PARA +times E-PARA +. O + + +Electron O +beam-powder O +bed B-MANP +fusion E-MANP +( O +EB-PBF O +) O +as S-MATE +an O +AM B-MANP +technology E-MANP +is O +known O +for O +its O +near-net-shape S-MANP +production O +capacity S-CONPRI +with O +low O +residual B-PRO +stress E-PRO +. O + + +However O +, O +the O +surface B-PARA +quality E-PARA +and O +geometrical O +accuracy S-CHAR +of O +the O +manufactured S-CONPRI +parts O +are O +major O +obstacles O +for O +the O +wider O +industrial S-APPL +adoption O +of O +this O +technology S-CONPRI +, O +especially O +when O +enhanced O +mechanical S-APPL +performance O +is O +taken O +into O +consideration O +. O + + +Identifying O +the O +origins O +of O +surface S-CONPRI +features O +such O +as S-MATE +satellite O +particles S-CONPRI +and O +sharp O +valleys O +on O +the O +parts O +manufactured S-CONPRI +by O +EB-PBF O +is O +important O +for O +a O +better O +understanding O +of O +the O +process S-CONPRI +and O +its O +capability O +. O + + +Moreover O +, O +understanding O +the O +influence O +of O +the O +contour S-FEAT +melting O +strategy O +, O +by O +altering O +process B-CONPRI +parameters E-CONPRI +, O +on O +the O +surface B-PRO +roughness E-PRO +of O +the O +parts O +and O +the O +number O +of O +near-surface O +defects S-CONPRI +is O +highly O +critical O +. O + + +In O +this O +study O +, O +processing O +parameters S-CONPRI +of O +the O +EB-PBF O +technique O +such O +as S-MATE +scanning O +speed O +, O +beam S-MACEQ +current O +, O +focus O +offset S-CONPRI +, O +and O +number O +of O +contours S-FEAT +( O +one O +or O +two O +) O +with O +the O +linear O +melting S-MANP +strategy O +were O +investigated O +. O + + +A O +sample S-CONPRI +manufactured S-CONPRI +using O +Arcam-recommended O +process B-CONPRI +parameters E-CONPRI +( O +three O +contours S-FEAT +with O +the O +spot O +melting S-MANP +strategy O +) O +was O +used O +as S-MATE +a O +reference O +. O + + +For O +the O +samples S-CONPRI +with O +one O +contour S-FEAT +, O +the O +scanning B-PARA +speed E-PARA +had O +the O +greatest O +effect O +on O +the O +arithmetical O +mean O +height O +( O +Sa O +) O +, O +and O +for O +the O +samples S-CONPRI +with O +two O +contours S-FEAT +, O +the O +beam S-MACEQ +current O +and O +focus O +offset S-CONPRI +had O +the O +greatest O +effect O +. O + + +For O +the O +samples S-CONPRI +with O +two O +contours S-FEAT +, O +a O +lower O +focus O +offset S-CONPRI +and O +lower O +scan B-PARA +speed E-PARA +( O +at O +a O +higher O +beam S-MACEQ +current O +) O +resulted O +in O +a O +lower O +Sa O +; O +however O +, O +increasing O +the O +scan B-PARA +speed E-PARA +for O +the O +samples S-CONPRI +with O +one O +contour S-FEAT +decreased O +Sa O +. O + + +In O +general O +, O +the O +samples S-CONPRI +with O +two O +contours S-FEAT +provided O +a O +lower O +Sa O +( O +∼22 O +% O +) O +but O +with O +slightly O +higher O +porosity S-PRO +( O +∼8 O +% O +) O +compared O +to O +the O +samples S-CONPRI +with O +one O +contour S-FEAT +. O + + +Fewer O +defects S-CONPRI +were O +detected O +with O +a O +lower O +scanning B-PARA +speed E-PARA +and O +higher O +beam S-MACEQ +current O +. O + + +The O +number O +of O +defects S-CONPRI +and O +the O +Sa O +value O +for O +the O +samples S-CONPRI +with O +two O +contours S-FEAT +manufactured O +using O +the O +linear O +melting S-MANP +strategy O +were O +∼85 O +% O +and O +16 O +% O +, O +respectively O +, O +lower O +than O +those O +of O +the O +reference O +samples B-CONPRI +manufactured E-CONPRI +using O +the O +spot O +melting S-MANP +strategy O +. O + + +Given O +the O +attention O +around O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +organizations O +want O +to O +know O +if O +their O +products O +should O +be S-MATE +fabricated O +using O +AM S-MANP +. O + + +To O +facilitate O +product B-CONPRI +development E-CONPRI +decisions O +, O +a O +reference O +system O +is O +shown O +describing O +the O +key O +attributes O +of O +a O +product O +from O +a O +manufacturability S-CONPRI +stand-point O +: O +complexity S-CONPRI +, O +customization O +, O +and O +production S-MANP +volume O +. O + + +A O +geometric O +complexity S-CONPRI +factor O +developed O +for O +cast S-MANP +parts O +is O +modified O +for O +a O +more O +general O +application O +. O + + +Parts O +with O +varying O +geometric O +complexity S-CONPRI +are O +then O +analyzed O +and O +mapped O +into O +regions O +of O +the O +complexity S-CONPRI +, O +customization O +, O +and O +production S-MANP +volume O +model S-CONPRI +. O + + +Implications O +for O +product B-CONPRI +development E-CONPRI +and O +manufacturing S-MANP +business O +approaches O +are O +discussed O +. O + + +Rod S-MACEQ +shaped O +samples S-CONPRI +of O +AlSi10Mg S-MATE +additively B-MANP +manufactured E-MANP +using O +recycled S-CONPRI +powder S-MATE +through O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +( O +DMLS S-MANP +) O +process S-CONPRI +showed O +higher O +quasi-static S-CONPRI +uniaxial O +tensile B-PRO +strength E-PRO +in O +both O +horizontal O +and O +vertical S-CONPRI +build B-PARA +directions E-PARA +than O +those O +of O +cast S-MANP +counterpart O +alloy S-MATE +. O + + +In O +addition O +, O +they O +offered O +mechanical B-CONPRI +properties E-CONPRI +within O +the O +range S-PARA +of O +other O +additively B-MANP +manufactured E-MANP +counterparts O +. O + + +TEM S-CHAR +showed O +that O +the O +microstructure S-CONPRI +of O +the O +as-built O +samples S-CONPRI +comprised O +of O +cell-like O +structures O +featured O +by O +dislocation S-CONPRI +networks O +and O +Si S-MATE +precipitates S-MATE +. O + + +HRTEM S-CHAR +studies O +revealed O +the O +semi-coherency O +characteristics O +of O +the O +Si S-MATE +precipitates S-MATE +. O + + +After O +deformation S-CONPRI +, O +the O +dislocation B-PRO +density E-PRO +increased O +as S-MATE +a O +result O +of O +generation O +of O +new O +dislocations S-CONPRI +due O +to O +dislocation B-CONPRI +motion E-CONPRI +. O + + +The O +dislocations S-CONPRI +bypassed O +the O +precipitates S-MATE +by O +bowing O +around O +them O +and O +penetrating O +the O +semi-coherent O +precipitates S-MATE +. O + + +Strengthening S-MANP +of O +recycled S-CONPRI +DMLS-AlSi10Mg O +alloys S-MATE +manufactured O +in O +both O +directions O +was O +attributed O +to O +Orowan O +mechanism S-CONPRI +( O +due O +to O +existence O +of O +Si S-MATE +precipitates S-MATE +) O +, O +Hall-Petch O +effect O +( O +due O +to O +eutectic S-CONPRI +cell S-APPL +walls O +) O +, O +and O +dislocation S-CONPRI +hardening O +( O +due O +to O +pre-existing O +dislocation S-CONPRI +networks O +) O +. O + + +Due O +to O +the O +slightly O +different O +microstructure S-CONPRI +, O +the O +contribution O +of O +each O +strengthening B-CONPRI +mechanism E-CONPRI +was O +slightly O +different O +in O +identical O +samples S-CONPRI +made O +with O +virgin B-MATE +powder E-MATE +. O + + +Three O +different O +AlSi10Mg_200C O +samples S-CONPRI +with O +near O +optimum O +process B-CONPRI +parameters E-CONPRI +were O +built O +. O + + +AlSi10Mg_200C O +samples S-CONPRI +with O +very O +low O +surface B-PRO +roughness E-PRO +were O +produced O +. O + + +AlSi10Mg_200C O +samples S-CONPRI +also O +possessed O +very O +low O +porosity S-PRO +levels O +. O + + +OM S-CHAR +and O +SEM S-CHAR +Microscopy S-CHAR +analyses O +were O +performed O +to O +investigate O +causality O +. O + + +Laser S-ENAT +sintered O +aluminum B-MATE +alloys E-MATE +produced O +by O +metal S-MATE +3D B-MACEQ +printers E-MACEQ +can O +replace O +cast B-MATE +aluminum I-MATE +alloys E-MATE +in O +aerospace S-APPL +, O +defense O +, O +and O +marine B-APPL +industries E-APPL +by O +offering O +better O +mechanical B-CONPRI +properties E-CONPRI +, O +less O +porosity S-PRO +, O +and O +competitive O +fatigue S-PRO +characteristics O +. O + + +One O +of O +the O +major O +issues O +currently O +is O +the O +considerable O +surface B-PRO +roughness E-PRO +of O +additively B-MANP +manufactured E-MANP +aluminum O +alloys S-MATE +demanding O +post-processing S-CONPRI +procedures O +such O +as S-MATE +bead O +blasting O +or O +machining S-MANP +. O + + +In O +the O +current O +study O +, O +the O +process B-CONPRI +parameters E-CONPRI +such O +as S-MATE +laser O +power S-PARA +, O +scan B-PARA +speed E-PARA +, O +and O +hatch B-PARA +spacing E-PARA +were O +altered O +such O +that O +better O +surface B-PRO +roughness E-PRO +could O +be S-MATE +achieved O +for O +AlSi10Mg_200C O +using O +a O +Direct B-MANP +Metal I-MANP +Laser I-MANP +Sintering E-MANP +( O +DMLS S-MANP +) O +system O +. O + + +The O +process B-CONPRI +parameters E-CONPRI +were O +chosen O +such O +that O +three O +samples S-CONPRI +with O +the O +same O +core S-MACEQ +properties O +but O +different O +upskin O +characteristics O +were O +produced O +. O + + +The O +achieved O +surface B-PRO +roughness E-PRO +of O +the O +additively B-MANP +manufactured E-MANP +aluminum O +samples S-CONPRI +were O +almost O +as S-MATE +low O +as S-MATE +one O +fifth O +of O +the O +regular O +samples B-CONPRI +manufactured E-CONPRI +using O +standard S-CONPRI +process B-CONPRI +parameters E-CONPRI +. O + + +The O +microstructure S-CONPRI +and O +the O +porosity S-PRO +level O +of O +the O +samples S-CONPRI +printed O +by O +different O +process B-CONPRI +parameters E-CONPRI +were O +studied O +to O +reveal O +the O +causality O +of O +the O +low O +surface B-PRO +roughness E-PRO +for O +the O +proposed O +process S-CONPRI +. O + + +Large-scale O +polymer S-MATE +AM S-MANP +is O +very O +susceptible O +to O +part O +failure S-CONPRI +due O +to O +thermal O +warping S-CONPRI +. O + + +A O +1D O +heat B-CONPRI +transfer E-CONPRI +model O +can O +predict O +the O +temperature S-PARA +evolution S-CONPRI +of O +thin O +walls O +. O + + +Parameter S-CONPRI +studies O +provide O +guidance O +for O +minimizing O +the O +likelihood O +of O +build B-CHAR +failure E-CHAR +. O + + +Higher O +thermal B-PRO +conductivity E-PRO +is O +shown O +to O +be S-MATE +detrimental O +to O +the O +success O +of O +the O +build S-PARA +. O + + +The O +incremental O +deposition B-MANP +process E-MANP +utilized O +by O +most O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +presents O +significant O +challenges O +related O +to O +residual B-PRO +stresses E-PRO +and O +warping S-CONPRI +which O +arise O +from O +repeated O +deposition S-CONPRI +of O +hot O +material S-MATE +onto O +cooler O +material S-MATE +. O + + +In O +this O +work O +we O +investigate O +the O +thermal O +evolution S-CONPRI +in O +thin O +walls O +of O +carbon S-MATE +fiber/acrylonitrile O +butadiene O +styrene O +( O +CF/ABS O +) O +composite B-MATE +materials E-MATE +fabricated O +via O +Big O +Area S-PARA +Additive B-MANP +Manufacturing E-MANP +( O +BAAM O +) O +. O + + +We O +measure O +the O +thermal O +evolution S-CONPRI +of O +composite S-MATE +parts O +during O +the O +build S-PARA +process O +using O +infrared S-CONPRI +imaging S-APPL +, O +and O +develop O +a O +simple S-MANP +1D O +transient S-CONPRI +thermal O +model S-CONPRI +to O +describe O +the O +build S-PARA +process O +. O + + +The O +model S-CONPRI +predictions O +are O +in O +excellent O +agreement O +with O +the O +observed O +temperature S-PARA +profiles S-FEAT +and O +from O +the O +results O +we O +develop O +criteria O +to O +guide O +deposition S-CONPRI +parameter O +selection O +to O +minimize O +the O +likelihood O +of O +cracking S-CONPRI +during O +printing O +. O + + +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +was O +used O +to O +produce O +3D-printed S-MANP +net O +shape O +NdFeB O +( O +Neodymium S-MATE +Iron B-MATE +Boron E-MATE +) O +permanent B-MATE +magnets E-MATE +that O +exhibit O +relatively O +large O +internal O +permanent O +magnetization O +structures O +, O +without O +exposure S-CONPRI +to O +any O +external O +magnetizing O +field O +. O + + +The O +permanent O +magnetization O +can O +be S-MATE +detected O +via O +the O +stray O +field O +that O +appears O +after O +cutting S-MANP +the O +sample S-CONPRI +into O +pieces O +. O + + +Maximum O +magnetic O +flux S-MATE +densities O +of O +almost O +80 O +mT O +are O +recorded O +1 O +mm S-MANP +above O +the O +cut O +surfaces S-CONPRI +in O +the O +air O +. O + + +Dependencies O +of O +the O +effect O +on O +SLM S-MANP +process B-CONPRI +parameters E-CONPRI +, O +as S-MATE +well O +as S-MATE +on O +the O +sample B-CONPRI +size E-CONPRI +and O +shape O +are O +discussed O +. O + + +The O +discovered O +effect O +may O +offer O +new O +routes O +for O +producing O +magnetized O +rare O +earth-transition O +metal S-MATE +( O +RE-TM O +) O +permanent B-MATE +magnets E-MATE +without O +using O +a O +magnetizer O +, O +and O +it O +shows O +that O +the O +SLM B-MANP +3D-printing E-MANP +process S-CONPRI +can O +lead S-MATE +to O +new O +material S-MATE +behavior O +. O + + +Thermally O +induced O +residual B-PRO +stresses E-PRO +and O +residual B-CONPRI +distortions E-CONPRI +in O +the O +additive B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +parts O +are O +two O +of O +the O +major O +obstacles O +that O +are O +preventing O +AM B-MANP +technology E-MANP +from O +gaining O +wide O +adoption O +. O + + +In O +this O +work O +, O +a O +three-dimensional S-CONPRI +thermo-elastic-plastic O +model S-CONPRI +is O +proposed O +to O +predict O +the O +thermomechanical S-CONPRI +behavior O +in O +the O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS S-MANP +) O +process S-CONPRI +of O +Ti-6Al-4V S-MATE +using O +Finite B-CONPRI +Element I-CONPRI +Method E-CONPRI +( O +FEM S-CONPRI +) O +. O + + +It O +is O +shown O +that O +the O +computed O +thermal O +history O +and O +mechanical S-APPL +deformations S-CONPRI +are O +in O +good O +agreement O +with O +the O +experimental S-CONPRI +measurements O +. O + + +The O +main O +contributions O +of O +this O +study O +are O +: O +( O +I O +) O +in O +the O +past O +, O +a O +point-wise O +comparison O +between O +simulation S-ENAT +results O +and O +experimental S-CONPRI +measurements O +is O +more O +favored O +to O +validate O +the O +employed O +model S-CONPRI +, O +where O +the O +general O +picture O +is O +lost O +; O +rather O +, O +to O +validate O +the O +proposed O +model S-CONPRI +, O +the O +simulated O +distortion S-CONPRI +of O +the O +bottom O +surface S-CONPRI +of O +a O +thin O +substrate S-MATE +is O +compared O +with O +experimental S-CONPRI +measurements O +using O +a O +3D S-CONPRI +laser O +scanner O +, O +in O +terms O +of O +both O +magnitude S-PARA +and O +distribution S-CONPRI +map O +. O + + +( O +II O +) O +Rather O +few O +works O +have O +been O +done O +to O +show O +the O +effectiveness S-CONPRI +of O +widely O +employed O +quasi-static B-CONPRI +mechanical I-CONPRI +analysis E-CONPRI +in O +the O +transient S-CONPRI +LENS S-MANP +process O +; O +as S-MATE +such O +, O +both O +quasi-static S-CONPRI +and O +dynamic S-CONPRI +simulations O +are O +performed O +and O +compared O +mechanically O +to O +demonstrate O +the O +validity O +of O +using O +quasi-static S-CONPRI +modeling S-ENAT +to O +save O +computational O +cost O +. O + + +Additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +conformal B-MACEQ +cooling I-MACEQ +channels E-MACEQ +are O +currently O +the O +state O +of O +the O +art S-APPL +for O +high O +performing O +tooling S-CONPRI +with O +reduced O +cycle O +times O +. O + + +This O +paper O +introduces O +the O +concept O +of O +conformal B-CONPRI +cooling E-CONPRI +layers O +which O +challenges O +the O +status O +quo O +in O +providing O +higher O +heat B-CONPRI +transfer E-CONPRI +rates O +that O +also O +provide O +less O +variation S-CONPRI +in O +tooling S-CONPRI +temperatures.The O +cooling S-MANP +layers O +are O +filled O +with O +self-supporting S-FEAT +repeatable O +unit B-CONPRI +cells E-CONPRI +that O +form O +a O +lattice S-CONPRI +throughout O +the O +cooling S-MANP +layers O +. O + + +The O +lattices S-CONPRI +increase O +fluid S-MATE +vorticity O +which O +improves O +convective O +heat B-CONPRI +transfer E-CONPRI +. O + + +Mechanical B-CHAR +testing E-CHAR +of O +the O +lattices S-CONPRI +shows O +that O +the O +design S-FEAT +of O +the O +unit B-CONPRI +cell E-CONPRI +significantly O +varies O +the O +compression S-PRO +characteristics.A O +virtual O +case B-CONPRI +study E-CONPRI +of O +the O +injection B-MANP +moulding E-MANP +of O +a O +plastic S-MATE +enclosure O +is O +used O +to O +compare O +the O +performance S-CONPRI +of O +conformal B-CONPRI +cooling E-CONPRI +layers O +with O +that O +of O +conventional O +( O +drilled O +) O +cooling B-MACEQ +channels E-MACEQ +and O +conformal O +( O +AM S-MANP +) O +cooling B-MACEQ +channels E-MACEQ +. O + + +The O +results O +show O +the O +conformal O +layers O +reduce O +cooling S-MANP +time O +by O +26.34 O +% O +over O +conventional B-MACEQ +cooling I-MACEQ +channels E-MACEQ +. O + + +A O +wide O +range S-PARA +of O +materials S-CONPRI +is O +suitable O +for O +processing O +by O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +techniques O +. O + + +Among O +the O +latest O +formulations O +, O +maraging B-MATE +steel E-MATE +18Ni-300 O +, O +which O +is O +a O +martensite-hardenable O +alloy S-MATE +, O +is O +often O +used O +when O +both O +high O +fracture S-CONPRI +toughness O +and O +high O +strength S-PRO +are O +required O +, O +or O +if O +dimensional O +changes O +need O +to O +be S-MATE +minimised O +. O + + +In O +direct O +tooling S-CONPRI +, O +18Ni-300 O +can O +be S-MATE +successfully O +employed O +in O +numerous O +applications O +, O +for O +example O +in O +the O +production S-MANP +of O +dies S-MACEQ +for O +injection B-MANP +moulding E-MANP +and O +for O +casting S-MANP +of O +aluminium B-MATE +alloys E-MATE +; O +moreover O +, O +it O +is O +particularly O +valuable O +for O +high-performance O +engineering S-APPL +parts.Even O +though O +bibliographic O +data S-CONPRI +are O +available O +on O +the O +effects O +that O +parameters S-CONPRI +, O +employed O +in O +PBF S-MANP +processes O +, O +have O +on O +the O +obtained O +density S-PRO +, O +roughness S-PRO +, O +hardness S-PRO +and O +microstructure S-CONPRI +of O +18Ni-300 O +, O +there O +is O +still O +a O +lack O +of O +knowledge O +on O +the O +fatigue B-PRO +life E-PRO +of O +PBF S-MANP +manufactured S-CONPRI +parts O +. O + + +This O +paper O +describes O +the O +fatigue S-PRO +behaviour O +of O +18Ni-300 O +steel S-MATE +manufactured S-CONPRI +by O +PBF S-MANP +, O +as S-MATE +compared O +by O +forging S-MANP +. O + + +Relevant O +negative O +effects O +of O +the O +cross-contamination S-CONPRI +of O +the O +raw B-MATE +material E-MATE +are O +originally O +identified O +in O +this O +paper O +, O +which O +emphasizes O +the O +inadequacy O +of O +current O +acceptability O +protocols S-CONPRI +for O +PBF S-MANP +powders O +. O + + +In O +the O +absence O +of O +contamination O +, O +endurance O +achieved O +by O +PBF S-MANP +is O +found O +equal O +to O +that O +by O +forging S-MANP +and O +consistent O +with O +tooling S-CONPRI +requirements O +as S-MATE +set O +out O +by O +industrial S-APPL +partners O +, O +based O +on O +injection B-MANP +moulding E-MANP +process O +modelling S-ENAT +. O + + +Metal B-MATE +powder E-MATE +bed S-MACEQ +additive B-MANP +manufacturing E-MANP +technologies O +, O +such O +as S-MATE +the O +Electron B-MANP +Beam I-MANP +Melting E-MANP +process O +, O +facilitate O +a O +high O +degree O +of O +geometric O +flexibility S-PRO +and O +have O +been O +demonstrated O +as S-MATE +useful O +production S-MANP +techniques O +for O +metallic S-MATE +parts.However O +, O +the O +EBM S-MANP +process O +is O +typically O +associated O +with O +lower O +resolutions O +and O +higher O +surface B-PRO +roughness E-PRO +compared O +to O +similar O +laser-based O +powder B-MACEQ +bed E-MACEQ +metal S-MATE +processes O +. O + + +In O +part O +, O +this O +difference O +is O +related O +to O +the O +larger O +powder S-MATE +size O +distribution S-CONPRI +and O +thicker O +layers O +normally O +used O +. O + + +As S-MATE +part O +of O +an O +effort O +to O +improve O +the O +resolution S-PARA +and O +surface B-PRO +roughness E-PRO +of O +EBM S-MANP +fabricated O +components S-MACEQ +, O +this O +study O +investigates S-CONPRI +the O +feasibility S-CONPRI +of O +fabricating S-MANP +components S-MACEQ +with O +a O +smaller O +powder S-MATE +size O +fraction S-CONPRI +and O +layer B-PARA +thickness E-PARA +( O +similar O +to O +laser S-ENAT +based O +processes S-CONPRI +) O +. O + + +The O +surface B-CHAR +morphology E-CHAR +, O +microstructure S-CONPRI +and O +tensile B-PRO +properties E-PRO +of O +the O +produced O +samples S-CONPRI +were O +evaluated O +. O + + +The O +findings O +indicate O +that O +microstructure S-CONPRI +is O +dependent O +on O +wall-thickness O +and O +that O +, O +for O +thin B-CONPRI +walled I-CONPRI +structures E-CONPRI +, O +tensile B-PRO +properties E-PRO +can O +become O +dominated O +by O +variations S-CONPRI +in O +surface B-PRO +roughness E-PRO +. O + + +Additive B-MANP +manufacturing E-MANP +provides O +new O +chances O +in O +the O +manufacturing S-MANP +of O +highly O +complex O +, O +mass-customized O +structures O +with O +negligible O +wastes O +. O + + +Binder B-MANP +jetting E-MANP +holds O +distinctive O +promise O +among O +additive B-MANP +manufacturing E-MANP +technologies O +due O +to O +its O +fast O +, O +low-cost O +manufacturing S-MANP +; O +stress-free O +structures O +with O +complex O +internal O +and O +external O +geometries S-CONPRI +; O +and O +the O +isotropic S-PRO +properties O +of O +the O +final O +printed O +parts O +. O + + +An O +ExOne O +binder S-MATE +jet O +3D B-MACEQ +printer E-MACEQ +is O +used O +to O +produce O +frameworks O +for O +removable O +partial O +dentures S-APPL +from O +metallic B-MATE +powder E-MATE +. O + + +Initially O +, O +an O +existing O +framework S-CONPRI +is O +scanned O +using O +micro-computed B-CHAR +tomography E-CHAR +and O +then O +the O +obtained O +model S-CONPRI +is O +printed O +. O + + +Consolidation S-CONPRI +of O +the O +printed O +parts O +is O +achieved O +with O +the O +relative B-PRO +density E-PRO +higher O +than O +99 O +% O +density S-PRO +with O +controlled O +shrinkage S-CONPRI +. O + + +Presented O +results O +demonstrate O +that O +binder B-MANP +jetting E-MANP +may O +be S-MATE +used O +to O +produce O +mechanically O +sound O +complex-shaped S-CONPRI +structures O +as S-MATE +shown O +here O +on O +a O +denture S-APPL +metal O +framework S-CONPRI +model O +. O + + +Numerical B-ENAT +simulation E-ENAT +is O +used O +to O +understand O +the O +melting S-MANP +and O +pressurization O +mechanism S-CONPRI +in O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +The O +results O +show O +the O +incoming O +fiber S-MATE +melts O +axisymmetrically O +, O +forming S-MANP +a O +cone O +of O +unmelted O +material S-MATE +in O +the O +center O +surrounded O +by O +melted S-CONPRI +polymer O +. O + + +Details O +of O +the O +simulation S-ENAT +reveal O +that O +a O +recirculating O +vortex O +of O +melted S-CONPRI +polymer O +is O +formed O +at O +the O +fiber S-MATE +entrance O +to O +the O +hot B-MACEQ +end E-MACEQ +. O + + +The O +Generalized O +Newtonian B-CONPRI +Fluid E-CONPRI +( O +GNF O +) O +model S-CONPRI +was O +appropriate O +for O +simulation S-ENAT +within O +the O +region O +that O +melts O +the O +fiber S-MATE +, O +however O +, O +a O +viscoelastic S-PRO +model S-CONPRI +, O +the O +Phan-Thien-Tanner O +( O +PTT O +) O +model S-CONPRI +, O +was O +required O +to O +capture O +flow O +within O +the O +nozzle S-MACEQ +. O + + +This O +is O +due O +to O +the O +presence O +of O +an O +elongational O +flow O +as S-MATE +molten O +material S-MATE +transitions O +from O +the O +melting S-MANP +region O +( O +diameter S-CONPRI +of O +3 O +mm S-MANP +) O +to O +the O +nozzle S-MACEQ +at O +the O +exit O +( O +diameter S-CONPRI +of O +0.5 O +mm S-MANP +) O +. O + + +Increased O +manufacturing S-MANP +rates O +are O +limited O +by O +high O +pressures S-CONPRI +, O +necessitating O +more O +consideration O +in O +the O +nozzle S-MACEQ +design S-FEAT +of O +future O +FFF S-MANP +printers O +. O + + +A O +unique O +and O +efficient O +semi-analytic O +method O +is O +presented O +for O +quickly O +predicting O +the O +three-dimensional S-CONPRI +thermal O +field O +produced O +by O +conduction O +from O +a O +heat B-CONPRI +source E-CONPRI +moving O +along O +an O +arbitrary O +path O +. O + + +A O +Green O +'s O +function O +approach O +is O +used O +to O +decouple O +the O +solution S-CONPRI +at O +each O +time O +step S-CONPRI +into O +the O +analytical O +source S-APPL +contribution O +and O +a O +conduction O +contribution O +. O + + +The O +latter O +is O +solved O +numerically O +using O +efficient O +Gaussian S-CONPRI +convolution O +algorithms S-CONPRI +. O + + +This O +decoupling O +allows O +for O +boundary B-CONPRI +conditions E-CONPRI +on O +side O +boundaries S-FEAT +to O +be S-MATE +satisfied O +numerically O +and O +lowers O +computational O +expenses O +by O +allowing O +calculations O +to O +be S-MATE +localized O +around O +the O +heat B-CONPRI +source E-CONPRI +. O + + +The O +thermal O +field O +resulting O +from O +arbitrary O +scan O +paths O +is O +constructed O +using O +analytical B-CONPRI +solutions E-CONPRI +for O +elementary O +linear O +segments O +. O + + +The O +results O +of O +various O +scan B-PARA +patterns E-PARA +are O +presented O +and O +successfully O +verified O +against O +finite B-CONPRI +element E-CONPRI +simulations O +. O + + +The O +computational O +times O +of O +predictions S-CONPRI +are O +shown O +to O +be S-MATE +faster O +than O +the O +corresponding O +finite B-CONPRI +element E-CONPRI +simulation O +by O +an O +order O +of O +magnitude S-PARA +with O +less O +than O +1 O +% O +average S-CONPRI +error O +. O + + +Given O +its O +ability O +to O +quickly O +predict O +the O +thermal O +history O +and O +changes O +in O +melt B-MATE +pool E-MATE +geometry S-CONPRI +due O +to O +arbitrary O +scan O +paths O +, O +this O +method O +provides O +a O +potentially O +powerful O +tool S-MACEQ +for O +exploration O +and O +optimization S-CONPRI +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +processes O +. O + + +The O +origins O +of O +nano-scale S-CONPRI +oxide O +inclusions S-MATE +in O +316 O +L O +austenitic B-MATE +stainless I-MATE +steel E-MATE +( O +SS S-MATE +) O +manufactured S-CONPRI +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +was O +investigated O +by O +quantifying O +the O +possible O +intrusion O +pathways O +of O +oxygen S-MATE +contained O +in O +the O +precursor B-MATE +powder E-MATE +, O +extraneous O +oxygen S-MATE +from O +the O +process S-CONPRI +environment O +during O +laser B-CONPRI +processing E-CONPRI +, O +and O +moisture O +contamination O +during O +powder S-MATE +handling O +and O +storage O +. O + + +When O +processing O +the O +fresh O +, O +as-received O +powder S-MATE +in O +a O +well-controlled O +environment O +, O +the O +oxide B-MATE +inclusions E-MATE +contained O +in O +the O +precursor B-MATE +powder E-MATE +were O +the O +primary O +contributors O +to O +the O +formation O +of O +nano-scale S-CONPRI +oxides O +in O +the O +final O +additive B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +product O +. O + + +These O +oxide B-MATE +inclusions E-MATE +were O +found O +to O +be S-MATE +enriched O +with O +oxygen S-MATE +getter O +elements S-MATE +like O +Si S-MATE +and O +Mn S-MATE +. O + + +By O +controlling O +the O +extraneous O +oxygen S-MATE +level O +in O +the O +process S-CONPRI +environment O +, O +the O +oxygen S-MATE +level O +in O +AM S-MANP +produced O +parts O +was O +found O +to O +increase O +with O +the O +extraneous O +oxygen S-MATE +level O +. O + + +The O +intrusion O +pathway O +of O +this O +extra O +oxygen S-MATE +was O +found O +to O +be S-MATE +dominated O +by O +the O +incorporation O +of O +spatter S-CHAR +particles S-CONPRI +into O +the O +build S-PARA +during O +processing O +. O + + +Moisture O +induced O +oxidation S-MANP +during O +powder S-MATE +storage O +was O +also O +found O +to O +result O +in O +a O +higher O +oxide S-MATE +density S-PRO +in O +the O +AM S-MANP +produced O +parts O +. O + + +SS S-MATE +316 O +L O +powder S-MATE +free O +of O +Si S-MATE +and O +Mn S-MATE +oxygen O +getters O +was O +processed S-CONPRI +in O +a O +well-controlled O +environment O +and O +resulted O +in O +a O +similar O +level O +of O +oxygen S-MATE +intrusion O +. O + + +Microhardness S-CONPRI +testing O +indicated O +that O +the O +oxide S-MATE +volume O +fraction S-CONPRI +increase O +from O +extraneous O +oxygen S-MATE +did O +not O +influence O +hardness S-PRO +values O +. O + + +However O +, O +a O +marked O +decrease O +in O +hardness S-PRO +was O +found O +for O +the O +humidified O +and O +Si-Mn O +free O +AM S-MANP +processed O +parts O +. O + + +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS® O +) O +is O +a O +metal B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technique O +that O +carries O +great O +potential O +for O +the O +fabrication S-MANP +and O +repair O +of O +high-integrity O +structural O +and O +engine O +components S-MACEQ +. O + + +Confident O +application O +of O +the O +LENS S-MANP +technique O +requires O +a O +fundamental O +understanding O +of O +the O +microstructure S-CONPRI +and O +properties S-CONPRI +of O +the O +fabricated S-CONPRI +materials O +, O +as S-MATE +well O +as S-MATE +their O +correlations O +to O +processing O +conditions O +. O + + +In O +this O +study O +, O +two O +alloys S-MATE +fabricated O +by O +LENS S-MANP +, O +Ti-6Al-4V S-MATE +and O +Inconel B-MATE +718 E-MATE +, O +were O +examined O +and O +compared O +to O +their O +wrought S-CONPRI +counterparts O +. O + + +The O +differences O +between O +low O +and O +high O +laser B-PARA +power E-PARA +fabrications O +, O +as S-MATE +well O +as S-MATE +the O +effects O +of O +various O +post-LENS O +heat B-MANP +treatments E-MANP +were O +systematically O +investigated O +and O +discussed O +. O + + +The O +interfacial B-MATE +bond E-MATE +strength O +between O +LENS S-MANP +depositions O +and O +substrates O +were O +also O +evaluated O +for O +repair O +purposes O +. O + + +The O +residual S-CONPRI +porosity S-PRO +and O +surface B-PRO +roughness E-PRO +of O +metal B-MATE +materials E-MATE +generated O +via O +additive B-MANP +manufacturing E-MANP +are O +generally O +regarded O +as S-MATE +the O +major O +influence O +factors O +on O +the O +fatigue B-PRO +strength E-PRO +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +specimens O +out O +of O +tool S-MACEQ +steel S-MATE +1.2344 O +were O +investigated O +. O + + +Tensile B-PRO +strength E-PRO +and O +hardness S-PRO +achieved O +results O +in O +the O +range S-PARA +of O +conventionally O +fabricated S-CONPRI +parts O +, O +whereas O +a O +significantly O +lower O +fatigue B-PRO +strength E-PRO +was O +observed O +. O + + +Cracks O +were O +induced O +by O +the O +present O +cavities O +as S-MATE +well O +as S-MATE +in O +the O +steel S-MATE +matrix O +. O + + +Further O +investigations O +of O +the O +oxygen S-MATE +content O +showed O +a O +high O +oxygen S-MATE +content O +of O +570 O +ppm O +homogeneously O +distributed O +inside O +the O +specimens O +potentially O +limiting O +the O +strength S-PRO +of O +the O +matrix O +itself O +. O + + +Process B-CONPRI +monitoring E-CONPRI +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +crucial O +component S-MACEQ +in O +the O +mission O +of O +broadening O +AM S-MANP +industrialization O +. O + + +However O +, O +conventional O +part O +evaluation O +and O +qualification O +techniques O +, O +such O +as S-MATE +computed O +tomography O +( O +CT S-ENAT +) O +, O +can O +only O +be S-MATE +utilized O +after O +the O +build S-PARA +is O +complete O +, O +and O +thus O +eliminate O +any O +potential O +to O +correct O +defects S-CONPRI +during O +the O +build S-PARA +process O +. O + + +In O +contrast O +to O +post-build O +CT S-ENAT +, O +in B-CONPRI +situ E-CONPRI +defect S-CONPRI +detection O +based O +on O +in B-CONPRI +situ E-CONPRI +sensing O +, O +such O +as S-MATE +layerwise O +visual O +inspection S-CHAR +, O +enables O +the O +potential O +for O +in-process O +re-melting O +and O +correction O +of O +detected O +defects S-CONPRI +and O +thus O +facilitates O +in-process O +part O +qualification O +. O + + +This O +paper O +describes O +the O +development O +and O +implementation O +of O +such O +an O +in B-CONPRI +situ E-CONPRI +defect S-CONPRI +detection O +strategy O +for O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +AM S-MANP +using O +supervised O +machine S-MACEQ +learning.During O +the O +build S-PARA +process O +, O +multiple O +images S-CONPRI +were O +collected O +at O +each O +build B-PARA +layer E-PARA +using O +a O +high B-PARA +resolution E-PARA +digital O +single-lens O +reflex O +( O +DSLR O +) O +camera S-MACEQ +. O + + +For O +each O +neighborhood O +in O +the O +resulting O +layerwise O +image S-CONPRI +stack O +, O +multi-dimensional O +visual O +features O +were O +extracted S-CONPRI +and O +evaluated O +using O +binary S-CONPRI +classification O +techniques O +, O +i.e O +. O + + +a O +linear O +support S-APPL +vector O +machine S-MACEQ +( O +SVM O +) O +. O + + +Through O +binary S-CONPRI +classification O +, O +neighborhoods O +are O +then O +categorized O +as S-MATE +either O +a O +flaw S-CONPRI +, O +i.e O +. O + + +an O +undesirable O +interruption O +in O +the O +typical O +structure S-CONPRI +of O +the O +material S-MATE +, O +or O +a O +nominal O +build S-PARA +condition O +. O + + +the O +true O +location O +of O +flaws S-CONPRI +and O +nominal O +build B-PARA +areas E-PARA +, O +which O +are O +needed O +to O +train O +the O +binary S-CONPRI +classifiers O +, O +were O +obtained O +from O +post-build O +high-resolution S-PARA +3D S-CONPRI +CT O +scan O +data S-CONPRI +. O + + +In O +CT S-ENAT +scans O +, O +discontinuities O +, O +e.g O +. O + + +incomplete O +fusion S-CONPRI +, O +porosity S-PRO +, O +cracks O +, O +or O +inclusions S-MATE +, O +were O +identified O +using O +automated O +analysis O +tools S-MACEQ +or O +manual O +inspection S-CHAR +. O + + +After O +the O +classifier O +had O +been O +properly O +trained O +, O +in B-CONPRI +situ E-CONPRI +defect S-CONPRI +detection O +accuracies O +greater O +than O +80 O +% O +were O +demonstrated O +during O +cross-validation O +experiments O +. O + + +In O +this O +paper O +the O +heat B-CONPRI +transfer E-CONPRI +and O +residual B-PRO +stress E-PRO +evolution S-CONPRI +in O +the O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +process O +of O +the O +additive B-MANP +manufacturing E-MANP +of O +titanium B-MATE +alloy E-MATE +products O +are O +studied O +. O + + +A O +numerical O +model S-CONPRI +is O +developed O +in O +a O +COMSOL O +multiphysics O +environment O +considering O +the O +temperature-dependent O +material B-CONPRI +properties E-CONPRI +of O +TiAl6V4 O +. O + + +The O +thermo-mechanical S-CONPRI +coupled O +simulation S-ENAT +is O +performed O +. O + + +3-D S-CONPRI +simulation O +is O +used O +to O +study O +single-layer O +laser B-MANP +sintering E-MANP +. O + + +A O +2-D O +model S-CONPRI +is O +used O +to O +study O +the O +multi-layer O +effects O +of O +additive B-MANP +manufacturing E-MANP +. O + + +The O +results O +reveal O +the O +behavior O +of O +the O +melt B-MATE +pool E-MATE +size O +, O +temperature S-PARA +history O +, O +and O +change O +of O +the O +residual B-PRO +stresses E-PRO +of O +a O +single O +layer S-PARA +and O +among O +the O +multiple O +layers O +of O +the O +effects O +of O +the O +change O +of O +the O +local O +base O +temperature S-PARA +and O +laser B-PARA +power E-PARA +etc O +. O + + +The O +result O +of O +the O +simulation S-ENAT +provides O +a O +better O +understanding O +of O +the O +complex O +thermo-mechanical S-CONPRI +mechanisms O +of O +laser B-MANP +sintering I-MANP +additive I-MANP +manufacturing I-MANP +processes E-MANP +. O + + +Laser-matter O +interactions O +in O +laser B-MANP +additive I-MANP +manufacturing E-MANP +( O +LAM S-MANP +) O +occur O +on O +short O +time B-FEAT +scales E-FEAT +( O +10−6–10−3 O +s S-MATE +) O +and O +have O +traditionally O +proven O +difficult O +to O +characterise O +. O + + +We O +investigate O +these O +interactions O +during O +LAM S-MANP +of O +stainless B-MATE +steel E-MATE +SS316L O +and O +13-93 O +bioactive B-MATE +glass E-MATE +powders O +using O +a O +custom O +built O +LAM S-MANP +process O +replicator O +( O +LAMPR O +) O +with O +in B-CONPRI +situ E-CONPRI +and O +operando O +synchrotron S-ENAT +X-ray O +real-time O +radiography S-ENAT +. O + + +This O +reveals O +a O +wide O +range S-PARA +of O +melt S-CONPRI +track O +solidification S-CONPRI +phenomena O +as S-MATE +well O +as S-MATE +spatter O +and O +porosity S-PRO +formation O +. O + + +We O +hypothesise O +that O +the O +SS316L O +powder S-MATE +absorbs O +the O +laser B-CONPRI +energy E-CONPRI +at O +its O +surface S-CONPRI +while O +the O +trace B-MATE +elements E-MATE +in O +the O +13-93 O +bioactive B-MATE +glass E-MATE +powder O +absorb O +and O +remit O +the O +infra-red O +radiation S-MANP +. O + + +Our O +results O +show O +that O +a O +low O +viscosity S-PRO +melt S-CONPRI +, O +e.g O +. O + + +8 O +mPa S-CONPRI +s O +for O +SS316L O +, O +tends O +to O +generate O +spatter S-CHAR +( O +diameter S-CONPRI +up O +to O +250 O +μm O +and O +an O +average S-CONPRI +spatter O +velocity O +of O +0.26 O +m O +s−1 O +) O +and O +form O +a O +melt S-CONPRI +track O +by O +molten B-CONPRI +pool E-CONPRI +wetting O +. O + + +In O +contrast O +, O +a O +high O +viscosity S-PRO +melt S-CONPRI +, O +e.g O +. O + + +2 O +Pa S-CHAR +s O +for O +13-93 O +bioactive B-MATE +glass E-MATE +, O +inhibits O +spatter S-CHAR +formation O +by O +damping O +the O +Marangoni O +convection O +, O +forming S-MANP +a O +melt S-CONPRI +track O +via O +viscous O +flow O +. O + + +The O +viscous O +flow O +in O +13-93 O +bioactive B-MATE +glass E-MATE +resists O +pore S-PRO +transport O +; O +combined O +with O +the O +reboil O +effect O +, O +this O +promotes O +pore S-PRO +growth O +during O +LAM S-MANP +, O +resulting O +in O +a O +pore B-PARA +size E-PARA +up O +to O +600 O +times O +larger O +than O +that O +exhibited O +in O +the O +SS316L O +sample S-CONPRI +. O + + +An O +evaluation O +of O +low-cost O +, O +high-oxygen O +content O +Zr-Cu-Al-Nb O +bulk O +metallic B-MATE +glasses E-MATE +( O +BMGs O +) O +produced O +through O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +was O +performed O +. O + + +Four-point O +bending S-MANP +and O +wear B-PRO +resistance E-PRO +tests O +were O +used O +to O +compare O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +printed O +alloy S-MATE +with O +laboratory S-CONPRI +grade O +cast S-MANP +parts O +. O + + +It O +is O +shown O +that O +the O +laser S-ENAT +PBF O +parts O +, O +while O +not O +being O +able O +to O +be S-MATE +cast O +as S-MATE +a O +bulk O +glass S-MATE +, O +can O +be S-MATE +printed O +amorphous O +up O +to O +at O +least O +several O +millimeters O +thick O +and O +yet O +still O +have O +reasonable O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +highly O +viscous O +materials S-CONPRI +, O +e.g. O +, O +polysiloxane O +( O +silicone S-MATE +) O +has O +gained O +attention O +in O +academia O +and O +different O +industries S-APPL +, O +specifically O +the O +medical S-APPL +and O +healthcare O +sectors O +. O + + +Different O +AM B-MANP +processes E-MANP +including O +micro-syringe O +nozzle S-MACEQ +dispensing O +systems O +have O +demonstrated O +promising O +results O +in O +the O +deposition S-CONPRI +of O +highly O +viscous O +materials S-CONPRI +. O + + +This O +contact-based O +3D B-MANP +printing E-MANP +system O +has O +drawbacks O +such O +as S-MATE +overfilling O +of O +material S-MATE +at O +locations O +where O +there O +is O +a O +change O +in O +the O +direction O +of O +the O +trajectory O +, O +thereby O +reducing O +the O +printing O +quality S-CONPRI +. O + + +Modeling S-ENAT +the O +continuous O +flow O +of O +a O +highly O +viscous O +polysiloxane O +in O +the O +nozzle S-MACEQ +dispensing O +AM S-MANP +system O +using O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +will O +be S-MATE +the O +first O +step S-CONPRI +to O +solve O +this O +overfilling O +phenomenon O +. O + + +The O +results O +of O +simulation S-ENAT +can O +be S-MATE +used O +to O +predict O +the O +required O +variation S-CONPRI +in O +the O +value O +of O +pressure S-CONPRI +before O +the O +nozzle S-MACEQ +reaches O +a O +corner O +. O + + +The O +level-set O +method O +is O +employed O +for O +this O +simulation S-ENAT +, O +and O +the O +results O +are O +validated O +by O +comparing O +the O +flow O +profile S-FEAT +and O +geometrical O +parameters S-CONPRI +of O +the O +model S-CONPRI +with O +those O +of O +the O +experimental S-CONPRI +trials O +of O +the O +dispensing O +of O +polysiloxane O +. O + + +Comparisons O +show O +that O +the O +model S-CONPRI +is O +able O +to O +predict O +the O +location O +of O +the O +droplet S-CONPRI +before O +it O +reaches O +the O +substrate S-MATE +, O +as S-MATE +well O +as S-MATE +the O +height O +of O +the O +droplet S-CONPRI +generated O +on O +the O +substrate S-MATE +accurately S-CHAR +. O + + +To O +predict O +the O +width O +of O +the O +droplet S-CONPRI +, O +adjustment O +factors O +need O +to O +be S-MATE +considered O +in O +calculations O +based O +on O +the O +value O +of O +the O +pressure S-CONPRI +. O + + +A O +significant O +microstructural S-CONPRI +inhomogeneity O +in O +EBM S-MANP +fabricated O +Co-Cr-Mo O +alloy S-MATE +along O +building B-PARA +direction E-PARA +. O + + +Post-production O +heat B-MANP +treatment E-MANP +regime O +homogenized S-MANP +microstructures O +and O +enhanced O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +phase S-CONPRI +constituents O +significantly O +affected O +the O +mechanical S-APPL +behaviors O +of O +Co-Cr-Mo O +alloy S-MATE +. O + + +The O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +, O +a O +layer-by-layer S-CONPRI +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technique O +, O +has O +been O +recently O +utilized O +for O +fabricating S-MANP +metallic O +components S-MACEQ +with O +complex B-PRO +shape E-PRO +and O +geometry S-CONPRI +. O + + +However O +, O +the O +inhomogeneity O +in O +microstructures S-MATE +and O +mechanical B-CONPRI +properties E-CONPRI +are O +the O +main O +drawbacks O +constraining O +the O +serviceability O +of O +the O +EBM-built O +parts O +. O + + +In O +the O +present O +study O +, O +we O +found O +remarkable O +microstructural S-CONPRI +inhomogeneity O +along O +build B-PARA +direction E-PARA +in O +the O +EBM-built O +Co-based O +alloy S-MATE +, O +owing O +to O +the O +competitive O +grain B-CONPRI +growth E-CONPRI +and O +subsequent O +isothermal S-CONPRI +γ-fcc O +→ O +ε-hcp O +phase S-CONPRI +transformation O +, O +which O +affects O +the O +corresponding O +tensile B-PRO +properties E-PRO +significantly O +. O + + +Then O +, O +we O +succeeded O +in O +eliminating O +the O +inhomogeneities O +, O +modifying O +the O +phase S-CONPRI +structures O +and O +refining O +grain B-PRO +sizes E-PRO +via O +comprehensive O +post-production O +heat B-MANP +treatment E-MANP +regimes O +, O +which O +provides O +a O +valuable O +implication O +for O +improving O +the O +reliabilities O +of O +AM-built O +metals S-MATE +and O +alloys S-MATE +. O + + +The O +Co-based O +alloy S-MATE +can O +be S-MATE +selectively O +transformed O +into O +predominant O +ε O +or O +predominant O +γ O +phase S-CONPRI +by O +the O +regime O +, O +and O +the O +grains S-CONPRI +were O +refined O +to O +1/10 O +of O +the O +initial O +sizes O +by O +repeated O +heat B-MANP +treatment E-MANP +. O + + +Finally O +, O +we O +investigated O +the O +tensile B-PRO +properties E-PRO +and O +fracture S-CONPRI +behaviors O +of O +the O +alloy S-MATE +before O +and O +after O +each O +heat B-MANP +treatment E-MANP +. O + + +The O +γ O +→ O +ε O +strain-induced O +martensitic O +transformation O +is O +the O +major O +deformation S-CONPRI +mode O +of O +the O +γ O +phase S-CONPRI +, O +meanwhile O +the O +formation O +of O +stripped O +ε O +phase S-CONPRI +at O +{ O +111 O +} O +γ O +habit O +planes O +contributed O +to O +a O +good O +combination O +of O +strength S-PRO +and O +ductility S-PRO +. O + + +Nevertheless O +, O +the O +ε O +phase S-CONPRI +was O +deformed S-MANP +mainly O +by O +( O +0001 O +) O +ε O +< O +11 O +2¯0 O +> O +ε O +basal O +and O +{ O +1 O +1¯00 O +} O +ε O +< O +11 O +2¯0 O +> O +ε O +prismatic S-CONPRI +slip O +systems O +, O +exhibiting O +very O +limited O +ductility S-PRO +and O +strength S-PRO +. O + + +In O +addition O +, O +the O +ε O +grains S-CONPRI +act O +as S-MATE +secondary O +hardening S-MANP +factor O +in O +the O +samples S-CONPRI +consisting O +of O +dual O +γ/ε O +phase S-CONPRI +, O +leading O +to O +a O +non-uniform O +deformation S-CONPRI +behavior O +. O + + +Two O +new O +high-carbon O +high B-MATE +speed I-MATE +steel I-MATE +alloys E-MATE +; O +Febal-C-Cr-Mo-V S-MATE +and O +Febal−x-C-Cr-Mo-V-Wx O +were O +additively B-MANP +manufactured E-MANP +by O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +process S-CONPRI +. O + + +Micro-hardness O +( O +0.5 O +HV O +) O +measurement S-CHAR +of O +multilayer O +additively B-MANP +manufactured E-MANP +samples O +showed O +no O +softening O +of O +martensite S-MATE +matrix O +under O +complex O +thermal B-PARA +cycling E-PARA +. O + + +Due O +to O +larger O +phase B-CONPRI +fraction E-CONPRI +of O +metal B-MATE +carbides E-MATE +and O +formation O +of O +a O +relatively O +stable O +oxide S-MATE +layer S-PARA +, O +Febal−x-C-Cr-Mo-V-Wx O +showed O +better O +high O +temperature S-PARA +( O +500 O +°C O +) O +wear B-PRO +resistance E-PRO +than O +Febal-C-Cr-Mo-V. O +Neutron B-CHAR +diffraction E-CHAR +of O +powders S-MATE +and O +additively B-MANP +manufactured E-MANP +samples O +of O +Febal-C-Cr-Mo-V S-MATE +and O +Febal−x-C-Cr-Mo-V-Wx O +alloys S-MATE +showed O +weak O +scattering O +properties S-CONPRI +. O + + +The O +inconclusive O +strain S-PRO +scanning S-CONPRI +was O +either O +result O +of O +a O +strong O +crystallographic O +texture S-FEAT +in O +the O +bulk O +or O +due O +to O +existence O +of O +nano- O +or O +semi-crystalline O +phases O +. O + + +Directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +of O +two O +high-carbon O +high B-MATE +speed I-MATE +steel I-MATE +alloys E-MATE +Febal-C-Cr-Mo-V S-MATE +and O +Febal−x-C-Cr-Mo-V-Wx O +was O +performed O +by O +using O +a O +4 O +kW O +Nd B-MATE +: I-MATE +YAG E-MATE +laser B-MACEQ +source E-MACEQ +. O + + +The O +purpose O +of O +additive B-MANP +manufacturing E-MANP +was O +design S-FEAT +and O +evaluation O +of O +thermally O +stable O +– O +high O +temperature S-PARA +wear O +resistant O +alloys S-MATE +. O + + +High O +temperature S-PARA +( O +500 O +°C O +) O +pin-on-disc O +tests O +were O +conducted O +to O +investigate O +the O +effect O +of O +carbides S-MATE +phase O +fraction S-CONPRI +on O +friction S-CONPRI +and O +wear S-CONPRI +. O + + +Strain S-PRO +scanning S-CONPRI +of O +the O +powder S-MATE +and O +additively B-MANP +manufactured E-MANP +materials O +was O +carried O +out O +by O +Neutron S-CONPRI +diffraction.Microstructures O +of O +both O +alloys S-MATE +consisted O +of O +a O +martensitic O +matrix O +with O +networks O +of O +primary O +and O +eutectic S-CONPRI +carbides S-MATE +. O + + +Febal−x-C-Cr-Mo-V-Wx O +showed O +a O +better O +high O +temperature S-PARA +wear O +resistance S-PRO +due O +to O +greater O +phase B-CONPRI +fraction E-CONPRI +of O +VC S-MATE +and O +Mo2C O +carbides S-MATE +. O + + +Fracture S-CONPRI +surfaces O +of O +post-heat O +treated O +tensile S-PRO +samples S-CONPRI +of O +Febal-C-Cr-Mo-V S-MATE +and O +Febal−x-C-Cr-Mo-V-Wx O +revealed O +brittle B-CONPRI +failures E-CONPRI +with O +minimal O +plasticity S-PRO +. O + + +Neutron S-CONPRI +strain O +mapping O +of O +the O +metal B-MATE +powders E-MATE +and O +the O +additively B-MANP +manufactured E-MANP +materials O +resulted O +in O +a O +weak O +diffraction S-CHAR +signal O +and O +peak O +widening O +effect O +. O + + +Ti–6Al–4V O +parts O +made O +using O +additive B-MANP +manufacturing I-MANP +processes E-MANP +such O +as S-MATE +selective O +laser S-ENAT +melting O +( O +SLM S-MANP +) O +and O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +are O +subject O +to O +the O +inclusion S-MATE +of O +defects S-CONPRI +. O + + +This O +study O +purposely O +fabricated S-CONPRI +Ti–6Al–4V O +samples S-CONPRI +with O +defects S-CONPRI +by O +varying O +process B-CONPRI +parameters E-CONPRI +from O +the O +factory O +default O +settings O +in O +both O +SLM S-MANP +and O +EBM S-MANP +systems O +. O + + +Process B-CONPRI +parameters E-CONPRI +are O +classified O +according O +to O +their O +tendency O +to O +create O +certain O +types O +of O +porosity S-PRO +. O + + +Finally O +, O +defect S-CONPRI +characteristics O +are O +discussed O +with O +respect O +to O +defect S-CONPRI +generation O +mechanisms O +; O +and O +effective O +process S-CONPRI +windows O +for O +SLM S-MANP +and O +EBM S-MANP +system O +are O +discussed O +. O + + +Developed O +intra-layer O +, O +closed-loop B-MACEQ +control E-MACEQ +of O +additive B-MANP +manufacturing E-MANP +build O +plan O +. O + + +Control O +affected O +macrostructure O +, O +microstructure S-CONPRI +, O +and O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Demonstrated O +reduced O +variability S-CONPRI +in O +microstructure S-CONPRI +and O +hardness S-PRO +with O +control O +. O + + +The O +location O +, O +timing O +, O +and O +arrangement O +of O +depositions O +paths O +used O +to O +build S-PARA +an O +additively B-MANP +manufactured E-MANP +component O +– O +collectively O +called O +the O +build S-PARA +plan O +– O +are O +known O +to O +impact S-CONPRI +local O +thermal O +history O +, O +microstructure S-CONPRI +, O +thermal B-CONPRI +distortion E-CONPRI +, O +and O +mechanical B-CONPRI +properties E-CONPRI +. O + + +In O +this O +work O +, O +a O +novel O +system O +architecture S-APPL +for O +intra-layer O +, O +closed-loop B-MACEQ +control E-MACEQ +of O +the O +build S-PARA +plan O +is O +introduced O +and O +demonstrated O +for O +directed-energy O +deposition S-CONPRI +of O +Ti–6Al–4V O +. O + + +The O +control O +strategy O +altered O +the O +build S-PARA +plan O +in O +real O +time O +to O +ensure O +that O +the O +temperature S-PARA +around O +the O +start O +point O +of O +each O +hatch O +, O +prior O +to O +deposition S-CONPRI +, O +was O +below O +a O +threshold O +temperature S-PARA +of O +415 O +°C O +. O + + +Compared O +with O +open-loop O +processing O +, O +closed-loop B-MACEQ +control E-MACEQ +resulted O +in O +vertical S-CONPRI +alignment O +of O +columnar O +prior-β O +grains S-CONPRI +, O +more O +uniform O +α-lath O +widths O +, O +and O +more-uniform O +microhardness S-CONPRI +values O +within O +the O +deposited O +component S-MACEQ +. O + + +Recently O +, O +laser-powder O +bed B-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +has O +been O +utilized O +to O +produce O +a O +NiTi S-MATE +shape O +memory O +alloy S-MATE +actuator S-MACEQ +with O +embedded O +channels O +for O +liquid B-MATE +metal E-MATE +forced O +fluid S-MATE +convection O +to O +increase O +actuator S-MACEQ +heat O +transfer O +rates O +. O + + +To O +enable O +further O +increases O +in O +performance S-CONPRI +, O +it O +is O +critical O +to O +characterize O +and O +control O +the O +surface B-PARA +quality E-PARA +of O +fully O +interior O +channels O +which O +have O +higher O +surface B-PRO +roughness E-PRO +compared O +to O +exterior O +top O +surfaces S-CONPRI +. O + + +This O +work O +utilizes O +a O +design B-CONPRI +of I-CONPRI +experiments E-CONPRI +methodology O +by O +varying O +laser B-PARA +power E-PARA +, O +scan B-PARA +speed E-PARA +, O +hatch O +space O +, O +scan B-PARA +pattern E-PARA +, O +channel S-APPL +orientation O +, O +and O +channel B-FEAT +diameter E-FEAT +on O +the O +as-fabricated O +surface B-PRO +roughness E-PRO +of O +the O +overhangs S-PARA +and O +walls O +of O +interior O +channels O +in O +NiTi S-MATE +. O + + +To O +enable O +post-process S-CONPRI +increases O +in O +surface B-PARA +quality E-PARA +, O +the O +channels O +are O +subjected O +to O +an O +electropolishing S-MANP +treatment O +and O +further O +characterized O +. O + + +Internal O +channel S-APPL +surfaces O +are O +characterized O +using O +optical S-CHAR +profilometry O +and O +SEM S-CHAR +imaging S-APPL +. O + + +It O +is O +concluded O +that O +channel S-APPL +orientation O +plays O +a O +prominent O +role O +in O +determining O +the O +surface B-PRO +roughness E-PRO +of O +as-fabricated O +interior O +channels O +, O +and O +a O +lower O +laser B-PARA +energy I-PARA +density E-PARA +results O +in O +the O +highest O +reduction S-CONPRI +in O +surface B-PRO +roughness E-PRO +after O +an O +electropolishing S-MANP +treatment O +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +and O +laser B-MANP +welding E-MANP +are O +powerful O +metal S-MATE +processing O +techniques O +with O +broad O +applications O +in O +advanced O +sectors O +such O +as S-MATE +the O +biomedical S-APPL +and O +aerospace B-APPL +industries E-APPL +. O + + +One O +common O +process S-CONPRI +variable O +that O +can O +tune O +laser-material O +interaction O +dynamics O +in O +these O +two O +techniques O +is O +adjustment O +of O +the O +composition S-CONPRI +and O +pressure S-CONPRI +of O +the O +atmosphere O +in O +which O +the O +process S-CONPRI +is O +conducted O +. O + + +While O +some O +of O +the O +physical O +mechanisms O +that O +are O +governed O +by O +the O +ambient O +pressure S-CONPRI +are O +well O +known O +from O +the O +welding S-MANP +literature O +, O +it O +remains O +unclear O +how O +these O +mechanisms O +extend O +to O +the O +distinct O +process S-CONPRI +conditions O +of O +LPBF S-MANP +. O + + +In B-CONPRI +situ E-CONPRI +studies O +of O +the O +differences O +in O +subsurface O +structure S-CONPRI +and O +behavior O +are O +essential O +for O +understanding O +the O +effects O +of O +gas S-CONPRI +pressure O +and O +composition S-CONPRI +on O +the O +LPBF S-MANP +processes O +. O + + +This O +article O +reports O +the O +use O +of O +in B-CONPRI +situ E-CONPRI +X-ray O +imaging S-APPL +to O +directly O +probe S-MACEQ +the O +morphological O +evolution S-CONPRI +of O +the O +liquid-vapor O +interface S-CONPRI +during O +laser S-ENAT +melting O +as S-MATE +a O +function O +of O +ambient O +pressure S-CONPRI +and O +oxygen S-MATE +partial O +pressure S-CONPRI +under O +LPBF S-MANP +conditions O +in O +316 O +L O +steel S-MATE +, O +Ti-64 O +, O +aluminum S-MATE +6061 O +, O +and O +Nickel S-MATE +400 O +. O + + +We O +observe O +significant O +changes O +in O +melt B-MATE +pool E-MATE +morphology O +as S-MATE +a O +function O +of O +pressure S-CONPRI +. O + + +Furthermore O +, O +similar O +changes O +in O +morphology S-CONPRI +occur O +due O +to O +an O +increase O +in O +oxygen S-MATE +partial O +pressure S-CONPRI +in O +the O +process S-CONPRI +atmosphere O +. O + + +Temperature- O +and O +composition-dependent O +changes O +in O +surface B-PRO +tension E-PRO +of O +the O +liquid B-MATE +metal E-MATE +drive O +this O +change O +in O +behavior O +, O +which O +has O +the O +potential O +to O +influence O +defect S-CONPRI +creation O +and O +final O +morphology S-CONPRI +in O +LPBF S-MANP +parts O +. O + + +Electron B-MANP +beam I-MANP +additive I-MANP +manufacturing E-MANP +( O +EBAM S-MANP +) O +is O +a O +relatively O +new O +technology S-CONPRI +to O +produce O +metallic B-MACEQ +parts E-MACEQ +in O +a O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +fashion S-CONPRI +by O +melting S-MANP +and O +fusing S-CONPRI +the O +metallic B-MATE +powders E-MATE +. O + + +Ti–6Al–4V O +is O +one O +of O +the O +most O +used O +industrial S-APPL +alloys S-MATE +used O +for O +aerospace S-APPL +and O +biomedical B-APPL +application E-APPL +. O + + +EBAM S-MANP +is O +a O +rapid B-CONPRI +solidification I-CONPRI +process E-CONPRI +and O +the O +properties S-CONPRI +of O +the O +build B-MATE +material E-MATE +depend O +on O +the O +solidification S-CONPRI +behavior O +as S-MATE +well O +as S-MATE +the O +microstructure S-CONPRI +of O +the O +build B-MATE +material E-MATE +. O + + +Thus O +, O +the O +prediction S-CONPRI +of O +part O +microstructures S-MATE +during O +the O +process S-CONPRI +may O +be S-MATE +an O +important O +factor O +for O +process B-CONPRI +optimization E-CONPRI +. O + + +In O +this O +study O +, O +a O +phase S-CONPRI +field O +model S-CONPRI +is O +developed O +for O +microstructure B-CONPRI +evolution E-CONPRI +of O +Ti–6Al–4V O +powder S-MATE +in O +EBAM S-MANP +process O +. O + + +FORTRAN O +code O +is O +used O +to O +solve O +the O +phase S-CONPRI +field O +equations O +, O +which O +incorporates O +the O +temperature B-PARA +gradient E-PARA +and O +solidification B-PARA +velocity E-PARA +as S-MATE +the O +simulation S-ENAT +parameters S-CONPRI +. O + + +The O +effect O +of O +temperature B-PARA +gradient E-PARA +and O +the O +beam S-MACEQ +scan O +speed O +on O +microstructure S-CONPRI +is O +investigated O +through O +simulation S-ENAT +. O + + +The O +simulation S-ENAT +results O +are O +compared O +with O +the O +analytical O +model S-CONPRI +and O +experimental S-CONPRI +findings O +by O +measuring O +the O +spacing O +evolution S-CONPRI +under O +the O +solidification S-CONPRI +condition O +Exciting O +progress O +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +, O +which O +enables O +fabrication S-MANP +of O +cellular B-FEAT +structures E-FEAT +with O +highly O +complex O +lattices S-CONPRI +and O +pores S-PRO +, O +has O +stimulated O +the O +development O +of O +lightweight S-CONPRI +structural O +products O +with O +improved O +performance S-CONPRI +and O +increased O +functionality O +. O + + +However O +, O +conventional O +design S-FEAT +and O +analysis O +tools S-MACEQ +lack O +the O +ability O +to O +optimize O +complex B-CONPRI +geometries E-CONPRI +efficiently O +and O +robustly O +. O + + +With O +this O +motivation O +, O +in O +this O +study O +, O +homogenized S-MANP +material O +models O +of O +open-cell O +polymeric O +foams O +with O +spherical S-CONPRI +cell S-APPL +architectures O +that O +are O +manufactured S-CONPRI +by O +using O +an O +AM B-MANP +technology E-MANP +are O +formulated O +through O +both O +experimental S-CONPRI +and O +numerical O +investigations O +, O +which O +in O +turn O +can O +be S-MATE +employed O +in O +a O +novel O +micromechanics O +based O +topology B-FEAT +optimization E-FEAT +algorithm S-CONPRI +developed O +for O +the O +optimization S-CONPRI +of O +cellular B-FEAT +structures E-FEAT +. O + + +In O +this O +regard O +, O +generating O +computer S-ENAT +aided O +drawing S-MANP +( O +CAD S-ENAT +) O +data S-CONPRI +, O +which O +is O +mandatory O +for O +AM S-MANP +, O +randomly O +intersected O +spherical S-CONPRI +ensemble O +method O +is O +employed O +. O + + +Several O +foam S-MATE +models O +with O +different O +porosities S-PRO +are O +generated O +, O +and O +utilized O +in O +nonlinear O +finite B-CONPRI +element I-CONPRI +analyses E-CONPRI +( O +FEAs O +) O +to O +determine O +constitutive O +elastic B-PARA +constants E-PARA +. O + + +Plastic S-MATE +stress-strain O +data S-CONPRI +for O +the O +bulk O +AM B-MATE +material E-MATE +are O +obtained O +through O +static O +tensile B-CHAR +tests E-CHAR +in O +a O +variety O +of O +different O +loading O +directions O +and O +these O +results O +used O +in O +FEA O +as S-MATE +true O +stress-strain O +data S-CONPRI +. O + + +Homogenization S-MANP +is O +performed O +based O +on O +a O +quadratic O +form O +of O +the O +widely O +used O +Gibson O +and O +Ashby O +foam S-MATE +model O +, O +which O +describes O +the O +Young O +’ O +s S-MATE +modulus O +E∗ O +and O +yield B-PRO +strength E-PRO +σpl∗ O +of O +cellular B-FEAT +structures E-FEAT +in O +terms O +of O +relative B-PRO +density E-PRO +. O + + +Predicting O +residual B-CONPRI +distortion E-CONPRI +in O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +important O +to O +ensure O +quality S-CONPRI +of O +the O +fabricated S-CONPRI +component S-MACEQ +. O + + +The O +inherent O +strain S-PRO +method O +is O +ideal O +for O +this O +purpose O +, O +but O +has O +not O +been O +well O +developed O +for O +AM B-MACEQ +parts E-MACEQ +yet O +. O + + +In O +this O +paper O +, O +a O +modified O +inherent O +strain S-PRO +model S-CONPRI +is O +proposed O +to O +estimate O +the O +inherent O +strains O +from O +detailed O +AM B-MANP +process E-MANP +simulation O +of O +single O +line O +depositions O +on O +top O +of O +each O +other O +. O + + +The O +obtained O +inherent O +strains O +are O +employed O +in O +a O +layer-by-layer S-CONPRI +static O +equilibrium S-CONPRI +analysis O +to O +simulate O +residual B-CONPRI +distortion E-CONPRI +of O +the O +AM B-MACEQ +part E-MACEQ +efficiently O +. O + + +To O +validate O +the O +model S-CONPRI +, O +depositions O +of O +a O +single O +wall O +and O +a O +rectangular O +contour S-FEAT +wall O +models O +with O +different O +number B-PARA +of I-PARA +layers E-PARA +deposited O +by O +a O +representative O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +process S-CONPRI +are O +studied O +. O + + +The O +proposed O +model S-CONPRI +is O +demonstrated O +to O +be S-MATE +accurate S-CHAR +by O +comparing O +with O +full-scale O +detailed O +process B-ENAT +simulation E-ENAT +and O +experimental S-CONPRI +results O +. O + + +Based O +on O +this O +approach O +, O +simulation S-ENAT +results O +applied O +to O +the O +rectangular O +contour S-FEAT +wall O +structures O +of O +different O +heights O +show O +that O +the O +modified B-CONPRI +inherent I-CONPRI +strain I-CONPRI +method E-CONPRI +is O +quite O +efficient O +, O +while O +the O +residual B-CONPRI +distortion E-CONPRI +of O +AM B-MACEQ +parts E-MACEQ +can O +be S-MATE +accurately S-CHAR +computed O +within O +a O +short O +time O +. O + + +The O +improvement O +of O +the O +computational B-CONPRI +efficiency E-CONPRI +can O +be S-MATE +up O +to O +80 O +times O +in O +some O +specific O +cases O +. O + + +Stainless B-MATE +steel E-MATE +316L O +dogbones O +produced O +using O +two O +production S-MANP +methods O +were O +studied O +. O + + +General O +corrosion S-CONPRI +was O +not O +considered O +to O +be S-MATE +a O +major O +form O +of O +corrosion S-CONPRI +after O +2184 O +h. O +Mechanical B-CONPRI +properties E-CONPRI +for O +the O +traditionally O +manufactured S-CONPRI +samples O +did O +not O +change O +. O + + +Mechanical B-CONPRI +properties E-CONPRI +for O +the O +AM S-MANP +samples O +decreased O +during O +the O +exposure S-CONPRI +time O +. O + + +Hydrogen B-CONPRI +embrittlement E-CONPRI +in O +the O +AM S-MANP +samples O +caused O +the O +mechanical B-CONPRI +properties E-CONPRI +decrease O +. O + + +The O +effects O +on O +the O +surface S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +stainless B-MATE +steel E-MATE +AISI316L O +dogbones O +created O +using O +either O +traditional B-MANP +manufacturing E-MANP +( O +TM O +) O +or O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +exposed O +to O +0.75 O +M O +sulfuric O +acid O +solution S-CONPRI +over O +2184 O +h O +were O +studied O +. O + + +General O +corrosion S-CONPRI +was O +not O +a O +major O +form O +of O +corrosion S-CONPRI +, O +based O +on O +surface S-CONPRI +feature S-FEAT +changes O +, O +surface B-PRO +roughness E-PRO +, O +and O +mass O +loss O +for O +either O +method O +. O + + +No O +change O +to O +the O +mechanical B-CONPRI +properties E-CONPRI +occurred O +for O +the O +TM O +samples S-CONPRI +. O + + +Both O +tensile B-PRO +stress E-PRO +and O +strain S-PRO +decreased O +for O +the O +LPBF S-MANP +samples O +. O + + +The O +decrease O +was O +caused O +by O +hydrogen B-CONPRI +embrittlement E-CONPRI +, O +due O +to O +the O +formation O +of O +large O +brittle S-PRO +particles O +, O +as S-MATE +demonstrated O +by O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +complex O +tungsten S-MATE +carbide-cobalt O +( O +WC-Co O +) O +parts O +was O +achieved O +using O +binder S-MATE +jet O +additive B-MANP +manufacturing E-MANP +( O +BJAM O +) O +of O +WC S-MATE +powders S-MATE +followed O +by O +Co S-MATE +infiltration O +. O + + +Using O +BJAM O +with O +infiltration S-CONPRI +of O +the O +metal S-MATE +phase O +can O +limit S-CONPRI +shrinkage O +and O +grain B-CONPRI +growth E-CONPRI +in O +ceramic-metal S-MATE +( O +cermet S-MATE +) O +composites S-MATE +compared O +to O +other O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +methods O +. O + + +Knowledge O +of O +previous O +infiltration S-CONPRI +studies O +was O +used O +to O +help O +process S-CONPRI +parts O +to O +imitate O +production S-MANP +of O +parts O +. O + + +The O +properties S-CONPRI +such O +as S-MATE +density O +, O +microstructure S-CONPRI +, O +grain B-PRO +size E-PRO +, O +and O +hardness S-PRO +of O +the O +parts O +are O +characterized O +along O +the O +infiltration S-CONPRI +height O +. O + + +Fracture S-CONPRI +toughness O +is O +measured O +where O +applicable O +. O + + +This O +approach O +has O +the O +potential O +to O +achieve O +highly O +dense O +WC-Co O +parts O +that O +are O +net-shaped O +with O +some O +ternary O +phase S-CONPRI +and O +z-direction S-FEAT +distortion S-CONPRI +. O + + +This O +paper O +proposes O +a O +novel O +geometric O +based O +scanning B-CONPRI +strategy E-CONPRI +adopted O +in O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +manufacturing B-MANP +technology E-MANP +aimed O +at O +reducing O +the O +level O +of O +residual B-PRO +stresses E-PRO +generated O +during O +the O +build-up O +process S-CONPRI +. O + + +A O +set S-APPL +of O +computer B-CONPRI +simulations E-CONPRI +of O +the O +build S-PARA +, O +based O +on O +different O +scans O +strategies O +, O +including O +temperature S-PARA +dependent O +material B-CONPRI +properties E-CONPRI +, O +and O +a O +moving O +heat B-CONPRI +flux E-CONPRI +, O +were O +performed O +. O + + +The O +research S-CONPRI +novelty O +explores O +intermittent O +scan O +strategies O +in O +order O +to O +analyze O +the O +effect O +of O +reduction S-CONPRI +on O +heat S-CONPRI +concentration O +on O +the O +residual B-PRO +stress E-PRO +and O +deformation S-CONPRI +. O + + +Coupled O +thermal-structural O +computations O +revealed O +a O +significant O +stress S-PRO +and O +warpage B-CONPRI +reduction E-CONPRI +on O +the O +proposed O +scanning S-CONPRI +scheme O +. O + + +Different O +powder B-MATE +material E-MATE +properties O +were O +investigated O +and O +the O +computational B-ENAT +model E-ENAT +was O +validated O +against O +published O +numerical O +and O +experimental S-CONPRI +studies O +. O + + +This O +study O +focuses O +on O +the O +microstructural B-CONPRI +evolution E-CONPRI +in O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +β O +titanium B-MATE +alloys E-MATE +due O +to O +solid-state B-CONPRI +phase E-CONPRI +transformations O +occurring O +during O +the O +reheating O +of O +previously O +deposited B-CHAR +layers E-CHAR +, O +directly O +influencing O +the O +uniformity O +of O +microstructure S-CONPRI +across O +the O +entire O +build S-PARA +. O + + +During O +the O +AM S-MANP +of O +titanium B-MATE +alloys E-MATE +of O +a O +wide O +variety O +of O +compositions O +, O +including O +α O ++ O +β O +alloys S-MATE +such O +as S-MATE +Ti-6Al-4 O +V S-MATE +, O +and O +β O +alloys S-MATE +, O +when O +the O +laser S-ENAT +or O +electron B-CONPRI +beam E-CONPRI +hits O +the O +sample S-CONPRI +, O +the O +grains S-CONPRI +in O +the O +previously O +deposited O +topmost O +layers O +either O +re-melt O +or O +transform O +into O +the O +β O +phase S-CONPRI +. O + + +Subsequently O +, O +during O +the O +cooling S-MANP +cycle O +, O +depending O +on O +the O +alloy S-MATE +composition O +, O +second-phase O +precipitation S-CONPRI +may O +occur O +within O +these O +layers O +via O +solid-state B-CONPRI +precipitation E-CONPRI +. O + + +The O +present O +study O +compares O +two O +binary S-CONPRI +β O +-Ti O +alloys S-MATE +, O +Ti-12Mo O +and O +Ti-20 O +V S-MATE +, O +that O +have O +been O +processed S-CONPRI +using O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS™ O +) O +, O +a O +directed B-MANP +energy I-MANP +deposition E-MANP +technique O +for O +AM S-MANP +. O + + +Compared O +to O +Ti-V O +, O +which O +exhibited O +grains S-CONPRI +of O +only O +the O +β O +phase S-CONPRI +in O +the O +as-built O +condition O +, O +the O +less O +β O +stabilized O +Ti-Mo O +had O +extensive O +second-phase O +α O +precipitation S-CONPRI +within O +the O +build S-PARA +. O + + +The O +location O +within O +the O +LENS™ O +build S-PARA +played O +a O +pivotal O +role O +in O +determining O +the O +size O +scale O +, O +area S-PARA +fraction O +, O +and O +morphology S-CONPRI +of O +the O +α O +precipitates S-MATE +. O + + +These O +changes O +have O +been O +attributed O +to O +the O +different O +thermal B-PARA +cycles E-PARA +experienced O +during O +the O +deposition B-MANP +process E-MANP +. O + + +Irrespective O +of O +the O +alloy S-MATE +composition O +, O +columnar B-PRO +grains E-PRO +were O +observed O +in O +the O +depositions O +with O +a O +strong O +[ O +001 O +] O +β O +texture S-FEAT +along O +the O +build B-PARA +direction E-PARA +. O + + +In O +the O +Ti-12Mo O +alloy S-MATE +, O +wherein O +second O +phase S-CONPRI +α O +precipitation S-CONPRI +takes O +place O +, O +there O +was O +no O +significant O +α O +texturing O +, O +with O +all O +twelve O +variants O +forming S-MANP +. O + + +Significant O +attention O +has O +been O +focused O +on O +modeling S-ENAT +of O +metallic B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +, O +with O +the O +initial O +aim O +of O +predicting O +local O +thermal O +history O +, O +and O +ultimately O +structure S-CONPRI +and O +properties S-CONPRI +. O + + +Existing O +models O +range S-PARA +greatly O +in O +physical O +complexity S-CONPRI +and O +computational O +cost O +, O +and O +the O +implications O +of O +various O +simplifying O +assumption O +often O +go S-MATE +unassessed O +. O + + +In O +the O +present O +work O +, O +we O +first O +formulate O +a O +fast O +acting O +Discrete O +Source S-APPL +Model S-CONPRI +( O +DSM O +) O +capable O +of O +handling O +the O +complex O +processing O +often O +encountered O +in O +metal B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +AM S-MANP +. O + + +We O +then O +assess O +implications O +of O +the O +source S-APPL +representation O +, O +details O +of O +the O +numeric O +implementation O +, O +as S-MATE +well O +as S-MATE +effects O +of O +boundary B-CONPRI +conditions E-CONPRI +and O +thermophysical O +parameters S-CONPRI +. O + + +While O +a O +number O +of O +approximations O +limit S-CONPRI +its O +quantitative S-CONPRI +accuracy S-CHAR +, O +the O +inexpensive O +nature O +and O +ability O +to O +treat O +complex O +processing O +plans O +suggests O +it O +will O +be S-MATE +useful O +for O +screening O +and O +identification O +of O +regions O +experiencing O +anomalous O +thermal O +history O +. O + + +Electron B-MANP +beam I-MANP +welding E-MANP +( O +EBW S-MANP +) O +is O +a O +high-density O +energy O +( O +low O +heat S-CONPRI +input O +) O +welding S-MANP +technique O +, O +resulting O +in O +a O +narrow O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +( O +HAZ S-CONPRI +) O +, O +causing O +minimal O +metallurgical S-APPL +changes O +in O +the O +workpieces O +. O + + +The O +present O +research S-CONPRI +work O +investigates S-CONPRI +EB O +autogenous O +welded S-MANP +AlSi10Mg S-MATE +samples O +, O +produced O +by O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +method O +, O +with O +emphasis O +on O +the O +characterization O +of O +the O +joint S-CONPRI +'s O +macro- O +and O +microstructure S-CONPRI +. O + + +When O +comparing O +the O +EB O +welded S-MANP +AM B-MACEQ +parts E-MACEQ +to O +the O +EB O +welded B-MANP +cast E-MANP +samples S-CONPRI +two O +main O +differences O +were O +observed O +: O +weld B-MATE +metal E-MATE +porosity S-PRO +and O +a O +negligible O +HAZ S-CONPRI +in O +the O +AM S-MANP +joints O +and O +low O +porosity S-PRO +level O +but O +substantial O +HAZ S-CONPRI +in O +the O +welded B-MANP +cast E-MANP +parts O +. O + + +These O +preliminary O +results O +show O +for O +the O +first O +time O +the O +feasibility S-CONPRI +of O +the O +EBW S-MANP +technique O +on O +AM-SLM O +specimens O +. O + + +The O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +technique O +known O +as S-MATE +fused O +filament S-MATE +fabrication S-MANP +( O +FFF S-MANP +) O +is O +an O +interesting O +method O +to O +fabricate S-MANP +complex O +ceramic S-MATE +parts O +whereby O +feedstocks S-MATE +containing O +thermoplastic B-MATE +binders E-MATE +and O +ceramic B-MATE +powders E-MATE +are O +printed O +and O +the O +resulting O +parts O +are O +subjected O +to O +debinding S-CONPRI +and O +sintering S-MANP +. O + + +A O +limiting O +factor O +of O +this O +process S-CONPRI +is O +the O +debinding S-CONPRI +step O +, O +usually O +done O +thermally O +. O + + +Long O +thermal B-PARA +cycles E-PARA +are O +required O +to O +avoid O +defects S-CONPRI +such O +as S-MATE +cracks O +and O +blisters O +caused O +by O +trapped O +pyrolysis S-MANP +products O +. O + + +The O +current O +study O +addresses O +this O +issue O +by O +developing O +a O +novel O +FFF S-MANP +binder S-MATE +formulation O +for O +the O +production S-MANP +of O +zirconia S-MATE +parts O +with O +an O +intermediate O +solvent O +debinding S-CONPRI +step O +. O + + +Different O +unfilled O +binder S-MATE +systems O +were O +evaluated O +considering O +the O +mechanical S-APPL +and O +rheological B-PRO +properties E-PRO +required O +for O +the O +FFF S-MANP +process O +together O +with O +the O +solvent O +debinding S-CONPRI +performance O +of O +the O +parts O +. O + + +Subsequently O +, O +the O +same O +compounds O +were O +used O +in O +feedstocks S-MATE +filled O +with O +47 O +vol. O +% O +of O +zirconia B-MATE +powder E-MATE +, O +and O +the O +resulting O +morphology S-CONPRI +was O +studied O +. O + + +Finally O +, O +the O +most O +promising O +formulation O +, O +containing O +zirconia S-MATE +, O +styrene-ethylene/butylene-styrene O +copolymer S-MATE +, O +paraffin S-MATE +wax O +, O +stearic O +acid O +, O +and O +acrylic S-MATE +acid-grafted O +high B-MATE +density I-MATE +polyethylene E-MATE +was O +successfully O +processed S-CONPRI +by O +FFF S-MANP +. O + + +After O +solvent O +debinding S-CONPRI +, O +55.4 O +wt. O +% O +of O +the O +binder S-MATE +was O +dissolved O +in O +cyclohexane O +, O +creating O +an O +interconnected O +porosity S-PRO +of O +29 O +vol. O +% O +that O +allowed O +a O +successful O +thermal B-CHAR +debinding E-CHAR +and O +subsequent O +pre-sintering S-MANP +. O + + +The O +layered B-CONPRI +structure E-CONPRI +of O +Additive B-MANP +Manufacturing I-MANP +processes E-MANP +results O +in O +a O +stair- O +stepping O +effect O +of O +the O +surface B-CONPRI +topographies E-CONPRI +. O + + +In O +general O +, O +the O +impact S-CONPRI +of O +this O +effect O +strongly O +depends O +on O +the O +build S-PARA +angle O +of O +a O +surface S-CONPRI +, O +whereas O +the O +overall O +surface B-PRO +roughness E-PRO +is O +additionally O +caused O +by O +the O +resolution S-PARA +of O +the O +specific O +AM B-MANP +process E-MANP +. O + + +The O +aim O +of O +this O +work O +is O +the O +prediction S-CONPRI +of O +the O +surface B-PARA +quality E-PARA +in O +dependence O +of O +the O +building B-PARA +orientation E-PARA +of O +a O +part O +. O + + +These O +results O +can O +finally O +be S-MATE +used O +to O +optimize O +the O +orientation S-CONPRI +to O +get O +a O +desired O +surface B-PARA +quality E-PARA +. O + + +As S-MATE +not O +all O +parts O +of O +the O +component S-MACEQ +surface O +are O +equally O +important O +, O +a O +preselection O +of O +areas S-PARA +can O +be S-MATE +used O +to O +improve O +the O +overall O +surface B-PARA +quality E-PARA +of O +relevant O +areas S-PARA +. O + + +The O +model S-CONPRI +uses O +the O +digital O +AMF S-CONPRI +format O +of O +a O +part O +. O + + +Each O +triangle O +is O +assigned O +with O +a O +roughness B-PRO +value E-PRO +and O +by O +testing S-CHAR +different O +orientations S-CONPRI +the O +best O +one O +can O +be S-MATE +found O +. O + + +This O +approach O +needs O +a O +database S-ENAT +for O +the O +surface B-PARA +qualities E-PARA +. O + + +This O +must O +be S-MATE +done O +separately O +for O +each O +Additive B-MANP +Manufacturing I-MANP +process E-MANP +and O +is O +shown O +exemplarily O +with O +a O +surface B-CONPRI +topography E-CONPRI +simulation S-ENAT +for O +the O +laser B-MANP +sintering E-MANP +process.A O +validation S-CONPRI +of O +the O +model S-CONPRI +is O +done O +with O +a O +monitor S-CONPRI +bracket S-MACEQ +of O +EOS B-APPL +GmbH E-APPL +. O + + +Measurements O +of O +five O +different O +orientations S-CONPRI +of O +the O +part O +, O +optimized O +according O +selected O +surface B-PARA +areas E-PARA +, O +show O +a O +good O +accordance O +between O +the O +real O +surface B-PRO +roughness E-PRO +and O +the O +predicted S-CONPRI +roughness O +of O +the O +simulation S-ENAT +. O + + +3D B-MANP +printing E-MANP +using O +the O +materials B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +ME-AM S-MANP +) O +process S-CONPRI +is O +highly O +nonisothermal O +. O + + +In O +this O +process S-CONPRI +, O +a O +solid O +polymer B-MATE +filament E-MATE +is O +mechanically O +drawn O +into O +a O +heated O +hot B-MACEQ +end E-MACEQ +( O +liquefier O +) O +where O +the O +polymer S-MATE +is O +ideally O +melted S-CONPRI +to O +a O +viscous O +liquid O +. O + + +This O +melt S-CONPRI +is O +extruded S-MANP +through O +an O +orifice O +using O +applied O +pressure S-CONPRI +of O +the O +solid O +filament S-MATE +that O +is O +continuously O +being O +drawn O +into O +the O +extruder S-MACEQ +. O + + +The O +extruded S-MANP +filament O +melt S-CONPRI +is O +deposited O +to O +build S-PARA +up O +the O +desired O +part O +. O + + +The O +poor O +thermal B-PRO +conductivity E-PRO +of O +most O +polymers S-MATE +inevitably O +leads O +to O +temperature B-PARA +gradients E-PARA +, O +in O +both O +the O +radial O +and O +axial O +directions O +. O + + +Here O +we O +quantify O +the O +temperature S-PARA +evolution S-CONPRI +of O +the O +polymer B-MATE +filament E-MATE +in O +axial O +direction O +using O +embedded O +fine O +thermocouples S-MACEQ +as S-MATE +a O +function O +of O +process B-CONPRI +parameters E-CONPRI +. O + + +Information O +about O +the O +radial O +gradients O +is O +obtained O +by O +introducing O +dye O +markers O +within O +the O +filament S-MATE +through O +understanding O +the O +flow O +behavior O +through O +the O +extruder S-MACEQ +by O +the O +deformation S-CONPRI +of O +the O +dye O +from O +a O +linear O +to O +pseudo O +parabolic O +profile S-FEAT +. O + + +The O +polymer S-MATE +is O +heated O +above O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +for O +less O +than O +30 O +s S-MATE +for O +reasonable O +print S-MANP +conditions O +with O +the O +center O +of O +the O +filament S-MATE +remaining O +cooler O +than O +the O +liquefier O +temperature S-PARA +throughout O +the O +process S-CONPRI +. O + + +These O +process S-CONPRI +measurements O +provide O +critical O +data S-CONPRI +to O +enable O +improved O +simulation S-ENAT +and O +modeling S-ENAT +of O +the O +ME-AM S-MANP +process O +and O +the O +properties S-CONPRI +of O +the O +printed O +parts O +. O + + +Dendrites S-BIOP +built O +from O +elongated O +cells S-APPL +lead O +to O +a O +dislocation S-CONPRI +cell S-APPL +structure O +After O +a O +solution B-MANP +heat I-MANP +treatment E-MANP +the O +dislocation B-PRO +density E-PRO +is O +significantly O +decreased O +Nitrided S-MANP +AM S-MANP +structures O +can O +be S-MATE +built O +to O +match O +the O +properties S-CONPRI +of O +conventional O +316 O +L O +A O +solution B-MANP +treatment E-MANP +prevents O +CrN S-MATE +precipitation O +by O +eliminating O +stress S-PRO +A O +solution B-MANP +treatment E-MANP +plus O +nitriding S-MANP +are O +beneficial O +for O +corrosion S-CONPRI +and O +wear B-CONPRI +properties E-CONPRI +Due O +to O +the O +limited O +wear S-CONPRI +and O +corrosion B-PRO +properties E-PRO +of O +the O +austenitic B-MATE +stainless I-MATE +steel E-MATE +AISI O +316 O +L O +, O +some O +applications O +require O +the O +benefits O +of O +nitriding S-MANP +. O + + +The O +aim O +of O +this O +work O +was O +to O +investigate O +whether O +the O +same O +positive O +effect O +of O +nitriding S-MANP +could O +be S-MATE +obtained O +for O +316 O +L O +that O +was O +additive B-MANP +manufactured E-MANP +using O +the O +laser S-ENAT +powder-bed O +fusion S-CONPRI +process O +and O +further O +solution S-CONPRI +treated O +at O +1060 O +°C O +for O +30 O +min O +, O +low-temperature O +plasma B-MANP +nitrided E-MANP +at O +430 O +°C O +or O +both O +. O + + +This O +study O +was O +designed S-FEAT +to O +better O +understand O +the O +additive-manufactured O +and O +solution-treated O +microstructures S-MATE +as S-MATE +well O +as S-MATE +developing O +a O +nitride S-MATE +and O +a O +diffusion S-CONPRI +layer O +. O + + +The O +comparison O +of O +the O +wear S-CONPRI +and O +corrosion B-CONPRI +resistance E-CONPRI +, O +the O +microhardness S-CONPRI +and O +the O +microstructure S-CONPRI +changes O +of O +the O +additive-manufactured O +steel S-MATE +in O +different O +post-treated O +conditions O +with O +a O +commercial O +steel S-MATE +was O +carried O +out O +. O + + +It O +was O +found O +that O +the O +post-treated O +low-temperature O +plasma B-MANP +nitriding E-MANP +improves O +the O +wear S-CONPRI +and O +corrosion B-CONPRI +resistance E-CONPRI +of O +the O +additive-manufactured O +samples S-CONPRI +. O + + +The O +obtained O +values O +are O +similar O +to O +the O +values O +of O +conventionally O +fabricated S-CONPRI +and O +nitrided S-MANP +316 O +L. O +The O +solution S-CONPRI +treating O +itself O +( O +without O +further O +nitriding S-MANP +) O +did O +not O +have O +any O +significant O +impact S-CONPRI +on O +these O +properties S-CONPRI +. O + + +It O +was O +possible O +to O +explain O +the O +microstructure S-CONPRI +at O +the O +nano S-FEAT +level O +as S-MATE +well O +as S-MATE +correlating O +the O +wear S-CONPRI +and O +corrosion B-PRO +properties E-PRO +. O + + +Control O +of O +laser B-PARA +power E-PARA +to O +improve O +part O +quality S-CONPRI +is O +critical O +for O +fabrication S-MANP +of O +complex O +components S-MACEQ +via O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +LPBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +. O + + +If O +the O +laser B-PARA +power E-PARA +is O +too O +low O +, O +it O +will O +result O +in O +a O +small O +melt B-MATE +pool E-MATE +and O +lack O +of O +fusion S-CONPRI +; O +on O +the O +other O +hand O +, O +if O +the O +laser B-PARA +power E-PARA +is O +too O +high O +, O +it O +will O +result O +in O +keyhole O +and O +material S-MATE +evaporation S-CONPRI +. O + + +This O +paper O +examines O +a O +model-based O +feed-forward O +control O +for O +laser B-PARA +power E-PARA +in O +LPBF S-MANP +to O +improve O +build S-PARA +quality O +by O +avoiding O +the O +onset O +of O +keyhole O +formation O +or O +reducing O +over-melting O +. O + + +First O +, O +an O +analytical O +, O +control-oriented O +model S-CONPRI +on O +the O +dynamics O +of O +melt-pool O +cross-sectional O +area S-PARA +in O +scanning S-CONPRI +a O +multi-track O +part O +was O +developed O +, O +and O +then O +a O +nonlinear O +inverse-dynamics O +controller S-MACEQ +was O +designed S-FEAT +to O +adjust O +laser B-PARA +power E-PARA +such O +that O +the O +melt-pool O +cross-sectional O +area S-PARA +can O +be S-MATE +regulated O +to O +a O +constant O +set S-APPL +point O +during O +the O +build S-PARA +process O +. O + + +The O +resulting O +control O +trajectory O +on O +laser B-PARA +power E-PARA +from O +the O +simulated O +closed-loop B-MACEQ +controller E-MACEQ +was O +then O +implemented O +in O +a O +LPBF S-MANP +process O +as S-MATE +a O +feed-forward O +( O +FF O +) O +controller S-MACEQ +for O +laser B-PARA +power E-PARA +. O + + +Multiple O +bead-on-plate O +samples S-CONPRI +of O +Inconel B-MATE +625 E-MATE +, O +with O +different O +number O +of O +tracks O +and O +track O +lengths O +, O +were O +then O +built O +on O +an O +EOSINT O +M O +280 O +AM S-MANP +system O +to O +evaluate O +the O +performance S-CONPRI +of O +the O +resulting O +FF-Analytic O +controller S-MACEQ +. O + + +Experimental S-CONPRI +results O +demonstrated O +that O +the O +proposed O +FF-Analytic O +control O +of O +laser B-PARA +power E-PARA +was O +able O +to O +avoid O +the O +onset O +of O +keyhole O +formation O +that O +occurred O +under O +a O +constant O +laser B-PARA +power E-PARA +for O +certain O +samples S-CONPRI +. O + + +Furthermore O +, O +the O +proposed O +FF-Analytic O +control O +was O +demonstrated O +to O +have O +significantly O +reduced O +over-melting O +at O +the O +returning O +ends O +of O +the O +laser B-ENAT +scan E-ENAT +path O +in O +scanning S-CONPRI +a O +multi-track O +part O +compared O +to O +applying O +a O +constant O +laser B-PARA +power E-PARA +, O +albeit O +with O +some O +over-compensation O +due O +to O +modeling S-ENAT +imperfection S-CONPRI +. O + + +Overall O +, O +the O +proposed O +FF-Analytic O +control O +of O +laser B-PARA +power E-PARA +had O +23–40 O +% O +lower O +average S-CONPRI +error O +rate O +than O +applying O +a O +constant O +laser B-PARA +power E-PARA +in O +regulating O +the O +melt-pool O +cross-sectional O +area S-PARA +to O +a O +constant O +reference O +value O +, O +in O +terms O +of O +measurements O +of O +cross-sections S-CONPRI +at O +track O +ends O +. O + + +Forming S-MANP +quality O +was O +compared O +for O +AM-built-IN718 O +samples S-CONPRI +using O +two O +types O +of O +powders S-MATE +. O + + +Samples S-CONPRI +built O +with O +imperfect O +spherical S-CONPRI +powders S-MATE +tend O +to O +be S-MATE +porous O +and O +uneven O +. O + + +Processing O +with O +spherical S-CONPRI +powders S-MATE +has O +a O +broad O +process S-CONPRI +window O +suppressing O +defect S-CONPRI +. O + + +High O +cooling S-MANP +and O +solidification B-PARA +rates E-PARA +suppress O +the O +interdendritic O +void S-CONPRI +formation O +. O + + +The O +characteristics O +of O +powder S-MATE +applied O +in O +electron B-CONPRI +beam E-CONPRI +powder-bed O +fusion S-CONPRI +( O +EB-PBF O +) O +play O +a O +vital O +role O +in O +the O +process S-CONPRI +stability O +and O +final O +part O +performance S-CONPRI +. O + + +We O +use O +two O +types O +of O +Inconel B-MATE +718 I-MATE +alloy E-MATE +powders O +for O +experiments O +, O +namely O +, O +( O +i O +) O +imperfect O +spherical S-CONPRI +and O +( O +ii O +) O +spherical S-CONPRI +powders S-MATE +. O + + +They O +have O +similar O +particle B-CONPRI +size I-CONPRI +distributions E-CONPRI +but O +are O +different O +in O +geometry S-CONPRI +and O +built-in O +defect S-CONPRI +. O + + +The O +forming S-MANP +qualities O +concerning O +surface B-CONPRI +topography E-CONPRI +, O +density S-PRO +, O +and O +internal O +defect S-CONPRI +of O +the O +EB-PBF-built O +samples S-CONPRI +prepared O +using O +two O +types O +of O +powders S-MATE +are O +characterized O +under O +the O +same O +processing O +conditions O +. O + + +In O +particular O +, O +the O +forming S-MANP +qualities O +are O +further O +compared O +under O +the O +optimal B-PARA +process E-PARA +condition O +to O +highlight O +the O +decisive O +role O +of O +powder S-MATE +features O +. O + + +Notably O +, O +different O +powder S-MATE +geometries S-CONPRI +with O +distinct O +surface S-CONPRI +feature S-FEAT +inevitably O +affect O +the O +heat B-CONPRI +transfer E-CONPRI +during O +melting S-MANP +. O + + +The O +significance O +of O +powder B-MACEQ +feedstock E-MACEQ +characteristics O +in O +defect S-CONPRI +suppression O +is O +clarified O +with O +the O +aid O +of O +numerical B-ENAT +simulations E-ENAT +. O + + +The O +experimental S-CONPRI +results O +show O +that O +compared O +to O +spherical S-CONPRI +powders S-MATE +, O +fabrication S-MANP +using O +imperfect O +spherical S-CONPRI +powders S-MATE +is O +more O +likely O +to O +evoke O +lack–of–fusion O +and O +excessive O +melting S-MANP +under O +low O +and O +high O +energy O +conditions O +, O +respectively O +. O + + +Thus O +, O +spherical S-CONPRI +powders S-MATE +have O +a O +broader O +process S-CONPRI +window O +in O +ensuring O +a O +higher O +density S-PRO +and O +smoother O +surface S-CONPRI +than O +that O +of O +imperfect O +spherical S-CONPRI +powders S-MATE +. O + + +Moreover O +, O +in O +the O +sample S-CONPRI +built O +with O +spherical S-CONPRI +powders S-MATE +, O +the O +high O +cooling S-MANP +and O +solidification B-PARA +rates E-PARA +evaluated O +by O +numerical B-ENAT +simulations E-ENAT +result O +in O +the O +suppression O +of O +the O +interdendritic O +voids S-CONPRI +. O + + +The O +use O +of O +feedstocks S-MATE +from O +metal B-MANP +injection I-MANP +molding E-MANP +( O +MIM O +) O +for O +the O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +green B-PRO +parts E-PRO +, O +which O +are O +then O +debound O +and O +sintered S-MANP +in O +a O +process S-CONPRI +called O +shaping S-MANP +, O +debinding S-CONPRI +, O +and O +sintering S-MANP +( O +SDS O +) O +, O +is O +promising O +in O +terms O +of O +production B-CONPRI +costs E-CONPRI +of O +metallic B-MACEQ +parts E-MACEQ +. O + + +However O +, O +in O +order O +to O +use O +the O +cost-efficient O +AM B-MANP +technique E-MANP +fused O +filament S-MATE +fabrication S-MANP +( O +FFF S-MANP +) O +for O +SDS O +, O +powder-binder O +mixtures O +known O +for O +MIM O +feedstocks S-MATE +must O +be S-MATE +adapted O +to O +filament S-MATE +requirements O +resulting O +in O +adjustments O +to O +debinding S-CONPRI +and O +sintering S-MANP +. O + + +In O +contrast O +to O +FFF S-MANP +, O +screw-based O +material B-MANP +extrusion E-MANP +is O +capable O +of O +processing O +already O +available O +MIM O +feedstocks S-MATE +, O +but O +machine S-MACEQ +costs O +are O +high O +due O +to O +complex O +print B-MACEQ +heads E-MACEQ +. O + + +In O +this O +work O +, O +a O +new O +process S-CONPRI +called O +piston-based O +feedstock S-MATE +fabrication S-MANP +( O +PFF O +) O +is O +developed O +for O +processing O +already O +available O +MIM O +feedstocks S-MATE +at O +comparable O +costs O +to O +FFF S-MANP +. O + + +First O +, O +the O +state O +of O +the O +art S-APPL +is O +reviewed O +highlighting O +the O +potential O +of O +piston-based O +material B-MANP +extrusion E-MANP +for O +its O +usage O +in O +SDS O +. O + + +Experimental S-CONPRI +studies O +are O +performed O +to O +validate O +the O +developed O +PFF O +printer S-MACEQ +. O + + +As S-MATE +material O +, O +a O +Ti-6Al-4V S-MATE +MIM O +feedstock S-MATE +is O +used O +. O + + +Thresholds O +for O +piston S-APPL +speed O +( O +0.175 O +mm/min O +) O +, O +extrusion S-MANP +temperature O +( O +80 O +°C O +) O +, O +and O +nozzle B-CONPRI +diameter E-CONPRI +( O +0.4 O +mm S-MANP +) O +are O +determined O +to O +ensure O +a O +viscosity S-PRO +that O +allows O +to O +control O +the O +extrusion B-MANP +process E-MANP +via O +steps O +per O +mm S-MANP +. O + + +With O +these O +thresholds O +it O +is O +found O +that O +a O +constant O +extrusion B-MANP +process E-MANP +can O +be S-MATE +established O +in O +a O +filling O +range S-PARA +of O +the O +cylinder O +up O +to O +155 O +mm S-MANP +. O + + +Finally O +, O +the O +performance S-CONPRI +of O +the O +PFF O +system O +is O +evaluated O +in O +terms O +of O +nozzle S-MACEQ +geometry S-CONPRI +, O +print S-MANP +speed O +, O +and O +reproducibility S-CONPRI +showing O +that O +reproducible O +green B-PRO +part E-PRO +properties O +are O +achieved O +at O +a O +maximum O +speed O +of O +8.18 O +mm/s O +while O +using O +a O +tapered O +FFF S-MANP +nozzle O +. O + + +A O +thermo-mechanical B-CONPRI +model E-CONPRI +of O +directed B-MANP +energy I-MANP +deposition I-MANP +additive I-MANP +manufacturing E-MANP +of O +Ti–6Al–4V O +is O +developed O +using O +measurements O +of O +the O +surface S-CONPRI +convection O +generated O +by O +gasses O +flowing O +during O +the O +deposition S-CONPRI +. O + + +In O +directed B-MANP +energy I-MANP +deposition E-MANP +, O +material S-MATE +is O +injected O +into O +a O +melt B-MATE +pool E-MATE +that O +is O +traversed O +to O +fill O +in O +a O +cross-section O +of O +a O +part O +, O +building O +it O +layer-by-layer S-CONPRI +. O + + +This O +creates O +large O +thermal B-PARA +gradients E-PARA +that O +generate O +plastic B-PRO +deformation E-PRO +and O +residual B-PRO +stresses E-PRO +. O + + +Finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +is O +often O +used O +to O +study O +these O +phenomena O +using O +simple S-MANP +assumptions O +of O +the O +surface S-CONPRI +convection O +. O + + +This O +work O +proposes O +that O +a O +detailed O +knowledge O +of O +the O +surface S-CONPRI +heat B-CONPRI +transfer E-CONPRI +is O +required O +to O +produce O +more O +accurate S-CHAR +FEA O +results O +. O + + +The O +surface S-CONPRI +convection O +generated O +by O +the O +deposition B-MANP +process E-MANP +is O +measured O +and O +implemented O +in O +the O +thermo-mechanical B-CONPRI +model E-CONPRI +. O + + +Three O +depositions O +with O +different O +geometries S-CONPRI +and O +dwell B-PARA +times E-PARA +are O +used O +to O +validate O +the O +model S-CONPRI +using O +in B-CONPRI +situ E-CONPRI +measurements O +of O +the O +temperature S-PARA +and O +deflection O +as S-MATE +well O +as S-MATE +post-process O +measurements O +of O +the O +residual B-PRO +stress E-PRO +. O + + +An O +additional O +model S-CONPRI +is O +developed O +using O +the O +assumption O +of O +free O +convection O +on O +all O +surfaces S-CONPRI +. O + + +The O +results O +show O +that O +a O +measurement-based O +convection O +model S-CONPRI +is O +required O +to O +produce O +accurate S-CHAR +simulation O +results O +. O + + +Easily O +segregated O +Cu-15Ni-8Sn O +alloy S-MATE +bulk O +material S-MATE +was O +fabricated S-CONPRI +using O +a O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +. O + + +The O +microstructure S-CONPRI +of O +SLM-manufactured O +Cu-15Ni-8Sn O +alloy S-MATE +was O +investigated O +using O +optical B-CHAR +microscopy E-CHAR +( O +OM S-CHAR +) O +, O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +and O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +TEM S-CHAR +) O +. O + + +Differences O +in O +the O +microstructures S-MATE +and O +elemental O +segregation S-CONPRI +of O +gas-atomized O +alloy S-MATE +powder O +, O +cast S-MANP +ingots O +, O +and O +SLM-manufactured O +samples S-CONPRI +were O +analyzed O +. O + + +The O +statistical O +average S-CONPRI +grain O +size O +of O +the O +SLM-manufactured O +Cu-15Ni-8Sn O +alloy S-MATE +was O +4.03 O +μm O +. O + + +Microstructures S-MATE +of O +the O +SLM-manufactured O +sample S-CONPRI +were O +mainly O +composed O +of O +epitaxially O +grown O +slender O +cellular B-FEAT +structures E-FEAT +with O +submicron O +widths O +. O + + +Microsegregation S-CONPRI +was O +detected O +by O +TEM S-CHAR +, O +and O +80- O +to O +200-nm O +Sn-enriched O +precipitates S-MATE +were O +dispersed O +between O +cellullar O +structures O +. O + + +Many O +dislocations S-CONPRI +and O +dislocation S-CONPRI +tangles O +appeared O +around O +the O +precipitates S-MATE +. O + + +An O +EBSD S-CHAR +test O +revealed O +that O +most O +local O +misorientations O +within O +3 O +degrees O +were O +concentrated O +in O +fusion S-CONPRI +line O +regions O +. O + + +Compared O +with O +cast S-MANP +ingots O +, O +the O +yield B-PRO +strength E-PRO +Rp0.2 O +, O +ultimate B-PRO +tensile I-PRO +strength E-PRO +Rm O +, O +elongation S-PRO +A O +, O +and O +elastic B-PRO +modulus E-PRO +E O +of O +the O +SLM-manufactured O +sample S-CONPRI +increased O +by O +67 O +% O +, O +24.6 O +% O +, O +360 O +% O +, O +and O +7 O +% O +, O +respectively O +. O + + +Moreover O +, O +the O +SLM-manufactured O +Cu-15Ni-8Sn O +alloy S-MATE +could O +be S-MATE +directly O +aged O +at O +350℃ O +for O +12 O +h O +, O +reaching O +Rm O += O +991.1 O +MPa S-CONPRI +and O +A O +=3 O +% O +, O +with O +no O +need O +for O +solid B-MATE +solution E-MATE +treatment O +or O +cold B-MANP +working E-MANP +. O + + +A O +method O +for O +modeling S-ENAT +the O +effect O +of O +stress B-CONPRI +relaxation E-CONPRI +at O +high O +temperatures S-PARA +during O +laser S-ENAT +direct B-MANP +energy I-MANP +deposition E-MANP +processes O +is O +experimentally B-CONPRI +validated E-CONPRI +for O +Ti-6Al-4V S-MATE +samples S-CONPRI +subject O +to O +different O +inter-layer O +dwell B-PARA +times E-PARA +. O + + +The O +predicted S-CONPRI +mechanical B-CONPRI +responses E-CONPRI +are O +compared O +to O +those O +of O +Inconel® O +625 O +samples S-CONPRI +, O +which O +experience O +no O +allotropic O +phase S-CONPRI +transformation O +, O +deposited O +under O +identical O +process S-CONPRI +conditions O +. O + + +The O +thermal O +response O +of O +workpieces O +in O +additive B-MANP +manufacturing E-MANP +is O +known O +to O +be S-MATE +strongly O +dependent O +on O +dwell B-PARA +time E-PARA +. O + + +In O +this O +work O +the O +dwell B-PARA +times E-PARA +used O +vary O +from O +0 O +to O +40 O +s. O +Based O +on O +past O +research S-CONPRI +on O +ferretic O +steels S-MATE +and O +the O +additive B-MANP +manufacturing E-MANP +of O +titanium B-MATE +alloys E-MATE +it O +is O +assumed O +that O +the O +effect O +of O +transformation O +strain S-PRO +in O +Ti-6Al-4V S-MATE +acts O +to O +oppose O +all O +other O +strain S-PRO +components S-MACEQ +, O +effectively O +eliminating O +all O +residual B-PRO +stress E-PRO +at O +temperatures S-PARA +above O +690 O +°C O +. O + + +The O +model S-CONPRI +predicts O +that O +Inconel® O +625 O +exhibits O +increasing O +distortion S-CONPRI +with O +decreasing O +dwell B-PARA +times E-PARA +but O +that O +Ti-6Al-4V S-MATE +displays O +the O +opposite O +behavior O +, O +with O +distortion S-CONPRI +dramatically O +decreasing O +with O +lowering O +dwell B-PARA +time E-PARA +. O + + +These O +predictions S-CONPRI +are O +accurate S-CHAR +when O +compared O +with O +experimental S-CONPRI +in O +situ O +and O +post-process S-CONPRI +measurements O +. O + + +The O +present O +study O +demonstrates O +for O +the O +first O +time O +a O +unique O +UK-designed O +and O +built O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +hybrid B-ENAT +system E-ENAT +that O +combines O +polymer S-MATE +based O +structural O +deposition S-CONPRI +with O +digital O +deposition S-CONPRI +of O +electrically S-CONPRI +conductive O +elements S-MATE +. O + + +This O +innovative O +manufacturing B-CONPRI +system E-CONPRI +is O +based O +on O +a O +multi-planar O +build S-PARA +approach O +to O +improve O +on O +many O +of O +the O +limitations O +associated O +with O +AM S-MANP +, O +such O +as S-MATE +poor O +surface B-FEAT +finish E-FEAT +, O +low O +geometric B-FEAT +tolerance E-FEAT +and O +poor O +robustness S-PRO +. O + + +Specifically O +, O +the O +approach O +involves O +a O +multi-planar O +Material B-MANP +Extrusion E-MANP +( O +ME O +) O +process S-CONPRI +in O +which O +separated O +build S-PARA +stations O +with O +up O +to O +5 O +axes O +of O +motion O +replace O +traditional O +horizontally-sliced O +layer S-PARA +modelling O +. O + + +The O +construction S-APPL +of O +multi-material S-CONPRI +architectures O +also O +involved O +using O +multiple O +print S-MANP +systems O +in O +order O +to O +combine O +both O +ME O +and O +digital O +deposition S-CONPRI +of O +conductive O +material S-MATE +. O + + +To O +demonstrate O +multi-material B-MANP +3D I-MANP +Printing E-MANP +( O +3DP S-MANP +) O +we O +used O +three O +thermoplastics S-MATE +to O +print S-MANP +specimens O +, O +on O +top O +of O +which O +a O +unique O +Ag O +nano-particulate O +ink S-MATE +was O +printed O +using O +a O +non-contact O +jetting S-MANP +process O +, O +during O +which O +drop O +characteristics O +such O +as S-MATE +shape O +, O +velocity O +, O +and O +volume S-CONPRI +were O +assessed O +using O +a O +bespoke O +drop O +watching O +system O +. O + + +Electrical S-APPL +analysis O +of O +printed B-MACEQ +conductive E-MACEQ +tracks O +on O +polymer S-MATE +surfaces O +was O +performed O +during O +mechanical B-CHAR +testing E-CHAR +( O +static O +tensile S-PRO +and O +flexural O +testing S-CHAR +and O +dynamic S-CONPRI +fatigue O +testing S-CHAR +) O +to O +assess O +robustness S-PRO +of O +the O +printed O +circuits O +. O + + +Both O +serpentine O +and O +straight O +line O +patterns O +were O +used O +in O +the O +testing S-CHAR +of O +Ag O +particle S-CONPRI +loaded O +ink S-MATE +and O +they O +showed O +very O +similar O +resistance S-PRO +changes O +during O +mechanical S-APPL +exposure S-CONPRI +. O + + +Monitored O +resistance S-PRO +and O +stress S-PRO +changed O +as S-MATE +a O +function O +of O +strain S-PRO +exhibiting O +hysteresis S-PRO +with O +more O +prominent O +residual S-CONPRI +strain O +during O +stretching O +and O +compression S-PRO +cycles O +and O +3-point O +bending S-MANP +flexural O +tests O +of O +PA S-CHAR +and O +CoPA O +substrates O +. O + + +Bare O +and O +encapsulated S-CONPRI +tracks O +exhibited O +low O +electrical B-CHAR +resistivity E-CHAR +( O +1–3*10−6 O +Ω*m O +) O +, O +and O +its O +change O +was O +more O +rapid O +on O +ABS S-MATE +and O +minor O +on O +PA S-CHAR +and O +CoPA O +when O +increasing O +tensile S-PRO +and O +flexural O +strain S-PRO +up O +to O +1.2 O +% O +and O +0.8 O +% O +, O +respectively O +. O + + +Resistance S-PRO +of O +Ag O +tracks O +on O +ABS S-MATE +also O +increased O +rapidly O +during O +fatigue B-CHAR +testing E-CHAR +and O +the O +tracks O +easily O +fractured O +during O +repeated O +stretching-compression O +cycles O +at O +1 O +% O +and O +1.2 O +% O +strain S-PRO +. O + + +No O +resistance S-PRO +changes O +of O +Ag O +tracks O +printed O +on O +PA S-CHAR +and O +CoPA O +were O +observed O +at O +lower O +strain S-PRO +amplitudes O +whereas O +at O +higher O +strain S-PRO +amplitudes O +these O +changes O +were O +the O +lowest O +for O +conductive O +tracks O +on O +CoPA O +. O + + +Thermal B-CHAR +analyses E-CHAR +were O +conducted O +to O +determine O +the O +printed O +material S-MATE +’ O +s S-MATE +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +( O +Tg S-CHAR +) O +, O +stability S-PRO +and O +degradation S-CONPRI +behavior O +to O +find O +the O +optimum O +annealing S-MANP +conditions O +post O +printing O +. O + + +The O +novel O +AM S-MANP +printer O +has O +the O +ability O +to O +fabricate S-MANP +fully O +functional O +objects O +in O +one O +build S-PARA +, O +including O +integrated O +printed O +circuitry O +and O +embedded B-ENAT +electronics E-ENAT +. O + + +This O +new O +technology S-CONPRI +also O +gives O +the O +opportunity O +for O +designers O +to O +improve O +existing O +products O +, O +as S-MATE +well O +as S-MATE +create O +new O +products O +with O +the O +added O +advantages O +of O +geometrically O +unconstrained O +3DP S-MANP +. O + + +This O +paper O +proposes O +computational B-ENAT +models E-ENAT +of O +the O +direct B-MANP +energy I-MANP +deposition E-MANP +and O +powder B-MANP +bed I-MANP +fusion I-MANP +processes E-MANP +developed O +for O +process B-CONPRI +control E-CONPRI +applications O +. O + + +Both O +models O +are O +built O +upon O +a O +regression S-CONPRI +metamodel O +of O +heat B-CONPRI +transfer E-CONPRI +beneath O +the O +laser B-CONPRI +beam E-CONPRI +, O +to O +which O +an O +auxiliary O +thermal O +model S-CONPRI +is O +added O +to O +account O +for O +residual B-CONPRI +heat E-CONPRI +in O +track-to-track O +interactions O +. O + + +Both O +models O +are O +coupled O +by O +taking O +temperatures S-PARA +predicted S-CONPRI +with O +the O +auxiliary O +model S-CONPRI +and O +incorporating O +them O +as S-MATE +initial O +conditions O +for O +metamodel O +predictions S-CONPRI +of O +future O +laser B-ENAT +scans E-ENAT +. O + + +The O +synergy O +of O +the O +metamodel O +and O +the O +auxiliary O +model S-CONPRI +creates O +a O +high-fidelity S-CONPRI +model O +, O +which O +is O +used O +to O +generate O +training O +data S-CONPRI +for O +a O +model-free O +optimal O +controller S-MACEQ +. O + + +Simulation S-ENAT +results O +prove O +the O +capability O +of O +the O +proposed O +optimal O +controller S-MACEQ +to O +adjust O +scan B-PARA +speed E-PARA +to O +control O +temperature S-PARA +when O +accounting O +for O +track-to-track O +interactions O +. O + + +One O +of O +the O +serious O +obstacles O +preventing O +wide O +industrial S-APPL +use O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +in O +metals S-MATE +and O +alloys S-MATE +is O +a O +lack O +of O +materials S-CONPRI +available O +for O +this O +technology S-CONPRI +. O + + +It O +is O +particularly O +true O +for O +the O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM® O +) O +process S-CONPRI +, O +where O +only O +a O +few O +materials S-CONPRI +are O +commercially O +available O +, O +which O +significantly O +limits S-CONPRI +the O +use O +of O +the O +method O +. O + + +One O +of O +the O +dominant O +trends S-CONPRI +in O +AM S-MANP +today O +is O +developing O +processes S-CONPRI +for O +technological O +materials S-CONPRI +already O +widely O +used O +by O +other O +methods O +and O +developed O +for O +other O +industrial S-APPL +applications O +, O +gaining O +further O +advantages O +through O +the O +unique O +value O +added O +by O +additive B-MANP +manufacturing E-MANP +. O + + +Developing O +new O +materials S-CONPRI +specifically O +for O +additive B-MANP +manufacturing E-MANP +that O +can O +utilize O +the O +properties S-CONPRI +and O +specifics O +of O +the O +method O +in O +full O +is O +still O +a O +research S-CONPRI +and O +development O +subject O +, O +and O +such O +materials S-CONPRI +are O +yet O +far O +from O +full O +scale O +industrial S-APPL +usage O +. O + + +Stainless B-MATE +steels E-MATE +are O +widely O +used O +in O +industry S-APPL +due O +to O +good O +mechanical B-CONPRI +properties E-CONPRI +, O +corrosion B-CONPRI +resistance E-CONPRI +and O +low O +cost O +of O +material S-MATE +. O + + +Hence O +, O +there O +is O +potentially O +a O +market O +for O +this O +material S-MATE +and O +one O +possible O +business O +driver O +compared O +with O +casting S-MANP +for O +example O +is O +that O +lead B-PARA +times E-PARA +could O +be S-MATE +cut O +drastically O +by O +utilizing O +an O +additive S-MATE +approach O +for O +one-off O +or O +small O +series O +production S-MANP +. O + + +This O +paper O +presents O +results O +from O +the O +additive B-MANP +manufacturing E-MANP +of O +components S-MACEQ +from O +the O +known O +alloy S-MATE +316L O +using O +EBM® O +. O + + +Previously O +the O +samples S-CONPRI +of O +316L O +were O +made O +by O +laser-based O +AM B-MANP +technology E-MANP +. O + + +This O +work O +was O +performed O +as S-MATE +a O +part O +of O +the O +large O +project O +with O +the O +long O +term O +aim O +to O +use O +additively B-MANP +manufactured E-MANP +components O +in O +a O +nuclear O +fusion S-CONPRI +reactor O +. O + + +Components S-MACEQ +and O +test O +samples S-CONPRI +successfully O +made O +from O +316L B-MATE +stainless I-MATE +steel E-MATE +using O +EBM® O +process S-CONPRI +show O +promising O +mechanical B-CONPRI +properties E-CONPRI +, O +density S-PRO +and O +hardness S-PRO +compared O +to O +its O +counterpart O +made O +by O +powder B-MANP +metallurgy E-MANP +( O +hot B-MANP +isostatic I-MANP +pressing E-MANP +, O +HIP S-MANP +) O +. O + + +As S-MATE +with O +the O +other O +materials S-CONPRI +made O +by O +EBM® O +process S-CONPRI +, O +316L O +samples S-CONPRI +show O +rather O +low O +porosity S-PRO +. O + + +Present O +paper O +also O +reports O +on O +the O +hierarchical O +microstructure S-CONPRI +features O +of O +the O +316L O +material S-MATE +processed O +by O +EBM® O +characterized O +by O +optical S-CHAR +and O +electron B-CHAR +microscopy E-CHAR +. O + + +Roles O +of O +heat B-MANP +treatment E-MANP +and O +build B-PARA +direction E-PARA +are O +analyzed O +for O +SLM S-MANP +IN718 S-MATE +. O + + +The O +strength S-PRO +and O +anisotropic S-PRO +characteristics O +is O +explained O +via O +microstructure S-CONPRI +. O + + +High B-PARA +resolution E-PARA +tomography O +displays O +the O +prevalence O +of O +near O +surface S-CONPRI +porosity S-PRO +. O + + +Strain S-PRO +partitioning O +is O +observed O +based O +on O +the O +γ O +’ O +’ O +precipitates S-MATE +diffraction S-CHAR +spots O +. O + + +The O +benefits O +of O +additive B-MANP +manufacturing E-MANP +have O +been O +well O +documented O +, O +but O +prior O +to O +these O +materials S-CONPRI +being O +used O +in O +critical O +applications O +, O +the O +deformation S-CONPRI +mechanisms O +must O +be S-MATE +properly O +characterized O +. O + + +In O +this O +work O +, O +the O +role O +of O +heat B-MANP +treatment E-MANP +and O +build B-PARA +orientation E-PARA +of O +selective B-MANP +laser I-MANP +melting E-MANP +IN718 S-MATE +is O +investigated O +through O +detailed O +characterization O +. O + + +The O +microstructure S-CONPRI +of O +this O +material S-MATE +is O +probed O +through O +a O +combination O +of O +electron B-CHAR +microscopy E-CHAR +to O +identify O +the O +precipitate S-MATE +structure O +, O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +to O +quantify O +the O +grain-level O +features O +, O +and O +synchrotron-based O +X-ray S-CHAR +microcomputed O +tomography O +to O +detect O +porosity S-PRO +. O + + +A O +high O +degree O +of O +porosity S-PRO +is O +observed O +spatially O +near O +the O +free B-CONPRI +surface E-CONPRI +of O +the O +part O +, O +where O +the O +contour S-FEAT +during O +the O +build S-PARA +process O +meets O +the O +interior O +hatch O +. O + + +Further O +, O +microstructure S-CONPRI +based O +deformation S-CONPRI +mechanisms O +are O +explored O +through O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +relative O +to O +the O +grain S-CONPRI +features O +after O +monotonic O +and O +cyclic B-PRO +loading E-PRO +and O +in B-CONPRI +situ E-CONPRI +high-energy O +X-ray B-CHAR +diffraction E-CHAR +to O +identify O +the O +lattice S-CONPRI +strain O +evolution S-CONPRI +in O +these O +materials S-CONPRI +. O + + +Demarcations O +between O +the O +behaviors O +of O +the O +as-built O +versus O +post-processed O +materials S-CONPRI +are O +discussed O +; O +specifically O +, O +in O +terms O +of O +anisotropy S-PRO +with O +respect O +to O +build B-PARA +direction E-PARA +and O +values O +of O +the O +strength B-PRO +properties E-PRO +, O +based O +on O +the O +grain S-CONPRI +morphology O +, O +coherent O +twin O +formation O +, O +and O +precipitate S-MATE +structure O +. O + + +Lastly O +, O +the O +presence O +of O +dislocation S-CONPRI +sub-structures O +within O +the O +grains S-CONPRI +is O +observed O +to O +homogenize O +deformation S-CONPRI +within O +the O +as-built O +sample S-CONPRI +, O +while O +strain S-PRO +partitioning O +is O +observed O +during O +loading O +of O +the O +post-processed O +sample S-CONPRI +. O + + +A O +process S-CONPRI +is O +presented O +for O +the O +rapid O +production S-MANP +of O +microstructured O +monofilaments O +via O +thermal O +drawing S-MANP +of O +additively B-MANP +manufactured E-MANP +polymer O +preforms O +. O + + +Preforms O +are O +produced O +wholly O +, O +or O +in O +part O +, O +via O +fused B-MANP +filament I-MANP +fabrication E-MANP +of O +acrylonitrile-butadiene-styrene O +( O +ABS S-MATE +) O +and O +polycarbonate S-MATE +materials S-CONPRI +. O + + +Example O +monofilaments O +include O +“ O +microprinted O +” O +monofilaments O +that O +contain O +an O +arbitrary O +image S-CONPRI +embedded O +in O +the O +monofilament O +cross B-CONPRI +section E-CONPRI +; O +microfluidic O +monofilaments O +in O +which O +flow O +channels O +are O +formed O +by O +combining O +optically O +transparent S-CONPRI +and O +opaque O +materials S-CONPRI +; O +dual-material S-CONPRI +monofilaments O +that O +combine O +ABS S-MATE +and O +polycarbonate S-MATE +into O +a O +regular O +spoked O +geometry S-CONPRI +with O +five-fold O +symmetry O +; O +and O +a O +microfluidic O +preform O +co-fed O +with O +glass S-MATE +optical O +fiber S-MATE +, O +allowing O +both O +fluid S-MATE +and O +light O +transmission S-CHAR +through O +the O +monofilament O +. O + + +The O +primary O +advantages O +of O +this O +monofilament O +fabrication S-MANP +technique O +include O +short O +lead B-PARA +times E-PARA +; O +minimal O +investment O +in O +materials S-CONPRI +and O +equipment S-MACEQ +; O +a O +means O +of O +directly O +combining O +multiple O +materials S-CONPRI +into O +a O +single O +monofilament O +, O +even O +if O +the O +material S-MATE +components S-MACEQ +have O +different O +thermorheological O +properties S-CONPRI +; O +and O +the O +ability O +to O +create O +arbitrary O +and O +complex B-CONPRI +geometries E-CONPRI +. O + + +Energy O +system O +components S-MACEQ +with O +embedded O +sensors S-MACEQ +, O +or O +smart O +parts O +, O +can O +be S-MATE +a O +pathway O +in O +obtaining O +real-time O +system O +performance S-CONPRI +feedback S-PARA +and O +in B-CONPRI +situ E-CONPRI +monitoring O +during O +operation O +. O + + +Traditional O +surface S-CONPRI +contact S-APPL +or O +cavity O +placed O +sensors S-MACEQ +increase O +the O +possibility O +of O +disturbing O +the O +normal O +operation O +of O +energy O +systems O +due O +to O +changes O +in O +part O +design S-FEAT +required O +for O +sensor S-MACEQ +placement O +. O + + +The O +fabrication S-MANP +of O +smart O +parts O +using O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +can O +allow O +the O +flexibility S-PRO +of O +embedding O +a O +sensor S-MACEQ +within O +a O +structure S-CONPRI +without O +compromising O +the O +structure S-CONPRI +and/or O +functionality O +. O + + +The O +embedding O +of O +a O +sensor S-MACEQ +within O +a O +desired O +location O +allows O +an O +end O +user O +the O +ability O +to O +monitor S-CONPRI +specific O +critical O +regions O +that O +are O +of O +interest O +such O +as S-MATE +high O +temperature S-PARA +and O +pressure S-CONPRI +( O +e.g. O +, O +combustor O +inlet S-MACEQ +conditions O +that O +can O +reach O +up O +to O +810 O +K S-MATE +and O +2760 O +kPa O +) O +. O + + +In O +addition O +, O +the O +non-intrusive O +placement O +of O +the O +sensor S-MACEQ +within O +a O +part O +’ O +s S-MATE +body O +can O +increase O +the O +sensor S-MACEQ +’ O +s S-MATE +life O +span O +by O +isolating S-CONPRI +the O +sensor S-MACEQ +from O +the O +aforementioned O +harsh O +operating O +environments O +. O + + +This O +paper O +focuses O +on O +the O +fabrication S-MANP +of O +smart O +parts O +using O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +AM B-MANP +technology E-MANP +as O +well O +as S-MATE +the O +characterization O +of O +the O +sensor S-MACEQ +’ O +s S-MATE +functionality O +. O + + +The O +development O +of O +a O +“ O +stop O +and O +go S-MATE +” O +process S-CONPRI +was O +explored O +that O +comprised O +of O +pausing O +a O +part O +’ O +s S-MATE +fabrication S-MANP +process O +to O +allow O +the O +placement O +of O +piezoelectric O +ceramic B-MATE +material E-MATE +into O +pre-designed O +cavities O +within O +a O +part O +’ O +s S-MATE +body O +, O +and O +resuming O +the O +process S-CONPRI +to O +complete O +the O +final O +product O +. O + + +A O +compression B-CHAR +test E-CHAR +was O +performed O +on O +the O +smart O +parts O +fabricated S-CONPRI +using O +EBM S-MANP +to O +demonstrate O +the O +sensor S-MACEQ +’ O +s S-MATE +capability O +of O +sensing S-APPL +external O +forces S-CONPRI +. O + + +A O +maximum O +sensing S-APPL +voltage O +response O +of O +approximately O +3 O +V S-MATE +was O +detected O +with O +a O +maximum O +pressure S-CONPRI +not O +exceeding O +40 O +MPa S-CONPRI +. O + + +This O +research S-CONPRI +work O +demonstrates O +the O +feasibility S-CONPRI +of O +fabricating S-MANP +smart O +parts O +with O +embedded O +sensors S-MACEQ +without O +the O +need O +of O +post-processing S-CONPRI +( O +e.g. O +, O +CNC B-MANP +machining E-MANP +and O +polishing S-MANP +) O +. O + + +In O +addition O +, O +the O +sensing S-APPL +capability O +of O +monitoring O +a O +component S-MACEQ +’ O +s S-MATE +performance S-CONPRI +has O +been O +validated O +, O +leading O +to O +the O +possibility O +of O +fabricating S-MANP +other O +smart O +parts O +that O +could O +impact S-CONPRI +industries O +such O +as S-MATE +energy O +, O +aerospace S-APPL +, O +automotive S-APPL +, O +and O +biomedical B-APPL +industries E-APPL +for O +applications O +like O +air/fuel O +pre-mixing O +, O +pressure B-MANP +tubes E-MANP +, O +and O +turbine B-APPL +blades E-APPL +. O + + +Recycling S-CONPRI +metal B-MATE +powders E-MATE +in O +the O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +is O +an O +important O +consideration O +in O +affordability O +with O +reference O +to O +traditional B-MANP +manufacturing E-MANP +. O + + +Metal B-MATE +powder E-MATE +recyclability O +has O +been O +studied O +before O +with O +respect O +to O +change O +in O +chemical B-CONPRI +composition E-CONPRI +of O +powders S-MATE +, O +effect O +on O +mechanical B-CONPRI +properties E-CONPRI +of O +produced O +parts O +, O +effect O +on O +flowability O +of O +powders S-MATE +and O +powder S-MATE +morphology S-CONPRI +. O + + +In O +this O +paper O +, O +we O +propose O +a O +data-driven O +method O +to O +understand O +in B-CONPRI +situ E-CONPRI +behavior O +of O +recycled S-CONPRI +powder S-MATE +on O +the O +build B-MACEQ +platform E-MACEQ +. O + + +Our O +method O +is O +based O +on O +comprehensive O +analysis O +of O +log O +file S-MANS +data S-CONPRI +from O +various O +sensors S-MACEQ +used O +in O +the O +process S-CONPRI +of O +printing O +metal S-MATE +parts O +in O +the O +Arcam O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +® O +system O +. O + + +Using O +rake O +position O +data S-CONPRI +and O +rake O +sensor S-MACEQ +pulse O +data S-CONPRI +collected O +during O +Arcam O +builds S-CHAR +, O +we O +found O +that O +Inconel B-MATE +718 E-MATE +powders O +exhibit O +additional O +powder S-MATE +spreading O +operations O +with O +increased O +reuse O +cycles O +compared O +to O +Ti-6Al-4V B-MATE +powders E-MATE +. O + + +We O +substantiate O +differences O +found O +in O +in B-CONPRI +situ E-CONPRI +behavior O +of O +Ti-6Al-4V S-MATE +and O +Inconel B-MATE +718 E-MATE +powders O +using O +known O +sintering S-MANP +behavior O +of O +the O +two O +powders S-MATE +. O + + +The O +novelty O +of O +this O +work O +lies O +in O +the O +new O +approach O +to O +understanding O +powder S-MATE +behavior O +especially O +spreadability O +using O +in B-CONPRI +situ E-CONPRI +log O +file S-MANS +data S-CONPRI +that O +is O +regularly O +collected O +in O +Arcam O +EBM® O +builds S-CHAR +rather O +than O +physical O +testing S-CHAR +of O +parts O +and O +powders S-MATE +post O +build S-PARA +. O + + +In O +addition O +to O +studying O +powder S-MATE +recyclability O +, O +the O +proposed O +methodology S-CONPRI +has O +potential O +to O +be S-MATE +extended O +generically O +to O +monitor S-CONPRI +powder O +behavior O +in O +AM B-MANP +processes E-MANP +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +provides O +an O +economic O +approach O +to O +manufacturing S-MANP +Ni-base O +superalloy O +components S-MACEQ +for O +high-pressure O +gas B-MACEQ +turbines E-MACEQ +as S-MATE +well O +as S-MATE +repairing O +damaged O +blade O +sections O +during O +operation O +. O + + +In O +this O +study O +, O +two O +advanced O +processing O +routes O +are O +combined O +: O +SLM S-MANP +, O +to O +fabricate S-MANP +small O +specimens O +of O +the O +nonweldable O +CMSX-4 O +, O +and O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +with O +a O +rapid O +cooling B-PARA +rate E-PARA +as S-MATE +post-processing O +to O +heal O +defects S-CONPRI +while O +the O +target O +γ/γ´ O +microstructure S-CONPRI +is O +developed O +. O + + +An O +initial O +parametric O +study O +is O +carried O +out O +to O +investigate O +the O +influence O +of O +the O +SLM S-MANP +process B-CONPRI +parameters E-CONPRI +on O +the O +microstructure S-CONPRI +and O +defects S-CONPRI +occurring O +during O +SLM S-MANP +. O + + +Special O +emphasis O +is O +placed O +on O +understanding O +and O +characterizing O +the O +as-built O +SLM S-MANP +microstructures S-MATE +by O +means O +of O +high-resolution S-PARA +characterization O +techniques O +. O + + +The O +post-processing B-CONPRI +heat E-CONPRI +treatment O +is O +then O +optimized O +with O +respect O +to O +segregation S-CONPRI +and O +the O +γ/γ´ O +microstructure S-CONPRI +. O + + +This O +article O +proposes O +a O +new O +method O +for O +reducing O +the O +amount O +of O +support B-MATE +material E-MATE +required O +for O +3-D S-CONPRI +printing O +of O +complex O +designs S-FEAT +generated O +by O +topology B-FEAT +optimization E-FEAT +. O + + +This O +procedure O +relies O +on O +solving O +sequentially O +two O +structural B-CONPRI +optimization E-CONPRI +problems O +– O +the O +first O +on O +a O +discrete O +truss-based O +model S-CONPRI +and O +the O +second O +on O +a O +continuum-based O +model S-CONPRI +. O + + +In O +the O +optimization S-CONPRI +of O +the O +discrete O +model S-CONPRI +, O +the O +maximum O +overhang S-PARA +limitation O +is O +imposed O +based O +on O +geometrical O +parameters S-CONPRI +. O + + +The O +optimized O +discrete O +pattern S-CONPRI +is O +then O +projected O +on O +to O +the O +continuum S-CONPRI +so O +that O +it O +influences O +the O +material S-MATE +distribution S-CONPRI +in O +the O +continuum S-CONPRI +optimization O +. O + + +Numerical O +results O +indicate O +that O +the O +designs S-FEAT +obtained O +by O +this O +approach O +exhibit O +improved O +printability S-PARA +as S-MATE +they O +have O +fewer O +overhanging B-FEAT +features E-FEAT +. O + + +In O +some O +cases O +, O +practically O +no O +supporting O +material S-MATE +will O +be S-MATE +required O +for O +printing O +the O +optimized O +design S-FEAT +. O + + +The O +importance O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +to O +the O +future O +of O +product B-FEAT +design E-FEAT +and O +manufacturing S-MANP +infrastructure O +demands O +educational O +programs O +tailored O +to O +embrace O +its O +fundamental O +principles O +and O +its O +innovative O +potential O +. O + + +The O +lectures O +begin O +with O +in-depth O +technical O +analysis O +of O +the O +major O +AM B-MANP +processes E-MANP +and O +machine S-MACEQ +technologies O +, O +then O +focus O +on O +special O +topics O +including O +design S-FEAT +methods O +, O +machine S-MACEQ +controls O +, O +applications O +of O +AM S-MANP +to O +major O +industry S-APPL +needs O +, O +and O +emerging O +processes S-CONPRI +and O +materials S-CONPRI +. O + + +In O +lab O +sessions O +, O +students O +operate O +and O +characterize O +desktop O +AM B-MACEQ +machines E-MACEQ +, O +and O +work O +in O +teams O +to O +design S-FEAT +and O +fabricate S-MANP +a O +bridge S-APPL +having O +maximum O +strength S-PRO +per O +unit O +weight S-PARA +while O +conforming O +to O +geometric O +constraints O +. O + + +In O +a O +single O +semester O +of O +the O +course O +, O +teams O +created O +prototype S-CONPRI +machines S-MACEQ +for O +3D B-MANP +printing E-MANP +of O +molten B-MATE +glass E-MATE +, O +3D B-MANP +printing E-MANP +of O +soft-serve O +ice O +cream O +, O +robotic O +deposition S-CONPRI +of O +biodegradable B-PRO +material E-PRO +, O +direct-write O +deposition S-CONPRI +of O +continuous B-MATE +carbon I-MATE +fiber E-MATE +composites S-MATE +, O +large-area O +parallel O +extrusion S-MANP +of O +polymers S-MATE +, O +and O +in B-CONPRI +situ E-CONPRI +optical O +scanning S-CONPRI +during O +3D B-MANP +printing E-MANP +. O + + +Several O +of O +these O +projects O +led S-APPL +to O +patent S-CONPRI +applications O +, O +follow-on O +research S-CONPRI +, O +and O +peer-reviewed O +publications O +. O + + +We O +conclude O +that O +AM S-MANP +education O +, O +while O +arguably O +rooted O +in O +mechanical B-APPL +engineering E-APPL +, O +is O +truly O +multidisciplinary O +, O +and O +that O +education O +programs O +must O +embrace O +this O +context O +. O + + +A O +novel O +soft O +mold S-MACEQ +casting S-MANP +method O +for O +metal S-MATE +part O +fabrication S-MANP +is O +developed O +. O + + +The O +paste O +can O +be S-MATE +utilized O +with O +direct O +paste O +printing O +and O +soft O +mold S-MACEQ +casting S-MANP +. O + + +Three-dimensional S-CONPRI +metal S-MATE +parts O +can O +be S-MATE +obtained O +with O +good O +geometric O +precision S-CHAR +. O + + +Recently O +, O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +metals S-MATE +has O +enjoyed O +significant O +advancement O +. O + + +While O +the O +mainstream O +AM S-MANP +methods O +utilize O +high-energy O +power S-PARA +beams O +to O +melt S-CONPRI +metal O +powders S-MATE +, O +other O +low-cost O +alternatives O +are O +also O +being O +developed O +( O +e.g. O +, O +direct O +ink B-MANP +printing E-MANP +) O +. O + + +In O +this O +study O +, O +a O +copper S-MATE +powder-binder O +paste O +is O +developed O +, O +which O +is O +not O +only O +capable O +to O +be S-MATE +used O +for O +direct O +printing O +, O +but O +also O +to O +be S-MATE +cast O +using O +soft O +molds S-MACEQ +. O + + +Dense O +three-dimensional S-CONPRI +parts O +can O +be S-MATE +obtained O +by O +sintering S-MANP +green B-CONPRI +bodies E-CONPRI +. O + + +The O +electrical S-APPL +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +sintered S-MANP +samples S-CONPRI +are O +evaluated O +by O +conductivity S-PRO +, O +hardness S-PRO +measurements O +and O +tensile B-CHAR +tests E-CHAR +, O +respectively O +. O + + +The O +results O +are O +comparable O +to O +other O +powder S-MATE +processed O +copper S-MATE +materials O +. O + + +The O +properties S-CONPRI +of O +3-D S-CONPRI +printed O +polymeric O +parts O +depend O +significantly O +on O +the O +processing O +conditions O +under O +which O +they O +are O +fabricated S-CONPRI +. O + + +This O +study O +aims O +to O +determine O +how O +the O +use O +of O +low-pressure O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processing O +conditions O +, O +influences O +the O +mechanical S-APPL +performance O +of O +printed O +polymeric O +parts O +. O + + +This O +polymer B-MATE +material E-MATE +extrusion S-MANP +( O +PME S-MANP +) O +study O +was O +carried O +out O +using O +an O +open-source S-CONPRI +desktop O +printer S-MACEQ +, O +under O +both O +low O +pressure S-CONPRI +( O +1 O +Pa S-CHAR +) O +and O +at O +atmospheric O +pressure S-CONPRI +. O + + +The O +printing O +study O +was O +carried O +out O +using O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +, O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +and O +a O +nylon S-MATE +co-polymer O +( O +PA6 O +) O +. O + + +The O +resultant O +polymer S-MATE +parts O +were O +compared O +based O +on O +their O +printed O +mass O +, O +density S-PRO +, O +volume S-CONPRI +, O +porosity S-PRO +, O +surface S-CONPRI +energy O +, O +ATR-IR O +analysis O +and O +thermal B-CONPRI +properties E-CONPRI +( O +DSC S-CHAR +) O +. O + + +As S-MATE +expected O +only O +minor O +differences O +in O +chemical O +functionality O +were O +observed O +between O +parts O +printed O +under O +the O +two O +processing O +pressures S-CONPRI +. O + + +Under O +low-pressure O +printing O +conditions O +, O +the O +polymer S-MATE +parts O +exhibited O +some O +physical O +changes O +, O +when O +compared O +to O +those O +, O +printed O +under O +atmospheric O +conditions O +, O +such O +as S-MATE +an O +increase O +in O +density S-PRO +and O +a O +decrease O +in O +porosity S-PRO +. O + + +Comparing O +low-pressure O +printed O +type O +V S-MATE +dog O +bones O +( O +ASTM O +D-638 O +) O +, O +with O +those O +printed O +at O +atmospheric O +pressure S-CONPRI +, O +it O +was O +observed O +that O +the O +ABS S-MATE +, O +PLA S-MATE +and O +PA6 O +exhibited O +an O +increase O +in O +Ultimate B-PRO +Tensile I-PRO +Strength E-PRO +of O +9 O +% O +, O +13 O +% O +and O +42 O +% O +respectively O +. O + + +It O +is O +proposed O +that O +the O +superior O +mechanical B-CONPRI +properties E-CONPRI +obtained O +for O +polymers S-MATE +printed O +under O +low O +pressure S-CONPRI +conditions O +, O +may O +be S-MATE +due O +to O +a O +combination O +of O +two O +factors O +. O + + +These O +are O +the O +reduction S-CONPRI +in O +porosity S-PRO +of O +the O +printed O +part O +and O +the O +reduction S-CONPRI +in O +heat S-CONPRI +loss O +at O +the O +printed O +polymer S-MATE +surface O +, O +yielding O +enhanced O +bonding S-CONPRI +between O +the O +polymer S-MATE +layers O +. O + + +In O +a O +further O +printing O +study O +carried O +out O +at O +atmospheric O +pressure S-CONPRI +in O +a O +nitrogen S-MATE +atmosphere O +, O +it O +was O +also O +demonstrated O +that O +any O +oxidation S-MANP +of O +the O +polymer S-MATE +layers O +during O +printing O +, O +did O +not O +significantly O +influence O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +resultant O +printed O +parts O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +are O +used O +to O +build S-PARA +structural O +components S-MACEQ +layer-by-layer O +. O + + +Cold O +spray O +is O +considered O +an O +AM B-MANP +process E-MANP +, O +whereby O +particles B-CONPRI +impact E-CONPRI +a O +substrate S-MATE +at O +high O +velocities O +to O +generate O +the O +deposition B-PARA +layer E-PARA +. O + + +Effect O +of O +spray O +angles O +on O +bonding B-PRO +strength E-PRO +at O +the O +cold O +spray O +deposit O +and O +substrate S-MATE +interface S-CONPRI +was O +experimentally O +investigated O +. O + + +The O +results O +showed O +that O +bonding B-PRO +strength E-PRO +increased O +with O +decreasing O +spray O +angle O +from O +the O +normal O +direction O +( O +90° O +spray O +angle O +) O +, O +and O +the O +maximum O +bonding B-PRO +strength E-PRO +was O +observed O +at O +45° O +spray O +angle O +; O +however O +, O +the O +deposition S-CONPRI +efficiency O +and O +strength S-PRO +of O +the O +bulk O +deposit O +material S-MATE +decreased O +with O +decreasing O +spray O +angle O +. O + + +3D S-CONPRI +finite O +element S-MATE +modeling O +of O +single-particle O +impact S-CONPRI +combined O +with O +experimental S-CONPRI +observation O +of O +“ O +splat O +” O +deposits O +was O +conducted O +to O +understand O +bonding S-CONPRI +process O +under O +different O +spray O +angles O +. O + + +The O +relationships O +between O +parameters S-CONPRI +contributing O +bonding S-CONPRI +formations O +( O +e.g. O +, O +plastic B-PRO +deformation E-PRO +and O +temperature S-PARA +rise O +due O +to O +impact S-CONPRI +) O +and O +processing O +parameters S-CONPRI +( O +e.g. O +, O +spray O +angles O +, O +impact S-CONPRI +velocity O +, O +pre-heating O +temperature S-PARA +) O +were O +established O +and O +discussed O +. O + + +These O +relationships O +are O +useful O +for O +understanding O +bonding B-CHAR +mechanisms E-CHAR +and O +strengths S-PRO +of O +deposits O +sprayed S-MANP +at O +different O +angles O +and O +can O +be S-MATE +used O +to O +define O +an O +optimized O +spray O +angle O +. O + + +The O +modeling S-ENAT +results O +also O +revealed O +that O +increasing O +particle S-CONPRI +impact S-CONPRI +velocity O +and O +pre-heating O +temperature S-PARA +promoted O +deposit O +quality S-CONPRI +, O +but O +in O +different O +respects O +. O + + +Finally O +, O +the O +influence O +of O +different O +primary O +accelerating O +gases O +( O +helium S-MATE +vs O +nitrogen S-MATE +) O +on O +the O +material B-CONPRI +properties E-CONPRI +of O +the O +deposits O +was O +investigated O +. O + + +The O +tensile B-CHAR +testing E-CHAR +showed O +that O +fully B-PARA +dense E-PARA +deposits O +produced O +with O +different O +gases O +had O +similar O +stiffness S-PRO +and O +yield B-PRO +strength E-PRO +, O +but O +different O +ductility S-PRO +. O + + +The O +particle S-CONPRI +impact S-CONPRI +model O +was O +further O +used O +to O +explain O +the O +different O +material S-MATE +behaviors O +, O +which O +also O +demonstrated O +feasibility S-CONPRI +to O +connect O +the O +spray O +parameters S-CONPRI +and O +the O +material B-CONPRI +properties E-CONPRI +via O +modeling S-ENAT +for O +optimizing O +cold O +spray O +process S-CONPRI +. O + + +Lithography-based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +increasingly O +becoming O +the O +technology S-CONPRI +of O +choice O +for O +the O +small O +series O +or O +single O +unit O +production S-MANP +. O + + +At O +the O +TU O +Vienna O +a O +digital B-MANP +light I-MANP +processing E-MANP +( O +DLP S-MANP +) O +system O +was O +developed O +for O +the O +fabrication S-MANP +of O +complex O +technical O +ceramics S-MATE +, O +requiring O +high O +levels O +of O +detail O +and O +accuracy S-CHAR +. O + + +The O +DLP-system O +used O +in O +this O +study O +creates O +a O +ceramic S-MATE +green O +part O +by O +stacking O +up O +layers O +of O +a O +photo-curable B-MATE +resin E-MATE +with O +a O +solid O +loading O +of O +around O +45 O +vol. O +% O +zirconia S-MATE +. O + + +After O +a O +thermal B-CHAR +debinding E-CHAR +and O +sintering S-MANP +step O +the O +part O +turns O +into O +a O +dense O +ceramic S-MATE +and O +gains O +its O +final O +properties S-CONPRI +. O + + +The O +native O +resolution S-PARA +of O +the O +DLP S-MANP +process O +depends O +on O +the O +light O +engine O +'s O +DMD S-MANP +( O +digital O +mirror O +device O +) O +chip S-MATE +and O +the O +optics S-APPL +employed O +. O + + +Currently O +it O +is O +possible O +to O +print S-MANP +3D-structures O +with O +a O +spatial O +resolution S-PARA +down O +to O +40 O +μm O +. O + + +A O +modification O +of O +the O +light B-MACEQ +source E-MACEQ +allows O +for O +the O +customization O +of O +the O +light O +curing S-MANP +strategy O +for O +each O +pixel O +of O +the O +exposed O +layers O +. O + + +This O +work O +presents O +methods O +to O +improve O +the O +geometrical O +accuracy S-CHAR +as O +well O +as S-MATE +the O +structural O +properties S-CONPRI +of O +the O +final O +3D-printed S-MANP +ceramic O +part O +by O +using O +the O +full O +capabilities O +of O +the O +light B-MACEQ +source E-MACEQ +. O + + +On O +the O +one O +hand O +, O +the O +feasibility S-CONPRI +to O +control O +the O +dimensional O +overgrowth O +to O +gain S-PARA +resolution O +below O +the O +native O +resolution S-PARA +of O +the O +light O +engine—a O +sub-pixel O +resolution—was O +evaluated O +. O + + +Overgrowth O +occurs O +due O +to O +light B-CONPRI +scattering E-CONPRI +and O +was O +found O +to O +be S-MATE +sensitive O +to O +both O +exposure S-CONPRI +time O +and O +exposed O +area S-PARA +. O + + +On O +the O +other O +hand O +, O +different O +light O +curing S-MANP +strategies O +( O +LCSs O +) O +and O +depths O +of O +cure S-CONPRI +( O +Cd S-MATE +) O +were O +used O +for O +the O +3D-printing S-MANP +of O +ceramic S-MATE +green O +parts O +and O +their O +influence O +on O +cracks O +in O +the O +final O +ceramic S-MATE +was O +evaluated O +. O + + +It O +was O +concluded O +that O +softstart O +LCSs O +, O +as S-MATE +well O +as S-MATE +higher O +values O +for O +Cd S-MATE +, O +reduce O +cracks O +in O +the O +final O +ceramic S-MATE +. O + + +Applying O +these O +findings O +within O +the O +3D-printing S-MANP +process O +may O +be S-MATE +another O +step S-CONPRI +toward O +flawless O +and O +highly O +accurate S-CHAR +ceramic O +parts O +. O + + +Direct O +additive B-MANP +manufacturing E-MANP +of O +ceramics S-MATE +using O +melt S-CONPRI +cast S-MANP +route O +. O + + +Fabrication S-MANP +of O +compositionally O +gradient O +ceramic-metal S-MATE +structure O +in O +one O +additive B-MANP +manufacturing E-MANP +operation O +. O + + +Characterization O +and O +defect S-CONPRI +analysis O +of O +AM S-MANP +processed O +parts O +. O + + +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS™ O +) O +, O +which O +is O +a O +laser S-ENAT +based O +additive B-MANP +manufacturing E-MANP +method O +, O +was O +utilized O +to O +fabricate S-MANP +Ti-Al2O3 O +compositionally O +graded O +structures O +. O + + +The O +Ti-Al2O3 O +graded O +composites S-MATE +consisted O +of O +different O +sections O +−Ti6Al4V O +alloy S-MATE +, O +Ti6Al4V S-MATE ++ O +Al2O3 S-MATE +composites O +, O +and O +pure O +Al2O3 S-MATE +ceramic O +. O + + +After O +LENS™ O +processing O +, O +microstructural B-CHAR +characterization E-CHAR +, O +phase S-CONPRI +analysis O +, O +elemental O +distribution S-CONPRI +, O +and O +microhardness S-CONPRI +measurements O +were O +performed O +on O +the O +cross B-CONPRI +sections E-CONPRI +of O +Ti-Al2O3 O +graded O +composites S-MATE +. O + + +Each O +section O +had O +their O +unique O +microstructures S-MATE +and O +phases O +. O + + +Moreover O +, O +hardness S-PRO +measurements O +demonstrated O +that O +the O +pure O +Al2O3 S-MATE +section O +had O +the O +highest O +hardness S-PRO +of O +2365.5 O +± O +64.7 O +HV0.3 O +. O + + +Conventional O +ceramic B-MANP +processing E-MANP +requires O +extensive O +post-processing S-CONPRI +including O +high O +temperature S-PARA +sintering S-MANP +, O +which O +makes O +it O +difficult O +for O +direct O +fabrication S-MANP +of O +metal-ceramic O +multi-layer O +structures O +. O + + +The O +results O +demonstrate O +that O +LENS™ O +can O +be S-MATE +utilized O +to O +process B-CONPRI +multi-material E-CONPRI +metal B-MATE +ceramic E-MATE +composites S-MATE +in O +a O +single O +step S-CONPRI +while O +maintaining O +the O +size O +, O +shape O +and O +compositional O +variations S-CONPRI +based O +on O +computer B-ENAT +aided I-ENAT +design E-ENAT +files O +. O + + +Since O +this O +is O +a O +first-generation O +work O +, O +and O +limited O +research S-CONPRI +results O +are O +available O +in O +published O +literature O +related O +to O +LENS™ O +processing O +of O +both O +metals B-MATE +and I-MATE +ceramics E-MATE +in O +one O +operation O +, O +the O +demonstration O +of O +this O +work O +is O +expected O +to O +inspire O +future O +studies O +on O +manufacturing S-MANP +of O +multi-material S-CONPRI +composites S-MATE +using O +AM S-MANP +. O + + +A O +rather O +simple S-MANP +computational O +analysis O +for O +the O +thermomechanical S-CONPRI +simulation S-ENAT +of O +the O +EBM S-MANP +is O +presented O +. O + + +A O +new O +model S-CONPRI +is O +provided O +to O +account O +the O +powder B-MACEQ +bed E-MACEQ +behaviour O +during O +the O +melting S-MANP +. O + + +Shrinkage S-CONPRI +and O +porosity S-PRO +for O +both O +powder S-MATE +and O +bulk O +materials S-CONPRI +are O +considered O +. O + + +Experimental S-CONPRI +validations O +support S-APPL +strongly O +the O +effectiveness S-CONPRI +of O +the O +proposed O +model S-CONPRI +. O + + +The O +proposed O +approach O +might O +be S-MATE +useful O +for O +other O +powder-based O +AM B-MANP +processes E-MANP +as O +well O +. O + + +In O +this O +work O +, O +an O +improved O +but O +still O +rather O +simple S-MANP +computational O +analysis O +is O +presented O +for O +a O +more O +detailed O +prediction S-CONPRI +of O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +process S-CONPRI +outcomes O +. O + + +A O +fully O +coupled O +thermomechanical S-CONPRI +analysis O +is O +developed O +in O +which O +nonlinearities O +due O +to O +the O +variation S-CONPRI +of O +material B-CONPRI +properties E-CONPRI +when O +the O +material S-MATE +melts O +are O +included O +. O + + +A O +new O +analytical O +approach O +is O +developed O +to O +emulate O +the O +volume S-CONPRI +variation S-CONPRI +of O +the O +powder B-MACEQ +bed E-MACEQ +during O +heating S-MANP +and O +melting S-MANP +. O + + +Particularly O +, O +the O +expansion O +of O +the O +powder B-MATE +particles E-MATE +and O +the O +porosity S-PRO +reduction O +within O +the O +powder B-MACEQ +bed E-MACEQ +are O +considered O +simultaneously O +. O + + +The O +thermal B-CONPRI +expansion E-CONPRI +and O +the O +shrinkage S-CONPRI +of O +solid O +material S-MATE +during O +heating S-MANP +and O +cooling S-MANP +and O +the O +stress S-PRO +formation O +within O +the O +solid O +material S-MATE +are O +also O +modelled O +. O + + +The O +model S-CONPRI +can O +predict O +the O +geometrical O +transformation O +of O +the O +powder S-MATE +into O +solid O +material S-MATE +in O +an O +efficient O +way O +. O + + +A O +comparison O +between O +experimental S-CONPRI +and O +simulated O +cross-sectional O +areas S-PARA +of O +melted S-CONPRI +single O +lines O +is O +presented O +. O + + +Both O +continues O +line O +melting S-MANP +and O +fractional O +line O +melting S-MANP +, O +multi O +beam S-MACEQ +melting O +, O +are O +considered O +. O + + +The O +model S-CONPRI +shows O +a O +good O +ability O +to O +provide O +consistent O +and O +accurate S-CHAR +forecasts O +. O + + +The O +main O +goal O +of O +this O +work O +is O +the O +adoption O +of O +additive B-MANP +manufacturing E-MANP +for O +the O +production S-MANP +of O +inexpensive O +rare-earth O +free O +MnAl-based O +permanent B-MATE +magnets E-MATE +. O + + +The O +use O +of O +more O +advanced O +binder-free S-CONPRI +additive B-MANP +manufacturing E-MANP +technique O +such O +as S-MATE +Electron O +Beam S-MACEQ +Melting O +( O +EBM S-MANP +) O +allows O +obtaining O +fully-dense O +magnetic O +materials S-CONPRI +with O +advanced O +topology S-CONPRI +and O +complex B-PRO +shapes E-PRO +. O + + +We O +focus O +on O +the O +feasibility S-CONPRI +of O +controlling O +the O +phase S-CONPRI +formation O +in O +additively B-MANP +manufactured E-MANP +Mn-Al O +alloys S-MATE +by O +employing O +post-manufacturing O +heat B-MANP +treatment E-MANP +. O + + +The O +as-manufactured O +EBM S-MANP +samples O +contain O +8 O +% O +of O +the O +desired O +ferromagnetic O +τ-MnAl O +phase S-CONPRI +. O + + +After O +the O +optimized O +annealing B-MANP +treatment E-MANP +, O +the O +content O +of O +the O +τ-phase O +was O +increased O +to O +90 O +% O +. O + + +This O +sample S-CONPRI +has O +a O +coercivity O +value O +of O +0.15 O +T O +, O +which O +is O +also O +the O +maximum O +achieved O +in O +conventionally O +produced O +binary S-CONPRI +MnAl O +magnets S-APPL +. O + + +Moreover O +, O +the O +EBM S-MANP +samples O +are O +fully B-PARA +dense E-PARA +and O +have O +the O +same O +density S-PRO +as S-MATE +the O +samples S-CONPRI +produced O +by O +conventional O +melting S-MANP +density S-PRO +. O + + +A O +modelling S-ENAT +strategy O +is O +proposed O +to O +evaluate O +the O +influence O +of O +defect S-CONPRI +morphology O +on O +the O +fatigue S-PRO +limit O +of O +additively B-MANP +manufactured E-MANP +Al O +alloys S-MATE +by O +: O +( O +i O +) O +obtaining O +an O +x-ray B-CHAR +micro-Computed I-CHAR +Tomography E-CHAR +( O +μ-CT O +) O +3D B-CONPRI +image E-CONPRI +of O +the O +material S-MATE +, O +( O +ii O +) O +computing O +the O +Equivalent O +Inertia O +Ellipsoid O +of O +each O +individual O +pore S-PRO +, O +( O +iii O +) O +modelling S-ENAT +the O +influence O +of O +the O +defect S-CONPRI +on O +the O +fatigue S-PRO +limit O +through O +the O +Defect S-CONPRI +Stress O +Gradient O +( O +DSG O +) O +approach O +coupled O +to O +the O +Eshelby O +theory O +and O +, O +( O +iv O +) O +3D S-CONPRI +mapping O +the O +criticality O +of O +each O +individual O +defect S-CONPRI +. O + + +For O +this O +fatigue S-PRO +study O +, O +an O +AlSi10Mg B-MATE +alloy E-MATE +was O +manufactured S-CONPRI +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +using O +sub-optimal O +deposition S-CONPRI +parameters O +in O +order O +to O +produce O +large O +lack-of-fusion O +defects S-CONPRI +. O + + +After O +a O +T6 O +heat B-MANP +treatment E-MANP +, O +tension-compression O +fatigue B-CHAR +tests E-CHAR +, O +with O +R O += O +−1 O +, O +were O +conducted O +on O +specimens O +oriented O +with O +their O +loading O +axis O +either O +parallel O +or O +normal O +to O +the O +Z-axis S-CONPRI +of O +the O +additive B-MANP +manufacturing E-MANP +equipment O +. O + + +Two O +samples S-CONPRI +were O +characterised O +before O +μ-CT O +testing S-CHAR +in O +order O +to O +characterise O +the O +initial O +3D S-CONPRI +defect O +population S-BIOP +. O + + +Each O +sample S-CONPRI +was O +fatigued O +step S-CONPRI +by O +step S-CONPRI +in O +order O +to O +determine O +the O +fatigue S-PRO +limit O +. O + + +The O +fracture S-CONPRI +surface O +was O +observed O +in O +order O +to O +identify O +the O +critical O +defect S-CONPRI +in O +the O +initial O +μ-CT O +image S-CONPRI +. O + + +A O +comparison O +with O +the O +fatigue S-PRO +results O +led S-APPL +to O +the O +following O +conclusions O +: O +( O +i O +) O +when O +the O +longest O +axis O +of O +the O +defect S-CONPRI +is O +perpendicular O +to O +the O +loading O +axis O +, O +modelling S-ENAT +the O +defect S-CONPRI +as S-MATE +an O +equivalent O +inertia O +prolate O +ellipsoid O +gives O +better O +results O +( O +5 O +% O +error S-CONPRI +on O +the O +fatigue S-PRO +limit O +) O +than O +modelling S-ENAT +it O +as S-MATE +a O +simple S-MANP +equivalent O +sphere O +( O +22 O +% O +error S-CONPRI +on O +the O +fatigue S-PRO +limit O +) O +, O +( O +ii O +) O +the O +prolate O +ellipsoid O +is O +not O +relevant O +when O +the O +longest O +axis O +of O +the O +defect S-CONPRI +is O +oriented O +along O +the O +loading O +axis O +; O +in O +this O +case O +an O +oblate O +equivalent O +ellipsoid O +should O +be S-MATE +used O +, O +( O +iii O +) O +the O +concept O +of O +‘ O +size O +’ O +for O +a O +complex O +3D S-CONPRI +shaped O +defect S-CONPRI +should O +be S-MATE +linked O +to O +the O +inertia O +and O +the O +loading O +, O +( O +iv O +) O +with O +this O +approach O +, O +surface B-CONPRI +defects E-CONPRI +are O +shown O +to O +be S-MATE +more O +critical O +than O +internal O +ones O +for O +fatigue B-PRO +life E-PRO +and O +, O +( O +v S-MATE +) O +a O +3D S-CONPRI +defect O +criticality O +map O +of O +the O +entire O +sample S-CONPRI +can O +be S-MATE +plotted O +to O +provide O +visual O +feedback S-PARA +on O +which O +defects S-CONPRI +are O +the O +most O +critical O +for O +fatigue B-PRO +life E-PRO +. O + + +In O +common O +thermoplastic S-MATE +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +, O +a O +solid O +polymer B-MATE +filament E-MATE +is O +melted S-CONPRI +, O +extruded S-MANP +though O +a O +rastering O +nozzle S-MACEQ +, O +welded S-MANP +onto O +neighboring O +layers O +and O +solidified O +. O + + +The O +temperature S-PARA +of O +the O +polymer S-MATE +at O +each O +of O +these O +stages O +is O +the O +key O +parameter S-CONPRI +governing O +these O +non-equilibrium O +processes S-CONPRI +, O +but O +due O +to O +its O +strong O +spatial O +and O +temporal O +variations S-CONPRI +, O +it O +is O +difficult O +to O +measure O +accurately S-CHAR +. O + + +Here O +we O +utilize O +infrared S-CONPRI +( O +IR S-CHAR +) O +imaging S-APPL +– O +in O +conjunction O +with O +necessary O +reflection S-CHAR +corrections O +and O +calibration S-CONPRI +procedures O +– O +to O +measure O +these O +temperature S-PARA +profiles S-FEAT +of O +a O +model S-CONPRI +polymer O +during O +3D B-MANP +printing E-MANP +. O + + +From O +the O +temperature S-PARA +profiles S-FEAT +of O +the O +printed O +layer S-PARA +( O +road O +) O +and O +sublayers O +, O +the O +temporal O +profile S-FEAT +of O +the O +crucially O +important O +weld S-FEAT +temperatures S-PARA +can O +be S-MATE +obtained O +. O + + +Under O +typical O +printing O +conditions O +, O +the O +weld S-FEAT +temperature S-PARA +decreases O +at O +a O +rate O +of O +approximately O +100 O +°C/s O +and O +remains O +above O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +for O +approximately O +1 O +s. O +These O +measurement S-CHAR +methods O +are O +a O +first O +step S-CONPRI +in O +the O +development O +of O +strategies O +to O +control O +and O +model S-CONPRI +the O +printing B-MANP +processes E-MANP +and O +in O +the O +ability O +to O +develop O +models O +that O +correlate O +critical O +part O +strength S-PRO +with O +material S-MATE +and O +processing O +parameters S-CONPRI +. O + + +A O +novel O +compulsively O +constricted O +wire O +arc S-CONPRI +additive S-MATE +manufacturing(CC-WAAM)method O +was O +proposed O +with O +arc S-CONPRI +and O +droplets S-CONPRI +ejected O +out O +of O +a O +narrow O +space O +. O + + +Small-size O +liquid O +droplets S-CONPRI +were O +transferred O +to O +previous O +layer S-PARA +with O +stable O +path O +and O +direction O +with O +low O +heat S-CONPRI +input O +. O + + +Good O +shielding O +and O +heat S-CONPRI +preservation O +for O +high-temperature O +liquid O +droplets S-CONPRI +as S-MATE +well O +as S-MATE +the O +liquid O +pool O +were O +guaranteed O +by O +the O +ejected O +arc S-CONPRI +plasma O +. O + + +Uniform O +and O +fine O +microstructures S-MATE +were O +achieved O +in O +the O +deposited O +metal S-MATE +using O +mild B-MATE +steel E-MATE +filler O +wire O +in O +CC-WAAM O +. O + + +In O +order O +to O +realize O +oriented O +wire B-MANP +and I-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +featured O +by O +low O +heat S-CONPRI +input O +and O +small O +droplets S-CONPRI +, O +a O +novel O +compulsively O +constricted O +WAAM S-MANP +( O +CC-WAAM O +) O +method O +was O +proposed O +and O +investigated O +in O +this O +paper O +. O + + +The O +arc S-CONPRI +burned O +between O +a O +metallic S-MATE +wire O +and O +a O +tungsten S-MATE +electrode S-MACEQ +in O +a O +narrow-space O +nozzle S-MACEQ +. O + + +The O +proposed O +technology S-CONPRI +could O +provide O +compulsive O +constriction O +for O +arc S-CONPRI +plasma O +and O +liquid B-MATE +metal E-MATE +droplets S-CONPRI +using O +a O +cubic B-MATE +boron I-MATE +nitride E-MATE +( O +CBN S-MATE +) O +ceramic S-MATE +nozzle O +. O + + +The O +surrounding O +arc S-CONPRI +was O +ejected O +out O +of O +the O +nozzle S-MACEQ +and O +offered O +extra O +heating S-MANP +and O +a O +good O +shielding O +environment O +during O +the O +whole O +manufacturing B-MANP +process E-MANP +. O + + +The O +arc S-CONPRI +and O +metal S-MATE +transfer O +behaviors O +could O +be S-MATE +improved O +for O +better O +performance S-CONPRI +and O +higher O +quality S-CONPRI +. O + + +The O +economic O +and O +efficient O +new O +method O +is O +expected O +to O +solve O +the O +challenges O +faced S-MANP +by O +traditional O +WAAM S-MANP +such O +as S-MATE +excessive O +heat S-CONPRI +input O +and O +poor O +geometrical O +accuracy S-CHAR +. O + + +Preliminary O +experiments O +showed O +that O +the O +two O +AM S-MANP +layers O +produced O +by O +the O +novel O +method O +had O +homogeneous S-CONPRI +microstructure O +distribution S-CONPRI +and O +fine O +grains S-CONPRI +. O + + +The O +geometrical O +dimensions S-FEAT +of O +each O +layer S-PARA +can O +be S-MATE +effectively O +controlled O +by O +regulating O +the O +travel O +speed O +of O +the O +torch O +. O + + +The O +wide-range O +adjustable O +heat S-CONPRI +input O +can O +effectively O +control O +the O +state O +of O +the O +metallic S-MATE +formation O +, O +making O +it O +possible O +to O +realize O +an O +accurate S-CHAR +control O +of O +the O +microstructure S-CONPRI +and O +properties S-CONPRI +. O + + +Residual B-PRO +stress E-PRO +distribution S-CONPRI +in O +cold O +spray O +microparticles O +for O +additive B-MANP +manufacturing E-MANP +is O +studied O +. O + + +A O +simulation S-ENAT +model S-CONPRI +for O +cold-spray O +additive B-MANP +manufacturing E-MANP +based O +on O +arbitrary O +Lagrangian–Eulerian O +method O +is O +proposed O +. O + + +The O +residual B-PRO +stress E-PRO +formation O +mechanism S-CONPRI +in O +cold-spray O +additive B-MANP +manufacturing E-MANP +is O +explained O +in O +detail O +. O + + +Cold O +spray O +( O +CS O +) O +residual B-PRO +stress E-PRO +was O +measured O +by O +the O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +and O +contour S-FEAT +methods O +. O + + +The O +residual B-PRO +stress E-PRO +components S-MACEQ +SX O +and O +SY O +, O +perpendicular O +to O +the O +thickness O +, O +have O +similar O +distributions S-CONPRI +and O +approximately O +equal O +magnitudes O +. O + + +Both O +are O +compressive O +on O +the O +deposited O +surface S-CONPRI +and O +become O +tensile S-PRO +inside O +the O +structure S-CONPRI +. O + + +An O +advanced O +simulation S-ENAT +model S-CONPRI +based O +on O +the O +arbitrary O +Lagrangian–Eulerian O +( O +ALE O +) O +method O +was O +developed O +to O +investigate O +the O +residual B-PRO +stress E-PRO +distributions S-CONPRI +in O +a O +single O +CS O +microparticle O +and O +multi-layer O +CS O +microparticles O +and O +reveal O +the O +formation O +mechanism S-CONPRI +. O + + +The O +residual B-PRO +stress E-PRO +components S-MACEQ +SX O +and O +SY O +predicted S-CONPRI +by O +the O +proposed O +simulation S-ENAT +model S-CONPRI +have O +the O +same O +distribution S-CONPRI +as S-MATE +shown O +by O +the O +measurements O +, O +i.e. O +, O +compressive O +on O +the O +surface S-CONPRI +and O +tensile S-PRO +inside O +. O + + +As S-MATE +the O +number O +of O +deposition B-PARA +layers E-PARA +increases O +, O +the O +position O +of O +maximum O +tensile B-PRO +stress E-PRO +moves O +from O +the O +substrate S-MATE +to O +the O +deposited B-CHAR +layers E-CHAR +. O + + +The O +residual B-PRO +stress E-PRO +component S-MACEQ +SZ O +in O +the O +direction O +of O +the O +deposition S-CONPRI +thickness O +shows O +alternate O +tensile S-PRO +and O +compressive O +distributions S-CONPRI +in O +the O +transverse O +direction O +, O +which O +is O +quite O +different O +from O +that O +of O +the O +transverse O +component S-MACEQ +. O + + +The O +present O +work O +provides O +a O +guideline O +for O +effectively O +tailoring O +the O +residual B-PRO +stress E-PRO +in O +CS O +parts O +and O +thereby O +improving O +the O +fatigue S-PRO +lifetime O +. O + + +Because O +many O +of O +the O +most O +important O +defects S-CONPRI +in O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +L-PBF S-MANP +) O +occur O +at O +the O +size O +and O +timescales O +of O +the O +melt B-MATE +pool E-MATE +itself O +, O +the O +development O +of O +methodologies O +for O +monitoring O +the O +melt B-MATE +pool E-MATE +is O +critical O +. O + + +This O +works O +examines O +the O +possibility O +of O +in-situ S-CONPRI +detection O +of O +keyholing O +porosity S-PRO +and O +balling O +instabilities O +. O + + +Specifically O +, O +a O +visible-light O +high O +speed O +camera S-MACEQ +with O +a O +fixed O +field O +of O +view O +is O +used O +to O +study O +the O +morphology S-CONPRI +of O +L-PBF S-MANP +melt O +pools O +in O +the O +Inconel B-MATE +718 E-MATE +material O +system O +. O + + +A O +scale-invariant O +description O +of O +melt B-MATE +pool E-MATE +morphology O +is O +constructed O +using O +Computer B-CONPRI +Vision E-CONPRI +techniques O +and O +unsupervised O +Machine S-MACEQ +Learning O +is O +used O +to O +differentiate O +between O +observed O +melt B-MATE +pools E-MATE +. O + + +By O +observing O +melt B-MATE +pools E-MATE +produced O +across O +process S-CONPRI +space O +, O +in-situ S-CONPRI +signatures O +are O +identified O +which O +may O +indicate O +flaws S-CONPRI +such O +as S-MATE +those O +observed O +ex-situ O +. O + + +This O +linkage O +of O +ex-situ O +and O +in-situ S-CONPRI +morphology O +enabled O +the O +use O +of O +supervised O +Machine S-MACEQ +Learning O +to O +classify O +melt B-MATE +pools E-MATE +observed O +( O +with O +the O +high O +speed O +camera S-MACEQ +) O +during O +fusion S-CONPRI +of O +non-bulk O +geometries S-CONPRI +such O +as S-MATE +overhangs O +. O + + +The O +ability O +to O +deposit O +a O +consistent O +and O +predictable S-CONPRI +solidification O +microstructure S-CONPRI +can O +greatly O +accelerate O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +qualification O +. O + + +Process S-CONPRI +mapping O +is O +an O +approach O +that O +represents O +process S-CONPRI +outcomes O +in O +terms O +of O +process S-CONPRI +variables O +. O + + +In O +this O +work O +, O +a O +solidification B-CONPRI +microstructure E-CONPRI +process S-CONPRI +map O +was O +developed O +using O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +for O +deposition S-CONPRI +of O +single O +beads S-CHAR +of O +Ti-6Al-4V S-MATE +via O +electron B-CONPRI +beam E-CONPRI +wire O +feed S-PARA +AM B-MANP +processes E-MANP +. O + + +Process S-CONPRI +variable O +combinations O +yielding O +constant O +beta O +grain B-PRO +size E-PRO +and O +morphology S-CONPRI +were O +identified O +. O + + +Comparison O +with O +a O +previously O +developed O +process S-CONPRI +map O +for O +melt B-MATE +pool E-MATE +geometry S-CONPRI +shows O +that O +maintaining O +a O +constant O +melt B-MATE +pool E-MATE +cross O +sectional O +area S-PARA +will O +also O +yield O +a O +constant O +grain B-PRO +size E-PRO +. O + + +Additionally O +, O +the O +grain S-CONPRI +morphology O +boundaries S-FEAT +are O +similar O +to O +curves O +of O +constant O +melt B-MATE +pool E-MATE +aspect B-FEAT +ratio E-FEAT +. O + + +Experimental S-CONPRI +results O +support S-APPL +the O +numerical O +predictions S-CONPRI +and O +identify O +a O +proportional O +size O +scaling O +between O +beta O +grain S-CONPRI +widths O +and O +melt B-MATE +pool E-MATE +widths O +. O + + +Results O +further O +demonstrate O +that O +in B-CONPRI +situ E-CONPRI +indirect O +control O +of O +solidification B-CONPRI +microstructure E-CONPRI +is O +possible O +through O +direct O +melt B-PARA +pool I-PARA +dimension E-PARA +control O +. O + + +The O +effects O +of O +electron B-CONPRI +beam E-CONPRI +manufactured O +( O +EBM S-MANP +) O +process-induced O +defects S-CONPRI +on O +local O +microstructural B-CONPRI +failure E-CONPRI +initiation O +and O +propagation O +in O +IN O +718 O +have O +been O +investigated O +. O + + +Predictions S-CONPRI +for O +transgranular B-CONPRI +fracture E-CONPRI +, O +based O +on O +local O +cleavage B-CONPRI +plane E-CONPRI +stresses O +, O +and O +for O +intergranular O +fracture S-CONPRI +, O +based O +on O +dislocation-grain O +boundary S-FEAT +( O +GB O +) O +interactions O +and O +evolving O +dislocation S-CONPRI +pileups O +, O +were O +combined O +with O +a O +crystalline O +dislocation-density O +plasticity S-PRO +approach O +to O +understand O +the O +influence O +of O +AM S-MANP +process-induced O +defects S-CONPRI +, O +such O +as S-MATE +porosity O +, O +NbC O +precipitates S-MATE +, O +and O +regions O +of O +dry O +powder S-MATE +. O + + +High O +local O +stresses O +along O +the O +peripheries O +of O +pores S-PRO +caused O +crack O +nucleation S-CONPRI +, O +and O +mismatches O +in O +deformation S-CONPRI +behavior O +between O +NbC O +precipitates S-MATE +and O +the O +surrounding O +matrix O +led S-APPL +to O +local O +stress S-PRO +gradients O +that O +induced O +crack O +nucleation S-CONPRI +and O +decohesion O +at O +precipitate/matrix O +interfaces O +. O + + +Regions O +of O +unmelted O +powder S-MATE +had O +significant O +stress S-PRO +accumulations O +that O +initiated O +failure S-CONPRI +at O +low O +nominal O +strains O +. O + + +Failure S-CONPRI +due O +to O +high O +localized O +stresses O +near O +regions O +of O +unmelted O +powder S-MATE +was O +dominant O +over O +precipitate/matrix O +decohesion O +and O +crack O +nucleation S-CONPRI +near O +pore S-PRO +peripheries O +. O + + +Based O +on O +the O +predictions S-CONPRI +, O +the O +mechanical S-APPL +behavior O +of O +AM S-MANP +alloys S-MATE +is O +governed O +by O +local O +dislocation-density O +evolution S-CONPRI +near O +process-induced O +defects S-CONPRI +, O +which O +preferentially O +nucleate O +material S-MATE +failure S-CONPRI +. O + + +Furthermore O +, O +interactions O +between O +these O +different O +defect S-CONPRI +types O +can O +significantly O +accelerate O +failure S-CONPRI +initiation O +and O +propagation O +. O + + +Lattice B-FEAT +structures E-FEAT +can O +add O +value O +to O +high-performance O +components S-MACEQ +manufactured O +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +due O +to O +their O +high O +specific B-PRO +strength E-PRO +and O +stiffness S-PRO +. O + + +A O +further O +use O +of O +lattice B-FEAT +structures E-FEAT +is O +in O +thermo-mechanical S-CONPRI +applications O +, O +where O +the O +high O +surface B-PARA +area E-PARA +of O +the O +lattice S-CONPRI +may O +aid O +heat B-CONPRI +transfer E-CONPRI +. O + + +However O +, O +little O +characterisation O +of O +lattices S-CONPRI +under O +thermal B-CONPRI +loading E-CONPRI +is O +currently O +available O +in O +the O +literature O +. O + + +In O +this O +study O +, O +a O +custom-built O +test O +rig O +was O +used O +to O +characterise O +the O +thermal O +conduction O +for O +three O +triply B-CONPRI +periodic I-CONPRI +minimal I-CONPRI +surface E-CONPRI +lattice S-CONPRI +types O +, O +namely O +: O +gyroid O +, O +diamond S-MATE +and O +Schwarz O +primitives O +, O +with O +unit B-CONPRI +cell E-CONPRI +size O +and O +volume B-PARA +fraction E-PARA +being O +varied.Results O +show O +that O +thermal B-PRO +conductivity E-PRO +is O +primarily O +a O +function O +of O +the O +material B-CONPRI +properties E-CONPRI +and O +volume B-PARA +fraction E-PARA +of O +the O +sample S-CONPRI +. O + + +However O +, O +some O +effects O +of O +the O +geometry S-CONPRI +, O +such O +as S-MATE +surface O +area S-PARA +to O +volume S-CONPRI +ratio O +, O +can O +be S-MATE +used O +to O +explain O +slight O +differences O +in O +the O +measured O +conductivity S-PRO +. O + + +The O +Schwarz O +primitive O +unit B-CONPRI +cell E-CONPRI +consistently O +gave O +the O +highest O +conductivity S-PRO +, O +with O +diamond S-MATE +and O +gyroid O +unit B-CONPRI +cells E-CONPRI +being O +marginally O +lower O +. O + + +Larger O +cell B-PRO +sizes E-PRO +typically O +gave O +higher O +conductivity S-PRO +than O +smaller O +cells S-APPL +, O +which O +can O +be S-MATE +attributed O +to O +greater O +intra-cell O +convective O +heat B-CONPRI +transfer E-CONPRI +and O +better O +interface S-CONPRI +coupling O +with O +the O +testing S-CHAR +apparatus.The O +experimental S-CONPRI +results O +are O +used O +to O +derive O +equations O +that O +allow O +samples S-CONPRI +with O +a O +specified O +thermal B-PRO +conductivity E-PRO +to O +be S-MATE +designed O +, O +thus O +demonstrating O +how O +a O +component S-MACEQ +may O +be S-MATE +manufactured O +with O +a O +custom O +thermal B-CONPRI +profile E-CONPRI +by O +varying O +the O +volume B-PARA +fraction E-PARA +of O +the O +lattice S-CONPRI +. O + + +Sensing S-APPL +and O +closed-loop B-MACEQ +control E-MACEQ +are O +critical O +attributes O +of O +a O +robust O +3D B-MANP +printing E-MANP +process O +, O +such O +as S-MATE +Directed O +Energy O +Deposition S-CONPRI +( O +DED S-MANP +) O +, O +in O +which O +it O +is O +necessary O +to O +manage O +geometry S-CONPRI +, O +material B-CONPRI +properties E-CONPRI +, O +and O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +. O + + +The O +present O +research S-CONPRI +demonstrates O +multiple O +modes O +of O +closed-loop O +melt B-MATE +pool E-MATE +size O +control O +in O +laser-wire O +based O +DED S-MANP +, O +a O +form O +of O +large-scale O +metal B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +First O +, O +real-time O +closed-loop O +melt B-MATE +pool E-MATE +size O +control O +through O +laser B-PARA +power E-PARA +modulation O +was O +demonstrated O +for O +intralayer O +control O +of O +bead B-CHAR +geometry E-CHAR +. O + + +Next O +, O +an O +interlayer O +trend S-CONPRI +in O +laser B-PARA +power E-PARA +during O +the O +printing O +of O +layered O +components S-MACEQ +was O +documented O +, O +which O +inspired O +the O +development O +of O +novel O +modes O +of O +control O +. O + + +A O +controller S-MACEQ +that O +modulates O +print S-MANP +speed O +and O +deposition B-PARA +rate E-PARA +on O +a O +per-layer O +basis O +was O +developed O +and O +demonstrated O +, O +enabling O +the O +control O +of O +either O +average S-CONPRI +melt O +pool O +size O +alone O +or O +average S-CONPRI +laser O +power S-PARA +in O +coordination O +with O +real-time O +melt B-MATE +pool E-MATE +size O +control O +. O + + +This O +work O +demonstrates O +that O +accumulated O +heat S-CONPRI +in O +components S-MACEQ +under O +construction S-APPL +can O +be S-MATE +exploited O +to O +maintain O +process S-CONPRI +stability O +as S-MATE +print O +speed O +and O +deposition B-PARA +rate E-PARA +are O +automatically O +increased O +under O +closed-loop B-MACEQ +control E-MACEQ +. O + + +This O +has O +major O +implications O +for O +overall O +production S-MANP +efficiency O +. O + + +Control O +modes O +are O +characterized O +in O +terms O +of O +their O +effect O +on O +local O +bead B-CHAR +geometry E-CHAR +, O +global O +part O +geometry S-CONPRI +, O +and O +interlayer O +effect O +on O +energy B-PARA +density E-PARA +, O +among O +other O +factors O +. O + + +Quality B-CONPRI +control E-CONPRI +in O +metal B-MANP +additive I-MANP +manufacturing E-MANP +prioritizes O +the O +development O +of O +advanced O +inspection S-CHAR +schemes O +to O +characterize O +the O +defect S-CONPRI +evolution O +during O +processing O +and O +post-processing S-CONPRI +. O + + +This O +involves O +grand O +challenges O +in O +detecting O +internal O +defects S-CONPRI +and O +analyzing O +large O +and O +complex O +defect S-CONPRI +datasets O +in O +macroscopic S-CONPRI +samples O +. O + + +Here O +, O +we O +present O +an O +inspection S-CHAR +pipeline O +that O +integrates O +( O +i O +) O +fast O +, O +micro O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +reconstruction S-CONPRI +, O +( O +ii O +) O +automated O +3D S-CONPRI +morphology O +analysis O +, O +and O +( O +iii O +) O +machine S-MACEQ +learning-based O +big O +data S-CONPRI +analysis O +. O + + +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +and O +automated O +computer B-CONPRI +vision E-CONPRI +result O +in O +a O +holistic O +defect S-CONPRI +morphology O +database S-ENAT +for O +the O +inspected O +macroscopic S-CONPRI +volume O +, O +based O +on O +which O +machine S-MACEQ +learning O +analysis O +is O +employed O +to O +reveal O +quantitative S-CONPRI +insights O +into O +the O +global O +evolution S-CONPRI +of O +defect S-CONPRI +characteristics O +beyond O +qualitative S-CONPRI +human O +observations O +. O + + +We O +demonstrate O +this O +pipeline O +by O +examining O +the O +global-scale O +pore S-PRO +evolution S-CONPRI +in O +post-processing S-CONPRI +of O +binder B-MANP +jetting I-MANP +additive I-MANP +manufacturing E-MANP +, O +from O +the O +green O +state O +, O +to O +the O +sintered S-MANP +state O +, O +and O +to O +the O +hot O +isostatic O +pressed S-MANP +state O +of O +copper S-MATE +. O + + +The O +pipeline O +is O +shown O +to O +be S-MATE +effective O +at O +detecting O +and O +processing O +the O +information O +associated O +with O +a O +large O +number O +( O +∼105 O +) O +of O +pores S-PRO +in O +macroscopic S-CONPRI +volumes O +. O + + +By O +quantifying O +the O +evolution S-CONPRI +of O +( O +i O +) O +the O +weight S-PARA +of O +pore S-PRO +morphology S-CONPRI +parameters O +and O +( O +ii O +) O +the O +pore S-PRO +number O +and O +volume B-PARA +fraction E-PARA +of O +each O +categorized O +group O +, O +new O +understandings O +are O +developed O +regarding O +the O +effects O +of O +sintering S-MANP +and O +hot B-MANP +isostatic I-MANP +pressing E-MANP +on O +pore B-PRO +decomposition E-PRO +, O +shrinkage S-CONPRI +, O +and O +smoothing O +during O +post-processing S-CONPRI +of O +binder B-MANP +jetting E-MANP +. O + + +Pore S-PRO +structures O +with O +isotropic S-PRO +stiffness O +fabricated S-CONPRI +via O +selective B-MANP +laser I-MANP +melting E-MANP +. O + + +The O +structures O +were O +based O +on O +topology B-FEAT +optimization E-FEAT +and O +additive B-MANP +manufacturing E-MANP +. O + + +The O +stiffness S-PRO +was O +experimentally O +verified O +. O + + +The O +stiffness S-PRO +and O +strength S-PRO +were O +higher O +than O +conventional O +porous B-MATE +metals E-MATE +. O + + +Recent O +additive B-MANP +manufacturing E-MANP +technologies O +can O +be S-MATE +used O +to O +fabricate S-MANP +porous O +metals S-MATE +with O +precise O +internal O +pore S-PRO +structures O +and O +effective O +performance S-CONPRI +. O + + +We O +use O +topology B-FEAT +optimization E-FEAT +to O +derive O +an O +optimal O +pore S-PRO +structure O +shape O +with O +high O +stiffness S-PRO +that O +is O +verified O +experimentally O +. O + + +The O +design S-FEAT +maximizes O +the O +effective O +bulk B-PRO +modulus E-PRO +and O +isotropic S-PRO +stiffness O +, O +and O +the O +performance S-CONPRI +is O +compared O +with O +Hashin–Shtrikman O +( O +HS S-MATE +) O +bounds O +. O + + +The O +optimized O +structure S-CONPRI +is O +fabricated S-CONPRI +via O +selective B-MANP +laser I-MANP +melting E-MANP +of O +maraging B-MATE +steel E-MATE +, O +which O +is O +a O +high-strength O +, O +iron-nickel O +steel S-MATE +that O +can O +not O +easily O +be S-MATE +made O +porous S-PRO +with O +conventional O +methods O +. O + + +The O +optimal O +porous S-PRO +structure O +achieved O +85 O +% O +of O +the O +performance S-CONPRI +of O +the O +HS S-MATE +upper O +bound O +in O +numerical B-ENAT +simulations E-ENAT +, O +and O +at O +least O +90 O +% O +of O +them O +were O +realized O +in O +compressive O +testing S-CHAR +. O + + +Finally O +, O +the O +performance S-CONPRI +is O +discussed O +relative O +to O +that O +of O +other O +metals S-MATE +. O + + +In O +metal B-MANP +additive I-MANP +manufacturing E-MANP +, O +microstructural S-CONPRI +inhomogeneities O +, O +like O +anisotropic S-PRO +mechanical O +strength S-PRO +and O +geometric O +limitations O +in O +directed B-MANP +energy I-MANP +deposition E-MANP +, O +electron B-MANP +beam I-MANP +melting E-MANP +, O +or O +selective B-MANP +laser I-MANP +sintering E-MANP +, O +have O +led S-APPL +to O +the O +exploration O +of O +alternative O +techniques O +in O +recent O +years O +. O + + +Among O +these O +techniques O +, O +fused B-MANP +filament I-MANP +fabrication E-MANP +is O +an O +attractive O +alternative O +due O +to O +its O +successes O +in O +producing O +dense O +parts O +, O +approaching O +traditional B-MANP +manufacturing E-MANP +specifications S-PARA +. O + + +Despite O +this O +success O +, O +many O +challenges O +remain O +to O +produce O +reliable O +parts O +with O +reproducible O +properties S-CONPRI +using O +FFF S-MANP +, O +particularly O +in O +the O +thermal B-MANP +treatment E-MANP +for O +part O +densification S-MANP +. O + + +% O +Ti-6Al-4V B-MATE +powder E-MATE +to O +create O +a O +printable O +filament S-MATE +. O + + +Printed O +Ti-6Al-4V S-MATE +parts O +using O +these O +filaments S-MATE +were O +sintered S-MANP +at O +temperatures S-PARA +ranging O +from O +900 O +to O +1340 O +°C O +and O +evaluated O +by O +x-ray B-CHAR +diffraction E-CHAR +, O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +and O +optical B-CHAR +microscopy E-CHAR +. O + + +The O +sintered S-MANP +samples S-CONPRI +demonstrated O +a O +linear O +decrease O +in O +β-phase O +from O +15 O +to O +11 O +vol O +. O + + +% O +with O +increasing O +temperature S-PARA +, O +while O +residual B-PRO +stress E-PRO +and O +Young O +’ O +s S-MATE +modulus O +increased O +. O + + +Additionally O +, O +the O +density S-PRO +of O +printed O +and O +sintered S-MANP +Ti-6Al-4V O +parts O +could O +be S-MATE +increased O +up O +to O +91 O +% O +of O +the O +theoretical S-CONPRI +density S-PRO +of O +Ti-6Al-4V S-MATE +by O +increasing O +the O +sintering S-MANP +temperature O +up O +to O +1340 O +°C O +. O + + +Samples S-CONPRI +that O +were O +sintered S-MANP +at O +1340 O +°C O +showed O +a O +higher O +Young O +’ O +s S-MATE +modulus O +compared O +to O +SLM S-MANP +samples S-CONPRI +, O +likely O +due O +to O +the O +increased O +α-phase O +in O +samples S-CONPRI +sintered O +at O +1340 O +°C O +. O + + +The O +microstructures S-MATE +of O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +metal S-MATE +components S-MACEQ +have O +been O +shown O +to O +be S-MATE +heterogeneous O +and O +spatially O +variable O +when O +compared O +to O +conventionally O +manufactured S-CONPRI +counterparts O +. O + + +Consequently O +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +AM-metal O +parts O +are O +expected O +to O +vary O +locally O +within O +their O +volume S-CONPRI +. O + + +For O +AM S-MANP +structural O +components S-MACEQ +intended O +to O +operate O +in O +extreme O +environments O +, O +including O +high-strain-rate O +loading O +scenarios O +, O +there O +is O +a O +need O +to O +quantify O +variability S-CONPRI +of O +mechanical S-APPL +behavior O +within O +the O +same O +AM-build O +domain S-CONPRI +at O +quasi-static S-CONPRI +and O +dynamic S-CONPRI +strain-rates O +as S-MATE +well O +as S-MATE +the O +effect O +of O +heat B-MANP +treatment E-MANP +on O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +objective O +of O +this O +study O +is O +to O +investigate O +the O +effect O +of O +loading O +direction O +and O +direct-age O +hardening S-MANP +heat O +treatment O +on O +quasi-static S-CONPRI +and O +dynamic S-CONPRI +mechanical O +response O +within O +an O +Inconel B-MATE +718 E-MATE +volume O +produced O +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +using O +manufacturer-recommended O +processing O +parameters S-CONPRI +. O + + +Uniaxial O +compression B-CHAR +tests E-CHAR +and O +a O +split-Hopkinson O +pressure S-CONPRI +bar O +( O +SHPB O +) O +were O +used O +to O +investigate O +the O +quasi-static S-CONPRI +and O +dynamic S-CONPRI +response O +, O +respectively O +, O +of O +as-built O +and O +heat-treated S-MANP +specimens O +extracted S-CONPRI +along O +the O +three O +principal O +processing O +directions O +. O + + +Electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +measurements O +were O +made O +for O +representative O +specimens O +within O +the O +build S-PARA +domain O +to O +correlate O +microstructural S-CONPRI +features O +to O +observed O +location-specific O +mechanical S-APPL +deformation S-CONPRI +. O + + +Results O +from O +both O +quasi-static S-CONPRI +and O +dynamic S-CONPRI +loading O +show O +that O +the O +recommended O +processing O +parameters S-CONPRI +yield O +a O +homogeneous S-CONPRI +stress-strain O +response O +throughout O +the O +material S-MATE +volume O +in O +the O +as-built O +condition O +. O + + +Deformed S-MANP +specimen O +geometries S-CONPRI +showed O +a O +systematic O +and O +repeatable O +preferential O +deformation S-CONPRI +along O +the O +build B-PARA +direction E-PARA +, O +regardless O +of O +condition O +or O +loading O +strain B-CONPRI +rate E-CONPRI +when O +loading O +was O +applied O +in O +either O +of O +the O +two O +orthogonal O +processing O +directions O +. O + + +The O +deformation S-CONPRI +dependence O +is O +found O +to O +be S-MATE +related O +to O +the O +underlying O +, O +process-induced O +crystallographic O +texture S-FEAT +and O +grain S-CONPRI +morphology O +. O + + +Two O +different O +honeycomb B-FEAT +structures E-FEAT +are O +manufactured S-CONPRI +with O +LENS S-MANP +system O +from O +Ti-6Al-4V B-MATE +alloy E-MATE +. O + + +Mechanical B-CONPRI +properties E-CONPRI +of O +the O +Ti-6Al-4V B-MATE +alloy E-MATE +are O +determined O +. O + + +Procedure O +for O +acquiring O +proper O +data S-CONPRI +for O +the O +elasto-visco-plastic O +constitutive O +model S-CONPRI +is O +presented O +. O + + +Energy-absorption O +properties S-CONPRI +of O +the O +honeycomb S-CONPRI +cellular B-FEAT +structures E-FEAT +are O +assessed O +during O +experimental S-CONPRI +and O +numerical O +testing S-CHAR +. O + + +The O +paper O +presents O +a O +methodology S-CONPRI +investigation O +of O +honeycomb S-CONPRI +cellular B-FEAT +structures E-FEAT +deformation O +process S-CONPRI +in O +quasi-static S-CONPRI +compression B-CHAR +tests E-CHAR +. O + + +Two O +honeycomb S-CONPRI +topologies O +with O +different O +elementary O +cells S-APPL +were O +designed S-FEAT +and O +manufactured S-CONPRI +from O +Ti-6Al-4 B-MATE +V I-MATE +alloy E-MATE +powder S-MATE +with O +the O +use O +of O +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS S-MANP +) O +system O +and O +compressed O +using O +a O +universal O +strength S-PRO +machine S-MACEQ +. O + + +To O +simulate O +the O +deformation S-CONPRI +process O +with O +LS-Dyna O +software S-CONPRI +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +material S-MATE +were O +assessed O +and O +correlated S-CONPRI +. O + + +An O +elasto-visco-plastic O +material S-MATE +model O +( O +Mat_Plasticity_With_Damage O +) O +was O +used O +for O +predicting O +the O +material S-MATE +behavior O +. O + + +The O +results O +of O +experimental S-CONPRI +tests O +and O +numerical B-ENAT +simulations E-ENAT +were O +compared O +. O + + +A O +reasonable O +agreement O +between O +deformation S-CONPRI +, O +failure S-CONPRI +and O +force S-CONPRI +histories O +was O +obtained O +. O + + +Additionally O +, O +both O +the O +topologies S-CONPRI +were O +compared O +for O +their O +energy B-CHAR +absorption E-CHAR +capabilities O +. O + + +The O +validated O +numerical O +modelling S-ENAT +with O +the O +adopted O +constitutive O +model S-CONPRI +will O +be S-MATE +used O +in O +the O +further O +studies O +to O +analyze O +different O +cellular B-FEAT +structures E-FEAT +topologies O +subjected O +to O +dynamic S-CONPRI +loading O +. O + + +A O +novel O +technique O +was O +developed O +to O +control O +the O +microstructure B-CONPRI +evolution E-CONPRI +in O +Alloy S-MATE +718 O +processed S-CONPRI +using O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +. O + + +In B-CONPRI +situ E-CONPRI +solution O +treatment O +and O +aging O +of O +Alloy S-MATE +718 O +was O +performed O +by O +heating S-MANP +the O +top O +surface S-CONPRI +of O +the O +build S-PARA +after O +build S-PARA +completion O +scanning S-CONPRI +an O +electron B-CONPRI +beam E-CONPRI +to O +act O +as S-MATE +a O +planar O +heat B-CONPRI +source E-CONPRI +during O +the O +cool B-PARA +down E-PARA +process O +. O + + +Results O +demonstrate O +that O +the O +measured O +hardness S-PRO +( O +478 O +± O +7 O +HV O +) O +of O +the O +material S-MATE +processed O +using O +in B-CONPRI +situ E-CONPRI +heat B-MANP +treatment E-MANP +similar O +to O +that O +of O +peak-aged O +Inconel B-MATE +718 E-MATE +. O + + +Large O +solidification B-CONPRI +grains E-CONPRI +and O +cracks O +formed O +, O +which O +are O +identified O +as S-MATE +the O +likely O +mechanism S-CONPRI +leading O +to O +failure S-CONPRI +of O +tensile B-CHAR +tests E-CHAR +of O +the O +in B-CONPRI +situ E-CONPRI +heat B-MANP +treatment E-MANP +material O +under O +loading O +. O + + +Despite O +poor O +tensile S-PRO +performance S-CONPRI +, O +the O +technique O +proposed O +was O +shown O +to O +successively O +age O +Alloy S-MATE +718 O +( O +increase O +precipitate S-MATE +size O +and O +hardness S-PRO +) O +without O +removing O +the O +sample S-CONPRI +from O +the O +process S-CONPRI +chamber O +, O +which O +can O +reduce O +the O +number O +of O +process S-CONPRI +steps O +in O +producing O +a O +part O +. O + + +Tighter O +controls O +on O +processing O +temperature S-PARA +during O +layer S-PARA +melting O +to O +lower O +process S-CONPRI +temperature O +and O +selective O +heating S-MANP +during O +in B-CONPRI +situ E-CONPRI +heat B-MANP +treatment E-MANP +to O +reduce O +over-sintering O +are O +proposed O +as S-MATE +methods O +for O +improving O +the O +process S-CONPRI +. O + + +Lattice B-FEAT +structures E-FEAT +with O +isotropic S-PRO +stiffness O +fabricated S-CONPRI +via O +electron B-MANP +beam I-MANP +melting E-MANP +. O + + +The O +structures O +were O +based O +on O +topology B-FEAT +optimization E-FEAT +and O +additive B-MANP +manufacturing E-MANP +. O + + +The O +designed S-FEAT +isotropic O +stiffness S-PRO +was O +experimentally O +verified O +. O + + +The O +strength S-PRO +was O +also O +isotropic S-PRO +as S-MATE +the O +same O +with O +stiffness S-PRO +. O + + +Electron-beam O +melting S-MANP +( O +EBM S-MANP +) O +exhibits O +advantages O +over O +other O +metal-additive O +manufacturing S-MANP +techniques O +owing O +to O +its O +low O +residual B-PRO +stress E-PRO +, O +rapid B-MANP +fabrication E-MANP +speed O +, O +and O +high O +energy O +efficiency O +. O + + +However O +, O +in O +EBM S-MANP +, O +metal B-MATE +powder E-MATE +is O +preheated O +and O +sintered S-MANP +to O +stabilize O +the O +temperature B-PARA +gradient E-PARA +and O +powder S-MATE +position O +during O +melting S-MANP +with O +a O +high-power O +electron B-CONPRI +beam E-CONPRI +. O + + +When O +making O +a O +lattice B-FEAT +structure E-FEAT +by O +EBM S-MANP +, O +a O +certain O +size O +of O +the O +powder-removing O +hole O +is O +required O +to O +remove O +the O +sintered S-MANP +remaining O +metal B-MATE +powder E-MATE +from O +the O +lattice S-CONPRI +. O + + +However O +, O +a O +large O +powder-removing O +hole O +can O +reduce O +the O +lattice S-CONPRI +mechanical O +performance S-CONPRI +. O + + +We O +conducted O +topology B-FEAT +optimization E-FEAT +to O +derive O +an O +optimal O +lattice B-FEAT +structure E-FEAT +shape O +with O +high O +isotropic S-PRO +stiffness O +assuming O +fabrication S-MANP +by O +EBM S-MANP +and O +minimizing O +the O +performance S-CONPRI +reduction O +owing O +to O +fixed O +large O +powder-removing O +holes O +. O + + +The O +optimized O +structure S-CONPRI +was O +fabricated S-CONPRI +via O +the O +EBM S-MANP +of O +a O +Ti–6Al–4V O +alloy S-MATE +. O + + +The O +optimal O +lattice B-FEAT +structure E-FEAT +achieved O +83 O +% O +of O +the O +performance S-CONPRI +of O +the O +Hashin–Shtrikman O +upper O +bound O +in O +numerical B-ENAT +simulations E-ENAT +, O +but O +an O +approximate O +20 O +% O +stiffness S-PRO +reduction S-CONPRI +was O +observed O +in O +the O +experiments O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +a O +commonly O +used O +powder B-MANP +bed I-MANP +fusion E-MANP +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +. O + + +Although O +SLM S-MANP +is O +preferred O +due O +to O +its O +near-net-shape S-MANP +part O +commitment O +, O +the O +deposition B-PARA +rate E-PARA +of O +this O +process S-CONPRI +is O +slower O +compared O +with O +alternative O +metal S-MATE +processes O +. O + + +A O +higher O +deposition B-PARA +rate E-PARA +of O +SLM S-MANP +can O +be S-MATE +obtained O +by O +increasing O +the O +laser S-ENAT +scanning O +velocity O +and O +laser B-PARA +power E-PARA +; O +however O +, O +this O +results O +in O +decreased O +part O +quality S-CONPRI +due O +to O +the O +SLM S-MANP +process S-CONPRI +’ O +s S-MATE +physical O +limits S-CONPRI +. O + + +This O +study O +presents O +the O +conditions O +for O +a O +higher O +deposition B-PARA +rate E-PARA +for O +various O +process B-CONPRI +parameters E-CONPRI +with O +defocused O +beams O +to O +eliminate O +the O +void B-CONPRI +defects E-CONPRI +due O +to O +keyholing O +formed O +in O +the O +melt B-MATE +pool E-MATE +. O + + +Single O +bead S-CHAR +experiments O +were O +conducted O +, O +and O +the O +thresholds O +of O +the O +process B-CONPRI +parameters E-CONPRI +resulting O +in O +voids S-CONPRI +were O +identified O +. O + + +A O +melt B-MATE +pool E-MATE +depth-to-width O +ratio O +of O +0.85 O +was O +found O +to O +be S-MATE +a O +critical O +value O +for O +preventing O +voids S-CONPRI +in O +the O +process S-CONPRI +. O + + +The O +melt B-MATE +pool E-MATE +aspect B-FEAT +ratio E-FEAT +was O +related O +with O +the O +process B-CONPRI +parameters E-CONPRI +by O +using O +the O +normalized O +enthalpy O +and O +the O +volumetric O +energy B-PARA +density E-PARA +. O + + +The O +threshold O +values O +of O +the O +normalized O +enthalpy O +due O +to O +voids S-CONPRI +were O +independent O +from O +the O +beam B-PARA +diameters E-PARA +. O + + +Moreover O +, O +unstable O +single O +bead S-CHAR +track O +thresholds O +were O +plotted O +as S-MATE +a O +function O +of O +the O +beam B-PARA +diameters E-PARA +. O + + +In O +addition O +to O +the O +experiments O +, O +a O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +model O +was O +built O +with O +calibrated S-CONPRI +absorptivity O +and O +heat B-CONPRI +source E-CONPRI +parameters O +to O +predict O +the O +melt B-MATE +pool E-MATE +geometries S-CONPRI +for O +a O +wide O +range S-PARA +of O +process B-CONPRI +parameters E-CONPRI +( O +power S-PARA += O +100–370 O +W O +, O +velocity O += O +200–2000 O +mm/s O +, O +and O +beam B-PARA +diameter E-PARA += O +100–260 O +μm O +) O +. O + + +A O +new O +laser S-ENAT +metal O +desposition O +process S-CONPRI +based O +on O +an O +inside-laser O +coaxial O +powder B-MACEQ +feeding I-MACEQ +system E-MACEQ +was O +successfully O +applied O +to O +manufacture S-CONPRI +reduced O +activation O +steel S-MATE +, O +which O +is O +featured O +with O +fine O +microstructure S-CONPRI +and O +excellent O +mechanical B-CONPRI +properties E-CONPRI +. O + + +In O +addition O +, O +infrared S-CONPRI +thermal O +imaging S-APPL +experiments O +and O +Abaqus S-ENAT +numerical O +simulation S-ENAT +were O +conducted O +to O +characterize O +the O +complex O +thermal O +history O +during O +the O +laser B-MANP +metal I-MANP +deposition E-MANP +process O +. O + + +The O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +reduced O +activation O +steel S-MATE +were O +systematically O +investigated O +in O +the O +as-fabricated O +and O +heat-treated S-MANP +samples O +. O + + +The O +results O +indicat O +that O +the O +peak O +temperature S-PARA +increased O +and O +the O +cooling B-PARA +rate E-PARA +decreased O +in O +the O +melt B-MATE +pool E-MATE +when O +the O +additional O +layers O +were O +deposited O +as S-MATE +a O +result O +of O +a O +cumulative O +effect O +of O +heat S-CONPRI +in O +the O +fabricated S-CONPRI +thin O +wall O +samples S-CONPRI +. O + + +The O +reduced O +cooling B-PARA +rate E-PARA +directly O +contributed O +to O +the O +decreased O +heterogeneous B-CONPRI +nucleation E-CONPRI +rate O +and O +the O +coarsening O +of O +austenite S-MATE +grains O +in O +the O +top O +domain S-CONPRI +. O + + +The O +differences O +in O +terms O +of O +microstructure S-CONPRI +and O +hardness S-PRO +of O +the O +as-fabricated O +samples S-CONPRI +along O +the O +building B-PARA +direction E-PARA +were O +also O +in O +a O +good O +agreement O +with O +the O +evolution S-CONPRI +of O +temperature S-PARA +field O +. O + + +The O +thermal B-PARA +cycling E-PARA +experimental S-CONPRI +and O +cyclic O +heat B-MANP +treatment E-MANP +results O +confirmed O +that O +in-situ S-CONPRI +thermal O +cycles O +were O +unable O +to O +trigger O +recrystallization S-CONPRI +because O +the O +stored O +strain S-PRO +energy O +was O +insufficient O +to O +induce O +nucleation S-CONPRI +of O +new O +austenite S-MATE +grains O +during O +laser B-MANP +directed I-MANP +energy I-MANP +deposition E-MANP +. O + + +Additive B-MANP +manufacture E-MANP +of O +sand S-MATE +molds S-MACEQ +via O +binder B-MANP +jetting E-MANP +enables O +the O +casting S-MANP +of O +complex O +metal S-MATE +geometries S-CONPRI +. O + + +Various B-MATE +material E-MATE +systems O +have O +been O +created O +for O +3D B-MANP +printing E-MANP +of O +sand S-MATE +molds S-MACEQ +; O +however O +, O +a O +formal O +study O +of O +the O +materials S-CONPRI +’ O +effects O +on O +cast S-MANP +products O +has O +not O +yet O +been O +conducted O +. O + + +In O +this O +paper O +the O +authors O +investigate O +potential O +differences O +in O +material B-CONPRI +properties E-CONPRI +( O +microstructure S-CONPRI +, O +porosity S-PRO +, O +mechanical B-PRO +strength E-PRO +) O +of O +A356 O +– O +T6 O +castings O +resulting O +from O +two O +different O +commercially O +available O +3D B-MANP +printing E-MANP +media O +. O + + +In O +addition O +, O +the O +material B-CONPRI +properties E-CONPRI +of O +cast S-MANP +products O +from O +traditional O +“ O +no-bake O +” O +silica B-MATE +sand E-MATE +is O +used O +as S-MATE +a O +basis O +for O +comparison O +of O +castings O +produced O +by O +the O +3D B-MANP +printed E-MANP +molds O +. O + + +It O +was O +determined O +that O +resultant O +castings O +yielded O +statistically O +equivalent O +results O +in O +four O +of O +the O +seven O +tests O +performed O +: O +dendrite S-BIOP +arm O +spacing O +, O +porosity S-PRO +, O +surface B-PRO +roughness E-PRO +, O +and O +tensile B-PRO +strength E-PRO +and O +differed O +in O +sand S-MATE +tensile O +strength S-PRO +, O +hardness S-PRO +, O +and O +density S-PRO +. O + + +As S-MATE +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +advances O +rapidly O +towards O +new O +materials S-CONPRI +and O +applications O +, O +it O +is O +vital O +to O +understand O +the O +performance B-CONPRI +limits E-CONPRI +of O +AM B-MANP +technologies E-MANP +and O +to O +overcome O +these O +limits S-CONPRI +via O +improved O +machine S-MACEQ +design S-FEAT +and O +process S-CONPRI +integration O +. O + + +Extrusion-based O +AM S-MANP +( O +i.e. O +, O +fused B-MANP +filament I-MANP +fabrication E-MANP +, O +FFF S-MANP +) O +is O +compatible O +with O +a O +wide O +variety O +of O +thermoplastic B-MATE +polymer E-MATE +and O +composite B-MATE +materials E-MATE +, O +and O +can O +be S-MATE +deployed O +across O +a O +wide O +range S-PARA +of O +length B-CHAR +scales E-CHAR +. O + + +However O +, O +the O +build B-CHAR +rate E-CHAR +of O +both O +desktop O +and O +professional O +FFF S-MANP +systems O +is O +comparable O +( O +∼10 O +’ O +s S-MATE +of O +cm3/h O +at O +∼0.2 O +mm S-MANP +layer B-PARA +thickness E-PARA +) O +, O +suggesting O +that O +fundamental O +aspects O +of O +the O +machine S-MACEQ +design S-FEAT +and O +process B-CONPRI +physics E-CONPRI +limit S-CONPRI +system O +performance S-CONPRI +. O + + +We O +determine O +the O +rate O +limits S-CONPRI +to O +FFF S-MANP +by O +analysis O +of O +machine S-MACEQ +modules O +: O +the O +filament S-MATE +extrusion S-MANP +mechanism O +, O +the O +heater O +and O +nozzle S-MACEQ +, O +and O +the O +motion O +system O +. O + + +We O +determine O +, O +by O +direct O +measurements O +and O +numerical O +analysis O +, O +that O +FFF S-MANP +build B-CHAR +rate E-CHAR +is O +influenced O +by O +the O +coincident O +module-level O +limits S-CONPRI +to O +traction O +force S-CONPRI +exerted O +on O +the O +filament S-MATE +, O +conduction O +heat B-CONPRI +transfer E-CONPRI +to O +the O +filament S-MATE +core S-MACEQ +, O +and O +gantry O +velocity O +for O +positioning O +the O +printhead O +. O + + +Our O +findings O +are O +validated O +by O +direct O +measurements O +of O +build B-CHAR +rate E-CHAR +versus O +part O +complexity S-CONPRI +using O +desktop O +FFF S-MANP +systems O +. O + + +Last O +, O +we O +study O +the O +scaling O +of O +the O +rate O +limits S-CONPRI +using O +finite B-CONPRI +element E-CONPRI +simulations O +of O +thermoplastic S-MATE +flow O +through O +the O +extruder S-MACEQ +. O + + +We O +map O +the O +scaling O +of O +extrusion S-MANP +force O +, O +polymer S-MATE +exit O +temperature S-PARA +, O +and O +average S-CONPRI +printhead O +velocity O +onto O +a O +unifying O +trade-space O +of O +build B-CHAR +rate E-CHAR +versus O +resolution S-PARA +. O + + +This O +approach O +validates O +the O +build B-CHAR +rate E-CHAR +performance O +of O +current O +FFF S-MANP +systems O +, O +and O +suggests O +that O +significant O +enhancements O +in O +FFF S-MANP +build B-CHAR +rate E-CHAR +with O +targeted O +quality S-CONPRI +specifications O +are O +possible O +via O +mutual O +improvements O +to O +the O +extrusion S-MANP +and O +heating S-MANP +mechanism O +along O +with O +high-speed O +motion O +systems O +. O + + +The O +ability O +to O +design S-FEAT +complex O +copper S-MATE +( O +Cu S-MATE +) O +parts O +into O +the O +most O +efficient O +thermal O +structures O +is O +an O +old O +dream O +, O +but O +difficult O +to O +realize O +with O +conventional B-MANP +manufacturing E-MANP +techniques O +. O + + +The O +recent O +development O +of O +laser S-ENAT +3D B-MANP +printing E-MANP +techniques O +makes O +it O +possible O +to O +fully O +explore O +intricate O +designs S-FEAT +and O +maximize O +the O +thermal O +performance S-CONPRI +of O +Cu-based O +thermal O +management O +components S-MACEQ +but O +present O +significant O +challenges O +due O +to O +its O +high O +optical S-CHAR +reflectivity O +. O + + +In O +this O +study O +, O +we O +demonstrated O +the O +laser S-ENAT +3D B-MANP +printing E-MANP +of O +pure O +Cu S-MATE +with O +a O +moderate O +laser B-PARA +power E-PARA +( O +400 O +W O +) O +. O + + +Dense O +Cu S-MATE +parts O +( O +95 O +% O +) O +with O +smooth B-CONPRI +surface E-CONPRI +finishing S-MANP +( O +Ra O +∼18 O +μm O +) O +were O +obtained O +at O +a O +scan B-PARA +speed E-PARA +of O +400 O +mm/s O +, O +a O +hatch B-PARA +distance E-PARA +of O +0.12 O +mm S-MANP +, O +and O +a O +layer B-PARA +thickness E-PARA +of O +0.03 O +mm S-MANP +. O + + +The O +hardness S-PRO +, O +electrical S-APPL +, O +and O +thermal B-PRO +conductivity E-PRO +of O +the O +printed O +Cu S-MATE +parts O +are O +108 O +MPa S-CONPRI +, O +5.71 O +× O +107 O +S/m O +, O +and O +368 O +W/m·K O +, O +respectively O +which O +are O +close O +to O +those O +of O +bulk O +Cu S-MATE +. O + + +Additionally O +, O +complex O +heat B-MACEQ +sink E-MACEQ +structures O +were O +printed O +with O +large O +surface B-PARA +areas E-PARA +( O +600 O +mm2/g O +) O +, O +and O +their O +cooling S-MANP +performances O +were O +compared O +to O +a O +commercial O +heat B-MACEQ +sink E-MACEQ +with O +a O +smaller O +surface B-PARA +area E-PARA +( O +286 O +mm2/g O +) O +on O +an O +electronic O +chip S-MATE +. O + + +The O +complex O +heat B-MACEQ +sinks E-MACEQ +printed O +cools O +the O +electronic O +chip S-MATE +45 O +% O +more O +efficiently O +than O +the O +commercial O +one O +. O + + +The O +introduction O +of O +selective B-MANP +laser I-MANP +melting E-MANP +to O +additively O +manufacturing S-MANP +Cu S-MATE +heat O +sinks O +offers O +the O +promise O +to O +enhance O +the O +performance S-CONPRI +beyond O +the O +scope O +of O +exciting O +thermal O +management O +components S-MACEQ +. O + + +Control O +of O +microstructure S-CONPRI +in O +a O +TiAl O +alloy S-MATE +was O +conducted O +by O +electron B-MANP +beam I-MANP +melting E-MANP +( O +82/85 O +) O +. O + + +An O +unique O +layered O +microstructure S-CONPRI +was O +created O +by O +the O +proposed O +EBM S-MANP +process O +( O +74/85 O +) O +. O + + +The O +room O +temperature S-PARA +ductility S-PRO +was O +greater O +than O +2 O +% O +under O +an O +appropriate O +condition O +( O +83/85 O +) O +. O + + +As-EBM O +specimens O +exhibited O +high O +yield B-PRO +strength E-PRO +and O +good O +ductility S-PRO +at O +800 O +°C O +( O +76/85 O +) O +. O + + +This O +paper O +clarified O +a O +novel O +strategy O +to O +improve O +the O +tensile B-PRO +properties E-PRO +of O +the O +Ti-48Al-2Cr-2Nb O +alloys S-MATE +fabricated O +by O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +, O +via O +the O +finding O +of O +the O +development O +of O +unique O +layered O +microstructure S-CONPRI +composed O +of O +duplex-like O +fine O +grains S-CONPRI +layers O +and O +coarser O +γ O +grains S-CONPRI +layers O +. O + + +It O +was O +clarified O +that O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +alloy S-MATE +fabricated O +by O +EBM S-MANP +can O +be S-MATE +controlled O +by O +varying O +an O +angle O +θ O +between O +EBM-building O +directions O +and O +stress S-PRO +loading O +direction O +. O + + +At O +room O +temperature S-PARA +, O +the O +yield B-PRO +strength E-PRO +exhibits O +high O +values O +more O +than O +550 O +MPa S-CONPRI +at O +all O +the O +loading O +orientations S-CONPRI +investigated O +( O +θ O += O +0 O +, O +45 O +and O +90° O +) O +. O + + +The O +anisotropy S-PRO +of O +the O +yield B-PRO +strength E-PRO +decreased O +with O +increasing O +temperature S-PARA +. O + + +All O +the O +examined O +alloys S-MATE +exhibited O +a O +brittle-ductile O +transition S-CONPRI +temperature S-PARA +of O +approximately O +750 O +°C O +and O +the O +yield B-PRO +strength E-PRO +and O +tensile B-PRO +elongation E-PRO +at O +800 O +°C O +were O +over O +350 O +MPa S-CONPRI +and O +40 O +% O +, O +respectively.By O +the O +detailed O +observation O +of O +the O +microstructure S-CONPRI +, O +the O +formation O +mechanism S-CONPRI +of O +the O +unique O +layered O +microstructure S-CONPRI +was O +found O +to O +be S-MATE +closely O +related O +to O +the O +repeated O +local O +heat B-MANP +treatment E-MANP +effect O +during O +the O +EBM S-MANP +process O +, O +and O +thus O +its O +control O +is O +further O +possible O +by O +the O +tuning-up O +of O +the O +process B-CONPRI +parameters E-CONPRI +. O + + +The O +results O +demonstrate O +that O +the O +EBM S-MANP +process O +enables O +not O +only O +the O +fabrication S-MANP +of O +TiAl O +products O +with O +complex B-PRO +shape E-PRO +but O +also O +the O +control O +of O +the O +tensile B-PRO +properties E-PRO +associated O +with O +the O +peculiar O +microstructure S-CONPRI +formed O +during O +the O +process S-CONPRI +. O + + +Ti-1Al-8V-5Fe O +( O +Ti-185 O +) O +and O +other O +Fe S-MATE +containing O +β O +-Ti O +alloys S-MATE +are O +attractive O +because O +of O +their O +high O +strength S-PRO +and O +low O +cost O +. O + + +These O +alloys S-MATE +, O +however O +, O +can O +not O +be S-MATE +produced O +through O +ingot S-MATE +casting S-MANP +due O +to O +strong O +Fe S-MATE +segregation O +and O +the O +formation O +of O +β O +flecks O +. O + + +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +was O +successfully O +used O +to O +produce O +Ti-185 O +components S-MACEQ +starting O +from O +elemental O +Ti S-MATE +and O +Fe S-MATE +powders O +, O +and O +an O +Al-V O +master O +alloy S-MATE +powder O +with O +irregular O +shape O +. O + + +Microstructure S-CONPRI +analysis O +of O +the O +as-built O +components S-MACEQ +demonstrated O +that O +SLM S-MANP +can O +be S-MATE +used O +to O +produce O +a O +very O +fine O +grain S-CONPRI +microstructure O +with O +nano-scale S-CONPRI +precipitates O +and O +non-detrimental O +Fe S-MATE +segregation O +. O + + +The O +findings O +are O +interpreted O +in O +terms O +of O +the O +rapid B-MANP +solidification E-MANP +conditions O +during O +SLM S-MANP +. O + + +Compression B-CHAR +test E-CHAR +results O +reveal O +that O +ultra-high O +strength S-PRO +and O +reasonable O +ductility S-PRO +can O +be S-MATE +achieved O +in O +the O +as-built O +as S-MATE +well O +as S-MATE +heat O +treated O +samples S-CONPRI +. O + + +Residual B-CONPRI +distortion E-CONPRI +is O +a O +major O +technical O +challenge O +for O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +since O +excessive O +distortion S-CONPRI +can O +cause O +build B-CHAR +failure E-CHAR +, O +cracks O +and O +loss O +in O +structural B-PRO +integrity E-PRO +. O + + +However O +, O +residual B-CONPRI +distortion E-CONPRI +can O +hardly O +be S-MATE +avoided O +due O +to O +the O +rapid O +heating S-MANP +and O +cooling S-MANP +inherent O +in O +this O +AM B-MANP +process E-MANP +. O + + +Thus O +, O +fast O +and O +accurate S-CHAR +distortion O +prediction S-CONPRI +is O +an O +effective O +way O +to O +ensure O +manufacturability S-CONPRI +and O +build S-PARA +quality O +. O + + +This O +paper O +proposes O +a O +multiscale O +process B-CONPRI +modeling E-CONPRI +framework S-CONPRI +for O +efficiently O +and O +accurately S-CHAR +simulating O +residual B-CONPRI +distortion E-CONPRI +and O +stress S-PRO +at O +the O +part-scale O +for O +the O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +( O +DMLS S-MANP +) O +process S-CONPRI +. O + + +In O +this O +framework S-CONPRI +, O +inherent O +strains O +are O +extracted S-CONPRI +from O +detailed O +process B-ENAT +simulation E-ENAT +of O +micro-scale S-CONPRI +model O +based O +on O +the O +recently O +proposed O +modified O +inherent O +strain S-PRO +model S-CONPRI +. O + + +The O +micro-scale S-CONPRI +detailed O +process B-ENAT +simulation E-ENAT +employs O +the O +actual O +parameters S-CONPRI +of O +the O +DMLS S-MANP +process O +such O +as S-MATE +laser O +power S-PARA +, O +velocity O +, O +and O +scanning S-CONPRI +path O +. O + + +Uniform O +but O +anisotropic S-PRO +strains O +are O +then O +applied O +to O +the O +part O +in O +a O +layer-by-layer B-CONPRI +fashion E-CONPRI +in O +a O +quasi-static B-CONPRI +equilibrium I-CONPRI +finite I-CONPRI +element I-CONPRI +analysis E-CONPRI +, O +in O +order O +to O +predict O +residual S-CONPRI +distortion/stress O +for O +the O +entire O +AM S-MANP +build O +. O + + +Effectiveness S-CONPRI +of O +this O +proposed O +framework S-CONPRI +is O +demonstrated O +by O +simulating O +a O +double O +cantilever B-MACEQ +beam E-MACEQ +and O +a O +canonical O +part O +with O +varying O +wall B-FEAT +thicknesses E-FEAT +and O +comparing O +with O +experimental S-CONPRI +measurements O +which O +show O +very O +good O +agreement O +. O + + +The O +metallurgy S-CONPRI +of O +selected O +metal S-MATE +and O +alloy S-MATE +components O +fabricated S-CONPRI +by O +additive S-MATE +metallurgy O +using O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +is O +presented O +for O +a O +range S-PARA +of O +examples O +including O +Ti-6Al-4V S-MATE +, O +Co-Cr-Mo O +super B-MATE +alloy E-MATE +, O +Ni-base O +super B-MATE +alloy E-MATE +systems O +( O +Inconel B-MATE +625 E-MATE +, O +718 O +and O +Rene S-MATE +142 O +) O +, O +Nb S-MATE +and O +Fe S-MATE +. O + + +Precursor S-MATE +and O +pre-alloyed O +powders S-MATE +are O +preheated O +and O +selectively O +melted S-CONPRI +using O +a O +range S-PARA +of O +EBM S-MANP +process O +parameters S-CONPRI +including O +beam S-MACEQ +scan O +strategies O +, O +beam S-MACEQ +current O +variations S-CONPRI +, O +and O +cooling B-PARA +rate E-PARA +features O +. O + + +Microstructures S-MATE +and O +residual B-PRO +mechanical I-PRO +properties E-PRO +are O +discussed O +for O +selected O +systems O +in O +contrast O +to O +more O +conventional O +wrought S-CONPRI +and O +cast S-MANP +products O +. O + + +Novel O +features O +of O +EBM S-MANP +fabrication O +include O +columnar O +microstructural S-CONPRI +architectures O +which O +result O +by O +layer-by-layer S-CONPRI +melt-solidification O +phenomena O +. O + + +Combining O +electrical S-APPL +and O +magnetic O +materials S-CONPRI +in O +the O +same O +part O +has O +been O +a O +challenge O +in O +3D B-MANP +printing E-MANP +due O +to O +difficulties O +co-printing O +complex O +materials S-CONPRI +in O +many O +additive B-MANP +manufacturing I-MANP +processes E-MANP +. O + + +Past O +3D B-MANP +printed E-MANP +inductors O +and O +other O +similar O +magnetic O +devices O +have O +therefore O +either O +lacked O +the O +magnetic O +materials S-CONPRI +necessary O +for O +improved O +performance S-CONPRI +, O +or O +required O +sintering S-MANP +at O +high O +temperatures S-PARA +for O +extended O +periods O +, O +beyond O +the O +capability O +of O +most O +3D S-CONPRI +printable O +polymers S-MATE +. O + + +In O +this O +work O +, O +we O +demonstrate O +a O +room O +temperature S-PARA +process S-CONPRI +for O +incorporating O +conductive O +and O +magnetic O +materials S-CONPRI +into O +the O +same O +3D B-MANP +printed E-MANP +device O +. O + + +A O +multi-stage O +fabrication S-MANP +process O +based O +on O +3D B-MANP +printing E-MANP +followed O +by O +fill O +with O +magnetic O +and O +conductive O +fluids S-MATE +is O +proposed O +. O + + +Multi-layer O +microfluidic O +channels O +for O +magnetic O +passives O +are O +first O +printed O +in O +a O +stereolithography S-MANP +process S-CONPRI +. O + + +The O +microfluidic O +systems O +are O +then O +filled O +with O +room O +temperature S-PARA +liquid B-MATE +metal E-MATE +, O +a O +gallium S-MATE +alloy S-MATE +liquid O +at O +room O +temperature S-PARA +, O +and O +ferrofluid O +to O +create O +inductors O +, O +transformers O +and O +wireless O +power S-PARA +coils O +. O + + +3D S-CONPRI +finite O +element S-MATE +modeling O +of O +LSFF O +process S-CONPRI +is O +presented O +based O +on O +a O +moving O +mesh O +approach O +. O + + +Temporal O +behaviors O +of O +stress S-PRO +fields O +and O +temperature S-PARA +distributions S-CONPRI +are O +explored O +for O +different O +deposited B-CHAR +layers E-CHAR +. O + + +Effects O +of O +preheating S-MANP +and O +addition O +of O +nano S-FEAT +particles O +are O +thoroughly O +investigated O +. O + + +Scanning S-CONPRI +velocity O +of O +the O +laser S-ENAT +plays O +a O +key O +role O +on O +the O +clad O +shape O +. O + + +Gas B-MACEQ +turbine E-MACEQ +blades O +, O +turbine O +shafts O +and O +centrifugal O +compressor O +impellers O +are O +often O +damaged O +by O +erosion O +and/or O +corrosion S-CONPRI +. O + + +By O +laser B-MANP +cladding E-MANP +technique O +, O +a O +coating S-APPL +layer O +can O +be S-MATE +deposited O +on O +the O +base O +material S-MATE +in O +order O +to O +rebuild O +, O +repair O +and O +improve O +anti-erosion O +or O +anti-corrosion O +properties S-CONPRI +of O +the O +sensitive O +machine S-MACEQ +parts O +. O + + +In O +this O +paper O +, O +a O +three-dimensional S-CONPRI +finite B-CONPRI +element E-CONPRI +modeling O +of O +the O +laser S-ENAT +solid O +freeform B-MANP +fabrication E-MANP +( O +LSFF O +) O +process S-CONPRI +for O +nickel B-MATE +alloy E-MATE +625 O +powder S-MATE +mixed O +with O +nano-CeO2 O +on O +AISI O +4140 O +steel S-MATE +is O +extensively O +studied O +. O + + +Using O +Comsol O +Multiphysics O +software S-CONPRI +and O +the O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +( O +FEM S-CONPRI +) O +, O +the O +heat B-CONPRI +transfer E-CONPRI +equation O +, O +moving O +mesh O +equation O +and O +stress S-PRO +tensor O +are O +numerically O +solved O +. O + + +Clad O +shape O +, O +temperature S-PARA +distribution S-CONPRI +and O +stress S-PRO +fields O +are O +obtained O +. O + + +The O +effects O +of O +preheating S-MANP +as S-MATE +well O +as S-MATE +addition O +of O +nano-CeO2 O +are O +investigated O +. O + + +Dependence O +of O +the O +clad O +height O +on O +the O +scanning S-CONPRI +velocity O +of O +the O +laser S-ENAT +is O +also O +studied O +. O + + +This O +paper O +demonstrates O +the O +ability O +to O +3D B-MANP +print E-MANP +a O +fluoropolymer O +based O +energetic O +material S-MATE +which O +could O +be S-MATE +used O +as S-MATE +part O +of O +a O +multifunctional O +reactive O +structure S-CONPRI +. O + + +The O +work O +presented O +lays O +the O +technical O +foundation O +for O +the O +3D B-MANP +printing E-MANP +of O +reactive B-MATE +materials E-MATE +using O +fusion S-CONPRI +based O +material B-MANP +extrusion E-MANP +. O + + +A O +reactive O +filament S-MATE +comprising O +of O +a O +polyvinylidene O +fluoride O +( O +PVDF O +) O +binder S-MATE +with O +20 O +% O +mass O +loading O +of O +aluminum S-MATE +( O +Al S-MATE +) O +was O +prepared O +using O +a O +commercial O +filament S-MATE +extruder S-MACEQ +and O +printed O +using O +a O +Makerbot O +Replicator O +2X O +. O + + +Printing B-CONPRI +performance E-CONPRI +of O +the O +energetic O +samples S-CONPRI +was O +compared O +with O +standard S-CONPRI +3D B-MANP +printing E-MANP +materials O +, O +with O +metrics O +including O +the O +bead-to-bead O +adhesion S-PRO +and O +surface B-PARA +quality E-PARA +of O +the O +printed O +samples S-CONPRI +. O + + +The O +reactivity O +and O +burning O +rates O +of O +the O +filaments S-MATE +and O +the O +printed O +samples S-CONPRI +were O +comparable O +. O + + +Differential O +scanning S-CONPRI +calorimetry O +and O +thermal O +gravimetric O +analysis O +showed O +that O +the O +onset O +temperature S-PARA +for O +the O +reactions O +was O +above O +350 O +°C O +, O +which O +is O +well O +above O +the O +operation O +temperature S-PARA +of O +both O +the O +filament S-MATE +extruder S-MACEQ +and O +the O +fused B-CONPRI +deposition E-CONPRI +printer O +. O + + +A O +lattice S-CONPRI +Boltzmann O +( O +LB O +) O +method O +to O +simulate O +melt B-MATE +pool E-MATE +dynamics O +and O +a O +cellular O +automaton O +( O +CA S-MATE +) O +to O +simulate O +the O +solidification B-MANP +process E-MANP +are O +coupled O +to O +predict O +the O +microstructure B-CONPRI +evolution E-CONPRI +during O +selective B-MANP +electron I-MANP +beam I-MANP +melting E-MANP +( O +SEBM S-MANP +) O +. O + + +The O +resulting O +CALB O +model S-CONPRI +takes O +into O +account O +powder S-MATE +related O +stochastic S-CONPRI +effects O +, O +energy B-CHAR +absorption E-CHAR +and O +evaporation S-CONPRI +, O +melt B-MATE +pool E-MATE +dynamics O +and O +solidification B-CONPRI +microstructure E-CONPRI +evolution S-CONPRI +. O + + +Several O +physical O +phenomena O +are O +observed O +during O +grain S-CONPRI +solidification O +, O +e.g. O +, O +initial O +grain S-CONPRI +selection O +starting O +at O +the O +base O +plate O +, O +grain B-CONPRI +boundary E-CONPRI +perturbation O +, O +grain S-CONPRI +nucleation O +due O +to O +unmolten O +powder B-MATE +particles E-MATE +in O +the O +bulk O +, O +grain S-CONPRI +penetration O +from O +the O +surface S-CONPRI +of O +the O +part O +or O +grain S-CONPRI +alignment O +dependent O +on O +the O +beam S-MACEQ +scanning O +strategy O +. O + + +The O +effect O +of O +process B-CONPRI +parameters E-CONPRI +on O +the O +final O +grain B-CONPRI +structure E-CONPRI +and O +texture S-FEAT +evolution S-CONPRI +is O +presented O +. O + + +Manufacturing S-MANP +of O +ceramic S-MATE +components O +with O +a O +geometrically O +complex O +3D S-CONPRI +architecture O +and O +highly O +detailed O +features O +for O +use O +in O +a O +variety O +of O +practical O +applications O +is O +still O +a O +challenge O +. O + + +In O +our O +investigation O +, O +we O +adopted O +a O +synergistic O +strategy O +for O +fabricating S-MANP +SiOC O +ceramics S-MATE +with O +intricate O +3D S-CONPRI +morphologies O +by O +additive B-MANP +manufacturing E-MANP +and O +origami O +technique O +or O +assemblage O +, O +taking O +advantage O +of O +the O +high O +printability S-PARA +and O +flexibility S-PRO +of O +a O +commercially O +available O +silicone B-MATE +elastomer E-MATE +. O + + +Secondary O +shaping S-MANP +using O +origami O +of O +different O +2D S-CONPRI +layers O +with O +varied O +design S-FEAT +allowed O +the O +manufacturing S-MANP +of O +spiral O +, O +flower-like O +and O +polyhedron O +architectures O +, O +which O +are O +difficult O +to O +fabricate S-MANP +without O +adding O +supports S-APPL +or O +by O +any O +conventional O +ceramic S-MATE +fabrication O +processes S-CONPRI +. O + + +Produced O +samples S-CONPRI +showed O +no O +cracks O +or O +pores S-PRO +and O +fully O +retained O +the O +given O +shape O +after O +pyrolysis S-MANP +. O + + +Origami-assisted O +3D B-MANP +printing E-MANP +enables O +easy O +fabrication S-MANP +of O +complex O +SiOC O +ceramic S-MATE +structures O +without O +requiring O +any O +supports S-APPL +. O + + +The O +potential O +of O +adding O +fillers O +into O +the O +silicone B-MATE +material E-MATE +used O +in O +this O +work O +could O +expand O +the O +applicability O +of O +the O +manufactured S-CONPRI +structures O +introducing O +additional O +functional O +properties.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +212 O +The O +aim O +of O +this O +paper O +is O +to O +investigate O +the O +evolution S-CONPRI +of O +a O +matrix-filler O +interface S-CONPRI +during O +the O +processing O +of O +novel O +composites S-MATE +formed O +by O +a O +matrix O +of O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +and O +Mg S-MATE +particles O +, O +when O +they O +are O +manufactured S-CONPRI +by O +Materials S-CONPRI +Extrusion S-MANP +. O + + +The O +particles S-CONPRI +addition O +to O +the O +PLA S-MATE +was O +carried O +out O +through O +the O +preparation O +of O +a O +Magnesium S-MATE +stable O +suspension O +in O +the O +polymer S-MATE +solution O +. O + + +To O +improve O +the O +Mg S-MATE +dispersion S-CONPRI +, O +the O +surfaces S-CONPRI +of O +the O +particles S-CONPRI +were O +previously O +modified O +by O +the O +adsorption S-CONPRI +of O +dispersants O +, O +namely O +Polyethylenimine O +( O +PEI O +) O +and O +Cetyltrimethylammonium O +bromide O +( O +CTAB O +) O +in O +aqueous O +suspension O +. O + + +The O +physical O +and O +mechanical S-APPL +characterization O +of O +PLA/Mg O +composites S-MATE +show O +that O +the O +Mg S-MATE +surface O +modification O +is O +the O +key O +to O +its O +successful O +dispersion S-CONPRI +due O +to O +the O +formation O +of O +ionic O +interactions O +between O +the O +dispersants O +and O +the O +matrix O +. O + + +This O +is O +favoured O +by O +the O +seeding O +effect O +of O +the O +PEI-modified O +Mg S-MATE +particles O +over O +the O +PLA S-MATE +re-precipitation O +during O +the O +composite S-MATE +shaping O +. O + + +Moreover O +, O +a O +PEI-PLA O +covalent B-CONPRI +bond E-CONPRI +appeared O +in O +the O +printed O +scaffolds S-FEAT +as S-MATE +a O +consequence O +of O +the O +temperature S-PARA +applied O +( O +165 O +°C O +) O +during O +extrusion S-MANP +and O +printing O +. O + + +Consequently O +, O +the O +matrix-filler O +strengthened O +interface S-CONPRI +improved O +the O +extrusion B-MANP +process E-MANP +and O +permits O +the O +printing O +of O +3D S-CONPRI +customized O +pieces O +. O + + +At O +the O +same O +time O +, O +particle S-CONPRI +agglomeration O +and O +the O +nozzle S-MACEQ +blocking S-CONPRI +is O +prevented O +. O + + +To O +reveal O +the O +mechanism S-CONPRI +of O +oxidation S-MANP +and O +the O +effect O +of O +inclusion S-MATE +characteristics O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +additively-manufactured O +metal B-CONPRI +matrix E-CONPRI +, O +two O +groups O +of O +AISI O +316 O +L O +stainless B-MATE +steel E-MATE +samples S-CONPRI +were O +fabricated S-CONPRI +under O +different O +flow B-PARA +rates E-PARA +of O +shielding O +gas S-CONPRI +( O +Ar S-ENAT +) O +at O +two O +intensities O +of O +laser B-CONPRI +beam E-CONPRI +. O + + +As S-MATE +flow O +rates O +of O +shielding O +gas S-CONPRI +increased O +from O +5 O +L/min O +to O +25 O +L/min O +, O +the O +oxygen S-MATE +content O +in O +the O +melt B-MATE +pool E-MATE +decreased O +from O +775 O +ppm O +to O +375 O +ppm O +at O +low O +intensity O +of O +laser B-CONPRI +beam E-CONPRI +( O +73 O +W/m2 O +) O +, O +and O +from O +677 O +ppm O +to O +1470 O +ppm O +at O +high O +intensity O +of O +laser B-CONPRI +beam E-CONPRI +( O +725 O +W/m2 O +) O +. O + + +Variation S-CONPRI +in O +oxygen S-MATE +content O +affected O +melt B-MATE +pool E-MATE +shape O +, O +solidification S-CONPRI +texture O +, O +and O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +material S-MATE +. O + + +In O +each O +intensity O +of O +laser B-CONPRI +beam E-CONPRI +group O +, O +optimal O +flow B-PARA +rates E-PARA +of O +shielding O +gas S-CONPRI +condition O +for O +tensile B-PRO +property E-PRO +existed O +. O + + +As S-MATE +inclusion O +number O +density S-PRO +increased O +from O +8866/mm2 O +to O +45909/mm2 O +, O +yield B-PRO +stress E-PRO +increased O +to O +26 O +% O +. O + + +A O +rapid O +drop O +in O +ductility S-PRO +occurred O +at O +flow B-PARA +rate E-PARA +5 O +L/min O +, O +because O +independently-nucleated O +spinel S-MATE +accelerated O +inclusion S-MATE +coalescence O +in O +the O +melt B-MATE +pool E-MATE +. O + + +Directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +is O +a O +metal B-MANP +additive I-MANP +manufacturing E-MANP +process O +, O +where O +dimensional B-CHAR +accuracy E-CHAR +and O +repeatability S-CONPRI +are O +traditionally O +challenging O +to O +achieve O +. O + + +Strategies O +for O +computationally O +inexpensive O +process S-CONPRI +modelling S-ENAT +and O +fast-response O +process B-CONPRI +controls E-CONPRI +of O +the O +laser S-ENAT +deposition B-MANP +process E-MANP +are O +necessary O +to O +keep O +the O +geometric O +features O +close O +to O +the O +required O +dimensional B-CHAR +tolerances E-CHAR +. O + + +The O +deposition S-CONPRI +geometry O +depends O +highly O +on O +the O +complex O +local O +laser-material O +interaction O +and O +global O +thermal O +history O +of O +the O +substrate S-MATE +. O + + +In O +order O +to O +control O +the O +deposition S-CONPRI +geometry O +, O +an O +accurate S-CHAR +and O +computationally O +inexpensive O +discretized O +state O +space O +thermal O +history O +model S-CONPRI +coupled O +with O +an O +analytical O +deposition S-CONPRI +geometry O +model S-CONPRI +is O +developed O +in O +this O +work O +. O + + +The O +model S-CONPRI +accounts O +for O +the O +local O +laser-material O +interaction O +using O +the O +mass O +and O +energy O +equilibrium S-CONPRI +equations O +coupled O +in O +a O +lumped O +parameter S-CONPRI +solution O +, O +as S-MATE +well O +as S-MATE +the O +global O +thermal O +history O +of O +the O +product O +using O +a O +state O +space O +thermomechanical S-CONPRI +discretization O +. O + + +In O +literature O +, O +studies O +have O +only O +focused O +on O +1D O +toolpaths O +with O +constant O +process B-CONPRI +parameters E-CONPRI +such O +as S-MATE +speed O +, O +powder S-MATE +feedrate O +, O +and O +laser B-PARA +power E-PARA +. O + + +As S-MATE +it O +is O +possible O +to O +achieve O +highly O +complex O +geometric B-FEAT +shapes E-FEAT +with O +additive B-MANP +manufacturing E-MANP +, O +it O +is O +important O +to O +have O +models O +compatible O +with O +2D/3D O +complex O +toolpaths O +. O + + +In O +this O +paper O +, O +an O +analytical O +thermomechanical B-CONPRI +model E-CONPRI +and O +a O +coupled O +deposition S-CONPRI +geometry O +model S-CONPRI +for O +DED S-MANP +process O +are O +presented O +and O +experimentally B-CONPRI +validated E-CONPRI +. O + + +As S-MATE +such O +, O +the O +thermal O +history O +of O +the O +deposited O +part O +is O +predicted S-CONPRI +throughout O +the O +process S-CONPRI +and O +the O +geometric O +features O +are O +predicted S-CONPRI +for O +2D S-CONPRI +toolpaths O +. O + + +Despite O +the O +ongoing O +success O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +and O +especially O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +technology S-CONPRI +, O +process-related O +defects S-CONPRI +, O +distortions O +and O +residual B-PRO +stresses E-PRO +impede O +its O +usability O +for O +fracture-critical O +applications O +. O + + +In O +this O +paper O +, O +results O +of O +in B-CONPRI +situ E-CONPRI +X-ray O +diffraction S-CHAR +experiments O +are O +presented O +that O +offer O +insights O +into O +the O +strain S-PRO +and O +stress S-PRO +formation O +during O +the O +manufacturing S-MANP +of O +multi-layer O +thin O +walls O +made O +from O +Inconel B-MATE +625 E-MATE +. O + + +Using O +different O +measuring O +modes O +and O +laser S-ENAT +scanning O +parameters S-CONPRI +, O +several O +experimental S-CONPRI +observations O +are O +discussed O +to O +validate O +and O +extend O +theoretical B-CONPRI +models E-CONPRI +and O +simulations S-ENAT +from O +the O +literature O +. O + + +As S-MATE +a O +sample S-CONPRI +is O +built-up O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +, O +the O +stress S-PRO +state O +changes O +continuously O +up O +until O +the O +last O +exposure S-CONPRI +. O + + +The O +localized O +energy O +input O +leads O +to O +a O +complex O +stress S-PRO +field O +around O +the O +heat B-CONPRI +source E-CONPRI +that O +involves O +alternating O +tensile S-PRO +and O +compressive B-PRO +stresses E-PRO +. O + + +The O +correlation O +of O +temperature S-PARA +and O +yield B-PRO +strength E-PRO +results O +in O +a O +stress S-PRO +maximum O +at O +a O +certain O +distance O +to O +the O +top O +layer S-PARA +. O + + +The O +present O +study O +demonstrates O +the O +potential O +of O +high-energy O +synchrotron S-ENAT +radiation S-MANP +diffraction S-CHAR +for O +in B-CONPRI +situ E-CONPRI +SLM O +research S-CONPRI +. O + + +Fabry-Pérot O +ultrasonic O +metamaterials S-MATE +have O +been O +additively B-MANP +manufactured E-MANP +using O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +to O +contain O +subwavelength O +holes O +with O +a O +high O +aspect-ratio O +of O +width O +to O +depth O +. O + + +Such O +metamaterials S-MATE +require O +the O +acoustic O +impedance O +mismatch O +between O +the O +structure S-CONPRI +and O +the O +immersion O +medium O +to O +be S-MATE +large O +. O + + +It O +is O +shown O +for O +the O +first O +time O +that O +metallic B-MACEQ +structures E-MACEQ +fulfil O +this O +criterion O +for O +applications O +in O +water O +over O +the O +200 O +– O +800 O +kHz O +frequency O +range S-PARA +. O + + +It O +is O +also O +demonstrated O +that O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +is O +a O +flexible O +fabrication S-MANP +method O +for O +the O +ceration O +of O +structures O +with O +different O +thicknesses O +, O +hole O +geometry S-CONPRI +and O +tapered O +openings O +, O +allowing O +the O +acoustic O +properties S-CONPRI +to O +be S-MATE +modified O +. O + + +It O +was O +confirmed O +via O +both O +finite B-CONPRI +element E-CONPRI +simulation O +and O +practical O +measurements O +that O +these O +structures O +supported O +Fabry-Pérot O +resonances O +, O +needed O +for O +metamaterial S-MATE +operation O +, O +at O +ultrasonic O +frequencies O +in O +water O +. O + + +Selective B-MANP +electron I-MANP +beam I-MANP +melting E-MANP +( O +SEBM S-MANP +) O +is O +shown O +to O +be S-MATE +a O +viable O +production S-MANP +route O +for O +titanium S-MATE +aluminides O +components S-MACEQ +. O + + +Fully B-PARA +dense E-PARA +and O +crack O +free O +parts O +can O +be S-MATE +produced O +. O + + +In O +the O +present O +paper O +a O +titanium B-MATE +aluminide I-MATE +alloy E-MATE +Ti-45Al-4Nb-C S-MATE +was O +investigated O +and O +the O +complete O +processing O +chain O +was O +developed O +, O +i.e O +. O + + +starting O +from O +the O +determination O +of O +the O +processing O +window O +, O +the O +evaluation O +of O +corresponding O +material B-CONPRI +properties E-CONPRI +for O +cube S-CONPRI +like O +specimens O +and O +finally O +the O +production S-MANP +of O +turbocharger O +wheels O +. O + + +The O +material B-CONPRI +properties E-CONPRI +were O +optimized O +by O +adjusting O +scanning B-CONPRI +strategy E-CONPRI +as S-MATE +well O +as S-MATE +heat O +treatment O +with O +particular O +consideration O +of O +the O +application O +to O +turbocharger O +wheels O +. O + + +The O +issue O +of O +dimensional B-CHAR +accuracy E-CHAR +and O +the O +feasibility S-CONPRI +of O +joining S-MANP +will O +be S-MATE +discussed O +and O +a O +proof O +test O +is O +performed O +. O + + +Cobalt-chromium-molybdenum O +( O +CoCrMo O +) O +alloys S-MATE +are O +widely O +used O +in O +load-bearing S-FEAT +implants S-APPL +; O +specifically O +, O +in O +hip S-MANP +, O +knee S-CONPRI +, O +and O +spinal O +applications O +due O +to O +their O +excellent O +wear B-PRO +resistance E-PRO +. O + + +However O +, O +due O +to O +in O +vivo O +corrosion S-CONPRI +and O +mechanically O +assisted O +corrosion S-CONPRI +, O +metal S-MATE +ion S-CONPRI +release O +occurs O +and O +accounts O +for O +poor O +biocompatibility S-PRO +. O + + +Therefore O +, O +a O +significant O +interest O +to O +improve O +upon O +CoCrMo B-MATE +alloy E-MATE +exists O +. O + + +In O +the O +present O +work O +we O +hypothesize O +that O +calcium B-MATE +phosphate E-MATE +( O +CaP O +) O +will O +behave O +as S-MATE +a O +solid O +lubricant S-MATE +in O +CoCrMo B-MATE +alloy E-MATE +under O +tribological S-CONPRI +testing S-CHAR +, O +thereby O +minimizing O +wear S-CONPRI +and O +metal S-MATE +ion S-CONPRI +release O +concerns O +associated O +with O +CoCrMo B-MATE +alloy E-MATE +. O + + +CoCrMo-CaP O +composite B-MATE +coatings E-MATE +were O +processed S-CONPRI +using O +laser B-MANP +engineered I-MANP +net I-MANP +shaping E-MANP +( O +LENS™ O +) O +system O +. O + + +After O +LENS™ O +processing O +, O +CoCrMo B-MATE +alloy E-MATE +was O +subjected O +to O +laser S-ENAT +surface O +melting S-MANP +( O +LSM S-MATE +) O +using O +the O +same O +LENS™ O +set-up O +. O + + +Samples S-CONPRI +were O +investigated O +for O +microstructural S-CONPRI +features O +, O +phase S-CONPRI +identification O +, O +and O +biocompatibility S-PRO +. O + + +It O +was O +found O +that O +LSM S-MATE +treated O +CoCrMo O +improved O +wear B-PRO +resistance E-PRO +by O +5 O +times O +. O + + +Our O +results O +show O +that O +careful O +surface B-MANP +modification E-MANP +treatments O +can O +simultaneously O +improve O +wear B-PRO +resistance E-PRO +and O +in O +vivo O +biocompatibility S-PRO +of O +CoCrMo B-MATE +alloy E-MATE +, O +which O +can O +correlate O +to O +a O +reduction S-CONPRI +of O +metal S-MATE +ion S-CONPRI +release O +in O +vivo O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +several O +possible O +advantages O +over O +traditional B-MANP +manufacturing E-MANP +including O +increased O +design B-CONPRI +freedom E-CONPRI +, O +reduced O +material S-MATE +usage O +, O +and O +shorter O +lead-times O +. O + + +A O +noteworthy O +capability O +of O +AM S-MANP +is O +the O +ability O +to O +monitor S-CONPRI +the O +process S-CONPRI +during O +material S-MATE +deposition S-CONPRI +and O +interrupt O +the O +process S-CONPRI +during O +fabrication S-MANP +if O +necessary O +. O + + +Recently O +, O +such O +monitoring O +, O +feedback S-PARA +, O +and O +control O +have O +been O +made O +possible O +by O +implementing O +in B-CONPRI +situ E-CONPRI +infrared O +( O +IR S-CHAR +) O +thermography O +in O +powder B-MANP +bed I-MANP +fusion I-MANP +AM I-MANP +technologies E-MANP +. O + + +The O +purpose O +of O +the O +current O +research S-CONPRI +was O +to O +investigate O +the O +acquisition O +of O +absolute O +surface S-CONPRI +temperatures O +using O +in B-CONPRI +situ E-CONPRI +IR O +imaging S-APPL +of O +the O +melted S-CONPRI +or O +solid O +surfaces B-CONPRI +layer-by-layer E-CONPRI +during O +fabrication S-MANP +within O +an O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +system O +. O + + +The O +thermal O +camera S-MACEQ +was O +synchronized O +with O +the O +system O +'s O +signal O +voltages O +of O +three O +synchronized O +events O +( O +pre-heating O +, O +melting S-MANP +, O +and O +raking O +) O +to O +automatically O +capture O +images S-CONPRI +. O + + +To O +acquire O +absolute O +temperature S-PARA +values O +from O +the O +IR S-CHAR +images S-CONPRI +, O +a O +calibration S-CONPRI +procedure O +was O +established O +to O +determine O +the O +solid O +material S-MATE +'s O +emissivity O +and O +reflected O +temperature S-PARA +or O +mean O +radiant O +temperature S-PARA +of O +the O +build B-PARA +chamber E-PARA +, O +which O +are O +necessary O +input O +parameters S-CONPRI +for O +the O +IR S-CHAR +camera S-MACEQ +. O + + +A O +blackbody O +radiator O +was O +fabricated S-CONPRI +via O +EBM S-MANP +and O +was O +used O +as S-MATE +a O +tool S-MACEQ +to O +determine O +the O +emissivity O +of O +Ti–6Al–4V O +( O +determined O +to O +be S-MATE +0.26 O +in O +the O +temperature B-PARA +range E-PARA +of O +the O +current O +study O +) O +. O + + +heat S-CONPRI +shielding O +) O +that O +were O +used O +in O +calculating O +the O +mean O +radiant O +temperature S-PARA +of O +the O +manufacturing S-MANP +environment O +( O +∼342 O +°C O +) O +. O + + +Experimental S-CONPRI +validation O +of O +the O +model S-CONPRI +was O +performed O +using O +a O +thermocouple S-MACEQ +embedded O +during O +fabrication S-MANP +that O +showed O +a O +3.77 O +% O +difference O +in O +temperature S-PARA +. O + + +A O +temperature S-PARA +difference O +of O +∼366 O +°C O +( O +1038 O +°C O +vs. O +672 O +°C O +) O +was O +observed O +when O +comparing O +uncorrected O +IR S-CHAR +temperature O +data S-CONPRI +with O +corrected O +temperature S-PARA +data S-CONPRI +. O + + +Upon O +validation S-CONPRI +of O +the O +IR S-CHAR +parameters O +for O +a O +melted S-CONPRI +area S-PARA +, O +experimentation O +was O +conducted O +to O +also O +determine O +powder S-MATE +emissivity O +( O +found O +to O +be S-MATE +0.50 O +) O +. O + + +The O +thermal O +model S-CONPRI +presented O +here O +can O +be S-MATE +modified O +and O +implemented O +in O +other O +AM B-MANP +technologies E-MANP +for O +consideration O +of O +radiation S-MANP +energy O +to O +acquire O +absolute O +temperatures S-PARA +of O +layered O +surfaces S-CONPRI +, O +leading O +to O +improved O +thermal O +monitoring O +and O +control O +of O +the O +fabrication S-MANP +process O +. O + + +In-situ S-CONPRI +welding O +during O +powder B-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +process O +was O +proposed O +. O + + +Highly O +dense O +part O +without O +degrading O +of O +mechanical B-CONPRI +properties E-CONPRI +was O +fabricated S-CONPRI +by O +EBM S-MANP +. O + + +The O +applications O +of O +EBM S-MANP +technology O +was O +expanded O +using O +the O +in-situ S-CONPRI +welding O +concept O +. O + + +As S-MATE +one O +of O +the O +powder-bed-fusion O +additive B-MANP +manufacturing I-MANP +processes E-MANP +, O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +is O +able O +to O +produce O +metal S-MATE +parts O +directly O +. O + + +Many O +small O +volume S-CONPRI +components S-MACEQ +with O +high O +quality S-CONPRI +have O +been O +fabricated S-CONPRI +using O +the O +EBM S-MANP +technology O +. O + + +However O +, O +there O +are O +only O +few O +reports O +on O +the O +EBM S-MANP +fabrication O +of O +medium-sized O +components S-MACEQ +. O + + +This O +, O +in O +turn O +, O +drastically O +degrades O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +EBM S-MANP +printed O +parts O +. O + + +Here O +, O +we O +firstly O +report O +an O +in-situ S-CONPRI +welding O +process S-CONPRI +to O +overcome O +the O +lack O +of O +energy O +issue O +caused O +by O +the O +long O +scan O +length O +during O +EBM S-MANP +process O +. O + + +After O +the O +investigation O +of O +the O +corresponding O +microstructure S-CONPRI +, O +microhardness S-CONPRI +and O +tensile B-PRO +properties E-PRO +, O +it O +is O +revealed O +that O +the O +in-situ S-CONPRI +welding O +zone O +is O +fully O +joined O +and O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +in-situ S-CONPRI +welded O +part O +are O +comparable O +to O +that O +of O +the O +wrought S-CONPRI +counterpart O +. O + + +This O +implies O +that O +medium-sized O +components S-MACEQ +can O +be S-MATE +successfully O +fabricated S-CONPRI +using O +the O +EBM S-MANP +, O +with O +no O +compromise O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +From O +pottery O +to O +clay S-MATE +tablets O +and O +building O +materials S-CONPRI +, O +clay S-MATE +easily O +qualifies O +as S-MATE +one O +of O +the O +most O +versatile O +materials S-CONPRI +in O +the O +history O +of O +human O +civilization O +. O + + +Clay S-MATE +owes O +this O +versatility O +to O +the O +distinct O +properties S-CONPRI +it O +exhibits O +before O +and O +after O +firing S-MANP +. O + + +Soft O +, O +unfired O +clay S-MATE +can O +morph O +into O +complex B-PRO +shapes E-PRO +, O +while O +fired S-MANP +clay S-MATE +offers O +a O +fixed O +shape O +and O +higher O +stiffness S-PRO +. O + + +Despite O +several O +potential O +applications O +, O +thus O +far O +, O +no O +designer O +materials S-CONPRI +with O +similar O +properties S-CONPRI +have O +been O +demonstrated O +. O + + +Here O +, O +we O +introduce O +the O +concept O +of O +metallic B-MATE +clay E-MATE +: O +a O +designer O +material S-MATE +that O +mimics O +the O +two-state O +behavior O +of O +clay S-MATE +. O + + +Metallic B-MATE +clay E-MATE +could O +initially O +morph O +into O +arbitrarily O +complex B-PRO +shapes E-PRO +owing O +to O +numerous O +degrees-of-freedom O +that O +its O +various O +kinematic O +( O +moving O +) O +and O +compliant O +( O +deformable O +) O +joints O +afford O +. O + + +The O +fabrication S-MANP +of O +metallic B-MATE +clay E-MATE +requires O +novel O +designs S-FEAT +of O +joints O +and O +locking O +mechanisms O +that O +are O +compatible O +with O +metal S-MATE +3D B-MANP +printing E-MANP +( O +additive B-MANP +manufacturing E-MANP +) O +techniques O +such O +that O +metallic B-MATE +clay E-MATE +can O +be S-MATE +fabricated O +through O +a O +single-step O +, O +non-assembly O +, O +and O +self-supporting S-FEAT +3D B-MANP +printing E-MANP +process O +. O + + +We O +designed S-FEAT +with O +3D B-MANP +printing E-MANP +17 O +prototypes S-CONPRI +using O +selective B-MANP +laser I-MANP +melting E-MANP +from O +a O +medical S-APPL +grade O +high O +strength S-PRO +titanium O +alloy S-MATE +( O +Ti-6Al-4V S-MATE +) O +to O +demonstrate O +the O +various O +aspects O +of O +metallic B-MATE +clay E-MATE +. O + + +Biomass-derived O +polymers S-MATE +have O +been O +rapidly O +developed O +for O +alleviating O +excessive O +fossil-fuel-based O +plastic S-MATE +consumption O +, O +as S-MATE +green O +manufacturing S-MANP +is O +required O +due O +to O +many O +environmental B-CONPRI +issues E-CONPRI +. O + + +Here O +, O +using O +a O +recently O +developed O +biopolymer S-MATE +, O +bio-based O +polycarbonate S-MATE +( O +bio O +PC S-MATE +) O +, O +we O +demonstrated O +the O +processability O +of O +filament-feedstock O +extrusion S-MANP +and O +extrusion-type O +3D B-MANP +printing E-MANP +. O + + +Under O +a O +set S-APPL +of O +optimal B-PARA +process E-PARA +conditions O +, O +the O +as-printed O +bio O +PC S-MATE +products O +showed O +superior O +tensile B-PRO +strength E-PRO +compared O +to O +other O +commercial O +polymers S-MATE +. O + + +We O +also O +confirmed O +the O +environmentally O +friendly O +characteristics O +of O +the O +thermoplastic S-MATE +processes S-CONPRI +of O +bio O +PC S-MATE +by O +measuring O +hazardous O +emissions O +during O +3D B-MANP +printing E-MANP +. O + + +Finally O +, O +considering O +sterilization O +of O +the O +as-printed O +consumer B-APPL +products E-APPL +, O +we O +tested O +the O +resistive O +properties S-CONPRI +of O +bio O +PC S-MATE +parts O +against O +heat S-CONPRI +and O +UV S-CONPRI +. O + + +Collectively O +, O +the O +good O +3D S-CONPRI +printability O +, O +low O +gas S-CONPRI +and O +particle S-CONPRI +emission S-CHAR +, O +and O +decent O +durability S-PRO +of O +the O +bio O +PC B-MATE +material E-MATE +indicate O +great O +potential O +applications O +for O +indoor O +home O +manufacturing S-MANP +of O +various O +consumer B-APPL +products E-APPL +. O + + +Process−property O +relationships O +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +play O +critical O +roles O +in O +process B-CONPRI +control E-CONPRI +and O +rapid O +certification O +. O + + +In O +laser-based O +directed B-MANP +energy I-MANP +deposition E-MANP +, O +powder S-MATE +mass O +flow O +into O +the O +melt B-MATE +pool E-MATE +influences O +the O +cooling S-MANP +behavior O +and O +properties S-CONPRI +of O +a O +built O +part O +. O + + +This O +study O +develops O +predictive O +computational B-ENAT +models E-ENAT +that O +provide O +the O +microhardness S-CONPRI +of O +AM S-MANP +components O +processed S-CONPRI +with O +miscible O +dissimilar B-MATE +alloys E-MATE +, O +and O +then O +investigates S-CONPRI +the O +influence O +of O +varying O +process B-CONPRI +parameters E-CONPRI +on O +properties S-CONPRI +in O +experiments O +and O +modeling S-ENAT +. O + + +Experimentally-determined O +clad O +dilution O +and O +microhardness S-CONPRI +results O +of O +Ni-based O +superalloy O +Inconel B-MATE +718 E-MATE +clads O +deposited O +onto O +1045 O +carbon B-MATE +steel E-MATE +substrates O +are O +compared O +to O +the O +values O +from O +a O +computational O +thermo-fluid O +dynamics O +( O +CtFD O +) O +model S-CONPRI +. O + + +The O +numerical O +model S-CONPRI +considers O +the O +fluidic O +mechanisms O +of O +molten B-MATE +metal E-MATE +during O +powder S-MATE +deposition S-CONPRI +and O +the O +resulting O +transient S-CONPRI +melt B-MATE +pool E-MATE +geometry S-CONPRI +changes O +. O + + +The O +model S-CONPRI +also O +handles O +the O +change O +in O +thermo-physical O +properties S-CONPRI +caused O +by O +the O +composition S-CONPRI +mixture O +between O +the O +powder S-MATE +and O +substrate B-MATE +materials E-MATE +in O +the O +melt B-MATE +pool E-MATE +. O + + +Based O +on O +the O +computed O +temperature S-PARA +and O +velocity O +distributions S-CONPRI +in O +the O +melt B-MATE +pool E-MATE +, O +cooling B-PARA +rate E-PARA +, O +dilution O +of O +the O +melt B-MATE +pool E-MATE +and O +microhardenss O +are O +evaluated O +. O + + +The O +capability O +to O +predict O +thermal O +histories O +in O +such O +models O +is O +calibrated S-CONPRI +and O +validated O +with O +experimental S-CONPRI +thermal O +imaging S-APPL +and O +microstructures S-MATE +of O +additive B-MANP +manufactured E-MANP +clads O +. O + + +In O +addition O +, O +the O +roles O +of O +cooling B-PARA +rate E-PARA +and O +alloy S-MATE +composition O +on O +the O +microhardness S-CONPRI +are O +examined O +. O + + +The O +results O +show O +that O +variation S-CONPRI +in O +microhardness S-CONPRI +is O +dominated O +by O +composition S-CONPRI +mixture O +between O +the O +powder S-MATE +and O +substrate B-MATE +materials E-MATE +, O +rather O +than O +cooling S-MANP +behavior O +or O +dendrite S-BIOP +arm O +spacing O +at O +liquid-solid B-CONPRI +interface E-CONPRI +in O +laser S-ENAT +deposited O +Inconel B-MATE +718 E-MATE +on O +AISI O +1045 O +carbon B-MATE +steel E-MATE +. O + + +A O +new O +one-way O +coupled O +thermal-mechanical O +finite B-CONPRI +element E-CONPRI +based O +model S-CONPRI +of O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +( O +DMLS S-MANP +) O +is O +developed O +to O +simulate O +the O +process S-CONPRI +, O +and O +predict O +distortion S-CONPRI +and O +cracking S-CONPRI +failure O +location O +in O +the O +fabricated S-CONPRI +components S-MACEQ +. O + + +The O +model S-CONPRI +takes O +into O +account O +the O +layer-by-layer S-CONPRI +additive B-MANP +manufacturing E-MANP +features O +, O +solidification S-CONPRI +and O +melting S-MANP +phenomena O +. O + + +The O +model S-CONPRI +is O +first O +validated O +using O +experimental B-CONPRI +data E-CONPRI +, O +then O +model S-CONPRI +is O +applied O +to O +a O +DMLS S-MANP +fabricated O +component S-MACEQ +. O + + +The O +study O +shows O +how O +the O +stress B-PRO +distribution E-PRO +at O +the O +support-solid O +interface S-CONPRI +is O +critical O +to O +contributing O +to O +cracking S-CONPRI +and O +distortion S-CONPRI +. O + + +During O +the O +DMLS S-MANP +process O +, O +thermal B-PRO +stress E-PRO +at O +the O +support-solid O +interface S-CONPRI +reaches O +its O +maximum O +during O +the O +printing B-MANP +process E-MANP +, O +particularly O +when O +the O +first O +solid O +layer S-PARA +is O +built O +above O +the O +support S-APPL +layer S-PARA +. O + + +This O +result O +suggests O +that O +cracking S-CONPRI +at O +the O +interface S-CONPRI +may O +occur O +during O +the O +printing B-MANP +process E-MANP +, O +which O +is O +consistent O +with O +experimental S-CONPRI +observation O +. O + + +Using O +a O +design S-FEAT +parametric O +study O +, O +a O +thick O +and O +low-density O +porous S-PRO +layer S-PARA +is O +found O +to O +reduce O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +in O +the O +built O +component S-MACEQ +. O + + +The O +developed O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +can O +be S-MATE +used O +to O +future O +design S-FEAT +and O +optimize O +DMLS S-MANP +process O +. O + + +There O +is O +growing O +interest O +in O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +L-PBF S-MANP +) O +or O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +manufacturing S-MANP +of O +high O +conductivity S-PRO +metals O +such O +as S-MATE +copper O +and O +refractory B-MATE +metals E-MATE +. O + + +SLM B-MANP +manufacturing E-MANP +of O +high O +thermal B-PRO +conductivity E-PRO +metals S-MATE +is O +particularly O +difficult O +. O + + +In O +case O +of O +refractory B-MATE +metals E-MATE +, O +the O +difficulty O +is O +amplified O +because O +of O +their O +high O +melting B-PRO +point E-PRO +and O +brittle S-PRO +behaviour O +. O + + +Rapid O +process S-CONPRI +development O +strategies O +are O +essential O +to O +identify O +suitable O +process B-CONPRI +parameters E-CONPRI +for O +achieving O +minimum O +porosities S-PRO +in O +these O +alloys S-MATE +, O +yet O +current O +strategies O +suffer O +from O +several O +limitations O +. O + + +We O +propose O +a O +simple S-MANP +approach O +for O +rapid O +process S-CONPRI +development O +using O +normalized O +process S-CONPRI +maps O +. O + + +Using O +plots O +of O +normalized O +energy B-PARA +density E-PARA +vs. O +normalized O +hatch B-PARA +spacing E-PARA +, O +we O +identify O +a O +wide O +processability O +window O +. O + + +This O +is O +further O +refined O +using O +analytical O +heat B-CONPRI +transfer E-CONPRI +models O +to O +predict O +melt B-MATE +pool E-MATE +size O +. O + + +Final O +optimization S-CONPRI +of O +the O +parameters S-CONPRI +is O +achieved O +by O +experiments O +based O +on O +statistical O +Design B-CONPRI +of I-CONPRI +Experiments E-CONPRI +concepts O +. O + + +In O +this O +article O +we O +demonstrate O +the O +use O +of O +our O +proposed O +approach O +for O +development O +of O +process B-CONPRI +parameters E-CONPRI +( O +hatch B-PARA +spacing E-PARA +, O +layer B-PARA +thickness E-PARA +, O +exposure S-CONPRI +time O +and O +point O +distance O +) O +for O +SLM B-MANP +manufacturing E-MANP +of O +molybdenum S-MATE +and O +aluminium S-MATE +. O + + +Relative B-PRO +densities E-PRO +of O +97.4 O +% O +and O +99.7 O +% O +are O +achieved O +using O +200 O +W O +pulsed B-MANP +laser E-MANP +and O +400 O +W O +continuous O +laser S-ENAT +respectively O +, O +for O +molybdenum S-MATE +and O +aluminium S-MATE +, O +demonstrating O +the O +effectiveness S-CONPRI +of O +our O +approach O +for O +SLM S-MANP +processing O +of O +high O +conductivity S-PRO +materials O +. O + + +Inconel B-MATE +718 E-MATE +, O +a O +widely O +used O +nickel S-MATE +based O +super B-MATE +alloy E-MATE +, O +is O +of O +special O +interest O +to O +the O +aerospace S-APPL +and O +automotive S-APPL +fields O +for O +its O +highly O +desirable O +and O +consistent O +material B-CONPRI +properties E-CONPRI +over O +a O +large O +range S-PARA +of O +temperatures S-PARA +. O + + +The O +objective O +of O +this O +research S-CONPRI +is O +to O +understand O +the O +effect O +of O +process B-CONPRI +parameters E-CONPRI +of O +a O +Direct B-MANP +Metal I-MANP +Laser I-MANP +Sintering E-MANP +( O +DMLS S-MANP +) O +machine S-MACEQ +, O +concerning O +mainly O +beam S-MACEQ +power O +between O +40 O +W O +and O +300 O +W O +and O +scan O +line O +speed O +between O +200 O +mm/s O +and O +2500 O +mm/s O +on O +scan O +line O +quality S-CONPRI +, O +line O +geometry S-CONPRI +and O +dimensions S-FEAT +, O +and O +melt B-MATE +pool E-MATE +geometry S-CONPRI +in O +laser S-ENAT +melted O +Inconel B-MATE +718 E-MATE +line O +scans O +. O + + +Higher O +power S-PARA +runs O +resulted O +in O +voids S-CONPRI +forming S-MANP +in O +the O +bottom O +of O +the O +melt B-MATE +pool E-MATE +and O +were O +consistent O +with O +either O +electron B-MANP +beam I-MANP +welding E-MANP +or O +melting S-MANP +processes O +operating O +at O +higher O +temperatures S-PARA +. O + + +Laser B-PARA +energy I-PARA +density E-PARA +( O +LED S-APPL +) O +, O +a O +method O +of O +correlating O +the O +effects O +of O +scan B-PARA +speed E-PARA +and O +beam S-MACEQ +power O +into O +one O +characteristic O +process B-CONPRI +parameter E-CONPRI +, O +was O +also O +investigated O +. O + + +This O +ratio O +of O +beam S-MACEQ +power O +to O +scan B-PARA +speed E-PARA +follows O +a O +second O +order O +polynomial O +trend S-CONPRI +line O +for O +melt B-MATE +pool E-MATE +width O +and O +a O +logarithmic O +trend S-CONPRI +for O +average S-CONPRI +line O +width O +. O + + +LED S-APPL +values O +for O +melt B-PARA +pool I-PARA +depth E-PARA +are O +separated O +to O +show O +two O +trend S-CONPRI +lines O +as S-MATE +two O +mechanisms O +operate O +at O +low O +values O +below O +0.25 O +J/mm O +and O +high O +values O +above O +0.25 O +J/mm O +. O + + +Process B-CONPRI +optimization E-CONPRI +has O +always O +been O +a O +crucial O +step S-CONPRI +for O +effective O +usage O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +: O +it O +consists O +in O +establishing O +quantitative S-CONPRI +relations O +between O +final O +part O +'s O +characteristics O +and O +process B-CONPRI +parameters E-CONPRI +to O +find O +their O +optimal O +combination O +and O +obtain O +a O +fully O +functional O +mechanical S-APPL +component S-MACEQ +. O + + +Experimental S-CONPRI +investigation O +techniques O +are O +usually O +employed O +for O +this O +purpose O +but O +they O +can O +be S-MATE +extremely O +expensive O +and O +time-consuming O +, O +especially O +when O +the O +output O +of O +the O +process S-CONPRI +depends O +on O +a O +large O +number O +of O +parameters S-CONPRI +, O +like O +for O +AM S-MANP +. O + + +Numerical B-ENAT +simulation E-ENAT +could O +represent O +an O +alternative O +solution S-CONPRI +: O +by O +reproducing O +the O +real O +process S-CONPRI +characteristics O +, O +a O +simulation S-ENAT +could O +provide O +useful O +insights O +, O +allowing O +to O +evaluate O +the O +performance S-CONPRI +of O +the O +process S-CONPRI +for O +different O +parameter S-CONPRI +combinations O +without O +relying O +exclusively O +on O +expensive O +experimental S-CONPRI +campaigns.In O +this O +work O +, O +a O +finite B-CONPRI +element E-CONPRI +AM S-MANP +simulation O +based O +on O +the O +inherent O +strain S-PRO +( O +IS O +) O +method O +was O +developed O +and O +the O +prediction B-CONPRI +performance E-CONPRI +in O +terms O +of O +part O +'s O +residual B-CONPRI +deformation E-CONPRI +was O +evaluated O +by O +comparing O +the O +numerical O +results O +with O +the O +measurements O +carried O +out O +on O +an O +experimental S-CONPRI +campaign O +. O + + +A O +new O +model B-CONPRI +calibration E-CONPRI +approach O +for O +prediction S-CONPRI +improvement O +was O +also O +implemented O +and O +it O +allowed O +to O +discover O +an O +unexpected O +behaviour O +of O +the O +model S-CONPRI +that O +strongly O +affects O +the O +validity O +of O +this O +method O +for O +AM S-MANP +simulation O +. O + + +The O +role O +of O +volumetric O +energy B-PARA +density E-PARA +on O +the O +microstructural B-CONPRI +evolution E-CONPRI +, O +texture S-FEAT +and O +mechanical B-CONPRI +properties E-CONPRI +of O +304L O +stainless B-MATE +steel E-MATE +parts O +additively B-MANP +manufactured E-MANP +via O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +is O +investigated O +. O + + +304L O +is O +chosen O +because O +it O +is O +a O +potential O +candidate O +to O +be S-MATE +used O +as S-MATE +a O +matrix O +in O +a O +metal B-MATE +matrix I-MATE +composite E-MATE +with O +nanoparticles B-CONPRI +dispersion E-CONPRI +for O +energy O +and O +high O +temperature S-PARA +applications O +. O + + +The O +highest O +relative B-PRO +density E-PRO +of O +99 O +% O +±0.5 O +was O +achieved O +using O +a O +volumetric O +energy B-PARA +density E-PARA +of O +1400 O +J/mm3 O +. O + + +Both O +XRD S-CHAR +analysis O +and O +Scheil O +simulation S-ENAT +revealed O +the O +presence O +of O +a O +small O +trace O +of O +the O +delta O +ferrite S-MATE +phase O +, O +due O +to O +rapid B-MANP +solidification E-MANP +within O +the O +austenitic S-MATE +matrix O +of O +304L O +. O + + +A O +fine O +cellular O +substructure O +ranged O +between O +0.4–1.8 O +μm O +, O +was O +detected O +across O +different O +energy B-PARA +density E-PARA +values O +. O + + +At O +the O +highest O +energy B-PARA +density E-PARA +value O +, O +a O +strong O +texture S-FEAT +in O +the O +direction O +of O +[ O +100 O +] O +was O +identified O +. O + + +At O +lower O +energy B-PARA +density E-PARA +values O +, O +multicomponent O +texture S-FEAT +was O +found O +due O +to O +high O +nucleation S-CONPRI +rate O +and O +the O +existing O +defects S-CONPRI +. O + + +Yield B-PRO +strength E-PRO +, O +ultimate B-PRO +tensile I-PRO +strength E-PRO +, O +and O +microhardness S-CONPRI +of O +samples S-CONPRI +with O +a O +relative B-PRO +density E-PRO +of O +99 O +% O +were O +measured O +to O +be S-MATE +540 O +± O +15 O +MPa S-CONPRI +, O +660 O +± O +20 O +MPa S-CONPRI +and O +254 O +± O +7 O +HV O +, O +respectively O +and O +higher O +than O +mechanical B-CONPRI +properties E-CONPRI +of O +conventionally O +manufactured S-CONPRI +304L O +stainless B-MATE +steel E-MATE +. O + + +Heat B-MANP +treatment E-MANP +of O +the O +laser S-ENAT +melted O +304L O +at O +1200 O +°C O +for O +2 O +h O +, O +resulted O +in O +the O +nucleation S-CONPRI +of O +recrystallized S-MANP +equiaxed B-CONPRI +grains E-CONPRI +followed O +by O +a O +decrease O +in O +microhardness S-CONPRI +value O +from O +233 O +± O +3 O +HV O +to O +208 O +± O +8 O +HV O +due O +to O +disappearance O +of O +cellular O +substructure O +. O + + +In O +this O +work O +the O +process S-CONPRI +of O +Acoustoplastic O +Metal S-MATE +Direct-write O +( O +AMD O +) O +is O +introduced O +for O +the O +first O +time O +. O + + +Millimeter-scale O +3D S-CONPRI +aluminum O +articles O +were O +printed O +to O +demonstrate O +the O +process B-CONPRI +feasibility E-CONPRI +. O + + +Evidence O +of O +process-induced O +inter-layer O +and O +intra-layer O +mass O +transport S-CHAR +resulting O +in O +metallurgical B-CONPRI +bonding E-CONPRI +across O +voxels S-CONPRI +was O +obtained O +. O + + +During O +voxel S-CONPRI +formation O +, O +a O +process S-CONPRI +temperature O +rise O +of O +5 O +° O +Celsius O +from O +a O +process S-CONPRI +ambient O +temperature S-PARA +of O +25 O +° O +Celsius O +was O +recorded O +. O + + +In O +addition O +, O +acoustic O +energy-induced O +microstructural S-CONPRI +changes O +during O +process S-CONPRI +were O +observed O +in O +the O +material S-MATE +. O + + +The O +work O +presented O +here O +not O +only O +demonstrates O +the O +feasibility S-CONPRI +of O +a O +new O +non-melt O +fusion S-CONPRI +room O +temperature S-PARA +metal S-MATE +3D B-MANP +printing E-MANP +approach—capable O +of O +producing O +metals S-MATE +with O +more O +than O +99 O +percent O +density—but O +also O +presents O +both O +observational O +study O +and O +an O +initial O +theoretical S-CONPRI +basis O +upon O +which O +a O +new O +athermal O +microstructural S-CONPRI +transformation O +process S-CONPRI +may O +be S-MATE +understood O +Selective B-MANP +laser I-MANP +melting E-MANP +and O +other O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +techniques O +have O +recently O +attracted O +substantial O +interest O +of O +both O +researchers O +and O +the O +processing O +industry S-APPL +. O + + +In O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +, O +the O +components S-MACEQ +are O +produced O +layer-wise O +using O +a O +laser B-CONPRI +beam E-CONPRI +. O + + +SLM S-MANP +is O +a O +powder B-MACEQ +bed E-MACEQ +based O +AM B-MANP +process E-MANP +and O +is O +characterized O +by O +the O +complete O +melting S-MANP +of O +the O +utilized O +powder B-MATE +material E-MATE +. O + + +Employing O +SLM S-MANP +, O +complex O +three-dimensional S-CONPRI +parts O +and O +light O +weight S-PARA +structures O +can O +be S-MATE +produced O +directly O +from O +3D S-CONPRI +CAD O +data S-CONPRI +. O + + +However O +, O +although O +SLM S-MANP +is O +a O +very O +promising O +technology S-CONPRI +, O +there O +are O +still O +challenges O +to O +solve O +. O + + +Under O +cyclic B-PRO +loading E-PRO +, O +pores S-PRO +can O +act O +as S-MATE +stress O +raisers O +and O +lead S-MATE +to O +premature O +crack O +initiations O +, O +which O +reduce O +the O +fatigue B-PRO +strength E-PRO +of O +the O +material S-MATE +. O + + +Hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +offers O +the O +possibility O +to O +reduce O +the O +porosity S-PRO +. O + + +HIP S-MANP +combines O +high O +pressure S-CONPRI +and O +high O +temperature S-PARA +to O +produce O +materials S-CONPRI +with O +superior O +properties S-CONPRI +. O + + +The O +influence O +of O +the O +HIP S-MANP +process O +parameters S-CONPRI +on O +the O +density S-PRO +and O +microstructure S-CONPRI +of O +IN718 S-MATE +SLM O +components S-MACEQ +is O +investigated O +by O +means O +of O +micro O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +The O +results O +of O +the O +experiments O +show O +that O +the O +majority O +of O +pores S-PRO +can O +be S-MATE +densified O +by O +means O +of O +HIP S-MANP +. O + + +On O +the O +other O +hand O +, O +some O +pores S-PRO +can O +not O +be S-MATE +densified O +. O + + +The O +reason O +for O +this O +is O +seen O +in O +entrapped O +argon S-MATE +gas O +from O +the O +SLM S-MANP +process S-CONPRI +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +technology O +is O +sensitive O +to O +variations S-CONPRI +in O +powder B-MATE +particle E-MATE +morphology S-CONPRI +and O +size O +distribution S-CONPRI +. O + + +However O +, O +the O +absence O +of O +a O +clear O +link O +between O +the O +powder S-MATE +characteristics O +and O +the O +LPBF S-MANP +performances O +complicates O +the O +development O +, O +selection O +and O +quality B-CONPRI +control E-CONPRI +of O +LPBF S-MANP +powder O +feedstock S-MATE +. O + + +In O +this O +work O +, O +three O +Ti-6Al-4 B-MATE +V I-MATE +powder E-MATE +lots O +produced O +by O +two O +different O +techniques O +, O +namely O +, O +plasma S-CONPRI +atomization S-MANP +and O +gas B-MANP +atomization E-MANP +, O +were O +selected O +and O +characterized O +. O + + +Following O +the O +micro-computed B-CHAR +tomography E-CHAR +analysis O +of O +the O +powder B-MATE +particles E-MATE +’ O +morphology S-CONPRI +, O +size O +and O +density S-PRO +, O +the O +flowability O +of O +these O +powder S-MATE +lots O +was O +concurrently O +evaluated O +using O +Hall O +and O +Gustavsson O +flowmeters O +and O +an O +FT4 O +powder S-MATE +rheometer O +. O + + +Next O +, O +the O +same O +three O +powder S-MATE +lots O +were O +used O +to O +3D-print O +and O +post-process S-CONPRI +a O +series O +of O +testing S-CHAR +specimens O +with O +different O +layer B-PARA +thicknesses E-PARA +and O +build B-PARA +orientations E-PARA +, O +in O +order O +to O +establish O +a O +correlation O +between O +the O +powder S-MATE +characteristics O +and O +the O +geometric O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +a O +final O +product O +. O + + +This O +study O +demonstrates O +that O +the O +use O +of O +highly O +spherical S-CONPRI +powders S-MATE +with O +a O +limited O +amount O +of O +fine O +particles S-CONPRI +promotes O +their O +flowability O +and O +yields O +LPBF S-MANP +components S-MACEQ +with O +improved O +mechanical S-APPL +and O +geometric O +characteristics O +. O + + +Although O +the O +melt B-MATE +pool E-MATE +convection O +currents O +influence O +the O +dilution O +, O +porosity S-PRO +and O +distribution S-CONPRI +of O +potentially O +included O +hard O +phase B-CONPRI +particles E-CONPRI +such O +as S-MATE +carbide O +or O +other O +ceramic S-MATE +particles O +, O +which O +are O +added O +to O +increase O +the O +wear B-PRO +resistance E-PRO +of O +the O +deposited O +material S-MATE +, O +there O +is O +only O +limited O +knowledge O +of O +melt B-MATE +pool E-MATE +dynamics O +within O +blown O +powder S-MATE +additive B-MANP +manufacturing I-MANP +processes E-MANP +. O + + +In O +the O +pursuit O +of O +a O +deeper O +understanding O +, O +a O +high-speed O +camera S-MACEQ +has O +been O +used O +to O +observe O +melt B-MATE +pool E-MATE +dynamics O +during O +laser B-MANP +cladding E-MANP +at O +a O +frame O +rate O +of O +up O +to O +67 O +’ O +000 O +frames O +per O +second O +, O +allowing O +for O +the O +particles S-CONPRI +that O +swim O +on O +the O +surface S-CONPRI +to O +be S-MATE +traced O +automatically O +. O + + +The O +resulting O +videos O +allow O +for O +the O +melt B-MATE +pool E-MATE +surface O +behavior O +to O +be S-MATE +investigated O +using O +a O +specifically O +developed O +automated O +high-speed O +camera S-MACEQ +image O +evaluation O +technique O +. O + + +This O +method O +has O +been O +tested O +for O +reliability S-CHAR +and O +applied O +to O +investigate O +the O +process B-CONPRI +parameter E-CONPRI +influence O +on O +melt B-MATE +pool E-MATE +dynamics O +. O + + +The O +results O +show O +, O +that O +there O +is O +no O +pronounced O +laminar O +flow O +on O +the O +melt B-MATE +pool E-MATE +surface O +, O +instead O +a O +remarkable O +randomness O +to O +the O +direction O +of O +particle S-CONPRI +flow O +can O +be S-MATE +observed O +. O + + +That O +being O +said O +, O +it O +is O +still O +possible O +to O +identify O +certain O +flow O +tendencies O +that O +can O +be S-MATE +explained O +by O +surface B-PRO +tension E-PRO +phenomena O +like O +the O +Marangoni O +effect O +and O +which O +depend O +on O +the O +process B-CONPRI +parameters E-CONPRI +. O + + +Laser B-MANP +Metal I-MANP +Deposition E-MANP +is O +a O +near-net-shape S-MANP +processing O +technology S-CONPRI +, O +which O +allows O +remarkable O +freedom O +in O +multi-material S-CONPRI +processing O +. O + + +It O +has O +been O +shown O +that O +multi-material S-CONPRI +processing O +of O +the O +two O +alloys S-MATE +via O +discrete O +as S-MATE +well O +as S-MATE +via O +gradual O +material S-MATE +transition O +is O +possible O +without O +any O +cracks O +for O +manufacturing S-MANP +small O +cubes O +. O + + +Cross-sections S-CONPRI +of O +manufactured S-CONPRI +parts O +and O +tracks O +showed O +that O +a O +preheating S-MANP +temperature O +of O +at O +least O +400 O +°C O +is O +necessary O +to O +process S-CONPRI +crack O +free O +samples S-CONPRI +. O + + +EDX-analyses O +indicated O +that O +if O +a O +discrete O +material S-MATE +transition O +is O +required O +in O +multi-material S-CONPRI +processing O +, O +the O +material S-MATE +transition O +should O +be S-MATE +implemented O +in O +the O +vertical S-CONPRI +build-up O +direction O +because O +the O +mixing S-CONPRI +zone O +in O +this O +direction O +is O +significantly O +smaller O +than O +the O +mixing S-CONPRI +zone O +in O +the O +horizontal O +direction O +. O + + +Due O +to O +the O +stronger O +mixing S-CONPRI +effects O +in O +the O +horizontal O +direction O +, O +a O +gradual O +material S-MATE +transition O +by O +a O +linear O +progression O +should O +be S-MATE +implemented O +in O +this O +direction O +rather O +than O +in O +the O +vertical S-CONPRI +direction O +. O + + +The O +mixing S-CONPRI +effects O +are O +mainly O +caused O +by O +melt B-CONPRI +flow E-CONPRI +, O +while O +diffusion S-CONPRI +effects O +can O +be S-MATE +neglected O +. O + + +Processing O +of O +the O +low O +workability O +Fe-Co-1.5V O +( O +Hiperco® O +equivalent O +) O +alloy S-MATE +is O +demonstrated O +using O +the O +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS S-MANP +) O +metals S-MATE +additive B-MANP +manufacturing E-MANP +technique O +. O + + +As S-MATE +an O +innovative O +and O +highly O +localized O +solidification B-MANP +process E-MANP +, O +LENS S-MANP +is O +shown O +to O +overcome O +workability O +issues O +that O +arise O +during O +conventional O +thermomechanical B-MANP +processing E-MANP +, O +enabling O +the O +production S-MANP +of O +bulk O +, O +near O +net-shape O +forms O +of O +the O +Fe-Co O +alloy S-MATE +. O + + +Bulk O +LENS S-MANP +structures O +appeared O +to O +be S-MATE +ductile O +with O +no O +significant O +macroscopic B-CONPRI +defects E-CONPRI +. O + + +Fine O +equiaxed B-CONPRI +grain E-CONPRI +structures O +were O +observed O +in O +as-built O +specimens O +following O +solidification S-CONPRI +, O +which O +then O +evolved O +toward O +a O +highly O +heterogeneous S-CONPRI +bimodal O +grain B-CONPRI +structure E-CONPRI +after O +annealing S-MANP +. O + + +The O +microstructure B-CONPRI +evolution E-CONPRI +in O +Fe-Co O +is O +discussed O +in O +the O +context O +of O +classical O +solidification S-CONPRI +theory O +and O +selective O +grain B-CONPRI +boundary E-CONPRI +pinning O +processes S-CONPRI +. O + + +Magnetic O +properties S-CONPRI +were O +also O +assessed O +and O +shown O +to O +fall O +within O +the O +extremes O +of O +conventionally O +processed S-CONPRI +Hiperco® O +alloys.Hiperco® O +is O +a O +registered O +trademark O +of O +Carpenter O +Technologies S-CONPRI +, O +Readings O +, O +PA S-CHAR +. O + + +The O +use O +of O +3D B-MANP +printing E-MANP +in O +architecture S-APPL +has O +grown O +tremendously O +over O +the O +last O +decade O +thanks O +to O +its O +strong O +reputation O +as S-MATE +a O +versatile O +, O +cheap O +and O +fast O +technology S-CONPRI +. O + + +Its O +durability S-PRO +, O +in O +fact O +, O +depends O +on O +several O +factors O +( O +above O +all O +design S-FEAT +accuracy S-CHAR +, O +quality S-CONPRI +of O +materials S-CONPRI +and O +environmental O +aggressiveness O +) O +, O +which O +may O +lead S-MATE +or O +contribute O +to O +rapid O +performance S-CONPRI +decay O +over O +time O +. O + + +With O +this O +in O +mind O +, O +the O +paper O +describes O +the O +design-to-production O +process S-CONPRI +for O +a O +façade O +shading O +system O +using O +additive B-MANP +manufacturing E-MANP +and O +the O +associated O +testing S-CHAR +campaign O +to O +assess O +the O +feasibility S-CONPRI +of O +the O +design S-FEAT +and O +durability S-PRO +of O +materials S-CONPRI +. O + + +Horizontal O +lamellas O +, O +with O +a O +complex O +curved O +geometry S-CONPRI +, O +were O +generated O +using O +computational O +design S-FEAT +optimised O +for O +additive B-MANP +manufacturing E-MANP +. O + + +In O +order O +to O +select O +the O +most O +suitable O +3D-printable O +material S-MATE +, O +tests O +were O +conducted O +on O +different O +polymers S-MATE +in O +a O +climatic O +chamber O +at O +Politecnico O +di O +Milano O +to O +monitor S-CONPRI +material S-MATE +performances O +over O +time O +at O +high O +temperatures S-PARA +such O +as S-MATE +the O +ones O +in O +Dubai O +. O + + +The O +data S-CONPRI +gathered O +from O +these O +tests O +was O +crucial O +to O +the O +correct O +design S-FEAT +of O +the O +façade O +manufacturing B-MANP +process E-MANP +. O + + +Lattice B-FEAT +structures E-FEAT +are O +advantageous O +in O +terms O +of O +their O +high O +specific B-PRO +stiffness E-PRO +and O +strength S-PRO +, O +and O +have O +been O +applied O +to O +the O +design S-FEAT +of O +lightweight B-MACEQ +structures E-MACEQ +owing O +to O +the O +recent O +development O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +The O +unique O +design B-CONPRI +flexibility E-CONPRI +of O +AM S-MANP +has O +enabled O +the O +fabrication S-MANP +of O +a O +functionally B-FEAT +graded I-FEAT +lattice E-FEAT +( O +FGL O +) O +by O +gradually O +changing O +the O +lattice S-CONPRI +size O +and O +enhancing O +structural O +efficiency O +of O +lattice B-FEAT +structures E-FEAT +. O + + +Although O +FGLs O +have O +been O +generally O +designed S-FEAT +to O +reduce O +the O +compliance O +( O +i.e. O +, O +to O +increase O +the O +stiffness S-PRO +) O +, O +this O +study O +aims O +to O +develop O +soft O +polymeric O +lattices S-CONPRI +to O +widen O +the O +range S-PARA +of O +compliance O +for O +the O +development O +of O +FGLs O +. O + + +To O +develop O +soft O +lattice B-FEAT +structures E-FEAT +, O +various O +lattices S-CONPRI +were O +designed S-FEAT +and O +fabricated S-CONPRI +using O +a O +photo-polymerization O +type O +3D B-MACEQ +printer E-MACEQ +and O +photo-curable S-FEAT +polyurethane O +resin S-MATE +. O + + +Compression B-CHAR +tests E-CHAR +were O +conducted O +on O +these O +lattices S-CONPRI +, O +and O +their O +deformation S-CONPRI +behaviors O +were O +analyzed O +experimentally O +. O + + +The O +effects O +of O +various O +lattice B-FEAT +design E-FEAT +parameters O +and O +the O +curing B-PARA +time E-PARA +were O +also O +investigated O +, O +and O +the O +resulting O +changes O +in O +the O +compliance O +were O +analyzed O +. O + + +As S-MATE +a O +consequence O +, O +the O +compressive O +stiffness S-PRO +can O +vary O +widely O +, O +within O +a O +range S-PARA +of O +10−3 O +to O +102 O +N/mm O +. O + + +Two O +types O +of O +FGLs O +, O +which O +enabled O +the O +self-positioning O +and O +self-guided O +moving O +functions O +, O +were O +then O +developed O +by O +varying O +the O +lattice S-CONPRI +direction O +, O +strut B-PARA +diameter E-PARA +and O +curing B-PARA +time E-PARA +effectively O +. O + + +The O +thermal B-PRO +conductivity E-PRO +of O +AlSi10Mg S-MATE +made O +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +, O +and O +its O +modification O +via O +heat B-MANP +treatment E-MANP +, O +has O +received O +little O +attention O +despite O +possible O +applications O +for O +heat B-MACEQ +exchangers E-MACEQ +and O +thermo-mechanical S-CONPRI +components S-MACEQ +. O + + +Here O +, O +we O +show O +that O +heat B-MANP +treatment E-MANP +can O +increase O +the O +thermal B-PRO +conductivity E-PRO +of O +LPBF S-MANP +AlSi10Mg S-MATE +to O +that O +of O +cast S-MANP +material O +. O + + +Our O +results O +indicate O +that O +post-manufacture O +annealing S-MANP +eliminates O +the O +thermal B-PRO +conductivity E-PRO +anisotropy S-PRO +present O +in O +the O +as-built O +condition O +, O +and O +enhances O +the O +conductivity S-PRO +by O +close O +to O +30 O +% O +in O +the O +transverse O +direction O +( O +perpendicular O +to O +the O +LPBF S-MANP +build B-PARA +orientation E-PARA +) O +. O + + +A O +solution B-MANP +heat I-MANP +treatment E-MANP +increases O +the O +thermal B-PRO +conductivity E-PRO +further O +still O +( O +36 O +% O +compared O +to O +the O +as-built O +condition O +) O +, O +while O +a O +T6-like O +treatment O +provides O +the O +greatest O +increase O +( O +44 O +% O +compared O +to O +the O +as-built O +condition O +) O +. O + + +These O +improvements O +are O +related O +to O +the O +evolution S-CONPRI +of O +the O +AlSi10Mg S-MATE +microstructure O +, O +especially O +the O +breakdown O +of O +the O +Si S-MATE +cellular B-FEAT +structure E-FEAT +. O + + +Additionally O +, O +the O +thermal B-PRO +conductivities E-PRO +of O +gyroid O +lattice B-FEAT +structures E-FEAT +were O +examined O +in O +the O +as-built O +and O +annealed O +conditions O +. O + + +Contrary O +to O +solid O +specimens O +, O +the O +lattice B-FEAT +structures E-FEAT +exhibited O +almost O +isotropic S-PRO +thermal O +conductivity S-PRO +in O +the O +as-built O +condition O +. O + + +Their O +thermal B-PRO +conductivities E-PRO +were O +increased O +by O +the O +annealing B-MANP +treatment E-MANP +in O +proportion O +to O +their O +volume B-PARA +fraction E-PARA +. O + + +Our O +findings O +contribute O +to O +the O +development O +of O +a O +general O +design-for-additive-manufacturing O +( O +DfAM O +) O +framework S-CONPRI +which O +will O +make O +the O +best O +possible O +use O +of O +AM B-MATE +materials E-MATE +and O +lattice B-FEAT +structures E-FEAT +for O +heat B-CONPRI +transfer E-CONPRI +components S-MACEQ +. O + + +Building O +on O +a O +large O +scale O +with O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +one O +of O +the O +biggest O +manufacturing S-MANP +challenges O +of O +our O +time O +. O + + +In O +the O +last O +decade O +, O +the O +proliferation O +of O +3D B-MANP +printing E-MANP +has O +allowed O +architects O +and O +engineers O +to O +imagine O +and O +develop O +constructions O +that O +can O +be S-MATE +produced O +additively O +. O + + +However O +, O +questions O +about O +the O +convenience O +of O +using O +this O +technology S-CONPRI +, O +and O +whether O +additive S-MATE +large-scale O +constructions O +can O +be S-MATE +feasible O +, O +efficient O +and O +sustainable S-CONPRI +are O +still O +open O +. O + + +In O +this O +research S-CONPRI +3D B-MANP +printing E-MANP +is O +considered O +not O +as S-MATE +a O +question O +, O +but O +as S-MATE +an O +answer O +to O +the O +increasing O +scarcity O +of O +material S-MATE +resources O +in O +the O +construction S-APPL +industry O +. O + + +This O +paper O +illustrates O +the O +overarching O +process S-CONPRI +from O +concept O +to O +the O +realisation O +of O +the O +Trabeculae S-MATE +Pavilion O +, O +a O +load-responsive O +architecture S-APPL +that O +is O +entirely O +designed S-FEAT +and O +optimized O +for O +3D B-MANP +printing E-MANP +, O +using O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +- O +one O +of O +the O +most O +cost-effective O +additive S-MATE +techniques O +of O +production S-MANP +. O + + +The O +research B-CONPRI +methodology E-CONPRI +is O +based O +on O +a O +multi-scale O +computational O +workflow S-CONPRI +that O +integrates O +several O +aspects O +, O +such O +as S-MATE +material O +testing S-CHAR +, O +bio-inspired B-CONPRI +design I-CONPRI +algorithms E-CONPRI +, O +multi-criteria O +optimization S-CONPRI +, O +and O +production S-MANP +management O +. O + + +The O +work O +culminates O +in O +the O +construction S-APPL +process O +of O +a O +full-scale O +architectural O +prototype S-CONPRI +; O +an O +anticlastic O +shell S-MACEQ +that O +features O +a O +cellular B-FEAT +structure E-FEAT +with O +increased O +material S-MATE +and O +structural O +efficiency O +. O + + +Microstructural B-CHAR +characterization E-CHAR +was O +carried O +out O +on O +AISI O +17-4 B-MATE +PH I-MATE +stainless I-MATE +steel E-MATE +fabricated O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +in O +an O +argon S-MATE +environment O +. O + + +Conventionally O +, O +this O +steel S-MATE +exhibits O +a O +martensitic O +structure S-CONPRI +with O +a O +small O +fraction S-CONPRI +of O +δ O +ferrite S-MATE +. O + + +However O +, O +the O +combined O +findings O +of O +x-ray B-CHAR +diffraction E-CHAR +and O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +proved O +that O +SLM-ed O +17-4 O +PH S-CONPRI +steel O +has O +a O +fully O +ferritic S-MATE +microstructure O +, O +more O +specifically O +δ O +ferrite S-MATE +. O + + +The O +microstructure S-CONPRI +consists O +of O +coarse O +ferritic S-MATE +grains O +elongated O +along O +the O +build B-PARA +direction E-PARA +, O +with O +a O +pronounced O +solidification S-CONPRI +crystallographic O +texture S-FEAT +. O + + +These O +results O +were O +associated O +to O +the O +high O +cooling S-MANP +and O +heating S-MANP +rates O +experienced O +throughout O +the O +SLM S-MANP +process S-CONPRI +that O +suppressed O +the O +austenite S-MATE +formation O +and O +produced O +a O +“ O +by-passing O +” O +phenomenon O +of O +this O +phase S-CONPRI +during O +the O +numerous O +thermal B-PARA +cycles E-PARA +. O + + +Furthermore O +, O +the O +energy-dispersive O +X-ray S-CHAR +spectroscopy S-CONPRI +( O +EDS S-CHAR +) O +measurements O +revealed O +a O +uniform O +distribution S-CONPRI +of O +elements S-MATE +without O +any O +dendritic O +structure S-CONPRI +. O + + +The O +extremely O +high O +cooling S-MANP +kinetics O +induced O +a O +diffusionless O +solidification S-CONPRI +, O +resulting O +in O +a O +homogeneous S-CONPRI +elemental O +composition S-CONPRI +. O + + +It O +was O +also O +found O +that O +the O +ferritic S-MATE +SLM-ed O +material S-MATE +can O +be S-MATE +transformed O +to O +martensite S-MATE +again O +by O +re-austenitization O +at O +1050 O +°C O +followed O +by O +quenching S-MANP +. O + + +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +has O +the O +potentiality O +of O +being O +an O +effective O +system O +in O +terms O +of O +time O +and O +energy O +consumption O +. O + + +Among O +the O +different O +additive B-MANP +manufacturing I-MANP +processes E-MANP +that O +are O +available O +, O +the O +EBM S-MANP +process O +has O +shown O +the O +lowest O +Specific B-PRO +Energy E-PRO +Consumption O +( O +SEC O +) O +and O +the O +highest O +average S-CONPRI +Deposition O +Rate O +( O +DRa O +) O +. O + + +Moreover O +, O +all O +the O +literature O +studies O +have O +only O +an O +analysis O +of O +energy O +efficiency O +during O +the O +melting S-MANP +of O +the O +bulk O +material S-MATE +phase O +and O +have O +adopted O +a O +fixed O +job O +design S-FEAT +. O + + +A O +black-box O +approach O +is O +applied O +to O +provide O +a O +new O +model S-CONPRI +for O +the O +energy O +efficiency O +of O +the O +EBM S-MANP +process O +. O + + +Different O +jobs O +have O +been O +designed S-FEAT +to O +analyse O +the O +effect O +of O +a O +part O +and O +of O +manufacturing S-MANP +designs S-FEAT +. O + + +Bulk O +material S-MATE +, O +support S-APPL +and O +lattice B-FEAT +structures E-FEAT +have O +been O +included O +. O + + +The O +design S-FEAT +has O +therefore O +been O +aimed O +at O +investigating O +the O +effect O +of O +the O +building O +height O +, O +melted S-CONPRI +area S-PARA +and O +process S-CONPRI +themes O +on O +energy O +efficiency O +. O + + +The O +jobs O +have O +been O +produced O +using O +Arcam O +A2X O +and O +Standard S-CONPRI +Arcam O +Ti6Al4V B-MATE +powders E-MATE +. O + + +According O +to O +this O +research S-CONPRI +, O +the O +architecture S-APPL +of O +the O +machine S-MACEQ +and O +its O +control O +of O +the O +process S-CONPRI +have O +the O +main O +impact S-CONPRI +on O +the O +relationship O +between O +SEC O +and O +DRa O +. O + + +Additionally O +, O +the O +empirical S-CONPRI +approach O +applied O +to O +the O +machine S-MACEQ +subunits O +has O +highlighted O +that O +only O +a O +small O +part O +of O +the O +total O +energy O +demand O +is O +needed O +to O +power S-PARA +the O +electron B-CONPRI +beam E-CONPRI +during O +the O +melting S-MANP +phase O +, O +while O +the O +remaining O +part O +guarantees O +the O +good O +machine S-MACEQ +working O +conditions O +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +, O +is O +an O +additive B-MANP +manufacturing E-MANP +technology O +that O +is O +used O +in O +industry S-APPL +for O +rapid B-ENAT +prototyping E-ENAT +and O +manufacturing S-MANP +of O +aftermarket O +products O +, O +molds S-MACEQ +and O +special O +machine S-MACEQ +parts O +. O + + +Quality S-CONPRI +assurance O +and O +process S-CONPRI +stability O +still O +require O +improvement O +until O +this O +technology S-CONPRI +is O +ready O +for O +large O +scale O +serial O +production S-MANP +. O + + +Scan O +strategies O +and O +parameter S-CONPRI +sets O +for O +manufacturing S-MANP +are O +often O +fixed O +when O +certification O +processes S-CONPRI +are O +finished O +. O + + +Thus O +, O +it O +is O +important O +to O +test O +the O +manufacturability S-CONPRI +of O +specific O +design S-FEAT +features O +such O +as S-MATE +inner O +channels O +. O + + +In O +the O +following O +we O +will O +present O +the O +qualification O +of O +inner O +channels O +in O +different O +test O +parts O +for O +the O +aluminum B-MATE +alloy E-MATE +AlSi10Mg S-MATE +and O +the O +stainless B-MATE +steel E-MATE +1.4542 O +. O + + +The O +testing S-CHAR +includes O +different O +cleaning S-MANP +methods O +and O +air O +flow B-PARA +rate E-PARA +measurements O +. O + + +Additionally O +, O +we O +will O +compare O +such O +parts O +and O +LPBF S-MANP +specific O +problems O +to O +observations O +with O +a O +coaxial O +melt B-MATE +pool E-MATE +monitoring O +system O +. O + + +A O +system O +for O +the O +additive B-MANP +manufacturing E-MANP +of O +functionally B-MATE +graded I-MATE +concrete E-MATE +parts O +was O +developed O +. O + + +It O +is O +possible O +to O +3D B-MANP +print E-MANP +functionally O +graded O +concrete S-MATE +parts O +by O +varying O +the O +type O +and O +ratio O +of O +aggregates S-MATE +. O + + +Homogeneous S-CONPRI +and O +functionally B-CONPRI +graded E-CONPRI +parts O +were O +produced O +with O +the O +system O +. O + + +Cork S-MATE +is O +a O +viable O +natural B-MATE +aggregate E-MATE +for O +concrete B-MANP +printing E-MANP +. O + + +In O +recent O +years O +, O +the O +interest O +in O +developing O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +in O +the O +architecture S-APPL +, O +engineering S-APPL +and O +construction S-APPL +( O +AEC S-APPL +) O +industry S-APPL +has O +increased O +, O +motivated O +by O +the O +potential O +to O +support S-APPL +greater O +formal O +complexity S-CONPRI +. O + + +In O +this O +context O +, O +AM S-MANP +has O +been O +largely O +used O +to O +design S-FEAT +and O +fabricate S-MANP +physical O +parts O +with O +homogeneous B-MATE +materials E-MATE +. O + + +This O +paper O +proposes O +a O +new O +strategy O +, O +aimed O +at O +the O +design S-FEAT +and O +fabrication S-MANP +of O +functionally B-MATE +graded I-MATE +concrete E-MATE +parts O +with O +specific O +thermo-mechanical B-CONPRI +performance E-CONPRI +. O + + +The O +paper O +describes O +the O +development O +of O +the O +AM S-MANP +system O +to O +materialize S-CONPRI +such O +parts O +. O + + +The O +computational B-CONPRI +tool E-CONPRI +developed O +to O +design S-FEAT +the O +material S-MATE +to O +meet O +specific O +performance S-CONPRI +requirements O +, O +and O +the O +design S-FEAT +and O +testing S-CHAR +of O +the O +material S-MATE +are O +described O +elsewhere O +. O + + +A O +functionally B-MATE +graded I-MATE +concrete E-MATE +part O +obtained O +by O +replacing O +sand S-MATE +with O +cork S-MATE +was O +produced O +and O +is O +evaluated O +. O + + +Mechanical B-CONPRI +properties E-CONPRI +( O +tensile B-PRO +strength E-PRO +and O +creep S-PRO +) O +of O +AlSi10Mg S-MATE +specimens O +fabricated S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +in O +the O +Z-direction S-FEAT +were O +investigated O +in O +the O +25–400 O +°C O +temperature B-PARA +range E-PARA +. O + + +Specimens O +were O +tested O +after O +stress S-PRO +relief O +treatment O +. O + + +The O +results O +revealed O +that O +yield B-PRO +stress E-PRO +( O +YS O +) O +significantly O +decreases O +and O +the O +elongation S-PRO +increases O +at O +temperatures S-PARA +higher O +than O +200 O +°C O +. O + + +The O +ultimate O +tensile B-PRO +stress E-PRO +( O +UTS S-PRO +) O +continuously O +decreases O +with O +temperature S-PARA +. O + + +The O +creep S-PRO +parameters O +, O +namely O +stress S-PRO +exponent O +n S-MATE +and O +apparent O +activation O +energy O +Q O +, O +were O +found O +to O +be S-MATE +25 O +± O +2 O +and O +146 O +± O +20 O +kJ/mole O +, O +respectively O +. O + + +It O +was O +shown O +that O +plastic B-PRO +deformation E-PRO +during O +creep S-PRO +is O +governed O +by O +dislocation S-CONPRI +movements O +in O +primary O +aluminum S-MATE +grains O +. O + + +The O +tested O +material S-MATE +is O +actually O +an O +aluminum S-MATE +composite O +reinforced S-CONPRI +by O +sub-micron S-FEAT +Si S-MATE +particles S-CONPRI +. O + + +The O +creep S-PRO +resistance O +of O +AlSi10Mg B-MATE +alloy E-MATE +fabricated O +by O +selective B-MANP +laser I-MANP +melting E-MANP +is O +close O +to O +that O +for O +aluminum S-MATE +matrix O +particles S-CONPRI +reinforced O +composites S-MATE +. O + + +Recyclability S-CONPRI +of O +Ti-6Al-4 B-MATE +V I-MATE +powder E-MATE +by O +EBM S-MANP +process O +has O +been O +investigated O +. O + + +The O +effect O +of O +powder S-MATE +recycling O +was O +explored O +using O +metallographic O +and O +mechanical B-CHAR +testing E-CHAR +. O + + +Recycling S-CONPRI +causes O +various O +defects S-CONPRI +to O +appear O +in O +Ti-6Al-4 B-MATE +V I-MATE +powder E-MATE +, O +having O +a O +negative O +effect O +on O +the O +EBM S-MANP +process O +. O + + +HIP S-MANP +significantly O +improves O +the O +quality S-CONPRI +of O +the O +samples S-CONPRI +made O +from O +recycled S-CONPRI +powder S-MATE +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +also O +called O +3D-printing S-MANP +, O +is O +an O +innovative O +technology S-CONPRI +, O +as S-MATE +the O +printing O +of O +objects O +is O +performed O +by O +layer-by-layer B-CONPRI +deposition E-CONPRI +. O + + +A O +wide O +variety O +of O +materials S-CONPRI +can O +be S-MATE +used O +to O +produce O +a O +variety O +of O +shapes O +that O +can O +not O +be S-MATE +achieved O +using O +any O +other O +technology S-CONPRI +. O + + +AM S-MANP +started O +as S-MATE +a O +prototyping S-CONPRI +in O +plastics S-MATE +, O +and O +now O +it O +is O +successfully O +implemented O +with O +metals S-MATE +. O + + +AM S-MANP +in O +metals S-MATE +, O +first O +of O +all O +, O +in O +Titanium B-MATE +alloys E-MATE +, O +offers O +the O +potential O +to O +not O +only O +generate O +net-shape O +, O +complex O +geometrical O +and O +light-weight S-PRO +objects O +, O +but O +also O +to O +achieve O +enhanced O +mechanical B-CONPRI +properties E-CONPRI +, O +even O +better O +than O +achieved O +by O +traditional O +mass B-CONPRI +production E-CONPRI +, O +like O +casting.However O +, O +the O +priority O +of O +achieving O +good O +non-porous O +microstructure S-CONPRI +and O +the O +desired O +mechanical B-CONPRI +properties E-CONPRI +is O +a O +challenge O +for O +the O +main O +fields O +of O +applications O +of O +Titanium S-MATE +AM S-MANP +, O +such O +as S-MATE +the O +aerospace B-APPL +industry E-APPL +and O +production S-MANP +of O +medical B-APPL +implants E-APPL +. O + + +Thus O +, O +the O +quality S-CONPRI +of O +the O +powder S-MATE +and O +standardization O +of O +the O +AM B-MANP +process E-MANP +are O +the O +top O +priority O +. O + + +The O +potential O +recycling S-CONPRI +of O +the O +Ti-6Al-4 B-MATE +V I-MATE +powder E-MATE +as S-MATE +an O +inextricable O +part O +of O +the O +AM B-MANP +process E-MANP +needs O +to O +be S-MATE +explored.The O +influence O +of O +powder S-MATE +recycling O +on O +Ti-6Al-4 B-MATE +V E-MATE +additive B-MANP +manufacturing E-MANP +, O +the O +correct O +number O +of O +cycles O +, O +the O +requirements O +of O +the O +recycling S-CONPRI +procedures O +, O +and O +possible O +post B-CONPRI +processing E-CONPRI +procedures O +– O +are O +still O +open O +questions O +. O + + +This O +research S-CONPRI +aims O +to O +answer O +these O +questions O +. O + + +Two O +identical O +test O +cylinder O +sets O +were O +printed O +, O +one O +from O +recycled S-CONPRI +powder S-MATE +and O +one O +from O +the O +new O +powder S-MATE +batch O +. O + + +The O +cylinders O +were O +printed O +by O +the O +Arcam O +EBM S-MANP +A2X O +machine S-MACEQ +using O +a O +start O +platform S-MACEQ +of O +210 O +x O +210 O +mm S-MANP +in O +size O +. O + + +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +is O +a O +well-known O +effective O +manufacturing B-MANP +process E-MANP +. O + + +This O +AM B-MANP +technology E-MANP +utilizes O +high O +power S-PARA +electron B-CONPRI +beam E-CONPRI +to O +produce O +layer-by-layer S-CONPRI +metal O +parts O +for O +various O +applications O +, O +such O +as S-MATE +fabrication O +of O +biomedical S-APPL +implants O +and O +aerospace B-MACEQ +components E-MACEQ +. O + + +The O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +printed O +specimens O +from O +the O +two O +sets O +( O +new O +and O +recycled S-CONPRI +Ti-6Al-4 O +V S-MATE +powder S-MATE +) O +were O +investigated O +before O +and O +after O +heat B-MANP +treatment E-MANP +. O + + +A O +novel O +approach O +to O +fabricate S-MANP +ceramic S-MATE +structures O +at O +multiple O +scales O +in O +a O +single O +component S-MACEQ +, O +based O +on O +the O +hybridization O +of O +additive B-MANP +manufacturing E-MANP +technologies O +, O +was O +developed O +by O +combining O +3D S-CONPRI +macro-stereolithography O +( O +Digital B-MANP +Light I-MANP +Processing E-MANP +, O +DLP S-MANP +) O +with O +two-photon O +lithography S-CONPRI +( O +2PL O +) O +, O +to O +produce O +cm-sized O +sample S-CONPRI +geometries S-CONPRI +with O +sub-μm O +surface S-CONPRI +features O +. O + + +The O +preceramic O +structures O +in O +the O +sub-μm O +scale O +were O +realized O +by O +2PL O +directly O +on O +easily O +manageable O +DLP S-MANP +macro-sized O +samples S-CONPRI +of O +the O +same O +ceramic S-MATE +composition O +. O + + +In O +this O +way O +, O +preceramic O +structures O +presenting O +both O +features O +typical O +of O +DLP B-MACEQ +printers E-MACEQ +( O +with O +a O +minimum O +size O +of O +around O +50 O +μm O +) O +and O +features O +well O +below O +their O +resolution S-PARA +limit S-CONPRI +were O +realized O +. O + + +We O +report O +here O +, O +for O +the O +first O +time O +, O +the O +realization O +of O +polymer-derived O +ceramic S-MATE +SiOC O +ceramic S-MATE +components O +structured O +in O +3D S-CONPRI +across O +several O +length B-CHAR +scales E-CHAR +( O +with O +micron S-FEAT +and O +mesoscale B-CONPRI +3D E-CONPRI +features O +) O +, O +produced O +by O +pyrolysis S-MANP +at O +1000 O +°C O +of O +preceramic O +parts O +, O +without O +shape O +distortion S-CONPRI +during O +the O +pyrolysis S-MANP +step O +. O + + +The O +effect O +of O +varying O +the O +solids O +volume B-PARA +fraction E-PARA +of O +an O +aqueous O +clay S-MATE +paste O +suspension O +on O +its O +printability S-PARA +via O +an O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +or O +3D B-MANP +printing E-MANP +technique O +, O +Direct O +Ink S-MATE +Writing O +( O +DIW S-MANP +) O +or O +material B-MANP +extrusion E-MANP +, O +has O +been O +studied O +. O + + +DIW S-MANP +is O +a O +cost-effective O +and O +straightforward O +fabrication S-MANP +technology O +suitable O +for O +adoption O +at O +a O +larger-scale O +by O +the O +traditional B-MATE +ceramics E-MATE +industry S-APPL +and O +the O +creative O +community O +. O + + +The O +pastes O +were O +prepared O +with O +volume B-PARA +fraction E-PARA +of O +solids O +ranging O +from O +25 O +to O +57 O +vol O +% O +. O + + +Their O +rheological B-PRO +properties E-PRO +( O +storage O +modulus O +and O +apparent O +yield B-PRO +stress E-PRO +) O +were O +measured O +by O +dynamic S-CONPRI +oscillatory O +rheometry O +. O + + +The O +relationships O +between O +solids O +content O +, O +rheological S-PRO +behaviour O +and O +print S-MANP +parameters S-CONPRI +were O +evaluated O +. O + + +An O +equation O +based O +on O +rheological B-PRO +properties E-PRO +to O +delineate O +between O +printable O +and O +non-printable O +conditions O +has O +been O +proposed O +. O + + +In O +this O +study O +, O +we O +present O +the O +first O +results O +of O +a O +newly O +developed O +melt B-MATE +pool E-MATE +monitoring O +tool S-MACEQ +for O +selective B-MANP +laser I-MANP +melting E-MANP +, O +called O +DMP-meltpool O +. O + + +A O +manual O +data S-CONPRI +analysis O +method O +is O +given O +, O +and O +the O +events O +indicated O +by O +the O +analysis O +( O +DMP-meltpool O +events O +) O +are O +shown O +to O +correlate O +to O +the O +static O +tensile B-PRO +properties E-PRO +of O +the O +samples S-CONPRI +built O +. O + + +These O +events O +indicate O +the O +probability S-CONPRI +of O +material S-MATE +discontinuities O +( O +defects S-CONPRI +) O +in O +the O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +parts O +. O + + +In O +order O +to O +do O +so O +, O +cylindrical S-CONPRI +bars O +of O +Ti-6Al-4V S-MATE +ELI O +were O +built O +and O +monitored O +using O +DMP-meltpool O +. O + + +The O +tensile B-PRO +properties E-PRO +of O +the O +printed O +cylinders O +were O +correlated S-CONPRI +with O +the O +events O +detected O +by O +DMP-meltpool O +. O + + +An O +inverse O +relation O +between O +plastic S-MATE +elongation S-PRO +and O +the O +DMP-meltpool O +event O +density S-PRO +was O +observed O +. O + + +These O +results O +show O +that O +DMP-meltpool O +can O +be S-MATE +used O +to O +predict O +the O +quality S-CONPRI +of O +AM B-MACEQ +parts E-MACEQ +by O +detecting O +variations S-CONPRI +in O +the O +signals O +and O +tagging O +these O +events O +throughout O +the O +build S-PARA +as S-MATE +defects O +. O + + +Thus O +the O +technique O +can O +be S-MATE +employed O +for O +first O +stage O +in-line O +quality B-CONPRI +control E-CONPRI +of O +AM B-MACEQ +parts E-MACEQ +and O +for O +sorting O +out O +parts O +with O +potential O +defects S-CONPRI +non-destructively O +. O + + +The O +DMP-meltpool O +events O +could O +have O +significant O +correlations O +with O +other O +mechanical B-CONPRI +properties E-CONPRI +( O +like O +fatigue S-PRO +, O +hardness S-PRO +, O +fracture S-CONPRI +toughness O +, O +and O +crack B-CONPRI +propagation E-CONPRI +) O +since O +such O +properties S-CONPRI +are O +influenced O +by O +defects S-CONPRI +originating O +from O +the O +process S-CONPRI +instabilities O +. O + + +This O +study O +compares O +the O +mechanical B-CONPRI +response E-CONPRI +and O +microstructure S-CONPRI +of O +Co–Cr–Mo O +removable O +partial O +denture S-APPL +models O +made O +through O +conventional O +lost-wax O +casting S-MANP +and O +the O +selective B-MANP +laser I-MANP +melting E-MANP +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +Co–Cr–Mo O +clasps O +for O +removal O +partial O +dentures S-APPL +, O +based O +on O +a O +wax S-MATE +model S-CONPRI +( O +BEGO O +USA O +) O +, O +were O +fabricated S-CONPRI +through O +lost-wax O +technique O +and O +selective B-MANP +laser I-MANP +melting E-MANP +, O +and O +subjected O +to O +mechanical S-APPL +bending S-MANP +experiments O +to O +determine O +their O +yield B-PRO +strength E-PRO +and O +maximum O +reversible O +deformation S-CONPRI +. O + + +Microstructure S-CONPRI +and O +chemical B-CONPRI +composition E-CONPRI +of O +the O +clasps O +were O +determined O +through O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +and O +wave-dispersive O +spectroscopy S-CONPRI +to O +rationalize O +the O +differences O +and O +similarities O +in O +the O +mechanical B-CHAR +testing E-CHAR +results O +from O +the O +two O +groups.It O +was O +found O +that O +the O +clasps O +made O +using O +lost-wax O +technique O +and O +selective B-MANP +laser I-MANP +melting E-MANP +exhibit O +comparable O +mean O +yield B-PRO +strengths E-PRO +and O +maximum O +elastic B-PRO +deformations E-PRO +, O +however O +the O +underlying O +microstructure S-CONPRI +of O +the O +cast S-MANP +clasps O +vastly O +differs O +from O +the O +laser-melted O +counterparts O +. O + + +Furthermore O +, O +the O +laser S-ENAT +melted O +clasps O +exhibit O +larger O +variability S-CONPRI +in O +their O +mechanical B-CONPRI +response E-CONPRI +. O + + +While O +selective B-MANP +laser I-MANP +melting E-MANP +is O +capable O +of O +producing O +removable O +partial O +denture S-APPL +clasps O +with O +similar O +average S-CONPRI +mechanical O +responses O +to O +those O +of O +lost-wax O +cast S-MANP +counterparts O +, O +additional O +studies O +should O +be S-MATE +conducted O +to O +minimize O +the O +variability S-CONPRI +in O +the O +laser S-ENAT +melted O +clasps O +in O +order O +to O +minimize O +unexpected O +failures O +. O + + +Optical S-CHAR +Emissions O +Spectroscopy S-CONPRI +and O +plume O +imaging S-APPL +were O +utilized O +to O +investigate O +flaws S-CONPRI +generated O +during O +directed B-MANP +energy I-MANP +deposition I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Ti-6Al–4 O +V S-MATE +coupons O +were O +built O +using O +varying O +laser B-PARA +power E-PARA +, O +powder B-PARA +flow I-PARA +rate E-PARA +, O +and O +hatching O +pattern S-CONPRI +to O +induce O +random O +and O +systematic O +flaws S-CONPRI +. O + + +X-Ray B-CHAR +Computed I-CHAR +Tomography E-CHAR +( O +CT S-ENAT +) O +scans O +were O +completed O +on O +each O +part O +to O +determine O +flaw S-CONPRI +density S-PRO +and O +flaw S-CONPRI +locations O +. O + + +For O +coupons O +built O +with O +constant O +laser B-PARA +power E-PARA +, O +variations S-CONPRI +in O +either O +powder B-PARA +flow I-PARA +rate E-PARA +or O +hatch O +pattern S-CONPRI +that O +led S-APPL +to O +an O +increase O +in O +flaw S-CONPRI +density S-PRO +were O +accompanied O +by O +an O +increase O +in O +median O +line-to-continuum O +ratios O +around O +430 O +and O +520 O +nm O +and O +in O +total O +plume O +area S-PARA +. O + + +These O +results O +present O +a O +path O +forward O +for O +real-time O +flaw B-CONPRI +detection E-CONPRI +and O +assessment O +of O +build S-PARA +quality O +in O +directed B-MANP +energy I-MANP +deposition E-MANP +and O +powder B-MANP +bed I-MANP +fusion I-MANP +processes E-MANP +. O + + +This O +study O +examines O +the O +impact S-CONPRI +of O +low-temperature O +heat-treatment O +on O +the O +microstructure S-CONPRI +and O +corrosion S-CONPRI +performance O +of O +direct B-MACEQ +metal I-MACEQ +laser E-MACEQ +sintered O +( O +DMLS S-MANP +) O +-AlSi10Mg O +alloy S-MATE +. O + + +Differential O +scanning S-CONPRI +calorimetry O +( O +DSC S-CHAR +) O +was O +used O +to O +determine O +the O +phase S-CONPRI +( O +s S-MATE +) O +transition S-CONPRI +temperatures S-PARA +in O +the O +alloy S-MATE +. O + + +Two O +exothermic O +phenomena O +were O +detected O +and O +associated O +with O +the O +Mg2Si S-MATE +precipitation O +and O +Si S-MATE +phase S-CONPRI +precipitation O +in O +the O +as-printed O +alloy S-MATE +. O + + +Based O +on O +DSC S-CHAR +results O +, O +thermal-treatments O +including O +below O +and O +above O +the O +active O +Si S-MATE +precipitation S-CONPRI +temperature O +at O +200 O +°C O +and O +300 O +°C O +, O +respectively O +, O +and O +350 O +°C O +as S-MATE +an O +upper O +limit S-CONPRI +temperature O +for O +3 O +h O +were O +applied O +to O +the O +as-printed O +samples S-CONPRI +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +and O +X-ray B-CHAR +diffraction I-CHAR +analysis E-CHAR +confirmed O +that O +heat-treatment O +from O +200 O +°C O +to O +350 O +°C O +promotes O +the O +homogeneity O +of O +the O +microstructure S-CONPRI +, O +characterized O +by O +uniform O +distribution S-CONPRI +of O +eutectic S-CONPRI +Si O +in O +α-Al O +matrix O +. O + + +To O +investigate O +the O +impact S-CONPRI +of O +the O +applied O +heat-treatment O +cycles O +on O +corrosion B-CONPRI +resistance E-CONPRI +of O +DMLS-AlSi10Mg O +at O +early O +stage O +of O +immersion O +, O +anodic O +polarization O +testing S-CHAR +and O +electrochemical S-CONPRI +impedance O +spectroscopy S-CONPRI +were O +performed O +in O +aerated O +3.5 O +wt. O +% O +NaCl S-MATE +solution O +. O + + +The O +results O +revealed O +more O +uniformly O +distributed O +pitting S-CONPRI +attack O +on O +the O +corroded O +surfaces S-CONPRI +by O +increasing O +the O +heat-treatment O +temperature S-PARA +up O +to O +300 O +°C O +, O +attributed O +to O +the O +more O +protective O +nature O +of O +the O +spontaneously O +air-formed O +passive O +layer S-PARA +on O +the O +surface S-CONPRI +of O +the O +alloy S-MATE +at O +initial O +immersion O +time O +. O + + +Further O +increase O +of O +the O +heat B-MANP +treatment E-MANP +temperature O +to O +350 O +°C O +induced O +severe O +localized O +corrosion S-CONPRI +attacks O +near O +the O +coarse O +Si S-MATE +particles S-CONPRI +, O +ascribed O +to O +the O +increased O +potential O +difference O +between O +the O +coalesced O +Si S-MATE +particles S-CONPRI +and O +aluminum S-MATE +matrix O +galvanic O +couple O +. O + + +In O +comparison O +, O +the O +corrosion S-CONPRI +of O +the O +as-printed O +and O +200 O +°C O +heat S-CONPRI +treated O +samples S-CONPRI +was O +characterized O +by O +a O +penetrating O +selective O +attack O +along O +the O +melt B-CONPRI +pool I-CONPRI +boundaries E-CONPRI +, O +leading O +to O +a O +higher O +corrosion S-CONPRI +current O +density S-PRO +and O +an O +active O +surface S-CONPRI +at O +early O +exposure S-CONPRI +, O +associated O +with O +the O +weakness O +of O +the O +existing O +passive O +film O +on O +their O +surfaces S-CONPRI +. O + + +A O +testing S-CHAR +methodology S-CONPRI +was O +developed O +to O +expose O +photopolymer B-MATE +resins E-MATE +and O +measure O +the O +cured S-MANP +material O +to O +determine O +two O +key O +parameters S-CONPRI +related O +to O +the O +photopolymerization S-MANP +process O +: O +Ec O +( O +critical O +energy O +to O +initiate O +polymerization S-MANP +) O +and O +Dp O +( O +penetration B-PARA +depth E-PARA +of O +curing S-MANP +light O +) O +. O + + +Five O +commercially O +available O +resins S-MATE +were O +evaluated O +under O +exposure S-CONPRI +from O +365 O +nm O +and O +405 O +nm O +light O +at O +varying O +power S-PARA +densities O +and O +energies O +. O + + +Caliper S-MACEQ +measurements O +, O +stylus S-MACEQ +profilometry O +, O +and O +confocal O +laser S-ENAT +scanning O +microscopy S-CHAR +showed O +similar O +results O +for O +hard O +materials S-CONPRI +while O +caliper S-MACEQ +measurement O +of O +a O +soft O +, O +elastomeric O +material S-MATE +proved O +inaccurate O +. O + + +Working O +curves O +for O +the O +five O +photopolymers S-MATE +showed O +unique O +behavior O +both O +within O +and O +among O +the O +resins S-MATE +as S-MATE +a O +function O +of O +curing S-MANP +light O +wavelength S-CONPRI +. O + + +Ec O +and O +Dp O +for O +the O +five O +resins S-MATE +showed O +variations S-CONPRI +as S-MATE +large O +as S-MATE +10x O +. O + + +Variations S-CONPRI +of O +this O +magnitude S-PARA +, O +if O +unknown O +to O +the O +user O +and O +not O +controlled O +for O +, O +will O +clearly O +affect O +printed O +part O +quality S-CONPRI +. O + + +Rapid B-ENAT +prototyping E-ENAT +of O +smart O +objects O +with O +embedded B-ENAT +electronics E-ENAT +. O + + +Integrated O +additive B-MANP +manufacturing E-MANP +approach O +. O + + +Polymer/metal O +nanocomposite O +conductive O +lines O +with O +controlled O +electrical B-CONPRI +properties E-CONPRI +. O + + +Fabrication S-MANP +of O +conductive O +3D S-CONPRI +oblique O +paths O +, O +bridging S-CONPRI +vias O +and O +standard S-CONPRI +sockets O +. O + + +Freeform S-CONPRI +monolithic O +smart O +nightlight O +sensor S-MACEQ +. O + + +We O +present O +an O +integrated O +additive B-MANP +manufacturing E-MANP +approach O +for O +the O +rapid B-ENAT +prototyping E-ENAT +of O +objects O +with O +embedded O +electric O +circuits O +. O + + +Our O +approach O +relies O +on O +the O +combined O +use O +of O +standard S-CONPRI +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +for O +the O +production S-MANP +of O +thermoplastic S-MATE +3D S-CONPRI +freeform O +components S-MACEQ +, O +and O +supersonic O +cluster O +beam B-PARA +deposition E-PARA +( O +SCBD O +) O +for O +the O +fabrication S-MANP +of O +embedded O +electrical S-APPL +conducting O +lines O +and O +resistors S-MACEQ +with O +tailored O +conductivity S-PRO +. O + + +SCBD O +is O +an O +additive S-MATE +fabrication O +technique O +based O +on O +the O +deposition S-CONPRI +of O +neutral O +metallic S-MATE +clusters O +carried O +in O +a O +highly O +collimated O +supersonic O +beam S-MACEQ +. O + + +A O +multi-step O +fabrication S-MANP +procedure O +alternating O +FFF S-MANP +and O +SCBD O +was O +developed O +and O +optimized O +allowing O +the O +fabrication S-MANP +of O +conductive O +3D S-CONPRI +oblique O +paths O +, O +bridging S-CONPRI +vias O +, O +and O +sockets O +for O +standard S-CONPRI +electronic O +components S-MACEQ +fitting O +. O + + +This O +resulted O +in O +the O +simplification O +of O +the O +topology S-CONPRI +of O +planar O +electric O +circuits O +by O +enabling O +out-of-plane O +connections O +, O +minimizing O +the O +implementation O +of O +bulky O +passive O +electrical S-APPL +components S-MACEQ +and O +avoiding O +the O +use O +of O +soldering S-MANP +and O +conductive O +adhesives S-MATE +for O +the O +integration O +of O +active O +electronic O +components S-MACEQ +. O + + +A O +dark-activated O +light O +sensor S-MACEQ +was O +produced O +as S-MATE +a O +demonstrator O +. O + + +Polyolefin B-MATE +thermoplastics E-MATE +like O +high B-MATE +density I-MATE +polyethylene E-MATE +( O +HDPE S-MATE +) O +are O +the O +leaders O +in O +terms O +of O +world-scale O +plastics S-MATE +’ O +production S-MANP +, O +environmentally O +benign O +polymerization S-MANP +processes O +, O +recycling S-CONPRI +, O +and O +sustainability S-CONPRI +. O + + +However O +, O +additive B-MANP +manufacturing E-MANP +of O +HDPE S-MATE +by O +means O +of O +fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +also O +known O +as S-MATE +fused O +filament S-MATE +fabrication S-MANP +( O +FFF S-MANP +) O +has O +been O +problematic O +owing O +to O +its O +massive O +shrinkage S-CONPRI +, O +voiding S-CONPRI +and O +warpage S-CONPRI +problems O +accompanied O +by O +its O +poor O +adhesion S-PRO +to O +common O +build B-MACEQ +plates E-MACEQ +and O +to O +extruded S-MANP +HDPE O +strands O +. O + + +Herein O +we O +overcome O +these O +problems O +and O +improve O +Young O +’ O +s S-MATE +modulus O +, O +tensile B-PRO +strength E-PRO +and O +surface B-PARA +quality E-PARA +of O +3D B-MANP +printed E-MANP +HDPE O +by O +varying O +3D B-MANP +printing E-MANP +parameters O +like O +temperature S-PARA +and O +diameter S-CONPRI +of O +the O +nozzle S-MACEQ +, O +extrusion B-PARA +rate E-PARA +, O +build B-MACEQ +plate E-MACEQ +temperature O +, O +and O +build B-CONPRI +plate I-CONPRI +material E-CONPRI +. O + + +Both O +nozzle B-CONPRI +diameter E-CONPRI +and O +printing B-PARA +speed E-PARA +affect O +surface B-PARA +quality E-PARA +but O +do O +not O +impair O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Particularly O +, O +an O +extrusion B-CONPRI +rate I-CONPRI +gradient E-CONPRI +prevents O +void S-CONPRI +formation O +. O + + +For O +the O +first O +time O +additive B-MANP +manufactured E-MANP +HDPE O +and O +injection-molded O +HDPE S-MATE +exhibit O +similar O +mechanical B-CONPRI +properties E-CONPRI +with O +exception O +of O +elongation S-PRO +at O +break O +. O + + +Excellent O +fusion S-CONPRI +of O +the O +extruded S-MANP +polymer O +strands O +and O +the O +absence O +of O +anisotropy S-PRO +are O +achieved O +, O +as S-MATE +verified O +by O +microscopic B-CONPRI +imaging E-CONPRI +and O +measuring O +the O +tensile B-PRO +strength E-PRO +parallel O +and O +perpendicular O +to O +the O +3D B-MANP +printing E-MANP +direction O +. O + + +Refractory S-APPL +elements S-MATE +have O +high O +melting B-PRO +points E-PRO +and O +are O +difficult O +to O +melt S-CONPRI +and O +cast S-MANP +. O + + +In O +this O +study O +it O +is O +successfully O +demonstrated O +for O +the O +first O +time O +that O +laser B-MANP +metal I-MANP +deposition E-MANP +can O +be S-MATE +used O +to O +produce O +TiZrNbHfTa O +high-entropy O +alloy S-MATE +from O +a O +blend S-MATE +of O +elemental O +powders S-MATE +by O +in-situ S-CONPRI +alloying S-FEAT +. O + + +Columnar O +specimens O +with O +a O +height O +of O +10 O +mm S-MANP +and O +a O +diameter S-CONPRI +of O +3 O +mm S-MANP +were O +deposited O +with O +a O +pulsed O +Nd B-MATE +: I-MATE +YAG E-MATE +laser S-ENAT +. O + + +The O +built-up O +specimen O +has O +near-equiatomic O +composition S-CONPRI +, O +nearly O +uniform O +grain B-PRO +size E-PRO +, O +equiaxed B-CONPRI +grain E-CONPRI +shape O +, O +is O +bcc S-CONPRI +single O +phase S-CONPRI +and O +exhibits O +a O +high O +hardness S-PRO +of O +509 O +HV0.2 O +. O + + +Material B-CONPRI +properties E-CONPRI +of O +parts O +made O +via O +selective B-MANP +laser I-MANP +melting E-MANP +are O +not O +the O +same O +as S-MATE +the O +well-established O +properties S-CONPRI +for O +bulk O +base O +materials S-CONPRI +, O +due O +to O +the O +unique O +processes S-CONPRI +used O +to O +produce O +the O +parts O +. O + + +Meanwhile O +, O +additive B-MANP +manufacturing E-MANP +is O +increasingly O +being O +used O +for O +heat B-MACEQ +exchangers E-MACEQ +and O +heat S-CONPRI +removal O +devices O +, O +which O +demand O +high O +thermal B-PRO +conductivities E-PRO +. O + + +The O +thermal B-CONPRI +properties E-CONPRI +are O +also O +important O +for O +many O +non-destructive B-CHAR +testing E-CHAR +technologies O +. O + + +The O +thermal B-PRO +conductivity E-PRO +of O +selective B-MANP +laser I-MANP +melted E-MANP +316 O +L O +stainless B-MATE +steel E-MATE +was O +studied O +as S-MATE +a O +function O +of O +processing O +conditions O +and O +build B-PARA +orientation E-PARA +. O + + +The O +porosity S-PRO +and O +thermal B-PRO +conductivity E-PRO +were O +measured O +versus O +processing O +conditions O +. O + + +A O +critical O +energy B-PARA +density E-PARA +of O +44.4 O +J/mm3 O +was O +observed O +below O +which O +the O +porosity S-PRO +increased O +and O +the O +thermal B-PRO +conductivity E-PRO +decreased O +. O + + +For O +the O +lowest-porosity O +sample S-CONPRI +, O +the O +local O +thermal B-PRO +conductivity E-PRO +map O +taken O +with O +frequency O +domain S-CONPRI +thermoreflectance O +showed O +a O +variation S-CONPRI +in O +the O +stainless B-MATE +steel E-MATE +thermal O +conductivity S-PRO +between O +10.4 O +and O +19.8 O +W/m-K O +, O +while O +the O +average S-CONPRI +thermal O +conductivity S-PRO +of O +14.3 O +W/m-K O +from O +the O +thermal B-PRO +conductivity E-PRO +map O +agreed O +, O +within O +measurement S-CHAR +uncertainty O +, O +with O +the O +bulk O +thermal B-PRO +conductivity E-PRO +measurements O +. O + + +The O +thermal B-PRO +conductivity E-PRO +trend O +was O +not O +fully O +explained O +by O +the O +porosity S-PRO +, O +as S-MATE +effective O +medium O +models O +fail O +to O +predict O +the O +trend S-CONPRI +. O + + +Amorphous O +stripes O +in O +the O +selective B-MANP +laser I-MANP +melted E-MANP +stainless O +steel S-MATE +grains S-CONPRI +were O +identified O +by O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +These O +amorphous O +regions O +also O +resulted O +in O +decreased O +x-ray B-CHAR +diffraction E-CHAR +intensities O +with O +increasing O +porosity S-PRO +. O + + +The O +amorphous O +regions O +are O +hypothesized O +to O +lower O +the O +thermal B-PRO +conductivity E-PRO +at O +faster O +laser S-ENAT +scanning O +speeds O +due O +to O +less O +time O +at O +elevated O +temperatures S-PARA +. O + + +We O +also O +found O +that O +in-print O +plane O +and O +through-print O +plane O +thermal B-PRO +conductivities E-PRO +have O +the O +same O +value O +when O +the O +energy B-PARA +density E-PARA +is O +greater O +than O +this O +critical O +amount O +. O + + +When O +the O +energy B-PARA +density E-PARA +reduces O +below O +this O +critical O +amount O +, O +the O +in-plane O +conductivity S-PRO +exceeds O +the O +through-plane O +. O + + +Inconel B-MATE +718 I-MATE +alloy E-MATE +rods O +were O +fabricated S-CONPRI +by O +electron–beam O +melting S-MANP +( O +EBM S-MANP +) O +, O +where O +the O +cylindrical S-CONPRI +axes O +( O +CAs O +) O +deviated O +from O +the O +build B-PARA +directions E-PARA +( O +BD O +) O +by O +0° O +, O +45° O +, O +55° O +, O +and O +90° O +. O + + +The O +microstructures S-MATE +and O +high-temperature O +tensile B-PRO +properties E-PRO +of O +the O +rods O +were O +investigated O +by O +taking O +into O +account O +the O +effect O +of O +the O +BD O +. O + + +Columnar B-PRO +grain E-PRO +structures O +or O +mixtures O +of O +columnar O +and O +equiaxed B-CONPRI +grains E-CONPRI +were O +obtained O +in O +the O +rods O +. O + + +As S-MATE +a O +result O +, O +the O +crystal B-PRO +orientation E-PRO +of O +the O +rods O +could O +be S-MATE +controlled O +by O +appropriate O +choice O +of O +the O +CA S-MATE +. O + + +The O +highest O +strength S-PRO +was O +obtained O +for O +the O +< O +1 O +1 O +1 O +> O +oriented O +rod S-MACEQ +. O + + +The O +dependence O +of O +strength S-PRO +on O +the O +rod S-MACEQ +orientation S-CONPRI +could O +be S-MATE +explained O +in O +terms O +of O +the O +anisotropies O +in O +the O +crystal B-PRO +orientation E-PRO +, O +columnar B-PRO +grain E-PRO +structure O +, O +and O +arrangement O +of O +the O +precipitate S-MATE +particles S-CONPRI +. O + + +This O +paper O +presents O +the O +very O +first O +study O +on O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +a O +high O +melting B-PRO +point E-PRO +near-eutectic O +V–9Si–5B O +alloy S-MATE +via O +direct B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +. O + + +Tailored O +V–9Si–5B O +powder B-MATE +material E-MATE +was O +produced O +by O +means O +of O +a O +gas B-MANP +atomization E-MANP +( O +GA S-MATE +) O +process S-CONPRI +. O + + +A O +novel O +setup O +for O +the O +DED S-MANP +experiments O +was O +developed O +and O +an O +overview O +of O +the O +production S-MANP +parameters S-CONPRI +for O +manufacturing S-MANP +of O +crack-free O +specimens O +is O +given O +. O + + +The O +microstructural B-CONPRI +evolution E-CONPRI +of O +the O +three-phase O +V–9Si–5B O +alloy S-MATE +is O +described O +by O +means O +of O +SEM S-CHAR +, O +EBSD S-CHAR +and O +STEM O +analyses O +during O +the O +entire O +process B-ENAT +chain E-ENAT +, O +i.e O +. O + + +the O +gas B-MANP +atomization E-MANP +of O +the O +powder B-MATE +material E-MATE +, O +the O +consolidation S-CONPRI +via O +DED S-MANP +and O +the O +heat B-MANP +treatment E-MANP +of O +the O +compacts S-MATE +. O + + +First O +mechanical B-CHAR +tests E-CHAR +demonstrate O +the O +high O +hardness S-PRO +and O +the O +competitive O +creep S-PRO +resistance O +of O +the O +AM S-MANP +V–9Si–5B O +material S-MATE +in O +comparison O +to O +other O +three-phase O +V-based O +alloys S-MATE +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +offers O +a O +tool S-MACEQ +to O +bring O +formerly O +unmanufacturable O +, O +geometrically O +complex O +, O +engineered O +structures O +into O +existence O +. O + + +However O +, O +considerable O +challenges O +remain O +in O +controlling O +the O +unique O +microstructures S-MATE +, O +defects S-CONPRI +and O +properties S-CONPRI +that O +are O +created O +through O +this O +process S-CONPRI +. O + + +For O +the O +first O +time O +this O +work O +demonstrates O +how O +LaB6 O +nanoparticles S-CONPRI +can O +be S-MATE +used O +to O +control O +such O +features O +in O +Al B-MATE +alloys E-MATE +produced O +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +. O + + +A O +novel O +and O +efficient O +mechanical S-APPL +agitation S-CONPRI +process O +is O +used O +to O +inoculate O +AlSi10Mg S-MATE +powder O +with O +LaB6 O +nanoparticles S-CONPRI +which O +resulted O +in O +a O +homogenous O +, O +crack-free O +, O +equiaxed O +, O +very O +fine-grained O +as S-MATE +built O +microstructures S-MATE +. O + + +The O +substantial O +grain B-CHAR +refinement E-CHAR +is O +attributed O +to O +the O +good O +crystallographic O +atomic O +matching O +across O +the O +Al/LaB6 O +interfaces O +which O +facilitated O +Al S-MATE +nucleation O +on O +the O +LaB6 O +nanoparticles S-CONPRI +. O + + +The O +LaB6-inoculated O +AlSi10Mg S-MATE +exhibited O +near-isotropic O +mechanical B-CONPRI +properties E-CONPRI +with O +an O +improved O +plasticity S-PRO +compared O +with O +un O +modified O +AlSi10Mg S-MATE +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +has O +become O +one O +of O +the O +most O +commonly O +utilized O +processes S-CONPRI +in O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +Despite O +its O +widespread O +use O +and O +capabilities O +, O +SLM S-MANP +parts O +are O +still O +being O +produced O +with O +excessive O +volumetric O +defects S-CONPRI +and O +flaws S-CONPRI +. O + + +The O +complex O +dependence O +of O +defect S-CONPRI +formation O +on O +process B-CONPRI +parameters E-CONPRI +, O +geometry S-CONPRI +, O +and O +material B-CONPRI +properties E-CONPRI +has O +inhibited O +effective O +quality S-CONPRI +assurance O +in O +SLM B-MANP +production E-MANP +. O + + +Exacerbating O +these O +issues O +are O +the O +difficulties O +thus O +far O +in O +accurately S-CHAR +detecting O +and O +identifying O +defects S-CONPRI +in-process O +so O +that O +parts O +may O +be S-MATE +qualified O +without O +destructive B-CHAR +testing E-CHAR +. O + + +Some O +of O +the O +most O +detrimental O +defects S-CONPRI +produced O +during O +SLM S-MANP +processing O +are O +lack O +of O +fusion S-CONPRI +( O +LoF O +) O +defects S-CONPRI +, O +which O +are O +frequently O +found O +to O +be S-MATE +in O +excess O +of O +100 O +μm O +in O +size O +, O +thus O +these O +defects S-CONPRI +are O +of O +critical O +importance O +to O +detect O +and O +remove O +. O + + +In O +this O +work O +, O +we O +have O +developed O +and O +demonstrated O +the O +capabilities O +of O +a O +novel O +in B-CONPRI +situ E-CONPRI +monitoring O +system O +using O +full-field O +infrared S-CONPRI +( O +IR S-CHAR +) O +thermography O +to O +monitor S-CONPRI +AlSi10Mg S-MATE +specimens O +during O +SLM B-MANP +production E-MANP +. O + + +Using O +layerwise O +relative O +surface S-CONPRI +temperature O +measurements O +, O +subsurface O +defects S-CONPRI +were O +identified O +via O +their O +retained O +thermal O +signature O +at O +the O +surface S-CONPRI +; O +transient S-CONPRI +thermal B-CONPRI +modeling E-CONPRI +was O +performed O +, O +which O +supported O +these O +observations O +. O + + +Parts O +were O +characterized O +using O +ex O +situ O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +to O +validate O +data S-CONPRI +identified O +defects S-CONPRI +and O +, O +critically O +, O +to O +estimate O +detection O +success O +. O + + +The O +IR S-CHAR +defect S-CONPRI +detection O +method O +was O +highly O +effective O +in O +identifying O +defects S-CONPRI +, O +with O +an O +82 O +% O +total O +success O +rate O +for O +LoF O +defects S-CONPRI +; O +detection O +success O +improved O +with O +increasing O +defect S-CONPRI +size O +. O + + +The O +method O +was O +also O +used O +statistically O +to O +analyze O +the O +presence O +of O +systematic O +process B-CONPRI +errors E-CONPRI +during O +SLM B-MANP +production E-MANP +, O +expanding O +the O +capabilities O +of O +IR S-CHAR +monitoring O +methods O +. O + + +This O +unique O +analysis O +method O +and O +simple S-MANP +integration O +for O +in B-CONPRI +situ E-CONPRI +IR O +monitoring O +can O +immediately O +improve O +non-destructive O +qualification O +methods O +in O +SLM S-MANP +processing O +. O + + +Additive B-MANP +manufacturing E-MANP +has O +opened O +doors O +for O +the O +efficient O +fabrication S-MANP +of O +individually O +tailored O +and O +complicated O +functional O +parts O +. O + + +However O +, O +the O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing B-MANP +process E-MANP +is O +vulnerable O +to O +defects S-CONPRI +generation O +, O +necessitating O +the O +need O +for O +in-situ S-CONPRI +monitoring O +and O +control O +technologies S-CONPRI +for O +quality S-CONPRI +assessment O +of O +parts O +. O + + +An O +in-situ S-CONPRI +monitoring O +system O +( O +IMS O +) O +based O +on O +optical S-CHAR +imaging S-APPL +was O +developed O +in-house O +for O +implementation O +on O +the O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +. O + + +A O +digital O +single O +lens S-MANP +reflex O +camera S-MACEQ +, O +mirror O +and O +several O +sets O +of O +light B-APPL +emitting I-APPL +diode E-APPL +strip O +lights O +formed O +the O +main O +constituents O +of O +the O +IMS O +. O + + +Cylindrical S-CONPRI +samples O +of O +316 O +L O +stainless B-MATE +steel E-MATE +were O +printed O +with O +variations S-CONPRI +in O +their O +energy B-PARA +density E-PARA +. O + + +Features O +taken O +in O +optical S-CHAR +images S-CONPRI +were O +extracted S-CONPRI +and O +evaluated O +via O +image S-CONPRI +processing O +. O + + +Micro O +computed B-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +, O +which O +is O +capable O +of O +assessing O +the O +internal O +defects S-CONPRI +and O +recovering O +the O +3D S-CONPRI +representation O +of O +a O +structure S-CONPRI +, O +was O +used O +as S-MATE +a O +validation S-CONPRI +method O +to O +correlate O +the O +features O +identified O +in O +the O +optical S-CHAR +images S-CONPRI +. O + + +Results O +have O +shown O +that O +features O +captured O +in-situ S-CONPRI +were O +correlated S-CONPRI +to O +defects S-CONPRI +detected O +by O +micro O +CT S-ENAT +, O +revealing O +the O +potential O +of O +using O +optical S-CHAR +images S-CONPRI +captured O +during O +printing O +as S-MATE +an O +indicator O +to O +the O +extent O +of O +defects S-CONPRI +present O +in O +selective B-MANP +laser I-MANP +melted E-MANP +parts O +. O + + +In O +recent O +years O +, O +the O +fabrication S-MANP +of O +aluminum B-MATE +alloy E-MATE +parts O +via O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +has O +been O +extensively O +considered O +in O +the O +biomedical S-APPL +, O +aerospace S-APPL +, O +and O +other O +industrial B-CONPRI +sectors E-CONPRI +, O +as S-MATE +it O +provides O +advantages O +such O +as S-MATE +the O +ability O +to O +manufacture S-CONPRI +complex B-PRO +shapes E-PRO +with O +high O +performance S-CONPRI +associated O +with O +lightweight S-CONPRI +design S-FEAT +. O + + +However O +, O +surface S-CONPRI +irregularities O +and O +sub-surface O +defects S-CONPRI +limit O +the O +full O +exploitation O +of O +such O +parts O +in O +fatigue-critical O +applications O +. O + + +Moreover O +, O +most O +of O +the O +commonly O +used O +metrological O +methods O +for O +surface B-CHAR +characterization E-CHAR +have O +proven O +to O +be S-MATE +unsuitable O +for O +determining O +important O +features O +such O +as S-MATE +undercuts O +and O +sub-surfaces O +pores S-PRO +. O + + +Hence O +, O +a O +comprehensive O +coupled O +investigation O +of O +metrological O +methods O +and O +cross-sectional O +analysis O +were O +performed O +in O +this O +study O +to O +evaluate O +the O +effects O +of O +surface S-CONPRI +features O +and O +volumetric O +defects S-CONPRI +typical O +of O +additively B-MANP +manufactured E-MANP +materials O +. O + + +Fatigue B-CHAR +tests E-CHAR +and O +fractographic B-CHAR +analyses E-CHAR +were O +conducted O +to O +support S-APPL +the O +finite B-CONPRI +element E-CONPRI +simulations O +and O +proposed O +fracture S-CONPRI +mechanics O +model S-CONPRI +. O + + +The O +results O +demonstrate O +that O +the O +standard S-CONPRI +metrological O +methods O +can O +not O +provide O +all O +of O +the O +data S-CONPRI +needed O +to O +model S-CONPRI +the O +fatigue S-PRO +behaviors O +of O +additively B-MANP +manufactured E-MANP +materials O +robustly O +. O + + +Moreover O +, O +a O +statistical O +model S-CONPRI +describing O +the O +competition O +between O +volumetric O +defects S-CONPRI +and O +surface S-CONPRI +irregularities O +was O +developed O +and O +validated O +. O + + +Different O +L-PBF S-MANP +process O +parameters S-CONPRI +were O +used O +to O +additively B-MANP +manufacture E-MANP +AHSS O +. O + + +FEM S-CONPRI +simulations O +quantified O +solidification B-CONPRI +parameters E-CONPRI +and O +melt B-MATE +pool E-MATE +shapes O +. O + + +High O +cooling B-PARA +rate E-PARA +parameters O +resulted O +in O +high O +GND O +densities O +and O +yield B-PRO +strength E-PRO +. O + + +M B-ENAT +& I-ENAT +S E-ENAT +scan O +strategy O +revealed O +a O +partial O +columnar O +to O +equiaxed O +transition S-CONPRI +. O + + +In O +this O +work O +, O +the O +additive B-MANP +manufacturing E-MANP +technique O +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +was O +used O +to O +build S-PARA +up O +X30Mn21 O +austenitic S-MATE +advanced O +high O +strength S-PRO +steel S-MATE +( O +AHSS O +) O +samples S-CONPRI +. O + + +Different O +L-PBF S-MANP +process O +parameters S-CONPRI +were O +used O +to O +understand O +the O +correlation O +between O +process S-CONPRI +, O +microstructure S-CONPRI +, O +texture S-FEAT +, O +and O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +influence O +of O +build B-MACEQ +platform E-MACEQ +preheating O +( O +200 O +°C–800 O +°C O +) O +, O +laser S-ENAT +speed O +( O +550 O +mm/s O +- O +950 O +mm/s O +) O +and O +scan O +strategy O +( O +bidirectional O +continuous O +and O +Mark O +& O +Sleep O +( O +M B-ENAT +& I-ENAT +S E-ENAT +) O +) O +on O +grain B-PRO +size E-PRO +, O +grain S-CONPRI +morphology O +, O +size O +of O +solidification S-CONPRI +cells S-APPL +, O +dislocation B-PRO +density E-PRO +, O +and O +texture S-FEAT +was O +studied O +. O + + +Local O +solidification B-CONPRI +parameters E-CONPRI +in O +the O +melt B-MATE +pool E-MATE +e.g O +. O + + +cooling B-PARA +rates E-PARA +, O +temperature B-PARA +gradients E-PARA +and O +solidification B-PARA +velocities E-PARA +were O +simulated O +by O +a O +FEM S-CONPRI +heat O +flow O +model S-CONPRI +and O +correlated S-CONPRI +with O +the O +solidification B-CONPRI +microstructure E-CONPRI +. O + + +By O +using O +SEM/EBSD O +analysis O +and O +tensile B-CHAR +testing E-CHAR +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +AHSS O +were O +assessed O +by O +considering O +microstructural S-CONPRI +aspects O +. O + + +It O +was O +found O +that O +AHSS O +, O +produced O +with O +higher O +laser S-ENAT +speeds O +and O +an O +alternative O +M B-ENAT +& I-ENAT +S E-ENAT +scan O +strategy O +, O +revealed O +a O +reduced O +grain B-PRO +size E-PRO +and O +texture S-FEAT +intensity O +. O + + +This O +was O +attributed O +to O +a O +partial O +columnar O +to O +equiaxed O +transition S-CONPRI +( O +CET O +) O +, O +as S-MATE +well O +as S-MATE +a O +significantly O +increased O +density S-PRO +of O +geometrically O +necessary O +dislocations S-CONPRI +. O + + +Preheating S-MANP +of O +the O +build B-MACEQ +platform E-MACEQ +promoted O +columnar B-PRO +grain E-PRO +growth O +with O +a O +more O +pronounced O +texture S-FEAT +, O +low O +dislocation B-PRO +densities E-PRO +, O +and O +reduced O +yield B-PRO +strength E-PRO +. O + + +The O +influence O +of O +cooling B-PARA +rate E-PARA +, O +temperature B-PARA +gradient E-PARA +and O +solidification B-PARA +velocity E-PARA +on O +microstructural S-CONPRI +and O +textural O +evolution S-CONPRI +is O +discussed O +based O +on O +fundamental O +solidification S-CONPRI +theories O +. O + + +The O +process B-ENAT +chain E-ENAT +of O +this O +method O +starts O +with O +injection B-MANP +molding E-MANP +. O + + +The O +polymer S-MATE +of O +this O +part O +is O +functionalized O +with O +LDS-additives O +which O +allow O +the O +part O +to O +be S-MATE +laser O +structured O +subsequently O +. O + + +This O +technique O +is O +less O +suitable O +for O +prototypes S-CONPRI +and O +small-scale O +productions O +of O +3D-MIDs O +because O +of O +its O +properties S-CONPRI +. O + + +Contrary O +to O +the O +injection B-MANP +molding E-MANP +process O +, O +the O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +such O +as S-MATE +powder O +bed S-MACEQ +based O +manufacturing B-MANP +processes E-MANP +, O +e.g O +. O + + +selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +, O +is O +a O +constantly O +emerging O +processing O +technology S-CONPRI +for O +the O +fabrication S-MANP +of O +prototypes S-CONPRI +and O +small-scale O +productions O +. O + + +Unmodified O +polyamide B-MATE +12 E-MATE +( O +PA S-CHAR +12 O +) O +, O +e.g O +. O + + +PA2200 O +( O +supplier O +: O +EOS B-APPL +GmbH E-APPL +) O +is O +most O +commonly O +used O +for O +the O +SLS S-MANP +of O +polymer S-MATE +parts O +. O + + +The O +LPKF O +Laser S-ENAT +& O +Electronics S-CONPRI +AG O +in O +Garbsen O +, O +Germany O +, O +transferred O +the O +LDS-method O +to O +SLS-process O +. O + + +A O +standard S-CONPRI +SLS-polymer O +part O +is O +coated S-APPL +with O +a O +special O +paint O +, O +that O +contains O +the O +necessary O +LDS-additives O +. O + + +Once O +coated S-APPL +and O +dried S-MANP +, O +these O +parts O +can O +be S-MATE +laser O +direct O +structured O +similar O +to O +standard S-CONPRI +3D-MIDs O +. O + + +In O +this O +study O +, O +the O +authors O +use O +copper S-MATE +particles O +in O +order O +to O +functionalize O +a O +standard S-CONPRI +polyamide B-MATE +12 E-MATE +powder O +for O +laser S-ENAT +activation O +and O +selective O +metallization S-MANP +. O + + +The O +study O +shows O +, O +that O +the O +addition O +of O +copper S-MATE +particles O +enables O +the O +laser S-ENAT +direct O +structuring O +of O +polyamide B-MATE +12 E-MATE +. O + + +SLS-demonstrators O +were O +successfully O +laser S-ENAT +activated O +and O +selectively O +metallized O +. O + + +Furthermore O +, O +the O +copper S-MATE +particles O +enhance O +the O +mechanical B-CONPRI +properties E-CONPRI +as S-MATE +well O +as S-MATE +the O +heat B-PRO +conductivity E-PRO +of O +polyamide B-MATE +12 E-MATE +. O + + +Lattice B-FEAT +density E-FEAT +and O +fabric O +are O +combined O +to O +predict O +anisotropic S-PRO +mechanical O +properties S-CONPRI +. O + + +The O +resulting O +model S-CONPRI +is O +validated O +by O +mechanical B-CHAR +testing E-CHAR +in O +at O +least O +10 O +directions O +. O + + +Off-axis O +properties S-CONPRI +for O +Ti6Al4V S-MATE +and O +nylon S-MATE +lattices S-CONPRI +predicted O +to O +within O +13 O +and O +5.1 O +% O +. O + + +Predictions S-CONPRI +and O +mechanical S-APPL +data S-CONPRI +are O +correlated S-CONPRI +with O +R2 O +between O +0.84 O +and O +0.94 O +. O + + +Additive B-MANP +manufacturing E-MANP +methods O +present O +opportunities O +for O +structures O +to O +have O +tailored O +mechanical B-PRO +anisotropy E-PRO +by O +integrating O +controlled O +lattice B-FEAT +structures E-FEAT +into O +their O +design S-FEAT +. O + + +The O +ability O +to O +predict O +anisotropic S-PRO +mechanical O +properties S-CONPRI +of O +such O +lattice B-FEAT +structures E-FEAT +would O +help O +tailor O +anisotropy S-PRO +and O +ensure O +adequate O +off-axis O +strength S-PRO +at O +an O +early O +stage O +in O +the O +design B-CONPRI +process E-CONPRI +. O + + +A O +method O +is O +described O +for O +the O +development O +of O +a O +model S-CONPRI +to O +predict O +apparent O +modulus O +and O +strength S-PRO +based O +on O +structure S-CONPRI +density S-PRO +and O +fabric O +, O +taken O +from O +CAD S-ENAT +data O +. O + + +The O +model S-CONPRI +utilises O +a O +tensorial O +form O +of O +well-founded O +power-law O +relationships O +for O +these O +variables O +and O +is O +fit S-CONPRI +to O +mechanical B-CHAR +test E-CHAR +data S-CONPRI +for O +properties S-CONPRI +in O +the O +principal O +directions O +of O +manufactured S-CONPRI +titanium O +stochastic B-CONPRI +lattices E-CONPRI +and O +nylon S-MATE +rhombic O +dodecahedron O +structures O +. O + + +The O +results O +are O +validated O +against O +mechanical B-CHAR +testing E-CHAR +across O +at O +least O +7 O +additional O +off-axis O +directions O +. O + + +For O +stochastic S-CONPRI +structures O +, O +apparent O +modulus O +is O +predicted S-CONPRI +in O +10 O +directions O +with O +a O +mean O +error S-CONPRI +of O +13 O +% O +and O +strength S-PRO +predicted S-CONPRI +with O +a O +mean O +error S-CONPRI +of O +10 O +% O +. O + + +For O +rhombic O +dodecahedron O +structures O +apparent O +modulus O +and O +strength S-PRO +are O +predicted S-CONPRI +in O +15 O +directions O +with O +mean O +errors S-CONPRI +of O +4.2 O +% O +and O +5.1 O +% O +respectively O +. O + + +This O +model S-CONPRI +is O +the O +first O +to O +predict O +the O +anisotropic S-PRO +apparent O +modulus O +and O +strength S-PRO +of O +structures O +based O +on O +lattice B-FEAT +density E-FEAT +and O +fabric O +tensors O +and O +will O +be S-MATE +highly O +useful O +in O +the O +mechanical S-APPL +design S-FEAT +of O +lattice B-FEAT +structures E-FEAT +. O + + +A O +robotized O +laser/wire O +direct B-MANP +metal I-MANP +deposition E-MANP +system O +was O +utilized O +to O +fabricate S-MANP +316LSi O +coupons O +. O + + +The O +mechanical S-APPL +and O +microstructural S-CONPRI +properties O +were O +then O +characterized O +. O + + +It O +was O +found O +that O +different O +thermal O +histories O +caused O +by O +different O +inter-layer O +time O +intervals O +have O +significant O +impact S-CONPRI +on O +mechanical S-APPL +and O +microstructural S-CONPRI +properties O +. O + + +The O +thin-walled O +samples S-CONPRI +with O +lower O +cooling B-PARA +rates E-PARA +showed O +coarser O +columnar B-PRO +grains E-PRO +, O +lower O +ultimate B-PRO +tensile I-PRO +strength E-PRO +, O +and O +lower O +hardness S-PRO +compared O +to O +the O +block O +samples S-CONPRI +. O + + +The O +melt B-MATE +pool E-MATE +was O +monitored O +in O +real-time O +. O + + +An O +empirical S-CONPRI +correlation O +between O +the O +melt B-MATE +pool E-MATE +area S-PARA +and O +cooling B-PARA +rate E-PARA +was O +achieved O +that O +could O +enable O +control O +of O +scale O +of O +the O +final O +solidification S-CONPRI +structure O +by O +maintaining O +the O +melt B-MATE +pool E-MATE +size O +in O +real-time O +. O + + +Further O +, O +to O +study O +the O +anisotropic S-PRO +behavior O +, O +tensile S-PRO +samples S-CONPRI +were O +loaded O +in O +parallel O +and O +perpendicular O +directions O +with O +respect O +to O +the O +deposition B-PARA +direction E-PARA +. O + + +The O +results O +indicated O +that O +samples S-CONPRI +in O +the O +perpendicular O +direction O +had O +lower O +UTS S-PRO +and O +elongation S-PRO +for O +both O +coupon O +types O +, O +revealing O +a O +weaker O +bonding S-CONPRI +at O +inter-layer/bead O +interface S-CONPRI +due O +to O +the O +existence O +of O +lack-of-fusion O +pores S-PRO +. O + + +The O +capability O +to O +additively B-MANP +manufacture E-MANP +fully-functioning O +electronic O +circuits O +is O +a O +frontier O +in O +3D-printed S-MANP +electronics O +that O +will O +afford O +unprecedented O +scalability O +, O +miniaturization O +, O +and O +conformability O +of O +electronic O +circuits O +. O + + +In O +this O +paper O +, O +we O +report O +a O +novel O +procedure O +that O +employs O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +additive B-MANP +manufacturing E-MANP +techniques O +to O +fabricate S-MANP +high-frequency O +, O +tapered-solenoid O +type O +inductors O +for O +RF O +applications O +capable O +of O +wide O +bandwidth O +performance S-CONPRI +. O + + +The O +design S-FEAT +includes O +a O +polymer S-MATE +support O +structure S-CONPRI +to O +reduce O +the O +parasitic O +capacitance O +between O +the O +inductor S-APPL +and O +the O +substrate S-MATE +, O +a O +tapered O +solid O +core S-MACEQ +, O +and O +conducting O +windings O +. O + + +Each O +design S-FEAT +component S-MACEQ +is O +printed O +using O +aerosol-jet O +( O +AJ O +) O +printing O +methods O +on O +a O +grounded O +coplanar O +waveguide O +such O +that O +the O +small O +end O +of O +the O +conical-shaped O +inductor S-APPL +is O +connected O +to O +the O +transmission S-CHAR +line O +and O +the O +base O +of O +the O +inductor S-APPL +is O +connected O +to O +ground O +. O + + +Two O +types O +of O +solid-core O +inductors O +were O +fabricated S-CONPRI +: O +one O +with O +a O +printed O +polymer S-MATE +core S-MACEQ +and O +another O +with O +a O +non-printed O +iron S-MATE +core S-MACEQ +. O + + +Scattering O +parameter S-CONPRI +measurements O +establish O +that O +the O +polymer S-MATE +and O +iron-core O +inductors O +, O +combined O +with O +a O +45°-polymer O +support B-FEAT +structure E-FEAT +, O +can O +achieve O +usable O +bandwidths O +up O +to O +18 O +GHz O +and O +40 O +GHz O +, O +respectively O +, O +with O +low O +insertion O +loss O +. O + + +3D B-APPL +model E-APPL +and O +circuit O +model S-CONPRI +simulations O +were O +also O +carried O +out O +to O +study O +inductor S-APPL +performance O +in O +terms O +of O +self-resonance O +and O +insertion O +loss O +. O + + +The O +use O +of O +manufacturing S-MANP +to O +generate O +topology S-CONPRI +optimized O +components S-MACEQ +shows O +promise O +for O +designers O +. O + + +However O +, O +designers O +who O +assume O +that O +additive B-MANP +manufacturing E-MANP +follows O +traditional B-MANP +manufacturing E-MANP +techniques O +may O +be S-MATE +misled O +due O +to O +the O +nuances O +in O +specific O +techniques O +. O + + +Since O +commercial O +topology B-FEAT +optimization E-FEAT +software S-CONPRI +tools O +are O +neither O +designed S-FEAT +to O +consider O +orientation S-CONPRI +of O +the O +parts O +nor O +large O +variations S-CONPRI +in O +properties S-CONPRI +, O +the O +goal O +of O +this O +research S-CONPRI +is O +to O +evaluate O +the O +limitations O +of O +an O +existing O +commercial O +topology B-FEAT +optimization E-FEAT +software S-CONPRI +( O +i.e O +. O + + +Inspire® O +) O +using O +electron B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +( O +i.e O +. O + + +Arcam® O +) O +to O +produce O +optimized O +Ti-6Al-4V B-MATE +alloy E-MATE +components S-MACEQ +. O + + +Emerging O +qualification O +tools S-MACEQ +from O +Oak O +Ridge O +National O +Laboratory S-CONPRI +including O +in-situ S-CONPRI +near-infrared O +imaging S-APPL +and O +log O +file S-MANS +data S-CONPRI +analysis O +were O +used O +to O +rationalize O +the O +final O +performance S-CONPRI +of O +components S-MACEQ +. O + + +While O +the O +weight S-PARA +savings O +of O +each O +optimized O +part O +exceeded O +the O +initial O +criteria O +, O +the O +failure S-CONPRI +loads O +and O +locations O +proved O +instrumental O +in O +providing O +insight O +to O +additive B-MANP +manufacturing E-MANP +with O +topology B-FEAT +optimization E-FEAT +. O + + +This O +research S-CONPRI +has O +shown O +the O +need O +for O +a O +comprehensive O +understanding O +of O +correlations O +between O +geometry S-CONPRI +, O +additive B-MANP +manufacturing E-MANP +processing O +conditions O +, O +defect S-CONPRI +generation O +, O +and O +microstructure S-CONPRI +for O +characterization O +of O +complex O +components S-MACEQ +such O +as S-MATE +those O +designed S-FEAT +by O +topology B-FEAT +optimization E-FEAT +. O + + +Ni-Cu-base O +alloy S-MATE +plates O +have O +been O +obtained O +by O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +technology S-CONPRI +. O + + +Dendritic O +structure S-CONPRI +and O +particle S-CONPRI +precipitation O +have O +been O +found O +to O +significantly O +depend O +on O +alloy S-MATE +composition O +, O +in O +particular O +Mn S-MATE +, O +Ti S-MATE +and O +C S-MATE +contents O +. O + + +Higher O +hardness S-PRO +, O +strength S-PRO +, O +toughness S-PRO +and O +wear B-PRO +resistance E-PRO +in O +one O +of O +the O +tested O +alloys S-MATE +were O +associated O +with O +precipitation S-CONPRI +of O +TiCN O +particles S-CONPRI +. O + + +Moderate O +dependence O +of O +microstructural S-CONPRI +parameters O +and O +mechanical B-CONPRI +properties E-CONPRI +on O +deposition S-CONPRI +speed O +was O +observed O +within O +the O +tested O +speed O +range S-PARA +. O + + +Two O +Ni-Cu O +alloys S-MATE +( O +Monel S-MATE +K500 O +and O +FM O +60 O +) O +having O +various O +Mn S-MATE +, O +Fe S-MATE +, O +Al S-MATE +, O +Ti S-MATE +and O +C S-MATE +contents O +were O +deposited O +on O +a O +Monel S-MATE +K500 O +plate O +at O +three O +different O +speeds O +using O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +technique O +. O + + +Microstructure S-CONPRI +characterisation O +, O +in O +particular O +a O +detailed O +study O +of O +precipitates S-MATE +, O +was O +carried O +out O +using O +optical S-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +Mechanical B-CONPRI +properties E-CONPRI +were O +assessed O +using O +hardness S-PRO +, O +tensile S-PRO +and O +wear S-CONPRI +testing S-CHAR +. O + + +For O +similar O +deposition S-CONPRI +conditions O +, O +Monel S-MATE +K500 O +has O +exhibited O +smaller O +secondary B-MATE +dendrite E-MATE +arm O +spacing O +and O +higher O +number O +density S-PRO +of O +Ti-rich O +particles S-CONPRI +, O +although O +the O +Ti S-MATE +concentration O +in O +FM O +60 O +was O +higher O +. O + + +Finer B-FEAT +microstructure E-FEAT +and O +Ti S-MATE +precipitation S-CONPRI +led S-APPL +to O +superior O +hardness S-PRO +, O +tensile S-PRO +and O +wear B-PRO +resistance E-PRO +of O +Monel S-MATE +K500 O +compared O +to O +FM O +60 O +. O + + +The O +variation S-CONPRI +in O +microstructure-properties O +relationship O +with O +alloy S-MATE +composition O +is O +discussed O +. O + + +We O +devised O +a O +novel O +method O +to O +embed O +sensors S-MACEQ +or O +integrated B-MACEQ +circuit E-MACEQ +( O +IC O +) O +chips O +into O +metal S-MATE +components S-MACEQ +by O +using O +a O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +. O + + +The O +concept O +of O +a O +protective B-APPL +layer E-APPL +is O +introduced O +to O +fabricate S-MANP +all O +parts O +without O +damaging O +the O +sensors S-MACEQ +during O +the O +laser B-ENAT +scanning I-ENAT +process E-ENAT +. O + + +The O +operation O +of O +sensors S-MACEQ +in O +the O +parts O +is O +analyzed O +from O +a O +computational O +analysis O +on O +the O +thermal O +influence O +of O +laser B-PARA +heat E-PARA +. O + + +The O +fabricated S-CONPRI +metal O +parts O +show O +continuous O +microstructures S-MATE +including O +grains S-CONPRI +and O +phases O +between O +the O +base O +part O +and O +the O +new O +part O +formed O +after O +embedding O +the O +sensor S-MACEQ +despite O +the O +intermittent O +SLM S-MANP +process S-CONPRI +. O + + +The O +embedded O +sensor S-MACEQ +operates O +properly O +when O +compared O +to O +bare O +sensors S-MACEQ +. O + + +Plastic S-MATE +circuit O +board-based O +IC O +components S-MACEQ +were O +embedded O +into O +an O +Inconel S-MATE +718C O +turbine B-APPL +blade E-APPL +, O +which O +accurately S-CHAR +distinguished O +three-dimensional S-CONPRI +vibration O +along O +the O +X O +, O +Y S-MATE +, O +and O +Z O +axes O +. O + + +Our O +results O +imply O +that O +the O +proposed O +process S-CONPRI +can O +open O +new O +avenues O +for O +SLM S-MANP +technology O +to O +realize O +metal S-MATE +components S-MACEQ +with O +a O +self-cognitive O +ability O +using O +integrated O +sensors S-MACEQ +. O + + +Printed O +free-standing O +pure O +Au S-MATE +structure O +with O +feature B-PARA +sizes E-PARA +of O +smaller O +than O +10 O +microns O +. O + + +Combination O +of O +laser-induced O +forward O +transfer O +of O +pure B-MATE +metals E-MATE +and O +chemical O +etching S-MANP +. O + + +Approach O +allows O +fully O +overhanging B-CONPRI +structures E-CONPRI +and O +reduces O +substrate S-MATE +contamination O +. O + + +Cu S-MATE +support O +structures O +can O +be S-MATE +selectively O +removed O +after O +LIFT-printing O +. O + + +A O +combined O +approach O +of O +laser-induced O +forward O +transfer O +( O +LIFT O +) O +and O +chemical O +etching S-MANP +of O +pure B-MATE +metal E-MATE +films O +is O +studied O +to O +fabricate S-MANP +complex O +, O +free-standing O +, O +3-dimensional O +gold S-MATE +structures O +on O +the O +few O +micron S-FEAT +scale O +. O + + +A O +picosecond O +pulsed B-MANP +laser E-MANP +source O +with O +515 O +nm O +central O +wavelength S-CONPRI +is O +used O +to O +deposit O +metal S-MATE +droplets S-CONPRI +of O +copper S-MATE +and O +gold S-MATE +in O +a O +sequential O +fashion S-CONPRI +. O + + +After O +transfer O +, O +chemical O +etching S-MANP +in O +ferric O +chloride O +completely O +removes O +the O +mechanical S-APPL +Cu S-MATE +support O +leaving O +a O +final O +free-standing O +gold S-MATE +structure O +. O + + +Unprecedented O +feature B-PARA +sizes E-PARA +of O +smaller O +than O +10 O +μm O +are O +achieved O +with O +surface B-PRO +roughness E-PRO +of O +0.3 O +to O +0.7 O +μm O +. O + + +Formation O +of O +interfacial O +mixing S-CONPRI +volumes O +between O +the O +two O +metals S-MATE +is O +not O +found O +confirming O +the O +viability O +of O +the O +approach O +. O + + +Additive B-MANP +manufacturing E-MANP +promises O +to O +revolutionize O +manufacturing S-MANP +industries S-APPL +. O + + +However O +, O +3D B-MANP +printing E-MANP +of O +novel O +build B-MATE +materials E-MATE +is O +currently O +limited O +by O +constraints O +inherent O +to O +printer S-MACEQ +designs S-FEAT +. O + + +In O +this O +work O +, O +a O +bench-top S-CONPRI +powder O +melt B-MANP +extrusion E-MANP +( O +PME S-MANP +) O +3D B-MACEQ +printer I-MACEQ +head E-MACEQ +was O +designed S-FEAT +and O +fabricated S-CONPRI +to O +print S-MANP +parts O +directly O +from O +powder-based B-MATE +materials E-MATE +rather O +than O +filament S-MATE +. O + + +The O +final O +design S-FEAT +of O +the O +PME B-MACEQ +printer I-MACEQ +head E-MACEQ +evolved O +from O +the O +Rich O +Rap O +Universal B-MACEQ +Pellet I-MACEQ +Extruder E-MACEQ +( O +RRUPE O +) O +design S-FEAT +and O +was O +realized O +through O +an O +iterative B-CONPRI +approach E-CONPRI +. O + + +The O +PME B-MACEQ +printer E-MACEQ +was O +made O +possible O +by O +modifications O +to O +the O +funnel O +shape O +, O +pressure S-CONPRI +applied O +to O +the O +extrudate S-MATE +by O +the O +auger S-MACEQ +, O +and O +hot B-MACEQ +end I-MACEQ +structure E-MACEQ +. O + + +Through O +comparison O +of O +parts O +printed O +with O +the O +PME B-MACEQ +printer E-MACEQ +with O +those O +from O +a O +commercially O +available O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +3D B-MACEQ +printer E-MACEQ +using O +common O +thermoplastics S-MATE +poly O +( O +lactide O +) O +( O +PLA S-MATE +) O +, O +high O +impact S-CONPRI +poly O +( O +styrene O +) O +( O +HIPS S-MATE +) O +, O +and O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +powders S-MATE +( O +< O +1 O +mm S-MANP +in O +diameter S-CONPRI +) O +, O +evaluation O +of O +the O +printer S-MACEQ +performance S-CONPRI +was O +performed O +. O + + +For O +each O +build B-MATE +material E-MATE +, O +the O +PME S-MANP +printed O +objects O +show O +comparable O +viscoelastic B-PRO +properties E-PRO +by O +dynamic B-CONPRI +mechanical I-CONPRI +analysis E-CONPRI +( O +DMA S-CONPRI +) O +to O +those O +of O +the O +FFF S-MANP +objects O +. O + + +However O +, O +due O +to O +a O +significant O +difference O +in O +printer B-PARA +resolution E-PARA +between O +PME S-MANP +( O +X–Y O +resolution S-PARA +of O +0.8 O +mm S-MANP +and O +a O +Z-layer B-CHAR +height I-CHAR +calibrated E-CHAR +to O +0.1 O +mm S-MANP +) O +and O +FFF S-MANP +( O +X–Y O +resolution S-PARA +of O +0.4 O +mm S-MANP +and O +a O +Z-layer B-PARA +height E-PARA +of O +0.18 O +mm S-MANP +) O +, O +as S-MATE +well O +as S-MATE +, O +an O +inherently O +more O +inconsistent O +feed S-PARA +of O +build B-MATE +material E-MATE +for O +PME S-MANP +than O +FFF S-MANP +, O +the O +resulting O +print B-CONPRI +quality E-CONPRI +, O +determined O +by O +a O +dimensional B-CHAR +analysis E-CHAR +and O +surface B-PRO +roughness E-PRO +comparisons O +, O +of O +the O +PME S-MANP +printed O +objects O +was O +lower O +than O +that O +of O +the O +FFF S-MANP +printed O +parts O +based O +on O +the O +print B-PARA +layer E-PARA +uniformity O +and O +structure S-CONPRI +. O + + +Further O +, O +due O +to O +the O +poorer O +print B-PARA +resolution E-PARA +and O +inherent O +inconsistent O +build B-MATE +material E-MATE +feed O +of O +the O +PME S-MANP +, O +the O +bulk O +tensile B-PRO +strength E-PRO +and O +Young O +’ O +s S-MATE +moduli O +of O +the O +objects O +printed O +by O +PME S-MANP +were O +lower O +and O +more O +inconsistent O +( O +49.2 O +± O +10.7 O +MPa S-CONPRI +and O +1620 O +± O +375 O +MPa S-CONPRI +, O +respectively O +) O +than O +those O +of O +FFF S-MANP +printed O +objects O +( O +57.7 O +± O +2.31 O +MPa S-CONPRI +and O +2160 O +± O +179 O +MPa S-CONPRI +, O +respectively O +) O +. O + + +Nevertheless O +, O +PME S-MANP +print O +methods O +promise O +an O +opportunity O +to O +provide O +a O +platform S-MACEQ +on O +which O +it O +is O +possible O +to O +rapidly O +prototype S-CONPRI +a O +myriad O +of O +thermoplastic B-MATE +materials E-MATE +for O +3D B-MANP +printing E-MANP +. O + + +Effects O +of O +laser S-ENAT +conditions O +on O +part O +qualities O +of O +a O +near-eutectic O +Al-Fe B-MATE +alloy E-MATE +fabricated O +via O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +was O +investigated O +. O + + +The O +much O +refined O +microstructure S-CONPRI +consisting O +of O +nano-scaled O +Al-Fe O +intertmetallics O +with O +different O +size O +and O +morphology S-CONPRI +was O +observed O +. O + + +P·v-1/2 O +based O +on O +deposited O +energy B-PARA +density E-PARA +model O +was O +proved O +to O +be S-MATE +a O +more O +appropriate O +design S-FEAT +parameter O +. O + + +An O +estimated O +threshold O +value O +of O +P·v-1/2 O +for O +fabricating S-MANP +satisfactory O +Al-2.5Fe O +( O +mass O +% O +) O +alloy S-MATE +parts O +could O +be S-MATE +identified O +. O + + +This O +study O +focused O +on O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +the O +Al–Fe O +binary S-CONPRI +alloy S-MATE +samples O +with O +a O +near-eutectic O +composition S-CONPRI +of O +2.5 O +mass O +% O +Fe S-MATE +using O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +process S-CONPRI +. O + + +The O +melt B-PARA +pool I-PARA +depth E-PARA +, O +relative B-PRO +density E-PRO +, O +and O +hardness S-PRO +of O +LPBF-fabricated O +Al–2.5Fe O +alloy S-MATE +samples O +under O +different O +laser B-PARA +power E-PARA +( O +P S-MATE +) O +and O +scan B-PARA +speed E-PARA +( O +v S-MATE +) O +conditions O +were O +systematically O +examined O +. O + + +The O +results O +provided O +optimum O +laser S-ENAT +parameter O +sets O +( O +P S-MATE += O +204 O +W O +, O +v S-MATE +≤ O +800 O +mms-1 O +) O +for O +the O +fabrication S-MANP +of O +dense O +alloy S-MATE +samples O +with O +high O +relative B-PRO +densities E-PRO +> O +99 O +% O +. O + + +Additionally O +, O +Pv-1/2 O +, O +which O +is O +based O +on O +the O +deposited O +energy B-PARA +density E-PARA +model O +, O +was O +found O +to O +be S-MATE +a O +more O +appropriate O +parameter S-CONPRI +for O +additively O +manufacturing S-MANP +Al–2.5Fe O +alloy S-MATE +samples O +, O +and O +using O +it O +to O +simplify O +the O +relative B-PRO +densities E-PRO +of O +the O +samples S-CONPRI +made O +the O +determination O +of O +a O +threshold O +value O +for O +the O +laser S-ENAT +parameters O +required O +to O +fabricate S-MANP +dense O +alloy S-MATE +samples O +. O + + +The O +microstructural S-CONPRI +and O +crystallographic O +characterization O +of O +the O +LPBF-built O +Al–2.5Fe O +alloy S-MATE +samples O +revealed O +a O +characteristic O +microstructure S-CONPRI +consisting O +of O +multi-scan O +melt B-MATE +pools E-MATE +that O +resulted O +from O +local O +melting S-MANP +and O +rapid B-MANP +solidification E-MANP +owing O +to O +laser S-ENAT +irradiation S-MANP +during O +the O +LPBF S-MANP +process O +. O + + +Furthermore O +, O +a O +number O +of O +columnar B-PRO +grains E-PRO +with O +a O +mean O +width O +of O +∼ O +21 O +μm O +elongated O +along O +the O +building B-PARA +direction E-PARA +were O +also O +observed O +in O +the O +α-Al O +matrix O +. O + + +Numerous O +nano-sized O +particles S-CONPRI +of O +the O +metastable S-PRO +Al6Fe O +intermetallic S-MATE +phase O +with O +a O +mean O +size O +< O +100 O +nm O +were O +finely O +dispersed O +in O +the O +α-Al O +matrix O +. O + + +The O +hardness S-PRO +of O +the O +refined O +microstructure S-CONPRI +produced O +by O +the O +LPBF S-MANP +process O +was O +high O +at O +∼ O +90 O +HV O +, O +which O +is O +more O +than O +twofold O +higher O +than O +that O +of O +conventionally O +casted O +alloys S-MATE +that O +contain O +the O +coarsened O +plate-shaped O +Al13Fe4 O +intermetallic S-MATE +phase O +in O +equilibrium S-CONPRI +with O +the O +α-Al O +matrix O +. O + + +In-situ S-CONPRI +monitoring O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +is O +a O +key O +issue O +to O +determine O +the O +quality S-CONPRI +and O +stability S-PRO +of O +the O +process S-CONPRI +during O +the O +layer-wise O +production S-MANP +of O +the O +part O +. O + + +The O +quantities O +that O +can O +be S-MATE +measured O +via O +in-situ S-CONPRI +sensing O +can O +be S-MATE +referred O +to O +as S-MATE +“ O +process S-CONPRI +signatures O +” O +, O +and O +can O +represent O +the O +source S-APPL +of O +information O +to O +detect O +possible O +defects S-CONPRI +. O + + +Most O +of O +the O +literature O +on O +in-situ S-CONPRI +monitoring O +of O +Laser B-MANP +Power I-MANP +Bed I-MANP +Fusion E-MANP +( O +LPBF S-MANP +) O +processes S-CONPRI +focuses O +on O +the O +melt-pool O +, O +laser S-ENAT +track O +and O +layer S-PARA +image S-CONPRI +as S-MATE +source O +of O +information O +to O +detect O +the O +onset O +of O +possible O +defects S-CONPRI +. O + + +High-speed O +image S-CONPRI +acquisition O +, O +coupled O +with O +image S-CONPRI +segmentation O +and O +feature B-ENAT +extraction E-ENAT +, O +is O +used O +to O +estimate O +different O +statistical O +descriptors O +of O +the O +spattering O +behaviour O +along O +the O +laser B-ENAT +scan E-ENAT +path O +. O + + +A O +logistic O +regression B-CONPRI +model E-CONPRI +is O +developed O +to O +determine O +the O +ability O +of O +spatter-related O +descriptors O +to O +classify O +different O +energy B-PARA +density E-PARA +conditions O +corresponding O +to O +different O +quality S-CONPRI +states O +. O + + +This O +is O +why O +future O +research S-CONPRI +on O +spatter S-CHAR +signature O +analysis O +and O +modelling S-ENAT +is O +highly O +encouraged O +to O +improve O +the O +effectiveness S-CONPRI +of O +in-situ S-CONPRI +monitoring O +tools S-MACEQ +. O + + +The O +metal B-MANP +additive I-MANP +manufacturing E-MANP +industry S-APPL +is O +rising O +and O +so O +is O +the O +interest O +in O +new O +lattice B-FEAT +structures E-FEAT +with O +unique O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Many O +studies O +have O +already O +investigated O +lattice B-FEAT +structures E-FEAT +with O +different O +geometries S-CONPRI +and O +their O +influence O +on O +mechanical B-CONPRI +properties E-CONPRI +, O +but O +little O +is O +known O +about O +the O +effect O +of O +specific O +processing O +characteristics O +that O +are O +inherent O +to O +metal B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Therefore O +this O +study O +investigates S-CONPRI +the O +effect O +of O +two O +crucial O +steps O +in O +the O +manufacturing B-MANP +process E-MANP +: O +the O +build B-PARA +orientation E-PARA +selection O +and O +heat B-MANP +treatment E-MANP +. O + + +In O +total O +the O +microstructure S-CONPRI +and O +static O +mechanical B-CONPRI +properties E-CONPRI +of O +five O +different O +orientations S-CONPRI +and O +three O +heat B-MANP +treatment E-MANP +conditions O +were O +evaluated O +using O +Ti6Al4V B-MATE +diamond E-MATE +like O +lattice B-FEAT +structures E-FEAT +. O + + +The O +results O +show O +a O +significant O +decrease O +in O +mechanical B-PRO +strength E-PRO +for O +samples S-CONPRI +that O +are O +built O +diagonally O +and O +a O +transformation O +of O +the O +microstructure S-CONPRI +after O +a O +HIP S-MANP +( O +hot B-MANP +isostatic I-MANP +pressing E-MANP +) O +treatment O +, O +resulting O +in O +a O +lower O +maximum O +strength S-PRO +, O +but O +higher O +ductility S-PRO +. O + + +In O +general O +, O +horizontal B-FEAT +struts E-FEAT +should O +be S-MATE +avoided O +during O +manufacturing S-MANP +, O +unless O +the O +applied O +load O +after O +manufacturing S-MANP +can O +be S-MATE +properly O +supported O +by O +other O +struts S-MACEQ +. O + + +Both O +a O +stress S-PRO +relief O +heat B-MANP +treatment E-MANP +and O +a O +HIP S-MANP +treatment O +can O +be S-MATE +used O +in O +statically O +loaded O +applications O +, O +whereas O +a O +HIP S-MANP +treatment O +is O +believed O +to O +be S-MATE +beneficial O +for O +dynamically O +loaded O +applications O +. O + + +This O +study O +enables O +an O +appropriate O +selection O +of O +build B-PARA +orientation E-PARA +and O +heat B-MANP +treatment E-MANP +of O +lattice B-FEAT +structures E-FEAT +for O +different O +applications O +. O + + +We O +report O +the O +design S-FEAT +of O +a O +metal B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +system O +for O +in-situ S-CONPRI +monitoring O +of O +the O +build S-PARA +process O +during O +additive B-MANP +manufacture E-MANP +. O + + +Its O +open-architecture O +design S-FEAT +was O +originally O +determined O +to O +enable O +access O +for O +x-rays S-CONPRI +to O +the O +melt B-MATE +pool E-MATE +, O +but O +it O +also O +provides O +access O +to O +the O +build B-PARA +area E-PARA +for O +a O +range S-PARA +of O +other O +in-situ S-CONPRI +measurement O +techniques O +. O + + +The O +system O +is O +sufficiently O +automated O +to O +enable O +single O +tracks O +and O +high-density O +, O +multiple O +layer S-PARA +components S-MACEQ +to O +be S-MATE +built O +. O + + +It O +is O +easily O +transportable O +to O +enable O +measurements O +at O +different O +measurement S-CHAR +facilities O +and O +its O +modular S-CONPRI +design S-FEAT +enables O +straightforward O +modification O +for O +the O +specific O +measurements O +being O +made O +. O + + +We O +demonstrate O +that O +the O +system O +produces O +components S-MACEQ +with O +> O +99 O +% O +density S-PRO +. O + + +Hence O +the O +build S-PARA +conditions O +are O +representative O +to O +observe O +process S-CONPRI +fundamentals O +and O +to O +develop O +process B-CONPRI +control E-CONPRI +strategies O +. O + + +In O +this O +work O +a O +finite-element O +framework S-CONPRI +for O +the O +numerical B-ENAT +simulation E-ENAT +of O +the O +heat B-CONPRI +transfer E-CONPRI +analysis O +of O +additive B-MANP +manufacturing I-MANP +processes E-MANP +by O +powder-bed O +technologies S-CONPRI +, O +such O +as S-MATE +Selective O +Laser S-ENAT +Melting O +, O +is O +presented O +. O + + +These O +kind O +of O +technologies S-CONPRI +allow O +for O +a O +layer-by-layer S-CONPRI +metal O +deposition B-MANP +process E-MANP +to O +cost-effectively O +create O +, O +directly O +from O +a O +CAD B-ENAT +model E-ENAT +, O +complex O +functional O +parts O +such O +as S-MATE +turbine O +blades O +, O +fuel O +injectors O +, O +heat B-MACEQ +exchangers E-MACEQ +, O +medical B-APPL +implants E-APPL +, O +among O +others O +. O + + +The O +numerical O +model S-CONPRI +proposed O +accounts O +for O +different O +heat B-CONPRI +dissipation E-CONPRI +mechanisms O +through O +the O +surrounding O +environment O +and O +is O +supplemented O +by O +a O +finite-element O +activation O +strategy O +, O +based O +on O +the O +born-dead O +elements S-MATE +technique O +, O +to O +follow O +the O +growth O +of O +the O +geometry S-CONPRI +driven O +by O +the O +metal B-CONPRI +deposition E-CONPRI +process O +, O +in O +such O +a O +way O +that O +the O +same O +scanning B-PARA +pattern E-PARA +sent O +to O +the O +numerical B-ENAT +control E-ENAT +system O +of O +the O +AM B-MACEQ +machine E-MACEQ +is O +used O +. O + + +An O +experimental S-CONPRI +campaign O +has O +been O +carried O +out O +at O +the O +Monash O +Centre O +for O +Additive B-MANP +Manufacturing E-MANP +using O +an O +EOSINT-M280 O +machine S-MACEQ +where O +it O +was O +possible O +to O +fabricate S-MANP +different O +benchmark S-MANS +geometries O +, O +as S-MATE +well O +as S-MATE +to O +record O +the O +temperature S-PARA +measurements O +at O +different O +thermocouple S-MACEQ +locations O +. O + + +The O +experiment S-CONPRI +consisted O +in O +the O +simultaneous O +printing O +of O +two O +walls O +with O +a O +total O +deposition S-CONPRI +volume O +of O +107 O +cm3 O +in O +992 O +layers O +and O +about O +33,500 O +s S-MATE +build B-PARA +time E-PARA +. O + + +A O +large O +number O +of O +numerical B-ENAT +simulations E-ENAT +have O +been O +carried O +out O +to O +calibrate O +the O +thermal O +FE S-MATE +framework O +in O +terms O +of O +the O +thermophysical O +properties S-CONPRI +of O +both O +solid O +and O +powder B-MATE +materials E-MATE +and O +suitable O +boundary B-CONPRI +conditions E-CONPRI +. O + + +Furthermore O +, O +the O +large O +size O +of O +the O +experiment S-CONPRI +motivated O +the O +investigation O +of O +two O +different O +model S-CONPRI +reduction O +strategies O +: O +exclusion O +of O +the O +powder-bed O +from O +the O +computational B-CONPRI +domain E-CONPRI +and O +simplified O +scanning B-CONPRI +strategies E-CONPRI +. O + + +In O +August O +2018 O +, O +a O +demonstration/experiment O +was O +performed O +in O +Champaign O +, O +Illinois O +USA O +, O +at O +the O +Engineer O +Research S-CONPRI +and O +Development O +Center O +Construction S-APPL +Engineering O +Research B-CONPRI +Laboratory E-CONPRI +( O +ERDC-CERL O +) O +looking O +at O +the O +continuous O +printing O +of O +a O +512 O +ft2 O +( O +47.6 O +m2 O +) O +reinforced S-CONPRI +additively O +constructed O +concrete S-MATE +( O +RACC O +) O +building O +. O + + +Previously O +, O +in O +July O +of O +2017 O +, O +a O +more O +traditional O +building O +was O +3D B-MANP +printed E-MANP +using O +a O +discontinuous O +concrete B-MANP +printing E-MANP +approach O +. O + + +These O +demonstrations O +were O +performed O +to O +determine O +the O +feasibility S-CONPRI +of O +using O +additively O +constructed O +concrete S-MATE +( O +ACC O +) O +as S-MATE +a O +material S-MATE +for O +vertical S-CONPRI +structural O +elements S-MATE +. O + + +This O +study O +explores O +the O +differences O +and O +similarities O +of O +ACC O +with O +conventional O +concrete S-MATE +construction O +and O +concrete S-MATE +masonry O +unit O +construction S-APPL +. O + + +To O +validate O +the O +feasibility S-CONPRI +of O +ACC O +a O +cost O +comparison O +analysis O +was O +performed O +comparing O +the O +construction S-APPL +methods O +used O +in O +these O +demonstrations O +to O +conventional O +concrete S-MATE +masonry O +unit O +and O +cast-in-place O +concrete S-MATE +construction O +. O + + +Layered O +Assembly S-MANP +is O +a O +voxel-based O +additive B-MANP +manufacturing E-MANP +method O +in O +which O +premanufactured O +voxels S-CONPRI +serve O +as S-MATE +the O +feedstock S-MATE +for O +producing O +multi-material S-CONPRI +parts O +. O + + +Electrodes S-MACEQ +were O +nominally O +designed S-FEAT +for O +grasping O +voxels S-CONPRI +of O +3 O +× O +3 O +mm S-MANP +cross-section O +. O + + +Electrostatic O +field O +simulations S-ENAT +were O +performed O +in O +COMSOL O +Multiphysics O +for O +both O +single O +electrodes S-MACEQ +, O +and O +2 O +× O +2 O +electrode S-MACEQ +arrays O +. O + + +The O +selective O +gripping O +capability O +of O +the O +electrode S-MACEQ +arrays O +was O +tested O +at O +voltages O +in O +the O +75–800 O +V S-MATE +range S-PARA +and O +applied O +to O +both O +polymer S-MATE +and O +metallic S-MATE +voxels O +. O + + +A O +comparison O +of O +electrode S-MACEQ +performance O +in O +terms O +of O +geometry S-CONPRI +revealed O +that O +comb-shaped O +electrodes S-MACEQ +were O +superior O +, O +due O +to O +≈100 O +% O +reliability S-CHAR +when O +operating O +in O +the O +600–800 O +V S-MATE +range S-PARA +. O + + +Lack-of-fusion O +flaws S-CONPRI +can O +occur O +in O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +of O +metal S-MATE +components S-MACEQ +. O + + +This O +paper O +demonstrates O +a O +method O +for O +detecting O +such O +flaws S-CONPRI +by O +monitoring O +the O +fabrication S-MANP +of O +every O +layer S-PARA +before O +and O +after O +laser S-ENAT +scanning O +with O +high B-PARA +resolution E-PARA +optical O +imaging S-APPL +. O + + +A O +binary S-CONPRI +template O +is O +created O +from O +the O +sliced O +3D B-APPL +model E-APPL +of O +the O +part O +. O + + +Using O +this O +template S-MACEQ +the O +optical S-CHAR +image B-CONPRI +data E-CONPRI +is O +indexed O +to O +the O +part O +geometry S-CONPRI +. O + + +The O +indexed O +image B-CONPRI +data E-CONPRI +is O +used O +to O +detect O +anomalies S-CONPRI +in O +the O +powder S-MATE +layer S-PARA +before O +laser S-ENAT +scanning O +and O +in O +the O +solidified O +material S-MATE +after O +scanning S-CONPRI +. O + + +Lack-of-fusion O +defects S-CONPRI +are O +identified O +from O +optical S-CHAR +data S-CONPRI +by O +correlating O +multiple O +images S-CONPRI +with O +different O +lighting O +conditions O +and O +from O +multiple O +layers O +. O + + +Pyrometry S-CHAR +showed O +an O +increase O +in O +intensity O +in O +CO2 S-MATE +atmosphere O +over O +Ar S-ENAT +atmosphere O +. O + + +At O +low O +levels O +of O +reactive O +gas S-CONPRI +atmospheres O +oxygen S-MATE +loss O +from O +spatter S-CHAR +dominates O +. O + + +Oxygen S-MATE +increased O +in O +samples S-CONPRI +from O +0.016 O +wt. O +% O +in O +Ar S-ENAT +to O +0.1 O +wt. O +% O +in O +CO2 S-MATE +. O + + +Average S-CONPRI +in-situ O +particle S-CONPRI +size O +in O +the O +samples S-CONPRI +were O +∼40 O +nm O +. O + + +There O +was O +a O +20 O +% O +increase O +in O +yield B-PRO +strength E-PRO +when O +samples S-CONPRI +were O +produced O +under O +CO2 S-MATE +. O + + +Traditionally O +, O +reactive O +gases O +such O +as S-MATE +oxygen O +( O +O2 O +) O +and O +carbon S-MATE +dioxide O +( O +CO2 S-MATE +) O +have O +been O +avoided O +during O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +of O +metals S-MATE +and O +alloys S-MATE +based O +on O +the O +notion O +that O +it O +may O +lead S-MATE +to O +defect S-CONPRI +formation O +and O +poor O +properties S-CONPRI +. O + + +Here O +we O +show O +that O +instead O +, O +these O +gases O +can O +be S-MATE +used O +to O +form O +sub-μm-sized O +oxide S-MATE +particles O +in-situ S-CONPRI +during O +the O +L-PBF S-MANP +process O +in O +an O +Fe-Cr-Al-Ti O +stainless B-MATE +steel E-MATE +and O +lead S-MATE +to O +improved O +room O +temperature S-PARA +and O +high-temperature O +mechanical B-CONPRI +properties E-CONPRI +. O + + +We O +manufactured B-CONPRI +cube E-CONPRI +samples O +using O +pure O +Ar S-ENAT +and O +various O +reactive O +gas S-CONPRI +atmospheres O +, O +namely O +an O +O2/Argon O +( O +Ar S-ENAT +) O +mixture O +containing O +0.2 O +% O +O2 O +and O +CO2/Ar O +mixtures O +containing O +up O +to O +100 O +% O +CO2 S-MATE +. O + + +Co-axial O +measurements O +of O +infrared S-CONPRI +radiation O +emitted O +from O +the O +melt B-MATE +pool E-MATE +showed O +correlation O +to O +the O +presence O +of O +O2 O +or O +CO2 S-MATE +in O +the O +gas S-CONPRI +mixture O +. O + + +Builds S-CHAR +produced O +under O +CO2-containing O +atmosphere O +contained O +complex O +oxides S-MATE +with O +an O +average S-CONPRI +diameter O +of O +∼40 O +nm O +, O +an O +Al-rich O +core S-MACEQ +and O +a O +Ti-rich O +shell S-MACEQ +. O + + +Due O +to O +the O +high O +cooling B-PARA +rates E-PARA +typical O +to O +L-PBF S-MANP +, O +agglomeration O +of O +oxides S-MATE +and O +slag S-MATE +formation O +on O +the O +surface S-CONPRI +of O +the O +samples S-CONPRI +could O +almost O +be S-MATE +entirely O +avoided O +. O + + +Compression B-CHAR +tests E-CHAR +at O +temperatures S-PARA +up O +to O +800 O +°C O +showed O +that O +the O +samples S-CONPRI +produced O +in O +100 O +% O +CO2 S-MATE +have O +about O +20 O +% O +higher O +yield B-PRO +stress E-PRO +compared O +to O +samples S-CONPRI +produced O +in O +Ar S-ENAT +. O + + +The O +paper O +concludes O +with O +a O +discussion O +of O +the O +formation O +mechanism S-CONPRI +of O +the O +observed O +oxides S-MATE +. O + + +Our O +results O +show O +that O +in-situ S-CONPRI +reactions O +during O +additive B-MANP +manufacturing I-MANP +processes E-MANP +are O +a O +promising O +pathway O +to O +the O +synthesis O +of O +particle-reinforced O +alloys S-MATE +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +, O +such O +as S-MATE +Selective O +Laser B-MANP +Sintering E-MANP +( O +SLS S-MANP +) O +, O +have O +enabled O +the O +fabrication S-MANP +of O +geometrically O +complicated O +designs S-FEAT +. O + + +However O +, O +undesired O +distortions O +due O +to O +thermally-induced O +residual B-PRO +stresses E-PRO +may O +lead S-MATE +to O +loss O +of O +tolerance S-PARA +or O +failure S-CONPRI +of O +the O +part O +. O + + +One O +potential O +failure B-PRO +mode E-PRO +is O +buckling S-PRO +, O +particularly O +when O +realizing O +high B-FEAT +aspect I-FEAT +ratio E-FEAT +features O +, O +like O +for O +infill S-PARA +, O +to O +minimize O +weight S-PARA +. O + + +In O +this O +paper O +, O +we O +address O +distortions O +and O +part O +failures O +due O +to O +buckling S-PRO +by O +using O +a O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +to O +predict O +residual B-PRO +stress E-PRO +distributions S-CONPRI +and O +sintering S-MANP +induced O +distortions O +. O + + +Initially O +, O +we O +conduct O +a O +transient S-CONPRI +thermal O +simulation S-ENAT +to O +determine O +the O +Heat B-CONPRI +Affected I-CONPRI +Zone E-CONPRI +( O +HAZ S-CONPRI +) O +, O +which O +is O +then O +used O +in O +the O +thermomechanical S-CONPRI +simulation S-ENAT +. O + + +In O +addition O +, O +we O +imposed O +perturbations O +on O +the O +mechanical S-APPL +mesh O +based O +on O +the O +buckling S-PRO +eigenmodes O +. O + + +Finally O +, O +a O +thermomechanical S-CONPRI +viscoplastic O +analysis O +was O +performed O +layer-by-layer S-CONPRI +to O +obtain O +the O +final O +residual B-PRO +stress E-PRO +state O +and O +subsequent O +distortions O +that O +occur O +after O +cooling S-MANP +down O +to O +ambient O +temperature S-PARA +. O + + +A O +model S-CONPRI +was O +used O +to O +describe O +the O +evolution S-CONPRI +of O +porosity S-PRO +due O +to O +laser B-MANP +sintering E-MANP +, O +and O +then O +a O +model S-CONPRI +of O +the O +effects O +of O +porosity S-PRO +on O +the O +viscoplastic O +constitutive O +properties S-CONPRI +of O +the O +sintered S-MANP +material S-MATE +was O +used O +in O +the O +thermomechanical S-CONPRI +simulation S-ENAT +. O + + +Modeling S-ENAT +results O +are O +compared O +against O +experimental S-CONPRI +specimens O +using O +a O +Durelli O +( O +aka O +, O +Theta O +) O +specimen O +geometry B-CONPRI +fabricated E-CONPRI +with O +a O +3D B-APPL +Systems E-APPL +ProX O +200 O +Selective B-MANP +Laser I-MANP +Sintering E-MANP +( O +SLS S-MANP +) O +machine S-MACEQ +. O + + +The O +geometry S-CONPRI +of O +the O +specimen O +represents O +an O +internal O +feature S-FEAT +with O +a O +high B-FEAT +aspect I-FEAT +ratio E-FEAT +that O +is O +prone O +to O +buckling S-PRO +, O +and O +the O +dimensions S-FEAT +were O +modified O +based O +on O +the O +simulation S-ENAT +results O +to O +confirm O +the O +ability O +of O +the O +modeling S-ENAT +approach O +to O +provide O +accurate S-CHAR +mitigation O +of O +buckling-induced O +distortions O +. O + + +This O +paper O +presents O +a O +process-microstructure O +finite B-CONPRI +element E-CONPRI +modeling O +framework S-CONPRI +for O +predicting O +the O +evolution S-CONPRI +of O +volumetric O +phase B-CONPRI +fractions E-CONPRI +and O +microhardness S-CONPRI +during O +laser B-MANP +directed I-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +additive B-MANP +manufacturing E-MANP +of O +Ti6Al4V S-MATE +. O + + +Based O +on O +recent O +experimental S-CONPRI +observations O +, O +the O +present O +microstructure B-CONPRI +evolution E-CONPRI +model O +is O +formulated O +to O +combine O +the O +formation O +and O +dissolution O +kinetics O +of O +grain B-CONPRI +boundary E-CONPRI +, O +Widmanstätten O +colony/basketweave O +, O +massive/martensitic O +alpha O +and O +beta O +phases O +of O +Ti6Al4V S-MATE +. O + + +The O +microstructure B-CONPRI +evolution E-CONPRI +algorithm S-CONPRI +is O +verified O +and O +embedded O +into O +a O +three-dimensional S-CONPRI +finite B-CONPRI +element E-CONPRI +process O +simulation S-ENAT +model S-CONPRI +to O +simulate O +thermally O +driven O +phase S-CONPRI +transformations O +during O +DED S-MANP +processing O +of O +a O +Ti6Al4V S-MATE +thin-walled O +rectangular O +sample S-CONPRI +. O + + +The O +simulated O +volumetric O +phase B-CONPRI +fractions E-CONPRI +and O +related O +microhardness S-CONPRI +distribution S-CONPRI +agree O +reasonably O +well O +with O +experimental S-CONPRI +measurements O +performed O +on O +the O +sample S-CONPRI +. O + + +Thus O +the O +proposed O +simulation S-ENAT +model S-CONPRI +could O +be S-MATE +useful O +for O +designers O +to O +understand O +and O +control O +process-microstructure-property O +relationships O +in O +a O +DED-processed O +part O +. O + + +The O +present O +research S-CONPRI +work O +has O +investigated O +the O +synthesis O +of O +ceramic S-MATE +structures O +based O +on O +inorganic O +, O +spherical-hollow O +microballoons O +using O +a O +binder S-MATE +jet O +printing B-MANP +process E-MANP +. O + + +Binder S-MATE +jet O +printing O +is O +a O +process S-CONPRI +that O +allows O +the O +synthesis O +process S-CONPRI +of O +complex O +and O +intricate O +parts O +with O +minimal O +waste O +of O +the O +feedstock B-MATE +material E-MATE +. O + + +The O +ceramic S-MATE +microballoons O +here O +investigated O +were O +based O +on O +a O +mullite S-MATE +derivative O +. O + + +The O +printed O +ceramic S-MATE +parts O +were O +cured S-MANP +and O +sintered S-MANP +as S-MATE +the O +precursor S-MATE +templates O +for O +metal B-CONPRI +matrix E-CONPRI +syntactic O +foams O +( O +MMSFs O +) O +. O + + +The O +MMSFs O +were O +manufactured S-CONPRI +by O +infiltrating S-CONPRI +the O +printed O +ceramic S-MATE +templates O +by O +molten O +aluminum S-MATE +. O + + +The O +flexural B-PRO +strength E-PRO +of O +the O +cured S-MANP +, O +sintered S-MANP +, O +and O +infiltrated O +structures O +were O +also O +investigated O +. O + + +It O +is O +proposed O +that O +binder S-MATE +jet O +printing O +followed O +by O +a O +sintering S-MANP +and O +pressureless O +infiltration S-CONPRI +process O +represents O +an O +advantageous O +technology S-CONPRI +for O +designing O +complex O +MMSF O +structures O +. O + + +The O +fused S-CONPRI +coating S-APPL +process O +is O +a O +new O +material B-MANP +jetting E-MANP +additive B-MANP +manufacturing E-MANP +technology O +that O +proposes O +to O +solve O +the O +problem O +of O +high O +cost O +, O +low O +efficiency O +and O +high O +material S-MATE +requirements O +of O +laser-based O +process S-CONPRI +and O +electron B-CONPRI +beam E-CONPRI +process O +. O + + +The O +structure S-CONPRI +and O +operating O +principles O +of O +the O +fused S-CONPRI +coating S-APPL +machine O +are O +explained O +in O +this O +paper O +. O + + +Sn63Pb37 O +is O +taken O +as S-MATE +the O +experimental S-CONPRI +material O +because O +of O +its O +low O +melting B-PARA +temperature E-PARA +, O +small O +surface B-PRO +tension E-PRO +coefficient O +and O +high O +viscosity S-PRO +. O + + +Tensile B-CHAR +test E-CHAR +specimens O +were O +made O +both O +parallel O +and O +perpendicular O +to O +the O +forming S-MANP +trajectory O +. O + + +Tensile B-PRO +strengths E-PRO +were O +measured O +and O +the O +corresponding O +fractographies O +were O +observed O +. O + + +It O +is O +found O +that O +large O +plastic B-PRO +deformation E-PRO +has O +occurred O +before O +the O +fracture S-CONPRI +, O +and O +the O +plasticity S-PRO +of O +fused S-CONPRI +components S-MACEQ +that O +the O +tensile S-PRO +direction O +parallel O +to O +the O +forming S-MANP +trajectory O +, O +is O +higher O +. O + + +The O +densification S-MANP +degree O +of O +fused S-CONPRI +coating S-APPL +component O +is O +measured O +by O +the O +drainage O +method O +. O + + +The O +average S-CONPRI +value O +is O +up O +to O +99.78 O +% O +which O +indicates O +that O +the O +internal B-PRO +structure E-PRO +is O +indistinguishable O +from O +extruded S-MANP +Sn63Pb37 O +. O + + +The O +Vickers B-PRO +hardness E-PRO +of O +the O +fused S-CONPRI +coated S-APPL +component O +and O +raw O +casted O +material S-MATE +were O +tested O +by O +5 O +points O +respectively O +, O +the O +results O +showed O +that O +the O +average S-CONPRI +Vickers O +hardness S-PRO +of O +the O +fused S-CONPRI +coating S-APPL +component O +is O +14.6 O +% O +higher O +than O +the O +casted O +one O +. O + + +Cellular B-MATE +materials E-MATE +, O +such O +as S-MATE +foams O +, O +can O +be S-MATE +used O +as S-MATE +load O +bearing O +members O +in O +civil O +construction S-APPL +and O +as S-MATE +protective O +energy O +absorbing O +structures O +for O +personnel O +and O +equipment S-MACEQ +. O + + +In O +the O +present O +study O +, O +novel O +lightweight S-CONPRI +closed-cell O +structures O +were O +designed S-FEAT +, O +and O +their O +mechanical B-CONPRI +properties E-CONPRI +and O +collapse O +mechanisms O +were O +investigated O +through O +a O +combination O +of O +experimental S-CONPRI +validation O +and O +finite B-CONPRI +element E-CONPRI +( O +FE S-MATE +) O +simulations S-ENAT +. O + + +Selected O +porous S-PRO +structure O +designs S-FEAT +were O +manufactured S-CONPRI +from O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +using O +additive B-MANP +manufacturing E-MANP +technology O +. O + + +These O +3D B-MANP +printed E-MANP +structures O +were O +subjected O +to O +quasi-static S-CONPRI +loading O +to O +determine O +the O +dependence O +of O +their O +elastic S-PRO +and O +plastic S-MATE +responses O +from O +their O +topological O +features O +. O + + +Deformation S-CONPRI +mechanisms O +were O +elucidated O +through O +quasi-static S-CONPRI +compression S-PRO +experiments O +and O +FE S-MATE +modelling O +. O + + +The O +appropriate O +distribution S-CONPRI +of O +the O +base O +material S-MATE +in O +the O +designed S-FEAT +closed-cell O +structures O +inherits O +the O +merits O +of O +uniform O +stress B-PRO +distribution E-PRO +and O +large O +deformations S-CONPRI +that O +lead S-MATE +to O +reaching O +high O +strengths S-PRO +and O +desirable O +energy B-CHAR +absorption E-CHAR +efficiencies O +. O + + +The O +effects O +of O +relative B-PRO +density E-PRO +and O +cell S-APPL +shape O +were O +studied O +in O +detail O +from O +elastic S-PRO +loading O +through O +the O +large O +plastic S-MATE +strain O +densification S-MANP +regions O +. O + + +The O +effects O +of O +cellular O +architecture S-APPL +on O +deformation S-CONPRI +mechanisms O +and O +energy B-CHAR +absorption E-CHAR +capabilities O +demonstrated O +the O +possibility O +of O +enhancing O +energy B-CHAR +absorption E-CHAR +efficiencies O +with O +appropriate O +design S-FEAT +criteria O +. O + + +Based O +on O +the O +experimental S-CONPRI +and O +numerical O +analyses O +, O +the O +most O +efficient O +energy O +absorbing O +closed-cell O +structure S-CONPRI +was O +proposed O +. O + + +The O +performance S-CONPRI +enhancement O +of O +parts O +produced O +using O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +is O +an O +important O +goal O +for O +various O +industrial S-APPL +applications O +. O + + +In O +order O +to O +achieve O +this O +goal O +, O +obtaining O +a O +homogeneous S-CONPRI +microstructure O +and O +eliminating O +material S-MATE +defects S-CONPRI +within O +the O +fabricated S-CONPRI +parts O +are O +important O +research S-CONPRI +issues O +. O + + +The O +objective O +of O +this O +experimental S-CONPRI +study O +is O +to O +evaluate O +the O +effect O +of O +thermal O +post-processing S-CONPRI +of O +AlSi10Mg S-MATE +parts O +, O +using O +recycled S-CONPRI +powder S-MATE +, O +with O +the O +aim O +of O +improving O +the O +microstructure S-CONPRI +homogeneity O +of O +the O +as-built O +parts O +. O + + +This O +work O +is O +essential O +for O +the O +cost-effective O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +metal S-MATE +optics O +and O +optomechanical O +systems O +. O + + +To O +achieve O +this O +goal O +, O +a O +full O +characterization O +of O +fresh O +and O +recycled S-CONPRI +powder S-MATE +was O +performed O +, O +in O +addition O +to O +a O +microstructure S-CONPRI +assessment O +of O +the O +as-built O +fabricated S-CONPRI +samples O +. O + + +Annealing S-MANP +, O +solution B-MANP +heat I-MANP +treatment E-MANP +( O +SHT O +) O +and O +T6 O +heat B-MANP +treatment E-MANP +( O +T6 O +HT O +) O +were O +applied O +under O +different O +processing O +conditions O +. O + + +A O +micro-hardness O +map O +was O +developed O +to O +assist O +in O +the O +selection O +of O +the O +optimized O +post-processing B-CONPRI +parameters E-CONPRI +in O +order O +to O +satisfy O +the O +design S-FEAT +requirements O +of O +the O +part O +. O + + +Thermal B-APPL +barrier I-APPL +coatings E-APPL +( O +TBC S-APPL +) O +are O +regularly O +used O +today O +to O +protect O +and O +extend O +the O +service B-CONPRI +life E-CONPRI +of O +several O +superalloys S-MATE +which O +are O +extensively O +used O +in O +high O +temperature S-PARA +applications O +. O + + +The O +existing O +TBCs S-APPL +are O +typically O +between O +0.1 O +to O +0.5 O +mm S-MANP +in O +thickness O +, O +are O +deposited O +on O +metal S-MATE +substrates O +using O +plasma B-MANP +spray E-MANP +or O +electron B-CONPRI +beam E-CONPRI +vapor O +deposition S-CONPRI +, O +and O +can O +reduce O +temperatures S-PARA +at O +the O +substrate S-MATE +surface O +by O +up O +to O +300 O +°C O +. O + + +For O +greater O +temperature S-PARA +reductions O +there O +is O +a O +need O +for O +thicker O +TBCs S-APPL +. O + + +The O +building O +of O +thick O +TBCs S-APPL +has O +to O +date O +been O +stymied O +by O +poor O +adhesion S-PRO +, O +and O +cracking S-CONPRI +during O +deposition S-CONPRI +. O + + +It O +has O +been O +suggested O +that O +a O +functionally B-CONPRI +graded E-CONPRI +approach O +may O +reduce O +the O +residual B-PRO +stresses E-PRO +which O +result O +in O +these O +defects S-CONPRI +. O + + +To O +date O +there O +have O +been O +few O +reports O +on O +the O +deposition S-CONPRI +of O +ceramic S-MATE +or O +cermet S-MATE +coatings O +using O +laser S-ENAT +AM S-MANP +and O +none O +have O +reported O +on O +the O +phase S-CONPRI +stability O +of O +ceramic S-MATE +particles O +post-deposition O +. O + + +This O +paper O +is O +a O +first O +report O +on O +the O +phase S-CONPRI +stability O +of O +ceramic S-MATE +particles O +following O +the O +compositional O +segregation S-CONPRI +of O +elements S-MATE +during O +deposition S-CONPRI +using O +a O +powder S-MATE +feed S-PARA +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +Functionally B-CONPRI +graded E-CONPRI +( O +FG O +) O +, O +thick O +TBCs S-APPL +( O +> O +3 O +mm S-MANP +) O +consisting O +of O +Inconel B-MATE +625 E-MATE +( O +IN625 O +) O +and O +yttria-partially O +stabilized O +zirconia S-MATE +( O +8YSZ O +) O +were O +deposited O +on O +an O +A516 O +steel S-MATE +substrate O +via O +laser S-ENAT +direct B-MANP +energy I-MANP +deposition E-MANP +( O +LDED O +) O +. O + + +Good O +interfaces O +were O +observed O +between O +the O +bond B-APPL +coat E-APPL +( O +BC O +) O +and O +first O +cermet S-MATE +layer O +and O +between O +the O +graded O +cermet S-MATE +layers O +. O + + +However O +, O +cermet S-MATE +layers O +deposited O +with O +10 O +wt. O +% O +or O +more O +YSZ S-MATE +developed O +a O +thin O +layer S-PARA +of O +YSZ S-MATE +on O +the O +surface S-CONPRI +. O + + +The O +thin O +layer S-PARA +of O +YSZ S-MATE +greatly O +hindered O +additional O +deposition S-CONPRI +of O +new O +cermet S-MATE +layers O +. O + + +In O +cermet S-MATE +layers O +that O +did O +exhibit O +good O +interfaces O +, O +fine O +, O +re-solidified O +, O +YSZ S-MATE +particles S-CONPRI +were O +homogenously O +distributed O +within O +the O +Inconel B-MATE +625 E-MATE +matrix O +. O + + +The O +YSZ S-MATE +particles S-CONPRI +exhibited O +a O +tetragonal B-FEAT +lattice I-FEAT +structure E-FEAT +and O +were O +depleted O +of O +yttrium S-MATE +. O + + +In O +contrast O +, O +the O +thin O +YSZ S-MATE +layer S-PARA +formed O +on O +a O +cermet S-MATE +surface O +showed O +no O +yttrium S-MATE +depletion O +. O + + +Some O +of O +the O +primary O +barriers O +to O +widespread O +adoption O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +are O +persistent O +defect S-CONPRI +formation O +in O +built O +components S-MACEQ +, O +high O +material S-MATE +costs O +, O +and O +lack O +of O +consistency S-CONPRI +in O +powder B-MACEQ +feedstock E-MACEQ +. O + + +To O +generate O +more O +reliable O +, O +complex-shaped S-CONPRI +metal O +parts O +, O +it O +is O +crucial O +to O +understand O +how O +feedstock S-MATE +properties O +change O +with O +reuse O +and O +how O +that O +affects O +build S-PARA +mechanical O +performance S-CONPRI +. O + + +Powder B-MATE +particles E-MATE +interacting O +with O +the O +energy O +source S-APPL +, O +yet O +not O +consolidated O +into O +an O +AM B-MACEQ +part E-MACEQ +can O +undergo O +a O +range S-PARA +of O +dynamic S-CONPRI +thermal O +interactions O +, O +resulting O +in O +variable O +particle S-CONPRI +behavior O +if O +reused O +. O + + +In O +this O +work O +, O +we O +present O +a O +systematic O +study O +of O +316L O +powder S-MATE +properties O +from O +the O +virgin O +state O +through O +thirty O +powder S-MATE +reuses O +in O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +process O +. O + + +Thirteen O +powder S-MATE +characteristics O +and O +the O +resulting O +AM S-MANP +build O +mechanical B-CONPRI +properties E-CONPRI +were O +investigated O +for O +both O +powder S-MATE +states O +. O + + +Results O +show O +greater O +variability S-CONPRI +in O +part O +ductility S-PRO +for O +the O +virgin O +state O +. O + + +The O +feedstock S-MATE +exhibited O +minor O +changes O +to O +size O +distribution S-CONPRI +, O +bulk O +composition S-CONPRI +, O +and O +hardness S-PRO +with O +reuse O +, O +but O +significant O +changes O +to O +particle S-CONPRI +morphology S-CONPRI +, O +microstructure S-CONPRI +, O +magnetic O +properties S-CONPRI +, O +surface S-CONPRI +composition S-CONPRI +, O +and O +oxide S-MATE +thickness O +. O + + +Additionally O +, O +sieved O +powder S-MATE +, O +along O +with O +resulting O +fume/condensate O +and O +recoil O +ejecta O +( O +spatter S-CHAR +) O +properties S-CONPRI +were O +characterized O +. O + + +It O +was O +discovered O +that O +spatter S-CHAR +leads O +to O +formation O +of O +single O +crystal O +ferrite S-MATE +through O +large O +degrees O +of O +supercooling S-CONPRI +and O +massive O +solidification S-CONPRI +. O + + +Ferrite S-MATE +content O +and O +consequently O +magnetic B-CHAR +susceptibility E-CHAR +of O +the O +powder S-MATE +also O +increases O +with O +reuse O +, O +suggesting O +potential O +for O +magnetic B-CONPRI +separation E-CONPRI +as S-MATE +a O +refining O +technique O +for O +altered O +feedstock S-MATE +. O + + +Tensile B-PRO +stress E-PRO +in O +selective B-MANP +laser I-MANP +melted E-MANP +( O +SLM S-MANP +) O +stainless B-MATE +steel E-MATE +316 O +( O +SS316 O +) O +bars O +was O +studied O +with O +neutron S-CONPRI +imaging S-APPL +methods O +for O +measurement S-CHAR +of O +attenuation O +, O +scattering O +, O +and O +diffraction S-CHAR +. O + + +The O +hypotheses O +for O +stress S-PRO +failure S-CONPRI +includes O +modifications O +to O +both O +the O +grain B-CONPRI +structure E-CONPRI +and O +residual S-CONPRI +porosity S-PRO +. O + + +Neutron S-CONPRI +Bragg O +edge O +imaging S-APPL +showed O +a O +change O +in O +crystallographic O +structure S-CONPRI +and/or O +texture S-FEAT +at O +a O +pre-existing O +fracture S-CONPRI +, O +but O +did O +not O +provide O +evidence O +for O +presumptive O +crack O +formation O +. O + + +A O +Talbot-Lau O +grating-based O +neutron S-CONPRI +interferometer O +yielded O +better O +than O +100 O +μm O +spatial O +resolution S-PARA +for O +the O +attenuation O +images S-CONPRI +and O +was O +tuned O +to O +an O +autocorrelation O +scattering O +length O +of O +1.97 O +μm O +for O +the O +dark-field O +( O +scattering O +) O +images S-CONPRI +. O + + +The O +interferometry S-CONPRI +imaging S-APPL +was O +performed O +with O +samples S-CONPRI +parallel O +and O +perpendicular O +to O +the O +linear O +grating O +, O +allowing O +assessment O +of O +scattering O +along O +and O +perpendicular O +to O +the O +additive B-MANP +manufacturing E-MANP +build O +direction O +. O + + +In O +the O +3D S-CONPRI +tomography O +dark-field O +volume S-CONPRI +of O +a O +tensile S-PRO +stressed O +bar O +, O +features O +were O +observed O +that O +suggested O +possible O +sites O +of O +crack O +formation O +. O + + +The O +features O +were O +quantified O +with O +line O +probes S-MACEQ +and O +found O +to O +be S-MATE +reproducible O +over O +three O +tomography O +experiments O +. O + + +After O +imaging S-APPL +, O +the O +half-stressed O +bar O +was O +pulled O +to O +failure S-CONPRI +; O +the O +fracture S-CONPRI +point O +is O +correlated S-CONPRI +with O +a O +feature S-FEAT +in O +the O +line O +probe S-MACEQ +having O +enhanced O +neutron B-CHAR +scattering E-CHAR +. O + + +Neutron S-CONPRI +interferometry S-CONPRI +, O +particularly O +the O +dark-field O +imaging S-APPL +modality O +, O +emerges O +as S-MATE +a O +powerful O +non-destructive O +method O +for O +detecting O +early O +crack O +formation O +in O +additive B-MANP +manufactured E-MANP +components O +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +method O +of O +joining S-MANP +metal/non-metals O +or O +composites S-MATE +layer O +by O +layer S-PARA +using O +different O +energy O +sources O +. O + + +Among O +the O +various O +AM B-MANP +processes E-MANP +, O +laser-based O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +is O +very O +popular O +, O +in O +which O +geometrically O +complex B-CONPRI +structures E-CONPRI +can O +be S-MATE +manufactured O +directly O +from O +CAD B-ENAT +models E-ENAT +. O + + +One O +of O +the O +least O +investigated O +areas S-PARA +in O +LPBF S-MANP +is O +the O +fatigue S-PRO +property O +of O +LPBF S-MANP +produced O +stainless B-MATE +steel E-MATE +parts O +, O +which O +find O +a O +variety O +of O +engineering S-APPL +and O +medical B-APPL +applications E-APPL +. O + + +In O +actual O +service O +conditions O +, O +many O +engineering S-APPL +components S-MACEQ +undergo O +variable O +cyclic B-PRO +loadings E-PRO +. O + + +Therefore O +, O +in O +order O +to O +widen O +industrial S-APPL +applications O +of O +LPBF S-MANP +process O +, O +effects O +of O +variable O +amplitude O +loading O +under O +both O +zero O +and O +tensile S-PRO +mean O +stresses O +on O +the O +fatigue B-PRO +life E-PRO +of O +LPBF S-MANP +produced O +15-5 O +precipitation B-MANP +hardened E-MANP +stainless O +steel S-MATE +parts O +have O +been O +examined O +in O +the O +present O +study O +. O + + +Further O +, O +different O +modes O +of O +failure S-CONPRI +, O +effects O +of O +load O +sequences O +on O +fatigue B-PRO +life E-PRO +and O +the O +cumulative O +damage S-PRO +during O +the O +process S-CONPRI +have O +also O +been O +studied O +. O + + +Fracture S-CONPRI +surfaces O +were O +studied O +using O +Scanning B-CHAR +Electron I-CHAR +Microscopy E-CHAR +to O +investigate O +the O +mode O +of O +failures O +and O +completely O +different O +fracture S-CONPRI +surface O +morphologies S-CONPRI +for O +these O +two O +cases O +explain O +the O +observed O +difference O +in O +number O +of O +cycles O +to O +failure S-CONPRI +with O +the O +reversal O +of O +the O +load O +sequence O +. O + + +Recent O +advances O +in O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +XCT O +) O +have O +allowed O +for O +measurement S-CHAR +resolutions O +approaching O +the O +point O +where O +XCT O +can O +be S-MATE +used O +for O +measuring O +surface B-CONPRI +topography E-CONPRI +. O + + +These O +advances O +make O +XCT O +appealing O +for O +measuring O +hard-to-reach O +or O +internal O +surfaces S-CONPRI +, O +such O +as S-MATE +those O +often O +present O +in O +additively B-MANP +manufactured E-MANP +parts O +. O + + +To O +demonstrate O +the O +feasibility S-CONPRI +and O +potential O +of O +XCT O +for O +topography S-CHAR +measurement S-CHAR +, O +topography S-CHAR +datasets O +obtained O +using O +two O +XCT O +systems O +are O +compared O +to O +those O +acquired O +using O +coherence O +scanning B-CONPRI +interferometry E-CONPRI +and O +focus O +variation S-CONPRI +microscopy S-CHAR +. O + + +A O +hollow O +Ti6Al4V S-MATE +part O +produced O +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +is O +used O +as S-MATE +a O +measurement S-CHAR +artefact O +. O + + +The O +artefact O +comprises O +two O +component S-MACEQ +halves O +that O +can O +be S-MATE +separated O +to O +expose O +the O +internal O +surfaces S-CONPRI +. O + + +Measured O +surface S-CONPRI +datasets O +are O +accurately S-CHAR +aligned O +and O +similarly O +cropped O +, O +and O +compared O +by O +various O +qualitative S-CONPRI +and O +quantitative S-CONPRI +means O +, O +including O +the O +computation S-CONPRI +of O +ISO B-MANS +25178-2 E-MANS +areal O +surface B-FEAT +texture E-FEAT +parameters S-CONPRI +, O +commonly O +used O +in O +part O +quality S-CONPRI +assessment O +. O + + +Results O +show O +that O +XCT O +can O +non-destructively O +provide O +surface S-CONPRI +information O +comparable O +with O +more O +conventional O +surface S-CONPRI +measurement S-CHAR +technologies O +, O +thus O +representing O +a O +viable O +alternative O +to O +more O +conventional O +measurement S-CHAR +, O +particularly O +appealing O +for O +hard-to-reach O +and O +internal O +surfaces S-CONPRI +. O + + +Low-cost O +GMAW-based O +3-D S-CONPRI +printing O +slicing S-CONPRI +needed O +for O +diverse O +users O +. O + + +Upgraded O +free O +and O +open O +source S-APPL +CuraEngine O +into O +MOSTMetalCura O +. O + + +New O +slicer S-ENAT +track O +counts O +, O +avoid O +overlaps O +, O +infill S-PARA +to O +enable O +continous O +bead S-CHAR +. O + + +Also O +includes O +variable O +pauses O +, O +control O +of O +welder O +and O +set S-APPL +wire O +feed S-PARA +. O + + +The O +slicer S-ENAT +enables O +1 O +mm S-MANP +resolution O +printing O +of O +ER70S-6 S-MATE +steel O +. O + + +Low-cost O +gas B-MANP +metal I-MANP +arc I-MANP +welding E-MANP +( O +GMAW S-MANP +) O +-based O +3-D S-CONPRI +printing O +has O +proven O +effective O +at O +additive B-MANP +manufacturing E-MANP +steel O +and O +aluminum S-MATE +parts O +. O + + +To O +enable O +automated O +slicing S-CONPRI +a O +3-D S-CONPRI +model O +and O +generating O +G-code S-ENAT +for O +an O +acceptable O +path O +for O +GMAW S-MANP +3-D S-CONPRI +printing O +, O +this O +paper O +reports O +on O +upgrading O +of O +the O +free O +and O +open O +source S-APPL +CuraEngine O +. O + + +The O +new O +slicer S-ENAT +, O +MOSTMetalCura O +, O +provides O +the O +following O +novel O +abilities O +necessary O +for O +GMAW S-MANP +3-D S-CONPRI +printing O +: O +i O +) O +change O +the O +perimeter O +metric O +from O +width O +to O +track O +count O +, O +ii O +) O +avoid O +movement O +that O +overlaps O +previous O +weld B-CONPRI +beads E-CONPRI +, O +iii O +) O +have O +infill S-PARA +start O +immediately O +after O +the O +perimeter O +finished O +and O +in O +the O +direction O +that O +eliminates O +translations O +, O +iv O +) O +add O +a O +variable O +pause O +between O +layers O +to O +allow O +for O +substrate S-MATE +cooling S-MANP +, O +v S-MATE +) O +configure O +GPIO O +pins O +to O +turn O +on/off O +the O +welder O +, O +and O +vi O +) O +set S-APPL +optimized O +wire O +feed S-PARA +speed O +and O +voltage O +of O +the O +welder O +based O +on O +printing B-PARA +speed E-PARA +, O +layer B-PARA +height E-PARA +, O +filament B-PARA +diameter E-PARA +, O +and O +tool S-MACEQ +track O +width O +. O + + +The O +process S-CONPRI +for O +initiating O +these O +changes O +are O +detailed O +and O +the O +new O +slicer S-ENAT +is O +used O +to O +help O +improve O +the O +function O +of O +the O +printer S-MACEQ +for O +ER70S-6 S-MATE +steel O +. O + + +To O +find O +the O +printing O +function O +with O +the O +smallest O +bead B-CHAR +width E-CHAR +based O +on O +volume S-CONPRI +of O +material S-MATE +, O +the O +line O +width O +, O +layer B-PARA +height E-PARA +, O +and O +printing B-PARA +speed E-PARA +are O +varied O +to O +provide O +wire O +feed S-PARA +speed O +calculated O +by O +MOSTMetalCura O +, O +then O +the O +settings O +are O +used O +to O +print S-MANP +3-D S-CONPRI +models O +. O + + +The O +results O +of O +3-D S-CONPRI +printing O +three O +case B-CONPRI +study E-CONPRI +objects O +of O +increasing O +geometric O +complexity S-CONPRI +using O +the O +process B-CONPRI +methodology E-CONPRI +improvements O +presented O +, O +which O +show O +resolution S-PARA +of O +1 O +mm S-MANP +bead B-CHAR +widths E-CHAR +. O + + +In O +the O +current O +study O +, O +cylindrical S-CONPRI +samples O +of O +AlSi10Mg B-MATE +alloy E-MATE +were O +fabricated S-CONPRI +using O +direct B-MANP +metal I-MANP +laser I-MANP +sintering E-MANP +( O +DMLS S-MANP +) O +technique O +in O +vertical S-CONPRI +and O +horizontal O +directions O +. O + + +The O +microstructure S-CONPRI +of O +the O +samples S-CONPRI +was O +analyzed O +using O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +, O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +and O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +It O +was O +observed O +that O +, O +by O +changing O +the O +building B-PARA +direction E-PARA +from O +vertical S-CONPRI +to O +horizontal O +, O +columnar O +to O +equiaxed O +transition S-CONPRI +( O +CET O +) O +occurred O +in O +the O +alloy S-MATE +. O + + +While O +75 O +% O +of O +the O +grains S-CONPRI +in O +the O +vertical B-CONPRI +sample E-CONPRI +were O +columnar O +, O +by O +changing O +the O +direction O +to O +horizontal O +, O +49 O +% O +of O +the O +grains S-CONPRI +evolved O +with O +columnar O +shape O +and O +51 O +% O +of O +them O +were O +equiaxed O +. O + + +Moreover O +, O +the O +texture S-FEAT +of O +DMLS-AlSi10Mg O +alloy S-MATE +changed O +due O +to O +CET O +. O + + +While O +{ O +001 O +} O +fiber S-MATE +texture O +evolved O +in O +the O +vertical B-CONPRI +sample E-CONPRI +, O +the O +< O +001 O +> O +direction O +tilted O +away O +from O +the O +building B-PARA +direction E-PARA +in O +the O +horizontal O +one O +. O + + +Using O +the O +fundamentals O +of O +solidification S-CONPRI +and O +constitutional O +undercooling O +, O +the O +solidification S-CONPRI +behavior O +of O +AlSi10Mg B-MATE +alloy E-MATE +during O +DMLS S-MANP +process O +was O +modeled O +. O + + +It O +was O +observed O +that O +, O +the O +determinant O +parameter S-CONPRI +in O +CET O +during O +DMLS S-MANP +of O +AlSi10Mg B-MATE +alloy E-MATE +is O +the O +angle O +between O +the O +nominal O +growth O +rate O +and O +< O +hkl O +> O +direction O +of O +the O +growing O +dendrite S-BIOP +, O +which O +is O +controlled O +by O +the O +geometry S-CONPRI +and O +building B-PARA +direction E-PARA +of O +the O +sample S-CONPRI +. O + + +Further O +TEM S-CHAR +studies O +confirmed O +that O +, O +CET O +alters O +the O +shape O +and O +coherency O +of O +Si S-MATE +precipitates S-MATE +and O +dislocation B-PRO +density E-PRO +inside O +the O +α-Al O +dendrites S-BIOP +in O +DMLS-AlSi10Mg O +alloy S-MATE +. O + + +Metal B-MANP +additive I-MANP +manufacturing E-MANP +, O +despite O +of O +offering O +unique O +capabilities O +e.g O +. O + + +unlimited O +design B-CONPRI +freedom E-CONPRI +, O +short O +manufacturing S-MANP +time O +, O +etc. O +, O +suffers O +from O +raft S-MACEQ +of O +intrinsic O +defects S-CONPRI +. O + + +Porosity S-PRO +is O +of O +the O +defects S-CONPRI +which O +can O +badly O +deteriorate O +a O +part O +’ O +s S-MATE +performance S-CONPRI +. O + + +To O +this O +end O +, O +in O +this O +work O +a O +combined O +numerical O +and O +experimental S-CONPRI +approach O +has O +been O +used O +to O +analyze O +the O +formation O +, O +evolution S-CONPRI +and O +disappearance O +of O +keyhole O +and O +keyhole-induced O +porosities S-PRO +along O +with O +their O +initiating O +mechanisms O +, O +during O +single O +track O +L-PBF S-MANP +of O +a O +Ti6Al4V B-MATE +alloy E-MATE +. O + + +In O +this O +respect O +, O +a O +high-fidelity S-CONPRI +numerical O +model S-CONPRI +based O +on O +the O +Finite B-CONPRI +Volume I-CONPRI +Method E-CONPRI +( O +FVM O +) O +and O +accomplished O +in O +the O +commercial O +software S-CONPRI +Flow-3D O +is O +developed O +. O + + +The O +model S-CONPRI +accounts O +for O +the O +major O +physics S-CONPRI +taking O +place O +during O +the O +laser-scanning O +step S-CONPRI +of O +the O +L-PBF S-MANP +process O +. O + + +The O +results O +show O +that O +during O +the O +keyhole O +regime O +, O +the O +heating S-MANP +rises O +dramatically O +compared O +to O +the O +shallow-depth O +melt B-MATE +pool E-MATE +regime O +due O +to O +the O +large O +entrapment O +of O +laser S-ENAT +rays O +in O +the O +keyhole O +cavities O +. O + + +Also O +a O +detailed O +parametric O +study O +is O +performed O +to O +investigate O +the O +effect O +of O +input O +power S-PARA +on O +thermal O +absorptivity O +, O +heat B-CONPRI +transfer E-CONPRI +and O +melt B-MATE +pool E-MATE +anatomy O +. O + + +Furthermore O +, O +an O +X-ray B-CHAR +Computed I-CHAR +Tomography E-CHAR +( O +X-CT O +) O +analysis O +is O +carried O +out O +to O +visualize O +the O +pores S-PRO +formed O +during O +the O +L-PBF S-MANP +process O +. O + + +It O +is O +shown O +, O +that O +the O +predicted S-CONPRI +shape O +, O +size O +and O +depth O +of O +the O +pores S-PRO +are O +in O +very O +good O +agreement O +with O +those O +found O +by O +either O +X-CT O +or O +optical S-CHAR +and O +3D S-CONPRI +digital O +microscopic O +images S-CONPRI +. O + + +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +is O +a O +metal B-MANP +additive I-MANP +manufacturing E-MANP +process O +where O +parts O +are O +fabricated S-CONPRI +from O +metal B-MATE +powder E-MATE +based O +on O +CAD S-ENAT +data O +. O + + +Selection O +of O +the O +best O +process B-CONPRI +parameters E-CONPRI +for O +the O +pulsed O +SLM S-MANP +processes S-CONPRI +is O +a O +fundamental O +problem O +due O +to O +the O +increased O +number O +of O +parameters S-CONPRI +that O +have O +a O +direct O +impact S-CONPRI +on O +the O +melt B-MATE +pool E-MATE +compared O +to O +the O +continuous O +SLM S-MANP +processes S-CONPRI +. O + + +In O +previous O +studies O +, O +volumetric O +energy B-PARA +density E-PARA +or O +scan B-PARA +speed E-PARA +have O +been O +used O +as S-MATE +control O +variables O +for O +applied O +energy O +. O + + +In O +this O +paper O +, O +the O +process B-CONPRI +parameters E-CONPRI +( O +laser B-PARA +power E-PARA +, O +exposure S-CONPRI +time O +, O +point O +distance O +and O +hatching O +distance O +) O +were O +considered O +individually O +, O +in O +addition O +to O +particle B-CONPRI +size I-CONPRI +distribution E-CONPRI +and O +layer B-PARA +thickness E-PARA +. O + + +The O +Taguchi O +experimental B-CONPRI +design E-CONPRI +method O +was O +used O +to O +determine O +and O +optimise O +the O +effect O +of O +the O +selected O +input O +parameters S-CONPRI +. O + + +The O +effect O +of O +exposure S-CONPRI +time O +and O +its O +correlation O +with O +layer B-PARA +thickness E-PARA +and O +particle B-CONPRI +size I-CONPRI +distribution E-CONPRI +was O +then O +investigated O +. O + + +The O +results O +show O +the O +best O +combination O +of O +process B-CONPRI +parameters E-CONPRI +which O +can O +provide O +fully O +or O +near O +fully B-PARA +dense E-PARA +parts O +. O + + +The O +results O +also O +show O +the O +minimum O +exposure S-CONPRI +time O +that O +can O +be S-MATE +used O +with O +different O +powder S-MATE +types O +and O +layer B-PARA +thicknesses E-PARA +. O + + +The O +paper O +concludes O +with O +a O +study O +which O +shows O +the O +part B-CONPRI +location E-CONPRI +has O +a O +significant O +impact S-CONPRI +on O +sample S-CONPRI +quality S-CONPRI +. O + + +X-ray B-CHAR +microtomography E-CHAR +can O +be S-MATE +used O +to O +characterise O +objects O +undergoing O +fabrication S-MANP +by O +additive B-MANP +manufacturing E-MANP +. O + + +During O +the O +layer-by-layer S-CONPRI +building B-CHAR +process E-CHAR +, O +it O +can O +provide O +key O +information O +about O +geometry S-CONPRI +, O +roughness S-PRO +and O +it O +can O +even O +reveal O +typical O +defects S-CONPRI +such O +as S-MATE +lack-of-fusion O +porosity S-PRO +, O +gas S-CONPRI +pores O +or O +cracks O +. O + + +In O +the O +present O +work O +, O +we O +describe O +our O +custom-designed O +additive B-MANP +manufacturing E-MANP +chamber O +allowing O +in B-CONPRI +situ E-CONPRI +3D-non-destructive O +characterisation O +to O +be S-MATE +performed O +during O +layer-by-layer S-CONPRI +construction S-APPL +using O +synchrotron S-ENAT +X-ray O +microtomography O +. O + + +Scans O +before O +( O +subsequently O +to O +powder S-MATE +deposition S-CONPRI +) O +and O +after O +local O +laser S-ENAT +melting O +are O +acquired O +for O +every O +layer S-PARA +. O + + +Among O +the O +most O +popular O +additive B-MANP +manufacturing I-MANP +processes E-MANP +for O +metals S-MATE +, O +Powder B-MANP +bed I-MANP +fusion E-MANP +technology O +involves O +a O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +manufacturing O +approach O +utilizing O +a O +high O +power S-PARA +source O +, O +such O +as S-MATE +a O +laser S-ENAT +or O +an O +electron B-CONPRI +beam E-CONPRI +, O +interacting O +with O +the O +metal B-MATE +powder E-MATE +on O +selected O +surfaces S-CONPRI +. O + + +Beam-powder O +interaction O +brings O +up O +a O +handful O +of O +phenomena O +affecting O +the O +quality S-CONPRI +of O +the O +final O +part O +in O +its O +volume S-CONPRI +and O +surface S-CONPRI +. O + + +In O +this O +study O +, O +different O +surface S-CONPRI +features O +generated O +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +of O +an O +Al-Si7-Mg O +alloy S-MATE +are O +investigated O +and O +interpreted O +based O +on O +their O +morphology S-CONPRI +, O +microstructure S-CONPRI +and O +hardness S-PRO +to O +improve O +the O +general O +understanding O +of O +defect S-CONPRI +genesis O +. O + + +Ballings O +, O +spatter S-CHAR +particles S-CONPRI +and O +partially O +melted S-CONPRI +metal O +powders S-MATE +are O +distinguished O +by O +their O +morphology S-CONPRI +, O +size O +and O +microstructure S-CONPRI +. O + + +It O +is O +shown O +that O +these O +differences O +arise O +from O +different O +cooling B-PARA +rates E-PARA +during O +their O +generation O +. O + + +Ballings O +share O +the O +same O +microstructure S-CONPRI +with O +the O +bulk O +material S-MATE +both O +experiencing O +cooling S-MANP +in O +conduction O +mode O +. O + + +Spatters O +and O +partially O +melted S-CONPRI +powders O +show O +coarser O +microstructure S-CONPRI +driven O +by O +solidification S-CONPRI +mainly O +ruled O +by O +convection O +and O +radiation S-MANP +during O +their O +flight O +in O +the O +inert O +atmosphere O +of O +the O +process S-CONPRI +chamber O +. O + + +Long O +production S-MANP +times O +, O +the O +associated O +high O +costs O +of O +the O +products O +and O +product O +size O +limitations O +belong O +among O +current O +issues O +of O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +technology S-CONPRI +. O + + +Hybrid O +products O +containing O +small O +and O +complex-shaped S-CONPRI +parts O +deposited O +by O +SLM S-MANP +on O +the O +forged O +, O +rolled O +or O +hot O +stamped O +semi-products O +could O +offer O +a O +practical O +solution S-CONPRI +to O +these O +limitations O +. O + + +Cylindrical S-CONPRI +hybrid O +parts O +were O +additively B-MANP +manufactured E-MANP +by O +depositing O +18Ni300 O +maraging B-MATE +steel E-MATE +on O +the O +cylindrical S-CONPRI +semi-products O +of O +CMnAlNb O +low-alloy O +advanced O +high O +strength S-PRO +steel S-MATE +( O +AHSS O +) O +. O + + +The O +AHSS O +was O +used O +either O +in O +forged O +and O +air O +cooled O +condition O +or O +after O +heat B-MANP +treatments E-MANP +typically O +used O +for O +inducing O +the O +TRIP O +( O +transformation O +induced O +plasticity S-PRO +) O +effect O +. O + + +Various O +post-build O +heat B-MANP +treatments E-MANP +of O +the O +hybrid O +parts O +were O +performed O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +hybrid O +parts O +were O +determined O +by O +hardness S-PRO +measurement O +across O +the O +interface S-CONPRI +and O +by O +a O +tensile B-CHAR +test E-CHAR +of O +the O +dissimilar O +joints O +. O + + +All O +tensile S-PRO +samples S-CONPRI +fractured O +in O +the O +high-strength O +steel S-MATE +side O +, O +several O +millimetres O +from O +the O +interface S-CONPRI +. O + + +Microstructure S-CONPRI +analysis O +of O +both O +materials S-CONPRI +and O +the O +interface S-CONPRI +region O +was O +carried O +out O +using O +light O +and O +scanning B-MACEQ +electron I-MACEQ +microscopes E-MACEQ +. O + + +The O +hybrid O +parts O +had O +the O +ultimate B-PRO +tensile I-PRO +strengths E-PRO +of O +840−940 O +MPa S-CONPRI +, O +with O +total O +elongations O +of O +12–19 O +% O +. O + + +The O +best O +combination O +of O +tensile B-PRO +strength E-PRO +and O +elongation S-PRO +was O +obtained O +with O +two-step O +heat B-MANP +treatment E-MANP +of O +the O +TRIP B-MATE +steel E-MATE +prior O +to O +additive B-MANP +manufacturing E-MANP +with O +no O +post-build O +heat B-MANP +treatment E-MANP +of O +the O +hybrid O +part O +. O + + +In O +this O +paper O +, O +the O +potential O +of O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +of O +stainless B-MATE +steel E-MATE +CL S-CHAR +20ES O +powder S-MATE +was O +investigated O +with O +a O +focus O +on O +controlled O +fabrication S-MANP +of O +porous S-PRO +structures O +with O +strongly O +reduced O +pore B-PARA +sizes E-PARA +, O +i.e O +. O + + +feature B-PARA +sizes E-PARA +significantly O +below O +conventional O +minimum O +SLM S-MANP +feature B-PARA +sizes E-PARA +. O + + +By O +controlling O +laser B-ENAT +scan E-ENAT +properties O +interacting O +with O +the O +powder B-MACEQ +bed E-MACEQ +directly O +, O +porous S-PRO +structures O +can O +be S-MATE +generated O +by O +selectively O +sintering S-MANP +powder B-MATE +particles E-MATE +. O + + +A O +wide O +range S-PARA +of O +porous S-PRO +samples O +was O +manufactured S-CONPRI +following O +this O +strategy O +, O +aiming O +to O +increase O +porosity S-PRO +while O +keeping O +pore B-PARA +sizes E-PARA +low O +. O + + +The O +effect O +of O +process B-CONPRI +parameters E-CONPRI +, O +including O +laser B-PARA +power E-PARA +and O +focal O +point O +positioning O +, O +was O +evaluated O +for O +a O +fibre B-CONPRI +laser E-CONPRI +operated O +in O +pulsed O +wave O +( O +PW O +) O +emission S-CHAR +mode O +. O + + +The O +first O +part O +of O +this O +study O +focuses O +on O +characterization O +of O +key O +porous S-PRO +structure O +properties S-CONPRI +, O +i.e. O +, O +porosity S-PRO +, O +average S-CONPRI +mass O +density S-PRO +, O +average S-CONPRI +pore O +sizes O +and O +structures O +at O +microscopic O +scales O +. O + + +The O +second O +part O +deals O +with O +the O +influence O +of O +porosity S-PRO +and O +pore B-PARA +sizes E-PARA +on O +thermal O +and O +fluid B-PRO +properties E-PRO +, O +i.e. O +, O +the O +effective B-PARA +thermal I-PARA +conductivity E-PARA +( O +ETC O +) O +and O +wettability S-CONPRI +. O + + +We O +have O +quantified O +the O +directional O +dependence O +( O +build B-PARA +direction E-PARA +plane O +and O +scan O +direction O +plane O +) O +off O +the O +structural O +and O +thermophysical O +properties S-CONPRI +of O +porous S-PRO +structures O +. O + + +For O +a O +range S-PARA +of O +porosities S-PRO +and O +pore B-PARA +sizes E-PARA +, O +we O +have O +observed O +that O +porosity S-PRO +and O +surface B-CHAR +morphology E-CHAR +influence O +the O +thermal B-CONPRI +properties E-CONPRI +and O +contact S-APPL +angle O +of O +droplets S-CONPRI +on O +the O +printed O +surface S-CONPRI +. O + + +Thermal B-PRO +conductivity E-PRO +was O +measured O +and O +the O +associated O +analysis O +was O +compared O +with O +available O +models O +and O +correlations O +in O +literature O +. O + + +The O +average S-CONPRI +thermal O +conductivity S-PRO +of O +fabricated S-CONPRI +porous O +structures O +was O +determined O +between O +6-14 O +W/m·K O +and O +found O +to O +be S-MATE +a O +function O +of O +porosity S-PRO +. O + + +Furthermore O +, O +the O +capillary O +wicking O +performance S-CONPRI +of O +additively B-MANP +manufactured E-MANP +stainless O +steel S-MATE +porous S-PRO +structures O +having O +an O +average S-CONPRI +pore O +radius O +from O +9 O +to O +23 O +µm O +was O +determined O +. O + + +Typically O +, O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +are O +limited O +to O +a O +single O +material S-MATE +per O +build S-PARA +while O +many O +products O +benefit O +from O +the O +integration O +of O +multiple O +materials S-CONPRI +with O +varied O +properties S-CONPRI +. O + + +To O +achieve O +the O +benefits O +of O +multiple O +materials S-CONPRI +, O +the O +geometric B-CONPRI +freedom E-CONPRI +of O +AM S-MANP +could O +be S-MATE +used O +to O +build S-PARA +internal O +structures O +that O +emulate O +a O +range S-PARA +of O +different O +material B-CONPRI +properties E-CONPRI +such O +as S-MATE +stiffness O +, O +Poisson O +’ O +s S-MATE +ratio O +, O +and O +elastic S-PRO +limit O +using O +only O +a O +single O +build B-MATE +material E-MATE +. O + + +This O +paper O +examines O +a O +wide O +range S-PARA +of O +properties S-CONPRI +that O +can O +be S-MATE +achieved O +using O +diamond S-MATE +lattice O +structures O +manufactured S-CONPRI +from O +Nylon S-MATE +12 O +with O +a O +commercial O +laser B-MANP +sintering E-MANP +( O +LS O +) O +process S-CONPRI +. O + + +Stiffness S-PRO +and O +energy B-CHAR +absorption E-CHAR +were O +measured O +for O +all O +lattices S-CONPRI +and O +the O +stiffness S-PRO +response O +was O +compared O +to O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +. O + + +Simulation S-ENAT +shows O +agreement O +with O +experimental S-CONPRI +results O +over O +a O +stiffness S-PRO +range S-PARA +of O +four O +orders O +of O +magnitude S-PARA +once O +a O +correction O +factor O +is O +applied O +. O + + +Experimental S-CONPRI +results O +also O +show O +a O +wide O +range S-PARA +of O +energy B-CHAR +absorption E-CHAR +for O +diamond S-MATE +lattice O +structures O +and O +a O +significant O +increase O +in O +the O +effective O +elastic S-PRO +limit O +of O +the O +build B-MATE +material E-MATE +, O +which O +compensates O +for O +the O +low O +ductility S-PRO +of O +many O +AM B-MATE +materials E-MATE +. O + + +The O +elastic S-PRO +limit O +decreases O +with O +an O +increasing O +t/L O +ratio O +meanwhile O +the O +degradation S-CONPRI +under O +cyclic B-PRO +loading E-PRO +is O +relatively O +independent O +of O +the O +t/L O +ratio O +. O + + +Extrapolating O +this O +data S-CONPRI +into O +lattice B-FEAT +structures E-FEAT +made O +from O +metal S-MATE +, O +these O +same O +structures O +could O +mimic S-MACEQ +a O +wide O +range S-PARA +of O +“ O +fully O +” O +dense B-FEAT +and I-FEAT +porous E-FEAT +materials O +with O +just O +the O +use O +of O +a O +single O +material S-MATE +. O + + +Since O +the O +diamond S-MATE +lattice O +is O +a O +cellular B-FEAT +structure E-FEAT +, O +the O +voids S-CONPRI +can O +also O +be S-MATE +filled O +with O +other O +materials S-CONPRI +or O +structures O +to O +add O +secondary O +control O +of O +embedded O +functions O +such O +as S-MATE +energy O +storage O +and O +sensing S-APPL +. O + + +Laser S-ENAT +wire O +deposits O +using O +Alloy S-MATE +625 O +modified O +with O +0.4 O +wt O +% O +B S-MATE +were O +manufactured S-CONPRI +on O +stainless B-MATE +steel E-MATE +304 O +substrates O +. O + + +A O +layer S-PARA +boundary S-FEAT +with O +a O +thickness O +of O +around O +250 O +μm O +was O +formed O +between O +the O +layer S-PARA +cores S-MACEQ +during O +deposition S-CONPRI +. O + + +Results O +show O +that O +the O +solidification S-CONPRI +features O +in O +the O +layer S-PARA +boundary S-FEAT +were O +coarser O +than O +the O +layer S-PARA +core S-MACEQ +due O +to O +the O +recalescence O +mechanism S-CONPRI +. O + + +Continuous O +eutectics O +were O +observed O +segregating O +the O +inter-dendritic O +regions O +in O +both O +the O +layer S-PARA +boundary S-FEAT +and O +the O +layer S-PARA +core S-MACEQ +. O + + +The O +eutectics O +consisted O +of O +mainly O +Laves B-CONPRI +phase E-CONPRI +with O +a O +small O +amount O +of O +NbC O +precipitates S-MATE +. O + + +Solidification S-CONPRI +front O +velocities O +( O +SFV O +) O +were O +calculated O +from O +the O +Kurz-Giovanola-Trivedi O +( O +KGT O +) O +model S-CONPRI +. O + + +Results O +showed O +that O +they O +developed O +in O +the O +layer S-PARA +boundary S-FEAT +and O +in O +the O +layer S-PARA +core S-MACEQ +at O +0.06 O +m/s O +and O +0.1 O +m/s O +respectively O +. O + + +Electron O +backscattered O +diffraction S-CHAR +( O +EBSD S-CHAR +) O +mapping O +revealed O +that O +small O +equiaxed B-CONPRI +grains E-CONPRI +nucleated O +in O +the O +layer S-PARA +boundary S-FEAT +, O +while O +large O +columnar B-PRO +grains E-PRO +were O +prevalent O +in O +the O +layer S-PARA +core S-MACEQ +. O + + +The O +columnar O +to O +equiaxed O +transition S-CONPRI +( O +CET O +) O +model S-CONPRI +developed O +by O +Hunts O +was O +considered O +and O +the O +results O +were O +in O +good O +agreement O +with O +the O +observed O +grain S-CONPRI +morphologies O +. O + + +Metallization S-MANP +has O +been O +widely O +used O +to O +enhance O +the O +aesthetics O +and O +performance S-CONPRI +of O +injection O +molded O +plastic S-MATE +parts O +, O +but O +the O +techniques O +have O +not O +been O +widely O +extended O +to O +3D B-APPL +printed I-APPL +parts E-APPL +due O +to O +intrinsic O +differences O +in O +surface S-CONPRI +chemistry S-CONPRI +and O +morphology S-CONPRI +. O + + +Here O +, O +we O +investigate O +direct O +metallization S-MANP +of O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +3D B-MANP +printed E-MANP +thermoplastic O +parts O +using O +low O +cost O +environmentally O +benign O +surface B-MANP +preparations E-MANP +and O +physical B-MANP +vapor I-MANP +deposition E-MANP +( O +PVD S-MANP +) O +to O +avoid O +the O +use O +of O +preparation O +with O +toxic O +chromic O +acid O +. O + + +Fourier B-ENAT +transform I-ENAT +infrared E-ENAT +( O +FTIR S-CHAR +) O +spectra O +are O +gathered O +for O +each O +surface B-MANP +preparation E-MANP +method O +prior O +to O +metallization S-MANP +. O + + +The O +metallized O +parts O +are O +then O +characterized O +for O +thin O +film O +adhesion S-PRO +, O +electrical B-CHAR +resistivity E-CHAR +, O +and O +optical S-CHAR +reflectivity O +. O + + +Additionally O +, O +each O +part O +is O +imaged O +using O +a O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +post-metallization O +. O + + +The O +results O +show O +that O +surface B-MANP +preparation E-MANP +with O +solvent O +results O +in O +a O +smooth O +and O +aesthetically O +pleasing O +surface S-CONPRI +, O +but O +metallic S-MATE +film O +adhesion S-PRO +is O +poor O +. O + + +Conversely O +, O +when O +2000 O +grit O +sandpaper S-MATE +is O +used O +to O +mechanically O +prepare O +the O +surfaces S-CONPRI +, O +the O +resulting O +films O +have O +poor O +electrical B-PRO +conductivity E-PRO +and O +optical S-CHAR +reflectance O +, O +but O +excellent O +adhesion S-PRO +. O + + +Atmospheric O +plasma S-CONPRI +treatment O +of O +the O +parts O +results O +in O +the O +highest O +overall O +performance S-CONPRI +, O +with O +superior O +adhesion S-PRO +strength O +and O +optical S-CHAR +reflectivity O +and O +low O +electrical B-CHAR +resistivity E-CHAR +. O + + +Electron B-CHAR +microscopy E-CHAR +and O +FTIR S-CHAR +reveal O +that O +the O +high O +adhesion S-PRO +resulting O +from O +atmospheric O +plasma S-CONPRI +is O +caused O +by O +modification O +surface B-CHAR +morphology E-CHAR +, O +but O +not O +surface S-CONPRI +chemical O +termination O +. O + + +The O +results O +indicate O +that O +direct O +metallization S-MANP +of O +3D B-MANP +printed E-MANP +ABS O +is O +a O +viable O +method O +for O +creating O +metallized O +parts O +with O +high O +performance S-CONPRI +and O +an O +aesthetically O +pleasing O +appearance O +and O +that O +the O +use O +of O +chromic O +acid O +in O +surface B-MANP +preparation E-MANP +is O +not O +necessary O +. O + + +The O +development O +and O +growth O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +have O +made O +the O +optimization S-CONPRI +of O +surface B-PARA +quality E-PARA +and O +properties S-CONPRI +of O +AM S-MANP +components O +critical O +. O + + +Laser S-ENAT +polishing O +represents O +a O +recent O +and O +novel O +application O +of O +laser S-ENAT +surface O +irradiation S-MANP +that O +can O +be S-MATE +used O +for O +precise O +, O +post-process S-CONPRI +smoothing O +of O +the O +rough O +surfaces S-CONPRI +commonly O +encountered O +on O +AM B-MACEQ +parts E-MACEQ +. O + + +Austenitic B-MATE +stainless I-MATE +steels E-MATE +are O +an O +important O +class O +of O +alloys S-MATE +frequently O +used O +in O +biomedical B-APPL +applications E-APPL +due O +to O +their O +corrosion B-CONPRI +resistance E-CONPRI +. O + + +Due O +to O +this O +, O +corrosion B-CONPRI +resistance E-CONPRI +advancements O +and O +improved O +bio-response O +to O +stainless B-MATE +steels E-MATE +are O +long-term O +active O +areas S-PARA +of O +research S-CONPRI +. O + + +In O +this O +study O +, O +the O +influence O +of O +laser S-ENAT +polishing O +on O +surface B-MANP +modification E-MANP +and O +corrosion B-PRO +behavior E-PRO +of O +additively B-MANP +manufactured E-MANP +316L O +has O +been O +investigated O +. O + + +Laser S-ENAT +scanning O +speed O +and O +number O +of O +passes O +were O +varied O +to O +evaluate O +their O +effect O +on O +the O +surface B-PARA +quality E-PARA +and O +corrosion B-CONPRI +resistance E-CONPRI +of O +the O +experimental S-CONPRI +samples O +. O + + +The O +results O +indicated O +that O +laser S-ENAT +polishing O +could O +enable O +reductions O +in O +surface B-PRO +roughness E-PRO +of O +over O +92 O +% O +( O +from O +4.75 O +μm O +to O +0.49 O +μm O +Sa O +) O +while O +also O +incorporating O +partially O +melted S-CONPRI +powders O +originally O +on O +the O +as-printed O +surface S-CONPRI +layer S-PARA +. O + + +The O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +results O +indicated O +that O +there O +was O +no O +considerable O +phase S-CONPRI +change O +after O +laser S-ENAT +polishing O +. O + + +Laser S-ENAT +polishing O +was O +observed O +to O +refine O +the O +columnar O +structure S-CONPRI +within O +the O +as-printed O +sample S-CONPRI +into O +a O +fine O +cellular B-FEAT +structure E-FEAT +. O + + +Additionally O +, O +the O +sub-surface O +microhardness S-CONPRI +of O +the O +laser S-ENAT +remelted O +layer S-PARA +increased O +from O +1.82 O +GPa S-PRO +to O +2.89 O +GPa S-PRO +. O + + +Moreover O +, O +the O +laser S-ENAT +polished O +samples S-CONPRI +exhibited O +greater O +corrosion B-CONPRI +resistance E-CONPRI +, O +which O +was O +believed O +to O +be S-MATE +due O +to O +a O +combination O +of O +a O +decrease O +in O +surface B-PRO +roughness E-PRO +and O +grain B-CHAR +refinement E-CHAR +. O + + +These O +results O +show O +that O +laser S-ENAT +polishing O +can O +improve O +the O +corrosion B-CONPRI +resistance E-CONPRI +of O +additive B-MANP +manufactured E-MANP +stainless O +steel S-MATE +while O +also O +decreasing O +surface B-PRO +roughness E-PRO +and O +increasing O +surface S-CONPRI +microhardness S-CONPRI +. O + + +Due O +to O +those O +enhancements O +, O +it O +represents O +a O +suitable O +multifaceted O +process S-CONPRI +for O +finishing S-MANP +additive B-APPL +manufactured I-APPL +parts E-APPL +. O + + +When O +it O +is O +difficult O +to O +deposit O +a O +material S-MATE +A O +on O +a O +material S-MATE +B S-MATE +, O +it O +is O +possible O +to O +create O +a O +Functionally B-MATE +Graded I-MATE +Material E-MATE +( O +FGM S-MANP +) O +using O +a O +buffer S-CONPRI +material O +between O +them O +to O +avoid O +the O +appearance O +of O +defects S-CONPRI +. O + + +The O +literature O +shows O +that O +it O +is O +very O +difficult O +, O +nay O +impossible O +, O +to O +have O +an O +efficient O +metallurgical B-CONPRI +bond E-CONPRI +between O +Ti6Al4V S-MATE +and O +Inconel-Mo O +alloys S-MATE +without O +cracks O +, O +porosities S-PRO +or O +delamination S-CONPRI +. O + + +Moreover O +, O +the O +understanding O +of O +the O +phenomena O +taking O +place O +at O +the O +interface S-CONPRI +allows O +the O +preservation O +of O +the O +structural B-PRO +integrity E-PRO +of O +a O +FGM S-MANP +made O +by O +additive B-MANP +manufacturing E-MANP +. O + + +CLAD® O +powder-based O +directed B-MANP +energy I-MANP +deposition E-MANP +allows O +the O +building B-CHAR +of I-CHAR +parts E-CHAR +containing O +FGM S-MANP +and/or O +buffer S-CONPRI +materials O +directly O +during O +the O +process S-CONPRI +. O + + +In O +this O +paper O +, O +the O +first O +interface S-CONPRI +100 O +Ti6Al4V S-MATE +/ O +25 O +Ti6Al4V S-MATE +– O +75 O +Mo S-MATE +( O +in O +wt O +% O +) O +is O +smooth O +, O +suggesting O +that O +there O +has O +been O +diffusion S-CONPRI +between O +both O +alloys S-MATE +. O + + +The O +second O +one O +, O +25 O +Ti6Al4V S-MATE +– O +75 O +Mo S-MATE +/ O +30 O +Inconel B-MATE +718 E-MATE +– O +70 O +Mo S-MATE +, O +contains O +numerous O +exotic O +structures O +between O +both O +alloys S-MATE +. O + + +Thus O +, O +EDS S-CHAR +, O +TKD O +and O +X-ray S-CHAR +crystallography S-MANP +were O +performed O +right O +on O +this O +interface S-CONPRI +and O +revealed O +three O +main O +structures O +: O +a O +hexagonal S-FEAT +matrix O +, O +a O +cubic B-FEAT +structure E-FEAT +and O +an O +ordered O +hexagonal S-FEAT +one O +. O + + +The O +hexagonal S-FEAT +matrix O +appears O +to O +consist O +of O +Ni3Ti O +and O +the O +ordered O +hexagonal S-FEAT +one O +of O +NiMo O +. O + + +Ultrasonic B-MANP +welding E-MANP +is O +a O +solid-state S-CONPRI +joining S-MANP +process O +which O +uses O +ultrasonic B-PARA +vibration E-PARA +to O +join O +materials S-CONPRI +at O +relatively O +low O +temperatures S-PARA +. O + + +Ultrasonic O +powder S-MATE +consolidation S-CONPRI +is O +a O +derivative O +of O +the O +ultrasonic O +additive S-MATE +process O +which O +consolidates O +powder B-MATE +material E-MATE +into O +a O +dense O +solid O +block O +without O +melting S-MANP +. O + + +During O +ultrasonic O +powder S-MATE +consolidation S-CONPRI +process O +, O +metal B-MATE +powder E-MATE +under O +a O +compressive O +load O +is O +subjected O +to O +transverse O +ultrasonic B-PARA +vibrations E-PARA +resulting O +in O +a O +fully-dense O +consolidated O +product O +. O + + +While O +ultrasonic O +powder S-MATE +consolidation S-CONPRI +process O +is O +employed O +in O +a O +wide O +variety O +of O +manufacturing B-MANP +processes E-MANP +, O +bonding B-CHAR +mechanism E-CHAR +of O +powder B-MATE +particles E-MATE +during O +the O +consolidation S-CONPRI +process O +is O +not O +clearly O +understood O +. O + + +This O +study O +uses O +a O +coupled O +thermo-mechanical S-CONPRI +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +technique O +to O +understand O +the O +underlying O +bonding B-CHAR +mechanism E-CHAR +involved O +in O +ultrasonic O +powder S-MATE +consolidation S-CONPRI +process O +. O + + +The O +study O +also O +investigates S-CONPRI +the O +effect O +of O +critical O +process B-CONPRI +parameters E-CONPRI +including O +vibrational O +amplitude O +and O +base O +temperature S-PARA +on O +the O +stress S-PRO +, O +strain S-PRO +, O +and O +particle S-CONPRI +temperature O +distribution S-CONPRI +during O +this O +process S-CONPRI +. O + + +Based O +on O +the O +results O +of O +the O +simulation S-ENAT +, O +a O +possible O +theory O +on O +the O +bonding B-CHAR +mechanism E-CHAR +involved O +in O +ultrasonic O +powder S-MATE +consolidation S-CONPRI +process O +is O +proposed O +. O + + +The O +outcomes O +of O +this O +study O +can O +be S-MATE +used O +to O +further O +the O +industrial S-APPL +applications O +of O +ultrasonic O +powder S-MATE +consolidation S-CONPRI +process O +as S-MATE +well O +as S-MATE +other O +ultrasonic B-MANP +welding E-MANP +based O +processes S-CONPRI +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +has O +significantly O +increased O +the O +design B-CONPRI +freedom E-CONPRI +available O +for O +metal S-MATE +parts O +and O +provides O +significant O +flexibility S-PRO +within O +each O +build S-PARA +to O +produce O +multiple O +components S-MACEQ +of O +varying O +size O +and O +shape O +. O + + +In O +order O +to O +obtain O +the O +highest O +build S-PARA +efficiency O +, O +it O +is O +ideal O +to O +print S-MANP +multiple O +parts O +together O +spanning O +the O +entire O +plate O +with O +as S-MATE +little O +spacing O +as S-MATE +possible O +between O +the O +parts O +. O + + +Work O +has O +been O +performed O +to O +characterize O +the O +variance O +of O +materials S-CONPRI +properties O +as S-MATE +a O +function O +of O +location O +within O +the O +build B-PARA +volume E-PARA +as S-MATE +well O +as S-MATE +component O +density S-PRO +on O +the O +build B-MACEQ +plate E-MACEQ +. O + + +This O +work O +utilizes O +mechanical S-APPL +, O +chemical O +, O +and O +microstructural B-CHAR +analysis E-CHAR +techniques O +to O +expand O +on O +previous O +work O +by O +statistically O +evaluating O +the O +impact S-CONPRI +of O +build S-PARA +location O +, O +and O +nearest O +neighbor O +proximity O +on O +tensile S-PRO +performance S-CONPRI +in O +Electron B-CONPRI +Beam E-CONPRI +Melted O +( O +EBM S-MANP +) O +Ti-6Al-4 O +V. O +Mechanical S-APPL +results O +are O +then O +correlated S-CONPRI +to O +structural O +phenomenon O +and O +the O +effectiveness S-CONPRI +of O +various O +strengthening B-CONPRI +mechanisms E-CONPRI +are O +determined O +. O + + +Results O +show O +that O +properties S-CONPRI +span O +a O +small O +range S-PARA +regardless O +of O +build S-PARA +design O +and O +that O +interstitial O +strengthening S-MANP +and O +lath O +spacing O +are O +the O +driving O +factors O +for O +mechanical B-PRO +strength E-PRO +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +are O +used O +in O +three O +dimensional O +( O +3D S-CONPRI +) O +printing O +of O +parts O +using O +thermo-plastic O +extruders O +, O +or O +laser S-ENAT +and O +electron B-CONPRI +beam E-CONPRI +based O +metal B-CONPRI +deposition E-CONPRI +methods O +. O + + +This O +paper O +presents O +an O +integrated O +methodology S-CONPRI +for O +planning S-MANP +of O +tangential O +path O +velocity O +, O +material S-MATE +deposition B-PARA +rate E-PARA +and O +temperature S-PARA +control O +of O +the O +extruded S-MANP +material O +which O +is O +deposited O +along O +curved O +paths O +. O + + +The O +tangential O +velocity O +along O +the O +path O +is O +smoothed O +and O +optimized O +while O +respecting O +the O +heater O +’ O +s S-MATE +and O +extruder S-MACEQ +’ O +s S-MATE +capacities O +, O +as S-MATE +well O +as S-MATE +the O +feed S-PARA +drives O +’ O +jerk O +, O +acceleration O +and O +velocity O +limits S-CONPRI +. O + + +The O +extrusion B-PARA +rate E-PARA +is O +controlled O +proportional O +to O +the O +tangential O +path O +velocity O +while O +keeping O +the O +temperature S-PARA +of O +the O +deposited O +thermo-plastic O +material S-MATE +at O +the O +desired O +temperature S-PARA +by O +adaptively O +controlling O +current O +supply O +to O +the O +heater O +. O + + +The O +experimentally O +proven O +algorithm S-CONPRI +leads O +to O +more O +uniform O +material S-MATE +deposition S-CONPRI +at O +sharp O +curvatures O +and O +resulting O +improved O +dimensional B-CHAR +accuracy E-CHAR +of O +printed O +parts O +. O + + +The O +proposed O +methodology S-CONPRI +can O +be S-MATE +extended O +to O +laser S-ENAT +and O +electron B-CONPRI +beam E-CONPRI +based O +metal S-MATE +printing O +applications O +. O + + +Directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +processes S-CONPRI +frequently O +rely O +on O +metallic B-MATE +powder E-MATE +and O +wire B-MATE +feedstock I-MATE +materials E-MATE +. O + + +Several O +grades O +of O +metallic S-MATE +strips O +are O +, O +however O +, O +commercially O +available O +but O +not O +yet O +largely O +utilized O +in O +DED S-MANP +. O + + +This O +paper O +introduces O +a O +newly O +developed O +laser S-ENAT +strip O +cladding S-MANP +process O +, O +which O +can O +be S-MATE +used O +for O +surfacing O +, O +repair O +and O +additive B-MANP +manufacturing E-MANP +. O + + +Cladding S-MANP +tests O +consisted O +of O +single-layer O +single- O +and O +multi-bead O +tests O +on O +planar O +and O +round O +bar O +type O +base O +materials S-CONPRI +using O +a O +30 O +mm S-MANP +wide O +solid O +Alloy S-MATE +625 O +strip O +. O + + +The O +results O +showed O +that O +with O +8 O +kW O +laser B-PARA +power E-PARA +34 O +mm S-MANP +wide O +and O +˜2 O +mm S-MANP +thick O +single O +beads S-CHAR +on O +steel S-MATE +could O +be S-MATE +produced O +with O +low O +dilution O +and O +fusion S-CONPRI +bond O +with O +high O +deposition S-CONPRI +( O +8 O +kg/h O +) O +rates O +. O + + +Corrosion S-CONPRI +performance O +of O +clad O +deposit O +was O +influenced O +by O +the O +inhomogeneous O +distribution S-CONPRI +of O +intermixed O +iron S-MATE +from O +the O +base O +material S-MATE +on O +a O +test O +surface S-CONPRI +. O + + +In O +addition O +to O +high O +productivity S-CONPRI +, O +the O +developed O +process S-CONPRI +takes O +advantage O +of O +large O +build B-PARA +volume E-PARA +( O +> O +1 O +m3 O +) O +and O +full O +material B-CHAR +utilization E-CHAR +as S-MATE +well O +as S-MATE +clean O +process S-CONPRI +conditions O +. O + + +Additive B-MANP +manufacturing E-MANP +has O +the O +potential O +to O +revolutionize O +the O +production S-MANP +of O +metallic S-MATE +components S-MACEQ +as S-MATE +it O +yields O +near B-MANP +net I-MANP +shape E-MANP +parts O +with O +complex B-CONPRI +geometries E-CONPRI +and O +minimizes O +waste O +. O + + +At O +the O +present O +day O +, O +additively B-MANP +manufactured E-MANP +components O +face S-CONPRI +qualification O +and O +certification O +challenges O +due O +to O +the O +difficulty O +in O +controlling O +defects S-CONPRI +. O + + +This O +has O +driven O +a O +significant O +research S-CONPRI +effort O +aimed O +at O +better O +understanding O +and O +improving O +processing O +controls O +– O +yielding O +a O +plethora O +of O +in-situ S-CONPRI +measurements O +aimed O +at O +correlating O +defects S-CONPRI +with O +material S-MATE +quality O +metrics O +of O +interest O +. O + + +In O +this O +work O +, O +we O +develop O +machine-learning O +methods O +to O +learn O +correlations O +between O +thermal O +history O +and O +subsurface O +porosity S-PRO +for O +a O +variety O +of O +print S-MANP +conditions O +in O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +. O + + +Un-normalized O +surface S-CONPRI +temperatures O +( O +in O +the O +form O +of O +black-body O +radiances O +) O +are O +obtained O +using O +high-speed O +infrared S-CONPRI +imaging S-APPL +and O +porosity S-PRO +formation O +is O +observed O +in O +the O +sample S-CONPRI +cross-section O +through O +synchrotron S-ENAT +x-ray O +imaging S-APPL +. O + + +To O +demonstrate O +the O +predictive O +power S-PARA +of O +these O +features O +, O +we O +present O +four O +statistical O +machine-learning O +models O +that O +correlate O +temperature S-PARA +histories O +to O +subsurface O +porosity S-PRO +formation O +in O +laser S-ENAT +fused S-CONPRI +Ti-6Al-4V O +powder S-MATE +. O + + +The O +aircraft O +engine O +industry S-APPL +manufactures O +many O +ring-like O +metal S-MATE +parts O +of O +large O +diameter S-CONPRI +but O +small O +cross-sectional O +area S-PARA +. O + + +Designers O +of O +these O +parts O +require O +increasingly O +complex B-CONPRI +geometries E-CONPRI +for O +improved O +aerodynamic O +efficiency O +and O +cooling S-MANP +while O +manufacturers O +of O +these O +parts O +require O +larger O +and O +faster O +equipment S-MACEQ +for O +high O +productivity S-CONPRI +and O +low O +cost O +. O + + +The O +combination O +of O +these O +industrial S-APPL +requirements O +inspired O +the O +development O +of O +a O +new O +Direct B-MANP +Metal I-MANP +Laser I-MANP +Melting E-MANP +( O +DMLM S-MANP +) O +architecture S-APPL +, O +reported O +here O +, O +which O +incorporates O +a O +rotating O +powder B-MACEQ +bed E-MACEQ +. O + + +The O +system O +coordinates S-PARA +the O +rotational O +motion O +of O +the O +powder B-MACEQ +bed E-MACEQ +with O +an O +ascending O +laser S-ENAT +scanner O +and O +recoater O +to O +build S-PARA +parts O +in O +a O +helical O +fashion S-CONPRI +. O + + +A O +single-point O +powder S-MATE +feeder S-MACEQ +delivers O +metal B-MATE +powder E-MATE +near O +the O +inner O +radius O +of O +an O +annular O +build B-PARA +volume E-PARA +, O +and O +a O +recoater O +spreads O +the O +powder S-MATE +to O +the O +outer O +radius O +in O +a O +“ O +snow O +plow O +” O +fashion S-CONPRI +. O + + +Encoder S-MACEQ +feedback O +from O +both O +the O +rotational O +stage O +and O +the O +galvanometers O +assures O +accuracy S-CHAR +of O +the O +laser B-ENAT +scan E-ENAT +path O +. O + + +Build B-CHAR +rates E-CHAR +were O +shown O +to O +triple O +conventional O +DMLM S-MANP +systems O +while O +powder S-MATE +requirements O +were O +decreased O +by O +more O +than O +4x O +. O + + +The O +production S-MANP +of O +magnesium B-MATE +alloy E-MATE +WE43 O +was O +achieved O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +. O + + +The O +alloy S-MATE +was O +investigated O +after O +SLM S-MANP +, O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +, O +and O +solutionising O +heat B-MANP +treatment E-MANP +. O + + +The O +microstructure S-CONPRI +and O +corrosion S-CONPRI +behaviour O +of O +the O +specimens O +were O +carefully O +characterised O +, O +whilst O +assessed O +and O +contrast O +relative O +to O +the O +conventionally O +cast S-MANP +alloy S-MATE +counterpart O +. O + + +The O +SLM S-MANP +prepared O +specimens O +possess O +a O +unique O +microstructure S-CONPRI +comprising O +fine O +grains S-CONPRI +growing O +with O +a O +strong O +[ O +0001 O +] O +texture S-FEAT +along O +the O +building B-PARA +direction E-PARA +with O +a O +low O +fraction S-CONPRI +of O +process-induced O +and O +metallurgical S-APPL +defects S-CONPRI +, O +reaching O +< O +0.1 O +% O +, O +after O +optimising O +the O +SLM S-MANP +parameters S-CONPRI +and O +the O +HIP S-MANP +treatment O +. O + + +Electrochemical B-CHAR +measurements E-CHAR +demonstrated O +that O +the O +SLM S-MANP +prepared O +WE43 O +is O +cathodically O +more O +active O +as S-MATE +compared O +with O +its O +cast S-MANP +counterpart O +. O + + +It O +is O +proposed O +that O +this O +behaviour O +is O +due O +to O +a O +high O +density S-PRO +of O +zirconium-rich O +oxide S-MATE +particles O +uniformly O +distributed O +throughout O +the O +alloy S-MATE +microstructure O +as S-MATE +well O +as S-MATE +the O +alterations O +in O +the O +chemical B-CONPRI +composition E-CONPRI +of O +the O +solid-solution O +matrix O +originating O +from O +the O +high O +cooling B-PARA +rates E-PARA +of O +SLM S-MANP +. O + + +It O +was O +also O +noted O +that O +the O +oxide S-MATE +particles O +are O +mainly O +sourced O +by O +powder S-MATE +. O + + +The O +present O +results O +suggest O +that O +the O +corrosion S-CONPRI +of O +SLM S-MANP +prepared O +Mg B-MATE +alloys E-MATE +could O +be S-MATE +greatly O +improved O +once O +the O +influence O +of O +powder S-MATE +characteristics O +is O +further O +understood O +and O +controlled O +. O + + +A O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +thermomechanical S-CONPRI +coupled O +model S-CONPRI +for O +Laser S-ENAT +Solid O +Forming S-MANP +( O +LSF O +) O +of O +Ti-6Al-4V B-MATE +alloy E-MATE +has O +been O +calibrated S-CONPRI +through O +experiments O +of O +40-layers O +metal B-CONPRI +deposition E-CONPRI +using O +different O +scanning B-CONPRI +strategies E-CONPRI +. O + + +The O +sensitivity B-CONPRI +analysis E-CONPRI +of O +the O +mechanical S-APPL +parameters O +shows O +that O +the O +thermal B-PRO +expansion I-PRO +coefficient E-PRO +as S-MATE +well O +as S-MATE +the O +elastic S-PRO +limit O +of O +Ti-6Al-4V S-MATE +have O +a O +great O +impact S-CONPRI +on O +the O +mechanical S-APPL +behavior O +. O + + +Using O +the O +validated O +model S-CONPRI +and O +optimal O +mechanical S-APPL +parameters O +, O +the O +evolution S-CONPRI +of O +thermo-mechanical S-CONPRI +fields O +in O +LSF O +has O +been O +analyzed O +. O + + +It O +has O +been O +found O +that O +the O +stresses O +and O +distortions O +develop O +in O +two O +stages O +, O +after O +the O +deposition S-CONPRI +of O +the O +first O +layer S-PARA +and O +during O +the O +cooling S-MANP +phase O +after O +the O +manufacturing S-MANP +of O +the O +component S-MACEQ +. O + + +The O +cooling S-MANP +phase O +is O +the O +responsible O +of O +70 O +% O +of O +the O +residual B-PRO +stresses E-PRO +and O +60 O +% O +of O +the O +total O +distortions O +. O + + +The O +analyses O +indicate O +that O +by O +controlling O +the O +initial O +substrate S-MATE +temperature O +( O +pre-heating O +phase S-CONPRI +) O +and O +the O +final O +cooling S-MANP +phase O +it O +is O +possible O +to O +mitigate O +both O +distortion S-CONPRI +and O +residual B-PRO +stresses E-PRO +. O + + +The O +results O +show O +that O +increasing O +the O +pre-heating O +temperature S-PARA +of O +the O +substrate S-MATE +is O +the O +most O +effective O +way O +to O +reduce O +the O +distortions O +and O +residual B-PRO +stresses E-PRO +in O +Additive B-MANP +Manufacturing E-MANP +. O + + +A O +novel O +method O +that O +combines O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +and O +atomic B-MANP +layer I-MANP +deposition E-MANP +( O +ALD O +) O +. O + + +Space-grading O +plastic S-MATE +AM S-MANP +components O +enables O +faster O +and O +more O +complex O +designs S-FEAT +. O + + +The O +ALD O +coating S-APPL +seems O +to O +improve O +the O +flow O +properties S-CONPRI +of O +the O +tested O +AM S-MANP +fluidics O +restrictor O +. O + + +Results O +also O +indicate O +an O +improved O +structural B-PRO +integrity E-PRO +. O + + +There O +were O +indications O +the O +coating S-APPL +might O +slightly O +mitigate O +outgassing O +at O +higher O +temperatures S-PARA +, O +but O +results O +are O +inconclusive O +. O + + +Space O +technology S-CONPRI +has O +been O +an O +early O +adopter O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +as S-MATE +a O +way O +of O +quickly O +producing O +relatively O +complex O +systems O +and O +components S-MACEQ +that O +would O +otherwise O +require O +expensive O +and O +custom O +design S-FEAT +and O +production S-MANP +. O + + +Space O +as S-MATE +an O +environment O +and O +long-term O +survivability O +pose O +challenges O +to O +materials S-CONPRI +used O +in O +AM S-MANP +and O +these O +challenges O +need O +to O +be S-MATE +addressed O +. O + + +Atomic B-MANP +layer I-MANP +deposition E-MANP +( O +ALD O +) O +is O +an O +effective O +coating S-APPL +method O +enabling O +conformal O +and O +precise O +coating S-APPL +of O +the O +complete O +AM S-MANP +print O +. O + + +This O +work O +analyses O +how O +an O +ALD O +coating S-APPL +of O +aluminium S-MATE +oxide O +on O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +and O +polyamide S-MATE +PA S-CHAR +2200 O +plastic S-MATE +AM S-MANP +prints O +benefits O +and O +protects O +them O +. O + + +AM S-MANP +was O +performed O +with O +material B-MANP +extrusion E-MANP +and O +selective B-MANP +laser I-MANP +sintering E-MANP +methods O +that O +are O +commonly O +used O +. O + + +Tests O +were O +performed O +with O +a O +simple S-MANP +bang-bang O +controller S-MACEQ +test O +setup O +and O +a O +mass O +spectrometer O +, O +and O +the O +existence O +of O +the O +coating S-APPL +was O +confirmed O +with O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +imaging S-APPL +. O + + +First O +known O +study O +on O +design B-CONPRI +freedom E-CONPRI +offered O +by O +3D S-CONPRI +Sand-Printing O +process S-CONPRI +to O +redesign O +sprue S-MACEQ +in O +metal S-MATE +casting S-MANP +which O +causes O +agitation S-CONPRI +in O +melt B-CONPRI +flow E-CONPRI +. O + + +Numerical O +model S-CONPRI +and O +optimization B-CONPRI +algorithm E-CONPRI +for O +novel O +sprue S-MACEQ +profiles S-FEAT +are O +developed O +to O +reduce O +casting S-MANP +defects O +by O +99.5 O +% O +. O + + +Mechanical B-PRO +strength E-PRO +in O +castings O +improved O +by O +8.4 O +% O +when O +compared O +to O +traditional O +gating O +. O + + +The O +opportunity O +to O +improve O +the O +quality S-CONPRI +of O +metal S-MATE +castings O +by O +enabling O +fabrication S-MANP +of O +complex O +gating B-CONPRI +systems E-CONPRI +via O +3D S-CONPRI +Sand-Printing O +( O +3DSP O +) O +has O +been O +recently O +established O +. O + + +Among O +the O +different O +components S-MACEQ +of O +a O +gating B-CONPRI +system E-CONPRI +( O +often O +called O +rigging O +) O +, O +sprue S-MACEQ +design S-FEAT +offers O +a O +major O +opportunity O +to O +exploit O +the O +unlimited O +geometric B-CONPRI +freedom E-CONPRI +offered O +by O +3DSP O +process S-CONPRI +. O + + +In O +this O +study O +, O +conventional O +principles O +of O +casting S-MANP +hydrodynamics O +is O +advanced O +by O +validated O +novel O +numerical O +models O +for O +novel O +sprue S-MACEQ +designs S-FEAT +to O +improve O +melt B-CONPRI +flow E-CONPRI +control O +. O + + +Multiple O +approaches O +to O +integrate O +3DSP O +into O +conventional B-MANP +manufacturing E-MANP +to O +fabricate S-MANP +complex O +gating B-CONPRI +systems E-CONPRI +through O +“ O +Hybrid O +Molding S-MANP +” O +are O +presented O +. O + + +3DSP O +molds S-MACEQ +featuring O +two O +optimized O +sprue S-MACEQ +profiles S-FEAT +and O +a O +benchmark S-MANS +straight O +sprue S-MACEQ +are O +fabricated S-CONPRI +to O +pour O +17-4 B-MATE +stainless I-MATE +steel E-MATE +. O + + +Computed B-CHAR +tomography E-CHAR +scans O +( O +CT S-ENAT +) O +shows O +that O +parabolic O +sprue S-MACEQ +casting S-MANP +( O +PSC O +) O +and O +conical-helix O +sprue S-MACEQ +casting S-MANP +( O +CHSC O +) O +reduced O +overall O +casting S-MANP +defects O +by O +56 O +% O +and O +99.5 O +% O +respectively O +when O +compared O +to O +straight O +sprue S-MACEQ +casting S-MANP +( O +SSC O +) O +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +analysis O +confirms O +the O +presence O +of O +globular O +oxide B-MATE +inclusions E-MATE +and O +that O +PSC O +and O +CHSC O +exhibits O +21 O +% O +and O +35 O +% O +reduced O +inclusion S-MATE +when O +compared O +to O +the O +SSC O +. O + + +Three O +point O +flexural O +testing S-CHAR +reveals O +that O +CHSC O +and O +PSC O +exhibits O +an O +increase O +of O +8.4 O +% O +and O +4.1 O +% O +respectively O +in O +average S-CONPRI +ultimate O +flexural B-PRO +strength E-PRO +than O +SSC O +. O + + +The O +findings O +from O +this O +study O +demonstrate O +that O +numerically O +optimized O +gating B-CONPRI +systems E-CONPRI +that O +can O +only O +be S-MATE +fabricated O +via O +3DSP O +have O +the O +potential O +to O +significantly O +improve O +both O +mechanical S-APPL +and O +metallurgical S-APPL +performance O +of O +sand B-MANP +castings E-MANP +. O + + +With O +increasing O +industrial S-APPL +application O +of O +additive B-MANP +manufacturing E-MANP +technologies O +, O +such O +as S-MATE +selective O +laser S-ENAT +melting O +, O +the O +requirements O +concerning O +the O +processes S-CONPRI +’ O +capabilities O +like O +productivity S-CONPRI +, O +robustness S-PRO +, O +part O +quality S-CONPRI +and O +the O +range S-PARA +of O +processable O +materials S-CONPRI +are O +increasing O +as S-MATE +well O +. O + + +But O +due O +to O +high O +cooling B-PARA +rates E-PARA +, O +high O +thermal B-PARA +gradients E-PARA +and O +a O +layer-wise O +processing O +, O +parts O +produced O +by O +selective B-MANP +laser I-MANP +melting E-MANP +are O +subject O +to O +different O +kinds O +of O +defects S-CONPRI +. O + + +These O +defects S-CONPRI +commonly O +lead S-MATE +to O +high O +porosity S-PRO +, O +distortion S-CONPRI +, O +cracking S-CONPRI +and O +rough O +surfaces S-CONPRI +. O + + +But O +when O +a O +second O +beam S-MACEQ +is O +used O +to O +heat S-CONPRI +the O +vicinity O +of O +the O +melt B-MATE +pool E-MATE +a O +homogenization S-MANP +of O +the O +temperature S-PARA +field O +, O +a O +reduction S-CONPRI +of O +the O +cooling S-MANP +speeds O +within O +the O +melt B-MATE +pool E-MATE +and O +in O +its O +vicinity O +as S-MATE +well O +as S-MATE +an O +improved O +wetting O +behavior O +is O +possible O +. O + + +A O +proof O +of O +concept O +is O +shown O +, O +discussing O +general O +trends S-CONPRI +and O +possibilities O +, O +like O +increased O +surface B-PARA +qualities E-PARA +or O +dense O +microstructures S-MATE +with O +low O +amounts O +of O +remelting O +, O +when O +these O +strategies O +are O +elaborated O +. O + + +Binder S-MATE +jet O +printed O +components S-MACEQ +typically O +have O +low O +overall O +density S-PRO +in O +the O +green O +state O +and O +high O +shrinkage S-CONPRI +and O +deformation S-CONPRI +after O +heat B-MANP +treatment E-MANP +. O + + +It O +has O +previously O +been O +demonstrated O +that O +, O +by O +including O +nanoparticles S-CONPRI +of O +the O +same O +material S-MATE +in O +the O +binder S-MATE +, O +these O +properties S-CONPRI +can O +be S-MATE +improved O +as S-MATE +the O +nanoparticles S-CONPRI +can O +fill O +the O +interstices O +and O +pore S-PRO +throats O +between O +the O +bed S-MACEQ +particles O +. O + + +The O +beneficial O +effects O +from O +using O +these O +additive S-MATE +binder O +particles S-CONPRI +can O +be S-MATE +improved O +by O +maximising O +the O +binder S-MATE +particle O +size O +, O +enabling O +the O +space O +within O +the O +powder B-MACEQ +bed E-MACEQ +to O +be S-MATE +filled O +with O +a O +higher O +packing O +efficiency O +. O + + +The O +selection O +of O +maximum O +particle S-CONPRI +size O +for O +a O +binder S-MATE +requires O +detailed O +knowledge O +of O +the O +pores S-PRO +and O +pore S-PRO +throats O +between O +the O +powder B-MACEQ +bed E-MACEQ +particles S-CONPRI +. O + + +In O +this O +paper O +, O +a O +raindrop O +model S-CONPRI +is O +used O +to O +determine O +the O +critical O +radius O +at O +which O +binder S-MATE +particles O +can O +pass O +between O +pores S-PRO +and O +penetrate O +the O +bed S-MACEQ +. O + + +The O +model S-CONPRI +is O +validated O +against O +helium S-MATE +psychometry O +measurements O +and O +binder S-MATE +particle O +drop O +tests O +. O + + +It O +is O +found O +that O +the O +critical O +radius O +can O +be S-MATE +predicted O +, O +with O +acceptable O +accuracy S-CHAR +, O +using O +a O +linear O +function O +of O +the O +mean O +and O +standard B-CHAR +deviation E-CHAR +of O +the O +particle S-CONPRI +radii O +. O + + +Percolation O +theory O +concepts O +have O +been O +employed O +in O +order O +to O +generalise O +the O +results O +for O +powder B-MACEQ +beds E-MACEQ +that O +have O +different O +mean O +particle S-CONPRI +sizes O +and O +size O +distributions S-CONPRI +. O + + +The O +results O +of O +this O +work O +can O +be S-MATE +employed O +to O +inform O +the O +selection O +of O +particle S-CONPRI +sizes O +required O +for O +binder S-MATE +formulations O +, O +to O +optimise O +density S-PRO +and O +reduce O +shrinkage S-CONPRI +in O +printed O +binder S-MATE +jet O +components S-MACEQ +. O + + +Electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +is O +a O +metal B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +that O +makes O +possible O +the O +fabrication S-MANP +of O +three-dimensional S-CONPRI +near-net-shaped O +parts O +directly O +from O +computer S-ENAT +models O +. O + + +EBM S-MANP +technology O +has O +been O +continuously O +evolving O +, O +optimizing O +the O +properties S-CONPRI +and O +the O +microstructure S-CONPRI +of O +the O +as-fabricated O +alloys S-MATE +. O + + +Ti-6Al-4V S-MATE +ELI O +( O +Extra O +Low O +Interstitials O +) O +titanium B-MATE +alloy E-MATE +is O +the O +most O +widely O +used O +and O +studied O +alloy S-MATE +for O +this O +technology S-CONPRI +and O +is O +the O +focus O +of O +this O +work O +. O + + +Several O +research S-CONPRI +works O +have O +been O +completed O +to O +study O +the O +mechanisms O +of O +microstructure S-CONPRI +formation O +, O +evolution S-CONPRI +, O +and O +its O +subsequent O +influence O +on O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +alloy S-MATE +. O + + +In O +this O +work O +, O +samples B-CONPRI +fabricated E-CONPRI +at O +different O +locations O +, O +orientations S-CONPRI +, O +and O +distances O +from O +the O +build B-MACEQ +platform E-MACEQ +have O +been O +characterized O +, O +studying O +the O +relationship O +of O +these O +variables O +with O +the O +resulting O +material S-MATE +intrinsic O +characteristics O +and O +properties S-CONPRI +( O +surface B-CONPRI +topography E-CONPRI +, O +microstructure S-CONPRI +, O +porosity S-PRO +, O +micro-hardness O +and O +static O +mechanical B-CONPRI +properties E-CONPRI +) O +. O + + +This O +study O +has O +revealed O +that O +porosity S-PRO +is O +the O +main O +factor O +controlling O +mechanical B-CONPRI +properties E-CONPRI +relative O +to O +the O +other O +studied O +variables O +. O + + +Therefore O +, O +in O +future O +process S-CONPRI +development O +, O +decreasing O +the O +porosity S-PRO +should O +be S-MATE +considered O +the O +primary O +goal O +in O +order O +to O +improve O +mechanical B-CONPRI +properties E-CONPRI +. O + + +In O +the O +rapidly O +growing O +field O +of O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +, O +the O +Laser B-MANP +Directed I-MANP +Energy I-MANP +Deposition E-MANP +( O +L-DED O +) O +process S-CONPRI +is O +the O +focus O +of O +intense O +technical O +attention O +due O +to O +its O +potential O +to O +generate O +high O +quality S-CONPRI +components S-MACEQ +with O +location O +specific O +composition S-CONPRI +and O +microstructural S-CONPRI +control O +. O + + +Despite O +the O +variety O +of O +experimental S-CONPRI +and O +modelling S-ENAT +efforts O +devoted O +to O +the O +subject O +, O +no O +studies O +directly O +observe O +the O +interactions O +between O +individual O +powder B-MATE +particles E-MATE +and O +the O +liquid O +pool O +of O +metal S-MATE +at O +a O +high O +enough O +temporal O +frequency O +to O +characterize O +these O +discrete O +contact S-APPL +events O +. O + + +Video O +images S-CONPRI +reveal O +that O +particles S-CONPRI +often O +impact S-CONPRI +and O +float O +on O +the O +surface S-CONPRI +of O +the O +melt B-MATE +pool E-MATE +for O +several O +hundreds O +of O +microseconds O +before O +melting S-MANP +into O +it O +. O + + +Further O +incoming O +particles S-CONPRI +were O +observed O +to O +rebound O +from O +the O +melt B-MATE +pool E-MATE +by O +these O +floating O +particles S-CONPRI +. O + + +Through O +modelling S-ENAT +this O +process S-CONPRI +analytically O +, O +particle S-CONPRI +self-shielding O +is O +shown O +to O +impose O +unavoidable O +upper O +limits S-CONPRI +on O +overall O +powder S-MATE +capture O +efficiency O +for O +the O +L-DED O +process S-CONPRI +. O + + +High O +entropy O +alloy S-MATE +AlCoCrFeNi O +was O +obtained O +by O +selective B-MANP +electron I-MANP +beam I-MANP +melting E-MANP +( O +SEBM S-MANP +) O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +SEBM S-MANP +specimens O +were O +improved O +compared O +with O +those O +of O +the O +cast S-MANP +specimen O +. O + + +The O +pitting S-CONPRI +potential O +of O +the O +AlCoCrFeNi O +SEBM S-MANP +specimens O +in O +artificial O +seawater O +was O +slightly O +lower O +than O +that O +of O +the O +cast S-MANP +specimen O +. O + + +The O +properties S-CONPRI +of O +the O +product O +were O +influenced O +by O +the O +microstructure B-CONPRI +evolution E-CONPRI +in O +the O +SEBM S-MANP +process S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +is O +expected O +to O +be S-MATE +the O +manufacturing S-MANP +method O +for O +components S-MACEQ +made O +with O +high-entropy O +alloys S-MATE +( O +HEAs O +) O +. O + + +In O +this O +study O +, O +the O +mechanical S-APPL +and O +electrochemical S-CONPRI +behaviors O +were O +investigated O +for O +equi-molar O +HEA O +( O +AlCoCrFeNi O +) O +obtained O +with O +selective B-MANP +electron I-MANP +beam I-MANP +melting E-MANP +( O +SEBM S-MANP +) O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +SEBM S-MANP +products O +were O +improved O +compared O +with O +those O +of O +a O +cast S-MANP +specimen O +. O + + +Electrochemical B-CHAR +measurements E-CHAR +in O +artificial O +seawater O +revealed O +the O +corrosion B-PRO +behaviors E-PRO +of O +HEA O +( O +AlCoCrFeNi O +) O +. O + + +The O +pitting S-CONPRI +potential O +of O +SEBM S-MANP +specimens O +( O +0.112 O +V S-MATE +vs. O +Ag/AgCl O +) O +was O +lower O +than O +that O +of O +a O +cast S-MANP +specimen O +( O +0.178 O +V S-MATE +vs. O +Ag/AgCl O +) O +. O + + +The O +mechanical S-APPL +and O +electrochemical S-CONPRI +properties O +of O +SEBM S-MANP +products O +were O +influenced O +by O +the O +phase B-CONPRI +morphologies E-CONPRI +formed O +during O +the O +SEBM S-MANP +process S-CONPRI +. O + + +This O +paper O +aims O +to O +understand O +the O +formation O +and O +the O +effect O +of O +residual B-PRO +stress E-PRO +on O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +parts O +. O + + +SLM S-MANP +is O +a O +powder B-MACEQ +bed E-MACEQ +based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +and O +can O +be S-MATE +compared O +to O +a O +laser B-MANP +welding E-MANP +process O +. O + + +Due O +to O +the O +high O +temperature B-PARA +gradients E-PARA +and O +the O +densification S-MANP +ratio O +, O +which O +are O +characteristic O +of O +this O +process S-CONPRI +, O +residual B-PRO +stresses E-PRO +occur O +. O + + +The O +investigation O +of O +residual B-PRO +stress E-PRO +is O +performed O +using O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +for O +samples S-CONPRI +made O +of O +austenitic B-MATE +stainless I-MATE +steel E-MATE +AISI O +316L O +( O +EN O +1.4404 O +) O +. O + + +This O +research S-CONPRI +examines O +residual B-PRO +stress E-PRO +at O +different O +depths O +and O +at O +two O +outer O +surfaces S-CONPRI +. O + + +For O +the O +measurement S-CHAR +of O +stresses O +at O +different O +depths O +, O +the O +samples S-CONPRI +’ O +surface S-CONPRI +layers O +were O +removed O +by O +electropolishing S-MANP +. O + + +At O +sufficiently O +large O +distances O +from O +the O +top O +surface S-CONPRI +, O +the O +stresses O +in O +the O +area S-PARA +of O +the O +edge O +layer S-PARA +initially O +increase O +strongly O +and O +then O +decline O +again O +. O + + +The O +value O +and O +orientation S-CONPRI +of O +the O +resulting O +main O +stress S-PRO +components S-MACEQ +are O +dependent O +on O +the O +examined O +layer S-PARA +. O + + +At O +the O +top O +surface S-CONPRI +, O +the O +residual B-PRO +stresses E-PRO +are O +higher O +in O +scan O +direction O +than O +in O +perpendicular O +direction O +. O + + +In O +contrast O +, O +at O +the O +lateral O +surface S-CONPRI +the O +maximum O +main O +stress S-PRO +is O +perpendicular O +to O +the O +scan O +and O +parallel O +to O +the O +building B-PARA +direction E-PARA +. O + + +These O +two O +cases O +can O +be S-MATE +described O +very O +well O +by O +the O +two O +mechanisms O +in O +SLM S-MANP +, O +namely O +the O +temperature B-CONPRI +gradient I-CONPRI +mechanism E-CONPRI +( O +TGM S-CONPRI +) O +and O +the O +cool-down O +phase S-CONPRI +. O + + +It O +is O +also O +shown O +that O +at O +samples S-CONPRI +with O +a O +relative O +structural O +density S-PRO +of O +> O +99 O +% O +, O +the O +residual B-PRO +stress E-PRO +values O +are O +independent O +of O +the O +applied O +energy B-PARA +density E-PARA +. O + + +The O +rheology S-PRO +of O +a O +ceramic S-MATE +paste O +is O +known O +to O +be S-MATE +a O +key O +factor O +in O +the O +process S-CONPRI +of O +additive B-MANP +manufacturing E-MANP +of O +ceramic S-MATE +parts O +via O +extrusion S-MANP +freeforming O +. O + + +The O +rheological B-PRO +properties E-PRO +of O +ceramic S-MATE +pastes O +can O +be S-MATE +influenced O +by O +several O +formulation O +parameters S-CONPRI +. O + + +In O +this O +study O +, O +the O +mutual O +influence O +between O +formulation O +parameters S-CONPRI +, O +printing O +properties S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +ceramic S-MATE +pastes O +( O +Al2O3 S-MATE +) O +and O +the O +resulting O +green B-CONPRI +bodies E-CONPRI +are O +investigated O +. O + + +Special O +focus O +is O +set S-APPL +on O +elucidating O +the O +origins O +and O +causes O +of O +the O +altered O +paste O +properties S-CONPRI +to O +allow O +targeted O +material S-MATE +development O +of O +pastes O +for O +the O +use O +in O +extrusion S-MANP +freeforming O +. O + + +Glycerine O +and O +nanoparticulate O +boehmite O +needles O +are O +tested O +as S-MATE +additives S-MATE +and O +they O +successfully O +improve O +the O +printability S-PARA +in O +the O +extrusion S-MANP +freeforming O +process S-CONPRI +of O +the O +paste O +and O +compression B-PRO +strength E-PRO +of O +the O +green B-CONPRI +body E-CONPRI +. O + + +Considerable O +difference O +in O +the O +dependency O +of O +the O +mechanical B-CONPRI +properties E-CONPRI +on O +the O +formulation O +parameters S-CONPRI +was O +detected O +after O +a O +partial O +sintering S-MANP +of O +the O +green B-CONPRI +bodies E-CONPRI +at O +1000 O +°C O +. O + + +Dewatering O +, O +shrinkage S-CONPRI +during O +drying S-MANP +and O +a O +running O +of O +the O +deposited O +lines O +could O +be S-MATE +reduced O +successfully O +by O +adjusting O +the O +formulation O +. O + + +The O +impact S-CONPRI +of O +the O +formulation O +parameters S-CONPRI +on O +the O +printing B-CONPRI +performance E-CONPRI +could O +be S-MATE +linked O +to O +the O +dependency O +of O +the O +volume S-CONPRI +flow B-PARA +rate E-PARA +on O +the O +ratio O +of O +pressure S-CONPRI +over O +viscosity S-PRO +. O + + +Hollow O +microlattices O +constitute O +a O +model S-CONPRI +topology O +for O +architected O +materials S-CONPRI +, O +as S-MATE +they O +combine O +excellent O +specific B-PRO +stiffness E-PRO +and O +strength S-PRO +with O +relative O +ease O +of O +manufacturing S-MANP +. O + + +The O +most O +scalable O +manufacturing S-MANP +technique O +to O +date O +encompasses O +fabrication S-MANP +of O +a O +sacrificial O +polymeric O +template S-MACEQ +by O +the O +Self O +Propagating O +Photopolymer S-MATE +Waveguide O +( O +SPPW O +) O +process S-CONPRI +, O +followed O +by O +thin O +film O +coating S-APPL +and O +removal O +of O +the O +substrate S-MATE +. O + + +Accurate S-CHAR +modeling O +of O +mechanical B-CONPRI +properties E-CONPRI +( O +e.g. O +, O +stiffness S-PRO +, O +strength S-PRO +) O +of O +hollow O +microlattices O +is O +challenging O +, O +primarily O +due O +to O +the O +complex O +stress S-PRO +state O +around O +the O +hollow O +nodes O +and O +the O +existence O +of O +manufacturing-induced O +geometric O +imperfections S-CONPRI +( O +e.g O +. O + + +In O +this O +work O +, O +we O +use O +a O +variety O +of O +measuring O +techniques O +( O +SEM S-CHAR +imaging S-APPL +, O +CT S-ENAT +scanning O +, O +etc O +. O + + +) O +to O +characterize O +the O +geometric O +imperfections S-CONPRI +in O +a O +nickel-based O +ultralight O +hollow O +microlattice O +and O +investigate O +their O +effect O +on O +the O +compressive B-PRO +strength E-PRO +of O +the O +lattice S-CONPRI +. O + + +At O +the O +strut S-MACEQ +level O +, O +where O +a O +more O +quantitative S-CONPRI +description O +of O +geometric O +defects S-CONPRI +is O +available O +, O +the O +gathered O +data S-CONPRI +is O +used O +to O +build S-PARA +a O +stochastic S-CONPRI +field O +model S-CONPRI +of O +geometric O +imperfections S-CONPRI +using O +Proper O +Orthogonal O +Decomposition S-PRO +. O + + +Using O +Monte O +Carlo O +simulations S-ENAT +, O +the O +critical O +buckling B-CHAR +loads E-CHAR +of O +a O +large O +set S-APPL +of O +imperfect O +bars O +created O +using O +the O +stochastic B-CONPRI +model E-CONPRI +are O +then O +extracted S-CONPRI +by O +Finite B-CONPRI +Elements E-CONPRI +Analysis O +. O + + +The O +statistics S-CONPRI +of O +the O +buckling B-PRO +strength E-PRO +in O +artificially O +generated O +bars O +is O +then O +used O +to O +explain O +the O +scatter O +in O +the O +strength S-PRO +of O +CT-derived O +bars O +and O +its O +correlation O +with O +the O +lattice S-CONPRI +strength O +measured O +experimentally O +. O + + +Although O +the O +quantitative S-CONPRI +results O +are O +specific O +to O +microlattices O +fabricated S-CONPRI +by O +SPPW O +templating O +, O +the O +methodology S-CONPRI +presented O +herein O +is O +equally O +applicable O +to O +architected O +materials S-CONPRI +produced O +by O +other O +manufacturing B-MANP +processes E-MANP +. O + + +In O +order O +to O +study O +the O +special O +constriction O +effect O +and O +physical B-CONPRI +process E-CONPRI +features O +during O +compulsively O +constricted O +WAAM S-MANP +( O +CC-WAAM O +) O +, O +the O +dynamic S-CONPRI +behaviours O +of O +arc S-CONPRI +, O +droplets S-CONPRI +, O +and O +molten B-CONPRI +pool E-CONPRI +were O +visually O +investigated O +. O + + +Possible O +interactions O +inside O +the O +narrow O +space O +were O +discussed O +to O +explain O +the O +mechanism S-CONPRI +of O +the O +compulsive O +constriction O +on O +ejected O +plasma S-CONPRI +and O +droplets S-CONPRI +. O + + +Based O +on O +the O +captured O +images S-CONPRI +, O +the O +strong O +radiative O +emission S-CHAR +indicates O +that O +the O +ejected O +plasma S-CONPRI +was O +at O +high O +temperature S-PARA +at O +least O +6000 O +K. O +As S-MATE +the O +current O +increases O +higher-temperature O +plasma S-CONPRI +jets O +were O +expected O +, O +which O +would O +lead S-MATE +to O +a O +larger O +plasma S-CONPRI +volume O +in O +the O +absence O +of O +constriction O +. O + + +The O +relationship O +between O +current O +and O +droplet S-CONPRI +diameters O +was O +preliminarily O +established O +to O +enable O +prediction S-CONPRI +of O +the O +droplet B-PARA +size E-PARA +. O + + +An O +important O +feature S-FEAT +of O +small-size O +droplets S-CONPRI +( O +as S-MATE +low O +as S-MATE +0.89 O +mm S-MANP +) O +offered O +CC-WAAM O +a O +great O +potential O +to O +improve O +the O +precision S-CHAR +of O +the O +additive B-MANP +manufacturing E-MANP +layers O +, O +although O +the O +minimum O +width O +of O +the O +deposited B-CHAR +layer E-CHAR +is O +much O +larger O +than O +the O +droplet S-CONPRI +diameter S-CONPRI +due O +to O +liquid O +spreading O +and O +accumulation O +. O + + +The O +droplets S-CONPRI +were O +found O +to O +have O +a O +slight O +impact S-CONPRI +on O +the O +molten B-CONPRI +pool E-CONPRI +behaviours O +, O +which O +produces O +stable O +molten B-CONPRI +pool E-CONPRI +shapes O +. O + + +Under O +the O +wide-range O +parameters S-CONPRI +, O +the O +deposited B-CHAR +layers E-CHAR +showed O +good O +appearances O +, O +which O +indicates O +the O +good O +adaptability O +of O +this O +novel O +technology S-CONPRI +. O + + +In O +this O +study O +, O +laser B-MANP +metal I-MANP +deposition E-MANP +( O +LMD S-MANP +) O +was O +employed O +to O +explore O +a O +new O +fabrication S-MANP +process O +for O +producing O +a O +functionally B-MATE +graded I-MATE +material E-MATE +( O +FGM S-MANP +) O +from O +Ti-6Al-4V S-MATE +to O +SS316 O +. O + + +A O +transition B-CONPRI +composition E-CONPRI +route O +was O +introduced O +( O +Ti-6Al-4V→V→Cr→Fe→SS316 O +) O +to O +avoid O +the O +intermetallic S-MATE +phases O +between O +Ti-6Al-4V S-MATE +and O +SS316 O +. O + + +A O +thin O +wall O +sample S-CONPRI +was O +fabricated S-CONPRI +via O +LMD S-MANP +by O +following O +the O +transition B-CONPRI +composition E-CONPRI +route O +. O + + +Microstructure S-CONPRI +characterization O +and O +composition S-CONPRI +distribution O +analyses O +were O +performed O +by O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +and O +energy O +dispersive O +spectrometry O +( O +EDS S-CHAR +) O +. O + + +The O +SEM S-CHAR +images S-CONPRI +depicted O +the O +microstructural S-CONPRI +morphology O +of O +the O +FGM S-MANP +sample O +. O + + +The O +element S-MATE +gradient O +distribution S-CONPRI +determined O +by O +the O +EDS S-CHAR +results O +may O +reflect O +the O +FGM S-MANP +transition O +composition S-CONPRI +route O +design S-FEAT +. O + + +X-ray B-CHAR +diffraction E-CHAR +tests O +were O +conducted O +and O +the O +results O +demonstrated O +that O +the O +generation O +of O +intermetallic S-MATE +phases O +effectively O +avoided O +following O +the O +composition S-CONPRI +route O +. O + + +The O +Vickers B-PRO +hardness E-PRO +test O +was O +used O +to O +determine O +the O +Vickers B-PRO +hardness E-PRO +number O +( O +VHN O +) O +distribution S-CONPRI +from O +Ti-6Al-4V S-MATE +to O +SS316 O +. O + + +The O +VHN O +results O +showed O +that O +no O +significant O +formation O +of O +hard O +brittle S-PRO +phases O +occurred O +in O +the O +LMD S-MANP +procedure O +. O + + +Combining O +metal S-MATE +nanoparticle O +( O +NP O +) O +printing O +and O +additive B-MANP +manufacturing E-MANP +has O +high O +potential O +for O +integration O +of O +3D S-CONPRI +conductive O +elements S-MATE +and O +electronic O +devices O +inside O +objects O +. O + + +Current O +processes S-CONPRI +used O +to O +achieve O +desired O +electrical B-CHAR +resistivity E-CHAR +of O +the O +printed O +NP O +circuits O +entail O +a O +compromise O +between O +resistivity S-PRO +, O +throughput S-CHAR +, O +and O +thermal O +damage S-PRO +of O +the O +structure S-CONPRI +. O + + +We O +explore O +the O +mechanisms O +underlying O +the O +combination O +of O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +of O +Acrylonitrile B-MATE +Butadiene I-MATE +Styrene E-MATE +( O +ABS S-MATE +) O +and O +Polylactide O +( O +PLA S-MATE +) O +polymer S-MATE +structures O +, O +printing O +of O +silver S-MATE +NPs O +( O +mixed O +nanowires O +and O +nanospheres O +) O +, O +and O +out-of-chamber O +Intense O +Pulsed O +Light O +( O +IPL O +) O +sintering S-MANP +of O +the O +printed O +circuits O +. O + + +IPL O +of O +only-nanosphere O +based O +circuits O +on O +the O +FFF-made O +structure S-CONPRI +thermally O +damages O +the O +polymer S-MATE +without O +any O +resistivity S-PRO +reduction S-CONPRI +. O + + +In O +a O +significant O +advance O +, O +the O +addition O +of O +nanowires O +achieves O +a O +resistivity S-PRO +several O +times O +lesser O +than O +the O +state-of-the-art S-CONPRI +( O +13.1 O +μΩ-cm O +or O +8 O +x O +bulk O +silver S-MATE +) O +without O +any O +thermal O +damage S-PRO +and O +within O +0.75 O +s S-MATE +of O +IPL O +. O + + +Electromagnetic O +analysis O +and O +Molecular O +Dynamics O +simulations S-ENAT +show O +that O +nanowire O +addition O +concurrently O +reduces O +IPL O +temperature S-PARA +and O +accelerates O +the O +kinetics O +of O +resistivity S-PRO +reduction S-CONPRI +. O + + +Subsequent O +FFF S-MANP +over O +the O +post-IPL O +conductive O +pattern S-CONPRI +causes O +a O +non-monotonic O +change O +in O +resistivity S-PRO +, O +surprisingly O +effecting O +a O +resistivity S-PRO +reduction S-CONPRI +down O +to O +11.8 O +μΩ-cm O +. O + + +The O +developed O +approach O +is O +used O +to O +demonstrate O +multilayer O +sensing S-APPL +of O +internal O +temperature S-PARA +and O +a O +light O +sensing S-APPL +circuit O +with O +embedded O +interconnects O +. O + + +Finally O +, O +we O +discuss O +how O +these O +insights O +may O +guide O +the O +creation O +of O +a O +machine B-MACEQ +tool E-MACEQ +that O +creates O +a O +seamless O +form O +of O +the O +proposed O +process S-CONPRI +. O + + +Parts O +fabricated S-CONPRI +using O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +methods O +, O +such O +as S-MATE +laser-powder O +bed B-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +, O +receive O +highly O +localized O +heat B-CONPRI +fluxes E-CONPRI +from O +a O +laser S-ENAT +within O +a O +purged O +, O +inert O +environment O +during O +manufacture S-CONPRI +. O + + +These O +heat B-CONPRI +fluxes E-CONPRI +are O +used O +for O +melting S-MANP +metal O +powder B-MACEQ +feedstock E-MACEQ +, O +while O +remaining O +energy O +is O +transferred O +to O +the O +solidified O +part O +and O +adjoining O +gas S-CONPRI +environment O +. O + + +Using O +computational B-CHAR +fluid I-CHAR +dynamics E-CHAR +( O +CFD S-APPL +) O +, O +the O +local O +heat B-CONPRI +transfer E-CONPRI +between O +the O +adjoining O +shielding O +gas S-CONPRI +, O +laser-induced O +melt B-MATE +pool E-MATE +and O +surrounding O +heat B-CONPRI +affected I-CONPRI +zone E-CONPRI +is O +estimated O +. O + + +Simulations S-ENAT +are O +performed O +for O +the O +L-PBF S-MANP +of O +a O +single O +layer S-PARA +of O +Ti-6Al-4 O +V. O +Local O +temperature S-PARA +, O +temperature B-PARA +gradients E-PARA +, O +temperature S-PARA +time-rates-of-change O +( O +including O +cooling B-PARA +rates E-PARA +) O +, O +as S-MATE +well O +as S-MATE +dimensionless O +numbers O +descriptive O +of O +important O +thermophysics O +, O +are O +provided O +in O +order O +to O +quantify O +local O +convective O +heat B-CONPRI +transfer E-CONPRI +for O +various O +laser/gas O +motion O +directions O +. O + + +Results O +demonstrate O +that O +L-PBF S-MANP +track O +heat B-CONPRI +transfer E-CONPRI +is O +highly O +dependent O +on O +relative O +gas/laser O +direction O +which O +can O +impact S-CONPRI +the O +prior O +β O +grain B-PRO +sizes E-PRO +in O +Ti-6Al-4 B-MATE +V E-MATE +material S-MATE +by O +up O +to O +10 O +% O +. O + + +It O +is O +found O +that O +when O +the O +laser S-ENAT +and O +gas S-CONPRI +are O +moving O +in O +the O +same O +direction O +, O +convection O +heat B-CONPRI +transfer E-CONPRI +is O +the O +highest O +and O +a O +‘ O +leading O +thermal O +boundary S-FEAT +layer O +’ O +exists O +in O +front O +of O +the O +laser S-ENAT +which O +is O +capable O +of O +preheating S-MANP +downstream O +powder S-MATE +for O +a O +possible O +reduction S-CONPRI +in O +residual B-PRO +stress E-PRO +formation O +along O +the O +track O +. O + + +Presented O +results O +can O +aid O +ongoing O +L-PBF S-MANP +modeling O +efforts O +and O +assist O +manufacturing S-MANP +design S-FEAT +decisions O +( O +e.g O +. O + + +scan O +strategy O +, O +laser B-PARA +power E-PARA +, O +scanning B-PARA +speed E-PARA +, O +etc O +. O + + +) O +– O +especially O +for O +cases O +where O +homogeneous S-CONPRI +or O +controlled O +material S-MATE +traits O +are O +desired O +. O + + +Zinc S-MATE +and O +its O +alloys S-MATE +constitute O +the O +new O +generation O +of O +biodegradable O +metallic B-MATE +materials E-MATE +for O +biomedical S-APPL +implants O +. O + + +Biodegradable O +implants S-APPL +of O +Zn S-MATE +, O +customized O +for O +the O +specific O +patient O +can O +be S-MATE +potentially O +realised O +through O +additive B-MANP +manufacturing I-MANP +processes E-MANP +such O +as S-MATE +selective O +laser S-ENAT +melting O +( O +SLM S-MANP +) O +. O + + +However O +, O +Zn S-MATE +is O +characterized O +by O +low O +melting S-MANP +and O +boiling O +points O +, O +resulting O +in O +high O +porosity S-PRO +in O +the O +build S-PARA +parts O +. O + + +In O +this O +work O +, O +the O +SLM S-MANP +of O +pure O +Zn B-MATE +powder E-MATE +is O +studied O +to O +improve O +part O +density S-PRO +. O + + +A O +flexible O +prototype S-CONPRI +SLM O +system O +was O +used O +to O +determine O +process B-CONPRI +feasibility E-CONPRI +under O +different O +atmospheric O +conditions O +. O + + +Working O +in O +a O +closed B-MACEQ +chamber E-MACEQ +under O +inert B-CONPRI +gas E-CONPRI +was O +found O +to O +be S-MATE +inadequate O +. O + + +Process S-CONPRI +stability O +was O +obtained O +in O +an O +open O +chamber O +with O +an O +inert B-CONPRI +gas E-CONPRI +jet O +flow O +over O +the O +powder B-MACEQ +bed E-MACEQ +. O + + +The O +effect O +of O +laser S-ENAT +process O +parameters S-CONPRI +and O +powder S-MATE +size O +was O +studied O +in O +this O +condition O +. O + + +This O +paper O +demonstrates O +a O +simple S-MANP +, O +low-cost O +additive B-MANP +manufacturing E-MANP +technique O +for O +fabricating S-MANP +structures O +compatible O +with O +high-density O +packaging O +solutions O +. O + + +A O +T-line O +resonator S-APPL +is O +characterized O +to O +understand O +the O +transmission S-CHAR +line O +losses O +associated O +with O +the O +vertical S-CONPRI +bends O +. O + + +Details O +of O +the O +simulation S-ENAT +, O +fabrication S-MANP +, O +and O +measurements O +are O +presented O +. O + + +Simulations S-ENAT +are O +carried O +out O +using O +ANSYS S-APPL +High-Frequency O +Structure S-CONPRI +Simulator O +( O +HFSS® O +) O +, O +and O +structures O +are O +fabricated S-CONPRI +using O +a O +polyjet S-CONPRI +printing O +process S-CONPRI +. O + + +The O +measured O +results O +are O +in O +good O +agreement O +with O +the O +simulation S-ENAT +results O +, O +and O +overall O +a O +good O +performance S-CONPRI +is O +achieved O +for O +all O +the O +antenna O +designs S-FEAT +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +is O +the O +most O +prominent O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +for O +metal S-MATE +part O +production S-MANP +. O + + +Among O +the O +high O +number O +of O +factors O +influencing O +part O +quality S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +, O +the O +inter O +layer S-PARA +time O +( O +ILT O +) O +between O +iterative O +melting S-MANP +of O +volume S-CONPRI +elements S-MATE +in O +subsequent O +layers O +is O +almost O +completely O +unappreciated O +in O +the O +relevant O +literature O +on O +L-PBF S-MANP +. O + + +This O +study O +investigates S-CONPRI +the O +effect O +of O +ILT O +with O +respect O +to O +build B-PARA +height E-PARA +and O +under O +distinct O +levels O +of O +volumetric O +energy B-PARA +density E-PARA +( O +VED O +) O +using O +the O +example O +of O +316L B-MATE +stainless I-MATE +steel E-MATE +. O + + +In-situ S-CONPRI +thermography O +is O +used O +to O +gather O +information O +on O +cooling S-MANP +conditions O +during O +the O +process S-CONPRI +, O +which O +is O +followed O +by O +an O +extensive O +metallographic O +analysis O +. O + + +Significant O +effects O +of O +ILT O +and O +build B-PARA +height E-PARA +on O +heat B-PRO +accumulation E-PRO +, O +sub-grain B-PARA +sizes E-PARA +, O +melt B-MATE +pool E-MATE +geometries S-CONPRI +and O +hardness S-PRO +are O +presented O +. O + + +Furthermore O +, O +the O +rise O +of O +defect S-CONPRI +densities O +can O +be S-MATE +attributed O +to O +a O +mutual O +interplay O +of O +build B-PARA +height E-PARA +and O +ILT O +. O + + +Hence O +, O +ILT O +has O +been O +identified O +as S-MATE +a O +crucial O +factor O +for O +L-PBF S-MANP +of O +real O +part O +components S-MACEQ +especially O +for O +those O +with O +small O +cross B-CONPRI +sections E-CONPRI +. O + + +Crack-free O +nickel-based O +single O +crystal O +superalloy O +samples S-CONPRI +were O +fabricated S-CONPRI +via O +directed B-MANP +energy I-MANP +deposition E-MANP +. O + + +Hot B-CONPRI +cracking E-CONPRI +occurred O +at O +high-angle O +grain B-CONPRI +boundaries E-CONPRI +and O +especially O +at O +low-angle O +grain B-CONPRI +boundaries E-CONPRI +. O + + +The O +existence O +conditions O +of O +the O +liquid O +film O +for O +hot B-CONPRI +cracking E-CONPRI +in O +CMSX-10 O +are O +calculated O +with O +analysis O +models O +. O + + +The O +hot B-CONPRI +cracking E-CONPRI +mechanism O +is O +related O +to O +the O +stability S-PRO +of O +liquid O +film O +, O +stress B-CHAR +concentration E-CHAR +and O +Re-rich O +precipitations O +. O + + +Hot B-CONPRI +cracking E-CONPRI +is O +a O +frequent O +and O +severe O +defect S-CONPRI +that O +occurs O +during O +the O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +of O +single-crystal O +superalloys S-MATE +. O + + +Understanding O +the O +cracking S-CONPRI +behavior O +and O +mechanism S-CONPRI +is O +key O +to O +avoiding O +these O +defects S-CONPRI +. O + + +Hot B-CONPRI +cracking E-CONPRI +occurred O +at O +high-angle O +grain B-CONPRI +boundaries E-CONPRI +and O +especially O +at O +low-angle O +grain B-CONPRI +boundaries E-CONPRI +. O + + +Hot B-CONPRI +cracking E-CONPRI +was O +determined O +to O +be S-MATE +caused O +by O +a O +stable O +liquid O +film O +, O +stress B-CHAR +concentration E-CHAR +, O +and O +Re-rich O +precipitates S-MATE +. O + + +The O +stability S-PRO +of O +the O +liquid O +film O +depended O +on O +dendrite S-BIOP +coalescence O +undercooling O +which O +was O +related O +to O +the O +misorientation O +angle O +. O + + +The O +dendrite S-BIOP +coalescence O +undercooling O +at O +low-angle O +grain B-CONPRI +boundary E-CONPRI +( O +misorientation O +angle O +6.9° O +) O +was O +178 O +K S-MATE +, O +which O +was O +far O +higher O +than O +the O +vulnerable O +temperature S-PARA +interval O +38 O +K S-MATE +for O +hot B-CONPRI +cracking E-CONPRI +within O +a O +single O +dendrite S-BIOP +. O + + +Stress B-CHAR +concentration E-CHAR +provided O +the O +driving O +force S-CONPRI +for O +crack O +initiation O +and O +propagation O +. O + + +Re-rich O +precipitates S-MATE +promoted O +crack O +initiation O +by O +a O +pinning O +effect O +on O +the O +liquid O +feed S-PARA +. O + + +These O +findings O +provide O +technical O +support S-APPL +for O +achieving O +high-quality O +additive B-MANP +manufacturing E-MANP +and O +repair O +of O +non-weldable O +Ni-based O +single-crystal O +superalloys S-MATE +. O + + +LMDed O +Ti-Mo O +alloy S-MATE +, O +from O +elemental O +powder S-MATE +mixture O +, O +presents O +an O +almost O +defect-free O +feature S-FEAT +. O + + +Phase S-CONPRI +transition O +from O +α O +to O +β O +appears O +as S-MATE +results O +of O +in-situ S-CONPRI +thermal O +cycling O +. O + + +Textural O +density S-PRO +of O +α O +phase S-CONPRI +increases O +significantly O +, O +given O +to O +the O +in-situ S-CONPRI +thermal O +cycling O +. O + + +The O +LMDed O +Ti-Mo O +present O +a O +graded O +tensile B-PRO +property E-PRO +. O + + +In O +this O +work O +, O +almost O +dense O +( O +over O +99.8 O +% O +) O +Ti-Mo O +alloy S-MATE +samples O +were O +manufactured S-CONPRI +by O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +from O +a O +mixture O +of O +pure O +Ti S-MATE +and O +pure O +Mo S-MATE +( O +7.5 O +wt. O +% O +) O +powders S-MATE +. O + + +As S-MATE +a O +consequence O +of O +thermal O +accumulation O +and O +in-situ B-CONPRI +heat E-CONPRI +treating O +during O +the O +DED S-MANP +process O +, O +as-deposited O +samples S-CONPRI +present O +a O +graded B-FEAT +microstructure E-FEAT +along O +the O +building B-PARA +direction E-PARA +along O +with O +a O +phase S-CONPRI +transition O +from O +hcp-α O +Ti S-MATE +to O +bbc-β O +Ti S-MATE +. O + + +Mechanical B-CONPRI +properties E-CONPRI +were O +determined O +by O +tensile B-CHAR +tests E-CHAR +from O +flat O +samples S-CONPRI +harvested O +at O +different O +altitude O +positions O +. O + + +As S-MATE +altitude O +increases O +from O +the O +base O +plate O +, O +yield B-PRO +strength E-PRO +decreases O +from O +681 O +MPa S-CONPRI +to O +579 O +MPa S-CONPRI +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +from O +791 O +MPa S-CONPRI +to O +686 O +MPa S-CONPRI +. O + + +Elongation S-PRO +of O +the O +as-deposited O +material S-MATE +increases O +from O +10 O +% O +to O +25 O +% O +while O +the O +Young O +’ O +s S-MATE +modulus O +keeps O +a O +low O +value O +of O +105 O +GPa S-PRO +for O +the O +entire O +DEDed O +sample S-CONPRI +. O + + +AM B-MACEQ +parts E-MACEQ +are O +fabricated S-CONPRI +with O +intentional O +inhomogeneities O +to O +create O +codes O +. O + + +The O +controlled O +and O +random O +process S-CONPRI +variation O +ensures O +a O +unique O +material S-MATE +structure O +. O + + +The O +L-PBF S-MANP +approach O +creates O +random O +pores S-PRO +by O +a O +reduced O +volume S-CONPRI +energy B-PARA +density E-PARA +. O + + +The O +L-DED O +approach O +utilizes O +the O +different O +magnetic O +permeability S-PRO +of O +two O +materials S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +technologies O +enable O +various O +possibilities O +to O +create O +and O +modify O +the O +material S-MATE +composition S-CONPRI +and O +structure S-CONPRI +on O +a O +local O +level O +, O +but O +are O +often O +prone O +to O +undesired O +defects S-CONPRI +and O +inhomogeneities O +. O + + +By O +controlled O +and O +random O +process S-CONPRI +variation O +, O +unique O +codes O +that O +can O +be S-MATE +read O +and O +authenticated O +by O +an O +eddy O +current O +device O +were O +produced O +with O +the O +processes S-CONPRI +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +and O +laser B-MANP +directed I-MANP +energy I-MANP +deposition E-MANP +( O +L-DED O +) O +. O + + +Two O +approaches O +are O +presented O +: O +First O +, O +volumetric O +, O +porous S-PRO +structures O +with O +a O +defined O +shape O +are O +manufactured S-CONPRI +with O +L-PBF S-MANP +. O + + +Second O +, O +coatings S-APPL +are O +fabricated S-CONPRI +by O +L-DED O +with O +alternating O +process B-CONPRI +parameters E-CONPRI +, O +leading O +to O +local O +deviations O +of O +the O +magnetic O +permeability S-PRO +. O + + +Counterfeiting O +becomes O +impossible O +due O +to O +the O +irreproducible O +melt B-MATE +pool E-MATE +dynamics O +. O + + +Laser-induced O +forward O +transfer O +( O +LIFT O +) O +, O +a O +3D S-CONPRI +additive O +manufacturing S-MANP +technique O +is O +implemented O +to O +fabricate S-MANP +a O +fully O +metallic S-MATE +functional O +micro O +device O +. O + + +Digital O +deposition S-CONPRI +of O +both O +structural O +and O +sacrificial O +metal S-MATE +constituents O +in O +the O +same O +setup O +arrangement O +is O +achieved O +. O + + +The O +final O +free-standing O +structure S-CONPRI +is O +released O +by O +selective O +chemical O +wet O +etching S-MANP +of O +the O +support B-MATE +material E-MATE +. O + + +Using O +this O +approach O +, O +a O +chevron-type O +electro O +thermal O +micro-actuator O +made O +of O +gold S-MATE +was O +successfully O +fabricated S-CONPRI +and O +its O +functionality O +was O +shown O +in O +experiment S-CONPRI +. O + + +Comparison O +of O +the O +measured O +responses O +with O +the O +model S-CONPRI +predictions O +indicates O +that O +the O +thermal B-PRO +conductivity E-PRO +of O +printed O +Au S-MATE +is O +approximately O +8 O +times O +lower O +than O +the O +bulk O +value O +. O + + +It O +is O +a O +first O +demonstration O +of O +a O +functional O +micron S-FEAT +scale O +actuator S-MACEQ +printed O +using O +LIFT O +. O + + +In O +this O +paper O +, O +a O +predictive B-CONPRI +model E-CONPRI +based O +on O +a O +cellular O +automaton O +( O +CA S-MATE +) O +-finite O +element S-MATE +( O +FE S-MATE +) O +method O +has O +been O +developed O +to O +simulate O +thermal O +history O +and O +microstructure B-CONPRI +evolution E-CONPRI +during O +metal S-MATE +solidification O +for O +a O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +process O +. O + + +The O +macroscopic S-CONPRI +FE S-MATE +calculation O +was O +designed S-FEAT +to O +update O +the O +temperature S-PARA +field O +and O +simulate O +a O +high O +cooling B-PARA +rate E-PARA +. O + + +In O +the O +microscopic O +CA S-MATE +model O +, O +heterogeneous B-CONPRI +nucleation E-CONPRI +sites O +, O +preferential O +growth O +orientation S-CONPRI +, O +and O +dendritic O +grain B-CONPRI +growth E-CONPRI +were O +simulated O +. O + + +The O +CA S-MATE +model O +was O +able O +to O +show O +the O +entrapment O +of O +neighboring O +cells S-APPL +and O +the O +relationship O +between O +undercooling O +and O +the O +grain B-CONPRI +growth E-CONPRI +rate O +. O + + +The O +model S-CONPRI +predicted O +the O +dendritic O +grain B-PRO +size E-PRO +, O +and O +morphological O +evolution S-CONPRI +during O +the O +solidification B-CONPRI +phase E-CONPRI +of O +the O +deposition B-MANP +process E-MANP +. O + + +The O +grain S-CONPRI +morphology O +result O +has O +been O +validated O +by O +the O +experiment S-CONPRI +. O + + +SLM S-MANP +process S-CONPRI +was O +optimized O +via O +polynomial O +regression B-CONPRI +model E-CONPRI +. O + + +Remelting O +step S-CONPRI +between O +SLM S-MANP +scans O +led S-APPL +to O +homogenization S-MANP +of O +the O +metal B-MATE +powders E-MATE +. O + + +Si S-MATE +addition O +increased O +the O +tensile B-PRO +strength E-PRO +while O +maintaining O +the O +ductility S-PRO +. O + + +Interaction O +between O +dislocation S-CONPRI +loops O +with O +dislocations S-CONPRI +strengthened O +the O +alloy S-MATE +. O + + +Effect O +of O +solid B-MATE +solution E-MATE +and O +dislocation S-CONPRI +loop O +on O +yield B-PRO +strength E-PRO +were O +quantified O +. O + + +To O +widen O +the O +applications O +of O +new O +materials S-CONPRI +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +the O +traditional O +method O +of O +printing O +using O +pre-alloyed O +powders S-MATE +should O +be S-MATE +improved O +because O +the O +pre-alloying O +process S-CONPRI +is O +expensive O +and O +makes O +it O +difficult O +to O +adjust O +the O +composition S-CONPRI +of O +new O +materials S-CONPRI +. O + + +This O +study O +investigates S-CONPRI +the O +synthesis O +of O +a O +FeCoCrNi O +high-entropy O +alloy S-MATE +( O +HEA O +) O +containing O +1.5 O +at. O +% O +Si S-MATE +in B-CONPRI +situ E-CONPRI +using O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +. O + + +A O +remelting O +strategy O +and O +process B-CONPRI +optimization E-CONPRI +based O +on O +polynomial O +regression S-CONPRI +modeling S-ENAT +allowed O +for O +the O +printing O +of O +almost O +fully B-PARA +dense E-PARA +( O +99.78 O +% O +) O +samples S-CONPRI +. O + + +The O +samples S-CONPRI +comprised O +columnar B-PRO +grains E-PRO +, O +each O +containing O +numerous O +subgrains S-CONPRI +of O +a O +single-phase O +face-centered O +cubic O +solid B-MATE +solution E-MATE +. O + + +No O +precipitation S-CONPRI +or O +segregation S-CONPRI +were O +observed O +. O + + +The O +room O +temperature S-PARA +tensile O +properties S-CONPRI +of O +the O +samples S-CONPRI +were O +excellent O +, O +with O +yields O +and O +tensile B-PRO +strengths E-PRO +reaching O +701 O +± O +14 O +and O +907 O +± O +25 O +MPa S-CONPRI +, O +respectively O +, O +and O +an O +elongation S-PRO +at O +fracture S-CONPRI +of O +30.8 O +± O +2 O +% O +. O + + +These O +properties S-CONPRI +were O +attributed O +to O +solid B-MATE +solution E-MATE +strengthening O +and O +novel O +dislocation S-CONPRI +loop O +strengthening B-CONPRI +mechanism E-CONPRI +. O + + +These O +findings O +demonstrate O +that O +HEAs O +with O +a O +high O +relative B-PRO +density E-PRO +and O +good O +mechanical B-CONPRI +properties E-CONPRI +can O +be S-MATE +directly O +synthesized O +by O +SLM S-MANP +using O +inexpensive O +pure B-MATE +metal E-MATE +powders S-MATE +, O +thereby O +extending O +the O +application O +potential O +of O +AM S-MANP +to O +manufacture S-CONPRI +new O +materials S-CONPRI +. O + + +This O +paper O +presents O +a O +new O +approach O +for O +modelling S-ENAT +additive B-MANP +layer I-MANP +manufacturing E-MANP +at O +component S-MACEQ +scale O +. O + + +The O +approach O +is O +applied O +to O +powder-bed O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +and O +validated O +, O +where O +the O +mechanical B-CONPRI +behaviour E-CONPRI +of O +macro-scale O +industrial S-APPL +components S-MACEQ +has O +been O +predicted S-CONPRI +and O +compared O +with O +experimental S-CONPRI +results O +. O + + +The O +novelty O +of O +the O +approach O +is O +based O +on O +using O +a O +calibrated S-CONPRI +analytical O +thermal O +model S-CONPRI +to O +derive O +functions O +that O +are O +implemented O +in O +a O +structural O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +. O + + +The O +induced O +distortion S-CONPRI +in O +SLM S-MANP +has O +been O +compensated O +for O +by O +modifying O +the O +initial O +geometry S-CONPRI +using O +FE S-MATE +predicted O +distortion S-CONPRI +. O + + +A O +newly O +developed O +distortion B-PARA +compensation E-PARA +method O +, O +based O +on O +optical S-CHAR +3D S-CONPRI +scan O +measurements O +, O +has O +also O +been O +implemented O +. O + + +The O +two O +distortion B-PARA +compensation E-PARA +methods O +have O +been O +experimentally B-CONPRI +validated E-CONPRI +. O + + +In O +summary O +, O +the O +research S-CONPRI +presented O +in O +this O +paper O +shows O +that O +the O +mitigation O +of O +distortion S-CONPRI +in O +SLM S-MANP +is O +now O +possible O +on O +industrial S-APPL +macro-scale O +components S-MACEQ +. O + + +This O +paper O +reports O +on O +X-ray B-CHAR +tomography E-CHAR +of O +a O +series O +of O +coupon O +samples S-CONPRI +( O +5 O +mm S-MANP +cubes O +) O +produced O +under O +different O +process B-CONPRI +parameters E-CONPRI +, O +for O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +of O +Ti6Al4V S-MATE +. O + + +Different O +process B-CONPRI +parameters E-CONPRI +result O +in O +different O +pore S-PRO +formation O +mechanisms O +, O +each O +with O +characteristic O +pore B-PARA +sizes E-PARA +, O +shapes O +and O +locations O +within O +the O +5 O +mm S-MANP +cube S-CONPRI +samples O +. O + + +While O +keyhole O +pores S-PRO +, O +lack O +of O +fusion S-CONPRI +pores O +and O +metallurgical S-APPL +pores O +have O +been O +previously O +identified O +and O +illustrated O +using O +X-ray B-CHAR +tomography E-CHAR +, O +this O +work O +extends O +beyond O +prior O +work O +to O +show O +how O +each O +of O +these O +not O +only O +exist O +in O +extreme O +situations O +but O +how O +they O +vary O +in O +size O +and O +shape O +in O +the O +transition S-CONPRI +regimes O +. O + + +It O +is O +shown O +how O +keyhole O +mode O +porosity S-PRO +increases O +gradually O +with O +increasing O +power S-PARA +, O +and O +how O +this O +depends O +on O +the O +scan B-PARA +speed E-PARA +. O + + +Similarly O +, O +lack O +of O +fusion S-CONPRI +pores O +are O +shown O +to O +occur O +following O +scan O +tracks O +in O +situations O +of O +poor O +hatch O +overlap S-CONPRI +, O +or O +a O +similar O +but O +different O +distribution S-CONPRI +of O +lack O +of O +fusion S-CONPRI +porosity O +due O +to O +large O +layer B-PARA +height E-PARA +spacing O +, O +showing O +respectively O +vertical S-CONPRI +and O +horizontal O +lack O +of O +fusion S-CONPRI +pore O +morphologies S-CONPRI +. O + + +Insights O +from O +3D B-CONPRI +images E-CONPRI +allow O +improvements O +in O +parameter S-CONPRI +choices O +for O +optimized O +density S-PRO +of O +parts O +produced O +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +, O +and O +generally O +allow O +a O +better O +understanding O +of O +the O +porosity S-PRO +present O +in O +additively B-MANP +manufactured E-MANP +parts O +. O + + +This O +work O +investigates S-CONPRI +an O +additive B-MANP +manufacturing E-MANP +route O +of O +producing O +functional O +net O +shaped O +parts O +from O +pre-alloyed O +magnetic O +shape-memory O +Ni-Mn-Ga O +powders S-MATE +. O + + +Three O +types O +of O +Ni-Mn-Ga O +powders S-MATE +were O +used O +in O +this O +investigation O +: O +spark O +eroded O +in O +liquid O +nitrogen S-MATE +( O +LN2 O +) O +, O +spark O +eroded O +in O +liquid O +argon S-MATE +( O +LAr O +) O +, O +and O +ball O +milled S-MANP +( O +BM S-MATE +) O +. O + + +Additive B-MANP +manufacturing E-MANP +via O +powder B-MANP +bed I-MANP +binder I-MANP +jetting E-MANP +, O +also O +known O +as S-MATE +3D B-MANP +printing E-MANP +( O +3DP S-MANP +) O +, O +was O +used O +in O +this O +research S-CONPRI +due O +to O +both O +relatively O +easy O +control O +of O +part O +porosity S-PRO +and O +the O +possibility O +to O +obtain O +complex O +shaped O +parts O +from O +Ni-Mn-Ga O +alloys S-MATE +. O + + +The O +four-dimension O +( O +4D S-CONPRI +) O +is O +created O +by O +the O +predictable S-CONPRI +change O +in O +3D B-APPL +printed I-APPL +part E-APPL +configuration O +over O +time O +as S-MATE +the O +result O +of O +shape-memory O +functionality O +. O + + +Binder B-MANP +jetting E-MANP +of O +Ni-Mn-Ga O +powders S-MATE +followed O +by O +curing S-MANP +and O +sintering S-MANP +proved O +successful O +in O +producing O +net O +shaped O +porous S-PRO +structures O +( O +spring-like O +, O +3-D S-CONPRI +hierarchical O +lattice B-FEAT +structures E-FEAT +, O +etc O +. O + + +) O +with O +good O +mechanical B-PRO +strength E-PRO +. O + + +Parts O +with O +porosities S-PRO +between O +24.08 O +% O +and O +73.43 O +% O +have O +been O +obtained O +by O +using O +powders S-MATE +with O +distinct O +morphologies S-CONPRI +. O + + +Thermo-magneto-mechanical O +trained O +3D B-APPL +printed I-APPL +parts E-APPL +obtained O +from O +ball O +milled S-MANP +Ni-Mn-Ga O +powders S-MATE +showed O +reversible O +magnetic-field-induced O +strains O +( O +MFISs O +) O +of O +up O +to O +0.01 O +% O +. O + + +The O +additive B-MANP +manufacturing E-MANP +is O +a O +viable O +technology S-CONPRI +in O +solving O +the O +design S-FEAT +issues O +of O +functional O +parts O +made O +of O +Ni-Mn-Ga O +magnetic O +shape-memory O +alloys S-MATE +( O +MSMA O +) O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +are O +capable O +of O +fabricating S-MANP +custom O +parts O +with O +complex O +geometrical O +shapes O +in O +a O +short O +period O +of O +time O +relative O +to O +traditional O +fabrication S-MANP +processes O +that O +require O +expensive O +tooling S-CONPRI +and O +several O +post B-CONPRI +processing E-CONPRI +steps O +. O + + +Material B-MANP +extrusion I-MANP +AM E-MANP +, O +known O +commercially O +as S-MATE +Fused O +Filament S-MATE +Fabrication S-MANP +( O +FFF S-MANP +) O +technology S-CONPRI +, O +is O +a O +widely O +used O +polymer S-MATE +AM B-MANP +process E-MANP +, O +however O +, O +the O +effects O +of O +inherent O +porosity S-PRO +on O +mechanical B-PRO +strength E-PRO +continues O +to O +be S-MATE +researched O +to O +identify O +strength S-PRO +improvement O +solutions O +. O + + +To O +address O +the O +effect O +of O +porosity S-PRO +and O +layer S-PARA +adhesion S-PRO +on O +mechanical B-CONPRI +properties E-CONPRI +( O +which O +can O +sometimes O +result O +in O +27–35 O +% O +lower O +ultimate B-PRO +tensile I-PRO +strength E-PRO +when O +compared O +to O +plastic B-MANP +injection I-MANP +molding E-MANP +) O +, O +an O +approach O +was O +employed O +to O +reinforce O +3D B-MANP +printed E-MANP +polycarbonate O +( O +PC S-MATE +) O +parts O +with O +continuous B-MATE +carbon I-MATE +fiber E-MATE +( O +CF O +) O +bundles O +. O + + +Results O +demonstrated O +a O +maximum O +of O +77 O +% O +increase O +in O +tensile S-PRO +yield O +strength S-PRO +when O +PC S-MATE +was O +reinforced S-CONPRI +with O +three O +CF O +bundles O +and O +micrographs O +showed O +multiple O +regions O +with O +zero O +porosity S-PRO +due O +to O +the O +CF O +inclusion S-MATE +. O + + +PC S-MATE +with O +three O +bundles O +of O +CF O +( O +modulus O +of O +3.36 O +GPa S-PRO +) O +showed O +85 O +% O +higher O +modulus B-PRO +of I-PRO +elasticity E-PRO +than O +the O +neat O +PC S-MATE +specimens O +( O +modulus O +of O +1.82 O +GPa S-PRO +) O +. O + + +The O +manual O +placement O +of O +CF O +and O +its O +impact S-CONPRI +on O +mechanical B-CONPRI +properties E-CONPRI +motivated O +the O +development O +of O +an O +automated O +selective O +deposition S-CONPRI +method O +using O +an O +ultrasonic O +embedding O +apparatus O +. O + + +Substantial O +technology S-CONPRI +development O +towards O +the O +embedding O +process S-CONPRI +of O +continuous B-MATE +carbon I-MATE +fiber E-MATE +bundles O +using O +ultrasonic O +energy O +was O +achieved O +in O +an O +automated O +fashion S-CONPRI +which O +is O +complementary O +of O +digital B-MANP +manufacturing E-MANP +and O +novel O +when O +compared O +to O +other O +existing O +processes S-CONPRI +. O + + +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS™ O +) O +is O +a O +commercially O +available O +additive B-MANP +manufacturing E-MANP +technique O +that O +was O +used O +for O +one O +step S-CONPRI +manufacturing S-MANP +of O +bimetallic O +structures O +of O +stainless B-MATE +steel E-MATE +and O +Ti6Al4V S-MATE +( O +Ti64 S-MATE +) O +alloy S-MATE +. O + + +In O +the O +first O +approach O +, O +direct O +deposition S-CONPRI +of O +Ti64 S-MATE +on O +SS410 O +substrate S-MATE +and O +compositionally O +graded O +bimetallic O +structures O +were O +attempted O +without O +any O +intermediate O +bond O +layer S-PARA +. O + + +In O +the O +second O +approach O +, O +an O +intermediate O +NiCr O +bond O +layer S-PARA +( O +of O +thickness O +∼750 O +μm O +) O +was O +deposited O +to O +minimize O +thermal O +and O +residual B-PRO +stresses E-PRO +for O +these O +bimetallic O +structures O +. O + + +Direct O +deposition S-CONPRI +of O +Ti64 S-MATE +was O +successful O +only O +for O +a O +couple O +of O +layers O +before O +the O +structures O +were O +delaminated O +. O + + +Compositionally O +graded O +bonding S-CONPRI +was O +unsuccessful O +with O +the O +formation O +of O +brittle S-PRO +intermetallics O +and O +related O +residual B-PRO +stresses E-PRO +causing O +delamination S-CONPRI +. O + + +Using O +an O +intermediate O +NiCr O +layer S-PARA +, O +bimetallic O +structures O +were O +successfully O +fabricated S-CONPRI +. O + + +Our O +work O +is O +focused O +on O +LENS™ O +based O +processing O +approach O +and O +related O +microstructural B-CONPRI +evolution E-CONPRI +towards O +bimetallic O +structures O +. O + + +Residual B-PRO +stresses E-PRO +are O +measured O +for O +different O +deposition S-CONPRI +patterns O +. O + + +The O +evolution S-CONPRI +of O +residual B-PRO +stresses E-PRO +and O +distortions O +are O +modelled O +in O +3D S-CONPRI +. O + + +The O +effect O +of O +convective O +flow O +inside O +the O +molten B-CONPRI +pool E-CONPRI +are O +examined O +. O + + +Susceptibilities O +to O +delamination S-CONPRI +& O +warping S-CONPRI +of O +Ti-6Al-4V S-MATE +& O +Inconel B-MATE +718 E-MATE +are O +examined O +. O + + +Since O +the O +deposition S-CONPRI +patterns O +affect O +the O +stresses O +and O +distortions O +, O +we O +examined O +their O +effects O +on O +multi-layer O +wire B-MANP +arc I-MANP +additive I-MANP +manufacturing E-MANP +( O +WAAM S-MANP +) O +of O +Ti-6Al-4V S-MATE +and O +Inconel B-MATE +718 E-MATE +components S-MACEQ +experimentally O +and O +theoretically O +. O + + +We O +measured O +residual B-PRO +stresses E-PRO +by O +hole B-MANP +drilling E-MANP +method O +in O +three O +identical O +components S-MACEQ +printed O +using O +different O +deposition S-CONPRI +patterns O +. O + + +In O +order O +to O +understand O +the O +origin O +and O +the O +temporal O +evolution S-CONPRI +of O +residual B-PRO +stresses E-PRO +and O +distortion S-CONPRI +, O +we O +used O +a O +well-tested O +thermo-mechanical B-CONPRI +model E-CONPRI +after O +validating O +the O +computed O +results O +with O +experimental B-CONPRI +data E-CONPRI +for O +different O +deposition S-CONPRI +patterns O +. O + + +Distortions O +were O +also O +examined O +based O +on O +non-dimensional O +analysis.We O +show O +that O +printing O +with O +short O +track O +lengths O +can O +minimize O +residual B-PRO +stresses E-PRO +and O +distortion S-CONPRI +among O +the O +three O +patterns O +investigated O +for O +both O +alloys S-MATE +. O + + +Both O +Ti-6Al-4V S-MATE +and O +Inconel B-MATE +718 E-MATE +had O +similar O +fusion B-CONPRI +zone E-CONPRI +shape O +and O +size O +and O +were O +equally O +susceptible O +to O +deformation S-CONPRI +and O +warping S-CONPRI +, O +although O +Ti-6Al-4V S-MATE +was O +relatively O +less O +vulnerable O +to O +delamination S-CONPRI +due O +to O +its O +higher O +yield B-PRO +strength E-PRO +. O + + +A O +dimensionless O +strain S-PRO +parameter S-CONPRI +accurately S-CHAR +predicted O +the O +effects O +of O +WAAM S-MANP +parameters S-CONPRI +on O +distortion S-CONPRI +and O +this O +approach O +is O +especially O +useful O +when O +the O +detailed O +thermo-mechanical S-CONPRI +calculations O +can O +not O +be S-MATE +undertaken O +. O + + +The O +present O +work O +aims O +to O +investigate O +the O +mechanism S-CONPRI +of O +crack O +initiation O +induced O +by O +internal O +pores S-PRO +, O +which O +are O +inevitable O +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +and O +the O +influence O +of O +internal O +pores S-PRO +on O +the O +fatigue S-PRO +performance O +of O +directed O +energy O +deposited O +( O +DED S-MANP +) O +Ti-6.5Al-2Zr-Mo-V. O +After O +fatigue B-CHAR +test E-CHAR +under O +constant O +amplitude O +alternating O +stress S-PRO +at O +three O +stress S-PRO +levels O +, O +thirty-one O +pieces O +of O +DED S-MANP +Ti-6.5Al-2Zr-Mo-V O +specimens O +were O +found O +that O +cracks O +initiating O +from O +internal O +pores S-PRO +. O + + +Scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +and O +its O +accessories O +, O +such O +as S-MATE +energy O +dispersive O +spectrometry O +( O +EDS S-CHAR +) O +and O +electron O +backscattered O +diffraction S-CHAR +( O +EBSD S-CHAR +) O +, O +were O +used O +to O +analyze O +the O +characteristics O +of O +pore S-PRO +defects S-CONPRI +and O +clarify O +the O +mechanism S-CONPRI +of O +crack O +initiation O +. O + + +The O +results O +show O +that O +the O +specificity O +of O +the O +microstructure S-CONPRI +affected O +by O +the O +DED S-MANP +process O +and O +pore S-PRO +defects S-CONPRI +, O +such O +as S-MATE +segregation O +of O +Al S-MATE +and O +the O +existence O +of O +incomplete O +grain B-CONPRI +boundaries E-CONPRI +, O +are O +the O +main O +causes O +of O +crack O +initiation O +. O + + +Then O +, O +the O +crack O +initiation O +modes O +were O +divided O +into O +three O +types O +, O +and O +a O +classification S-CONPRI +model O +was O +established O +that O +can O +make O +the O +effect O +of O +pore S-PRO +defects S-CONPRI +on O +fatigue B-PRO +life E-PRO +clearer O +and O +more O +intuitive O +. O + + +The O +current O +study O +presents O +low O +cost O +3D B-MANP +printed E-MANP +materials O +with O +desired O +electrical S-APPL +charactrestics O +for O +RF/microwave O +applications O +. O + + +In O +contrast O +to O +the O +traditional B-MANP +manufacturing E-MANP +techniques O +of O +fabrication S-MANP +in O +electronics S-CONPRI +, O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +proper O +technology S-CONPRI +for O +making O +parts O +with O +more O +advanced O +complex O +features O +. O + + +In O +this O +study O +, O +different O +3D B-MANP +printed E-MANP +configurations O +( O +infill S-PARA +density S-PRO +and O +pattern S-CONPRI +) O +of O +materials S-CONPRI +were O +printed O +with O +Fused B-MANP +Deposition I-MANP +Modeling E-MANP +( O +FDM S-MANP +) O +technique O +to O +achieve O +different O +electrical S-APPL +characteristics O +, O +which O +is O +used O +in O +design S-FEAT +and O +fabrication S-MANP +of O +RF/microwave O +structures O +. O + + +By O +different O +filling O +configurations O +, O +a O +range S-PARA +of O +relative O +permittivity O +has O +been O +obtained O +by O +using O +Nylon S-MATE +6 O +as S-MATE +an O +input O +filament S-MATE +for O +3D B-MANP +printing E-MANP +. O + + +In O +fact O +, O +by O +use O +of O +a O +known O +material S-MATE +such O +as S-MATE +Nylon O +6 O +, O +complex B-CONPRI +geometries E-CONPRI +can O +be S-MATE +3D B-MANP +printed E-MANP +with O +different O +dielectric S-MACEQ +behavior O +. O + + +Mechanical B-CONPRI +properties E-CONPRI +of O +the O +structures O +were O +investigated O +in O +order O +to O +estimate O +the O +quality S-CONPRI +of O +the O +3D B-APPL +printed I-APPL +parts E-APPL +in O +electronics S-CONPRI +’ O +industry S-APPL +. O + + +Considering O +these O +properties S-CONPRI +has O +direct O +influence O +on O +decision O +making O +through O +the O +design S-FEAT +of O +a O +3D B-CONPRI +structure E-CONPRI +with O +required O +electrical S-APPL +characteristics O +, O +while O +the O +mechanical B-CONPRI +properties E-CONPRI +are O +also O +considered O +. O + + +Binder B-MANP +jetting E-MANP +, O +a O +commercial O +additive B-MANP +manufacturing I-MANP +process E-MANP +that O +selectively O +deposits O +a O +liquid B-MATE +binder E-MATE +onto O +a O +powder B-MACEQ +bed E-MACEQ +, O +can O +become O +a O +viable O +method O +to O +additively B-MANP +manufacture E-MANP +ceramics O +. O + + +part O +density S-PRO +and O +geometric O +resolution S-PARA +) O +have O +not O +been O +investigated O +and O +no O +methodical O +approach O +exists O +for O +the O +process S-CONPRI +development O +of O +new O +materials S-CONPRI +. O + + +In O +this O +work O +, O +a O +parametric O +study O +consisting O +of O +18 O +experiments O +with O +unique O +process S-CONPRI +input O +combinations O +explores O +the O +influence O +of O +seven O +process S-CONPRI +inputs O +on O +the O +relative B-PRO +densities E-PRO +of O +as-printed O +( O +green O +) O +alumina S-MATE +( O +Al2O3 S-MATE +) O +parts O +. O + + +Sensitivity B-CONPRI +analyses E-CONPRI +compare O +the O +influence O +of O +each O +input O +on O +green O +densities O +. O + + +Multivariable O +linear O +and O +Gaussian S-CONPRI +process O +regressions O +provide O +models O +for O +predicting O +green O +densities O +as S-MATE +a O +function O +of O +binder B-MANP +jetting E-MANP +process O +inputs O +. O + + +The O +multivariable O +linear O +and O +Gaussian S-CONPRI +process O +regression B-CONPRI +models E-CONPRI +indicate O +that O +the O +green O +densities O +of O +alumina S-MATE +builds O +can O +be S-MATE +increased O +by O +decreasing O +the O +recoat O +speed O +and O +increasing O +the O +oscillator O +speed O +. O + + +The O +Gaussian S-CONPRI +process O +regression B-CONPRI +model E-CONPRI +further O +suggests O +that O +the O +green O +densities O +have O +nonlinear O +dependence O +on O +the O +rest O +of O +the O +process B-CONPRI +parameters E-CONPRI +. O + + +The O +models O +produced O +can O +assist O +operators O +in O +selecting O +process S-CONPRI +inputs O +that O +will O +result O +in O +a O +desired O +green O +density S-PRO +, O +allowing O +for O +the O +control O +of O +porosity S-PRO +in O +printed O +parts O +with O +a O +high O +degree O +of O +accuracy S-CHAR +. O + + +The O +methodology S-CONPRI +reported O +in O +this O +study O +can O +be S-MATE +leveraged O +for O +other O +powder S-MATE +systems O +and O +machines S-MACEQ +to O +predict O +and O +control O +the O +porosity S-PRO +of O +binder S-MATE +jetted O +parts O +for O +applications O +such O +as S-MATE +filters O +, O +bearings O +, O +electronics S-CONPRI +, O +and O +medical B-APPL +implants E-APPL +. O + + +Electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +has O +emerged O +as S-MATE +an O +important O +additive B-MANP +manufacturing E-MANP +technique O +. O + + +In O +this O +study O +, O +Alloy S-MATE +718 O +produced O +by O +EBM S-MANP +was O +investigated O +in O +as-built O +and O +post-treated O +conditions O +for O +microstructural S-CONPRI +characteristics O +and O +hardness S-PRO +. O + + +The O +post-treatments O +investigated O +were O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +and O +combined O +HIP S-MANP ++ O +heat B-MANP +treatment E-MANP +( O +HIP S-MANP ++ O +HT O +) O +carried O +out O +as S-MATE +a O +single O +cycle O +inside O +the O +HIP S-MANP +vessel O +. O + + +Both O +the O +post-treatments O +resulted O +in O +significant O +decrease O +in O +defects S-CONPRI +inevitably O +present O +in O +the O +as-built O +material S-MATE +. O + + +The O +columnar B-PRO +grain E-PRO +structure O +of O +the O +as-built O +material S-MATE +was O +found O +to O +be S-MATE +maintained O +after O +post-treatment S-MANP +, O +with O +some O +sporadic O +localized O +grain S-CONPRI +coarsening O +noted O +. O + + +Although O +HIP S-MANP +led O +to O +complete O +dissolution O +of O +δ O +and O +γ′′ O +phase S-CONPRI +, O +stable O +NbC O +and O +TiN S-MATE +( O +occasionally O +present O +) O +particles S-CONPRI +were O +observed O +in O +the O +post-treated O +specimens O +. O + + +Significant O +precipitation S-CONPRI +of O +γ′′ O +phase S-CONPRI +was O +observed O +after O +HIP S-MANP ++ O +HT O +, O +which O +was O +attributed O +to O +the O +two-step O +aging O +heat B-MANP +treatment E-MANP +carried O +out O +during O +HIP S-MANP ++ O +HT O +. O + + +The O +presence O +of O +γ′′ O +phase S-CONPRI +or O +otherwise O +was O +correlated S-CONPRI +to O +the O +hardness S-PRO +of O +the O +material S-MATE +. O + + +While O +the O +HIP S-MANP +treatment O +resulted O +in O +drop O +in O +hardness S-PRO +, O +HIP S-MANP ++ O +HT O +led S-APPL +to O +‘ O +recovery O +’ O +of O +the O +hardness S-PRO +to O +values O +exceeding O +those O +exhibited O +by O +the O +as-built O +material S-MATE +. O + + +The O +cold O +spray O +has O +been O +shown O +to O +be S-MATE +one O +of O +the O +promising O +additive B-MANP +manufacturing E-MANP +technologies O +to O +process S-CONPRI +Ultra O +High O +Molecular O +Weight S-PARA +Polyethylene S-MATE +( O +UHMWPE O +) O +-metal O +integrated O +systems O +by O +successfully O +being O +able O +to O +coat O +UHMWPE O +on O +metals S-MATE +using O +fumed O +nano-alumina O +( O +FNA O +) O +as S-MATE +UHMWPE O +particle S-CONPRI +surface O +modifiers O +. O + + +However O +, O +the O +exact O +mechanism S-CONPRI +of O +UHMWPE O +deposition S-CONPRI +and O +role O +of O +FNA O +was O +widely O +unknown O +. O + + +This O +study O +aims O +at O +identifying O +the O +fundamental O +parameters S-CONPRI +involved O +in O +high O +strain-rate O +UHMWPE O +deposition S-CONPRI +and O +their O +role O +in O +successful O +adhesion S-PRO +by O +a O +technique O +called O +Isolated O +Particle S-CONPRI +Deposition S-CONPRI +( O +IPD O +) O +. O + + +Major O +parameters S-CONPRI +that O +influenced O +the O +UHMWPE O +deposition S-CONPRI +efficiency O +significantly O +were O +the O +particle S-CONPRI +temperature O +and O +velocity O +and O +net O +surface S-CONPRI +activity O +of O +FNA O +. O + + +The O +stored O +elastic S-PRO +energy O +of O +UHMWPE O +decreases O +with O +increase O +in O +temperature S-PARA +, O +and O +the O +deposition S-CONPRI +criterion O +for O +a O +successful O +UHMWPE O +deposition S-CONPRI +is O +not O +to O +have O +net O +stored O +elastic S-PRO +energy O +after O +impact S-CONPRI +. O + + +Effect O +of O +FNA O +was O +seen O +in O +generating O +H-bonds O +that O +helped O +to O +establish O +bridge S-APPL +bond O +at O +UHMWPE-substrate O +interface S-CONPRI +. O + + +Innovative O +fabrication S-MANP +of O +a O +< O +NiCrAlY-IN625 O +> O +system O +by O +SLM S-MANP +was O +demonstrated O +. O + + +Several O +criteria O +were O +used O +to O +select O +the O +most O +appropriate O +SLM S-MANP +process S-CONPRI +conditions O +. O + + +As-built O +coatings S-APPL +exhibited O +significant O +dilution O +characteristic O +of O +SLM S-MANP +remelting O +. O + + +Laser B-PARA +power E-PARA +P O += O +250 O +W O +and O +scanning B-PARA +speed E-PARA +v O += O +800 O +mm/s O +were O +found O +optimal O +. O + + +The O +present O +study O +investigated O +for O +the O +first O +time O +the O +feasibility S-CONPRI +of O +producing O +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +a O +NiCrAlY O +bond B-APPL +coat E-APPL +material O +directly O +onto O +an O +IN625 O +substrate S-MATE +itself O +produced O +by O +SLM S-MANP +. O + + +A O +typical O +parameters B-CONPRI +optimization E-CONPRI +was O +conducted O +by O +varying O +laser B-PARA +power E-PARA +( O +P S-MATE +) O +and O +scanning B-PARA +speed E-PARA +( O +v S-MATE +) O +. O + + +Single-line O +scanning S-CONPRI +tracks O +and O +two-layer O +coatings S-APPL +were O +carried O +out O +and O +analyzed O +for O +15 O +different O +P/v O +conditions O +. O + + +Several O +criteria O +were O +defined O +for O +the O +selection O +of O +appropriate O +SLM S-MANP +parameters S-CONPRI +. O + + +The O +results O +showed O +significant O +remelting O +of O +the O +underlying O +substrate S-MATE +, O +which O +is O +a O +typical O +feature S-FEAT +of O +SLM B-MANP +manufacturing E-MANP +. O + + +This O +led S-APPL +to O +the O +formation O +of O +an O +intermediate O +dilution O +zone O +characterized O +by O +substantial O +mixing S-CONPRI +between O +IN625 O +superalloy O +substrate S-MATE +and O +NiCrAlY O +bond B-APPL +coat E-APPL +suggesting O +excellent O +metallurgical B-CONPRI +bonding E-CONPRI +. O + + +Optimum O +processing O +conditions O +were O +found O +for O +P S-MATE += O +250 O +W O +and O +v S-MATE += O +800 O +mm/s O +. O + + +It O +produced O +a O +dense O +242 O +μm O +thick O +bond B-APPL +coat E-APPL +including O +a O +36 O +% O +dilution O +zone O +. O + + +The O +SLMed S-MANP +< O +NiCrAlY-IN625 O +> O +system O +exhibited O +a O +smooth O +microhardness S-CONPRI +profile O +slightly O +increasing O +from O +275 O +Hv O +in O +the O +bond B-APPL +coat E-APPL +to O +305 O +Hv O +in O +the O +substrate S-MATE +. O + + +A O +progressive O +Al S-MATE +concentration O +distribution S-CONPRI +between O +the O +phases O +and O +low O +residual B-PRO +stress E-PRO +levels O +were O +found O +in O +the O +system O +. O + + +This O +suggested O +that O +SLM S-MANP +might O +be S-MATE +a O +valuable O +alternative O +manufacturing B-MANP +process E-MANP +for O +bond B-APPL +coat E-APPL +systems O +promoting O +excellent O +adhesion S-PRO +for O +high O +temperature S-PARA +applications O +. O + + +Coupling O +3D S-CONPRI +Discrete O +Element S-MATE +and O +Monte O +Carlo O +Ray O +tracing O +methods O +to O +simulate O +the O +laser S-ENAT +polymer O +interaction O +. O + + +Multiphysics O +coupling O +: O +conductive O +and O +radiative O +heat B-CONPRI +transfers E-CONPRI +with O +scattering O +, O +phase S-CONPRI +changes O +, O +coalescence O +, O +air O +diffusion S-CONPRI +, O +in O +participating O +granular O +medium O +. O + + +Application O +to O +additive B-MANP +manufacturing I-MANP +process E-MANP +. O + + +3D S-CONPRI +Numerical O +and O +experimental S-CONPRI +validations O +. O + + +A O +numerical O +framework S-CONPRI +based O +on O +a O +modified O +Monte O +Carlo O +ray-tracing O +method O +and O +the O +Discrete B-CONPRI +Element I-CONPRI +Method E-CONPRI +( O +DEM O +) O +is O +developed O +to O +predict O +the O +physical O +behavior O +of O +discrete O +particles S-CONPRI +during O +the O +Powder B-MANP +Bed I-MANP +Fusion E-MANP +( O +SLS S-MANP +) O +process S-CONPRI +. O + + +A O +comprehensive O +model S-CONPRI +coupling O +all O +major O +aspects O +of O +the O +underlying O +physics S-CONPRI +and O +the O +corresponding O +numerical O +framework S-CONPRI +, O +accounting O +for O +radiative O +heat B-CONPRI +transfer E-CONPRI +, O +heat B-CONPRI +conduction E-CONPRI +, O +sintering S-MANP +and O +granular O +dynamics O +among O +others O +, O +is O +developed O +. O + + +The O +spatially O +and O +temporally O +varying O +distribution S-CONPRI +of O +heat S-CONPRI +and O +displacement O +within O +the O +additively B-MANP +manufactured E-MANP +object O +are O +captured O +in O +detail O +. O + + +The O +model S-CONPRI +is O +validated O +through O +the O +comparison O +of O +simulated O +results O +with O +existing O +experimental S-CONPRI +results O +in O +the O +literature O +. O + + +Inconsistent O +part O +quality S-CONPRI +is O +a O +challenge O +to O +the O +widespread O +adoption O +of O +powder-bed O +fusion S-CONPRI +additive B-MANP +manufacturing E-MANP +. O + + +Previous O +efforts O +to O +monitor S-CONPRI +the O +PBF S-MANP +process O +in B-CONPRI +situ E-CONPRI +have O +been O +mostly O +limited O +to O +single O +tracks O +. O + + +The O +lack O +of O +quantitative S-CONPRI +, O +in B-CONPRI +situ E-CONPRI +monitoring O +results O +from O +full O +3D S-CONPRI +PBF O +builds S-CHAR +remains O +a O +barrier O +to O +closed-loop B-MACEQ +control E-MACEQ +. O + + +We O +track O +morphology S-CONPRI +in B-CONPRI +situ E-CONPRI +using O +coherent O +imaging S-APPL +, O +providing O +an O +immediate O +check O +on O +surface B-PRO +roughness E-PRO +, O +recoater B-MACEQ +blade E-MACEQ +damage S-PRO +, O +and O +powder S-MATE +packing O +density S-PRO +. O + + +Defects S-CONPRI +are O +corrected O +through O +manual O +closed-loop B-MACEQ +control E-MACEQ +; O +protrusions O +and O +depressions O +identified O +by O +in B-CONPRI +situ E-CONPRI +imaging S-APPL +are O +compensated O +through O +laser B-MANP +ablation E-MANP +and O +refilling O +, O +respectively O +, O +during O +a O +3D S-CONPRI +build O +. O + + +Maximum O +surface B-PRO +roughness E-PRO +is O +reduced O +by O +54 O +% O +and O +the O +number B-PARA +of I-PARA +layers E-PARA +with O +increased O +surface B-PRO +roughness E-PRO +relative O +to O +the O +steady-state O +value O +is O +reduced O +by O +60 O +% O +. O + + +Manual O +closed-loop B-MACEQ +control E-MACEQ +, O +successfully O +achieved O +using O +coherent O +imaging S-APPL +of O +PBF S-MANP +layer S-PARA +morphology O +, O +is O +an O +important O +step S-CONPRI +towards O +full O +feedback S-PARA +control O +capabilities O +. O + + +Laser S-ENAT +direct O +deposition S-CONPRI +model O +simulates O +thermal O +behavior O +in O +Ti6Al4V S-MATE +depositions O +. O + + +Cellular O +automaton O +model S-CONPRI +predicts O +the O +solidification S-CONPRI +and O +distribution S-CONPRI +of O +β O +grains S-CONPRI +. O + + +Phase S-CONPRI +prediction O +model S-CONPRI +simulates O +the O +solid-state B-CONPRI +phase E-CONPRI +transformation O +of O +β→α/α O +’ O +. O + + +Microhardness S-CONPRI +was O +assessed O +based O +on O +the O +predicted S-CONPRI +volume O +fraction S-CONPRI +of O +α O +’ O +. O + + +Simulation S-ENAT +results O +were O +validated O +with O +experimental B-CONPRI +data E-CONPRI +in O +good O +agreement O +. O + + +In O +this O +paper O +, O +a O +multiphysics O +and O +multiscale O +integrated O +simulation S-ENAT +framework S-CONPRI +is O +established O +to O +link O +the O +thermal O +history O +with O +the O +microstructural B-CONPRI +evolution E-CONPRI +and O +resulting O +properties S-CONPRI +of O +Ti6Al4V S-MATE +in O +additive B-MANP +manufacturing I-MANP +processes E-MANP +by O +combining O +: O +( O +1 O +) O +a O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +multiphysics O +modeling S-ENAT +of O +quasi-steady-state O +deposition S-CONPRI +geometry O +and O +thermal O +history O +in O +the O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +process S-CONPRI +, O +( O +2 O +) O +a O +3D S-CONPRI +cellular O +automata O +modeling S-ENAT +of O +the O +solidification B-CONPRI +grain E-CONPRI +structure O +, O +and O +( O +3 O +) O +a O +diffusion/diffusionless O +kinetic O +modeling S-ENAT +of O +solid-state B-CONPRI +phase E-CONPRI +transformation O +and O +microhardness S-CONPRI +prediction O +based O +on O +the O +simulated O +phase S-CONPRI +volume O +fractions O +. O + + +By O +applying O +to O +Ti6Al4V S-MATE +, O +this O +integrated O +simulation S-ENAT +framework S-CONPRI +demonstrates O +its O +feasibility S-CONPRI +in O +modeling S-ENAT +complex O +microstructural B-CONPRI +evolution E-CONPRI +and O +phase S-CONPRI +transformation O +during O +the O +multi-track O +DED S-MANP +process O +. O + + +The O +simulated O +track O +geometry S-CONPRI +and O +thermal O +history O +agree O +well O +with O +experimental S-CONPRI +results O +. O + + +Coupled O +with O +the O +extracted S-CONPRI +temperature O +profiles S-FEAT +and O +heating/cooling O +rates O +, O +the O +competitive O +growth O +of O +β O +grains S-CONPRI +upon O +solidification S-CONPRI +of O +the O +molten B-CONPRI +pool E-CONPRI +is O +successfully O +predicted S-CONPRI +. O + + +The O +solid-state S-CONPRI +β→α/α´ O +transformation O +in O +the O +fusion B-CONPRI +zone E-CONPRI +and O +heat-affected O +zone O +is O +then O +captured O +by O +the O +kinetic O +solid-state B-CONPRI +phase I-CONPRI +prediction I-CONPRI +model E-CONPRI +. O + + +With O +the O +predicted S-CONPRI +volume O +fractions O +of O +α O +and O +α´ O +in O +the O +final O +microstructure S-CONPRI +, O +the O +microhardness S-CONPRI +is O +assessed O +, O +matching O +the O +experimental S-CONPRI +measurements O +. O + + +Laser B-MANP +sintering E-MANP +( O +LS O +) O +, O +as S-MATE +an O +additive B-MANP +manufacturing I-MANP +process E-MANP +for O +production S-MANP +of O +polymer S-MATE +structures O +, O +provides O +the O +possibility O +of O +directly O +manufacturing S-MANP +personalized O +, O +structural O +motorcycle O +components S-MACEQ +for O +motor O +sports O +. O + + +To O +create O +such O +lightweight B-MACEQ +structures E-MACEQ +, O +the O +wall B-FEAT +thickness E-FEAT +and O +position O +limits S-CONPRI +of O +the O +LS O +systems O +need O +to O +be S-MATE +investigated O +in O +detail O +. O + + +Appearing O +process-related O +flaws S-CONPRI +such O +as S-MATE +different O +amounts O +of O +crystallinity O +, O +surface B-PRO +roughness E-PRO +, O +and O +defects S-CONPRI +such O +as S-MATE +pores O +exhibit O +dimensions S-FEAT +similar O +to O +the O +wall B-FEAT +thickness E-FEAT +. O + + +To O +study O +the O +process-related O +effects O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +450 O +tensile B-CHAR +test E-CHAR +specimens O +in O +z-direction S-FEAT +, O +the O +build B-PARA +areas E-PARA +of O +two O +LS O +systems O +were O +screened O +and O +a O +detailed O +wall B-FEAT +thickness E-FEAT +investigation O +was O +conducted O +. O + + +In O +addition O +, O +dynamic B-CONPRI +mechanical I-CONPRI +analysis E-CONPRI +, O +differential O +scanning S-CONPRI +calorimetry O +, O +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +for O +several O +wall B-FEAT +thicknesses E-FEAT +similar O +to O +the O +spot B-PARA +size E-PARA +were O +conducted O +. O + + +The O +investigations O +showed O +that O +the O +Young O +'s O +moduli O +and O +ultimate B-PRO +tensile I-PRO +strengths E-PRO +of O +the O +produced O +specimens O +of O +the O +two O +commercial O +EOS S-APPL +systems O +, O +P396 O +and O +P770 O +, O +are O +similar O +and O +evenly O +distributed O +. O + + +Furthermore O +, O +structures O +with O +a O +thickness O +below O +1 O +mm S-MANP +showed O +distinctive O +losses O +in O +stiffness S-PRO +, O +ultimate B-PRO +tensile I-PRO +strength E-PRO +, O +and O +elongation S-PRO +at O +break O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +an O +additive B-MANP +manufacturing E-MANP +and O +3D B-ENAT +printing I-ENAT +technology E-ENAT +which O +offers O +flexibility S-PRO +in O +geometric O +design S-FEAT +and O +rapid O +production S-MANP +of O +complex B-CONPRI +structures E-CONPRI +. O + + +Maraging B-MATE +steels E-MATE +have O +high O +strength S-PRO +and O +good O +ductility S-PRO +, O +and O +therefore O +have O +been O +widely O +used O +in O +aerospace S-APPL +and O +tooling S-CONPRI +sectors O +for O +many O +years O +. O + + +This O +work O +aims O +to O +study O +the O +influence O +of O +aging O +temperature S-PARA +and O +aging O +time O +on O +the O +microstructure S-CONPRI +, O +mechanical B-CONPRI +property E-CONPRI +( O +hardness S-PRO +, O +strength S-PRO +and O +ductility S-PRO +) O +and O +tribological B-CONPRI +property E-CONPRI +of O +SLM S-MANP +maraging S-MANP +18Ni-300 O +steel S-MATE +. O + + +The O +results O +reveal O +that O +the O +aging O +conditions O +had O +a O +significant O +impact S-CONPRI +on O +the O +strength S-PRO +and O +wear-resistance O +of O +the O +SLM S-MANP +maraging B-MATE +steel E-MATE +. O + + +The O +optimal O +aging O +conditions O +for O +the O +SLM S-MANP +maraging B-MATE +steel E-MATE +produced O +in O +this O +work O +were O +490 O +°C O +for O +3 O +h O +under O +which O +strength S-PRO +and O +wear-resistance O +were O +maximised O +. O + + +Lower O +or O +higher O +aging O +temperature S-PARA +led S-APPL +to O +under-aging O +or O +over-aging O +phenomena O +, O +reducing O +the O +strength S-PRO +and O +wear-resistance O +performance S-CONPRI +. O + + +Shorter O +or O +longer O +aging O +time O +also O +resulted O +in O +the O +decrease O +of O +strength S-PRO +and O +wear-resistance O +performance S-CONPRI +of O +the O +SLM S-MANP +maraging B-MATE +steel E-MATE +as S-MATE +compared O +with O +the O +optimal O +conditions O +. O + + +The O +variation S-CONPRI +of O +the O +mechanical S-APPL +and O +tribological B-CONPRI +properties E-CONPRI +is O +primarily O +due O +to O +changes O +in O +phase B-CONPRI +compositions E-CONPRI +and O +microstructures S-MATE +of O +the O +SLM S-MANP +maraging B-MATE +steels E-MATE +. O + + +The O +integration O +of O +novel O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +materials S-CONPRI +and O +processes S-CONPRI +with O +traditional O +materials S-CONPRI +and O +manufacturing S-MANP +techniques O +, O +including O +the O +insertion O +of O +commercial O +off-the-shelf O +( O +COTS O +) O +components S-MACEQ +such O +as S-MATE +resistors O +, O +switches O +, O +batteries O +and O +light B-APPL +emitting I-APPL +diodes E-APPL +( O +LEDs S-APPL +) O +, O +has O +led S-APPL +to O +the O +development O +of O +increasingly O +complex O +‘ O +hybrid O +’ O +electronics S-CONPRI +including O +: O +antennas O +, O +waveguides O +, O +radio B-CONPRI +frequency E-CONPRI +identification O +( O +RFID O +) O +tags O +, O +various O +sensors S-MACEQ +, O +circuits O +and O +devices O +. O + + +Here O +we O +examine O +the O +resiliency O +and O +radio B-CONPRI +frequency E-CONPRI +( O +RF O +) O +performance S-CONPRI +of O +two O +commercially O +available O +conductive O +inks O +( O +DuPont O +CB028 O +and O +KA801 O +) O +printed O +onto O +a O +radar O +transparent S-CONPRI +substrate S-MATE +( O +poly O +ether O +, O +ether O +ketone O +; O +PEEK S-MATE +) O +. O + + +The O +quality S-CONPRI +of O +ink S-MATE +adhesion S-PRO +, O +a O +factor O +found O +to O +directly O +correlate O +with O +antenna O +performance S-CONPRI +, O +is O +examined O +via O +adhesion S-PRO +testing O +after O +exposure S-CONPRI +to O +high O +accelerations O +up O +to O +20,000 O +g O +and O +temperature S-PARA +cycling O +from O +−54 O +°C O +to O ++71 O +°C O +. O + + +Overall O +, O +the O +designs S-FEAT +, O +procedures O +and O +results O +provide O +a O +framework S-CONPRI +for O +multi-materials O +resiliency O +assessment O +as S-MATE +well O +as S-MATE +aspects O +unique O +to O +materials S-CONPRI +resiliency O +under O +harsh O +environmental O +conditions O +. O + + +Lattice B-FEAT +structures E-FEAT +have O +been O +intensively O +researched O +for O +their O +light-weight S-PRO +properties O +and O +unique O +functions O +in O +specific O +applications O +such O +as S-MATE +for O +impact S-CONPRI +protection O +and O +biomedical-implant O +. O + + +The O +advancement O +of O +additive B-MANP +manufacturing E-MANP +simplifies O +the O +fabrication S-MANP +of O +lattice B-FEAT +structures E-FEAT +as S-MATE +opposed O +to O +conventional B-MANP +manufacturing E-MANP +and O +this O +opens O +doors O +to O +create O +more O +designs S-FEAT +. O + + +There O +are O +ample O +research S-CONPRI +opportunities O +to O +explore O +the O +mechanical S-APPL +performance O +of O +the O +lattice B-FEAT +structures E-FEAT +fabricated S-CONPRI +by O +this O +technology S-CONPRI +specific O +to O +each O +design S-FEAT +. O + + +This O +study O +filled O +the O +research S-CONPRI +gap O +by O +investigating O +the O +deformation S-CONPRI +behaviour O +and O +compressive O +properties S-CONPRI +of O +Ti-6Al-4V S-MATE +lattice B-FEAT +structures E-FEAT +fabricated S-CONPRI +by O +a O +powder B-MANP +bed I-MANP +fusion E-MANP +method O +from O +the O +aspects O +of O +design S-FEAT +, O +orientation S-CONPRI +and O +density S-PRO +. O + + +The O +results O +were O +compared O +between O +cubic O +and O +honeycomb S-CONPRI +unit O +designs S-FEAT +, O +between O +two O +orientations S-CONPRI +and O +across O +five O +different O +densities O +. O + + +Results O +showed O +that O +both O +cubic O +and O +honeycomb S-CONPRI +lattice O +deformed S-MANP +in O +a O +layer-by-layer S-CONPRI +manner O +for O +the O +first O +tested O +orientation S-CONPRI +, O +where O +vertical S-CONPRI +struts S-MACEQ +were O +parallel O +to O +the O +compression S-PRO +direction O +. O + + +In O +the O +second O +tested O +orientation S-CONPRI +, O +where O +lattice S-CONPRI +struts O +were O +angled O +with O +respect O +to O +the O +direction O +of O +compression S-PRO +, O +the O +deformation S-CONPRI +behaviour O +was O +observed O +as S-MATE +a O +single O +diagonal O +shear O +band O +. O + + +As S-MATE +the O +density S-PRO +of O +the O +structure S-CONPRI +increased O +, O +the O +deformation S-CONPRI +pattern O +shifted O +towards O +diagonal O +crack O +similar O +to O +a O +solid O +part O +. O + + +Honeycomb S-CONPRI +lattice O +structure S-CONPRI +had O +the O +highest O +density S-PRO +efficiency O +for O +energy B-CHAR +absorption E-CHAR +in O +both O +orientations S-CONPRI +and O +for O +first O +maximum O +compressive B-PRO +strength E-PRO +in O +the O +second O +orientation S-CONPRI +. O + + +Change O +of O +orientation S-CONPRI +significantly O +affected O +the O +efficiency O +in O +plateau O +stress S-PRO +for O +cubic O +lattice B-FEAT +structure E-FEAT +, O +and O +compressive O +property S-CONPRI +values O +for O +honeycomb S-CONPRI +lattice O +structure S-CONPRI +. O + + +Comparative O +studies O +showed O +that O +the O +first O +maximum O +compressive B-PRO +strength E-PRO +and O +energy B-CHAR +absorption E-CHAR +of O +the O +lattice B-FEAT +structures E-FEAT +in O +the O +first O +orientation S-CONPRI +were O +higher O +than O +most O +of O +the O +lattice B-FEAT +designs E-FEAT +from O +other O +literature O +. O + + +This O +paper O +describes O +a O +facile O +method O +to O +fabricate S-MANP +complex O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +antennas O +by O +vacuum O +filling O +gallium-based O +liquid B-MATE +metals E-MATE +into O +3D B-MANP +printed E-MANP +cavities O +at O +room O +temperature S-PARA +. O + + +To O +create O +the O +cavities O +, O +a O +commercial O +printer S-MACEQ +co-prints O +a O +sacrificial O +wax-like O +material S-MATE +with O +an O +acrylic S-MATE +resin O +. O + + +Dissolving O +the O +printed O +wax S-MATE +in O +oil S-MATE +creates O +cavities O +as S-MATE +small O +as S-MATE +500 O +μm O +within O +the O +acrylic S-MATE +monolith O +. O + + +Placing O +the O +entire O +structure S-CONPRI +under O +vacuum O +evacuates O +most O +of O +the O +air O +from O +these O +cavities O +through O +a O +reservoir O +of O +liquid B-MATE +metal E-MATE +that O +covers O +a O +single O +inlet S-MACEQ +. O + + +Returning O +the O +assembly S-MANP +to O +atmospheric O +pressure S-CONPRI +pushes O +the O +metal S-MATE +from O +the O +reservoir O +into O +the O +cavities O +due O +to O +the O +pressure S-CONPRI +differential O +. O + + +This O +method O +enables O +filling O +of O +the O +closed O +internal O +cavities O +to O +create O +planar O +and O +curved O +conductive O +3D B-FEAT +geometries E-FEAT +without O +leaving O +pockets O +of O +trapped O +air O +that O +lead S-MATE +to O +defects S-CONPRI +. O + + +An O +advantage O +of O +this O +technique O +is O +the O +ability O +to O +rapidly O +prototype B-CONPRI +3D E-CONPRI +embedded O +antennas O +and O +other O +microwave S-ENAT +components S-MACEQ +with O +metallic S-MATE +conductivity S-PRO +at O +room O +temperature S-PARA +using O +a O +simple S-MANP +process S-CONPRI +. O + + +Because O +the O +conductors S-MATE +are O +liquid O +, O +they O +also O +enable O +the O +possibility O +of O +manipulating O +the O +properties S-CONPRI +of O +such O +devices O +by O +flowing O +metal S-MATE +in O +or O +out O +of O +selected O +cavities O +. O + + +The O +measured O +electrical B-CONPRI +properties E-CONPRI +of O +fabricated S-CONPRI +devices O +match O +well O +to O +electromagnetic O +simulations S-ENAT +, O +indicating O +that O +the O +approach O +described O +here O +forms O +antenna O +geometries S-CONPRI +with O +high O +fidelity O +. O + + +Residual B-PRO +stresses E-PRO +and O +distortion S-CONPRI +in O +Additive B-MANP +Manufactured E-MANP +( O +AM S-MANP +) O +parts O +are O +two O +key O +obstacles O +which O +seriously O +hinder O +the O +wide O +application O +of O +this O +technology S-CONPRI +. O + + +Nowadays O +, O +understanding O +the O +thermomechanical S-CONPRI +behavior O +induced O +by O +the O +AM B-MANP +process E-MANP +is O +still O +a O +complex O +task O +which O +must O +take O +into O +account O +the O +effects O +of O +both O +the O +process S-CONPRI +and O +the O +material S-MATE +parameters O +, O +the O +microstructure B-CONPRI +evolution E-CONPRI +as S-MATE +well O +as S-MATE +the O +pre-heating O +strategy O +. O + + +One O +of O +the O +challenges O +of O +this O +work O +is O +to O +increase O +the O +complexity S-CONPRI +of O +the O +geometries S-CONPRI +used O +to O +study O +the O +thermomechanical S-CONPRI +behavior O +induced O +by O +the O +AM B-MANP +process E-MANP +. O + + +The O +samples S-CONPRI +have O +been O +fabricated S-CONPRI +by O +Directed B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +. O + + +In-situ S-CONPRI +thermal O +and O +distortion S-CONPRI +histories O +of O +the O +substrate S-MATE +are O +measured O +in O +order O +to O +calibrate O +the O +3D S-CONPRI +coupled O +thermo-mechanical B-CONPRI +model E-CONPRI +. O + + +Once O +the O +numerical O +results O +showed O +a O +good O +agreement O +with O +the O +temperature S-PARA +measurements O +, O +the O +validated O +model S-CONPRI +has O +been O +used O +to O +predict O +the O +residual B-PRO +stresses E-PRO +and O +distortions O +. O + + +Different O +process B-CONPRI +parameters E-CONPRI +have O +been O +analyzed O +to O +study O +their O +sensitivity S-PARA +to O +the O +process S-CONPRI +assessment O +. O + + +Different O +preheating S-MANP +strategies O +have O +been O +also O +analyzed O +to O +check O +their O +effectiveness S-CONPRI +on O +the O +mitigation O +of O +both O +distortions O +and O +residual B-PRO +stresses E-PRO +. O + + +Finally O +, O +some O +simplifications O +of O +the O +actual O +scanning S-CONPRI +sequence O +are O +proposed O +to O +reduce O +the O +computational O +cost O +without O +loss O +of O +the O +accuracy S-CHAR +of O +the O +simulation S-ENAT +framework S-CONPRI +. O + + +Laser-Powder O +Bed B-MANP +Fusion E-MANP +( O +L-PBF S-MANP +) O +, O +an O +additive B-MANP +manufacturing I-MANP +process E-MANP +, O +produces O +a O +distinctive O +microstructure S-CONPRI +that O +closely O +resembles O +the O +weld B-MATE +metal E-MATE +microstructure S-CONPRI +but O +at O +a O +much O +finer O +scale O +. O + + +The O +solidification B-CONPRI +parameters E-CONPRI +, O +particularly O +temperature B-PARA +gradient E-PARA +and O +solidification B-PARA +rate E-PARA +, O +are O +important O +to O +study O +the O +as-built O +microstructure S-CONPRI +. O + + +In O +the O +present O +study O +, O +a O +computational O +framework S-CONPRI +with O +meso-scale O +resolution S-PARA +is O +developed O +for O +L-PBF S-MANP +of O +Inconel® O +718 O +( O +IN718 S-MATE +) O +, O +a O +Ni-base O +superalloy O +. O + + +The O +framework S-CONPRI +combines O +a O +powder S-MATE +packing O +model S-CONPRI +based O +on O +Discrete B-CONPRI +Element I-CONPRI +Method E-CONPRI +and O +a O +3-D S-CONPRI +transient O +heat S-CONPRI +and O +fluid B-PRO +flow E-PRO +simulation O +. O + + +The O +latter O +, O +i.e. O +, O +the O +molten B-CONPRI +pool E-CONPRI +model S-CONPRI +, O +captures O +the O +interaction O +between O +laser B-CONPRI +beam E-CONPRI +and O +individual O +powder B-MATE +particles E-MATE +including O +free B-CONPRI +surface E-CONPRI +evolution S-CONPRI +, O +surface B-PRO +tension E-PRO +and O +evaporation S-CONPRI +. O + + +The O +solidification B-CONPRI +parameters E-CONPRI +, O +calculated O +from O +the O +temperature S-PARA +fields O +, O +are O +used O +to O +assess O +the O +solidification B-CONPRI +morphology E-CONPRI +and O +grain B-PRO +size E-PRO +using O +existing O +theoretical B-CONPRI +models E-CONPRI +. O + + +The O +IN718 S-MATE +coupon O +built O +by O +L-PBF S-MANP +are O +characterized O +using O +optical S-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopies E-CHAR +. O + + +The O +experimental B-CONPRI +data E-CONPRI +of O +molten B-CONPRI +pool E-CONPRI +size O +and O +solidification B-CONPRI +microstructure E-CONPRI +are O +compared O +to O +the O +corresponding O +simulation S-ENAT +results O +. O + + +Selective B-MANP +laser I-MANP +sintering E-MANP +, O +also O +called O +laser B-MANP +sintering E-MANP +( O +LS O +) O +, O +is O +an O +additive B-MANP +manufacturing I-MANP +process E-MANP +that O +requires O +micronized O +plastic S-MATE +powder O +. O + + +Recently O +, O +we O +showed O +poly O +( O +ethylene O +terephthalate O +( O +PET O +) O +powder S-MATE +is O +a O +suitable O +material S-MATE +for O +LS O +, O +with O +a O +comparable O +printing B-CONPRI +performance E-CONPRI +as S-MATE +the O +current O +front-runner O +, O +polyamide B-MATE +12 E-MATE +( O +PA12 S-MATE +) O +. O + + +However O +, O +the O +LS O +process S-CONPRI +, O +by O +its O +nature O +, O +leaves O +unused O +powder S-MATE +that O +has O +been O +exposed O +to O +heat S-CONPRI +for O +prolonged O +time O +, O +and O +this O +powder S-MATE +may O +not O +be S-MATE +fully O +re-usable O +due O +to O +degradation.In O +this O +work O +, O +the O +re-use O +potential O +of O +heat-exposed O +PET O +powder S-MATE +is O +established O +. O + + +This O +is O +a O +matter O +of O +crucial O +importance O +as S-MATE +powders O +suitable O +for O +LS O +are O +very O +expensive O +, O +and O +the O +powder S-MATE +left O +after O +a O +building O +episode O +has O +to O +be S-MATE +re-used O +. O + + +Heat-exposed O +PA12 S-MATE +has O +to O +be S-MATE +blended O +or O +refreshed O +with O +virgin B-MATE +powder E-MATE +, O +to O +avoid O +printing O +defects S-CONPRI +. O + + +In O +contrast O +, O +heat-exposed O +PET O +powder S-MATE +, O +after O +96 O +h O +at O +210 O +°C O +, O +could O +be S-MATE +used O +, O +without O +refreshing O +with O +a O +portion O +of O +virgin B-MATE +powder E-MATE +. O + + +The O +printed O +articles O +from O +heat-exposed O +powders S-MATE +were O +as S-MATE +good O +as S-MATE +those O +from O +the O +fresh O +powder S-MATE +. O + + +There O +was O +no O +cross-linking S-CONPRI +and O +there O +was O +only O +a O +minor O +increase O +in O +the O +molecular O +weight S-PARA +of O +the O +powder S-MATE +after O +96 O +h O +, O +at O +210 O +°C O +. O + + +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +is O +an O +increasingly O +used O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technique O +employed O +by O +many O +industrial B-CONPRI +sectors E-CONPRI +, O +including O +the O +medical B-APPL +device E-APPL +and O +aerospace B-APPL +industries E-APPL +. O + + +The O +application O +of O +this O +technology S-CONPRI +is O +, O +however O +, O +challenged O +by O +the O +lack O +of O +process B-CONPRI +monitoring E-CONPRI +and O +control B-MACEQ +system E-MACEQ +that O +underpins O +process S-CONPRI +repeatability O +and O +part O +quality S-CONPRI +reproducibility O +. O + + +An O +electronic O +imaging S-APPL +system O +prototype S-CONPRI +has O +been O +developed O +to O +serve O +as S-MATE +an O +EBM S-MANP +monitoring O +equipment S-MACEQ +, O +the O +capabilities O +of O +which O +have O +been O +verified O +at O +room O +temperature S-PARA +and O +at O +320 O +± O +10 O +°C O +. O + + +Nevertheless O +, O +in O +order O +to O +fully O +assess O +the O +applicability O +of O +this O +technique O +, O +electronic O +imaging S-APPL +needs O +to O +be S-MATE +conducted O +at O +a O +range S-PARA +of O +elevated O +temperatures S-PARA +to O +fully O +understand O +the O +influence O +of O +temperature S-PARA +on O +electronic O +image S-CONPRI +quality O +. O + + +Building O +on O +top O +of O +the O +previous O +electronic O +imaging S-APPL +trials O +at O +room O +temperature S-PARA +, O +this O +paper O +disseminates O +the O +essential O +step S-CONPRI +changes O +to O +allow O +high O +temperature S-PARA +electronic O +imaging S-APPL +: O +( O +1 O +) O +modification O +of O +a O +signal O +amplifier O +to O +deal O +with O +high O +electron B-CONPRI +beam E-CONPRI +current O +during O +electron B-CONPRI +beam I-CONPRI +heating E-CONPRI +, O +and O +( O +2 O +) O +design S-FEAT +of O +an O +open-source S-CONPRI +electron B-CONPRI +beam I-CONPRI +heating E-CONPRI +algorithm S-CONPRI +to O +maximise O +flexibility S-PRO +for O +user-defined O +heating S-MANP +strategy O +. O + + +In O +this O +paper O +, O +electronic O +imaging S-APPL +pilot O +trials O +at O +elevated O +temperatures S-PARA +, O +ranging O +from O +room O +temperature S-PARA +to O +650°C O +, O +were O +carried O +out O +. O + + +Image S-CONPRI +quality O +measure O +Q O +of O +the O +digital O +electron O +images S-CONPRI +was O +evaluated O +, O +and O +the O +influence O +of O +temperature S-PARA +was O +investigated O +. O + + +In O +this O +study O +, O +raw O +electronic O +images S-CONPRI +generated O +at O +higher O +temperatures S-PARA +had O +greater O +Q O +values O +, O +i.e O +. O + + +better O +global O +image S-CONPRI +quality O +. O + + +It O +has O +been O +demonstrated O +that O +, O +for O +temperatures S-PARA +between O +30°C-650°C O +, O +the O +influence O +of O +temperature S-PARA +on O +electronic O +image S-CONPRI +quality O +was O +not O +adversely O +affecting O +the O +visual O +clarity O +of O +image S-CONPRI +features O +. O + + +It O +is O +thus O +envisaged O +that O +the O +prototype S-CONPRI +has O +a O +potential O +to O +contribute O +to O +in-process O +EBM S-MANP +monitoring O +, O +and O +this O +paper O +has O +served O +as S-MATE +a O +crucial O +precursor S-MATE +to O +the O +ultimate O +goal O +of O +carrying O +out O +electronic O +imaging S-APPL +under O +real O +EBM S-MANP +building O +condition O +. O + + +Local O +microstructure S-CONPRI +control O +in O +electron B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +( O +EB-PBF O +) O +is O +of O +great O +interest O +to O +the O +additive B-MANP +manufacturing E-MANP +community O +to O +realize O +complex O +part O +geometry S-CONPRI +with O +targeted O +performance S-CONPRI +. O + + +The O +local O +microstructure S-CONPRI +control O +relies O +on O +having O +a O +detailed O +understanding O +of O +local O +melt B-MATE +pool E-MATE +physics O +( O +e.g. O +, O +3-D S-CONPRI +melt O +pool O +shape O +as S-MATE +well O +as S-MATE +spatial O +and O +temporal O +variations S-CONPRI +of O +thermal B-PARA +gradient E-PARA +( O +G O +) O +and O +solidification B-PARA +rate E-PARA +( O +R O +) O +) O +. O + + +In O +this O +research S-CONPRI +, O +a O +new O +scan O +strategy O +referred O +to O +as S-MATE +ghost O +beam S-MACEQ +is O +numerically O +evaluated O +as S-MATE +a O +candidate O +to O +achieve O +the O +targeted O +G O +and O +R O +of O +IN718 B-MATE +alloy E-MATE +. O + + +The O +boundary B-CONPRI +conditions E-CONPRI +for O +simulations S-ENAT +, O +including O +the O +speed O +( O +490 O +mm/s O +) O +and O +spatial O +locations O +of O +the O +beam S-MACEQ +within O +a O +given O +layer S-PARA +, O +are O +obtained O +by O +using O +series O +of O +snapshot O +images S-CONPRI +, O +recorded O +at O +12,000 O +frames O +per O +second O +, O +using O +a O +high-speed O +camera S-MACEQ +. O + + +The O +heat B-CONPRI +transfer E-CONPRI +simulations O +were O +performed O +using O +TRUCHAS O +an O +open-source S-CONPRI +software O +deployed O +within O +a O +high-performance O +computational O +infrastructure O +. O + + +The O +simulation S-ENAT +results O +showed O +that O +reheating O +at O +short O +beam S-MACEQ +on-time O +and O +time O +delay O +decreases O +both O +G O +and O +R. O +Local O +variation S-CONPRI +of O +R O +at O +the O +center O +of O +the O +melt B-MATE +pool E-MATE +trailing O +edge O +showed O +periodic O +temporal O +fluctuations O +. O + + +This O +paper O +introduces O +continuous O +lattice S-CONPRI +fabrication S-MANP +( O +CLF O +) O +– O +a O +novel O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technique O +invented O +for O +fiber-reinforced O +thermoplastic B-MATE +composites E-MATE +– O +and O +demonstrates O +its O +ability O +to O +exploit O +anisotropic B-PRO +material I-PRO +properties E-PRO +in O +digitally O +fabricated S-CONPRI +structures O +. O + + +In O +contrast O +to O +the O +layer-by-layer S-CONPRI +approaches O +employed O +in O +most O +AM B-MANP +processes E-MANP +, O +CLF O +enables O +the O +directed O +orientation S-CONPRI +of O +the O +fibers S-MATE +in O +all O +spatial O +coordinates S-PARA +, O +that O +is O +in O +the O +x- O +, O +y- O +, O +and O +z-directions O +. O + + +Based O +on O +a O +serial O +pultrusion S-MANP +and O +extrusion S-MANP +approach O +, O +CLF O +consolidates O +commingled O +yarns O +in B-CONPRI +situ E-CONPRI +and O +allows O +for O +the O +continuous O +deposition S-CONPRI +of O +high O +fiber S-MATE +volume O +fraction S-CONPRI +( O +> O +50 O +% O +) O +materials S-CONPRI +along O +a O +programmable O +trajectory O +without O +the O +use O +of O +molds S-MACEQ +or O +sacrificial O +layers O +by O +exploiting O +the O +high O +viscosities O +of O +fiber-filled O +polymer B-MATE +melts E-MATE +. O + + +The O +capacity S-CONPRI +of O +CLF O +to O +produce O +high-performance O +structural B-CONPRI +components E-CONPRI +is O +demonstrated O +in O +the O +fabrication S-MANP +of O +an O +ultra-lightweight O +load-bearing S-FEAT +lattice B-FEAT +structure E-FEAT +with O +outstanding O +stiffness-to-density O +and O +strength-to-density O +performance S-CONPRI +( O +compression S-PRO +modulus O +of O +13.23 O +MPa S-CONPRI +and O +compressive B-PRO +strength E-PRO +of O +0.20 O +MPa S-CONPRI +at O +a O +core S-MACEQ +density O +of O +9 O +mg/cm3 O +) O +. O + + +This O +digital B-MANP +fabrication E-MANP +method O +enables O +new O +approaches O +in O +load-tailored O +design S-FEAT +, O +including O +the O +possibility O +to O +build S-PARA +freeform O +structures O +, O +which O +have O +previously O +been O +overlooked O +due O +to O +difficulties O +and O +limitations O +in O +modern O +fiber B-MATE +composite E-MATE +manufacturing O +capabilities O +. O + + +Additive B-MANP +Manufacturing E-MANP +provides O +many O +advantages O +in O +reduced O +lead B-PARA +times E-PARA +and O +increased O +geometric B-CONPRI +freedom E-CONPRI +compared O +to O +traditional B-MANP +manufacturing E-MANP +methods O +, O +but O +material B-CONPRI +properties E-CONPRI +are O +often O +reduced O +. O + + +This O +paper O +considers O +powder B-MANP +bed I-MANP +fusion E-MANP +of O +polyamide B-MATE +12 E-MATE +( O +PA12 S-MATE +, O +Nylon S-MATE +12 O +) O +produced O +by O +three O +different O +processes S-CONPRI +: O +laser B-MANP +sintering E-MANP +( O +LS O +) O +, O +multijet O +fusion S-CONPRI +( O +MJF S-MANP +) O +/high O +speed O +sintering S-MANP +( O +HSS S-MATE +) O +, O +and O +large O +area S-PARA +projection O +sintering S-MANP +( O +LAPS S-CONPRI +) O +. O + + +While O +all O +utilize O +similar O +PA12 S-MATE +materials S-CONPRI +, O +they O +are O +found O +to O +differ O +significantly O +in O +mechanical B-CONPRI +properties E-CONPRI +especially O +in O +elongation S-PRO +to O +break O +. O + + +The O +slower O +heating S-MANP +methods O +( O +MJF/HSS O +and O +LAPS S-CONPRI +) O +produce O +large O +elongation S-PRO +at O +break O +with O +the O +LAPS S-CONPRI +process O +showing O +10x O +elongation S-PRO +and O +MJF/HSS O +exhibiting O +2.5x O +the O +elongation S-PRO +when O +compared O +to O +commercial O +LS O +samples S-CONPRI +. O + + +While O +there O +are O +small O +differences O +in O +crystallinity O +between O +these O +samples S-CONPRI +, O +the O +difference O +may O +be S-MATE +attributed O +to O +changes O +in O +the O +heating S-MANP +and O +cooling B-PARA +rates E-PARA +of O +the O +LAPS S-CONPRI +samples O +. O + + +The O +maximum O +inlet S-MACEQ +velocity O +of O +the O +filament S-MATE +is O +determined O +according O +to O +the O +process B-CONPRI +parameters E-CONPRI +. O + + +The O +velocity O +field O +, O +shear O +rate O +and O +viscosity S-PRO +in O +the O +nozzle S-MACEQ +were O +determined O +by O +analytical O +study O +and O +numerical B-ENAT +simulation E-ENAT +. O + + +The O +extrudate S-MATE +shape O +agrees O +with O +the O +numerical B-ENAT +simulation E-ENAT +: O +the O +extrudate S-MATE +undergoes O +severe O +deformation S-CONPRI +at O +high O +shear O +rate O +. O + + +Fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +is O +one O +of O +the O +various O +types O +of O +additive B-MANP +manufacturing I-MANP +processes E-MANP +. O + + +Similar O +to O +other O +types O +, O +FFF S-MANP +enables O +free-form O +fabrication S-MANP +and O +optimised O +structures O +by O +using O +polymeric O +filaments S-MATE +as S-MATE +the O +raw B-MATE +material E-MATE +. O + + +This O +work O +aims O +to O +optimise O +the O +printing O +conditions O +of O +the O +FFF S-MANP +process O +based O +on O +reliable O +properties S-CONPRI +, O +such O +as S-MATE +printing O +parameters S-CONPRI +and O +physical B-PRO +properties E-PRO +of O +polymers S-MATE +. O + + +The O +selected O +polymer S-MATE +is O +poly O +( O +lactic O +) O +acid O +( O +PLA S-MATE +) O +, O +which O +is O +a O +biodegradable O +thermoplastic S-MATE +polyester S-MATE +derived O +from O +corn O +starch S-BIOP +and O +is O +one O +of O +the O +most O +common O +polymers S-MATE +in O +the O +FFF S-MANP +process O +. O + + +Firstly O +, O +the O +maximum O +inlet S-MACEQ +velocity O +of O +the O +filament S-MATE +in O +the O +liquefier O +was O +empirically O +determined O +according O +to O +process B-CONPRI +parameters E-CONPRI +, O +such O +as S-MATE +feed O +rate O +, O +nozzle B-CONPRI +diameter E-CONPRI +and O +dimensions S-FEAT +of O +the O +deposited O +segment O +. O + + +Secondly O +, O +the O +rheological S-PRO +behaviour O +of O +the O +PLA S-MATE +, O +including O +the O +velocity O +field O +, O +shear O +rate O +and O +viscosity S-PRO +distribution S-CONPRI +in O +the O +nozzle S-MACEQ +, O +was O +determined O +via O +analytical O +study O +and O +numerical B-ENAT +simulation E-ENAT +. O + + +Our O +results O +indicated O +the O +variation S-CONPRI +in O +the O +shear O +rate O +according O +to O +the O +diameter S-CONPRI +of O +the O +nozzle S-MACEQ +and O +the O +inlet S-MACEQ +velocity O +. O + + +Finally O +, O +the O +distribution S-CONPRI +of O +the O +viscosity S-PRO +along O +the O +radius O +of O +the O +nozzle S-MACEQ +was O +obtained O +. O + + +At O +high O +inlet S-MACEQ +velocity O +, O +several O +defects S-CONPRI +appeared O +at O +the O +surface S-CONPRI +of O +the O +extrudates O +. O + + +The O +defects S-CONPRI +predicted O +via O +numerical B-ENAT +simulation E-ENAT +were O +reasonably O +consistent O +with O +that O +observed O +from O +an O +optical S-CHAR +microscope S-MACEQ +. O + + +nozzle B-CONPRI +diameter E-CONPRI +, O +feed S-PARA +rate O +and O +layer B-PARA +height E-PARA +) O +to O +improve O +the O +quality S-CONPRI +of O +the O +manufactured S-CONPRI +parts O +. O + + +Optimized O +LPBF S-MANP +gives O +AA7075 O +parts O +with O +density S-PRO +99.5 O +% O +, O +but O +containing O +hot O +cracks O +. O + + +Preventing O +cracking S-CONPRI +requires O +optimization S-CONPRI +of O +chemical B-CONPRI +composition E-CONPRI +of O +the O +powder S-MATE +. O + + +High O +isostatic B-MANP +pressing E-MANP +is O +not O +effective O +in O +healing O +long O +cracks O +. O + + +Solidification B-CHAR +cracks E-CHAR +are O +formed O +by O +the O +liquid O +film O +rupture O +mode O +. O + + +Silicon S-MATE +impurity S-PRO +appears O +to O +significantly O +increase O +stability S-PRO +of O +the O +liquid O +film O +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +is O +an O +attractive O +technology S-CONPRI +of O +manufacturing S-MANP +highstrength O +aluminium B-MATE +alloy E-MATE +parts O +for O +the O +aircraft O +and O +automobile S-APPL +industries O +, O +limited O +by O +poor O +processability O +of O +these O +alloys S-MATE +. O + + +This O +work O +was O +aimed O +at O +finding O +the O +process S-CONPRI +window O +for O +the O +LPBF S-MANP +manufacturing O +of O +defect-free O +components S-MACEQ +of O +AA7075 O +alloy S-MATE +. O + + +Optimization S-CONPRI +of O +the O +parameters S-CONPRI +was O +performed O +at O +each O +stage O +of O +the O +multi-stage O +research S-CONPRI +, O +i.e O +. O + + +At O +each O +stage O +, O +the O +relation O +between O +LPBF S-MANP +parameters O +and O +defect S-CONPRI +formation O +with O +a O +focus O +on O +hot B-CONPRI +cracking E-CONPRI +was O +investigated O +and O +discussed O +. O + + +Due O +to O +the O +optimization S-CONPRI +of O +process B-CONPRI +parameters E-CONPRI +, O +the O +density S-PRO +of O +volumetric O +specimens O +above O +99 O +% O +was O +reached O +and O +vaporization O +losses O +of O +the O +alloying B-MATE +elements E-MATE +were O +significantly O +reduced O +, O +but O +solidification B-CHAR +cracks E-CHAR +could O +not O +be S-MATE +eliminated O +. O + + +It O +was O +found O +that O +solidification B-CHAR +cracks E-CHAR +were O +formed O +by O +the O +liquid O +film O +rupture O +mode O +, O +mainly O +along O +columnar B-CONPRI +grain I-CONPRI +boundaries E-CONPRI +. O + + +The O +EDS S-CHAR +microanalysis O +showed O +intergranular O +microsegregation S-CONPRI +, O +not O +only O +of O +the O +main O +alloying B-MATE +elements E-MATE +( O +Zn S-MATE +, O +Mg S-MATE +, O +Cu S-MATE +) O +but O +also O +of O +minor O +elements S-MATE +such O +as S-MATE +Si O +. O + + +Silicon S-MATE +may O +play O +a O +significant O +role O +in O +increasing O +susceptibility S-PRO +to O +cracking S-CONPRI +by O +increasing O +the O +stability S-PRO +of O +the O +liquid O +film O +. O + + +Reduction S-CONPRI +in O +the O +silicon S-MATE +impurity S-PRO +content O +in O +the O +AA7075 O +powder S-MATE +gives O +a O +chance O +to O +reduce O +susceptibility S-PRO +to O +cracking S-CONPRI +with O +no O +change O +of O +the O +alloy S-MATE +specification O +. O + + +316L O +steel B-MATE +powder E-MATE +reuse O +( O +several O +times O +) O +in O +SLM S-MANP +leads O +to O +the O +increase O +of O +δ-ferrite O +. O + + +Magnetic O +attractive O +interaction O +among O +δ-ferrite O +powder B-MATE +particles E-MATE +is O +noticed O +. O + + +Particle S-CONPRI +clustering O +causes O +poor O +packing O +and O +non-uniformities O +in O +the O +powder S-MATE +layer S-PARA +. O + + +Defect S-CONPRI +formation O +is O +more O +critical O +when O +the O +pin O +support B-FEAT +structure E-FEAT +is O +used O +. O + + +Magnetic B-CONPRI +separation E-CONPRI +allows O +separation O +of O +austenite S-MATE +and O +δ-ferrite O +powder S-MATE +fractions O +. O + + +The O +presence O +of O +δ-ferrite O +in O +316L B-MATE +stainless I-MATE +steel I-MATE +powder E-MATE +reused O +several O +times O +contributes O +to O +structural B-CONPRI +defect E-CONPRI +formation O +in O +selective B-MANP +laser I-MANP +melted E-MANP +parts O +built O +using O +the O +pin O +support B-FEAT +structure E-FEAT +. O + + +The O +virgin O +316L B-MATE +stainless I-MATE +steel I-MATE +powder E-MATE +is O +fully O +austenitic S-MATE +. O + + +After O +several O +powder S-MATE +reuse O +cycles O +, O +reused O +powder S-MATE +has O +a O +finer O +particle S-CONPRI +size O +and O +about O +6 O +vol O +. O + + +Phase S-CONPRI +change O +occurs O +due O +to O +the O +thermal B-PARA +cycles E-PARA +imposed O +on O +the O +particles S-CONPRI +near O +the O +melt B-MATE +pool E-MATE +, O +via O +spattering O +and O +further O +interaction O +of O +in-flight O +droplets S-CONPRI +with O +the O +laser B-CONPRI +beam E-CONPRI +. O + + +Phase S-CONPRI +transformation O +changes O +the O +magnetic O +behavior O +of O +the O +powder S-MATE +leading O +to O +particle S-CONPRI +clustering O +in O +the O +powder B-MACEQ +bed E-MACEQ +. O + + +The O +uniformity O +of O +the O +powder B-MACEQ +bed E-MACEQ +is O +affected O +causing O +defects S-CONPRI +such O +as S-MATE +porosity O +, O +delamination S-CONPRI +, O +warping S-CONPRI +and O +lack O +of O +fusion S-CONPRI +. O + + +These O +defects S-CONPRI +are O +more O +prone O +to O +occur O +at O +the O +beginning O +of O +the O +building B-CHAR +process E-CHAR +. O + + +The O +magnetic O +and O +non-magnetic O +fractions O +of O +the O +reused O +powder S-MATE +were O +separated O +from O +each O +other O +using O +magnetic B-CONPRI +separation E-CONPRI +. O + + +Powder S-MATE +characterization O +was O +performed O +using O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +, O +laser S-ENAT +scattering O +particle S-CONPRI +size O +analysis O +, O +X-ray B-CHAR +diffraction E-CHAR +, O +and O +magnetization O +measurements O +. O + + +An O +explanation O +for O +the O +formation O +of O +such O +defects S-CONPRI +based O +on O +the O +magnetic O +behavior O +of O +δ-ferrite O +powder B-MATE +particles E-MATE +is O +proposed O +. O + + +The O +results O +suggest O +that O +magnetic B-CONPRI +separation E-CONPRI +should O +be S-MATE +used O +to O +remove O +magnetic O +particles S-CONPRI +after O +several O +reuse O +cycles O +. O + + +In O +the O +context O +of O +additive B-MANP +manufacturing E-MANP +, O +we O +illustrate O +how O +computational O +multi-body O +dynamics O +( O +CMBD O +) O +analysis O +can O +( O +a O +) O +increase O +printing O +throughput S-CHAR +; O +and O +, O +( O +b S-MATE +) O +play O +a O +role O +in O +improving O +the O +quality S-CONPRI +of O +3D B-APPL +printed I-APPL +parts E-APPL +. O + + +Throughput S-CHAR +is O +increased O +by O +packing O +the O +printing O +volume S-CONPRI +with O +as S-MATE +many O +parts O +as S-MATE +possible O +. O + + +The O +problem O +becomes O +one O +of O +determining O +where O +each O +component S-MACEQ +that O +needs O +to O +be S-MATE +printed O +finds O +itself O +inside O +the O +printing O +volume S-CONPRI +. O + + +Finding O +the O +position O +and O +orientation S-CONPRI +of O +each O +part O +is O +accomplished O +through O +CMBD O +analysis O +, O +a O +point O +illustrated O +through O +an O +example O +in O +which O +an O +open-source S-CONPRI +dynamics O +engine O +called O +Chrono O +is O +used O +to O +simulate O +the O +filling O +of O +the O +active O +printing O +volume S-CONPRI +with O +a O +dress O +that O +is O +subsequently O +3D B-MANP +printed E-MANP +. O + + +In O +relation O +to O +( O +b S-MATE +) O +, O +we O +use O +million-body O +dynamics O +simulations S-ENAT +to O +gauge O +how O +various O +granular O +mixture O +parameters S-CONPRI +and O +rolling S-MANP +regimes O +combine O +to O +ultimately O +control O +the O +roughness S-PRO +of O +the O +surface S-CONPRI +being O +sintered S-MANP +. O + + +The O +quality S-CONPRI +assessment O +of O +AM B-MATE +materials E-MATE +containing O +defects S-CONPRI +is O +a O +complex O +topic O +. O + + +Multiple O +defect S-CONPRI +types O +were O +characterised O +by O +X-ray B-CHAR +CT E-CHAR +and O +metallographic O +analysis O +. O + + +The O +critical O +defects S-CONPRI +in O +fatigue S-PRO +samples O +were O +compared O +to O +the O +statistical O +estimates O +. O + + +Quality S-CONPRI +correctly O +assessed O +by O +both O +methods O +for O +material S-MATE +obtained O +by O +three O +processes S-CONPRI +. O + + +Better O +precision S-CHAR +and O +lower O +cost O +by O +CT S-ENAT +when O +similar O +volumes O +are O +investigated O +. O + + +While O +the O +adoption O +of O +metal B-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +growing O +exponentially O +owing O +to O +its O +wide O +range S-PARA +of O +potential O +applications O +, O +its O +application O +to O +safety-critical O +and O +structural O +parts O +is O +significantly O +impeded O +by O +the O +lack O +of O +standards S-CONPRI +. O + + +Quality S-CONPRI +assessment O +of O +AM S-MANP +products O +is O +a O +crucial O +requirement O +, O +as S-MATE +the O +AM B-MANP +process E-MANP +induces O +internal O +defects S-CONPRI +that O +can O +have O +detrimental O +effects O +on O +the O +fatigue S-PRO +resistance.By O +evaluating O +the O +defect S-CONPRI +distribution O +, O +it O +is O +possible O +to O +perform O +a O +fracture S-CONPRI +mechanics O +assessment O +to O +estimate O +the O +fatigue B-PRO +strength E-PRO +and O +service O +lifetime O +of O +AM B-MATE +materials E-MATE +. O + + +This O +strategy O +has O +been O +successfully O +applied O +to O +selective O +laser-melted O +AlSi10Mg S-MATE +by O +performing O +X-ray B-CHAR +micro-computed I-CHAR +tomography E-CHAR +( O +μCT O +) O +and O +applying O +suitable O +statistical B-CONPRI +methods E-CONPRI +( O +i.e. O +, O +statistics S-CONPRI +of O +extremes O +) O +. O + + +The O +results O +showed O +that O +both O +techniques O +were O +able O +to O +pinpoint O +a O +significant O +difference O +in O +the O +prospective O +largest O +defect S-CONPRI +in O +a O +material S-MATE +volume O +corresponding O +to O +the O +gauge B-MACEQ +section E-MACEQ +of O +a O +specimen O +. O + + +However O +, O +extrapolation O +of O +the O +critical O +defect S-CONPRI +size O +for O +fatigue S-PRO +failure S-CONPRI +using O +PS O +data S-CONPRI +was O +less O +accurate S-CHAR +and O +less O +conservative O +than O +that O +using O +CT S-ENAT +data O +. O + + +Investigation O +of O +manufacturing S-MANP +continuous O +fiber O +reinforced S-CONPRI +thermoplastic O +polymer B-MATE +composites E-MATE +( O +CFRTPCs O +) O +through O +3D B-ENAT +printing I-ENAT +technologies E-ENAT +has O +attracted O +great O +attention O +in O +the O +past O +few O +years O +due O +to O +excellent O +properties S-CONPRI +of O +CFRTPCs O +, O +such O +as S-MATE +high O +strength-to-weight O +ratio O +and O +stiffness S-PRO +. O + + +It O +is O +found O +that O +the O +properties S-CONPRI +of O +CFRTPCs O +are O +affected O +not O +only O +by O +the O +properties S-CONPRI +of O +the O +individual O +parent O +materials S-CONPRI +but O +also O +by O +interfacial O +characteristics O +. O + + +Modification O +of O +the O +interface S-CONPRI +is O +a O +great O +method O +to O +improve O +the O +wettability S-CONPRI +between O +fiber S-MATE +and O +polymer S-MATE +and O +hence O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +CFRTPCs O +. O + + +In O +this O +work O +, O +an O +ultrasound-assisted O +3D B-MANP +printing E-MANP +device O +for O +CFRTPCs O +is O +developed O +. O + + +The O +changes O +of O +surface B-FEAT +profile E-FEAT +and O +chemical O +structure S-CONPRI +of O +carbon B-MATE +fiber E-MATE +and O +carbon B-MATE +fiber E-MATE +prepreg O +after O +ultrasonic O +treatment O +are O +studied O +. O + + +The O +effects O +of O +ultrasonic O +processing O +parameters S-CONPRI +on O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +CFRTPCs O +are O +provided O +. O + + +It O +is O +found O +that O +the O +tensile S-PRO +and O +flexural B-PRO +strength E-PRO +of O +composite B-MATE +materials E-MATE +are O +improved O +by O +34 O +% O +and O +29 O +% O +, O +respectively O +, O +compared O +with O +untreated O +material S-MATE +by O +using O +the O +ultrasonic O +amplitude O +of O +40 O +μm O +, O +resin S-MATE +solution O +mass O +fraction S-CONPRI +of O +10 O +% O +, O +processing O +speed O +of O +15 O +mm/s O +. O + + +Direct O +osseous O +healing O +to O +prosthetic S-APPL +components S-MACEQ +is O +a O +prerequisite O +for O +the O +clinical O +success O +of O +uncemented O +treatment O +in O +total O +hip S-MANP +replacements O +( O +THR O +) O +. O + + +The O +demands O +imposed O +on O +the O +material B-CONPRI +properties E-CONPRI +are O +constantly O +being O +stepped O +up O +to O +withstand O +the O +impact S-CONPRI +of O +an O +active O +lifestyle O +and O +ensure O +lifelong O +integration O +. O + + +Cobalt–chromium–molybdenum O +( O +Co-Cr-Mo O +) O +materials S-CONPRI +are O +interesting O +for O +their O +excellent O +mechanical S-APPL +stability O +, O +corrosion B-CONPRI +resistance E-CONPRI +and O +possibility O +to O +be S-MATE +produced O +by O +additive B-MANP +manufacturing E-MANP +into O +complex O +designs S-FEAT +with O +modifiable O +stiffness S-PRO +. O + + +The O +bone S-BIOP +response O +to O +Co-Cr-Mo O +is O +regarded O +as S-MATE +inferior O +to O +that O +of O +titanium S-MATE +and O +are O +usually O +cemented O +in O +THR O +. O + + +The O +hypothesis O +in O +the O +present O +study O +was O +that O +a O +low O +amount O +of O +Zr S-MATE +in O +the O +Co-Cr-Mo O +alloy S-MATE +would O +improve O +the O +bone S-BIOP +response O +and O +biomechanical S-APPL +anchorage O +. O + + +The O +results O +showed O +significantly O +higher O +implant S-APPL +stability O +for O +the O +Co-Cr-Mo O +alloy S-MATE +with O +an O +addition O +of O +0.04 O +% O +Zr S-MATE +after O +eight O +weeks O +of O +healing O +in O +rabbits O +, O +while O +no O +major O +differences O +were O +observed O +in O +the O +amount O +of O +bone S-BIOP +formed O +around O +the O +implants S-APPL +. O + + +Further O +, O +bone S-BIOP +tissue O +grew O +into O +surface S-CONPRI +irregularities O +and O +in O +direct O +contact S-APPL +with O +the O +implant S-APPL +surfaces O +. O + + +It O +is O +concluded O +that O +additively B-MANP +manufactured E-MANP +Co-Cr-Mo O +alloy S-MATE +implants O +osseointegrate O +and O +that O +the O +addition O +of O +a O +low O +amount O +of O +Zr S-MATE +to O +the O +bulk O +Co-Cr-Mo O +further O +improves O +the O +bone S-BIOP +anchorage O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +a O +widely O +used O +additive B-MANP +manufacturing E-MANP +method O +for O +building O +metal S-MATE +parts O +in O +a O +layer-by-layer S-CONPRI +manner O +thereby O +imposing O +almost O +no O +limitations O +on O +the O +geometrical O +layout S-CONPRI +of O +the O +part O +. O + + +The O +SLM S-MANP +process S-CONPRI +has O +a O +crucial O +impact S-CONPRI +on O +the O +microstructure S-CONPRI +, O +strength S-PRO +, O +surface B-PARA +quality E-PARA +and O +even O +the O +shape O +of O +the O +part O +, O +all O +of O +which O +depend O +on O +the O +thermal O +history O +of O +material S-MATE +points O +within O +the O +part O +. O + + +In O +this O +paper O +, O +we O +present O +a O +computationally O +tractable O +thermal O +model S-CONPRI +for O +the O +SLM S-MANP +process S-CONPRI +which O +accounts O +for O +individual O +laser S-ENAT +scanning O +vectors O +. O + + +First O +, O +a O +closed O +form O +solution S-CONPRI +of O +a O +line O +heat B-CONPRI +source E-CONPRI +is O +calculated O +to O +represent O +the O +laser S-ENAT +scanning O +vectors O +in O +a O +semi-infinite O +space O +. O + + +The O +thermal O +boundary B-CONPRI +conditions E-CONPRI +are O +accounted O +for O +by O +a O +complimentary O +correction O +field O +, O +which O +is O +computed O +numerically O +. O + + +The O +proposed O +semi-analytical O +model S-CONPRI +can O +be S-MATE +used O +to O +simulate O +manufacturing S-MANP +geometrically O +complex O +parts O +and O +allows O +spatial O +discretisation O +to O +be S-MATE +much O +coarser O +than O +the O +characteristic O +length B-CHAR +scale E-CHAR +of O +the O +process S-CONPRI +: O +laser B-PARA +spot I-PARA +size E-PARA +, O +except O +in O +the O +vicinity O +of O +boundaries S-FEAT +. O + + +The O +underlying O +assumption O +of O +linearity S-CONPRI +of O +the O +heat S-CONPRI +equation O +in O +the O +proposed O +model S-CONPRI +is O +justified O +by O +comparisons O +with O +a O +fully O +non-linear O +model S-CONPRI +and O +experiments O +. O + + +The O +accuracy S-CHAR +of O +the O +proposed O +boundary S-FEAT +correction O +scheme O +is O +demonstrated O +by O +a O +dedicated O +numerical O +example O +on O +a O +simple S-MANP +cubic O +part O +. O + + +The O +influence O +of O +the O +part O +design S-FEAT +and O +scanning B-CONPRI +strategy E-CONPRI +on O +the O +temperature S-PARA +transients O +are O +subsequently O +analysed O +on O +a O +geometrically O +complex O +part O +. O + + +The O +results O +show O +that O +overhanging B-FEAT +features E-FEAT +of O +a O +part O +obstruct O +the O +heat S-CONPRI +flow O +towards O +the O +base-plate O +thereby O +creating O +local O +overheating O +which O +in O +turn O +decrease O +local O +cooling B-PARA +rate E-PARA +. O + + +Finally O +, O +a O +real O +SLM S-MANP +process S-CONPRI +for O +a O +part O +with O +an O +overhanging B-FEAT +feature E-FEAT +is O +modelled O +for O +validation S-CONPRI +of O +the O +proposed O +model S-CONPRI +. O + + +Reasonable O +agreement O +between O +the O +model S-CONPRI +predictions O +and O +the O +experimentally O +measured O +values O +can O +be S-MATE +observed O +. O + + +The O +emergence O +of O +4D B-MANP +printing E-MANP +has O +revolutionized O +the O +additive B-MANP +manufacturing E-MANP +industry O +by O +enabling O +dynamic S-CONPRI +shape O +memory O +effects O +ensured O +by O +the O +use O +of O +smart O +materials S-CONPRI +. O + + +In O +addition O +to O +3D S-CONPRI +fabrication O +, O +4D S-CONPRI +printed O +products O +need O +to O +undergo O +shape O +programming O +and O +recovery O +cycles O +to O +achieve O +desired O +shape B-PRO +memory I-PRO +effects E-PRO +. O + + +Due O +to O +the O +new O +process S-CONPRI +and O +material S-MATE +characteristics O +, O +energy O +consumption O +models O +established O +for O +3D B-MANP +printing E-MANP +are O +no O +longer O +applicable O +for O +4D B-MANP +printing E-MANP +. O + + +In O +current O +literature O +, O +the O +environmental O +sustainability S-CONPRI +for O +4D B-MANP +printing E-MANP +has O +not O +yet O +been O +evaluated O +, O +leading O +to O +unknown O +environmental O +impacts O +that O +could O +be S-MATE +caused O +by O +4D B-MANP +printing E-MANP +processes O +and/or O +materials S-CONPRI +. O + + +In O +this O +research S-CONPRI +, O +theoretical B-CONPRI +models E-CONPRI +for O +quantifying O +the O +energy O +consumption O +in O +4D B-MANP +printing E-MANP +thermal-responsive O +polymers S-MATE +are O +established O +by O +jointly O +considering O +the O +compositional O +design S-FEAT +for O +materials S-CONPRI +. O + + +Experiments O +and O +case B-CONPRI +studies E-CONPRI +are O +performed O +to O +validate O +the O +proposed O +models O +and O +further O +investigate O +some O +critical B-PRO +factors E-PRO +that O +can O +affect O +energy O +consumption O +, O +e.g. O +, O +values O +of O +process B-CONPRI +parameters E-CONPRI +like O +layer B-PARA +thickness E-PARA +, O +and O +thermo-temporal O +conditions O +in O +shape O +memory O +cycles O +. O + + +The O +case B-CONPRI +study E-CONPRI +results O +show O +that O +overall O +energy O +consumption O +can O +be S-MATE +reduced O +by O +1 O +) O +increasing O +the O +concentrations O +of O +multi-functional O +crosslinkers O +in O +material S-MATE +composition S-CONPRI +, O +and O +2 O +) O +setting O +the O +shape O +programming O +and O +recovery O +temperatures S-PARA +as S-MATE +10 O +to O +15℃ O +above O +the O +material S-MATE +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +without O +compromising O +the O +shape O +fixity O +and O +recovery O +ratios O +. O + + +In O +addition O +, O +by O +adjusting O +the O +influential O +parameters S-CONPRI +throughout O +different O +stages O +in O +4D B-MANP +printing E-MANP +, O +the O +total O +energy O +consumption O +can O +be S-MATE +reduced O +by O +37.33 O +% O +, O +which O +corresponds O +to O +a O +reduction S-CONPRI +of O +259.52 O +pounds O +of O +CO2 S-MATE +emissions O +per O +kilogram O +methacrylate O +resin S-MATE +. O + + +While O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +commonly O +known O +as S-MATE +3D B-MANP +printing E-MANP +, O +has O +been O +in O +existence O +commercially O +for O +∼30 O +years O +, O +desktop B-MACEQ +3D I-MACEQ +printers E-MACEQ +are O +a O +relatively O +new O +and O +rapidly O +growing O +market O +segment O +. O + + +This O +research S-CONPRI +highlights O +differences O +amongst O +45 O +desktop B-MACEQ +3D I-MACEQ +printers E-MACEQ +and O +suggests O +a O +method O +by O +which O +to O +evaluate O +such O +differences O +. O + + +For O +this O +, O +a O +standard S-CONPRI +part O +consisting O +of O +various O +geometric O +features O +was O +designed S-FEAT +and O +printed O +using O +each O +system O +. O + + +An O +updated O +version O +of O +a O +previously O +developed O +quantitative S-CONPRI +ranking O +model S-CONPRI +was O +utilized O +to O +rate O +the O +build S-PARA +precision O +of O +each O +system O +as S-MATE +well O +as S-MATE +other O +features O +, O +including O +build B-PARA +volume E-PARA +, O +size O +, O +cost O +, O +weight S-PARA +, O +and O +layer B-PARA +resolution E-PARA +. O + + +In O +addition O +, O +the O +research S-CONPRI +team O +observed O +part O +aesthetics O +and O +quantified O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +criteria O +evaluated O +in O +this O +ranking O +model S-CONPRI +may O +be S-MATE +modified O +by O +each O +user O +, O +to O +extend O +this O +methodology S-CONPRI +to O +other O +desktop O +AM S-MANP +systems O +, O +including O +professional-grade O +machines S-MACEQ +. O + + +As S-MATE +expected O +, O +the O +comparisons O +demonstrated O +that O +each O +model S-CONPRI +had O +slightly O +different O +rankings O +as S-MATE +compared O +to O +the O +model S-CONPRI +presented O +in O +this O +paper O +, O +with O +some O +outliers O +. O + + +Additive B-MANP +manufacturing E-MANP +of O +ceramics S-MATE +has O +been O +actively O +investigated O +with O +the O +objective O +of O +fabricating S-MANP +complex B-CONPRI +structures E-CONPRI +that O +compete O +in O +terms O +of O +material S-MATE +performance O +with O +traditionally O +manufactured S-CONPRI +ceramics S-MATE +but O +with O +the O +benefit O +of O +increased O +geometric B-CONPRI +freedom E-CONPRI +. O + + +More O +specifically O +, O +zirconia S-MATE +provides O +high O +fracture S-CONPRI +toughness O +and O +thermal B-PRO +stability E-PRO +. O + + +In O +addition O +, O +its O +dielectric S-MACEQ +permittivity O +may O +be S-MATE +the O +highest O +among O +materials S-CONPRI +available O +for O +3D B-MANP +printing E-MANP +, O +and O +may O +enable O +the O +next O +generation O +of O +complex O +electromagnetic O +structures O +. O + + +NanoParticle O +Jetting™ O +is O +a O +new O +material B-MANP +jetting E-MANP +process O +for O +selectively O +depositing O +nanoparticles S-CONPRI +and O +is O +capable O +of O +printing O +zirconia S-MATE +. O + + +Dense O +, O +fine-featured O +parts O +can O +be S-MATE +manufactured O +with O +layer B-PARA +thicknesses E-PARA +as S-MATE +small O +as S-MATE +10 O +μm O +and O +jetting S-MANP +resolution O +of O +20 O +μm O +after O +a O +final O +sintering S-MANP +step O +. O + + +For O +this O +study O +, O +3D B-MANP +printed E-MANP +zirconia O +using O +NanoParticle O +Jetting™ O +was O +characterized O +in O +terms O +of O +chemistry S-CONPRI +, O +density S-PRO +, O +crystallography S-MANP +, O +sintering S-MANP +shrinkage S-CONPRI +and O +dielectric S-MACEQ +properties O +as S-MATE +a O +foundation O +for O +developing O +high O +performance S-CONPRI +radio O +frequency O +( O +RF O +) O +components S-MACEQ +. O + + +The O +experimental S-CONPRI +results O +indicate O +a O +yttria-stabilized O +ZrO2 S-MATE +structure S-CONPRI +exhibiting O +a O +bulk O +relative O +permittivity O +of O +23 O +and O +a O +loss O +tangent O +of O +0.0013 O +at O +microwave S-ENAT +frequencies O +. O + + +A O +simple S-MANP +zirconia O +dielectric S-MACEQ +resonator O +antenna O +is O +measured O +, O +confirming O +the O +measured O +dielectric S-MACEQ +properties O +and O +illustrating O +a O +practical O +application O +of O +this O +material S-MATE +. O + + +The O +corrosion B-PRO +behavior E-PRO +of O +AISI316L O +AM B-MACEQ +parts E-MACEQ +is O +evaluated O +before O +and O +after O +the O +heat B-MANP +treatment E-MANP +then O +compared O +with O +the O +wrought B-CONPRI +samples E-CONPRI +. O + + +AM B-MACEQ +parts E-MACEQ +have O +a O +better O +corrosion B-PRO +behavior E-PRO +compared O +to O +the O +wrought S-CONPRI +ones O +due O +to O +the O +absence O +of O +non-equilibrium O +phases O +. O + + +The O +annealed O +AM S-MANP +sample O +has O +an O +improved O +corrosion B-PRO +behavior E-PRO +due O +to O +the O +decreasing O +of O +the O +residual B-PRO +stress E-PRO +level O +. O + + +The O +noticeable O +change O +in O +corrosion B-CONPRI +resistance E-CONPRI +for O +the O +wrought B-CONPRI +sample E-CONPRI +is O +a O +result O +of O +phase S-CONPRI +transformation O +. O + + +This O +paper O +presents O +the O +investigation O +of O +the O +corrosion B-PRO +behavior E-PRO +of O +AISI316L O +samples S-CONPRI +prepared O +by O +laser-based O +powder B-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +method O +. O + + +Both O +AM S-MANP +and O +conventional O +stainless B-MATE +steel E-MATE +316L O +samples S-CONPRI +were O +examined O +in O +NaCl S-MATE +3.5 O +% O +solution S-CONPRI +before O +and O +after O +the O +annealing S-MANP +process O +using O +Tafel O +curves O +, O +Electrochemical S-CONPRI +Impedance O +Spectroscopy S-CONPRI +, O +and O +X-ray B-CHAR +diffraction E-CHAR +. O + + +The O +results O +indicate O +that O +the O +AM B-MACEQ +parts E-MACEQ +have O +an O +improved O +corrosion B-PRO +behavior E-PRO +than O +the O +conventional O +wrought B-CONPRI +samples E-CONPRI +. O + + +Besides O +, O +the O +heat B-MANP +treatment E-MANP +process O +is O +found O +to O +further O +decrease O +the O +corrosion S-CONPRI +rate O +of O +the O +AM B-MACEQ +parts E-MACEQ +through O +the O +relieving O +of O +the O +residual B-PRO +stress E-PRO +. O + + +In O +contrast O +, O +the O +post O +annealing S-MANP +induced O +improvement O +to O +corrosion B-CONPRI +resistance E-CONPRI +for O +the O +wrought B-CONPRI +samples E-CONPRI +is O +due O +to O +the O +elimination O +of O +martensite S-MATE +phase O +which O +almost O +always O +exists O +after O +the O +plastic B-PRO +deformation E-PRO +during O +their O +production S-MANP +process S-CONPRI +. O + + +The O +IN718 S-MATE +sample O +with O +deposition B-PARA +rate E-PARA +of O +2.2 O +kg/h O +and O +height O +75 O +mm S-MANP +was O +prepared O +. O + + +δ O +, O +γ O +'' O +and O +γ O +' O +phase S-CONPRI +are O +precipitated O +in O +bottom O +and O +middle O +region O +due O +to O +thermal B-PARA +cycle E-PARA +. O + + +The O +microhardness S-CONPRI +and O +room O +temperature S-PARA +tensile O +properties S-CONPRI +exhibit O +a O +high O +value O +. O + + +In O +order O +to O +meet O +the O +requirements O +for O +rapid B-MANP +manufacturing E-MANP +of O +large-scale O +high-performance O +metal S-MATE +components S-MACEQ +, O +the O +unique O +advantages O +of O +high-deposition-rate O +laser B-MANP +directed I-MANP +energy I-MANP +deposition E-MANP +( O +HDR-LDED O +, O +deposition B-PARA +rate E-PARA +≥ O +1 O +kg/h O +) O +technology S-CONPRI +have O +been O +attracted O +great O +attention O +. O + + +HDR-LDED O +technology S-CONPRI +significantly O +improves O +the O +efficiency O +by O +simultaneously O +increasing O +the O +mass O +and O +energy O +input O +on O +basis O +of O +conventional O +laser B-MANP +directed I-MANP +energy I-MANP +deposition E-MANP +( O +C-LDED O +, O +deposition B-PARA +rate E-PARA +≤ O +0.3 O +kg/h O +) O +, O +which O +dramatically O +changes O +the O +solidification S-CONPRI +condition O +and O +thermal B-PARA +cycling E-PARA +effect O +compared O +to O +C-LDED O +processes S-CONPRI +. O + + +Based O +on O +this O +, O +Inconel B-MATE +718 E-MATE +bulk O +samples S-CONPRI +were O +fabricated S-CONPRI +with O +a O +deposition B-PARA +rate E-PARA +of O +2.2 O +kg/h O +and O +a O +height O +of O +75 O +mm S-MANP +. O + + +Through O +experimental S-CONPRI +observation O +combined O +with O +finite B-CONPRI +element E-CONPRI +simulation O +, O +the O +precipitation B-CONPRI +morphology E-CONPRI +, O +thermal B-PARA +cycling E-PARA +effect O +and O +tensile B-PRO +properties E-PRO +at O +room O +temperature S-PARA +of O +the O +block O +samples S-CONPRI +at O +heights O +of O +6 O +mm S-MANP +( O +bottom O +region O +) O +, O +37 O +mm S-MANP +( O +middle O +region O +) O +and O +69 O +mm S-MANP +( O +top O +region O +) O +from O +the O +substrate S-MATE +were O +investigated O +. O + + +The O +results O +show O +that O +both O +temperature S-PARA +interval O +and O +incubation O +time O +satisfy O +the O +precipitation S-CONPRI +conditions O +of O +the O +second O +phases O +because O +of O +the O +intense O +thermal B-PARA +cycling E-PARA +effect O +so O +that O +δ O +, O +γ O +'' O +and O +γ O +' O +phase S-CONPRI +are O +precipitated O +in O +the O +bottom O +and O +middle O +region O +of O +the O +as-deposited O +sample S-CONPRI +during O +the O +HDR-LDED O +process S-CONPRI +. O + + +As S-MATE +a O +result O +, O +the O +micro-hardness O +and O +the O +yield B-PRO +strength E-PRO +of O +the O +bottom O +region O +( O +385 O +HV O +; O +745.1 O +± O +5.2 O +MPa S-CONPRI +) O +are O +similar O +to O +those O +of O +the O +middle O +region O +( O +381 O +HV O +; O +752.2 O +± O +12.1 O +MPa S-CONPRI +) O +, O +respectively O +. O + + +The O +tensile S-PRO +fracture S-CONPRI +mechanism O +is O +shown O +in O +both O +fracture S-CONPRI +and O +debonding O +of O +the O +Laves B-CONPRI +phase E-CONPRI +. O + + +The O +inhomogeneous O +microstructures S-MATE +and O +corresponding O +mechanical B-CONPRI +property E-CONPRI +differences O +of O +Inconel B-MATE +718 E-MATE +fabricated S-CONPRI +by O +HDR-LDED O +along O +the O +deposition B-PARA +direction E-PARA +suggest O +the O +necessity O +to O +conduct O +further O +research S-CONPRI +of O +the O +post O +heat B-MANP +treatment E-MANP +in O +the O +future O +. O + + +We O +demonstrate O +that O +a O +low O +dielectric S-MACEQ +constant O +composite S-MATE +filament O +, O +useful O +for O +FFF S-MANP +printing O +, O +can O +be S-MATE +manufactured O +by O +combining O +a O +base O +thermoplastic B-MATE +polymer E-MATE +with O +hollow O +microspheres S-CONPRI +and O +a O +plasticizer S-MATE +. O + + +Experimental S-CONPRI +results O +are O +provided O +for O +filaments S-MATE +made O +from O +two O +different O +base O +polymers S-MATE +( O +i.e O +. O + + +ABS S-MATE +and O +HDPE S-MATE +) O +and O +varying O +volume B-PARA +fractions E-PARA +of O +hollow O +microspheres S-CONPRI +. O + + +We O +also O +describe O +an O +effective O +media O +model S-CONPRI +to O +predict O +the O +dielectric S-MACEQ +properties O +of O +the O +composite S-MATE +filaments O +as S-MATE +a O +function O +of O +the O +properties S-CONPRI +of O +the O +constituent O +materials S-CONPRI +( O +e.g O +. O + + +base O +polymer S-MATE +, O +hollow O +microspheres S-CONPRI +) O +and O +their O +relative O +volume B-PARA +fractions E-PARA +within O +the O +composite S-MATE +filament O +. O + + +Experimental S-CONPRI +test O +samples S-CONPRI +were O +printed O +using O +the O +new O +low-K O +filaments S-MATE +and O +experimental S-CONPRI +characterization O +results O +are O +provided O +that O +validate O +this O +approach O +. O + + +Proven O +real-time O +measurement S-CHAR +capability O +of O +an O +in-house O +interferometry S-CONPRI +for O +both O +exposure B-CONPRI +cured E-CONPRI +height O +and O +dark O +cured S-MANP +height O +in O +photopolymer S-MATE +AM S-MANP +. O + + +Demonstrated O +real-time O +closed-loop B-MACEQ +control E-MACEQ +of O +cured S-MANP +height O +in O +photopolymer S-MATE +AM S-MANP +with O +the O +interferometry S-CONPRI +and O +an O +empirical S-CONPRI +dark O +curing S-MANP +model O +. O + + +Thorough O +error S-CONPRI +analysis O +for O +future O +research S-CONPRI +on O +improving O +the O +process B-CONPRI +control E-CONPRI +. O + + +An O +exemplary O +study O +on O +a O +lab-scale O +parallel O +computing O +enabled O +cyber-physical O +system O +for O +AM B-MANP +process E-MANP +sensing O +, O +modeling S-ENAT +and O +control O +. O + + +Exposure S-CONPRI +Controlled O +Projection O +Lithography S-CONPRI +( O +ECPL O +) O +is O +an O +in-house O +additive B-MANP +manufacturing I-MANP +process E-MANP +that O +can O +cure S-CONPRI +microscale O +photopolymer S-MATE +parts O +on O +a O +stationary O +transparent S-CONPRI +substrate S-MATE +with O +a O +time O +sequence O +of O +patterned O +ultraviolet S-CONPRI +beams O +delivered O +from O +underneath O +. O + + +An O +in-situ S-CONPRI +interferometric O +curing S-MANP +monitoring O +and O +measurement S-CHAR +( O +ICM O +& O +M O +) O +system O +has O +been O +developed O +to O +measure O +the O +ECPL O +process S-CONPRI +output O +of O +cured S-MANP +height O +profile S-FEAT +. O + + +This O +study O +develops O +a O +real-time O +feedback S-PARA +control B-MACEQ +system E-MACEQ +that O +utilizes O +an O +empirical S-CONPRI +process O +model S-CONPRI +and O +an O +online O +ICM O +& O +M O +feedback S-PARA +to O +automatically O +and O +accurately S-CHAR +cure O +a O +part O +with O +targeted O +height O +. O + + +Due O +to O +the O +nature O +of O +photopolymerization S-MANP +, O +the O +total O +height O +of O +an O +ECPL O +cured S-MANP +part O +is O +divided O +into O +exposure B-CONPRI +cured E-CONPRI +height O +and O +dark O +cured S-MANP +height O +. O + + +The O +exposure B-CONPRI +cured E-CONPRI +height O +is O +controlled O +by O +a O +closed-loop O +feedback S-PARA +on-off O +controller S-MACEQ +. O + + +The O +dark O +cured S-MANP +height O +is O +compensated O +by O +an O +empirical S-CONPRI +process O +model S-CONPRI +obtained O +from O +the O +ICM O +& O +M O +measurements O +for O +a O +series O +of O +cured S-MANP +parts O +. O + + +A O +parallel O +computing O +software S-CONPRI +application O +is O +developed O +to O +implement O +the O +real-time O +measurement S-CHAR +and O +control O +simultaneously O +. O + + +The O +experimental S-CONPRI +results O +directly O +validate O +the O +ICM O +& O +M O +system O +’ O +s S-MATE +real-time O +capability O +in O +capturing O +the O +process S-CONPRI +dynamics O +and O +in O +sensing S-APPL +the O +process S-CONPRI +output O +. O + + +Meanwhile O +, O +it O +evidently O +demonstrates O +the O +feedback S-PARA +control B-MACEQ +system E-MACEQ +’ O +s S-MATE +satisfactory O +performance S-CONPRI +in O +achieving O +the O +setpoint O +of O +total O +height O +, O +despite O +the O +presence O +of O +ECPL O +process S-CONPRI +uncertainties O +, O +ICM O +& O +M O +noises O +and O +computing O +interruptions O +. O + + +Generally O +, O +the O +study O +establishes O +a O +paradigm O +of O +improving O +additive B-MANP +manufacturing E-MANP +with O +a O +real-time O +closed-loop O +measurement S-CHAR +and O +control B-MACEQ +system E-MACEQ +. O + + +Recent O +advances O +in O +additive B-MANP +manufacturing E-MANP +facilitated O +the O +fabrication S-MANP +of O +parts O +with O +great O +geometrical B-FEAT +complexity E-FEAT +and O +relatively O +small O +size O +, O +and O +allowed O +for O +the O +fabrication S-MANP +of O +topologies S-CONPRI +that O +could O +not O +have O +been O +achieved O +using O +traditional O +fabrication S-MANP +techniques O +. O + + +In O +this O +work O +, O +we O +explore O +the O +topology-property O +relationship O +of O +several O +classes O +of O +periodic O +cellular B-MATE +materials E-MATE +; O +the O +first O +class O +is O +strut-based S-FEAT +structures O +, O +while O +the O +second O +and O +third O +classes O +are O +derived O +from O +the O +mathematically O +created O +triply B-CONPRI +periodic I-CONPRI +minimal I-CONPRI +surfaces E-CONPRI +, O +namely O +; O +the O +skeletal-TPMS O +and O +sheet-TPMS O +cellular B-FEAT +structures E-FEAT +. O + + +Powder B-MANP +bed I-MANP +fusion E-MANP +technology O +was O +employed O +to O +fabricate S-MANP +the O +cellular B-FEAT +structures E-FEAT +of O +various O +relative B-PRO +densities E-PRO +out O +of O +Maraging B-MATE +steel E-MATE +. O + + +Scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +was O +also O +employed O +to O +assess O +the O +quality S-CONPRI +of O +the O +printed O +parts O +. O + + +Compressive O +testing S-CHAR +was O +performed O +to O +deduce O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +considered O +cellular B-FEAT +structures E-FEAT +. O + + +Results O +showed O +that O +the O +sheet-TPMS O +based O +cellular B-FEAT +structures E-FEAT +exhibited O +a O +near O +stretching-dominated O +deformation S-CONPRI +behavior O +, O +while O +skeletal-TPMS O +showed O +a O +bending-dominated O +behavior O +. O + + +Overall O +the O +sheet-TPMS O +based O +cellular B-FEAT +structures E-FEAT +showed O +superior O +mechanical B-CONPRI +properties E-CONPRI +among O +all O +the O +tested O +structures O +. O + + +The O +most O +interesting O +observation O +is O +that O +sheet-based O +Diamond S-MATE +TPMS O +structure S-CONPRI +showed O +the O +best O +mechanical S-APPL +performance O +with O +nearly O +independence O +of O +relative B-PRO +density E-PRO +. O + + +It O +was O +also O +observed O +that O +at O +decreased O +volume B-PARA +fractions E-PARA +the O +effect O +of O +geometry S-CONPRI +on O +the O +mechanical B-CONPRI +properties E-CONPRI +is O +more O +pronounced O +. O + + +Polyhydroxyalkanoate O +( O +PHA O +) O +composites S-MATE +containing O +siliceous O +sponge O +spicules O +( O +SSS O +) O +were O +prepared O +from O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing O +filaments S-MATE +. O + + +Mechanical S-APPL +and O +morphological B-CHAR +characterizations E-CHAR +indicated O +that O +the O +improved O +adhesion S-PRO +between O +the O +SSS O +and O +PHA-g-AA O +enhanced O +the O +tensile B-PRO +strength E-PRO +at O +failure S-CONPRI +and O +Young O +’ O +s S-MATE +modulus O +of O +the O +composite S-MATE +compared O +with O +that O +of O +PHA/SSS O +. O + + +The O +PHA-g-AA/SSS O +composites S-MATE +were O +also O +more O +water-resistant O +than O +the O +PHA/SSS O +composites S-MATE +. O + + +Human O +foreskin O +fibroblasts S-BIOP +( O +FBs O +) O +were O +seeded O +on O +two O +series O +of O +these O +composites S-MATE +to O +assess O +cytocompatibility O +. O + + +FB O +proliferation O +was O +greater O +for O +the O +PHA/SSS O +composites S-MATE +than O +the O +PHA-g-AA/SSS O +composites S-MATE +. O + + +Moreover O +, O +SSS O +enhanced O +the O +antioxidant O +, O +anti-inflammatory O +and O +antibacterial O +properties S-CONPRI +of O +PHA-g-AA/SSS O +and O +PHA/SSS O +composites S-MATE +, O +demonstrating O +the O +potential O +of O +PHA-g-AA/SSS O +and O +PHA/SSS O +composites S-MATE +for O +biomedical S-APPL +material O +applications O +. O + + +Refined O +microstructure S-CONPRI +of O +AlSi10Mg B-MATE +alloy E-MATE +by O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +technology S-CONPRI +. O + + +As-EBM-built O +AlSi10Mg B-MATE +alloy E-MATE +contains O +fine O +granular O +Si S-MATE +phase S-CONPRI +and O +bimodal O +Al S-MATE +grains O +. O + + +As-EBM-built O +AlSi10Mg B-MATE +alloy E-MATE +is O +strengthened O +by O +the O +nano-Si O +precipitates S-MATE +. O + + +Refining O +the O +microstructure S-CONPRI +to O +improve O +the O +ductility S-PRO +of O +an O +Al‒Si O +alloy S-MATE +is O +challenging O +. O + + +In O +this O +paper O +, O +we O +report O +for O +the O +first O +time O +a O +novel O +microstructure S-CONPRI +refinement O +approach O +for O +AlSi10Mg S-MATE +( O +wt O +% O +) O +alloys S-MATE +using O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +technology S-CONPRI +, O +without O +the O +addition O +of O +any O +modification O +elements S-MATE +. O + + +The O +synergetic O +effect O +of O +superheating O +, O +fast O +cooling S-MANP +, O +and O +preheating S-MANP +contributes O +to O +a O +refined O +Si S-MATE +phase S-CONPRI +with O +a O +fine O +granular O +structure S-CONPRI +( O +0.5–2 O +μm O +) O +within O +bimodal O +Al S-MATE +grains O +( O +40 O +μm O +grains S-CONPRI +and O +0.5–2 O +μm O +sub-grains O +) O +. O + + +A O +maximum O +ductility S-PRO +of O +approximately O +32.7 O +% O +with O +a O +tensile B-PRO +strength E-PRO +of O +approximately O +136 O +MPa S-CONPRI +was O +achieved O +for O +the O +as-built O +AlSi10Mg S-MATE +EBM O +alloy S-MATE +. O + + +After O +solution B-MANP +heat I-MANP +treatment E-MANP +and O +T6-like O +aging O +, O +nano-Si O +precipitates S-MATE +formed O +which O +strengthened O +the O +alloys S-MATE +. O + + +The O +pathway O +developed O +in O +this O +study O +for O +refining O +the O +Al–Si O +alloy S-MATE +microstructure O +to O +improve O +the O +tensile B-PRO +ductility E-PRO +will O +provide O +a O +feasible O +and O +fast O +manufacturing S-MANP +method O +for O +improving O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +other O +low-melting O +temperature S-PARA +alloys S-MATE +in O +the O +near O +future O +using O +EBM S-MANP +technology O +. O + + +Lunar O +regolith O +simulant O +is O +used O +as S-MATE +feedstock O +in O +the O +dry O +aerosol O +deposition B-MANP +process E-MANP +. O + + +Dry O +aerosol O +deposition S-CONPRI +builds S-CHAR +thick O +films O +on O +steel S-MATE +, O +glass S-MATE +and O +polyimide O +substrates O +. O + + +Mineral O +mixture O +is O +transformed O +directly O +to O +fully B-PARA +dense E-PARA +, O +nano-grained O +ceramic S-MATE +film O +. O + + +Phase S-CONPRI +and O +chemical B-CONPRI +composition E-CONPRI +of O +ceramic S-MATE +films O +are O +uniform O +and O +homogeneous S-CONPRI +. O + + +Small O +change O +in O +composition S-CONPRI +occurs O +from O +powder S-MATE +to O +coating S-APPL +in O +aerosol O +deposition S-CONPRI +. O + + +Dry O +Aerosol O +Deposition S-CONPRI +( O +DAD O +) O +is O +a O +ceramic B-MATE +coating E-MATE +process O +with O +the O +ability O +to O +build S-PARA +films O +and O +low O +profile S-FEAT +3D B-CONPRI +structures E-CONPRI +layer O +by O +layer S-PARA +and O +is O +therefore O +a O +promising O +additive B-MANP +manufacturing E-MANP +technique O +. O + + +DAD O +is O +unique O +because O +it O +uses O +kinetic O +energy O +rather O +than O +thermal B-CONPRI +energy E-CONPRI +for O +densification S-MANP +, O +and O +the O +result O +is O +a O +nearly O +theoretically O +dense O +, O +nano-crystalline O +ceramic S-MATE +. O + + +Thick O +films O +were O +successfully O +deposited O +onto O +glass S-MATE +, O +steel S-MATE +and O +polyimide O +substrates O +via O +DAD O +. O + + +Surface B-PRO +roughness E-PRO +increased O +with O +thickness O +and O +with O +some O +influence O +from O +substrate B-MATE +material E-MATE +. O + + +Utilizing O +the O +DAD O +process S-CONPRI +, O +a O +very O +heterogeneous S-CONPRI +mixture O +of O +silicate S-MATE +and O +titanate O +mineral O +phases O +was O +transformed O +in O +a O +single O +step S-CONPRI +to O +a O +fully B-PARA +dense E-PARA +, O +nano-grained O +coating S-APPL +with O +spatially O +homogeneous B-CONPRI +composition E-CONPRI +at O +the O +micro-scale S-CONPRI +. O + + +The O +final O +composition S-CONPRI +of O +the O +coatings S-APPL +was O +found O +to O +deviate O +slightly O +from O +the O +feedstock S-MATE +powder O +, O +becoming O +richer O +in O +ilmenite S-MATE +( O +FeTiO3 O +) O +and O +poorer O +in O +plagioclase O +( O +feldspar S-MATE +) O +content O +. O + + +This O +work O +demonstrates O +the O +potential O +of O +DAD O +for O +in-space O +manufacturing S-MANP +and O +lunar O +In B-CONPRI +Situ E-CONPRI +Resource O +Utilization O +. O + + +Additive B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +porous B-MATE +materials E-MATE +behave O +quantitatively S-CONPRI +and O +qualitatively O +differently O +in O +fatigue S-PRO +than O +bulk O +materials S-CONPRI +, O +and O +the O +relationships O +normally O +used O +for O +the O +fatigue S-PRO +design S-FEAT +of O +continuous O +bulk O +materials S-CONPRI +are O +not O +applicable O +to O +AM S-MANP +porous O +materials S-CONPRI +particularly O +for O +low O +stiffness S-PRO +applications.This O +study O +investigated O +how O +the O +manufacturing S-MANP +methods O +and O +the O +material S-MATE +used O +during O +powder B-MANP +bed I-MANP +fusion E-MANP +affects O +the O +compressive B-PRO +strength E-PRO +and O +high O +cycle O +fatigue B-PRO +strength E-PRO +of O +a O +stochastic S-CONPRI +porous B-MATE +material E-MATE +for O +a O +given O +stiffness S-PRO +. O + + +Specimens O +were O +manufactured S-CONPRI +using O +varying O +laser S-ENAT +parameters O +, O +3 O +scan O +strategies O +( O +Contour S-FEAT +, O +Points O +, O +Pulsing O +) O +and O +4 O +materials S-CONPRI +. O + + +The O +materials S-CONPRI +investigated O +were O +two O +titanium B-MATE +alloys E-MATE +: O +commercially O +pure O +grade O +2 O +( O +CP-Ti O +) O +and O +Ti6Al4V S-MATE +ELI O +, O +commercially O +pure O +tantalum S-MATE +( O +Ta S-MATE +) O +and O +a O +titanium-tantalum O +alloy S-MATE +( O +Ti-30Ta O +) O +.The O +trends S-CONPRI +observed O +during O +fatigue B-CHAR +testing E-CHAR +for O +monolithic S-PRO +metals S-MATE +and O +statically O +for O +solid O +and O +porous S-PRO +AM B-MATE +materials E-MATE +were O +not O +always O +indicative O +of O +the O +high O +cycle O +fatigue S-PRO +behaviour O +of O +porous S-PRO +AM B-MATE +materials E-MATE +. O + + +Unlike O +their O +solid O +counterparts O +, O +porous S-PRO +tantalum O +and O +the O +titanium-tantalum O +alloy S-MATE +had O +the O +greatest O +fatigue B-PRO +strength E-PRO +for O +a O +given O +stiffness S-PRO +, O +8 O +% O +greater O +than O +CP-Ti O +and O +19 O +% O +greater O +than O +Ti6Al4V S-MATE +ELI O +. O + + +Optimisation O +of O +the O +laser S-ENAT +parameters O +and O +scan O +strategies O +was O +found O +to O +also O +increase O +the O +fatigue B-PRO +strength E-PRO +for O +a O +given O +stiffness S-PRO +of O +porous S-PRO +AM B-MATE +materials E-MATE +by O +7–8 O +% O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +an O +additive B-MANP +manufacturing E-MANP +technology O +which O +allows O +parts O +to O +be S-MATE +fabricated O +from O +metal B-MATE +powder E-MATE +using O +CAD S-ENAT +data O +. O + + +Today O +, O +standard S-CONPRI +metal B-MATE +powders E-MATE +like O +stainless B-MATE +steel E-MATE +, O +titanium S-MATE +, O +aluminium S-MATE +or O +copper S-MATE +are O +widely O +used O +with O +SLM S-MANP +technology O +. O + + +However O +, O +none O +of O +these O +materials S-CONPRI +is O +suitable O +for O +high-temperature O +applications O +up O +to O +more O +than O +2000 O +°C O +such O +as S-MATE +the O +diagnostic O +and O +inner O +wall O +materials S-CONPRI +of O +a O +fusion S-CONPRI +reactor O +or O +experiment S-CONPRI +. O + + +As S-MATE +a O +primary O +task O +at O +the O +Central O +Institute O +of O +Engineering S-APPL +, O +Electronics S-CONPRI +and O +Analytics O +, O +development O +and O +manufacturing S-MANP +of O +high-temperature O +components S-MACEQ +for O +experimental S-CONPRI +setups O +are O +essentially O +demanded O +using O +new O +technologies S-CONPRI +and O +materials S-CONPRI +. O + + +Therefore O +, O +molybdenum S-MATE +powder O +is O +investigated O +in O +terms O +of O +suitability O +for O +SLM S-MANP +technology O +in O +this O +study O +, O +due O +to O +the O +capability O +of O +molybdenum S-MATE +withstanding O +high O +temperature S-PARA +. O + + +Parameters S-CONPRI +like O +laser B-PARA +power E-PARA +, O +spot O +velocity O +and O +thickness O +of O +the O +powder S-MATE +layer S-PARA +are O +analysed O +to O +achieve O +high O +density S-PRO +of O +the O +parts O +. O + + +Being O +able O +to O +characterize O +the O +process S-CONPRI +signatures O +of O +powder B-MACEQ +bed E-MACEQ +based O +additive B-MANP +manufacturing I-MANP +process E-MANP +is O +key O +to O +improving O +the O +product B-CONPRI +quality E-CONPRI +. O + + +This O +paper O +demonstrates O +the O +implementation O +of O +a O +digital O +fringe O +projection O +technique O +to O +measure O +surface B-CONPRI +topography E-CONPRI +of O +the O +powder B-MACEQ +bed E-MACEQ +layers O +during O +the O +fabrication S-MANP +. O + + +We O +focus O +on O +developing O +the O +metrology S-CONPRI +tool O +and O +observing O +the O +types O +of O +information O +that O +can O +be S-MATE +extracted O +from O +such O +topographical O +data S-CONPRI +. O + + +The O +performance S-CONPRI +of O +the O +system O +is O +demonstrated O +with O +selected O +in B-CONPRI +situ E-CONPRI +measurements O +. O + + +Experimental S-CONPRI +results O +show O +this O +system O +is O +capable O +of O +measuring O +powder B-MACEQ +bed E-MACEQ +signatures O +including O +the O +powder S-MATE +layer S-PARA +flatness S-PRO +, O +surface B-FEAT +texture E-FEAT +, O +the O +average S-CONPRI +height O +drop O +of O +the O +fused S-CONPRI +regions O +, O +characteristic O +length B-CHAR +scales E-CHAR +on O +the O +surface S-CONPRI +, O +and O +splatter O +drop O +location O +and O +dimension S-FEAT +. O + + +Mask B-MANP +projection I-MANP +stereolithography E-MANP +is O +a O +digital B-ENAT +light I-ENAT +processing-based E-ENAT +additive B-MANP +manufacturing E-MANP +technique O +that O +has O +various O +advantages O +, O +such O +as S-MATE +high-resolution O +, O +scanning-free O +parallel O +process S-CONPRI +, O +wide O +material S-MATE +sets O +available O +, O +and O +support-structure-free S-CONPRI +three-dimensional O +( O +3D S-CONPRI +) O +printing O +. O + + +However O +, O +multi-material B-MANP +3D I-MANP +printing E-MANP +with O +mask B-MANP +projection I-MANP +stereolithography E-MANP +has O +been O +challenging O +due O +to O +difficulties O +of O +exchanging O +a O +liquid-state S-CONPRI +material O +in O +a O +vat S-MACEQ +. O + + +In O +this O +work O +, O +we O +report O +a O +rapid O +multi-material S-CONPRI +projection O +micro-stereolithography O +using O +dynamic B-CONPRI +fluidic I-CONPRI +control E-CONPRI +of O +multiple O +liquid B-MATE +photopolymers E-MATE +within O +an O +integrated O +fluidic B-MACEQ +cell E-MACEQ +. O + + +Highly O +complex O +multi-material S-CONPRI +3D B-CONPRI +micro-structures E-CONPRI +are O +rapidly B-MANP +fabricated E-MANP +through O +an O +active O +material B-CONPRI +exchange I-CONPRI +process E-CONPRI +. O + + +Material B-PARA +flow I-PARA +rate E-PARA +in O +the O +fluidic B-MACEQ +cell E-MACEQ +, O +material B-CONPRI +exchange I-CONPRI +efficiency E-CONPRI +, O +and O +the O +effects O +of O +energy B-CONPRI +dosage E-CONPRI +on O +curing B-PARA +depth E-PARA +are O +studied O +for O +various O +photopolymers S-MATE +. O + + +In O +addition O +, O +the O +degree O +of O +cross-contamination S-CONPRI +between O +different O +materials S-CONPRI +in O +a O +3D B-MANP +printed E-MANP +multi-material O +structure S-CONPRI +is O +evaluated O +to O +assess O +the O +quality S-CONPRI +of O +multi-material B-MANP +printing E-MANP +. O + + +The O +pressure-tight S-CONPRI +and O +leak-free S-CONPRI +fluidic B-MACEQ +cell E-MACEQ +enables O +active O +and O +fast O +switch O +between O +liquid B-MATE +photopolymers E-MATE +, O +even O +including O +micro-/nano-particle B-MATE +suspensions E-MATE +, O +which O +could O +potentially O +lead S-MATE +to O +facile O +3D B-MANP +printing E-MANP +of O +multi-material S-CONPRI +metallic/ceramic S-MATE +structures O +or O +heterogeneous B-MATE +biomaterials E-MATE +. O + + +In O +addition O +, O +a O +multi-responsive B-MATE +hydrogel E-MATE +micro-structure O +is O +printed O +using O +a O +thermo-responsive B-MATE +hydrogel E-MATE +and O +an O +electroactive B-MATE +hydrogel E-MATE +, O +showing O +various O +modes O +of O +swelling B-CONPRI +actuation E-CONPRI +in O +response O +to O +multiple O +external B-CONPRI +stimuli E-CONPRI +. O + + +This O +new O +ability O +to O +rapidly O +and O +heterogeneously S-CONPRI +integrate O +multiple B-MATE +functional I-MATE +materials E-MATE +in O +three-dimension S-CONPRI +at O +micro-scale S-CONPRI +has O +potential O +to O +accelerate O +advances O +in O +many O +emerging O +areas S-PARA +including O +3D B-MATE +metamaterials E-MATE +, O +tissue B-CONPRI +engineering E-CONPRI +, O +and O +soft B-APPL +robotics E-APPL +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +allows O +for O +the O +production S-MANP +of O +custom O +parts O +with O +previously O +impractical O +internal O +features O +, O +but O +comes O +with O +the O +additional O +possibility O +of O +internal O +defects S-CONPRI +due O +to O +print S-MANP +error S-CONPRI +, O +residual B-PRO +stress E-PRO +buildup O +, O +or O +cyber-attack O +by O +a O +malicious O +actor O +. O + + +Conventional O +post O +process S-CONPRI +analysis O +techniques O +have O +difficulty O +detecting O +these O +defects S-CONPRI +, O +often O +requiring O +destructive O +tests O +that O +compromise O +the O +integrity S-CONPRI +( O +and O +thus O +the O +purpose O +) O +of O +the O +part O +. O + + +Here O +, O +we O +present O +a O +“ O +certify-as-you-build O +” O +quality S-CONPRI +assurance O +system O +with O +the O +capability O +to O +monitor S-CONPRI +a O +part O +during O +the O +print S-MANP +process O +, O +capture O +the O +geometry S-CONPRI +using O +three-dimensional S-CONPRI +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +3D-DIC O +) O +, O +and O +compare O +the O +printed O +geometry S-CONPRI +with O +the O +computer S-ENAT +model O +to O +detect O +print S-MANP +errors S-CONPRI +in O +situ O +. O + + +A O +test O +case O +using O +a O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +3D B-MACEQ +printer E-MACEQ +was O +implemented O +, O +demonstrating O +in B-CONPRI +situ E-CONPRI +error S-CONPRI +detection O +of O +localized O +and O +global O +defects S-CONPRI +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +a O +powder-based B-MANP +additive I-MANP +manufacturing E-MANP +technique O +which O +creates O +parts O +by O +fusing S-CONPRI +together O +successive O +layers O +of O +powder S-MATE +with O +a O +laser S-ENAT +. O + + +The O +quality S-CONPRI +of O +produced O +parts O +is O +highly O +dependent O +on O +the O +proper O +selection O +of O +processing O +parameters S-CONPRI +, O +requiring O +significant O +testing S-CHAR +and O +experimentation O +to O +determine O +parameters S-CONPRI +for O +a O +given O +machine S-MACEQ +and O +material S-MATE +. O + + +Computational O +modeling S-ENAT +could O +potentially O +be S-MATE +used O +to O +shorten O +this O +process S-CONPRI +by O +identifying O +parameters S-CONPRI +through O +simulation S-ENAT +. O + + +However O +, O +simulating O +complete O +SLM S-MANP +builds S-CHAR +is O +challenging O +due O +to O +the O +difference O +in O +scale O +between O +the O +size O +of O +the O +particles S-CONPRI +and O +laser S-ENAT +used O +in O +the O +build S-PARA +and O +the O +size O +of O +the O +part O +produced O +. O + + +Often O +, O +continuum B-CONPRI +models E-CONPRI +are O +employed O +which O +approximate O +the O +powder S-MATE +as S-MATE +a O +continuous O +medium O +to O +avoid O +the O +need O +to O +model S-CONPRI +powder O +particles S-CONPRI +individually O +. O + + +While O +computationally O +expedient O +, O +continuum B-CONPRI +models E-CONPRI +require O +as S-MATE +inputs O +effective O +material B-CONPRI +properties E-CONPRI +for O +the O +powder S-MATE +which O +are O +often O +difficult O +to O +obtain O +experimentally O +. O + + +Building O +on O +previous O +works O +which O +have O +developed O +methods O +for O +estimating O +these O +effective O +properties S-CONPRI +along O +with O +their O +uncertainties O +through O +the O +use O +of O +detailed O +models O +, O +this O +work O +presents O +a O +part O +scale O +continuum B-CONPRI +model E-CONPRI +capable O +of O +predicting O +residual S-CONPRI +thermal O +stresses O +in O +an O +SLM S-MANP +build S-PARA +with O +uncertainty O +estimates O +. O + + +Model S-CONPRI +predictions O +are O +compared O +to O +experimental S-CONPRI +measurements O +from O +the O +literature O +. O + + +Processing O +of O +high-speed O +steel S-MATE +by O +SLM S-MANP +was O +successfully O +performed O +with O +low O +porosity S-PRO +. O + + +Preheating S-MANP +temperatures O +of O +200 O +°C O +or O +300 O +°C O +are O +necessary O +for O +low O +crack O +density S-PRO +. O + + +Microstructure S-CONPRI +consists O +of O +a O +cellular O +, O +fine O +dendritic O +structure S-CONPRI +after O +SLM S-MANP +. O + + +Hardness S-PRO +tempering O +behavior O +of O +the O +SLM-densified O +material S-MATE +is O +promising O +. O + + +The O +tribological B-CONPRI +properties E-CONPRI +of O +SLM S-MANP +specimens O +are O +highly O +promising O +compared O +to O +the O +references O +. O + + +In O +this O +work O +, O +the O +influence O +of O +different O +manufacturing S-MANP +techniques O +of O +M3:2 O +high-speed O +steel S-MATE +on O +the O +resulting O +microstructure S-CONPRI +and O +the O +associated O +material B-CONPRI +properties E-CONPRI +was O +investigated O +. O + + +Therefore O +, O +microstructure S-CONPRI +as S-MATE +well O +as S-MATE +the O +mechanical S-APPL +and O +tribological B-CONPRI +properties E-CONPRI +of O +cast S-MANP +steel O +( O +with O +subsequent O +hot-forming O +) O +and O +steel B-MATE +powder E-MATE +processed S-CONPRI +by O +two O +techniques O +: O +hot-isostatic O +pressing S-MANP +( O +HIP S-MANP +) O +and O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +were O +compared O +. O + + +A O +detailed O +SLM S-MANP +parameter S-CONPRI +analysis O +revealed O +that O +the O +porosity S-PRO +of O +SLM S-MANP +specimens O +can O +be S-MATE +decreased O +towards O +a O +smaller O +point O +distance O +and O +a O +longer O +exposure S-CONPRI +time O +( O +high O +energy O +input O +) O +. O + + +A O +rise O +in O +preheating S-MANP +temperature O +is O +associated O +with O +a O +reduction S-CONPRI +in O +the O +crack O +density S-PRO +or O +the O +complete O +avoidance O +of O +cracks O +. O + + +In O +this O +context O +, O +the O +high-speed O +steel S-MATE +showed O +outstanding O +densification S-MANP +behavior O +by O +SLM S-MANP +, O +even O +though O +this O +steel S-MATE +is O +considered O +to O +be S-MATE +hardly O +processable O +by O +SLM S-MANP +due O +to O +its O +high O +content O +of O +carbon S-MATE +and O +hard O +phase-forming O +elements S-MATE +. O + + +In O +addition O +, O +the O +reusability O +of O +steel B-MATE +powder E-MATE +for O +SLM S-MANP +processing O +was O +investigated O +. O + + +The O +results O +indicated O +that O +multiple O +reuse O +is O +possible O +, O +but O +only O +in O +combination O +with O +powder S-MATE +processing O +( O +mechanical S-APPL +sieving O +) O +after O +each O +SLM S-MANP +cycle O +. O + + +The O +microstructure S-CONPRI +of O +SLM-densified O +high-speed O +steel S-MATE +consists O +of O +a O +cellular O +, O +fine O +dendritic O +subgrain O +segregation S-CONPRI +structure O +( O +submicro O +level O +) O +that O +is O +not O +significantly O +affected O +by O +preheating S-MANP +the O +base O +plate O +. O + + +The O +mechanical S-APPL +and O +tribological B-CONPRI +properties E-CONPRI +were O +examined O +in O +relation O +to O +the O +manufacturing S-MANP +technique O +and O +the O +subsequent O +heat B-MANP +treatment E-MANP +. O + + +Our O +investigations O +revealed O +promising O +behavior O +with O +respect O +to O +hardness S-PRO +tempering O +( O +position O +of O +the O +secondary O +hardness S-PRO +peak O +) O +and O +tribology S-CONPRI +of O +the O +M3:2 O +steel S-MATE +processed S-CONPRI +by O +SLM S-MANP +compared O +to O +the O +HIP S-MANP +and O +cast S-MANP +conditions O +. O + + +A O +hybrid-part O +made O +of O +two O +materials S-CONPRI +was O +fabricated S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +of O +AlSi10Mg S-MATE +on O +an O +Al-Cu-Ni-Fe-Mg O +cast S-MANP +alloy S-MATE +substrate O +. O + + +The O +microstructure S-CONPRI +of O +the O +two-material O +component S-MACEQ +and O +the O +interface S-CONPRI +is O +investigated O +using O +multi-scale O +characterization O +techniques O +including O +optical B-CHAR +microscopy E-CHAR +( O +OM S-CHAR +) O +, O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +, O +and O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +TEM S-CHAR +) O +. O + + +The O +microstructure S-CONPRI +of O +SLM-AlSi10Mg O +consists O +of O +fine O +cellular O +dendrites S-BIOP +and O +columnar B-PRO +grains E-PRO +, O +developed O +along O +the O +building B-PARA +direction E-PARA +, O +where O +the O +substrate S-MATE +cast S-MANP +alloy S-MATE +is O +featured O +by O +large O +equiaxed B-CONPRI +grains E-CONPRI +. O + + +OM S-CHAR +and O +SEM S-CHAR +studies O +of O +the O +interface S-CONPRI +show O +a O +sound O +metallurgical B-CONPRI +bonding E-CONPRI +as S-MATE +a O +result O +of O +the O +melting S-MANP +of O +AlSi10Mg S-MATE +powder O +and O +partial O +melting S-MANP +of O +the O +cast S-MANP +substrate O +assisted O +by O +the O +circulate O +flows O +and O +Marangoni O +convection O +. O + + +The O +circulate O +flows O +cause O +complex O +phenomena O +at O +the O +interface S-CONPRI +, O +which O +lead S-MATE +to O +the O +dilution O +of O +alloying B-MATE +elements E-MATE +and O +a O +variation S-CONPRI +in O +the O +microstructure S-CONPRI +of O +the O +first O +consolidated O +layer S-PARA +of O +SLM-AlSi10Mg O +( O +as S-MATE +a O +result O +of O +variation S-CONPRI +in O +thermal B-PARA +gradient E-PARA +and O +solidification B-PARA +rate E-PARA +) O +. O + + +TEM S-CHAR +investigations O +of O +the O +interface S-CONPRI +reveal O +segregation S-CONPRI +of O +alloying B-MATE +elements E-MATE +at O +the O +interdendritic O +regions O +after O +solidification S-CONPRI +. O + + +Moreover O +, O +no O +precipitate S-MATE +is O +formed O +on O +top O +of O +the O +interface S-CONPRI +, O +due O +to O +the O +rapid B-MANP +solidification E-MANP +and O +dilution O +of O +the O +alloying B-MATE +elements E-MATE +. O + + +EBSD S-CHAR +analysis O +of O +the O +interface S-CONPRI +shows O +substantial O +differences O +in O +the O +grain B-CONPRI +structure E-CONPRI +of O +SLM-AlSi10Mg O +and O +the O +cast S-MANP +substrate O +, O +in O +terms O +of O +size O +and O +morphology S-CONPRI +. O + + +Mechanical B-CONPRI +properties E-CONPRI +of O +the O +hybrid O +material S-MATE +are O +studied O +afterwards O +using O +Vickers O +microhardness S-CONPRI +measurements O +, O +nanoindentation S-CHAR +and O +quasi-static S-CONPRI +uniaxial O +tensile B-CHAR +tests E-CHAR +. O + + +The O +SLM-AlSi10Mg O +side O +of O +the O +hybrid-part O +possesses O +better O +performance S-CONPRI +, O +mainly O +due O +to O +its O +finer O +and O +hierarchical O +microstructure S-CONPRI +. O + + +Inkjet B-MANP +printing E-MANP +of O +multiple O +materials S-CONPRI +is O +usually O +processed S-CONPRI +in O +multiple O +steps O +due O +to O +various O +jetting S-MANP +and O +curing/sintering O +conditions O +. O + + +The O +ink S-MATE +consists O +of O +iron B-MATE +oxide E-MATE +( O +Fe3O4 S-MATE +) O +nanoparticles S-CONPRI +( O +nominal O +particle S-CONPRI +size O +50–100 O +nm O +) O +suspended O +within O +a O +UV S-CONPRI +curable O +matrix O +resin S-MATE +. O + + +The O +viscosity S-PRO +and O +surface B-PRO +tension E-PRO +of O +the O +inks O +were O +tuned O +to O +sit O +within O +the O +inkjet S-MANP +printability O +range.Multiple O +layers O +of O +the O +electromagnetic O +active O +ink S-MATE +were O +printed O +alongside O +passive O +UV-curable O +ink S-MATE +in O +a O +single O +manufacturing B-MANP +process E-MANP +to O +form O +a O +multi-material S-CONPRI +waffle O +shape O +. O + + +The O +real O +permittivity O +of O +the O +cured S-MANP +passive O +ink S-MATE +, O +active O +ink S-MATE +and O +waffle O +structure S-CONPRI +at O +a O +frequency O +of O +8–12 O +GHz O +were O +2.25 O +, O +2.73 O +and O +2.65 O +F/m O +, O +respectively O +. O + + +This O +shows O +the O +potential O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +to O +form O +multi-material B-FEAT +structures E-FEAT +with O +tunable O +electromagnetic O +properties S-CONPRI +. O + + +A O +side-viewing O +vision O +monitoring O +methodology S-CONPRI +using O +high-speed O +camera S-MACEQ +for O +powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +is O +proposed O +. O + + +A O +novel O +method O +is O +designed S-FEAT +to O +extract O +features O +from O +melt B-MATE +pool E-MATE +, O +plume O +and O +spatters O +. O + + +The O +characteristics O +of O +the O +features O +of O +melt B-MATE +pool E-MATE +, O +plume O +and O +spatters O +are O +investigated O +. O + + +The O +results O +demonstrated O +that O +the O +extracted S-CONPRI +features O +are O +potential O +indicators O +for O +process S-CONPRI +quality O +assessment O +. O + + +With O +the O +development O +of O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +technique O +for O +functional O +parts O +production S-MANP +, O +process B-CONPRI +monitoring E-CONPRI +and O +diagnosis O +is O +highly O +demanded O +to O +ensure O +its O +process S-CONPRI +reliability O +and O +repeatability S-CONPRI +. O + + +An O +optical S-CHAR +filter S-APPL +with O +350 O +nm–800 O +nm O +cut-off O +was O +used O +to O +enhance O +the O +image S-CONPRI +contrast O +between O +the O +plume O +and O +the O +melt B-MATE +pool E-MATE +. O + + +A O +new O +image S-CONPRI +processing O +method O +was O +designed S-FEAT +to O +extract O +features O +from O +the O +melt B-MATE +pool E-MATE +, O +plume O +and O +spatters O +, O +respectively O +. O + + +Kalman O +filter S-APPL +tracking O +was O +used O +to O +pinpoint O +the O +exact O +melt B-MATE +pool E-MATE +position O +, O +and O +image S-CONPRI +segmentation O +algorithm S-CONPRI +was O +developed O +to O +segment O +the O +melt B-MATE +pool E-MATE +, O +plume O +and O +spatters O +from O +each O +other O +; O +a O +new O +tracking O +method O +was O +utilized O +to O +remove O +the O +spatters O +generated O +in O +the O +previous O +frame O +. O + + +After O +image S-CONPRI +processing O +, O +the O +features O +of O +melt B-MATE +pool E-MATE +intensity O +, O +plume O +area S-PARA +, O +plume O +orientation S-CONPRI +, O +spatter S-CHAR +number O +, O +spatter S-CHAR +area S-PARA +, O +spatter S-CHAR +orientation S-CONPRI +and O +spatter S-CHAR +velocity O +were O +extracted S-CONPRI +and O +their O +correlations O +with O +the O +scanning B-CONPRI +quality E-CONPRI +were O +investigated O +. O + + +The O +results O +indicated O +that O +these O +features O +were O +potential O +indicators O +for O +scanning B-CONPRI +quality E-CONPRI +assessment O +. O + + +The O +proposed O +method O +could O +be S-MATE +used O +to O +further O +study O +the O +characteristics O +of O +plume O +and O +spatter S-CHAR +and O +to O +explore O +the O +diagnosis O +performance S-CONPRI +based O +on O +the O +fusion S-CONPRI +of O +melt B-MATE +pool E-MATE +, O +plume O +and O +spatter S-CHAR +information O +. O + + +It O +provides O +a O +promising O +means O +for O +in-situ S-CONPRI +monitoring O +and O +control O +of O +PBF S-MANP +process O +. O + + +This O +paper O +presents O +the O +computational B-CHAR +fluid I-CHAR +dynamics E-CHAR +modeling O +of O +an O +additive B-MANP +manufacturing I-MANP +process E-MANP +that O +is O +candidate O +for O +the O +production S-MANP +of O +Gen B-MACEQ +IV E-MACEQ +nuclear O +reactor O +fuels O +. O + + +The O +modeled O +process S-CONPRI +combines O +the O +internal B-CONPRI +gelation E-CONPRI +to O +produce O +metal B-MATE +hydrous I-MATE +oxides E-MATE +with O +the O +3D B-MANP +ceramic I-MANP +printing E-MANP +to O +create O +a O +green B-CONPRI +body E-CONPRI +from O +these O +gelled B-MATE +oxides E-MATE +as S-MATE +described O +by O +Pouchon O +( O +2016 O +) O +. O + + +The O +objective O +of O +the O +simulations S-ENAT +is O +to O +optimize O +the O +process B-CONPRI +parameters E-CONPRI +: O +microfluidic B-CONPRI +mixing E-CONPRI +of O +the O +internal B-CONPRI +gelation E-CONPRI +reagents O +and O +generation O +of O +droplets S-CONPRI +of O +the O +mixed O +solutions O +. O + + +The O +simulations S-ENAT +were O +performed O +using O +the O +OpenFOAM O +software S-CONPRI +, O +and O +to O +perform O +these O +simulations S-ENAT +with O +the O +correct O +solution B-CONPRI +parameters E-CONPRI +, O +the O +properties S-CONPRI +of O +the O +fluids S-MATE +of O +interest O +were O +measured O +. O + + +The O +results O +show O +that O +a O +thorough O +mixing S-CONPRI +of O +the O +metal S-MATE +solution O +and O +the O +methenamine S-MATE +and O +urea S-MATE +mixture O +in O +a O +microfluidic B-MACEQ +mixer E-MACEQ +can O +be S-MATE +achieved O +in O +tens O +of O +milliseconds O +by O +either O +winding S-CONPRI +the O +mixing B-MACEQ +channel E-MACEQ +to O +create O +secondary B-CONPRI +flows E-CONPRI +or O +splitting O +the O +solutions O +inlets S-MACEQ +to O +yield O +additional O +diffusion B-CONPRI +interfaces E-CONPRI +. O + + +The O +optimal O +droplet B-PARA +size E-PARA +is O +achieved O +by O +using O +a O +mechanically B-CONPRI +vibrating E-CONPRI +3D B-MACEQ +printing I-MACEQ +head E-MACEQ +that O +leads O +to O +a O +frequency-following O +Rayleigh B-CONPRI +instability E-CONPRI +. O + + +The O +results O +of O +the O +simulations S-ENAT +suggest O +the O +parameters S-CONPRI +( O +micromixer B-PARA +geometry E-PARA +, O +flow B-PARA +rate E-PARA +, O +vibration B-PARA +frequency E-PARA +and O +others O +) O +that O +will O +optimize O +the O +mixing B-CONPRI +efficiency E-CONPRI +in O +a O +microfluidic B-MACEQ +mixer E-MACEQ +and O +the O +droplet B-CONPRI +generation E-CONPRI +process O +from O +a O +3D B-MACEQ +printing I-MACEQ +head E-MACEQ +. O + + +Metal S-MATE +Laser B-MANP +Sintering E-MANP +( O +LS O +) O +is O +a O +powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +that O +can O +be S-MATE +used O +to O +produce O +manufactured S-CONPRI +parts O +of O +complex B-PRO +shapes E-PRO +directly O +from O +metallic B-MATE +powders E-MATE +. O + + +One O +of O +the O +major O +problems O +of O +such O +powder B-MANP +bed I-MANP +fusion I-MANP +processes E-MANP +is O +that O +during O +the O +continuous O +movement O +of O +the O +laser B-CONPRI +beam E-CONPRI +, O +temperature S-PARA +distribution S-CONPRI +becomes O +inhomogeneous O +and O +instable O +in O +the O +powder S-MATE +. O + + +It O +leads O +to O +greater O +residual B-PRO +stresses E-PRO +in O +the O +solidified O +layer S-PARA +. O + + +Thus O +, O +temperature S-PARA +analyses O +must O +be S-MATE +performed O +to O +better O +understand O +the O +heating-cooling O +process S-CONPRI +of O +the O +powder B-MACEQ +bed E-MACEQ +as S-MATE +well O +as S-MATE +the O +interactions O +of O +different O +laser S-ENAT +scanning O +paths O +within O +a O +sintering S-MANP +pattern S-CONPRI +. O + + +A O +transient B-CONPRI +3D I-CONPRI +Finite I-CONPRI +Element E-CONPRI +( O +FE S-MATE +) O +model S-CONPRI +of O +the O +LS O +process S-CONPRI +has O +been O +developed O +with O +the O +commercial O +FE S-MATE +code O +ABAQUS S-ENAT +. O + + +The O +model S-CONPRI +takes O +into O +account O +the O +different O +physical O +phenomena O +involved O +in O +this O +powder B-MANP +bed I-MANP +fusion E-MANP +technology O +( O +including O +thermal O +conduction O +, O +radiation S-MANP +and O +convection O +) O +. O + + +A O +moving O +thermal O +source S-APPL +, O +modeling S-ENAT +the O +laser B-ENAT +scan E-ENAT +, O +is O +implemented O +with O +the O +user O +scripting O +subroutine O +DFLUX O +in O +this O +FE S-MATE +code O +. O + + +The O +material S-MATE +’ O +s S-MATE +thermal O +behavior O +is O +also O +defined O +via O +the O +subroutine O +UMATHT O +. O + + +As S-MATE +the O +material B-CONPRI +properties E-CONPRI +change O +due O +to O +the O +powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +, O +the O +model S-CONPRI +takes O +it O +into O +account O +. O + + +In O +this O +way O +, O +the O +calculation O +of O +a O +temperature-dependent O +behavior O +is O +undertaken O +for O +the O +packed O +powder B-MACEQ +bed E-MACEQ +, O +within O +its O +effective B-PARA +thermal I-PARA +conductivity E-PARA +and O +specific B-PRO +heat E-PRO +. O + + +Furthermore O +, O +the O +model S-CONPRI +accounts O +for O +the O +latent O +heat S-CONPRI +due O +to O +phase S-CONPRI +change O +of O +the O +metal B-MATE +powder E-MATE +. O + + +Finally O +, O +a O +time- O +and O +temperature-dependent O +formulation O +for O +the O +material S-MATE +’ O +s S-MATE +density S-PRO +is O +also O +computed O +, O +which O +is O +then O +integrated O +along O +with O +the O +other O +thermal B-CONPRI +properties E-CONPRI +in O +the O +heat S-CONPRI +equation O +. O + + +FE S-MATE +simulations O +have O +been O +applied O +to O +the O +case O +of O +titanium B-MATE +powder E-MATE +and O +show O +predictions S-CONPRI +in O +good O +agreement O +with O +experimental S-CONPRI +results O +. O + + +The O +effects O +of O +process B-CONPRI +parameters E-CONPRI +on O +the O +temperature S-PARA +and O +on O +the O +density B-PRO +distribution E-PRO +are O +also O +presented O +. O + + +The O +lattice B-FEAT +structure E-FEAT +is O +a O +type O +of O +cellular B-MATE +material E-MATE +that O +can O +achieve O +a O +variety O +of O +promising O +physical B-PRO +properties E-PRO +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +has O +relieved O +the O +difficulty O +of O +fabricating S-MANP +lattice O +structures O +with O +complex B-CONPRI +geometries E-CONPRI +. O + + +However O +, O +the O +quality S-CONPRI +of O +the O +AM S-MANP +fabricated O +lattice B-FEAT +structure E-FEAT +still O +needs O +improvement O +. O + + +In O +this O +paper O +, O +the O +influence O +of O +parameters S-CONPRI +of O +the O +Fused B-MANP +Deposition I-MANP +Modeling E-MANP +( O +FDM S-MANP +) O +process S-CONPRI +on O +lattice B-FEAT +structures E-FEAT +was O +investigated O +by O +the O +Taguchi B-CONPRI +method E-CONPRI +. O + + +It O +was O +found O +that O +the O +optimum O +level O +and O +significance O +of O +each O +process B-CONPRI +parameter E-CONPRI +vary O +for O +horizontal O +and O +inclined O +struts S-MACEQ +. O + + +In O +addition O +, O +compression B-CHAR +tests E-CHAR +investigate O +the O +influence O +of O +process B-CONPRI +parameters E-CONPRI +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +lattice B-FEAT +structures E-FEAT +. O + + +The O +results O +show O +that O +process B-CONPRI +parameters E-CONPRI +optimized O +by O +print B-CONPRI +quality E-CONPRI +can O +also O +improve O +the O +elastic B-PRO +modulus E-PRO +and O +the O +ultimate B-PRO +strength E-PRO +of O +these O +lattice B-FEAT +structures E-FEAT +. O + + +Laser B-MANP +cladding E-MANP +induces O +high O +tensile B-PRO +residual I-PRO +stress E-PRO +( O +RS O +) O +, O +which O +can O +compromise O +the O +quality S-CONPRI +of O +a O +specimen O +. O + + +Therefore O +, O +it O +is O +critical O +to O +accurately S-CHAR +predict O +the O +RS O +distribution S-CONPRI +in O +cladding S-MANP +and O +understand O +its O +formation O +mechanism S-CONPRI +. O + + +In O +this O +study O +, O +functionally B-MATE +graded I-MATE +material E-MATE +( O +FGM S-MANP +) O +layers O +were O +successfully O +deposited O +on O +the O +surface S-CONPRI +of O +a O +titanium B-MATE +alloy I-MATE +Ti6Al4V I-MATE +sheet E-MATE +by O +laser B-MANP +cladding E-MANP +technology O +. O + + +A O +corresponding O +thermo-mechanical S-CONPRI +coupling O +simulation S-ENAT +model S-CONPRI +of O +the O +laser B-MANP +cladding E-MANP +process O +was O +developed O +to O +investigate O +the O +formation O +mechanism S-CONPRI +of O +RS O +in O +the O +laser B-MANP +cladding E-MANP +FGM B-MATE +layers E-MATE +. O + + +The O +results O +show O +that O +high O +tensile S-PRO +RS O +forms O +in O +cladding S-MANP +components O +. O + + +Subsequent O +cladding S-MANP +can O +effectively O +alleviate O +the O +RS O +in O +cladding S-MANP +components O +although O +the O +position O +of O +maximum O +RS O +remains O +unchanged O +. O + + +The O +measurement S-CHAR +results O +of O +the O +longitudinal O +RS O +on O +the O +top O +and O +bottom O +surfaces S-CONPRI +of O +cladding S-MANP +components O +by O +the O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +method O +agreed O +with O +the O +simulation S-ENAT +results O +, O +thereby O +proving O +the O +accuracy S-CHAR +of O +the O +simulation S-ENAT +. O + + +In O +addition O +, O +the O +formation O +mechanism S-CONPRI +of O +RS O +in O +the O +laser B-MANP +cladding E-MANP +FGM B-MATE +layers E-MATE +was O +revealed O +by O +discussing O +the O +individual O +impact S-CONPRI +of O +each O +material B-CONPRI +property E-CONPRI +on O +RS O +. O + + +It O +was O +indicated O +that O +the O +RS O +distribution S-CONPRI +in O +the O +laser B-MANP +cladding E-MANP +FGM B-MATE +layers E-MATE +was O +significantly O +affected O +by O +material B-CONPRI +properties E-CONPRI +( O +in O +particular O +, O +coefficient B-PRO +of I-PRO +thermal I-PRO +expansion E-PRO +and O +Young O +’ O +s S-MATE +modulus O +) O +, O +except O +for O +the O +temperature B-PARA +gradient E-PARA +induced O +by O +the O +laser B-MANP +cladding E-MANP +process O +. O + + +The O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +process O +, O +i.e. O +, O +fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +, O +as S-MATE +opposed O +to O +traditional B-MANP +subtractive I-MANP +manufacturing E-MANP +, O +offers O +a O +superior O +way O +of O +manufacturing S-MANP +tooling O +components S-MACEQ +in O +terms O +of O +great O +design B-CONPRI +flexibility E-CONPRI +, O +rapid B-MANP +tooling E-MANP +development O +, O +material S-MATE +requirement O +reduction S-CONPRI +and O +significant O +cost O +savings O +. O + + +However O +, O +it O +is O +always O +challenging O +to O +design S-FEAT +a O +tool S-MACEQ +structure S-CONPRI +with O +minimized O +material S-MATE +and O +labor B-CONPRI +cost E-CONPRI +while O +maintaining O +satisfactory O +tooling B-CONPRI +performance E-CONPRI +. O + + +In O +the O +current O +study O +, O +a O +comprehensive O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +was O +developed O +for O +ULTEM O +9085 O +FDM S-MANP +tools O +subjected O +to O +applied O +pressure S-CONPRI +and O +elevated O +temperature S-PARA +for O +vacuum O +assisted O +resin B-MANP +transfer I-MANP +molding E-MANP +( O +VARTM O +) O +process S-CONPRI +. O + + +Both O +solid-build O +and O +sparse-build O +tools S-MACEQ +were O +studied O +. O + + +Material B-CONPRI +properties E-CONPRI +of O +the O +tools S-MACEQ +were O +obtained O +from O +solid O +coupon O +testing S-CHAR +at O +elevated O +temperatures S-PARA +. O + + +The O +thermo-mechanical S-CONPRI +behavior O +of O +tools S-MACEQ +during O +the O +VARTM O +process S-CONPRI +was O +investigated O +using O +the O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +. O + + +The O +ULTEM O +tools S-MACEQ +were O +manufactured S-CONPRI +using O +Stratasys S-APPL +Fortus O +400mc O +FDM S-MANP +machine O +. O + + +Thermal B-PARA +cycling E-PARA +of O +the O +tools S-MACEQ +was O +performed O +at O +elevated O +temperatures S-PARA +( O +180 O +°F O +and O +250 O +°F O +) O +. O + + +Dimensional B-CHAR +analysis E-CHAR +and O +surface B-PRO +roughness E-PRO +of O +the O +tools S-MACEQ +were O +evaluated O +after O +thermal B-PARA +cycling E-PARA +. O + + +This O +study O +on O +the O +performance S-CONPRI +of O +FDM S-MANP +tooling O +for O +VARTM O +composite B-MANP +manufacturing E-MANP +process O +can O +be S-MATE +extended O +to O +other O +composite B-MANP +manufacturing E-MANP +processes O +. O + + +The O +low O +alloy B-MATE +steel E-MATE +AISI O +4140 O +( O +German O +grade O +42CrMo4 O +) O +is O +one O +of O +the O +most O +frequently O +used O +Quench O +& O +Tempering S-MANP +( O +Q O +& O +T O +) O +steels S-MATE +with O +a O +wide O +range S-PARA +of O +applicability O +. O + + +Until O +now O +, O +commercially O +available O +iron S-MATE +powders O +for O +additive B-MANP +manufacturing E-MANP +can O +be S-MATE +summed O +up O +by O +their O +low O +amount O +of O +carbon S-MATE +. O + + +Fusion B-MANP +welding E-MANP +of O +Q O +& O +T O +steels S-MATE +often O +leads O +to O +cracks O +due O +to O +brittle S-PRO +martensitic O +transformation O +and O +the O +associated O +volume S-CONPRI +change O +. O + + +Therefore O +, O +the O +selection O +of O +appropriate O +process B-CONPRI +parameters E-CONPRI +in O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +plays O +a O +key O +role O +for O +the O +final O +material B-CONPRI +properties E-CONPRI +and O +is O +achieved O +through O +utilization O +of O +a O +new O +process S-CONPRI +development O +strategy O +and O +evaluation O +of O +microstructural S-CONPRI +features O +of O +test O +cubes O +. O + + +In O +this O +work O +tensile B-MACEQ +specimens E-MACEQ +were O +successfully O +produced O +with O +optimal B-PARA +process E-PARA +parameters O +and O +mechanical B-CHAR +tests E-CHAR +of O +additively O +built O +samples S-CONPRI +indicate O +mechanical S-APPL +performance O +comparable O +with O +a O +450 O +°C O +tempered S-MANP +state O +of O +conventionally O +cast S-MANP +material O +. O + + +By O +correlating O +the O +measured O +mechanical B-CONPRI +properties E-CONPRI +of O +LPBF S-MANP +samples O +to O +those O +of O +a O +conventional O +Q O +& O +T O +state O +, O +an O +estimation O +of O +the O +intrinsic O +heat B-MANP +treatment E-MANP +during O +LPBF S-MANP +was O +carried O +out O +using O +an O +inverse O +transient S-CONPRI +Hollomon–Jaffe O +approach O +. O + + +This O +is O +also O +in O +accordance O +with O +the O +finely O +dispersed O +carbide S-MATE +precipitates O +in O +the O +as S-MATE +built O +condition O +. O + + +Furthermore O +, O +the O +effect O +of O +bed S-MACEQ +pre-heating O +on O +the O +final O +material S-MATE +tempering O +state O +was O +found O +to O +be S-MATE +negligible O +. O + + +This O +shows O +the O +importance O +of O +a O +balanced O +match O +between O +LPBF S-MANP +process O +parameters S-CONPRI +and O +subsequent O +application O +demands O +as S-MATE +well O +as S-MATE +necessary O +postprocessing S-CONPRI +steps O +. O + + +Alumina S-MATE +toughened O +zirconia S-MATE +( O +ATZ O +) O +parts O +were O +produced O +via O +a O +laser-based O +powder B-MANP +bed I-MANP +fusion E-MANP +technology O +using O +a O +conventional O +Nd-YAG O +continuous B-CONPRI +wave E-CONPRI +laser O +. O + + +The O +powder S-MATE +was O +produced O +using O +a O +spray B-MANP +drying E-MANP +process S-CONPRI +and O +the O +laser S-ENAT +matter O +interaction O +was O +enhanced O +by O +a O +binder S-MATE +pyrolysis O +. O + + +Thermal O +post-processing S-CONPRI +to O +further O +increase O +the O +part O +density S-PRO +was O +investigated O +using O +dilatometry O +. O + + +The O +microstructure S-CONPRI +was O +analysed O +using O +X-ray B-CHAR +powder I-CHAR +diffraction E-CHAR +measurements O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +were O +assessed O +using O +a O +four-point O +bending B-CHAR +test E-CHAR +on O +ten O +specimens O +, O +reaching O +a O +bending B-PRO +strength E-PRO +of O +31 O +± O +11 O +MPa S-CONPRI +. O + + +Laser-based O +direct O +metal S-MATE +addition O +( O +LBDMA O +) O +is O +a O +promising O +directed B-MANP +energy I-MANP +deposition E-MANP +technology O +that O +is O +well O +suited O +for O +the O +production S-MANP +of O +complex O +metal S-MATE +structures O +, O +low-volume O +manufacturing S-MANP +, O +and O +high-value O +component S-MACEQ +repair O +or O +modification O +. O + + +LBDMA O +is O +finding O +wide O +application O +in O +the O +automotive S-APPL +, O +biomedical S-APPL +, O +and O +aerospace B-APPL +industries E-APPL +. O + + +However O +, O +the O +process S-CONPRI +reliability O +and O +the O +repeatability S-CONPRI +of O +finished O +components S-MACEQ +are O +still O +problems O +. O + + +This O +work O +offers O +a O +solution S-CONPRI +by O +developing O +a O +sensing S-APPL +and O +control B-MACEQ +system E-MACEQ +for O +the O +robotically O +controlled O +8-axis O +LBDMA O +system O +developed O +at O +the O +Research S-CONPRI +Center O +for O +Advanced O +Manufacturing S-MANP +of O +Southern O +Methodist O +University O +, O +Dallas O +, O +TX O +. O + + +The O +developed O +system O +consists O +of O +sensing S-APPL +and O +control O +units O +for O +the O +powder B-PARA +flow I-PARA +rate E-PARA +and O +the O +molten B-CONPRI +pool E-CONPRI +size O +. O + + +An O +optoelectronic O +sensor S-MACEQ +was O +developed O +to O +sense O +the O +powder B-PARA +flow I-PARA +rate E-PARA +. O + + +It O +is O +a O +main O +component S-MACEQ +in O +an O +on-line O +control B-MACEQ +system E-MACEQ +of O +powder B-PARA +flow I-PARA +rate E-PARA +in O +a O +LBDMA O +system O +. O + + +An O +infrared S-CONPRI +imaging S-APPL +setup O +was O +installed O +on O +the O +laser S-ENAT +head O +to O +monitor S-CONPRI +the O +top O +full-field O +view O +of O +the O +molten B-CONPRI +pool E-CONPRI +. O + + +A O +simple S-MANP +proportional O +integral O +derivative O +( O +PID O +) O +controller S-MACEQ +, O +combined O +with O +feed-forward O +compensation O +was O +used O +to O +build S-PARA +a O +closed-loop B-MACEQ +control E-MACEQ +system O +for O +achieving O +a O +uniform O +molten B-CONPRI +pool E-CONPRI +size O +. O + + +Two O +L-shaped O +single-bead O +walls O +were O +built O +with O +and O +without O +closed-loop B-MACEQ +control E-MACEQ +, O +respectively O +. O + + +A O +good O +performance S-CONPRI +on O +achieving O +uniform O +geometry S-CONPRI +by O +closed-loop B-MACEQ +control E-MACEQ +of O +the O +molten B-CONPRI +pool E-CONPRI +size O +was O +approved O +. O + + +Selective B-MANP +laser I-MANP +sintering E-MANP +( O +LS O +) O +of O +thermoplastic B-MATE +powders E-MATE +allows O +for O +the O +construction S-APPL +of O +complex O +parts O +with O +higher O +mechanical B-CONPRI +properties E-CONPRI +and O +durability S-PRO +compared O +to O +other O +additive B-MANP +manufacturing E-MANP +methods O +. O + + +According O +to O +the O +current O +model S-CONPRI +of O +isothermal S-CONPRI +laser O +sintering S-MANP +, O +semi-crystalline O +thermoplastics S-MATE +need O +to O +be S-MATE +processed O +within O +a O +certain O +temperature B-PARA +range E-PARA +, O +resulting O +in O +the O +simultaneous O +presence O +of O +the O +material S-MATE +both O +in O +a O +molten O +and O +solid B-CONPRI +state E-CONPRI +, O +which O +is O +present O +during O +part O +building O +. O + + +Based O +on O +this O +process B-CONPRI +model E-CONPRI +, O +high O +cycle O +times O +ranging O +from O +hours O +to O +days O +are O +a O +thought O +to O +be S-MATE +a O +necessity O +to O +avoid O +warpage.In O +this O +paper O +, O +the O +limited O +validity O +of O +the O +model S-CONPRI +of O +isothermal S-CONPRI +laser O +sintering S-MANP +is O +shown O +by O +various O +experiments O +, O +as S-MATE +ongoing O +solidification S-CONPRI +could O +be S-MATE +detected O +a O +few O +layers O +below O +the O +powder B-MACEQ +bed E-MACEQ +surface O +. O + + +The O +results O +indicate O +that O +crystallization S-CONPRI +and O +material S-MATE +solidification O +is O +initiated O +at O +high O +temperatures S-PARA +and O +further O +progresses O +throughout O +part O +build-up O +in O +z-direction S-FEAT +. O + + +Therefore O +, O +a O +process-adapted O +material S-MATE +characterization O +was O +performed O +to O +identify O +the O +isothermal B-CONPRI +crystallization E-CONPRI +kinetics O +at O +processing O +temperature S-PARA +and O +to O +track O +changes O +of O +the O +material S-MATE +state O +over O +time O +. O + + +A O +dual O +approach O +on O +measuring O +surface S-CONPRI +temperatures O +by O +infrared S-CONPRI +thermography O +and O +additional O +thermocouple S-MACEQ +measurements O +in O +z-direction S-FEAT +was O +performed O +to O +identify O +further O +influences O +on O +the O +material S-MATE +solidification O +. O + + +A O +model B-CONPRI +experiment E-CONPRI +revealed O +that O +a O +few O +millimeters O +below O +the O +surface S-CONPRI +, O +components S-MACEQ +produced O +by O +LS O +are O +already O +solidified O +. O + + +Based O +on O +these O +results O +, O +the O +authors O +present O +an O +enhanced O +process B-CONPRI +model E-CONPRI +of O +isothermal S-CONPRI +laser O +sintering S-MANP +, O +which O +considers O +material S-MATE +solidification O +in O +z-direction S-FEAT +during O +part O +build-up O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +3D B-MANP +printing E-MANP +) O +enables O +the O +designing O +and O +producing O +of O +complex B-CONPRI +geometries E-CONPRI +in O +a O +layer-by-layer S-CONPRI +approach O +. O + + +The O +layered B-CONPRI +structure E-CONPRI +leads O +to O +anisotropic S-PRO +behaviour O +in O +the O +material S-MATE +. O + + +To O +accommodate O +anisotropic S-PRO +behaviour O +, O +geometrical O +optimization S-CONPRI +is O +needed O +so O +that O +the O +3D B-MANP +printed E-MANP +object O +meets O +the O +pre-set O +strength S-PRO +and O +quality S-CONPRI +requirements O +. O + + +In O +this O +article O +a O +material S-MATE +description O +for O +polymer S-MATE +powder O +bed S-MACEQ +fused O +also O +or O +selective B-MANP +laser E-MANP +sintered O +( O +SLS S-MANP +) O +PA12 S-MATE +( O +Nylon-12 O +) O +, O +which O +is O +a O +common O +3D B-MANP +printing E-MANP +plastic O +, O +was O +investigated O +, O +using O +the O +Finite B-CONPRI +Element I-CONPRI +Method E-CONPRI +( O +FEM S-CONPRI +) O +. O + + +The O +Material S-MATE +Model O +parameters S-CONPRI +were O +obtained O +by O +matching O +them O +to O +the O +test O +results O +of O +multipurpose O +test O +specimens O +( O +dumb-bells O +or O +dog O +bones O +) O +and O +the O +model S-CONPRI +was O +then O +used O +to O +simulate/predict O +the O +mechanical S-APPL +performance O +of O +the O +SLS S-MANP +printed O +lower-leg O +prosthesis O +components S-MACEQ +, O +pylon O +and O +support S-APPL +. O + + +For O +verification S-CONPRI +purposes O +, O +two O +FEM S-CONPRI +designs S-FEAT +for O +a O +support S-APPL +were O +SLS S-MANP +printed O +together O +with O +additional O +test O +specimens O +in O +order O +to O +validate O +the O +used O +Material S-MATE +Model O +. O + + +The O +SLS S-MANP +printed O +prosthesis O +pieces O +were O +tested O +according O +to O +ISO S-MANS +10328 O +Standard S-CONPRI +. O + + +The O +FEM S-CONPRI +simulations O +, O +together O +with O +the O +Material S-MATE +Model O +, O +was O +found O +to O +give O +good O +estimations O +for O +the O +location O +of O +a O +failure S-CONPRI +and O +its O +load O +. O + + +It O +was O +also O +noted O +that O +there O +were O +significant O +variations S-CONPRI +among O +individual O +SLS S-MANP +printed O +test O +specimens O +, O +which O +impacted O +on O +the O +material S-MATE +parameters O +and O +the O +FEM S-CONPRI +simulations O +. O + + +Hence O +, O +to O +enable O +reliable O +FEM S-CONPRI +simulations O +for O +the O +designing O +of O +3D B-MANP +printed E-MANP +products O +, O +better O +control O +of O +the O +SLS B-MANP +process E-MANP +with O +regards O +to O +porosity S-PRO +, O +pore S-PRO +morphology S-CONPRI +and O +pore S-PRO +distribution S-CONPRI +is O +needed O +. O + + +Water-atomized O +and O +gas-atomized O +17-4 B-MATE +PH I-MATE +stainless I-MATE +steel E-MATE +powder O +were O +used O +as S-MATE +feedstock O +in O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +. O + + +Gas B-MANP +atomized E-MANP +powder O +revealed O +single O +martensitic O +phase S-CONPRI +after O +printing O +and O +heat B-MANP +treatment E-MANP +independent O +of O +energy B-PARA +density E-PARA +. O + + +As-printed O +water B-MANP +atomized E-MANP +powder S-MATE +contained O +dual O +martensitic O +and O +austenitic S-MATE +phase O +regardless O +of O +energy B-PARA +density E-PARA +. O + + +The O +H900 O +heat B-MANP +treatment E-MANP +cycle O +was O +not O +effective O +in O +enhancing O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +water-atomized O +powder S-MATE +after O +laser S-ENAT +melting O +. O + + +However O +, O +after O +solutionizing O +at O +1315ºC O +and O +aging O +at O +482 O +°C O +fully O +martensitic O +structure S-CONPRI +was O +observed O +with O +hardness S-PRO +( O +40.2 O +HRC O +) O +, O +yield B-PRO +strength E-PRO +( O +1000 O +MPa S-CONPRI +) O +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +( O +1261 O +MPa S-CONPRI +) O +comparable O +to O +those O +of O +gas B-MANP +atomized E-MANP +( O +42.7 O +HRC O +, O +1254 O +MPa S-CONPRI +and O +1300 O +MPa S-CONPRI +) O +and O +wrought S-CONPRI +alloy S-MATE +( O +39 O +HRC O +, O +1170 O +MPa S-CONPRI +and O +1310 O +MPa S-CONPRI +) O +, O +respectively O +. O + + +Improved O +mechanical B-CONPRI +properties E-CONPRI +in O +water-atomized O +powder S-MATE +was O +found O +to O +be S-MATE +related O +to O +presence O +of O +finer O +martensite S-MATE +and O +higher O +volume B-PARA +fraction E-PARA +of O +fine O +Cu-enriched O +precipitates S-MATE +. O + + +Our O +results O +imply O +that O +water-atomized O +powder S-MATE +is O +a O +promising O +cheaper O +feedstock S-MATE +alternative O +to O +gas-atomized O +powder S-MATE +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +offer O +new O +processing O +routes O +for O +functionally B-MATE +graded I-MATE +materials E-MATE +. O + + +At O +present O +, O +parts O +built O +using O +these O +processes S-CONPRI +often O +require O +additional O +processing O +as S-MATE +a O +result O +of O +the O +characteristic O +surface B-FEAT +finish E-FEAT +limitations O +synonymous O +with O +AM B-MANP +processes E-MANP +. O + + +A O +difficulty O +thus O +arises O +in O +the O +post B-CONPRI +processing E-CONPRI +of O +these O +components S-MACEQ +as S-MATE +volumes O +within O +the O +part O +have O +differing O +material B-CONPRI +properties E-CONPRI +by O +definition O +and O +will O +therefore O +exhibit O +variable O +machinability.In O +this O +study O +, O +machining S-MANP +of O +functionally B-CONPRI +graded E-CONPRI +Ti6Al4V/ O +WC S-MATE +components S-MACEQ +consisting O +of O +a O +metal B-MATE +matrix I-MATE +composite E-MATE +( O +MMC S-MATE +) O +region O +and O +a O +single O +alloy S-MATE +region O +produced O +via O +direct B-MANP +energy I-MANP +deposition E-MANP +using O +commercially O +available O +tooling S-CONPRI +is O +explored O +. O + + +The O +influence O +of O +post B-CONPRI +processing E-CONPRI +on O +surface B-FEAT +integrity E-FEAT +is O +investigated O +and O +reported O +. O + + +The O +effect O +of O +material S-MATE +variation O +on O +cutting B-CONPRI +forces E-CONPRI +and O +tool S-MACEQ +response O +along O +the O +component S-MACEQ +is O +also O +analysed O +and O +reported O +. O + + +Cutting B-CONPRI +forces E-CONPRI +within O +the O +MMC S-MATE +region O +are O +found O +to O +increase O +by O +as S-MATE +much O +as S-MATE +40 O +% O +which O +has O +been O +subsequently O +related O +to O +the O +periodic O +changes O +in O +microstructure S-CONPRI +generated O +by O +the O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +build B-CONPRI +strategy E-CONPRI +. O + + +Tool B-CONPRI +wear E-CONPRI +mechanisms O +are O +investigated O +and O +the O +influence O +of O +material S-MATE +pull O +out O +on O +surface B-FEAT +integrity E-FEAT +of O +both O +MMC S-MATE +and O +single O +material S-MATE +regions O +is O +explored O +. O + + +This O +study O +provides O +an O +insight O +into O +how O +the O +layer S-PARA +building O +strategies O +, O +particularly O +with O +multiple O +materials S-CONPRI +and O +the O +resulting O +variation S-CONPRI +in O +microstructure S-CONPRI +influences O +the O +machining S-MANP +of O +resulting O +components S-MACEQ +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +gaining O +popularity O +because O +of O +its O +ability O +to O +manufacture S-CONPRI +complex O +parts O +in O +less O +time O +. O + + +Despite O +recent O +research S-CONPRI +involving O +designs S-FEAT +of O +experiments O +( O +DOEs O +) O +to O +characterize O +the O +relationships O +between O +some O +AM B-MANP +process E-MANP +parameters O +and O +various O +part O +quality S-CONPRI +characteristics O +, O +to O +date O +, O +there O +seems O +to O +be S-MATE +no O +universally O +accepted O +comprehensive O +model S-CONPRI +that O +relates O +process B-CONPRI +parameters E-CONPRI +to O +part O +quality S-CONPRI +. O + + +In O +this O +paper O +, O +to O +support S-APPL +the O +goal O +of O +manufacturing S-MANP +parts O +right O +the O +first O +time O +, O +a O +Bayesian O +network O +in O +continuous O +domain S-CONPRI +is O +developed O +which O +relates O +four O +process B-CONPRI +parameters E-CONPRI +( O +laser B-PARA +power E-PARA +, O +scan B-PARA +speed E-PARA +, O +hatch B-PARA +spacing E-PARA +, O +and O +layer B-PARA +thickness E-PARA +) O +and O +five O +part O +quality S-CONPRI +characteristics O +( O +density S-PRO +, O +hardness S-PRO +, O +top O +layer S-PARA +surface O +roughness S-PRO +, O +ultimate B-PRO +tensile I-PRO +strength E-PRO +in O +the O +build B-PARA +direction E-PARA +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +perpendicular O +to O +the O +build B-PARA +direction E-PARA +) O +. O + + +A O +machine B-ENAT +learning I-ENAT +algorithm E-ENAT +is O +used O +to O +train O +the O +network O +on O +a O +database S-ENAT +mined O +from O +a O +large O +number O +of O +publications O +with O +experimental B-CONPRI +data E-CONPRI +from O +parts O +built O +using O +316L O +with O +selective B-MANP +laser I-MANP +melting E-MANP +. O + + +The O +network O +is O +validated O +by O +retaining O +a O +subset O +of O +the O +training O +data S-CONPRI +for O +testing S-CHAR +and O +comparing O +the O +network O +’ O +s S-MATE +predictions S-CONPRI +to O +the O +known O +values O +. O + + +Accuracy S-CHAR +is O +optimized O +by O +continually O +re-training O +the O +network O +using O +parts O +built O +with O +a O +specific O +machine S-MACEQ +of O +interest O +. O + + +The O +industrial S-APPL +relevance O +of O +this O +research S-CONPRI +is O +outlined O +with O +respect O +to O +four O +current O +challenges O +in O +AM S-MANP +, O +including O +the O +length O +of O +time O +to O +determine O +optimal B-PARA +process E-PARA +parameters O +for O +a O +new O +machine S-MACEQ +, O +ability O +to O +organize O +relevant O +knowledge O +, O +quantification O +of O +machine S-MACEQ +variability O +, O +and O +transfer O +of O +knowledge O +to O +new O +operators O +. O + + +Reclaimed O +materials S-CONPRI +such O +as S-MATE +waste O +plastics S-MATE +can O +be S-MATE +utilized O +in O +additive B-MANP +manufacturing E-MANP +to O +improve O +the O +self-reliance O +of O +warfighters O +on O +forward O +operating O +bases O +by O +cutting S-MANP +costs O +and O +decreasing O +the O +demand O +for O +the O +frequent O +resupplying O +of O +parts O +by O +the O +supply B-CONPRI +chain E-CONPRI +. O + + +In O +addition O +, O +the O +use O +of O +waste O +materials S-CONPRI +in O +additive B-MANP +manufacturing E-MANP +in O +the O +private O +sector O +would O +reduce O +cost O +and O +increase O +sustainability S-CONPRI +, O +providing O +a O +high-value O +output O +for O +used O +plastics S-MATE +. O + + +Experimentation O +is O +conducted O +to O +process S-CONPRI +polyethylene B-MATE +terephthalate E-MATE +bottles O +and O +packaging O +into O +filament S-MATE +that O +can O +then O +be S-MATE +used O +for O +additive B-MANP +manufacturing E-MANP +methods O +like O +fused B-MANP +filament I-MANP +fabrication E-MANP +, O +without O +the O +use O +of O +additives S-MATE +or O +modification O +to O +the O +polymer S-MATE +. O + + +The O +chemistry S-CONPRI +of O +different O +polyethylene B-MATE +terephthalate E-MATE +recycled O +feedstocks S-MATE +was O +evaluated O +and O +found O +to O +be S-MATE +identical O +, O +and O +thus O +mixed O +feedstock S-MATE +processing O +is O +a O +suitable O +approach O +. O + + +Rheological S-PRO +data S-CONPRI +showed O +drying S-MANP +of O +the O +recycled S-CONPRI +polyethylene B-MATE +terephthalate E-MATE +led S-APPL +to O +an O +increase O +in O +the O +polymer S-MATE +’ O +s S-MATE +viscosity O +. O + + +Thermal O +and O +mechanical B-CONPRI +properties E-CONPRI +were O +evaluated O +for O +filament S-MATE +with O +different O +processing O +conditions O +, O +as S-MATE +well O +as S-MATE +printed O +and O +molded O +specimens O +. O + + +Crystallinity O +ranged O +from O +12.2 O +for O +the O +water O +cooled O +filament S-MATE +, O +compared O +to O +24.9 O +% O +for O +the O +filament S-MATE +without O +any O +active O +cooling S-MANP +. O + + +Tensile S-PRO +results O +show O +that O +the O +elongation S-PRO +to O +failure S-CONPRI +was O +similar O +to O +an O +injection O +molded O +part O +( O +3.5 O +% O +) O +and O +tensile B-PRO +strength E-PRO +of O +35.1 O +± O +8 O +MPa S-CONPRI +was O +comparable O +to O +commercial O +polycarbonate-ABS O +filament S-MATE +, O +demonstrating O +the O +robustness S-PRO +of O +the O +material S-MATE +. O + + +In O +addition O +, O +three B-CONPRI +point I-CONPRI +bending E-CONPRI +tests O +showed O +a O +similar O +load O +at O +failure S-CONPRI +for O +a O +select O +long-lead O +military S-APPL +part O +printed O +from O +the O +recycled S-CONPRI +filament S-MATE +compared O +to O +parts O +printed O +from O +commercial O +filament S-MATE +. O + + +Thus O +filament S-MATE +from O +recycled S-CONPRI +polyethylene B-MATE +terephthalate E-MATE +has O +the O +capability O +for O +replacing O +commercial O +filament S-MATE +in O +printing O +a O +diverse O +range S-PARA +of O +plastic S-MATE +parts O +. O + + +The O +incorporation O +of O +electrical S-APPL +components S-MACEQ +into O +3D B-MANP +printed E-MANP +products O +such O +as S-MATE +sensors O +or O +printing O +of O +circuits O +requires O +the O +use O +of O +3D S-CONPRI +printable O +conductive O +materials S-CONPRI +. O + + +However O +, O +most O +conductive O +materials S-CONPRI +available O +for O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +have O +conductivities O +of O +less O +than O +1000 O +S/m O +. O + + +Here O +, O +we O +describe O +the O +study O +of O +conductive O +thermoplastic B-MATE +composites E-MATE +comprising O +either O +nylon S-MATE +– O +6 O +or O +polyethylene S-MATE +( O +PE S-MANP +) O +matrix O +. O + + +The O +fillers O +used O +were O +nickel S-MATE +and O +Sn95Ag4Cu1 O +, O +a O +low O +melting B-PRO +point E-PRO +metal O +alloy S-MATE +. O + + +The O +combination O +of O +nickel B-MATE +metal E-MATE +particles O +and O +tin B-MATE +alloy E-MATE +allows O +for O +higher O +metal S-MATE +loading O +at O +lower O +melt S-CONPRI +viscosity O +, O +compared O +to O +composites S-MATE +of O +nickel B-MATE +metal E-MATE +particles O +alone O +. O + + +% O +metal S-MATE +loading O +was O +processable O +by O +a O +single O +screw B-MACEQ +extruder E-MACEQ +. O + + +Embedded O +conductive O +tracks O +of O +various O +geometries S-CONPRI +were O +easily O +printed O +via O +FFF S-MANP +. O + + +Electrical B-PRO +conductivity E-PRO +of O +embedded O +conductive O +track O +has O +been O +investigated O +as S-MATE +a O +function O +of O +geometrical O +variation S-CONPRI +, O +where O +conductive O +tracks O +printed O +along O +a O +horizontal O +axis O +show O +resistance S-PRO +of O +≤ O +1 O +Ω. O +Porosity S-PRO +of O +the O +printed O +track O +is O +shown O +to O +increase O +with O +prints O +along O +the O +vertical S-CONPRI +axis O +, O +leading O +to O +a O +reduction S-CONPRI +in O +electrical B-PRO +conductivity E-PRO +of O +more O +than O +two O +orders O +of O +magnitude S-PARA +. O + + +Rapid O +melt B-MATE +pool E-MATE +formation O +and O +solidification S-CONPRI +during O +the O +metal B-MATE +powder E-MATE +bed S-MACEQ +process O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +generates O +large O +thermal B-PARA +gradients E-PARA +that O +can O +in O +turn O +lead S-MATE +to O +increased O +residual B-PRO +stress E-PRO +formation O +within O +a O +component S-MACEQ +. O + + +Metal S-MATE +anchors O +or O +supports S-APPL +are O +required O +to O +be S-MATE +built O +in-situ S-CONPRI +and O +forcibly O +hold O +SLM S-MANP +structures O +in O +place O +and O +minimise O +geometric O +distortion/warpage O +as S-MATE +a O +result O +of O +this O +thermal O +residual B-PRO +stress E-PRO +. O + + +Anchors O +are O +often O +costly O +, O +difficult O +and O +time O +consuming O +to O +remove O +and O +limit S-CONPRI +the O +geometric B-CONPRI +freedom E-CONPRI +of O +this O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +. O + + +A O +novel O +method O +known O +as S-MATE +Anchorless O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +ASLM O +) O +maintains O +processed B-CONPRI +material E-CONPRI +within O +a O +stress S-PRO +relieved O +state O +throughout O +the O +duration O +of O +a O +build S-PARA +. O + + +As S-MATE +a O +result O +metal S-MATE +components S-MACEQ +formed O +using O +ASLM O +do O +not O +require O +support B-FEAT +structures E-FEAT +or O +anchors O +. O + + +ASLM O +locally O +melts O +two O +or O +more O +powdered O +materials S-CONPRI +that O +alloy S-MATE +under O +the O +action O +of O +the O +laser S-ENAT +and O +can O +form O +into O +various O +combinations O +of O +eutectic/hypo/hyper O +eutectic S-CONPRI +alloys S-MATE +with O +a O +new O +lower O +solidification S-CONPRI +temperature O +. O + + +This O +new O +alloy S-MATE +is O +maintained O +in O +a O +semi-solid O +or O +stress S-PRO +reduced O +state O +throughout O +the O +build S-PARA +with O +the O +assistance O +of O +elevated O +powder B-MACEQ +bed E-MACEQ +pre-heating O +. O + + +In O +this O +paper O +the O +ASLM O +methodology S-CONPRI +is O +detailed O +and O +investigations O +into O +processing O +of O +a O +low O +temperature S-PARA +eutectic S-CONPRI +Al-Si S-MATE +binary O +casting B-MATE +alloy E-MATE +is O +explored O +. O + + +Two O +types O +of O +Al S-MATE +powders O +were O +compared O +; O +pre-alloyed O +AlSi12 S-MATE +and O +elemental O +mix O +Al S-MATE ++ O +12 O +wt O +% O +Si S-MATE +. O + + +The O +study O +established O +an O +understanding O +of O +the O +laser S-ENAT +in-situ S-CONPRI +alloying S-FEAT +process O +and O +confirmed O +successful O +alloy S-MATE +formation O +within O +the O +process S-CONPRI +. O + + +Differential O +thermal B-CHAR +analysis E-CHAR +, O +microscopy S-CHAR +and O +X-Ray B-CHAR +diffraction E-CHAR +were O +used O +to O +further O +understand O +the O +nature O +of O +alloying S-FEAT +within O +the O +process S-CONPRI +. O + + +Residual B-PRO +stress E-PRO +reduction S-CONPRI +was O +observed O +within O +ASLM O +processed S-CONPRI +elemental O +Al S-MATE ++ O +Si12 O +and O +geometries S-CONPRI +produced O +without O +the O +requirement O +for O +anchors O +. O + + +Heterogeneous B-CONPRI +grain I-CONPRI +structure E-CONPRI +is O +a O +source S-APPL +of O +the O +inhomogeneity O +in O +structure S-CONPRI +and O +properties S-CONPRI +of O +the O +metallic S-MATE +components S-MACEQ +made O +by O +multi-layer O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +During O +AM S-MANP +, O +repeated O +heating S-MANP +and O +cooling S-MANP +during O +multi-layer O +deposition S-CONPRI +, O +local O +temperature B-PARA +gradient E-PARA +and O +solidification S-CONPRI +growth O +rate O +, O +deposit O +geometry S-CONPRI +, O +and O +molten B-CONPRI +pool E-CONPRI +shape O +and O +size O +govern O +the O +evolution S-CONPRI +of O +the O +grain B-CONPRI +structure E-CONPRI +. O + + +Here O +the O +effects O +of O +these O +causative O +factors O +on O +the O +heterogeneous S-CONPRI +grain B-CONPRI +growth E-CONPRI +during O +multi-layer O +laser S-ENAT +deposition S-CONPRI +of O +Inconel B-MATE +718 E-MATE +are O +examined O +by O +a O +Monte O +Carlo O +method O +based O +grain B-CONPRI +growth E-CONPRI +model O +. O + + +It O +is O +found O +that O +epitaxial B-PRO +columnar I-PRO +grain E-PRO +growth O +occurs O +from O +the O +substrate S-MATE +or O +previously O +deposited B-CHAR +layer E-CHAR +to O +the O +curved O +top O +surface S-CONPRI +of O +the O +deposit O +. O + + +The O +growth O +direction O +of O +these O +columnar B-PRO +grains E-PRO +is O +controlled O +by O +the O +molten B-CONPRI +pool E-CONPRI +shape O +and O +size O +. O + + +The O +grains S-CONPRI +in O +the O +previously O +deposited B-CHAR +layers E-CHAR +continue O +to O +grow O +because O +of O +the O +repeated O +heating S-MANP +and O +cooling S-MANP +during O +the O +deposition S-CONPRI +of O +the O +successive O +layers O +. O + + +Average S-CONPRI +longitudinal O +grain S-CONPRI +area S-PARA +decreases O +by O +approximately O +80 O +% O +when O +moving O +from O +the O +center O +to O +the O +edge O +of O +the O +deposit O +due O +to O +variable O +growth O +directions O +dependent O +on O +the O +local O +curvatures O +of O +the O +moving O +molten B-CONPRI +pool E-CONPRI +. O + + +The O +average S-CONPRI +horizontal O +grain S-CONPRI +area S-PARA +increases O +with O +the O +distance O +from O +the O +substrate S-MATE +, O +with O +a O +20 O +% O +increase O +in O +the O +horizontal O +grain S-CONPRI +area S-PARA +in O +a O +short O +distance O +from O +the O +third O +to O +the O +eighth O +layer S-PARA +, O +due O +to O +competitive O +solid-state S-CONPRI +grain B-CONPRI +growth E-CONPRI +causes O +increased O +grain B-PRO +size E-PRO +in O +previous O +layers O +. O + + +Powder S-MATE +quality O +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +of O +Ti-6Al-4V S-MATE +components S-MACEQ +is O +crucial O +in O +determining O +the O +critical O +material B-CONPRI +properties E-CONPRI +of O +the O +end O +item O +. O + + +In O +this O +study O +, O +we O +report O +on O +the O +effect O +of O +powder S-MATE +oxidation S-MANP +on O +the O +Charpy O +impact S-CONPRI +energy O +of O +Ti-6Al-4V S-MATE +parts O +manufactured S-CONPRI +using O +EBM S-MANP +. O + + +In O +addition O +to O +oxidation S-MANP +, O +the O +effects O +on O +impact S-CONPRI +energy O +due O +to O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +, O +specimen O +orientation S-CONPRI +, O +and O +EBM S-MANP +process O +defects S-CONPRI +were O +also O +investigated O +. O + + +This O +research S-CONPRI +has O +shown O +that O +excessive O +powder S-MATE +oxidation S-MANP +( O +oxygen S-MATE +mass O +fraction S-CONPRI +above O +0.25 O +% O +and O +up O +to O +0.46 O +% O +) O +dramatically O +decreases O +the O +impact S-CONPRI +energy O +. O + + +It O +was O +determined O +that O +the O +room O +temperature S-PARA +impact S-CONPRI +energy O +of O +the O +parts O +after O +excessive O +oxidation S-MANP +was O +reduced O +by O +about O +seven O +times O +. O + + +We O +also O +report O +that O +HIP S-MANP +post-processing O +significantly O +increases O +the O +impact S-CONPRI +toughness O +, O +especially O +for O +specimens O +with O +lower O +or O +normal O +oxygen S-MATE +content O +. O + + +The O +specimen O +orientation S-CONPRI +effect O +was O +found O +to O +be S-MATE +more O +significant O +for O +low O +oxidation S-MANP +levels O +. O + + +Material B-MANP +extrusion I-MANP +3D I-MANP +printing E-MANP +( O +ME3DP O +) O +, O +based O +on O +fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +technology S-CONPRI +is O +currently O +the O +most O +widely O +available O +3D B-MANP +printing E-MANP +platform O +. O + + +As S-MATE +is O +the O +case O +with O +other O +3D B-MANP +printing E-MANP +methods O +, O +parts O +fabricated S-CONPRI +from O +ME3DP O +will O +exhibit O +physical B-PRO +property E-PRO +anisotropy S-PRO +where O +build B-PARA +direction E-PARA +has O +an O +effect O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +a O +given O +part O +. O + + +The O +work O +presented O +in O +this O +paper O +analyzes O +the O +effect O +of O +physical O +property-altering O +additives S-MATE +to O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +on O +mechanical B-CONPRI +property E-CONPRI +anisotropy S-PRO +. O + + +A O +total O +of O +six O +ABS-based O +polymer B-MATE +matrix I-MATE +composites E-MATE +and O +four O +polymer B-MATE +blends E-MATE +were O +created O +and O +evaluated O +. O + + +Tensile B-CHAR +test E-CHAR +specimens O +were O +printed O +in O +two O +build B-PARA +orientations E-PARA +and O +the O +differences O +in O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +% O +elongation S-PRO +at O +break O +were O +compared O +between O +the O +two O +test O +sample S-CONPRI +versions O +. O + + +Fracture S-CONPRI +surface O +analysis O +was O +performed O +via O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +which O +gave O +insight O +to O +the O +failure B-PRO +modes E-PRO +and O +rheology S-PRO +of O +the O +novel O +material S-MATE +systems O +as S-MATE +compared O +to O +specimens O +fabricated S-CONPRI +from O +the O +same O +ABS S-MATE +base O +resin S-MATE +. O + + +Here O +it O +was O +found O +that O +a O +ternary O +blend S-MATE +of O +ABS S-MATE +combined O +with O +styrene O +ethylene O +butadiene O +styrene O +( O +SEBS O +) O +and O +ultra O +high O +molecular O +weight S-PARA +polyethylene S-MATE +( O +UHMWPE O +) O +lowered O +the O +mechanical B-CONPRI +property E-CONPRI +anisotropy S-PRO +in O +terms O +of O +relative O +UTS S-PRO +to O +a O +difference O +of O +22 O +± O +2.07 O +% O +as S-MATE +compared O +to O +47 O +± O +7.23 O +% O +for O +samples S-CONPRI +printed O +from O +ABS S-MATE +. O + + +The O +work O +here O +demonstrates O +the O +mitigation O +of O +a O +problem O +associated O +with O +3D B-MANP +printing E-MANP +as O +a O +whole O +through O +novel O +materials S-CONPRI +development O +and O +analyzes O +the O +effects O +of O +adding O +a O +wide O +variety O +of O +materials S-CONPRI +on O +the O +physical B-PRO +properties E-PRO +of O +a O +thermoplastic S-MATE +base O +resin S-MATE +. O + + +Moisture O +affects O +the O +flow O +behavior O +of O +AM B-MANP +metal E-MANP +powders O +, O +where O +AlSi10Mg S-MATE +is O +the O +most O +sensitive O +to O +water O +and O +oxygen S-MATE +pick O +up O +. O + + +The O +powder S-MATE +morphology S-CONPRI +influences O +to O +a O +large O +extent O +the O +moisture O +pick O +up O +and O +flow O +behavior O +. O + + +The O +flowability O +measured O +with O +traditional O +tools S-MACEQ +is O +not O +representative O +for O +powder B-MANP +bed I-MANP +fusion I-MANP +processes E-MANP +. O + + +Two O +new O +flowability O +tools S-MACEQ +that O +mimic S-MACEQ +the O +powder S-MATE +spreading O +mechanism S-CONPRI +of O +powder B-MANP +bed I-MANP +fusion E-MANP +systems O +are O +proposed O +and O +tested O +. O + + +Air O +drying S-MANP +and O +vacuum O +drying S-MANP +treatments O +to O +remove O +the O +moisture O +prior O +to O +the O +build S-PARA +process O +are O +investigated O +. O + + +For O +AM S-MANP +processes—specifically O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +L-PBF S-MANP +) O +processes—powder O +flowability O +is O +essential O +for O +the O +product B-CONPRI +quality E-CONPRI +, O +as S-MATE +these O +processes S-CONPRI +are O +based O +on O +a O +thin O +layer S-PARA +spreading O +mechanism S-CONPRI +. O + + +However O +, O +the O +available O +techniques O +to O +measure O +this O +flowability O +do O +not O +accurately S-CHAR +represent O +the O +spreading O +mechanism S-CONPRI +. O + + +Hence O +, O +this O +paper O +presents O +two O +novel O +applicator O +tools S-MACEQ +specifically O +designed S-FEAT +to O +test O +the O +spreadability O +of O +l-PBF S-MANP +powders O +in O +thin O +layer S-PARA +application O +. O + + +The O +results O +were O +checked O +by O +running O +standard S-CONPRI +tests O +to O +analyze O +the O +powder S-MATE +morphology S-CONPRI +, O +moisture O +content O +, O +chemical B-CONPRI +composition E-CONPRI +and O +flowability O +using O +the O +Hall-flowmeter O +. O + + +For O +this O +study O +, O +four O +common O +l-PBF S-MANP +metal O +powders S-MATE +were O +selected O +: O +Inconel B-MATE +718 E-MATE +, O +Ti6Al4V S-MATE +, O +AlSi10Mg S-MATE +and O +Scalmalloy O +. O + + +From O +the O +as-received O +state O +, O +drying S-MANP +( O +vacuum O +and O +air O +) O +and O +moisturizing O +treatments O +were O +applied O +to O +compare O +four O +humidity O +states O +and O +investigate O +the O +feasibility S-CONPRI +of O +pre-treating O +the O +powders S-MATE +to O +remove O +moisture O +, O +which O +is O +known O +to O +cause O +problems O +with O +flowability O +, O +porosity S-PRO +formation O +and O +enhanced O +oxidation S-MANP +. O + + +The O +tests O +reveal O +that O +AlSi10Mg S-MATE +is O +the O +most O +susceptible O +alloy S-MATE +to O +moisture O +and O +oxygen S-MATE +pick-up O +, O +considerably O +decreasing O +the O +spreadability O +and O +relative B-PRO +density E-PRO +on O +the O +build B-MACEQ +platform E-MACEQ +. O + + +However O +, O +the O +results O +also O +reveal O +how O +challenging O +the O +direct O +measurement S-CHAR +of O +moisture O +levels O +in O +metal B-MATE +powders E-MATE +is O +. O + + +Therefore O +, O +lightweight S-CONPRI +is O +paramount.Here O +, O +a O +lightweight S-CONPRI +electromagnetic O +actuator S-MACEQ +for O +HHBs O +is O +conceived O +using O +Design B-FEAT +for I-FEAT +Additive I-FEAT +Manufacturing E-FEAT +( O +DfAM O +) O +tools S-MACEQ +, O +including O +topology B-FEAT +optimization E-FEAT +and O +free-shape O +design S-FEAT +. O + + +A O +prototype S-CONPRI +is O +manufactured S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +of O +alloy S-MATE +Ti-6Al-4V O +. O + + +The O +prototype S-CONPRI +weighs O +25 O +% O +less O +than O +the O +actuator S-MACEQ +designed O +and O +manufactured S-CONPRI +using O +traditional O +methods O +( O +i.e O +. O + + +CAD S-ENAT +, O +milling S-MANP +) O +and O +materials S-CONPRI +( O +i.e O +. O + + +Al B-MATE +alloys E-MATE +) O +. O + + +The O +performance S-CONPRI +of O +the O +actuator S-MACEQ +in O +service O +is O +simulated O +by O +transient S-CONPRI +modal O +mechanical B-CONPRI +analyses E-CONPRI +using O +finite B-CONPRI +element I-CONPRI +methods E-CONPRI +. O + + +The O +results O +show O +that O +the O +high O +strength S-PRO +of O +the O +material S-MATE +selected O +, O +combined O +with O +the O +bionic O +geometry S-CONPRI +designed S-FEAT +and O +the O +resulting O +lightweight S-CONPRI +, O +allow O +the O +actuator S-MACEQ +to O +withstand O +the O +extreme O +accelerations O +of O +the O +HHB O +( O +3000 O +g O +) O +without O +yielding O +, O +enabling O +ultra-fast O +switching O +–namely O +, O +below O +1 O +ms O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +an O +additive B-MANP +manufacturing I-MANP +process E-MANP +in O +which O +multiple O +, O +successive O +layers O +of O +metal B-MATE +powders E-MATE +are O +heated O +via O +laser S-ENAT +in O +order O +to O +build S-PARA +a O +part O +. O + + +Modeling S-ENAT +of O +SLM S-MANP +requires O +consideration O +of O +the O +complex O +interaction O +between O +heat B-CONPRI +transfer E-CONPRI +and O +solid O +mechanics O +. O + + +The O +present O +work O +describes O +the O +authors O +initial O +efforts O +to O +validate O +their O +first O +generation O +model S-CONPRI +, O +as S-MATE +described O +in O +Hodge O +et O +al S-MATE +. O + + +Additionally O +, O +results O +of O +various O +perturbations O +of O +the O +process B-CONPRI +parameters E-CONPRI +and O +modeling S-ENAT +strategies O +are O +discussed O +. O + + +Density S-PRO +, O +surface B-PRO +roughness E-PRO +and O +mechanical B-CONPRI +properties E-CONPRI +of O +printed O +AlSi10Mg S-MATE +parts O +depend O +strongly O +on O +the O +manufacturing B-MANP +process E-MANP +of O +the O +used O +powder S-MATE +. O + + +The O +plasma S-CONPRI +atomized S-ENAT +powder O +used O +in O +this O +study O +enables O +higher O +scanning B-PARA +speeds E-PARA +and O +thus O +a O +more O +efficient O +LPBF S-MANP +process O +than O +gas B-MANP +atomized E-MANP +powder O +. O + + +The O +measurement S-CHAR +of O +the O +laser S-ENAT +absorption S-CONPRI +is O +very O +sensitive O +to O +variations S-CONPRI +of O +the O +powder S-MATE +and O +reveals O +a O +clear O +correlation O +to O +the O +final O +part O +densities O +. O + + +The O +present O +paper O +aims O +to O +generate O +a O +deeper O +understanding O +of O +the O +influence O +of O +powder S-MATE +properties O +on O +the O +final O +parts O +manufactured S-CONPRI +by O +metal S-MATE +LPBF S-MANP +processes O +at O +constant O +parameter S-CONPRI +settings O +, O +except O +the O +hatch O +scanning B-PARA +speed E-PARA +. O + + +This O +issue O +was O +considered O +using O +four O +different O +AlSi10Mg S-MATE +powders.In O +addition O +to O +particle S-CONPRI +properties O +, O +such O +as S-MATE +particle O +size O +distribution S-CONPRI +and O +morphology S-CONPRI +, O +typical O +properties S-CONPRI +of O +the O +powder B-MACEQ +feedstock E-MACEQ +like O +bulk O +and O +tapped O +density S-PRO +, O +Hausner-Ratio O +, O +flowability O +and O +laser S-ENAT +absorption S-CONPRI +were O +measured O +. O + + +Furthermore O +, O +the O +in B-CONPRI +situ E-CONPRI +density S-PRO +of O +the O +powder S-MATE +layers O +applied O +during O +the O +LPBF S-MANP +process O +were O +analyzed O +. O + + +A O +comparison O +of O +the O +surface B-PARA +quality E-PARA +, O +part O +density S-PRO +and O +mechanical B-CONPRI +properties E-CONPRI +of O +AlSi10Mg S-MATE +parts O +produced O +by O +LPBF S-MANP +, O +using O +different O +particle B-CONPRI +size I-CONPRI +distributions E-CONPRI +and O +morphologies S-CONPRI +, O +has O +been O +conducted O +. O + + +Within O +the O +processing O +experiments O +, O +the O +laser S-ENAT +scanning O +speed O +was O +varied O +in O +order O +to O +achieve O +the O +most O +economical O +manufacturing S-MANP +of O +parts O +with O +a O +density S-PRO +> O +99.2 O +% O +.Following O +this O +comparison O +, O +it O +was O +found O +that O +the O +manufacturing B-MANP +process E-MANP +of O +the O +powder S-MATE +and O +therefore O +the O +particle S-CONPRI +morphology S-CONPRI +has O +the O +biggest O +impact S-CONPRI +on O +the O +part O +density S-PRO +and O +surface B-PARA +quality E-PARA +. O + + +The O +considered O +plasma S-CONPRI +atomized S-ENAT +powder O +could O +be S-MATE +processed O +at O +a O +higher O +scanning B-PARA +speed E-PARA +without O +a O +significant O +decrease O +in O +mechanical B-CONPRI +properties E-CONPRI +or O +part O +density S-PRO +. O + + +Generally O +, O +it O +was O +shown O +that O +higher O +densities O +of O +the O +powder S-MATE +layer S-PARA +result O +in O +higher O +part O +densities O +. O + + +However O +, O +the O +layer S-PARA +densities O +for O +powders S-MATE +which O +show O +almost O +the O +same O +bulk O +density S-PRO +can O +differ O +significantly O +and O +do O +not O +reach O +the O +regarding O +bulk O +density S-PRO +value O +. O + + +Therefore O +it O +can O +be S-MATE +stated O +that O +the O +layer S-PARA +density S-PRO +is O +not O +only O +affected O +by O +the O +bulk O +density S-PRO +. O + + +In O +terms O +of O +surface B-PARA +quality E-PARA +, O +the O +investigated O +plasma S-CONPRI +atomized S-ENAT +powder O +provides O +a O +significantly O +lower O +surface S-CONPRI +roughness.Moreover O +, O +it O +was O +found O +that O +the O +measurement S-CHAR +of O +the O +laser S-ENAT +absorption S-CONPRI +shows O +a O +strong O +correlation O +to O +the O +achievable O +part O +densities O +. O + + +In O +contrast O +to O +the O +other O +methods O +performed O +, O +it O +was O +the O +only O +measurement S-CHAR +that O +is O +very O +sensitive O +even O +to O +small O +variations S-CONPRI +of O +the O +powder S-MATE +and O +enables O +an O +unequivocal O +differentiation O +of O +the O +examined O +powders S-MATE +. O + + +Additive B-MANP +Manufacturing E-MANP +offers O +many O +potential O +benefits O +including O +reduced O +tooling B-CONPRI +costs E-CONPRI +and O +increased O +geometric B-CONPRI +freedom E-CONPRI +. O + + +However O +, O +the O +surface B-PARA +quality E-PARA +of O +the O +parts O +is O +typically O +below O +that O +of O +conventionally-processed O +materials S-CONPRI +. O + + +This O +paper O +evaluates O +a O +new O +chemical O +post-processing S-CONPRI +method O +to O +reduce O +the O +roughness S-PRO +of O +laser-sintered O +Nylon S-MATE +12 O +components S-MACEQ +. O + + +This O +process S-CONPRI +is O +called O +the O +PUSh™ O +process S-CONPRI +. O + + +The O +treatment O +reduced O +the O +surface B-PRO +roughness E-PRO +of O +sample S-CONPRI +parts O +from O +18 O +μm O +to O +5 O +μm O +Ra O +and O +largely O +eliminated O +roughness S-PRO +with O +length B-CHAR +scales E-CHAR +below O +500 O +μm O +. O + + +Treatment O +did O +not O +affect O +the O +flexural O +modulus O +, O +flexural B-PRO +strength E-PRO +, O +or O +dimensions S-FEAT +of O +3.2 O +mm S-MANP +thick O +bending S-MANP +specimens O +, O +but O +it O +did O +significantly O +impact S-CONPRI +the O +mechanical B-CONPRI +properties E-CONPRI +of O +thin O +tensile B-MACEQ +specimens E-MACEQ +that O +are O +one O +to O +eight O +layers O +thick O +. O + + +The O +post B-CONPRI +processing E-CONPRI +reduced O +the O +breaking O +force S-CONPRI +of O +the O +samples S-CONPRI +, O +but O +it O +increased O +the O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +elongation S-PRO +at O +break O +. O + + +The O +impact S-CONPRI +was O +largest O +on O +the O +thinnest O +parts O +. O + + +Significant O +sample S-CONPRI +shrinkage O +( O +12–20 O +% O +) O +and O +weight B-PARA +gain E-PARA +( O +3.7–7 O +% O +) O +from O +treatment O +was O +also O +observed O +in O +the O +tensile B-MACEQ +specimens E-MACEQ +. O + + +The O +results O +show O +that O +the O +PUSh™ O +process S-CONPRI +dramatically O +increases O +surface S-CONPRI +smoothness S-CONPRI +and O +elongation S-PRO +at O +break O +in O +thin O +specimens O +. O + + +It O +decreases O +the O +surface S-CONPRI +strength S-PRO +, O +but O +effects O +are O +negligible O +in O +larger O +samples S-CONPRI +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +has O +emerged O +as S-MATE +one O +of O +the O +primary O +metal B-MANP +additive I-MANP +manufacturing E-MANP +technologies O +used O +for O +many O +applications O +in O +various O +industries S-APPL +such O +as S-MATE +medical O +and O +aerospace S-APPL +sectors O +. O + + +However O +, O +defects S-CONPRI +such O +as S-MATE +part O +distortion S-CONPRI +and O +delamination S-CONPRI +resulted O +from O +process-induced O +residual B-PRO +stresses E-PRO +are O +still O +one O +of O +the O +key O +challenges O +that O +hinder O +widespread O +adoptions O +of O +SLM S-MANP +. O + + +For O +process B-CONPRI +parameters E-CONPRI +, O +the O +laser B-CONPRI +beam E-CONPRI +scanning O +path O +will O +affect O +the O +thermomechanical S-CONPRI +behaviors O +of O +the O +build S-PARA +part O +, O +and O +thus O +, O +altering O +the O +scanning B-PARA +pattern E-PARA +may O +be S-MATE +a O +possible O +strategy O +to O +reduce O +residual B-PRO +stresses E-PRO +and O +deformations S-CONPRI +through O +influencing O +the O +heat S-CONPRI +intensity O +input O +distributions S-CONPRI +. O + + +In O +this O +study O +, O +a O +3D S-CONPRI +sequentially O +coupled O +finite B-CONPRI +element E-CONPRI +( O +FE S-MATE +) O +model S-CONPRI +was O +developed O +to O +investigate O +the O +thermomechanical S-CONPRI +responses O +in O +the O +SLM S-MANP +process S-CONPRI +. O + + +The O +model S-CONPRI +was O +applied O +to O +test O +different O +scanning B-CONPRI +strategies E-CONPRI +and O +evaluate O +their O +effects O +on O +part O +temperature S-PARA +, O +stress S-PRO +and O +deformation S-CONPRI +. O + + +The O +major O +results O +are O +summarized O +as S-MATE +follows O +. O + + +( O +1 O +) O +Among O +all O +cases O +tested O +, O +the O +out-in O +scanning B-PARA +pattern E-PARA +has O +the O +maximum O +stresses O +along O +the O +X O +and O +Y S-MATE +directions O +; O +while O +the O +45° O +inclined O +line O +scanning S-CONPRI +may O +reduce O +residual B-PRO +stresses E-PRO +in O +both O +directions O +. O + + +( O +2 O +) O +Large O +directional O +stress S-PRO +differences O +can O +be S-MATE +generated O +by O +the O +horizontal O +line O +scanning B-CONPRI +strategy E-CONPRI +. O + + +( O +3 O +) O +X O +and O +Y S-MATE +directional O +stress B-CHAR +concentrations E-CHAR +are O +shown O +around O +the O +edge O +of O +the O +deposited B-CHAR +layers E-CHAR +and O +the O +interface S-CONPRI +between O +the O +deposited B-CHAR +layers E-CHAR +and O +the O +substrate S-MATE +for O +all O +cases O +. O + + +( O +4 O +) O +The O +45° O +inclined O +line O +scanning S-CONPRI +case O +also O +has O +a O +smaller O +build B-PARA +direction E-PARA +deformation O +than O +other O +cases O +. O + + +Directed B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +was O +used O +to O +form O +a O +Stainless B-MATE +Steel E-MATE +AISI O +316 O +L O +steel S-MATE +block O +component S-MACEQ +on O +a O +Mild B-MATE +Steel E-MATE +S235JR O +substrate S-MATE +. O + + +Porosity S-PRO +, O +density S-PRO +, O +and O +defect S-CONPRI +were O +characterised O +at O +4 O +localities O +within O +the O +DED S-MANP +component S-MACEQ +by O +microscopy S-CHAR +and O +x-ray B-CHAR +tomography E-CHAR +. O + + +Three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +reconstruction S-CONPRI +of O +the O +x-ray S-CHAR +tomographic O +image S-CONPRI +sequences O +focused O +at O +select O +porosities S-PRO +is O +presented O +. O + + +The O +element S-MATE +composition S-CONPRI +and O +Vickers O +microhardness S-CONPRI +measurements O +were O +taken O +at O +the O +fusion S-CONPRI +lines O +and O +track O +body O +locations O +to O +characterise O +the O +differences O +in O +materials S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +at O +the O +2 O +locations O +. O + + +Lastly O +, O +an O +element S-MATE +mapping O +analysis O +was O +conducted O +to O +determine O +the O +solidification S-CONPRI +mode O +for O +the O +DED S-MANP +component S-MACEQ +. O + + +Sources O +for O +defects S-CONPRI +were O +proposed O +based O +on O +the O +characteristics O +of O +the O +porosity S-PRO +analysis O +and O +conclusions O +were O +made O +about O +the O +solidification S-CONPRI +behaviour O +of O +the O +DED S-MANP +component S-MACEQ +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +was O +applied O +in O +this O +study O +to O +produce O +a O +prototype S-CONPRI +of O +a O +miniaturized O +catalytic B-MACEQ +burner E-MACEQ +( O +CAB O +) O +, O +which O +is O +a O +key O +component S-MACEQ +of O +high-temperature O +polymer B-APPL +electrolyte I-APPL +fuel I-APPL +cells E-APPL +. O + + +This O +prototype S-CONPRI +was O +characterized O +by O +its O +complex O +design S-FEAT +with O +numerous O +channels O +, O +chambers O +, O +and O +thin O +walls O +. O + + +The O +test O +samples S-CONPRI +and O +CAB O +prototype S-CONPRI +were O +made O +of O +a O +heat-resistant O +, O +anti-corrodible O +steel S-MATE +called O +`` O +Alloy S-MATE +800H O +'' O +( O +1.4876 O +) O +, O +a O +material S-MATE +that O +poses O +problems O +for O +welding S-MANP +operations O +and O +especially O +for O +the O +LPBF S-MANP +process O +due O +to O +its O +strong O +susceptibility S-PRO +to O +hot B-CONPRI +cracking E-CONPRI +and O +spatters O +. O + + +The O +effects O +of O +LPBF S-MANP +parameter O +variation S-CONPRI +on O +preliminary O +test O +samples S-CONPRI +were O +investigated O +by O +nano-focus O +Computed B-CHAR +Tomography E-CHAR +( O +CT S-ENAT +) O +and O +Optical B-CHAR +microscopy E-CHAR +to O +clarify O +the O +internal B-PRO +structure E-PRO +and O +defects S-CONPRI +for O +further O +LPBF S-MANP +process O +optimization S-CONPRI +. O + + +Mössbauer O +spectroscopy S-CONPRI +points O +out O +that O +LPBF S-MANP +process O +does O +not O +lead S-MATE +to O +either O +local O +phase S-CONPRI +separation O +nor O +oxidation S-MANP +of O +steel S-MATE +, O +which O +is O +critical B-PRO +factor E-PRO +for O +use O +of O +CAB O +at O +high O +temperatures S-PARA +. O + + +The O +sufficient O +LPBF S-MANP +parameter O +sets O +were O +used O +to O +manufacture S-CONPRI +the O +CAB O +prototype S-CONPRI +, O +which O +was O +examined O +by O +micro-CT S-CHAR +and O +optics S-APPL +as S-MATE +well O +. O + + +The O +main O +result O +of O +the O +investigation O +is O +a O +demonstration O +of O +the O +technological O +feasibility S-CONPRI +to O +decrease O +the O +number O +and O +size O +of O +defects S-CONPRI +in O +complex O +LPBF-manufactured O +Alloy S-MATE +800H O +constructions O +without O +changes O +in O +phase B-CONPRI +composition E-CONPRI +at O +high O +temperatures S-PARA +. O + + +A O +multi-component O +and O +multi-phase-field O +modelling S-ENAT +approach O +, O +combined O +with O +transformation O +kinetics O +modelling S-ENAT +, O +was O +used O +to O +model B-CONPRI +microstructure E-CONPRI +evolution S-CONPRI +during O +laser S-ENAT +metal O +powder S-MATE +directed B-MANP +energy I-MANP +deposition E-MANP +of O +Alloy S-MATE +718 O +and O +subsequent O +heat B-MANP +treatments E-MANP +. O + + +Experimental S-CONPRI +temperature O +measurements O +were O +utilised O +to O +predict O +microstructural B-CONPRI +evolution E-CONPRI +during O +successive O +addition O +of O +layers O +. O + + +Segregation S-CONPRI +of O +alloying B-MATE +elements E-MATE +as O +well O +as S-MATE +formation O +of O +Laves S-CONPRI +and O +δ O +phase S-CONPRI +was O +specifically O +modelled O +. O + + +The O +predicted S-CONPRI +elemental O +concentrations O +were O +then O +used O +in O +transformation O +kinetics O +to O +estimate O +changes O +in O +Continuous O +Cooling S-MANP +Transformation O +( O +CCT O +) O +and O +Time O +Temperature S-PARA +Transformation O +( O +TTT O +) O +diagrams O +for O +Alloy S-MATE +718 O +. O + + +Modelling S-ENAT +results O +showed O +good O +agreement O +with O +experimentally O +observed O +phase B-CONPRI +evolution E-CONPRI +within O +the O +microstructure S-CONPRI +. O + + +The O +results O +indicate O +that O +the O +approach O +can O +be S-MATE +a O +valuable O +tool S-MACEQ +, O +both O +for O +improving O +process S-CONPRI +understanding O +and O +for O +process S-CONPRI +development O +including O +subsequent O +heat B-MANP +treatment E-MANP +. O + + +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +is O +a O +widely O +used O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technique O +. O + + +Recently O +, O +mechanical B-CONPRI +properties E-CONPRI +of O +plastic S-MATE +FFF S-MANP +parts O +have O +been O +enhanced O +by O +adding O +short B-MATE +carbon I-MATE +fibers E-MATE +to O +the O +thermoplastic B-MATE +polymer E-MATE +filament S-MATE +to O +form O +a O +carbon B-MATE +fiber E-MATE +filled O +( O +CFF O +) O +polymer B-MATE +composite E-MATE +. O + + +Unfortunately O +, O +improvements O +to O +the O +material B-CONPRI +properties E-CONPRI +of O +commercially O +available O +CFF O +filament S-MATE +are O +not O +well O +understood O +. O + + +This O +paper O +presents O +a O +study O +of O +CFF O +FFF S-MANP +parts O +produced O +on O +desktop B-MACEQ +3D I-MACEQ +printers E-MACEQ +using O +commercially O +available O +filament S-MATE +. O + + +Tensile B-CHAR +test E-CHAR +samples B-CONPRI +fabricated E-CONPRI +with O +CFF O +polymer B-MATE +composite E-MATE +and O +unfilled O +polymer S-MATE +were O +printed O +and O +then O +tested O +following O +ASTM O +D3039M O +. O + + +The O +filament S-MATE +considered O +here O +was O +purchased O +from O +filament S-MATE +suppliers O +and O +included O +both O +CFF O +and O +unfilled O +PLA S-MATE +, O +ABS S-MATE +, O +PETG O +and O +Amphora O +. O + + +Results O +for O +tensile B-PRO +strength E-PRO +and O +tensile S-PRO +modulus O +show O +that O +CFF O +coupons O +in O +general O +yield O +higher O +tensile S-PRO +modulus O +at O +all O +print S-MANP +orientations S-CONPRI +and O +higher O +tensile B-PRO +strength E-PRO +at O +0 O +° O +print S-MANP +orientation S-CONPRI +. O + + +The O +addition O +of O +carbon B-MATE +fiber E-MATE +was O +shown O +to O +decrease O +tensile B-PRO +strength E-PRO +for O +some O +materials S-CONPRI +when O +printed O +with O +beads S-CHAR +not O +aligned O +with O +the O +loading O +direction O +. O + + +Additionally O +, O +CFF O +samples S-CONPRI +are O +evaluated O +for O +fiber B-CONPRI +length E-CONPRI +distribution S-CONPRI +( O +FLD O +) O +and O +fiber S-MATE +weight O +fraction S-CONPRI +, O +where O +it O +was O +found O +that O +the O +filament S-MATE +extrusion B-MANP +process E-MANP +contributes O +very O +little O +to O +fiber S-MATE +breakage O +. O + + +Finally O +, O +fracture S-CONPRI +surfaces O +evaluated O +under O +SEM S-CHAR +show O +that O +voids S-CONPRI +between O +the O +beads S-CHAR +are O +reduced O +with O +CFF O +coupons O +, O +and O +poor O +interfacial B-CONPRI +bonding E-CONPRI +between O +fibers S-MATE +and O +polymer S-MATE +become O +a O +prominent O +failure B-PRO +mechanism E-PRO +. O + + +Three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing O +, O +or O +additive B-MANP +manufacturing E-MANP +, O +has O +been O +increasingly O +used O +in O +many O +fields O +, O +including O +the O +medicine S-CONPRI +, O +food O +, O +sensing S-APPL +, O +metal S-MATE +, O +automotive S-APPL +, O +and O +construction S-APPL +industries O +. O + + +Regardless O +of O +its O +growing O +applications O +, O +there O +are O +few O +of O +methods O +, O +guidelines O +, O +and O +specifications S-PARA +for O +measuring O +and O +quantifying O +the O +qualities O +of O +3D B-MANP +printed E-MANP +objects O +. O + + +In O +this O +study O +, O +for O +the O +first O +time O +, O +a O +non-contact O +, O +and O +non-destructive O +measurement S-CHAR +method O +, O +a O +3D S-CONPRI +structured O +light O +scanning S-CONPRI +system O +( O +3D-SLSS O +) O +, O +was O +employed O +for O +evaluating O +the O +printing O +qualities O +of O +clay S-MATE +objects O +with O +different O +levels O +of O +visual O +defects S-CONPRI +( O +e.g. O +, O +roughness S-PRO +and O +distortion S-CONPRI +) O +. O + + +3D S-CONPRI +scanned O +images S-CONPRI +of O +these O +clay S-MATE +samples O +were O +developed O +using O +3D-SLSS O +. O + + +Then O +, O +they O +were O +sliced O +along O +their O +sides O +( O +perpendicular O +to O +the O +base O +) O +to O +generate O +a O +number O +of O +two-dimensional S-CONPRI +( O +2D S-CONPRI +) O +plots O +, O +from O +which O +various O +parameters S-CONPRI +( O +e.g. O +, O +sample S-CONPRI +total O +height O +[ O +Htotal O +] O +, O +outer O +diameter S-CONPRI +[ O +DMouter O +] O +, O +layer B-PARA +thickness E-PARA +[ O +TL S-MATE +] O +, O +layer S-PARA +width O +, O +[ O +( O +WL O +] O +, O +surface B-PARA +angle E-PARA +[ O +Sα O +] O +, O +semi-cross-sectional O +area S-PARA +[ O +XA O +] O +, O +and O +surface B-PRO +roughness E-PRO +[ O +R O +] O +) O +were O +measured O +. O + + +Compared O +with O +the O +designed S-FEAT +object O +, O +the O +printed O +samples S-CONPRI +generally O +had O +reduced O +total O +height O +, O +diameter S-CONPRI +, O +and O +layer B-PARA +thickness E-PARA +; O +increased O +layer S-PARA +width O +; O +measurable O +distortion S-CONPRI +; O +and O +visible O +surface B-PRO +roughness E-PRO +. O + + +Many O +of O +these O +were O +largely O +because O +the O +freshly O +printed O +clay S-MATE +deformed O +under O +the O +weight S-PARA +of O +the O +layers O +above O +. O + + +The O +distortion S-CONPRI +angle O +and O +area S-PARA +are O +two O +necessary O +parameters S-CONPRI +for O +quantifying O +the O +degree O +of O +distortion S-CONPRI +of O +a O +printed O +sample S-CONPRI +. O + + +The O +diagnosed O +area S-PARA +of O +deficiency O +can O +well O +describe O +the O +overall O +qualities O +of O +the O +printed O +samples S-CONPRI +. O + + +Moreover O +, O +it O +can O +be S-MATE +conveniently O +extended O +to O +various O +industries S-APPL +for O +quality B-CONPRI +control E-CONPRI +of O +diverse O +3D B-MANP +printing E-MANP +products O +. O + + +TiB O +reinforced S-CONPRI +near O +α O +Ti-matrix O +composite S-MATE +was O +fabricated S-CONPRI +in O +this O +work O +using O +selective B-MANP +laser I-MANP +melting E-MANP +from O +a O +mixture O +of O +CrB2 O +and O +commercially O +pure O +Ti B-MATE +powders E-MATE +. O + + +The O +corresponding O +composites S-MATE +present O +an O +almost O +fully B-PARA +dense E-PARA +structure O +for O +suitable O +laser B-PARA +energy I-PARA +density E-PARA +conditions O +. O + + +The O +X-ray B-CHAR +diffraction E-CHAR +and O +microstructure S-CONPRI +analysis O +indicate O +that O +the O +TiB O +and O +β-Ti O +phase S-CONPRI +appears O +for O +parts O +obtained O +with O +a O +low O +scanning B-PARA +speed E-PARA +of O +the O +laser B-CONPRI +beam E-CONPRI +. O + + +The O +parts O +obtained O +at O +high O +and O +low O +scanning B-PARA +speeds E-PARA +show O +higher O +hardness S-PRO +and O +lower O +wear S-CONPRI +rate O +than O +those O +obtained O +for O +intermediate O +scanning B-PARA +speed E-PARA +which O +, O +on O +the O +contrary O +, O +show O +the O +highest O +density S-PRO +. O + + +The O +wear S-CONPRI +behavior O +of O +the O +as-processed O +parts O +is O +compared O +with O +that O +of O +pure O +Ti S-MATE +parts O +also O +obtained O +by O +selective B-MANP +laser I-MANP +melting E-MANP +. O + + +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +is O +a O +popular O +additive B-MANP +manufacturing E-MANP +technique O +where O +molten O +polymer B-MATE +filament E-MATE +is O +applied O +in O +a O +raster B-PARA +pattern E-PARA +, O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +, O +to O +obtain O +the O +work B-MACEQ +piece E-MACEQ +. O + + +A O +necessary O +consequence O +of O +this O +method O +is O +a O +pronounced O +mechanical B-PRO +anisotropy E-PRO +of O +the O +product O +; O +the O +interface S-CONPRI +between O +the O +filaments S-MATE +is O +weaker O +compared O +to O +the O +filament S-MATE +itself O +. O + + +The O +strength S-PRO +of O +this O +interface S-CONPRI +is O +governed O +by O +the O +reptation O +theory O +which O +postulates O +a O +more O +efficient O +interpenetration O +of O +polymeric O +surfaces S-CONPRI +with O +decreasing O +polymer S-MATE +viscosity O +. O + + +This O +relationship O +was O +utilized O +in O +this O +work O +to O +modify O +a O +polycarbonate-acrylonitrile O +butadiene O +styrene O +polymer B-MATE +blend E-MATE +to O +produce O +FFF S-MANP +work O +pieces O +with O +less O +mechanical B-PRO +anisotropy E-PRO +, O +independent O +of O +printer S-MACEQ +settings O +. O + + +The O +tensile B-PRO +strength E-PRO +ratio O +of O +the O +printed O +interface S-CONPRI +to O +bulk O +tensile B-PRO +strength E-PRO +could O +be S-MATE +increased O +from O +41 O +% O +to O +95 O +% O +. O + + +Though O +the O +absolute O +bulk O +tensile B-PRO +strength E-PRO +decreases O +slightly O +, O +this O +method O +presents O +an O +easy O +and O +effective O +way O +to O +address O +the O +mechanical S-APPL +problems O +inherent O +in O +the O +FFF-method O +. O + + +The O +systematic O +occurrence O +of O +porosities S-PRO +inside O +selective B-MANP +laser I-MANP +melted E-MANP +( O +SLM S-MANP +) O +parts O +is O +a O +well-known O +phenomenon O +. O + + +In O +order O +to O +improve O +the O +density S-PRO +of O +SLM S-MANP +parts O +, O +it O +is O +important O +not O +only O +to O +assess O +the O +physical O +origin O +of O +the O +different O +types O +of O +porosities S-PRO +, O +but O +also O +to O +be S-MATE +able O +to O +measure O +as S-MATE +precisely O +as S-MATE +possible O +the O +porosity S-PRO +rate O +so O +that O +one O +may O +select O +the O +optimum O +manufacturing S-MANP +parameters.Considering O +316 O +L O +steel S-MATE +parts O +built O +with O +different O +input O +energies O +, O +the O +current O +paper O +aims O +to O +( O +1 O +) O +present O +the O +different O +types O +of O +porosities S-PRO +generated O +by O +SLM S-MANP +and O +their O +origins O +, O +( O +2 O +) O +compare O +different O +methods O +for O +measuring O +parts O +density S-PRO +and O +( O +3 O +) O +propose O +optimal O +procedures O +. O + + +After O +a O +preliminary O +optimization S-CONPRI +step O +, O +three O +methods O +were O +used O +for O +quantifying O +porosity S-PRO +rate O +: O +the O +Archimedes B-CHAR +method E-CHAR +, O +the O +helium S-MATE +pycnometry O +and O +micrographic O +observations.The O +Archimedes B-CHAR +method E-CHAR +shows O +that O +results O +depend O +on O +the O +nature O +and O +temperature S-PARA +of O +the O +fluid S-MATE +, O +but O +also O +on O +the O +sample S-CONPRI +volume O +and O +its O +surface S-CONPRI +roughness.During O +the O +micrographic O +observations O +, O +it O +has O +been O +shown O +that O +the O +results O +depend O +on O +the O +magnification S-CONPRI +used O +and O +the O +number O +of O +micrographs O +considered.A O +comparison O +of O +the O +three O +methods O +showed O +that O +the O +optimized O +Archimedes B-CHAR +method E-CHAR +and O +the O +helium S-MATE +pycnometry O +technique O +gave O +similar O +results O +, O +whereas O +optimized O +micrographic O +observations O +systematically O +underestimated O +the O +porosity S-PRO +rate.In O +a O +second O +step S-CONPRI +, O +samples S-CONPRI +were O +analyzed O +to O +illustrate O +the O +physical O +phenomena O +involved O +in O +the O +generation O +of O +porosities S-PRO +. O + + +It O +was O +confirmed O +that O +: O +( O +1 O +) O +low O +Volume S-CONPRI +Energy B-PARA +Density E-PARA +( O +VED O +) O +causes O +non-spherical S-CONPRI +porosities O +due O +to O +insufficient B-MATE +fusion E-MATE +, O +( O +2 O +) O +in O +intermediary O +VED O +the O +small O +amount O +of O +remaining O +blowhole S-CONPRI +porosities O +come O +from O +gas S-CONPRI +occlusion O +in O +the O +melt-pool O +and O +( O +3 O +) O +in O +excessive O +VED O +, O +cavities O +are O +formed O +due O +to O +the O +key-hole O +welding S-MANP +mode O +. O + + +The O +eutectic S-CONPRI +Al-33Cu O +( O +wt. O +% O +) O +alloy S-MATE +was O +processed S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +. O + + +Based O +on O +the O +interlamellar O +distances O +a O +local O +cooling B-PARA +rate E-PARA +can O +be S-MATE +calculated O +. O + + +At O +high O +laser B-PARA +powers E-PARA +the O +cooling B-PARA +rate E-PARA +is O +104 O +K/s O +, O +at O +low O +laser B-PARA +powers E-PARA +it O +is O +105 O +K/s O +. O + + +The O +thermal O +history O +of O +selectively O +laser-melted O +alloys S-MATE +can O +be S-MATE +explored O +. O + + +The O +cooling B-PARA +rates E-PARA +inherent O +to O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +were O +experimentally O +determined O +by O +processing O +the O +eutectic S-CONPRI +Al-33Cu O +( O +wt. O +% O +) O +alloy S-MATE +. O + + +Two O +different O +parameter S-CONPRI +sets O +yielding O +an O +identical O +volumetric O +energy B-PARA +density E-PARA +were O +employed O +to O +produce O +the O +samples S-CONPRI +. O + + +Based O +on O +the O +average S-CONPRI +spacing O +of O +the O +Al S-MATE +and O +CuAl2 O +lamellae S-MATE +, O +the O +cooling B-PARA +rates E-PARA +in O +different O +parts O +of O +the O +SLM S-MANP +specimens O +were O +estimated O +. O + + +At O +a O +high O +laser B-PARA +power E-PARA +( O +300 O +W O +) O +the O +cooling B-PARA +rate E-PARA +amounts O +to O +104 O +K/s O +and O +at O +the O +lower O +laser B-PARA +power E-PARA +( O +200 O +W O +) O +to O +105 O +K/s O +. O + + +The O +present O +approach O +proves O +to O +be S-MATE +useful O +for O +exploring O +the O +thermal O +history O +of O +additively B-MANP +manufactured E-MANP +metallic O +components S-MACEQ +. O + + +A O +3D S-CONPRI +finite O +element S-MATE +simulation O +model S-CONPRI +of O +the O +laser B-MANP +cladding E-MANP +process O +has O +been O +developed O +taking O +into O +account O +heat B-CONPRI +transfer E-CONPRI +, O +fluid B-PRO +flow E-PRO +, O +surface B-PRO +tension E-PRO +and O +free B-CONPRI +surface E-CONPRI +movement O +. O + + +All O +input O +parameters S-CONPRI +and O +data S-CONPRI +, O +which O +are O +independent O +of O +the O +process B-CONPRI +parameters E-CONPRI +but O +depend O +only O +on O +the O +material S-MATE +and O +machine S-MACEQ +properties O +, O +have O +been O +obtained O +from O +measurements O +. O + + +Thereby O +the O +melt B-MATE +pool E-MATE +and O +the O +resulting O +surface S-CONPRI +contour S-FEAT +can O +be S-MATE +simulated O +without O +compromising O +assumptions O +or O +calibration S-CONPRI +, O +because O +the O +machine B-PARA +parameters E-PARA +are O +the O +only O +variable O +input O +parameters S-CONPRI +of O +the O +model S-CONPRI +. O + + +Thus O +, O +the O +model S-CONPRI +can O +easily O +be S-MATE +transferred O +to O +other O +material S-MATE +combinations O +or O +other O +machines S-MACEQ +. O + + +For O +the O +surface S-CONPRI +contour S-FEAT +calculation O +a O +modified O +height O +function O +method O +is O +applied O +. O + + +The O +model S-CONPRI +surface O +follows O +this O +contour S-FEAT +as S-MATE +an O +arbitrary O +Lagrangian O +Eulerian O +( O +ALE O +) O +method O +is O +used O +allowing O +for O +mesh O +deformations S-CONPRI +. O + + +The O +model S-CONPRI +was O +implemented O +using O +the O +commercial O +finite B-CONPRI +element E-CONPRI +software O +COMSOL O +Multiphysics O +and O +validated O +by O +comparing O +the O +simulation S-ENAT +results O +with O +caloric O +measurements O +of O +the O +effective O +heat S-CONPRI +input O +and O +metallographic O +cross B-CONPRI +sections E-CONPRI +from O +experiments O +, O +where O +the O +nickel-base O +alloy S-MATE +MetcoClad® O +625 O +in O +powder S-MATE +form O +was O +deposited O +on O +structural O +steel S-MATE +S235JRC O ++ O +C S-MATE +and O +the O +process B-CONPRI +parameters E-CONPRI +of O +laser B-PARA +power E-PARA +, O +feed S-PARA +speed O +, O +laser B-CONPRI +beam E-CONPRI +spot O +size O +and O +powder S-MATE +mass O +flow O +were O +varied O +within O +a O +range S-PARA +of O +at O +least O +50 O +% O +of O +their O +mean O +value O +each O +. O + + +The O +maximum O +deviation O +of O +the O +simulation S-ENAT +results O +compared O +to O +the O +experimental B-CONPRI +data E-CONPRI +regarding O +track O +geometry S-CONPRI +is O +14 O +% O +for O +the O +parameter S-CONPRI +sets O +without O +weld S-FEAT +defects S-CONPRI +so O +that O +these O +parameter S-CONPRI +sets O +could O +be S-MATE +industrially O +applied O +, O +whereas O +the O +average S-CONPRI +deviation O +of O +track O +width O +and O +height O +is O +below O +5.1 O +% O +. O + + +A O +thermal B-CHAR +analysis E-CHAR +model S-CONPRI +of O +synchronous O +induction O +assisted O +laser S-ENAT +deposition S-CONPRI +is O +established O +. O + + +The O +effect O +of O +the O +laser-induction O +interaction O +mode O +on O +the O +thermal O +behavior O +Microstructural B-CONPRI +evolution E-CONPRI +mechanisms O +of O +synchronous O +induction O +assisted O +laser S-ENAT +deposition S-CONPRI +are O +revealed O +. O + + +The O +grains S-CONPRI +and O +phase S-CONPRI +can O +potentially O +be S-MATE +controlled O +separately O +by O +synchronous O +induction O +assisted O +laser S-ENAT +deposition B-MANP +process E-MANP +. O + + +Synchronous O +induction-assisted O +laser S-ENAT +deposition S-CONPRI +( O +SILD O +) O +can O +be S-MATE +used O +to O +address O +issues O +that O +arise O +from O +the O +extreme O +thermal O +behavior O +that O +occurs O +during O +direct B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +. O + + +However O +, O +the O +incorporation O +of O +induction B-MANP +heating E-MANP +simultaneously O +renders O +the O +thermal O +behavior O +during O +SILD O +more O +flexible O +and O +complicated O +. O + + +This O +study O +established O +a O +3-D S-CONPRI +transient O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +to O +elucidate O +the O +thermal O +behavior O +during O +SILD O +with O +a O +simplified O +inductive O +heat B-CONPRI +source E-CONPRI +. O + + +It O +should O +also O +be S-MATE +noted O +that O +although O +it O +was O +more O +difficult O +to O +balance O +the O +thermal O +behavior O +, O +the O +cooling B-PARA +rate E-PARA +at O +the O +β O +transus O +temperature S-PARA +of O +Ti-6Al-4 B-MATE +V E-MATE +decreased O +from O +82 O +℃/s O +to O +23 O +℃/s O +; O +further O +, O +the O +maximum O +temperature B-PARA +gradient E-PARA +in O +front O +of O +the O +solid-liquid O +interface S-CONPRI +decreased O +from O +5.8 O +× O +105 O +℃/m O +to O +4.4 O +× O +105 O +℃/m O +in O +the O +“ O +alternate O +” O +mode O +, O +which O +was O +relative O +to O +the O +“ O +without O +induction B-MANP +heating E-MANP +” O +and O +“ O +synchronous O +” O +modes O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +increasingly O +used O +for O +the O +production S-MANP +of O +functional O +parts O +. O + + +In O +order O +to O +ensure O +product B-CONPRI +reliability E-CONPRI +in O +challenging O +load O +cases O +and O +environments O +, O +a O +valid O +knowledge O +of O +the O +residual B-PRO +stress E-PRO +state O +is O +crucial O +. O + + +Since O +typical O +, O +complex O +AM S-MANP +geometries O +necessitate O +simulative O +efforts O +for O +this O +prediction S-CONPRI +, O +suitable O +validation B-CONPRI +data E-CONPRI +are O +essential O +. O + + +This O +study O +presents O +results O +from O +neutron B-CHAR +diffraction E-CHAR +measurements O +on O +different O +stages O +of O +a O +build-up O +of O +a O +simple S-MANP +cuboid O +structure S-CONPRI +by O +laser B-CONPRI +beam E-CONPRI +melting O +. O + + +The O +strain-free O +reference O +is O +obtained O +from O +measurements O +on O +small O +matchstick O +geometries S-CONPRI +cut O +from O +an O +analogously O +manufactured S-CONPRI +cuboid O +at O +the O +respective O +measurement S-CHAR +spots O +. O + + +By O +providing O +quasi-transient O +data S-CONPRI +of O +the O +evolution S-CONPRI +of O +residual B-PRO +stresses E-PRO +in O +both O +the O +base O +plate O +and O +the O +part O +, O +simulation S-ENAT +models O +can O +be S-MATE +investigated O +towards O +their O +structural O +validity O +. O + + +Results O +indicate O +that O +the O +assumption O +of O +negligible O +shear B-PRO +strains E-PRO +may O +not O +be S-MATE +justifiable O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +are O +being O +more O +frequently O +applied O +in O +several O +fields O +ranging O +from O +the O +industrial S-APPL +to O +the O +biomedical S-APPL +, O +in O +large O +part O +owing O +to O +their O +advantages O +which O +make O +them O +suitable O +for O +several O +applications O +such O +as S-MATE +scaffolds O +for O +tissue B-CONPRI +engineering E-CONPRI +, O +dental S-APPL +procedures O +, O +and O +3D B-APPL +models E-APPL +to O +improve O +surgical O +planning S-MANP +. O + + +Moreover O +, O +these O +processes S-CONPRI +are O +particularly O +suited O +for O +the O +fabrication S-MANP +of O +microfluidic O +devices O +and O +labs-on-a-chip O +( O +LOC O +) O +designed S-FEAT +to O +work O +with O +biological O +samples S-CONPRI +and O +chemical B-CONPRI +reaction E-CONPRI +mixtures.An O +aspect O +not O +sufficiently O +investigated O +is O +related O +to O +the O +dimensional O +verification S-CONPRI +of O +these O +devices O +. O + + +The O +main O +criticality O +is O +the O +texture-less O +surface S-CONPRI +that O +characterizes O +the O +AM S-MANP +products O +and O +strongly O +affects O +the O +effectiveness S-CONPRI +of O +most O +currently O +available O +3D S-CONPRI +optical O +measuring O +instruments.In O +this O +study O +, O +a O +passive O +photogrammetric O +scanning S-CONPRI +system O +has O +been O +used O +as S-MATE +a O +non-destructive O +and O +low-cost O +technique O +for O +the O +reconstruction S-CONPRI +and O +measurement S-CHAR +of O +3D B-MANP +printed E-MANP +microfluidic O +devices O +. O + + +Four O +devices O +, O +manufactured S-CONPRI +with O +stereolithography S-MANP +( O +SLA S-MACEQ +) O +, O +fused B-CONPRI +deposition E-CONPRI +modelling O +( O +FDM S-MANP +) O +a O +Stratasys S-APPL +trademark O +, O +also O +known O +as S-MATE +fused O +filament S-MATE +fabrication S-MANP +( O +FFF S-MANP +) O +, O +and O +Polyjet S-CONPRI +have O +been O +reconstructed O +and O +measured O +, O +and O +the O +results O +have O +been O +compared O +to O +those O +obtained O +with O +optical S-CHAR +profilometry O +that O +is O +considered O +as S-MATE +the O +gold S-MATE +standard O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +is O +a O +promising O +additive B-MANP +manufacturing E-MANP +technology O +for O +the O +production S-MANP +of O +complex O +metal S-MATE +components S-MACEQ +. O + + +The O +technique O +uses O +metallic B-MATE +powder E-MATE +as S-MATE +a O +starting O +material S-MATE +and O +a O +laser S-ENAT +for O +melting S-MANP +and O +building-up O +parts O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +. O + + +One O +crucial O +factor O +influencing O +the O +process S-CONPRI +stability O +and O +therefore O +the O +part O +quality S-CONPRI +is O +the O +shielding O +gas S-CONPRI +flow O +. O + + +In O +addition O +to O +the O +shielding O +properties S-CONPRI +of O +the O +inert O +atmosphere O +the O +gas S-CONPRI +flow O +is O +responsible O +for O +the O +removal O +of O +process S-CONPRI +by-products O +like O +spatter S-CHAR +and O +welding S-MANP +fumes O +originating O +from O +the O +process S-CONPRI +zone O +. O + + +Insufficient O +removal O +or O +inhomogeneous O +gas S-CONPRI +flow O +distribution S-CONPRI +may O +lead S-MATE +to O +increased O +interaction O +between O +laser S-ENAT +and O +process S-CONPRI +by-products O +. O + + +Consequences O +are O +attenuation O +of O +the O +laser S-ENAT +spot O +as S-MATE +well O +as S-MATE +redeposition O +of O +this O +by-products O +on O +surfaces S-CONPRI +which O +are O +exposed O +to O +the O +laser S-ENAT +afterwards O +. O + + +Furthermore O +process S-CONPRI +deviations O +are O +provoked O +by O +unfavorable O +gas S-CONPRI +flow O +conditions O +. O + + +Thirdly O +, O +the O +impact S-CONPRI +of O +this O +deviations O +on O +building O +surface S-CONPRI +and O +part O +quality S-CONPRI +is O +investigated O +by O +3D S-CONPRI +confocal O +microscopy S-CHAR +, O +microsections O +and O +ultrasonic O +testing S-CHAR +. O + + +Finally O +, O +theoretical S-CONPRI +approach O +for O +the O +formation O +of O +these O +process S-CONPRI +deviations O +and O +arising O +material S-MATE +defects S-CONPRI +is O +presented O +. O + + +The O +high-energy O +input O +and O +thermal O +history O +during O +additive B-MANP +manufacturing E-MANP +lead O +to O +complex O +phase S-CONPRI +transformations O +in O +titanium B-MATE +aluminide I-MATE +alloy E-MATE +. O + + +This O +study O +mostly O +focuses O +on O +determining O +the O +solid-state B-CONPRI +phase E-CONPRI +transformation O +mechanisms O +during O +laser S-ENAT +deposition S-CONPRI +and O +the O +failure B-PRO +mechanisms E-PRO +of O +alloys S-MATE +using O +molecular O +dynamics O +simulations S-ENAT +. O + + +Because O +of O +the O +directional O +temperature B-PARA +gradient E-PARA +, O +columnar B-PRO +grains E-PRO +with O +fully O +lamellar S-CONPRI +microstructures O +are O +formed O +first O +after O +solidification S-CONPRI +. O + + +A O +narrow O +region O +just O +below O +the O +melting S-MANP +pool O +is O +reheated O +to O +high O +temperatures S-PARA +, O +thus O +enhancing O +the O +precipitation S-CONPRI +of O +new O +equiaxed B-CONPRI +grains E-CONPRI +. O + + +Multiple O +thermal B-PARA +cycles E-PARA +in O +the O +α O ++ O +γ O +phase S-CONPRI +region O +promote O +the O +formation O +of O +massive O +γ O +phases O +( O +γm O +) O +at O +the O +grain B-CONPRI +boundaries E-CONPRI +. O + + +Finally O +, O +a O +nearly O +lamellar S-CONPRI +microstructure O +of O +alternating O +columnar O +and O +equiaxed B-CONPRI +grains E-CONPRI +with O +γm O +phases O +is O +formed O +. O + + +The O +deposited O +titanium B-MATE +aluminide I-MATE +alloy E-MATE +has O +good O +room O +and O +high-temperature O +( O +760 O +°C O +) O +tensile B-PRO +properties E-PRO +of O +545 O +± O +9 O +and O +471 O +± O +37 O +MPa S-CONPRI +, O +with O +elongations O +of O +1.50 O +% O +± O +0.47 O +% O +and O +1.50 O +% O +± O +0.45 O +% O +, O +respectively O +. O + + +The O +room O +and O +high-temperature O +samples S-CONPRI +both O +fail O +in O +the O +columnar B-PRO +grain E-PRO +region O +. O + + +Although O +the O +equiaxed B-CONPRI +grain E-CONPRI +regions O +contain O +several O +γm–α2 O +interfaces O +, O +the O +samples S-CONPRI +still O +fail O +in O +the O +columnar B-PRO +grain E-PRO +regions O +due O +to O +the O +increase O +in O +the O +cracking S-CONPRI +distance O +in O +the O +equiaxed O +regions O +caused O +by O +randomly O +oriented O +α2 O ++ O +γ O +lamellae S-MATE +and O +the O +comparably O +good O +plasticity S-PRO +of O +the O +γm O +phases O +. O + + +Multiple O +thermal B-PARA +cycles E-PARA +in O +the O +α O ++ O +γ O +phase S-CONPRI +region O +promote O +the O +formation O +of O +a O +massive O +γ O +phase S-CONPRI +( O +γm O +) O +at O +the O +grain B-CONPRI +boundaries E-CONPRI +. O + + +Finally O +, O +a O +nearly O +lamellar S-CONPRI +microstructure O +of O +alternating O +arrangement O +of O +columnar O +and O +equiaxed B-CONPRI +grains E-CONPRI +with O +γm O +phases O +is O +formed O +. O + + +Based O +on O +the O +relations O +among O +the O +orientations S-CONPRI +of O +the O +γm O +, O +γ O +, O +and O +α2 O +phases O +, O +five O +interface S-CONPRI +structure O +models O +can O +be S-MATE +established O +for O +the O +molecular O +dynamics O +simulations S-ENAT +of O +TiAl O +alloy S-MATE +fabricated O +by O +directed B-MANP +energy I-MANP +deposition E-MANP +, O +which O +can O +be S-MATE +used O +to O +accurately S-CHAR +predict O +the O +location O +of O +the O +crack O +nucleation S-CONPRI +sites O +during O +the O +tensile B-CHAR +test E-CHAR +. O + + +Furthermore O +, O +we O +revealed O +, O +for O +the O +first O +time O +, O +that O +the O +interface S-CONPRI +between O +α2 O +and O +γm O +is O +the O +weakest O +, O +especially O +in O +the O +case O +of O +semicoherent O +interfaces O +( O +6° O +angle O +in O +the O +[ O +1–10 O +] O +direction O +) O +, O +which O +provides O +good O +nucleation S-CONPRI +sites O +for O +cracks.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +322 O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +is O +an O +increasingly O +used O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technique O +employed O +by O +many O +industrial B-CONPRI +sectors E-CONPRI +, O +including O +the O +medical B-APPL +device E-APPL +and O +aerospace B-APPL +industries E-APPL +. O + + +In-situ S-CONPRI +EBM S-MANP +monitoring O +for O +quality S-CONPRI +assurance O +purposes O +has O +been O +a O +popular O +research S-CONPRI +area S-PARA +. O + + +Electronic O +imaging S-APPL +has O +recently O +been O +investigated O +as S-MATE +one O +of O +the O +in-situ S-CONPRI +EBM S-MANP +data S-CONPRI +collection O +methods O +, O +alongside O +thermal O +/ O +optical S-CHAR +imaging S-APPL +techniques O +. O + + +So O +far O +, O +the O +disseminations O +focus O +on O +the O +design S-FEAT +of O +an O +electronic O +imaging S-APPL +system O +and O +the O +ability O +to O +generate O +electronic O +images S-CONPRI +in-situ O +, O +experiments O +are O +yet O +to O +be S-MATE +carried O +out O +to O +benchmark S-MANS +one O +of O +the O +most O +important O +features O +of O +any O +imaging S-APPL +systems O +– O +spatial O +resolution S-PARA +. O + + +Analyses O +of O +experimental S-CONPRI +results O +indicated O +that O +the O +spatial O +resolution S-PARA +was O +of O +the O +order O +of O +0.3 O +to O +0.4 O +mm S-MANP +when O +electronic O +imaging S-APPL +was O +carried O +out O +at O +room O +temperature S-PARA +. O + + +It O +is O +believed O +that O +by O +disseminating O +an O +analysis O +and O +experimental S-CONPRI +method O +to O +estimate O +and O +quantify O +spatial O +resolution S-PARA +, O +this O +study O +has O +contributed O +to O +the O +on-going O +quality S-CONPRI +assessment O +research S-CONPRI +in O +the O +field O +of O +in-situ S-CONPRI +monitoring O +of O +the O +EBM S-MANP +process O +. O + + +The O +thermal O +history O +developed O +in O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +processes S-CONPRI +has O +been O +shown O +to O +be S-MATE +complex O +resulting O +in O +equally O +complex O +microstructures S-MATE +and O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Three-dimensional S-CONPRI +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +was O +used O +to O +simulate O +thermal O +history O +and O +to O +predict O +the O +residual B-PRO +stress E-PRO +distribution S-CONPRI +in O +the O +as-built O +material S-MATE +. O + + +Computational O +thermodynamics O +was O +used O +to O +predict O +the O +micro-segregation S-CONPRI +and O +nucleation S-CONPRI +driving O +force S-CONPRI +of O +various O +phases O +in O +the O +bulk O +and O +in O +segregated O +regions O +. O + + +Varied O +heat-treatments O +such O +as S-MATE +simulated O +hot B-MANP +isostatic I-MANP +pressing E-MANP +, O +and O +double O +aging O +were O +applied O +. O + + +Their O +influence O +on O +the O +microstructure S-CONPRI +, O +micro-segregation S-CONPRI +, O +precipitate S-MATE +formation O +, O +and O +micro-hardness O +variations S-CONPRI +of O +LPBF S-MANP +alloy S-MATE +718 O +were O +investigated O +. O + + +Hardness S-PRO +map O +results O +showed O +heterogeneous S-CONPRI +micro-hardness O +on O +the O +xy- O +and O +xz-planes O +of O +the O +as-built O +parts O +where O +the O +bottom O +plane O +and O +center O +regions O +had O +larger O +hardness S-PRO +of O +∼315 O +HV0.5 O +while O +the O +top O +plane O +and O +contours S-FEAT +showed O +hardness S-PRO +of O +∼300 O +HV0.5 O +. O + + +After O +simulated O +hot B-MANP +isostatic I-MANP +pressing E-MANP +process O +( O +i.e. O +, O +without O +applied O +pressure S-CONPRI +) O +at O +1020 O +°C O +for O +4 O +h O +followed O +by O +water O +quench O +( O +HIPWQ O +) O +, O +the O +hardness S-PRO +gradient O +and O +hardness S-PRO +was O +minimized O +( O +∼210 O +HV0.5 O +) O +as S-MATE +the O +microstructure S-CONPRI +transitioned O +from O +heterogeneous S-CONPRI +columnar B-PRO +grains E-PRO +in O +the O +as-built O +condition O +to O +more O +uniform O +recrystallized S-MANP +grains S-CONPRI +. O + + +HIPWQ O +followed O +by O +double O +aging O +produced O +a O +homogeneous S-CONPRI +microstructure O +and O +more O +uniform O +hardness S-PRO +map O +with O +enhanced O +mechanical B-CONPRI +properties E-CONPRI +in O +LPBF S-MANP +alloy S-MATE +718 O +coupons O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +a O +promising O +manufacturing S-MANP +technique O +for O +the O +production S-MANP +of O +complex O +metallic S-MATE +components S-MACEQ +. O + + +One O +of O +the O +crucial O +factors O +influencing O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +final O +product O +is O +spatter S-CHAR +particles S-CONPRI +formation O +during O +the O +process S-CONPRI +. O + + +In O +this O +study O +, O +high- O +speed O +photography O +is O +utilized O +to O +record O +the O +formation O +mechanisms O +and O +the O +dynamic S-CONPRI +behavior O +of O +spatter S-CHAR +particles S-CONPRI +. O + + +An O +image S-CONPRI +processing O +analysis O +framework S-CONPRI +is O +utilized O +to O +assess O +the O +distribution S-CONPRI +of O +spatter S-CHAR +particles S-CONPRI +under O +various O +energy O +inputs O +. O + + +It O +is O +found O +that O +changing O +the O +laser B-ENAT +scan E-ENAT +velocity O +has O +more O +influences O +on O +spatter S-CHAR +formation O +in O +comparison O +with O +the O +energy O +input O +. O + + +The O +relationship O +between O +the O +numbers O +of O +created O +spatter S-CHAR +particles S-CONPRI +, O +induced O +unmelted O +regions O +and O +density S-PRO +variability O +are O +interpreted O +and O +discussed O +based O +on O +other O +observations O +, O +such O +as S-MATE +microscopic O +examination O +and O +density S-PRO +analysis O +of O +SLM S-MANP +parts O +. O + + +The O +obtained O +results O +could O +be S-MATE +used O +to O +enhance O +the O +current O +manufacturing B-MANP +process E-MANP +parameters O +optimization S-CONPRI +methods O +in O +SLM S-MANP +process S-CONPRI +. O + + +Principle O +of O +real-time O +feedback S-PARA +control O +is O +proven O +for O +ceramic S-MATE +vat O +photopolymerization S-MANP +. O + + +FTIR S-CHAR +spectrometry O +equipment S-MACEQ +and O +UV S-CONPRI +LED S-APPL +are O +integrated O +into O +an O +embedded O +control B-MACEQ +system E-MACEQ +. O + + +Control-oriented O +process B-CONPRI +model E-CONPRI +shows O +good O +agreement O +to O +experimental B-CONPRI +data E-CONPRI +. O + + +Feedback S-PARA +controller S-MACEQ +successfully O +compensates O +for O +a O +material S-MATE +composition S-CONPRI +disturbance O +. O + + +Technical O +ceramics S-MATE +for O +high-performance O +applications O +can O +be S-MATE +additively B-MANP +manufactured E-MANP +using O +vat B-MANP +photopolymerization E-MANP +technology S-CONPRI +. O + + +This O +technology S-CONPRI +faces O +two O +main O +challenges O +: O +increasing O +ceramic S-MATE +product O +size O +and O +improving O +product B-CONPRI +quality E-CONPRI +. O + + +The O +integration O +of O +process B-CONPRI +control E-CONPRI +strategies O +into O +AM S-MANP +equipment O +is O +expected O +to O +play O +a O +key O +role O +in O +tackling O +these O +challenges O +. O + + +This O +work O +demonstrates O +the O +feasibility S-CONPRI +of O +real-time O +and O +in-situ S-CONPRI +feedback S-PARA +control O +of O +the O +light-initiated O +polymerization S-MANP +reaction O +that O +lies O +at O +the O +core S-MACEQ +of O +vat B-MANP +photopolymerization E-MANP +technology S-CONPRI +. O + + +Experimental B-CONPRI +data E-CONPRI +obtained O +from O +this O +setup O +was O +used O +to O +develop O +a O +control-oriented O +process B-CONPRI +model E-CONPRI +and O +identify O +its O +parameters S-CONPRI +. O + + +The O +results O +show O +that O +the O +feedback S-PARA +controller S-MACEQ +successfully O +compensated O +for O +the O +material S-MATE +perturbation O +and O +reached O +the O +same O +final O +conversion O +value O +as S-MATE +the O +unperturbed O +case O +. O + + +This O +result O +can O +be S-MATE +considered O +a O +fundamental O +step S-CONPRI +towards O +additive B-MANP +manufacturing E-MANP +of O +defect-free O +ceramic S-MATE +parts O +using O +in-line O +process B-CONPRI +control E-CONPRI +. O + + +Optimization S-CONPRI +of O +single O +track O +and O +single O +layer S-PARA +is O +required O +for O +high O +final O +quality S-CONPRI +. O + + +Feedbacks O +between O +single O +track O +, O +single O +layer S-PARA +, O +and O +the O +3D S-CONPRI +levels O +were O +established O +. O + + +A O +multistep O +algorithm S-CONPRI +to O +find O +optimal O +SLM S-MANP +process B-CONPRI +parameters E-CONPRI +is O +described O +. O + + +The O +algorithm S-CONPRI +is O +illustrated O +for O +AISI B-MATE +420 E-MATE +stainless O +steel S-MATE +as S-MATE +an O +example O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +becoming O +a O +powerful O +additive B-MANP +manufacturing E-MANP +technology O +for O +different O +industries S-APPL +: O +automotive S-APPL +, O +medical S-APPL +, O +chemical O +, O +aerospace S-APPL +, O +etc O +. O + + +SLM S-MANP +could O +dramatically O +narrow O +the O +time O +frames O +to O +optimize O +production S-MANP +, O +providing O +extraordinary O +freedom O +to O +validate O +design S-FEAT +and O +to O +develop O +new O +materials S-CONPRI +. O + + +The O +extension O +of O +applications O +requires O +different O +materials S-CONPRI +with O +specific B-PRO +properties E-PRO +and O +therefore O +tailored O +properties S-CONPRI +of O +the O +final O +product O +. O + + +In O +this O +article O +, O +a O +hierarchical O +approach O +including O +mutual O +analysis O +of O +SLM S-MANP +parameters S-CONPRI +necessary O +to O +control O +the O +final O +product B-CONPRI +quality E-CONPRI +on O +every O +level O +– O +the O +track O +, O +the O +layer S-PARA +and O +the O +final O +3D B-APPL +object E-APPL +– O +is O +suggested O +and O +discussed O +. O + + +Numerical B-ENAT +simulation E-ENAT +allowed O +the O +estimation O +of O +temperature S-PARA +distribution S-CONPRI +during O +laser S-ENAT +melting O +and O +predicted S-CONPRI +final O +microstructures S-MATE +and O +properties S-CONPRI +of O +a O +3D S-CONPRI +SLM O +object O +. O + + +A O +series O +of O +single O +tracks O +, O +layers O +and O +3D B-APPL +objects E-APPL +were O +manufactured S-CONPRI +from O +AISI B-MATE +420 E-MATE +stainless O +steel S-MATE +to O +validate O +a O +proposed O +algorithm S-CONPRI +. O + + +The O +efficiency O +of O +the O +approach O +was O +illustrated O +by O +the O +manufacturing S-MANP +of O +fully B-PARA +dense E-PARA +samples O +from O +AISI B-MATE +420 E-MATE +stainless O +steel S-MATE +widely O +used O +in O +the O +plastics-moulding O +industry S-APPL +. O + + +The O +results O +show O +that O +based O +on O +the O +proposed O +systematic O +hierarchical O +approach O +, O +optimal B-PARA +process E-PARA +parameters O +can O +be S-MATE +efficiently O +established O +for O +high-quality O +SLM S-MANP +parts O +from O +metal B-MATE +powders E-MATE +. O + + +High O +speed O +imaging S-APPL +with O +external O +illumination O +is O +used O +to O +analyse O +defects S-CONPRI +. O + + +Power S-PARA +decay O +strategy O +to O +tackle O +heat B-PRO +accumulation E-PRO +in O +multiple O +layers O +is O +presented O +. O + + +Benchmark S-MANS +data O +of O +porosity S-PRO +, O +productivity S-CONPRI +, O +roughness S-PRO +, O +and O +microhardness S-CONPRI +is O +provided O +. O + + +In O +this O +work O +, O +coaxial O +laser S-ENAT +metal O +wire O +deposition S-CONPRI +( O +LMWD O +) O +process S-CONPRI +is O +studied O +, O +with O +particular O +attention O +to O +defect S-CONPRI +formation O +mechanisms O +and O +the O +establishment O +of O +stable O +processing O +conditions O +. O + + +The O +coaxial O +LMWD O +of O +AISI O +308 O +stainless B-MATE +steel E-MATE +wire O +was O +carried O +out O +by O +a O +multi-mode O +fiber S-MATE +laser O +delivered O +to O +an O +industrial S-APPL +coaxial O +LMWD O +deposition S-CONPRI +head O +. O + + +The O +continuous O +mechanical S-APPL +connection O +with O +the O +deposition S-CONPRI +region O +requires O +further O +attention O +to O +the O +process S-CONPRI +dynamics O +, O +which O +may O +alter O +the O +deposition S-CONPRI +precision O +and O +continuity O +. O + + +Accordingly O +, O +this O +work O +presents O +a O +systematic O +analysis O +of O +how O +the O +defects S-CONPRI +are O +formed O +at O +single O +and O +multiple O +layer S-PARA +deposition S-CONPRI +conditions O +. O + + +High-speed O +imaging S-APPL +is O +employed O +to O +reveal O +the O +process S-CONPRI +dynamics O +as S-MATE +a O +diagnostics O +aid O +. O + + +The O +process S-CONPRI +stability O +is O +determined O +initially O +at O +single O +layer S-PARA +condition O +, O +providing O +a O +correct O +match O +between O +the O +melting S-MANP +position O +and O +rate O +of O +the O +wire O +. O + + +At O +multiple O +layer S-PARA +deposition S-CONPRI +, O +the O +thermal O +load O +is O +managed O +to O +achieve O +high-aspect O +ratio O +components S-MACEQ +. O + + +At O +the O +stable O +conditions O +, O +the O +process S-CONPRI +is O +benchmarked O +for O +porosity S-PRO +, O +surface B-PRO +roughness E-PRO +, O +and O +deposition B-PARA +rates E-PARA +. O + + +The O +use O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +provides O +an O +opportunity O +to O +fabricate S-MANP +composite S-MATE +tooling O +molds S-MACEQ +in O +a O +rapidly O +and O +cost O +effectively O +manner O +. O + + +This O +work O +has O +shown O +the O +use O +of O +a O +polymer S-MATE +based O +infiltrated O +ceramics S-MATE +produced O +via O +binder B-MANP +jetting E-MANP +for O +producing O +composite S-MATE +tooling O +molds S-MACEQ +. O + + +Here O +, O +molds S-MACEQ +based O +on O +silica B-MATE +sand E-MATE +as S-MATE +well O +as S-MATE +zircon O +sand S-MATE +have O +been O +printed O +on O +a O +S-Max O +3D B-MACEQ +printer E-MACEQ +unit O +and O +subsequently O +impregnated O +with O +an O +epoxy S-MATE +system O +for O +yielding O +functional O +molds S-MACEQ +in O +the O +range S-PARA +of O +autoclave S-MACEQ +temperatures O +around O +150–177 O +°C O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +infiltrated O +3D B-MANP +printed E-MANP +materials O +have O +been O +investigated O +and O +it O +was O +observed O +that O +the O +polymer-infiltrated O +systems O +resulted O +in O +a O +compressive O +and O +flexural B-PRO +strength E-PRO +one O +order O +of O +magnitude S-PARA +higher O +than O +the O +non-infiltrated O +printed O +ceramic B-MATE +material E-MATE +. O + + +A O +thermal B-CHAR +analysis E-CHAR +was O +also O +performed O +on O +both O +the O +infiltrated O +and O +non-infiltrated O +printed O +samples S-CONPRI +, O +and O +it O +was O +recorded O +that O +the O +incorporation O +of O +the O +polymer S-MATE +resulted O +in O +a O +larger O +coefficient B-PRO +of I-PRO +thermal I-PRO +expansion E-PRO +on O +the O +infiltrated O +systems O +. O + + +Here O +, O +a O +carbon B-MATE +fiber E-MATE +reinforced O +composite S-MATE +was O +manufactured S-CONPRI +with O +the O +infiltrated O +composite S-MATE +tooling O +molds S-MACEQ +printed O +in O +the O +S-Max O +unit O +, O +and O +it O +was O +observed O +that O +the O +assembled O +molds S-MACEQ +are O +capable O +of O +producing O +a O +successful O +composite B-MATE +material E-MATE +. O + + +The O +present O +work O +has O +demonstrated O +that O +a O +binder B-MANP +jetting E-MANP +process O +, O +is O +a O +feasible O +technology S-CONPRI +for O +producing O +thermostable O +low O +cost O +composite S-MATE +tooling O +molds S-MACEQ +. O + + +In O +the O +present O +study O +, O +laser B-MANP +metal I-MANP +deposition E-MANP +( O +LMD S-MANP +) O +was O +used O +to O +produce O +compositionally O +graded O +refractory S-APPL +high-entropy O +alloys S-MATE +( O +HEAs O +) O +for O +screening O +purposes O +by O +in-situ S-CONPRI +alloying S-FEAT +of O +elemental O +powder B-MATE +blends E-MATE +. O + + +A O +compositional O +gradient O +from O +Ti25Zr50Nb0Ta25 O +to O +Ti25Zr0Nb50Ta25 O +is O +obtained O +by O +incrementally O +substituting O +Zr B-MATE +powder E-MATE +with O +Nb S-MATE +powder O +. O + + +A O +suitable O +strategy O +was O +developed O +to O +process S-CONPRI +the O +powder B-MATE +blend E-MATE +despite O +several O +challenges O +such O +as S-MATE +the O +high O +melting B-PRO +points E-PRO +of O +the O +refractory S-APPL +elements S-MATE +and O +the O +large O +differences O +in O +melting B-PRO +points E-PRO +among O +them O +. O + + +The O +influence O +of O +the O +LMD S-MANP +process O +on O +the O +final O +chemical B-CONPRI +composition E-CONPRI +was O +analyzed O +in O +detail O +and O +the O +LMD S-MANP +process O +was O +optimized O +to O +obtain O +a O +well-defined O +compositional O +gradient O +. O + + +Microstructures S-MATE +, O +textures O +, O +chemical B-CONPRI +compositions E-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +were O +characterized O +using O +SEM S-CHAR +, O +EBSD S-CHAR +, O +EDX S-CHAR +, O +and O +microhardness S-CONPRI +testing O +, O +respectively O +. O + + +Compositions O +between O +Ti25Zr0Nb50Ta25 O +and O +Ti25Zr25Nb25Ta25 O +were O +found O +to O +be S-MATE +single-phase O +bcc S-CONPRI +solid O +solutions O +with O +a O +coarse O +grain S-CONPRI +microstructure O +. O + + +Increasing O +the O +Zr S-MATE +to O +Nb S-MATE +ratio O +beyond O +the O +equiatomic O +composition S-CONPRI +results O +in O +finer O +and O +harder O +multiphase O +microstructures S-MATE +. O + + +The O +results O +shown O +in O +the O +present O +study O +clearly O +show O +for O +the O +first O +time O +that O +LMD S-MANP +is O +a O +suitable O +processing O +tool S-MACEQ +to O +screen O +HEAs O +over O +a O +range S-PARA +of O +chemical B-CONPRI +compositions E-CONPRI +. O + + +Open O +source S-APPL +3-D S-CONPRI +printer O +to O +both O +fabricate S-MANP +slot O +die S-MACEQ +and O +functionalize O +. O + + +Created O +a O +3-D S-CONPRI +slot O +die S-MACEQ +printing O +system O +. O + + +Functional O +lab-grade O +slot O +dies S-MACEQ +may O +be S-MATE +3-D S-CONPRI +printed O +. O + + +Semiconductor S-MATE +films O +deposited O +with O +polymer S-MATE +slot O +die S-MACEQ +down O +to O +17 O +nm O +. O + + +Slot O +die S-MACEQ +coating S-APPL +is O +growing O +in O +popularity O +because O +it O +is O +a O +low O +operational O +cost O +and O +easily O +scaled O +processing B-CONPRI +technique E-CONPRI +for O +depositing O +thin O +and O +uniform O +films O +rapidly O +, O +while O +minimizing O +material S-MATE +waste O +. O + + +The O +complex O +inner O +geometry S-CONPRI +of O +conventional O +slot O +dies S-MACEQ +require O +expensive O +machining S-MANP +that O +limits S-CONPRI +accessibility O +and O +experimentation O +. O + + +In O +order O +to O +overcome O +these O +issues O +this O +study O +follows O +an O +open O +hardware O +approach O +, O +which O +uses O +an O +open O +source S-APPL +3-D S-CONPRI +printer O +to O +both O +fabricate S-MANP +the O +slot O +die S-MACEQ +and O +then O +to O +functionalize O +a O +3-D S-CONPRI +slot O +die S-MACEQ +printing O +system O +. O + + +Polymer B-MATE +materials E-MATE +are O +tested O +and O +selected O +for O +compatibility O +with O +common O +solvents O +and O +used O +to O +fabricate S-MANP +a O +custom O +slot O +die S-MACEQ +head O +. O + + +This O +slot O +die S-MACEQ +is O +then O +integrated O +into O +a O +3-D S-CONPRI +printer O +augmented O +with O +a O +syringe S-MACEQ +pump O +to O +form O +an O +additive B-MANP +manufacturing E-MANP +platform O +for O +thin O +film O +semiconductor S-MATE +devices O +. O + + +The O +full O +design S-FEAT +of O +the O +slot O +die S-MACEQ +system O +is O +disclosed O +here O +using O +an O +open O +source S-APPL +license O +including O +software S-CONPRI +and O +operational O +protocols S-CONPRI +. O + + +This O +study O +demonstrates O +that O +functional O +lab-grade O +slot O +dies S-MACEQ +may O +be S-MATE +3-D S-CONPRI +printed O +using O +low-cost O +open O +source S-APPL +hardware O +methods O +A O +case B-CONPRI +study E-CONPRI +using O +NiO2 O +found O +an O +RMS O +value O +0.486 O +nm O +, O +thickness O +of O +17–49 O +nm O +, O +and O +a O +maximum O +optical S-CHAR +transmission O +of O +99.1 O +% O +, O +which O +shows O +this O +additive B-MANP +manufacturing E-MANP +approach O +to O +slot O +die S-MACEQ +depositions O +as S-MATE +well O +of O +fabrication S-MANP +is O +capable O +of O +producing O +viable O +layers O +of O +advanced O +electronic O +materials S-CONPRI +. O + + +Ball-milled O +Ti/TiC O +composite B-MATE +particles E-MATE +( O +TiC O +nanoparticles S-CONPRI +assembled O +on O +Ti S-MATE +microparticles O +) O +were O +designed S-FEAT +, O +prepared O +, O +and O +mixed O +with O +Al-Si-Mg O +powder S-MATE +to O +fabricate S-MANP +an O +Al-Si-Mg-Ti O +alloy S-MATE +with O +TiC O +nanoparticles S-CONPRI +( O +Al-Si-Mg-Ti/TiC O +) O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +. O + + +Microstructure S-CONPRI +features O +, O +solidification S-CONPRI +behavior O +, O +and O +mechanical B-CONPRI +properties E-CONPRI +were O +investigated O +, O +and O +the O +relationship O +among O +them O +was O +established O +. O + + +The O +SLM-manufactured O +Al-Si-Mg-Ti/TiC O +material S-MATE +exhibited O +fine O +equiaxed-shaped O +α O +( O +Al S-MATE +) O +grains S-CONPRI +with O +nanoscale O +Si4Ti5 O +phases O +and O +Mg S-MATE +segregation O +along O +the O +grain B-CONPRI +boundaries E-CONPRI +. O + + +This O +structure S-CONPRI +benefited O +from O +heterogeneous B-CONPRI +nucleation E-CONPRI +as S-MATE +well O +as S-MATE +the O +grain B-CONPRI +growth E-CONPRI +restriction O +capabilities O +of O +TiC O +nanoparticles S-CONPRI +on O +α O +( O +Al S-MATE +) O +, O +fast O +diffusion S-CONPRI +of O +Ti S-MATE +in O +the O +superheated O +Al S-MATE +liquid O +, O +and O +high O +chemical O +activity O +of O +Ti S-MATE +to O +Si S-MATE +during O +solidification S-CONPRI +. O + + +Furthermore O +, O +Ti S-MATE +enrichment O +in O +some O +local O +areas S-PARA +of O +the O +high-temperature O +pool O +and O +the O +consequently O +intense O +Marangoni O +convection O +improved O +the O +wettability S-CONPRI +between O +TiC O +nanoparticles S-CONPRI +and O +liquid O +Al S-MATE +without O +the O +interfacial O +reaction O +. O + + +Consequently O +, O +the O +SLM-manufactured O +Al-Si-Mg-Ti/TiC O +showed O +a O +high O +ultimate B-PRO +tensile I-PRO +strength E-PRO +of O +up O +to O +562 O +± O +7 O +MPa S-CONPRI +and O +an O +elongation S-PRO +of O +up O +to O +8.8 O +% O +± O +1.3 O +% O +before O +fracture S-CONPRI +. O + + +These O +increased O +mechanical B-CONPRI +properties E-CONPRI +are O +attributed O +to O +the O +combined O +effect O +of O +grain B-CHAR +refinement E-CHAR +and O +Orowan O +and O +load-bearing S-FEAT +strengthening O +mechanisms O +. O + + +In O +this O +work O +, O +the O +Direct O +Ink S-MATE +Writing O +( O +DIW S-MANP +) O +technique O +was O +used O +to O +produce O +three-dimensional S-CONPRI +Ti2AlC O +ceramic S-MATE +components O +with O +high O +, O +uniform O +porosity S-PRO +. O + + +Suitable O +formulations O +were O +developed O +, O +with O +appropriate O +rheological B-PRO +properties E-PRO +for O +extruding S-MANP +thin O +filaments S-MATE +through O +a O +nozzle S-MACEQ +with O +a O +diameter S-CONPRI +of O +810 O +μm O +. O + + +The O +main O +rheological B-PRO +properties E-PRO +of O +the O +inks O +were O +investigated O +to O +evaluate O +their O +behavior O +and O +flowability O +during O +the O +printing B-MANP +process E-MANP +. O + + +Porous S-PRO +Ti2AlC O +lattices S-CONPRI +were O +fabricated S-CONPRI +, O +in O +selected O +conditions O +, O +with O +uniform O +pore B-PARA +size E-PARA +and O +good O +interconnectivity O +, O +and O +sintered S-MANP +at O +1400 O +°C O +in O +Ar S-ENAT +. O + + +Total O +porosity S-PRO +ranged O +from O +∼44 O +to O +∼63 O +vol O +% O +, O +and O +the O +mechanical B-PRO +strength E-PRO +ranged O +from O +∼43 O +to O +83 O +MPa S-CONPRI +. O + + +The O +influence O +of O +the O +ink S-MATE +composition S-CONPRI +and O +heat-treatment O +conditions O +on O +the O +phase B-CONPRI +composition E-CONPRI +of O +the O +3D S-CONPRI +porous O +structures O +was O +also O +evaluated O +. O + + +The O +high O +thermal B-PARA +gradients E-PARA +experienced O +during O +manufacture S-CONPRI +via O +selective B-MANP +laser I-MANP +melting E-MANP +commonly O +result O +in O +cracking S-CONPRI +of O +high O +γ/γ′ O +Nickel B-MATE +based I-MATE +superalloys E-MATE +. O + + +Such O +defects S-CONPRI +can O +not O +be S-MATE +tolerated O +in O +applications O +where O +component S-MACEQ +integrity O +is O +of O +paramount O +importance O +. O + + +To O +overcome O +this O +, O +many O +industrial S-APPL +practitioners O +make O +use O +of O +hot B-MANP +isostatic I-MANP +pressing E-MANP +to O +‘ O +heal O +’ O +these O +defects S-CONPRI +. O + + +The O +possibility O +of O +such O +defects S-CONPRI +re-opening O +during O +the O +component S-MACEQ +life O +necessitates O +optimisation O +of O +SLM S-MANP +processing O +parameters S-CONPRI +in O +order O +to O +produce O +the O +highest O +bulk O +density S-PRO +and O +integrity S-CONPRI +in O +the O +as-built O +state.In O +this O +paper O +, O +novel O +fractal O +scanning B-CONPRI +strategies E-CONPRI +based O +upon O +mathematical S-CONPRI +fill O +curves O +, O +namely O +the O +Hilbert O +and O +Peano-Gosper O +curve O +, O +are O +explored O +in O +which O +the O +use O +of O +short O +vector O +length O +scans O +, O +in O +the O +order O +of O +100 O +μm O +, O +is O +used O +as S-MATE +a O +method O +of O +reducing O +residual B-PRO +stresses E-PRO +. O + + +The O +effect O +on O +cracking S-CONPRI +observed O +in O +CM247LC O +superalloy O +samples S-CONPRI +was O +analysed O +using O +image S-CONPRI +processing O +, O +comparing O +the O +novel O +fractal O +scan O +strategies O +to O +more O +conventional O +‘ O +island O +’ O +scans O +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +and O +energy B-CHAR +dispersive I-CHAR +X-ray I-CHAR +spectroscopy E-CHAR +was O +utilised O +to O +determine O +the O +cracking S-CONPRI +mechanisms.Results O +show O +that O +cracking S-CONPRI +occurs O +via O +two O +mechanisms O +, O +solidification S-CONPRI +and O +liquation O +, O +with O +a O +strong O +dependence O +on O +the O +laser B-ENAT +scan E-ENAT +vectors O +. O + + +Through O +the O +use O +of O +fractal O +scan O +strategies O +, O +bulk O +density S-PRO +can O +be S-MATE +increased O +by O +2 O +± O +0.7 O +% O +when O +compared O +to O +the O +‘ O +island O +’ O +scanning S-CONPRI +, O +demonstrating O +the O +potential O +of O +fractal O +scan O +strategies O +in O +the O +manufacture S-CONPRI +of O +typically O +‘ O +unweldable O +’ O +nickel S-MATE +superalloys O +. O + + +Porous B-FEAT +scaffolds E-FEAT +were O +studied O +for O +weight S-PARA +bearing O +biomedical B-APPL +applications E-APPL +. O + + +Compression S-PRO +samples O +were O +additively B-MANP +manufactured E-MANP +using O +electron B-MANP +beam I-MANP +melting E-MANP +. O + + +Reentrant O +and O +cubic O +Ti6Al4 O +V S-MATE +unit B-CONPRI +cell E-CONPRI +geometries S-CONPRI +were O +tested O +under O +compression S-PRO +. O + + +Cubic O +scaffold S-FEAT +outperformed O +the O +reentrant O +scaffold S-FEAT +at O +the O +same O +relative B-PRO +density E-PRO +. O + + +A O +cubic O +scaffold S-FEAT +was O +proved O +suitable O +for O +load O +bearing O +biomedical B-APPL +applications E-APPL +. O + + +Ti6Al4V S-MATE +porous B-FEAT +scaffolds E-FEAT +of O +two O +unit B-CONPRI +cell E-CONPRI +geometries S-CONPRI +( O +reentrant O +and O +cubic O +) O +were O +investigated O +as S-MATE +candidates O +for O +load-bearing S-FEAT +biomedical B-APPL +applications E-APPL +. O + + +Samples S-CONPRI +were O +fabricated S-CONPRI +using O +an O +Arcam O +A2 O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +machine S-MACEQ +and O +evaluated O +for O +geometric O +deviation O +from O +the O +original O +CAD S-ENAT +design O +using O +a O +digital O +optical S-CHAR +microscope S-MACEQ +. O + + +The O +mass O +and O +bounding O +volume S-CONPRI +of O +each O +sample S-CONPRI +were O +also O +measured O +to O +calculate O +the O +resulting O +relative B-PRO +density E-PRO +. O + + +The O +scaffolds S-FEAT +were O +loaded O +in O +compression S-PRO +in O +the O +build B-PARA +direction E-PARA +to O +determine O +the O +relative O +modulus B-PRO +of I-PRO +elasticity E-PRO +and O +ultimate O +compressive O +load O +. O + + +Experimental S-CONPRI +results O +were O +used O +to O +calculate O +the O +Gibson O +and O +Ashby O +relation O +parameters S-CONPRI +for O +the O +studied O +unit B-CONPRI +cell E-CONPRI +geometries S-CONPRI +. O + + +The O +results O +suggest O +that O +samples S-CONPRI +with O +the O +cubic O +unit B-CONPRI +cell E-CONPRI +geometries S-CONPRI +, O +with O +struts S-MACEQ +oriented O +at O +an O +angle O +of O +45° O +to O +the O +loading O +direction O +, O +exhibited O +higher O +stiffness S-PRO +than O +samples S-CONPRI +with O +the O +reentrant O +unit B-CONPRI +cell E-CONPRI +geometry S-CONPRI +at O +equivalent O +relative B-PRO +densities E-PRO +. O + + +A O +cubic O +scaffold S-FEAT +is O +verified O +to O +withstand O +high O +compressive O +loads O +( O +more O +than O +71 O +kN O +) O +while O +having O +an O +approximate O +pore B-PARA +size E-PARA +in O +the O +range S-PARA +of O +0.6 O +mm S-MANP +. O + + +The O +selective B-MANP +laser I-MANP +melting E-MANP +fabricated S-CONPRI +304L O +stainless B-MATE +steel E-MATE +exhibited O +an O +excellent O +strength–ductility O +synergy O +. O + + +Massive O +stacking O +faults O +and O +annealing S-MANP +twins O +formed O +in O +the O +selective B-MANP +laser I-MANP +melting E-MANP +fabricated S-CONPRI +304L O +stainless B-MATE +steel E-MATE +. O + + +The O +outstanding O +ductility S-PRO +is O +due O +to O +the O +activation O +of O +multiple O +deformation S-CONPRI +mechanisms O +. O + + +The O +microstructure S-CONPRI +, O +mechanical B-CONPRI +properties E-CONPRI +and O +deformation S-CONPRI +mechanisms O +of O +the O +304L O +stainless B-MATE +steel E-MATE +( O +SS S-MATE +) O +additively B-MANP +manufactured E-MANP +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +were O +systematically O +investigated O +. O + + +The O +SLM S-MANP +fabricated S-CONPRI +304L O +SS S-MATE +contains O +two O +phases O +( O +face-centered-cubic O +γ-austenite O +and O +body-centered-cubic O +δ-ferrite O +) O +and O +exhibits O +a O +hierarchical O +microstructure S-CONPRI +with O +length B-CHAR +scales E-CHAR +spanning O +several O +orders O +of O +magnitude S-PARA +. O + + +The O +hierarchical O +microstructure S-CONPRI +includes O +the O +melt B-MATE +pools E-MATE +and O +slightly O +elongated O +columnar B-PRO +grains E-PRO +at O +the O +micron S-FEAT +scale O +, O +cellular B-FEAT +structures E-FEAT +decorated O +with O +a O +high O +density S-PRO +of O +dislocations S-CONPRI +at O +the O +sub-micron S-FEAT +scale O +and O +oxides S-MATE +at O +the O +nanoscale O +. O + + +Stacking O +faults O +formed O +due O +to O +the O +residual B-PRO +stress E-PRO +in O +addition O +to O +the O +low O +stacking O +fault O +energy O +of O +the O +304L O +SS S-MATE +( O +19.2 O +mJ/m2 O +) O +while O +massive O +annealing S-MANP +twins O +were O +generated O +arising O +from O +the O +combined O +effects O +of O +residual B-PRO +stress E-PRO +and O +intrinsic O +heat B-MANP +treatment E-MANP +. O + + +The O +as S-MATE +built O +304L O +SS S-MATE +exhibits O +a O +significantly O +enhanced O +strength–ductility O +synergy O +compared O +to O +that O +of O +wrought S-CONPRI +and O +annealed O +counterparts O +. O + + +The O +enhanced O +yield B-PRO +strength E-PRO +stems O +from O +the O +hierarchically O +heterogeneous S-CONPRI +microstructure O +, O +while O +the O +outstanding O +tensile B-PRO +elongation E-PRO +is O +ascribed O +to O +the O +activation O +of O +multiple O +deformation S-CONPRI +mechanisms O +, O +involving O +the O +dislocation S-CONPRI +activities O +, O +the O +formation O +of O +stacking O +faults O +and O +mechanical S-APPL +twins O +, O +and O +the O +transformation-induced O +plasticity S-PRO +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +developing O +with O +the O +goal O +of O +fabricating S-MANP +parts O +with O +high O +performance S-CONPRI +and O +high O +efficiency O +. O + + +Laser B-PARA +power E-PARA +is O +the O +key O +factor O +to O +the O +efficiency O +, O +microstructure S-CONPRI +and O +performance S-CONPRI +in O +LPBF S-MANP +. O + + +In O +this O +work O +, O +the O +molten B-CONPRI +pool E-CONPRI +characteristics O +and O +spatter S-CHAR +behavior O +in O +LPBF S-MANP +with O +a O +high O +power S-PARA +and O +a O +wide O +process S-CONPRI +window O +( O +from O +350 O +W O +to O +1550 O +W O +) O +are O +studied O +based O +on O +high-speed O +high-resolution S-PARA +imaging O +. O + + +The O +results O +show O +that O +the O +molten B-CONPRI +pool E-CONPRI +characteristics O +and O +spatter S-CHAR +behavior O +depend O +on O +the O +laser S-ENAT +input O +energy O +. O + + +The O +average S-CONPRI +ejection O +velocity O +and O +ejection S-CONPRI +angle O +increase O +with O +the O +laser B-PARA +power E-PARA +. O + + +The O +droplet S-CONPRI +column O +ejection S-CONPRI +and O +large O +spatters O +are O +prone O +to O +occur O +with O +a O +high-power B-CONPRI +laser E-CONPRI +. O + + +Furthermore O +, O +the O +times O +at O +which O +the O +vapor O +depression O +and O +the O +protrusion O +in O +the O +molten B-CONPRI +pool E-CONPRI +first O +occur O +decrease O +dramatically O +with O +an O +increase O +in O +the O +laser S-ENAT +input O +energy O +. O + + +When O +the O +laser S-ENAT +mode O +and O +spot B-PARA +size E-PARA +are O +kept O +constant O +, O +the O +laser B-PARA +power E-PARA +determines O +the O +amount O +of O +time O +required O +for O +melting S-MANP +, O +the O +vapor O +depression O +and O +the O +protrusion O +in O +LPBF S-MANP +to O +occur O +, O +while O +the O +laser B-ENAT +scan E-ENAT +velocity O +determines O +whether O +the O +laser S-ENAT +dwell B-PARA +time E-PARA +is O +sufficient O +for O +these O +phenomena O +to O +form O +. O + + +Optimum O +distribution S-CONPRI +of O +relative B-PRO +density E-PRO +can O +enhance O +the O +bending S-MANP +stiffness O +of O +an O +architected O +cellular O +beam S-MACEQ +more O +than O +120 O +% O +. O + + +Optimally O +graded O +cellular O +beam S-MACEQ +samples O +are O +3D B-MANP +printed E-MANP +using O +stereolithography S-MANP +. O + + +Experimental S-CONPRI +bending B-CHAR +tests E-CHAR +on O +3D B-MANP +printed E-MANP +samples O +confirm O +the O +practicality O +of O +graded O +designs S-FEAT +for O +developing O +advanced O +lightweight B-MACEQ +structures E-MACEQ +. O + + +Periodic O +cellular B-MATE +materials E-MATE +can O +substantially O +improve O +the O +stiffness-to-weight O +ratio O +of O +structures O +. O + + +This O +improvement O +depends O +on O +the O +geometry S-CONPRI +of O +periodic O +cells S-APPL +. O + + +This O +article O +presents O +the O +idea O +of O +enhancing O +the O +bending S-MANP +stiffness O +of O +an O +architected O +cellular O +beam S-MACEQ +by O +an O +optimum O +distribution S-CONPRI +of O +relative B-PRO +density E-PRO +through O +its O +length O +and/or O +across O +its O +thickness O +. O + + +Detailed O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +and O +experimental S-CONPRI +bending B-CHAR +tests E-CHAR +on O +specimens O +3D B-MANP +printed E-MANP +by O +stereolithography S-MANP +validate O +the O +hybrid-homogenized O +modeling S-ENAT +approach O +. O + + +The O +hybrid-homogenized O +model S-CONPRI +facilitates O +transforming O +the O +general O +optimization S-CONPRI +problem O +into O +a O +shape O +optimization S-CONPRI +process O +with O +the O +relative B-PRO +density E-PRO +of O +unit B-CONPRI +cells E-CONPRI +as S-MATE +design O +variables O +. O + + +The O +teaching-learning-based O +optimization S-CONPRI +( O +TLBO O +) O +algorithm S-CONPRI +is O +used O +to O +obtain O +the O +optimum O +relative B-PRO +density E-PRO +distribution S-CONPRI +, O +which O +maximizes O +the O +bending S-MANP +stiffness O +. O + + +The O +optimization S-CONPRI +results O +show O +a O +substantial O +increase O +in O +bending S-MANP +stiffness O +; O +as S-MATE +high O +as S-MATE +43 O +% O +, O +155 O +% O +, O +and O +182 O +% O +for O +a O +cellular O +beam S-MACEQ +graded O +through O +the O +length O +, O +across O +the O +thickness O +, O +and O +in O +both O +directions O +, O +respectively O +. O + + +It O +is O +found O +that O +varying O +the O +relative B-PRO +density E-PRO +of O +cells S-APPL +across O +the O +beam S-MACEQ +thickness O +is O +more O +effective O +than O +variation S-CONPRI +through O +the O +length O +. O + + +Detailed O +FEA O +and O +experimental S-CONPRI +bending B-CHAR +tests E-CHAR +corroborate O +the O +optimization S-CONPRI +findings O +and O +confirm O +the O +practicality O +of O +such O +graded O +designs S-FEAT +for O +developing O +advanced O +lightweight B-MACEQ +structures E-MACEQ +. O + + +Investigating O +the O +effect O +of O +cell S-APPL +architecture S-APPL +also O +reveals O +that O +optimally O +graded O +cellular O +beams O +have O +a O +potential O +to O +outperform O +uniform O +cellular O +beams O +made O +out O +of O +ideal O +unit B-CONPRI +cells E-CONPRI +( O +Voigt O +bound O +for O +elastic S-PRO +properties O +) O +by O +reaching O +bending S-MANP +stiffness-to-density O +ratios O +greater O +than O +one O +. O + + +The O +relatively O +simple S-MANP +graded O +cellular B-FEAT +designs E-FEAT +are O +beneficial O +in O +applications O +where O +high O +bending S-MANP +stiffness O +and O +low O +density S-PRO +are O +essential O +. O + + +Recent O +advances O +in O +additive B-MANP +manufacturing E-MANP +promise O +extending O +the O +presented O +grading O +strategy O +for O +polymeric O +, O +composite S-MATE +, O +and O +metallic S-MATE +3D B-MANP +printed E-MANP +cellular O +materials S-CONPRI +to O +fabricate S-MANP +high O +performance B-CONPRI +lightweight E-CONPRI +structural O +elements S-MATE +at O +a O +relatively O +low O +cost O +. O + + +This O +study O +investigated O +the O +effect O +of O +trace O +lanthanum S-MATE +hexaboride O +( O +LaB6 O +) O +addition O +on O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +an O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +processed S-CONPRI +Ti-6Al-4V O +component S-MACEQ +. O + + +LaB6 O +exhibited O +a O +significant O +effect O +on O +the O +grain B-CONPRI +structure E-CONPRI +, O +phase S-CONPRI +, O +and O +texture S-FEAT +of O +the O +EBM-processed O +Ti-6Al-4V B-MATE +alloys E-MATE +. O + + +Although O +prior-β O +columnar B-PRO +grains E-PRO +were O +observed O +in O +both O +Ti-6Al-4V S-MATE +and O +LaB6-modified O +Ti-6Al-4V S-MATE +( O +Ti-6Al-4V-LaB6 O +) O +, O +the O +width O +of O +the O +columnar B-PRO +grains E-PRO +decreased O +significantly O +with O +LaB6 O +addition O +. O + + +Alternating O +acicular O +α′ O +martensite S-MATE +and O +acicular O +α O +laths O +were O +distributed O +in O +the O +Ti-6Al-4V S-MATE +, O +whereas O +refined O +lamellar S-CONPRI +α O ++ O +β O +structures O +were O +observed O +in O +the O +Ti-6Al-4V-LaB6 O +. O + + +We O +propose O +that O +the O +addition O +of O +LaB6 O +provided O +a O +large O +amount O +of O +heterogenous O +nucleation S-CONPRI +sites O +for O +solidification S-CONPRI +and O +α O +phase S-CONPRI +formation O +. O + + +Consequently O +, O +high O +tensile B-PRO +strength E-PRO +with O +considerable O +elongation S-PRO +was O +achieved O +in O +the O +EBM-processed O +Ti-6Al-4V S-MATE +modified O +by O +trace O +LaB6 O +addition O +. O + + +The O +purpose O +of O +this O +paper O +is O +to O +identify O +the O +key O +elements S-MATE +of O +a O +new O +hybrid O +process S-CONPRI +to O +produce O +high O +quality S-CONPRI +metal/plastic O +composites S-MATE +. O + + +The O +process S-CONPRI +is O +a O +combination O +of O +Fused B-CONPRI +Deposition E-CONPRI +Modelling O +( O +FDM S-MANP +) O +, O +vacuum O +forming S-MANP +and O +CNC B-MANP +machining E-MANP +. O + + +The O +research S-CONPRI +aims O +to O +provide O +details O +of O +the O +proposed O +hybrid O +process S-CONPRI +, O +equipment S-MACEQ +used O +, O +and O +the O +experimental S-CONPRI +results O +of O +the O +composites S-MATE +produced O +. O + + +The O +research S-CONPRI +has O +been O +separated O +into O +three O +study O +areas S-PARA +. O + + +In O +the O +first O +, O +the O +hybrid O +process S-CONPRI +has O +been O +defined O +as S-MATE +a O +whole O +whereas O +the O +second O +area S-PARA +deals O +with O +the O +breakdown O +of O +steps O +to O +produce O +the O +metal/plastic O +composites S-MATE +. O + + +The O +third O +area S-PARA +explains O +the O +varied O +materials S-CONPRI +used O +for O +the O +production S-MANP +and O +testing S-CHAR +of O +the O +composites S-MATE +. O + + +Composites S-MATE +have O +been O +made O +by O +joining S-MANP +copper S-MATE +( O +99.99 O +% O +pure O +) O +mesh O +with O +ABS S-MATE +( O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +) O +. O + + +Strain S-PRO +measurement S-CHAR +has O +been O +carried O +out O +on O +Cu/ABS O +sample S-CONPRI +to O +analyse O +the O +effect O +of O +metal S-MATE +mesh O +and O +to O +verify O +the O +effectiveness S-CONPRI +of O +the O +hybrid O +process S-CONPRI +. O + + +The O +resulting O +composites S-MATE +( O +Cu/ABS O +) O +have O +also O +been O +subjected O +to O +tensile S-PRO +loading O +with O +different O +layers O +of O +metal S-MATE +mesh O +, O +followed O +by O +microstructural B-CHAR +analysis E-CHAR +and O +comparative O +studies O +to O +serve O +as S-MATE +a O +proof O +of O +the O +methodology S-CONPRI +. O + + +The O +results O +show O +that O +the O +proposed O +hybrid O +process S-CONPRI +is O +very O +effective O +in O +producing O +metal/plastic O +composites S-MATE +with O +lower O +strain S-PRO +values O +compared O +to O +the O +parent O +plastic S-MATE +indicating O +a O +lower O +level O +of O +deformation S-CONPRI +due O +to O +interlocking O +of O +the O +metal S-MATE +and O +plastic S-MATE +layers O +. O + + +This O +effect O +has O +been O +reinforced S-CONPRI +by O +the O +tensile B-CHAR +testing E-CHAR +where O +the O +composites S-MATE +showed O +higher O +fracture S-CONPRI +load O +values O +compared O +to O +the O +parent O +plastic S-MATE +. O + + +Microstructural B-CHAR +analysis E-CHAR +shows O +the O +layer S-PARA +of O +metal S-MATE +mesh O +sandwiched O +between O +ABS S-MATE +layers O +indicating O +the O +existence O +of O +a O +bond O +holding O +the O +layers O +of O +metal S-MATE +and O +plastic S-MATE +together O +. O + + +These O +results O +demonstrate O +the O +capabilities O +and O +effectiveness S-CONPRI +of O +the O +proposed O +process S-CONPRI +that O +has O +shown O +promising O +results O +under O +tensile S-PRO +and O +static O +loading O +. O + + +High-mass-proportion O +TiCp/Ti6Al4V O +composites S-MATE +with O +fully B-PARA +dense E-PARA +prepared O +by O +directed B-MANP +energy I-MANP +deposition E-MANP +. O + + +The O +changes O +in O +microstructure S-CONPRI +and O +orientation S-CONPRI +relationship O +was O +discussed O +in O +detail O +. O + + +Hardness S-PRO +, O +wear B-PRO +resistance E-PRO +, O +and O +thermal B-PRO +conductivity E-PRO +increased O +, O +while O +tensile S-PRO +performance S-CONPRI +decreased O +with O +increasing O +TiCp O +content O +. O + + +Titanium S-MATE +matrix O +composites S-MATE +( O +TMC O +) O +have O +potential O +applications O +in O +the O +aerospace B-APPL +industry E-APPL +because O +of O +their O +excellent O +performance S-CONPRI +. O + + +The O +comprehensive O +performance S-CONPRI +of O +TMC O +mainly O +depends O +on O +the O +matrix O +, O +reinforcement S-PARA +and O +interface S-CONPRI +characteristics O +. O + + +Crack-free O +high-mass-proportion O +TiCp/Ti6Al4Vcomposites O +were O +successfully O +prepared O +by O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +. O + + +Meanwhile O +, O +the O +refined O +α-Ti O +in O +the O +composites S-MATE +had O +a O +relatively O +weak O +texture S-FEAT +. O + + +In O +addition O +, O +the O +interface S-CONPRI +between O +primary O +TiC O +and O +α-Ti O +was O +a O +semi-coherent O +interface S-CONPRI +, O +exhibiting O +a O +112-0 O +α-Ti O +// O +[ O +110 O +] O +TiC O +, O +1-100 O +α-Ti O +// O +1-11 O +TiC O +orientation S-CONPRI +relationship O +, O +which O +facilitated O +the O +heterogeneous B-CONPRI +nucleation E-CONPRI +of O +Ti S-MATE +and O +improved O +bonding S-CONPRI +of O +primary O +TiC O +with O +the O +matrix O +. O + + +With O +the O +increase O +in O +microhardness S-CONPRI +taking O +the O +form O +of O +a O +cubic O +function O +, O +the O +wear B-CONPRI +mechanism E-CONPRI +was O +found O +to O +transform O +from O +abrasive B-CONPRI +wear E-CONPRI +to O +slight O +delamination S-CONPRI +wear O +. O + + +Due O +to O +the O +fact O +that O +both O +UMT O +and O +primary O +TiC O +bonded O +well O +with O +Ti64 S-MATE +matrix O +, O +they O +shared O +partial O +friction S-CONPRI +to O +protect O +matrix O +from O +severe O +abrasion O +, O +resulting O +in O +an O +excellent O +wear B-PRO +resistance E-PRO +of O +composites S-MATE +. O + + +Moreover O +, O +the O +thermal B-PRO +conductivity E-PRO +of O +50 O +% O +TiCp/Ti6Al4V O +was O +9.063 O +W∙m-1∙K-1 O +, O +which O +was O +nearly O +26.5 O +% O +higher O +than O +that O +of O +Ti6Al4V S-MATE +. O + + +Owing O +to O +the O +premature O +cracking S-CONPRI +of O +brittle S-PRO +UMT O +and O +dendritic O +TiC O +, O +the O +tensile B-PRO +strength E-PRO +and O +elongation S-PRO +of O +the O +composite S-MATE +with O +50 O +% O +TiCp O +were O +515.5 O +MPa S-CONPRI +and O +1.83 O +% O +, O +which O +decreased O +by O +45.8 O +% O +and O +78.8 O +% O +, O +respectively O +. O + + +Adding O +a O +high O +proportion O +of O +TiCp O +can O +significantly O +improve O +the O +hardness S-PRO +and O +wear B-PRO +resistance E-PRO +of O +TMC O +, O +whereas O +it O +is O +detrimental O +to O +the O +tensile S-PRO +performance S-CONPRI +of O +TMC O +. O + + +The O +study O +have O +significant O +implications O +for O +the O +design S-FEAT +of O +novel O +TMC O +, O +particularly O +for O +the O +aerospace S-APPL +industrial O +applications O +. O + + +This O +paper O +presents O +the O +design S-FEAT +of O +a O +high O +speed O +, O +high B-PARA +resolution E-PARA +silicon O +based O +thermal O +imaging S-APPL +instrument O +and O +its O +application O +to O +thermally O +image S-CONPRI +the O +temperature S-PARA +distributions S-CONPRI +of O +an O +electron B-MACEQ +beam I-MACEQ +melting I-MACEQ +additive I-MACEQ +manufacturing I-MACEQ +system E-MACEQ +. O + + +Typically O +, O +thermal B-FEAT +images E-FEAT +are O +produced O +at O +mid O +or O +long O +wavelengths O +of O +infrared S-CONPRI +radiation O +. O + + +Using O +the O +shorter O +wavelengths O +that O +silicon S-MATE +focal O +plane O +arrays O +are O +sensitive O +to O +allows O +the O +use O +of O +standard S-CONPRI +windows O +in O +the O +optical S-CHAR +path O +. O + + +It O +also O +affords O +fewer O +modifications O +to O +the O +machine S-MACEQ +and O +enables O +us O +to O +make O +use O +of O +mature O +silicon S-MATE +camera S-MACEQ +technology O +. O + + +With O +this O +new O +instrument O +, O +in B-CONPRI +situ E-CONPRI +thermal O +imaging S-APPL +of O +the O +entire O +build B-PARA +area E-PARA +has O +been O +made O +possible O +at O +high O +speed O +, O +allowing O +defect S-CONPRI +detection O +and O +melt B-MATE +pool E-MATE +tracking O +. O + + +Melt B-MATE +pool E-MATE +tracking O +was O +used O +to O +implement O +an O +emissivity O +correction O +algorithm S-CONPRI +, O +which O +produced O +more O +accurate S-CHAR +temperatures O +of O +the O +melted S-CONPRI +areas S-PARA +of O +the O +layer S-PARA +. O + + +Simple S-MANP +, O +one-step O +copper S-MATE +electrodeposition O +on O +conductive O +3D B-APPL +objects E-APPL +Only O +the O +most O +conductive O +filament S-MATE +enables O +uniform O +electroplating S-MANP +. O + + +Electroplating S-MANP +with O +additives S-MATE +reduces O +the O +surface B-PRO +roughness E-PRO +of O +the O +print S-MANP +by O +2.4x O +. O + + +Electrical S-APPL +resistance O +improved O +by O +100x O +after O +one-step O +electrodeposition O +Quality S-CONPRI +factor O +of O +3D B-MANP +printed E-MANP +inductor O +is O +improved O +by O +1740x O +after O +electrodeposition O +. O + + +3D B-MANP +printing E-MANP +with O +electrically S-CONPRI +conductive O +filaments S-MATE +enables O +rapid B-ENAT +prototyping E-ENAT +and O +fabrication S-MANP +of O +electronics S-CONPRI +, O +but O +the O +performance S-CONPRI +of O +such O +devices O +can O +be S-MATE +limited O +by O +the O +fact O +that O +the O +most O +conductive O +thermoplastic-based O +filaments S-MATE +for O +3D B-MANP +printing E-MANP +are O +3750 O +times O +less O +conductive O +than O +copper S-MATE +. O + + +This O +study O +explores O +the O +use O +of O +one-step O +electrodeposition O +of O +copper S-MATE +onto O +electrically S-CONPRI +conductive O +3D B-MANP +printed E-MANP +objects O +as S-MATE +a O +way O +to O +improve O +their O +conductivity S-PRO +and O +performance S-CONPRI +. O + + +Comparison O +of O +three O +different O +commercially-available O +conductive O +filaments S-MATE +demonstrates O +that O +only O +the O +most O +conductive O +commercially O +available O +filament S-MATE +could O +enable O +one-step O +electrodeposition O +of O +uniform O +copper S-MATE +films O +. O + + +Electrodeposition O +improved O +the O +electrical B-PRO +conductivity E-PRO +and O +the O +ampacity O +of O +3D B-MANP +printed E-MANP +traces O +by O +94 O +and O +17 O +times O +respectively O +, O +compared O +to O +the O +as-printed O +object O +. O + + +The O +areal O +surface B-PRO +roughness E-PRO +of O +the O +objects O +was O +reduced O +from O +9.3 O +to O +6.9 O +μm O +after O +electrodeposition O +, O +and O +a O +further O +reduction S-CONPRI +in O +surface B-PRO +roughness E-PRO +to O +3.9 O +μm O +could O +be S-MATE +achieved O +through O +the O +addition O +of O +organic O +additives S-MATE +to O +the O +electrodeposition O +bath O +. O + + +Copper S-MATE +electrodeposition O +improved O +the O +quality S-CONPRI +factor O +of O +a O +3D B-MANP +printed E-MANP +inductor O +by O +1740 O +times O +and O +the O +gain S-PARA +of O +a O +3D B-MANP +printed E-MANP +horn O +antenna O +by O +1 O +dB O +. O + + +One-step O +electrodeposition O +is O +a O +fast O +and O +simple S-MANP +way O +to O +improve O +the O +conductivity S-PRO +and O +performance S-CONPRI +of O +3D B-MANP +printed E-MANP +electronic O +components S-MACEQ +. O + + +The O +wide O +usage O +of O +Inconel B-MATE +718 I-MATE +alloy E-MATE +is O +based O +on O +its O +fusion S-CONPRI +weldability O +and O +its O +availability O +in O +many O +different O +forms O +including O +cast S-MANP +, O +wrought S-CONPRI +and O +powder S-MATE +. O + + +Thus O +with O +the O +emergence O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +techniques O +for O +metals S-MATE +, O +Inconel B-MATE +718 E-MATE +is O +a O +prime O +candidate O +for O +materials S-CONPRI +to O +be S-MATE +considered O +. O + + +Powders S-MATE +that O +have O +been O +developed O +for O +powder B-MANP +metallurgy E-MANP +are O +readily O +available O +for O +use O +in O +various O +AM B-MANP +processes E-MANP +such O +as S-MATE +selected O +laser S-ENAT +melting O +( O +SLM S-MANP +) O +powder B-MACEQ +bed E-MACEQ +. O + + +While O +much O +research S-CONPRI +has O +focused O +on O +optimizing O +the O +deposition S-CONPRI +parameters O +to O +achieve O +fully O +densified S-MANP +specimens O +, O +subsequent O +heat B-MANP +treatments E-MANP +and O +their O +effect O +on O +the O +microstructure S-CONPRI +also O +need O +to O +be S-MATE +understood O +. O + + +This O +study O +evaluated O +the O +microstructure S-CONPRI +of O +SLM S-MANP +specimens O +of O +Inconel B-MATE +718 E-MATE +after O +various O +heat B-MANP +treatments E-MANP +and O +compared O +the O +resulting O +effect O +on O +the O +quasi-static S-CONPRI +mechanical B-CONPRI +properties E-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +received O +a O +great O +deal O +of O +attention O +for O +the O +ability O +to O +produce O +three O +dimensional O +parts O +via O +laser S-ENAT +heating S-MANP +. O + + +One O +recently O +proposed O +method O +of O +making O +microscale S-CONPRI +AM B-MACEQ +parts E-MACEQ +is O +through O +microscale S-CONPRI +selective O +laser B-MANP +sintering E-MANP +( O +μ-SLS O +) O +where O +nanoparticles S-CONPRI +replace O +the O +traditional O +powders S-MATE +used O +in O +standard S-CONPRI +SLS B-MANP +processes E-MANP +. O + + +However O +, O +there O +are O +many O +challenges O +to O +understanding O +the O +physics S-CONPRI +of O +the O +process S-CONPRI +at O +nanoscale O +as S-MATE +well O +as S-MATE +with O +conducting O +experiments O +at O +that O +scale O +; O +hence O +, O +modeling S-ENAT +and O +computational O +simulations S-ENAT +are O +vital O +to O +understand O +the O +sintering S-MANP +process B-CONPRI +physics E-CONPRI +. O + + +At O +the O +sub-micron S-FEAT +( O +μm O +) O +level O +, O +the O +interaction O +between O +nanoparticles S-CONPRI +under O +high O +power S-PARA +laser S-ENAT +heating S-MANP +raises O +additional O +near-field O +thermal O +issues O +such O +as S-MATE +thermal O +diffusivity S-CHAR +, O +effective O +absorptivity O +, O +and O +extinction O +coefficients O +compared O +to O +larger O +scales O +. O + + +Thus O +, O +nanoparticle O +'s O +distribution S-CONPRI +behavior O +and O +characteristic O +properties S-CONPRI +are O +very O +important O +to O +understanding O +the O +thermal B-CHAR +analysis E-CHAR +of O +nanoparticles S-CONPRI +in O +a O +μ-SLS O +process S-CONPRI +. O + + +This O +paper O +presents O +a O +discrete O +element S-MATE +modeling O +( O +DEM O +) O +study O +of O +how O +copper S-MATE +nanoparticles O +of O +given O +particle B-CONPRI +size I-CONPRI +distribution E-CONPRI +pack O +together O +in O +a O +μ-SLS O +powder B-MACEQ +bed E-MACEQ +. O + + +Initially O +, O +nanoparticles S-CONPRI +are O +distributed O +randomly O +into O +the O +bed S-MACEQ +domain O +with O +a O +random O +initial O +velocity O +vector O +and O +set S-APPL +boundary B-CONPRI +conditions E-CONPRI +. O + + +The O +particles S-CONPRI +are O +then O +allowed O +to O +move O +in O +discrete O +time O +steps O +until O +they O +reach O +a O +final O +steady B-CONPRI +state E-CONPRI +position O +, O +which O +creates O +the O +particle S-CONPRI +packing O +within O +the O +powder B-MACEQ +bed E-MACEQ +. O + + +The O +particles S-CONPRI +are O +subject O +to O +both O +gravitational O +and O +cohesive O +forces S-CONPRI +since O +cohesive O +forces S-CONPRI +become O +important O +at O +the O +nanoscale O +. O + + +A O +set S-APPL +of O +simulations S-ENAT +was O +performed O +for O +different O +cases O +under O +both O +Gaussian S-CONPRI +and O +log-normal O +particle B-CONPRI +size I-CONPRI +distributions E-CONPRI +with O +different O +standard B-CHAR +deviations E-CHAR +. O + + +In O +addition O +, O +this O +paper O +suggests O +a O +potential O +method O +to O +overcome O +the O +agglomeration O +effects O +in O +μ-SLS O +powder B-MACEQ +beds E-MACEQ +through O +the O +use O +of O +colloidal S-MATE +nanoparticle O +solutions O +that O +minimize O +the O +cohesive O +interactions O +between O +individual O +nanoparticles S-CONPRI +. O + + +Grain S-CONPRI +morphology O +control O +is O +a O +challenging O +issue O +for O +additive B-MANP +manufactured E-MANP +NiTi O +alloy S-MATE +, O +which O +directly O +affects O +the O +functional O +properties S-CONPRI +. O + + +In O +this O +work O +, O +La2O3 S-MATE +addition O +was O +applied O +to O +control O +microstructure S-CONPRI +and O +improve O +functional O +properties S-CONPRI +of O +directed O +energy O +deposited O +( O +DED S-MANP +) O +NiTi B-MATE +alloy E-MATE +. O + + +The O +results O +showed O +that O +the O +DEDed O +NiTi B-MATE +alloy E-MATE +mainly O +consisted O +of O +NiTi S-MATE +( O +B2 O +) O +columnar B-PRO +grains E-PRO +and O +some O +coarse O +NiTi2 O +phases O +within O +and O +at O +the O +boundaries S-FEAT +of O +NiTi S-MATE +grains S-CONPRI +. O + + +The O +addition O +of O +La2O3 S-MATE +led O +to O +the O +promotion O +of O +columnar-to-equiaxed O +transition S-CONPRI +and O +grain B-CHAR +refinement E-CHAR +of O +NiTi S-MATE +( O +B2 O +) O +phase S-CONPRI +. O + + +La2O3 S-MATE +and O +LaNi O +secondary O +phases O +can O +be S-MATE +found O +in O +the O +DEDed O +NiTi B-MATE +alloy E-MATE +with O +La2O3 S-MATE +addition O +. O + + +The O +La2O3 S-MATE +precipitate O +could O +act O +as S-MATE +the O +effective O +heterogeneous B-CONPRI +nucleation E-CONPRI +site O +and O +the O +NiTi2 O +or O +LaNi O +precipitates S-MATE +could O +pin O +the O +grain B-CONPRI +boundaries E-CONPRI +contributing O +to O +the O +grain B-CHAR +refinement E-CHAR +and O +the O +formation O +of O +equiaxed B-CONPRI +grains E-CONPRI +of O +NiTi S-MATE +( O +B2 O +) O +phase S-CONPRI +. O + + +The O +introduction O +of O +La2O3 S-MATE +could O +also O +refine O +the O +phase S-CONPRI +size O +and O +adjust O +morphology S-CONPRI +of O +NiTi2 O +phase S-CONPRI +, O +which O +was O +attributed O +to O +the O +increase O +of O +nucleation S-CONPRI +sites O +and O +more O +dispersed O +L O +( O +Ti-rich O +) O +.The O +temperatures S-PARA +and O +latent O +heat S-CONPRI +of O +phase S-CONPRI +transformation O +evidently O +increase O +with O +La2O3 S-MATE +addition O +due O +to O +the O +decrease O +in O +the O +Ni S-MATE +content O +and O +La S-MATE +dissolved O +into O +NiTi S-MATE +( O +B2 O +) O +phase S-CONPRI +. O + + +Improved O +superelasticity O +property S-CONPRI +was O +achieved O +after O +La2O3 S-MATE +addition O +owing O +to O +the O +promotion O +of O +grain S-CONPRI +order O +and O +yield B-PRO +strength E-PRO +of O +NiTi S-MATE +( O +B2 O +) O +phase S-CONPRI +and O +the O +reduction S-CONPRI +of O +resistance S-PRO +from O +NiTi2 O +phase S-CONPRI +for O +the O +interface S-CONPRI +movement O +. O + + +Mechanisms O +underlying O +the O +evolution S-CONPRI +of O +texture S-FEAT +and O +microstructure S-CONPRI +during O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +and O +their O +combined O +effects O +on O +the O +mechanical B-CONPRI +response E-CONPRI +of O +316L B-MATE +stainless I-MATE +steel E-MATE +are O +presented O +. O + + +Long O +columnar B-PRO +grains E-PRO +with O +a O +fiber S-MATE +texture O +< O +110 O +> O +|| O +build B-PARA +direction E-PARA +( O +BD O +) O +evolved O +in O +the O +SLM S-MANP +printed O +material S-MATE +. O + + +Fiber S-MATE +texture O +was O +stronger O +in O +the O +horizontal O +build S-PARA +compared O +to O +the O +vertical S-CONPRI +build S-PARA +. O + + +Use O +of O +bidirectional O +scanning B-CONPRI +strategy E-CONPRI +enforced O +epitaxial S-PRO +growth O +of O +grains S-CONPRI +across O +melt B-MATE +pools E-MATE +present O +within O +a O +single O +printed O +layer S-PARA +. O + + +< O +110 O +> O +|| O +BD O +texture S-FEAT +evolved O +as S-MATE +a O +consequence O +of O +maintaining O +the O +balance O +between O +epitaxy S-CONPRI +and O +growth O +of O +[ O +100 O +] O +along O +maximum O +thermal B-PARA +gradient E-PARA +. O + + +High O +dislocation B-PRO +density E-PRO +and O +not O +grain B-PRO +size E-PRO +effect O +of O +the O +ultra-fine O +cellular B-FEAT +structure E-FEAT +, O +imparted O +high O +strength S-PRO +to O +316L O +. O + + +Lower O +average S-CONPRI +Schmid O +factor O +and O +smaller O +effective O +grain B-PRO +size E-PRO +in O +the O +horizontal O +build S-PARA +by O +virtues O +of O +crystallographic O +and O +morphological O +textures O +, O +respectively O +, O +imparted O +higher O +yield B-PRO +strength E-PRO +than O +the O +vertical S-CONPRI +build S-PARA +. O + + +The O +horizontal O +build S-PARA +demonstrated O +higher O +strain B-MANP +hardening E-MANP +rate O +in O +the O +early O +stages O +of O +deformation S-CONPRI +compared O +to O +the O +vertical S-CONPRI +build S-PARA +due O +to O +higher O +crystallographic O +texture S-FEAT +dependent O +twinning S-CONPRI +. O + + +However O +, O +the O +higher O +rate O +of O +dislocation S-CONPRI +annihilation O +led S-APPL +to O +a O +continuous O +decline O +in O +the O +strain B-MANP +hardening E-MANP +rate O +of O +the O +horizontal O +build S-PARA +. O + + +In O +contrast O +, O +a O +stable O +strain B-MANP +hardening E-MANP +rate O +was O +maintained O +in O +the O +vertical S-CONPRI +build S-PARA +, O +which O +led S-APPL +to O +higher O +ductility S-PRO +than O +the O +horizontal O +build S-PARA +. O + + +In O +summary O +, O +the O +roles O +of O +non-equilibrium O +microstructure S-CONPRI +and O +texture S-FEAT +( O +crystallographic O +and O +morphological O +) O +in O +regulating O +mechanical B-CONPRI +properties E-CONPRI +elucidated O +here O +, O +can O +be S-MATE +utilized O +in O +designing O +additively B-MANP +manufactured E-MANP +structural O +components S-MACEQ +of O +316L B-MATE +stainless I-MATE +steel E-MATE +. O + + +Spatter S-CHAR +particles S-CONPRI +ejected O +from O +the O +melt B-MATE +pool E-MATE +after O +melting S-MANP +of O +316 O +L O +stainless B-MATE +steel E-MATE +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +LPBF S-MANP +) O +, O +were O +found O +to O +contain O +morphologies S-CONPRI +not O +observed O +in O +as-atomized O +316 O +L O +powder S-MATE +. O + + +This O +spatter S-CHAR +consisted O +of O +large O +, O +spherical B-CONPRI +particles E-CONPRI +, O +highly O +dendritic O +surfaces S-CONPRI +, O +particles S-CONPRI +with O +caps O +of O +accreted O +liquid O +, O +and O +agglomerations O +of O +multiple O +individual O +particles S-CONPRI +fixed O +together O +by O +liquid O +ligaments O +. O + + +The O +focus O +of O +this O +study O +is O +on O +an O +additional O +, O +unique O +spatter S-CHAR +morphology S-CONPRI +consisting O +of O +larger O +, O +spherical B-CONPRI +particles E-CONPRI +with O +surface S-CONPRI +oxide S-MATE +spots O +exhibiting O +a O +wide O +distribution S-CONPRI +of O +surface S-CONPRI +configurations O +, O +including O +organized O +patterning O +. O + + +Spatter S-CHAR +particles S-CONPRI +with O +organized O +surface S-CONPRI +oxide S-MATE +patterns O +were O +characterized O +for O +surface S-CONPRI +and O +internal O +particle S-CONPRI +features O +using O +multiple O +imaging S-APPL +techniques O +. O + + +The O +following O +observations O +are O +made O +: O +1 O +) O +spots O +resided O +at O +the O +spatter S-CHAR +particle S-CONPRI +surface O +and O +did O +not O +significantly O +penetrate O +the O +interior O +, O +2 O +) O +the O +spot O +( O +s S-MATE +) O +were O +amorphous O +and O +rich O +in O +Silicon S-MATE +( O +Si S-MATE +) O +-Manganese O +( O +Mn S-MATE +) O +-Oxygen O +( O +O S-MATE +) O +, O +3 O +) O +a O +two-part O +Chromium S-MATE +( O +Cr S-MATE +) O +-O O +rich O +layer S-PARA +exists O +between O +the O +particle S-CONPRI +and O +spot O +, O +4 O +) O +Cr-O O +rich O +morphological O +features O +were O +present O +at O +the O +top O +surface S-CONPRI +of O +the O +spots O +, O +5 O +) O +the O +spatter S-CHAR +particle S-CONPRI +composition S-CONPRI +was O +consistent O +with O +316 O +L O +but O +appeared O +to O +decrease O +in O +Si S-MATE +content O +into O +the O +spatter S-CHAR +particle S-CONPRI +away O +from O +a O +spot O +, O +and O +6 O +) O +small O +Si-rich O +spherical B-CONPRI +particles E-CONPRI +existed O +within O +the O +spatter S-CHAR +particle S-CONPRI +interior O +. O + + +In O +this O +study O +, O +the O +fatigue S-PRO +properties O +of O +binder-jet O +3D-printed S-MANP +nickel-base O +superalloy O +625 O +were O +evaluated O +. O + + +Standard S-CONPRI +fatigue S-PRO +specimens O +were O +printed O +and O +sintered S-MANP +, O +then O +half O +of O +the O +samples S-CONPRI +were O +mechanically O +ground O +, O +while O +the O +other O +half O +were O +left O +in O +their O +as-sintered S-MANP +state O +. O + + +They O +were O +then O +characterized O +using O +micro-computed O +x-ray B-CHAR +tomography E-CHAR +, O +metallographic O +sample S-CONPRI +examination O +, O +and O +optical S-CHAR +and O +stylus S-MACEQ +profilometry O +for O +surface B-CONPRI +topography E-CONPRI +. O + + +The O +micro-computed B-CHAR +tomography E-CHAR +observations O +showed O +that O +density S-PRO +of O +the O +as-printed O +sample S-CONPRI +was O +∼50 O +% O +, O +while O +the O +sintered S-MANP +sample S-CONPRI +neared O +full O +densification S-MANP +( O +98.9 O +± O +0.3 O +% O +) O +upon O +sintering S-MANP +at O +1285 O +°C O +for O +4 O +h O +in O +a O +vacuum O +atmosphere O +. O + + +The O +metallographic O +examination O +showed O +equiaxed B-CONPRI +grains E-CONPRI +. O + + +The O +roughness S-PRO +of O +the O +as-sintered S-MANP +samples O +was O +significant O +with O +an O +RMS O +roughness S-PRO +of O +Rq O += O +1.39 O +± O +0.20 O +μm O +as S-MATE +measured O +over O +a O +line-scan O +of O +5 O +mm S-MANP +, O +but O +this O +was O +reduced O +to O +Rq O += O +0.47 O +± O +0.02 O +μm O +after O +mechanical S-APPL +grinding S-MANP +. O + + +All O +samples S-CONPRI +were O +tested O +to O +failure S-CONPRI +in O +fatigue S-PRO +, O +under O +fully-reversed O +tension-compression O +conditions O +. O + + +While O +the O +as-sintered S-MANP +samples O +showed O +poor O +fatigue S-PRO +properties O +compared O +to O +prior O +reports O +on O +cast S-MANP +and O +milled S-MANP +parts O +, O +the O +ground O +samples S-CONPRI +showed O +superior O +performance S-CONPRI +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +observation O +was O +conducted O +on O +the O +fractured O +surfaces S-CONPRI +and O +showed O +that O +the O +samples S-CONPRI +underwent O +transgranular O +crack O +initiation O +, O +followed O +by O +intergranular O +crack B-CONPRI +growth E-CONPRI +and O +final O +failure S-CONPRI +. O + + +In O +the O +mechanically O +ground O +sample S-CONPRI +, O +hardness S-PRO +increased O +nearly O +two-fold O +up O +to O +75 O +μm O +beneath O +the O +sample S-CONPRI +’ O +s S-MATE +surface O +, O +and O +X-ray B-CHAR +diffraction E-CHAR +indicated O +an O +in-plane O +compressive B-PRO +stress E-PRO +, O +grain B-CHAR +refinement E-CHAR +, O +and O +micro-strain O +on O +the O +mechanically O +ground O +sample S-CONPRI +. O + + +The O +reduced O +roughness S-PRO +, O +surface B-MANP +hardening E-MANP +, O +and O +compressive B-PRO +stress E-PRO +resulted O +in O +increased O +fatigue B-PRO +life E-PRO +of O +the O +binder-jetted O +alloy S-MATE +625 O +. O + + +Every O +SLM-fabricated O +component S-MACEQ +typically O +possesses O +a O +process-specific O +microstructure S-CONPRI +that O +fundamentally O +differs O +from O +any O +conventionally O +fabricated S-CONPRI +specimen O +. O + + +This O +publication O +addresses O +the O +evaluation O +of O +microstructure-related O +influencing O +factors O +on O +the O +resistance S-PRO +against O +cavitation S-CONPRI +erosion O +. O + + +We O +exemplarily O +compared O +the O +findings O +to O +a O +cast S-MANP +and O +hot O +rolled O +reference O +sample S-CONPRI +. O + + +Due O +to O +careful O +adjustment O +of O +the O +process B-CONPRI +parameters E-CONPRI +, O +the O +overall O +cavitation S-CONPRI +erosion O +resistance S-PRO +of O +both O +SLM-processed O +and O +conventionally O +fabricated S-CONPRI +316L O +are O +very O +much O +alike O +in O +the O +investigated O +case O +. O + + +The O +incubation O +period O +of O +intact O +surface B-PARA +areas E-PARA +is O +improved O +by O +the O +greater O +hardness S-PRO +and O +yield B-PRO +strength E-PRO +of O +the O +SLM S-MANP +specimen O +, O +which O +is O +attributable O +to O +an O +increased O +dislocation B-PRO +density E-PRO +and O +a O +smaller O +grain B-PRO +size E-PRO +. O + + +Nevertheless O +, O +processing O +and O +powder B-MACEQ +feeding E-MACEQ +during O +SLM-fabrication O +occasionally O +results O +in O +microstructural B-CONPRI +defects E-CONPRI +, O +at O +which O +pronounced O +mass O +loss O +during O +cavitation S-CONPRI +was O +registered O +. O + + +X-ray S-CHAR +measurements O +of O +the O +residual B-PRO +stresses E-PRO +reveal O +the O +development O +of O +severe O +compressive B-PRO +stresses E-PRO +that O +emerge O +after O +a O +few O +seconds O +of O +cavitation S-CONPRI +. O + + +This O +compressive B-PRO +stress E-PRO +state O +delays O +the O +immediate O +propagation O +of O +SLM-inherent O +micro O +cracks O +. O + + +Moreover O +, O +investigations O +of O +the O +microstructure S-CONPRI +in O +combination O +with O +examination O +of O +the O +ongoing O +surface S-CONPRI +deformation S-CONPRI +highlighted O +the O +emergence O +of O +coarse O +grains S-CONPRI +that O +grew O +towards O +the O +temperature B-PARA +gradient E-PARA +. O + + +This O +effect O +leads O +to O +a O +temporarily O +high O +surface B-PRO +roughness E-PRO +, O +local B-CONPRI +stress I-CONPRI +concentrations E-CONPRI +and O +an O +increased O +probability S-CONPRI +of O +cavitation S-CONPRI +impacts O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +wherein O +a O +metal S-MATE +part O +is O +built O +in O +a O +layer-by-layer S-CONPRI +manner O +in O +a O +powder B-MACEQ +bed E-MACEQ +is O +a O +promising O +and O +versatile O +way O +for O +manufacturing S-MANP +components S-MACEQ +with O +complex B-CONPRI +geometry E-CONPRI +. O + + +However O +, O +components S-MACEQ +built O +by O +SLM S-MANP +suffer O +from O +substantial O +deformation S-CONPRI +of O +the O +part O +and O +residual B-PRO +stresses E-PRO +. O + + +Residual B-PRO +stresses E-PRO +arise O +due O +to O +temperature B-PARA +gradients E-PARA +inherent O +to O +the O +process S-CONPRI +and O +the O +accompanying O +deformation S-CONPRI +. O + + +It O +is O +well O +known O +that O +the O +SLM S-MANP +process B-CONPRI +parameters E-CONPRI +and O +the O +laser S-ENAT +scanning O +strategy O +have O +a O +substantial O +effect O +on O +the O +temperature S-PARA +transients O +of O +the O +part O +and O +henceforth O +on O +the O +degree O +of O +deformations S-CONPRI +and O +residual B-PRO +stresses E-PRO +. O + + +In O +order O +to O +provide O +a O +tool S-MACEQ +to O +investigate O +this O +relation O +, O +a O +semi-analytical O +thermal O +model S-CONPRI +of O +the O +SLM S-MANP +process S-CONPRI +is O +presented O +which O +determines O +the O +temperature S-PARA +evolution S-CONPRI +in O +a O +3D B-APPL +part E-APPL +by O +way O +of O +representing O +the O +moving O +laser S-ENAT +spot O +with O +a O +finite O +number O +of O +point O +heat B-CONPRI +sources E-CONPRI +. O + + +The O +solution S-CONPRI +of O +the O +thermal O +problem O +is O +constructed O +from O +the O +superposition O +of O +analytical B-CONPRI +solutions E-CONPRI +for O +point O +sources O +which O +are O +known O +in O +semi-infinite O +space O +and O +complimentary O +numerical/analytical O +fields O +to O +impose O +the O +boundary B-CONPRI +conditions E-CONPRI +. O + + +The O +unique O +property S-CONPRI +of O +the O +formulation O +is O +that O +numerical O +discretisation O +of O +the O +problem O +domain S-CONPRI +is O +decoupled O +from O +the O +steep O +gradients O +in O +the O +temperature S-PARA +field O +associated O +with O +localised O +laser B-PARA +heat E-PARA +input O +. O + + +This O +enables O +accurate S-CHAR +and O +numerically O +tractable O +simulation S-ENAT +of O +the O +process S-CONPRI +. O + + +The O +predictions S-CONPRI +of O +this O +semi-analytical O +model S-CONPRI +are O +validated O +by O +experiments O +and O +the O +exact O +solution S-CONPRI +known O +for O +a O +simple S-MANP +thermal O +problem O +. O + + +Simulations S-ENAT +for O +building O +a O +complete O +layer S-PARA +using O +two O +different O +scanning B-PARA +patterns E-PARA +and O +subsequently O +building O +of O +multiple O +layers O +with O +constant O +and O +rotating O +scanning B-PARA +patterns E-PARA +in O +successive O +layers O +are O +performed O +. O + + +The O +computational B-CONPRI +efficiency E-CONPRI +of O +the O +semi-analytical O +tool S-MACEQ +is O +assessed O +which O +demonstrates O +its O +potential O +to O +gain S-PARA +physical O +insight O +in O +the O +full O +SLM S-MANP +process S-CONPRI +with O +acceptable O +computational O +costs O +. O + + +This O +work O +investigated O +the O +processing O +of O +high O +nitrogen-alloyed O +austenitic B-MATE +stainless I-MATE +steels E-MATE +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +. O + + +Prior O +to O +L-PBF S-MANP +processing O +, O +the O +AISI O +316 O +L O +steel B-MATE +powder E-MATE +was O +nitrided S-MANP +at O +a O +temperature S-PARA +of O +675°C O +in O +a O +3 O +bar O +nitrogen S-MATE +atmosphere O +, O +thus O +achieving O +a O +N S-MATE +content O +of O +0.58 O +mass- O +% O +. O + + +By O +mixing S-CONPRI +nitrided O +316 O +L O +powder S-MATE +with O +untreated O +316 O +L O +powder S-MATE +, O +two O +different O +powder S-MATE +mixtures O +were O +obtained O +with O +0.065 O +mass- O +% O +and O +0.27 O +mass- O +% O +nitrogen S-MATE +, O +respectively O +. O + + +After O +nitriding S-MANP +and O +mixing S-CONPRI +, O +the O +powder S-MATE +was O +characterized O +in O +terms O +of O +its O +flow O +properties S-CONPRI +and O +chemical B-CONPRI +composition E-CONPRI +. O + + +The O +nitrided S-MANP +steel O +powder S-MATE +was O +then O +processed S-CONPRI +by O +L-PBF S-MANP +, O +and O +the O +microstructure S-CONPRI +as S-MATE +well O +as S-MATE +the O +chemical B-CONPRI +composition E-CONPRI +were O +investigated O +by O +means O +of O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +and O +carrier O +gas S-CONPRI +hot O +extraction O +. O + + +It O +was O +shown O +that O +nitriding S-MANP +of O +steel B-MATE +powders E-MATE +in O +an O +N2 S-MATE +atmosphere O +can O +be S-MATE +used O +to O +significantly O +increase O +the O +nitrogen S-MATE +content O +of O +the O +powder S-MATE +without O +impairing O +its O +flow O +properties S-CONPRI +. O + + +With O +increasing O +nitrogen S-MATE +content O +of O +the O +powder S-MATE +, O +the O +porosity S-PRO +within O +the O +L-PBF S-MANP +built O +specimens O +increased O +. O + + +However O +, O +both O +the O +yield B-PRO +strength E-PRO +and O +the O +tensile B-PRO +strength E-PRO +were O +greatly O +improved O +without O +a O +marked O +reduction S-CONPRI +in O +the O +elongation S-PRO +at O +fracture S-CONPRI +of O +the O +respective O +steels S-MATE +. O + + +This O +work O +shows O +that O +nitrogen-alloyed O +austenitic B-MATE +stainless I-MATE +steels E-MATE +can O +be S-MATE +processed O +by O +L-PBF S-MANP +and O +the O +mechanical B-CONPRI +properties E-CONPRI +can O +be S-MATE +improved O +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +has O +broad O +application O +prospects O +due O +to O +its O +high O +fabrication S-MANP +accuracy S-CHAR +and O +excellent O +performance S-CONPRI +, O +but O +the O +dynamic S-CONPRI +mechanical O +properties S-CONPRI +of O +LPBF S-MANP +components S-MACEQ +are O +relatively O +low O +due O +to O +defects S-CONPRI +of O +the O +melt S-CONPRI +track O +such O +as S-MATE +protrusions O +and O +depressions O +, O +whose O +generation O +mechanisms O +remain O +unclear O +. O + + +In O +this O +work O +, O +we O +investigate O +the O +correlation O +between O +the O +ex O +situ O +melt S-CONPRI +track O +properties S-CONPRI +and O +the O +in B-CONPRI +situ E-CONPRI +high-speed O +, O +high-resolution S-PARA +characterization O +. O + + +We O +correlate O +the O +protrusion O +at O +the O +starting O +position O +of O +the O +melt S-CONPRI +track O +with O +the O +droplet S-CONPRI +ejection O +behaviour O +and O +backward O +surging O +melt S-CONPRI +. O + + +We O +also O +reveal O +that O +the O +inclination B-FEAT +angles E-FEAT +of O +the O +depression O +walls O +are O +consistent O +with O +the O +ejection S-CONPRI +angles O +of O +the O +backward-ejected O +spatter S-CHAR +. O + + +Furthermore O +, O +we O +quantify O +the O +vapour O +recoil O +pressure S-CONPRI +by O +in B-CONPRI +situ E-CONPRI +characterization O +of O +the O +deflection O +of O +the O +typical O +forward-ejected O +spatter S-CHAR +. O + + +Our O +results O +clarify O +the O +intrinsic O +correlation O +of O +the O +melt S-CONPRI +track O +properties S-CONPRI +, O +which O +is O +important O +for O +the O +stable O +LPBF S-MANP +formation O +with O +few O +defects S-CONPRI +. O + + +Fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +3D B-MACEQ +printers E-MACEQ +have O +been O +largely O +limited O +to O +thermoplastics S-MATE +in O +the O +past O +but O +with O +new O +composite B-MATE +materials E-MATE +available O +on O +the O +market O +there O +are O +new O +possibilities O +for O +what O +these O +machines S-MACEQ +can O +produce O +. O + + +Using O +a O +conductive O +composite S-MATE +filament O +, O +electronic O +components S-MACEQ +can O +be S-MATE +manufactured O +but O +due O +to O +the O +filament S-MATE +’ O +s S-MATE +relatively O +poor O +electrical B-CONPRI +properties E-CONPRI +, O +the O +resulting O +traces O +are O +typically O +highly O +resistive O +. O + + +Selective O +electroplating S-MANP +on O +these O +parts O +is O +one O +approach O +to O +incorporate O +materials S-CONPRI +with O +high O +conductivity S-PRO +onto O +3D-printed S-MANP +structures O +. O + + +In O +this O +paper O +, O +non-conductive O +and O +conductive O +filaments S-MATE +printed O +in O +the O +same O +part O +are O +used O +to O +enable O +selective O +electroplating S-MANP +directly O +on O +regions O +defined O +by O +the O +conductive O +filament S-MATE +to O +create O +metallic B-MACEQ +parts E-MACEQ +through O +3D B-MANP +printing E-MANP +. O + + +This O +technique O +is O +demonstrated O +for O +the O +creation O +of O +multiple O +distinct O +conductive O +segments O +and O +to O +electroplate O +the O +same O +part O +with O +multiple O +metals S-MATE +to O +, O +for O +instance O +, O +allow O +a O +magnetic O +metal S-MATE +such O +as S-MATE +nickel O +and O +a O +highly O +conductive O +one O +such O +as S-MATE +copper O +to O +be S-MATE +incorporated O +in O +the O +same O +part O +. O + + +Following O +the O +characterization O +of O +the O +process S-CONPRI +, O +a O +representative O +3D B-MANP +printed E-MANP +electrical O +device O +, O +a O +selectively O +electroplated O +solenoid O +inductor S-APPL +with O +low O +frequency O +inductance O +and O +resistance S-PRO +of O +191 O +nH O +and O +18.7 O +mΩ O +respectively O +was O +manufactured S-CONPRI +using O +this O +technique O +. O + + +This O +is O +a O +five O +order O +of O +magnitude S-PARA +reduction O +in O +resistance S-PRO +over O +the O +original O +value O +of O +3 O +kΩ O +for O +the O +inductor S-APPL +before O +electroplating S-MANP +. O + + +Previous O +research S-CONPRI +on O +periodic O +lattice B-FEAT +structures E-FEAT +shows O +these O +structures O +are O +highly O +mechanically O +efficient O +with O +exceptionally O +high O +stiffness- O +and O +strength-to-weight O +ratios O +. O + + +Additive B-MANP +manufacturing E-MANP +technologies O +allow O +the O +construction S-APPL +slender O +member O +structures O +with O +complicated O +macroscale S-CONPRI +shapes O +. O + + +Structures O +with O +large O +numbers O +of O +geometric O +objects O +cause O +the O +conventional O +methods O +for O +manipulating O +, O +storing O +, O +and O +slicing S-CONPRI +the O +geometry S-CONPRI +of O +these O +parts O +via O +STL S-MANS +files S-MANS +to O +be S-MATE +highly O +inefficient O +. O + + +This O +work O +describes O +an O +alternate O +design B-CONPRI +process E-CONPRI +for O +slender O +member O +structures O +using O +efficient O +methods O +for O +manipulating O +, O +storing O +, O +and O +slicing S-CONPRI +the O +geometry S-CONPRI +of O +the O +part O +. O + + +These O +new O +methods O +, O +in O +particular O +a O +fast O +, O +efficient O +direct B-CONPRI +slicing E-CONPRI +method O +, O +enable O +printing O +slender O +member O +structures O +with O +over O +one O +hundred O +thousand O +struts S-MACEQ +. O + + +In O +this O +study O +, O +martensitic O +cold-work O +tool S-MACEQ +steel S-MATE +X65MoCrWV3-2 O +was O +processed S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +by O +varying O +the O +laser S-ENAT +scanning O +parameters S-CONPRI +and O +baseplate O +preheating S-MANP +temperatures O +. O + + +Porosity S-PRO +as S-MATE +well O +as S-MATE +crack O +density S-PRO +of O +the O +SLM-densified O +steel S-MATE +were O +determined O +by O +quantitative S-CONPRI +image B-CONPRI +analysis E-CONPRI +. O + + +The O +resulting O +microstructure S-CONPRI +and O +the O +associated O +local O +mechanical B-CONPRI +properties E-CONPRI +were O +characterized O +, O +and O +the O +hardness-tempering O +behavior O +of O +the O +SLM-densified O +steel S-MATE +was O +compared O +to O +the O +behavior O +of O +the O +conventionally O +manufactured S-CONPRI +X65MoCrWV3-2 O +steel S-MATE +in O +the O +cast S-MANP +and O +hot-formed O +condition O +. O + + +Regardless O +of O +the O +preheating S-MANP +temperature O +, O +SLM-densified O +X65MoCrWV3-2 O +possesses O +a O +porosity S-PRO +of O +less O +than O +0.5 O +vol.- O +% O +. O + + +The O +crack O +density S-PRO +was O +reduced O +significantly O +by O +means O +of O +a O +higher O +preheating S-MANP +temperature O +. O + + +The O +microstructure S-CONPRI +after O +SLM S-MANP +densification S-MANP +shows O +a O +fine O +, O +equiaxed O +cellular-dendritic O +subgrain O +structure S-CONPRI +, O +superimposed O +by O +lath- O +or O +needle-like O +martensite S-MATE +. O + + +The O +martensite S-MATE +morphology O +appeared O +to O +be S-MATE +finer O +at O +a O +lower O +preheating S-MANP +temperature O +, O +whereas O +the O +observed O +subgrain O +structure S-CONPRI +did O +not O +seem O +to O +be S-MATE +influenced O +by O +the O +preheating S-MANP +temperatures O +. O + + +Microhardness S-CONPRI +measurements O +indicated O +tempering S-MANP +effects O +in O +first O +solidified O +layers O +caused O +by O +the O +densification S-MANP +of O +subsequently O +deposited B-CHAR +layers E-CHAR +. O + + +Peak O +hardness S-PRO +after O +tempering S-MANP +of O +the O +SLM-densified O +steel S-MATE +was O +found O +to O +be S-MATE +higher O +compared O +to O +the O +maximum O +hardness S-PRO +in O +the O +X65MoCrWV3-2 O +steel S-MATE +in O +the O +cast S-MANP +condition O +. O + + +In O +order O +to O +ensure O +a O +reliable O +and O +repeatable O +additive B-MANP +manufacturing I-MANP +process E-MANP +, O +the O +material S-MATE +delivery O +rate O +in O +the O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +process S-CONPRI +requires O +in B-CONPRI +situ E-CONPRI +monitoring O +and O +control O +. O + + +This O +paper O +demonstrates O +acoustic B-CONPRI +emission E-CONPRI +( O +AE O +) O +sensing S-APPL +as S-MATE +a O +method O +of O +monitoring O +the O +flow O +of O +powder B-MACEQ +feedstock E-MACEQ +in O +a O +powder S-MATE +fed O +DED S-MANP +process O +. O + + +With O +minimal O +calibration S-CONPRI +, O +this O +signal O +closely O +correlates O +to O +the O +actual O +mass O +flow B-PARA +rate E-PARA +. O + + +This O +article O +describes O +the O +fabricated S-CONPRI +mass O +flow O +monitoring O +system O +, O +documents O +various O +conditions O +in O +which O +the O +actual O +flow B-PARA +rate E-PARA +deviates O +from O +its O +set S-APPL +value O +, O +and O +details O +situations O +that O +highlight O +the O +system O +’ O +s S-MATE +utility O +. O + + +The O +work O +presented O +here O +highlights O +the O +results O +obtained O +and O +illustrates O +that O +accurate S-CHAR +monitoring O +of O +powder S-MATE +flow O +in O +real-time O +regardless O +of O +environmental O +conditions O +within O +the O +build B-PARA +chamber E-PARA +is O +possible O +. O + + +Selective B-MANP +electron I-MANP +beam I-MANP +melting E-MANP +( O +SEBM S-MANP +) O +is O +a O +type O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +that O +involves O +multiple O +physical B-CONPRI +processes E-CONPRI +. O + + +Because O +of O +its O +unique O +process S-CONPRI +conditions O +compared O +to O +other O +AM B-MANP +processes E-MANP +, O +a O +detailed O +investigation O +into O +the O +molten B-CONPRI +pool E-CONPRI +behavior O +and O +dominant O +physics S-CONPRI +of O +SEBM S-MANP +is O +required O +. O + + +Fluid S-MATE +convection O +involves O +mass O +and O +heat B-CONPRI +transfer E-CONPRI +; O +therefore O +, O +fluid B-PRO +flow E-PRO +can O +have O +a O +profound O +effect O +on O +solidification S-CONPRI +conditions O +. O + + +In O +this O +study O +, O +computational O +thermal-fluid O +dynamics O +simulations S-ENAT +with O +multi-physical O +modeling S-ENAT +and O +proof-of-concept O +experiments O +were O +used O +to O +analyze O +the O +molten B-CONPRI +pool E-CONPRI +behavior O +and O +resultant O +thermal O +conditions O +related O +to O +solidification S-CONPRI +. O + + +The O +Marangoni O +effect O +of O +molten B-MATE +metal E-MATE +primarily O +determines O +fluid S-MATE +behavior O +and O +is O +a O +critical B-PRO +factor E-PRO +affecting O +the O +molten B-CONPRI +pool E-CONPRI +instability O +in O +SEBM S-MANP +of O +the O +Co–Cr–Mo O +alloy S-MATE +. O + + +The O +solidification B-CONPRI +parameters E-CONPRI +calculated O +from O +simulated O +data S-CONPRI +, O +especially O +the O +solidification B-PARA +rate E-PARA +, O +are O +sensitive O +to O +the O +local O +fluid B-PRO +flow E-PRO +at O +the O +solidification S-CONPRI +front O +. O + + +Combined O +with O +experimental S-CONPRI +analysis O +, O +the O +results O +presented O +herein O +indicate O +that O +active O +fluid S-MATE +convection O +at O +the O +solidification S-CONPRI +front O +increase O +the O +probability S-CONPRI +of O +new O +grain S-CONPRI +formation O +, O +which O +suppresses O +the O +epitaxial S-PRO +growth O +of O +columnar B-PRO +grains E-PRO +. O + + +The O +capability O +of O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +to O +manufacture S-CONPRI +multi-materials O +allows O +the O +fabrication S-MANP +of O +complex O +and O +multifunctional O +objects O +with O +heterogeneous S-CONPRI +material O +compositions O +and O +varying O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +material B-MANP +jetting I-MANP +AM I-MANP +process E-MANP +specifically O +has O +the O +capability O +to O +manufacture S-CONPRI +multi-material O +structures O +with O +both O +rigid O +and O +flexible O +material B-CONPRI +properties E-CONPRI +. O + + +Existing O +research S-CONPRI +has O +investigated O +the O +fatigue S-PRO +properties O +of O +3D B-MANP +printed E-MANP +multi-material O +specimens O +and O +shows O +that O +there O +is O +a O +weakness O +at O +multi-material B-CONPRI +interfaces E-CONPRI +. O + + +This O +paper O +seeks O +to O +, O +instead O +, O +investigate O +the O +effects O +of O +gradual O +material S-MATE +transitions O +on O +the O +fatigue B-PRO +life E-PRO +of O +3D B-MANP +printed E-MANP +multi-material O +specimens O +. O + + +In O +order O +to O +examine O +the O +fatigue B-PRO +life E-PRO +at O +the O +multi-material B-CONPRI +interface E-CONPRI +, O +stepwise O +gradients O +are O +compared O +against O +continuous O +gradients O +created O +through O +voxel-based O +design S-FEAT +. O + + +Results O +demonstrate O +the O +effects O +of O +different O +material B-CONPRI +gradient E-CONPRI +patterns O +and O +different O +material S-MATE +transition O +lengths O +on O +the O +fatigue B-PRO +life E-PRO +of O +multi-material S-CONPRI +specimens O +. O + + +In O +addition O +, O +the O +behavior O +of O +individual O +material B-MATE +composites E-MATE +is O +studied O +to O +confirm O +how O +gradient O +designs S-FEAT +based O +on O +different O +material S-MATE +compositions O +affect O +their O +material B-CONPRI +properties E-CONPRI +. O + + +The O +wire-based O +direct B-MANP +energy I-MANP +deposition E-MANP +of O +metallic S-MATE +lightweight S-CONPRI +materials O +such O +as S-MATE +titanium O +or O +aluminium B-MATE +alloys E-MATE +has O +recently O +received O +increasing O +attention O +in O +industry S-APPL +and O +academia O +. O + + +However O +, O +high-throughput O +deposition S-CONPRI +is O +mostly O +associated O +with O +process-limiting O +phenomena O +such O +as S-MATE +the O +development O +of O +high O +temperatures S-PARA +resulting O +in O +poor O +surface B-PARA +quality E-PARA +as S-MATE +well O +as S-MATE +coarse O +and O +unidirectional B-CONPRI +solidification E-CONPRI +microstructures S-MATE +. O + + +In O +this O +regard O +, O +laser S-ENAT +systems O +, O +which O +are O +already O +widely O +used O +in O +industrial S-APPL +processes O +, O +allow O +for O +a O +great O +variety O +in O +the O +controllability O +of O +energy O +inputs O +, O +thereby O +enabling O +the O +control O +of O +process S-CONPRI +temperatures O +and O +resulting O +microstructures S-MATE +. O + + +The O +subject O +of O +the O +current O +study O +is O +the O +detailed O +elucidation O +and O +evaluation O +of O +important O +features O +such O +as S-MATE +the O +development O +of O +temperature B-PARA +gradients E-PARA +, O +resulting O +cooling B-PARA +rates E-PARA +and O +thermal B-PARA +cycles E-PARA +for O +different O +laser B-CONPRI +beam E-CONPRI +irradiances O +. O + + +Significant O +heat B-PRO +accumulation E-PRO +and O +process S-CONPRI +instabilities O +as S-MATE +well O +as S-MATE +inhomogeneous O +thermal B-CONPRI +profiles E-CONPRI +along O +the O +length O +and O +height O +of O +the O +parts O +were O +observed O +at O +a O +high O +laser B-CONPRI +beam E-CONPRI +irradiance O +. O + + +In O +contrast O +, O +lower O +laser B-CONPRI +beam E-CONPRI +irradiance O +resulted O +in O +a O +more O +stable O +process S-CONPRI +with O +increased O +cooling B-PARA +rates E-PARA +, O +which O +favourably O +influenced O +the O +refinement O +of O +the O +solidification B-CONPRI +microstructure E-CONPRI +. O + + +Selective B-MANP +Laser I-MANP +Sintering E-MANP +( O +SLS S-MANP +) O +is O +a O +rapidly O +growing O +additive B-MANP +manufacturing I-MANP +process E-MANP +, O +because O +it O +has O +the O +capacity S-CONPRI +to O +build S-PARA +parts O +from O +a O +variety O +of O +materials S-CONPRI +. O + + +However O +, O +the O +dimensional B-CHAR +accuracy E-CHAR +of O +the O +fabricated S-CONPRI +parts O +in O +this O +process S-CONPRI +is O +dependent O +on O +the O +ability O +to O +control O +phenomena O +such O +as S-MATE +warpage O +and O +shrinkage S-CONPRI +. O + + +This O +research S-CONPRI +presents O +an O +optimization B-CONPRI +algorithm E-CONPRI +to O +find O +the O +best O +processing O +parameters S-CONPRI +for O +minimizing O +warpage S-CONPRI +. O + + +The O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +was O +used O +to O +simulate O +the O +sintering S-MANP +of O +a O +layer S-PARA +of O +polymer S-MATE +powder O +, O +and O +the O +warpage S-CONPRI +of O +the O +layer S-PARA +was O +calculated O +. O + + +The O +numerical O +model S-CONPRI +was O +verified O +through O +comparison O +with O +experimental S-CONPRI +results O +. O + + +A O +back-propagation O +neural B-CONPRI +network E-CONPRI +was O +used O +to O +formulate O +the O +mapping O +between O +the O +design S-FEAT +variables O +and O +the O +objective O +function O +. O + + +Results O +of O +40 O +simulation S-ENAT +cases O +with O +various O +input O +parameters S-CONPRI +such O +as S-MATE +scanning O +pattern S-CONPRI +and O +speed O +, O +laser B-PARA +power E-PARA +, O +surrounding O +temperature S-PARA +, O +and O +layer B-PARA +thickness E-PARA +were O +used O +to O +train O +and O +test O +the O +neutral O +network O +. O + + +Finally O +, O +The O +Genetic B-CONPRI +Algorithm E-CONPRI +was O +employed O +to O +optimize O +the O +objective O +function O +, O +and O +the O +influence O +of O +parameters S-CONPRI +on O +warpage S-CONPRI +was O +investigated O +. O + + +Insight O +into O +the O +performance S-CONPRI +of O +fibre-reinforced O +functionally B-FEAT +graded I-FEAT +lattices E-FEAT +( O +FGLs O +) O +from O +an O +experimental S-CONPRI +perspective O +. O + + +Effect O +of O +grading O +severity O +and O +build B-PARA +direction E-PARA +on O +the O +stiffness S-PRO +, O +energy B-CHAR +absorption E-CHAR +and O +structural O +response O +of O +FGLs O +. O + + +Categorization O +of O +FGLs O +with O +regards O +to O +ideally O +bending/stretching-dominated O +lattices S-CONPRI +, O +as S-MATE +proposed O +by O +Gibson-Ashby B-CONPRI +model E-CONPRI +. O + + +Semi-empirical O +analysis O +of O +the O +energy B-CHAR +absorption E-CHAR +and O +stiffness S-PRO +estimation O +for O +higher O +fibre S-MATE +volume O +fraction S-CONPRI +( O +Halpin-Tsai O +) O +. O + + +the O +scope O +for O +fine-tuning O +the O +properties S-CONPRI +of O +lattices S-CONPRI +to O +harness O +the O +potential O +for O +multi-functional O +AM-parts O +. O + + +Architectured O +structures O +, O +particularly O +functionally B-FEAT +graded I-FEAT +lattices E-FEAT +, O +are O +receiving O +much O +attention O +in O +both O +industry S-APPL +and O +academia O +as S-MATE +they O +facilitate O +the O +customization O +of O +the O +structural O +response O +and O +harness O +the O +potential O +for O +multi-functional O +applications O +. O + + +This O +work O +experimentally O +investigates S-CONPRI +how O +the O +severity O +of O +density S-PRO +and O +unit B-CONPRI +cell E-CONPRI +size O +grading O +as S-MATE +well O +as S-MATE +the O +building B-PARA +direction E-PARA +affects O +the O +stiffness S-PRO +, O +energy B-CHAR +absorption E-CHAR +and O +structural O +response O +of O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +short O +fibre-reinforced O +lattices S-CONPRI +with O +same O +relative B-PRO +density E-PRO +. O + + +Specimens O +composed O +of O +tessellated O +body-centred O +cubic O +( O +BCC S-CONPRI +) O +, O +Schwarz-P O +( O +SP O +) O +and O +Gyroid O +( O +GY O +) O +unit B-CONPRI +cells E-CONPRI +were O +tested O +under O +compression S-PRO +. O + + +Compared O +to O +the O +uniform O +lattices S-CONPRI +of O +equal O +density S-PRO +, O +it O +was O +found O +, O +that O +modest O +density S-PRO +grading O +has O +a O +positive O +and O +no O +effect O +on O +the O +total O +compressive O +stiffness S-PRO +of O +SP O +and O +BCC S-CONPRI +lattices O +, O +respectively O +. O + + +Unit B-CONPRI +cell E-CONPRI +size O +grading O +had O +no O +significant O +influence O +on O +the O +stiffness S-PRO +and O +revealed O +an O +elastomer-like O +performance S-CONPRI +as S-MATE +opposed O +to O +the O +density S-PRO +graded O +lattices S-CONPRI +of O +the O +same O +relative B-PRO +density E-PRO +, O +suggesting O +a O +foam-like O +behaviour O +. O + + +Density S-PRO +grading O +of O +bending-dominated O +unit B-CONPRI +cell E-CONPRI +lattices S-CONPRI +showcased O +better O +energy B-CHAR +absorption E-CHAR +capability O +for O +small O +displacements O +, O +whereas O +grading O +of O +the O +stretching-dominated O +counterparts O +is O +advantageous O +for O +large O +displacements O +when O +compared O +to O +the O +ungraded B-FEAT +lattice E-FEAT +. O + + +The O +severity O +of O +unit B-CONPRI +cell E-CONPRI +size O +graded O +lattices S-CONPRI +does O +not O +affect O +the O +energy B-CHAR +absorption E-CHAR +capability O +. O + + +Finally O +, O +a O +power-law O +approach O +was O +used O +to O +semi-empirically O +derive O +a O +formula O +that O +predicts O +the O +cumulative O +energy B-CHAR +absorption E-CHAR +as S-MATE +a O +function O +of O +the O +density B-PRO +gradient E-PRO +and O +relative B-PRO +density E-PRO +. O + + +The O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +lattice B-FEAT +structures E-FEAT +of O +various O +relative B-PRO +densities E-PRO +manufactured S-CONPRI +by O +Electron B-MANP +Beam I-MANP +Melting E-MANP +were O +analyzed O +. O + + +Special O +interest O +was O +given O +to O +the O +effect O +of O +surface B-PRO +roughness E-PRO +on O +their O +elastic S-PRO +behavior O +. O + + +Compression S-PRO +testing O +revealed O +that O +the O +important O +decrease O +in O +roughness S-PRO +caused O +by O +chemical O +etching S-MANP +results O +in O +an O +increase O +in O +relative O +stiffness S-PRO +, O +in O +comparison O +with O +an O +as-built O +structure S-CONPRI +of O +the O +same O +relative B-PRO +density E-PRO +. O + + +This O +study O +investigates S-CONPRI +the O +material S-MATE +and O +mechanical B-CONPRI +properties E-CONPRI +of O +both O +polyamide B-MATE +12 E-MATE +( O +PA12 S-MATE +) O +and O +reinforced S-CONPRI +glass B-MATE +bead E-MATE +PA12 O +composites S-MATE +, O +fabricated S-CONPRI +using O +a O +production S-MANP +scale O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +. O + + +The O +printing O +studies O +were O +carried O +out O +using O +the O +production S-MANP +scale O +, O +Multi B-MANP +Jet I-MANP +Fusion E-MANP +powder O +bed B-MANP +fusion E-MANP +process O +. O + + +The O +study O +demonstrated O +that O +the O +chemical O +functionality O +and O +the O +thermal B-CONPRI +properties E-CONPRI +of O +the O +printed O +PA S-CHAR +12 O +parts O +and O +the O +glass B-MATE +bead E-MATE +composite S-MATE +, O +were O +similar O +. O + + +Based O +on O +DSC S-CHAR +measurements O +, O +the O +melting B-PARA +temperature E-PARA +was O +184 O +°C O +and O +186 O +°C O +and O +the O +associated O +cooling S-MANP +cycle O +temperature S-PARA +was O +150 O +°C O +and O +146 O +°C O +for O +the O +composite S-MATE +and O +the O +PA12 S-MATE +respectively O +. O + + +The O +percentage O +crystallinity O +of O +the O +glass B-MATE +bead E-MATE +composite S-MATE +was O +24 O +% O +, O +compared O +with O +the O +31 O +% O +obtained O +for O +the O +PA12 S-MATE +only O +parts O +. O + + +Based O +on O +mechanical B-CHAR +tests E-CHAR +, O +the O +addition O +of O +glass B-MATE +beads E-MATE +increased O +the O +tensile S-PRO +and O +flexural O +modulus O +by O +85 O +% O +and O +36 O +% O +and O +lowered O +the O +tensile S-PRO +and O +flexural B-PRO +strength E-PRO +by O +39 O +% O +and O +15 O +% O +respectively O +. O + + +The O +effect O +of O +print S-MANP +orientation S-CONPRI +during O +the O +MJF S-MANP +process O +was O +evaluated O +based O +on O +porosity S-PRO +and O +mechanical S-APPL +performance O +. O + + +Using O +X-ray B-CHAR +micro I-CHAR +computed I-CHAR +tomography E-CHAR +, O +it O +was O +demonstrated O +that O +the O +porosity S-PRO +of O +the O +PA12 S-MATE +and O +composite S-MATE +parts O +were O +less O +than O +1 O +% O +. O + + +Polymer S-MATE +and O +composite S-MATE +parts O +printed O +in O +the O +ZYX O +orientation S-CONPRI +were O +found O +to O +exhibit O +both O +the O +lowest O +porosity S-PRO +and O +highest O +mechanical B-PRO +strengths E-PRO +. O + + +The O +spatiotemporal O +variations S-CONPRI +of O +the O +molten B-CONPRI +pool E-CONPRI +and O +deposit O +profiles S-FEAT +during O +laser B-MANP +Directed I-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +largely O +affect O +the O +formation O +of O +printing O +defects S-CONPRI +and O +the O +build S-PARA +quality O +. O + + +Quantitative B-CHAR +assessment E-CHAR +of O +the O +dependencies O +of O +molten B-CONPRI +pool E-CONPRI +characteristics O +on O +critical O +process S-CONPRI +variables O +is O +helpful O +to O +reveal O +the O +evolution S-CONPRI +of O +the O +depositing O +tracks O +. O + + +To O +this O +end O +, O +a O +novel O +3D S-CONPRI +transient O +phenomenological B-CONPRI +model E-CONPRI +was O +developed O +in O +this O +work O +to O +explore O +the O +evolution S-CONPRI +of O +the O +temperature S-PARA +and O +velocity O +fields O +and O +the O +molten B-CONPRI +pool E-CONPRI +dimensions S-FEAT +for O +both O +single-track O +and O +multi-track O +laser S-ENAT +DED S-MANP +deposits O +. O + + +The O +computed O +deposit O +profiles S-FEAT +showed O +that O +the O +contact S-APPL +angles O +of O +the O +single-tracks O +increased O +significantly O +with O +higher O +MUL O +intensity O +. O + + +The O +simulation S-ENAT +results O +showed O +that O +convex O +deposit O +profiles S-FEAT +obtained O +at O +high O +MUL O +intensity O +further O +caused O +inter-track O +voids S-CONPRI +during O +multi-track O +deposition S-CONPRI +. O + + +To O +compare O +the O +effect O +of O +selective B-MANP +laser I-MANP +melting E-MANP +variables O +on O +different O +mechanical B-CONPRI +properties E-CONPRI +and O +compare O +the O +results O +. O + + +Statistical O +analysis O +was O +used O +for O +characterising O +the O +interaction O +and O +effect O +of O +parameters S-CONPRI +on O +the O +hardness S-PRO +and O +density S-PRO +. O + + +Describing O +the O +governing O +phenomena O +on O +melting S-MANP +pool O +rheology S-PRO +and O +its O +effect O +on O +density S-PRO +and O +hardness S-PRO +. O + + +In O +this O +paper O +, O +we O +printed O +Ti-6Al-4V S-MATE +SLM S-MANP +parts O +based O +on O +Taguchi O +design B-CONPRI +of I-CONPRI +experiment E-CONPRI +and O +related O +standards S-CONPRI +to O +measure O +and O +compare O +hardness S-PRO +with O +different O +mechanical B-CONPRI +properties E-CONPRI +that O +were O +obtained O +in O +our O +previous O +research S-CONPRI +such O +as S-MATE +density O +, O +strength S-PRO +, O +elongation S-PRO +, O +and O +average S-CONPRI +surface O +. O + + +Then O +the O +effect O +of O +process B-CONPRI +parameters E-CONPRI +comprising O +laser B-PARA +power E-PARA +, O +scan B-PARA +speed E-PARA +, O +hatch O +space O +, O +laser S-ENAT +pattern O +angle O +coupling O +, O +along O +with O +heat B-MANP +treatment E-MANP +as S-MATE +a O +post-process S-CONPRI +, O +in O +relation O +to O +hardness S-PRO +was O +analysed O +. O + + +Another O +contribution O +is O +related O +to O +the O +analysis O +of O +process B-CONPRI +parameters E-CONPRI +in O +relation O +to O +hardness S-PRO +and O +explaining O +them O +by O +rheological S-PRO +phenomena O +. O + + +The O +results O +showed O +an O +interesting O +similarity O +between O +hardness S-PRO +and O +density S-PRO +which O +is O +highly O +related O +to O +the O +formation O +of O +the O +melting S-MANP +pool O +and O +porosities S-PRO +within O +the O +process S-CONPRI +. O + + +The O +layerwise O +production S-MANP +paradigm O +entailed O +in O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +offers O +the O +opportunity O +to O +acquire O +a O +wide O +range S-PARA +of O +information O +about O +the O +process S-CONPRI +stability O +and O +the O +part O +quality S-CONPRI +while O +the O +part O +is O +being O +manufactured S-CONPRI +. O + + +Different O +authors O +pointed O +out O +that O +high-resolution S-PARA +imaging O +of O +each O +printed O +layer S-PARA +combined O +with O +image S-CONPRI +segmentation O +methods O +can O +be S-MATE +used O +to O +detect O +powder S-MATE +recoating O +errors S-CONPRI +together O +with O +surface S-CONPRI +and O +geometrical O +defects S-CONPRI +. O + + +The O +paper O +presents O +the O +first O +study O +aimed O +at O +characterizing O +the O +accuracy S-CHAR +of O +in-situ B-CONPRI +contour E-CONPRI +identification O +in O +LPBF S-MANP +layerwise O +images S-CONPRI +by O +means O +of O +a O +measurement S-CHAR +system O +performance S-CONPRI +characterization O +. O + + +Different O +active O +contours S-FEAT +segmentation O +methods O +are O +compared O +, O +and O +the O +sources O +of O +variability S-CONPRI +of O +the O +resulting O +measurements O +are O +investigated O +in O +terms O +of O +repeatability S-CONPRI +, O +part-to-part O +and O +build-to-build O +variability S-CONPRI +. O + + +The O +study O +also O +analyses O +and O +compares O +the O +sensitivity S-PARA +of O +in-situ S-CONPRI +measurements O +to O +different O +lighting O +conditions O +and O +laser B-ENAT +scan E-ENAT +directions O +. O + + +The O +results O +show O +that O +, O +by O +combining O +appropriate O +image S-CONPRI +pre-processing O +and O +segmentation O +algorithms S-CONPRI +with O +suitable O +lighting O +configurations O +, O +a O +high O +measurement S-CHAR +repeatability O +can O +be S-MATE +achieved O +, O +i.e. O +, O +a O +pure O +error S-CONPRI +that O +is O +up O +to O +one O +order O +of O +magnitude S-PARA +lower O +than O +the O +total O +measurement S-CHAR +variability O +. O + + +This O +performance S-CONPRI +enables O +the O +detection O +of O +major O +geometric O +deviations O +and O +it O +paves O +the O +way O +to O +the O +design S-FEAT +of O +statistical O +in-situ S-CONPRI +quality O +monitoring O +tools S-MACEQ +that O +rely O +on O +layerwise O +image S-CONPRI +segmentation O +. O + + +Previous O +studies O +have O +shown O +that O +3D B-MANP +printed E-MANP +composites O +exhibit O +an O +orthotropic S-MATE +nature O +with O +inherently O +lower O +interlayer O +mechanical B-CONPRI +properties E-CONPRI +. O + + +This O +research S-CONPRI +work O +is O +an O +attempt O +to O +improve O +the O +interlayer O +tensile B-PRO +strength E-PRO +of O +extrusion-based O +3D B-MANP +printed E-MANP +composites O +. O + + +Annealing S-MANP +was O +identified O +as S-MATE +a O +suitable O +post-processing S-CONPRI +method O +and O +was O +the O +focus O +of O +this O +study O +. O + + +Two O +distinct O +thermoplastic B-MATE +polymers E-MATE +, O +which O +are O +common O +in O +3D B-MANP +printing E-MANP +, O +were O +selected O +to O +study O +the O +enhancement O +of O +interlayer O +tensile B-PRO +strength E-PRO +of O +composites S-MATE +by O +additive B-MANP +manufacturing E-MANP +: O +a O +) O +an O +amorphous O +polyethylene S-MATE +terephthalate-glycol O +( O +PETG O +) O +, O +and O +b S-MATE +) O +a O +semi-crystalline O +poly O +( O +lactic O +acid O +) O +( O +PLA S-MATE +) O +. O + + +It O +was O +determined O +that O +short B-MATE +carbon I-MATE +fiber E-MATE +reinforced S-CONPRI +composites S-MATE +have O +lower O +interlayer O +tensile B-PRO +strength E-PRO +than O +the O +corresponding O +neat O +polymers S-MATE +in O +3D B-APPL +printed I-APPL +parts E-APPL +. O + + +This O +reduction S-CONPRI +in O +mechanical S-APPL +performance O +was O +attributable O +to O +an O +increase O +in O +melt S-CONPRI +viscosity O +and O +the O +consequential O +slower O +interlayer O +diffusion B-CONPRI +bonding E-CONPRI +. O + + +However O +, O +the O +reduction S-CONPRI +in O +interlayer O +tensile B-PRO +strength E-PRO +could O +be S-MATE +recovered O +by O +post-processing S-CONPRI +when O +the O +annealing S-MANP +temperature O +was O +higher O +than O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +of O +the O +amorphous O +polymer S-MATE +. O + + +In O +the O +case O +of O +the O +semi-crystalline O +polymer S-MATE +, O +the O +recovery O +of O +the O +interlayer O +tensile B-PRO +strength E-PRO +was O +only O +observed O +when O +the O +annealing S-MANP +temperature O +was O +higher O +than O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +but O +lower O +than O +the O +cold-crystallization O +temperature S-PARA +. O + + +This O +study O +utilized O +rheological S-PRO +and O +thermal B-CHAR +analysis E-CHAR +of O +3D B-MANP +printed E-MANP +composites O +to O +provide O +a O +better O +understanding O +of O +the O +interlayer B-CONPRI +strength E-CONPRI +response O +and O +, O +therefore O +, O +overcome O +a O +mechanical S-APPL +performance O +limitation O +of O +these O +materials S-CONPRI +. O + + +In B-CONPRI +situ E-CONPRI +high-speed O +thermal O +monitoring O +of O +melt-pool O +during O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +. O + + +Probabilistic O +prediction S-CONPRI +of O +pore S-PRO +formation O +based O +on O +in B-CONPRI +situ E-CONPRI +pyrometry O +monitoring O +. O + + +Detection O +of O +conduction-to-keyhole O +transition S-CONPRI +using O +high-speed O +pyrometry S-CHAR +. O + + +Creation O +of O +pores S-PRO +and O +defects S-CONPRI +during O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +can O +lead S-MATE +to O +poor O +mechanical B-CONPRI +properties E-CONPRI +and O +thus O +must O +be S-MATE +minimized O +. O + + +Post-build O +inspection S-CHAR +is O +required O +to O +ensure O +the O +printed O +parts O +contain O +acceptably O +low O +defect S-CONPRI +concentrations O +. O + + +As S-MATE +a O +potential O +solution S-CONPRI +, O +in B-CONPRI +situ E-CONPRI +process O +monitoring O +can O +be S-MATE +used O +to O +detect O +the O +creation O +of O +defects S-CONPRI +, O +characterize O +local O +material S-MATE +behavior O +and O +predict O +expected O +component S-MACEQ +properties O +. O + + +However O +, O +the O +precise O +relationship O +between O +pore S-PRO +creation O +and O +in B-CONPRI +situ E-CONPRI +process O +monitoring O +still O +needs O +to O +be S-MATE +understood O +. O + + +In O +this O +work O +, O +high-speed O +infrared S-CONPRI +diode-based O +pyrometry S-CHAR +and O +high-speed O +optical S-CHAR +imaging S-APPL +signals O +were O +used O +to O +monitor S-CONPRI +LPBF S-MANP +printing O +of O +446 O +stainless B-MATE +steel E-MATE +316 O +L O +single O +tracks O +with O +varying O +laser B-PARA +power E-PARA +and O +velocity O +. O + + +Results O +indicate O +an O +increase O +in O +pyrometer O +signal O +and O +melt B-PARA +pool I-PARA +dimensions E-PARA +with O +increasing O +laser B-PARA +power E-PARA +and O +decreasing O +velocity O +in O +agreement O +with O +previous O +work O +. O + + +Critically O +, O +pore S-PRO +defect S-CONPRI +initiation O +as S-MATE +characterized O +by O +ex O +situ O +X-ray S-CHAR +radiography S-ENAT +was O +correlated S-CONPRI +with O +in B-CONPRI +situ E-CONPRI +thermal O +monitoring O +signals O +to O +derive O +the O +probability S-CONPRI +of O +defect S-CONPRI +creation O +. O + + +Our O +results O +show O +that O +, O +in O +principle O +, O +a O +probabilistic O +prediction S-CONPRI +of O +pore S-PRO +formation O +can O +be S-MATE +achieved O +based O +on O +in B-CONPRI +situ E-CONPRI +high-speed O +pyrometry S-CHAR +monitoring O +of O +the O +LPBF S-MANP +melt O +pool O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +an O +attractive O +technology S-CONPRI +, O +enabling O +the O +manufacture S-CONPRI +of O +customised O +, O +complex O +metallic S-MATE +designs S-FEAT +, O +with O +minimal O +wastage O +. O + + +However O +, O +uptake O +by O +industry S-APPL +is O +currently O +impeded O +by O +several O +technical O +barriers O +, O +such O +as S-MATE +the O +control O +of O +residual B-PRO +stress E-PRO +, O +which O +have O +a O +detrimental O +effect O +on O +the O +manufacturability S-CONPRI +and O +integrity S-CONPRI +of O +a O +component S-MACEQ +. O + + +Indirectly O +, O +these O +impose O +severe O +design S-FEAT +restrictions O +and O +reduce O +the O +reliability S-CHAR +of O +components S-MACEQ +, O +driving O +up O +costs O +. O + + +This O +paper O +uses O +a O +thermo-mechanical B-CONPRI +model E-CONPRI +to O +better O +understand O +the O +effect O +of O +laser B-ENAT +scan E-ENAT +strategy O +on O +the O +generation O +of O +residual B-PRO +stress E-PRO +in O +SLM S-MANP +. O + + +A O +complex O +interaction O +between O +transient S-CONPRI +thermal O +history O +and O +the O +build-up O +of O +residual B-PRO +stress E-PRO +has O +been O +observed O +in O +the O +two O +laser B-ENAT +scan E-ENAT +strategies O +investigated O +. O + + +The O +temperature B-CONPRI +gradient I-CONPRI +mechanism E-CONPRI +was O +discovered O +for O +the O +creation O +of O +residual B-PRO +stress E-PRO +. O + + +The O +greatest O +stress S-PRO +component S-MACEQ +was O +found O +to O +develop O +parallel O +to O +the O +scan O +vectors O +, O +creating O +an O +anisotropic S-PRO +stress O +distribution S-CONPRI +in O +the O +part O +. O + + +The O +stress B-PRO +distribution E-PRO +varied O +between O +laser B-ENAT +scan E-ENAT +strategies O +and O +the O +cause O +has O +been O +determined O +by O +observing O +the O +thermal O +history O +during O +scanning S-CONPRI +. O + + +Using O +this O +, O +proposals O +are O +suggested O +for O +designing O +laser B-ENAT +scan E-ENAT +strategies O +used O +in O +SLM S-MANP +. O + + +Near-net O +shape O +metal S-MATE +parts O +of O +great O +geometrical B-FEAT +complexity E-FEAT +are O +fabricated S-CONPRI +by O +the O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +L-PBF S-MANP +) O +technology S-CONPRI +directly O +from O +a O +CAD B-ENAT +model E-ENAT +. O + + +Therefore O +, O +parts O +can O +be S-MATE +lightweight O +, O +less O +expensive O +in O +terms O +of O +material S-MATE +use O +and O +with O +shapes O +that O +may O +be S-MATE +impossible O +to O +produce O +by O +conventional O +technology S-CONPRI +. O + + +The O +fatigue S-PRO +behavior O +of O +L-PBF S-MANP +part O +in O +as-built O +condition O +is O +negatively O +affected O +by O +poor O +surface B-PARA +quality E-PARA +. O + + +Surface B-MANP +finishing E-MANP +after O +fabrication S-MANP +may O +be S-MATE +either O +unacceptably O +costly O +or O +impossible O +because O +the O +surface S-CONPRI +is O +inaccessible O +. O + + +Fatigue S-PRO +performance O +can O +be S-MATE +further O +reduced O +by O +the O +notch S-FEAT +effect O +due O +to O +local O +geometrical O +variations S-CONPRI +. O + + +Among O +the O +Al-alloys O +, O +AlSi10Mg S-MATE +is O +readily O +processed S-CONPRI +with O +L-PBF S-MANP +and O +it O +is O +of O +interest O +for O +different O +industrial S-APPL +sectors.In O +this O +contribution O +two O +aspects O +, O +that O +is O +: O +i O +) O +the O +directional O +smooth O +fatigue S-PRO +behavior O +of O +as-built O +AlSi10Mg S-MATE +, O +and O +ii O +) O +the O +notch S-FEAT +fatigue S-PRO +behavior O +with O +as-built O +surfaces S-CONPRI +are O +investigated O +. O + + +Eight O +sets O +of O +un-notched O +and O +notched O +miniature O +specimens O +of O +AlSi10Mg S-MATE +were O +produced O +as S-MATE +a O +single O +batch O +by O +L-PBF S-MANP +and O +tested O +in O +the O +as-build O +state O +under O +cyclic O +plane O +bending S-MANP +loading O +. O + + +The O +smooth O +fatigue S-PRO +behavior O +was O +determined O +as S-MATE +very O +sensitive O +to O +applied O +stress S-PRO +direction O +with O +respect O +to O +the O +build B-PARA +direction E-PARA +. O + + +The O +directional O +nature O +of O +the O +fatigue S-PRO +behavior O +was O +confirmed O +by O +notch S-FEAT +fatigue S-PRO +data S-CONPRI +. O + + +Therefore O +, O +four O +notch S-FEAT +fatigue S-PRO +factors O +that O +depend O +on O +the O +PBF S-MANP +technology O +were O +introduced O +and O +determined O +. O + + +The O +fatigue S-PRO +behavior O +of O +L-PBF S-MANP +AlSi10Mg S-MATE +obtained O +here O +was O +compared O +satisfactorily O +against O +recent O +data S-CONPRI +obtained O +with O +standard S-CONPRI +specimen O +geometries S-CONPRI +and O +test O +methods O +. O + + +The O +present O +methodology S-CONPRI +using O +mini O +specimens O +under O +cyclic O +bending S-MANP +efficiently O +determines O +the O +fatigue S-PRO +response O +of O +L-PBF S-MANP +metals O +. O + + +Interlayer O +bonds O +pose O +regions O +of O +weakness O +in O +structures O +produced O +via O +melt B-MANP +extrusion E-MANP +based O +polymer B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Bond B-CONPRI +strength E-CONPRI +was O +assessed O +both O +between O +layers O +and O +within O +layers O +as S-MATE +a O +function O +of O +print S-MANP +parameters S-CONPRI +by O +performing O +tensile B-CHAR +tests E-CHAR +on O +ABS S-MATE +coupons O +printed O +in O +two O +orientations S-CONPRI +. O + + +Print S-MANP +parameters S-CONPRI +considered O +were O +extruder S-MACEQ +temperature O +, O +print S-MANP +speed O +, O +and O +layer B-PARA +height E-PARA +. O + + +An O +IR S-CHAR +camera S-MACEQ +was O +used O +to O +track O +thermal O +history O +of O +interlayer O +bond O +lines O +during O +the O +printing B-MANP +process E-MANP +. O + + +Contact S-APPL +length O +between O +roads O +was O +measured O +from O +mesostructure O +optical S-CHAR +micrographs O +. O + + +Print S-MANP +speed O +was O +found O +to O +have O +a O +large O +impact S-CONPRI +on O +tensile B-PRO +strength E-PRO +with O +high O +speeds O +generally O +yielding O +lower O +strength S-PRO +. O + + +A O +plateau O +in O +tensile B-PRO +strength E-PRO +of O +22 O +MPa S-CONPRI +was O +observed O +for O +a O +normalized O +contact S-APPL +length O +greater O +than O +0.6 O +independent O +of O +print S-MANP +orientation S-CONPRI +. O + + +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +is O +a O +popular O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +that O +has O +shown O +promise O +in O +fabricating S-MANP +novel O +components S-MACEQ +that O +can O +be S-MATE +utilized O +for O +a O +wide O +variety O +of O +applications O +. O + + +However O +, O +one O +of O +the O +main O +drawbacks O +of O +LPBF S-MANP +is O +that O +it O +produces O +large O +thermal B-PARA +gradients E-PARA +and O +fast O +cooling B-PARA +rates E-PARA +during O +the O +solidification S-CONPRI +of O +each O +layer S-PARA +, O +which O +can O +lead S-MATE +to O +large O +levels O +of O +residual S-CONPRI +stress/distortion O +, O +sometimes O +resulting O +in O +build S-PARA +failure/rejection O +. O + + +In O +the O +present O +work O +, O +several O +experimental S-CONPRI +techniques O +( O +x-ray B-CHAR +diffraction E-CHAR +, O +hole B-MANP +drilling E-MANP +, O +contour S-FEAT +method O +, O +and O +laser S-ENAT +line O +profilometry O +) O +were O +utilized O +to O +establish O +the O +effect O +of O +LPBF S-MANP +process O +parameters S-CONPRI +( O +scan B-PARA +speed E-PARA +, O +laser B-PARA +power E-PARA +, O +build B-PARA +height E-PARA +, O +build S-PARA +plan O +area S-PARA +, O +and O +substrate S-MATE +condition O +) O +on O +residual B-PRO +stress E-PRO +evolution S-CONPRI +and O +distortion S-CONPRI +. O + + +X-ray B-CHAR +diffraction E-CHAR +and O +hole-drilling O +measurements O +were O +performed O +on O +the O +surfaces S-CONPRI +of O +the O +LPBF S-MANP +deposits O +and O +substrates O +, O +while O +bulk O +residual B-PRO +stresses E-PRO +were O +measured O +using O +the O +contour S-FEAT +method O +. O + + +In O +addition O +, O +a O +laser S-ENAT +line O +profilometer S-MACEQ +was O +used O +to O +measure O +the O +distortion S-CONPRI +after O +fabrication S-MANP +. O + + +The O +results O +obtained O +by O +the O +non-destructive O +and O +destructive O +measurement S-CHAR +techniques O +suggested O +that O +process B-CONPRI +parameters E-CONPRI +greatly O +influence O +the O +development O +of O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +throughout O +the O +LPBF S-MANP +deposit O +and O +the O +substrate S-MATE +. O + + +Furthermore O +, O +the O +experimental S-CONPRI +results O +in O +this O +work O +provide O +a O +valuable O +foundation O +for O +future O +modeling S-ENAT +and O +simulation S-ENAT +of O +the O +evolution S-CONPRI +of O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +a O +method O +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +currently O +being O +pursued O +in O +numerous O +industries S-APPL +, O +including O +space O +launch O +and O +space O +flight O +. O + + +In O +this O +study O +we O +performed O +an O +extensive O +parameter S-CONPRI +development O +investigation O +to O +better O +understand O +the O +effect O +of O +laser S-ENAT +parameters O +on O +surface B-PRO +roughness E-PRO +, O +density S-PRO +, O +and O +porosity S-PRO +of O +SLM S-MANP +Inconel B-MATE +718 E-MATE +parts O +. O + + +Laser B-PARA +energy I-PARA +density E-PARA +was O +varied O +via O +laser S-ENAT +focus O +shift O +, O +and O +the O +effects O +on O +porosity S-PRO +in O +both O +as-printed O +and O +post-HIP O +treated O +states O +were O +analyzed O +. O + + +Tensile B-CHAR +testing E-CHAR +was O +also O +conducted O +to O +investigate O +the O +effect O +of O +processing O +conditions O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +SLM S-MANP +718 O +. O + + +It O +was O +found O +that O +for O +these O +laser S-ENAT +parameters O +, O +while O +the O +material S-MATE +met O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +yield B-PRO +strength E-PRO +requirements O +per O +AMS O +5662 O +, O +the O +strain-to-failure O +was O +reduced O +with O +negative O +focus O +shift O +due O +to O +increases O +in O +porosity S-PRO +levels O +. O + + +It O +was O +also O +found O +that O +while O +correlations O +were O +observed O +between O +surface B-PRO +roughness E-PRO +, O +density S-PRO +, O +and O +porosity S-PRO +within O +the O +laser S-ENAT +focus O +shift O +range S-PARA +investigated O +, O +porosity S-PRO +measurement S-CHAR +appears O +to O +be S-MATE +the O +clearest O +indicator O +of O +build S-PARA +quality O +for O +AM S-MANP +processed O +718 O +. O + + +Managing O +the O +dimensional B-CHAR +accuracy E-CHAR +of O +parts O +produced O +by O +the O +Electron B-MANP +Beam I-MANP +Melting E-MANP +process O +is O +a O +challenge O +. O + + +For O +small O +dimensions S-FEAT +, O +as S-MATE +in O +lattice B-FEAT +structures E-FEAT +( O +strut B-PARA +diameters E-PARA +) O +, O +accuracy S-CHAR +becomes O +even O +more O +important O +and O +geometric O +quality S-CONPRI +is O +linked O +to O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +dimensional O +quality S-CONPRI +of O +parts O +produced O +by O +EBM S-MANP +can O +be S-MATE +influenced O +by O +many O +process B-CONPRI +parameters E-CONPRI +. O + + +Simulating O +the O +process S-CONPRI +can O +help O +the O +machine S-MACEQ +user O +to O +choose O +the O +best O +process B-CONPRI +parameters E-CONPRI +and O +improve O +build S-PARA +dimensional O +accuracy S-CHAR +. O + + +The O +work O +presented O +here O +is O +based O +on O +a O +method O +for O +linking O +process B-CONPRI +parameters E-CONPRI +with O +beam S-MACEQ +parameters O +. O + + +Once O +linked O +, O +both O +sets O +of O +parameters S-CONPRI +are O +then O +integrated O +into O +a O +full O +simulation S-ENAT +of O +the O +process S-CONPRI +in O +order O +to O +make O +trajectory O +optimization S-CONPRI +possible O +. O + + +First O +, O +this O +paper O +explains O +how O +the O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +described O +in O +the O +literature O +can O +be S-MATE +improved O +to O +simulate O +the O +multilayer O +EBM S-MANP +process O +. O + + +It O +then O +describes O +how O +this O +simulation S-ENAT +is O +used O +to O +develop O +a O +method O +to O +characterize O +the O +machine S-MACEQ +beam S-MACEQ +and O +determine O +the O +link O +between O +the O +focus O +current O +and O +the O +beam B-PARA +diameter E-PARA +. O + + +Finally O +, O +it O +shows O +how O +this O +simulation S-ENAT +can O +be S-MATE +applied O +to O +a O +built O +shape O +( O +vertical S-CONPRI +strut S-MACEQ +) O +hence O +demonstrating O +improved O +accuracy S-CHAR +of O +the O +produced O +part O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +rapidly O +expanding O +framework S-CONPRI +of O +production S-MANP +technologies O +evolving O +in O +different O +directions O +, O +following O +the O +needs O +of O +different O +industries S-APPL +. O + + +Among O +powder B-MANP +bed I-MANP +fusion E-MANP +technologies O +, O +one O +of O +the O +main O +branches O +of O +AM S-MANP +, O +selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +is O +the O +second O +oldest O +one O +. O + + +In O +the O +last O +few O +years O +, O +a O +direct O +rival O +has O +emerged O +: O +multi B-MANP +jet I-MANP +fusion E-MANP +( O +MJF S-MANP +) O +. O + + +The O +purpose O +of O +this O +work O +is O +to O +compare O +these O +processes S-CONPRI +throughout O +a O +systematic O +analysis O +of O +powder S-MATE +and O +final O +parts O +made O +of O +commercially O +available O +polyamide B-MATE +12 E-MATE +( O +PA12 S-MATE +) O +. O + + +Differences O +have O +been O +spotted O +both O +on O +the O +molecular O +and O +powder S-MATE +scale O +, O +with O +end O +capping O +of O +the O +MJF S-MANP +feedstock S-MATE +together O +with O +different O +thermal B-CONPRI +properties E-CONPRI +of O +the O +new O +and O +recycled B-CONPRI +materials E-CONPRI +. O + + +On O +the O +other O +hand O +, O +flowing O +properties S-CONPRI +are O +similar O +among O +the O +two O +virgin O +and O +recycled S-CONPRI +powders S-MATE +, O +with O +only O +a O +significant O +change O +in O +the O +fraction S-CONPRI +of O +fines O +for O +SLS S-MANP +material S-MATE +. O + + +The O +parts O +produced O +through O +SLS S-MANP +exhibit O +higher O +Young O +'s O +modulus O +but O +lower O +elongation S-PRO +at O +break O +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +if O +compared O +to O +the O +ones O +obtained O +using O +MJF S-MANP +. O + + +Also O +Charpy O +impact S-CONPRI +strength O +according O +to O +ISO S-MANS +179 O +has O +been O +tested O +, O +confirming O +the O +literature O +data S-CONPRI +for O +SLS S-MANP +, O +but O +also O +showing O +higher O +strength S-PRO +in O +the O +out-of-plane O +direction O +for O +un-notched O +specimens O +coming O +from O +MJF S-MANP +. O + + +Finally O +, O +the O +evaluation O +of O +advanced O +area S-PARA +roughness O +parameters S-CONPRI +such O +as S-MATE +surface O +roughness S-PRO +, O +skewness O +and O +kurtosis O +according O +to O +ISO S-MANS +25178 O +allows O +the O +ascertainment O +of O +subtle O +differences O +arising O +in O +parts O +with O +different O +positioning O +on O +the O +build B-MACEQ +platform E-MACEQ +, O +possibly O +due O +to O +the O +inks O +employed O +in O +the O +MJF S-MANP +process O +. O + + +An O +effective O +process B-CONPRI +prediction E-CONPRI +model S-CONPRI +was O +developed O +for O +additive B-MANP +manufacturing E-MANP +. O + + +High O +entropy O +alloy S-MATE +was O +used O +to O +test O +the O +model S-CONPRI +. O + + +The O +model S-CONPRI +effectively O +predicts O +energy B-PARA +density E-PARA +for O +processing O +metallic B-MATE +materials E-MATE +. O + + +Surface B-FEAT +structure E-FEAT +of O +power S-PARA +and O +powder B-MACEQ +bed E-MACEQ +can O +improve O +laser S-ENAT +absorptivity O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +a O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +technique O +that O +can O +fabricate S-MANP +parts O +with O +complex B-CONPRI +geometries E-CONPRI +and O +sufficient O +mechanical B-CONPRI +properties E-CONPRI +. O + + +However O +, O +the O +optimal O +SLM S-MANP +process S-CONPRI +windows O +of O +metallic B-MATE +materials E-MATE +are O +difficult O +to O +predict O +, O +especially O +when O +exploring O +new O +metallic B-MATE +materials E-MATE +. O + + +In O +this O +paper O +, O +a O +universal O +and O +simplified O +model S-CONPRI +has O +been O +proposed O +to O +predict O +the O +energy B-PARA +density E-PARA +suitable O +for O +SLM S-MANP +of O +a O +variety O +of O +metallic B-MATE +materials E-MATE +including O +Ti S-MATE +and O +Ti B-MATE +alloys E-MATE +, O +Al B-MATE +alloy E-MATE +, O +Ni-based O +superalloy O +and O +steel S-MATE +, O +on O +the O +basis O +of O +the O +relationship O +between O +energy B-CHAR +absorption E-CHAR +and O +consumption O +during O +SLM S-MANP +. O + + +Several O +important O +but O +easily O +overlooked O +factors O +, O +including O +the O +surface B-FEAT +structure E-FEAT +of O +metallic B-MATE +powder E-MATE +, O +porosity S-PRO +of O +powder B-MACEQ +bed E-MACEQ +, O +vaporization O +and O +heat S-CONPRI +loss O +, O +were O +considered O +to O +improve O +the O +accuracy S-CHAR +of O +the O +model S-CONPRI +. O + + +Results O +show O +that O +, O +to O +achieve O +near-full O +density S-PRO +parts O +, O +the O +energy B-CHAR +absorption E-CHAR +( O +Qa O +) O +by O +the O +local O +powder B-MACEQ +bed E-MACEQ +should O +be S-MATE +approximately O +3–8 O +times O +greater O +than O +the O +energy O +consumption O +( O +Qc O +) O +, O +and O +this O +finding O +applies O +to O +all O +materials S-CONPRI +investigated O +. O + + +The O +value O +of O +Qa/Qc O +highly O +depends O +on O +material B-CONPRI +properties E-CONPRI +, O +particularly O +laser S-ENAT +absorptivity O +, O +latent O +heat S-CONPRI +of O +melting S-MANP +and O +specific B-PRO +heat E-PRO +capacity S-CONPRI +. O + + +Experiments O +on O +high-entropy O +alloy S-MATE +( O +CrMnFeCoNi O +) O +and O +Hastelloy S-MATE +X O +alloy S-MATE +, O +new O +metallic B-MATE +materials E-MATE +for O +SLM S-MANP +, O +have O +been O +further O +conducted O +to O +verify O +the O +model S-CONPRI +. O + + +Results O +confirm O +that O +the O +model S-CONPRI +can O +predict O +suitable O +laser B-PARA +energy I-PARA +densities E-PARA +needed O +for O +processing O +the O +various O +metallic B-MATE +materials E-MATE +without O +tedious O +trial B-CONPRI +and I-CONPRI +error E-CONPRI +experiments O +. O + + +Therefore O +, O +medical S-APPL +additive B-MANP +manufacturing E-MANP +techniques O +are O +developed O +for O +fabrication S-MANP +of O +such O +implants S-APPL +, O +but O +currently O +do O +not O +achieve O +the O +required O +printing O +resolution S-PARA +. O + + +This O +is O +caused O +by O +intensive O +droplet S-CONPRI +spreading O +of O +the O +initially O +liquid O +silicone B-MATE +rubber E-MATE +on O +the O +printing O +substrate S-MATE +. O + + +While O +empirical S-CONPRI +optimization O +approaches O +for O +the O +droplet S-CONPRI +spreading O +are O +intensive O +in O +cost O +and O +time O +, O +we O +develop O +a O +mathematical S-CONPRI +optimization O +approach O +to O +calculate O +the O +optimal O +printing O +parameters S-CONPRI +for O +minimal O +droplet S-CONPRI +spreading O +. O + + +Since O +the O +viscosity S-PRO +profile S-FEAT +of O +thermal O +curing S-MANP +silicone O +rubber S-MATE +is O +the O +main O +reason O +for O +the O +droplet S-CONPRI +spreading O +, O +we O +implemented O +a O +rheology S-PRO +model S-CONPRI +for O +calculation O +of O +the O +optimal O +heat B-CONPRI +curing E-CONPRI +parameters O +. O + + +A O +Dual-Arrhenius O +equation O +was O +used O +to O +correlate O +the O +temperature-time-profile O +of O +the O +curing S-MANP +process O +with O +the O +curing-related O +viscosity S-PRO +rise O +and O +the O +temperature-related O +viscosity S-PRO +fall O +of O +the O +liquid O +silicone B-MATE +rubber E-MATE +. O + + +Two O +commonly O +used O +silicone B-MATE +rubbers E-MATE +were O +characterized O +with O +a O +rheometer O +at O +different O +isothermal S-CONPRI +and O +anisothermal O +curing S-MANP +profiles O +. O + + +High O +correlation O +between O +the O +calculated O +and O +the O +measured O +viscosity S-PRO +profiles S-FEAT +were O +observed O +, O +giving O +the O +ability O +to O +optimize O +the O +curing S-MANP +process O +parameters S-CONPRI +to O +the O +rheological S-PRO +behaviour O +of O +the O +used O +silicone B-MATE +rubber E-MATE +. O + + +Powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +is O +ideally O +suited O +to O +build S-PARA +complex O +and O +near-net-shaped O +metallic B-MACEQ +structures E-MACEQ +such O +as S-MATE +conformal O +cooling B-MACEQ +channel E-MACEQ +networks O +in O +injection O +molds S-MACEQ +. O + + +However O +, O +warpage S-CONPRI +occurring O +due O +to O +the O +residual B-PRO +stresses E-PRO +inherent O +to O +this O +process S-CONPRI +can O +lead S-MATE +to O +shape O +deviation O +in O +the O +internal O +channels O +and O +needs O +to O +be S-MATE +minimized O +. O + + +In O +this O +research S-CONPRI +, O +a O +novel O +analytical O +model S-CONPRI +based O +on O +the O +Euler-Bernoulli O +beam S-MACEQ +bending O +theory O +was O +developed O +to O +estimate O +the O +residual S-CONPRI +stress-induced O +deformation S-CONPRI +of O +internal O +channels O +printed O +horizontally O +using O +PBF S-MANP +. O + + +The O +proposed O +approach O +is O +thus O +expected O +to O +be S-MATE +a O +useful O +tool S-MACEQ +to O +generate O +design-for-AM O +guidelines O +for O +the O +additive B-MANP +manufacturing E-MANP +of O +overhangs S-PARA +and O +internal O +channels O +. O + + +Risk-averse O +areas S-PARA +such O +as S-MATE +the O +medical S-APPL +, O +aerospace S-APPL +and O +energy O +sectors O +have O +been O +somewhat O +slow O +towards O +accepting O +and O +applying O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +in O +many O +of O +their O +value O +chains O +. O + + +This O +is O +partly O +because O +there O +are O +still O +significant O +uncertainties O +concerning O +the O +quality S-CONPRI +of O +AM S-MANP +builds.This O +paper O +introduces O +a O +machine B-ENAT +learning I-ENAT +algorithm E-ENAT +for O +the O +automatic O +detection O +of O +faults O +in O +AM S-MANP +products O +. O + + +The O +approach O +is O +semi-supervised O +in O +that O +, O +during O +training O +, O +it O +is O +able O +to O +use O +data S-CONPRI +from O +both O +builds S-CHAR +where O +the O +resulting O +components S-MACEQ +were O +certified O +and O +builds S-CHAR +where O +the O +quality S-CONPRI +of O +the O +resulting O +components S-MACEQ +is O +unknown O +. O + + +This O +makes O +the O +approach O +cost O +efficient O +, O +particularly O +in O +scenarios O +where O +part O +certification O +is O +costly O +and O +time O +consuming.The O +study O +specifically O +analyses O +Laser S-ENAT +Powder-Bed O +Fusion S-CONPRI +( O +L-PBF S-MANP +) O +builds S-CHAR +. O + + +Key O +features O +are O +extracted S-CONPRI +from O +large O +sets O +of O +photodiode O +data S-CONPRI +, O +obtained O +during O +the O +building O +of O +49 O +tensile B-CHAR +test E-CHAR +bars O +. O + + +Ultimate B-PRO +tensile I-PRO +strength E-PRO +( O +UTS S-PRO +) O +tests O +were O +then O +used O +to O +categorise O +each O +bar O +as S-MATE +‘ O +faulty O +’ O +or O +‘ O +acceptable O +’ O +. O + + +As S-MATE +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +adoption O +grows O +, O +the O +demand O +for O +improved O +quality S-CONPRI +output O +product O +is O +increasing O +. O + + +This O +is O +evident O +in O +the O +desire O +for O +both O +increased O +repeatability S-CONPRI +and O +higher O +strength S-PRO +and O +ductility S-PRO +in O +Selective B-MANP +Laser E-MANP +Sintered O +( O +SLS® O +) O +Polymer S-MATE +parts O +. O + + +One O +approach O +to O +expanding O +the O +performance S-CONPRI +envelope O +for O +polymers S-MATE +in O +this O +domain S-CONPRI +is O +through O +high O +temperature S-PARA +manufacturing B-MANP +processes E-MANP +, O +supporting O +the O +use O +of O +polymers S-MATE +with O +increased O +mechanical B-PRO +strength E-PRO +, O +lighter O +weight S-PARA +, O +and O +a O +favorable O +ability O +to O +sterilize O +for O +medical B-APPL +applications E-APPL +. O + + +Early O +candidate O +materials S-CONPRI +that O +exhibit O +higher O +melting S-MANP +and O +glass B-CONPRI +transition I-CONPRI +temperatures E-CONPRI +include O +the O +Poly O +Ether O +Ether O +Ketone O +( O +PEEK S-MATE +) O +and O +Polyaryletherketone O +( O +PAEK O +) O +family O +of O +materials S-CONPRI +. O + + +This O +paper O +describes O +the O +design S-FEAT +of O +a O +laboratory S-CONPRI +SLS® O +machine S-MACEQ +for O +operation O +with O +these O +and O +other O +similar O +materials S-CONPRI +, O +emphasizing O +its O +thermal O +and O +operational O +design S-FEAT +features O +. O + + +Data S-CONPRI +is O +also O +provided O +from O +initial O +testing S-CHAR +of O +key O +subsystems O +during O +assembly S-MANP +and O +prior O +to O +full O +system O +operation O +. O + + +Because O +this O +machine S-MACEQ +is O +intended O +to O +explore O +processing O +new O +materials S-CONPRI +, O +it O +also O +incorporates O +features O +for O +improving O +the O +data S-CONPRI +collection O +, O +and O +associated O +feedback S-PARA +control O +for O +improved O +repeatability S-CONPRI +, O +and O +ultimately O +defect S-CONPRI +detection O +and O +mitigation O +during O +the O +Additive B-MANP +Manufacturing E-MANP +. O + + +One O +of O +the O +major O +challenges O +with O +the O +powder B-MANP +bed I-MANP +fusion I-MANP +process E-MANP +( O +PBF S-MANP +) O +and O +formation O +of O +bulk O +metallic B-MATE +glass E-MATE +( O +BMG O +) O +is O +the O +development O +of O +process B-CONPRI +parameters E-CONPRI +for O +a O +stable O +process S-CONPRI +and O +a O +defect-free O +component S-MACEQ +. O + + +The O +focus O +of O +this O +study O +is O +to O +predict O +formation O +of O +a O +crystalline O +phase S-CONPRI +in O +the O +glass B-MANP +forming E-MANP +alloy S-MATE +AMZ4 O +during O +PBF S-MANP +. O + + +The O +approach O +combines O +a O +thermal O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +for O +prediction S-CONPRI +of O +the O +temperature S-PARA +field O +and O +a O +phase B-CONPRI +model E-CONPRI +for O +prediction S-CONPRI +of O +crystallization S-CONPRI +and O +devitrification S-MANP +. O + + +The O +challenge O +to O +simulate O +the O +complexity S-CONPRI +of O +the O +heat B-CONPRI +source E-CONPRI +has O +been O +addressed O +by O +utilizing O +temporal O +reduction S-CONPRI +in O +a O +layer-by-layer B-CONPRI +fashion E-CONPRI +by O +a O +simplified O +heat B-CONPRI +source E-CONPRI +model O +. O + + +The O +heat B-CONPRI +source E-CONPRI +model O +considers O +the O +laser B-PARA +power E-PARA +, O +penetration B-PARA +depth E-PARA +and O +hatch B-PARA +spacing E-PARA +and O +is O +represented O +by O +a O +volumetric O +heat S-CONPRI +density S-PRO +equation O +in O +one O +dimension S-FEAT +. O + + +The O +phase B-CONPRI +model E-CONPRI +is O +developed O +and O +calibrated S-CONPRI +to O +DSC S-CHAR +measurements O +at O +varying O +heating S-MANP +rates O +. O + + +It O +can O +predict O +the O +formation O +of O +crystalline O +phase S-CONPRI +during O +the O +non-isothermal O +process S-CONPRI +. O + + +Results O +indicate O +that O +a O +critical O +location O +for O +devitrification S-MANP +is O +located O +a O +few O +layers O +beneath O +the O +top O +surface S-CONPRI +. O + + +Nickel B-MATE +aluminium E-MATE +bronze S-MATE +( O +NAB S-MATE +) O +is O +widely O +used O +in O +naval B-APPL +applications E-APPL +due O +to O +its O +combination O +of O +excellent O +corrosion B-CONPRI +resistance E-CONPRI +in O +sea O +water O +applications O +and O +medium O +strength S-PRO +levels O +. O + + +These O +alloys S-MATE +have O +complex O +microstructures S-MATE +of O +α O +and O +β O +solid B-MATE +solution E-MATE +phases O +together O +with O +different O +forms O +of O +the O +intermetallic S-MATE +κ O +phase S-CONPRI +. O + + +In O +this O +work O +, O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +of O +Cu-9.8Al-5.2Ni-4.6Fe-0.3 O +Mn S-MATE +( O +wt O +. O + + +% O +) O +NAB S-MATE +powder O +was O +optimised O +to O +produce O +dense O +NAB S-MATE +specimens O +. O + + +The O +as-built O +specimens O +consisted O +of O +martensitic O +microstructures S-MATE +. O + + +Through O +the O +application O +of O +various O +heat B-MANP +treatment E-MANP +conditions O +, O +α O ++ O +κ O +microstructures S-MATE +typical O +of O +traditional O +NAB S-MATE +alloys S-MATE +, O +were O +obtained O +and O +the O +mechanical S-APPL +and O +electrochemical S-CONPRI +properties O +were O +characterized O +. O + + +A O +heat B-MANP +treatment E-MANP +at O +700 O +°C O +for O +1 O +h O +on O +the O +as-built O +structure S-CONPRI +yielded O +NAB S-MATE +specimens O +with O +superior O +corrosion S-CONPRI +performance O +and O +mechanical B-CONPRI +properties E-CONPRI +than O +conventional O +wrought S-CONPRI +or O +cast S-MANP +NAB O +. O + + +This O +work O +shows O +that O +SLM S-MANP +of O +NAB S-MATE +alloys S-MATE +is O +possible O +and O +the O +components S-MACEQ +obtained O +exhibit O +properties S-CONPRI +at O +least O +as S-MATE +good O +as S-MATE +their O +cast S-MANP +or O +wrought S-CONPRI +counterparts O +. O + + +This O +opens O +up O +the O +possibility O +of O +using O +NAB S-MATE +components S-MACEQ +fabricated O +by O +SLM S-MANP +in O +engineering S-APPL +applications O +. O + + +Two O +batches O +of O +pre-alloyed O +Hastelloy-X O +powder S-MATE +with O +different O +Si S-MATE +, O +Mn S-MATE +and O +C S-MATE +contents O +were O +used O +to O +produce O +specimens O +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +. O + + +Two O +major O +reasons O +that O +control O +crack O +formation O +and O +propagation O +were O +considered O +: O +( O +i O +) O +internal O +strain S-PRO +accumulation O +due O +to O +the O +thermal B-PARA +cycling E-PARA +that O +is O +characteristic O +to O +SLM S-MANP +processing O +; O +( O +ii O +) O +crack O +formation O +and O +propagation O +during O +solidification S-CONPRI +. O + + +This O +phenomenon O +, O +known O +as S-MATE +hot O +tearing O +, O +is O +frequently O +found O +in O +conventional O +casting S-MANP +and O +is O +dependent O +on O +chemical B-CONPRI +composition E-CONPRI +. O + + +Using O +thermodynamic O +software S-CONPRI +simulation S-ENAT +, O +the O +temperature S-PARA +vs O +fraction S-CONPRI +of O +solid O +curves O +was O +used O +to O +determine O +hot O +tearing O +sensitivity S-PARA +as S-MATE +a O +function O +of O +Si S-MATE +, O +Mn S-MATE +and O +C S-MATE +content O +. O + + +It O +was O +found O +that O +low O +Si S-MATE +and O +C S-MATE +contents O +help O +in O +avoiding O +crack O +formation O +whereas O +cracking S-CONPRI +propensity O +was O +relatively O +independent O +of O +Mn S-MATE +concentration O +. O + + +Hence O +, O +the O +cracking S-CONPRI +mechanism O +during O +SLM S-MANP +is O +believed O +to O +be S-MATE +as S-MATE +follows O +: O +crack O +initiation O +is O +mainly O +induced O +during O +solidification S-CONPRI +and O +is O +dependent O +on O +the O +content O +of O +minor O +alloying B-MATE +elements E-MATE +such O +as S-MATE +Si O +and O +C S-MATE +, O +whereas O +crack B-CONPRI +propagation E-CONPRI +predominantly O +occurs O +during O +thermal B-PARA +cycling E-PARA +. O + + +If O +microstructures S-MATE +free O +of O +micro-cracks S-CONPRI +after O +solidification S-CONPRI +can O +be S-MATE +generated O +with O +optimised O +SLM S-MANP +parameters S-CONPRI +, O +these O +manufactured S-CONPRI +parts O +can O +sustain O +the O +internal O +strain S-PRO +level O +and O +, O +thus O +, O +crack O +formation O +and O +propagation O +can O +be S-MATE +avoided O +. O + + +Laser S-ENAT +spatter O +is O +coarser O +and O +more O +spherical S-CONPRI +than O +virgin B-MATE +powder E-MATE +. O + + +Condensate O +condenses O +on O +the O +surfaces S-CONPRI +of O +laser S-ENAT +spatter O +particles S-CONPRI +. O + + +Nano-oxide O +islands O +present O +on O +laser S-ENAT +spatter O +coalesce O +to O +form O +large O +oxide S-MATE +islands O +. O + + +Condensate O +is O +created O +from O +a O +large O +amount O +of O +superheat S-CONPRI +in O +the O +melt B-MATE +pool E-MATE +. O + + +Heat-affected O +powder S-MATE +contains O +more O +delta O +ferrite S-MATE +than O +virgin B-MATE +powder E-MATE +. O + + +The O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +, O +commonly O +referred O +to O +as S-MATE +laser O +powder-bed O +fusion S-CONPRI +( O +L-PBF S-MANP +) O +, O +is O +an O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technique O +that O +uses O +a O +laser S-ENAT +to O +fuse S-MANP +successive O +layers O +of O +powder S-MATE +into O +near O +fully B-PARA +dense E-PARA +components S-MACEQ +. O + + +Due O +to O +the O +large O +energy O +input O +from O +the O +laser S-ENAT +during O +processing O +, O +vaporization O +causes O +instabilities O +in O +the O +melt B-MATE +pool E-MATE +leading O +to O +the O +formation O +of O +laser S-ENAT +spatter O +and O +condensate O +, O +collectively O +known O +as S-MATE +heat-affected O +powder S-MATE +. O + + +Since O +heat-affected O +powder S-MATE +settles O +into O +the O +powder B-MACEQ +bed E-MACEQ +, O +the O +properties S-CONPRI +of O +the O +unconsolidated O +powder S-MATE +may O +be S-MATE +altered O +compromising O +its O +reusability O +. O + + +In O +this O +study O +, O +characterization O +of O +304 O +L O +heat-affected O +powder S-MATE +was O +performed O +through O +particle S-CONPRI +size O +and O +shape O +distribution S-CONPRI +measurements O +, O +energy-dispersive O +spectroscopy S-CONPRI +, O +Raman B-CHAR +spectroscopy E-CHAR +, O +inert B-CONPRI +gas I-CONPRI +fusion E-CONPRI +, O +metallography S-CONPRI +, O +and O +x-ray B-CHAR +diffraction E-CHAR +. O + + +The O +results O +show O +morphological O +, O +chemical O +, O +and O +microstructural S-CONPRI +differences O +between O +the O +virgin B-MATE +powder E-MATE +and O +heat-affected O +powder S-MATE +formed O +during O +processing O +which O +aid O +in O +the O +understanding O +of O +laser S-ENAT +spatter O +and O +condensate O +that O +form O +in O +the O +L-PBF S-MANP +process O +. O + + +The O +impact S-CONPRI +of O +a O +rigid O +rod S-MACEQ +with O +a O +flat O +specimen O +fabricated S-CONPRI +of O +3D-printed S-MANP +materials O +was O +analyzed O +. O + + +An O +experimental S-CONPRI +setup O +has O +been O +designed S-FEAT +in O +order O +to O +capture O +the O +motion O +of O +the O +rod S-MACEQ +during O +the O +impact S-CONPRI +using O +a O +high-speed O +camera S-MACEQ +. O + + +Image S-CONPRI +processing O +algorithms S-CONPRI +were O +developed O +to O +estimate O +the O +velocity O +before O +and O +after O +the O +impact S-CONPRI +as S-MATE +well O +as S-MATE +the O +coefficient O +of O +restitution O +. O + + +Also O +, O +permanent O +deformations S-CONPRI +after O +the O +impact S-CONPRI +were O +scanned O +with O +an O +optical S-CHAR +profilometer O +. O + + +In O +this O +work O +, O +a O +theoretical S-CONPRI +formulation O +for O +the O +contact S-APPL +force O +during O +the O +impact S-CONPRI +is O +proposed O +. O + + +The O +impact S-CONPRI +was O +divided O +into O +two O +phases O +, O +compression S-PRO +and O +restitution O +, O +in O +which O +materials S-CONPRI +considered O +elastic–plastic O +in O +the O +first O +and O +fully O +elastic S-PRO +in O +the O +second O +one O +. O + + +Results O +show O +a O +good O +correlation O +between O +the O +proposed O +formulation O +for O +the O +contact S-APPL +force O +and O +the O +behavior O +of O +materials S-CONPRI +. O + + +The O +objective O +of O +this O +work O +is O +to O +detect O +in B-CONPRI +situ E-CONPRI +the O +occurrence O +of O +lack-of-fusion O +defects S-CONPRI +in O +titanium B-MATE +alloy E-MATE +( O +Ti-6Al-4 B-MATE +V E-MATE +) O +parts O +made O +using O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +We O +use O +data S-CONPRI +from O +two O +types O +of O +in-process O +sensors S-MACEQ +, O +namely O +, O +a O +spectrometer O +and O +an O +optical S-CHAR +camera S-MACEQ +which O +are O +integrated O +into O +an O +Optomec O +MR-7 O +DED B-MACEQ +machine E-MACEQ +. O + + +Both O +sensors S-MACEQ +are O +focused O +on O +capturing O +the O +dynamic S-CONPRI +phenomena O +around O +the O +melt B-MATE +pool E-MATE +region O +. O + + +To O +detect O +lack-of-fusion O +defects S-CONPRI +, O +we O +fuse S-MANP +( O +combine O +) O +the O +data S-CONPRI +from O +the O +in-process O +sensors S-MACEQ +invoking O +the O +concept O +of O +Kronecker O +product O +of O +graphs O +. O + + +Subsequently O +, O +we O +use O +the O +features O +derived O +from O +the O +graph O +Kronecker O +product O +as S-MATE +inputs O +to O +a O +machine B-ENAT +learning I-ENAT +algorithm E-ENAT +to O +predict O +the O +severity O +( O +class O +or O +level O +) O +of O +average S-CONPRI +length O +of O +lack-of-fusion O +defects S-CONPRI +within O +a O +layer S-PARA +, O +which O +is O +obtained O +from O +offline O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +of O +the O +test O +parts O +. O + + +Accordingly O +, O +this O +work O +demonstrates O +the O +use O +of O +heterogeneous S-CONPRI +in-process O +sensing S-APPL +and O +online O +data B-CONPRI +analytics E-CONPRI +for O +in B-CONPRI +situ E-CONPRI +detection O +of O +defects S-CONPRI +in O +DED S-MANP +metal O +AM B-MANP +process E-MANP +. O + + +An O +extrusion-based O +additive B-MANP +manufacturing I-MANP +process E-MANP +, O +called O +the O +Ceramic S-MATE +On-Demand O +Extrusion S-MANP +( O +CODE O +) O +process S-CONPRI +, O +for O +producing O +three-dimensional S-CONPRI +ceramic S-MATE +components O +with O +near O +theoretical S-CONPRI +density S-PRO +is O +introduced O +in O +this O +paper O +. O + + +In O +this O +process S-CONPRI +, O +an O +aqueous O +paste O +of O +ceramic S-MATE +particles O +with O +a O +very O +low O +binder S-MATE +content O +( O +< O +1 O +vol O +% O +) O +is O +extruded S-MANP +through O +a O +moving O +nozzle S-MACEQ +at O +room O +temperature S-PARA +. O + + +After O +a O +layer S-PARA +is O +deposited O +, O +it O +is O +surrounded O +by O +oil S-MATE +( O +to O +a O +level O +just O +below O +the O +top O +surface S-CONPRI +of O +most O +recent O +layer S-PARA +) O +to O +preclude O +non-uniform O +evaporation S-CONPRI +from O +the O +sides O +. O + + +Infrared S-CONPRI +radiation O +is O +then O +used O +to O +partially O +, O +and O +uniformly O +, O +dry O +the O +just-deposited O +layer S-PARA +so O +that O +the O +yield B-PRO +stress E-PRO +of O +the O +paste O +increases O +and O +the O +part O +maintains O +its O +shape O +. O + + +The O +same O +procedure O +is O +repeated O +for O +every O +layer S-PARA +until O +part O +fabrication S-MANP +is O +completed O +. O + + +Several O +sample S-CONPRI +parts O +for O +various O +applications O +were O +produced O +using O +this O +process S-CONPRI +and O +their O +properties S-CONPRI +were O +obtained O +. O + + +The O +results O +indicate O +that O +the O +proposed O +method O +enables O +fabrication S-MANP +of O +large O +, O +dense O +ceramic S-MATE +parts O +with O +complex B-CONPRI +geometries E-CONPRI +. O + + +This O +manuscript S-CONPRI +expands O +the O +existing O +framework S-CONPRI +for O +single-material O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +printed O +dissolvable O +supports S-APPL +to O +Inconel B-MATE +718 E-MATE +( O +IN718 S-MATE +) O +. O + + +Prior O +work O +with O +stainless B-MATE +steel E-MATE +leveraged O +a O +sensitization O +heat B-MANP +treatment E-MANP +using O +sodium S-MATE +hexacyanoferrate O +to O +precipitate S-MATE +chromium B-MATE +carbides E-MATE +over O +the O +top O +100 O +μm O +to O +200 O +μm O +of O +material S-MATE +, O +decreasing O +the O +corrosion B-CONPRI +resistance E-CONPRI +within O +this O +top O +layer S-PARA +relative O +to O +the O +bulk O +material S-MATE +. O + + +The O +component S-MACEQ +is O +then O +etched O +at O +an O +anodic O +potential O +with O +a O +high O +selectivity O +toward O +the O +“ O +sensitized O +” O +surface S-CONPRI +over O +the O +base O +component S-MACEQ +material O +. O + + +This O +creates O +an O +etching S-MANP +process O +that O +self-terminates O +once O +the O +sensitized O +layer S-PARA +is O +removed O +. O + + +Additionally O +, O +the O +surface B-PRO +roughness E-PRO +of O +the O +component S-MACEQ +is O +often O +improved O +once O +the O +sensitized O +region O +is O +removed O +. O + + +In O +this O +work O +, O +two O +different O +sensitization O +heat S-CONPRI +schedules O +were O +investigated O +: O +750 O +°C O +for O +24 O +h O +to O +understand O +the O +impact S-CONPRI +of O +preferential O +chromium B-MATE +carbide E-MATE +precipitation O +and O +1050 O +°C O +for O +8 O +h O +to O +understand O +the O +impact S-CONPRI +of O +primary O +carbide S-MATE +precipitations O +. O + + +At O +1050 O +°C O +, O +the O +formation O +of O +a O +protective O +oxide S-MATE +scale O +inhibits O +material S-MATE +removal O +in O +an O +electrolyte S-APPL +of O +0.48 O +M O +HNO3 O +. O + + +At O +750 O +°C O +, O +70 O +μm O +of O +material S-MATE +is O +removed O +after O +quenching S-MANP +to O +avoid O +the O +precipitation S-CONPRI +of O +corrosion S-CONPRI +resistant O +oxides S-MATE +. O + + +This O +manuscript B-CONPRI +investigates E-CONPRI +the O +effect O +of O +targeting O +different O +carbide S-MATE +precipitation O +regimes O +and O +oxides S-MATE +to O +produce O +an O +ideal O +microstructure S-CONPRI +for O +dissolvable O +supports S-APPL +post-sensitization O +. O + + +To O +demonstrate O +the O +utility O +of O +the O +process S-CONPRI +, O +the O +supports S-APPL +from O +a O +mock O +IN718 S-MATE +turbine O +blade O +were O +removed O +using O +this O +process S-CONPRI +. O + + +One O +of O +the O +next O +avenues O +for O +Additive B-MANP +Manufacturing E-MANP +to O +develop O +is O +that O +of O +multi-material B-CONPRI +deposition E-CONPRI +in O +order O +to O +add O +functionality O +to O +the O +already O +complex B-CONPRI +geometries E-CONPRI +that O +are O +capable O +of O +being O +manufactured S-CONPRI +. O + + +The O +purpose O +of O +this O +study O +was O +to O +investigate O +the O +effects O +of O +solid O +surface B-PRO +tensions E-PRO +, O +σsg O +− O +σsl O +, O +on O +the O +quality S-CONPRI +of O +printed O +lines O +, O +using O +30–40 O +nm O +silver S-MATE +nanofluid O +ink S-MATE +. O + + +The O +solid O +surface B-PRO +tensions E-PRO +of O +silver B-MATE +ink E-MATE +on O +glass S-MATE +and O +polytetrofluoroethylene O +( O +PTFE S-MATE +) O +substrates O +were O +determined O +theoretically O +, O +knowing O +characteristics O +of O +droplet S-CONPRI +. O + + +Meanwhile O +, O +a O +Dimatix O +printer S-MACEQ +with O +nozzles S-MACEQ +of O +size O +of O +21.5 O +μm O +was O +used O +to O +print S-MANP +conductive O +lines O +on O +smooth O +glass S-MATE +and O +PTFE S-MATE +substrates O +. O + + +The O +printed O +lines O +on O +glass S-MATE +were O +observed O +to O +be S-MATE +continuous O +with O +high O +quality S-CONPRI +of O +triple O +line O +, O +which O +was O +attributed O +to O +the O +high O +solid O +surface B-PRO +tensions E-PRO +of O +silver S-MATE +nanofluid O +ink S-MATE +on O +glass S-MATE +substrates O +. O + + +The O +solid O +surface B-PRO +tensions E-PRO +of O +silver S-MATE +nanofluid O +ink S-MATE +were O +relatively O +low O +on O +PTFE S-MATE +, O +as S-MATE +results O +the O +printed O +lines O +were O +discontinuous O +. O + + +The O +solid O +surface B-PRO +tensions E-PRO +were O +introduced O +as S-MATE +a O +reliable O +criterion O +to O +predict O +the O +printability S-PARA +of O +nanofluids O +. O + + +The O +distribution S-CONPRI +of O +silver S-MATE +nanoparticles S-CONPRI +and O +layering O +phenomenon O +in O +silver S-MATE +nanofluid O +triple O +region O +on O +glass S-MATE +substrate O +was O +clearly O +observed O +, O +using O +environmental O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +ESEM O +) O +for O +the O +first O +time O +. O + + +In O +addition O +to O +disjoining O +pressure S-CONPRI +, O +the O +size O +of O +droplet S-CONPRI +and O +affinity O +of O +nanofluid O +for O +substrate S-MATE +were O +observed O +to O +have O +important O +influences O +on O +spreading O +of O +nanoparticles S-CONPRI +in O +triple O +region O +. O + + +Manufacturers O +struggle O +to O +produce O +low-cost O +, O +robust O +and O +intricate O +components S-MACEQ +in O +small B-PARA +batches E-PARA +. O + + +Additive S-MATE +processes O +like O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +inexpensively O +generate O +such O +complex B-CONPRI +geometries E-CONPRI +, O +but O +potential O +defects S-CONPRI +may O +limit S-CONPRI +these O +components S-MACEQ +’ O +viability O +in O +critical O +applications O +. O + + +We O +present O +a O +high-accuracy O +, O +high-throughput O +and O +low-cost O +approach O +to O +automated O +non-destructive B-CHAR +testing E-CHAR +( O +NDT S-CONPRI +) O +for O +FFF S-MANP +interlayer O +delamination S-CONPRI +. O + + +This O +Artificially O +Intelligent O +( O +AI O +) O +approach O +utilizes O +Flash S-MATE +Thermography O +( O +FT O +) O +data S-CONPRI +processed O +with O +Thermographic O +Signal O +Reconstruction S-CONPRI +( O +TSR O +) O +. O + + +A O +Deep O +Neural B-CONPRI +Network E-CONPRI +( O +DNN O +) O +attains O +95.4 O +% O +per-pixel O +accuracy S-CHAR +when O +differentiating O +four O +delamination S-CONPRI +severities O +5 O +mm S-MANP +below O +the O +surface S-CONPRI +in O +PolyLactic B-MATE +Acid E-MATE +( O +PLA S-MATE +) O +widgets O +, O +and O +98.6 O +% O +accuracy S-CHAR +in O +differentiating O +acceptable O +from O +unacceptable O +states O +for O +the O +same O +components S-MACEQ +. O + + +Automation S-CONPRI +supports O +time- O +and O +cost-efficient O +inspection S-CHAR +for O +delamination B-CONPRI +defects E-CONPRI +in O +100 O +% O +of O +widgets O +, O +supporting O +FFF S-MANP +'s O +use O +in O +critical O +and O +lot-size O +one O +applications O +. O + + +To O +identify O +the O +dominant O +contributing O +factor O +in O +the O +anomalously O +high O +strength S-PRO +of O +Al–Si-based O +alloys S-MATE +fabricated O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +, O +microstructural S-CONPRI +characteristics O +of O +a O +SLM-built O +Al–10Si–0.3 O +Mg B-MATE +alloy E-MATE +( O +AlSi10Mg S-MATE +) O +and O +their O +changes O +upon O +annealing S-MANP +at O +elevated O +temperatures S-PARA +were O +investigated O +. O + + +The O +as-built O +AlSi10Mg B-MATE +alloy E-MATE +exhibits O +a O +peculiar O +microstructure S-CONPRI +comprising O +of O +a O +number O +of O +columnar O +α-Al O +( O +fcc S-CONPRI +) O +phase S-CONPRI +with O +concentrated O +Si S-MATE +in O +solution S-CONPRI +. O + + +At O +elevated O +temperatures S-PARA +, O +a O +number O +of O +Si S-MATE +phase S-CONPRI +( O +diamond S-MATE +structure O +) O +precipitates S-MATE +consumed O +the O +solute O +Si S-MATE +in O +the O +columnar O +α-Al O +phase S-CONPRI +, O +but O +the O +microstructure S-CONPRI +of O +the O +α-Al O +matrix O +changed O +slightly O +. O + + +After O +annealing S-MANP +at O +elevated O +temperatures S-PARA +, O +the O +tensile B-PRO +strength E-PRO +of O +the O +as-built O +AlSi10Mg B-MATE +alloy E-MATE +substantially O +decreased O +accompanied O +by O +a O +reduction S-CONPRI +in O +the O +strain B-MANP +hardening E-MANP +rate O +. O + + +The O +supersaturated O +solid B-MATE +solution E-MATE +of O +the O +α-Al O +phase S-CONPRI +containing O +numerous O +nano-sized O +particles S-CONPRI +enhanced O +the O +strain B-MANP +hardening E-MANP +, O +resulting O +in O +the O +anomalous O +strengthening S-MANP +of O +the O +SLM-built O +AlSi10Mg B-MATE +alloy E-MATE +. O + + +The O +microstructural S-CONPRI +features O +were O +formed O +due O +to O +rapid B-MANP +solidification E-MANP +at O +an O +extremely O +high O +cooling B-PARA +rate E-PARA +in O +the O +SLM S-MANP +process S-CONPRI +, O +which O +provides O +important O +insights O +into O +controlling O +the O +strength S-PRO +of O +Al–Si-based O +alloys S-MATE +fabricated O +by O +SLM S-MANP +. O + + +The O +parametric O +design S-FEAT +of O +graded O +porous B-FEAT +scaffold E-FEAT +based O +on O +TMPS O +surfaces S-CONPRI +was O +realized O +. O + + +The O +mechanical S-APPL +performance O +of O +SLM S-MANP +scaffolds S-FEAT +was O +altered O +by O +tuning O +graded O +structures O +. O + + +Graded O +structure S-CONPRI +played O +a O +key O +role O +in O +influencing O +deformation S-CONPRI +behavior O +of O +scaffolds S-FEAT +. O + + +Optimized O +heat B-MANP +treatment E-MANP +conditions O +improved O +mechanical B-CONPRI +properties E-CONPRI +of O +SLM S-MANP +scaffolds S-FEAT +. O + + +The O +rapid O +development O +of O +additive B-MANP +manufacturing E-MANP +technology O +makes O +it O +possible O +to O +fabricate S-MANP +parts O +with O +complex O +inner O +structures O +, O +especially O +for O +functionally B-CONPRI +graded E-CONPRI +scaffolds O +( O +FGS O +) O +in O +the O +field O +of O +bone S-BIOP +tissue O +engineering S-APPL +. O + + +The O +parametric O +design S-FEAT +of O +FGS O +is O +of O +great O +significance O +to O +the O +in-depth O +study O +of O +the O +effects O +of O +structural O +parameters S-CONPRI +of O +porous S-PRO +bone B-BIOP +scaffolds E-BIOP +on O +their O +mechanical B-CONPRI +properties E-CONPRI +and O +rehabilitation O +of O +patients O +. O + + +The O +present O +study O +proposed O +a O +parametric O +design S-FEAT +method O +for O +FGS O +using O +a O +triply B-CONPRI +periodic I-CONPRI +minimal I-CONPRI +surface E-CONPRI +( O +TPMS O +) O +. O + + +Uniform O +and O +functionally B-CONPRI +graded E-CONPRI +samples O +were O +fabricated S-CONPRI +using O +selective B-MANP +laser I-MANP +melting E-MANP +of O +Ti-6Al-4V B-MATE +powder E-MATE +. O + + +The O +FGSs O +successfully O +realized O +flexible O +control O +of O +structural O +parameters S-CONPRI +and O +showed O +comparable O +mechanical B-CONPRI +properties E-CONPRI +and O +permeability S-PRO +with O +natural O +bone S-BIOP +tissue O +. O + + +Furthermore O +, O +heat B-MANP +treatment E-MANP +was O +verified O +to O +be S-MATE +an O +effective O +way O +to O +improve O +the O +ductility S-PRO +of O +TPMS-FGS O +. O + + +The O +deformation S-CONPRI +process O +and O +principal O +strain S-PRO +distribution S-CONPRI +of O +the O +FGSs O +were O +elucidated O +using O +a O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +method O +. O + + +The O +FGSs O +proposed O +in O +the O +present O +study O +showed O +great O +potential O +in O +orthopedic O +implant S-APPL +or O +bone-substituting O +biomaterials S-MATE +. O + + +Processing O +of O +Ti6Al4V S-MATE +and O +SS410 O +as S-MATE +a O +bimetallic O +joint S-CONPRI +using O +laser-based O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +system O +. O + + +Niobium S-MATE +( O +Nb S-MATE +) O +was O +used O +as S-MATE +a O +bond O +layer S-PARA +between O +the O +two O +immiscible O +base-materials O +. O + + +The O +bimetallic O +joint S-CONPRI +showed O +improved O +bond B-CONPRI +strength E-CONPRI +, O +both O +under O +compression S-PRO +and O +shear O +loading O +. O + + +Proof-of-concept O +part O +demonstrated O +the O +application O +of O +the O +bimetallic O +joint S-CONPRI +by O +welding S-MANP +base B-MATE +metals E-MATE +, O +end-to-end O +, O +to O +the O +joint S-CONPRI +. O + + +Bimetallic O +structures O +provide O +a O +unique O +solution S-CONPRI +to O +achieve O +site-specific O +functionalities O +and O +enhanced-property O +capabilities O +in O +engineering S-APPL +systems O +but O +suffer O +from O +bonding S-CONPRI +compatibility O +issues O +. O + + +Materials S-CONPRI +such O +as S-MATE +titanium O +alloy S-MATE +( O +Ti6Al4 O +V S-MATE +) O +and O +stainless B-MATE +steel E-MATE +( O +SS410 O +) O +have O +distinct O +attractive O +properties S-CONPRI +but O +are O +impossible O +to O +reliably O +weld S-FEAT +together O +using O +traditional O +processes S-CONPRI +. O + + +To O +this O +end O +, O +a O +laser-based O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +system O +was O +used O +to O +fabricate S-MANP +bimetallic O +joint S-CONPRI +of O +Ti6Al4 O +V S-MATE +and O +SS410 O +keeping O +niobium S-MATE +( O +Nb S-MATE +) O +as S-MATE +a O +diffusion S-CONPRI +barrier B-APPL +layer E-APPL +. O + + +Both O +shear O +and O +compression B-CHAR +tests E-CHAR +were O +used O +to O +characterize O +the O +joint S-CONPRI +’ O +s S-MATE +strength O +, O +and O +compared O +with O +the O +base O +materials S-CONPRI +. O + + +The O +bimetallic-joint O +shear O +and O +compressive O +yield B-PRO +strengths E-PRO +were O +419 O +± O +3 O +MPa S-CONPRI +( O +∼114 O +% O +of O +SS410 O +) O +and O +560 O +± O +4 O +MPa S-CONPRI +( O +∼169 O +% O +of O +SS410 O +) O +, O +respectively O +. O + + +The O +increase O +in O +interfacial O +shear O +and O +compressive O +yield B-PRO +strengths E-PRO +over O +the O +base O +material S-MATE +indicates O +strong O +metallurgical B-CONPRI +bonding E-CONPRI +between O +the O +base O +materials S-CONPRI +and O +the O +interlayer O +, O +Nb S-MATE +. O + + +Proof-of-concept O +part O +for O +direct O +application O +of O +the O +bimetallic O +joint S-CONPRI +was O +demonstrated O +by O +welding S-MANP +base B-MATE +metals E-MATE +, O +end-to-end O +, O +to O +the O +joint S-CONPRI +. O + + +The O +interfacial O +microstructures S-MATE +, O +elemental O +diffusion S-CONPRI +and O +phases O +, O +including O +failure B-PRO +modes E-PRO +were O +examined O +using O +secondary O +and O +backscatter O +electron O +imaging S-APPL +, O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +and O +energy B-CHAR +dispersive I-CHAR +spectroscopy E-CHAR +( O +EDS S-CHAR +) O +. O + + +The O +bimetallic-joint O +interfaces O +were O +free O +from O +brittle S-PRO +intermetallic O +compounds O +such O +as S-MATE +FeTi O +and O +Fe2Ti O +that O +are O +generally O +responsible O +for O +weak O +bond B-CONPRI +strength E-CONPRI +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +widely O +gaining O +popularity O +as S-MATE +an O +alternative O +manufacturing S-MANP +technique O +for O +complex O +and O +customized O +parts O +. O + + +SLM S-MANP +is O +a O +near B-MANP +net I-MANP +shape E-MANP +process O +with O +minimal O +post B-CONPRI +processing E-CONPRI +machining S-MANP +required O +dependent O +upon O +final O +application O +. O + + +The O +fact O +that O +SLM S-MANP +produces O +little O +waste O +and O +enables O +more O +optimal O +designs S-FEAT +also O +raises O +opportunities O +for O +environmental O +advantages O +. O + + +The O +use O +of O +aluminium S-MATE +( O +Al S-MATE +) O +alloys S-MATE +in O +SLM S-MANP +is O +still O +quite O +limited O +due O +to O +difficulties O +in O +processing O +that O +result O +in O +parts O +with O +high O +degrees B-CHAR +of I-CHAR +porosity E-CHAR +. O + + +However O +, O +Al B-MATE +alloys E-MATE +are O +favoured O +in O +many O +high-end O +applications O +for O +their O +exceptional O +strength S-PRO +and O +stiffness B-PRO +to I-PRO +weight I-PRO +ratio E-PRO +meaning O +that O +they O +are O +extensively O +used O +in O +the O +automotive S-APPL +and O +aerospace B-APPL +industries E-APPL +. O + + +This O +study O +investigates S-CONPRI +the O +windows O +of O +parameters S-CONPRI +required O +to O +produce O +high O +density S-PRO +parts O +from O +AlSi10Mg B-MATE +alloy E-MATE +using O +selective B-MANP +laser I-MANP +melting E-MANP +. O + + +Modelling S-ENAT +the O +thermal O +behaviour O +of O +the O +melt B-MATE +pool E-MATE +produced O +in O +Laser S-ENAT +Powder-Bed O +Fusion S-CONPRI +( O +L-PBF S-MANP +) O +processes S-CONPRI +is O +not O +an O +easy O +task O +, O +as S-MATE +many O +complex O +non-linear O +thermal O +phenomena O +are O +involved O +. O + + +An O +effective O +way O +to O +make O +the O +computational O +cost O +of O +these O +analyses O +affordable O +is O +to O +model S-CONPRI +powder O +and O +molten B-MATE +metal E-MATE +as S-MATE +continuous O +media O +, O +wherein O +all O +the O +heat B-CONPRI +transfer E-CONPRI +modes O +occurring O +in O +the O +liquid O +are O +simulated O +as S-MATE +lumped O +fictitious O +heat B-CONPRI +conduction E-CONPRI +. O + + +The O +augmentation O +factor O +used O +to O +enhance O +the O +thermal B-PRO +conductivity E-PRO +of O +the O +liquid O +is O +in O +general O +calibrated S-CONPRI +through O +experimental S-CONPRI +estimations O +of O +the O +melt B-MATE +pool E-MATE +size O +. O + + +The O +present O +work O +is O +aimed O +at O +devising O +a O +robust O +method O +for O +the O +calibration S-CONPRI +of O +such O +thermal O +parameters S-CONPRI +. O + + +A O +specific O +point O +of O +novelty O +of O +the O +present O +paper O +is O +the O +definition O +of O +a O +method O +to O +correlate O +surface B-PRO +roughness E-PRO +and O +numerically O +predicted B-CONPRI +melting E-CONPRI +pool O +size O +. O + + +This O +strategy O +is O +able O +to O +predict O +with O +good O +accuracy S-CHAR +the O +roughness S-PRO +of O +L-PBF S-MANP +fabricated S-CONPRI +parts O +and O +could O +pave O +the O +way O +for O +calibration S-CONPRI +strategies O +based O +on O +roughness S-PRO +measurements O +. O + + +For O +this O +purpose O +, O +a O +3-factor O +, O +3-level O +Design B-CONPRI +of I-CONPRI +Experiment E-CONPRI +( O +DoE O +) O +has O +been O +carried O +out O +to O +investigate O +melting S-MANP +pool O +size O +and O +roughness S-PRO +by O +changing O +the O +machine S-MACEQ +process O +parameters S-CONPRI +: O +laser B-PARA +power E-PARA +, O +hatch B-PARA +distance E-PARA +, O +time O +exposure S-CONPRI +. O + + +In O +this O +way O +, O +the O +calibration S-CONPRI +of O +the O +thermal B-CONPRI +properties E-CONPRI +is O +made O +less O +sensitive O +to O +the O +large O +uncertainty O +usually O +affecting O +the O +melt B-MATE +pool E-MATE +size O +measurements O +and O +the O +range S-PARA +of O +applicability O +of O +the O +thermal O +model S-CONPRI +is O +explored O +over O +a O +broad O +spectrum O +of O +L-PBF S-MANP +process O +parameters S-CONPRI +. O + + +Anisotropic S-PRO +and O +isotropic S-PRO +enhanced O +thermal B-PRO +conductivity E-PRO +approaches O +are O +applied O +in O +combination O +with O +a O +laser B-MACEQ +source E-MACEQ +modelled O +either O +as S-MATE +a O +2D S-CONPRI +or O +3D S-CONPRI +heat O +source S-APPL +, O +respectively O +. O + + +The O +latter O +approach O +proved O +to O +be S-MATE +more O +accurate S-CHAR +and O +robust O +against O +experimental S-CONPRI +uncertainties O +. O + + +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +, O +one O +of O +the O +most O +popular O +processes S-CONPRI +of O +3D B-MANP +printing E-MANP +, O +offers O +flexibility B-CONPRI +in I-CONPRI +manufacturing E-CONPRI +and O +introduces O +anisotropic S-PRO +properties O +to O +the O +final O +parts O +. O + + +With O +the O +use O +of O +Curvilinear O +Variable O +Stiffness S-PRO +( O +CVS O +) O +3D B-ENAT +printing I-ENAT +technology E-ENAT +, O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +manufactured B-CONPRI +products E-CONPRI +can O +be S-MATE +further O +improved O +and O +optimized O +. O + + +In O +this O +work O +, O +we O +demonstrate O +how O +CVS O +design S-FEAT +can O +improve O +open-hole O +tensile B-PRO +strength E-PRO +and O +failure S-CONPRI +strain O +of O +the O +manufactured S-CONPRI +specimens O +per O +ASTM O +D5766 O +. O + + +In O +addition O +, O +the O +ratio O +of O +the O +specimen O +width O +to O +the O +hole O +diameter S-CONPRI +is O +considered O +as S-MATE +a O +design S-FEAT +parameter O +and O +investigated O +. O + + +It O +is O +found O +that O +CVS O +design S-FEAT +improves O +the O +failure S-CONPRI +strength O +by O +38.0 O +% O +for O +a O +larger O +hole O +diameter B-CONPRI +configuration E-CONPRI +( O +from O +48.0 O +MPa S-CONPRI +to O +66.2 O +MPa S-CONPRI +) O +, O +while O +the O +improvement O +in O +failure S-CONPRI +strain O +( O +from O +0.0125 O +mm/mm O +to O +0.0130 O +mm/mm O +) O +is O +limited O +to O +only O +4.0 O +% O +. O + + +On O +the O +other O +hand O +, O +for O +a O +smaller O +hole O +diameter S-CONPRI +case O +, O +a O +substantial O +improvement O +of O +52.5 O +% O +in O +failure S-CONPRI +strain O +is O +obtained O +with O +the O +use O +of O +CVS O +design S-FEAT +( O +from O +0.0141 O +mm/mm O +to O +0.0215 O +mm/mm O +) O +, O +while O +16.7 O +% O +improvement O +in O +failure S-CONPRI +stress O +( O +76.0 O +MPa S-CONPRI +to O +88.6 O +MPa S-CONPRI +) O +is O +less O +pronounced O +. O + + +During O +part O +fabrication S-MANP +by O +laser S-ENAT +powder-bed O +fusion S-CONPRI +( O +L-PBF S-MANP +) O +, O +an O +Additive B-MANP +Manufacturing I-MANP +process E-MANP +, O +a O +large O +amount O +of O +energy O +is O +input O +from O +the O +laser S-ENAT +into O +the O +melt B-MATE +pool E-MATE +, O +causing O +generation O +of O +spatter S-CHAR +and O +condensate O +, O +both O +of O +which O +have O +the O +potential O +to O +settle O +in O +the O +surrounding O +powder-bed O +compromising O +its O +reusability O +. O + + +In O +this O +study O +, O +AISI B-MATE +304 E-MATE +L O +stainless B-MATE +steel E-MATE +powder S-MATE +is O +subjected O +to O +seven O +reuses O +in O +the O +L-PBF S-MANP +process O +to O +assess O +the O +changes O +in O +powder S-MATE +properties O +that O +occur O +as S-MATE +a O +result O +of O +successive O +recycling S-CONPRI +. O + + +The O +powder S-MATE +was O +characterized O +morphologically O +by O +particle S-CONPRI +size O +and O +shape O +distribution S-CONPRI +measurements O +, O +chemically O +through O +inert B-CONPRI +gas I-CONPRI +fusion E-CONPRI +for O +evaluation O +of O +oxygen S-MATE +content O +, O +and O +microstructurally O +by O +X-ray B-CHAR +diffraction E-CHAR +for O +phase S-CONPRI +identification O +. O + + +The O +evolution S-CONPRI +in O +powder S-MATE +properties O +was O +used O +to O +explain O +observed O +performance S-CONPRI +differences O +obtained O +by O +the O +Hausner O +ratio O +and O +a O +Revolution O +Powder S-MATE +Analyzer O +for O +quantifying O +flowability O +. O + + +The O +results O +show O +that O +recycled S-CONPRI +powder S-MATE +coarsens O +and O +becomes O +more O +spherical S-CONPRI +, O +accrues O +oxygen S-MATE +, O +and O +accumulates O +delta O +ferrite S-MATE +as S-MATE +it O +is O +reused O +. O + + +Due O +to O +the O +change O +in O +powder S-MATE +morphology S-CONPRI +, O +recycled S-CONPRI +powder S-MATE +exhibited O +improved O +flowability O +in O +comparison O +to O +the O +virgin B-MATE +powder E-MATE +. O + + +The O +energy O +per O +layer S-PARA +was O +found O +to O +be S-MATE +critical O +factor O +to O +print S-MANP +fully B-PARA +dense E-PARA +AlSi12 S-MATE +samples O +using O +SLM S-MANP +process S-CONPRI +. O + + +The O +printing O +area S-PARA +along O +the O +build B-PARA +direction E-PARA +varies O +when O +a O +sample S-CONPRI +is O +built O +in O +different O +orientations S-CONPRI +. O + + +The O +anisotropy S-PRO +of O +SLM-built O +samples S-CONPRI +corresponds O +to O +the O +variable O +energy O +per O +layer S-PARA +and O +printing O +area S-PARA +. O + + +Fully B-PARA +dense E-PARA +SLM-built O +AlSi12 S-MATE +samples O +were O +printed O +by O +using O +energy O +per O +layer S-PARA +in O +an O +optimum O +range S-PARA +. O + + +The O +anisotropy S-PRO +in O +the O +tensile B-PRO +properties E-PRO +of O +AlSi12 S-MATE +alloy S-MATE +fabricated O +using O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +additive B-MANP +manufacturing I-MANP +process E-MANP +was O +investigated O +. O + + +The O +tensile S-PRO +samples S-CONPRI +were O +printed O +in O +three O +different O +orientations S-CONPRI +, O +horizontal O +( O +H O +- O +0° O +) O +, O +inclined O +( O +I O +- O +45° O +) O +, O +and O +vertical S-CONPRI +( O +V S-MATE +- O +90° O +) O +, O +and O +found O +to O +exhibit O +yield B-PRO +strength E-PRO +between O +225 O +MPa S-CONPRI +and O +263 O +MPa S-CONPRI +, O +tensile B-PRO +strength E-PRO +between O +260 O +MPa S-CONPRI +and O +365 O +MPa S-CONPRI +, O +and O +ductility S-PRO +between O +1 O +and O +4 O +% O +, O +showing O +distinct O +fracture S-CONPRI +patterns O +. O + + +It O +was O +established O +that O +the O +build B-PARA +orientation E-PARA +had O +insignificant O +effect O +on O +the O +microstructural S-CONPRI +characteristics O +of O +the O +SLM-printed O +samples S-CONPRI +, O +while O +XRD S-CHAR +phase S-CONPRI +analysis O +showed O +variations S-CONPRI +in O +the O +Al S-MATE +( O +111 O +) O +and O +Al S-MATE +( O +200 O +) O +peak O +intensities O +. O + + +Consequently O +, O +the O +anisotropy S-PRO +in O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +SLM-printed O +AlSi12 S-MATE +samples O +was O +attributed O +to O +the O +differences O +in O +their O +relative B-PRO +density E-PRO +. O + + +Although O +the O +energy B-PARA +density E-PARA +was O +kept O +constant O +when O +printing O +the O +samples S-CONPRI +along O +different O +orientations S-CONPRI +, O +the O +“ O +energy O +per O +layer S-PARA +” O +was O +found O +to O +be S-MATE +different O +owing O +to O +the O +variation S-CONPRI +in O +the O +printing O +area S-PARA +along O +the O +build B-PARA +direction E-PARA +. O + + +Further O +investigation O +on O +the O +effect O +of O +printing O +area S-PARA +, O +and O +correspondingly O +energy O +per O +layer S-PARA +, O +on O +the O +relative B-PRO +density E-PRO +was O +carried O +out O +. O + + +It O +was O +found O +that O +energy O +per O +layer S-PARA +in O +the O +range S-PARA +of O +504–895 O +J O +yielded O +≥99.8 O +% O +relatively O +dense O +AlSi12 S-MATE +SLM-printed O +samples S-CONPRI +. O + + +This O +study O +puts O +forth O +a O +new O +idea O +that O +the O +density S-PRO +of O +the O +SLM-printed O +samples S-CONPRI +could O +be S-MATE +controlled O +using O +energy O +per O +layer S-PARA +as S-MATE +an O +input O +process B-CONPRI +parameter E-CONPRI +. O + + +Polyvinylidene O +fluoride O +( O +PVDF O +) O +is O +a O +polymer S-MATE +prized O +for O +its O +unique O +material B-CONPRI +properties E-CONPRI +, O +including O +a O +high O +resistance S-PRO +to O +corrosive S-PRO +acids O +such O +as S-MATE +HCL O +and O +HF S-MATE +and O +its O +piezoelectric O +potential O +based O +on O +the O +proper O +microstructure S-CONPRI +arrangement O +. O + + +In O +this O +work O +, O +the O +effects O +of O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +routine O +parameters S-CONPRI +on O +printed O +PVDF O +film O +properties S-CONPRI +were O +investigated O +using O +a O +variety O +of O +experimental S-CONPRI +methods O +. O + + +The O +influence O +of O +in-fill O +angle O +( O +0° O +, O +45° O +, O +and O +90° O +) O +on O +the O +effective O +Young O +’ O +s S-MATE +Modulus O +, O +Poisson O +’ O +s S-MATE +ratio O +, O +and O +yield B-PRO +strength E-PRO +were O +evaluated O +using O +tensile B-CHAR +testing E-CHAR +and O +a O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +DIC S-CONPRI +) O +analysis O +. O + + +The O +phase S-CONPRI +content O +, O +in O +particular O +the O +β-phase O +amount O +, O +within O +the O +semi-crystalline O +PVDF O +films O +was O +determined O +as S-MATE +a O +function O +of O +processing O +parameters S-CONPRI +using O +the O +FTIR S-CHAR +method O +. O + + +Considered O +parameters S-CONPRI +included O +the O +extrusion S-MANP +temperature O +, O +horizontal O +speed O +, O +in-situ S-CONPRI +applied O +hot B-MACEQ +end E-MACEQ +voltage O +, O +and O +bed S-MACEQ +material O +. O + + +Results O +showed O +that O +higher O +β-phase O +content O +was O +associated O +with O +lower O +extrusion S-MANP +temperatures O +, O +faster O +extrusion B-PARA +rates E-PARA +, O +and O +higher O +hot B-MACEQ +end E-MACEQ +voltages O +. O + + +New O +advancements O +in O +3D B-MANP +printing E-MANP +enable O +manufacturing S-MANP +a O +solid O +part O +with O +spatially O +controlled O +and O +varying O +material B-CONPRI +properties E-CONPRI +; O +this O +research S-CONPRI +seeks O +to O +establish O +techniques O +for O +finding O +optimal O +designs S-FEAT +that O +use O +this O +new O +technology S-CONPRI +for O +the O +greatest O +structural O +benefit O +. O + + +We O +describe O +the O +use O +of O +a O +sequential O +quadratic O +programming O +based O +optimization S-CONPRI +solver O +to O +find O +an O +optimal O +distribution S-CONPRI +of O +material B-CONPRI +properties E-CONPRI +that O +minimize O +strain S-PRO +energy O +gradients O +, O +as S-MATE +calculated O +using O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +. O + + +This O +design S-FEAT +method O +is O +applied O +to O +the O +case O +of O +a O +flat O +thin O +plate O +with O +a O +hole O +, O +and O +has O +been O +proven O +to O +successfully O +reduce O +strain S-PRO +energy O +gradients O +and O +therefore O +stress B-CHAR +concentrations E-CHAR +. O + + +The O +optimally O +designed S-FEAT +plates O +are O +3D B-MANP +printed E-MANP +using O +a O +novel O +technology S-CONPRI +that O +uses O +vat B-MANP +polymerization E-MANP +technology S-CONPRI +. O + + +The O +computational B-ENAT +model E-ENAT +is O +validated O +with O +experiments O +. O + + +Enabling O +design S-FEAT +engineers O +to O +customize O +material B-CONPRI +properties E-CONPRI +around O +geometric O +discontinuities O +will O +provide O +greater O +flexibility S-PRO +in O +reducing O +stress B-CHAR +concentrations E-CHAR +without O +modifying O +geometry S-CONPRI +or O +adding O +additional O +supports S-APPL +. O + + +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS S-MANP +) O +is O +an O +additive B-MANP +manufacturing E-MANP +technique O +that O +belongs O +to O +the O +ASTM O +standardized O +directed B-MANP +energy I-MANP +deposition E-MANP +category O +. O + + +To O +date O +, O +very O +limited O +work O +has O +been O +conducted O +towards O +understanding O +the O +fatigue B-CONPRI +crack I-CONPRI +growth E-CONPRI +behavior O +of O +LENS S-MANP +fabricated S-CONPRI +materials O +, O +which O +hinders O +the O +widespread O +adoption O +of O +this O +technology S-CONPRI +for O +high-integrity O +structural O +applications O +. O + + +In O +this O +study O +, O +the O +propagation O +of O +a O +20 O +μm O +initial O +crack O +in O +LENS S-MANP +fabricated S-CONPRI +Ti-6Al-4V O +was O +captured O +in-situ S-CONPRI +, O +using O +high-energy O +synchrotron S-ENAT +x-ray O +microtomography O +. O + + +Fatigue B-CONPRI +crack I-CONPRI +growth E-CONPRI +( O +FCG O +) O +data S-CONPRI +were O +then O +determined O +from O +2D S-CONPRI +and O +3D S-CONPRI +tomography O +reconstructions O +, O +as S-MATE +well O +as S-MATE +from O +fracture S-CONPRI +surface O +striation S-FEAT +measurements O +using O +SEM S-CHAR +. O + + +The O +observed O +agreement O +demonstrates O +that O +x-ray B-CHAR +microtomography E-CHAR +and O +fractographic B-CHAR +analysis E-CHAR +using O +SEM S-CHAR +can O +be S-MATE +successfully O +combined O +to O +study O +the O +propagation O +behavior O +of O +fatigue S-PRO +cracks O +. O + + +A O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +of O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +LPBF S-MANP +) O +process S-CONPRI +applied O +to O +metallic B-MATE +alloys E-MATE +at O +a O +mesoscopic O +scale O +is O +presented O +. O + + +This O +Level-Set O +model S-CONPRI +allows O +to O +follow O +melt B-MATE +pool E-MATE +evolution S-CONPRI +and O +track O +development O +during O +building O +. O + + +A O +volume S-CONPRI +heat B-CONPRI +source E-CONPRI +model O +is O +used O +for O +laser/powder O +interaction O +considering O +the O +material S-MATE +absorption S-CONPRI +coefficients O +, O +while O +a O +surface S-CONPRI +heat B-CONPRI +source E-CONPRI +is O +used O +to O +consider O +the O +high O +laser B-CONPRI +energy E-CONPRI +absorption S-CONPRI +by O +dense O +metal B-MATE +alloys E-MATE +. O + + +Shrinkage S-CONPRI +during O +consolidation S-CONPRI +from O +powder S-MATE +to O +dense O +material S-MATE +is O +modelled O +by O +a O +compressible O +Newtonian O +constitutive O +law O +. O + + +An O +automatic O +remeshing S-CONPRI +strategy O +is O +also O +used O +to O +provide O +a O +good O +compromise O +between O +accuracy S-CHAR +and O +computing O +time O +. O + + +Different O +cases O +are O +investigated O +to O +demonstrate O +the O +influence O +of O +the O +vaporisation O +phenomena O +, O +of O +material B-CONPRI +properties E-CONPRI +and O +of O +laser B-ENAT +scan E-ENAT +strategy O +on O +bead B-CONPRI +morphology E-CONPRI +. O + + +Due O +to O +the O +layer-based O +nature O +of O +the O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +process S-CONPRI +, O +part O +surfaces S-CONPRI +oriented O +in O +space O +at O +varying O +angles O +with O +respect O +to O +the O +build B-PARA +direction E-PARA +are O +differently O +affected O +by O +a O +wide O +array O +of O +manufacturing-induced O +phenomena O +( O +staircase O +effects O +, O +spatter S-CHAR +, O +particles S-CONPRI +, O +etc O +. O + + +For O +assessing O +surface B-CONPRI +topography E-CONPRI +of O +PBF S-MANP +surfaces O +most O +researchers O +have O +looked O +at O +surface B-FEAT +texture E-FEAT +parameters S-CONPRI +( O +profile S-FEAT +- O +ISO S-MANS +4287 O +and O +areal O +- O +ISO S-MANS +25178−2 O +) O +. O + + +Texture S-FEAT +parameters S-CONPRI +provide O +useful O +summaries O +of O +surface-wide O +properties S-CONPRI +, O +but O +do O +not O +allow O +the O +analysis O +to O +focus O +on O +specific O +topographic O +formations O +of O +interest O +. O + + +In O +this O +work O +, O +the O +topography S-CHAR +of O +electron B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +( O +EBPBF O +) O +surfaces S-CONPRI +as S-MATE +a O +function O +of O +orientation S-CONPRI +with O +respect O +to O +the O +build B-PARA +direction E-PARA +was O +investigated O +using O +a O +combined O +approach O +consisting O +of O +both O +texture S-FEAT +parameters S-CONPRI +and O +feature-based O +characterisation O +. O + + +A O +custom-designed O +test O +part O +featuring O +surfaces S-CONPRI +at O +different O +orientations S-CONPRI +was O +measured O +with O +a O +focus O +variation S-CONPRI +instrument O +. O + + +A O +feature-based O +characterisation O +pipeline O +was O +implemented O +for O +the O +identification O +, O +isolation O +and O +geometrical O +characterisation O +of O +spatter S-CHAR +formations O +and O +particles S-CONPRI +present O +on O +the O +as-built O +surfaces S-CONPRI +. O + + +The O +surfaces S-CONPRI +deprived O +of O +the O +identified O +features O +were O +then O +characterised O +by O +means O +of O +conventional O +ISO S-MANS +25178−2 O +texture S-FEAT +parameters S-CONPRI +. O + + +The O +results O +confirm O +that O +combining O +feature-based O +characterisation O +with O +conventional O +analysis O +through O +texture S-FEAT +parameters S-CONPRI +creates O +new O +perspectives O +for O +looking O +at O +EBPBF O +surfaces S-CONPRI +, O +thus O +better O +supporting O +future O +research S-CONPRI +endeavours O +aimed O +at O +achieving O +a O +more O +comprehensive O +insight O +on O +the O +nature O +of O +EBPBF O +surfaces S-CONPRI +. O + + +For O +the O +first O +time O +quantitative S-CONPRI +results O +are O +provided O +on O +number O +, O +shape O +and O +localisation O +of O +spatter S-CHAR +and O +other O +particles S-CONPRI +in O +EBPBF O +surfaces S-CONPRI +as S-MATE +a O +function O +of O +build B-PARA +orientation E-PARA +, O +and O +texture S-FEAT +parameters S-CONPRI +are O +provided O +that O +describe O +the O +fabricated S-CONPRI +surfaces O +in O +a O +more O +reliable O +way O +as S-MATE +particles O +and O +spatter S-CHAR +formations O +have O +been O +removed O +. O + + +Unimodal O +powder S-MATE +samples O +were O +used O +in O +the O +laser B-MANP +sintering E-MANP +process O +. O + + +Different O +powder B-MATE +particle E-MATE +size O +and O +laser B-ENAT +scan E-ENAT +speeds O +were O +used O +. O + + +Microphotography O +, O +bulk O +density S-PRO +and O +tensile B-PRO +strength E-PRO +of O +artefact O +were O +measured O +. O + + +Neck O +size O +and O +strength S-PRO +were O +estimated O +with O +the O +Rumpf O +model S-CONPRI +for O +the O +strength S-PRO +of O +powder B-MATE +aggregates E-MATE +. O + + +Sintering S-MANP +temperatures O +were O +estimated O +with O +the O +Frenkel O +model S-CONPRI +for O +the O +effect O +of O +time O +on O +the O +sintering S-MANP +process S-CONPRI +. O + + +Selective B-MANP +Laser I-MANP +Sintering E-MANP +( O +SLS S-MANP +) O +of O +ceramic B-MATE +powders E-MATE +is O +studied O +in O +order O +to O +understand O +how O +the O +initial O +material B-CONPRI +properties E-CONPRI +and O +the O +process S-CONPRI +conditions O +affect O +the O +degree O +of O +sintering/melting O +and O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +sintered S-MANP +material S-MATE +. O + + +Unimodal O +powder S-MATE +samples O +of O +different O +narrow O +particle B-CONPRI +size I-CONPRI +distributions E-CONPRI +between O +16 O +and O +184 O +μm O +were O +sintered S-MANP +with O +a O +40 O +W O +CO2 S-MATE +laser O +, O +using O +laser B-ENAT +scan E-ENAT +speeds O +of O +either O +50 O +or O +100 O +mm S-MANP +s−1 O +and O +, O +in O +both O +cases O +, O +a O +scanning S-CONPRI +energy O +of O +160 O +J O +m−1 O +. O + + +The O +sintered S-MANP +material S-MATE +was O +studied O +by O +means O +of O +optical S-CHAR +and O +SEM S-CHAR +microphotography O +and O +characterized O +in O +terms O +of O +bulk O +density S-PRO +and O +tensile B-PRO +strength E-PRO +. O + + +The O +Rumpf O +approach O +to O +relate O +interparticle O +forces S-CONPRI +to O +the O +strength S-PRO +of O +powder S-MATE +agglomerates O +was O +used O +in O +this O +work O +to O +estimate O +the O +average S-CONPRI +strength O +of O +the O +sintered S-MANP +interparticle O +contacts S-APPL +starting O +from O +the O +tensile B-PRO +strength E-PRO +of O +specimens O +. O + + +In O +turn O +, O +the O +average S-CONPRI +strength O +of O +the O +neck O +contact S-APPL +was O +used O +to O +estimate O +the O +size O +of O +the O +neck O +of O +fused S-CONPRI +material O +between O +two O +sintered S-MANP +particles S-CONPRI +. O + + +These O +data S-CONPRI +coupled O +with O +the O +Frenkel O +model S-CONPRI +for O +particle S-CONPRI +sintering O +allowed O +an O +estimate O +of O +the O +sintering S-MANP +temperature O +for O +the O +different O +experimental S-CONPRI +conditions O +tested O +. O + + +The O +temperatures S-PARA +found O +are O +consistent O +with O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +of O +the O +material S-MATE +used O +. O + + +The O +effect O +of O +particle S-CONPRI +size O +and O +scanning B-PARA +speed E-PARA +is O +assessed O +and O +discussed O +. O + + +The O +Z O +axis O +table O +motion O +errors S-CONPRI +and O +laser S-ENAT +positioning O +errors S-CONPRI +an O +EOSINT O +M280 O +were O +evaluated O +using O +a O +set S-APPL +of O +standard S-CONPRI +metrology S-CONPRI +techniques O +and O +instrumentation O +. O + + +While O +the O +linear O +displacement O +error S-CONPRI +of O +the O +table O +is O +quite O +low O +( O +4.5 O +μm O +) O +, O +straightness S-CONPRI +, O +yaw O +and O +pitch O +errors S-CONPRI +on O +the O +other O +hand O +were O +significantly O +higher O +and O +may O +contribute O +from O +20 O +to O +30 O +microns O +of O +form O +and O +orientation S-CONPRI +tolerances O +over O +a O +large O +size O +build.The O +performance S-CONPRI +of O +the O +laser S-ENAT +positioning O +system O +was O +much O +worse O +. O + + +A O +designed S-FEAT +artifact O +was O +produced O +, O +and O +used O +to O +evaluate O +the O +laser S-ENAT +performance O +against O +a O +set S-APPL +of O +tolerance B-FEAT +controls E-FEAT +extracted S-CONPRI +from O +the O +ASME O +Y14.5-2009 O +Standard S-CONPRI +. O + + +The O +largest O +tolerance B-PARA +magnitude E-PARA +( O +239 O +μm O +) O +was O +calculated O +as S-MATE +the O +combined O +effect O +of O +location O +, O +orientation S-CONPRI +, O +size O +and O +form O +errors S-CONPRI +in O +the O +trace O +of O +a O +large O +quadrifolium O +etched O +over O +the O +working O +area S-PARA +of O +the O +laser S-ENAT +. O + + +The O +errors S-CONPRI +measured O +in O +this O +research S-CONPRI +are O +substantial O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +was O +utilized O +to O +fabricate S-MANP +Sc O +and O +Zr S-MATE +modified O +Al-Mg B-MATE +alloy E-MATE +. O + + +Different O +precipitation S-CONPRI +behavior O +between O +various O +scan B-PARA +speeds E-PARA +are O +characterized O +by O +SEM S-CHAR +and O +TEM S-CHAR +. O + + +Significant O +improvement O +of O +hardness S-PRO +is O +evaluated O +and O +explained O +under O +a O +relative O +low O +scan B-PARA +speed E-PARA +. O + + +Relationships O +between O +scan B-PARA +speed E-PARA +, O +precipitate S-MATE +distribution S-CONPRI +, O +and O +the O +resultant O +mechanical B-CONPRI +properties E-CONPRI +are O +elucidated O +. O + + +The O +interest O +of O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +Al-based O +alloys S-MATE +for O +lightweight S-CONPRI +applications O +, O +especially O +the O +rare O +earth O +element S-MATE +Sc O +modified O +Al-Mg B-MATE +alloy E-MATE +, O +is O +increasing O +. O + + +In O +this O +work O +, O +high-performance O +Al-Mg-Sc-Zr O +alloy S-MATE +was O +successfully O +fabricated S-CONPRI +by O +SLM S-MANP +. O + + +The O +phase S-CONPRI +identification O +, O +densification S-MANP +behavior O +, O +precipitate S-MATE +distribution S-CONPRI +and O +mechnical O +properties S-CONPRI +of O +the O +as-fabricated O +parts O +at O +a O +wide O +range S-PARA +of O +processing O +parameters S-CONPRI +were O +carefully O +characterized O +. O + + +Meanwhile O +, O +the O +evolution S-CONPRI +of O +nanoprecipitation O +behavior O +under O +various O +scan B-PARA +speeds E-PARA +is O +revealed O +and O +TEM S-CHAR +analysis O +of O +precipitates S-MATE +shows O +that O +a O +small O +amount O +of O +spherical S-CONPRI +nanoprecipitates O +Al3 O +( O +Sc O +, O +Zr S-MATE +) O +were O +embedded O +at O +the O +bottom O +of O +the O +molten B-CONPRI +pool E-CONPRI +using O +a O +low O +scan B-PARA +speed E-PARA +. O + + +While O +no O +precipitates S-MATE +were O +found O +in O +the O +matrix O +using O +a O +relatively O +high O +scan B-PARA +speed E-PARA +due O +to O +the O +combined O +effects O +of O +the O +variation S-CONPRI +of O +Marangoni O +convection O +vector O +, O +ultrashort O +lifetime O +of O +liquid O +and O +the O +rapid O +cooling B-PARA +rate E-PARA +. O + + +An O +increased O +hardness S-PRO +and O +a O +reduced O +wear S-CONPRI +rate O +of O +94 O +HV0.2 O +and O +1.74 O +× O +10−4 O +mm3N-1 O +m-1 O +were O +resultantly O +obtained O +respectively O +as S-MATE +a O +much O +lower O +scan B-PARA +speed E-PARA +was O +applied O +. O + + +A O +relationship O +between O +the O +processing O +parameters S-CONPRI +, O +the O +surface B-PRO +tension E-PRO +, O +the O +convection O +flow O +, O +the O +precipitation S-CONPRI +distribution S-CONPRI +and O +the O +resultant O +mechanical B-CONPRI +properties E-CONPRI +has O +been O +well O +established O +, O +demonstrating O +that O +the O +high-performance O +of O +SLM-processed O +Al-Mg-Sc-Zr O +alloy S-MATE +could O +be S-MATE +tailored O +by O +controlling O +the O +distribution S-CONPRI +of O +nanoprecipitates O +. O + + +Continuous O +carbon B-MATE +nanotube E-MATE +( O +CNT S-MATE +) O +yarn B-MATE +filaments E-MATE +can O +be S-MATE +employed O +as S-MATE +an O +inherently O +multifunctional O +feedstock S-MATE +for O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +With O +this O +material S-MATE +, O +it O +becomes O +possible O +to O +use O +a O +single O +material S-MATE +to O +impart O +multiple O +functionalities O +in O +components S-MACEQ +and O +take O +advantage O +of O +the O +tailorability O +offered O +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +over O +conventional O +fabrication S-MANP +techniques O +. O + + +Some O +of O +the O +challenges O +associated O +with O +coupling O +this O +emerging O +material S-MATE +with O +advanced O +processing O +are O +addressed O +here O +through O +the O +fabrication S-MANP +and O +characterization O +of O +additively B-MANP +manufactured E-MANP +functional O +objects O +. O + + +Continuous O +CNT S-MATE +yarn O +reinforced S-CONPRI +Ultem® O +specimens O +are O +characterized O +to O +determine O +their O +mechanical S-APPL +and O +electrical B-CONPRI +properties E-CONPRI +. O + + +The O +potential O +to O +produce O +net B-MANP +shape E-MANP +fabricated S-CONPRI +multifunctional O +components S-MACEQ +is O +demonstrated O +by O +additively O +manufacturing S-MANP +a O +quadcopter O +frame O +using O +Ultem® O +and O +continuous O +CNT S-MATE +yarn O +reinforced S-CONPRI +Ultem® O +, O +where O +the O +CNT S-MATE +yarn O +reinforcement S-PARA +was O +designed S-FEAT +to O +also O +act O +as S-MATE +the O +electrical S-APPL +conductors S-MATE +carrying O +current O +to O +the O +motors O +. O + + +A O +computational O +modeling S-ENAT +approach O +to O +simulate O +residual B-PRO +stress E-PRO +formation O +during O +the O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +process S-CONPRI +within O +the O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +for O +Inconel B-MATE +718 E-MATE +is O +presented O +in O +this O +paper O +. O + + +The O +EBM S-MANP +process O +has O +demonstrated O +a O +high O +potential O +to O +fabricate S-MANP +components S-MACEQ +with O +complex B-CONPRI +geometries E-CONPRI +, O +but O +the O +resulting O +components S-MACEQ +are O +influenced O +by O +the O +thermal B-PARA +cycles E-PARA +observed O +during O +the O +manufacturing B-MANP +process E-MANP +. O + + +When O +processing O +nickel B-MATE +based I-MATE +superalloys E-MATE +, O +very O +high O +temperatures S-PARA +( O +approx O +. O + + +1000 O +°C O +) O +are O +observed O +in O +the O +powder B-MACEQ +bed E-MACEQ +, O +base O +plate O +, O +and O +build S-PARA +. O + + +These O +high O +temperatures S-PARA +, O +when O +combined O +with O +substrate S-MATE +adherence O +, O +can O +result O +in O +warping S-CONPRI +of O +the O +base O +plate O +and O +affect O +the O +final O +component S-MACEQ +by O +causing O +defects S-CONPRI +. O + + +It O +is O +important O +to O +have O +an O +understanding O +of O +the O +thermo-mechanical S-CONPRI +response O +of O +the O +entire O +system O +, O +that O +is O +, O +its O +mechanical S-APPL +behavior O +towards O +thermal B-CONPRI +loading E-CONPRI +occurring O +during O +the O +EBM S-MANP +process O +prior O +to O +manufacturing S-MANP +a O +component S-MACEQ +. O + + +Therefore O +, O +computational B-ENAT +models E-ENAT +to O +predict O +the O +response O +of O +the O +system O +during O +the O +EBM S-MANP +process O +will O +aid O +in O +eliminating O +the O +undesired O +process S-CONPRI +conditions O +, O +a O +priori O +, O +in O +order O +to O +fabricate S-MANP +the O +optimum O +component S-MACEQ +. O + + +Such O +a O +comprehensive O +computational O +modeling S-ENAT +approach O +is O +demonstrated O +to O +analyze O +warping S-CONPRI +of O +the O +base O +plate O +, O +stress S-PRO +and O +plastic S-MATE +strain O +accumulation O +within O +the O +material S-MATE +, O +and O +thermal B-PARA +cycles E-PARA +in O +the O +system O +during O +different O +stages O +of O +the O +EBM S-MANP +process O +. O + + +Parts O +made O +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +differ O +in O +their O +mechanical B-CONPRI +properties E-CONPRI +from O +the O +parent O +material S-MATE +. O + + +To O +investigate O +the O +effect O +of O +the O +manufacturing B-MANP +process E-MANP +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +3D-printed B-APPL +parts E-APPL +, O +a O +series O +of O +experiments O +including O +Dynamic B-CONPRI +Mechanical I-CONPRI +Analysis E-CONPRI +( O +DMA S-CONPRI +) O +and O +ultrasonic O +wave O +propagation O +were O +conducted O +. O + + +For O +this O +purpose O +, O +printed O +parts O +were O +made O +from O +custom O +ABS S-MATE +filament O +and O +were O +printed O +using O +a O +rectangular O +bead S-CHAR +shape O +to O +minimize O +porosity S-PRO +. O + + +The O +main O +properties S-CONPRI +investigated O +included O +the O +elastic S-PRO +, O +loss O +and O +storage O +moduli O +, O +and O +the O +material S-MATE +loss O +tangent O +( O +tan O +δ O +) O +. O + + +Results O +indicate O +that O +the O +elastic B-PRO +modulus E-PRO +of O +the O +printed O +material S-MATE +was O +somewhat O +lower O +than O +that O +of O +the O +parent O +material S-MATE +, O +about O +2 O +GPa S-PRO +for O +frequencies O +0.1 O +Hz–100 O +Hz O +. O + + +Droplet S-CONPRI +jetting O +behavior O +largely O +determines O +the O +final O +drop O +deposition B-CHAR +quality E-CHAR +in O +the O +inkjet B-MANP +printing I-MANP +process E-MANP +. O + + +Forming S-MANP +such O +behavior O +is O +governed O +by O +the O +fluid B-PRO +flow E-PRO +pattern O +. O + + +Therefore O +, O +a O +measurement S-CHAR +of O +the O +flow B-CONPRI +pattern E-CONPRI +is O +of O +great O +importance O +for O +improving O +the O +printing O +quality S-CONPRI +of O +the O +inkjet B-MANP +printing I-MANP +process E-MANP +. O + + +Most O +of O +the O +current O +works O +use O +static O +images S-CONPRI +for O +the O +study O +of O +the O +drop O +evolution S-CONPRI +process O +. O + + +The O +problem O +of O +the O +static O +images S-CONPRI +is O +that O +the O +images S-CONPRI +can O +not O +recognize O +the O +motion O +information O +( O +i.e. O +, O +temporal O +transformation O +) O +of O +the O +droplet S-CONPRI +. O + + +Thus O +the O +information O +of O +the O +jetting S-MANP +process O +in O +the O +temporal O +domain S-CONPRI +will O +be S-MATE +lost O +. O + + +Instead O +of O +using O +the O +images S-CONPRI +, O +this O +paper O +takes O +the O +video O +data S-CONPRI +as S-MATE +the O +study O +subject O +to O +investigate O +the O +droplet S-CONPRI +evolution O +behavior O +in O +the O +inkjet B-MANP +printing I-MANP +process E-MANP +. O + + +Compared O +to O +most O +of O +the O +current O +learning O +approaches O +conducted O +in O +a O +supervised/semi-supervised O +manner O +for O +manufacturing B-MANP +process E-MANP +data S-CONPRI +, O +we O +propose O +an O +unsupervised O +learning O +method O +for O +studying O +the O +flow B-CONPRI +pattern E-CONPRI +of O +the O +droplet S-CONPRI +, O +which O +does O +not O +require O +well-defined O +ground-truth O +labels O +. O + + +Regarding O +the O +spatial O +and O +temporal O +transformation O +of O +the O +droplet S-CONPRI +in O +video O +data S-CONPRI +, O +we O +apply O +a O +deep O +recurrent O +neural B-CONPRI +network E-CONPRI +( O +DRNN O +) O +to O +implement O +the O +proposed O +unsupervised O +learning O +. O + + +Experimental S-CONPRI +results O +demonstrate O +that O +the O +proposed O +method O +can O +learn O +latent O +representations O +of O +the O +droplet S-CONPRI +jetting O +process S-CONPRI +video O +data S-CONPRI +, O +which O +is O +very O +useful O +for O +the O +prediction S-CONPRI +of O +the O +droplet S-CONPRI +behavior O +. O + + +Furthermore O +, O +through O +latent O +space O +decoding O +, O +the O +learned O +representations O +can O +infer O +the O +droplet S-CONPRI +forming O +stimulus O +parameters S-CONPRI +such O +as S-MATE +material O +properties S-CONPRI +, O +which O +would O +be S-MATE +very O +helpful O +for O +further O +understanding O +of O +the O +process S-CONPRI +dynamics O +and O +achieving O +real-time O +in-situ S-CONPRI +droplet S-CONPRI +deposition B-CHAR +quality E-CHAR +monitoring O +and O +control O +. O + + +The O +surface S-CONPRI +of O +SLMed S-MANP +composite S-MATE +shows O +low O +roughness S-PRO +and O +high O +homogeneity O +. O + + +A O +phase S-CONPRI +transition O +from O +bcc S-CONPRI +martensite O +to O +fcc S-CONPRI +austensite O +appears O +with O +the O +addition O +of O +WC S-MATE +. O + + +Metallurgical B-CONPRI +bonding E-CONPRI +between O +reinforcement S-PARA +and O +matrix O +is O +realized O +. O + + +Tensile S-PRO +behavior O +of O +SLMed S-MANP +composite S-MATE +is O +different O +from O +that O +of O +SLMed S-MANP +maraging B-MATE +steel E-MATE +. O + + +In O +this O +work O +, O +tungsten B-MATE +carbide E-MATE +( O +WC S-MATE +) O +reinforced S-CONPRI +maraging B-MATE +steel E-MATE +matrix O +composites S-MATE +were O +in-situ S-CONPRI +manufactured O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +from O +powder S-MATE +mixture O +. O + + +The O +SLM S-MANP +processed S-CONPRI +samples O +presented O +high O +relative B-PRO +density E-PRO +( O +over O +99 O +% O +) O +with O +a O +homogenous O +distribution S-CONPRI +of O +WC S-MATE +. O + + +The O +as-fabricated O +surface B-PARA +quality E-PARA +of O +SLM S-MANP +processed S-CONPRI +samples O +was O +improved O +significantly O +by O +the O +addition O +of O +WC S-MATE +. O + + +Focused O +ion S-CONPRI +beam S-MACEQ +and O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +were O +employed O +to O +characterize O +the O +interfacial O +properties S-CONPRI +between O +tungsten B-MATE +carbide E-MATE +and O +steel S-MATE +matrix O +. O + + +The O +elemental B-CHAR +analysis E-CHAR +indicates O +that O +metallurgical B-CONPRI +bonding E-CONPRI +appears O +at O +interfacial O +region O +due O +to O +the O +diffusion S-CONPRI +. O + + +Tensile S-PRO +behavior O +of O +SLM S-MANP +processed S-CONPRI +maraging B-MATE +steel E-MATE +was O +different O +from O +their O +composite S-MATE +with O +several O +WC S-MATE +contents O +. O + + +To O +understand O +the O +fundamentals O +of O +microstructure S-CONPRI +formation O +in O +an O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +additive-manufacturing O +process S-CONPRI +, O +which O +is O +classified O +as S-MATE +a O +type O +of O +electron B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +( O +EB-PBF O +) O +in O +ISO562910/ASTM-F42 O +, O +single O +bead S-CHAR +experiments O +were O +conducted O +by O +using O +an O +electron B-CONPRI +beam E-CONPRI +to O +scan O +an O +IN718 S-MATE +plate O +, O +using O +various O +combinations O +of O +power S-PARA +and O +scan B-PARA +speed E-PARA +, O +focusing O +on O +the O +relationship O +between O +( O +i O +) O +the O +beam S-MACEQ +irradiation O +level O +, O +( O +ii O +) O +the O +melt B-MATE +pool E-MATE +geometry S-CONPRI +, O +and O +( O +iii O +) O +the O +solidification B-CONPRI +microstructure E-CONPRI +. O + + +The O +width O +and O +depth O +of O +the O +melt B-MATE +pool E-MATE +increases O +almost O +linearly O +with O +the O +line O +energy O +. O + + +Elongated O +grains S-CONPRI +, O +which O +are O +generally O +called O +“ O +columnar B-PRO +grains E-PRO +” O +were O +observed O +in O +almost O +the O +entire O +cross-section O +of O +the O +beads S-CHAR +regardless O +of O +the O +process B-CONPRI +parameters E-CONPRI +. O + + +Temporal O +evolution S-CONPRI +of O +the O +temperature S-PARA +distribution S-CONPRI +for O +the O +single O +bead S-CHAR +experiments O +was O +simulated O +by O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +with O +thermal O +conduction O +and O +recoalescence O +taken O +into O +account O +. O + + +The O +surface S-CONPRI +heat B-CONPRI +source E-CONPRI +model O +used O +in O +the O +simulation S-ENAT +was O +modified O +to O +cause O +the O +geometry S-CONPRI +of O +the O +simulated O +melt B-MATE +pool E-MATE +to O +align O +with O +that O +which O +was O +observed O +experimentally O +. O + + +The O +distributions S-CONPRI +of O +the O +temperature B-PARA +gradient E-PARA +( O +G O +) O +and O +solidification B-PARA +rate E-PARA +( O +R O +) O +on O +the O +solidification B-CONPRI +interface E-CONPRI +were O +evaluated O +from O +the O +simulation S-ENAT +results O +. O + + +The O +distributions S-CONPRI +of O +the O +microstructures S-MATE +were O +constructed O +from O +the O +distributions S-CONPRI +of O +G O +and O +R O +, O +as S-MATE +obtained O +from O +a O +solidification S-CONPRI +map O +in O +the O +literature O +. O + + +Contrary O +to O +the O +experimental S-CONPRI +observations O +, O +the O +constructed O +microstructure S-CONPRI +consisted O +mostly O +of O +equiaxed O +and O +mixed O +grains S-CONPRI +. O + + +While O +the O +volumetric O +energy B-PARA +density E-PARA +is O +commonly O +used O +to O +qualify O +a O +process B-CONPRI +parameter E-CONPRI +set O +, O +and O +to O +quantify O +its O +influence O +on O +the O +microstructure S-CONPRI +and O +performance S-CONPRI +of O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +materials S-CONPRI +and O +components S-MACEQ +, O +it O +has O +been O +already O +shown O +that O +this O +description O +is O +by O +no O +means O +exhaustive O +. O + + +In O +this O +work O +, O +new O +aspects O +of O +the O +optimization S-CONPRI +of O +the O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +are O +investigated O +for O +AM S-MANP +Ti-6Al-4V O +. O + + +We O +focus O +on O +the O +amount O +of O +near-surface O +residual B-PRO +stress E-PRO +( O +RS O +) O +, O +often O +blamed O +for O +the O +failure S-CONPRI +of O +components S-MACEQ +, O +and O +on O +the O +porosity S-PRO +characteristics O +( O +amount O +and O +spatial B-CHAR +distribution E-CHAR +) O +. O + + +First O +, O +using O +synchrotron S-ENAT +x-ray O +diffraction S-CHAR +we O +show O +that O +higher O +RS O +in O +the O +subsurface O +region O +is O +generated O +if O +a O +lower O +energy B-PARA +density E-PARA +is O +used O +. O + + +Second O +, O +we O +show O +that O +laser S-ENAT +de-focusing O +and O +sample S-CONPRI +positioning O +inside O +the O +build B-PARA +chamber E-PARA +also O +play O +an O +eminent O +role O +, O +and O +we O +quantify O +this O +influence O +. O + + +In O +parallel O +, O +using O +X-ray B-CHAR +Computed I-CHAR +Tomography E-CHAR +, O +we O +observe O +that O +porosity S-PRO +is O +mainly O +concentrated O +in O +the O +contour S-FEAT +region O +, O +except O +in O +the O +case O +where O +the O +laser S-ENAT +speed O +is O +small O +. O + + +3D-printed S-MANP +Ti-6Al-4V O +components S-MACEQ +have O +great O +potential O +in O +the O +aerospace S-APPL +and O +biomedical B-APPL +industries E-APPL +. O + + +However O +, O +their O +wide O +application O +is O +limited O +by O +some O +inherent O +disadvantages O +, O +such O +as S-MATE +poor O +surface B-FEAT +finish E-FEAT +and O +high O +porosity S-PRO +. O + + +In O +this O +study O +, O +an O +innovative O +method O +, O +electrically-assisted O +ultrasonic O +nanocrystal O +surface B-MANP +modification E-MANP +( O +EA-UNSM O +) O +was O +introduced O +to O +process S-CONPRI +3D-printed S-MANP +Ti-6Al-4V O +samples S-CONPRI +. O + + +The O +effect O +of O +EA-UNSM O +on O +surface B-FEAT +finish E-FEAT +, O +microstructure S-CONPRI +, O +porosity S-PRO +and O +in-depth O +hardness S-PRO +was O +investigated O +. O + + +Compared O +with O +the O +conventional O +UNSM O +process S-CONPRI +, O +smoother O +surfaces S-CONPRI +and O +lower O +subsurface O +porosities S-PRO +were O +obtained O +after O +EA-UNSM O +. O + + +Numerical O +modelling S-ENAT +showed O +that O +localized O +heating S-MANP +occurs O +near O +the O +pores S-PRO +in O +3D-printed S-MANP +Ti-6Al-4V O +subjected O +to O +electric O +current O +. O + + +This O +localized O +heating S-MANP +could O +potentially O +facilitate O +pore S-PRO +closure O +under O +ultrasonic O +striking O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +technology S-CONPRI +is O +a O +layer-wise O +powder-based B-MANP +additive I-MANP +manufacturing E-MANP +method O +capable O +of O +building O +3D S-CONPRI +components O +from O +their O +CAD B-ENAT +models E-ENAT +. O + + +This O +approach O +offers O +enormous O +benefits O +for O +generating O +objects O +with O +geometrical B-FEAT +complexity E-FEAT +. O + + +However O +, O +due O +to O +the O +layer-wise O +nature O +of O +the O +process S-CONPRI +, O +surface B-PRO +roughness E-PRO +is O +formed O +between O +layers O +, O +thus O +influenced O +by O +layer B-PARA +thickness E-PARA +and O +other O +processing O +parameters S-CONPRI +. O + + +In O +this O +study O +, O +systematic O +research S-CONPRI +has O +been O +carried O +out O +to O +study O +the O +influence O +of O +processing O +parameters S-CONPRI +on O +surface B-PRO +roughness E-PRO +in O +Hastelloy S-MATE +X O +alloy S-MATE +. O + + +All O +samples S-CONPRI +were O +manufactured S-CONPRI +using O +an O +EOSINT O +M O +280 O +machine S-MACEQ +. O + + +Laser B-PARA +power E-PARA +, O +scan B-PARA +speed E-PARA +, O +layer B-PARA +thickness E-PARA +and O +sloping O +angle O +of O +a O +surface S-CONPRI +were O +systematically O +varied O +to O +understand O +their O +effects O +on O +surface B-PRO +roughness E-PRO +. O + + +The O +arithmetic O +average S-CONPRI +roughness O +, O +Ra O +, O +was O +measured O +using O +a O +surface B-PRO +roughness E-PRO +tester O +, O +and O +optimum O +conditions O +for O +achieving O +the O +lowest O +roughness S-PRO +for O +both O +up-skin O +surfaces S-CONPRI +and O +down-skin O +surfaces S-CONPRI +have O +been O +obtained O +. O + + +The O +formation O +mechanism S-CONPRI +for O +the O +roughness S-PRO +on O +these O +two O +types O +of O +surfaces S-CONPRI +has O +been O +studied O +. O + + +Computer B-CONPRI +simulation E-CONPRI +was O +also O +used O +to O +understand O +thermal B-CONPRI +profiles E-CONPRI +at O +those O +two O +surfaces S-CONPRI +and O +their O +resultant O +influence O +on O +surface B-PRO +roughness E-PRO +. O + + +Contour S-FEAT +scan O +and O +skywriting O +scan O +strategies O +were O +found O +to O +be S-MATE +helpful O +for O +reducing O +the O +surface B-PRO +roughness E-PRO +. O + + +Selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +is O +a O +promising O +additive B-MANP +manufacturing E-MANP +technique O +, O +where O +powder B-MATE +particles E-MATE +are O +fused S-CONPRI +together O +under O +the O +influence O +of O +a O +laser B-CONPRI +beam E-CONPRI +. O + + +To O +obtain O +good O +material B-CONPRI +properties E-CONPRI +in O +the O +final O +product O +, O +the O +powder B-MATE +particles E-MATE +need O +to O +form O +a O +homogeneous S-CONPRI +melt O +during O +the O +fabrication S-MANP +process O +. O + + +On O +the O +other O +hand O +, O +you O +want O +the O +process S-CONPRI +to O +be S-MATE +as S-MATE +fast O +as S-MATE +possible O +. O + + +We O +developed O +a O +computational B-ENAT +model E-ENAT +based O +on O +the O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +to O +study O +the O +material S-MATE +and O +process B-CONPRI +parameters E-CONPRI +concerning O +the O +melt B-CONPRI +flow E-CONPRI +of O +the O +powder B-MATE +particles E-MATE +. O + + +In O +this O +work O +, O +we O +restrict O +ourselves O +to O +varying O +the O +temperature-dependent O +viscosity S-PRO +, O +the O +process B-CONPRI +parameters E-CONPRI +, O +and O +the O +convective O +heat B-CONPRI +transfer E-CONPRI +coefficient O +of O +the O +sintering S-MANP +of O +two O +polymer S-MATE +( O +polyamide B-MATE +12 E-MATE +) O +particles S-CONPRI +. O + + +The O +simulations S-ENAT +allow O +for O +a O +quantitative S-CONPRI +analysis O +of O +the O +influence O +of O +the O +different O +material S-MATE +and O +processing O +parameters S-CONPRI +. O + + +From O +the O +simulations S-ENAT +follows O +that O +an O +optimal O +sintering S-MANP +process S-CONPRI +has O +a O +low O +ambient O +temperature S-PARA +, O +a O +narrow O +beam S-MACEQ +width O +with O +enough O +power S-PARA +to O +heat S-CONPRI +the O +particles S-CONPRI +only O +a O +few O +degrees O +above O +the O +melting B-PARA +temperature E-PARA +, O +and O +a O +polymer S-MATE +of O +which O +the O +viscosity S-PRO +decreases O +significantly O +within O +these O +few O +degrees O +. O + + +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS™ O +) O +was O +utilized O +to O +create O +novel O +silica S-MATE +( O +SiO2 S-MATE +) O +coatings S-APPL +onto O +commercially-pure O +titanium S-MATE +( O +Cp-Ti O +) O +. O + + +It O +was O +hypothesized O +that O +if O +silica S-MATE +could O +be S-MATE +deposited O +as S-MATE +a O +coating S-APPL +via O +laser S-ENAT +surface O +engineering S-APPL +, O +high O +hardness S-PRO +and O +wear B-PRO +resistance E-PRO +could O +be S-MATE +added O +to O +existing O +Cp-Ti O +material S-MATE +. O + + +Post-deposition O +heat-treatments O +in O +the O +form O +of O +laser S-ENAT +passes O +( O +LP O +) O +and O +a O +furnace S-MACEQ +residual-stress O +relief O +were O +completed O +on O +the O +coatings S-APPL +and O +mechanical/material O +properties S-CONPRI +were O +subsequently O +evaluated O +. O + + +Titanium B-MATE +silicide E-MATE +( O +Ti5Si3 O +) O +formation O +and O +related O +dendritic O +microstructures S-MATE +were O +identified O +throughout O +the O +coating S-APPL +by O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +energy B-CHAR +dispersive I-CHAR +spectroscopy E-CHAR +( O +EDS S-CHAR +) O +, O +scanning S-CONPRI +electron O +microscopic O +( O +SEM S-CHAR +) O +analysis O +, O +and O +appeared O +more O +ordered O +after O +stress-relief O +heat B-MANP +treatment E-MANP +. O + + +High O +hardness S-PRO +values O +of O +approximately O +1500 O +HV O +were O +measured O +at O +the O +coating S-APPL +’ O +s S-MATE +topmost O +surface S-CONPRI +while O +specific O +wear S-CONPRI +rates O +showed O +a O +maximum O +98 O +% O +reduction S-CONPRI +from O +346.2 O +× O +10−6 O +mm3/N-m O +in O +the O +Cp-Ti O +substrate S-MATE +to O +7.1 O +× O +10−6 O +mm3/N-m O +in O +the O +heat S-CONPRI +treated O +1 O +LP O +coating S-APPL +. O + + +In B-CONPRI +situ E-CONPRI +tribofilm O +formation O +was O +observed O +during O +wear S-CONPRI +, O +which O +indicated O +self-healing O +properties S-CONPRI +from O +the O +material S-MATE +and O +likely O +aided O +further O +in O +wear B-CONPRI +reduction E-CONPRI +. O + + +Our O +results O +show O +that O +silica B-MATE +coating E-MATE +on O +titanium S-MATE +via O +laser S-ENAT +surface O +engineering S-APPL +could O +be S-MATE +used O +as S-MATE +a O +suitable O +manufacturing S-MANP +practice O +to O +create O +hard O +, O +Ti5Si3-reinforced O +ceramic B-MATE +coatings E-MATE +with O +high O +wear B-PRO +resistance E-PRO +and O +self-healing O +properties S-CONPRI +for O +applications O +ranging O +from O +biomedical S-APPL +to O +aerospace S-APPL +. O + + +To O +increase O +the O +mechanical B-PRO +strength E-PRO +of O +Zircaloy-4 S-MATE +cladding S-MANP +at O +high O +temperatures S-PARA +, O +partial O +oxide S-MATE +dispersion-strengthened O +( O +ODS O +) O +treatment O +of O +the O +cladding S-MANP +tube O +surface S-CONPRI +was O +achieved O +by O +using O +laser B-CONPRI +processing E-CONPRI +technology O +. O + + +The O +microstructural S-CONPRI +characteristics O +and O +stability S-PRO +of O +the O +ODS O +layer S-PARA +formed O +on O +the O +Zircaloy-4 S-MATE +cladding S-MANP +surface O +were O +analyzed O +at O +temperatures S-PARA +up O +to O +1000 O +°C O +. O + + +Ring O +tensile S-PRO +and O +loss-of-coolant O +accident O +( O +LOCA O +) O +simulation S-ENAT +tests O +were O +performed O +to O +evaluate O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +surface S-CONPRI +ODS O +treated O +Zircaloy-4 S-MATE +cladding S-MANP +tube O +. O + + +The O +formation O +and O +uniform O +distribution S-CONPRI +of O +Y2O3 O +particles S-CONPRI +formed O +in O +the O +Zr S-MATE +matrix O +were O +identified O +, O +and O +the O +stability S-PRO +of O +the O +particles S-CONPRI +was O +confirmed O +up O +to O +1000 O +°C O +. O + + +When O +compared O +to O +the O +reference O +Zircaloy-4 S-MATE +cladding S-MANP +tube O +, O +the O +surface S-CONPRI +ODS O +treated O +Zircaloy-4 S-MATE +cladding S-MANP +tube O +showed O +improved O +mechanical B-CONPRI +properties E-CONPRI +at O +both O +room O +temperature S-PARA +and O +500 O +°C O +, O +as S-MATE +well O +as S-MATE +under O +LOCA O +simulation S-ENAT +conditions O +. O + + +Material B-MANP +extrusion E-MANP +is O +an O +Additive B-MANP +Manufacturing I-MANP +process E-MANP +able O +to O +fabricate S-MANP +a O +physical O +object O +directly O +from O +a O +virtual B-ENAT +model E-ENAT +using O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +deposition S-CONPRI +of O +a O +thermoplastic B-MATE +filament E-MATE +extruded S-MANP +by O +a O +nozzle S-MACEQ +. O + + +The O +fabrication S-MANP +of O +functional B-CONPRI +components E-CONPRI +implies O +the O +need O +for O +the O +assembly S-MANP +with O +other O +parts O +with O +different O +properties S-CONPRI +in O +terms O +of O +material S-MATE +and O +surface B-PARA +quality E-PARA +. O + + +One O +of O +the O +most O +used O +assembly S-MANP +method O +involving O +plastic S-MATE +materials S-CONPRI +is O +the O +interference B-CONPRI +fit E-CONPRI +. O + + +It O +consists O +of O +fastening O +elements S-MATE +in O +which O +the O +two O +parts O +are O +pushed O +together O +, O +by O +means O +of O +a O +fit S-CONPRI +force O +, O +and O +no O +other O +fastener S-MACEQ +is O +necessary O +. O + + +It O +requires O +the O +accurate S-CHAR +design O +of O +the O +interference O +, O +typically O +carried O +out O +by O +the O +designers O +through O +diagrams O +and O +theoretical S-CONPRI +formulations O +supplied O +by O +the O +material S-MATE +manufacturers O +. O + + +At O +present O +no O +theory O +has O +been O +provided O +for O +material B-MANP +extrusion E-MANP +parts O +due O +to O +the O +anisotropic S-PRO +behavior O +: O +the O +mesostructure O +, O +the O +surface B-PRO +roughness E-PRO +and O +the O +dimensional O +deviations O +mainly O +depend O +upon O +the O +build S-PARA +orientation.In O +this O +work O +the O +effects O +of O +the O +surface B-CHAR +morphology E-CHAR +and O +the O +interference O +grade O +on O +the O +assembly S-MANP +and O +disassembly S-CONPRI +forces O +in O +an O +interference B-CONPRI +fit E-CONPRI +joint O +are O +investigated O +. O + + +For O +the O +purpose O +, O +a O +design B-CONPRI +of I-CONPRI +experiment E-CONPRI +with O +a O +factorial O +plan O +has O +been O +carried O +out O +. O + + +Through O +this O +model S-CONPRI +it O +is O +possible O +to O +know O +in O +advance O +the O +force S-CONPRI +necessary O +to O +assemble O +a O +material B-MANP +extrusion E-MANP +part O +with O +an O +assigned O +interference O +grade O +. O + + +Fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +enables O +production S-MANP +of O +3D B-APPL +objects E-APPL +over O +a O +range S-PARA +of O +material S-MATE +compositions O +at O +low-cost O +relative O +to O +traditional B-MANP +manufacturing E-MANP +approaches O +. O + + +To O +date O +, O +a O +limited O +but O +growing O +number O +of O +materials S-CONPRI +are O +able O +to O +be S-MATE +used O +with O +FFF S-MANP +, O +however O +many O +applications O +exist O +where O +specific O +mechanical S-APPL +, O +thermal O +, O +or O +chemical O +properties S-CONPRI +are O +needed O +that O +can O +not O +currently O +be S-MATE +met O +with O +the O +available O +feedstock S-MATE +selection O +. O + + +Therefore O +, O +a O +need O +exists O +to O +tune O +these O +materials S-CONPRI +for O +specific O +chemical O +or O +mechanical B-CONPRI +properties E-CONPRI +. O + + +One O +common O +formulation O +strategy O +to O +address O +these O +demanding O +design S-FEAT +parameters O +is O +to O +develop O +composites S-MATE +or O +polymer B-MATE +blend E-MATE +filaments S-MATE +. O + + +This O +mixing S-CONPRI +occurs O +via O +software-controlled O +rotating O +hardware O +in O +the O +chamber O +of O +an O +extruder S-MACEQ +’ O +s S-MATE +hot-end O +. O + + +The O +efficiency O +of O +mixing S-CONPRI +within O +the O +printed O +layers O +has O +been O +characterized O +in O +detail O +as S-MATE +a O +function O +of O +the O +rotational O +speed O +and O +geometry S-CONPRI +of O +the O +blending S-MANP +hardware O +. O + + +These O +parameters S-CONPRI +were O +exploited O +to O +program O +the O +ratio O +and O +distribution S-CONPRI +of O +thermoplastic-based O +filaments S-MATE +blended O +within O +printed O +extrudate S-MATE +. O + + +Example O +printed O +specimens O +were O +produced O +with O +thermoplastic B-MATE +polyurethane E-MATE +( O +TPU O +) O +elastomer S-MATE +blended O +with O +rigid O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +and O +Nylon S-MATE +blended O +with O +PLA S-MATE +. O + + +In O +addition O +, O +a O +conductive O +carbon B-MATE +nanotube E-MATE +( O +CNT S-MATE +) O +-PLA O +composite S-MATE +was O +blended O +as S-MATE +a O +function O +of O +mixer O +geometry S-CONPRI +and O +input O +feed S-PARA +ratios O +with O +non-conductive O +PLA S-MATE +and O +resistance S-PRO +values O +were O +measured O +across O +the O +resulting O +printed O +specimens O +. O + + +SLM S-MANP +fabricated S-CONPRI +Al-Mg-Sc-Zr O +alloy S-MATE +showed O +a O +heterogeneous B-CONPRI +grain I-CONPRI +structure E-CONPRI +. O + + +A O +good O +strength-ductility O +synergy O +was O +achieved O +in O +SLMed S-MANP +Al-Mg-Sc-Zr O +alloy S-MATE +. O + + +Strain S-PRO +partitioning O +among O +heterogeneous B-CONPRI +grain I-CONPRI +structure E-CONPRI +provided O +additional O +back O +stress S-PRO +hardening S-MANP +. O + + +In O +this O +work O +, O +a O +Sc/Zr O +modified O +Al-Mg B-MATE +alloy E-MATE +was O +processed S-CONPRI +by O +both O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +and O +directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +. O + + +Due O +to O +different O +precipitation S-CONPRI +behavior O +of O +primary O +Al3 O +( O +Sc O +, O +Zr S-MATE +) O +-L12 O +nucleation S-CONPRI +sites O +, O +a O +heterogeneous B-CONPRI +grain I-CONPRI +structure E-CONPRI +was O +formed O +in O +SLMed S-MANP +sample S-CONPRI +, O +which O +consisted O +of O +ultrafine O +equiaxed B-CONPRI +grains E-CONPRI +bands O +and O +columnar B-PRO +grains E-PRO +domains O +, O +while O +a O +fully O +equiaxed B-CONPRI +grain E-CONPRI +structure O +was O +obtained O +in O +DEDed O +sample S-CONPRI +. O + + +Tensile S-PRO +results O +showed O +that O +the O +as S-MATE +built O +SLMed S-MANP +sample S-CONPRI +had O +a O +good O +combination O +of O +strength S-PRO +and O +ductility S-PRO +. O + + +The O +yield B-PRO +strength E-PRO +of O +SLMed S-MANP +sample S-CONPRI +( O +335 O +± O +4 O +MPa S-CONPRI +) O +was O +about O +2.8 O +times O +that O +of O +DEDed O +sample S-CONPRI +( O +118 O +± O +3 O +MPa S-CONPRI +) O +, O +however O +, O +the O +ductility S-PRO +in O +uniform B-PARA +elongation E-PARA +( O +23.6 O +± O +1.9 O +% O +) O +was O +still O +comparable O +to O +that O +of O +DEDed O +sample S-CONPRI +( O +23.8 O +± O +2.6 O +% O +) O +. O + + +Based O +on O +the O +relationship O +between O +the O +heterogeneous B-CONPRI +grain I-CONPRI +structure E-CONPRI +and O +strain B-MANP +hardening E-MANP +behavior O +, O +the O +strength-ductility O +synergy O +mechanism S-CONPRI +of O +the O +SLMed S-MANP +Al-Mg-Sc-Zr O +alloy S-MATE +was O +discussed O +. O + + +Stress S-PRO +partitioning O +tests O +showed O +that O +the O +contribution O +of O +back O +stress S-PRO +hardening S-MANP +to O +flow B-PRO +stress E-PRO +was O +higher O +in O +SLMed S-MANP +sample S-CONPRI +than O +DEDed O +sample S-CONPRI +, O +while O +effective O +stress S-PRO +hardening S-MANP +showed O +an O +opposite O +trend S-CONPRI +. O + + +Despite O +the O +overall O +strain B-MANP +hardening E-MANP +ability O +of O +SLMed S-MANP +sample S-CONPRI +was O +limited O +by O +the O +high O +dynamic S-CONPRI +recovery O +rate O +of O +ultrafine O +equiaxed B-CONPRI +grains E-CONPRI +, O +additional O +back O +stress S-PRO +hardening S-MANP +, O +which O +was O +caused O +by O +strain S-PRO +partitioning O +between O +equiaxed B-CONPRI +grains E-CONPRI +bands O +and O +columnar B-PRO +grains E-PRO +domains O +, O +improved O +its O +strain B-MANP +hardening E-MANP +ability O +and O +resulted O +in O +the O +good O +combination O +of O +strength S-PRO +and O +ductility S-PRO +. O + + +Silicone B-MATE +elastomers E-MATE +are O +of O +commercial O +interest O +in O +a O +number O +of O +areas S-PARA +because O +of O +their O +distinctive O +properties S-CONPRI +. O + + +Current O +3D-printing S-MANP +( O +additive B-MANP +manufacturing E-MANP +) O +technologies S-CONPRI +for O +silicones S-MATE +mainly O +rely O +on O +the O +extrusion S-MANP +of O +high-viscosity O +pre-elastomer O +inks O +of O +one O +or O +two O +parts O +. O + + +Some O +of O +the O +challenges O +presented O +by O +high O +viscosity S-PRO +materials S-CONPRI +, O +for O +instance O +, O +difficulties O +in O +mixing S-CONPRI +and O +changing O +inks O +to O +create O +devices O +from O +more O +than O +one O +type O +of O +silicone S-MATE +, O +could O +be S-MATE +overcome O +by O +use O +of O +lower O +viscosity S-PRO +inks O +. O + + +Here O +we O +describe O +a O +family O +of O +rapidly O +curing S-MANP +( O +shape O +holding O +within O +< O +2 O +s S-MATE +, O +full O +cure S-CONPRI +in O +< O +20 O +s S-MATE +) O +, O +readily O +mixed O +, O +low-viscosity O +silicone B-MATE +inks E-MATE +using O +a O +combination O +of O +chain-extender O +, O +cross-linker O +, O +base O +polymer S-MATE +and O +photoinduced O +thiol-ene O +click O +chemistry S-CONPRI +. O + + +A O +key O +advantage O +of O +low O +viscosity S-PRO +is O +the O +facility O +to O +mix O +or O +change O +ink S-MATE +constituents O +, O +which O +facilitates O +changing O +inks O +, O +and O +the O +properties S-CONPRI +of O +the O +resulting O +cured S-MANP +materials O +. O + + +Microfluidic O +printheads O +and O +pneumatic O +control B-MACEQ +systems E-MACEQ +that O +switch O +rapidly O +between O +multiple O +inks O +, O +and O +then O +cure S-CONPRI +them O +using O +a O +UV B-CONPRI +exposure E-CONPRI +system O +, O +are O +also O +described O +. O + + +The O +combination O +of O +fast O +curing S-MANP +inks O +, O +and O +the O +printhead O +that O +extrudes O +and O +then O +cures O +them O +, O +allows O +3D S-CONPRI +extrusion O +printing O +of O +low-viscosity O +silicone B-MATE +materials E-MATE +without O +the O +use O +of O +supporting O +material S-MATE +. O + + +The O +ability O +to O +print S-MANP +overhanging B-CONPRI +structures E-CONPRI +, O +discrete O +and O +continuous O +structures O +, O +as S-MATE +well O +as S-MATE +multimaterial O +structures O +using O +a O +single O +nozzle S-MACEQ +is O +demonstrated O +. O + + +The O +technology S-CONPRI +described O +here O +is O +scalable O +to O +produce O +higher B-PARA +resolution E-PARA +, O +multimaterial O +silicone S-MATE +structures O +that O +should O +find O +application O +in O +rapid B-ENAT +prototyping E-ENAT +and O +mold S-MACEQ +making O +. O + + +Continuous O +direct B-MANP +metal I-MANP +deposition E-MANP +in O +Z O +direction O +is O +carried O +out O +successfully O +. O + + +Superior O +austenite/ferrite O +dual O +phase B-CONPRI +microstructure E-CONPRI +is O +formed O +. O + + +Thin O +316L B-MATE +stainless I-MATE +steel E-MATE +rods O +were O +fabricated S-CONPRI +by O +continuous O +directed B-MANP +energy I-MANP +deposition E-MANP +in O +Z O +direction O +. O + + +The O +process B-CONPRI +parameters E-CONPRI +( O +laser B-PARA +power E-PARA +, O +scan O +velocity O +, O +and O +powder B-MACEQ +feeding E-MACEQ +rate O +) O +were O +carefully O +selected O +to O +obtain O +a O +stable O +deposition B-MANP +process E-MANP +and O +the O +effects O +of O +powder B-MACEQ +feeding E-MACEQ +rate O +and O +scan O +velocity O +were O +studied O +. O + + +A O +preliminary O +study O +on O +microstructure S-CONPRI +and O +tensile B-PRO +properties E-PRO +of O +the O +specimens O +was O +carried O +out O +. O + + +Results O +indicated O +that O +the O +specimen O +showed O +superior O +austenite/ferrite O +( O +γ/δ O +) O +dual O +phase B-CONPRI +microstructure E-CONPRI +, O +high O +strength S-PRO +( O +608.24 O +MPa S-CONPRI +) O +, O +and O +good O +plastic B-PRO +deformation E-PRO +capacity S-CONPRI +( O +65.08 O +% O +shrinkage S-CONPRI +rate O +) O +when O +setting O +the O +laser B-PARA +power E-PARA +at O +45.2 O +W O +, O +powder B-MACEQ +feeding E-MACEQ +rate O +at O +2.81 O +g/min O +, O +and O +scan O +velocity O +at O +0.5 O +mm/s O +. O + + +The O +technique O +reported O +in O +this O +paper O +is O +expected O +to O +lay S-CONPRI +the O +foundation O +for O +the O +deposition S-CONPRI +of O +wire O +or O +frame O +structures O +more O +efficiently O +than O +traditional O +layer-by-layer S-CONPRI +directed B-MANP +energy I-MANP +deposition E-MANP +. O + + +Thermal B-CONPRI +modeling E-CONPRI +of O +additive B-MANP +manufacturing I-MANP +processes E-MANP +such O +as S-MATE +laser O +powder B-MANP +bed I-MANP +fusion E-MANP +is O +able O +to O +calculate O +a O +thermal O +history O +of O +a O +build S-PARA +. O + + +This O +simulated O +thermal O +history O +can O +in O +turn O +be S-MATE +used O +as S-MATE +an O +input O +to O +further O +simulate O +temperature S-PARA +related O +characteristics O +such O +as S-MATE +residual O +stress S-PRO +, O +distortion S-CONPRI +, O +microstructure S-CONPRI +, O +lack O +of O +fusion S-CONPRI +porosity O +, O +and O +hot O +spots O +. O + + +In O +order O +to O +estimate O +the O +heat S-CONPRI +loss O +to O +the O +powder B-MACEQ +bed E-MACEQ +during O +the O +process S-CONPRI +, O +convective O +heat B-CONPRI +transfer E-CONPRI +is O +widely O +used O +as S-MATE +thermal O +boundary B-CONPRI +condition E-CONPRI +in O +finite B-CONPRI +element E-CONPRI +modeling O +of O +laser S-ENAT +powder O +fusion S-CONPRI +processes O +. O + + +However O +, O +this O +convection O +coefficient O +is O +usually O +selected O +based O +on O +empirical S-CONPRI +estimation O +or O +model S-CONPRI +tuning O +. O + + +In O +this O +work O +, O +FEA O +models O +of O +the O +part O +and O +surrounding O +powder S-MATE +are O +used O +as S-MATE +a O +reference O +to O +determine O +the O +surface S-CONPRI +convection O +BC O +'s O +for O +modeling S-ENAT +the O +part O +only O +. O + + +Seven O +types O +of O +commonly O +used O +AM B-MATE +materials E-MATE +with O +a O +wide O +range S-PARA +of O +thermal B-PRO +conductivities E-PRO +were O +studied O +for O +better O +testing S-CHAR +of O +the O +conductivity S-PRO +dependency O +of O +the O +convection O +coefficient O +. O + + +The O +convection O +coefficient O +values O +, O +which O +predict O +similar O +thermal O +history O +as S-MATE +the O +powder S-MATE +model S-CONPRI +, O +are O +found O +to O +be S-MATE +a O +function O +of O +thermal B-PRO +conductivity E-PRO +of O +the O +deposited O +material S-MATE +and O +the O +cross-sectional O +thickness O +of O +the O +part O +feature S-FEAT +. O + + +A O +new O +thickness O +dependent O +convection O +boundary B-CONPRI +condition E-CONPRI +is O +proposed O +and O +found O +to O +be S-MATE +capable O +of O +predicting O +much O +closer O +thermal O +history O +to O +the O +powder S-MATE +model S-CONPRI +. O + + +These O +newly O +developed O +boundary B-CONPRI +conditions E-CONPRI +improve O +the O +peak O +temperature S-PARA +prediction S-CONPRI +accuracy S-CHAR +by O +36 O +% O +while O +running O +in O +1/4th O +of O +the O +time O +as S-MATE +the O +powder S-MATE +model S-CONPRI +. O + + +The O +computed B-CHAR +tomography E-CHAR +( O +CT S-ENAT +) O +evaluation O +of O +the O +material B-MANP +extrusion E-MANP +( O +MEX O +) O +of O +a O +short B-MATE +carbon I-MATE +fiber E-MATE +( O +SCF O +) O +Nylon-12 O +filament S-MATE +and O +part O +is O +presented O +. O + + +CT S-ENAT +, O +a O +non-destructive B-CHAR +testing E-CHAR +method O +, O +was O +used O +to O +quantify O +the O +internal B-PRO +structure E-PRO +of O +specimens O +into O +three O +phases O +: O +pore S-PRO +, O +Nylon S-MATE +, O +and O +SCF O +. O + + +The O +intensity O +histograms O +from O +the O +CT S-ENAT +data O +were O +fit S-CONPRI +using O +a O +mixed O +skew-Gaussian O +distribution S-CONPRI +( O +MSGD O +) O +algorithm S-CONPRI +to O +segment O +the O +CT S-ENAT +image O +into O +phases O +. O + + +Thresholded O +images S-CONPRI +were O +used O +to O +isolate O +pores S-PRO +in O +the O +CT S-ENAT +image O +to O +determine O +pore S-PRO +volume O +and O +distribution S-CONPRI +within O +both O +the O +MEX O +SCF O +filament S-MATE +and O +part O +. O + + +The O +phase S-CONPRI +volume O +percentages O +of O +the O +MEX O +SCF O +filament S-MATE +were O +found O +to O +be S-MATE +1.6 O +% O +pore S-PRO +, O +62.2 O +% O +Nylon S-MATE +, O +and O +36.2 O +% O +SCF O +. O + + +The O +volume S-CONPRI +of O +most O +pores S-PRO +within O +the O +filament S-MATE +were O +found O +to O +be S-MATE +under O +100 O +μm3 O +. O + + +The O +highest O +frequency O +of O +pores S-PRO +was O +located O +near O +the O +outside O +of O +the O +filament S-MATE +, O +but O +the O +large O +pores S-PRO +were O +located O +near O +the O +center O +of O +the O +filament S-MATE +. O + + +This O +result O +indicates O +that O +the O +thermoplastic B-MANP +filament I-MANP +extrusion I-MANP +process E-MANP +likely O +entraps O +large O +bubbles O +in O +the O +center O +of O +filament S-MATE +or O +causes O +large O +thermal B-PARA +gradients E-PARA +and O +residual B-PRO +stresses E-PRO +that O +induce O +voids S-CONPRI +during O +post-extrusion O +cooling S-MANP +. O + + +MSGD O +analysis O +of O +sections O +of O +the O +MEX O +SCF O +part O +estimated O +phase S-CONPRI +volume O +percentages O +to O +be S-MATE +9.8 O +% O +pore S-PRO +, O +59.6 O +% O +Nylon S-MATE +, O +and O +30.9 O +% O +SCF O +. O + + +For O +the O +MEX O +SCF O +part O +, O +the O +average S-CONPRI +pore O +area S-PARA +was O +found O +to O +be S-MATE +highest O +( O +> O +250 O +μm2 O +) O +at O +the O +bottom O +of O +the O +layer S-PARA +and O +smallest O +( O +< O +100 O +μm2 O +) O +at O +the O +top O +of O +the O +layer S-PARA +, O +which O +could O +be S-MATE +explained O +by O +a O +large O +temperature B-PARA +gradient E-PARA +between O +and O +contractile O +thermal B-PRO +stresses E-PRO +inside O +the O +layer S-PARA +that O +cause O +the O +thermoplastic S-MATE +to O +shrink S-FEAT +into O +a O +smaller O +volume S-CONPRI +allowing O +the O +voids S-CONPRI +to O +grow O +during O +deposition S-CONPRI +. O + + +A O +qualitative S-CONPRI +analysis O +of O +fiber B-FEAT +orientation E-FEAT +conducted O +on O +the O +SCF O +filament S-MATE +indicated O +that O +the O +SCFs O +maintain O +their O +orientation S-CONPRI +from O +filament S-MATE +to O +part O +except O +in O +the O +intersection O +zone O +of O +rasters O +. O + + +In O +the O +quest O +to O +achieve O +functional O +3D B-APPL +printed I-APPL +parts E-APPL +with O +open O +source S-APPL +machines S-MACEQ +and O +tools S-MACEQ +it O +is O +required O +to O +study O +all O +the O +error S-CONPRI +sources O +. O + + +Flow O +control O +is O +a O +major O +contributor O +to O +accuracy S-CHAR +of O +parts O +manufactured S-CONPRI +additively O +with O +material B-MANP +extrusion E-MANP +and O +a O +precise O +filament S-MATE +feed S-PARA +rate O +is O +therefore O +essential O +. O + + +Filament S-MATE +slippage O +is O +measured O +in O +this O +work O +. O + + +The O +speed O +difference O +between O +filament S-MATE +feed S-PARA +gear O +speed O +and O +filament S-MATE +speed O +is O +measured O +with O +a O +cost O +effective O +, O +automated O +setup O +, O +using O +a O +low O +cost O +USB O +microscope S-MACEQ +video O +camera S-MACEQ +and O +image S-CONPRI +processing O +. O + + +The O +filament S-MATE +width O +is O +also O +measured O +simultaneously O +, O +allowing O +for O +real O +time O +volumetric O +flow B-PARA +rate E-PARA +estimation O +. O + + +Extrusion S-MANP +temperature O +and O +feed S-PARA +rate O +are O +found O +to O +influence O +the O +amount O +of O +slippage O +. O + + +Proof O +of O +concept O +closed B-CONPRI +loop I-CONPRI +control E-CONPRI +of O +the O +extruder S-MACEQ +is O +also O +implemented O +and O +reduces O +the O +amount O +of O +slippage O +considerably O +. O + + +In O +this O +paper O +we O +present O +the O +results O +of O +a O +study O +on O +the O +impact S-CONPRI +of O +a O +thin O +reflective O +film O +between O +the O +substrate S-MATE +and O +photoresin O +on O +the O +two-photon O +polymerization S-MANP +procedure O +. O + + +We O +have O +proposed O +a O +model S-CONPRI +for O +the O +elementary O +polymerization S-MANP +volume O +( O +voxel S-CONPRI +) O +formation O +for O +the O +introduced O +case O +and O +carried O +out O +simulations S-ENAT +to O +examine O +the O +influence O +of O +the O +refractive O +indexes O +relation O +, O +layer B-PARA +thickness E-PARA +, O +roughness S-PRO +, O +and O +polymerization S-MANP +depth O +on O +the O +polymerization S-MANP +performance S-CONPRI +. O + + +The O +experiments O +on O +fabrication S-MANP +of O +2D S-CONPRI +and O +2.5D O +structures O +have O +shown O +the O +benefit O +of O +the O +proposed O +configuration S-CONPRI +for O +the O +substrate/photoresin O +interface S-CONPRI +localization O +as S-MATE +well O +as S-MATE +for O +the O +distortion-free O +fabrication S-MANP +. O + + +Directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +is O +a O +promising O +technique O +for O +cladding S-MANP +and O +repair O +due O +to O +its O +ability O +to O +deposit O +molten B-MATE +metal E-MATE +onto O +existing O +surfaces S-CONPRI +. O + + +To O +date O +, O +much O +still O +needs O +to O +be S-MATE +understood O +regarding O +the O +microstructure B-CONPRI +evolution E-CONPRI +during O +DED S-MANP +. O + + +The O +work O +herein O +seeks O +to O +reveal O +the O +effect O +of O +build B-PARA +height E-PARA +on O +mechanical B-CONPRI +properties E-CONPRI +and O +corrosion S-CONPRI +for O +austenitic B-MATE +stainless I-MATE +steel E-MATE +316L O +. O + + +A O +large O +316L O +block O +was O +fabricated S-CONPRI +via O +DED S-MANP +and O +horizontal O +tensile B-MACEQ +specimens E-MACEQ +were O +taken O +from O +every O +3 O +mm S-MANP +along O +the O +build B-PARA +height E-PARA +in O +order O +to O +assess O +the O +effect O +of O +build B-PARA +height E-PARA +on O +the O +mechanical B-CONPRI +response E-CONPRI +. O + + +Electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +mapping O +was O +also O +conducted O +on O +sections O +taken O +from O +the O +bottom O +, O +middle O +and O +top O +heights O +of O +the O +build S-PARA +, O +to O +assess O +the O +microstructural B-CONPRI +evolution E-CONPRI +. O + + +Cyclic O +polarisation O +testing S-CHAR +was O +performed O +on O +sections O +from O +the O +build S-PARA +to O +assess O +the O +pitting S-CONPRI +potential O +and O +re-passivation O +as S-MATE +a O +function O +of O +build B-PARA +height E-PARA +. O + + +Parameters S-CONPRI +for O +selective B-MANP +laser I-MANP +melting E-MANP +of O +Zr59.3Cu28.8Al10.4Nb1.5 O +( O +trade O +name O +AMZ4 O +) O +, O +allowing O +crack-free O +bulk O +metallic B-MATE +glass E-MATE +with O +low O +porosity S-PRO +, O +have O +been O +developed O +. O + + +The O +phase S-CONPRI +formation O +was O +found O +to O +be S-MATE +strongly O +influenced O +by O +the O +heating S-MANP +power O +of O +the O +laser S-ENAT +. O + + +X-ray S-CHAR +amorphous O +samples S-CONPRI +were O +obtained O +with O +laser B-PARA +power E-PARA +at O +and O +below O +75 O +W. O +The O +as-processed O +bulk O +metallic B-MATE +glass E-MATE +was O +found O +to O +devitrify O +by O +a O +two-stage O +crystallization S-CONPRI +process O +within O +which O +the O +presence O +of O +oxygen S-MATE +was O +concluded O +to O +play O +an O +essential O +role O +. O + + +At O +laser B-PARA +powers E-PARA +above O +75 O +W O +, O +the O +observed O +crystallites S-MATE +were O +found O +to O +be S-MATE +a O +cubic O +phase S-CONPRI +( O +Cu2Zr4O O +) O +. O + + +The O +hardness S-PRO +and O +Young O +’ O +s S-MATE +modulus O +in O +the O +as-processed O +samples S-CONPRI +was O +found O +to O +increase O +marginally O +with O +increased O +fraction S-CONPRI +of O +the O +crystalline O +phase S-CONPRI +. O + + +Large-scale O +printing B-ENAT +technology E-ENAT +is O +proposed O +for O +non-metallic O +lightning O +protection O +. O + + +The O +printing B-MANP +process E-MANP +integrates O +continuous B-MATE +carbon I-MATE +fiber E-MATE +and O +E-Beam O +irradiation S-MANP +curing S-MANP +. O + + +Low-energy O +E-Beam O +is O +applied O +for O +fast O +and O +low-temperature O +curing S-MANP +adequacy O +of O +print S-MANP +. O + + +Regarding O +impregnation S-MANP +of O +epoxy S-MATE +, O +the O +fiber S-MATE +content O +of O +this O +printing O +reached O +58 O +wt O +% O +. O + + +Continuous B-MATE +fiber E-MATE +mesh O +provides O +comparative O +protection O +as S-MATE +commercial O +copper S-MATE +mesh O +. O + + +Wind-turbine O +blades O +are O +more O +vulnerable O +to O +lightning O +strikes O +as S-MATE +they O +lack O +a O +protection O +system O +for O +large-scale O +glass B-MATE +fiber E-MATE +reinforced O +polymer S-MATE +( O +GFRP O +) O +composite B-CONPRI +structures E-CONPRI +. O + + +A O +low-energy O +electron B-CONPRI +beam E-CONPRI +( O +EB O +) O +cured S-MANP +printing O +process S-CONPRI +for O +fabricating S-MANP +a O +continuous O +carbon S-MATE +fiber-reinforced O +thermoset O +resin S-MATE +as S-MATE +a O +non-metallic O +lightning O +protection O +mesh O +on O +a O +GFRP O +composite S-MATE +surface O +was O +carried O +out O +in O +this O +study O +. O + + +During O +the O +proposed O +process S-CONPRI +, O +a O +continuous B-MATE +carbon I-MATE +fiber E-MATE +mesh O +was O +printed O +through O +a O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +that O +integrates O +the O +rapid O +curing S-MANP +of O +an O +epoxy S-MATE +resin O +with O +low-energy O +EB O +irradiation S-MANP +. O + + +The O +printing B-MANP +process E-MANP +was O +analyzed O +and O +optimized O +by O +examining O +the O +correlation O +between O +the O +EB O +exposure S-CONPRI +dose O +and O +the O +printing O +height O +. O + + +Results O +from O +artificial O +lightning O +strikes O +showed O +that O +the O +printed O +carbon B-MATE +fiber E-MATE +mesh O +prevented O +damage S-PRO +, O +and O +the O +structure S-CONPRI +remained O +relatively O +intact O +with O +residual S-CONPRI +strength O +reaching O +90.1 O +% O +at O +100 O +kA O +maximum O +peak O +current O +. O + + +The O +protection O +mechanism S-CONPRI +was O +investigated O +using O +a O +high-speed O +camera S-MACEQ +, O +which O +revealed O +that O +the O +carbon B-MATE +fiber E-MATE +mesh O +spreads O +the O +striking O +current O +outside O +the O +laminate S-CONPRI +instead O +of O +penetrating O +inside O +. O + + +In O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +products O +are O +built O +by O +melting S-MANP +layers O +of O +metal B-MATE +powder E-MATE +successively O +. O + + +Optimal B-PARA +process E-PARA +parameters O +are O +usually O +obtained O +by O +scanning S-CONPRI +single O +vectors O +and O +subsequently O +determining O +which O +settings O +lead S-MATE +to O +a O +good O +compromise O +between O +product O +density S-PRO +and O +build B-PARA +speed E-PARA +. O + + +This O +paper O +proposes O +a O +model S-CONPRI +that O +describes O +the O +effects O +occurring O +when O +scanning S-CONPRI +single O +vectors O +. O + + +Energy B-CHAR +absorption E-CHAR +and O +heat B-CONPRI +conduction E-CONPRI +are O +modeled O +to O +determine O +the O +temperature S-PARA +distribution S-CONPRI +and O +melt B-MATE +pool E-MATE +characteristics O +for O +different O +laser B-PARA +powers E-PARA +, O +scan B-PARA +speeds E-PARA +and O +layer B-PARA +thicknesses E-PARA +. O + + +The O +model S-CONPRI +shows O +good O +agreement O +with O +experimentally O +obtained O +scan O +vectors O +and O +can O +therefore O +be S-MATE +used O +to O +predict O +SLM S-MANP +process B-CONPRI +parameters E-CONPRI +. O + + +This O +research B-CONPRI +investigates E-CONPRI +the O +microstructure S-CONPRI +, O +mechanical S-APPL +, O +residual B-PRO +stress E-PRO +and O +tribological B-CONPRI +properties E-CONPRI +of O +as-printed O +Inconel B-MATE +718 E-MATE +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +. O + + +The O +microstructure S-CONPRI +exhibits O +a O +hierarchical B-FEAT +structure E-FEAT +composed O +of O +melt B-CONPRI +pool I-CONPRI +boundaries E-CONPRI +and O +directionally B-MANP +solidified E-MANP +columnar O +thin O +dendrites S-BIOP +. O + + +No O +significant O +size O +of O +defects S-CONPRI +or O +undesirable O +phases O +such O +as S-MATE +Laves O +phases O +or O +macrosegregation S-CONPRI +was O +found O +in O +the O +microstructure S-CONPRI +. O + + +The O +Vickers O +microhardness S-CONPRI +results O +did O +not O +show O +any O +significant O +differences O +in O +hardness S-PRO +value O +across O +the O +tracks O +and O +layers O +of O +melt B-CONPRI +pool I-CONPRI +boundaries E-CONPRI +. O + + +The O +hot O +tribological S-CONPRI +behaviour O +of O +the O +alloy S-MATE +was O +investigated O +for O +the O +range S-PARA +of O +temperatures S-PARA +( O +28 O +°C O +, O +400 O +°C O +, O +500 O +°C O +and O +600 O +°C O +) O +in O +a O +high O +temperature S-PARA +pin O +( O +Inconel B-MATE +718 E-MATE +) O +on O +disc O +( O +EN31 O +steel S-MATE +) O +set S-APPL +up O +. O + + +The O +worn O +surface S-CONPRI +and O +loose O +wear S-CONPRI +debris O +were O +analysed O +with O +the O +aid O +of O +SEM/EDS O +and O +XRD S-CHAR +analysis O +. O + + +The O +wear S-CONPRI +loss O +and O +friction S-CONPRI +coefficient O +increase O +with O +the O +test O +temperature S-PARA +. O + + +The O +friction S-CONPRI +results O +show O +the O +running-in-period O +and O +steady-state-period O +for O +the O +high O +temperature S-PARA +cases O +. O + + +The O +abrasion O +wear S-CONPRI +is O +predominant O +at O +28 O +°C O +. O + + +In O +contrast O +, O +delamination S-CONPRI +wear O +and O +oxidation S-MANP +wear O +are O +dominant O +for O +high O +temperature S-PARA +cases O +. O + + +The O +observation O +of O +high O +friction S-CONPRI +and O +wear S-CONPRI +loss O +with O +the O +test O +temperature S-PARA +is O +attributed O +to O +the O +increased O +intensity O +of O +delamination S-CONPRI +wear O +and O +oxidation S-MANP +rate O +of O +non-lubricative O +NiO S-MATE +. O + + +The O +wear S-CONPRI +debris O +size O +increases O +with O +the O +test O +temperature S-PARA +and O +the O +shape O +has O +undergone O +changes O +from O +short O +angular O +to O +long O +angular O +sheets S-MATE +. O + + +Single-pass O +depositions O +of O +columnar O +René O +142 O +on O +investment O +cast S-MANP +single-crystal O +( O +SX O +) O +René O +N5 O +substrates O +having O +[ O +100 O +] O +and O +[ O +001 O +] O +primary O +dendrite S-BIOP +growth O +directions O +were O +obtained O +through O +scanning S-CONPRI +laser S-ENAT +epitaxy S-CONPRI +( O +SLE O +) O +, O +a O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +-based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +. O + + +The O +microstructure S-CONPRI +and O +the O +microhardness S-CONPRI +properties O +of O +the O +René O +142 O +deposits O +were O +investigated O +through O +high-resolution S-PARA +optical O +microscopy S-CHAR +( O +HR-OM O +) O +, O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +energy B-CHAR +dispersive I-CHAR +x-ray I-CHAR +spectroscopy E-CHAR +( O +EDS S-CHAR +) O +, O +x-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +, O +and O +micro-hardness O +measurements O +. O + + +SEM S-CHAR +investigations O +demonstrated O +that O +the O +primary O +γ/γ′ O +precipitates S-MATE +in O +the O +deposit O +region O +were O +90 O +% O +finer O +in O +size O +compared O +to O +the O +substrate S-MATE +. O + + +Microhardness S-CONPRI +measurements O +showed O +an O +increase O +in O +the O +hardness S-PRO +values O +by O +∼10 O +% O +in O +the O +deposit O +region O +compared O +to O +the O +cast S-MANP +substrate O +. O + + +The O +results O +showed O +that O +the O +SLE O +process S-CONPRI +has O +tremendous O +potential O +in O +producing O +epitaxial S-PRO +deposits O +of O +nickel-based B-MATE +superalloys E-MATE +and O +, O +therefore O +, O +the O +findings O +reported O +in O +this O +work O +can O +pave O +ways O +to O +fabricate S-MANP +components S-MACEQ +with O +dissimilar-chemistry O +high-γ′ O +nickel-based B-MATE +superalloys E-MATE +using O +an O +LPBF-based O +AM B-MANP +process E-MANP +. O + + +Neutron B-CHAR +diffraction E-CHAR +study O +of O +poly-crystalline O +bulk O +samples S-CONPRI +of O +Ti-6Al-4V S-MATE +, O +prepared O +using O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +and O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +, O +and O +of O +their O +ingredient O +powders S-MATE +, O +is O +reported O +. O + + +Both O +the O +SLM S-MANP +and O +EBM S-MANP +samples O +do O +not O +contain O +the O +macro- O +and O +micro-strain O +, O +found O +in O +the O +ingredient O +powder B-MATE +particles E-MATE +. O + + +In O +addition O +, O +the O +micro-structure O +of O +the O +EBM S-MANP +sample O +is O +found O +free O +of O +preferential O +orientation S-CONPRI +, O +whereas O +in O +the O +SLM S-MANP +sample S-CONPRI +significant O +preference O +towards O +the O +hexagonal S-FEAT +basal B-CONPRI +plane E-CONPRI +is O +found O +. O + + +Hot-rolled O +Inconel B-MATE +718 E-MATE +showed O +superior O +creep S-PRO +performance O +to O +LPBF S-MANP +Inconel B-MATE +718 E-MATE +. O + + +HIPing O +worsened O +creep S-PRO +life O +and O +HT O +improved O +creep S-PRO +life O +of O +LPBF S-MANP +Inconel B-MATE +718 E-MATE +. O + + +Intergranular O +precipitation S-CONPRI +in O +the O +HIP S-MANP +’ O +d O +samples S-CONPRI +explained O +worse O +creep S-PRO +performance O +. O + + +Hot-rolled O +samples S-CONPRI +avoided O +intergranular O +fracture S-CONPRI +. O + + +In O +this O +study O +, O +the O +creep S-PRO +performance O +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +manufactured O +Inconel B-MATE +718 E-MATE +specimens O +is O +studied O +in O +detail O +and O +compared O +with O +conventional O +hot-rolled O +specimens O +alongside O +as-built O +then O +heat-treated S-MANP +and O +as-built O +then O +hot-isostatic O +pressed S-MANP +specimens O +. O + + +Hot-rolled O +specimens O +showed O +the O +best O +creep S-PRO +resistance O +, O +while O +the O +hot-isostatic O +pressed S-MANP +specimens O +yielded O +the O +worst O +performance S-CONPRI +, O +inferior O +to O +the O +as-built O +condition O +. O + + +Creep S-PRO +testing O +of O +all O +samples S-CONPRI +showed O +increased O +secondary O +creep S-PRO +rate O +was O +consistently O +correlated S-CONPRI +with O +a O +reduced O +life O +. O + + +Fractography S-CHAR +revealed O +intergranular O +fracture S-CONPRI +was O +the O +primary O +failure B-PRO +mode E-PRO +for O +all O +as-built O +samples S-CONPRI +. O + + +Preferential O +intergranular O +precipitation S-CONPRI +in O +the O +case O +of O +the O +hot-isostatic O +pressed S-MANP +specimens O +during O +hot-isostatic O +pressing S-MANP +extensive O +intergranular O +cracking S-CONPRI +as S-MATE +the O +primary O +failure B-PRO +mechanism E-PRO +. O + + +Heat-treated S-MANP +specimens O +possessed O +only O +sparse O +intergranular O +precipitates S-MATE +, O +thereby O +explaining O +an O +improved O +creep S-PRO +lifetime O +. O + + +The O +hot-rolled O +specimens O +, O +having O +smallest O +grain B-PRO +size E-PRO +, O +showed O +the O +least O +extensive O +cracking S-CONPRI +, O +particularly O +in O +locations O +of O +finest O +grains S-CONPRI +, O +explaining O +avoidance O +of O +intergranular O +fracture S-CONPRI +as S-MATE +a O +key O +creep S-PRO +mechanism O +, O +thereby O +explaining O +the O +ductile B-PRO +creep E-PRO +fracture O +surfaces S-CONPRI +in O +the O +case O +of O +the O +hot-rolled O +samples S-CONPRI +. O + + +The O +build-up O +of O +residual B-PRO +stresses E-PRO +in O +a O +part O +during O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +provides O +a O +significant O +limitation O +to O +the O +adoption O +of O +this O +process S-CONPRI +. O + + +These O +residuals S-CONPRI +stresses O +may O +cause O +a O +part O +to O +fail O +during O +a O +build S-PARA +or O +fall O +outside O +the O +specified O +tolerances S-PARA +after O +fabrication S-MANP +. O + + +In O +the O +present O +work O +a O +thermomechanical B-CONPRI +model E-CONPRI +is O +used O +to O +simulate O +the O +build S-PARA +process O +and O +calculate O +the O +residual B-PRO +stress E-PRO +state O +for O +Ti–6Al–4V O +specimens O +built O +with O +continuous O +and O +island O +scan O +strategies O +. O + + +A O +material S-MATE +model O +is O +developed O +to O +naturally O +capture O +the O +strain-rate O +dependence O +and O +annealing S-MANP +behavior O +of O +Ti–6Al–4V O +at O +elevated O +temperatures S-PARA +. O + + +Results O +from O +the O +thermomechanical S-CONPRI +simulations S-ENAT +showed O +good O +agreement O +with O +synchrotron S-ENAT +X-ray O +diffraction S-CHAR +measurements O +used O +to O +determine O +the O +residual S-CONPRI +elastic S-PRO +strains O +in O +these O +parts O +. O + + +However O +, O +the O +experimental S-CONPRI +measurements O +showed O +higher O +residual S-CONPRI +strains O +for O +the O +specimen O +built O +with O +an O +island O +scan O +strategy O +; O +a O +trend S-CONPRI +not O +fully O +captured O +by O +the O +simulations S-ENAT +. O + + +Parameter S-CONPRI +studies O +were O +performed O +to O +fully O +understand O +the O +advantages O +and O +limitations O +of O +the O +current O +simulation S-ENAT +methodology S-CONPRI +. O + + +Using O +defocus O +can O +lead S-MATE +to O +a O +stable O +SLM S-MANP +process S-CONPRI +with O +high O +build B-CHAR +rates E-CHAR +. O + + +Melt B-MATE +pool E-MATE +morphology O +can O +be S-MATE +predicted O +by O +normalized O +enthalpy O +and O +Rosenthal B-CONPRI +equation E-CONPRI +Melt B-PARA +pool I-PARA +depth E-PARA +is O +more O +influenced O +by O +defocusing O +than O +its O +width O +. O + + +Despite O +its O +many O +benefits O +, O +Selective B-MANP +Laser I-MANP +Melting E-MANP +'s O +( O +SLM S-MANP +) O +relatively O +low O +productivity S-CONPRI +compared O +to O +deposition-based O +additive B-MANP +manufacturing E-MANP +techniques O +is O +a O +major O +drawback O +. O + + +Increasing O +the O +laser B-PARA +beam I-PARA +diameter E-PARA +improves O +SLM S-MANP +'s O +build B-CHAR +rate E-CHAR +, O +but O +causes O +loss O +of O +precision S-CHAR +. O + + +The O +aim O +of O +this O +study O +is O +to O +investigate O +laser B-CONPRI +beam E-CONPRI +focus O +shift O +, O +or O +“ O +defocus O +” O +, O +using O +a O +dynamic S-CONPRI +focusing O +unit O +, O +in O +order O +to O +increase O +the O +laser B-PARA +spot I-PARA +size E-PARA +. O + + +When O +applied O +to O +the O +SLM S-MANP +process S-CONPRI +, O +focus O +shift O +can O +be S-MATE +integrated O +into O +a O +“ O +hull-core O +” O +strategy O +. O + + +This O +involves O +scanning S-CONPRI +the O +core S-MACEQ +with O +a O +high O +productivity S-CONPRI +parameter S-CONPRI +set O +using O +defocus O +while O +enabling O +return O +to O +the O +focused O +smaller O +spot B-PARA +size E-PARA +position O +for O +hull O +scanning S-CONPRI +. O + + +To O +assess O +the O +process S-CONPRI +stability O +, O +single O +line O +scans O +were O +made O +from O +316L B-MATE +stainless I-MATE +steel I-MATE +powder E-MATE +. O + + +The O +consolidated O +melt B-MATE +pool E-MATE +morphology O +was O +analyzed O +and O +correlated S-CONPRI +with O +the O +process B-CONPRI +parameters E-CONPRI +comprising O +laser B-PARA +power E-PARA +, O +scanning B-PARA +speed E-PARA +and O +defocus O +distance O +. O + + +In O +order O +to O +link O +the O +melt B-MATE +pool E-MATE +morphology O +with O +the O +heat S-CONPRI +input O +, O +Volumetric O +Energy B-PARA +Density E-PARA +, O +Normalized O +Enthalpy O +and O +Rosenthal B-CONPRI +equation E-CONPRI +were O +considered O +. O + + +The O +suitability O +of O +using O +the O +Normalized O +Enthalpy O +as S-MATE +a O +design S-FEAT +parameter O +to O +predict O +the O +melt B-PARA +pool I-PARA +depth E-PARA +and O +Rosenthal B-CONPRI +equation E-CONPRI +to O +predict O +its O +width O +was O +highlighted O +. O + + +This O +study O +shows O +that O +within O +a O +single O +laser S-ENAT +setup O +, O +implementing O +defocus O +can O +lead S-MATE +to O +a O +potential O +productivity S-CONPRI +increase O +by O +840 O +% O +, O +i.e O +. O + + +New O +generation O +of O +selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +machines S-MACEQ +are O +evolving O +towards O +higher O +power S-PARA +lasers O +as S-MATE +well O +as S-MATE +multi O +laser S-ENAT +systems O +in O +order O +to O +increase O +the O +productivity S-CONPRI +. O + + +The O +increase O +in O +laser B-PARA +power E-PARA +and O +the O +modification O +of O +the O +laser B-PARA +power E-PARA +distribution S-CONPRI +leads O +to O +microstructural S-CONPRI +and O +mechanical B-CONPRI +property E-CONPRI +variations O +that O +are O +still O +not O +well O +understood.This O +work O +aims O +at O +better O +understanding O +the O +interaction O +of O +a O +1 O +kW O +top-hat O +power S-PARA +distribution S-CONPRI +laser O +on O +a O +well O +know O +material S-MATE +, O +316 O +L O +stainless B-MATE +steel E-MATE +. O + + +The O +influence O +of O +texture S-FEAT +and O +microstructure S-CONPRI +on O +relative B-PRO +density E-PRO +and O +crack O +density S-PRO +, O +when O +varying O +scan O +rotation O +, O +was O +evaluated O +. O + + +The O +high O +power S-PARA +( O +HP O +) O +laser S-ENAT +and O +low O +power S-PARA +( O +LP O +) O +laser S-ENAT +were O +compared O +with O +respect O +to O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +. O + + +HP O +leads O +to O +an O +increase O +in O +morphological O +and O +crystallographic O +texture S-FEAT +together O +with O +a O +coarsening O +of O +the O +cell S-APPL +structure O +in O +contrast O +to O +the O +more O +random O +and O +finer O +cells S-APPL +found O +in O +LP O +processed B-CONPRI +material E-CONPRI +. O + + +Hot B-MANP +isostatic I-MANP +pressing E-MANP +was O +applied O +as S-MATE +a O +post-process S-CONPRI +treatment O +in O +order O +to O +close O +remaining O +pores S-PRO +and O +cracks O +. O + + +This O +helped O +in O +achieving O +higher O +elongations O +for O +LP O +and O +HP O +processed B-CONPRI +materials E-CONPRI +, O +while O +competitive O +mechanical B-CONPRI +properties E-CONPRI +to O +the O +316 O +L O +material S-MATE +specifications O +were O +obtained O +in O +both O +cases O +. O + + +Laser B-MANP +sintering E-MANP +( O +LS O +) O +of O +polymer B-MATE +materials E-MATE +is O +a O +process S-CONPRI +that O +has O +been O +developed O +over O +the O +last O +two O +decades O +and O +has O +been O +applied O +in O +industries S-APPL +ranging O +from O +aerospace S-APPL +to O +sporting O +goods O +. O + + +However O +, O +one O +of O +the O +current O +major O +limitations O +of O +the O +process S-CONPRI +is O +the O +restricted O +range S-PARA +of O +usable O +materials S-CONPRI +. O + + +Various B-MATE +material E-MATE +characteristics O +have O +been O +proposed O +as S-MATE +being O +important O +to O +optimise O +the O +laser B-MANP +sintering E-MANP +process O +, O +key O +aspects O +of O +which O +have O +been O +combined O +in O +this O +work O +to O +develop O +an O +understanding O +of O +the O +most O +crucial O +requirements O +for O +LS O +process S-CONPRI +design S-FEAT +and O +materials S-CONPRI +selection O +. O + + +Using O +the O +favourable O +characteristics O +of O +polyamide-12 O +( O +the O +most O +often O +used O +material S-MATE +for O +laser B-MANP +sintering E-MANP +) O +as S-MATE +a O +benchmark S-MANS +, O +a O +previously O +un-sintered O +thermoplastic B-MATE +elastomer E-MATE +material S-MATE +was O +identified O +as S-MATE +being O +suitable O +for O +the O +LS O +process S-CONPRI +, O +through O +a O +combination O +of O +information O +from O +Differential O +Scanning S-CONPRI +Calorimetry O +( O +DSC S-CHAR +) O +, O +hot O +stage O +microscopy S-CHAR +( O +HSM O +) O +and O +knowledge O +of O +viscosity S-PRO +data S-CONPRI +. O + + +Subsequent O +laser B-MANP +sintering E-MANP +builds S-CHAR +confirmed O +the O +viability O +of O +this O +new O +material S-MATE +, O +and O +tensile B-CHAR +test E-CHAR +results O +were O +favourable O +when O +compared O +with O +materials S-CONPRI +that O +are O +currently O +commercially O +available O +, O +thereby O +demonstrating O +the O +efficacy O +of O +the O +chosen O +selection O +process S-CONPRI +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +is O +already O +established O +as S-MATE +a O +commercial O +production S-MANP +technique O +. O + + +In-situ S-CONPRI +process O +monitoring O +is O +a O +promising O +means O +to O +accommodate O +this O +issue O +, O +but O +quantitative S-CONPRI +correlations O +between O +monitoring O +signals O +and O +actual O +part O +defects S-CONPRI +have O +been O +lacking O +. O + + +In O +this O +paper O +, O +results O +are O +presented O +that O +have O +been O +obtained O +with O +an O +off-axis O +melt B-MATE +pool E-MATE +monitoring O +system O +on O +a O +3D B-APPL +Systems E-APPL +ProX O +DMP O +320 O +using O +Ti-6Al-4 B-MATE +V E-MATE +ELI O +. O + + +The O +focus O +is O +on O +the O +development O +of O +a O +method O +for O +predicting O +the O +presence O +and O +location O +of O +lack O +of O +fusion S-CONPRI +porosities O +as S-MATE +they O +can O +have O +a O +large O +impact S-CONPRI +on O +part O +quality S-CONPRI +and O +are O +not O +always O +easily O +detected O +post-build O +. O + + +The O +processed S-CONPRI +signals O +from O +the O +monitoring O +system O +are O +shown O +to O +have O +a O +high O +degree O +of O +correlation O +with O +the O +presence O +of O +lack O +of O +fusion S-CONPRI +porosities O +as S-MATE +measured O +by O +CT S-ENAT +scans O +. O + + +A O +prediction S-CONPRI +sensitivity O +of O +90 O +% O +for O +lack O +of O +fusion S-CONPRI +events O +in O +the O +range S-PARA +of O +pores S-PRO +having O +a O +volume S-CONPRI +greater O +than O +0.001 O +mm3 O +, O +roughly O +equivalent O +to O +160 O +μm O +in O +diameter S-CONPRI +, O +was O +obtained O +. O + + +Relationships O +between O +prior O +beta O +grain B-PRO +size E-PRO +in O +solidified O +Ti-6Al-4V S-MATE +and O +melting S-MANP +process O +parameters S-CONPRI +in O +the O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +process S-CONPRI +are O +investigated O +. O + + +Samples S-CONPRI +are O +built O +by O +varying O +a O +machine-dependent O +proprietary O +speed O +function O +to O +cover O +the O +process S-CONPRI +space O +. O + + +Optical B-CHAR +microscopy E-CHAR +is O +used O +to O +measure O +prior O +beta O +grain S-CONPRI +widths O +and O +assess O +the O +number O +of O +prior O +beta O +grains S-CONPRI +present O +in O +a O +melt B-MATE +pool E-MATE +in O +the O +raster O +region O +of O +the O +build S-PARA +. O + + +Despite O +the O +complicated O +evolution S-CONPRI +of O +beta O +grain B-PRO +sizes E-PRO +, O +the O +beta O +grain S-CONPRI +width O +scales O +with O +melt B-MATE +pool E-MATE +width O +. O + + +The O +resulting O +understanding O +of O +the O +relationship O +between O +primary O +machine S-MACEQ +variables O +and O +prior O +beta O +grain S-CONPRI +widths O +is O +a O +key O +step S-CONPRI +toward O +enabling O +the O +location O +specific O +control O +of O +as-built O +microstructure S-CONPRI +in O +the O +EBM S-MANP +process O +. O + + +The O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +is O +used O +throughout O +the O +world O +. O + + +This O +process S-CONPRI +is O +based O +on O +the O +continuous O +( O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +) O +surfacing O +of O +metallic B-MATE +powder E-MATE +which O +is O +fused S-CONPRI +by O +laser S-ENAT +or O +high-power O +electron B-CONPRI +beam E-CONPRI +. O + + +In O +this O +paper O +is O +presented O +studies O +of O +the O +structure S-CONPRI +of O +a O +nickel B-MATE +alloy E-MATE +( O +EP718 O +) O +component S-MACEQ +formed O +using O +the O +SLM S-MANP +process S-CONPRI +, O +and O +the O +effects O +of O +heat B-MANP +treatment E-MANP +and O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +samples B-CONPRI +manufactured E-CONPRI +by O +SLM S-MANP +technology O +. O + + +Mechanical B-CHAR +tests E-CHAR +have O +shown O +that O +components S-MACEQ +formed O +using O +SLM S-MANP +exhibit O +a O +low O +level O +of O +strength S-PRO +but O +with O +a O +high O +degree O +of O +plasticity S-PRO +. O + + +Subsequent O +heat B-MANP +treatment E-MANP +led O +to O +an O +increase O +in O +strength S-PRO +and O +a O +corresponding O +reduction S-CONPRI +in O +plasticity S-PRO +owing O +to O +the O +formation O +of O +reinforcing O +particles S-CONPRI +of O +molybdenum S-MATE +silicides O +and O +an O +incomplete O +relaxation O +, O +with O +low O +grain B-CONPRI +growth E-CONPRI +. O + + +However O +, O +a O +combination O +of O +SLM S-MANP ++ O +HIP S-MANP ++ O +heat B-MANP +treatment E-MANP +resulted O +in O +optimum O +levels O +of O +strength S-PRO +and O +plasticity S-PRO +in O +comparison O +with O +other O +samples S-CONPRI +. O + + +In O +this O +work O +, O +3D S-CONPRI +cubic O +test O +specimens O +were O +manufactured S-CONPRI +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +from O +commercially O +available O +Ni/Fe-based O +superalloy O +powder S-MATE +, O +and O +were O +further O +subjected O +to O +heat B-MANP +treatment E-MANP +. O + + +The O +evolution S-CONPRI +of O +their O +microstructure S-CONPRI +, O +phase B-CONPRI +composition E-CONPRI +and O +microhardness S-CONPRI +were O +analysed O +in O +relation O +to O +the O +applied O +heat-treatment O +procedure.Parametric O +study O +of O +the O +SLM S-MANP +process S-CONPRI +allows O +determination O +of O +a O +suitable O +parametric O +set S-APPL +for O +obtaining O +of O +3D B-APPL +objects E-APPL +from O +the O +Ni/Fe-based O +single-crystal O +superalloy O +Thymonel-2 O +, O +with O +the O +resulting O +porosity S-PRO +of O +0.35 O +% O +.The O +manufactured B-CONPRI +3D E-CONPRI +specimens O +were O +subjected O +to O +three O +different O +heat-treatment O +procedures O +. O + + +The O +microstructure S-CONPRI +and O +the O +phase B-CONPRI +composition E-CONPRI +of O +the O +as-manufactured O +and O +the O +heat-treated S-MANP +samples O +were O +analysed O +in O +order O +to O +study O +the O +microstructure-microhardness O +correlation O +of O +Thymonel-2.XRD O +analysis O +of O +the O +as-manufactured O +samples S-CONPRI +reveals O +the O +presence O +of O +the O +fcc S-CONPRI +γ- O +( O +Fe S-MATE +, O +Ni S-MATE +) O +phase S-CONPRI +only O +. O + + +The O +literature O +reports O +a O +considerable O +amount O +of O +γ′ O +phase S-CONPRI +in O +Ni/Fe-based O +superalloys S-MATE +processed S-CONPRI +by O +conventional O +metallurgy S-CONPRI +. O + + +The O +absence O +of O +the O +γ′ O +can O +be S-MATE +explained O +by O +extremely O +high O +cooling B-PARA +rates E-PARA +during O +SLM S-MANP +which O +prevents O +precipitation S-CONPRI +. O + + +Post B-MANP +heat-treatment E-MANP +of O +the O +specimens O +leads O +to O +significant O +changes O +in O +microstructure S-CONPRI +and O +the O +resulting O +30–90 O +% O +increase O +in O +microhardness.Recommendations O +on O +SLM S-MANP +strategy O +and O +post B-MANP +heat-treatment E-MANP +of O +Thymonel-2 O +are O +provided O +. O + + +This O +work O +presents O +a O +novel O +modeling S-ENAT +framework S-CONPRI +combining O +computational B-CHAR +fluid I-CHAR +dynamics E-CHAR +( O +CFD S-APPL +) O +and O +cellular O +automata O +( O +CA S-MATE +) O +, O +to O +predict O +the O +solidification B-CONPRI +microstructure E-CONPRI +evolution S-CONPRI +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +fabricated S-CONPRI +316 O +L O +stainless B-MATE +steel E-MATE +. O + + +A O +CA S-MATE +model O +is O +developed O +which O +is O +based O +on O +the O +modified O +decentered O +square O +method O +to O +improve O +computational B-CONPRI +efficiency E-CONPRI +. O + + +Using O +this O +framework S-CONPRI +, O +the O +fluid S-MATE +dynamics O +of O +the O +melt B-MATE +pool E-MATE +flow O +in O +the O +laser S-ENAT +melting O +process S-CONPRI +is O +found O +to O +be S-MATE +mainly O +driven O +by O +the O +competing O +Marangoni O +force S-CONPRI +and O +the O +recoil O +pressure S-CONPRI +on O +the O +liquid B-MATE +metal E-MATE +surface O +. O + + +Evaporation S-CONPRI +occurs O +at O +the O +front O +end O +of O +the O +laser S-ENAT +spot O +. O + + +The O +initial O +high O +temperature S-PARA +occurs O +in O +the O +center O +of O +the O +laser S-ENAT +spot O +. O + + +However O +, O +due O +to O +Marangoni O +force S-CONPRI +, O +which O +drives O +high-temperature O +liquid O +flowing O +to O +low-temperature O +region O +, O +the O +highest O +temperature S-PARA +region O +shifts O +to O +the O +front O +side O +of O +the O +laser S-ENAT +spot O +where O +evaporation S-CONPRI +occurs O +. O + + +Additionally O +, O +the O +recoil O +pressure S-CONPRI +pushes O +the O +liquid B-MATE +metal E-MATE +downward O +to O +form O +a O +depression O +zone O +. O + + +The O +simulated O +melt B-PARA +pool I-PARA +depths E-PARA +are O +compared O +well O +with O +the O +experimental B-CONPRI +data E-CONPRI +. O + + +Additionally O +, O +the O +simulated O +solidification B-CONPRI +microstructure E-CONPRI +using O +the O +CA S-MATE +model O +is O +in O +a O +good O +agreement O +with O +the O +experimental S-CONPRI +observation O +. O + + +The O +simulations S-ENAT +show O +that O +higher O +scan B-PARA +speeds E-PARA +result O +in O +smaller O +melt B-PARA +pool I-PARA +depth E-PARA +, O +and O +lack-of-fusion O +pores S-PRO +can O +be S-MATE +formed O +. O + + +Higher O +laser B-ENAT +scan E-ENAT +speed O +also O +leads O +to O +finer O +grain B-PRO +size E-PRO +, O +larger O +laser-grain O +angle O +, O +and O +higher O +columnar B-PRO +grain E-PRO +contents O +, O +which O +are O +consistent O +with O +experimental S-CONPRI +observations O +. O + + +This O +model S-CONPRI +can O +be S-MATE +potentially O +used O +as S-MATE +a O +tool S-MACEQ +to O +optimize O +the O +metal B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +process O +, O +through O +generating O +desired O +microstructure S-CONPRI +and O +resultant O +material B-CONPRI +properties E-CONPRI +. O + + +We O +report O +our O +efforts O +toward O +3D B-MANP +printing E-MANP +of O +polyether O +ether O +ketone O +( O +PEEK S-MATE +) O +at O +room O +temperature S-PARA +by O +direct-ink O +write O +technology S-CONPRI +. O + + +The O +room-temperature O +extrusion S-MANP +printing O +method O +was O +enabled O +by O +a O +unique O +formulation O +comprised O +of O +commercial O +PEEK S-MATE +powder O +, O +soluble S-CONPRI +epoxy-functionalized O +PEEK S-MATE +( O +ePEEK O +) O +, O +and O +fenchone O +. O + + +This O +combination O +formed O +a O +Bingham O +plastic S-MATE +that O +could O +be S-MATE +extruded O +using O +a O +readily O +available O +direct-ink O +write O +printer S-MACEQ +. O + + +The O +initial O +green B-CONPRI +body E-CONPRI +specimens O +were O +strong O +enough O +to O +be S-MATE +manipulated O +manually O +after O +drying S-MANP +. O + + +After O +printing O +, O +thermal O +processing O +at O +230 O +°C O +resulted O +in O +crosslinking O +of O +the O +ePEEK O +components S-MACEQ +to O +form O +a O +stabilizing O +network O +throughout O +the O +specimen O +, O +which O +helped O +to O +preclude O +distortion S-CONPRI +and O +cracking S-CONPRI +upon O +sintering S-MANP +. O + + +The O +final O +parts O +were O +found O +to O +have O +excellent O +thermal B-PRO +stability E-PRO +and O +solvent O +resistance S-PRO +. O + + +The O +Tg S-CHAR +of O +the O +product O +specimens O +was O +found O +to O +be S-MATE +158 O +°C O +, O +which O +is O +13 O +°C O +higher O +than O +commercial O +PEEK S-MATE +as S-MATE +measured O +by O +DSC S-CHAR +. O + + +Moreover O +, O +the O +thermal B-MANP +decomposition E-MANP +temperature S-PARA +was O +found O +to O +be S-MATE +528 O +°C O +, O +which O +compares O +well O +against O +commercial O +molded O +PEEK S-MATE +samples O +. O + + +Chemical B-PRO +resistance E-PRO +in O +trifluoroacetic O +acid O +and O +8 O +common O +organic O +solvents O +, O +including O +CH2Cl2 O +and O +toluene O +, O +were O +also O +investigated O +and O +no O +signs O +of O +degradation S-CONPRI +or O +weight S-PARA +changes O +were O +observed O +from O +parts O +submerged O +for O +1 O +week O +in O +each O +solvent O +. O + + +Test O +specimens O +also O +displayed O +desirable O +mechanical B-CONPRI +properties E-CONPRI +, O +such O +as S-MATE +a O +Young O +’ O +s S-MATE +modulus O +of O +2.5 O +GPa S-PRO +, O +which O +corresponds O +to O +63 O +% O +of O +that O +of O +commercial O +PEEK S-MATE +( O +reported O +to O +be S-MATE +4.0 O +GPa S-PRO +) O +. O + + +Due O +to O +the O +relative O +youth O +of O +metallic B-MATE +powder E-MATE +bed S-MACEQ +additive B-MANP +manufacturing E-MANP +technologies O +and O +difficulties O +with O +monitoring O +the O +process S-CONPRI +in B-CONPRI +situ E-CONPRI +, O +there O +is O +little O +consensus O +in O +the O +user O +community O +on O +how O +to O +optimize O +user O +variable O +parameters S-CONPRI +to O +ensure O +the O +highest O +quality S-CONPRI +and O +most O +cost O +effective O +build S-PARA +. O + + +Temperature S-PARA +distribution S-CONPRI +is O +the O +critical B-PRO +factor E-PRO +that O +dictates O +melting S-MANP +, O +microstructure S-CONPRI +and O +eventually O +the O +final O +part O +quality S-CONPRI +. O + + +Monitoring O +or O +measuring O +the O +temperature S-PARA +during O +the O +process S-CONPRI +is O +extremely O +difficult O +due O +to O +the O +ultra-high O +speeds O +and O +microscale S-CONPRI +size O +of O +the O +laser S-ENAT +or O +electron B-CONPRI +beam E-CONPRI +. O + + +Therefore O +, O +other O +tools S-MACEQ +such O +as S-MATE +finite O +element S-MATE +modeling O +can O +be S-MATE +utilized O +to O +optimize O +these O +processes S-CONPRI +and O +predict O +the O +behavior O +of O +the O +system O +for O +different O +materials S-CONPRI +. O + + +This O +research S-CONPRI +presents O +transient S-CONPRI +, O +dynamic S-CONPRI +finite O +element S-MATE +model O +of O +the O +build S-PARA +process O +for O +both O +laser S-ENAT +and O +electron B-MANP +beam I-MANP +melting E-MANP +techniques O +. O + + +The O +model S-CONPRI +includes O +melting S-MANP +and O +solidification S-CONPRI +of O +the O +powder S-MATE +as S-MATE +well O +as S-MATE +different O +thermal O +aspects O +such O +as S-MATE +conduction O +and O +radiation S-MANP +. O + + +Diffusivity S-CHAR +of O +the O +powder S-MATE +is O +modeled O +and O +phase S-CONPRI +change O +is O +modeled O +such O +that O +latent B-CONPRI +heat I-CONPRI +of I-CONPRI +fusion E-CONPRI +is O +considered O +. O + + +Melt B-MATE +pool E-MATE +geometry S-CONPRI +and O +temperature S-PARA +distribution S-CONPRI +was O +obtained O +for O +different O +heat B-CONPRI +sources E-CONPRI +and O +different O +materials S-CONPRI +such O +as S-MATE +Ti6Al4V O +, O +Stainless B-MATE +Steel E-MATE +316 O +, O +and O +7075 O +Aluminum S-MATE +powders O +. O + + +It O +was O +determined O +that O +heat B-PRO +accumulation E-PRO +is O +most O +consolidated O +within O +titanium B-MATE +powder E-MATE +beds O +, O +with O +steel S-MATE +being O +the O +second O +most O +consolidated O +, O +and O +aluminum S-MATE +powder O +beds O +having O +the O +most O +heat B-CONPRI +dissipation E-CONPRI +. O + + +As S-MATE +a O +result O +, O +titanium S-MATE +was O +seen O +to O +exhibit O +the O +highest O +local O +temperatures S-PARA +and O +largest O +melt B-MATE +pools E-MATE +, O +followed O +by O +steel S-MATE +and O +aluminum S-MATE +in O +decreasing O +order O +. O + + +Naturally O +, O +laser S-ENAT +models O +showed O +smaller O +melt B-MATE +pool E-MATE +sizes O +and O +depths O +due O +to O +lower O +power S-PARA +. O + + +The O +beam S-MACEQ +speed O +and O +power S-PARA +used O +for O +Ti S-MATE +were O +found O +inadequate O +for O +creating O +a O +sustained O +and O +continuous O +melting S-MANP +of O +Al S-MATE +and O +Steel S-MATE +. O + + +Therefore O +, O +adjustments O +were O +made O +to O +these O +parameters S-CONPRI +and O +presented O +in O +this O +research S-CONPRI +. O + + +An O +effective O +liquid O +conductivity S-PRO +approach O +has O +been O +developed O +to O +describe O +the O +convective O +transport S-CHAR +modes O +existing O +within O +the O +melt B-MATE +pool E-MATE +in O +powder B-MANP +bed I-MANP +additive I-MANP +manufacturing E-MANP +processes O +. O + + +A O +first B-CHAR +principles E-CHAR +approach O +is O +introduced O +to O +derive O +an O +effective O +conductive O +transport S-CHAR +mode O +that O +encompasses O +conduction O +and O +advection O +within O +the O +melt B-MATE +pool E-MATE +. O + + +A O +modified O +Bond O +number O +was O +calculated O +by O +comparing O +surface B-PRO +tension E-PRO +forces S-CONPRI +with O +viscous B-CONPRI +forces E-CONPRI +within O +the O +melt B-MATE +pool E-MATE +region O +. O + + +It O +was O +determined O +, O +due O +to O +the O +small O +size O +scale O +of O +melt B-MATE +pools E-MATE +in O +powder B-MACEQ +bed E-MACEQ +processes O +, O +that O +the O +surface B-PRO +tension E-PRO +gradient O +driven O +flow O +, O +or O +the O +Marangoni O +effect O +, O +is O +the O +dominant O +mass O +transport S-CHAR +phenomenon O +within O +the O +melt B-MATE +pool E-MATE +. O + + +Validation S-CONPRI +was O +conducted O +by O +comparing O +simulation S-ENAT +melt B-MATE +pool E-MATE +widths O +and O +depths O +against O +experimental S-CONPRI +measurements O +for O +Inconel B-MATE +718 E-MATE +built O +at O +beam S-MACEQ +powers O +of O +150 O +W O +, O +200 O +W O +and O +300 O +W O +and O +a O +scan B-PARA +speed E-PARA +of O +200 O +mm/s O +. O + + +By O +introducing O +the O +effective O +liquid O +conductivity S-PRO +, O +simulated O +melt B-MATE +pool E-MATE +widths O +were O +up O +to O +50 O +% O +closer O +to O +experimental S-CONPRI +widths O +and O +simulated O +melt B-PARA +pool I-PARA +depths E-PARA +were O +up O +to O +80 O +% O +closer O +to O +experimental S-CONPRI +measurements O +. O + + +Analytic O +temperature S-PARA +profiles S-FEAT +and O +melt B-PARA +pool I-PARA +dimensions E-PARA +are O +compared O +between O +Ti6Al4V S-MATE +, O +Stainless B-MATE +Steel E-MATE +316L O +, O +Aluminum B-MATE +7075 E-MATE +and O +Inconel B-MATE +718 E-MATE +built O +with O +similar O +process B-CONPRI +parameters E-CONPRI +, O +while O +including O +effective O +liquid O +conductivity S-PRO +. O + + +The O +reasons O +for O +differences O +in O +temperature S-PARA +and O +melt B-MATE +pool E-MATE +geometry S-CONPRI +are O +discussed O +. O + + +Experimental S-CONPRI +measurements O +are O +a O +critical O +component S-MACEQ +of O +model S-CONPRI +development O +, O +as S-MATE +they O +are O +needed O +to O +validate O +the O +accuracy S-CHAR +of O +the O +model S-CONPRI +predictions O +. O + + +Currently O +, O +there O +is O +a O +deficiency O +in O +the O +availability O +of O +experimental B-CONPRI +data E-CONPRI +for O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +made O +parts O +. O + + +Here O +, O +two O +experimental S-CONPRI +builds S-CHAR +of O +cylindrical S-CONPRI +geometry O +, O +one O +using O +a O +rotating O +scan B-PARA +pattern E-PARA +and O +the O +other O +using O +a O +constant O +scan B-PARA +pattern E-PARA +, O +are O +designed S-FEAT +to O +provide O +post-build O +distortion S-CONPRI +measurements O +. O + + +Measurements O +show O +that O +for O +these O +cylindrical S-CONPRI +thin O +wall O +builds S-CHAR +, O +there O +is O +no O +discernable S-CONPRI +effect O +on O +distortion S-CONPRI +from O +using O +the O +rotating O +versus O +constant O +scan B-PARA +patterns E-PARA +. O + + +Project O +Pan O +finite B-CONPRI +element E-CONPRI +modeling O +software S-CONPRI +is O +used O +to O +model S-CONPRI +each O +of O +the O +experimental S-CONPRI +builds S-CHAR +. O + + +The O +simulation S-ENAT +results O +show O +good O +agreement O +with O +experimental S-CONPRI +measurements O +of O +post-build O +deformation S-CONPRI +, O +within O +a O +12 O +% O +percent O +error S-CONPRI +as S-MATE +compared O +to O +experimental S-CONPRI +measurements O +. O + + +Using O +the O +FE S-MATE +model O +, O +the O +effect O +of O +a O +flexible O +versus O +a O +rigid O +substrate S-MATE +on O +distortion S-CONPRI +profile O +is O +examined O +. O + + +The O +FE S-MATE +model O +is O +validated O +against O +in B-CONPRI +situ E-CONPRI +experimental S-CONPRI +measurements O +of O +substrate S-MATE +distortion S-CONPRI +. O + + +The O +simulated O +results O +are O +used O +to O +study O +stress S-PRO +and O +distortion S-CONPRI +evolution O +during O +the O +build S-PARA +process O +. O + + +Internal B-PRO +stresses E-PRO +calculated O +by O +the O +model S-CONPRI +throughout O +the O +part O +are O +used O +in O +explaining O +the O +final O +part O +distortion S-CONPRI +. O + + +The O +combination O +of O +experimental S-CONPRI +and O +simulation S-ENAT +results O +from O +this O +study O +show O +that O +the O +distortion S-CONPRI +of O +the O +top O +layer S-PARA +is O +relatively O +small O +( O +less O +than O +30 O +% O +) O +throughout O +the O +duration O +of O +the O +build S-PARA +process O +compared O +to O +the O +peak O +distortion S-CONPRI +, O +which O +occurs O +several O +layers O +below O +the O +most O +recently O +deposited B-CHAR +layer E-CHAR +. O + + +Designing O +metallic S-MATE +cellular B-FEAT +structures E-FEAT +with O +triply B-CONPRI +periodic I-CONPRI +minimal I-CONPRI +surface E-CONPRI +( O +TPMS O +) O +sheet S-MATE +cores S-MACEQ +is O +a O +novel O +approach O +for O +lightweight S-CONPRI +and O +multi-functional O +structural O +applications O +. O + + +Different O +from O +current O +honeycombs O +and O +lattices S-CONPRI +, O +TPMS O +sheet S-MATE +structures O +are O +composed O +of O +continuous O +and O +smooth O +shells O +, O +allowing O +for O +large O +surface B-PARA +areas E-PARA +and O +continuous O +internal O +channels O +. O + + +In O +this O +paper O +, O +we O +investigate O +the O +mechanical B-CONPRI +properties E-CONPRI +and O +energy B-CHAR +absorption E-CHAR +abilities O +of O +three O +types O +of O +TPMS O +sheet S-MATE +structures O +( O +Primitive O +, O +Diamond S-MATE +, O +and O +Gyroid O +) O +fabricated S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +with O +316 O +L O +stainless B-MATE +steel E-MATE +under O +compression S-PRO +loading O +and O +classify O +their O +failure B-PRO +mechanisms E-PRO +and O +printing O +accuracy S-CHAR +with O +the O +help O +of O +numerical O +analysis O +. O + + +Experimental S-CONPRI +results O +reveal O +the O +superior O +stiffness S-PRO +, O +plateau O +stress S-PRO +and O +energy B-CHAR +absorption E-CHAR +ability O +of O +TPMS O +sheet S-MATE +structures O +compared O +to O +body-centred O +cubic O +lattices S-CONPRI +, O +with O +Diamond-type O +sheet S-MATE +structures O +performing O +best O +. O + + +Nonlinear O +finite B-CONPRI +element E-CONPRI +simulation O +results O +also O +show O +that O +Diamond S-MATE +and O +Gyroid O +sheet S-MATE +structures O +display O +relatively O +uniform O +stress B-PRO +distributions E-PRO +across O +all O +lattice S-CONPRI +cells S-APPL +under O +compression S-PRO +, O +leading O +to O +stable O +collapse O +mechanisms O +and O +desired O +energy B-CHAR +absorption E-CHAR +performance O +. O + + +Parts O +manufactured S-CONPRI +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +contain O +significant O +residual B-PRO +stress E-PRO +. O + + +This O +stress S-PRO +causes O +failures O +during O +the O +build S-PARA +process O +, O +distorts O +parts O +and O +limits S-CONPRI +in-service O +performance S-CONPRI +. O + + +A O +pragmatic O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +of O +the O +build S-PARA +process O +is O +introduced O +here O +to O +predict O +residual B-PRO +stress E-PRO +in O +a O +computationally O +efficient O +manner O +. O + + +The O +part O +is O +divided O +into O +coarse O +sections O +which O +activate O +at O +the O +melting B-PARA +temperature E-PARA +in O +an O +order O +that O +imitates O +the O +build S-PARA +process O +. O + + +Temperature S-PARA +and O +stress S-PRO +in O +the O +part O +are O +calculated O +using O +a O +sequentially O +coupled O +thermomechanical S-CONPRI +analysis O +with O +temperature S-PARA +dependent O +material B-CONPRI +properties E-CONPRI +. O + + +The O +model S-CONPRI +is O +validated O +against O +two O +sets O +of O +experimental S-CONPRI +measurements O +: O +the O +first O +from O +a O +bridge S-APPL +component O +made O +from O +316L B-MATE +stainless I-MATE +steel E-MATE +and O +the O +second O +from O +a O +cuboidal O +component S-MACEQ +made O +from O +Inconel B-MATE +718 E-MATE +. O + + +For O +the O +bridge S-APPL +component O +the O +simulated O +distortion S-CONPRI +is O +within O +5 O +% O +of O +the O +experimental S-CONPRI +measurement O +when O +modelled O +with O +a O +section O +height O +of O +0.8 O +mm S-MANP +. O + + +This O +is O +16 O +times O +larger O +than O +the O +50 O +μm O +layer B-PARA +height E-PARA +in O +the O +experimental S-CONPRI +part O +. O + + +For O +the O +cuboid O +component S-MACEQ +the O +simulated O +distortion S-CONPRI +is O +within O +10 O +% O +of O +experimental S-CONPRI +measurement O +with O +a O +section O +height O +10 O +times O +larger O +than O +the O +experiment S-CONPRI +layer O +height O +. O + + +These O +results O +show O +that O +simulation S-ENAT +of O +every O +layer S-PARA +in O +the O +build S-PARA +process O +is O +not O +required O +to O +obtain O +accurate S-CHAR +results O +, O +reducing O +computational O +effort O +and O +enabling O +the O +prediction S-CONPRI +of O +residual B-PRO +stress E-PRO +in O +larger O +components S-MACEQ +. O + + +A O +mesoscale S-CONPRI +multi-physics O +model S-CONPRI +is O +developed O +to O +simulate O +rapid B-MANP +solidification E-MANP +. O + + +Solute O +transport S-CHAR +, O +phase S-CONPRI +transition O +, O +heat B-CONPRI +transfer E-CONPRI +, O +latent O +heat S-CONPRI +, O +and O +melt B-CONPRI +flow E-CONPRI +are O +modeled O +. O + + +Powder B-MANP +bed I-MANP +fusion E-MANP +is O +a O +recently O +developed O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technique O +for O +alloys S-MATE +, O +which O +builds S-CHAR +parts O +by O +selectively O +melting S-MANP +metallic O +powders S-MATE +with O +a O +high-energy O +laser S-ENAT +or O +electron B-CONPRI +beam E-CONPRI +. O + + +Nevertheless O +, O +there O +is O +still O +a O +lack O +of O +fundamental O +understanding O +of O +the O +rapid B-CONPRI +solidification I-CONPRI +process E-CONPRI +for O +better O +quality B-CONPRI +control E-CONPRI +. O + + +To O +simulate O +the O +microstructure B-CONPRI +evolution E-CONPRI +of O +alloys S-MATE +during O +the O +rapid B-MANP +solidification E-MANP +, O +in O +this O +research S-CONPRI +, O +a O +mesoscale S-CONPRI +multi-physics O +model S-CONPRI +is O +developed O +to O +simultaneously O +consider O +solute O +transport S-CHAR +, O +phase S-CONPRI +transition O +, O +heat B-CONPRI +transfer E-CONPRI +, O +latent O +heat S-CONPRI +, O +and O +melt B-CONPRI +flow E-CONPRI +. O + + +In O +this O +model S-CONPRI +, O +the O +phase-field O +method O +simulates O +the O +dendrite S-BIOP +growth O +of O +alloys S-MATE +, O +whereas O +the O +thermal O +lattice S-CONPRI +Boltzmann O +method O +models O +heat B-CONPRI +transfer E-CONPRI +and O +fluid B-PRO +flow E-PRO +. O + + +The O +simulation S-ENAT +results O +of O +Ti-6Al-4V S-MATE +show O +that O +the O +consideration O +of O +latent O +heat S-CONPRI +is O +necessary O +because O +it O +reveals O +the O +details O +of O +the O +formation O +of O +secondary O +arms O +and O +provides O +more O +realistic O +kinetics O +of O +dendrite S-BIOP +growth O +. O + + +The O +proposed O +multi-physics O +simulation S-ENAT +model S-CONPRI +provides O +new O +insights O +into O +the O +complex O +solidification B-MANP +process E-MANP +in O +AM S-MANP +. O + + +Relationship O +between O +laser B-PARA +energy I-PARA +density E-PARA +and O +thermal B-CONPRI +expansion E-CONPRI +was O +explained O +. O + + +Critical O +laser B-PARA +energy I-PARA +density E-PARA +exists O +for O +each O +material S-MATE +. O + + +Void S-CONPRI +formation O +and O +alloying B-MATE +element E-MATE +vaporization O +occurred O +during O +selective B-MANP +laser I-MANP +melting E-MANP +of O +Ni- O +and O +Fe-based O +alloys S-MATE +. O + + +Magnetic O +properties S-CONPRI +and O +thermal B-PRO +expansion I-PRO +coefficients E-PRO +of O +parts O +produced O +were O +quantified O +. O + + +Process S-CONPRI +window O +was O +determined O +for O +Invar S-MATE +36 O +and O +stainless B-MATE +steel E-MATE +316 O +L O +based O +on O +stable O +melting S-MANP +. O + + +This O +paper O +presents O +an O +experimental S-CONPRI +study O +on O +the O +metallurgical S-APPL +issues O +associated O +with O +selective B-MANP +laser I-MANP +melting E-MANP +of O +Invar S-MATE +36 O +and O +stainless B-MATE +steel E-MATE +316 O +L O +and O +the O +resulting O +coefficient B-PRO +of I-PRO +thermal I-PRO +expansion E-PRO +. O + + +Invar S-MATE +36 O +has O +been O +used O +in O +aircraft O +control B-MACEQ +systems E-MACEQ +, O +electronic O +devices O +, O +optical S-CHAR +instruments O +, O +and O +medical S-APPL +instruments O +that O +are O +exposed O +to O +significant O +temperature S-PARA +changes O +. O + + +Stainless B-MATE +steel E-MATE +316 O +L O +is O +commonly O +used O +for O +applications O +that O +require O +high O +corrosion B-CONPRI +resistance E-CONPRI +in O +the O +aerospace S-APPL +, O +medical S-APPL +, O +and O +nuclear O +industries S-APPL +. O + + +Both O +Invar S-MATE +36 O +and O +stainless B-MATE +steel E-MATE +316 O +L O +are O +weldable O +austenitic S-MATE +face-centered O +cubic O +crystal B-PRO +structures E-PRO +, O +but O +stainless B-MATE +steel E-MATE +316 O +L O +may O +experience O +chromium S-MATE +evaporation O +and O +Invar S-MATE +36 O +may O +experience O +weld S-FEAT +cracking S-CONPRI +during O +the O +welding S-MANP +process S-CONPRI +. O + + +Various O +laser S-ENAT +process O +parameters S-CONPRI +were O +tested O +based O +on O +a O +full O +factorial B-CONPRI +design E-CONPRI +of O +experiments O +. O + + +The O +microstructure S-CONPRI +, O +material S-MATE +composition S-CONPRI +, O +coefficient B-PRO +of I-PRO +thermal I-PRO +expansion E-PRO +, O +and O +magnetic O +dipole O +moment O +were O +measured O +for O +both O +materials S-CONPRI +. O + + +It O +was O +found O +that O +there O +exists O +a O +critical O +laser B-PARA +energy I-PARA +density E-PARA +for O +each O +material S-MATE +, O +EC O +, O +for O +which O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +is O +optimal O +for O +material B-CONPRI +properties E-CONPRI +. O + + +The O +critical O +laser B-PARA +energy I-PARA +density E-PARA +provides O +enough O +energy O +to O +induce O +stable O +melting S-MANP +, O +homogeneous S-CONPRI +microstructure O +and O +chemical B-CONPRI +composition E-CONPRI +, O +resulting O +in O +thermal B-CONPRI +expansion E-CONPRI +and O +magnetic O +properties S-CONPRI +in O +line O +with O +that O +expected O +for O +the O +wrought B-MATE +material E-MATE +. O + + +Below O +the O +critical O +energy O +, O +a O +lack O +of O +fusion S-CONPRI +due O +to O +insufficient O +melt S-CONPRI +tracks O +and O +discontinuous O +beads S-CHAR +was O +observed O +. O + + +The O +melt S-CONPRI +track O +was O +also O +unstable O +above O +the O +critical O +energy O +due O +to O +vaporization O +and O +microsegregation S-CONPRI +of O +alloying B-MATE +elements E-MATE +. O + + +Both O +cases O +can O +generate O +stress S-PRO +risers S-MACEQ +and O +part O +flaws S-CONPRI +during O +manufacturing S-MANP +. O + + +These O +flaws S-CONPRI +could O +be S-MATE +avoided O +by O +finding O +the O +critical O +laser B-CONPRI +energy E-CONPRI +needed O +for O +each O +material S-MATE +. O + + +The O +critical O +laser B-PARA +energy I-PARA +density E-PARA +was O +determined O +to O +be S-MATE +86.8 O +J/mm3 O +for O +Invar S-MATE +36 O +and O +104.2 O +J/mm3 O +for O +stainless B-MATE +steel E-MATE +316 O +L. O +The O +present O +study O +investigated O +the O +effects O +of O +set S-APPL +radius O +of O +curvature O +and O +fiber B-MATE +bundle E-MATE +size O +on O +the O +precision S-CHAR +of O +the O +radius O +of O +curvature O +during O +continuous B-MATE +carbon I-MATE +fiber E-MATE +three-dimensional O +( O +3D S-CONPRI +) O +printing O +. O + + +First O +, O +individual O +circles O +with O +various O +radii O +using O +various O +sizes O +of O +fiber B-MATE +bundles E-MATE +were O +printed O +with O +a O +3D B-MACEQ +printer E-MACEQ +. O + + +It O +was O +demonstrated O +that O +with O +a O +larger O +fiber B-MATE +bundle E-MATE +size O +or O +a O +smaller O +set S-APPL +radius O +, O +the O +printed O +radius O +would O +be S-MATE +lower O +than O +the O +set S-APPL +value O +. O + + +Equiatomic O +CoCrFeMnNi O +HEA O +was O +successfully O +fabricated S-CONPRI +by O +SLM S-MANP +. O + + +The O +XRD S-CHAR +profiles S-FEAT +of O +the O +SLM-CoCrFeMnNi O +HEA O +were O +refined O +by O +the O +Rietveld O +program O +. O + + +The O +effect O +of O +the O +peak O +load O +on O +the O +creep S-PRO +deformation O +was O +investigated O +by O +nanoindentation S-CHAR +with O +a O +Berkovich B-CHAR +indenter E-CHAR +. O + + +The O +creep S-PRO +was O +mainly O +dominated O +by O +deformation S-CONPRI +controlled O +by O +dislocation B-CONPRI +motion E-CONPRI +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +was O +used O +to O +fabricate S-MANP +an O +equiatomic O +CoCrFeMnNi O +high-entropy O +alloy S-MATE +( O +HEA O +) O +. O + + +The O +SLM-fabricated O +CoCrFeMnNi O +HEA O +samples S-CONPRI +were O +studied O +with O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +field-emission O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +FESEM S-CHAR +) O +, O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +and O +nanoindentation S-CHAR +techniques O +to O +characterize O +the O +microstructure S-CONPRI +and O +creep B-PRO +behavior E-PRO +. O + + +It O +was O +found O +that O +the O +HEA O +comprised O +a O +single O +face-centered O +cubic O +( O +fcc S-CONPRI +) O +structure S-CONPRI +. O + + +Due O +to O +the O +fast O +solidification S-CONPRI +and O +high O +temperature B-PARA +gradients E-PARA +of O +the O +molten B-CONPRI +pool E-CONPRI +during O +the O +SLM S-MANP +process S-CONPRI +, O +the O +microstructure S-CONPRI +comprised O +cellular O +subgrains S-CONPRI +with O +grain B-CONPRI +boundary E-CONPRI +angles O +lower O +than O +5° O +. O + + +Moreover O +, O +the O +effect O +of O +the O +peak O +holding O +load O +on O +the O +nanoindentation S-CHAR +creep S-PRO +deformation O +of O +the O +SLM-fabricated O +HEA O +was O +investigated O +using O +a O +Berkovich B-CHAR +indenter E-CHAR +. O + + +The O +results O +of O +this O +study O +indicated O +that O +the O +creep S-PRO +was O +mainly O +dominated O +by O +deformation S-CONPRI +controlled O +by O +dislocation B-CONPRI +motion E-CONPRI +. O + + +Spatter S-CHAR +distribution S-CONPRI +on O +AlSi10Mg S-MATE +powder O +bed S-MACEQ +was O +quantified O +in O +terms O +of O +mass O +, O +size O +and O +processed B-CONPRI +images E-CONPRI +. O + + +Established O +vision O +methodology S-CONPRI +showed O +moderate O +positive O +relationship O +with O +quantified O +mass O +of O +spatter S-CHAR +. O + + +Spatter S-CHAR +mass O +and O +size O +distributions S-CONPRI +could O +serve O +as S-MATE +ground O +truth O +validation B-CONPRI +data E-CONPRI +for O +future O +simulation S-ENAT +studies O +. O + + +Exponential O +decay O +in O +the O +Stk O +number O +with O +respect O +to O +the O +distance O +travelled O +by O +the O +spatter S-CHAR +particles S-CONPRI +. O + + +In O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +, O +inert B-CONPRI +gas E-CONPRI +is O +pumped O +into O +the O +chamber O +to O +eliminate O +the O +deleterious O +by-products O +, O +which O +includes O +spatter S-CHAR +. O + + +Despite O +this O +, O +traces O +of O +spatter S-CHAR +on O +the O +powder B-MACEQ +bed E-MACEQ +have O +always O +been O +observed O +. O + + +Earlier O +research S-CONPRI +mainly O +focussed O +on O +the O +formation O +and O +characterization O +of O +spatter S-CHAR +particles S-CONPRI +that O +were O +freshly O +ejected O +from O +the O +melt B-MATE +pool E-MATE +. O + + +However O +, O +in O +this O +study O +, O +the O +quantification O +of O +the O +spatter S-CHAR +distribution S-CONPRI +on O +the O +powder B-MACEQ +bed E-MACEQ +was O +performed O +, O +following O +their O +transport S-CHAR +by O +the O +inert B-CONPRI +gas E-CONPRI +flow O +which O +was O +varied O +at O +two O +gas S-CONPRI +pump O +settings O +( O +60 O +and O +67 O +% O +) O +. O + + +Image S-CONPRI +processing O +for O +spatter S-CHAR +detection O +based O +on O +contrast O +was O +first O +conducted O +. O + + +The O +sieved O +out O +spatter S-CHAR +particles S-CONPRI +were O +quantified O +by O +precision S-CHAR +weighing O +of O +mass O +. O + + +Optical B-CHAR +microscopy E-CHAR +was O +then O +utilised O +for O +size O +determination O +. O + + +The O +majority O +of O +spatter S-CHAR +particles S-CONPRI +were O +originally O +distributed O +along O +the O +−x O +direction O +, O +as S-MATE +observed O +from O +the O +top O +down O +images S-CONPRI +taken O +. O + + +However O +, O +increasing O +the O +gas S-CONPRI +flow O +velocity O +did O +not O +correspond O +to O +a O +lesser O +mass O +distribution S-CONPRI +. O + + +Computations O +on O +the O +Stk O +number O +revealed O +that O +at O +the O +gas S-CONPRI +pump O +setting O +of O +67 O +% O +, O +spatter S-CHAR +particles S-CONPRI +of O +greater O +size O +were O +deposited O +earlier O +on O +the O +powder B-MACEQ +bed E-MACEQ +, O +suggesting O +that O +increasing O +the O +gas S-CONPRI +flow O +velocity O +to O +a O +large O +extent O +would O +increase O +the O +likelihood O +of O +powder B-MACEQ +bed E-MACEQ +contamination O +. O + + +The O +forward O +extrapolation O +of O +the O +exponential O +Stk O +number O +trendlines O +also O +elucidated O +the O +reason O +for O +the O +limitations O +on O +the O +width O +of O +the O +powder B-MACEQ +bed E-MACEQ +in O +machines S-MACEQ +designed S-FEAT +by O +SLM S-MANP +Solutions O +. O + + +Bulk O +high O +strength S-PRO +and O +thermally O +stable O +Al85Nd8Ni5Co2 O +samples S-CONPRI +have O +been O +prepared O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +. O + + +The O +alloy S-MATE +shows O +a O +composite-like O +microstructure S-CONPRI +consisting O +of O +submicron-sized O +stable O +intermetallic S-MATE +phases O +dispersed O +in O +an O +Al S-MATE +matrix O +, O +which O +leads O +to O +high O +compressive B-PRO +strength E-PRO +( O +1–0.5 O +GPa S-PRO +) O +at O +elevated O +temperatures S-PARA +( O +303–573 O +K S-MATE +) O +. O + + +These O +results O +indicate O +that O +SLM S-MANP +is O +an O +effective O +alternative O +to O +conventional O +routes O +for O +producing O +dense O +, O +thermally O +stable O +and O +near O +net O +shaped O +components S-MACEQ +from O +high O +strength S-PRO +Al-based O +alloys S-MATE +. O + + +In O +this O +study O +, O +novel O +biomedical S-APPL +Co29Cr9W3Cu O +samples S-CONPRI +were O +fabricated S-CONPRI +using O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +technology S-CONPRI +. O + + +In O +order O +to O +better O +understand O +the O +formation O +of O +the O +lattice B-CONPRI +defects E-CONPRI +during O +the O +melting S-MANP +process O +, O +and O +the O +tensile S-PRO +deformation S-CONPRI +mechanism O +of O +the O +SLM-produced O +Co29Cr9W3Cu O +samples S-CONPRI +, O +the O +microstructures S-MATE +of O +the O +samples S-CONPRI +before O +and O +after O +tensile S-PRO +deformation S-CONPRI +were O +observed O +using O +a O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +, O +a O +transmission B-CHAR +electron I-CHAR +microscope E-CHAR +( O +TEM S-CHAR +) O +, O +and O +an O +electron O +back-scattered O +diffraction S-CHAR +( O +EBSD S-CHAR +) O +, O +respectively O +. O + + +The O +SEM S-CHAR +morphology S-CONPRI +indicated O +that O +the O +non-equilibrium O +structure S-CONPRI +of O +the O +SLM-produced O +Co29Cr9W3Cu O +samples S-CONPRI +contained O +cellular O +and O +columnar O +subgrains S-CONPRI +. O + + +The O +TEM S-CHAR +observation O +and O +EBSD S-CHAR +analysis O +showed O +that O +the O +accumulated O +residual B-PRO +stress E-PRO +during O +the O +SLM S-MANP +process S-CONPRI +predominated O +in O +the O +overlapping O +regions O +between O +the O +adjacent O +scanning S-CONPRI +tracks O +, O +which O +consequently O +induced O +a O +larger O +number O +of O +the O +lattice B-CONPRI +defects E-CONPRI +, O +such O +as S-MATE +dislocations O +and O +overlapping O +stacking O +faults O +. O + + +The O +analysis O +of O +the O +tensile S-PRO +deformation S-CONPRI +revealed O +that O +the O +main O +plastic B-PRO +deformation E-PRO +was O +caused O +by O +the O +strain-induced O +martensitic O +transformation O +effect O +in O +the O +SLM-produced O +Co29Cr9W3Cu O +samples S-CONPRI +. O + + +Alumina/aluminum O +titanate O +composites S-MATE +were O +prepared O +using O +directed O +laser S-ENAT +deposition S-CONPRI +. O + + +Scanning B-PARA +speed E-PARA +has O +a O +significant O +effect O +on O +the O +microstructure S-CONPRI +and O +macro S-FEAT +features O +. O + + +Microstructure S-CONPRI +and O +macro S-FEAT +defects S-CONPRI +are O +responsible O +for O +the O +trend S-CONPRI +of O +properties S-CONPRI +. O + + +Optimal O +forming S-MANP +quality O +was O +achieved O +at O +the O +medium-speed O +scanning B-CONPRI +process E-CONPRI +window O +. O + + +Directed B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +has O +developed O +rapidly O +in O +recent O +years O +as S-MATE +a O +new O +material-structure O +integration O +manufacturing B-MANP +technology E-MANP +for O +preparing O +melt-growth O +ceramics S-MATE +. O + + +However O +, O +the O +influence O +of O +process S-CONPRI +conditions O +on O +the O +forming S-MANP +quality O +has O +not O +been O +systematically O +studied O +. O + + +Alumina/aluminum O +titanate O +composite B-MATE +ceramics E-MATE +were O +directly O +prepared O +using O +DED S-MANP +technology O +with O +an O +extensive O +process S-CONPRI +window O +. O + + +The O +effects O +of O +the O +scanning B-PARA +speed E-PARA +on O +the O +typical O +defects S-CONPRI +, O +microstructure S-CONPRI +, O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +prepared O +samples S-CONPRI +were O +systematically O +investigated O +, O +and O +the O +optimized O +process B-CONPRI +parameters E-CONPRI +were O +determined O +. O + + +Results O +show O +that O +the O +scanning B-PARA +speed E-PARA +has O +a O +significant O +effect O +on O +the O +macroscopic B-CONPRI +defects E-CONPRI +, O +such O +as S-MATE +cracks O +and O +pores S-PRO +, O +microstructure S-CONPRI +characteristics O +, O +such O +as S-MATE +grain O +morphology S-CONPRI +and O +size O +, O +and O +mechanical B-CONPRI +properties E-CONPRI +, O +such O +as S-MATE +flexural O +strength S-PRO +. O + + +Slow-speed O +scanning S-CONPRI +achieved O +a O +longer O +retention O +time O +of O +the O +liquid O +molten B-CONPRI +pool E-CONPRI +, O +which O +was O +beneficial O +to O +pore S-PRO +suppression O +. O + + +Rapid O +scanning S-CONPRI +reduced O +the O +temperature B-PARA +gradient E-PARA +at O +the O +bottom O +of O +the O +molten B-CONPRI +pool E-CONPRI +to O +obtain O +crack-free O +samples S-CONPRI +. O + + +The O +directional O +growth O +tendency O +of O +α-Al2O3 O +cellular O +dendrites S-BIOP +that O +were O +discretely O +distributed O +in O +the O +Al6Ti2O13 O +matrix O +phase S-CONPRI +weakened O +, O +and O +the O +secondary B-MATE +dendrites E-MATE +gradually O +developed O +by O +increasing O +the O +scanning B-PARA +speed E-PARA +. O + + +This O +phenomenon O +was O +attributed O +to O +the O +change O +of O +the O +heat-dissipation O +direction O +and O +the O +solidification B-PARA +rate E-PARA +of O +solid/liquid O +interface S-CONPRI +caused O +by O +the O +scanning B-PARA +speed E-PARA +. O + + +Moreover O +, O +the O +fracture S-CONPRI +toughness O +of O +the O +prepared O +samples S-CONPRI +gradually O +increased O +as S-MATE +the O +scanning B-PARA +speed E-PARA +increased O +, O +while O +the O +flexural B-PRO +strength E-PRO +showed O +a O +parabolic O +law O +behavior O +. O + + +The O +trend S-CONPRI +of O +the O +properties S-CONPRI +was O +due O +to O +microstructure S-CONPRI +refinement O +and O +macroscopic B-CONPRI +defects E-CONPRI +. O + + +Generally O +, O +the O +optimal O +forming S-MANP +quality O +was O +achieved O +at O +a O +scanning B-PARA +speed E-PARA +of O +300-500 O +mm/min O +. O + + +Within O +this O +process S-CONPRI +window O +, O +the O +sample S-CONPRI +had O +up O +to O +98 O +% O +densification S-MANP +, O +1640 O +Hv O +hardness S-PRO +, O +3.75 O +MPa S-CONPRI +m1/2 O +fracture S-CONPRI +toughness O +, O +and O +212 O +MPa S-CONPRI +flexural B-PRO +strength E-PRO +. O + + +In-situ S-CONPRI +uniaxial O +tensile B-CHAR +tests E-CHAR +coupled O +with O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +( O +XCT O +) O +were O +carried O +out O +on O +a O +Cu-4.3Sn O +alloy S-MATE +fabricated O +by O +selective B-MANP +laser I-MANP +melting E-MANP +. O + + +XCT O +models O +were O +constructed O +to O +enable O +step-by-step O +visualization O +of O +pore S-PRO +growth O +during O +deformation S-CONPRI +. O + + +Evolution S-CONPRI +of O +pores S-PRO +( O +mean O +diameter S-CONPRI +, O +density S-PRO +, O +volume B-PARA +fraction E-PARA +and O +sphericity O +) O +was O +quantified O +as S-MATE +a O +function O +of O +plastic S-MATE +strain O +. O + + +Results O +show O +that O +macroscopic S-CONPRI +instability O +begins O +once O +the O +largest O +internal O +pores S-PRO +reach O +the O +surface S-CONPRI +. O + + +Also O +, O +accelerated O +growth O +and O +coalescence O +of O +the O +largest O +50 O +pores S-PRO +leads O +to O +rapid O +localization O +of O +strain S-PRO +followed O +by O +fracture S-CONPRI +. O + + +Pore S-PRO +growth O +was O +modeled O +using O +the O +Rice-Tracey O +( O +RT S-MANP +) O +and O +Huang O +models O +for O +different O +populations O +of O +pores S-PRO +and O +the O +parameters S-CONPRI +were O +optimized O +. O + + +The O +RT S-MANP +and O +Huang O +constants O +were O +found O +to O +depend O +on O +the O +initial O +mean O +pore S-PRO +diameter S-CONPRI +. O + + +With O +increasing O +industrial S-APPL +interest O +and O +significance O +of O +the O +selective B-MANP +laser I-MANP +melting E-MANP +the O +importance O +for O +profound O +process S-CONPRI +knowledge O +increases O +so O +that O +new O +materials S-CONPRI +can O +be S-MATE +qualified O +faster O +. O + + +Therefore O +a O +3D S-CONPRI +numerical O +model S-CONPRI +for O +the O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +is O +presented O +that O +allows O +a O +detailed O +look O +into O +the O +process S-CONPRI +dynamics O +at O +comparably O +low O +calculation O +effort O +. O + + +It O +combines O +a O +finite O +difference O +method O +with O +a O +combined O +level O +set S-APPL +volume O +of O +fluid S-MATE +method O +for O +the O +simulation S-ENAT +of O +the O +process S-CONPRI +and O +starts O +with O +a O +homogenized S-MANP +powder O +bed S-MACEQ +in O +its O +initial O +configuration S-CONPRI +. O + + +The O +model S-CONPRI +uses O +a O +comprehensive O +representation O +of O +various O +physical O +effects O +like O +dynamic S-CONPRI +laser O +power S-PARA +absorption S-CONPRI +, O +buoyancy O +effect O +, O +Marangoni O +effect O +, O +capillary B-CONPRI +effect E-CONPRI +, O +evaporation S-CONPRI +, O +recoil O +pressure S-CONPRI +and O +temperature S-PARA +dependent O +material B-CONPRI +properties E-CONPRI +. O + + +It O +is O +validated O +for O +different O +process B-CONPRI +parameters E-CONPRI +using O +cubic O +samples S-CONPRI +of O +stainless B-MATE +steel E-MATE +316L O +and O +nickel-based O +superalloy O +IN738LC S-MATE +. O + + +The O +results O +show O +the O +significance O +of O +evaporation S-CONPRI +and O +its O +related O +recoil O +pressure S-CONPRI +for O +a O +feasible O +prediction S-CONPRI +of O +the O +melt B-MATE +pool E-MATE +dynamics O +. O + + +Furthermore O +a O +possible O +way O +to O +reduce O +the O +times O +and O +costs O +for O +material S-MATE +qualification O +by O +using O +the O +simulation S-ENAT +model S-CONPRI +to O +predict O +possible O +process B-CONPRI +parameters E-CONPRI +and O +therefore O +to O +reduce O +the O +necessary O +experimental S-CONPRI +effort O +for O +material S-MATE +qualification O +to O +a O +minimum O +is O +shown O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +is O +an O +increasingly O +attractive O +technology S-CONPRI +for O +the O +manufacture S-CONPRI +of O +complex O +and O +low O +volume/high O +value O +metal S-MATE +parts O +. O + + +However O +, O +the O +inevitable O +residual B-PRO +stresses E-PRO +that O +are O +generated O +can O +lead S-MATE +to O +defects S-CONPRI +or O +build B-CHAR +failure E-CHAR +. O + + +Due O +to O +the O +complexity S-CONPRI +of O +this O +process S-CONPRI +, O +efficient O +and O +accurate S-CHAR +prediction O +of O +residual B-PRO +stress E-PRO +in O +large O +components S-MACEQ +remains O +challenging O +. O + + +For O +the O +development O +of O +predictive B-CONPRI +models E-CONPRI +of O +residual B-PRO +stress E-PRO +, O +knowledge O +on O +their O +generation O +is O +needed O +. O + + +This O +study O +investigates S-CONPRI +the O +geometrical O +effect O +of O +scan O +strategy O +on O +residual B-PRO +stress E-PRO +development O +. O + + +It O +was O +shown O +that O +the O +laser B-ENAT +scan E-ENAT +strategy O +becomes O +less O +important O +for O +scan O +vector O +length O +beyond O +3 O +mm S-MANP +. O + + +Together O +, O +these O +findings O +, O +provide O +a O +route O +towards O +optimising O +scan O +strategies O +at O +the O +meso-scale O +, O +and O +additionally O +, O +developing O +a O +model B-CONPRI +abstraction E-CONPRI +for O +predicting O +residual B-PRO +stress E-PRO +based O +on O +scan O +vectors O +alone O +. O + + +Fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +, O +sometimes O +called O +material B-MANP +extrusion E-MANP +( O +ME O +) O +offers O +an O +alternative O +option O +to O +traditional O +polymer S-MATE +manufacturing S-MANP +techniques O +to O +allow O +the O +fabrication S-MANP +of O +objects O +without O +the O +need O +of O +a O +mold S-MACEQ +or O +template S-MACEQ +. O + + +However O +, O +these O +parts O +are O +limited O +in O +the O +degree O +to O +which O +the O +welding B-FEAT +interface E-FEAT +is O +eliminated O +post O +deposition S-CONPRI +, O +resulting O +in O +a O +decrease O +in O +the O +interlaminar O +fracture S-CONPRI +toughness O +relative O +to O +the O +bulk O +material S-MATE +. O + + +Here O +reptation O +theory O +under O +nonisothermal O +conditions O +is O +utilized O +to O +predict O +the O +development O +of O +healing O +over O +time O +, O +from O +the O +rheological S-PRO +and O +thermal B-CONPRI +properties E-CONPRI +of O +Acrylonitrile-Butadiene-Styrene O +( O +ABS S-MATE +) O +. O + + +ABS S-MATE +is O +rheologically O +complex O +and O +acts O +as S-MATE +a O +gel S-MATE +and O +as S-MATE +such O +considerations O +had O +to O +be S-MATE +made O +for O +the O +relaxation O +time O +of O +the O +matrix O +which O +is O +important O +in O +predicting O +the O +degree O +of O +interfacial O +healing O +. O + + +The O +nonsiothermal O +healing O +model S-CONPRI +developed O +is O +then O +successfully O +compared O +to O +experimental S-CONPRI +interlaminar O +fracture S-CONPRI +experiments O +at O +variable O +printing O +temperatures S-PARA +, O +allowing O +future O +optimization S-CONPRI +of O +the O +process S-CONPRI +to O +make O +stronger O +parts O +. O + + +Modeling S-ENAT +of O +mechanical S-APPL +behavior O +for O +the O +material-jet O +printed O +polymers S-MATE +including O +composites S-MATE +. O + + +Validation S-CONPRI +of O +the O +material S-MATE +models O +was O +conducted O +. O + + +A O +desired O +strain S-PRO +field O +can O +be S-MATE +created O +by O +locally O +tuning O +the O +printed O +material S-MATE +distribution S-CONPRI +. O + + +The O +goal O +of O +this O +work O +is O +to O +validate O +the O +material S-MATE +models O +for O +parts O +created O +with O +a O +Material B-MANP +Jetting E-MANP +3-dimensional O +printer S-MACEQ +through O +the O +comparison O +of O +Finite B-CONPRI +Element I-CONPRI +Analysis E-CONPRI +( O +FEA O +) O +simulations S-ENAT +and O +physical O +tests O +. O + + +The O +strain S-PRO +maps O +generated O +by O +a O +video O +extensometer O +for O +multi-material S-CONPRI +samples O +are O +compared O +to O +the O +FEA O +results O +based O +on O +our O +material S-MATE +models O +. O + + +Two O +base O +materials S-CONPRI +( O +ABS-like O +and O +rubber-like O +) O +and O +their O +composites S-MATE +are O +co-printed O +in O +the O +graded O +tensile B-CHAR +test E-CHAR +samples S-CONPRI +. O + + +The O +simulations S-ENAT +were O +conducted O +utilizing O +previously O +fitted O +material S-MATE +models O +, O +a O +two-parameter O +Mooney-Rivlin O +model S-CONPRI +for O +the O +elastic S-PRO +materials O +( O +Tango O +Black+ O +, O +DM95 O +, O +and O +DM60 O +) O +and O +a O +bilinear O +model S-CONPRI +for O +the O +rigid O +material S-MATE +( O +Vero O +White+ O +) O +. O + + +The O +results O +show O +that O +the O +simulation S-ENAT +results O +based O +on O +our O +material S-MATE +models O +can O +predict O +the O +deformation S-CONPRI +behaviors O +of O +the O +multi-material S-CONPRI +samples O +during O +a O +uniaxial O +tensile B-CHAR +test E-CHAR +. O + + +Our O +simulation S-ENAT +results O +are O +able O +to O +predict O +the O +maximum O +strain S-PRO +in O +the O +matrix O +material S-MATE +( O +TB+ O +) O +within O +5 O +% O +error S-CONPRI +. O + + +Both O +global O +deformation S-CONPRI +pattern O +and O +local O +strain S-PRO +level O +confirm O +the O +validity O +of O +the O +simulated O +material S-MATE +models O +. O + + +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +of O +a O +high B-MATE +strength I-MATE +low I-MATE +alloy I-MATE +steel E-MATE +HY100 O +is O +considered O +in O +the O +present O +investigation O +. O + + +The O +current O +work O +describes O +( O +i O +) O +optimization S-CONPRI +of O +SLM S-MANP +process B-CONPRI +parameters E-CONPRI +for O +producing O +fully B-PARA +dense E-PARA +parts O +in O +HY100 O +steel S-MATE +and O +( O +ii O +) O +the O +effects O +of O +post-processing B-CONPRI +heat E-CONPRI +treatment O +on O +the O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Samples S-CONPRI +have O +been O +fabricated S-CONPRI +by O +SLM S-MANP +using O +different O +combinations O +of O +laser B-PARA +power E-PARA +, O +laser B-ENAT +scan E-ENAT +speed O +, O +and O +hatch B-PARA +spacing E-PARA +. O + + +Fully B-PARA +dense E-PARA +samples O +were O +achieved O +at O +an O +energy B-PARA +density E-PARA +of O +65 O +J/mm3 O +. O + + +Microstructures S-MATE +of O +the O +as-built O +and O +heat S-CONPRI +treated O +samples S-CONPRI +were O +investigated O +using O +optical S-CHAR +and O +scanning B-MACEQ +electron I-MACEQ +microscopes E-MACEQ +, O +X-ray B-CHAR +diffraction E-CHAR +, O +and O +electron O +backscattered O +diffraction S-CHAR +techniques O +. O + + +The O +as-built O +parts O +are O +unsuitable O +for O +direct O +application O +due O +to O +untempered O +, O +hard O +and O +brittle S-PRO +martensite O +microstructure S-CONPRI +. O + + +The O +as-built O +parts O +were O +subjected O +to O +post-processing B-CONPRI +heat E-CONPRI +treatments O +( O +“ O +direct O +temper S-MANP +” O +and O +“ O +quench O +and O +temper S-MANP +” O +) O +. O + + +The O +direct O +tempered S-MANP +samples S-CONPRI +exhibited O +higher O +yield B-PRO +strength E-PRO +and O +ultimate B-PRO +strength E-PRO +than O +the O +quench O +and O +temper S-MANP +ones O +. O + + +Noticeable O +amounts O +of O +anisotropy S-PRO +with O +respect O +to O +the O +build B-PARA +orientation E-PARA +, O +especially O +in O +tensile B-PRO +elongation E-PRO +, O +were O +observed O +in O +the O +direct O +tempered S-MANP +samples S-CONPRI +due O +to O +in-homogenous O +microstructure S-CONPRI +. O + + +Quench O +and O +temper S-MANP +treatment O +of O +the O +parts O +resulted O +in O +recrystallized S-MANP +grains S-CONPRI +with O +uniform O +microstructure S-CONPRI +. O + + +The O +current O +investigation O +shows O +that O +quench O +and O +temper S-MANP +at O +650 O +°C O +is O +an O +optimum O +post B-CONPRI +processing E-CONPRI +treatment O +for O +HY100 O +SLM S-MANP +parts O +as S-MATE +it O +manifests O +desired O +strength S-PRO +with O +good O +tensile B-PRO +elongation E-PRO +. O + + +Surface S-CONPRI +pore S-PRO +defects S-CONPRI +are O +always O +formed O +during O +directed B-MANP +energy I-MANP +deposition I-MANP +processes E-MANP +, O +which O +may O +stem O +from O +entrapped O +gas S-CONPRI +bubbles O +. O + + +Such O +defects S-CONPRI +have O +detrimental O +effects O +on O +the O +build S-PARA +quality O +and O +performance S-CONPRI +of O +safety-critical O +metal S-MATE +parts O +. O + + +Despite O +previous O +experimental S-CONPRI +and O +theoretical S-CONPRI +studies O +devoted O +to O +this O +subject O +, O +direct O +observations O +of O +the O +dynamic S-CONPRI +behavior O +of O +gas S-CONPRI +bubbles O +and O +elucidation O +of O +how O +they O +form O +surface S-CONPRI +pore S-PRO +defects S-CONPRI +have O +not O +yet O +been O +achieved O +. O + + +In O +this O +work O +, O +the O +relationships O +between O +surface S-CONPRI +pore S-PRO +defects S-CONPRI +and O +the O +bubbles O +originating O +on O +the O +melt B-MATE +pool E-MATE +surface O +were O +carefully O +studied O +using O +high-speed O +photography O +at O +up O +to O +20,000 O +frames O +per O +second O +. O + + +The O +appearance O +of O +surface S-CONPRI +pores S-PRO +was O +a O +result O +of O +dynamic S-CONPRI +competition O +between O +bubble O +explosion O +and O +solidification S-CONPRI +of O +the O +surrounding O +melt S-CONPRI +, O +where O +the O +final O +location O +of O +the O +surface S-CONPRI +pores S-PRO +is O +determined O +by O +the O +melt S-CONPRI +convection O +and O +the O +boundary S-FEAT +motion O +of O +the O +melt B-MATE +pool E-MATE +. O + + +In O +the O +case O +of O +single-track O +deposition S-CONPRI +, O +complex O +thermocapillary O +convection O +drives O +gas S-CONPRI +bubble O +diffusion S-CONPRI +, O +and O +pore S-PRO +defects S-CONPRI +cluster O +along O +the O +lateral O +edge O +. O + + +In O +the O +case O +of O +multi-track O +deposition S-CONPRI +, O +surface S-CONPRI +pore S-PRO +defects S-CONPRI +were O +more O +likely O +to O +occur O +on O +the O +last O +track O +due O +to O +the O +gravity-driven O +flow O +effect O +that O +is O +determined O +by O +the O +track O +path O +and O +overlap S-CONPRI +. O + + +Metal-filled O +polymers S-MATE +containing O +micro-powders O +of O +highly O +conductive O +metals S-MATE +can O +serve O +as S-MATE +a O +starting O +material S-MATE +to O +fabricate S-MANP +complex O +metal S-MATE +structures O +using O +economic O +filament S-MATE +extrusion-based O +3D B-MANP +printing E-MANP +and O +molding S-MANP +methods O +. O + + +We O +report O +our O +measurements O +of O +the O +thermal B-PRO +conductivity E-PRO +of O +copper S-MATE +samples O +prepared O +using O +these O +methods O +before O +and O +after O +a O +thermal B-MANP +treatment E-MANP +process S-CONPRI +. O + + +Sintering S-MANP +the O +samples S-CONPRI +at O +980 O +℃ O +leads O +to O +an O +order O +of O +magnitude S-PARA +improvement O +in O +thermal B-PRO +conductivity E-PRO +when O +compared O +with O +as-printed O +or O +as-molded O +samples S-CONPRI +. O + + +Thermal B-PRO +conductivity E-PRO +values O +of O +approximately O +30 O +W/mK O +are O +achieved O +using O +commercially O +available O +polymer-copper O +composite S-MATE +filaments O +with O +a O +copper S-MATE +volume O +fraction S-CONPRI +of O +0.4 O +. O + + +Over-sintering O +the O +samples S-CONPRI +at O +1080 O +℃ O +further O +enhances O +the O +thermal B-PRO +conductivity E-PRO +by O +more O +than O +two O +folds O +, O +but O +it O +leads O +to O +uncontrolled O +shrinkage S-CONPRI +of O +the O +samples S-CONPRI +. O + + +The O +measured O +thermal B-PRO +conductivities E-PRO +show O +a O +modest O +decrease O +with O +increasing O +temperatures S-PARA +due O +to O +increased O +electron-phonon O +scattering O +rates O +. O + + +The O +experimental B-CONPRI +data E-CONPRI +agree O +well O +with O +the O +thermal B-PRO +conductivity E-PRO +models O +previously O +reported O +for O +sintered S-MANP +porous B-MATE +metal E-MATE +samples O +. O + + +The O +measured O +electrical B-PRO +conductivity E-PRO +, O +Young O +’ O +s S-MATE +modulus O +and O +yield B-PRO +strength E-PRO +of O +the O +present O +sintered S-MANP +samples S-CONPRI +are O +also O +reported O +. O + + +The O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +technology S-CONPRI +enables O +the O +manufacturing S-MANP +of O +new O +designs S-FEAT +and O +sophisticated O +geometries S-CONPRI +. O + + +The O +process S-CONPRI +is O +particularly O +well O +suited O +for O +the O +fabrication S-MANP +of O +lattice B-FEAT +structures E-FEAT +. O + + +A O +standard S-CONPRI +methodology S-CONPRI +is O +presented O +in O +order O +to O +predict O +the O +mechanical B-CONPRI +response E-CONPRI +of O +lattice B-FEAT +structures E-FEAT +fabricated S-CONPRI +by O +EBM S-MANP +. O + + +The O +inner O +and O +outer O +structure S-CONPRI +of O +single O +struts S-MACEQ +produced O +by O +EBM S-MANP +was O +characterized O +using O +X-ray B-CHAR +tomography E-CHAR +. O + + +Struts S-MACEQ +with O +a O +1 O +mm S-MANP +diameter S-CONPRI +and O +different O +orientations S-CONPRI +respect O +to O +the O +build B-PARA +direction E-PARA +were O +analyzed O +. O + + +The O +geometry S-CONPRI +discrepancies O +between O +the O +designed S-FEAT +and O +the O +fabricated S-CONPRI +strut O +were O +highlighted O +. O + + +Two O +effects O +were O +identified O +: O +( O +i O +) O +The O +produced O +struts S-MACEQ +are O +generally O +thinner O +than O +the O +designed S-FEAT +ones O +, O +( O +ii O +) O +Within O +the O +produced O +struts S-MACEQ +, O +loads O +are O +not O +transmitted O +by O +the O +entire O +geometry S-CONPRI +. O + + +The O +elastic S-PRO +response O +of O +the O +strut S-MACEQ +was O +assumed O +to O +be S-MATE +represented O +by O +a O +circular O +cylinder O +with O +an O +equivalent O +diameter S-CONPRI +. O + + +The O +first O +one O +is O +the O +diameter S-CONPRI +of O +an O +inscribed O +cylinder O +whereas O +the O +second O +one O +is O +the O +result O +of O +a O +numerical B-ENAT +simulation E-ENAT +based O +on O +the O +3D B-CONPRI +image E-CONPRI +of O +the O +strut S-MACEQ +characterized O +by O +X-ray B-CHAR +tomography E-CHAR +. O + + +The O +methodology S-CONPRI +was O +then O +applied O +to O +an O +octet-truss O +lattice B-FEAT +structure E-FEAT +. O + + +The O +mechanical S-APPL +equivalent O +diameter S-CONPRI +obtained O +by O +numerical B-ENAT +simulation E-ENAT +on O +a O +3D B-CONPRI +image E-CONPRI +of O +the O +strut S-MACEQ +allows O +to O +simulate O +the O +“ O +true O +” O +properties S-CONPRI +of O +the O +lattice B-FEAT +structure E-FEAT +by O +taking O +into O +account O +the O +manufacturing B-CONPRI +constraints E-CONPRI +of O +the O +EBM S-MANP +process O +. O + + +We O +have O +investigated O +the O +spatial B-CHAR +distribution E-CHAR +of O +microstructures S-MATE +of O +a O +Co-Cr-Mo O +alloy S-MATE +rod O +fabricated S-CONPRI +by O +Electron B-MANP +Beam I-MANP +Melting E-MANP +( O +EBM S-MANP +) O +method O +along O +built O +height O +. O + + +The O +topside O +of O +the O +rod S-MACEQ +is O +rich O +in O +γ-fcc O +phase S-CONPRI +and O +consists O +of O +fine O +grains S-CONPRI +with O +high O +local O +distortion S-CONPRI +density S-PRO +. O + + +The O +bottom O +part O +has O +an O +ε-hcp O +single O +phase S-CONPRI +and O +consists O +of O +relatively O +coarser O +grains S-CONPRI +with O +low O +local O +distortion S-CONPRI +density S-PRO +. O + + +The O +mean O +grain B-PRO +size E-PRO +increases O +from O +56 O +μm O +( O +at O +the O +top O +of O +the O +rod S-MACEQ +) O +to O +159 O +μm O +( O +at O +the O +bottom O +) O +, O +and O +is O +accompanied O +by O +a O +decrease O +in O +the O +γ-fcc O +phase B-CONPRI +fraction E-CONPRI +. O + + +As S-MATE +a O +result O +, O +the O +hardness S-PRO +of O +the O +samples S-CONPRI +, O +as S-MATE +well O +as S-MATE +the O +area S-PARA +fraction O +of O +precipitates S-MATE +formed O +in O +the O +samples S-CONPRI +, O +increases O +gradually O +from O +top O +to O +bottom O +of O +the O +rod S-MACEQ +, O +while O +corrosion B-CONPRI +resistance E-CONPRI +is O +uniformly O +high O +throughout O +the O +rod S-MACEQ +almost O +independently O +of O +the O +location O +. O + + +The O +mechanism S-CONPRI +behind O +the O +formation O +of O +phase S-CONPRI +distribution S-CONPRI +is O +discussed O +in O +terms O +of O +thermodynamic O +phase S-CONPRI +stability O +and O +kinetics O +of O +phase S-CONPRI +transformation O +accompanying O +the O +thermal O +history O +during O +the O +post-solidification O +process S-CONPRI +. O + + +To O +increase O +the O +productivity S-CONPRI +of O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +LPBF S-MANP +) O +, O +a O +hull-bulk O +strategy O +can O +be S-MATE +implemented O +. O + + +This O +approach O +consists O +in O +using O +a O +high O +layer B-PARA +thickness E-PARA +in O +the O +core S-MACEQ +of O +the O +part O +, O +hence O +reducing O +the O +build B-PARA +time E-PARA +, O +and O +a O +low O +layer B-PARA +thickness E-PARA +in O +the O +skin O +, O +to O +maintain O +a O +high O +accuracy S-CHAR +and O +good O +surface B-FEAT +finish E-FEAT +. O + + +The O +present O +study O +investigated O +to O +what O +extent O +this O +strategy O +affected O +the O +surface B-PRO +roughness E-PRO +, O +relative B-PRO +density E-PRO +, O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +Ti-6Al-4 B-MATE +V E-MATE +parts O +. O + + +Ti-6Al-4 B-MATE +V E-MATE +specimens O +were O +built O +using O +two O +distinct O +sets O +of O +process B-CONPRI +parameters E-CONPRI +, O +one O +optimized O +for O +a O +90 O +μm-layer O +thickness O +in O +the O +bulk O +and O +the O +other O +for O +a O +30 O +μm-layer O +thickness O +in O +the O +hull O +. O + + +In O +addition O +to O +surface B-PRO +roughness E-PRO +and O +relative B-PRO +density E-PRO +measurements O +, O +a O +thorough O +microstructure S-CONPRI +analysis O +was O +done O +using O +both O +optical B-CHAR +microscopy E-CHAR +and O +SEM S-CHAR +. O + + +Additionally O +, O +EBSD S-CHAR +measurements O +and O +numerical O +reconstruction S-CONPRI +of O +the O +parent O +β O +grains S-CONPRI +were O +performed O +to O +evaluate O +the O +mesostructure O +and O +texture S-FEAT +evolution S-CONPRI +from O +hull O +to O +bulk O +. O + + +Microhardness S-CONPRI +measurements O +and O +tensile B-CHAR +tests E-CHAR +were O +done O +to O +assess O +the O +effect O +of O +the O +hull-bulk O +strategy O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +present O +study O +demonstrated O +the O +possibility O +of O +using O +the O +hull-bulk O +strategy O +to O +build S-PARA +high-quality O +Ti-6Al-4 B-MATE +V E-MATE +parts O +, O +without O +impacting O +their O +tensile B-PRO +properties E-PRO +, O +hence O +increasing O +the O +productivity S-CONPRI +of O +the O +process S-CONPRI +by O +a O +geometry-dependent O +factor O +, O +typically O +ranging O +between O +25 O +% O +and O +100 O +% O +. O + + +In O +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +, O +metal B-MATE +powders E-MATE +, O +sensitive O +to O +humidity O +and O +oxygen S-MATE +, O +like O +AlSi10Mg S-MATE +or O +Ti-6Al-4 B-MATE +V E-MATE +are O +used O +as S-MATE +starting O +material S-MATE +. O + + +Titanium-based O +materials S-CONPRI +are O +influenced O +by O +oxygen S-MATE +and O +nitrogen S-MATE +due O +to O +the O +formation O +of O +oxides S-MATE +and O +nitrides S-MATE +, O +respectively O +. O + + +During O +this O +research S-CONPRI +, O +the O +oxygen S-MATE +concentration O +in O +the O +build B-PARA +chamber E-PARA +was O +controlled O +from O +2 O +ppm O +to O +1000 O +ppm O +using O +an O +external O +measurement S-CHAR +device O +. O + + +Built O +Ti-6Al-4 B-MATE +V E-MATE +specimens O +were O +evaluated O +regarding O +their O +microstructure S-CONPRI +, O +hardness S-PRO +, O +tensile B-PRO +strength E-PRO +, O +notch S-FEAT +toughness O +, O +chemical B-CONPRI +composition E-CONPRI +and O +porosity S-PRO +, O +demonstrating O +the O +importance O +of O +a O +stable O +atmospheric O +control O +. O + + +It O +could O +be S-MATE +shown O +that O +an O +increased O +oxygen S-MATE +concentration O +in O +the O +shielding O +gas S-CONPRI +atmosphere O +leads O +to O +an O +increase O +of O +the O +ultimate B-PRO +tensile I-PRO +strength E-PRO +by O +30 O +MPa S-CONPRI +and O +an O +increased O +( O +188.3 O +ppm O +) O +oxygen S-MATE +concentration O +in O +the O +bulk O +material S-MATE +. O + + +These O +results O +were O +compared O +to O +hot O +isostatic O +pressed S-MANP +( O +HIPed O +) O +samples S-CONPRI +to O +prevent O +the O +influence O +of O +porosity S-PRO +. O + + +In O +addition O +, O +the O +fatigue S-PRO +behavior O +was O +investigated O +, O +revealing O +increasingly O +resistant O +samples S-CONPRI +when O +oxygen S-MATE +levels O +in O +the O +atmosphere O +are O +lower O +. O + + +A O +concept O +of O +body O +heat B-CONPRI +flux E-CONPRI +has O +been O +developed O +to O +predict O +part O +distortion S-CONPRI +. O + + +Powder-liquid-solid O +material S-MATE +state O +transition S-CONPRI +was O +simulated O +via O +user O +subroutine O +. O + + +Large O +tensile B-PRO +residual I-PRO +stress E-PRO +occurs O +on O +the O +top O +layer S-PARA +of O +the O +part O +. O + + +Part O +distortion S-CONPRI +was O +predicted S-CONPRI +with O +reasonable O +accuracy S-CHAR +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +a O +promising O +technology S-CONPRI +to O +manufacture S-CONPRI +functional O +( O +end-use O +) O +metal S-MATE +parts O +with O +complex B-CONPRI +geometry E-CONPRI +directly O +from O +CAD S-ENAT +data O +. O + + +The O +process S-CONPRI +induced O +high O +tensile B-PRO +residual I-PRO +stress E-PRO +and O +part O +distortion S-CONPRI +due O +to O +the O +non-uniform O +heat S-CONPRI +input O +during O +a O +SLM S-MANP +process S-CONPRI +would O +detrimentally O +affect O +the O +part O +performance S-CONPRI +. O + + +However O +, O +it O +is O +extremely O +challenging O +to O +predict O +distortion S-CONPRI +of O +a O +practical O +SLMed S-MANP +part O +if O +each O +single O +track O +is O +taken O +into O +account O +by O +using O +the O +conventional O +modeling S-ENAT +methods O +The O +complex O +multiphysics O +phenomenon O +such O +as S-MATE +fluid O +flow O +in O +the O +melt B-MATE +pool E-MATE +, O +phase S-CONPRI +transformation O +during O +cooling S-MANP +, O +and O +resulted O +anisotropic S-PRO +properties O +further O +complicate O +this O +issue O +. O + + +In O +this O +study O +, O +a O +temperature-thread O +multiscale B-CONPRI +modeling E-CONPRI +approach O +has O +been O +developed O +to O +effectively O +predict O +residual B-PRO +stress E-PRO +and O +part O +distortion S-CONPRI +of O +a O +twin O +cantilever S-FEAT +. O + + +An O +equivalent O +body O +heat B-CONPRI +flux E-CONPRI +has O +been O +proposed O +from O +the O +microscale S-CONPRI +laser B-ENAT +scan E-ENAT +model O +and O +imported O +as S-MATE +the O +“ O +temperature-thread O +” O +to O +the O +subsequent O +mesoscale S-CONPRI +layer S-PARA +hatch O +model S-CONPRI +. O + + +The O +hatched O +layer S-PARA +is O +then O +heated O +up O +by O +the O +equivalent O +body O +heat B-CONPRI +flux E-CONPRI +and O +used O +as S-MATE +a O +basic O +unit O +to O +build S-PARA +up O +the O +macroscale S-CONPRI +part O +in O +a O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +fashion S-CONPRI +. O + + +The O +thermal O +history O +and O +residual B-PRO +stress E-PRO +fields O +of O +the O +twin O +cantilever S-FEAT +during O +the O +SLM S-MANP +process S-CONPRI +were O +simulated O +. O + + +The O +predicted S-CONPRI +cantilever S-FEAT +distortion O +agrees O +with O +the O +measured O +data S-CONPRI +with O +a O +reasonable O +accuracy S-CHAR +. O + + +Open O +cellular B-FEAT +structures E-FEAT +fabricated O +in O +Ti6Al4V S-MATE +using O +the O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +process S-CONPRI +have O +been O +proposed O +for O +tissue O +scaffolds S-FEAT +and O +low O +stiffness S-PRO +implants S-APPL +that O +approximate O +the O +properties S-CONPRI +of O +bone S-BIOP +. O + + +The O +properties S-CONPRI +of O +these O +structures O +, O +regardless O +of O +cell S-APPL +geometry O +, O +have O +often O +been O +determined O +through O +compressive O +testing S-CHAR +, O +and O +very O +few O +of O +these O +studies O +have O +investigated O +the O +flexural O +properties S-CONPRI +. O + + +For O +certain O +types O +of O +implants S-APPL +that O +are O +designed S-FEAT +to O +fill O +very O +large O +segmental O +defects S-CONPRI +in O +appendicular O +bones O +, O +such O +as S-MATE +those O +used O +in O +limb O +sparing O +, O +compression S-PRO +testing O +does O +not O +provide O +the O +necessary O +insight O +into O +the O +complex O +loading O +states O +typical O +of O +bending S-MANP +. O + + +In O +this O +study O +, O +EBM-fabricated O +Ti6Al4V S-MATE +prismatic S-CONPRI +bars O +, O +populated O +with O +rhombic O +dodecahedron O +unit B-CONPRI +cells E-CONPRI +of O +various O +sizes O +and O +relative B-PRO +densities E-PRO +, O +were O +subjected O +to O +four-point O +flexure B-CHAR +tests E-CHAR +. O + + +While O +the O +results O +generally O +follow O +the O +power S-PARA +scaling O +models O +of O +Gibson O +and O +Ashby O +, O +the O +use O +of O +these O +models O +as S-MATE +a O +design S-FEAT +tool O +is O +limited O +by O +machine S-MACEQ +resolution O +, O +particularly O +when O +producing O +structures O +with O +small O +pore B-PARA +sizes E-PARA +required O +for O +bone B-CONPRI +ingrowth E-CONPRI +. O + + +The O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +process S-CONPRI +can O +produce O +parts O +with O +complex O +internal B-FEAT +geometries E-FEAT +that O +can O +not O +be S-MATE +easily O +manufactured S-CONPRI +using O +a O +material B-CONPRI +removal I-CONPRI +process E-CONPRI +. O + + +However O +, O +owing O +to O +the O +different O +heat B-CONPRI +transfer E-CONPRI +efficiencies O +of O +a O +laser S-ENAT +melting O +process S-CONPRI +, O +the O +optimal B-PARA +process E-PARA +parameters O +are O +limited O +to O +a O +small O +range S-PARA +. O + + +This O +study O +used O +galvanometric O +scanner O +technology S-CONPRI +and O +a O +diffractive O +optical B-APPL +element E-APPL +( O +DOE O +) O +to O +build S-PARA +an O +experimental S-CONPRI +multi-spot O +LPBF S-MANP +system O +. O + + +An O +adjustable O +multi-spot O +method O +was O +used O +to O +modulate O +the O +temperature S-PARA +field O +on O +the O +powder B-MACEQ +bed E-MACEQ +and O +enhance O +the O +processing O +quality S-CONPRI +and O +throughput S-CHAR +. O + + +The O +results O +from O +the O +synchronized O +three-spot O +method O +using O +different O +scanning B-CONPRI +strategies E-CONPRI +improved O +the O +layer S-PARA +surface O +roughness S-PRO +Ra O +by O +3.2 O +μm O +. O + + +Moreover O +, O +the O +scanning B-PARA +time E-PARA +was O +decreased O +by O +38.1 O +% O +of O +the O +single-spot O +method O +. O + + +It O +has O +been O +shown O +that O +quality S-CONPRI +of O +components S-MACEQ +built O +using O +selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +are O +strongly O +affected O +by O +the O +thermal O +history O +of O +the O +building B-CHAR +process E-CHAR +. O + + +Temperature S-PARA +variations O +of O +a O +few O +degrees O +across O +the O +powder S-MATE +surface O +can O +alter O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +components S-MACEQ +and O +render O +them O +unsuitable O +for O +their O +intended O +purpose O +. O + + +Therefore O +, O +to O +improve O +the O +quality S-CONPRI +of O +SLS S-MANP +components S-MACEQ +and O +ease O +their O +adoption O +into O +the O +marketplace O +, O +temperature S-PARA +fluctuation O +issues O +must O +be S-MATE +addressed O +. O + + +Some O +success O +has O +been O +demonstrated O +in O +the O +past O +at O +reducing O +temperature S-PARA +non-uniformity O +by O +improving O +the O +heater O +system O +that O +pre-heats O +the O +polymer S-MATE +powder O +prior O +to O +sintering S-MANP +with O +the O +laser S-ENAT +. O + + +This O +paper O +will O +cover O +a O +complimentary O +approach O +of O +actively O +controlling O +laser S-ENAT +fluence O +on O +the O +powder S-MATE +surface O +based O +on O +infrared S-CONPRI +temperature O +measurements O +. O + + +By O +controlling O +the O +amount O +of O +energy O +input O +by O +the O +laser S-ENAT +, O +a O +high O +level O +of O +control O +over O +the O +final O +part O +temperature S-PARA +can O +be S-MATE +achieved O +and O +uniformity O +can O +be S-MATE +improved O +. O + + +This O +paper O +will O +cover O +development O +of O +the O +feed-forward O +control B-MACEQ +system E-MACEQ +and O +will O +present O +results O +showing O +that O +for O +constant O +cross-section O +specimens O +, O +a O +45 O +% O +improvement O +in O +ultimate O +flexural B-PRO +strength E-PRO +standard O +deviation O +was O +achieved O +. O + + +In O +the O +selective B-MANP +laser I-MANP +sintering E-MANP +of O +polymers S-MATE +, O +the O +most O +widely O +used O +powders S-MATE +are O +based O +on O +polyamide B-MATE +12 E-MATE +( O +PA12 S-MATE +) O +, O +which O +is O +a O +semi-crystalline O +polymer S-MATE +. O + + +Because O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +printed O +parts O +depend O +largely O +on O +the O +microstructure S-CONPRI +, O +knowledge O +on O +the O +crystalline O +architecture S-APPL +is O +important O +. O + + +We O +developed O +a O +numerical O +model S-CONPRI +based O +on O +the O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +to O +solve O +the O +flow O +, O +temperature S-PARA +and O +crystallization S-CONPRI +kinetics O +of O +PA12 S-MATE +powder O +during O +sintering S-MANP +using O +two O +different O +geometries S-CONPRI +. O + + +Our O +results O +show O +that O +the O +temperature S-PARA +plays O +a O +crucial O +role O +in O +the O +crystallization S-CONPRI +kinetics O +and O +that O +simplified O +0D O +calculations O +can O +be S-MATE +used O +to O +study O +the O +crystallization S-CONPRI +kinetics O +if O +the O +temperature S-PARA +behavior O +in O +time O +at O +a O +certain O +location O +is O +known O +. O + + +With O +our O +choice O +of O +initial O +and O +boundary B-CONPRI +conditions E-CONPRI +, O +we O +found O +primarily O +crystals O +of O +the O +α′-phase O +. O + + +A O +model S-CONPRI +for O +predicting O +the O +thermal O +response O +of O +Inconel® O +718 O +during O +laser S-ENAT +powder-bed O +fusion S-CONPRI +processing O +( O +LPBF S-MANP +) O +is O +developed O +. O + + +The O +approach O +includes O +the O +pre-placed O +powder S-MATE +layer S-PARA +in O +the O +analysis O +by O +initially O +assigning O +powder S-MATE +properties O +to O +the O +top O +layer S-PARA +of O +elements S-MATE +before O +restoring O +the O +solid O +properties S-CONPRI +as S-MATE +the O +heat B-CONPRI +source E-CONPRI +traverses O +the O +layer S-PARA +. O + + +Different O +linear O +heat S-CONPRI +inputs O +are O +examined O +by O +varying O +both O +laser B-PARA +power E-PARA +and O +scan B-PARA +speed E-PARA +. O + + +The O +effectiveness S-CONPRI +of O +the O +model S-CONPRI +is O +demonstrated O +by O +comparing O +the O +predicted S-CONPRI +temperatures O +to O +in B-CONPRI +situ E-CONPRI +experimental S-CONPRI +thermocouple O +data S-CONPRI +gathered O +during O +LPBF S-MANP +processing O +. O + + +The O +simulated O +temperatures S-PARA +accurately S-CHAR +capture O +the O +measured O +peak O +temperatures S-PARA +( O +within O +11 O +% O +error S-CONPRI +) O +and O +temperature S-PARA +trends O +. O + + +The O +effect O +of O +neglecting O +the O +pre-placed O +powder S-MATE +layer S-PARA +in O +the O +simulations S-ENAT +is O +also O +investigated O +demonstrating O +that O +conduction O +into O +the O +powder B-MATE +material E-MATE +should O +be S-MATE +accounted O +for O +in O +LPBF S-MANP +analyses O +. O + + +The O +simulation S-ENAT +neglecting O +the O +powder S-MATE +predicts O +temperatures S-PARA +more O +than O +30 O +% O +higher O +than O +the O +simulation S-ENAT +including O +the O +powder S-MATE +. O + + +Four O +stages O +were O +designed S-FEAT +to O +evaluate O +the O +surface B-CHAR +morphologies E-CHAR +of O +Ti6Al4V S-MATE +SLM S-MANP +parts O +. O + + +The O +stages O +focused O +laser B-PARA +power E-PARA +, O +scanning B-PARA +speed E-PARA +, O +hatch B-PARA +spacing E-PARA +and O +rescanning O +effects O +. O + + +Processing O +parameters S-CONPRI +significantly O +influenced O +vertical S-CONPRI +and O +top O +surface S-CONPRI +properties S-CONPRI +. O + + +The O +microcracks S-CONPRI +were O +noticed O +at O +the O +interfaces O +of O +adhered O +particles S-CONPRI +and O +melt B-MATE +pool E-MATE +. O + + +Viscosity S-PRO +and O +cooling B-PARA +rate E-PARA +are O +the O +key O +factors O +to O +regulate O +the O +surface B-CHAR +morphology E-CHAR +. O + + +The O +surface B-CHAR +morphology E-CHAR +of O +a O +product O +plays O +a O +crucial O +role O +under O +mechanical B-CONPRI +loading E-CONPRI +and O +chemical O +environment O +. O + + +Surfaces S-CONPRI +of O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +products O +often O +contain O +high O +roughness S-PRO +, O +which O +varies O +in O +different O +planes O +as S-MATE +well O +. O + + +The O +authors O +have O +explored O +the O +surface S-CONPRI +characteristics O +of O +the O +SLM S-MANP +samples S-CONPRI +that O +are O +influenced O +by O +different O +combinations O +of O +laser B-CONPRI +processing E-CONPRI +parameters O +. O + + +The O +considered O +processing O +parameters S-CONPRI +were O +Energy B-PARA +Density E-PARA +( O +ED S-CHAR +) O +and O +its O +technological O +parameters S-CONPRI +namely O +laser B-PARA +power E-PARA +, O +scanning B-PARA +speed E-PARA +and O +hatch B-PARA +spacing E-PARA +. O + + +Additionally O +, O +a O +comparison O +study O +has O +been O +executed O +by O +rescanning O +effects O +considering O +melting S-MANP +with O +low O +ED S-CHAR +and O +, O +thereafter O +, O +rescanning O +by O +the O +best O +possible O +laser B-CONPRI +processing E-CONPRI +parameters O +. O + + +The O +results O +evidently O +showed O +that O +the O +surface B-CHAR +morphologies E-CHAR +differ O +significantly O +due O +to O +different O +laser B-CONPRI +processing E-CONPRI +parameters O +. O + + +Eventually O +, O +the O +thermal O +and O +physical O +behavior O +of O +materials S-CONPRI +, O +such O +as S-MATE +the O +viscosity S-PRO +of O +the O +melt B-MATE +pool E-MATE +, O +thermal O +and O +physical O +stability S-PRO +of O +the O +melt B-MATE +pool E-MATE +, O +solidification B-CONPRI +time E-CONPRI +, O +cooling S-MANP +time O +, O +shrinkage S-CONPRI +, O +capillary B-CONPRI +effect E-CONPRI +, O +surface B-PRO +tension E-PRO +, O +balling O +effect O +, O +and O +the O +amount O +of O +melting S-MANP +of O +a O +powder B-MATE +particle E-MATE +, O +influenced O +the O +surface S-CONPRI +properties S-CONPRI +of O +the O +samples S-CONPRI +, O +along O +with O +unpredictability O +. O + + +The O +results O +showed O +an O +interesting O +correlation O +between O +the O +processing O +parameters S-CONPRI +and O +the O +occurrence O +of O +microcracks S-CONPRI +on O +the O +vertical S-CONPRI +walls O +of O +the O +specimens O +caused O +by O +the O +partially O +melted S-CONPRI +adhered O +powder B-MATE +particles E-MATE +. O + + +Acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +specimens O +fabricated S-CONPRI +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +were O +post O +treated O +by O +acetone S-MATE +, O +ethyl O +acetate O +and O +their O +mixed O +vapour O +. O + + +The O +effect O +of O +different O +chemical O +vapour O +, O +exposure S-CONPRI +time O +and O +building B-PARA +orientation E-PARA +on O +the O +surface B-PRO +roughness E-PRO +, O +tensile B-PRO +strength E-PRO +, O +dimension S-FEAT +and O +weight S-PARA +stability S-PRO +of O +the O +ABS S-MATE +specimens O +were O +investigated O +before O +and O +after O +treatment O +. O + + +The O +results O +demonstrated O +that O +all O +chemical O +vapours O +were O +capable O +of O +improving O +the O +surface S-CONPRI +coarseness O +of O +ABS S-MATE +specimens O +. O + + +The O +tensile B-PRO +strength E-PRO +of O +specimens O +treated O +with O +the O +acetone S-MATE +or O +the O +mixed O +vapour O +decreased O +with O +increasing O +the O +exposure S-CONPRI +time O +. O + + +The O +weight S-PARA +of O +specimens O +after O +treatment O +increased O +with O +prolonging O +the O +exposure S-CONPRI +time O +due O +to O +the O +absorption S-CONPRI +of O +the O +chemical O +vapours O +. O + + +In O +this O +work O +, O +polyphenylene O +sulfide O +( O +PPS O +) O +was O +reinforced S-CONPRI +with O +a O +thermotropic B-MATE +liquid I-MATE +crystalline I-MATE +polymer E-MATE +( O +TLCP O +) O +to O +generate O +composite S-MATE +filaments O +for O +use O +in O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +Because O +of O +non-overlapping O +processing O +temperatures S-PARA +, O +rheology S-PRO +enabled O +taking O +the O +advantage O +of O +the O +dual O +extrusion S-MANP +technology O +, O +which O +generated O +nearly O +continuously O +reinforced S-CONPRI +filaments S-MATE +that O +exhibited O +a O +tensile B-PRO +strength E-PRO +and O +modulus O +of O +155.0 O +± O +24.2 O +MPa S-CONPRI +and O +40.4 O +± O +7.5 O +GPa S-PRO +, O +respectively O +. O + + +On O +printing O +using O +these O +filaments S-MATE +, O +the O +maximum O +tensile B-PRO +strength E-PRO +and O +modulus O +obtained O +were O +108.5 O +± O +19.4 O +MPa S-CONPRI +and O +25.9 O +± O +1.1 O +GPa S-PRO +, O +respectively O +, O +higher O +than O +the O +properties S-CONPRI +reported O +on O +using O +short B-MATE +fiber I-MATE +composites E-MATE +. O + + +Moreover O +, O +the O +tensile B-PRO +strength E-PRO +was O +lower O +, O +and O +the O +tensile S-PRO +modulus O +was O +higher O +in O +comparison O +with O +the O +reported O +use O +of O +continuous B-MATE +fibers E-MATE +. O + + +Additionally O +, O +the O +tensile B-PRO +properties E-PRO +in O +the O +print S-MANP +direction O +were O +higher O +than O +those O +of O +compression S-PRO +molded O +samples S-CONPRI +. O + + +The O +nearly O +continuous O +reinforcement S-PARA +did O +not O +restrict O +the O +mobility O +of O +the O +printer S-MACEQ +, O +unlike O +the O +reported O +performance S-CONPRI +of O +the O +continuously O +reinforced S-CONPRI +carbon B-MATE +fiber E-MATE +thermoplastics O +in O +FFF S-MANP +. O + + +This O +work O +aims O +to O +investigate O +the O +influence O +of O +the O +orientation S-CONPRI +and O +microtexture O +of O +columnar B-PRO +grains E-PRO +on O +the O +fatigue B-CONPRI +crack I-CONPRI +growth E-CONPRI +of O +a O +Ti-6.5Al-2Zr-Mo-V B-MATE +titanium I-MATE +alloy E-MATE +fabricated S-CONPRI +by O +directed B-MANP +energy I-MANP +deposition E-MANP +. O + + +In O +this O +paper O +, O +the O +fatigue B-PARA +crack I-PARA +growth I-PARA +rate E-PARA +test O +in O +three O +sampling S-CONPRI +directions O +in O +a O +directed O +energy O +deposited O +Ti-6.5Al-2Zr-Mo-V B-MATE +titanium I-MATE +alloy E-MATE +using O +compact S-MANP +specimens O +was O +carried O +out O +. O + + +The O +crack O +length O +was O +measured O +visually O +, O +and O +the O +fatigue B-PARA +crack I-PARA +growth I-PARA +rate E-PARA +of O +the O +stable O +crack B-CONPRI +growth E-CONPRI +stage O +was O +obtained O +. O + + +During O +the O +test O +, O +the O +influence O +of O +the O +microstructure S-CONPRI +on O +the O +crack B-CONPRI +growth E-CONPRI +was O +directly O +observed O +. O + + +In O +addition O +, O +the O +complete O +crack O +front O +shape O +was O +indicated O +on O +the O +fracture S-CONPRI +surface O +by O +the O +marker O +load O +technique O +, O +and O +the O +crack B-CONPRI +growth E-CONPRI +behavior O +was O +obtained O +. O + + +An O +optical B-CHAR +microscopy E-CHAR +, O +a O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +and O +a O +laser S-ENAT +confocal O +microscopy S-CHAR +were O +used O +to O +observe O +and O +clarify O +the O +influence O +of O +the O +columnar B-CONPRI +grain I-CONPRI +boundary E-CONPRI +on O +the O +crack B-CONPRI +growth E-CONPRI +behavior O +and O +the O +interaction O +between O +the O +crack O +front O +and O +microstructure S-CONPRI +. O + + +The O +results O +show O +that O +the O +fatigue B-PARA +crack I-PARA +growth I-PARA +rate E-PARA +in O +the O +three O +sampling S-CONPRI +directions O +is O +different O +in O +the O +low O +ΔK O +region O +; O +the O +columnar B-CONPRI +grain I-CONPRI +boundary E-CONPRI +has O +no O +significant O +effect O +on O +the O +fatigue B-CONPRI +crack I-CONPRI +growth E-CONPRI +behavior O +, O +but O +the O +columnar B-PRO +grain E-PRO +itself O +has O +an O +effect O +on O +the O +fatigue B-CONPRI +crack I-CONPRI +growth E-CONPRI +behavior O +, O +which O +is O +indicated O +by O +the O +irregularity O +of O +the O +crack O +front O +shape O +in O +different O +columnar B-PRO +grains E-PRO +. O + + +Microhardness S-CONPRI +testing O +and O +electron O +backscattered O +diffraction S-CHAR +were O +used O +to O +explain O +the O +above O +phenomena O +based O +on O +static O +and O +orientation S-CONPRI +characteristics O +. O + + +It O +was O +found O +that O +the O +microtexture O +and O +orientation S-CONPRI +of O +the O +columnar B-PRO +grains E-PRO +are O +responsible O +for O +differences O +in O +the O +crack B-CONPRI +growth E-CONPRI +rates O +, O +and O +the O +orientation S-CONPRI +of O +the O +columnar B-PRO +grains E-PRO +also O +determines O +the O +extent O +of O +the O +difference O +. O + + +Multi-scale O +microstructure S-CONPRI +of O +a O +laser S-ENAT +3D-printed S-MANP +Ni-based O +superalloy O +was O +examined O +. O + + +Elements S-MATE +and O +precipitates S-MATE +heterogeneously S-CONPRI +distribute O +at O +the O +cellular O +scale O +. O + + +Cell S-APPL +boundaries S-FEAT +are O +characterized O +as S-MATE +low O +angle O +grain B-CONPRI +boundaries E-CONPRI +. O + + +The O +heterogeneous S-CONPRI +microstructure O +of O +a O +laser S-ENAT +3D B-MANP +printed E-MANP +Ni-based O +superalloy O +was O +examined O +at O +multiple O +length B-CHAR +scales E-CHAR +. O + + +The O +crystal O +grains S-CONPRI +grow O +in O +epitaxy S-CONPRI +with O +the O +substrate S-MATE +under O +the O +large O +temperature B-PARA +gradient E-PARA +and O +high O +cooling B-PARA +rate E-PARA +. O + + +The O +cell S-APPL +boundaries S-FEAT +, O +decorated O +with O +γ/γ′ O +eutectics O +, O +μ-phase O +precipitates S-MATE +and O +high O +density S-PRO +of O +dislocations S-CONPRI +, O +show O +enrichment O +of O +γ′ O +forming S-MANP +elements S-MATE +and O +low-angle O +misorientations O +. O + + +Dislocations S-CONPRI +trapped O +in O +the O +intra-cellular O +regions O +are O +characterized O +as S-MATE +statistically O +stored O +dislocations S-CONPRI +with O +no O +detectable O +contribution O +to O +lattice S-CONPRI +curvature O +, O +and O +are O +the O +results O +of O +the O +interaction O +between O +dislocations S-CONPRI +and O +γ′ O +precipitates S-MATE +. O + + +Unlike O +conventional O +powder B-MANP +metallurgy E-MANP +techniques O +, O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +characterised O +by O +its O +fully O +melting S-MANP +process O +and O +very O +high O +heating S-MANP +and O +cooling B-PARA +rates E-PARA +and O +little O +has O +been O +known O +about O +the O +influence O +of O +powder S-MATE +surface O +state O +on O +the O +SLM S-MANP +process S-CONPRI +. O + + +In O +this O +study O +, O +the O +influence O +of O +low O +temperature S-PARA +powder S-MATE +drying S-MANP +on O +the O +surface S-CONPRI +chemistry S-CONPRI +of O +Al-12Si O +powder S-MATE +and O +its O +subsequent O +effect O +on O +SLM S-MANP +was O +investigated O +in O +detail O +by O +means O +of O +an O +in-depth O +X-ray B-CHAR +photoelectron I-CHAR +spectroscopy E-CHAR +. O + + +An O +enhanced O +densification S-MANP +( O +relative B-PRO +density E-PRO +≥99 O +% O +) O +was O +achieved O +in O +the O +dried S-MANP +Al-12Si O +powder S-MATE +compared O +to O +the O +as-received O +powder S-MATE +. O + + +This O +has O +been O +attributed O +to O +the O +modification O +of O +powder S-MATE +surface O +by O +removing O +a O +moisture O +skin O +during O +the O +drying S-MANP +process O +, O +which O +prevents O +the O +formation O +of O +deleterious O +oxide S-MATE +and O +hydroxide S-MATE +during O +SLM S-MANP +. O + + +This O +study O +provides O +important O +information O +for O +achieving O +high O +relative B-PRO +density E-PRO +in O +SLM S-MANP +fabricated S-CONPRI +metal O +components S-MACEQ +from O +a O +powder S-MATE +drying S-MANP +aspect O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +processed S-CONPRI +stainless O +steel S-MATE +usually O +exhibits O +an O +inhomogeneous O +microstructure S-CONPRI +in O +the O +as-built O +condition O +. O + + +The O +effect O +of O +powder S-MATE +chemical B-CONPRI +composition E-CONPRI +on O +the O +microstructural B-CONPRI +evolution E-CONPRI +of O +SLM S-MANP +processed S-CONPRI +17-4 O +PH S-CONPRI +in O +the O +as-built O +condition O +was O +studied O +. O + + +A O +path O +to O +achieve O +a O +fully O +martensitic O +17-4 O +PH S-CONPRI +component S-MACEQ +in O +the O +as-built O +condition O +by O +fine-tuning O +the O +alloy S-MATE +composition O +without O +any O +post-built O +heat B-MANP +treatments E-MANP +was O +demonstrated O +. O + + +The O +as-built O +17-4 O +PH S-CONPRI +phase O +transformation O +from O +δ O +ferrite S-MATE +to O +austenite S-MATE +( O +γ O +) O +and O +subsequently O +to O +martensite S-MATE +( O +α O +’ O +) O +was O +governed O +by O +the O +concentrations O +of O +ferrite S-MATE +and O +austenite S-MATE +stabilizing O +elements S-MATE +as S-MATE +represented O +by O +a O +chromium S-MATE +to O +nickel S-MATE +equivalent O +( O +Creq/Nieq O +) O +value O +. O + + +Electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +analysis O +revealed O +that O +increase O +in O +the O +WRC-1992 O +equations O +based O +Creq/Nieq O +value O +to O +≥ O +2.65 O +resulted O +in O +coarse O +δ O +ferrite S-MATE +grains O +with O +a O +< O +100 O +> O +preferential O +crystal B-PRO +orientation E-PRO +along O +the O +build B-PARA +direction E-PARA +. O + + +Epitaxial S-PRO +growth O +of O +semi-circular O +and O +columnar O +δ O +ferrite S-MATE +grains O +accompanied O +by O +a O +marginal O +volume B-PARA +fraction E-PARA +of O +retained B-MATE +austenite E-MATE +and O +transformed O +martensitic O +phases O +was O +observed O +. O + + +Retained B-MATE +austenite E-MATE +and O +transformed O +martensitic O +phases O +exhibited O +a O +fine O +grain B-CONPRI +structure E-CONPRI +preferentially O +along O +the O +coarse O +ferrite S-MATE +grain O +boundaries S-FEAT +. O + + +EBSD S-CHAR +phase O +composition S-CONPRI +analysis O +along O +with O +thermodynamic O +equilibrium S-CONPRI +modeling O +implies O +that O +a O +lower O +Creq/Nieq O +value O +promotes O +martensite S-MATE +formation O +resulting O +in O +a O +less O +retained O +δ O +ferrite S-MATE +in O +the O +as-built O +condition O +. O + + +The O +microstructure S-CONPRI +of O +as-deposited O +LAMed O +300 O +M O +steel S-MATE +is O +different O +from O +that O +of O +forgings O +. O + + +Heat B-PRO +accumulation E-PRO +affects O +the O +as-deposited O +microstructure S-CONPRI +of O +LAMed O +300 O +M O +steel S-MATE +. O + + +After O +heat B-MANP +treatment E-MANP +, O +the O +microstructure S-CONPRI +of O +LAMed O +300 O +M O +steel S-MATE +is O +refined O +and O +uniform O +. O + + +After O +heat B-MANP +treatment E-MANP +, O +the O +impact S-CONPRI +toughness O +of O +LAMed O +300 O +M O +steel S-MATE +significantly O +improved O +. O + + +The O +crack B-CONPRI +propagation E-CONPRI +mechanism O +of O +LAMed O +300 O +M O +steel S-MATE +is O +revealed O +by O +EBSD S-CHAR +. O + + +Direct B-CONPRI +manufacturing E-CONPRI +techniques O +, O +such O +as S-MATE +directed O +energy O +deposition S-CONPRI +( O +DED S-MANP +) O +, O +are O +able O +to O +produce O +complex O +components S-MACEQ +efficiently O +. O + + +In O +this O +study O +, O +microstructure B-CONPRI +evolution E-CONPRI +and O +impact S-CONPRI +toughness O +of O +DED S-MANP +300M O +ultra-high O +strength S-PRO +steel S-MATE +are O +investigated O +. O + + +The O +results O +show O +that O +the O +microstructure S-CONPRI +of O +the O +as-deposited O +DED S-MANP +300M O +ultra-high O +strength S-PRO +steel S-MATE +is O +mainly O +composed O +of O +martensite S-MATE +and O +some O +blocky O +bainite S-MATE +. O + + +The O +micro-segregation S-CONPRI +of O +elements S-MATE +is O +observed O +within O +the O +interdendritic O +area S-PARA +. O + + +After O +heat B-MANP +treatment E-MANP +, O +the O +microstructure S-CONPRI +becomes O +uniform O +and O +consists O +of O +martensite S-MATE +and O +lower O +bainite S-MATE +. O + + +The O +impact S-CONPRI +toughness O +of O +the O +as-deposited O +DED S-MANP +300M O +ultra-high O +strength S-PRO +steel S-MATE +is O +9 O +J/cm2 O +, O +while O +it O +is O +significantly O +increased O +to O +25 O +J/cm2 O +after O +heat B-MANP +treatment E-MANP +. O + + +Furthermore O +, O +it O +is O +observed O +that O +the O +fracture S-CONPRI +mode O +of O +the O +as-deposited O +sample S-CONPRI +is O +quasi-cleavage O +fracture S-CONPRI +. O + + +During O +the O +process S-CONPRI +of O +propagation O +, O +the O +main O +cracks O +would O +go S-MATE +across O +the O +martensite S-MATE +packet O +and O +deflect O +in O +the O +another O +one O +, O +and O +secondary O +cracks O +also O +deflected O +in O +the O +high-angle O +grain B-CONPRI +boundaries E-CONPRI +. O + + +By O +contrast O +, O +the O +fracture S-CONPRI +mode O +of O +heat-treated B-MANP +DED E-MANP +300 O +M O +steel S-MATE +is O +ductile B-CONPRI +fracture E-CONPRI +. O + + +CP-Ti O +was O +used O +to O +produce O +SLM S-MANP +RAIs O +for O +immediate O +implantation S-MANP +. O + + +Inclination B-FEAT +angle E-FEAT +affects O +Sa O +by O +determining O +the O +powders S-MATE +melted S-CONPRI +in O +stairs O +. O + + +Dental S-APPL +implant O +with O +a O +consistent O +Sa O +was O +produced O +with O +gradient O +parameters S-CONPRI +. O + + +Vivo O +experiment S-CONPRI +showed O +good O +osteogenesis O +with O +the O +SLM S-MANP +RAIs O +in O +experimental S-CONPRI +dogs O +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +a O +promising O +technology S-CONPRI +for O +use O +in O +“ O +immediate O +implantation S-MANP +” O +to O +quickly O +fabricate S-MANP +customized O +dental S-APPL +implants O +. O + + +However O +, O +the O +implant S-APPL +surface O +produced O +using O +SLM S-MANP +has O +a O +high O +and O +inconsistent O +surface B-PRO +roughness E-PRO +, O +which O +greatly O +affects O +early O +cell S-APPL +behaviors O +and O +osseointegration S-PRO +. O + + +In O +this O +work O +, O +samples S-CONPRI +were O +produced O +with O +different O +border O +process B-CONPRI +parameters E-CONPRI +and O +inclination B-FEAT +angles E-FEAT +. O + + +The O +surface B-PRO +roughness E-PRO +and O +morphology S-CONPRI +of O +the O +side O +surfaces S-CONPRI +were O +measured O +and O +studied O +. O + + +The O +results O +indicate O +that O +a O +large O +offset S-CONPRI +value O +increases O +surface B-PRO +roughness E-PRO +due O +to O +an O +insufficient O +energy O +input O +, O +while O +a O +small O +offset S-CONPRI +increases O +surface B-PRO +roughness E-PRO +due O +to O +an O +intensified O +Marangoni O +convection O +. O + + +Different O +inclination B-FEAT +angles E-FEAT +affect O +surface B-PRO +roughness E-PRO +due O +to O +stair O +effects O +and O +the O +heat-affected O +zone O +. O + + +Based O +on O +the O +above O +results O +, O +a O +dental S-APPL +implant O +was O +fabricated S-CONPRI +using O +gradient O +processing O +. O + + +Compared O +with O +the O +implant S-APPL +fabricated S-CONPRI +with O +a O +single O +parameter S-CONPRI +process O +, O +the O +implant S-APPL +processed O +with O +gradient O +parameters S-CONPRI +had O +a O +low O +and O +consistent O +surface B-PRO +roughness E-PRO +. O + + +An O +energy O +balance O +that O +describes O +the O +transfer O +of O +energy O +is O +proposed O +for O +the O +laser-based O +directed B-MANP +energy I-MANP +deposition I-MANP +process E-MANP +. O + + +The O +partitioning O +of O +laser B-CONPRI +energy E-CONPRI +was O +experimentally O +measured O +and O +accurately S-CHAR +validated O +using O +a O +special O +process S-CONPRI +calorimeter O +for O +Ti-6Al-4V S-MATE +and O +Inconel S-MATE +625™ O +alloys S-MATE +. O + + +The O +total O +energy O +provided O +by O +the O +laser S-ENAT +was O +partitioned O +as S-MATE +: O +the O +energy O +directly O +absorbed O +by O +the O +substrate S-MATE +, O +the O +energy O +absorbed O +by O +the O +powder S-MATE +stream O +and O +deposited O +onto O +the O +substrate S-MATE +, O +the O +energy O +reflected O +from O +the O +substrate S-MATE +surface O +, O +and O +the O +energy O +reflected O +or O +absorbed O +and O +lost O +from O +the O +powder S-MATE +stream O +. O + + +Titanium B-MATE +alloy E-MATE +Ti-6Al-4V S-MATE +showed O +higher O +overall O +or O +bulk O +absorption S-CONPRI +than O +the O +Inconel S-MATE +625™ O +alloy S-MATE +. O + + +Processing O +with O +powder S-MATE +resulted O +in O +lower O +laser B-CONPRI +energy E-CONPRI +absorption S-CONPRI +within O +the O +substrate S-MATE +than O +without O +powder S-MATE +, O +due O +to O +the O +“ O +shadowing O +” O +effect O +of O +the O +powder S-MATE +stream O +within O +the O +beam S-MACEQ +and O +loss O +of O +energy O +representing O +unfused O +powder S-MATE +. O + + +During O +processing O +at O +a O +laser B-PARA +power E-PARA +of O +approximately O +1 O +kW O +the O +total O +energy O +absorbed O +during O +the O +deposition B-MANP +process E-MANP +was O +found O +to O +be S-MATE +42 O +% O +for O +the O +Ti-6Al-4V B-MATE +alloy E-MATE +and O +37 O +% O +for O +the O +Inconel S-MATE +625™ O +alloy S-MATE +. O + + +Under O +these O +conditions O +14 O +% O +of O +the O +total O +energy O +was O +lost O +by O +the O +Ti-6Al-4V S-MATE +unfused O +powder S-MATE +; O +whereas O +only O +11 O +% O +was O +lost O +by O +the O +Inconel S-MATE +625™ O +powder S-MATE +. O + + +Cold O +gas B-CONPRI +dynamic E-CONPRI +spray O +is O +a O +cold O +spray O +technique O +for O +obtaining O +solid-state S-CONPRI +surface O +coating S-APPL +. O + + +Several O +materials S-CONPRI +such O +as S-MATE +metal O +, O +metal B-MATE +alloys E-MATE +, O +composite B-MATE +materials E-MATE +, O +and O +polymer S-MATE +have O +been O +deposited O +successfully O +through O +cold O +spray O +onto O +a O +substrate B-MATE +material E-MATE +. O + + +A O +number O +of O +industrial S-APPL +applications O +for O +cold O +spray O +have O +been O +developed O +worldwide O +in O +the O +field O +of O +aerospace S-APPL +, O +energy O +, O +automobile S-APPL +, O +biotechnology O +, O +and O +military S-APPL +applications O +. O + + +In O +the O +current O +study O +, O +effects O +of O +various O +processing O +parameter S-CONPRI +such O +as S-MATE +impact O +velocity O +, O +substrate S-MATE +preheating S-MANP +temperature O +, O +a O +combination O +of O +different O +materials S-CONPRI +and O +coefficient B-PRO +of I-PRO +friction E-PRO +were O +used O +to O +describe O +the O +impact S-CONPRI +behaviour O +of O +ductile S-PRO +materials O +( O +copper S-MATE +, O +Cu S-MATE +, O +and O +aluminium S-MATE +, O +Al S-MATE +) O +after O +deposition S-CONPRI +to O +find O +a O +way O +of O +addressing O +high-strain-rate O +dynamic S-CONPRI +problems O +. O + + +The O +parameters S-CONPRI +were O +also O +used O +to O +verify O +the O +deposition B-MANP +process E-MANP +for O +the O +modelling S-ENAT +of O +cold O +gas B-CONPRI +dynamic E-CONPRI +spray O +( O +CGDS O +) O +by O +the O +Lagrangian O +approach O +of O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +. O + + +The O +results O +of O +the O +analysis O +( O +simulation S-ENAT +) O +and O +that O +of O +the O +published O +experimental S-CONPRI +results O +in O +the O +literature O +correlated S-CONPRI +well O +. O + + +The O +understanding O +of O +the O +impact S-CONPRI +behaviour O +using O +different O +parameters S-CONPRI +was O +evident O +by O +the O +analysis O +of O +temperature S-PARA +and O +equivalent O +plastic S-MATE +strain O +( O +PEEQ O +) O +. O + + +It O +was O +discovered O +that O +the O +deposition B-MANP +process E-MANP +and O +deformation S-CONPRI +are O +largely O +affected O +by O +particle S-CONPRI +material S-MATE +as S-MATE +compared O +to O +the O +substrate S-MATE +. O + + +A O +lower O +restitution O +coefficient O +was O +obtained O +when O +different O +materials S-CONPRI +of O +varying O +properties S-CONPRI +were O +combined O +compared O +to O +the O +combination O +of O +the O +same O +material S-MATE +. O + + +Also O +, O +the O +parameters S-CONPRI +under O +investigation O +do O +not O +affect O +the O +CGDS O +process S-CONPRI +individually O +, O +as S-MATE +their O +effects O +are O +interrelated O +. O + + +A O +β O +titanium B-MATE +alloy E-MATE +, O +Ti-10V-2Fe-3Al O +, O +was O +selectively O +laser S-ENAT +melted O +under O +a O +modulated O +pulsed B-MANP +laser E-MANP +mode O +with O +different O +processing O +conditions O +. O + + +The O +as-fabricated O +samples S-CONPRI +were O +examined O +using O +a O +range S-PARA +of O +characterization O +techniques O +and O +properties S-CONPRI +evaluated O +through O +tensile B-CHAR +testing E-CHAR +. O + + +It O +is O +shown O +that O +with O +a O +small O +powder S-MATE +layer B-PARA +thickness E-PARA +( O +30 O +μm O +) O +, O +a O +low O +laser B-PARA +power E-PARA +and O +a O +short O +exposure S-CONPRI +time O +( O +i.e. O +, O +low O +energy B-PARA +density E-PARA +) O +led S-APPL +to O +development O +of O +fine O +β O +columnar B-PRO +grains E-PRO +and O +widespread O +cell S-APPL +structures O +whereas O +increased O +laser B-PARA +power E-PARA +and O +exposure S-CONPRI +time O +( O +i.e. O +, O +high O +energy B-PARA +density E-PARA +) O +resulted O +in O +pronounced O +grain B-CONPRI +growth E-CONPRI +, O +increased O +texture S-FEAT +and O +significantly O +decreased O +cell S-APPL +structures O +. O + + +Increasing O +powder S-MATE +layer B-PARA +thickness E-PARA +effectively O +promoted O +the O +columnar-to-equiaxed O +grain S-CONPRI +transition O +( O +CET O +) O +, O +leading O +to O +a O +greatly O +reduced O +texture S-FEAT +and O +a O +hybrid O +microstructure S-CONPRI +which O +consists O +of O +small O +and O +chunky O +equiaxed B-CONPRI +grains E-CONPRI +together O +with O +a O +small O +number O +of O +large O +columnar B-PRO +grains E-PRO +. O + + +Athermal O +ω O +precipitates S-MATE +were O +observed O +in O +all O +the O +as-fabricated O +samples S-CONPRI +. O + + +In O +the O +samples S-CONPRI +made O +with O +high O +energy B-PARA +densities E-PARA +, O +α O +laths O +which O +tend O +to O +constitute O +a O +grid-like O +structure S-CONPRI +were O +observed O +. O + + +The O +samples S-CONPRI +with O +the O +finest O +columnar B-PRO +grains E-PRO +show O +both O +high O +strengths S-PRO +and O +good O +ductility S-PRO +thanks O +to O +full O +plastic B-PRO +deformation E-PRO +through O +both O +slipping O +and O +twinning S-CONPRI +. O + + +The O +samples S-CONPRI +with O +the O +hybrid O +grain B-CONPRI +structure E-CONPRI +, O +however O +, O +exhibits O +a O +highly O +limited O +or O +no O +ductility S-PRO +due O +to O +intergranular O +fracturing O +. O + + +The O +α-containing O +samples S-CONPRI +which O +also O +have O +coarse O +grains S-CONPRI +all O +failed O +in O +a O +cleavage O +fracture S-CONPRI +mode O +and O +exhibited O +almost O +no O +ductility S-PRO +. O + + +Transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +study O +reveals O +that O +the O +α-demarcated O +grid O +structure S-CONPRI +tended O +to O +confine O +plastic B-PRO +deformation E-PRO +within O +the O +β O +matrix O +and O +suppress O +the O +macroscopic S-CONPRI +plastic O +deformation S-CONPRI +throughout O +the O +samples S-CONPRI +. O + + +3-D S-CONPRI +printing O +shows O +great O +potential O +in O +laboratories S-CONPRI +for O +making O +customized O +labware O +and O +reaction O +vessels O +. O + + +In O +addition O +, O +affordable O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +-based O +3-D S-CONPRI +printing O +has O +successfully O +produced O +high-quality O +and O +affordable O +scientific O +equipment S-MACEQ +, O +focusing O +on O +tools S-MACEQ +without O +strict O +chemical O +compatibility O +limitations O +. O + + +As S-MATE +the O +additives S-MATE +and O +colorants S-MATE +used O +in O +3-D S-CONPRI +printing O +filaments S-MATE +are O +proprietary O +, O +their O +compatibility O +with O +common O +chemicals O +is O +unknown O +, O +which O +has O +prevented O +their O +widespread O +use O +in O +laboratory S-CONPRI +chemical O +processing O +. O + + +The O +results O +provide O +data S-CONPRI +on O +materials S-CONPRI +unavailable O +in O +the O +literature O +and O +the O +chemical O +properties S-CONPRI +of O +3-D S-CONPRI +printable O +plastics S-MATE +that O +were O +, O +are O +in O +line O +with O +literature O +. O + + +Overall O +, O +many O +3-D S-CONPRI +printable O +plastics S-MATE +are O +compatible O +with O +concentrated O +solutions O +. O + + +Polypropylene S-MATE +emerged O +as S-MATE +a O +promising O +3-D S-CONPRI +printable O +material S-MATE +for O +semiconductor S-MATE +processing O +due O +to O +its O +tolerance S-PARA +of O +strongly O +oxidizing O +acids O +, O +such O +as S-MATE +nitric O +and O +sulfuric O +acids O +. O + + +In O +addition O +, O +3-D S-CONPRI +printed O +custom O +tools S-MACEQ +were O +demonstrated O +for O +a O +range S-PARA +of O +wet O +processing O +applications O +. O + + +The O +results O +show O +that O +3-D S-CONPRI +printed O +plastics S-MATE +are O +potential O +materials S-CONPRI +for O +bespoke O +chemically O +resistant O +labware O +at O +less O +than O +10 O +% O +of O +the O +cost O +of O +such O +purchased O +tools S-MACEQ +. O + + +However O +, O +further O +studies O +are O +required O +to O +ascertain O +if O +such O +materials S-CONPRI +are O +fully O +compatible O +with O +clean B-CONPRI +room E-CONPRI +processing O +. O + + +Large O +pulsed O +electron B-CONPRI +beam E-CONPRI +irradiation O +was O +proposed O +as S-MATE +the O +new O +post-treatment S-MANP +of O +the O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +. O + + +LPEB O +irradiation S-MANP +can O +remove O +the O +partially O +melted S-CONPRI +particles O +and O +fill O +the O +cracks O +and O +void S-CONPRI +on O +the O +SLM-MS O +. O + + +There O +is O +the O +significant O +reduction S-CONPRI +of O +the O +surface B-PRO +roughness E-PRO +and O +the O +bcc S-CONPRI +α-martensite O +phase S-CONPRI +on O +the O +SLM-MS O +. O + + +Corrosion S-CONPRI +testing O +revealed O +that O +there O +is O +a O +moderate O +improvement O +in O +corrosion B-CONPRI +resistance E-CONPRI +after O +LPEB O +irradiation S-MANP +. O + + +The O +present O +work O +aimed O +to O +decrease O +the O +surface B-PRO +roughness E-PRO +of O +maraging B-MATE +steel E-MATE +( O +MS O +) O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +using O +large O +pulsed O +electron-beam O +( O +LPEB O +) O +irradiation S-MANP +as S-MATE +a O +post-treatment S-MANP +. O + + +The O +MS O +samples S-CONPRI +were O +fabricated S-CONPRI +using O +different O +combinations O +of O +laser B-PARA +power E-PARA +, O +scanning B-PARA +speed E-PARA +, O +hatch B-PARA +distance E-PARA +, O +and O +build S-PARA +angle O +. O + + +The O +morphological O +features O +, O +surface B-PRO +roughness E-PRO +, O +phase S-CONPRI +content O +, O +and O +corrosion B-CONPRI +resistance E-CONPRI +of O +the O +MS O +samples S-CONPRI +in O +their O +as-fabricated O +( O +ASF O +) O +state O +were O +compared O +after O +LPEB O +irradiation S-MANP +. O + + +The O +ASF O +SLM-MS O +samples S-CONPRI +exhibit O +the O +presence O +of O +partially O +melted S-CONPRI +particles O +that O +spread S-CONPRI +over O +the O +entire O +surface S-CONPRI +and O +many O +cracks O +in O +both O +the O +longitudinal O +and O +transverse O +directions O +. O + + +Post-treatment S-MANP +by O +LPEB O +irradiation S-MANP +removed O +the O +partially O +melted S-CONPRI +particles O +, O +while O +reflow O +of O +the O +molten O +mass O +filled O +the O +cracks O +and O +voids S-CONPRI +and O +facilitated O +the O +formation O +of O +a O +uniform O +surface S-CONPRI +with O +a O +bright O +metallic S-MATE +finish O +. O + + +Body-centered O +cubic O +α-martensite O +was O +the O +predominant O +phase S-CONPRI +for O +the O +ASF O +SLM-MS O +samples S-CONPRI +, O +along O +with O +a O +small O +fraction S-CONPRI +face-centered O +cubic O +γ-austenite O +phase S-CONPRI +. O + + +After O +LPEB O +irradiation S-MANP +, O +the O +martensite S-MATE +was O +reverted O +to O +the O +austenite B-CHAR +phase E-CHAR +. O + + +The O +corrosion B-CONPRI +resistance E-CONPRI +of O +the O +LPEB-irradiated O +samples S-CONPRI +was O +moderately O +better O +than O +that O +of O +the O +ASF O +SLM-MS O +samples S-CONPRI +. O + + +The O +uniform O +surface B-CHAR +morphology E-CHAR +, O +removal O +of O +partially O +melted S-CONPRI +particles O +, O +absence O +of O +pores S-PRO +and O +cracks O +, O +decrease O +in O +Sa O +, O +and O +moderate O +improvement O +in O +corrosion B-CONPRI +resistance E-CONPRI +suggests O +that O +LPEB O +irradiation S-MANP +can O +be S-MATE +used O +as S-MATE +a O +post-treatment S-MANP +for O +SLM-MS O +samples S-CONPRI +. O + + +The O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +process S-CONPRI +produces O +complex O +microstructures S-MATE +and O +specific O +defects S-CONPRI +. O + + +To O +build S-PARA +structural O +components S-MACEQ +with O +an O +acceptable O +mechanical B-PRO +integrity E-PRO +, O +optimization S-CONPRI +of O +the O +processing O +parameters S-CONPRI +is O +required O +. O + + +In O +addition O +, O +the O +evolution S-CONPRI +of O +defects S-CONPRI +under O +service O +conditions O +should O +be S-MATE +investigated O +. O + + +In O +this O +study O +, O +the O +nickel-based B-MATE +alloy E-MATE +718 O +was O +studied O +in O +the O +as-built O +metallurgical S-APPL +state O +. O + + +Laser B-CONPRI +processing E-CONPRI +parameters O +such O +as S-MATE +the O +laser B-PARA +power E-PARA +, O +scanning B-PARA +speed E-PARA +, O +and O +hatch B-PARA +spacing E-PARA +were O +modified O +to O +evaluate O +their O +effects O +on O +the O +porosity S-PRO +, O +microstructure S-CONPRI +, O +and O +mechanical B-CONPRI +properties E-CONPRI +at O +high O +temperatures S-PARA +. O + + +The O +porosity S-PRO +and O +pore S-PRO +shape O +were O +evaluated O +using O +relative B-PRO +density E-PRO +measurements O +and O +image B-CONPRI +analysis E-CONPRI +. O + + +Moreover O +, O +the O +effects O +of O +the O +microstructure S-CONPRI +and O +defects S-CONPRI +on O +the O +tensile B-PRO +properties E-PRO +and O +damaging O +processes S-CONPRI +at O +650 O +°C O +were O +investigated O +in O +air O +. O + + +The O +results O +revealed O +that O +the O +loading O +direction O +is O +critical O +to O +the O +mechanical B-PRO +integrity E-PRO +of O +the O +alloy S-MATE +, O +due O +to O +the O +specific O +orientation S-CONPRI +of O +the O +microstructural S-CONPRI +interfaces O +and O +defects S-CONPRI +. O + + +A O +tensile B-CHAR +test E-CHAR +was O +conducted O +in O +vacuum O +at O +650 O +°C O +and O +2.10−4 O +s−1 O +, O +and O +the O +results O +indicated O +that O +damage S-PRO +processes O +were O +not O +affected O +by O +oxidation S-MANP +when O +the O +experiments O +were O +carried O +out O +in O +air O +. O + + +Microrobotic O +prototypes S-CONPRI +for O +water O +cleaning S-MANP +are O +produced O +combining O +stereolithography B-MANP +3D I-MANP +printing E-MANP +and O +wet O +metallization S-MANP +. O + + +Different O +metallic S-MATE +layers O +are O +deposited O +on O +3D B-APPL +printed I-APPL +parts E-APPL +using O +both O +electroless O +and O +electrolytic B-CONPRI +deposition E-CONPRI +to O +impart O +required O +functionalities O +. O + + +In O +particular O +, O +by O +exploiting O +the O +flexibility S-PRO +and O +versatility O +of O +electrolytic O +codeposition O +, O +pollutants O +photodegradation O +and O +bacteria O +killing O +are O +for O +the O +first O +time O +combined O +on O +the O +same O +device O +by O +coating S-APPL +it O +with O +a O +composite S-MATE +nanocoating O +containing O +titania S-MATE +nanoparticles S-CONPRI +in O +a O +silver S-MATE +matrix O +. O + + +The O +microstructure S-CONPRI +of O +the O +microrobots O +thus O +obtained O +is O +fully O +characterized O +and O +they O +are O +successfully O +actuated O +by O +applying O +rotating O +magnetic B-CONPRI +fields E-CONPRI +. O + + +This O +paper O +presents O +the O +results O +of O +numerical B-ENAT +simulations E-ENAT +and O +experimental S-CONPRI +tests O +on O +AlSi10Mg S-MATE +samples O +, O +having O +thin O +cylindrical S-CONPRI +channels O +built O +in O +the O +horizontal O +direction O +, O +using O +selective B-MANP +laser I-MANP +melting E-MANP +technology O +. O + + +The O +thermal O +state O +of O +the O +samples S-CONPRI +with O +channels O +of O +varying O +diameters O +is O +investigated O +by O +employing O +a O +simplified O +part-scale O +transient B-CONPRI +model E-CONPRI +that O +takes O +into O +consideration O +the O +overmelting O +effects O +through O +the O +change O +of O +the O +materials S-CONPRI +properties O +related O +with O +phase S-CONPRI +transition O +effects O +in O +the O +melted S-CONPRI +area S-PARA +of O +the O +sample S-CONPRI +. O + + +Comparison O +of O +simulation S-ENAT +results O +and O +computing O +tomography O +of O +experimental S-CONPRI +samples O +reveal O +that O +the O +final O +cross B-CONPRI +section E-CONPRI +geometry O +of O +thin O +channels O +can O +be S-MATE +predicted O +and O +evaluated O +by O +the O +proposed O +model S-CONPRI +. O + + +Namely O +, O +it O +is O +found O +that O +the O +unsupported O +down-skin O +area S-PARA +of O +the O +channels O +is O +processed S-CONPRI +with O +formation O +of O +protrusions O +due O +to O +presence O +of O +the O +low O +conductive O +powder B-MACEQ +bed E-MACEQ +under O +the O +melted S-CONPRI +metal O +layer S-PARA +. O + + +This O +powder S-MATE +area S-PARA +overheated O +during O +laser S-ENAT +action O +and O +melted S-CONPRI +together O +with O +desirable O +solid O +region O +of O +the O +model S-CONPRI +. O + + +Overmelting O +effects O +lead S-MATE +to O +the O +total O +closing O +of O +the O +channels O +with O +diameter S-CONPRI +less O +than O +200 O +μm O +, O +partial O +closing O +of O +the O +channels O +of O +diameters O +0.2-1 O +mm S-MANP +, O +and O +distortion S-CONPRI +of O +the O +cross B-CONPRI +section E-CONPRI +of O +larger O +channels O +. O + + +Possible O +approaches O +of O +adjusting O +the O +geometry S-CONPRI +of O +a O +channel S-APPL +are O +studied O +, O +considering O +the O +teardrop O +and O +enlarged O +shapes O +of O +the O +cross B-CONPRI +sections E-CONPRI +, O +which O +could O +help O +obtain O +a O +predefined O +cylindrical S-CONPRI +shape O +of O +the O +channels O +. O + + +A O +quasi-2D O +model S-CONPRI +of O +Micro-Selective O +Laser S-ENAT +Melting O +( O +μ-SLM O +) O +process S-CONPRI +using O +molecular O +dynamics O +is O +developed O +to O +investigate O +the O +localized O +melting S-MANP +and O +solidification S-CONPRI +of O +a O +randomly-distributed O +Aluminum S-MATE +nano-powder O +bed S-MACEQ +. O + + +One O +of O +the O +biggest O +challenges O +in O +modeling S-ENAT +the O +μ-SLM O +process S-CONPRI +is O +the O +computational O +treatment O +of O +the O +formation O +and O +growth O +of O +crystal O +nuclei S-CONPRI +in O +the O +meltpool S-CHAR +. O + + +The O +present O +work O +overcomes O +this O +challenge O +using O +molecular O +dynamics O +simulation S-ENAT +because O +of O +its O +capability O +to O +explicitly O +model S-CONPRI +the O +nucleation S-CONPRI +and O +growth O +of O +grains S-CONPRI +inside O +the O +meltpool S-CHAR +. O + + +The O +localized O +heating S-MANP +and O +rapid B-MANP +solidification E-MANP +of O +meltpool S-CHAR +is O +simulated O +by O +the O +direct O +control O +of O +the O +temperature S-PARA +in O +the O +meltpool S-CHAR +both O +spatially O +and O +temporally O +. O + + +The O +rapid B-MANP +solidification E-MANP +in O +the O +meltpool S-CHAR +reveals O +the O +cooling B-PARA +rate E-PARA +dependent O +homogeneous B-CONPRI +nucleation E-CONPRI +of O +equiaxed B-CONPRI +grains E-CONPRI +at O +the O +center O +of O +the O +meltpool S-CHAR +. O + + +Additionally O +, O +the O +epitaxial S-PRO +grain O +growth O +from O +the O +adjacent O +laser S-ENAT +tracks O +, O +previous O +layers O +, O +and O +partially O +melted S-CONPRI +nano-powders O +into O +the O +solidifying O +meltpool S-CHAR +is O +observed O +along O +the O +highest O +heat S-CONPRI +flow O +directions O +. O + + +The O +growth O +of O +the O +long O +columnar B-PRO +grains E-PRO +into O +the O +top O +layer S-PARA +is O +inhibited O +if O +the O +penetration B-PARA +depth E-PARA +during O +the O +remelting O +of O +a O +previous O +layer S-PARA +is O +less O +than O +the O +depth O +of O +the O +equiaxed B-CONPRI +grains E-CONPRI +. O + + +Long O +columnar B-PRO +grains E-PRO +that O +spread S-CONPRI +across O +three O +layers O +, O +equiaxed B-CONPRI +grains E-CONPRI +, O +nano-pores O +, O +twin O +boundaries S-FEAT +, O +and O +stacking O +faults O +are O +observed O +in O +the O +final O +solidified O +nanostructure O +obtained O +after O +ten O +passes O +of O +the O +laser B-CONPRI +beam E-CONPRI +on O +three O +layers O +of O +Aluminum S-MATE +nano-powder O +particles S-CONPRI +. O + + +Hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +of O +the O +final O +solidified O +nanostructure O +is O +employed O +to O +eliminate O +the O +nano-pores O +, O +which O +act O +as S-MATE +sources O +of O +crack O +initiation O +during O +tensile S-PRO +loading O +. O + + +This O +work O +examines O +the O +use O +of O +dual-material S-CONPRI +fused O +filament S-MATE +fabrication S-MANP +for O +3D B-MANP +printing E-MANP +electronic O +components S-MACEQ +and O +circuits O +with O +conductive O +thermoplastic B-MATE +filaments E-MATE +. O + + +The O +resistivity S-PRO +of O +traces O +printed O +from O +conductive O +thermoplastic B-MATE +filaments E-MATE +made O +with O +carbon-black O +, O +graphene S-MATE +, O +and O +copper S-MATE +as S-MATE +conductive O +fillers O +was O +found O +to O +be S-MATE +12 O +, O +0.78 O +, O +and O +0.014 O +Ω O +cm O +, O +respectively O +, O +enabling O +the O +creation O +of O +resistors S-MACEQ +with O +values O +spanning O +3 O +orders O +of O +magnitude S-PARA +. O + + +The O +carbon B-MATE +black E-MATE +and O +graphene B-MATE +filaments E-MATE +were O +brittle S-PRO +and O +fractured O +easily O +, O +but O +the O +copper-based O +filament S-MATE +could O +be S-MATE +bent O +at O +least O +500 O +times O +with O +little O +change O +in O +its O +resistance S-PRO +. O + + +Impedance B-CHAR +measurements E-CHAR +made O +on O +the O +thermoplastic B-MATE +filaments E-MATE +demonstrate O +that O +the O +copper-based O +filament S-MATE +had O +an O +impedance O +similar O +to O +a O +copper S-MATE +PCB O +trace O +at O +frequencies O +greater O +than O +1 O +MHz O +. O + + +Dual O +material S-MATE +3D B-MANP +printing E-MANP +was O +used O +to O +fabricate S-MANP +a O +variety O +of O +inductors O +and O +capacitors S-APPL +with O +properties S-CONPRI +that O +could O +be S-MATE +predictably O +tuned O +by O +modifying O +either O +the O +geometry S-CONPRI +of O +the O +components S-MACEQ +, O +or O +the O +materials S-CONPRI +used O +to O +fabricate S-MANP +the O +components S-MACEQ +. O + + +These O +resistors S-MACEQ +, O +capacitors S-APPL +, O +and O +inductors O +were O +combined O +to O +create O +a O +fully O +3D B-MANP +printed E-MANP +high-pass O +filter S-APPL +with O +properties S-CONPRI +comparable O +to O +its O +conventional O +counterparts O +. O + + +The O +relatively O +low O +impedance O +of O +the O +copper-based O +filament S-MATE +enabled O +its O +use O +for O +3D B-MANP +printing E-MANP +of O +a O +receiver O +coil O +for O +wireless O +power S-PARA +transfer O +. O + + +We O +also O +demonstrate O +the O +ability O +to O +embed O +and O +connect O +surface S-CONPRI +mounted O +components S-MACEQ +in O +3D B-MANP +printed E-MANP +objects O +with O +a O +low-cost O +( O +$ O +1000 O +in O +parts O +) O +, O +open O +source S-APPL +dual-material S-CONPRI +3D B-MACEQ +printer E-MACEQ +. O + + +This O +work O +thus O +demonstrates O +the O +potential O +for O +FFF B-MANP +3D I-MANP +printing E-MANP +to O +create O +complex O +, O +three-dimensional S-CONPRI +circuits O +composed O +of O +either O +embedded O +or O +fully-printed O +electronic O +components S-MACEQ +. O + + +The O +aim O +of O +the O +present O +study O +is O +to O +utilize O +fractographic O +methods O +employing O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +images S-CONPRI +to O +investigate O +the O +effects O +of O +build B-PARA +direction E-PARA +and O +orientation S-CONPRI +on O +the O +mechanical B-CONPRI +response E-CONPRI +and O +failure B-PRO +mechanism E-PRO +for O +Acrylonitrile–Butadiene–Styrene O +( O +ABS S-MATE +) O +specimens O +fabricated S-CONPRI +by O +fused S-CONPRI +deposited O +modeling S-ENAT +( O +FDM S-MANP +) O +. O + + +The O +material S-MATE +characterized O +here O +is O +ABS-M30 O +manufactured S-CONPRI +by O +Stratasys S-APPL +, O +Inc. O +Measurements O +of O +tensile B-PRO +strength E-PRO +, O +elongation-at-break O +and O +tensile S-PRO +modulus O +measurements O +along O +with O +the O +failure S-CONPRI +surfaces O +were O +characterized O +on O +a O +range S-PARA +of O +specimens O +at O +different O +build B-PARA +direction E-PARA +and O +raster B-PARA +orientation E-PARA +: O +±45° O +, O +0° O +, O +0/90° O +, O +and O +90° O +. O + + +The O +analysis O +of O +mechanical B-CHAR +testing E-CHAR +of O +the O +tensile B-MACEQ +specimens E-MACEQ +until O +failure S-CONPRI +will O +contribute O +to O +advances O +in O +creating O +stronger O +and O +more O +robust O +structure S-CONPRI +for O +various O +applications O +. O + + +Parameters S-CONPRI +, O +such O +as S-MATE +build O +direction O +and O +raster B-PARA +orientation E-PARA +, O +can O +be S-MATE +interdependent O +and O +exhibit O +varying O +effects O +on O +the O +properties S-CONPRI +of O +the O +ABS S-MATE +specimens O +. O + + +The O +ABS-M30 O +specimens O +were O +found O +to O +exhibit O +anisotropy S-PRO +in O +the O +mechanical B-CONPRI +response E-CONPRI +when O +exposed O +to O +axial O +tensile S-PRO +loading O +. O + + +The O +stress-strain O +data S-CONPRI +was O +characterized O +by O +a O +monotonic O +increase O +with O +an O +abrupt O +failure S-CONPRI +signifying O +brittle B-CONPRI +fracture E-CONPRI +. O + + +In O +certain O +combinations O +of O +build B-PARA +direction E-PARA +and O +raster B-PARA +orientation E-PARA +tensile O +failure S-CONPRI +was O +preceded O +by O +slight O +softening O +. O + + +The O +tensile B-PRO +strength E-PRO +and O +modulus O +, O +and O +elongation-at-break O +were O +found O +to O +be S-MATE +highly O +dependent O +upon O +the O +raster B-PARA +orientation E-PARA +and O +build B-PARA +direction E-PARA +. O + + +The O +relationship O +between O +the O +mechanical B-CONPRI +properties E-CONPRI +and O +failure S-CONPRI +was O +established O +by O +fractographic B-CHAR +analysis E-CHAR +. O + + +The O +fractographic B-CHAR +analysis E-CHAR +offers O +insight O +and O +provides O +valuable O +experimental B-CONPRI +data E-CONPRI +for O +the O +purpose O +of O +building O +structures O +in O +orientations S-CONPRI +tailored O +to O +their O +exemplified O +strength S-PRO +. O + + +Other O +examples O +are O +shown O +where O +artifacts O +of O +the O +FDM B-MANP +fabrication E-MANP +process O +act O +to O +enhance O +tensile B-PRO +strength E-PRO +when O +configured O +properly O +with O +respect O +to O +the O +load O +. O + + +The O +study O +also O +presents O +a O +systematic O +scheme O +employing O +analogs O +to O +traditional O +fiber-reinforced O +polymer B-MATE +composites E-MATE +for O +the O +designation O +of O +build B-PARA +orientation E-PARA +and O +raster B-PARA +orientation E-PARA +parameters S-CONPRI +. O + + +The O +dissolution O +kinetics O +of O +Laves B-CONPRI +phase E-CONPRI +has O +been O +analyzed O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +Inconel B-MATE +718 E-MATE +are O +closely O +related O +to O +the O +morphology S-CONPRI +and O +size O +of O +the O +Laves B-CONPRI +phase E-CONPRI +, O +which O +must O +be S-MATE +quantitatively O +controlled O +to O +change O +the O +effect O +of O +the O +Laves B-CONPRI +phase E-CONPRI +from O +deleterious O +to O +beneficial O +. O + + +In O +this O +study O +, O +post-heat O +treatment O +was O +used O +to O +regulate O +the O +morphology S-CONPRI +and O +size O +of O +the O +Laves B-CONPRI +phase E-CONPRI +in O +Inconel B-MATE +718 E-MATE +fabricated S-CONPRI +using O +laser B-MANP +directed I-MANP +energy I-MANP +deposition E-MANP +, O +and O +the O +dissolution O +behavior O +of O +the O +Laves B-CONPRI +phase E-CONPRI +during O +solution B-MANP +heat I-MANP +treatment E-MANP +was O +investigated O +. O + + +The O +results O +indicated O +that O +the O +sharp O +corners O +and O +grooves O +of O +the O +Laves B-CONPRI +phase E-CONPRI +preferentially O +dissolved O +, O +causing O +the O +morphology S-CONPRI +of O +the O +Laves B-CONPRI +phase E-CONPRI +to O +change O +from O +a O +long-striped O +to O +granular O +shape O +during O +dissolution O +. O + + +The O +dissolution O +kinetics O +of O +the O +Laves B-CONPRI +phase E-CONPRI +were O +also O +investigated O +using O +the O +Johnson–Mehl–Avrami–Kolmogorov O +and O +Singh–Flemings O +models O +. O + + +The O +initial O +stage O +of O +dissolution O +was O +controlled O +by O +both O +the O +long-range O +diffusion S-CONPRI +of O +Nb S-MATE +and O +the O +interfacial O +reaction O +. O + + +Directed B-MANP +Energy I-MANP +Deposition E-MANP +was O +used O +to O +process S-CONPRI +316 O +L O +in O +different O +atmosphere O +modes O +. O + + +A O +slightly O +higher O +oxide S-MATE +content O +was O +detected O +in O +samples S-CONPRI +built O +using O +shielding O +gas S-CONPRI +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +in O +both O +conditions O +were O +extremely O +high O +. O + + +Samples S-CONPRI +built O +in O +controlled O +atmosphere O +had O +slightly O +higher O +yield B-PRO +strength E-PRO +. O + + +A O +correlation O +between O +tensile B-PRO +properties E-PRO +and O +oxide S-MATE +content O +is O +reported O +. O + + +Laser-Directed O +Energy O +Deposition S-CONPRI +was O +used O +to O +produce O +AISI O +316L B-MATE +stainless I-MATE +steel E-MATE +samples O +. O + + +The O +effect O +of O +the O +protective O +atmosphere O +on O +the O +microstructure S-CONPRI +and O +mechanical S-APPL +performance O +of O +AISI O +316L O +deposited O +parts O +was O +investigated O +by O +building O +samples S-CONPRI +using O +a O +simple S-MANP +nitrogen S-MATE +shielding O +gas S-CONPRI +or O +using O +a O +nitrogen-filled O +build B-PARA +chamber E-PARA +. O + + +The O +effect O +of O +the O +different O +processing O +conditions O +on O +the O +microstructure S-CONPRI +was O +evaluated O +by O +X-ray B-CHAR +analysis E-CHAR +, O +optical S-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +. O + + +Only O +slight O +differences O +in O +the O +cellular O +dendrites S-BIOP +morphology O +of O +samples S-CONPRI +built O +under O +different O +protective O +atmosphere O +conditions O +were O +observed O +. O + + +However O +, O +the O +presence O +of O +oxides S-MATE +was O +monitored O +too O +: O +the O +oxides S-MATE +composition S-CONPRI +and O +area S-PARA +fraction O +were O +analysed O +and O +compared O +by O +image B-CONPRI +analyses E-CONPRI +, O +and O +it O +was O +demonstrated O +that O +the O +protective O +atmosphere O +mainly O +affects O +the O +oxides S-MATE +dimensions S-FEAT +. O + + +The O +effect O +of O +the O +oxides S-MATE +and O +nitrogen S-MATE +pick-up O +on O +the O +mechanical S-APPL +performance O +of O +the O +samples S-CONPRI +was O +evaluated O +by O +tensile B-CHAR +tests E-CHAR +. O + + +The O +results O +revealed O +that O +the O +nitrogen-filled O +build B-PARA +chamber E-PARA +allowed O +the O +achievement O +of O +slightly O +higher O +tensile B-PRO +strength E-PRO +and O +elongation S-PRO +with O +respect O +to O +the O +other O +processing O +conditions O +as S-MATE +a O +consequence O +of O +the O +reduced O +size O +of O +the O +oxide B-MATE +inclusions E-MATE +. O + + +Currently O +, O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +process S-CONPRI +can O +not O +offer O +a O +reproducible O +and O +predefined O +quality S-CONPRI +of O +the O +processed S-CONPRI +parts O +. O + + +Recent O +research S-CONPRI +on O +process B-CONPRI +monitoring E-CONPRI +focuses O +strongly O +on O +integrated O +optical B-CHAR +measurement E-CHAR +technology O +. O + + +Besides O +optical S-CHAR +sensors O +, O +acoustic O +sensors S-MACEQ +also O +seem O +promising O +. O + + +Previous O +studies O +have O +shown O +the O +potential O +of O +analyzing O +structure-borne O +and O +air-borne O +acoustic B-CONPRI +emissions E-CONPRI +in O +laser B-MANP +welding E-MANP +. O + + +Only O +a O +few O +works O +evaluate O +the O +potential O +that O +lies O +in O +the O +L-PBF S-MANP +process.This O +work O +shows O +how O +the O +approach O +to O +structure-borne O +acoustic O +process B-CONPRI +monitoring E-CONPRI +can O +be S-MATE +elaborated O +by O +correlating O +acoustic O +signals O +to O +statistical O +values O +indicating O +part O +quality S-CONPRI +. O + + +Density B-CHAR +measurements E-CHAR +according O +to O +Archimedes O +’ O +principle O +are O +used O +to O +label O +the O +layer-based O +acoustic O +data S-CONPRI +and O +to O +measure O +the O +quality S-CONPRI +. O + + +The O +data S-CONPRI +set O +is O +then O +treated O +as S-MATE +a O +classification S-CONPRI +problem O +while O +investigating O +the O +applicability O +of O +existing O +artificial B-ENAT +neural I-ENAT +network E-ENAT +algorithms S-CONPRI +, O +such O +as S-MATE +the O +TensorFlow O +in O +the O +Python O +language O +, O +to O +match O +acoustic O +data S-CONPRI +with O +density B-CHAR +measurements E-CHAR +. O + + +Heat B-MANP +treatment E-MANP +of O +Scandium O +and O +Zirconium S-MATE +modified O +AlMg O +alloys S-MATE +processed O +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +leads O +to O +precipitation S-CONPRI +of O +coherent O +Al3Sc O +particles S-CONPRI +. O + + +The O +number O +density S-PRO +of O +coherent O +Al3Sc O +particles S-CONPRI +in O +heat S-CONPRI +treated O +condition O +reaches O +5.2 O +× O +1023 O +m−3 O +. O + + +Coherently O +precipitated O +Al3Sc O +particles S-CONPRI +are O +< O +5 O +nm O +in O +diameter S-CONPRI +. O + + +Grain B-CONPRI +boundary E-CONPRI +particles O +stabilize O +the O +microstructure S-CONPRI +against O +grain B-CONPRI +growth E-CONPRI +during O +heat B-MANP +treatment E-MANP +. O + + +Sc- O +Zr-modified O +Al-Mg B-MATE +alloy E-MATE +, O +processed S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +, O +offers O +excellent O +properties S-CONPRI +in O +the O +as S-MATE +processed O +condition O +, O +due O +to O +the O +formation O +of O +a O +desirable O +microstructure S-CONPRI +. O + + +As S-MATE +in O +conventional O +processing O +, O +such O +alloys S-MATE +are O +age O +hardenable O +, O +thereby O +precipitating O +a O +high O +fraction S-CONPRI +of O +finely O +dispersed O +coherent O +Al3 O +( O +Scx O +Zr1-x O +) O +intermetallics S-MATE +, O +which O +serve O +for O +the O +improvement O +of O +the O +mechanical B-PRO +strength E-PRO +. O + + +Electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +measurements O +and O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +were O +used O +to O +determine O +the O +effects O +of O +heat B-MANP +treatment E-MANP +and O +HIP S-MANP +on O +the O +microstructures S-MATE +of O +SLM S-MANP +processed S-CONPRI +specimens O +. O + + +In O +addition O +, O +the O +chemistry S-CONPRI +and O +number O +density S-PRO +of O +Al3Sc O +particles S-CONPRI +was O +analysed O +by O +atom B-CHAR +probe I-CHAR +tomography E-CHAR +. O + + +The O +results O +show O +that O +the O +bi-modal O +grain B-PRO +size E-PRO +distribution S-CONPRI +observed O +in O +the O +as-processed O +condition O +can O +be S-MATE +maintained O +even O +after O +a O +heat B-MANP +treatment E-MANP +, O +due O +to O +a O +high O +density S-PRO +of O +intragranular O +Al3 O +( O +ScxZr1-x O +) O +precipitates S-MATE +, O +and O +various O +other O +particles S-CONPRI +pinning O +the O +grain B-CONPRI +boundaries E-CONPRI +. O + + +A O +HIP S-MANP +post-processing O +can O +lead S-MATE +to O +grain B-CONPRI +growth E-CONPRI +in O +certain O +coarser O +grained O +areas S-PARA +, O +probably O +due O +to O +a O +local O +imbalance O +between O +driving O +and O +dragging O +forces S-CONPRI +, O +hence O +higher O +defect S-CONPRI +density O +and O +fewer O +pinning O +precipitates S-MATE +. O + + +Applying O +a O +heat B-MANP +treatment E-MANP +results O +in O +an O +increase O +of O +the O +density S-PRO +of O +≤5 O +nm O +sized O +intragranular O +Al3 O +( O +Scx O +Zr1-x O +) O +particles S-CONPRI +by O +a O +factor O +of O +4–6 O +, O +reaching O +3·1023 O +m−3 O +to O +5·1023 O +m−3 O +. O + + +Shrinkage S-CONPRI +stress O +occur O +perpendicular O +to O +boundaries S-FEAT +of O +primary O +columnar B-PRO +grains E-PRO +. O + + +This O +stress S-PRO +forms O +immobile O +dislocation S-CONPRI +networks O +that O +hinder O +dislocation S-CONPRI +movement O +. O + + +Recrystallization S-CONPRI +during O +annealing S-MANP +at O +≥1373 O +K S-MATE +eliminates O +the O +dislocation S-CONPRI +network O +. O + + +Networks O +of O +connected O +deformation S-CONPRI +and O +annealing S-MANP +twins O +block O +dislocation S-CONPRI +movement O +. O + + +Dislocation S-CONPRI +walls O +were O +found O +near O +grain B-CONPRI +boundaries E-CONPRI +. O + + +To O +widen O +the O +applications O +of O +FeCoCrNi O +high-entropy O +alloys S-MATE +( O +HEAs O +) O +fabricated S-CONPRI +via O +selective B-MANP +laser I-MANP +melting E-MANP +, O +their O +mechanical B-CONPRI +properties E-CONPRI +must O +be S-MATE +improved O +, O +and O +annealing S-MANP +plays O +an O +important O +role O +in O +this O +regard O +. O + + +In O +this O +study O +, O +the O +microstructure S-CONPRI +, O +residual B-PRO +stress E-PRO +, O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +as-printed O +specimen O +and O +specimens O +annealed O +at O +773–1573 O +K S-MATE +for O +2 O +h O +were O +compared O +. O + + +As S-MATE +the O +annealing S-MANP +temperature O +increased O +, O +the O +specimen O +structure S-CONPRI +recrystallized S-MANP +from O +all O +columnar B-PRO +grains E-PRO +to O +equiaxial O +grains S-CONPRI +containing O +numerous O +annealing S-MANP +twins O +. O + + +The O +dislocation S-CONPRI +network O +, O +which O +formed O +during O +the O +solidification B-MANP +process E-MANP +under O +considerable O +shrinkage S-CONPRI +strain O +, O +decomposed O +into O +dislocations S-CONPRI +. O + + +The O +residual B-PRO +stress E-PRO +, O +yield B-PRO +strength E-PRO +, O +and O +hardness S-PRO +decreased O +, O +while O +the O +plasticity S-PRO +and O +impact S-CONPRI +toughness O +increased O +. O + + +During O +the O +deformation S-CONPRI +of O +as-printed O +and O +low-temperature-annealed O +specimens O +, O +the O +dislocation S-CONPRI +network O +remained O +unchanged O +and O +provided O +resistance S-PRO +to O +the O +dislocations S-CONPRI +moving O +within O +it O +, O +thus O +strengthening S-MANP +the O +specimen O +. O + + +The O +tensile B-PRO +strength E-PRO +remained O +largely O +unchanged O +owing O +to O +the O +reduction S-CONPRI +in O +the O +residual B-PRO +stress E-PRO +during O +low-temperature O +annealing S-MANP +, O +as S-MATE +well O +as S-MATE +the O +formation O +of O +the O +twinning S-CONPRI +network O +and O +dislocation S-CONPRI +wall O +under O +large O +deformation S-CONPRI +upon O +high-temperature O +annealing S-MANP +. O + + +Meanwhile O +, O +the O +ductility S-PRO +greatly O +increased O +, O +thus O +increasing O +the O +potential O +for O +industrial S-APPL +application O +of O +HEAs O +. O + + +First-time O +fabrication S-MANP +of O +FCC S-CONPRI ++ O +BCC S-CONPRI +dual-phase O +high-entropy O +alloys S-MATE +( O +DP-HEAs O +) O +by O +SLM S-MANP +. O + + +New O +alloy S-MATE +design O +strategy O +for O +attaining O +strong O +, O +yet O +ductile S-PRO +DP-HEAs O +suitable O +for O +rapid B-MANP +solidification E-MANP +. O + + +Deformation S-CONPRI +nano-twins O +, O +stacking O +faults O +and O +strain-activated O +B2-to-FCC O +phase S-CONPRI +transition O +are O +discovered O +in O +BCC S-CONPRI +phase O +. O + + +The O +deformation S-CONPRI +mechanisms O +of O +the O +FCC S-CONPRI +and O +B2 O +phases O +are O +uncovered O +. O + + +Preparing O +dual-phase O +high-entropy O +alloys S-MATE +( O +DP-HEAs O +) O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +has O +never O +been O +achieved O +owing O +to O +high O +crack O +susceptibility S-PRO +induced O +by O +rapid B-MANP +solidification E-MANP +. O + + +Here O +we O +design S-FEAT +and O +fabricate S-MANP +new O +face-centered O +cubic O +( O +FCC S-CONPRI +) O +and O +body-centered O +cubic O +( O +BCC S-CONPRI +) O +DP-HEAs O +based O +on O +BCC S-CONPRI +AlCrCuFeNi O +HEA O +using O +SLM S-MANP +. O + + +Results O +show O +that O +the O +addition O +of O +Ni S-MATE +facilitates O +the O +columnar-to-near-equiaxed O +transition S-CONPRI +and O +improves O +the O +formability S-PRO +of O +the O +as-built O +AlCrCuFeNix O +( O +2.0 O +≤ O +x O +≤ O +3.0 O +) O +HEAs O +. O + + +Especially O +, O +the O +as-built O +AlCrCuFeNi3.0 O +HEA O +exhibits O +modulated O +nano-sized O +lamellar S-CONPRI +or O +cellular O +dual-phase O +structures O +and O +possesses O +the O +best O +combination O +of O +ultimate B-PRO +tensile I-PRO +strength E-PRO +( O +∼ O +957 O +MPa S-CONPRI +) O +and O +ductility S-PRO +( O +∼ O +14.3 O +% O +) O +. O + + +Post-deformation O +research S-CONPRI +reveals O +that O +the O +FCC S-CONPRI +phase O +is O +deformed S-MANP +through O +planar O +dislocation S-CONPRI +slip O +with O +{ O +111 O +} O +< O +110 O +> O +slip O +systems O +, O +and O +stacking O +faults O +( O +SFs O +) O +. O + + +Strain-activated O +B2-to-FCC O +phase S-CONPRI +transition O +occurs O +in O +the O +B2 O +phase S-CONPRI +. O + + +The O +uncovered O +synergy O +of O +various O +deformation S-CONPRI +modes O +and O +the O +underlying O +back O +stress S-PRO +strengthening S-MANP +induced O +by O +heterogeneous S-CONPRI +microstructures O +contribute O +to O +the O +high O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +good O +ductility S-PRO +of O +the O +as-built O +AlCrCuFeNi3.0 O +HEA O +. O + + +3D B-MANP +printing E-MANP +of O +flexible O +conductive O +nanocomposites O +were O +investigated O +. O + + +Conductivity S-PRO +was O +found O +largely O +independent O +of O +process S-CONPRI +temperatures O +. O + + +Anisotropy S-PRO +in O +conductivity S-PRO +was O +observed O +up O +to O +an O +order O +of O +magnitude S-PARA +. O + + +Soft O +actuators S-MACEQ +with O +built-in O +touch O +sensors S-MACEQ +was O +successfully O +printed O +. O + + +Soft O +actuators S-MACEQ +with O +built-in O +piezoresistive O +sensing S-APPL +was O +demonstrated O +. O + + +With O +applications O +in O +flexible O +electronics S-CONPRI +and O +soft B-APPL +robotics E-APPL +, O +the O +ability O +to O +fabricate S-MANP +elastic S-PRO +functional O +materials S-CONPRI +with O +complex B-CONPRI +geometries E-CONPRI +has O +become O +highly O +desirable O +. O + + +In O +this O +work O +, O +flexible O +thermoplastic S-MATE +polyurethane/multiwalled O +carbon B-MATE +nanotube E-MATE +( O +TPU-MWCNT O +) O +composites S-MATE +were O +printed O +using O +multi-material S-CONPRI +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +to O +study O +their O +feasibility S-CONPRI +towards O +built-in O +sensing S-APPL +capabilities O +in O +soft B-APPL +robotics E-APPL +. O + + +The O +microstructure S-CONPRI +, O +electrical B-PRO +conductivity E-PRO +, O +capacitive O +sensing S-APPL +, O +and O +piezoresistive O +sensing S-APPL +of O +the O +printed O +samples S-CONPRI +were O +investigated O +. O + + +MWCNT O +content O +, O +print S-MANP +orientation S-CONPRI +, O +and O +layer B-PARA +height E-PARA +was O +found O +to O +be S-MATE +the O +most O +influential O +parameters S-CONPRI +on O +the O +electrical B-CONPRI +properties E-CONPRI +while O +the O +nozzle S-MACEQ +and O +bed S-MACEQ +temperatures O +showed O +insignificant O +impacts O +. O + + +Overall O +, O +the O +in-line O +and O +through-line O +conductivities O +were O +one O +order O +of O +magnitude S-PARA +higher O +than O +the O +through-layer O +conductivity S-PRO +. O + + +A O +soft O +pneumatic O +actuator S-MACEQ +was O +then O +designed S-FEAT +and O +printed O +out O +of O +TPU-MWCNT O +using O +the O +optimized O +process S-CONPRI +conditions O +. O + + +The O +built-in O +capacitive O +and O +piezoresistive O +sensing S-APPL +capabilities O +of O +the O +printed O +actuators S-MACEQ +were O +successfully O +demonstrated O +upon O +gripping O +contact S-APPL +and O +actuation O +at O +three O +different O +pressure S-CONPRI +levels O +. O + + +This O +work O +unveils O +the O +potential O +of O +integrating O +a O +variety O +of O +feedback S-PARA +sensors O +in O +robotic O +actuators S-MACEQ +through O +FFF S-MANP +process O +. O + + +In O +this O +study O +, O +commercially O +pure O +titanium S-MATE +( O +CP-Ti O +) O +parts O +were O +successfully O +fabricated S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +using O +cost-effective O +hydride-dehydride O +( O +HDH O +) O +Ti B-MATE +powders E-MATE +for O +the O +first O +time O +modified O +by O +jet O +milling S-MANP +. O + + +Jet O +milling S-MANP +effectively O +improves O +the O +particle-shape O +sphericity O +, O +suppresses O +the O +impurity S-PRO +pick-up O +, O +and O +produces O +localized O +plastic B-PRO +deformation E-PRO +. O + + +The O +oxide S-MATE +layer S-PARA +in O +the O +powder S-MATE +surface O +is O +determined O +with O +the O +thickness O +of O +∼8 O +nm O +and O +TiO O +being O +the O +predominant O +phase S-CONPRI +before O +and O +after O +jet O +milling S-MANP +. O + + +The O +SLM-made O +( O +SLMed S-MANP +) O +CP-Ti O +achieves O +dominant O +martensitic O +α O +’ O +phase S-CONPRI +with O +the O +fracture S-CONPRI +tensile O +strength S-PRO +up O +to O +731.5 O +± O +5.7 O +MPa S-CONPRI +and O +elongation S-PRO +of O +20.5 O +± O +1.1 O +% O +, O +comparable O +with O +those O +using O +expensive O +atomized S-ENAT +powders O +. O + + +Contrary O +to O +the O +conventional O +metallurgical S-APPL +mechanism S-CONPRI +for O +Ti S-MATE +which O +suffers O +the O +cost-performance O +dilemma O +, O +this O +work O +presents O +SLMed S-MANP +CP-Ti O +with O +excellent O +synergy O +of O +strength S-PRO +and O +ductility S-PRO +while O +using O +the O +cost-affordable O +HDH O +Ti B-MATE +powders E-MATE +. O + + +In O +this O +work O +the O +tensile S-PRO +behaviour O +of O +selective B-MANP +laser I-MANP +melted E-MANP +( O +SLMed S-MANP +) O +aluminium B-MATE +alloy E-MATE +A357 O +in O +the O +as-fabricated O +and O +heat-treated S-MANP +states O +is O +explained O +using O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +, O +transmission B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +TEM S-CHAR +) O +, O +and O +transmission S-CHAR +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +t-EBSD O +) O +. O + + +The O +as-built O +sample S-CONPRI +has O +an O +ultrafine O +microstructure S-CONPRI +, O +with O +high O +residual B-PRO +stresses E-PRO +and O +non-equilibrium O +solid O +solute O +concentration O +of O +Si S-MATE +in O +the O +supersaturated O +Al S-MATE +matrix O +. O + + +Consequently O +, O +the O +tensile B-PRO +properties E-PRO +of O +the O +SLMed S-MANP +Al B-MATE +alloy E-MATE +A357 O +are O +comparable O +or O +better O +than O +traditional O +cast S-MANP +counterparts O +. O + + +The O +Al S-MATE +grains O +in O +the O +SLMed S-MANP +alloy S-MATE +consist O +of O +sub-micron S-FEAT +sized O +Al S-MATE +cells O +, O +and O +both O +high O +angle O +and O +low O +angle O +boundaries S-FEAT +are O +initially O +occupied O +by O +eutectic S-CONPRI +nano-sized O +Si S-MATE +particles S-CONPRI +, O +which O +are O +beneficial O +for O +strength S-PRO +but O +detrimental O +for O +ductility S-PRO +. O + + +With O +subsequent O +solution B-MANP +heat I-MANP +treatment E-MANP +, O +the O +Si S-MATE +particles S-CONPRI +on O +the O +low O +angle O +cell S-APPL +boundaries S-FEAT +( O +LACBs O +) O +dissolve O +while O +those O +at O +the O +high O +angle O +grain B-CONPRI +boundaries E-CONPRI +( O +HAGBs O +) O +coarsen O +. O + + +Simultaneously O +internal B-PRO +stresses E-PRO +decrease O +, O +as S-MATE +does O +solute O +content O +in O +the O +matrix O +. O + + +The O +evolution S-CONPRI +of O +these O +microstructural S-CONPRI +features O +explains O +the O +improved O +tensile B-PRO +ductility E-PRO +( O +at O +its O +maximum O +> O +23 O +% O +) O +and O +reduced O +tensile B-PRO +strength E-PRO +for O +the O +heat S-CONPRI +treated O +SLMed S-MANP +aluminium B-MATE +alloy E-MATE +A357 O +samples S-CONPRI +. O + + +Correlations O +between O +microstructures S-MATE +and O +corrosion B-CONPRI +resistances E-CONPRI +of O +SLMed S-MANP +Inconel B-MATE +718 I-MATE +alloy E-MATE +are O +studied O +. O + + +Platelet-shape O +δ O +phases O +are O +discovered O +after O +solution B-MANP +annealing I-MANP +treatment E-MANP +. O + + +Corrosion S-CONPRI +micro-batteries O +cause O +the O +formation O +of O +pits O +or O +cracks O +at O +secondary O +phase B-CONPRI +boundaries E-CONPRI +. O + + +Corrosion S-CONPRI +mechanism O +of O +SLMed S-MANP +Inconel B-MATE +718 I-MATE +alloy E-MATE +is O +revealed O +. O + + +The O +microstructures S-MATE +and O +corrosion B-CONPRI +resistances E-CONPRI +of O +Inconel B-MATE +718 I-MATE +alloy E-MATE +prepared O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +, O +SLM S-MANP +following O +various O +heat B-MANP +treatments E-MANP +, O +and O +conventional O +rolling S-MANP +are O +studied O +. O + + +Results O +show O +that O +only O +Nb S-MATE +element S-MATE +is O +enriched O +in O +interdendritic O +regions O +while O +Fe S-MATE +element S-MATE +is O +abundant O +in O +dendritic O +trunks O +for O +the O +as-built O +Inconel B-MATE +718 I-MATE +alloy E-MATE +. O + + +After O +solution B-MANP +annealing I-MANP +treatment E-MANP +, O +incomplete O +recrystallization S-CONPRI +is O +observed O +and O +distortion S-CONPRI +energy O +is O +released O +. O + + +Increasing O +the O +solution S-CONPRI +annealing S-MANP +temperature O +from O +980 O +°C O +to O +1020 O +°C O +( O +ST1∼ST3 O +) O +, O +the O +morphologies S-CONPRI +of O +δ O +phases O +turn O +from O +needle-like O +into O +short O +platelet O +shape O +, O +which O +reduces O +the O +anodic O +current O +density S-PRO +and O +improves O +the O +corrosion B-CONPRI +resistance E-CONPRI +compared O +to O +other O +heat-treated S-MANP +samples O +in O +3.5 O +wt O +% O +NaCl S-MATE +solution O +. O + + +Corrosion S-CONPRI +morphology O +observation O +shows O +that O +obvious O +cracking S-CONPRI +of O +surface S-CONPRI +passive O +film O +occurs O +for O +the O +SLM S-MANP +, O +solution S-CONPRI +annealing S-MANP +plus O +double O +aging O +( O +SA O +) O +and O +rolled O +samples S-CONPRI +, O +while O +corrosion S-CONPRI +pits O +and O +micro-cracks S-CONPRI +appear O +at O +the O +δ O +phase B-CONPRI +boundaries E-CONPRI +of O +solution-annealed O +( O +ST1∼ST3 O +) O +samples S-CONPRI +. O + + +The O +surface S-CONPRI +passive O +film O +is O +smooth O +for O +the O +rolled O +sample S-CONPRI +. O + + +The O +corrosion B-CONPRI +resistance E-CONPRI +of O +samples S-CONPRI +obtained O +by O +different O +processes S-CONPRI +follows O +in O +the O +order O +of O +rolled O +> O +ST3 O +> O +ST2 O +> O +ST1 O +> O +SA O +> O +SLM S-MANP +. O + + +The O +high O +interface S-CONPRI +energy O +and O +lattice S-CONPRI +misfit O +may O +provide O +driving O +forces S-CONPRI +for O +the O +preferential O +dissolution O +of O +γ O +matrix O +rather O +than O +second O +phases O +. O + + +The O +inferior O +corrosion B-CONPRI +resistance E-CONPRI +of O +the O +as-built O +Inconel B-MATE +718 I-MATE +alloy E-MATE +can O +be S-MATE +significantly O +improved O +through O +solution B-MANP +annealing I-MANP +treatment E-MANP +at O +1020 O +°C O +. O + + +The O +increase O +of O +molecular O +weight S-PARA +of O +partcake O +powder S-MATE +could O +be S-MATE +traced O +back O +to O +a O +linear O +chain O +growth O +/ O +post O +condensation O +reaction O +with O +GPC O +analysis O +. O + + +The O +influence O +of O +build B-PARA +time E-PARA +in O +selective B-MANP +laser I-MANP +sintering E-MANP +on O +molecular O +changes O +of O +polyamide B-MATE +12 E-MATE +powder O +is O +more O +significant O +than O +the O +effect O +of O +build S-PARA +temperature O +. O + + +With O +increasing O +molecular O +weight S-PARA +, O +the O +chain O +mobility O +is O +reduced O +and O +the O +crystallization S-CONPRI +temperature O +shifts O +to O +lower O +temperatures S-PARA +. O + + +This O +broadens O +the O +processing O +window O +, O +but O +higher O +molecular O +weights O +go S-MATE +along O +with O +a O +higher O +viscosity S-PRO +, O +which O +is O +not O +favorable O +for O +SLS B-MANP +process E-MANP +. O + + +The O +material B-CONPRI +aging E-CONPRI +in O +selective B-MANP +laser I-MANP +sintering E-MANP +SLS O +of O +polyamide B-MATE +12 E-MATE +is O +one O +challenge O +, O +which O +has O +to O +be S-MATE +overcome O +for O +implementation O +of O +this O +technique O +in O +serial O +production S-MANP +. O + + +High O +temperatures S-PARA +and O +along O +going O +processing O +times O +lead S-MATE +to O +chemical O +and O +physical O +aging O +effects O +of O +the O +supporting O +partcake O +material S-MATE +. O + + +The O +investigations O +in O +this O +study O +aims O +at O +the O +influence O +of O +processing O +time O +and O +temperature S-PARA +on O +molecular O +changes O +and O +thermal B-CONPRI +properties E-CONPRI +of O +polyamide B-MATE +12 E-MATE +partcake O +material S-MATE +in O +selective B-MANP +laser I-MANP +sintering E-MANP +. O + + +The O +focus O +of O +the O +investigations O +lays O +on O +the O +global O +heat B-CONPRI +exposure E-CONPRI +of O +the O +of O +the O +bulk O +material S-MATE +und O +thus O +on O +global O +material S-MATE +changes O +. O + + +Gel S-MATE +permeation O +chromatography O +analysis O +was O +used O +to O +determine O +the O +molecular O +weight S-PARA +distribution S-CONPRI +and O +changes O +of O +polymer S-MATE +structure O +. O + + +With O +increasing O +build B-PARA +time E-PARA +and O +build B-PARA +chamber E-PARA +temperature O +the O +average S-CONPRI +molecular O +weight S-PARA +is O +rising O +, O +whereby O +the O +influence O +of O +build B-PARA +time E-PARA +is O +more O +significant O +. O + + +The O +rise O +of O +chain O +length O +leads O +to O +a O +reduction S-CONPRI +of O +crystallization S-CONPRI +temperature O +, O +which O +was O +detected O +by O +DSC S-CHAR +. O + + +This O +work O +investigated O +the O +superelastic O +response O +of O +the O +low-modulus O +porous S-PRO +β O +type O +Ti-35Nb-2Ta-3Zr O +scaffolds S-FEAT +with O +different O +pore B-PARA +dimensions E-PARA +fabricated S-CONPRI +by O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +. O + + +The O +superelastic O +behavior O +was O +enhanced O +with O +increasing O +the O +pore B-PARA +size E-PARA +and O +stress-induced O +phase S-CONPRI +transformation O +, O +which O +correspondingly O +led S-APPL +to O +stress-induced O +α O +'' O +[ O +110 O +] O +-type O +I O +twin O +martensitic O +transformation O +and O +ω O +formation O +adjacent O +to O +β O +matrix/twins O +. O + + +The O +resultant O +interstitial O +compound O +phase S-CONPRI +structure O +facilitated O +the O +β O +→ O +α O +'' O +and O +β O +→ O +ω O +transition S-CONPRI +, O +which O +was O +triggered O +by O +interfacial O +stress/strain O +concentration O +and O +high-density O +dislocations S-CONPRI +. O + + +Substantial O +high-angle O +grain B-CONPRI +boundaries E-CONPRI +( O +HAGBs O +) O +accumulated O +high-intensity O +Schimd O +factor O +and O +crystallographic O +texture S-FEAT +after O +being O +deformed S-MANP +. O + + +Moreover O +, O +a O +lower O +Young O +’ O +s S-MATE +modulus O +was O +obtained O +when O +the O +pore B-PARA +size E-PARA +and O +stress S-PRO +increased O +. O + + +A O +vision-based O +inspection S-CHAR +system O +based O +on O +three O +digital O +cameras O +is O +proposed O +for O +measuring O +the O +cladding S-MANP +height O +in O +the O +Direct B-MANP +Energy I-MANP +Deposition E-MANP +( O +DED S-MANP +) O +process S-CONPRI +. O + + +To O +improve O +the O +accuracy S-CHAR +of O +the O +cladding S-MANP +height O +measurements O +, O +an O +image S-CONPRI +processing O +technique O +is O +applied O +to O +remove O +the O +undesirable O +zone O +from O +the O +binary S-CONPRI +image O +. O + + +Furthermore O +, O +since O +the O +unit O +length O +in O +the O +captured O +images S-CONPRI +is O +different O +to O +that O +in O +the O +world O +coordinate S-PARA +framework O +, O +a O +calibration S-CONPRI +bar O +method O +is O +designed S-FEAT +to O +transform O +the O +pixel O +value O +to O +the O +real O +size O +. O + + +An O +image-processing O +technique O +is O +then O +employed O +to O +isolate O +the O +laser S-ENAT +nozzle O +and O +melt B-MATE +pool E-MATE +in O +the O +captured O +images S-CONPRI +. O + + +Finally O +, O +the O +cladding S-MANP +height O +is O +estimated O +based O +on O +the O +distance O +between O +the O +tip O +of O +the O +laser S-ENAT +nozzle O +and O +the O +centroid O +of O +the O +melt B-MATE +pool E-MATE +. O + + +The O +validity O +of O +the O +proposed O +approach O +is O +demonstrated O +by O +comparing O +the O +inspection S-CHAR +results O +for O +the O +cladding S-MANP +height O +of O +a O +horseshoe O +component S-MACEQ +with O +the O +measurements O +obtained O +using O +a O +3-D S-CONPRI +scanner O +. O + + +The O +maximum O +estimation O +error S-CONPRI +is O +found O +to O +be S-MATE +just O +4.2 O +% O +Overall O +, O +the O +results O +confirm O +that O +the O +proposed O +trinocular O +vision-based O +system O +provides O +a O +rapid O +, O +convenient O +and O +accurate S-CHAR +means O +of O +determining O +the O +cladding S-MANP +height O +in O +the O +DED S-MANP +process O +. O + + +The O +aim O +of O +this O +study O +is O +to O +promote O +the O +magnetic O +shielding O +characteristics O +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +processed S-CONPRI +NiFeMo O +alloy S-MATE +. O + + +This O +was O +achieved O +via O +controlling O +the O +crystallographic O +texture S-FEAT +of O +the O +builds S-CHAR +to O +increase O +the O +grain S-CONPRI +population O +along O +the O +easy O +axis O +of O +magnetisation O +, O +as S-MATE +well O +as S-MATE +the O +use O +of O +post-process S-CONPRI +hydrogen O +heat B-MANP +treatment E-MANP +( O +HT O +) O +and O +hot B-MANP +isostatic I-MANP +pressing E-MANP +( O +HIP S-MANP +) O +processes S-CONPRI +. O + + +The O +as-fabricated O +microstructure S-CONPRI +typically O +demonstrates O +weak O +magnetic O +properties S-CONPRI +due O +to O +the O +alignment O +of O +the O +crystallographic O +orientation/spin O +order O +along O +the O +[ O +100 O +] O +hard O +axis O +of O +magnetisation O +, O +which O +is O +parallel O +to O +the O +build B-PARA +direction E-PARA +since O +it O +is O +also O +the O +preferred O +growth O +direction O +during O +solidification S-CONPRI +in O +cubic O +materials S-CONPRI +. O + + +The O +improved O +ferromagnetism S-PRO +following O +HIP S-MANP ++ O +HT O +was O +due O +to O +several O +combined O +effects O +, O +including O +stress S-PRO +relief O +, O +consolidation S-CONPRI +of O +gas S-CONPRI +pores O +, O +recrystallisation O +, O +and O +grain B-CONPRI +growth E-CONPRI +. O + + +The O +post-processing S-CONPRI +sequence O +( O +HT O ++ O +HIP S-MANP +vs. O +HIP S-MANP ++ O +HT O +) O +appeared O +to O +affect O +the O +resulting O +magnetic O +characteristics O +. O + + +Finally O +, O +the O +tensile B-PRO +properties E-PRO +for O +the O +builds S-CHAR +were O +characterised O +to O +ensure O +that O +both O +functional O +and O +mechanical B-CONPRI +behaviours E-CONPRI +would O +achieve O +the O +required O +performance S-CONPRI +. O + + +Usually O +the O +process B-CONPRI +gas E-CONPRI +flow B-PARA +rates E-PARA +and O +the O +process B-CONPRI +gas E-CONPRI +types O +are O +not O +regarded O +as S-MATE +the O +primary O +process B-CONPRI +parameters E-CONPRI +of O +the O +laser B-MANP +cladding E-MANP +process O +. O + + +Herein O +it O +is O +shown O +, O +how O +the O +melt B-MATE +pool E-MATE +surface O +oxidation S-MANP +can O +be S-MATE +significantly O +reduced O +by O +the O +change O +of O +the O +carrier O +gas S-CONPRI +type O +, O +by O +a O +reduced O +carrier O +gas B-PARA +flow I-PARA +rate E-PARA +and O +by O +minor O +changes O +in O +the O +powder S-MATE +nozzle S-MACEQ +design S-FEAT +. O + + +A O +simulation S-ENAT +model S-CONPRI +for O +the O +gas S-CONPRI +flow O +and O +the O +powder B-MATE +particle E-MATE +flow O +between O +the O +powder S-MATE +nozzle S-MACEQ +and O +the O +melt B-MATE +pool E-MATE +surface O +has O +been O +developed O +, O +which O +reveals O +the O +volume S-CONPRI +percentage O +of O +different O +gas S-CONPRI +types O +and O +so O +the O +quality S-CONPRI +of O +the O +shield O +gas S-CONPRI +atmosphere O +. O + + +Additionally O +, O +the O +powder B-MATE +particle E-MATE +distribution S-CONPRI +and O +the O +attenuation O +of O +the O +laser B-CONPRI +beam E-CONPRI +by O +the O +powder B-MATE +particles E-MATE +can O +be S-MATE +simulated O +. O + + +The O +simulation S-ENAT +results O +are O +confirmed O +by O +experimental S-CONPRI +measurements O +of O +the O +powder B-MATE +particle E-MATE +density B-PRO +distribution E-PRO +in O +the O +working O +plane O +, O +by O +measurements O +of O +the O +oxygen S-MATE +volume O +percentage O +at O +the O +workpiece S-CONPRI +surface S-CONPRI +, O +by O +high-speed O +camera S-MACEQ +images O +of O +the O +melt B-MATE +pool E-MATE +surface O +and O +by O +absorptivity O +measurements O +, O +which O +show O +the O +effect O +of O +oxidation S-MANP +on O +the O +process S-CONPRI +. O + + +TiB O +precipitates S-MATE +were O +significantly O +refined O +in O +the O +EB-PBF-built O +Ti-6242S-1.0B O +alloy S-MATE +compared O +with O +forged O +alloys S-MATE +. O + + +Finer O +oxides S-MATE +contributed O +to O +the O +formation O +of O +more O +compact S-MANP +oxidation O +layers O +in O +the O +EB-PBF-built O +alloy S-MATE +than O +as-forged O +alloy S-MATE +. O + + +Evaporation S-CONPRI +of O +B2O3 S-MATE +from O +coarse O +TiB O +particles S-CONPRI +destabilized O +the O +oxidation S-MANP +layer S-PARA +in O +the O +as-forged O +alloy S-MATE +. O + + +Evaporation S-CONPRI +of O +B2O3 S-MATE +from O +fine O +TiB O +particles S-CONPRI +did O +not O +destabilize O +the O +oxidation S-MANP +layer S-PARA +in O +the O +EB-PBF-built O +alloy S-MATE +. O + + +EB-PBF-built O +Ti-6242S-1.0B O +alloy S-MATE +was O +more O +resistant O +to O +oxidation S-MANP +than O +the O +as-forged O +alloy S-MATE +. O + + +Refined O +TiB O +precipitates S-MATE +significantly O +enhance O +the O +oxidation B-PRO +resistance E-PRO +of O +Ti-6Al-2Sn-4Zr-2Mo-0.1Si-1.0B O +alloy S-MATE +fabricated O +by O +electron B-CONPRI +beam E-CONPRI +powder O +bed B-MANP +fusion E-MANP +( O +EB-PBF O +) O +. O + + +Refined O +TiB O +precipitates S-MATE +in O +the O +EB-PBF-built O +alloy S-MATE +enable O +finer O +oxide S-MATE +formation O +than O +the O +larger O +precipitates S-MATE +in O +the O +forged O +alloy S-MATE +, O +and O +the O +resulting O +oxidation S-MANP +layers O +are O +more O +compact S-MANP +. O + + +Evaporation S-CONPRI +of O +scattered O +B2O3 S-MATE +generated O +by O +the O +refined O +TiB O +precipitates S-MATE +in O +the O +EB-PBF-built O +alloy S-MATE +do O +not O +significantly O +accelerate O +detachment O +of O +the O +oxidation S-MANP +layer S-PARA +from O +the O +substrate S-MATE +. O + + +However O +, O +collective O +evaporation S-CONPRI +of O +B2O3 S-MATE +generated O +by O +larger O +TiB O +precipitates S-MATE +in O +the O +forged O +alloy S-MATE +accelerate O +detachment O +. O + + +The O +oxidation S-MANP +layer S-PARA +on O +the O +EB-PBF-fabricated O +alloy S-MATE +was O +more O +stable O +, O +preventing O +further O +oxidation S-MANP +and O +improving O +oxidation B-PRO +resistance E-PRO +. O + + +We O +report O +on O +the O +development O +of O +a O +miniaturized O +device O +for O +operando O +X-ray B-CHAR +diffraction E-CHAR +during O +laser S-ENAT +3D B-MANP +printing E-MANP +. O + + +We O +describe O +the O +design B-CONPRI +considerations E-CONPRI +, O +details O +on O +the O +setup O +and O +the O +implementation O +at O +two O +different O +beamlines O +of O +the O +Swiss O +Light B-MACEQ +Source E-MACEQ +. O + + +Its O +capabilities O +are O +demonstrated O +by O +ex O +situ O +printing O +of O +complex B-PRO +shapes E-PRO +and O +operando O +X-ray B-CHAR +diffraction E-CHAR +experiments O +using O +Ti-6Al-4V B-MATE +powder E-MATE +. O + + +It O +is O +shown O +that O +the O +beamline O +characteristics O +have O +an O +important O +influence O +on O +the O +X-ray S-CHAR +footprints O +of O +the O +microstructural B-CONPRI +evolution E-CONPRI +during O +3D B-MANP +printing E-MANP +. O + + +From O +the O +intensity O +of O +the O +diffraction S-CHAR +peaks O +, O +the O +evolution S-CONPRI +of O +the O +different O +phases O +can O +be S-MATE +followed O +during O +printing O +. O + + +Furthermore O +, O +the O +diffuse O +scattering O +signal O +provides O +information O +on O +the O +precise O +location O +of O +the O +laser B-CONPRI +beam E-CONPRI +on O +the O +sample S-CONPRI +and O +the O +scanning S-CONPRI +head O +settling O +time O +. O + + +Some O +AM B-MANP +processes E-MANP +such O +as S-MATE +directed O +energy O +deposition S-CONPRI +( O +DED S-MANP +) O +have O +typical O +powder S-MATE +usage O +efficiencies O +ranging O +between O +40 O +and O +80 O +% O +. O + + +Since O +, O +for O +a O +given O +alloy S-MATE +, O +powder S-MATE +cost O +is O +proportional O +to O +its O +purity O +, O +choosing O +a O +less O +expensive O +powder S-MATE +or O +reusing O +powders S-MATE +is O +interesting O +for O +economical O +and O +environmental O +reasons O +. O + + +The O +work O +summarized O +below O +studied O +the O +effect O +of O +oxygen S-MATE +content O +in O +Ti6Al4V B-MATE +powders E-MATE +on O +mechanical B-CONPRI +properties E-CONPRI +of O +AM B-MACEQ +parts E-MACEQ +fabricated O +by O +DED S-MANP +. O + + +Three O +different O +powders S-MATE +with O +increasing O +oxygen S-MATE +content O +were O +used O +to O +produce O +specimens O +and O +characterize O +its O +effect O +on O +microstructure S-CONPRI +and O +tensile B-PRO +properties E-PRO +before O +and O +after O +heat B-MANP +treatment E-MANP +. O + + +Only O +coarsening O +of O +the O +particle B-CONPRI +size I-CONPRI +distribution E-CONPRI +and O +the O +presence O +of O +fragmented O +particles S-CONPRI +was O +observed O +for O +the O +recycled S-CONPRI +powder S-MATE +. O + + +Comparing O +the O +chemistry S-CONPRI +of O +parts O +vs O +that O +of O +powder B-MACEQ +feedstock E-MACEQ +it O +was O +determined O +that O +for O +all O +the O +tests O +, O +the O +Al S-MATE +content O +was O +slightly O +lower O +in O +the O +parts O +and O +that O +no O +significant O +loss O +of O +vanadium S-MATE +was O +noted O +when O +printing O +with O +new O +( O +fresh O +) O +powders S-MATE +. O + + +On O +the O +other O +hand O +, O +V S-MATE +loss O +was O +significant O +in O +parts O +made O +with O +recycled S-CONPRI +powders S-MATE +, O +although O +still O +leaving O +them O +within O +acceptable O +chemistry S-CONPRI +to O +respect O +their O +original O +grade O +5 O +classification S-CONPRI +. O + + +The O +build S-PARA +quality O +of O +laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +PBF S-MANP +) O +components S-MACEQ +largely O +depends O +on O +printing O +issues O +such O +as S-MATE +inter-track O +voids S-CONPRI +and O +undesired O +microstructure S-CONPRI +. O + + +In O +this O +work O +, O +a O +comprehensive O +phenomenological B-CONPRI +model E-CONPRI +was O +developed O +to O +compute O +the O +complex O +transport S-CHAR +phenomena O +during O +laser S-ENAT +PBF O +of O +Ti-6Al-4V S-MATE +. O + + +The O +transient S-CONPRI +temperature S-PARA +and O +velocity O +fields O +during O +single-track O +and O +multi-track O +laser S-ENAT +PBF O +were O +computed O +considering O +the O +melting S-MANP +and O +solidification S-CONPRI +of O +the O +powder B-MACEQ +feedstocks E-MACEQ +. O + + +Critical O +metallurgical S-APPL +variables O +including O +the O +molten B-CONPRI +pool E-CONPRI +characteristics O +and O +thermal B-PARA +cycles E-PARA +were O +obtained O +. O + + +The O +model S-CONPRI +was O +validated O +by O +comparing O +the O +computed O +results O +against O +corresponding O +experimental B-CONPRI +data E-CONPRI +. O + + +The O +formation O +and O +evolution S-CONPRI +of O +inter-track O +voids S-CONPRI +in O +different O +heat S-CONPRI +input O +conditions O +were O +studied O +. O + + +The O +first O +type O +appeared O +in O +irregular O +elongated O +shapes O +and O +was O +caused O +by O +the O +incomplete O +melting S-MANP +of O +the O +powder B-MACEQ +feedstocks E-MACEQ +. O + + +Cooling B-PARA +rates E-PARA +were O +obtained O +to O +interpret O +the O +metallurgical S-APPL +conditions O +for O +the O +solid-state B-CONPRI +phase E-CONPRI +transformations O +. O + + +The O +novel O +findings O +from O +this O +research S-CONPRI +are O +helpful O +to O +the O +understanding O +of O +the O +formation O +and O +mitigation O +of O +inter-track O +voids S-CONPRI +, O +and O +the O +assessment O +of O +phase S-CONPRI +transformations O +during O +laser S-ENAT +PBF O +of O +titanium B-MATE +alloys E-MATE +. O + + +The O +fracture S-CONPRI +toughness O +( O +K1c O +) O +and O +fatigue B-PARA +crack I-PARA +growth I-PARA +rate E-PARA +( O +FCGR O +) O +properties S-CONPRI +of O +selective B-MANP +laser I-MANP +melted E-MANP +( O +SLM S-MANP +) O +specimens O +produced O +from O +grade O +5 O +Ti6Al4V B-MATE +powder I-MATE +metal E-MATE +has O +been O +investigated O +. O + + +Three O +specimen O +orientations S-CONPRI +relative O +to O +the O +build B-PARA +direction E-PARA +as S-MATE +well O +as S-MATE +two O +different O +post-build O +heat B-MANP +treatments E-MANP +were O +considered O +. O + + +Specimens O +and O +test O +procedures O +were O +designed S-FEAT +in O +accordance O +with O +ASTM O +E399 O +and O +ASTM O +E647 O +standard S-CONPRI +. O + + +The O +results O +show O +that O +there O +is O +a O +strong O +influence O +of O +post-build O +processing O +( O +heat S-CONPRI +treated O +versus O +‘ O +as S-MATE +built O +’ O +) O +as S-MATE +well O +as S-MATE +specimen O +orientation S-CONPRI +on O +the O +dynamic S-CONPRI +behaviour O +of O +SLM S-MANP +produced O +Ti6Al4V S-MATE +. O + + +The O +greatest O +improvement O +in O +properties S-CONPRI +after O +heat B-MANP +treatment E-MANP +was O +demonstrated O +when O +the O +fracture S-CONPRI +plane O +is O +perpendicular O +to O +the O +SLM S-MANP +build B-PARA +direction E-PARA +. O + + +This O +behaviour O +is O +attributed O +to O +the O +higher O +anticipated O +influence O +of O +tensile B-PRO +residual I-PRO +stress E-PRO +for O +this O +orientation S-CONPRI +. O + + +The O +transformation O +of O +the O +initial O +rapidly B-MANP +solidified E-MANP +microstructure S-CONPRI +during O +heat B-MANP +treatment E-MANP +has O +a O +smaller O +beneficial O +effect O +on O +improving O +mechanical B-CONPRI +properties E-CONPRI +. O + + +3D-printed S-MANP +PLA/Ti O +scaffolds S-FEAT +with O +tailored O +porosity S-PRO +and O +pore B-PARA +size E-PARA +were O +fabricated S-CONPRI +via O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +Thermal B-CONPRI +properties E-CONPRI +of O +PLA/Ti O +filaments S-MATE +were O +changed O +by O +the O +addition O +of O +Ti S-MATE +. O + + +5–10 O +vol O +% O +of O +Ti S-MATE +enhanced O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +3D-printed S-MANP +PLA/Ti O +scaffolds S-FEAT +. O + + +In O +vitro O +assays O +showed O +good O +cell S-APPL +responses O +in O +PLA/Ti O +scaffolds S-FEAT +. O + + +3D-printed S-MANP +PLA/Ti O +scaffolds S-FEAT +have O +potential O +as S-MATE +bone O +substitutes O +for O +tissue B-CONPRI +engineering E-CONPRI +. O + + +Ideal O +bone S-BIOP +substitutes O +should O +ensure O +good O +integration O +with O +bone S-BIOP +tissue O +and O +are O +therefore O +required O +to O +exhibit O +good O +mechanical S-APPL +stability O +and O +biocompatibility S-PRO +. O + + +Consequently O +, O +the O +high O +elastic B-PRO +modulus E-PRO +( O +similar O +to O +that O +of O +bone S-BIOP +) O +, O +thermoplasticity O +, O +and O +biocompatibility S-PRO +of O +poly O +( O +lactic O +acid O +) O +( O +PLA S-MATE +) O +make O +it O +well O +suited O +for O +the O +fabrication S-MANP +of O +such O +substitutes O +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +-based O +3D B-MANP +printing E-MANP +. O + + +However O +, O +the O +demands O +of O +present-day O +applications O +require O +the O +mechanical S-APPL +and O +biological O +properties S-CONPRI +of O +PLA S-MATE +to O +be S-MATE +further O +improved O +. O + + +Herein O +, O +we O +fabricated S-CONPRI +PLA/Ti O +composite S-MATE +scaffolds O +by O +FFF-based O +3D B-MANP +printing E-MANP +and O +used O +thermogravimetric B-CHAR +analysis E-CHAR +to O +confirm O +the O +homogenous O +dispersion S-CONPRI +of O +Ti S-MATE +particles S-CONPRI +in O +the O +PLA S-MATE +matrix O +at O +loadings O +of O +5–20 O +vol O +% O +. O + + +Notably O +, O +the O +thermal B-PRO +stability E-PRO +of O +these O +composites S-MATE +and O +the O +crystallization S-CONPRI +temperature/crystallinity O +degree O +of O +PLA S-MATE +therein O +decreased O +with O +increasing O +Ti S-MATE +content O +, O +while O +the O +corresponding O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +and O +melting B-PARA +temperature E-PARA +concomitantly O +increased O +. O + + +The O +compressive O +and O +tensile B-PRO +strengths E-PRO +of O +PLA/Ti O +composites S-MATE +increased O +with O +Ti S-MATE +increasing O +loading O +until O +it O +reached O +10 O +vol O +% O +and O +were O +within O +the O +range S-PARA +of O +real O +bone S-BIOP +values O +, O +while O +the O +impact S-CONPRI +strengths O +of O +the O +above O +composites S-MATE +significantly O +exceeded O +that O +of O +pure O +PLA S-MATE +. O + + +The O +incorporation O +of O +Ti S-MATE +resulted O +in O +enhanced O +in O +vitro O +biocompatibility S-PRO +, O +promoting O +the O +initial O +attachment O +, O +proliferation O +, O +and O +differentiation O +of O +pre-osteoblast O +cells S-APPL +, O +which O +allowed O +us O +to O +conclude O +that O +the O +prepared O +PLA/Ti O +composite S-MATE +scaffolds O +with O +enhanced O +mechanical S-APPL +and O +biological O +properties S-CONPRI +are O +promising O +candidates O +for O +bone S-BIOP +tissue O +engineering S-APPL +applications O +. O + + +Effect O +of O +laser S-ENAT +conditions O +on O +selectively O +laser S-ENAT +melted O +maraging B-MATE +steel E-MATE +was O +studied O +. O + + +Volumetric O +energy B-PARA +density E-PARA +could O +not O +always O +clarify O +the O +change O +in O +relative B-PRO +density E-PRO +. O + + +Deposited O +energy B-PARA +density E-PARA +could O +clarify O +the O +change O +in O +relative B-PRO +density E-PRO +. O + + +This O +study O +provides O +an O +important O +insight O +for O +selectively O +laser S-ENAT +melted O +materials S-CONPRI +. O + + +In O +this O +study O +, O +the O +effects O +of O +laser B-PARA +power E-PARA +and O +scan B-PARA +speed E-PARA +on O +the O +relative B-PRO +density E-PRO +, O +melt B-PARA +pool I-PARA +depth E-PARA +, O +and O +Vickers B-PRO +hardness E-PRO +of O +selectively O +laser S-ENAT +melted O +( O +SLM S-MANP +) O +maraging B-MATE +steel E-MATE +were O +systematically O +investigated O +. O + + +The O +change O +in O +these O +structural O +parameters S-CONPRI +and O +hardness S-PRO +could O +not O +always O +be S-MATE +clarified O +by O +the O +volumetric O +energy B-PARA +density E-PARA +, O +which O +is O +widely O +used O +in O +the O +SLM S-MANP +processes S-CONPRI +. O + + +The O +deposited O +energy B-PARA +density E-PARA +, O +wherein O +the O +thermal O +diffusion S-CONPRI +length O +is O +used O +as S-MATE +a O +heat-distributed O +depth O +, O +can O +express O +the O +change O +in O +these O +structural O +parameters S-CONPRI +and O +the O +hardness S-PRO +with O +one O +curve O +. O + + +To O +clarify O +the O +effect O +of O +the O +laser S-ENAT +parameters O +, O +the O +deposited O +energy O +should O +be S-MATE +used O +instead O +of O +the O +volumetric O +energy B-PARA +density E-PARA +. O + + +Thus O +, O +this O +study O +provides O +a O +new O +insight O +on O +the O +selection O +of O +the O +laser S-ENAT +condition O +for O +SLM-fabricated O +materials S-CONPRI +. O + + +This O +work O +presents O +a O +comprehensive O +study O +on O +the O +influence O +of O +three O +different O +processing O +technologies S-CONPRI +( O +Selective B-MANP +Laser I-MANP +Melting E-MANP +, O +Hot B-MANP +Pressing E-MANP +and O +conventional O +casting S-MANP +) O +on O +the O +microstructure S-CONPRI +, O +mechanical S-APPL +and O +wear S-CONPRI +behavior O +of O +an O +austenitic S-MATE +316L B-MATE +Stainless I-MATE +Steel E-MATE +. O + + +A O +correlation O +between O +the O +processing O +technologies S-CONPRI +, O +the O +obtained O +microstructure S-CONPRI +and O +the O +mechanical S-APPL +and O +wear S-CONPRI +behavior O +was O +achieved O +. O + + +The O +results O +showed O +that O +the O +highest O +mechanical B-CONPRI +properties E-CONPRI +and O +tribological B-CONPRI +performance E-CONPRI +were O +obtained O +for O +316L O +SS S-MATE +specimens O +produced O +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +, O +when O +compared O +to O +Hot B-MANP +Pressing E-MANP +and O +conventional O +casting S-MANP +. O + + +The O +high O +wear S-CONPRI +and O +mechanical S-APPL +performance O +of O +316L B-MATE +Stainless I-MATE +Steel E-MATE +fabricated O +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +are O +mainly O +due O +to O +the O +finer B-FEAT +microstructure E-FEAT +, O +induced O +by O +the O +process S-CONPRI +. O + + +In O +this O +sense O +, O +Selective B-MANP +Laser I-MANP +Melting E-MANP +seems O +a O +promising O +method O +to O +fabricate S-MANP +customized O +316L O +SS S-MATE +implants S-APPL +with O +improved O +mechanical S-APPL +and O +wear B-CONPRI +performance E-CONPRI +. O + + +This O +original O +work O +proposes O +to O +investigate O +the O +transposition O +of O +crystallography S-MANP +rules O +to O +cubic O +lattice S-CONPRI +architectured O +materials S-CONPRI +to O +generate O +new O +3D S-CONPRI +porous O +structures O +. O + + +The O +application O +of O +symmetry O +operations O +provides O +a O +complete O +and O +convenient O +way O +to O +configure O +the O +lattice S-CONPRI +architecture S-APPL +with O +only O +two O +parameters S-CONPRI +. O + + +New O +lattice B-FEAT +structures E-FEAT +were O +created O +by O +slipping O +from O +the O +conventional O +Bravais O +lattice S-CONPRI +toward O +non-compact O +complex B-CONPRI +structures E-CONPRI +. O + + +The O +resulting O +stiffness S-PRO +of O +the O +porous B-MATE +materials E-MATE +was O +thoroughly O +evaluated O +for O +all O +the O +combinations O +of O +architecture S-APPL +parameters O +. O + + +This O +exhaustive O +study O +revealed O +attractive O +structures O +having O +high O +specific B-PRO +stiffness E-PRO +, O +up O +to O +twice O +as S-MATE +large O +as S-MATE +the O +usual O +octet-truss O +for O +a O +given O +relative B-PRO +density E-PRO +. O + + +It O +results O +in O +a O +relationship O +between O +effective O +Young B-PRO +modulus E-PRO +and O +relative B-PRO +density E-PRO +for O +any O +lattice B-FEAT +structure E-FEAT +. O + + +The O +collection O +of O +the O +elastic S-PRO +properties O +for O +all O +the O +cubic B-FEAT +structures E-FEAT +into O +3D S-CONPRI +maps O +provides O +a O +convenient O +tool S-MACEQ +for O +lattice S-CONPRI +materials O +design S-FEAT +, O +for O +research S-CONPRI +, O +and O +for O +mechanical B-APPL +engineering E-APPL +. O + + +The O +resulting O +mechanical B-CONPRI +properties E-CONPRI +are O +highly O +variable O +according O +to O +architecture S-APPL +, O +and O +can O +be S-MATE +easily O +tailored O +for O +specific O +applications O +using O +the O +simple S-MANP +yet O +powerful O +formalism O +developed O +in O +this O +work O +. O + + +A O +volumetric O +, O +mini O +extruder S-MACEQ +for O +pellets S-CONPRI +or O +granules S-CONPRI +of O +recycled S-CONPRI +plastic S-MATE +that O +can O +be S-MATE +used O +in O +a O +RepRap B-MACEQ +FDM I-MACEQ +3D I-MACEQ +printer E-MACEQ +for O +rapid B-ENAT +prototyping E-ENAT +is O +discussed O +. O + + +The O +steer O +Auger S-MACEQ +portion O +is O +added O +to O +increase O +the O +pressure S-CONPRI +inside O +a O +helix O +stator O +container O +of O +n-lobes O +as S-MATE +a O +helical O +rotor O +is O +turned O +. O + + +A O +novel O +, O +alternative O +multi-layer O +Moineau-based O +pump O +−easier O +to O +build S-PARA +, O +implement O +and O +clean– O +is O +also O +introduced O +to O +extrude S-MANP +a O +quantity O +of O +viscous O +material S-MATE +in O +vertical S-CONPRI +direction O +. O + + +In O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +PBF-LB O +) O +, O +material S-MATE +is O +continuously O +ejected O +from O +the O +melt B-MATE +pool E-MATE +, O +commonly O +called O +spatter S-CHAR +, O +and O +is O +distributed O +throughout O +the O +build B-PARA +chamber E-PARA +. O + + +There O +is O +a O +lack O +of O +understanding O +of O +the O +nature O +of O +this O +spatter S-CHAR +and O +the O +effect O +it O +may O +have O +on O +the O +integrity S-CONPRI +of O +the O +final O +part O +and O +the O +quality S-CONPRI +of O +any O +recycled S-CONPRI +powder S-MATE +. O + + +This O +work O +reports O +a O +detailed O +investigation O +of O +spatter S-CHAR +metallurgy S-CONPRI +for O +Inconel B-MATE +718 E-MATE +. O + + +It O +is O +seen O +that O +the O +spatter S-CHAR +created O +during O +processing O +produces O +powder S-MATE +that O +is O +significantly O +different O +to O +the O +virgin O +material S-MATE +, O +with O +particles S-CONPRI +up O +to O +6 O +times O +larger O +. O + + +Oxidation S-MANP +, O +predominantly O +in O +the O +form O +of O +spots O +or O +films O +of O +Al2O3 S-MATE +and O +TiO2 S-MATE +was O +observed O +on O +the O +surface S-CONPRI +of O +some O +of O +the O +spatter S-CHAR +particles S-CONPRI +. O + + +It O +is O +established O +that O +this O +oxide S-MATE +formation O +occurs O +at O +the O +melt B-MATE +pool E-MATE +surface O +before O +ejection S-CONPRI +of O +the O +spatter S-CHAR +from O +the O +melt B-MATE +pool E-MATE +, O +and O +also O +that O +this O +issue O +is O +generic O +to O +PBF-LB O +process S-CONPRI +and O +certain O +alloys S-MATE +. O + + +The O +characteristics O +of O +different O +types O +of O +spatter S-CHAR +are O +identified O +and O +are O +linked O +to O +spatter S-CHAR +generation O +mechanisms O +. O + + +The O +vaporisation O +of O +material S-MATE +during O +processing O +produces O +clusters O +of O +nano S-FEAT +particles O +whose O +composition S-CONPRI +indicate O +a O +preferential O +vaporisation O +of O +Cr S-MATE +from O +the O +bulk O +. O + + +The O +results O +of O +this O +study O +highlight O +that O +oxidation S-MANP +and O +issues O +presented O +by O +spatter S-CHAR +particles S-CONPRI +dissimilar O +from O +the O +virgin O +material S-MATE +are O +unavoidable O +and O +greater O +consideration O +is O +needed O +for O +the O +generation O +and O +effect O +of O +spatter S-CHAR +on O +part O +and O +powder S-MATE +quality O +. O + + +The O +paper O +describes O +a O +new O +approach O +in O +controlling O +and O +tailoring O +residual B-PRO +stress E-PRO +profile S-FEAT +of O +parts O +made O +by O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +. O + + +SLM S-MANP +parts O +are O +well O +known O +for O +the O +high O +tensile B-PRO +stresses E-PRO +in O +the O +as S-MATE +– O +built O +state O +in O +the O +surface S-CONPRI +or O +subsurface O +region O +. O + + +These O +stresses O +have O +a O +detrimental O +effect O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +and O +especially O +on O +the O +fatigue B-PRO +life E-PRO +. O + + +Laser S-ENAT +Shock O +Peening S-MANP +( O +LSP O +) O +as S-MATE +a O +surface B-MANP +treatment E-MANP +method O +was O +applied O +on O +SLM S-MANP +parts O +and O +residual B-PRO +stress E-PRO +measurements O +with O +the O +hole O +– O +drilling S-MANP +method O +were O +performed O +. O + + +Two O +different O +grades O +of O +stainless B-MATE +steel E-MATE +were O +used O +: O +a O +martensitic O +15-5 O +precipitation S-CONPRI +hardenable O +PH1 O +and O +an O +austenitic S-MATE +316L O +. O + + +Different O +LSP O +parameters S-CONPRI +were O +used O +, O +varying O +laser B-CONPRI +energy E-CONPRI +, O +shot O +overlap S-CONPRI +, O +laser B-PARA +spot I-PARA +size E-PARA +and O +treatments O +with O +and O +without O +an O +ablative O +medium O +. O + + +For O +both O +materials S-CONPRI +the O +as-built O +( O +AB S-MATE +) O +residual B-PRO +stress E-PRO +state O +was O +changed O +to O +a O +more O +beneficial O +compressive O +state O +. O + + +The O +value O +and O +the O +depth O +of O +the O +compressive B-PRO +stress E-PRO +was O +analyzed O +and O +showed O +a O +clear O +dependence O +on O +the O +LSP O +processing O +parameters S-CONPRI +. O + + +The O +use O +of O +LSP O +during O +the O +building O +phase S-CONPRI +of O +SLM S-MANP +as S-MATE +a O +“ O +3D S-CONPRI +LSP O +” O +method O +would O +possibly O +give O +the O +advantage O +of O +further O +increasing O +the O +depth O +and O +volume S-CONPRI +of O +compressive O +residual B-PRO +stresses E-PRO +, O +and O +selectively O +treating O +key O +areas S-PARA +of O +the O +part O +, O +thereby O +further O +increasing O +fatigue B-PRO +life E-PRO +. O + + +Template-free O +3D B-MANP +printing E-MANP +of O +electronic O +devices O +has O +the O +potential O +to O +broaden O +electronics S-CONPRI +integration O +to O +include O +complex O +integrated O +form O +factors O +, O +but O +success O +requires O +precise O +, O +adaptive B-CONPRI +control E-CONPRI +over O +materials B-CHAR +processing E-CHAR +. O + + +The O +development O +of O +such O +manufacturing B-MANP +technologies E-MANP +requires O +exploration O +of O +new O +combinations O +of O +ink S-MATE +sets O +, O +printing O +techniques O +, O +and O +automation S-CONPRI +strategies O +. O + + +A O +closed-loop O +feedback S-PARA +system O +that O +links O +deposition S-CONPRI +parameters O +with O +characterization O +was O +necessary O +to O +maintain O +μm-precision O +deposition S-CONPRI +for O +over O +20 O +h O +without O +human O +involvement O +. O + + +This O +closed-loop B-MACEQ +control E-MACEQ +scheme O +enabled O +3D B-MANP +printing E-MANP +of O +both O +single- O +and O +double-layer O +high-voltage O +capacitors S-APPL +with O +capacitances O +as S-MATE +large O +as S-MATE +314 O +pF O +( O +at O +1 O +kHz O +) O +and O +breakdown O +voltages O +over O +1000 O +V S-MATE +, O +which O +is O +significant O +step S-CONPRI +towards O +repeatable O +template-free O +, O +3D B-MANP +printing E-MANP +of O +electronics S-CONPRI +for O +rapid B-ENAT +prototyping E-ENAT +of O +multifunctional O +devices O +. O + + +The O +precise B-CONPRI +control E-CONPRI +over O +low O +minimum O +feature B-FEAT +dimension E-FEAT +, O +high O +breakdown O +voltage O +, O +and O +long O +print S-MANP +duration O +enables O +the O +exploration O +of O +a O +broader O +range S-PARA +of O +printed B-CONPRI +electronics E-CONPRI +application O +than O +conventional O +3D B-MANP +printing E-MANP +techniques O +. O + + +Three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing O +can O +be S-MATE +a O +promising O +tool S-MACEQ +in O +tissue B-CONPRI +engineering E-CONPRI +applications O +for O +generating O +tissue-specific O +3D S-CONPRI +architecture O +. O + + +The O +3D B-MANP +printing E-MANP +process O +, O +including O +computer-aided B-ENAT +design E-ENAT +( O +CAD S-ENAT +) O +, O +can O +be S-MATE +combined O +with O +the O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +( O +FEM S-CONPRI +) O +to O +design S-FEAT +and O +fabricate S-MANP +3D S-CONPRI +tissue O +architecture S-APPL +with O +designated O +mechanical B-CONPRI +properties E-CONPRI +. O + + +In O +this O +study O +, O +we O +generated O +four O +types O +of O +3D S-CONPRI +CAD O +models O +to O +print S-MANP +tissue-engineered O +scaffolds S-FEAT +with O +different O +inner O +geometries S-CONPRI +( O +lattice S-CONPRI +, O +wavy O +, O +hexagonal S-FEAT +, O +and O +shifted O +microstructures S-MATE +) O +and O +analyzed O +them O +by O +FEM S-CONPRI +to O +predict O +their O +mechanical S-APPL +behaviors O +. O + + +For O +the O +validity O +of O +computational O +simulations S-ENAT +by O +FEM S-CONPRI +, O +we O +measured O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +3D B-MANP +printed E-MANP +scaffolds O +. O + + +Results O +showed O +that O +the O +theoretical S-CONPRI +compressive O +elastic B-PRO +moduli E-PRO +of O +the O +designed S-FEAT +constructs O +were O +23.3 O +, O +56.5 O +, O +67.5 O +, O +and O +1.8 O +MPa S-CONPRI +, O +and O +the O +experimental S-CONPRI +compressive O +elastic B-PRO +moduli E-PRO +were O +23.6 O +± O +0.6 O +, O +45.1 O +± O +1.4 O +, O +56.7 O +± O +1.7 O +, O +and O +1.6 O +± O +0.2 O +MPa S-CONPRI +for O +lattice S-CONPRI +, O +wavy O +, O +hexagonal S-FEAT +, O +and O +shifted O +microstructures S-MATE +, O +respectively O +, O +while O +maintaining O +the O +same O +construct O +dimension S-FEAT +and O +porosity S-PRO +. O + + +In O +addition O +, O +van O +der O +Waals O +hyperelastic O +material S-MATE +model O +was O +successfully O +utilized O +to O +predict O +the O +nonlinear O +mechanical S-APPL +behavior O +of O +the O +printed O +scaffolds S-FEAT +with O +different O +inner O +geometries S-CONPRI +. O + + +These O +findings O +indicated O +that O +the O +CAD-based O +FEM S-CONPRI +prediction O +could O +be S-MATE +used O +for O +designing O +tissue-specific O +constructs O +to O +mimic S-MACEQ +the O +mechanical B-CONPRI +properties E-CONPRI +of O +targeted O +tissues O +or O +organs O +. O + + +The O +optical S-CHAR +penetration O +depth O +of O +the O +laser B-CONPRI +beam E-CONPRI +into O +the O +powder B-MACEQ +bed E-MACEQ +is O +taken O +into O +account O +in O +this O +model S-CONPRI +. O + + +The O +convective O +heat B-CONPRI +flux E-CONPRI +dominate O +the O +heat S-CONPRI +tranfer O +in O +the O +molten B-CONPRI +pool E-CONPRI +, O +and O +further O +decides O +the O +shape O +of O +molten B-CONPRI +pool E-CONPRI +. O + + +Heat B-PRO +accumulation E-PRO +can O +significantly O +change O +the O +size O +of O +the O +molten B-CONPRI +pool E-CONPRI +, O +but O +has O +little O +effect O +on O +the O +molten B-CONPRI +pool E-CONPRI +shape O +. O + + +A O +physical B-CONPRI +model E-CONPRI +coupled O +with O +heat B-CONPRI +transfer E-CONPRI +and O +fluid B-PRO +flow E-PRO +was O +developed O +to O +investigate O +the O +thermofluid O +field O +of O +molten B-CONPRI +pool E-CONPRI +and O +its O +effects O +on O +SLM S-MANP +process S-CONPRI +of O +Inconel B-MATE +718 I-MATE +alloy E-MATE +, O +in O +which O +a O +heat B-CONPRI +source E-CONPRI +considering O +the O +porous S-PRO +properties O +of O +powder B-MACEQ +bed E-MACEQ +and O +its O +reflection S-CHAR +to O +laser B-CONPRI +beam E-CONPRI +is O +used O +. O + + +The O +simulation S-ENAT +results O +showed O +that O +surface B-PRO +tension E-PRO +caused O +by O +temperature B-PARA +gradient E-PARA +on O +the O +surface S-CONPRI +of O +molten B-CONPRI +pool E-CONPRI +drives O +to O +Marangoni O +convection O +, O +which O +makes O +fluid B-PRO +flow E-PRO +state O +mainly O +an O +outward O +convection O +during O +SLM S-MANP +process S-CONPRI +. O + + +Marangoni O +convection O +includes O +convective O +and O +conductive O +heat B-CONPRI +flux E-CONPRI +, O +both O +of O +them O +have O +effects O +of O +on O +molten B-CONPRI +pool E-CONPRI +shape O +, O +but O +the O +effect O +of O +convective O +heat B-CONPRI +flux E-CONPRI +is O +dominant O +because O +its O +magnitude S-PARA +is O +one O +order O +larger O +than O +that O +of O +conductive O +heat B-CONPRI +flux E-CONPRI +. O + + +The O +convective O +heat B-CONPRI +flux E-CONPRI +accelerates O +the O +flow B-PARA +rate E-PARA +of O +the O +molten B-MATE +metal E-MATE +, O +benefits O +to O +heat B-CONPRI +dissipation E-CONPRI +. O + + +The O +convective O +heat B-CONPRI +flux E-CONPRI +makes O +the O +molten B-CONPRI +pool E-CONPRI +wider O +, O +while O +the O +conductive O +heat B-CONPRI +flux E-CONPRI +makes O +comparably O +the O +molten B-CONPRI +pool E-CONPRI +deeper O +and O +wider O +. O + + +Furthermore O +, O +heat B-PRO +accumulation E-PRO +caused O +by O +multiple O +scanning S-CONPRI +increases O +convection O +and O +conduction O +heat B-CONPRI +flux E-CONPRI +resulting O +in O +the O +increase O +of O +the O +width O +and O +depth O +of O +the O +molten B-CONPRI +pool E-CONPRI +, O +but O +no O +change O +of O +dominant O +role O +of O +convective O +heat B-CONPRI +flux E-CONPRI +to O +the O +shape O +of O +the O +molten B-CONPRI +pool E-CONPRI +. O + + +A O +staircase O +Inconel B-MATE +718 E-MATE +block O +was O +fabricated S-CONPRI +to O +investigate O +the O +effects O +of O +the O +thermal B-PARA +cycles E-PARA +on O +the O +microstructure B-CONPRI +evolution E-CONPRI +in O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +part O +using O +optical S-CHAR +scope O +( O +OM S-CHAR +) O +, O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +, O +and O +electron B-CHAR +backscatter I-CHAR +diffraction E-CHAR +( O +EBSD S-CHAR +) O +. O + + +The O +laser B-CONPRI +beam E-CONPRI +scanning O +strategy O +was O +clearly O +shown O +in O +the O +part O +under O +OM S-CHAR +, O +including O +laser S-ENAT +scanning O +pattern S-CONPRI +and O +hatch B-PARA +spacing E-PARA +. O + + +The O +Y-plane O +( O +side O +surface S-CONPRI +) O +was O +characterized O +by O +elongated O +colonies O +of O +cellular O +dendrites S-BIOP +with O +an O +average S-CONPRI +cell O +spacing O +of O +0.511 O +∼ O +0.845 O +μm O +. O + + +In O +addition O +, O +Laves B-CONPRI +phase E-CONPRI +was O +observed O +in O +the O +inter-layers O +and O +inter-cellular O +regions O +. O + + +Under O +the O +continuing O +effects O +of O +the O +thermal B-PARA +cycles E-PARA +, O +the O +fraction S-CONPRI +of O +the O +Laves-phase O +showed O +a O +significant O +drop O +with O +their O +morphology S-CONPRI +changing O +from O +coarse O +and O +interconnected O +particles S-CONPRI +to O +discrete O +Laves B-CONPRI +phase E-CONPRI +. O + + +This O +is O +attributed O +to O +the O +reheating O +process S-CONPRI +as S-MATE +Laves O +phase S-CONPRI +can O +be S-MATE +dissolved O +at O +a O +proper O +heat B-MANP +treatment E-MANP +. O + + +In O +terms O +of O +the O +width O +of O +the O +cellular O +dendrites S-BIOP +, O +the O +longer O +the O +thermal B-PARA +cycle E-PARA +period O +is O +, O +the O +coarser O +the O +elongated O +grains S-CONPRI +are O +. O + + +With O +the O +repeating O +thermal B-PARA +cycle E-PARA +period O +elongating O +, O +the O +maximum O +intensity O +of O +the O +texture S-FEAT +, O +together O +with O +the O +fraction S-CONPRI +of O +larger O +grains S-CONPRI +and O +the O +high O +misorientation O +angles O +, O +increased O +. O + + +Moreover O +, O +the O +area S-PARA +fraction O +of O +the O +porosity S-PRO +was O +below O +0.2 O +% O +, O +with O +no O +remarkable O +effects O +found O +from O +the O +thermal B-PARA +cycles E-PARA +and O +the O +build B-PARA +height E-PARA +. O + + +Simulations S-ENAT +capable O +of O +predicting O +the O +complex O +thermal O +behavior O +which O +occurs O +in O +a O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +process S-CONPRI +would O +help O +design S-FEAT +and O +manufacturing S-MANP +engineers O +build S-PARA +more O +optimum O +designs S-FEAT +in O +a O +reliable O +manner O +. O + + +A O +multiscale O +feed S-PARA +forward O +adaptive O +refinement O +and O +de-refinement O +( O +FFD-AMRD O +) O +finite B-CONPRI +element E-CONPRI +framework O +has O +been O +developed O +in O +response O +to O +this O +need O +. O + + +Support B-FEAT +structures E-FEAT +fabricated S-CONPRI +during O +SLM S-MANP +to O +overcome O +residual B-PRO +stress E-PRO +induced O +part O +distortion S-CONPRI +are O +a O +key O +part O +of O +the O +process S-CONPRI +, O +and O +a O +representation O +of O +these O +support B-FEAT +structures E-FEAT +in O +a O +finite B-CONPRI +element E-CONPRI +framework O +must O +be S-MATE +considered O +. O + + +If O +support B-FEAT +structures E-FEAT +could O +be S-MATE +designed O +with O +minimal O +material S-MATE +usage O +while O +still O +maintaining O +an O +ability O +to O +withstand O +the O +residual B-PRO +stresses E-PRO +generated O +during O +the O +part O +fabrication S-MANP +, O +this O +would O +significantly O +impact S-CONPRI +industrial O +use O +of O +SLM S-MANP +. O + + +In O +this O +work O +, O +the O +effective O +thermal B-CONPRI +properties E-CONPRI +of O +support B-FEAT +structures E-FEAT +are O +represented O +using O +thermal O +homogenization S-MANP +. O + + +The O +effective O +thermal B-CONPRI +properties E-CONPRI +of O +the O +support B-FEAT +structures E-FEAT +have O +been O +found O +to O +be S-MATE +a O +function O +of O +their O +geometry S-CONPRI +, O +anisotropy S-PRO +and O +constituent O +independent O +thermal B-CONPRI +properties E-CONPRI +. O + + +The O +objective O +of O +this O +work O +is O +to O +derive O +effective O +thermal B-CONPRI +property E-CONPRI +functions O +which O +could O +be S-MATE +directly O +incorporated O +in O +the O +FFD-AMRD O +framework S-CONPRI +mentioned O +above O +to O +enhance O +computational B-PARA +speed E-PARA +. O + + +Polymer B-MANP +Laser I-MANP +Sintering E-MANP +( O +LS O +) O +is O +a O +well-known O +Additive B-MANP +Manufacturing I-MANP +process E-MANP +, O +capable O +of O +producing O +highly O +complex B-CONPRI +geometries E-CONPRI +with O +little O +or O +no O +cost O +penalty O +. O + + +However O +, O +the O +restricted O +range S-PARA +of O +materials S-CONPRI +currently O +available O +for O +this O +process S-CONPRI +has O +limited O +its O +applications O +. O + + +Whilst O +it O +is O +common O +to O +modify O +the O +properties S-CONPRI +of O +standard S-CONPRI +LS O +polymers S-MATE +with O +the O +inclusion S-MATE +of O +fillers O +e.g O +. O + + +nanoclays O +, O +achieving O +effective O +dispersions O +can O +be S-MATE +difficult O +. O + + +The O +work O +presented O +here O +investigates S-CONPRI +the O +use O +of O +plasma S-CONPRI +treatment O +as S-MATE +a O +method O +of O +enhancing O +dispersion S-CONPRI +with O +an O +expectation O +of O +improving O +consistency S-CONPRI +and O +surface B-PARA +quality E-PARA +of O +laser S-ENAT +sintered O +nanocomposite O +parts O +. O + + +To O +enable O +the O +preparation O +of O +polyamide B-MATE +12 E-MATE +nanocomposite O +powder S-MATE +for O +applications O +in O +LS O +, O +plasma S-CONPRI +surface O +modification O +using O +Low O +Pressure S-CONPRI +Air O +Plasma S-CONPRI +Treatment O +was O +carried O +out O +on O +two O +nanoclays O +: O +Cloisite O +30B O +( O +C30B O +) O +and O +Nanomer O +I.34TCN O +( O +I.34TCN O +) O +. O + + +Plasma S-CONPRI +treatment O +strongly O +reduced O +the O +aggregation O +of O +the O +nanoclay O +( O +C30B O +and O +I.34TCN O +) O +particles S-CONPRI +, O +and O +powders S-MATE +displayed O +higher O +decomposition S-PRO +temperatures O +than O +those O +without O +plasma S-CONPRI +treatment O +. O + + +LS O +parts O +from O +neat O +polyamide B-MATE +12 E-MATE +, O +untreated O +I.34TCN O +and O +plasma S-CONPRI +treated O +I.34TCN O +composites S-MATE +were O +successfully O +produced O +with O +different O +complex B-PRO +shapes E-PRO +. O + + +The O +presence O +of O +well O +dispersed O +plasma S-CONPRI +treated O +nanoclays O +was O +observed O +and O +found O +to O +be S-MATE +essential O +for O +an O +improved O +surface B-PARA +quality E-PARA +of O +LS O +fabricated S-CONPRI +which O +was O +achieved O +only O +for O +plasma S-CONPRI +treated O +I.34TCN O +. O + + +Likewise O +, O +some O +mechanical B-CONPRI +properties E-CONPRI +could O +be S-MATE +improved O +above O +that O +of O +PA12 S-MATE +by O +incorporation O +of O +treated O +I.34TCN O +. O + + +For O +example O +, O +the O +elastic B-PRO +modulus E-PRO +of O +plasma S-CONPRI +treated O +composites S-MATE +was O +higher O +than O +that O +of O +polyamide B-MATE +12 E-MATE +and O +the O +untreated O +composite S-MATE +. O + + +In O +the O +case O +of O +the O +ultimate O +strain S-PRO +, O +the O +plasma S-CONPRI +treated O +composite S-MATE +performed O +better O +than O +untreated O +and O +results O +had O +a O +reduced O +variation S-CONPRI +between O +samples S-CONPRI +. O + + +This O +illustrates O +the O +feasibility S-CONPRI +of O +the O +use O +of O +plasma S-CONPRI +treatments O +on O +nanoclays O +to O +improve O +the O +properties S-CONPRI +of O +LS O +parts O +, O +even O +though O +further O +studies O +will O +be S-MATE +required O +to O +exploit O +the O +full O +potential O +. O + + +Accuracy S-CHAR +in O +dental B-MACEQ +prosthesis E-MACEQ +plays O +a O +significant O +role O +. O + + +Surgical O +guides O +are O +widely O +used O +for O +accurate S-CHAR +positioning O +of O +dental S-APPL +implants O +. O + + +Designing O +of O +guides O +using O +modern O +software S-CONPRI +is O +useful O +in O +achieving O +precision S-CHAR +; O +however O +, O +translation O +of O +these O +images S-CONPRI +into O +actual O +fabricated S-CONPRI +parts O +can O +be S-MATE +achieved O +using O +Three-dimensional S-CONPRI +( O +3-D S-CONPRI +) O +printing O +. O + + +Conventionally O +, O +guides O +were O +fabricated S-CONPRI +using O +vacuum O +forming S-MANP +technique O +which O +leads O +to O +several O +dimensional O +inaccuracies O +. O + + +Computed B-CHAR +Tomography E-CHAR +( O +CT S-ENAT +) O +images S-CONPRI +of O +patients O +with O +missing O +teeth O +are O +modeled O +to O +design S-FEAT +surgical O +guide O +using O +Computer B-ENAT +Aided I-ENAT +Design E-ENAT +( O +CAD S-ENAT +) O +/ O +Computer B-ENAT +Aided I-ENAT +Manufacturing E-ENAT +( O +CAM S-ENAT +) O +software S-CONPRI +which O +is O +then O +combined O +with O +surface S-CONPRI +scan O +files S-MANS +in O +Standard B-MANS +Tessellation I-MANS +Language E-MANS +( O +STL S-MANS +) O +formats O +to O +design S-FEAT +the O +guide O +. O + + +In O +this O +work O +, O +surgical O +guides O +have O +been O +3-D S-CONPRI +printed O +using O +different O +technologies S-CONPRI +like O +Material B-MANP +Jetting E-MANP +technology O +( O +MJT O +) O +, O +Vat B-MANP +photopolymerization E-MANP +( O +VP O +) O +and O +Material B-MANP +extrusion E-MANP +( O +ME O +) O +. O + + +Depth O +, O +diameter S-CONPRI +, O +Area S-PARA +and O +Volume S-CONPRI +of O +the O +printed O +guides O +have O +been O +calculated O +using O +vernier B-MACEQ +caliper E-MACEQ +and O +scan O +measurements O +. O + + +These O +dimensions S-FEAT +have O +then O +been O +compared O +with O +the O +dimensions S-FEAT +obtained O +from O +software S-CONPRI +modeled O +images S-CONPRI +. O + + +Least O +error S-CONPRI +has O +been O +found O +for O +the O +guides O +fabricated S-CONPRI +using O +MJT O +. O + + +The O +experimental S-CONPRI +work O +in O +this O +paper O +, O +hence O +, O +suggests O +MJT O +be S-MATE +the O +most O +preferred O +printing O +technique O +due O +to O +its O +superior O +accuracy S-CHAR +for O +printing O +dental B-MACEQ +prosthesis E-MACEQ +like O +aligners O +, O +implants S-APPL +, O +and O +crowns O +, O +etc O +. O + + +Four O +distinct O +TPU O +grades O +are O +analyzed O +for O +the O +use O +in O +laser B-MANP +sintering E-MANP +. O + + +Clear O +links O +between O +material B-CONPRI +properties E-CONPRI +and O +sintering S-MANP +behavior O +are O +established O +. O + + +Guidelines O +for O +future O +selection O +of O +TPU O +grades O +for O +laser B-MANP +sintering E-MANP +are O +deduced O +. O + + +As S-MATE +laser O +sintering S-MANP +is O +increasingly O +being O +used O +for O +the O +production S-MANP +of O +actual O +end-use O +parts O +, O +there O +is O +considerable O +interest O +in O +developing O +materials S-CONPRI +that O +would O +enable O +new O +applications O +for O +this O +technique O +. O + + +Considering O +their O +properties S-CONPRI +and O +current O +applications O +, O +elastomeric O +polymers S-MATE +such O +as S-MATE +thermoplastic O +polyurethanes S-MATE +( O +TPU O +) O +have O +a O +very O +high O +potential O +in O +this O +regard O +. O + + +This O +study O +investigates S-CONPRI +the O +material B-CONPRI +properties E-CONPRI +that O +are O +involved O +in O +TPU O +sintering S-MANP +through O +the O +analysis O +of O +four O +distinct O +TPU O +grades O +. O + + +Examined O +parameters S-CONPRI +include O +powder S-MATE +flow O +, O +rheology S-PRO +of O +the O +melt S-CONPRI +and O +shrinkage S-CONPRI +and O +hardening S-MANP +behavior O +. O + + +It O +is O +found O +that O +, O +even O +though O +the O +particle S-CONPRI +morphology S-CONPRI +is O +not O +optimum O +, O +smooth O +and O +dense O +powder S-MATE +layers O +can O +be S-MATE +deposited O +for O +the O +investigated O +powders S-MATE +. O + + +Low O +melt S-CONPRI +viscosity O +and O +low O +shrinkage S-CONPRI +upon O +hardening S-MANP +further O +enable O +these O +materials S-CONPRI +to O +be S-MATE +easily O +processed S-CONPRI +into O +functional O +parts O +. O + + +Remaining O +issues O +, O +however O +, O +are O +part O +porosity S-PRO +and O +material S-MATE +degradation S-CONPRI +. O + + +The O +findings O +in O +this O +study O +provide O +clear O +links O +between O +material B-CONPRI +properties E-CONPRI +and O +behavior O +during O +laser B-MANP +sintering E-MANP +, O +and O +result O +in O +guidelines O +for O +future O +selection O +of O +TPU O +grades O +. O + + +Support B-FEAT +structures E-FEAT +are O +critical O +to O +the O +successful O +printing O +of O +the O +overhang S-PARA +structures O +in O +selective B-MANP +laser I-MANP +melting E-MANP +. O + + +The O +heat B-CONPRI +transfer E-CONPRI +performance O +of O +support B-FEAT +structures E-FEAT +has O +significant O +influence O +on O +the O +temperature S-PARA +distribution S-CONPRI +and O +cooling B-PARA +rate E-PARA +within O +the O +overhang S-PARA +structures O +which O +in O +turn O +determine O +the O +microstructure S-CONPRI +and O +residual B-PRO +stress E-PRO +. O + + +In O +the O +present O +study O +, O +functionally B-CONPRI +graded E-CONPRI +support O +structures O +have O +been O +proposed O +and O +their O +thermal O +performance S-CONPRI +has O +been O +numerically O +investigated O +, O +with O +the O +consideration O +of O +different O +materials S-CONPRI +, O +cooling S-MANP +times O +and O +gradedness O +values O +. O + + +It O +has O +been O +found O +that O +functionally B-CONPRI +graded E-CONPRI +support O +structures O +can O +maintain O +a O +higher O +temperature S-PARA +level O +than O +the O +conventional O +uniform O +support B-FEAT +structure E-FEAT +at O +the O +bottom O +of O +overhang S-PARA +, O +which O +is O +equivalent O +to O +an O +extra O +pre-heating O +effect O +. O + + +The O +temperature S-PARA +fluctuation O +and O +cooling B-PARA +rate E-PARA +at O +the O +bottom O +of O +overhang S-PARA +can O +also O +be S-MATE +reduced O +by O +adopting O +the O +functionally B-CONPRI +graded E-CONPRI +support O +structures O +. O + + +Topology-optimized O +structure S-CONPRI +has O +ultrahigh O +normalized O +fatigue B-PRO +life E-PRO +of O +0.65 O +at O +106 O +cycles O +and O +low O +density S-PRO +. O + + +Topology-optimized O +structure S-CONPRI +increases O +fatigue B-PRO +life E-PRO +by O +reducing O +stress B-CHAR +concentration E-CHAR +. O + + +Twinning S-CONPRI +formed O +in O +porous S-PRO +CP-Ti O +samples S-CONPRI +enhances O +plasticity S-PRO +and O +fatigue S-PRO +properties O +. O + + +The O +fatigue S-PRO +properties O +are O +critical O +considerations O +for O +porous S-PRO +structures O +, O +and O +most O +of O +the O +existing O +porous B-MATE +materials E-MATE +have O +unsatisfactory O +performances O +due O +to O +a O +lack O +of O +structural B-CONPRI +optimization E-CONPRI +. O + + +This O +work O +shows O +that O +a O +topology-optimized O +structure B-CONPRI +fabricated E-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +using O +commercial-purity O +titanium S-MATE +( O +CP-Ti O +) O +exhibits O +excellent O +fatigue S-PRO +properties O +with O +an O +ultra-high O +normalized O +fatigue B-PRO +life E-PRO +of O +∼0.65 O +at O +106 O +cycles O +and O +at O +a O +low O +density S-PRO +of O +1.3 O +g/cm3 O +. O + + +The O +main O +factors O +affecting O +fatigue S-PRO +, O +i.e. O +, O +material B-CONPRI +properties E-CONPRI +and O +a O +porous S-PRO +structure O +were O +studied O +. O + + +Both O +the O +factors O +can O +affect O +the O +fatigue S-PRO +crack O +initiation O +time O +, O +thereby O +affecting O +the O +fatigue B-PRO +life E-PRO +. O + + +Because O +of O +twinning S-CONPRI +that O +occurred O +during O +the O +fatigue S-PRO +process O +, O +the O +porous S-PRO +CP-Ti O +samples S-CONPRI +exhibit O +a O +high O +plasticity S-PRO +. O + + +In O +addition O +, O +the O +fatigue S-PRO +crack B-CONPRI +propagation I-CONPRI +rate E-CONPRI +is O +significantly O +reduced O +because O +of O +the O +high O +plasticity S-PRO +of O +the O +CP-Ti O +material S-MATE +and O +the O +occurrence O +of O +fatigue S-PRO +crack O +deflection O +. O + + +Microstructure B-CONPRI +evolution E-CONPRI +in O +the O +molten B-CONPRI +pool E-CONPRI +of O +SLM-processed O +parts O +was O +disclosed O +. O + + +Variation S-CONPRI +of O +microhardness S-CONPRI +with O +local O +zone O +within O +the O +molten B-CONPRI +pool E-CONPRI +were O +measured O +. O + + +Thermal O +behavior O +within O +the O +molten B-CONPRI +pool E-CONPRI +was O +quantitatively S-CONPRI +analyzed O +. O + + +Relationship O +among O +microstructure S-CONPRI +, O +properties S-CONPRI +and O +thermal O +behavior O +was O +discussed O +. O + + +This O +work O +presented O +a O +comprehensive O +study O +of O +microstructural B-CONPRI +evolution E-CONPRI +, O +microhardness S-CONPRI +and O +quantitative S-CONPRI +thermodynamic O +analysis O +within O +the O +molten B-CONPRI +pool E-CONPRI +during O +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +of O +Inconel B-MATE +718 E-MATE +parts O +. O + + +Microstructures S-MATE +and O +corresponding O +microhardness S-CONPRI +of O +different O +zones O +within O +the O +molten B-CONPRI +pool E-CONPRI +experienced O +the O +following O +evolution S-CONPRI +: O +fine O +cellular O +dendrites S-BIOP +or O +equiaxed B-CONPRI +grains E-CONPRI +on O +the O +top O +surface S-CONPRI +( O +387HV O +) O +; O +columnar B-MATE +dendrites E-MATE +with O +single O +direction O +of O +grain B-CONPRI +growth E-CONPRI +at O +the O +bottom O +( O +337HV O +) O +; O +columnar B-MATE +dendrites E-MATE +with O +multiple O +directions O +of O +grain B-CONPRI +growth E-CONPRI +at O +the O +edge O +of O +the O +molten B-CONPRI +pool E-CONPRI +( O +340HV-350HV O +) O +; O +microstructures S-MATE +between O +cellular O +and O +columnar B-PRO +grains E-PRO +around O +the O +center O +of O +the O +molten B-CONPRI +pool E-CONPRI +( O +363HV O +) O +. O + + +The O +impact S-CONPRI +of O +Gaussian-distributed O +laser B-CONPRI +energy E-CONPRI +and O +relatively O +weak O +thermal B-PRO +conductivity E-PRO +and O +convection O +of O +Inconel B-MATE +718 E-MATE +contributed O +to O +the O +variation S-CONPRI +of O +temperature B-PARA +gradient E-PARA +at O +different O +zones O +within O +the O +molten B-CONPRI +pool E-CONPRI +. O + + +The O +formation O +of O +different O +kinds O +of O +microstructures S-MATE +in O +the O +molten B-CONPRI +pool E-CONPRI +was O +controlled O +by O +the O +temperature B-PARA +gradient E-PARA +( O +which O +determined O +the O +direction O +of O +grain B-CONPRI +growth E-CONPRI +) O +and O +the O +cooling B-PARA +rate E-PARA +( O +which O +determined O +the O +size O +of O +grain B-CONPRI +growth E-CONPRI +) O +. O + + +The O +variation S-CONPRI +of O +microhardness S-CONPRI +within O +the O +molten B-CONPRI +pool E-CONPRI +was O +ascribed O +to O +the O +number O +of O +grain B-CONPRI +boundaries E-CONPRI +and O +the O +stress S-PRO +characteristics O +of O +different O +kinds O +of O +microstructures S-MATE +under O +mechanical S-APPL +load O +. O + + +The O +zones O +with O +fine O +cellular B-CONPRI +grains E-CONPRI +had O +elevated O +mechanical S-APPL +performance O +due O +to O +the O +superior O +capability O +to O +endure O +the O +load O +. O + + +This O +work O +hopefully O +provides O +scientific O +and O +theoretical S-CONPRI +support S-APPL +for O +SLM-processed O +Inconel B-MATE +718 E-MATE +parts O +with O +favorable O +properties S-CONPRI +. O + + +With O +a O +view O +to O +developing O +a O +highly O +biocompatible S-PRO +and O +highly O +reliable O +material S-MATE +for O +artificial O +hip S-MANP +joints O +, O +cellular O +lattice B-FEAT +structures E-FEAT +with O +high O +strength S-PRO +and O +low O +Young O +’ O +s S-MATE +modulus O +( O +E O +) O +were O +designed S-FEAT +using O +computational O +shape O +optimization S-CONPRI +. O + + +These O +structures O +were O +fabricated S-CONPRI +from O +a O +biomedical S-APPL +Co-Cr-Mo O +alloy S-MATE +via O +electron B-MANP +beam I-MANP +melting E-MANP +. O + + +As S-MATE +a O +starting O +point O +for O +shape O +optimization S-CONPRI +, O +inverse O +body-centered-cubic O +( O +iBCC O +) O +-based O +structures O +with O +different O +porosities S-PRO +and O +aspects O +were O +fabricated S-CONPRI +. O + + +The O +strength S-PRO +tended O +to O +increase O +with O +increasing O +E. O +Then O +, O +the O +structures O +were O +re-designed O +using O +shape O +optimization S-CONPRI +based O +on O +the O +traction O +method O +, O +targeting O +a O +simultaneous O +increase O +in O +yield B-PRO +strength E-PRO +with O +retention O +of O +the O +low O +E. O +The O +shapes O +were O +optimized O +through O +minimization O +of O +the O +maximum O +local O +von B-PRO +Mises I-PRO +stress E-PRO +and O +control O +of O +E O +to O +3/2 O +or O +2/3 O +of O +the O +original O +value O +, O +while O +maintaining O +constant O +porosity S-PRO +. O + + +The O +re-designed O +cellular B-FEAT +structures E-FEAT +were O +fabricated S-CONPRI +and O +subjected O +to O +mechanical B-CHAR +testing E-CHAR +. O + + +The O +E O +values O +of O +the O +porous S-PRO +structures O +were O +comparable O +to O +the O +design S-FEAT +values O +, O +but O +the O +strength S-PRO +of O +the O +cellular O +lattice S-CONPRI +with O +E O += O +2/3 O +( O +design S-FEAT +value O +) O +was O +lower O +than O +expected O +. O + + +This O +discrepancy O +was O +attributed O +to O +inhomogeneities O +in O +the O +microstructures S-MATE +and O +their O +impact S-CONPRI +on O +the O +lattice S-CONPRI +mechanical O +properties S-CONPRI +. O + + +Thus O +, O +shape O +optimization S-CONPRI +considering O +crystal B-PRO +orientation E-PRO +is O +a O +significant O +challenge O +for O +future O +research S-CONPRI +, O +but O +this O +approach O +has O +considerable O +potential O +. O + + +A O +3D S-CONPRI +finite O +element S-MATE +modelling O +of O +the O +SLM S-MANP +process S-CONPRI +at O +the O +track O +scale O +is O +considered O +. O + + +Heat B-CONPRI +transfer E-CONPRI +and O +fluid B-PRO +flow E-PRO +are O +simulated O +for O +different O +material S-MATE +and O +process S-CONPRI +conditions O +. O + + +Scan B-PARA +speed E-PARA +, O +laser S-ENAT +interaction O +and O +Marangoni O +effect O +have O +a O +clear O +impact S-CONPRI +on O +track O +shape O +. O + + +The O +present O +study O +is O +based O +on O +a O +formerly O +developed O +3D S-CONPRI +finite O +element S-MATE +modelling O +of O +the O +selective B-MANP +laser I-MANP +melting I-MANP +process E-MANP +( O +SLM S-MANP +) O +at O +the O +track O +scale O +. O + + +This O +numerical O +model S-CONPRI +is O +used O +to O +assess O +the O +impact S-CONPRI +of O +two O +phenomena O +on O +the O +shape O +of O +the O +elementary O +track O +resulting O +from O +SLM S-MANP +processing O +: O +laser S-ENAT +interaction O +on O +one O +hand O +, O +and O +Marangoni O +effect O +on O +the O +other O +hand O +. O + + +As S-MATE +regards O +laser S-ENAT +interaction O +, O +it O +is O +modelled O +by O +a O +Beer-Lambert O +type O +heat B-CONPRI +source E-CONPRI +, O +in O +which O +lateral O +scattering O +and O +material S-MATE +absorption S-CONPRI +are O +considered O +through O +two O +characteristic O +parameters S-CONPRI +. O + + +The O +impact S-CONPRI +of O +these O +parameters S-CONPRI +is O +shown O +in O +terms O +of O +width O +and O +depth O +of O +melted S-CONPRI +zone O +. O + + +The O +Marangoni O +effect O +caused O +by O +tangential O +gradients O +of O +surface B-PRO +tension E-PRO +is O +modelled O +to O +simulate O +the O +fluid S-MATE +dynamics O +in O +the O +melt B-MATE +pool E-MATE +. O + + +The O +resulting O +convection O +flow O +is O +demonstrated O +with O +surface B-PRO +tension E-PRO +values O +either O +increasing O +or O +decreasing O +with O +temperature S-PARA +. O + + +The O +influence O +of O +energy O +distribution S-CONPRI +, O +surface B-PRO +tension E-PRO +effects O +, O +as S-MATE +well O +as S-MATE +laser O +scanning B-PARA +speed E-PARA +on O +temperature S-PARA +distribution S-CONPRI +and O +melt B-MATE +pool E-MATE +geometry S-CONPRI +is O +investigated O +. O + + +The O +stability S-PRO +and O +regularity O +of O +the O +solidified O +track O +are O +a O +direct O +output O +of O +the O +simulations S-ENAT +, O +and O +their O +variations S-CONPRI +with O +material S-MATE +and O +process S-CONPRI +conditions O +are O +discussed O +. O + + +A O +three-dimensional S-CONPRI +finite B-CONPRI +element I-CONPRI +model E-CONPRI +is O +developed O +to O +allow O +for O +the O +prediction S-CONPRI +of O +temperature S-PARA +, O +residual B-PRO +stress E-PRO +, O +and O +distortion S-CONPRI +in O +multi-layer O +Laser S-ENAT +Powder-Bed O +Fusion S-CONPRI +builds S-CHAR +. O + + +Undesirable O +residual B-PRO +stress E-PRO +and O +distortion S-CONPRI +caused O +by O +thermal B-PARA +gradients E-PARA +are O +a O +common O +source S-APPL +of O +failure S-CONPRI +in O +AM S-MANP +builds O +. O + + +A O +non-linear O +thermoelastoplastic O +model S-CONPRI +is O +combined O +with O +an O +element S-MATE +coarsening O +strategy O +in O +order O +to O +simulate O +the O +thermal O +and O +mechanical B-CONPRI +response E-CONPRI +of O +a O +significant O +volume S-CONPRI +of O +deposited O +material S-MATE +( O +38 O +layers O +and O +91 O +mm3 O +) O +. O + + +It O +is O +found O +that O +newly O +deposited B-CHAR +layers E-CHAR +experience O +the O +greatest O +amount O +of O +tensile B-PRO +stress E-PRO +, O +while O +layers O +beneath O +are O +forced O +into O +compressive B-PRO +stress E-PRO +. O + + +The O +residual B-PRO +stress E-PRO +evolution S-CONPRI +drives O +the O +mechanical B-CONPRI +response E-CONPRI +of O +the O +workpiece S-CONPRI +. O + + +The O +model S-CONPRI +is O +validated O +by O +comparing O +the O +predicted S-CONPRI +in B-CONPRI +situ E-CONPRI +and O +post O +process B-CONPRI +distortion E-CONPRI +to O +experimental S-CONPRI +measurements O +taken O +on O +the O +same O +geometry S-CONPRI +. O + + +The O +model B-CONPRI +accurately E-CONPRI +predicts O +the O +distortion S-CONPRI +of O +the O +workpiece S-CONPRI +( O +5 O +% O +error S-CONPRI +) O +. O + + +This O +paper O +presents O +the O +first O +report O +on O +the O +development O +of O +weak-textured O +microstructures S-MATE +and O +resulting O +reduced O +in-plane O +anisotropy S-PRO +of O +mechanical B-CONPRI +properties E-CONPRI +in O +commercially O +pure O +titanium S-MATE +( O +CP-Ti O +) O +fabricated S-CONPRI +by O +electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +. O + + +The O +as-built O +specimens O +exhibited O +fine O +grain B-CONPRI +structures E-CONPRI +with O +weakened O +crystallographic O +textures O +. O + + +The O +β O +→ O +α′ O +martensitic O +transformation O +after O +solidification S-CONPRI +was O +responsible O +for O +the O +weak O +textures O +as S-MATE +well O +as S-MATE +the O +relatively O +high O +strength S-PRO +. O + + +The O +results O +suggest O +that O +it O +is O +possible O +to O +use O +EBM S-MANP +to O +produce O +isotropic S-PRO +CP-Ti O +components S-MACEQ +, O +which O +can O +not O +be S-MATE +obtained O +by O +conventional O +processes S-CONPRI +. O + + +In O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +the O +surface S-CONPRI +layer S-PARA +temperature O +is O +continually O +changing O +throughout O +the O +build S-PARA +process O +. O + + +Variations S-CONPRI +in O +part O +geometry S-CONPRI +, O +scanned O +cross-section O +and O +number O +of O +parts O +all O +influence O +the O +thermal O +field O +within O +a O +build S-PARA +. O + + +Process B-CONPRI +parameters E-CONPRI +do O +not O +take O +these O +variations S-CONPRI +into O +account O +and O +this O +can O +result O +in O +increased O +porosity S-PRO +and O +differences O +in O +local O +microstructure S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +, O +undermining O +confidence O +in O +the O +structural B-PRO +integrity E-PRO +of O +a O +part O +. O + + +In O +this O +paper O +a O +wide-field O +in B-CONPRI +situ E-CONPRI +infra-red O +imaging S-APPL +system O +is O +developed O +and O +calibrated S-CONPRI +to O +enable O +measurement S-CHAR +of O +both O +solid O +and O +powder S-MATE +surface O +temperatures S-PARA +across O +the O +full O +powder B-MACEQ +bed E-MACEQ +. O + + +The O +influence O +of O +inter-layer O +cooling S-MANP +time O +is O +investigated O +using O +a O +build S-PARA +scenario O +with O +cylindrical S-CONPRI +components S-MACEQ +of O +differing O +heights O +. O + + +In B-CONPRI +situ E-CONPRI +surface O +temperature S-PARA +data S-CONPRI +are O +acquired O +throughout O +the O +build S-PARA +process O +and O +are O +compared O +to O +results O +from O +porosity S-PRO +, O +microstructure S-CONPRI +and O +mechanical B-CONPRI +property E-CONPRI +investigations O +. O + + +Changes O +in O +surface S-CONPRI +temperature O +of O +up O +to O +200 O +°C O +are O +attributed O +to O +variation S-CONPRI +in O +inter-layer O +cooling S-MANP +time O +and O +this O +is O +found O +to O +correlate O +with O +density S-PRO +and O +grain B-CONPRI +structure E-CONPRI +changes O +in O +the O +part O +. O + + +This O +work O +shows O +that O +these O +changes O +are O +significant O +and O +must O +be S-MATE +accounted O +for O +to O +improve O +the O +consistency S-CONPRI +and O +structural B-PRO +integrity E-PRO +of O +LPBF S-MANP +components S-MACEQ +. O + + +A O +three-dimensional B-ENAT +model E-ENAT +was O +developed O +for O +studying O +thermal O +behavior O +during O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +of O +commercially O +pure O +titanium S-MATE +( O +CP O +Ti S-MATE +) O +powder S-MATE +. O + + +The O +effects O +of O +scan B-PARA +speed E-PARA +and O +laser B-PARA +power E-PARA +on O +SLM S-MANP +thermal O +behavior O +were O +investigated O +. O + + +The O +results O +showed O +that O +the O +average S-CONPRI +temperature O +of O +the O +powder B-MACEQ +bed E-MACEQ +gradually O +increased O +during O +the O +SLM S-MANP +process S-CONPRI +, O +caused O +by O +a O +heat B-PRO +accumulation E-PRO +effect O +. O + + +The O +maximum O +molten B-CONPRI +pool E-CONPRI +temperature O +( O +2248 O +°C O +) O +and O +liquid O +lifetime O +( O +1.47 O +ms O +) O +were O +obtained O +for O +a O +successful O +SLM S-MANP +process S-CONPRI +for O +a O +laser B-PARA +power E-PARA +of O +150 O +W O +and O +a O +laser B-ENAT +scan E-ENAT +speed O +of O +100 O +mm/s O +. O + + +The O +temperature B-PARA +gradient E-PARA +in O +the O +molten B-CONPRI +pool E-CONPRI +increased O +slightly O +( O +from O +1.03 O +× O +104 O +to O +1.07 O +× O +104 O +°C/mm O +in O +the O +direction O +perpendicular O +to O +the O +scanning S-CONPRI +path O +; O +from O +1.21 O +× O +104 O +to O +1.28 O +× O +104 O +°C/mm O +in O +the O +thickness O +direction O +) O +when O +the O +scan B-PARA +speed E-PARA +was O +increased O +from O +50 O +to O +200 O +mm/s O +, O +but O +increased O +significantly O +( O +from O +1.29 O +× O +104 O +to O +8.24 O +× O +104 O +°C/mm O +in O +the O +direction O +perpendicular O +to O +the O +scanning S-CONPRI +path O +; O +from O +1.53 O +× O +104 O +to O +9.84 O +× O +104 O +°C/mm O +in O +the O +thickness O +direction O +) O +when O +the O +laser B-PARA +power E-PARA +was O +increased O +from O +100 O +to O +200 O +W. O +The O +width O +and O +depth O +of O +the O +molten B-CONPRI +pool E-CONPRI +decreased O +( O +width O +from O +137.1 O +to O +93.8 O +μm O +, O +depth O +from O +64.2 O +to O +38.5 O +μm O +) O +when O +the O +scan B-PARA +speed E-PARA +was O +increased O +from O +50 O +to O +200 O +mm/s O +, O +but O +increased O +( O +width O +from O +71.2 O +to O +141.4 O +μm O +, O +depth O +from O +32.7 O +to O +67.3 O +μm O +) O +when O +the O +laser B-PARA +power E-PARA +was O +increased O +from O +100 O +to O +200 O +W. O +Experimental S-CONPRI +SLM O +of O +CP O +Ti B-MATE +powder E-MATE +was O +carried O +out O +under O +different O +laser B-CONPRI +processing E-CONPRI +conditions O +and O +the O +microstructure S-CONPRI +of O +SLM-produced O +parts O +was O +investigated O +to O +demonstrate O +the O +reliability S-CHAR +of O +the O +physical B-CONPRI +model E-CONPRI +and O +simulation S-ENAT +results O +. O + + +Rational O +design B-CONPRI +of I-CONPRI +experiment E-CONPRI +is O +employed O +to O +optimize O +the O +contour S-FEAT +parameters O +to O +improve O +surface B-FEAT +finish E-FEAT +of O +inclined O +surfaces S-CONPRI +. O + + +A O +significant O +variance O +in O +surface B-PRO +roughness E-PRO +is O +found O +among O +samples S-CONPRI +made O +at O +opposite O +corners O +on O +the O +build B-MACEQ +platform E-MACEQ +. O + + +The O +recoating O +process S-CONPRI +sorts O +powder S-MATE +by O +size O +, O +smaller O +particles S-CONPRI +settle O +within O +a O +short O +distance O +from O +start O +position O +of O +recoater O +. O + + +Large O +particles S-CONPRI +ejected O +from O +melt B-MATE +pool E-MATE +can O +not O +be S-MATE +completely O +removed O +by O +inert B-CONPRI +gas E-CONPRI +flow O +and O +affect O +subsequent O +SLM S-MANP +process S-CONPRI +. O + + +At O +a O +given O +position O +, O +inclined O +surface S-CONPRI +build S-PARA +up O +and O +away O +from O +the O +centre O +of O +the O +build B-MACEQ +platform E-MACEQ +has O +higher O +surface B-PRO +roughness E-PRO +. O + + +A O +rational O +design B-CONPRI +of I-CONPRI +experiments E-CONPRI +was O +employed O +to O +evaluate O +the O +correlation O +between O +scan O +parameters S-CONPRI +and O +the O +resulting O +surface B-PRO +roughness E-PRO +of O +Selective B-MANP +Laser I-MANP +Melted E-MANP +Ti-6Al-4V O +components S-MACEQ +. O + + +There O +is O +a O +statistically O +significant O +difference O +in O +surface B-PRO +roughness E-PRO +values O +from O +specimens O +built O +with O +identical O +laser S-ENAT +exposure S-CONPRI +parameters O +but O +located O +at O +different O +positions O +on O +the O +build B-MACEQ +platform E-MACEQ +. O + + +We O +hypothesise O +that O +this O +is O +a O +consequence O +of O +changing O +powder B-MATE +particle E-MATE +size O +distributions S-CONPRI +across O +the O +powder B-MACEQ +bed E-MACEQ +resulting O +from O +the O +combined O +actions O +of O +the O +recoater O +arm O +and O +gas S-CONPRI +flow O +. O + + +We O +further O +hypothesise O +that O +orientation S-CONPRI +of O +a O +part O +and O +the O +projected O +shape O +of O +the O +incident O +laser B-CONPRI +beam E-CONPRI +play O +a O +part O +in O +surface B-PRO +roughness E-PRO +variation O +at O +any O +given O +location O +. O + + +We O +found O +that O +during O +the O +powder S-MATE +re-coating O +process S-CONPRI +, O +fine O +particles S-CONPRI +tend O +to O +settle O +within O +a O +short O +distance O +from O +the O +re-coater O +starting O +position O +, O +accompanied O +by O +higher O +variability S-CONPRI +of O +local O +powder S-MATE +size O +distribution S-CONPRI +. O + + +Spatter S-CHAR +material S-MATE +was O +found O +to O +be S-MATE +distributed O +across O +the O +powder B-MACEQ +bed E-MACEQ +by O +the O +gas S-CONPRI +flow O +. O + + +However O +, O +once O +at O +any O +given O +location O +the O +surface B-PRO +roughness E-PRO +of O +inclined O +surfaces S-CONPRI +is O +affected O +by O +the O +orientation S-CONPRI +of O +the O +surface S-CONPRI +to O +the O +centre O +of O +the O +build B-MACEQ +platform E-MACEQ +at O +which O +the O +laser B-CONPRI +beam E-CONPRI +originates O +. O + + +Each O +of O +these O +factors O +affects O +the O +surface B-PRO +roughness E-PRO +and O +has O +implications O +for O +the O +order O +in O +which O +parts O +are O +built O +in O +Selective B-MANP +Laser I-MANP +Melting E-MANP +. O + + +Selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +is O +one O +of O +the O +most O +commonly O +used O +metallic S-MATE +component S-MACEQ +3D B-MANP +printing E-MANP +techniques O +. O + + +In O +a O +previous O +investigation O +of O +multiple O +materials S-CONPRI +SLM O +reported O +by O +The O +University O +of O +Manchester O +, O +high O +porosities S-PRO +and O +cracks O +were O +found O +in O +the O +regions O +where O +the O +powder S-MATE +was O +deposited O +via O +an O +ultrasonic O +powder S-MATE +dispenser O +. O + + +The O +low O +powder S-MATE +packing O +density S-PRO +was O +identified O +as S-MATE +a O +critical O +reason O +for O +this O +. O + + +In O +this O +paper O +, O +we O +report O +a O +new O +method O +to O +compress O +the O +ultrasonically O +deposited O +powder S-MATE +layer S-PARA +in O +order O +to O +increase O +the O +powder S-MATE +packing O +density S-PRO +. O + + +The O +effects O +of O +powder S-MATE +deposition S-CONPRI +velocity O +, O +powder S-MATE +track O +overlap S-CONPRI +distance O +and O +powder S-MATE +compression S-PRO +force O +on O +the O +deposited O +powder S-MATE +characteristics O +were O +investigated O +. O + + +The O +microstructure S-CONPRI +, O +tensile B-PRO +strengths E-PRO +, O +and O +porosity S-PRO +of O +the O +laser-fused O +samples S-CONPRI +were O +analyzed O +. O + + +The O +results O +indicated O +that O +powder S-MATE +compression S-PRO +could O +reduce O +porosity S-PRO +and O +component S-MACEQ +distortion O +and O +increase O +the O +mechanical B-PRO +strength E-PRO +of O +the O +printed O +parts O +. O + + +Heterogeneous S-CONPRI +materials O +used O +in O +biomedical S-APPL +, O +structural O +and O +electronics S-CONPRI +applications O +contain O +a O +high O +fraction S-CONPRI +of O +solids O +( O +> O +60 O +vol. O +% O +) O +and O +exhibit O +extremely O +high O +viscosities O +( O +μ O +> O +1000 O +Pa S-CHAR +s O +) O +, O +which O +hinders O +their O +3D B-MANP +printing E-MANP +using O +existing O +technologies S-CONPRI +. O + + +This O +study O +shows O +that O +inducing O +high-amplitude O +ultrasonic B-PARA +vibrations E-PARA +within O +a O +nozzle S-MACEQ +imparts O +sufficient O +inertial O +forces S-CONPRI +to O +these O +materials S-CONPRI +to O +drastically O +reduce O +effective O +wall O +friction S-CONPRI +and O +flow B-PRO +stresses E-PRO +, O +enabling O +their O +3D B-MANP +printing E-MANP +with O +moderate O +back O +pressures S-CONPRI +( O +< O +1 O +MPa S-CONPRI +) O +at O +high O +rates O +and O +with O +precise O +flow O +control O +. O + + +This O +effect O +is O +utilized O +to O +demonstrate O +the O +printing O +of O +a O +commercial O +polymer B-MATE +clay E-MATE +, O +an O +aluminum-polymer O +composite S-MATE +and O +a O +stiffened O +fondant O +with O +viscosities O +up O +to O +14,000 O +Pa·s O +with O +minimal O +residual S-CONPRI +porosity S-PRO +at O +rates O +comparable O +to O +thermoplastic S-MATE +extrusion S-MANP +. O + + +This O +new O +method O +can O +significantly O +extend O +the O +type O +of O +materials S-CONPRI +that O +can O +be S-MATE +printed O +to O +produce O +functional O +parts O +without O +relying O +on O +special O +shear/thermal O +thinning O +formulations O +or O +solvents O +to O +lower O +viscosity S-PRO +of O +the O +plasticizing O +component S-MACEQ +. O + + +The O +high O +yield B-PRO +strength E-PRO +of O +the O +printed O +material S-MATE +also O +allows O +freeform B-CONPRI +3D E-CONPRI +fabrication S-MANP +with O +minimal O +need O +for O +supports S-APPL +. O + + +A O +self-healing O +and O +recyclable S-CONPRI +polyurethane S-MATE +based O +on O +dynamic S-CONPRI +halogenated O +bisphenol O +carbamate O +bonds O +was O +developed O +. O + + +The O +dynamic S-CONPRI +crosslinked O +polyurethane S-MATE +powders O +was O +developed O +for O +selective B-MANP +laser I-MANP +sintering E-MANP +for O +the O +first O +time O +. O + + +The O +introduction O +of O +dynamic S-CONPRI +bonds O +enhances O +interface S-CONPRI +interaction O +and O +Z-direction S-FEAT +mechanical B-PRO +strength E-PRO +of O +printed O +products O +. O + + +Selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +is O +one O +of O +the O +mainstream O +3D B-ENAT +printing I-ENAT +technologies E-ENAT +. O + + +A O +major O +challenge O +for O +SLS S-MANP +technology O +is O +the O +lack O +of O +novel O +polymer S-MATE +powder O +materials S-CONPRI +with O +improved O +Z-direction S-FEAT +strength S-PRO +. O + + +Herein O +, O +a O +dynamic S-CONPRI +polymer O +was O +utilized O +to O +solve O +the O +challenge O +of O +SLS S-MANP +. O + + +The O +obtained O +dynamic S-CONPRI +polyurethane O +exhibited O +excellent O +mechanical B-PRO +strength E-PRO +and O +self-healing O +efficiency O +, O +in O +addition O +to O +SLS S-MANP +processing O +ability O +. O + + +A O +small O +molecule O +model S-CONPRI +study O +confirmed O +the O +dynamic S-CONPRI +reversible O +characteristics O +of O +the O +chlorinated O +bisphenol O +carbamate O +, O +which O +dissociates O +into O +isocyanate O +and O +hydroxyl O +at O +120 O +°C O +and O +reforms O +at O +80 O +°C O +, O +as S-MATE +confirmed O +by O +NMR S-CHAR +and O +FT-IR S-CHAR +. O + + +SLS S-MANP +3D B-MANP +printing E-MANP +using O +the O +self-made O +healable O +PBP-PU O +powders S-MATE +was O +successfully O +realized O +. O + + +The O +interface S-CONPRI +interaction O +between O +the O +adjacent O +SLS S-MANP +layers O +can O +be S-MATE +significantly O +improved O +via O +dynamic S-CONPRI +chemical O +bond O +linking O +instead O +of O +traditional O +physical O +entanglement O +, O +which O +leads O +to O +an O +improved O +Z-direction S-FEAT +mechanical B-PRO +strength E-PRO +. O + + +The O +SLS B-MANP +processed E-MANP +PBP-PU O +sample S-CONPRI +exhibits O +an O +X-axis O +tensile B-PRO +strengths E-PRO +of O +∼23 O +MPa S-CONPRI +and O +an O +elongation S-PRO +at O +break O +of O +∼600 O +% O +. O + + +The O +Z-axis S-CONPRI +tensile B-PRO +strength E-PRO +is O +∼88 O +% O +of O +X-axis O +’ O +s S-MATE +, O +much O +higher O +than O +that O +of O +control O +TPU O +sample S-CONPRI +( O +∼56 O +% O +) O +. O + + +High O +porosity S-PRO +and O +interconnected O +pore B-PARA +size E-PARA +are O +crucial O +factors O +for O +bone B-BIOP +scaffolds E-BIOP +. O + + +However O +, O +since O +porosity S-PRO +is O +inversely O +related O +to O +strength S-PRO +, O +the O +microstructure S-CONPRI +must O +be S-MATE +optimized O +to O +achieve O +bone B-BIOP +scaffolds E-BIOP +suitable O +for O +load-bearing S-FEAT +applications O +. O + + +The O +powder B-MANP +bed I-MANP +3D I-MANP +printing I-MANP +method E-MANP +can O +fabricate S-MANP +the O +highly O +porous S-PRO +parts O +possessing O +the O +desired O +properties S-CONPRI +using O +micron-sized O +ceramic B-MATE +powders E-MATE +( O +> O +30 O +μm O +) O +and O +polymeric B-MATE +ink E-MATE +, O +however O +, O +low O +sinterability S-PRO +and O +, O +consequently O +, O +low O +strength S-PRO +is O +still O +a O +problem O +. O + + +In O +this O +study O +, O +nano-scale B-MATE +powders E-MATE +are O +granulated O +and O +printed O +by O +a O +special O +3D B-MANP +printing E-MANP +method O +called O +‘ O +solvent B-CONPRI +jetting E-CONPRI +on O +granulated O +feedstock S-MATE +containing O +binder S-MATE +’ O +to O +achieve O +an O +interconnected O +macropore B-CONPRI +structure E-CONPRI +with O +high O +strength S-PRO +. O + + +The O +advantages O +of O +this O +method O +, O +aside O +from O +the O +above O +mentioned O +, O +include O +obtaining O +controllable O +porosity S-PRO +, O +high O +strut S-MACEQ +density S-PRO +, O +wide B-CONPRI +neck I-CONPRI +formation E-CONPRI +, O +and O +small O +grain B-PRO +size E-PRO +; O +all O +of O +which O +are O +beneficial O +to O +mechanical B-PRO +strength E-PRO +. O + + +Using O +this O +method O +, O +a O +purely O +ceramic S-MATE +sample O +with O +30 O +% O +porosity S-PRO +and O +compressive B-PRO +strength E-PRO +of O +113.1 O +MPa S-CONPRI +was O +obtained O +. O + + +Furthermore O +, O +a O +bone B-MACEQ +scaffold I-MACEQ +prototype E-MACEQ +with O +total O +porosity S-PRO +of O +nearly O +50 O +% O +and O +mechanical B-PRO +strength E-PRO +of O +30.2 O +MPa S-CONPRI +was O +fabricated S-CONPRI +. O + + +These O +procedures O +and O +results O +are O +described O +and O +compared O +to O +another O +solvent B-CONPRI +jetting E-CONPRI +method O +which O +uses O +micron-sized B-MATE +powders E-MATE +. O + + +The O +use O +of O +porous S-PRO +cellular B-FEAT +structures E-FEAT +in O +bone S-BIOP +tissue O +engineering S-APPL +can O +provide O +mechanical S-APPL +and O +biological O +environments O +closer O +to O +the O +host B-BIOP +bone E-BIOP +. O + + +However O +, O +poor O +internal O +architectural O +designs S-FEAT +may O +lead S-MATE +to O +catastrophic O +failure S-CONPRI +. O + + +In O +this O +work O +, O +192 O +open-porous O +cellular B-FEAT +structures E-FEAT +were O +fabricated S-CONPRI +using O +3D B-MANP +printing E-MANP +( O +3DP S-MANP +) O +techniques O +. O + + +It O +was O +found O +that O +the O +pillar O +octahedral O +shape O +has O +not O +only O +greater O +stiffness S-PRO +and O +strength S-PRO +under O +compression S-PRO +, O +shear O +and O +torsion O +but O +increased O +rate O +of O +pre-osteoblastic O +cell S-APPL +proliferation O +. O + + +We O +believe O +bone B-APPL +implants E-APPL +can O +be S-MATE +fabricated O +using O +3DP S-MANP +techniques O +and O +their O +mechanical S-APPL +and O +biological O +performance S-CONPRI +can O +be S-MATE +tailored O +by O +modifying O +the O +internal B-PRO +architectures E-PRO +. O + + +Vat B-MANP +photopolymerization E-MANP +is O +used O +for O +printing O +very O +precise O +and O +accurate S-CHAR +parts O +from O +photopolymer B-MATE +resins E-MATE +. O + + +Conventional O +3D-printers O +based O +on O +vat B-MANP +photopolymerization E-MANP +are O +curing S-MANP +resins O +with O +low O +viscosity S-PRO +at O +or O +slightly O +above O +room O +temperature S-PARA +. O + + +The O +newly O +developed O +Hot O +Lithography S-CONPRI +provides O +vat B-MANP +photopolymerization E-MANP +where O +the O +resin S-MATE +is O +heated O +and O +cured S-MANP +at O +elevated O +temperatures S-PARA +. O + + +This O +study O +presents O +the O +influence O +of O +printing O +temperature S-PARA +( O +23 O +°C O +and O +70 O +°C O +) O +on O +the O +properties S-CONPRI +of O +a O +printed O +dimethacrylate O +resin S-MATE +. O + + +Specimens O +were O +printed O +in O +XYZ O +and O +ZXY O +orientation S-CONPRI +. O + + +The O +resulting O +tensile B-PRO +properties E-PRO +were O +tested O +, O +dynamic B-CONPRI +mechanical I-CONPRI +analysis E-CONPRI +was O +carried O +out O +and O +the O +double-bond O +conversion O +was O +analyzed O +. O + + +Therefore O +, O +the O +exposure S-CONPRI +time O +was O +reduced O +from O +50 O +s S-MATE +to O +30 O +s S-MATE +to O +reach O +similar O +curing B-PARA +depth E-PARA +. O + + +Higher O +printing O +temperature S-PARA +provided O +higher O +double-bond O +conversion O +, O +tensile B-PRO +strength E-PRO +and O +modulus O +of O +the O +green B-PRO +parts E-PRO +. O + + +However O +, O +printing O +temperature S-PARA +did O +not O +affect O +the O +properties S-CONPRI +after O +post-curing O +in O +XYZ O +orientation S-CONPRI +. O + + +Post-cured O +tensile B-MACEQ +specimens E-MACEQ +in O +ZXY O +orientation S-CONPRI +had O +higher O +tensile B-PRO +strength E-PRO +when O +printed O +at O +23 O +°C O +, O +because O +higher O +over-polymerization O +led S-APPL +to O +a O +smoother O +surface S-CONPRI +of O +the O +specimens O +. O + + +Overall O +, O +higher O +printing O +temperatures S-PARA +lowered O +the O +viscosity S-PRO +of O +the O +resin S-MATE +, O +reduced O +the O +printing O +time O +and O +provided O +better O +mechanical B-CONPRI +properties E-CONPRI +of O +green B-PRO +parts E-PRO +while O +post-cured O +properties S-CONPRI +were O +mostly O +not O +affected O +. O + + +In O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +, O +melt B-MATE +pool E-MATE +dynamics O +and O +stability S-PRO +are O +driven O +by O +the O +temperature S-PARA +field O +in O +the O +melt B-MATE +pool E-MATE +. O + + +If O +the O +temperature S-PARA +field O +is O +unfavourable O +defects S-CONPRI +are O +likely O +to O +form O +. O + + +The O +localised O +and O +rapid O +heating S-MANP +and O +cooling S-MANP +in O +the O +process S-CONPRI +presents O +a O +challenge O +for O +the O +experimental S-CONPRI +methods O +used O +to O +measure O +temperature S-PARA +. O + + +As S-MATE +a O +result O +, O +understanding O +of O +these O +process S-CONPRI +fundamentals O +is O +limited O +. O + + +In O +this O +paper O +a O +method O +is O +developed O +that O +uses O +coaxial O +imaging S-APPL +with O +high-speed O +cameras O +to O +give O +both O +the O +spatial O +and O +temporal O +resolution S-PARA +necessary O +to O +resolve O +the O +surface S-CONPRI +temperature O +of O +the O +melt B-MATE +pool E-MATE +. O + + +A O +two O +wavelength S-CONPRI +imaging S-APPL +setup O +is O +used O +to O +account O +for O +changes O +in O +emissivity O +. O + + +Temperature S-PARA +fields O +are O +captured O +at O +100 O +kHz O +with O +a O +resolution S-PARA +of O +20 O +μm O +during O +the O +processing O +of O +a O +simple S-MANP +Ti6Al4V O +component S-MACEQ +. O + + +Thermal B-PARA +gradients E-PARA +in O +the O +range S-PARA +5–20 O +K/μm O +and O +cooling B-PARA +rates E-PARA +in O +range S-PARA +1–40 O +K/μs O +are O +measured O +. O + + +The O +results O +presented O +give O +new O +insight O +into O +the O +effect O +of O +parameters S-CONPRI +, O +geometry S-CONPRI +and O +scan O +path O +on O +the O +melt B-MATE +pool E-MATE +temperature O +and O +cooling B-PARA +rates E-PARA +. O + + +The O +method O +developed O +here O +provides O +a O +new O +tool S-MACEQ +to O +assist O +in O +optimising O +scan O +strategies O +and O +parameters S-CONPRI +, O +identifying O +the O +causes O +of O +defect S-CONPRI +prone O +locations O +and O +controlling O +cooling B-PARA +rates E-PARA +for O +local O +microstructure S-CONPRI +development O +. O + + +In O +laser B-MANP +directed I-MANP +energy I-MANP +deposition E-MANP +( O +L-DED O +) O +processes S-CONPRI +, O +by O +applying O +a O +converged O +powder S-MATE +stream O +, O +relatively O +high O +laser B-PARA +power E-PARA +and O +larger O +laser S-ENAT +spot O +, O +the O +powder S-MATE +utilisation O +efficiency O +and O +processing O +speed O +can O +be S-MATE +increased O +. O + + +In O +this O +paper O +, O +a O +three-dimensional S-CONPRI +numerical O +model S-CONPRI +is O +established O +to O +study O +the O +mass O +transport S-CHAR +and O +heat B-CONPRI +transfer E-CONPRI +in O +the O +melt B-MATE +pools E-MATE +in O +high B-PARA +deposition I-PARA +rate E-PARA +( O +HDR O +) O +L-DED O +of O +316L B-MATE +stainless I-MATE +steel E-MATE +. O + + +The O +Volume B-CONPRI +of I-CONPRI +Fluid E-CONPRI +( O +VOF S-CONPRI +) O +method O +is O +employed O +to O +track O +the O +melt B-MATE +pool E-MATE +free B-CONPRI +surfaces E-CONPRI +, O +and O +enthalpy-porosity O +method O +is O +used O +to O +model S-CONPRI +the O +solid-liquid O +phase S-CONPRI +change O +. O + + +A O +discrete O +powder S-MATE +source O +model S-CONPRI +is O +developed O +by O +considering O +the O +non-uniform O +powder S-MATE +feed S-PARA +rate O +distribution S-CONPRI +. O + + +Different O +from O +conventional O +L-DED O +processes S-CONPRI +, O +the O +impact S-CONPRI +of O +higher O +mass O +addition O +on O +the O +melt B-MATE +pool E-MATE +fluid B-PRO +flow E-PRO +and O +temperature S-PARA +distribution S-CONPRI +is O +significant O +. O + + +With O +the O +extracted S-CONPRI +temperature O +distribution S-CONPRI +and O +geometry S-CONPRI +at O +the O +solidification S-CONPRI +front O +, O +the O +solidification S-CONPRI +conditions O +are O +also O +calculated O +, O +as S-MATE +well O +as S-MATE +the O +primary O +dendrite S-BIOP +arm O +spacing O +( O +PDAS O +) O +of O +the O +solidified O +tracks O +. O + + +Due O +to O +the O +high O +laser B-CONPRI +energy E-CONPRI +input O +, O +the O +temperature B-PARA +gradient E-PARA +is O +lower O +, O +and O +coarser O +microstructures S-MATE +are O +formed O +compared O +with O +conventional O +L-DED O +. O + + +A O +single-photon O +absorption B-CONPRI +3D E-CONPRI +stereolithographic O +methodology S-CONPRI +is O +presented O +. O + + +Meso-scale O +architectures O +can O +be S-MATE +achieved O +with O +5 O +μm O +resolution S-PARA +along O +( O +x O +, O +y S-MATE +, O +z O +) O +. O + + +Process B-CONPRI +parameters E-CONPRI +( O +e.g O +. O + + +exposure S-CONPRI +, O +slicing S-CONPRI +) O +adaptable O +to O +each O +region O +of O +the O +3D S-CONPRI +design O +. O + + +3D B-MANP +printing E-MANP +of O +highly O +complex O +porous S-PRO +architectures O +featuring O +overhanging O +units O +. O + + +The O +realization O +of O +2D S-CONPRI +and O +3D S-CONPRI +meso-scale O +architectures O +is O +an O +area S-PARA +of O +research S-CONPRI +involving O +a O +wide O +range S-PARA +of O +disciplines O +ranging O +from O +materials S-CONPRI +science O +, O +microelectronics S-CONPRI +, O +phononics O +, O +microfluidics S-CONPRI +to O +biomedicine S-APPL +requiring O +millimeter O +to O +centimeter-sized O +objects O +embedding O +micrometric O +features O +. O + + +In O +the O +recent O +years O +, O +several O +technologies S-CONPRI +have O +been O +employed O +to O +provide O +optimal O +features O +in O +terms O +of O +object O +size O +flexibility S-PRO +, O +printing O +resolution S-PARA +, O +large O +materials S-CONPRI +library O +and O +fabrication S-MANP +speed O +. O + + +In O +this O +work O +, O +we O +report O +a O +fully O +customizable O +single-photon O +absorption B-CONPRI +3D E-CONPRI +fabrication O +methodology S-CONPRI +based O +on O +direct O +laser S-ENAT +fabrication S-MANP +. O + + +To O +validate O +this O +approach O +and O +highlight O +the O +versatility O +of O +the O +setup O +, O +we O +have O +fabricated S-CONPRI +a O +comprehensive O +ensemble O +of O +2D S-CONPRI +and O +3D S-CONPRI +designs O +with O +potential O +applications O +in O +biomimetics S-CONPRI +, O +3D S-CONPRI +scaffolding O +and O +microfluidics S-CONPRI +. O + + +The O +high O +degree O +of O +tunability O +of O +the O +reported O +fabrication S-MANP +system O +allows O +tailoring O +the O +laser B-PARA +power E-PARA +, O +slicing S-CONPRI +and O +fabrication S-MANP +speed O +for O +each O +single O +area S-PARA +of O +the O +design S-FEAT +. O + + +These O +unique O +features O +enable O +a O +rapid B-ENAT +prototyping E-ENAT +of O +millimeter O +to O +centimeter-sized O +objects O +involving O +3D S-CONPRI +architectures O +with O +true O +freestanding O +subunits O +and O +micrometric O +feature S-FEAT +reproducibility O +. O + + +This O +study O +focuses O +on O +the O +microstructure B-CONPRI +evolution E-CONPRI +induced O +by O +eutectic S-CONPRI +WC-W2C O +inoculants O +during O +the O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +of O +IN718 S-MATE +. O + + +The O +as-built O +microstructure S-CONPRI +observed O +using O +an O +electron O +microscope S-MACEQ +indicates O +that O +grain S-CONPRI +nucleation O +occurred O +on O +the O +surface S-CONPRI +of O +inoculants O +and O +that O +the O +diffusion S-CONPRI +layer O +between O +inoculants O +and O +IN718 S-MATE +composed O +of O +a O +mixture O +of O +IN718 S-MATE +and O +inoculants O +. O + + +After O +the O +post O +heat B-MANP +treatment E-MANP +of O +the O +as-built O +SLM S-MANP +specimens O +, O +more O +grains S-CONPRI +nucleated O +around O +the O +inoculants O +, O +and O +Nb-rich O +precipitates S-MATE +were O +formed O +along O +the O +grain B-CONPRI +boundaries E-CONPRI +. O + + +With O +an O +increase O +in O +the O +post B-MANP +heat-treatment E-MANP +temperature O +, O +the O +microstructure B-CONPRI +evolution E-CONPRI +became O +more O +pronounced O +. O + + +To O +elucidate O +the O +underlying O +mechanism S-CONPRI +, O +both O +theoretical S-CONPRI +and O +experimental S-CONPRI +analyses O +were O +performed O +. O + + +In O +summary O +, O +eutectic S-CONPRI +WC-W2C O +inoculants O +could O +provide O +heterogeneous B-CONPRI +nucleation E-CONPRI +sites O +for O +grain S-CONPRI +formation O +owing O +to O +the O +low O +wetting O +angle O +and O +the O +semi-coherent O +interface S-CONPRI +with O +the O +matrix O +. O + + +Theoretical S-CONPRI +analysis O +suggests O +that O +the O +difference O +in O +the O +thermal B-PRO +expansion I-PRO +coefficient E-PRO +between O +inoculants O +and O +IN718 S-MATE +did O +not O +provide O +a O +significant O +amount O +of O +residual B-PRO +stress E-PRO +. O + + +Thus O +, O +it O +can O +be S-MATE +concluded O +that O +heterogeneous B-CONPRI +nucleation E-CONPRI +is O +the O +primary O +mechanism S-CONPRI +by O +which O +inoculants O +can O +influence O +the O +microstructure S-CONPRI +in O +the O +present O +study O +. O + + +This O +paper O +presents O +an O +integrated O +physics-based O +and O +statistical O +modeling S-ENAT +approach O +to O +predict O +temperature S-PARA +field O +and O +meltpool S-CHAR +geometry S-CONPRI +in O +multi-track O +processing O +of O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +of O +nickel S-MATE +625 O +alloy S-MATE +. O + + +Multi-track O +laser B-CONPRI +processing E-CONPRI +of O +powder B-MATE +material E-MATE +using O +L-PBF S-MANP +process O +has O +been O +studied O +using O +2-D O +finite B-CONPRI +element E-CONPRI +simulations O +to O +calculate O +temperature S-PARA +fields O +along O +the O +scan O +and O +hatch O +directions O +for O +three O +consecutive O +tracks O +for O +a O +moving O +laser B-PARA +heat E-PARA +source O +to O +understand O +the O +heating S-MANP +and O +melting S-MANP +process O +. O + + +Based O +on O +the O +predicted S-CONPRI +temperature O +fields O +, O +width O +, O +depth O +and O +shape O +of O +the O +meltpool S-CHAR +is O +determined O +. O + + +Designed S-FEAT +experiments O +on O +L-PBF S-MANP +of O +nickel B-MATE +alloy E-MATE +625 O +powder B-MATE +material E-MATE +are O +conducted O +to O +measure O +the O +relative B-PRO +density E-PRO +and O +meltpool S-CHAR +geometry S-CONPRI +. O + + +Experimental S-CONPRI +work O +is O +reported O +on O +the O +measured O +density S-PRO +of O +built O +coupons O +and O +meltpool S-CHAR +size O +. O + + +Statistically-based O +predictive B-CONPRI +models E-CONPRI +using O +response O +surface S-CONPRI +regression S-CONPRI +for O +relative B-PRO +density E-PRO +, O +meltpool S-CHAR +geometry S-CONPRI +, O +peak O +temperature S-PARA +, O +and O +time O +above O +melting B-PRO +point E-PRO +are O +developed O +and O +multi-objective O +optimization S-CONPRI +studies O +are O +conducted O +by O +using O +genetic B-CONPRI +algorithm E-CONPRI +and O +swarm O +intelligence O +. O + + +A O +fragile S-CONPRI +and O +non-thixotropic B-PRO +biocompatible E-PRO +low B-MATE +molecular I-MATE +weight I-MATE +gel E-MATE +is O +printed O +in O +3D B-CONPRI +structures E-CONPRI +by O +a O +solvent B-CONPRI +exchange E-CONPRI +process S-CONPRI +. O + + +The O +3D B-MANP +printing E-MANP +process O +is O +based O +on O +the O +continuous O +extrusion S-MANP +of O +a O +solution S-CONPRI +of O +a O +small O +amphiphile S-MATE +molecule O +, O +N-heptyl-d-galactonamide S-MATE +, O +in O +dimethylsulfoxide S-MATE +, O +that O +forms O +a O +gel S-MATE +in O +contact S-APPL +with O +water O +. O + + +The O +diffusion S-CONPRI +of O +water O +in O +the O +dimethylsulfoxide S-MATE +/ O +N-heptyl-d-galactonamide S-MATE +solution O +triggers O +the O +self-assembly S-CONPRI +of O +the O +molecule O +into O +supramolecular B-MATE +fibers E-MATE +and O +the O +setting O +of O +the O +ink S-MATE +. O + + +The O +conditions O +for O +getting O +a O +well-defined O +pattern S-CONPRI +and O +the O +dimensions S-FEAT +of O +the O +constructs O +have O +been O +determined O +. O + + +The O +resulting O +constructs O +can O +be S-MATE +easily O +dissolved O +, O +orienting O +its O +application O +as S-MATE +a O +sacrificial B-MATE +ink E-MATE +or O +a O +temporary O +support S-APPL +. O + + +This O +method O +opens O +the O +way O +to O +the O +injection O +and O +the O +3D B-MANP +printing E-MANP +of O +other O +fragile S-CONPRI +and O +non-thixotropic S-PRO +supramolecular O +hydrogels S-MATE +. O + + +Biofabrication S-MANP +is O +the O +process S-CONPRI +of O +transforming O +materials S-CONPRI +into O +systems O +that O +reproduce O +biological B-FEAT +structure E-FEAT +and O +function O +. O + + +Previous O +attempts O +to O +create O +biomimetic S-CONPRI +systems O +have O +often O +used O +single O +materials S-CONPRI +shaped O +into O +limited O +configurations O +that O +do O +not O +mimic S-MACEQ +the O +heterogeneous S-CONPRI +structure O +and O +properties S-CONPRI +of O +many O +biological B-MATE +tissues E-MATE +. O + + +The O +printer S-MACEQ +was O +used O +to O +fabricate S-MANP +a O +range S-PARA +of O +composite B-MATE +materials E-MATE +containing O +varying O +blends S-MATE +of O +a O +tough O +alginate/poly O +( O +acrylamide O +) O +ionic O +covalent O +entanglement O +hydrogel S-MATE +and O +an O +acrylated O +urethane S-MATE +based O +UV-curable O +adhesive S-MATE +material O +. O + + +The O +hard O +adhesive S-MATE +material O +acted O +as S-MATE +particulate O +reinforcement S-PARA +within O +the O +matrix O +of O +composites S-MATE +printed O +with O +a O +large O +hydrogel S-MATE +volume O +fraction S-CONPRI +. O + + +The O +composite B-MATE +materials E-MATE +were O +characterized O +mechanically O +and O +their O +performance S-CONPRI +could O +be S-MATE +modeled O +with O +standard S-CONPRI +composite S-MATE +theory O +. O + + +The O +platform S-MACEQ +of O +a O +3D B-MACEQ +printer E-MACEQ +allowed O +these O +composite B-MATE +materials E-MATE +to O +be S-MATE +fabricated O +directly O +with O +a O +smooth O +and O +continuous O +gradient O +of O +modulus O +between O +the O +soft O +hydrogel S-MATE +and O +harder O +acrylated O +urethane B-MATE +material E-MATE +, O +which O +may O +be S-MATE +useful O +in O +the O +development O +of O +bio-inspired B-FEAT +structures E-FEAT +such O +as S-MATE +artificial O +tendons O +. O + + +This O +work O +investigated O +the O +utility O +of O +three O +piezoelectric O +inkjet S-MANP +printers O +as S-MATE +energetic O +material S-MATE +deposition S-CONPRI +systems O +, O +focusing O +on O +the O +ability O +of O +each O +system O +to O +achieve O +the O +seamless O +integration O +of O +energetic O +material S-MATE +into O +small-scale O +electronic O +devices O +. O + + +Aluminum S-MATE +copper O +( O +II O +) O +oxide S-MATE +nanothermite O +was O +deposited O +using O +the O +three O +deposition S-CONPRI +systems O +. O + + +The O +printers S-MACEQ +were O +evaluated O +based O +on O +their O +robustness S-PRO +to O +energetic O +ink S-MATE +solids O +loading O +, O +drop O +formation O +reliability S-CHAR +, O +drop O +quality B-CONPRI +degradation E-CONPRI +over O +time O +, O +and O +the O +energetic O +performance S-CONPRI +of O +the O +deposited O +material S-MATE +. O + + +These O +metrics O +correlate O +to O +the O +feasibility S-CONPRI +of O +a O +deposition S-CONPRI +system O +to O +successfully O +achieve O +high O +sample S-CONPRI +throughput O +while O +maintaining O +the O +energetic O +performance S-CONPRI +of O +the O +printed O +material S-MATE +. O + + +After O +initial O +system O +testing S-CHAR +, O +the O +PipeJet O +P9 O +500 O +μm O +pipe O +was O +used O +to O +demonstrate O +the O +successful O +deposition S-CONPRI +of O +nanothermite O +in O +varying O +geometric O +patterns O +with O +micrometer S-MACEQ +precision O +. O + + +Popular O +3D B-MANP +printing E-MANP +techniques O +such O +as S-MATE +fused O +deposition S-CONPRI +modelling O +( O +FDM S-MANP +) O +and O +stereolithography S-MANP +( O +SLA S-MACEQ +) O +have O +certain O +limitations O +and O +challenges O +. O + + +Although O +printing O +multi-material S-CONPRI +functional O +parts O +combining O +smart O +and O +conventional O +materials S-CONPRI +is O +a O +promising O +area S-PARA +, O +existing O +printers S-MACEQ +are O +not O +ideally O +suited O +to O +this O +, O +with O +FDM B-MACEQ +printers E-MACEQ +typically O +requiring O +high O +operating O +temperatures S-PARA +and O +SLA S-MACEQ +using O +a O +tank O +containing O +one O +single O +material S-MATE +. O + + +Common O +3D B-MACEQ +printers E-MACEQ +also O +require O +the O +deposition S-CONPRI +of O +additional O +“ O +support S-APPL +” O +material S-MATE +to O +hold O +the O +shape O +of O +an O +object O +when O +printing O +overhang S-PARA +structures O +. O + + +The O +concept O +of O +adding O +additional O +rotational O +axes O +to O +the O +system O +to O +eliminate O +this O +problem O +has O +shown O +promising O +results O +, O +but O +such O +systems O +still O +lack O +the O +capability O +to O +print S-MANP +complex B-CONPRI +structures E-CONPRI +without O +supports S-APPL +. O + + +To O +overcome O +these O +limitations O +there O +is O +a O +need O +to O +develop O +a O +new O +3D B-MANP +printing E-MANP +techniques O +that O +combine O +the O +strengths S-PRO +of O +existing O +methods O +. O + + +A O +photopolymer S-MATE +extrusion S-MANP +3D B-MANP +printing E-MANP +technique O +, O +which O +combines O +the O +strengths S-PRO +of O +FDM S-MANP +and O +UV S-CONPRI +assisted O +3D B-ENAT +printing I-ENAT +technology E-ENAT +is O +demonstrated O +in O +this O +paper O +. O + + +By O +using O +photopolymer S-MATE +extrusion S-MANP +in O +combination O +with O +two O +additional O +rotational O +axes O +, O +the O +printer S-MACEQ +developed O +in O +this O +work O +not O +only O +allows O +the O +traditional O +layer S-PARA +upon O +layer S-PARA +printing O +, O +but O +is O +also O +capable O +of O +free O +form O +printing O +. O + + +Fumed O +silica S-MATE +is O +used O +as S-MATE +a O +filler O +in O +order O +to O +control O +the O +material S-MATE +viscosity O +for O +proper O +extrusion S-MANP +and O +curing S-MANP +. O + + +Mechanical B-CHAR +tests E-CHAR +were O +conducted O +on O +objects O +printed O +using O +different O +concentrations O +of O +filler O +in O +the O +photopolymer S-MATE +to O +understand O +its O +effect O +and O +determine O +the O +range S-PARA +of O +suitable O +filler O +concentration O +. O + + +Multilayer O +HSS S-MATE +alloys S-MATE +have O +been O +produced O +by O +laser B-MANP +cladding E-MANP +and O +characterized O +in O +terms O +of O +their O +microstructural B-CONPRI +evolution E-CONPRI +, O +hardness S-PRO +, O +stress S-PRO +state O +and O +tensile B-PRO +properties E-PRO +. O + + +Massive O +martensitic O +transformation O +during O +cladding S-MANP +of O +HSS S-MATE +alloys S-MATE +, O +resulted O +in O +the O +compressive O +state O +of O +clads O +and O +suppressed O +the O +cracking S-CONPRI +. O + + +Re-heating O +during O +laser B-MANP +cladding E-MANP +of O +thick O +multilayer O +coatings S-APPL +of O +an O +Fe-Cr-Mo-W-V O +alloy S-MATE +had O +a O +detrimental O +effect O +on O +the O +hardness S-PRO +of O +intermediate O +layers O +. O + + +Addition O +of O +Co S-MATE +in O +LC1 O +at O +the O +expense O +of O +Fe S-MATE +( O +Fe−x-Cr-Mo-W-V-Cox O +) O +significantly O +increased O +the O +overall O +coating S-APPL +hardness O +by O +strengthen O +the O +matrix O +. O + + +Tensile B-CHAR +testing E-CHAR +results O +showed O +a O +strong O +adherence O +of O +thick O +multilayer O +coatings S-APPL +with O +the O +substrate S-MATE +. O + + +Two O +high B-MATE +speed I-MATE +steel E-MATE +( O +HSS S-MATE +) O +alloys S-MATE +were O +laser S-ENAT +cladded O +on O +42CrMo4 O +steel S-MATE +cylindrical S-CONPRI +substrate O +by O +using O +a O +4 O +kW O +Nd B-MATE +: I-MATE +YAG E-MATE +laser B-MACEQ +source E-MACEQ +. O + + +After O +optimization S-CONPRI +of O +the O +laser S-ENAT +material O +processing O +parameters S-CONPRI +for O +single O +layers O +, O +multilayered O +clads O +were O +produced O +. O + + +Microstructural B-CHAR +characterization E-CHAR +of O +the O +laser S-ENAT +deposits O +constitutes O +studies O +of O +the O +carbides S-MATE +and O +matrix O +, O +which O +was O +done O +by O +using O +Scanning B-CHAR +Electron I-CHAR +Microscopy E-CHAR +( O +SEM S-CHAR +) O +, O +Energy B-CHAR +Dispersive I-CHAR +Spectroscopy E-CHAR +( O +EDS S-CHAR +) O +, O +Electron O +Backscattered O +Diffraction S-CHAR +( O +EBSD S-CHAR +) O +and O +High B-CHAR +Resolution I-CHAR +Transmission I-CHAR +Electron I-CHAR +Microscopy E-CHAR +( O +HRTEM S-CHAR +) O +.The O +strengthening B-CONPRI +mechanism E-CONPRI +of O +LC1 O +( O +Fe-Cr-Mo-W-V O +) O +was O +comprised O +of O +a O +martensitic O +matrix O +and O +retained B-MATE +austenite E-MATE +along O +with O +networks O +of O +VC S-MATE +and O +Mo2C O +eutectic S-CONPRI +carbides S-MATE +. O + + +Cr S-MATE +enriched O +fine O +carbides S-MATE +( O +Cr7C3 O +and O +Cr23C6 O +) O +were O +embedded O +within O +the O +matrix O +. O + + +During O +laser B-MANP +cladding E-MANP +of O +the O +multilayer O +deposits O +, O +cladding S-MANP +of O +subsequent O +layers O +had O +a O +detrimental O +effect O +on O +the O +hardness S-PRO +of O +previously O +cladded O +layers O +, O +which O +was O +due O +to O +tempering S-MANP +of O +existing O +lath O +martensite S-MATE +. O + + +To O +overcome O +the O +hardness S-PRO +drop O +, O +a O +new O +alloy S-MATE +LC2 O +( O +Febal−x-Cr-Mo-W-V-Cox O +) O +was O +blended O +by O +addition O +of O +3–5 O +% O +of O +Co S-MATE +in O +LC1 O +. O + + +The O +addition O +of O +Co S-MATE +resulted O +in O +an O +overall O +increase O +in O +hardness S-PRO +and O +a O +reduction S-CONPRI +in O +the O +hardness S-PRO +drop O +during O +sequential O +layer S-PARA +cladding S-MANP +; O +the O +latter O +was O +due O +to O +the O +presence O +of O +Co S-MATE +in O +the O +solid B-MATE +solution E-MATE +with O +Fe.HRTEM O +was O +performed O +to O +characterize O +the O +nanometer-sized O +precipitates S-MATE +evolved O +during O +the O +re-heating O +. O + + +These O +carbides S-MATE +were O +either O +enriched O +with O +V S-MATE +and O +W O +or O +formed O +from O +a O +complex O +combination O +of O +V S-MATE +, O +Mo S-MATE +, O +W O +and O +Cr S-MATE +with O +lattice S-CONPRI +spacings O +of O +0.15 O +nm O +to O +0.26 O +nm O +. O + + +An O +urgent O +need O +in O +the O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +process S-CONPRI +is O +to O +efficiently O +remove O +emissions O +from O +or O +around O +the O +moving O +melt B-MATE +pool E-MATE +since O +the O +powder B-MACEQ +bed E-MACEQ +contamination O +by O +spatter S-CHAR +can O +potentially O +damage S-PRO +fabricated O +part O +quality S-CONPRI +. O + + +The O +objective O +of O +this O +study O +is O +to O +propose O +new O +designs S-FEAT +of O +the O +gas S-CONPRI +flow O +system O +in O +the O +build B-PARA +chamber E-PARA +to O +enhance O +the O +removability O +of O +spatter S-CHAR +. O + + +Specifically O +, O +a O +Computational B-CHAR +Fluid I-CHAR +Dynamics E-CHAR +( O +CFD S-APPL +) O +model S-CONPRI +for O +the O +LPBF S-MANP +gas S-CONPRI +flow O +system O +has O +been O +developed O +to O +simulate O +the O +complicated O +flow O +behavior O +inside O +the O +build B-PARA +chamber E-PARA +. O + + +The O +movement O +of O +spatter S-CHAR +has O +been O +calculated O +by O +the O +Discrete O +Phase B-CONPRI +Model E-CONPRI +( O +DPM O +) O +. O + + +The O +fully O +coupled O +CFD-DPM O +fluid-particle O +interaction O +method O +has O +been O +applied O +to O +capture O +the O +influence O +of O +gas S-CONPRI +flow O +on O +solid O +particles S-CONPRI +accurately S-CHAR +. O + + +Additionally O +, O +an O +analytical O +expression O +is O +utilized O +to O +obtain O +the O +threshold O +velocity O +of O +inert B-CONPRI +gas E-CONPRI +flow O +upon O +the O +powder B-MACEQ +bed E-MACEQ +. O + + +The O +spatter S-CHAR +distribution S-CONPRI +in O +a O +generic O +gas S-CONPRI +chamber O +design S-FEAT +was O +studied O +. O + + +It O +was O +found O +that O +the O +Coanda O +effect O +, O +a O +gas S-CONPRI +flow O +downward O +tendency O +toward O +the O +substrate S-MATE +, O +can O +have O +a O +significant O +impact S-CONPRI +on O +the O +spatter S-CHAR +removal O +process S-CONPRI +. O + + +With O +the O +proposed O +new O +designs S-FEAT +, O +the O +Coanda O +effect O +is O +minimized O +, O +and O +most O +of O +the O +spatters O +can O +be S-MATE +removed O +from O +the O +build S-PARA +region O +without O +blowing S-MANP +up O +powder B-MACEQ +bed E-MACEQ +particles S-CONPRI +. O + + +Polymer B-MANP +extrusion E-MANP +three O +dimensional O +( O +3D S-CONPRI +) O +printing O +, O +such O +as S-MATE +fused O +deposition B-CONPRI +modeling E-CONPRI +( O +FDM S-MANP +) O +, O +has O +recently O +garnered O +attention O +due O +to O +its O +inherent O +process S-CONPRI +flexibility S-PRO +and O +rapid B-ENAT +prototyping E-ENAT +capability O +. O + + +Specifically O +, O +the O +addition O +of O +electrical S-APPL +components S-MACEQ +and O +interconnects O +into O +a O +3D B-MANP +printing E-MANP +build O +sequence O +has O +received O +heavy O +interest O +for O +space O +applications O +. O + + +However O +, O +the O +addition O +of O +these O +components S-MACEQ +, O +along O +with O +the O +thermal O +load O +associated O +with O +space-based O +applications O +, O +may O +prove O +problematic O +for O +typical O +thermally O +insulating S-CONPRI +3D B-MANP +printed E-MANP +polymer O +structures O +. O + + +The O +work O +presented O +here O +addresses O +thermally O +conductive O +polymer B-MATE +matrix I-MATE +composites E-MATE +( O +specifically O +, O +graphite S-MATE +, O +carbon B-MATE +fiber E-MATE +, O +and O +silver S-MATE +in O +an O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +polymer O +matrix O +) O +to O +identify O +the O +effect O +of O +composite S-MATE +geometry O +and O +print S-MANP +direction O +on O +thermal O +anisotropic S-PRO +properties O +. O + + +The O +work O +also O +examines O +the O +effect O +of O +these O +composites S-MATE +on O +print B-CONPRI +quality E-CONPRI +, O +mechanical S-APPL +tensile O +properties S-CONPRI +, O +fracture S-CONPRI +plane O +analysis O +, O +micrograph O +imaging S-APPL +, O +and O +cube S-CONPRI +satellite O +thermal B-CHAR +analysis E-CHAR +. O + + +The O +thermal B-PRO +conductivity E-PRO +of O +3D B-MANP +printed E-MANP +material O +systems O +in O +this O +work O +may O +enable O +the O +production S-MANP +of O +thermally O +stable O +3D B-MANP +printed E-MANP +structures O +, O +supports S-APPL +, O +and O +devices O +. O + + +Key O +results O +of O +this O +work O +include O +anisotropic S-PRO +thermal O +conductivity S-PRO +for O +3D B-MANP +printed E-MANP +structures O +related O +to O +print S-MANP +direction O +and O +filler O +morphology S-CONPRI +meaning O +that O +thermal B-PRO +conductivity E-PRO +can O +be S-MATE +controlled O +through O +a O +combination O +of O +print S-MANP +raster O +direction O +and O +material S-MATE +design S-FEAT +. O + + +When O +the O +materials S-CONPRI +analyzed O +in O +this O +work O +are O +incorporated O +with O +other O +active O +cooling S-MANP +systems O +, O +space-based O +3D B-MANP +printed E-MANP +applications O +can O +then O +be S-MATE +designed O +to O +incorporate O +increasing O +thermal O +loads O +, O +opening O +a O +new O +door O +to O +producing O +space-ready O +3D B-MANP +printed E-MANP +structures O +. O + + +Inverse O +process S-CONPRI +embedded B-MANP +3D I-MANP +printing E-MANP +multi O +internal O +surfaces S-CONPRI +hydrogel S-MATE +and O +application O +in O +anatomical O +organ O +model S-CONPRI +. O + + +Inverse O +process-based O +printing O +strategies O +can O +speed O +up O +3D B-MANP +printing E-MANP +and O +increase O +efficiency O +. O + + +Prepolymer S-MATE +has O +high O +transparency O +, O +and O +has O +shear B-CONPRI +thinning E-CONPRI +behavior O +and O +yield B-PRO +stress E-PRO +characteristics O +. O + + +The O +most O +current O +3D B-MANP +printing E-MANP +method O +involves O +the O +combination O +of O +additional O +processes S-CONPRI +, O +such O +as S-MATE +casting O +and O +demolding S-CONPRI +, O +to O +produce O +an O +organ O +model S-CONPRI +. O + + +This O +method O +requires O +professionals O +to O +invest O +a O +considerable O +amount O +of O +time O +in O +editing O +the O +model S-CONPRI +and O +post-processing S-CONPRI +activities O +. O + + +In O +this O +work O +, O +embedded B-MANP +three-dimensional I-MANP +printing E-MANP +( O +EMB3D S-MANP +) O +is O +performed O +in O +a O +transparent S-CONPRI +and O +photocrosslinkable S-FEAT +support O +medium O +. O + + +Based O +on O +a O +photo-curable S-FEAT +hydrogel S-MATE +precursor O +with O +yield B-PRO +stress E-PRO +behavior O +, O +a O +new O +EMB3D S-MANP +printing O +strategy O +is O +developed O +, O +which O +could O +be S-MATE +considered O +as S-MATE +an O +inverse O +process S-CONPRI +. O + + +During O +printing O +, O +a O +closed O +shell S-MACEQ +is O +formed O +with O +a O +release O +ink S-MATE +using O +a O +capillary B-MACEQ +needle E-MACEQ +. O + + +After O +printing O +, O +the O +support S-APPL +medium O +is O +photocrosslinked S-FEAT +to O +a O +solid O +part O +, O +and O +the O +object O +is O +peeled O +off O +along O +with O +the O +closed O +shell S-MACEQ +. O + + +The O +stated O +approach O +makes O +it O +possible O +to O +produce O +transparent S-CONPRI +and O +elastic S-PRO +solid O +objects O +with O +multi-internal O +surfaces S-CONPRI +. O + + +Moreover O +, O +it O +can O +be S-MATE +applied O +in O +providing O +a O +soft O +, O +dissectible S-CONPRI +, O +accurate S-CHAR +, O +and O +highly O +interactive O +model S-CONPRI +for O +medical S-APPL +doctors O +to O +facilitate O +surgical B-CONPRI +processes E-CONPRI +. O + + +A O +geometry-based O +model S-CONPRI +for O +predicting O +lack-of-fusion O +porosity S-PRO +is O +presented O +. O + + +The O +model S-CONPRI +relies O +on O +melt B-PARA +pool I-PARA +dimension E-PARA +, O +hatch B-PARA +spacing E-PARA +and O +layer B-PARA +thickness E-PARA +. O + + +Porosity S-PRO +( O +or O +density S-PRO +) O +predicted S-CONPRI +with O +the O +model S-CONPRI +agrees O +well O +with O +reported O +literature O +data S-CONPRI +. O + + +A O +geometry-based O +simulation S-ENAT +is O +used O +to O +predict O +porosity S-PRO +caused O +by O +insufficient O +overlap S-CONPRI +of O +melt B-MATE +pools E-MATE +( O +lack O +of O +fusion S-CONPRI +) O +in O +powder B-MANP +bed I-MANP +fusion E-MANP +. O + + +The O +inputs O +into O +the O +simulation S-ENAT +are O +hatch B-PARA +spacing E-PARA +, O +layer B-PARA +thickness E-PARA +, O +and O +melt-pool O +cross-sectional O +area S-PARA +. O + + +Melt-pool O +areas S-PARA +used O +in O +the O +simulations S-ENAT +can O +be S-MATE +obtained O +from O +experiments O +, O +or O +estimated O +with O +the O +analytical O +Rosenthal B-CONPRI +equation E-CONPRI +. O + + +The O +necessary O +material S-MATE +constants O +, O +including O +absorptivity O +for O +laser-based O +melting S-MANP +, O +have O +been O +collated O +for O +alloy B-MATE +steels E-MATE +, O +aluminum B-MATE +alloys E-MATE +and O +titanium B-MATE +alloys E-MATE +. O + + +Comparison O +with O +several O +data S-CONPRI +sets O +from O +the O +literature O +shows O +that O +the O +simulations S-ENAT +correctly O +predict O +process S-CONPRI +conditions O +at O +which O +lack-of-fusion O +porosity S-PRO +becomes O +apparent O +, O +as S-MATE +well O +as S-MATE +the O +rate O +at O +which O +porosity S-PRO +increases O +with O +changes O +in O +process S-CONPRI +conditions O +such O +as S-MATE +beam O +speed O +, O +layer B-PARA +thickness E-PARA +and O +hatch B-PARA +spacing E-PARA +. O + + +To O +fabricate S-MANP +highly O +complex B-CONPRI +structures E-CONPRI +, O +sacrificial O +support B-MATE +material E-MATE +is O +usually O +needed O +. O + + +However O +, O +traditional O +petroleum-based S-MATE +support O +materials S-CONPRI +are O +un-sustainable S-CONPRI +, O +non-recyclable S-CONPRI +, O +and O +difficult O +to O +be S-MATE +completely O +removed O +from O +the O +target O +structure S-CONPRI +after O +3D B-CONPRI +processing E-CONPRI +. O + + +Instead O +, O +cellulose B-MATE +nanocrystals E-MATE +( O +CNC S-ENAT +) O +gel S-MATE +could O +serves O +as S-MATE +an O +interesting O +3D B-MANP +printing E-MANP +support O +material S-MATE +due O +to O +its O +sustainability S-CONPRI +, O +renewability S-CONPRI +, O +and O +potential O +recyclability S-CONPRI +. O + + +Since O +CNCs S-MATE +are O +highly O +dispersible O +in O +water O +as S-MATE +nanoparticles O +and O +are O +also O +not O +UV S-CONPRI +sensitive O +, O +it O +has O +less O +absorption S-CONPRI +or O +bondability S-CONPRI +with O +other O +UV B-MATE +curable I-MATE +polymer E-MATE +matrices O +. O + + +This O +allows O +them O +to O +be S-MATE +completely O +washed O +out O +by O +water O +, O +which O +offers O +a O +green O +and O +efficient O +method O +to O +remove O +the O +CNC S-ENAT +support O +material S-MATE +during O +post B-CONPRI +processing E-CONPRI +. O + + +In O +addition O +, O +with O +increasing O +needs O +for O +more O +intricate O +structures O +, O +combining O +different O +3D B-MANP +printing E-MANP +strategies O +into O +a O +hybrid B-MANP +3D I-MANP +printing E-MANP +platform O +can O +be S-MATE +highly O +beneficial O +. O + + +In O +this O +work O +, O +a O +multi-materials-multi-methods S-CONPRI +( O +M4 S-MANP +) O +printer S-MACEQ +with O +dual O +direct-ink-write S-MANP +( O +DIW S-MANP +) O +and O +DIW-inkjet B-MANP +printing E-MANP +capability O +was O +used O +to O +fabricate S-MANP +various O +complex B-CONPRI +structures E-CONPRI +while O +using O +CNC S-ENAT +as S-MATE +support O +material S-MATE +. O + + +After O +3D B-MANP +printing E-MANP +, O +water O +was O +used O +to O +remove O +the O +CNC S-ENAT +support O +structure S-CONPRI +. O + + +Even O +in O +a O +highly O +confined O +environment O +, O +such O +as S-MATE +the O +inside O +of O +a O +balloon O +structure S-CONPRI +, O +CNC S-ENAT +support O +material S-MATE +was O +still O +easily O +removed O +. O + + +The O +potential O +of O +using O +sustainable S-CONPRI +CNC S-ENAT +support O +material S-MATE +and O +M4 S-MANP +hybrid B-MANP +3D I-MANP +printing E-MANP +strategies O +to O +fabricate S-MANP +different O +complex B-CONPRI +structures E-CONPRI +was O +demonstrated O +. O + + +Since O +CNC B-MATE +gel E-MATE +is O +derived O +from O +forestry O +products O +and O +is O +entirely O +water O +based O +, O +the O +3D B-MANP +printing E-MANP +process O +was O +also O +made O +more O +environmentally O +friendly O +, O +sustainable S-CONPRI +, O +and O +potentially O +recyclable S-CONPRI +. O + + +Composite B-MATE +coatings E-MATE +of O +titanium S-MATE +reinforced S-CONPRI +separately O +with O +hydroxyapatite S-MATE +( O +HAp O +) O +and O +bioglass O +( O +BG O +) O +were O +deposited O +on O +titanium B-MATE +substrate E-MATE +using O +Laser B-MANP +Engineered I-MANP +Net I-MANP +Shaping E-MANP +( O +LENS™ O +) O +. O + + +The O +microstructure S-CONPRI +, O +phase S-CONPRI +constituents O +, O +in O +vitro O +electrochemical S-CONPRI +, O +tribological S-CONPRI +and O +biological O +properties S-CONPRI +of O +these O +composite B-MATE +coatings E-MATE +deposited O +using O +different O +laser B-PARA +powers E-PARA +was O +studied O +. O + + +The O +composite B-MATE +coatings E-MATE +showed O +several O +reaction O +products O +such O +as S-MATE +Ca2P2O7 O +, O +CaTiO3 O +, O +Na2Ca2Si3O9 O +due O +to O +high O +temperature S-PARA +interaction O +of O +HAp O +and O +BG O +with O +Ti S-MATE +. O + + +The O +average S-CONPRI +top O +surface S-CONPRI +hardness S-PRO +of O +the O +Ti B-MATE +substrate E-MATE +was O +148 O +± O +5 O +HV O +and O +that O +of O +the O +composite B-MATE +coatings E-MATE +was O +between O +720 O +and O +740 O +HV O +. O + + +As S-MATE +a O +result O +, O +the O +composite B-MATE +coatings E-MATE +exhibited O +significant O +increase O +in O +the O +in O +vitro O +wear B-PRO +resistance E-PRO +. O + + +The O +incorporation O +of O +HAp O +and O +BG O +in O +Ti S-MATE +increased O +the O +corrosion S-CONPRI +current O +, O +possibly O +due O +to O +the O +presence O +of O +residual B-PRO +stresses E-PRO +, O +but O +shifted O +the O +corrosion S-CONPRI +potential O +towards O +noble O +direction O +due O +bioactive O +reinforcements O +. O + + +In O +vitro O +proliferation O +of O +mouse O +embryonic O +fibroblast S-BIOP +cells S-APPL +( O +NIH3T3 O +) O +was O +found O +to O +be S-MATE +more O +on O +composite B-MATE +coatings E-MATE +than O +on O +titanium B-MATE +substrate E-MATE +demonstrating O +their O +superior O +cell-materials O +interactions O +. O + + +One-photon O +or O +two O +photon O +absorption S-CONPRI +by O +dye O +molecules O +in O +photopolymers S-MATE +enable O +direct O +2D S-CONPRI +& O +3D S-CONPRI +lithography O +of O +micro/nano O +structures O +with O +high O +spatial O +resolution S-PARA +and O +can O +be S-MATE +used O +effectively O +in O +fabricating S-MANP +artificially O +structured O +nanomaterials S-MATE +. O + + +Complex O +2D B-FEAT +patterns E-FEAT +and O +3D S-CONPRI +meshes O +were O +fabricated S-CONPRI +with O +sub-micron S-FEAT +resolution S-PARA +, O +in O +commercially O +available O +liquid O +photopolymer S-MATE +to O +show O +the O +impact/versatility O +of O +this O +technique O +. O + + +Pure O +Al S-MATE +with O +high O +laser S-ENAT +reflectivity O +is O +essentially O +incompatible O +with O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +. O + + +The O +retention O +of O +a O +large O +number O +of O +unmelted O +particles S-CONPRI +leads O +to O +inferior O +geometrical O +quality S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +printed O +pure O +Al S-MATE +parts O +. O + + +In O +the O +present O +study O +, O +we O +propose O +decorating O +Al S-MATE +with O +a O +small O +amount O +of O +high O +laser S-ENAT +absorbing O +Co S-MATE +nanoparticles O +on O +the O +surface S-CONPRI +of O +Al S-MATE +powders O +to O +reduce O +laser S-ENAT +reflectivity O +and O +improve O +printability S-PARA +. O + + +The O +near O +homogenous O +dispersion S-CONPRI +of O +Co S-MATE +slightly O +modified O +the O +surface S-CONPRI +chemical B-CONPRI +composition E-CONPRI +and O +roughened O +the O +powder S-MATE +surface O +. O + + +This O +approach O +completely O +melted S-CONPRI +the O +particles S-CONPRI +and O +eliminated O +the O +internal O +pores S-PRO +, O +thereby O +favorably O +tuning O +the O +geometrical O +dimensions S-FEAT +. O + + +Additionally O +, O +the O +introduction O +of O +Co S-MATE +provided O +solid B-MATE +solution E-MATE +strengthening O +and O +precipitation B-MANP +hardening E-MANP +via O +dispersion S-CONPRI +of O +second-phase O +Al9Co2 O +with O +a O +coherent O +interfacial O +relationship O +with O +the O +Al S-MATE +matrix O +. O + + +The O +tensile B-PRO +properties E-PRO +of O +printed O +Al S-MATE +parts O +were O +comparable O +to O +commercial O +medium-strength O +Al B-MATE +alloys E-MATE +at O +an O +optimal O +Co-content O +of O +0.5 O +wt. O +% O +. O + + +Addition O +of O +Nb S-MATE +and O +Mo S-MATE +improved O +the O +UTS S-PRO +and O +elongation S-PRO +of O +L-PBF S-MANP +420 B-MATE +stainless I-MATE +steel E-MATE +. O + + +Nanoscale O +NbC O +precipitated O +in O +the O +presence O +of O +Nb S-MATE +and O +Mo S-MATE +. O + + +Tempering S-MANP +of O +martensites O +and O +NbC O +correlated S-CONPRI +with O +improved O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Mechanical S-APPL +and O +corrosion B-PRO +properties E-PRO +of O +L-PBF S-MANP +specimens O +were O +superior O +to O +wrought S-CONPRI +420 B-MATE +stainless I-MATE +steel E-MATE +. O + + +Niobium S-MATE +( O +Nb S-MATE +) O +and O +molybdenum S-MATE +( O +Mo S-MATE +) O +are O +conventionally O +added O +to O +stainless B-MATE +steels E-MATE +to O +improve O +their O +mechanical S-APPL +and O +corrosion B-PRO +properties E-PRO +. O + + +However O +, O +the O +effects O +of O +Nb S-MATE +and O +Mo S-MATE +addition O +on O +the O +processing O +and O +properties S-CONPRI +in O +laser-powder O +bed B-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +have O +not O +been O +well O +investigated O +, O +especially O +in O +the O +context O +of O +420 B-MATE +stainless I-MATE +steel E-MATE +. O + + +In O +this O +study O +, O +420 B-MATE +stainless I-MATE +steel E-MATE +pre-alloyed O +with O +Nb S-MATE +( O +1.2 O +wt. O +% O +) O +and O +Mo S-MATE +( O +0.57 O +wt. O +% O +) O +was O +processed S-CONPRI +by O +L-PBF S-MANP +and O +characterized O +in O +terms O +of O +its O +physical O +, O +mechanical S-APPL +and O +corrosion B-PRO +properties E-PRO +as S-MATE +well O +as S-MATE +microstructure O +. O + + +The O +addition O +of O +Nb S-MATE +and O +Mo S-MATE +did O +not O +significantly O +affect O +the O +densification S-MANP +of O +420 B-MATE +stainless I-MATE +steel E-MATE +when O +printed O +over O +an O +energy O +range S-PARA +of O +28–75 O +J/mm3 O +and O +a O +maximum O +density S-PRO +of O +99.3 O +± O +0.02 O +% O +theoretical S-CONPRI +at O +63 O +J/mm3 O +was O +achieved O +. O + + +In O +mechanical B-CHAR +tests E-CHAR +, O +L-PBF S-MANP +420 B-MATE +stainless I-MATE +steel E-MATE +specimens O +exhibited O +higher O +mechanical B-CONPRI +properties E-CONPRI +in O +the O +presence O +of O +Nb S-MATE +and O +Mo S-MATE +. O + + +After O +heat B-MANP +treatment E-MANP +, O +the O +UTS S-PRO +of O +420 B-MATE +stainless I-MATE +steel E-MATE +with O +Nb S-MATE +and O +Mo S-MATE +improved O +to O +1750 O +± O +30 O +MPa S-CONPRI +and O +elongation S-PRO +to O +9.0 O +± O +0.2 O +% O +, O +much O +higher O +than O +previously O +reported O +properties S-CONPRI +achieved O +in O +L-PBF S-MANP +and O +exceeding O +wrought S-CONPRI +420 B-MATE +stainless I-MATE +steel E-MATE +. O + + +The O +tempering S-MANP +of O +martensite S-MATE +phases O +as S-MATE +well O +as S-MATE +the O +presence O +of O +nanoscale O +NbC O +were O +found O +to O +correlate O +with O +improved O +mechanical B-CONPRI +properties E-CONPRI +. O + + +In O +electrochemical B-CHAR +tests E-CHAR +, O +420 B-MATE +stainless I-MATE +steel E-MATE +exhibited O +slightly O +better O +corrosion B-PRO +properties E-PRO +with O +the O +addition O +of O +Nb S-MATE +and O +Mo S-MATE +. O + + +Bagasse S-MATE +CNF O +inks O +are O +produced O +for O +3D B-MANP +printing E-MANP +by O +direct-ink-writing B-MANP +technology E-MANP +. O + + +The O +CNF S-MATE +were O +found O +not O +to O +have O +a O +cytotoxic S-CONPRI +potential O +. O + + +Alginate S-MATE +and O +Ca2+ S-MATE +caused O +significant O +structural O +changes O +to O +the O +3D B-MANP +printed E-MANP +grid O +constructs O +. O + + +Ca2+ S-MATE +crosslinked O +constructs O +offer O +potential O +for O +personalized O +wound B-MACEQ +dressing I-MACEQ +devices E-MACEQ +. O + + +Sugarcane B-MATE +bagasse E-MATE +, O +an O +abundant O +residue S-MATE +, O +is O +usually O +burned O +as S-MATE +an O +energy O +source S-APPL +. O + + +However O +, O +provided O +that O +appropriate O +and O +sustainable S-CONPRI +pulping O +and O +fractionation O +processes S-CONPRI +are O +applied O +, O +bagasse S-MATE +can O +be S-MATE +utilized O +as S-MATE +a O +main O +source S-APPL +of O +cellulose B-MATE +nanofibrils E-MATE +( O +CNF S-MATE +) O +. O + + +We O +explored O +in O +this O +study O +the O +production S-MANP +of O +CNF B-MATE +inks E-MATE +for O +3D B-MANP +printing E-MANP +by O +direct-ink-writing B-MANP +technology E-MANP +. O + + +The O +CNF S-MATE +were O +tested O +against O +L929 B-MATE +fibroblasts E-MATE +cell S-APPL +line O +and O +we O +confirmed O +that O +the O +CNF S-MATE +from O +soda B-MATE +bagasse I-MATE +fibers E-MATE +were O +found O +not O +to O +have O +a O +cytotoxic S-CONPRI +potential O +. O + + +Additionally O +, O +we O +demonstrated O +that O +the O +alginate S-MATE +and O +Ca2+ S-MATE +caused O +significant O +dimensional O +changes O +to O +the O +3D B-CONPRI +printed I-CONPRI +constructs E-CONPRI +. O + + +The O +CNF-alginate S-MATE +grids O +exhibited O +a O +lateral B-CONPRI +expansion E-CONPRI +after O +printing O +and O +then O +shrank O +due O +to O +the O +cross-linking S-CONPRI +with O +the O +Ca2+ S-MATE +. O + + +The O +release O +of O +Ca2+ S-MATE +from O +the O +CNF S-MATE +and O +CNF-alginate S-MATE +constructs O +was O +quantified O +thus O +providing O +more O +insight O +about O +the O +CNF S-MATE +as S-MATE +carrier O +for O +Ca2+ S-MATE +. O + + +This O +, O +combined O +with O +3D B-MANP +printing E-MANP +, O +offers O +potential O +for O +personalized O +wound B-MACEQ +dressing I-MACEQ +devices E-MACEQ +, O +i.e O +. O + + +Herein O +, O +we O +developed O +a O +direct-write O +printing B-MANP +process E-MANP +capable O +of O +producing O +versatile O +biomimetic S-CONPRI +patterns O +with O +aligned O +neurites O +using O +multiple O +cell S-APPL +types O +. O + + +After O +two O +weeks O +of O +differentiation O +, O +aligned O +neurites O +were O +induced O +by O +the O +contractile O +force S-CONPRI +of O +the O +printed O +cells S-APPL +. O + + +Finally O +, O +we O +demonstrated O +the O +usefulness O +of O +the O +printing B-MANP +process E-MANP +by O +fabricating S-MANP +a O +Y-shaped O +branch O +and O +six-layered O +pattern S-CONPRI +. O + + +The O +six-layered O +pattern S-CONPRI +mimicking O +cerebral O +cortex O +tissue O +was O +produced O +by O +precise O +printing O +of O +two O +different O +colored O +cells S-APPL +. O + + +These O +results O +indicate O +that O +versatile O +biomimetic S-CONPRI +neural O +constructs O +composed O +of O +multiple O +cell S-APPL +types O +can O +be S-MATE +produced O +by O +our O +new O +direct-write O +printing B-MANP +process E-MANP +. O + + +Electrets S-MATE +have O +been O +increasingly O +investigated O +for O +their O +high O +piezoelectric B-PRO +sensitivity E-PRO +for O +sensing S-APPL +and O +energy B-CONPRI +harvesting E-CONPRI +applications O +, O +but O +fabricating S-MANP +complex O +3D B-CONPRI +structures E-CONPRI +for O +optimum O +performance S-CONPRI +has O +remained O +challenging O +. O + + +3D B-MANP +printing E-MANP +capabilities O +have O +likewise O +become O +a O +mature O +manufacturing B-MANP +technology E-MANP +widely O +used O +for O +end-user O +customization O +and O +rapid B-ENAT +prototyping E-ENAT +, O +but O +limitations O +on O +materials S-CONPRI +and O +geometries S-CONPRI +have O +complicated O +the O +incorporation O +of O +electroactive B-CONPRI +structures E-CONPRI +. O + + +In O +this O +paper O +, O +the O +first O +completely O +3D B-MANP +printed E-MANP +porous O +piezoelectret S-CONPRI +is O +demonstrated O +. O + + +These O +samples S-CONPRI +were O +structured O +using O +standard S-CONPRI +infill S-PARA +patterns O +commonly O +used O +in O +3D B-MANP +printing E-MANP +, O +allowing O +easy O +incorporation O +with O +current O +3D B-ENAT +printing I-ENAT +technology E-ENAT +. O + + +Pores S-PRO +generated O +by O +fused-filament B-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +are O +characterized O +, O +charged O +, O +and O +the O +resultant O +piezoelectret S-CONPRI +activity O +measured O +. O + + +Analytical O +electromechanical B-CONPRI +models E-CONPRI +are O +used O +to O +understand O +and O +compare O +the O +measured O +charge B-PARA +density E-PARA +and O +piezoelectric B-CONPRI +coefficients E-CONPRI +. O + + +The O +piezoelectric B-CONPRI +coefficient E-CONPRI +is O +found O +to O +increase O +strongly O +with O +decreasing O +infill B-PARA +percentages E-PARA +. O + + +An O +average S-CONPRI +piezoelectric O +d33 O +coefficient O +of O +87 O +pC S-MATE +N−1 O +is O +achieved O +for O +5 O +% O +infill S-PARA +samples O +and O +is O +found O +to O +be S-MATE +stable O +for O +a O +period O +of O +at O +least O +2 O +weeks O +, O +competitive O +with O +many O +other O +state-of-the-art S-CONPRI +single-pore O +piezoelectretic B-MATE +materials E-MATE +. O + + +These O +results O +provide O +a O +first O +step S-CONPRI +in O +using O +3D B-MANP +printing E-MANP +techniques O +to O +optimize O +and O +integrate O +piezoelectrets S-MATE +into O +parts O +, O +allowing O +a O +useful O +new O +electroactive B-CONPRI +functionality E-CONPRI +for O +additive B-MANP +manufacturing E-MANP +. O + + +Three-dimensionally S-CONPRI +( O +3D S-CONPRI +) O +printed O +flexible O +piezoresistive B-MACEQ +composite I-MACEQ +sensors E-MACEQ +have O +provided O +valuable O +solutions O +for O +the O +personalized O +therapeutic S-CONPRI +development O +due O +to O +their O +promising O +capability O +in O +biomonitoring B-APPL +applications E-APPL +. O + + +Silicone B-MATE +rubber E-MATE +( O +SR S-MATE +) O +matrix O +is O +an O +important O +candidate O +to O +enable O +flexibility S-PRO +to O +the O +3D B-MANP +printed E-MANP +devices O +. O + + +However O +, O +3D B-MANP +printing E-MANP +of O +silicone B-MATE +inks E-MATE +blended O +with O +conductive O +fillers O +is O +limited O +due O +to O +the O +high O +viscosity S-PRO +, O +long O +curing B-PARA +time E-PARA +, O +and O +high O +percolation B-PARA +threshold E-PARA +. O + + +In O +the O +present O +study O +, O +a O +novel O +high-speed O +material B-MANP +jetting E-MANP +( O +MJ S-MANP +) O +3D B-MANP +printing E-MANP +of O +high-viscosity O +conductive O +inks O +based O +on O +the O +mixture O +of O +a O +UV S-CONPRI +crosslinkable O +silicone B-MATE +rubber E-MATE +and O +milled B-MATE +carbon I-MATE +fibers E-MATE +( O +MCF S-MATE +) O +is O +demonstrated O +. O + + +The O +MCF S-MATE +content O +was O +optimized O +for O +printability S-PARA +, O +UV B-PRO +curability E-PRO +, O +and O +electrical B-PRO +conductivity E-PRO +. O + + +The O +sensors S-MACEQ +( O +with O +30 O +wt O +. O + + +% O +MCF S-MATE +content O +) O +show O +high O +flexibility S-PRO +and O +foldability S-PRO +as S-MATE +well O +as S-MATE +a O +high O +resistance B-PRO +sensitivity E-PRO +to O +sever O +bending B-CHAR +tests E-CHAR +. O + + +The O +stretchability S-FEAT +of O +3D B-MANP +printed E-MANP +sensors O +was O +further O +improved O +by O +sandwiching S-CONPRI +the O +MCF/SR S-MATE +sensing O +layer S-PARA +between O +the O +SR S-MATE +layers O +. O + + +The O +electromechanical S-CONPRI +evaluation O +of O +the O +sandwiched B-MACEQ +MCF/SR I-MACEQ +sensors E-MACEQ +( O +S-MCF/SR S-MACEQ +) O +confirmed O +the O +high O +piezoresistive B-PRO +sensitivity E-PRO +of O +sensors S-MACEQ +( O +gauge B-PRO +factor E-PRO +in O +order O +of O +∼400 O +) O +. O + + +Finally O +, O +the O +3D B-MANP +printed E-MANP +sensors O +were O +employed O +for O +monitoring O +human B-CONPRI +joint I-CONPRI +motions E-CONPRI +to O +demonstrate O +the O +potential O +application O +in O +monitoring O +biosignals S-CONPRI +. O + + +Polymer S-MATE +bonding S-CONPRI +of O +gas-atomized B-MATE +lightweight I-MATE +permanent I-MATE +magnet E-MATE +MnAlC O +particles S-CONPRI +. O + + +Optimized O +particle S-CONPRI +size O +leads O +to O +flexible O +filament S-MATE +with O +high O +filling B-PARA +factor E-PARA +( O +80 O +wt O +% O +) O +. O + + +Extrusion S-MANP +of O +continuous O +permanent B-MATE +magnet I-MATE +MnAlC I-MATE +filaments E-MATE +( O +length O +over O +10 O +m O +) O +. O + + +No O +deterioration O +of O +permanent B-CONPRI +magnet I-CONPRI +properties E-CONPRI +of O +MnAlC B-MATE +particles E-MATE +along O +processing O +. O + + +3D-printed S-MANP +permanent O +magnet S-APPL +objects O +avoiding O +the O +use O +of O +critical O +raw B-MATE +materials E-MATE +. O + + +Additive B-MANP +manufacturing E-MANP +is O +an O +attractive O +technology S-CONPRI +for O +many O +high-tech O +sectors O +such O +as S-MATE +energy O +, O +automotive S-APPL +and O +aerospace S-APPL +because O +of O +the O +freedom O +in O +designing O +and O +high O +performance S-CONPRI +of O +the O +fabricated S-CONPRI +objects O +. O + + +In O +the O +field O +of O +permanent B-MATE +magnets E-MATE +there O +is O +an O +increasing O +interest O +for O +applying O +this O +technology S-CONPRI +. O + + +However O +, O +key O +points O +need O +to O +be S-MATE +faced O +for O +obtaining O +products O +with O +non-deteriorated B-CONPRI +magnetic I-CONPRI +properties E-CONPRI +. O + + +Herein O +, O +we O +report O +on O +the O +preparation O +of O +MnAlC-based B-MACEQ +flexible I-MACEQ +filament E-MACEQ +with O +permanent B-CONPRI +magnet I-CONPRI +properties E-CONPRI +and O +a O +high O +filling B-PARA +factor E-PARA +of O +80 O +wt O +% O +resulting O +from O +an O +optimum O +fine-to-coarse O +particle S-CONPRI +ratio O +( O +25/75 O +) O +, O +which O +has O +been O +successfully O +used O +for O +3D-printing S-MANP +magnetic O +objects O +. O + + +Particles S-CONPRI +of O +MnAlC S-MATE +–rare O +earth-free O +permanent O +magnet– O +have O +been O +produced O +in O +nearly O +spherical S-CONPRI +shape O +with O +mean O +sizes O +of O +16 O +and O +30 O +μm O +by O +gas B-MANP +atomization E-MANP +. O + + +This O +has O +allowed O +for O +the O +fabrication S-MANP +of O +a O +permanent B-MATE +magnet I-MATE +composite E-MATE +, O +MnAlC/ABS S-MATE +, O +with O +a O +large O +concentration O +of O +MnAlC B-MATE +particles E-MATE +. O + + +The O +methodology S-CONPRI +here O +used O +has O +made O +possible O +the O +preparation O +of O +composite S-MATE +, O +filament S-MATE +and O +3D-printed S-MANP +objects O +with O +no O +degradation S-CONPRI +of O +the O +permanent B-CONPRI +magnet I-CONPRI +properties E-CONPRI +. O + + +The O +reported O +results O +open O +a O +new O +route O +to O +advance O +in O +the O +application O +of O +3D-printing S-MANP +to O +fabricate S-MANP +permanent O +magnet S-APPL +elements S-MATE +with O +a O +high O +filling B-PARA +factor E-PARA +for O +technological O +applications O +. O + + +We O +introduce O +an O +algorithm S-CONPRI +to O +generate O +tool B-CONPRI +paths E-CONPRI +using O +G2/G3-codes O +. O + + +The O +algorithms S-CONPRI +reduce O +time O +and O +cost O +while O +they O +enhance O +the O +quality S-CONPRI +of O +printed O +objects O +. O + + +Extrusion-based O +printing O +frequently O +requires O +a O +hollowing O +step S-CONPRI +to O +remove O +material S-MATE +from O +inside O +of O +artifacts O +and O +subsequently O +reduce O +the O +amount O +of O +material S-MATE +, O +printing O +time O +, O +product O +weight S-PARA +, O +energy O +consumption O +, O +and O +ultimately O +, O +the O +cost O +. O + + +In O +addition O +to O +reducing O +stress B-CHAR +concentration E-CHAR +through O +their O +inherently O +smooth B-FEAT +boundaries E-FEAT +, O +these O +spheroids O +require O +no O +additional O +support B-FEAT +structure E-FEAT +, O +when O +properly O +designed S-FEAT +. O + + +Here O +, O +spheroids O +are O +arranged O +by O +the O +Voronoi O +diagram O +of O +3D S-CONPRI +ellipsoids O +and O +the O +tool B-CONPRI +path E-CONPRI +, O +including O +circular O +printing O +motions O +, O +is O +produced O +using O +the O +Voronoi O +diagram O +of O +circular O +2D S-CONPRI +disks O +. O + + +The O +proposed O +algorithms S-CONPRI +are O +implemented O +as S-MATE +the O +HollowTron O +webserver O +and O +are O +freely O +available O +from O +Voronoi O +Diagram O +Research S-CONPRI +Center O +. O + + +3D B-MANP +printing E-MANP +allows O +rapid B-MANP +fabrication E-MANP +of O +complex O +objects O +from O +digital O +designs S-FEAT +. O + + +One O +3D-printing S-MANP +process O +, O +direct B-ENAT +laser I-ENAT +writing E-ENAT +, O +polymerises S-CONPRI +a O +light-sensitive B-MATE +material E-MATE +by O +steering S-PARA +a O +focused B-CONPRI +laser I-CONPRI +beam E-CONPRI +through O +the O +shape O +of O +the O +object O +to O +be S-MATE +created O +. O + + +The O +highest-resolution S-PARA +direct B-MANP +laser I-MANP +writing I-MANP +systems E-MANP +use O +a O +femtosecond B-CONPRI +laser E-CONPRI +, O +steered O +using O +mechanised O +stages O +or O +galvanometer-controlled B-MACEQ +mirrors E-MACEQ +, O +to O +effect O +two-photon B-ENAT +polymerisation E-ENAT +. O + + +Here O +we O +report O +a O +new O +high-resolution S-PARA +direct B-MANP +laser I-MANP +writing I-MANP +system E-MANP +that O +employs O +a O +resonant O +mirror B-MACEQ +scanner E-MACEQ +to O +achieve O +a O +significant O +increase O +in O +printing B-PARA +speed E-PARA +over O +current O +methods O +while O +maintaining O +resolution S-PARA +on O +the O +order O +of O +a O +micron S-FEAT +. O + + +This O +printer S-MACEQ +is O +based O +on O +a O +software S-CONPRI +modification O +to O +a O +commercially O +available O +resonant-scanning O +two-photon B-MACEQ +microscope E-MACEQ +. O + + +We O +demonstrate O +the O +complete O +process B-ENAT +chain E-ENAT +from O +hardware O +configuration S-CONPRI +and O +control O +software S-CONPRI +to O +the O +printing O +of O +objects O +of O +approximately O +400 O +× O +400 O +× O +350 O +μm O +, O +and O +validate O +performance S-CONPRI +with O +objective O +benchmarks O +. O + + +Released O +under O +an O +open-source S-CONPRI +license O +, O +this O +work O +makes O +micron-scale S-FEAT +3D B-MANP +printing E-MANP +available O +at O +little O +or O +no O +cost O +to O +the O +large O +community O +of O +two-photon B-MACEQ +microscope E-MACEQ +users O +, O +and O +paves O +the O +way O +toward O +widespread O +availability O +of O +precision-printed O +devices O +. O + + +The O +introduction O +of O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing O +in O +the O +pharmaceutical S-APPL +arena O +has O +caused O +a O +major O +shift O +towards O +the O +advancement O +of O +modern B-CONPRI +medicines E-CONPRI +, O +including O +drug O +products O +with O +different O +configurations O +and O +complex B-CONPRI +geometries E-CONPRI +. O + + +Otherwise O +challenging O +to O +create O +via O +conventional O +pharmaceutical B-CONPRI +techniques E-CONPRI +, O +3D B-ENAT +printing I-ENAT +technologies E-ENAT +have O +been O +explored O +for O +the O +fabrication S-MANP +of O +multi-drug B-CONPRI +loaded I-CONPRI +dosage E-CONPRI +forms O +to O +reduce O +pill B-CONPRI +burden E-CONPRI +and O +improve O +patient B-CONPRI +adherence E-CONPRI +. O + + +In O +this O +study O +, O +stereolithography S-MANP +( O +SLA S-MACEQ +) O +, O +a O +vat B-MANP +polymerisation E-MANP +technique O +, O +was O +used O +to O +manufacture S-CONPRI +a O +multi-layer O +3D B-MANP +printed E-MANP +oral O +dosage O +form O +( O +polyprintlet S-MATE +) O +incorporating O +four O +antihypertensive B-MATE +drugs E-MATE +including O +irbesartan S-MATE +, O +atenolol S-MATE +, O +hydrochlorothiazide S-MATE +and O +amlodipine S-MATE +. O + + +Although O +successful O +in O +its O +fabrication S-MANP +, O +for O +the O +first O +time O +, O +we O +report O +an O +unexpected O +chemical B-CONPRI +reaction E-CONPRI +between O +a O +photopolymer S-MATE +and O +drug O +. O + + +Fourier B-ENAT +Transform I-ENAT +Infrared E-ENAT +( O +FTIR S-CHAR +) O +spectroscopy S-CONPRI +and O +Nuclear B-CONPRI +Magnetic I-CONPRI +Resonance E-CONPRI +( O +NMR S-CHAR +) O +spectroscopy S-CONPRI +confirmed O +the O +occurrence O +of O +a O +Michael B-CONPRI +addition I-CONPRI +reaction E-CONPRI +between O +the O +diacrylate S-MATE +group O +of O +the O +photoreactive B-MATE +monomer E-MATE +and O +the O +primary B-MATE +amine E-MATE +group O +of O +amlodipine S-MATE +. O + + +The O +study O +herein O +demonstrates O +the O +importance O +of O +careful O +selection O +of O +photocurable B-MATE +resins E-MATE +for O +the O +manufacture S-CONPRI +of O +drug-loaded B-CONPRI +oral I-CONPRI +dosage E-CONPRI +forms O +via O +SLA S-MACEQ +3D B-ENAT +printing I-ENAT +technology E-ENAT +. O + + +Photopolymerization-based S-CONPRI +3D B-MANP +printing E-MANP +has O +emerged O +as S-MATE +a O +promising O +technique O +to O +fabricate B-CONPRI +3D I-CONPRI +structures E-CONPRI +. O + + +However O +, O +during O +the O +printing B-MANP +process E-MANP +, O +polymerized B-MATE +materials E-MATE +such O +as S-MATE +hydrogels O +often O +become O +highly O +light-scattering S-CONPRI +, O +thus O +perturbing B-CONPRI +incident I-CONPRI +light I-CONPRI +distribution E-CONPRI +and O +thereby O +deteriorating O +the O +final O +print B-PARA +resolution E-PARA +. O + + +To O +overcome O +this O +scattering-induced O +resolution B-CONPRI +deterioration E-CONPRI +, O +we O +developed O +a O +novel O +method O +termed O +flashing B-MANP +photopolymerization E-MANP +( O +FPP S-MANP +) O +. O + + +Our O +FPP S-MANP +approach O +is O +informed O +by O +the O +fundamental O +kinetics O +of O +photopolymerization S-MANP +reactions O +, O +where O +light B-CONPRI +exposure E-CONPRI +is O +delivered O +in O +millisecond-scale S-CONPRI +‘ O +flashes O +’ O +, O +as S-MATE +opposed O +to O +continuous B-CONPRI +light I-CONPRI +exposure E-CONPRI +. O + + +During O +the O +period O +of O +flash B-CONPRI +exposure E-CONPRI +, O +the O +prepolymer B-MATE +material E-MATE +negligibly O +scatters O +light O +. O + + +The O +material S-MATE +then O +polymerizes S-CONPRI +and O +opacifies S-CONPRI +in O +absence O +of O +light O +, O +therefore O +the O +exposure B-CONPRI +pattern E-CONPRI +is O +not O +perturbed O +by O +scattering O +. O + + +Compared O +to O +the O +conventional O +use O +of O +a O +continuous B-CONPRI +wave E-CONPRI +( O +CW S-CONPRI +) O +light B-MACEQ +source E-MACEQ +, O +the O +FPP S-MANP +fabrication B-PARA +resolution E-PARA +is O +improved O +. O + + +FPP S-MANP +also O +shows O +little O +dependency O +on O +the O +exposure S-CONPRI +, O +thus O +minimizing O +trial-and-error S-CONPRI +type O +optimization S-CONPRI +. O + + +Using O +FPP S-MANP +, O +we O +demonstrate O +its O +use O +in O +generating O +high-fidelity S-CONPRI +3D B-CONPRI +printed I-CONPRI +constructs E-CONPRI +. O + + +Material S-MATE +based O +actuation O +with O +metallic B-MATE +fibers E-MATE +, O +for O +example O +shape B-MATE +memory I-MATE +alloys E-MATE +( O +SMA O +) O +is O +gaining O +popularity O +to O +replace O +the O +conventional O +bulky O +actuators S-MACEQ +used O +for O +shape O +morphing O +in O +aerospace S-APPL +sectors O +. O + + +However O +, O +Joule O +heating S-MANP +arising O +from O +electrical S-APPL +actuation O +of O +SMA O +affects O +the O +interfacial B-CONPRI +bonding E-CONPRI +between O +the O +SMA O +and O +the O +composite S-MATE +matrix O +and O +thus O +reduces O +the O +life O +span O +of O +the O +structure S-CONPRI +. O + + +Insulating S-CONPRI +the O +SMA O +from O +the O +composite S-MATE +matrix O +will O +tremendously O +increase O +the O +service B-CONPRI +life E-CONPRI +of O +these O +reconfigurable O +structures O +. O + + +Three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing O +of O +functional O +elements S-MATE +during O +the O +fabrication S-MANP +phase O +of O +the O +composite B-CONPRI +structures E-CONPRI +permits O +the O +flexibility S-PRO +to O +form O +complex O +shaped O +reconfigurable O +lightweight S-CONPRI +aerospace B-MACEQ +components E-MACEQ +. O + + +Here O +, O +we O +present O +a O +novel O +technique O +to O +embed O +polymer S-MATE +encapsulated S-CONPRI +functional O +elements S-MATE +into O +structural O +composites S-MATE +. O + + +We O +use O +the O +direct-write O +( O +DW O +) O +technique O +to O +coat O +SMA O +with O +a O +polymer S-MATE +solution O +while O +simultaneously O +printing O +them O +onto O +carbon B-MATE +fiber E-MATE +prepreg O +. O + + +We O +develop O +high O +performance S-CONPRI +polymeric O +inks O +- O +polyetherimide O +and O +polycarbonate S-MATE +- O +compatible O +with O +the O +DW O +technique O +, O +the O +coating S-APPL +, O +as S-MATE +well O +as S-MATE +the O +composite S-MATE +. O + + +In O +addition O +to O +SMA O +, O +the O +technique O +can O +also O +be S-MATE +easily O +extended O +to O +embed O +various O +kinds O +of O +other O +functional O +fibers S-MATE +into O +composites S-MATE +, O +in O +any O +shape O +or O +form O +. O + + +Additionally O +, O +we O +also O +demonstrate O +the O +application O +of O +this O +technique O +to O +integrate O +SMA O +with O +polymeric O +structures O +towards O +actuators S-MACEQ +for O +robotics S-APPL +grippers O +or O +surgical B-MACEQ +tools E-MACEQ +. O + + +The O +emergence O +of O +smart O +technologies S-CONPRI +is O +spurring O +the O +development O +of O +a O +wider O +range S-PARA +of O +applications O +for O +stretchable S-FEAT +and O +conformable S-CONPRI +sensors O +, O +as S-MATE +the O +design B-CONPRI +flexibility E-CONPRI +offered O +by O +additive B-MANP +manufacturing E-MANP +may O +enable O +the O +production S-MANP +of O +sensors S-MACEQ +that O +are O +superior O +to O +those O +produced O +by O +conventional B-MANP +manufacturing E-MANP +techniques O +. O + + +In O +this O +work O +, O +a O +multi-material B-MANP +3D I-MANP +printing E-MANP +system O +with O +three O +extrusion B-MACEQ +heads E-MACEQ +was O +developed O +to O +fabricate S-MANP +a O +stretchable S-FEAT +, O +soft B-MACEQ +pressure I-MACEQ +sensor E-MACEQ +built O +using O +an O +ionic B-MATE +liquid E-MATE +( O +IL S-MATE +) O +–based O +pressure-sensitive B-CONPRI +layer E-CONPRI +that O +was O +sandwiched O +between O +carbon B-MATE +nanotube E-MATE +( O +CNT S-MATE +) O +–based O +stretchable S-FEAT +electrodes S-MACEQ +and O +encapsulated S-CONPRI +within O +stretchable S-FEAT +top O +and O +bottom O +insulating B-CONPRI +layers E-CONPRI +. O + + +The O +sensor S-MACEQ +materials S-CONPRI +were O +modified O +in O +order O +to O +achieve O +3D B-CONPRI +printable I-CONPRI +characteristics E-CONPRI +. O + + +The O +capability O +of O +the O +system O +was O +tested O +by O +printing O +structures O +made O +from O +three O +materials S-CONPRI +and O +a O +multilayer B-MACEQ +sensor E-MACEQ +via O +an O +extrusion-based B-MANP +direct-print I-MANP +process E-MANP +. O + + +Multi-material B-MANP +3D I-MANP +printing E-MANP +of O +the O +sensor S-MACEQ +was O +successfully O +realized O +, O +as S-MATE +the O +sensing S-APPL +material S-MATE +retained O +its O +functionality O +once O +the O +printing B-MANP +process E-MANP +was O +complete O +. O + + +Silicone-based B-MATE +materials E-MATE +are O +commonly O +used O +in O +medical B-APPL +applications E-APPL +such O +as S-MATE +pre-surgery O +models O +or O +implants S-APPL +, O +leading O +to O +interesting O +biomimetic S-CONPRI +mechanical O +properties S-CONPRI +. O + + +Emergence O +of O +3D B-MANP +printing E-MANP +and O +particularly O +liquid B-MANP +deposition I-MANP +modelling E-MANP +( O +LDM S-MANP +) O +has O +shown O +that O +specific O +rheological S-PRO +behaviors O +, O +particularly O +yield B-PRO +stress E-PRO +characters O +, O +were O +required O +to O +achieve O +efficient O +LDM S-MANP +. O + + +Unfortunately O +, O +standard S-CONPRI +silicone S-MATE +formulations O +seldom O +present O +such O +behaviors O +and O +are O +then O +proved O +to O +have O +low O +applicability O +in O +LDM-based S-MANP +3D S-CONPRI +printing.In O +the O +present O +study O +, O +polyethylene B-MATE +glycol E-MATE +of O +different O +lengths O +were O +added O +as S-MATE +yield O +stress S-PRO +agents O +in O +a O +bi-component B-MATE +silicone E-MATE +and O +were O +demonstrated O +to O +operate O +a O +drastic O +improvement O +of O +the O +material S-MATE +rheological O +behaviors O +, O +without O +significant O +impact S-CONPRI +on O +the O +final O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +material S-MATE +. O + + +An O +interesting O +relationship O +was O +demonstrated O +between O +dynamic S-CONPRI +yield O +stress S-PRO +values O +and O +reachable O +3D B-FEAT +geometries E-FEAT +( O +the O +higher O +σys O +, O +the O +more O +complex O +the O +3D B-MANP +printed E-MANP +shape O +can O +be S-MATE +) O +but O +the O +study O +also O +revealed O +that O +it O +is O +not O +the O +only O +key O +factor O +to O +ensure O +the O +printability S-PARA +of O +viscoelastic S-PRO +materials S-CONPRI +when O +highly O +complex B-CONPRI +geometries E-CONPRI +are O +seek O +; O +tack O +and O +melt B-PRO +strength E-PRO +have O +also O +to O +be S-MATE +investigated O +. O + + +To O +improve O +the O +formability S-PRO +and O +properties S-CONPRI +of O +calcia S-MATE +( O +CaO S-MATE +) O +based O +ceramic B-MACEQ +core E-MACEQ +, O +the O +binder-jet B-MANP +3D-printing E-MANP +was O +performed O +to O +fabricate S-MANP +porous O +CaO/caicium B-MATE +zirconate E-MATE +( O +CaZrO3 S-MATE +) O +ceramic B-MACEQ +core E-MACEQ +composites O +with O +two O +nanozirconia S-MATE +addition O +methods O +. O + + +The O +effects O +of O +the O +nanozirconia S-MATE +addition O +method O +and O +additive S-MATE +amount O +on O +the O +properties S-CONPRI +of O +the O +3D-printed S-MANP +CaO/CaZrO3 O +bodies O +were O +investigated O +. O + + +The O +dimensional B-CHAR +accuracy E-CHAR +, O +surface B-PRO +roughness E-PRO +, O +relative B-PRO +density E-PRO +, O +bending B-PRO +strength E-PRO +, O +and O +hydration O +resistance S-PRO +of O +CaO/CaZrO3 S-MATE +bodies O +printed O +with O +a O +nanozirconia S-MATE +suspension O +binder S-MATE +for O +deposition S-CONPRI +in O +the O +CaO S-MATE +powder O +layer S-PARA +were O +better O +than O +those O +of O +CaO/CaZrO3 S-MATE +bodies O +printed O +in O +the O +traditional O +manner O +of O +directly O +mixing S-CONPRI +nanozirconia O +in O +the O +CaO S-MATE +powder O +. O + + +Application O +of O +the O +nanozirconia S-MATE +suspension O +uniformly O +capped O +nanozirconia S-MATE +particles O +on O +the O +surfaces S-CONPRI +of O +the O +CaO S-MATE +particles O +and O +filled O +the O +pores S-PRO +of O +the O +CaO S-MATE +powder O +layer S-PARA +, O +which O +afforded O +denser O +and O +more O +uniform O +green B-CONPRI +bodies E-CONPRI +. O + + +After O +sintering S-MANP +at O +1500 O +°C O +, O +the O +ZrO2 S-MATE +formed O +thicker O +and O +denser O +CaZrO3 S-MATE +layers O +with O +the O +CaO S-MATE +over O +the O +CaO S-MATE +grain O +surfaces S-CONPRI +, O +which O +improved O +the O +strength S-PRO +and O +hydration O +resistance S-PRO +of O +the O +sintered S-MANP +CaO/CaZrO3 S-MATE +ceramic O +core S-MACEQ +bodies O +, O +and O +certainly O +reduced O +their O +collapsibility S-CONPRI +. O + + +A O +3D S-CONPRI +numerical O +model S-CONPRI +is O +developed O +to O +study O +the O +flow O +mechanism S-CONPRI +with O +rotation O +nozzle S-MACEQ +at O +the O +corner O +under O +various O +conditions O +during O +the O +extrusion S-MANP +and O +deposition B-MANP +process E-MANP +; O +Material S-MATE +rheological O +properties S-CONPRI +have O +little O +effects O +on O +material S-MATE +distribution S-CONPRI +ratio O +at O +corners O +, O +while O +process B-CONPRI +parameters E-CONPRI +affect O +material S-MATE +distribution S-CONPRI +ratio O +significantly O +; O +Increasing O +corner O +radius O +and O +relative O +nozzle S-MACEQ +travel O +speed O +while O +decreasing O +nozzle S-MACEQ +aspect B-FEAT +ratio E-FEAT +are O +beneficial O +to O +suppressing O +uneven O +mass O +distribution S-CONPRI +at O +corners O +; O +When O +conducting O +corner O +printing O +with O +rotational O +rectangular O +nozzle S-MACEQ +, O +a O +greater O +amount O +of O +material S-MATE +is O +deposited O +inside O +the O +filament S-MATE +and O +hence O +tearing O +and O +skewing O +will O +occur O +on O +the O +surface S-CONPRI +of O +the O +printed O +filament S-MATE +. O + + +With O +the O +aim O +of O +maintaining O +the O +surface B-FEAT +finish E-FEAT +and O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +printed O +filament S-MATE +, O +a O +3D S-CONPRI +numerical O +model S-CONPRI +is O +developed O +to O +study O +the O +flow O +mechanism S-CONPRI +at O +a O +corner O +under O +various O +conditions O +during O +the O +extrusion S-MANP +and O +deposition B-MANP +processes E-MANP +with O +rotational O +nozzle S-MACEQ +. O + + +After O +experimental S-CONPRI +validation O +, O +the O +numerical O +model S-CONPRI +is O +employed O +to O +study O +the O +material S-MATE +flow O +mechanism S-CONPRI +under O +various O +conditions O +. O + + +The O +results O +indicate O +that O +the O +rheological B-PRO +properties E-PRO +have O +little O +effect O +on O +the O +mass O +distribution S-CONPRI +ratio O +. O + + +However O +, O +a O +high O +relative O +nozzle S-MACEQ +travel O +speed O +, O +larger O +corner O +radii O +and O +lower O +nozzle S-MACEQ +aspect B-FEAT +ratio E-FEAT +is O +a O +promising O +route O +in O +obtaining O +a O +uniform O +material S-MATE +distribution S-CONPRI +ratio O +. O + + +The O +interlinking O +of O +process B-CONPRI +parameters E-CONPRI +affects O +the O +material S-MATE +distribution S-CONPRI +ratio O +significantly O +as S-MATE +well O +. O + + +Furthermore O +, O +the O +importance O +of O +the O +factors O +that O +affect O +the O +mass O +distribution S-CONPRI +was O +determined O +quantitatively S-CONPRI +. O + + +Fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +is O +a O +3D B-MANP +printing E-MANP +technique O +which O +allows O +layer-by-layer S-CONPRI +build-up O +of O +a O +part O +by O +the O +deposition S-CONPRI +of O +thermoplastic B-MATE +material E-MATE +through O +a O +nozzle S-MACEQ +. O + + +The O +technique O +allows O +for O +complex B-PRO +shapes E-PRO +to O +be S-MATE +made O +with O +a O +degree B-CONPRI +of I-CONPRI +design I-CONPRI +freedom E-CONPRI +unachievable O +with O +traditional B-MANP +manufacturing E-MANP +methods O +. O + + +However O +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +thermoplastic B-MATE +materials E-MATE +used O +are O +low O +compared O +to O +common O +engineering B-MATE +materials E-MATE +. O + + +In O +this O +work O +, O +composite S-MATE +3D B-MANP +printing E-MANP +feedstocks O +for O +FFF S-MANP +are O +investigated O +, O +wherein O +carbon B-MATE +fibres E-MATE +are O +embedded O +into O +a O +thermoplastic B-MATE +matrix E-MATE +to O +increase O +strength S-PRO +and O +stiffness S-PRO +. O + + +First O +, O +the O +key O +processing O +parameters S-CONPRI +for O +FFF S-MANP +are O +reviewed O +, O +showing O +how O +fibres S-MATE +alter O +the O +printing B-CONPRI +dynamics E-CONPRI +by O +changing O +the O +viscosity S-PRO +and O +the O +thermal B-CONPRI +profile E-CONPRI +of O +the O +printed O +material S-MATE +. O + + +The O +state-of-the-art S-CONPRI +in O +composite S-MATE +3D B-MANP +printing E-MANP +is O +presented O +, O +showing O +a O +distinction O +between O +short B-MATE +fibre I-MATE +feedstocks E-MATE +versus O +continuous B-MATE +fibre I-MATE +feedstocks E-MATE +. O + + +An O +experimental S-CONPRI +study O +was O +performed O +to O +benchmark S-MANS +these O +two O +methods O +. O + + +It O +is O +found O +that O +printing O +of O +continuous B-MATE +carbon I-MATE +fibres E-MATE +using O +the O +MarkOne B-MACEQ +printer E-MACEQ +gives O +significant O +increases O +in O +performance S-CONPRI +over O +unreinforced B-MATE +thermoplastics E-MATE +, O +with O +mechanical B-CONPRI +properties E-CONPRI +in O +the O +same O +order O +of O +magnitude S-PARA +of O +typical O +unidirectional B-MATE +epoxy I-MATE +matrix I-MATE +composites E-MATE +. O + + +The O +method O +, O +however O +, O +is O +limited O +in O +design B-CONPRI +freedom E-CONPRI +as S-MATE +the O +brittle S-PRO +continuous O +carbon B-MATE +fibres E-MATE +can O +not O +be S-MATE +deposited O +freely O +through O +small O +steering B-PARA +radii E-PARA +and O +sharp B-FEAT +angles E-FEAT +. O + + +Filaments S-MATE +with O +embedded O +short O +carbon B-MATE +microfibres E-MATE +( O +∼100 O +μm O +) O +show O +better O +print B-CONPRI +capabilities E-CONPRI +and O +are O +suitable O +for O +use O +with O +standard S-CONPRI +printing O +methods O +, O +but O +only O +offer O +a O +slight O +increase O +in O +mechanical B-CONPRI +properties E-CONPRI +over O +the O +pure O +thermoplastic B-PRO +properties E-PRO +. O + + +It O +is O +hypothesized O +that O +increasing O +the O +fibre B-CONPRI +length E-CONPRI +in O +short O +fibre B-MATE +filament E-MATE +is O +expected O +to O +lead S-MATE +to O +increased O +mechanical B-CONPRI +properties E-CONPRI +, O +potentially O +approaching O +those O +of O +continuous B-MATE +fibre I-MATE +composites E-MATE +, O +whilst O +keeping O +the O +high O +degree B-CONPRI +of I-CONPRI +design I-CONPRI +freedom E-CONPRI +of O +the O +FFF S-MANP +process O +. O + + +Water-soluble B-MATE +glass E-MATE +patterned O +by O +3D B-MANP +printing E-MANP +is O +a O +versatile B-MACEQ +tool E-MACEQ +for O +tissue B-CONPRI +engineering E-CONPRI +and O +microfluidics S-CONPRI +. O + + +Glasses S-MATE +can O +be S-MATE +patterned O +layer-by-layer S-CONPRI +as S-MATE +in O +conventional O +fused B-MANP +deposition I-MANP +modeling E-MANP +but O +also O +along O +3D S-CONPRI +, O +“ O +freeform S-CONPRI +” O +paths O +. O + + +In O +the O +latter O +approach O +, O +extruding S-MANP +heated O +material S-MATE +through O +a O +nozzle S-MACEQ +translating O +in O +3D B-CONPRI +space E-CONPRI +allows O +for O +fabrication S-MANP +of O +sparse O +, O +freestanding B-CONPRI +networks E-CONPRI +of O +cylindrical B-CONPRI +filaments E-CONPRI +. O + + +These O +freeform B-CONPRI +structures E-CONPRI +are O +suitable O +for O +sacrificial B-MANP +molding E-MANP +with O +a O +variety O +of O +media O +, O +leaving O +complex O +microchannel B-CONPRI +networks E-CONPRI +. O + + +However O +, O +3D B-MANP +printing E-MANP +carbohydrate O +glass S-MATE +in O +this O +way O +presents O +several O +unique O +challenges O +: O +1 O +) O +the O +material S-MATE +must O +resist O +degradation S-CONPRI +and O +crystallization S-CONPRI +during O +printing O +, O +2 O +) O +the O +glass S-MATE +must O +be S-MATE +hot O +enough O +to O +flow B-CONPRI +freely E-CONPRI +during O +extrusion S-MANP +and O +fuse S-MANP +to O +the O +printed B-CONPRI +construct E-CONPRI +, O +while O +cooling B-CONPRI +rapidly E-CONPRI +to O +retain O +its O +shape O +upon O +exiting O +the O +nozzle S-MACEQ +, O +3 O +) O +the O +extruder S-MACEQ +needs O +to O +apply O +high O +pressure S-CONPRI +, O +with O +rapid O +stop O +and O +start O +times O +and O +4 O +) O +the O +net O +force S-CONPRI +that O +acts O +on O +the O +filament S-MATE +during O +extrusion S-MANP +must O +be S-MATE +minimized O +so O +that O +the O +filament S-MATE +shape O +is O +predictable S-CONPRI +, O +i.e. O +, O +coincides O +with O +the O +path O +taken O +by O +the O +nozzle S-MACEQ +. O + + +First O +, O +we O +review O +the O +properties S-CONPRI +of O +commercially O +available O +carbohydrate B-MATE +glasses E-MATE +and O +provide O +a O +guide O +for O +processing O +isomalt S-MATE +, O +our O +material S-MATE +of O +choice O +, O +to O +achieve O +the O +best O +printing B-CONPRI +performance E-CONPRI +. O + + +A O +pressure-controlled S-CONPRI +, O +piston-driven B-MACEQ +extruder E-MACEQ +is O +then O +described O +which O +allows O +for O +rapid O +responses O +and O +precise B-CONPRI +control E-CONPRI +over O +the O +material B-PARA +flow I-PARA +rate E-PARA +. O + + +We O +then O +analyze O +the O +heat B-CONPRI +transfer E-CONPRI +within O +the O +filament S-MATE +and O +the O +forces S-CONPRI +that O +contribute O +to O +the O +filament S-MATE +’ O +s S-MATE +final O +shape O +. O + + +We O +find O +that O +the O +dominant B-CONPRI +force E-CONPRI +is O +due O +to O +the O +radial B-CONPRI +flow E-CONPRI +of O +the O +molten B-MATE +glass E-MATE +as S-MATE +it O +exits O +the O +nozzle S-MACEQ +. O + + +This O +analysis O +is O +validated O +on O +a O +purpose-built O +isomalt S-MATE +3D B-MACEQ +printer E-MACEQ +, O +which O +we O +utilize O +to O +characterize O +relationships O +between O +extrusion B-PARA +pressure E-PARA +, O +translation B-PARA +speed E-PARA +, O +filament B-PARA +diameter E-PARA +, O +and O +viscous B-CONPRI +force E-CONPRI +. O + + +The O +insights O +of O +the O +physics S-CONPRI +of O +the O +printing B-MANP +process E-MANP +enable O +fabrication S-MANP +of O +intricate B-CONPRI +freeform I-CONPRI +prints E-CONPRI +as S-MATE +well O +as S-MATE +layer-by-layer O +designs S-FEAT +. O + + +The O +practical O +and O +theoretical S-CONPRI +considerations O +should O +facilitate O +adoption O +of O +additive B-MANP +manufacturing E-MANP +of O +carbohydrate B-MATE +glasses E-MATE +with O +applications O +to O +a O +wide O +variety O +of O +fields O +, O +including O +tissue B-CONPRI +engineering E-CONPRI +and O +microfluidics S-CONPRI +. O + + +Multi-material B-MANP +3D I-MANP +printing E-MANP +with O +several O +mechanically O +distinct O +materials S-CONPRI +at O +once O +has O +expanded O +the O +potential O +applications O +for O +additive B-MANP +manufacturing E-MANP +technology O +. O + + +Fewer O +material S-MATE +options O +exist O +, O +however O +, O +for O +additive B-MANP +systems E-MANP +that O +employ O +vat B-MANP +photopolymerization E-MANP +( O +such O +as S-MATE +stereolithography O +, O +SLA S-MACEQ +, O +and O +digital B-MANP +light I-MANP +projection E-MANP +, O +DLP S-MANP +, O +3D B-MACEQ +printers E-MACEQ +) O +, O +which O +are O +more O +commonly O +used O +for O +advanced B-CONPRI +engineering I-CONPRI +prototypes E-CONPRI +and O +manufacturing S-MANP +. O + + +Those O +material S-MATE +selections O +that O +do O +exist O +are O +limited O +in O +their O +capacity S-CONPRI +for O +fusion S-CONPRI +due O +to O +disparate O +chemical O +and O +physical B-PRO +properties E-PRO +, O +limiting O +the O +potential O +mechanical S-APPL +range O +for O +multi-material B-MATE +printed I-MATE +composites E-MATE +. O + + +Here O +, O +we O +present O +an O +ethylene B-MATE +glycol I-MATE +phenyl I-MATE +ether I-MATE +acrylate E-MATE +( O +EGPEA S-MATE +) O +-based O +formulation O +for O +a O +polymer B-MATE +resin E-MATE +yielding O +a O +range S-PARA +of O +elastic B-PRO +moduli E-PRO +between O +0.6 O +MPa S-CONPRI +and O +31 O +MPa S-CONPRI +simply O +by O +altering O +the O +ratio O +of O +monomer S-MATE +and O +crosslinker B-MATE +feedstocks E-MATE +in O +the O +formulation O +. O + + +This O +simple S-MANP +chemistry S-CONPRI +is O +also O +well O +suited O +to O +form O +seamless B-CONPRI +adhesions E-CONPRI +between O +mechanically B-CONPRI +dissimilar I-CONPRI +formulations E-CONPRI +, O +making O +it O +a O +promising O +candidate O +for O +multi-material B-MANP +DLP I-MANP +3D I-MANP +printing E-MANP +. O + + +Preliminary O +tests O +with O +these O +polymer S-MATE +formulations O +indicate O +that O +variability S-CONPRI +due O +to O +molecular B-CONPRI +differences E-CONPRI +between O +hard O +and O +soft O +formulations O +is O +less O +than O +3 O +% O +of O +the O +prescribed O +model B-CONPRI +dimensions E-CONPRI +, O +comparable O +to O +existing O +commercial O +DLP S-MANP +and O +SLA S-MACEQ +resins S-MATE +, O +with O +unique O +advantages O +of O +a O +wide O +range S-PARA +of O +elastomer B-PRO +stiffness E-PRO +and O +seamless B-CONPRI +fusion E-CONPRI +for O +3D B-MANP +printing E-MANP +of O +structurally O +detailed O +and O +mechanically O +heterogeneous B-MATE +composites E-MATE +. O + + +We O +introduce O +a O +novel O +divide-and-conquer O +approach O +for O +3D B-MANP +printing E-MANP +, O +which O +provides O +automatic O +decomposition S-PRO +and O +configuration S-CONPRI +of O +an O +input O +object O +into O +print-ready O +components S-MACEQ +. O + + +Our O +method O +improves O +3D B-MANP +printing E-MANP +by O +reducing O +material S-MATE +consumption O +, O +decreasing O +printing O +time O +, O +and O +improving O +fidelity O +of O +printed O +models O +. O + + +Then O +the O +configuration S-CONPRI +phase O +provides O +a O +robust O +algorithm S-CONPRI +to O +pack O +the O +components S-MACEQ +for O +an O +efficient O +print S-MANP +job O +. O + + +Our O +results O +show O +that O +the O +framework S-CONPRI +can O +reduce O +print S-MANP +time O +by O +up O +to O +65 O +% O +( O +fused B-MANP +deposition I-MANP +modeling E-MANP +, O +or O +FDM S-MANP +) O +and O +36 O +% O +( O +stereolithography S-MANP +, O +or O +SLA S-MACEQ +) O +on O +average S-CONPRI +and O +diminish O +material S-MATE +consumption O +by O +up O +to O +35 O +% O +( O +FDM S-MANP +) O +and O +10 O +% O +( O +SLA S-MACEQ +) O +on O +consumer O +printers S-MACEQ +, O +while O +also O +providing O +more O +accurate S-CHAR +objects O +. O + + +Conventional O +3D B-MANP +printing E-MANP +approaches O +are O +restricted O +to O +building B-MATE +up I-MATE +material E-MATE +in O +a O +layer-by-layer S-CONPRI +format O +, O +which O +is O +more O +appropriately O +considered O +“ O +2.5-D O +” O +printing O +. O + + +The O +layered B-CONPRI +structure E-CONPRI +inherently O +results O +in O +significant O +mechanical B-PRO +anisotropy E-PRO +in O +printed O +parts O +, O +causing O +the O +tensile B-PRO +strength E-PRO +in O +the O +build B-PARA +direction E-PARA +( O +z-axis S-CONPRI +) O +to O +be S-MATE +only O +a O +fraction S-CONPRI +of O +the O +in-plane B-PRO +strength E-PRO +– O +a O +decrease O +of O +50–75 O +% O +is O +common O +. O + + +In O +this O +study O +, O +a O +novel O +“ O +z-pinning S-ENAT +” O +approach O +is O +described O +that O +allows O +continuous O +material S-MATE +to O +be S-MATE +deposited O +across O +multiple O +layers O +within O +the O +volume S-CONPRI +of O +the O +part O +. O + + +The O +z-pinning S-ENAT +process S-CONPRI +is O +demonstrated O +using O +a O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +printer S-MACEQ +for O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +and O +carbon B-MATE +fiber I-MATE +reinforced I-MATE +PLA E-MATE +. O + + +For O +both O +materials S-CONPRI +, O +z-pinning S-ENAT +increased O +the O +tensile B-PRO +strength E-PRO +and O +toughness S-PRO +in O +the O +z-direction S-FEAT +by O +more O +than O +a O +factor O +of O +3.5 O +. O + + +Direct O +comparisons O +to O +tensile B-PRO +strength E-PRO +in O +the O +x-axis O +showed O +a O +significant O +decrease O +in O +mechanical B-PRO +anisotropy E-PRO +as S-MATE +the O +volume S-CONPRI +of O +the O +pin O +was O +increased O +relative O +to O +the O +void S-CONPRI +in O +the O +rectilinear B-CONPRI +grid I-CONPRI +structure E-CONPRI +. O + + +In O +fact O +, O +the O +PLA S-MATE +sample O +with O +the O +largest O +pin O +volume S-CONPRI +demonstrated O +mechanically O +isotropic S-PRO +properties O +within O +the O +statistical O +uncertainty O +of O +the O +tests O +. O + + +Tensile B-CHAR +test E-CHAR +results O +were O +also O +analyzed O +relative O +to O +the O +functional O +area S-PARA +resisting O +deformation S-CONPRI +for O +each O +sample S-CONPRI +. O + + +Digital B-MANP +light I-MANP +processing I-MANP +3D I-MANP +printing E-MANP +method O +was O +used O +to O +fabricate S-MANP +conductive O +parts O +. O + + +MWCNTs O +were O +used O +with O +photocurable B-MATE +resin E-MATE +to O +form O +conductive O +ink S-MATE +for O +3D B-MANP +printing E-MANP +. O + + +Complicated O +3D S-CONPRI +conductive O +structures O +were O +demonstrated O +. O + + +These O +structures O +can O +be S-MATE +used O +as S-MATE +capacitive O +sensors S-MACEQ +and O +shape O +memory O +composites S-MATE +. O + + +3D B-MANP +printing E-MANP +has O +gained O +significant O +research S-CONPRI +interest O +recently O +for O +directly O +manufacturing S-MANP +3D S-CONPRI +components O +and O +structures O +for O +use O +in O +a O +variety O +of O +applications O +. O + + +In O +this O +paper O +, O +a O +digital B-MANP +light I-MANP +processing E-MANP +( O +DLP® O +) O +based O +3D B-MANP +printing E-MANP +technique O +was O +explored O +to O +manufacture B-CONPRI +electrically E-CONPRI +conductive O +objects O +of O +polymer S-MATE +nanocomposites O +. O + + +Here O +, O +the O +ink S-MATE +was O +made O +of O +a O +mixture O +of O +photocurable B-MATE +resin E-MATE +with O +multi-walled O +carbon B-MATE +nanotubes E-MATE +( O +MWCNTs O +) O +. O + + +The O +concentrations O +of O +MWCNT O +as S-MATE +well O +as S-MATE +the O +printing O +parameters S-CONPRI +were O +investigated O +to O +yield O +optimal O +conductivity S-PRO +and O +printing O +quality S-CONPRI +. O + + +We O +found O +that O +0.3 O +wt O +% O +loading O +of O +MWCNT O +in O +the O +resin S-MATE +matrix O +can O +provide O +the O +maximum O +electrical B-PRO +conductivity E-PRO +of O +0.027S/m O +under O +the O +resin S-MATE +viscosity O +limit S-CONPRI +that O +allows O +high O +printing O +quality S-CONPRI +. O + + +With O +electric O +conductivity S-PRO +, O +the O +printed O +MWCNT O +nanocomposites O +can O +be S-MATE +used O +as S-MATE +smart O +materials S-CONPRI +and O +structures O +with O +strain S-PRO +sensitivity S-PARA +and O +shape B-PRO +memory I-PRO +effect E-PRO +. O + + +We O +demonstrate O +that O +the O +printed B-MACEQ +conductive E-MACEQ +complex B-CONPRI +structures E-CONPRI +as S-MATE +hollow O +capacitive O +sensor S-MACEQ +, O +electrically S-CONPRI +activated O +shape O +memory O +composites S-MATE +, O +stretchable S-FEAT +circuits O +, O +showing O +the O +versatility O +of O +DLP® O +3D B-MANP +printing E-MANP +for O +conductive B-FEAT +complex I-FEAT +structures E-FEAT +. O + + +In O +addition O +, O +mechanical B-CHAR +tests E-CHAR +showed O +that O +the O +addition O +of O +MWCNT O +could O +slightly O +increase O +the O +modulus O +and O +ultimate O +tensile B-PRO +stress E-PRO +while O +decreasing O +slightly O +the O +ultimate O +stretch O +, O +indicating O +that O +the O +new O +functionality O +is O +not O +obtained O +at O +the O +price O +of O +sacrificing O +mechanical B-CONPRI +properties E-CONPRI +. O + + +3D B-ENAT +printing I-ENAT +technology E-ENAT +has O +revolutionized O +the O +field O +of O +machinery O +, O +aerospace S-APPL +, O +and O +electronics S-CONPRI +. O + + +To O +address O +the O +shortcomings O +of O +previous O +studies O +on O +improving O +the O +poor O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +resin S-MATE +used O +in O +3D B-MACEQ +printers E-MACEQ +, O +this O +study O +presents O +a O +technology S-CONPRI +for O +fabricating S-MANP +short O +fibres S-MATE +or O +a O +continuous O +fibre-composite O +material S-MATE +using O +stereolithography B-MANP +3D I-MANP +printing E-MANP +. O + + +Glass S-MATE +powder O +and O +fibreglass O +fabric O +were O +used O +as S-MATE +the O +discontinuous O +and O +continuous O +fibre S-MATE +reinforcement O +of O +light-cured O +resin B-MATE +material E-MATE +. O + + +The O +tensile B-PRO +strength E-PRO +and O +Young O +’ O +s S-MATE +modulus O +showed O +a O +marked O +increase O +: O +these O +were O +7.2 O +and O +11.5 O +times O +higher O +than O +those O +of O +the O +resin S-MATE +specimen O +, O +respectively O +. O + + +The O +3D B-MANP +printing E-MANP +of O +fiber-reinforced O +soft O +composites S-MATE +( O +FrSCs O +) O +is O +a O +hybrid O +process S-CONPRI +that O +combines O +conventional O +inkjet-based O +3D B-MANP +printing E-MANP +with O +the O +directed O +deposition S-CONPRI +of O +electrospun O +polymer B-MATE +fiber E-MATE +mats S-MATE +. O + + +This O +paper O +investigates S-CONPRI +the O +spreading O +characteristics O +of O +droplets S-CONPRI +when O +deposited O +on O +fibrous S-PRO +substrates O +, O +under O +conditions O +relevant O +to O +3D B-MANP +printing E-MANP +of O +aligned O +FrSCs O +. O + + +High-speed O +imaging S-APPL +is O +used O +to O +study O +the O +characteristic O +time-scales O +and O +the O +spreading O +behavior O +of O +the O +droplets S-CONPRI +. O + + +The O +single O +droplet S-CONPRI +impingement O +studies O +on O +stationary O +substrates O +reveal O +that O +the O +presence O +of O +fibers S-MATE +promotes O +droplet S-CONPRI +spreading O +along O +the O +length O +of O +the O +fibers S-MATE +. O + + +Occasional O +surface S-CONPRI +energy O +variations S-CONPRI +in O +the O +fiber S-MATE +mats O +in O +the O +form O +of O +voids S-CONPRI +and O +fiber B-MATE +bundles E-MATE +are O +also O +seen O +to O +affect O +the O +droplet S-CONPRI +shape O +and O +the O +characteristic O +spreading O +times O +. O + + +In O +the O +case O +of O +a O +moving O +substrate S-MATE +, O +the O +droplets S-CONPRI +are O +seen O +to O +spread S-CONPRI +the O +most O +during O +in-line O +printing O +, O +i.e. O +, O +when O +the O +direction O +of O +the O +printing O +velocity O +coincides O +with O +the O +direction O +of O +fiber B-FEAT +alignment E-FEAT +. O + + +They O +spread S-CONPRI +the O +least O +during O +orthogonal O +printing O +, O +i.e. O +, O +when O +the O +direction O +of O +the O +printing O +velocity O +is O +perpendicular O +to O +the O +direction O +of O +fiber B-FEAT +alignment E-FEAT +. O + + +The O +findings O +of O +the O +high-speed O +imaging S-APPL +studies O +have O +been O +confirmed O +by O +3D B-MANP +printing E-MANP +comparable O +artifacts O +using O +UV S-CONPRI +curable O +inks O +. O + + +These O +studies O +indicate O +that O +for O +a O +given O +fiber S-MATE +mat O +and O +UV S-CONPRI +curable O +ink S-MATE +combination O +, O +the O +choice O +of O +the O +in-line O +or O +orthogonal O +printing O +strategy O +has O +implications O +for O +the O +overall O +printing O +time O +, O +fiber S-MATE +content O +, O +edge O +resolution S-PARA +and O +surface B-PARA +quality E-PARA +of O +the O +3D B-MANP +printed E-MANP +FrSC O +part O +. O + + +Multi-material S-CONPRI +extrusion S-MANP +in O +3D B-MANP +printing E-MANP +is O +gaining O +attention O +due O +to O +a O +wide O +range S-PARA +of O +possibilities O +that O +it O +provides O +, O +specially O +driven O +by O +the O +commercial O +availability O +of O +a O +large O +variety O +of O +non-conventional O +filament S-MATE +materials O +. O + + +With O +this O +in O +mind O +, O +this O +paper O +addresses O +the O +mechanical S-APPL +performance O +of O +multi-material S-CONPRI +printed O +objects O +, O +specially O +focused O +on O +the O +interface S-CONPRI +zone O +generated O +between O +the O +different O +materials S-CONPRI +at O +their O +geometrical O +boundaries S-FEAT +. O + + +Tensile B-CHAR +test E-CHAR +specimens O +were O +designed S-FEAT +and O +printed O +in O +three O +types O +: O +( O +A O +) O +a O +single-material O +specimen O +printed O +by O +a O +single O +extrusion B-MACEQ +head E-MACEQ +; O +( O +B S-MATE +) O +a O +single-material O +but O +multi-section O +specimen O +printed O +in O +a O +zebra-crossing O +structure S-CONPRI +by O +two O +extrusion B-MACEQ +heads E-MACEQ +; O +and O +( O +C S-MATE +) O +a O +multi-material S-CONPRI +specimen O +printed O +with O +two O +materials S-CONPRI +in O +a O +zebra-crossing O +pattern S-CONPRI +. O + + +The O +materials S-CONPRI +considered O +were O +PLA S-MATE +, O +TPU O +and O +PET O +. O + + +The O +comparison O +of O +the O +mechanical S-APPL +performance O +between O +Type-A O +and O +-B O +specimens O +demonstrated O +the O +negative O +influence O +of O +the O +presence O +of O +a O +geometrical O +boundary S-FEAT +interface O +between O +the O +same O +material S-MATE +. O + + +The O +methodology S-CONPRI +proposed O +to O +assess O +the O +quality S-CONPRI +of O +the O +pairs O +of O +materials S-CONPRI +selected O +is O +innovative O +, O +and O +enabled O +to O +depict O +the O +importance O +of O +the O +boundary S-FEAT +design O +in O +multi-material B-MANP +printing E-MANP +techniques O +. O + + +The O +aim O +of O +the O +present O +work O +was O +to O +develop O +a O +pilot O +scale O +process S-CONPRI +to O +produce O +drug-loaded O +filaments S-MATE +for O +3D B-MANP +printing E-MANP +of O +oral O +solid O +dose O +forms O +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +Using O +hot O +melt B-MANP +extrusion E-MANP +, O +a O +viable O +operating O +space O +and O +understanding O +of O +processing O +limits S-CONPRI +were O +established O +using O +a O +hydrophilic O +polymer S-MATE +( O +hydroxypropyl O +methylcellulose O +( O +HPMC O +) O +– O +Affinisol™ O +LV15 O +) O +. O + + +From O +the O +process S-CONPRI +development O +work O +, O +challenges O +in O +achieving O +a O +pilot O +scale O +process S-CONPRI +for O +filament S-MATE +production O +for O +pharmaceutical S-APPL +applications O +have O +been O +highlighted O +. O + + +3D B-MANP +printing E-MANP +trials O +across O +the O +range S-PARA +of O +compositions O +demonstrated O +limitations O +concerning O +the O +ability O +to O +print S-MANP +successfully O +across O +all O +compositions O +. O + + +Results O +from O +characterisation O +techniques O +including O +thermal O +and O +mechanical B-CHAR +testing E-CHAR +when O +applied O +to O +the O +formulated O +filaments S-MATE +indicated O +that O +these O +techniques O +are O +a O +useful O +predictive O +measure O +for O +assessing O +the O +ability O +to O +print S-MANP +a O +given O +formulation O +via O +filament S-MATE +methods O +. O + + +However O +, O +fabrication S-MANP +methods O +using O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +bioprinters O +are O +limited O +by O +the O +simple S-MANP +nozzle-based O +extrusion S-MANP +or O +uncontrollability O +of O +photo-reactive O +systems O +. O + + +Hence O +, O +most O +studies O +on O +inducing O +topographical O +cues O +were O +focused O +on O +two-dimensional S-CONPRI +( O +2D S-CONPRI +) O +surface B-FEAT +structures E-FEAT +and O +based O +on O +imprinting O +and O +soft-lithography O +processes S-CONPRI +. O + + +Although O +2D S-CONPRI +patterned O +surfaces S-CONPRI +provide O +outstanding O +insight O +into O +optimal O +patterned O +architectures O +by O +facilitating O +the O +analysis O +of O +various O +myoblast O +responses O +, O +it O +can O +be S-MATE +difficult O +to O +achieve O +complex O +3D B-CONPRI +structures E-CONPRI +with O +microscale S-CONPRI +topographical O +cues O +. O + + +For O +this O +reason O +, O +we O +propose O +a O +new O +strategy O +for O +obtaining O +topographical O +cues O +in O +3D B-MANP +printed E-MANP +synthetic O +biopolymers S-MATE +for O +regenerating O +muscle O +tissue O +. O + + +A O +uniaxially O +aligned O +pattern S-CONPRI +was O +obtained O +on O +the O +struts S-MACEQ +of O +the O +matrix O +composed O +of O +poly O +( O +ε-caprolactone O +) O +( O +PCL S-MATE +) O +or O +poly O +( O +lactic-co-glycolic O +acid O +) O +( O +PLGA S-MATE +) O +, O +by O +taking O +advantage O +of O +the O +immiscible O +rheological B-PRO +properties E-PRO +and O +flow-induced O +force S-CONPRI +in O +the O +dispersed O +pluronic O +F-127 O +phase S-CONPRI +( O +sacrificial O +material S-MATE +) O +and O +matrix O +materials S-CONPRI +. O + + +Stereolithography S-MANP +is O +a O +3D B-MANP +printing E-MANP +technique O +in O +which O +a O +liquid O +monomer S-MATE +is O +photopolymerized O +to O +produce O +a O +solid O +object O +. O + + +Photoinitiators O +can O +absorb O +UV S-CONPRI +or O +( O +less O +often O +) O +visible O +light O +, O +producing O +radicals O +for O +direct O +decomposition S-PRO +or O +hydrogen O +abstraction S-CONPRI +. O + + +In O +fact O +, O +vegetable O +oils S-MATE +contain O +unsaturations O +, O +and O +thus O +, O +they O +can O +be S-MATE +exploited O +as S-MATE +monomers O +. O + + +In O +particular O +, O +linseed O +oil S-MATE +, O +tung O +oil S-MATE +or O +edible O +oils S-MATE +( O +soybean O +, O +sunflower O +or O +corn O +) O +could O +be S-MATE +good O +candidates O +as S-MATE +raw O +materials S-CONPRI +. O + + +Unfortunately O +, O +the O +photoinduced O +radical O +polymerization S-MANP +of O +these O +oils S-MATE +either O +does O +not O +occur O +or O +is O +too O +slow O +for O +3D B-MANP +printing E-MANP +applications O +. O + + +For O +this O +reason O +, O +the O +oils S-MATE +were O +modified O +as S-MATE +epoxides O +. O + + +Epoxides O +are O +monomers O +that O +are O +more O +reactive O +than O +natural O +oils S-MATE +, O +and O +they O +can O +be S-MATE +polymerized O +via O +a O +cationic O +mechanism S-CONPRI +. O + + +The O +aim O +of O +this O +work O +was O +to O +exploit O +visible O +light O +generated O +by O +a O +common O +digital O +projector S-MACEQ +( O +like O +those O +used O +in O +classrooms O +) O +as S-MATE +a O +light B-MACEQ +source E-MACEQ +. O + + +Vegetable O +oil S-MATE +epoxides O +, O +together O +with O +curcumin O +and O +visible O +light O +could O +replace O +acrylates O +from O +3D S-CONPRI +printing.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +82 O +Challenging O +to O +3-D S-CONPRI +print O +functional O +parts O +with O +known O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Using O +variable O +open O +source S-APPL +3-D S-CONPRI +printers O +for O +a O +wide O +range S-PARA +of O +materials S-CONPRI +. O + + +Tested O +tensile B-PRO +strength E-PRO +following O +ASTM O +D638 O +for O +fused B-MANP +filament I-MANP +fabrication E-MANP +. O + + +Tensile B-PRO +strength E-PRO +of O +a O +3-D S-CONPRI +printed O +specimen O +depends O +largely O +on O +the O +mass O +. O + + +2 O +step B-CONPRI +process E-CONPRI +developed O +to O +screen O +3-D S-CONPRI +prints O +for O +mechanical B-CONPRI +functionality E-CONPRI +. O + + +3D B-MANP +printing E-MANP +functional O +parts O +with O +known O +mechanical B-CONPRI +properties E-CONPRI +is O +challenging O +using O +variable O +open O +source S-APPL +3D B-MACEQ +printers E-MACEQ +. O + + +This O +study O +investigates S-CONPRI +the O +mechanical B-CONPRI +properties E-CONPRI +of O +3D B-APPL +printed I-APPL +parts E-APPL +using O +a O +commercial O +open-source S-CONPRI +3D B-MACEQ +printer E-MACEQ +for O +a O +wide O +range S-PARA +of O +materials S-CONPRI +. O + + +The O +samples S-CONPRI +are O +tested O +for O +tensile B-PRO +strength E-PRO +following O +ASTM O +D638 O +. O + + +The O +results O +are O +presented O +and O +conclusions O +are O +drawn O +about O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +various O +fused B-MANP +filament I-MANP +fabrication E-MANP +materials O +. O + + +The O +study O +demonstrates O +that O +the O +tensile B-PRO +strength E-PRO +of O +a O +3D B-MANP +printed E-MANP +specimen O +depends O +largely O +on O +the O +mass O +of O +the O +specimen O +, O +for O +all O +materials S-CONPRI +. O + + +Thus O +, O +to O +solve O +the O +challenge O +of O +unknown O +print B-CONPRI +quality E-CONPRI +on O +mechanical B-CONPRI +properties E-CONPRI +of O +a O +3D B-APPL +printed I-APPL +part E-APPL +a O +two O +step B-CONPRI +process E-CONPRI +is O +proposed O +, O +which O +has O +a O +reasonably O +high O +expectation O +that O +a O +part O +will O +have O +tensile B-PRO +strengths E-PRO +described O +in O +this O +study O +for O +a O +given O +material S-MATE +. O + + +This O +mass O +is O +compared O +to O +the O +theoretical S-CONPRI +value O +using O +densities O +for O +the O +material S-MATE +and O +the O +volume S-CONPRI +of O +the O +object O +. O + + +This O +two O +step B-CONPRI +process E-CONPRI +provides O +a O +means O +to O +assist O +low-cost O +open-source S-CONPRI +3D B-MACEQ +printers E-MACEQ +expand O +the O +range S-PARA +of O +object O +production S-MANP +to O +functional O +parts O +. O + + +Novel O +blend S-MATE +feedstocks O +developed O +using O +recycled S-CONPRI +plastic S-MATE +materials S-CONPRI +. O + + +Blend S-MATE +composition O +and O +processing O +conditions O +optimized O +for O +morphology/interfacial O +adhesion S-PRO +. O + + +Blend S-MATE +perform O +on O +par O +with O +commercial O +HIPS B-MATE +filaments E-MATE +. O + + +Recycled S-CONPRI +polymer B-MATE +blends E-MATE +are O +valid O +feedstocks S-MATE +for O +AM S-MANP +and O +could O +be S-MATE +used O +for O +manufacturing S-MANP +in O +remote O +environments O +. O + + +Consumer-grade O +plastics S-MATE +can O +be S-MATE +considered O +a O +low-cost O +and O +sustainable S-CONPRI +feedstock S-MATE +for O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +additive B-MANP +manufacturing I-MANP +processes E-MANP +. O + + +Such O +materials S-CONPRI +are O +excellent O +candidates O +for O +distributed O +manufacturing S-MANP +, O +in O +which O +parts O +are O +printed O +from O +local O +materials S-CONPRI +at O +the O +point O +of O +need O +. O + + +Most O +plastic S-MATE +waste O +streams O +contain O +a O +mixture O +of O +polymers S-MATE +, O +such O +as S-MATE +water O +bottles O +and O +caps O +comprised O +of O +polyethylene B-MATE +terephthalate E-MATE +( O +PET O +) O +and O +polypropylene S-MATE +( O +PP O +) O +, O +and O +complete O +separation O +is O +rarely O +implemented O +. O + + +In O +this O +work O +, O +blends S-MATE +of O +waste O +PET O +, O +PP O +and O +polystyrene S-MATE +( O +PS O +) O +were O +processed S-CONPRI +into O +filaments S-MATE +for O +3D B-MANP +printing E-MANP +. O + + +The O +effect O +of O +blend S-MATE +composition O +and O +styrene O +ethylene O +butylene O +styrene O +( O +SEBS O +) O +compatibilizer O +on O +the O +resulting O +mechanical S-APPL +and O +thermal B-CONPRI +properties E-CONPRI +were O +probed O +. O + + +Recycled S-CONPRI +PET O +had O +the O +highest O +tensile B-PRO +strength E-PRO +at O +35 O +± O +8 O +MPa S-CONPRI +. O + + +Blends S-MATE +of O +PP/PET O +compatibilized O +with O +SEBS O +and O +maleic O +anhydride O +functionalized O +SEBS O +had O +tensile B-PRO +strengths E-PRO +of O +23 O +± O +1 O +MPa S-CONPRI +and O +24 O +± O +1 O +MPa S-CONPRI +, O +respectively O +. O + + +The O +non-compatibilized O +PP/PS O +blend S-MATE +had O +a O +tensile B-PRO +strength E-PRO +of O +22 O +± O +1 O +MPa S-CONPRI +. O + + +PP/PS O +blends S-MATE +exhibited O +reduced O +tensile B-PRO +strength E-PRO +to O +ca S-MATE +. O + + +Elongation S-PRO +to O +failure S-CONPRI +was O +generally O +improved O +for O +the O +blended O +materials S-CONPRI +compared O +to O +neat O +recycled S-CONPRI +PET O +and O +PS O +. O + + +The O +glass S-MATE +transition O +was O +shifted O +to O +higher O +temperatures S-PARA +for O +all O +of O +the O +blends S-MATE +except O +the O +50–50 O +wt O +. O + + +% O +PP/PET O +blend S-MATE +. O + + +% O +PP/PET O +blend S-MATE +with O +SEBS-maleic O +anhydride O +. O + + +Solvent O +extraction O +of O +the O +dispersed O +phase S-CONPRI +revealed O +polypropylene S-MATE +was O +the O +matrix O +phase S-CONPRI +in O +both O +the O +50–50 O +wt O +. O + + +% O +PP/PET O +and O +PP/PS O +blends S-MATE +. O + + +Porous S-PRO +tricalcium O +phosphate S-MATE +( O +TCP O +) O +scaffolds S-FEAT +are O +becoming O +more O +and O +more O +important O +for O +treating O +musculoskeletal O +diseases O +. O + + +With O +the O +maturation O +of O +3D B-MANP +printing E-MANP +( O +3DP S-MANP +) O +technology S-CONPRI +in O +the O +past O +two O +decades O +, O +porous S-PRO +TCP O +scaffolds S-FEAT +can O +also O +be S-MATE +easily O +prepared O +with O +complex O +design S-FEAT +and O +high O +dimensional B-CHAR +accuracy E-CHAR +. O + + +However O +, O +the O +mechanical S-APPL +and O +biological O +properties S-CONPRI +of O +porous S-PRO +TCP O +scaffolds S-FEAT +prepared O +by O +3D B-MANP +printing E-MANP +still O +need O +improvements O +. O + + +In O +this O +study O +, O +novel O +3D B-MANP +printed E-MANP +TCP O +and O +MgO/ZnO-TCP O +scaffolds S-FEAT +were O +prepared O +by O +an O +binder-jet O +3D B-MACEQ +printer E-MACEQ +. O + + +Scaffolds S-FEAT +had O +a O +dense O +core S-MACEQ +and O +porous S-PRO +surface O +feature S-FEAT +with O +a O +designed S-FEAT +pore O +size O +of O +500 O +μm O +and O +a O +designed S-FEAT +porosity O +of O +18 O +% O +. O + + +After O +printing O +, O +scaffolds S-FEAT +were O +sintered S-MANP +in O +a O +muffle O +furnace S-MACEQ +at O +1250 O +°C O +. O + + +The O +presence O +of O +MgO S-MATE +and O +ZnO O +increased O +the O +surface B-PARA +area E-PARA +of O +TCP O +from O +1.18 O +± O +0.01 O +m2/g O +to O +2.65 O +± O +0.02 O +m2/g O +, O +the O +bulk O +density S-PRO +from O +37.89 O +± O +0.83 O +% O +to O +50.82 O +± O +1.10 O +% O +, O +and O +the O +compressive B-PRO +strength E-PRO +from O +17.94 O +± O +1.65 O +MPa S-CONPRI +to O +27.46 O +± O +2.63 O +MPa S-CONPRI +. O + + +Enhanced O +osteoblast S-BIOP +proliferation O +was O +shown O +in O +doped O +3D B-MANP +printed E-MANP +TCP O +scaffolds S-FEAT +compared O +to O +the O +pure O +3DP S-MANP +TCP O +. O + + +In O +addition O +, O +the O +use O +of O +3D B-MANP +printing E-MANP +as O +well O +as S-MATE +dense O +core S-MACEQ +and O +porous S-PRO +surface O +design S-FEAT +enhanced O +the O +surface B-PRO +roughness E-PRO +and O +osteoblast S-BIOP +proliferation O +of O +TCP B-BIOP +scaffolds E-BIOP +. O + + +This O +novel O +3D B-MANP +printed E-MANP +MgO/ZnO-TCP O +scaffold S-FEAT +shows O +enhanced O +mechanical S-APPL +and O +biological O +properties S-CONPRI +, O +which O +is O +promising O +for O +orthopedic O +and O +dental B-APPL +applications E-APPL +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +which O +is O +also O +referred O +to O +as S-MATE +3D B-MANP +printing E-MANP +, O +is O +a O +class O +of O +manufacturing S-MANP +techniques O +that O +fabricate S-MANP +three O +dimensional O +( O +3D S-CONPRI +) O +objects O +by O +accumulating O +materials S-CONPRI +. O + + +Constrained O +surface S-CONPRI +based O +stereolithography S-MANP +is O +one O +of O +the O +most O +widely O +used O +AM B-MANP +techniques E-MANP +. O + + +In O +the O +process S-CONPRI +, O +a O +thin O +layer S-PARA +of O +liquid O +photosensitive B-MATE +resin E-MATE +is O +constrained O +between O +a O +constrained O +surface S-CONPRI +and O +the O +platform S-MACEQ +or O +part O +. O + + +The O +light O +penetrates O +the O +transparent S-CONPRI +constrained O +surface S-CONPRI +and O +cures O +that O +layer S-PARA +of O +liquid O +polymer S-MATE +. O + + +Then O +the O +platform S-MACEQ +is O +moved O +up O +to O +separate O +the O +newly O +cured B-CONPRI +layer E-CONPRI +to O +let O +new O +liquid O +resin S-MATE +fill O +into O +the O +gap O +and O +get O +cured S-MANP +. O + + +The O +separation O +of O +newly O +cured B-CONPRI +layer E-CONPRI +from O +the O +constrained O +surface S-CONPRI +is O +a O +grand O +challenge O +that O +limits S-CONPRI +the O +printable O +size O +and O +printing B-PARA +speed E-PARA +in O +this O +manufacturing S-MANP +technique O +. O + + +Numerous O +experimental S-CONPRI +works O +have O +been O +performed O +to O +understand O +how O +to O +reduce O +the O +separation B-CONPRI +force E-CONPRI +in O +the O +process S-CONPRI +. O + + +In O +this O +paper O +we O +study O +a O +new O +design S-FEAT +of O +constrained O +surface S-CONPRI +with O +radial O +groove O +texture S-FEAT +that O +significantly O +influences O +the O +effectiveness S-CONPRI +of O +reduction S-CONPRI +of O +the O +separation B-CONPRI +force E-CONPRI +and O +hence O +the O +manufacturing S-MANP +capability O +via O +theoretical S-CONPRI +modeling S-ENAT +. O + + +The O +proposed O +model S-CONPRI +is O +validated O +with O +numerical B-ENAT +simulations E-ENAT +demonstrating O +an O +excellent O +agreement O +. O + + +We O +demonstrate O +the O +possibility O +of O +drastic O +reduction S-CONPRI +of O +the O +separation B-CONPRI +force E-CONPRI +( O +up O +to O +112 O +% O +) O +via O +surface B-MANP +texturing E-MANP +of O +the O +permeable O +window O +for O +continuous O +3D B-MANP +printing E-MANP +. O + + +A O +novel O +large-scale O +3D B-MACEQ +printer E-MACEQ +is O +introduced O +. O + + +A O +full O +scaffolding S-ENAT +solution O +allows O +any O +3D B-FEAT +geometry E-FEAT +to O +be S-MATE +printed O +. O + + +Part O +geometry B-CONPRI +errors E-CONPRI +are O +detected O +and O +corrected O +using O +geometric O +feedback S-PARA +. O + + +Although O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +now O +a O +well-established O +industry S-APPL +, O +very O +few O +large-scale O +AM S-MANP +systems O +have O +been O +developed O +. O + + +Here O +, O +a O +large-scale O +3D B-MACEQ +printer E-MACEQ +is O +introduced O +, O +which O +uses O +a O +six-degree-of-freedom O +cable-suspended O +robot S-MACEQ +for O +positioning O +, O +with O +polyurethane B-MATE +foam E-MATE +as S-MATE +the O +object O +material S-MATE +and O +shaving S-MANP +foam S-MATE +as S-MATE +the O +support B-MATE +material E-MATE +. O + + +Cable-positioning O +systems O +provide O +large O +ranges O +of O +motion O +and O +cables O +can O +be S-MATE +compactly O +wound O +on O +spools O +, O +making O +them O +less O +expensive O +, O +much O +lighter O +, O +more O +transportable O +, O +and O +more O +easily O +reconfigurable O +, O +compared O +to O +the O +gantry-type O +positioning B-ENAT +systems E-ENAT +traditionally O +used O +in O +3D B-MANP +printing E-MANP +. O + + +The O +3D S-CONPRI +foam O +printer S-MACEQ +performance S-CONPRI +is O +demonstrated O +through O +the O +construction S-APPL +of O +a O +2.16-m-high O +statue O +of O +Sir O +Wilfrid O +Laurier O +, O +the O +seventh O +Prime O +Minister O +of O +Canada O +, O +at O +an O +accuracy S-CHAR +of O +approximately O +1 O +cm O +, O +which O +requires O +38 O +h O +of O +printing O +time O +. O + + +The O +system O +advantages O +and O +drawbacks O +are O +then O +discussed O +, O +and O +novel O +features O +such O +as S-MATE +unique O +support S-APPL +techniques O +and O +geometric O +feedback S-PARA +are O +highlighted O +. O + + +PA/ABS O +blend S-MATE +optimized O +formulation O +improved O +bead-bead O +adhesion S-PRO +in O +3-D S-CONPRI +printing O +. O + + +Anisotropy S-PRO +ratio O +( O +z O +property/x O +property S-CONPRI +) O +indicator O +of O +bead-bead O +adhesion S-PRO +. O + + +Small-scale O +printing O +can O +provide O +test O +case O +for O +large-scale O +printed O +material B-CONPRI +properties E-CONPRI +. O + + +SMA O +was O +an O +effective O +compatiblizer O +for O +PA/ABS O +blends S-MATE +at O +printed O +interface S-CONPRI +. O + + +For O +additive B-MANP +manufacturing E-MANP +interfacial O +adhesion S-PRO +( O +bead-bead O +) O +remains O +an O +important O +issue O +affecting O +uniformity O +of O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +present O +work O +examined O +the O +role O +a O +compatibilizer O +would O +play O +when O +used O +in O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +printing O +. O + + +Both O +small O +and O +large-scale O +3-D S-CONPRI +component O +properties S-CONPRI +were O +examined O +. O + + +The O +mechanical B-CONPRI +property E-CONPRI +anisotropy S-PRO +ratio O +, O +an O +indication O +of O +bead-bead O +adhesive S-MATE +strength O +( O +defined O +as S-MATE +a O +property S-CONPRI +measured O +along O +the O +z O +axis O +versus O +the O +x O +axis O +) O +is O +representative O +of O +adhesive S-MATE +strength O +. O + + +Large-scale O +( O +big O +area S-PARA +additive B-MANP +manufacturing E-MANP +, O +BAAM O +) O +tests O +( O +flexural O +properties S-CONPRI +) O +showed O +62 O +% O +improvement O +in O +the O +anisotropy S-PRO +ratio O +for O +modulus O +, O +77 O +% O +improvement O +in O +the O +anisotropy S-PRO +ratio O +of O +the O +strength S-PRO +, O +56 O +% O +improvement O +in O +the O +anisotropy S-PRO +ratio O +of O +elongation S-PRO +at O +break O +, O +and O +55 O +% O +improvement O +of O +the O +anisotropy S-PRO +ratio O +of O +the O +Charpy O +impact S-CONPRI +strength O +over O +the O +control O +PA S-CHAR +values O +. O + + +Thus O +, O +use O +of O +compatibilized O +polymer B-MATE +blends E-MATE +can O +provide O +customized O +materials S-CONPRI +without O +the O +need O +for O +new O +chemistry S-CONPRI +. O + + +Addition O +of O +maleic O +anhydride-compatibilized O +ABS S-MATE +improved O +PA S-CHAR +blend S-MATE +bead-bead O +adhesion S-PRO +. O + + +The O +thixotropic S-PRO +ink S-MATE +is O +able O +to O +maintain O +the O +shape O +after O +direct O +printing O +. O + + +MNPs O +interact O +with O +polymer S-MATE +network O +and O +alter O +its O +physicochemical O +properties S-CONPRI +. O + + +Nanofiller O +renders O +the O +3D-printed S-MANP +hydrogel O +magnetic O +. O + + +3D-printed S-MANP +objects O +can O +be S-MATE +remotely O +actuated O +via O +magnetic B-CONPRI +fields E-CONPRI +. O + + +Magnetic O +hydrogels S-MATE +have O +a O +myriad O +of O +promising O +applications O +including O +soft O +electronics S-CONPRI +, O +flexible O +robotics S-APPL +, O +biomedical S-APPL +devices O +, O +and O +wastewater B-APPL +treatment E-APPL +. O + + +However O +, O +their O +potential O +is O +limited O +by O +conventional O +fabrication S-MANP +methods O +which O +impede O +creating O +convoluted O +geometries S-CONPRI +. O + + +3D B-MANP +printing E-MANP +may O +replace O +traditional O +fabrication S-MANP +techniques O +as S-MATE +it O +has O +an O +ability O +to O +fabricate S-MANP +complex B-PRO +shapes E-PRO +using O +a O +wide O +variety O +of O +materials S-CONPRI +. O + + +A O +new O +3D B-MANP +printing E-MANP +ink O +, O +a O +bionanocomposite O +based O +on O +alginate S-MATE +, O +methylcellulose O +and O +magnetic O +nanoparticles S-CONPRI +( O +MNPs O +) O +was O +used O +to O +print S-MANP +pre-designed O +high-quality O +3D B-CONPRI +structures E-CONPRI +. O + + +Three-dimensional S-CONPRI +hydrogel S-MATE +constructs O +had O +good O +mechanical S-APPL +stability O +and O +exhibited O +responsiveness O +to O +an O +applied O +magnetic B-CONPRI +field E-CONPRI +. O + + +Inclusion S-MATE +of O +the O +MNPs O +within O +the O +hydrogel S-MATE +and O +its O +precursor S-MATE +( O +ink S-MATE +) O +influenced O +their O +rheological B-PRO +properties E-PRO +- O +and O +mechanical S-APPL +stability O +. O + + +MNPs O +were O +found O +to O +play O +dual O +roles O +: O +( O +1 O +) O +as S-MATE +a O +nanofiller O +that O +interacts O +with O +polymer S-MATE +backbone O +and O +alters O +its O +physicochemical O +properties S-CONPRI +, O +and O +( O +2 O +) O +as S-MATE +a O +function O +provider O +that O +renders O +a O +bionanocomposite O +magnetic O +. O + + +The O +magnetic O +ink S-MATE +allows O +for O +the O +fabrication S-MANP +of O +multi-material B-FEAT +structures E-FEAT +such O +as S-MATE +hydrogels O +with O +a O +magnetic O +nanoparticle O +gradient O +. O + + +3D-printed S-MANP +objects O +can O +be S-MATE +remotely O +actuated O +via O +magnetic B-CONPRI +fields E-CONPRI +. O + + +Reactive O +magnesium B-MATE +oxide E-MATE +cement S-MATE +( O +RMC S-CHAR +) O +is O +gaining O +increasing O +attention O +as S-MATE +a O +sustainable S-CONPRI +construction S-APPL +material O +due O +to O +its O +significantly O +low O +carbon B-CONPRI +footprint E-CONPRI +during O +the O +production S-MANP +as S-MATE +well O +as S-MATE +the O +operational O +phase S-CONPRI +compared O +to O +the O +conventional O +Portland O +cement S-MATE +. O + + +Whereas O +several O +studies O +have O +demonstrated O +the O +potential O +of O +RMC S-CHAR +as S-MATE +a O +suitable O +and O +environment-friendly O +construction S-APPL +material O +, O +this O +study O +reports O +that O +RMC S-CHAR +can O +be S-MATE +shaped O +into O +complex B-CONPRI +structures E-CONPRI +via O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing B-ENAT +technology E-ENAT +. O + + +By O +adding O +suitable O +additives S-MATE +and O +only O +3 O +wt O +. O + + +% O +of O +caustic O +magnesium B-MATE +oxide E-MATE +to O +the O +commercially O +available O +RMC S-CHAR +, O +appropriate O +rheology S-PRO +and O +buildability O +were O +achieved O +that O +enabled O +smooth O +3D B-MANP +printing E-MANP +of O +complex B-CONPRI +structures E-CONPRI +with O +precise O +shape O +retention O +. O + + +Moreover O +, O +the O +3D B-MANP +printed E-MANP +RMC O +exhibited O +higher O +densification S-MANP +and O +nearly O +twofold O +the O +compressive B-PRO +strength E-PRO +as S-MATE +compared O +to O +its O +cast S-MANP +counterpart O +. O + + +Therefore O +, O +this O +work O +demonstrates O +the O +potential O +of O +RMC S-CHAR +as S-MATE +a O +3D S-CONPRI +printable O +construction S-APPL +material O +for O +sustainable S-CONPRI +and O +modern O +architecture S-APPL +. O + + +Achievement O +of O +optimized O +lateral O +and O +vertical S-CONPRI +resolution S-PARA +is O +a O +key O +factor O +to O +obtaining O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +structural O +details O +fabricated S-CONPRI +through O +digital B-MANP +light I-MANP +processing E-MANP +( O +DLP S-MANP +) O +-based O +3D B-ENAT +printing I-ENAT +technologies E-ENAT +which O +exploit O +digitalized O +ultraviolet S-CONPRI +( O +UV S-CONPRI +) O +or O +near-UV O +light O +to O +trigger O +localized O +photopolymerization B-MANP +forming E-MANP +solid O +patterns O +from O +liquid O +polymer B-MATE +resins E-MATE +. O + + +Many O +efforts O +have O +been O +made O +to O +optimize O +printing O +resolution S-PARA +through O +improving O +the O +optical S-CHAR +systems O +. O + + +However O +, O +researchers O +have O +paid O +comparatively O +little O +attention O +to O +understand O +the O +influences O +of O +polymer S-MATE +formulation O +on O +the O +printing O +resolution S-PARA +and O +surface B-PARA +quality E-PARA +. O + + +Here O +, O +we O +report O +an O +investigation O +on O +the O +effects O +of O +in-house O +formulated O +( O +meth O +) O +acrylate-based O +photopolymer S-MATE +constituent O +types O +and O +concentrations O +on O +the O +resolution S-PARA +and O +quality S-CONPRI +of O +structures O +printed O +on O +a O +bottom-exposure O +DLP-based O +3D B-MANP +printing E-MANP +system O +. O + + +We O +examined O +a O +wide O +variety O +of O +resin S-MATE +formulations O +to O +determine O +optimal O +formulations O +that O +yield O +best O +printing O +resolution S-PARA +and O +surface B-PARA +quality E-PARA +over O +a O +reasonably O +broad O +range S-PARA +of O +mechanical B-CONPRI +properties E-CONPRI +. O + + +We O +demonstrated O +the O +controlled O +fabrication S-MANP +of O +sub-pixel O +conical O +and O +aspherical O +smooth O +features O +, O +whereby O +the O +shape O +and O +dimensions S-FEAT +could O +be S-MATE +prescribed O +with O +the O +resin S-MATE +formulation O +and O +process B-CONPRI +parameters E-CONPRI +. O + + +Such O +features O +hold O +promising O +implications O +in O +micro-optic O +and O +microfluidic O +fabrication S-MANP +using O +the O +DLP-based O +3D B-MANP +printing E-MANP +technique O +. O + + +Use O +of O +this O +solution S-CONPRI +minimized O +the O +‘ O +stair-stepping O +’ O +effect O +in O +components S-MACEQ +printed O +in O +a O +layer-by-layer S-CONPRI +manner O +. O + + +Taken O +together O +, O +the O +present O +findings O +provide O +a O +basis O +for O +optimized O +photopolymer B-MATE +resin E-MATE +formulations O +that O +retain O +maximum O +vertical S-CONPRI +and O +lateral O +resolutions O +and O +minimal O +surface B-PRO +roughness E-PRO +and O +layering O +artifacts O +for O +a O +versatile O +range S-PARA +of O +mechanical S-APPL +and O +rheological B-PRO +properties E-PRO +suited O +to O +novel O +applications O +in O +3D B-MANP +printing E-MANP +of O +smooth O +free-form O +solids O +, O +micro-optics O +, O +and O +direct O +fabrication S-MANP +of O +microfluidic O +platforms O +with O +functional O +surfaces S-CONPRI +. O + + +The O +optimization S-CONPRI +of O +slurry S-MATE +compositions O +and O +processing O +parameters S-CONPRI +has O +significant O +potential O +for O +layered O +extrusion S-MANP +forming O +, O +a O +novel O +slurry-based O +additive B-MANP +manufacturing E-MANP +method O +. O + + +The O +optimal O +slurry S-MATE +composition S-CONPRI +was O +composed O +of O +50vol. O +% O +Al2O3 S-MATE +loading O +, O +1.5wt. O +% O +acetic O +acid O +as S-MATE +dispersant O +and O +2wt. O +% O +methylcellulose O +solution S-CONPRI +as S-MATE +binder O +. O + + +The O +processing O +parameters S-CONPRI +including O +layer B-PARA +height E-PARA +, O +print S-MANP +speed O +and O +nozzle B-CONPRI +diameter E-CONPRI +significantly O +influenced O +the O +fabrication S-MANP +quality O +. O + + +The O +orthogonal O +experiment S-CONPRI +showed O +that O +the O +print S-MANP +speed O +of O +15mm/s O +, O +nozzle B-CONPRI +diameter E-CONPRI +of O +0.40mm O +and O +layer B-PARA +height E-PARA +set O +as S-MATE +70 O +% O +of O +nozzle B-CONPRI +diameter E-CONPRI +was O +the O +optimized O +processing O +conditions O +. O + + +The O +lattice B-FEAT +structure E-FEAT +constructed O +under O +the O +optimized O +conditions O +exhibited O +uniform O +and O +well-shaped O +morphology S-CONPRI +before O +and O +after O +sintering S-MANP +. O + + +The O +solid-infilled O +ceramic S-MATE +specimen O +prepared O +via O +optimized O +parameters S-CONPRI +exhibited O +uniform O +structure S-CONPRI +and O +the O +surface B-PRO +roughness E-PRO +was O +0.75μm O +, O +which O +greatly O +improved O +the O +surface B-PARA +quality E-PARA +. O + + +Current O +3D B-MANP +printing E-MANP +capabilities O +onboard O +the O +International O +Space O +Station O +( O +ISS O +) O +are O +classified O +as S-MATE +experimental O +payloads O +. O + + +As S-MATE +payloads O +the O +products O +of O +these O +printers S-MACEQ +are O +returned O +to O +the O +ground O +for O +testing S-CHAR +and O +analysis O +. O + + +However O +, O +it O +has O +long O +been O +thought O +that O +3D B-MANP +printing E-MANP +must O +one O +day O +become O +a O +tool S-MACEQ +of O +space O +operations O +much O +like O +the O +electrical S-APPL +diagnostic O +equipment S-MACEQ +, O +and O +the O +soldering S-MANP +iron S-MATE +. O + + +This O +paper O +explores O +a O +case B-CONPRI +study E-CONPRI +in O +the O +use O +of O +one O +of O +the O +payload O +3D B-MACEQ +printers E-MACEQ +to O +manufacture S-CONPRI +a O +device O +to O +be S-MATE +used O +by O +the O +crew O +as S-MATE +part O +of O +nominal O +ISS O +Operations O +. O + + +The O +path O +from O +concept O +development O +through O +onboard O +printing O +and O +crew O +inspection S-CHAR +will O +be S-MATE +described O +. O + + +The O +lessons O +learned O +from O +this O +process S-CONPRI +are O +reviewed O +as S-MATE +constructive O +feedback S-PARA +on O +how O +existing O +processes S-CONPRI +can O +be S-MATE +expanded O +to O +enable O +this O +capability O +in O +the O +future O +. O + + +This O +experience O +will O +be S-MATE +carried O +forward O +into O +the O +development O +of O +a O +new O +process S-CONPRI +which O +will O +open O +the O +door O +for O +future O +use O +of O +3D B-MANP +printing E-MANP +onboard O +the O +ISS O +. O + + +Continuous O +fiber–reinforced O +thermosetting B-MATE +polymer E-MATE +composites S-MATE +( O +CFRTPCs O +) O +were O +prepared O +via O +three–dimensional O +( O +3D S-CONPRI +) O +printing O +. O + + +Typical O +process B-CONPRI +parameters E-CONPRI +were O +systematically O +investigated O +over O +a O +wide O +range S-PARA +. O + + +3D B-MANP +printed E-MANP +CFRTPC O +samples S-CONPRI +exhibited O +maximum O +flexural B-PRO +strength E-PRO +and O +modulus O +of O +952.89 O +MPa S-CONPRI +and O +74.05 O +GPa S-PRO +, O +respectively O +. O + + +Mechanical S-APPL +performance O +of O +the O +optimized O +process S-CONPRI +has O +increased O +nearly O +an O +order O +of O +magnitude S-PARA +than O +the O +previous O +reports O +. O + + +Advanced B-MATE +composite E-MATE +structures O +can O +be S-MATE +3D B-MANP +printed E-MANP +for O +potential O +applications O +in O +the O +future O +research S-CONPRI +. O + + +Continuous O +fiber-reinforced O +thermosetting B-MATE +polymer E-MATE +composites S-MATE +( O +CFRTPCs O +) O +were O +prepared O +via O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing O +in O +this O +study O +. O + + +The O +entire O +process S-CONPRI +was O +divided O +into O +impregnation S-MANP +, O +printing O +, O +and O +curing S-MANP +stages O +. O + + +The O +impregnation S-MANP +stage O +ensured O +a O +tightly O +bonded O +interface S-CONPRI +and O +uniform O +distribution S-CONPRI +of O +fibers S-MATE +and O +resin S-MATE +. O + + +The O +printing O +stage O +solved O +the O +great O +conveying O +resistance S-PRO +and O +poor O +adhesion S-PRO +caused O +by O +the O +addition O +of O +continuous B-MATE +fibers E-MATE +. O + + +The O +curing S-MANP +stage O +aimed O +to O +preserve O +the O +shapes O +of O +the O +pre-formed O +samples S-CONPRI +and O +completed O +the O +polymerization S-MANP +and O +crosslinking O +reactions O +. O + + +An O +investigation O +into O +the O +experimental B-CONPRI +design E-CONPRI +focused O +on O +optimizing O +the O +parameters S-CONPRI +of O +the O +manufacturing B-MANP +process E-MANP +, O +wherein O +printing B-PARA +speed E-PARA +, O +printing O +space O +, O +printing O +thickness O +, O +curing S-MANP +pressure O +, O +and O +curing S-MANP +temperature O +were O +selected O +as S-MATE +target O +variables O +. O + + +Finally O +, O +3D B-MANP +printed E-MANP +CFRTPC O +samples S-CONPRI +with O +58 O +wt. O +% O +fiber S-MATE +content O +exhibited O +maximum O +flexural B-PRO +strength E-PRO +and O +modulus O +of O +952.89 O +MPa S-CONPRI +and O +74.05 O +GPa S-PRO +, O +respectively O +. O + + +Moreover O +, O +complex O +CFRTPC O +components S-MACEQ +were O +fabricated S-CONPRI +to O +demonstrate O +the O +feasibility S-CONPRI +and O +generality O +of O +the O +proposed O +technique O +. O + + +These O +results O +may O +broaden O +the O +potential O +use O +of O +3D B-MANP +printed E-MANP +CFRTPCs O +in O +aerospace S-APPL +, O +defense O +, O +and O +automotive S-APPL +applications O +. O + + +A O +hybrid O +multi-objective O +optimization S-CONPRI +approach O +is O +proposed O +to O +optimize O +the O +printed O +line O +quality S-CONPRI +. O + + +The O +inherent O +contradiction O +is O +analyzed O +by O +a O +statistical O +response B-CONPRI +surface I-CONPRI +methodology E-CONPRI +. O + + +The O +robust O +3D S-CONPRI +optimal O +Pareto S-CONPRI +front O +is O +identified O +based O +on O +statistical O +uncertainty O +and O +a O +genetic B-CONPRI +algorithm E-CONPRI +. O + + +Aerosol O +jet O +printing O +( O +AJP O +) O +is O +an O +emerging O +3-dimensional O +( O +3D S-CONPRI +) O +printing B-ENAT +technology E-ENAT +to O +fabricate S-MANP +customized O +and O +conformal O +microelectronic O +components S-MACEQ +on O +various O +flexible O +substrates O +. O + + +Although O +the O +AJP O +technology S-CONPRI +has O +the O +capability O +of O +depositing O +fine O +features O +, O +the O +inherent O +contradiction O +between O +the O +printed O +line O +thickness O +and O +line O +edge O +roughness S-PRO +has O +a O +great O +impact S-CONPRI +on O +the O +printed O +line O +quality S-CONPRI +. O + + +The O +proposed O +approach O +consists O +of O +a O +central O +composite S-MATE +design O +( O +CCD O +) O +, O +a O +response B-CONPRI +surface I-CONPRI +methodology E-CONPRI +, O +a O +desirability O +function O +approach O +and O +a O +non-dominated O +sorting O +genetic B-CONPRI +algorithm E-CONPRI +III O +( O +NSGA-III O +) O +. O + + +In O +the O +proposed O +approach O +, O +the O +response B-CONPRI +surface I-CONPRI +methodology E-CONPRI +is O +combined O +with O +the O +CCD O +to O +investigate O +and O +quantify O +the O +correlations O +between O +the O +printed O +line O +features O +and O +the O +key O +process B-CONPRI +parameters E-CONPRI +. O + + +And O +the O +conflicting O +relationship O +between O +the O +printed O +line O +edge O +roughness S-PRO +and O +line O +thickness O +is O +identified O +by O +the O +CCD O +derived O +response O +surface B-ENAT +models E-ENAT +( O +RSMs O +) O +. O + + +The O +experimental S-CONPRI +results O +demonstrate O +that O +the O +proposed O +hybrid O +multi-objective O +optimization S-CONPRI +approach O +is O +beneficial O +to O +minimize O +the O +conflict O +between O +the O +printed O +line O +features O +, O +hence O +the O +lines O +can O +be S-MATE +produced O +with O +low O +line O +edge O +roughness S-PRO +and O +sufficient O +line O +thickness O +. O + + +Different O +from O +a O +traditional O +trial-and-error S-CONPRI +method O +in O +AJP O +, O +the O +proposed O +printing O +quality B-CONPRI +optimization E-CONPRI +approach O +is O +developed O +based O +on O +the O +principles O +of O +statistical O +modeling S-ENAT +, O +analysis O +of O +variance O +and O +global O +optimization S-CONPRI +. O + + +Therefore O +, O +the O +proposed O +printing O +quality B-CONPRI +optimization E-CONPRI +approach O +is O +more O +efficient O +and O +systematic O +. O + + +Moreover O +, O +the O +data-driven O +based O +characteristic O +makes O +the O +proposed O +approach O +applicable O +to O +other O +multi-objective O +optimization S-CONPRI +researches O +in O +additive B-MANP +manufacturing E-MANP +technologies O +. O + + +We O +explore O +elastic S-PRO +wave O +focusing O +and O +enhanced O +energy B-CONPRI +harvesting E-CONPRI +by O +means O +of O +a O +3D-printed S-MANP +Gradient-Index O +Phononic O +Crystal O +Lens S-MANP +( O +GRIN-PCL O +) O +bonded O +on O +a O +metallic S-MATE +host O +structure S-CONPRI +. O + + +The O +lens S-MANP +layer S-PARA +is O +fabricated S-CONPRI +by O +3D B-MANP +printing E-MANP +a O +rectangular O +array O +of O +cylindrical S-CONPRI +nylon O +stubs O +with O +varying O +heights O +. O + + +The O +stub O +heights O +are O +designed S-FEAT +to O +obtain O +a O +hyperbolic O +secant O +distribution S-CONPRI +of O +the O +refractive O +index O +to O +achieve O +the O +required O +phase S-CONPRI +velocity O +variation S-CONPRI +in O +space O +, O +hence O +the O +gradient-index O +lens S-MANP +behavior O +. O + + +Finite B-CONPRI +element E-CONPRI +simulations O +are O +performed O +on O +composite S-MATE +unit O +cells S-APPL +with O +various O +stub O +heights O +to O +obtain O +the O +lowest O +antisymmetric O +mode O +Lamb O +wave O +band O +diagrams O +, O +yielding O +a O +correlation O +between O +the O +stub O +height O +and O +refractive O +index O +. O + + +The O +elastic S-PRO +wave O +focusing O +performance S-CONPRI +of O +lenses O +with O +different O +design S-FEAT +parameters O +( O +gradient O +coefficient O +and O +aperture O +size O +) O +is O +simulated O +numerically O +under O +plane O +wave O +excitation S-CHAR +. O + + +It O +is O +observed O +that O +the O +focal O +points O +of O +the O +wider O +aperture O +lens S-MANP +designs S-FEAT +have O +better O +consistency S-CONPRI +with O +the O +analytical O +beam S-MACEQ +trajectory O +results O +. O + + +Experiments O +are O +conducted O +using O +a O +PA2200 O +nylon S-MATE +lens S-MANP +bonded O +to O +an O +aluminum S-MATE +plate O +to O +demonstrate O +wave O +focusing O +and O +enhanced O +energy B-CONPRI +harvesting E-CONPRI +within O +the O +3D-printed S-MANP +GRIN-PCL O +domain S-CONPRI +. O + + +The O +results O +show O +that O +3D B-MANP +printing E-MANP +can O +provide O +a O +simple S-MANP +and O +practical O +method O +for O +implementing O +phononic O +crystal O +concepts O +with O +minimal O +modification O +of O +the O +host O +structure S-CONPRI +. O + + +The O +spatial O +orientation S-CONPRI +of O +an O +object O +on O +a O +3D B-MANP +printing E-MANP +plate O +is O +a O +significant O +contributor O +to O +its O +printing O +time O +. O + + +Thus O +, O +the O +speed O +of O +the O +3D B-MANP +printing E-MANP +processes O +can O +generally O +be S-MATE +increased O +by O +using O +time-efficient O +object O +orientations S-CONPRI +. O + + +This O +paper O +presents O +a O +novel O +method O +for O +speeding-up O +printing B-MANP +processes E-MANP +that O +employs O +maximally O +efficient O +orientations S-CONPRI +. O + + +This O +method O +finds O +an O +orientation S-CONPRI +for O +the O +object O +that O +minimizes O +the O +number O +of O +disconnected O +components S-MACEQ +and O +the O +distance O +between O +the O +disconnected O +components S-MACEQ +that O +remain O +, O +thereby O +minimizing O +the O +time O +needed O +for O +the O +printer S-MACEQ +head O +to O +traverse O +empty O +areas S-PARA +. O + + +The O +method O +also O +considers O +the O +height O +of O +the O +printed O +object O +, O +its O +trapped O +volume S-CONPRI +, O +and O +the O +number O +of O +connected O +components S-MACEQ +in O +each O +layer S-PARA +. O + + +Our O +novel O +algorithm S-CONPRI +considers O +all O +four O +criteria O +, O +each O +weighted O +according O +to O +printer-specific O +and O +experimentally-obtained O +parameters S-CONPRI +. O + + +Preliminary O +trials O +demonstrate O +that O +this O +methodology S-CONPRI +can O +decrease O +printing O +times O +on O +fused B-CONPRI +deposition E-CONPRI +printers O +to O +45 O +% O +of O +that O +of O +current O +state O +of O +the O +art S-APPL +algorithms S-CONPRI +. O + + +Waveguides O +are O +important O +optical B-APPL +elements E-APPL +for O +sensing S-APPL +, O +illumination O +, O +artistic O +displays O +, O +integrated O +optical S-CHAR +circuits O +, O +as S-MATE +well O +as S-MATE +teaching O +aids O +for O +demonstrating O +important O +optical S-CHAR +phenomena O +. O + + +However O +, O +despite O +the O +high O +demand O +, O +most O +optical S-CHAR +materials S-CONPRI +are O +difficult O +to O +fabricate S-MANP +into O +desired O +shapes O +using O +state-of-the-art S-CONPRI +manufacturing B-MANP +technologies E-MANP +. O + + +This O +paper O +presents O +a O +novel O +method O +for O +3D B-MANP +printing E-MANP +customizable O +optics S-APPL +with O +a O +soft O +and O +stretchable S-FEAT +( O +over O +100 O +% O +elastic S-PRO +strains O +) O +thermoplastic B-MATE +polymer E-MATE +. O + + +To O +showcase O +the O +versatility O +of O +this O +approach O +, O +several O +applications O +were O +demonstrated O +, O +including O +unique O +artistic O +illumination O +, O +caustic O +patterns O +, O +beam S-MACEQ +splitter O +and O +combiner O +on O +both O +planar O +and O +3D S-CONPRI +conformal O +surfaces S-CONPRI +, O +and O +optical B-MACEQ +encoder E-MACEQ +. O + + +The O +simplicity O +of O +the O +fabrication S-MANP +process O +, O +low-cost O +, O +excellent O +optical B-PRO +properties E-PRO +, O +and O +flexibility S-PRO +provide O +an O +attractive O +pathway O +for O +fabricating S-MANP +integrated O +optical S-CHAR +devices O +and O +new O +opportunities O +for O +controlling O +light O +. O + + +( O +c S-MATE +) O +As-printed O +waveguide O +splitter O +and O +combiner O +circuit O +on O +a O +3D B-MANP +printed E-MANP +dome O +surface S-CONPRI +, O +and O +( O +d O +) O +Top O +view O +of O +lighted O +circuited O +. O + + +( O +e O +) O +Pattern S-CONPRI +of O +our O +group O +name O +“ O +AM3 O +Lab O +” O +on O +a O +black O +paper O +substrate S-MATE +, O +and O +( O +f S-MANP +) O +Lighted O +with O +different O +LEDs.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +296 O +Inkjet B-MANP +printing E-MANP +has O +been O +used O +as S-MATE +an O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +method O +to O +fabricate S-MANP +three-dimensional O +( O +3D S-CONPRI +) O +structures O +. O + + +However O +, O +a O +lack O +of O +materials S-CONPRI +suitable O +for O +inkjet B-MANP +printing E-MANP +poses O +one O +of O +the O +key O +challenges O +that O +impedes O +industry S-APPL +from O +fully O +adopting O +this O +technology S-CONPRI +. O + + +Consequently O +, O +many O +industry S-APPL +sectors O +are O +required O +to O +spend O +significant O +time O +and O +resources O +on O +formulating O +new O +materials S-CONPRI +for O +an O +AM B-MANP +process E-MANP +, O +instead O +of O +focusing O +on O +product B-CONPRI +development E-CONPRI +. O + + +To O +achieve O +the O +spatially O +controlled O +deposition S-CONPRI +of O +a O +printed O +voxel S-CONPRI +in O +a O +predictable S-CONPRI +and O +repeatable O +fashion S-CONPRI +, O +a O +combination O +of O +the O +physical B-PRO +properties E-PRO +of O +the O +‘ O +ink S-MATE +’ O +material S-MATE +, O +print B-MACEQ +head E-MACEQ +design S-FEAT +, O +and O +processing O +parameters S-CONPRI +is O +associated O +. O + + +Use O +of O +a O +liquid O +handler O +containing O +multi-pipette O +heads O +, O +to O +rapidly O +prepare O +inkjet S-MANP +formulations O +in O +a O +micro-array O +format O +, O +and O +subsequently O +measure O +the O +viscosity S-PRO +and O +surface B-PRO +tension E-PRO +for O +each O +in O +a O +high-throughput O +manner O +is O +reported O +. O + + +The O +throughput S-CHAR +is O +96 O +formulations O +per O +13.1 O +working O +hours O +, O +including O +sample S-CONPRI +preparation O +and O +subsequent O +printability S-PARA +determination O +. O + + +The O +HTS O +technique O +was O +validated O +by O +comparison O +with O +conventional O +viscosity S-PRO +and O +surface B-PRO +tension E-PRO +measurements O +, O +as S-MATE +well O +as S-MATE +the O +observation O +of O +droplet S-CONPRI +ejection O +during O +inkjet B-MANP +printing I-MANP +processes E-MANP +. O + + +Using O +this O +approach O +, O +a O +library O +of O +96 O +acrylate/methacrylate O +materials S-CONPRI +was O +screened O +to O +identify O +the O +printability S-PARA +of O +each O +formulation O +at O +different O +processing O +temperatures S-PARA +. O + + +The O +methodology S-CONPRI +and O +the O +material S-MATE +database S-ENAT +established O +using O +this O +HTS O +technique O +will O +allow O +academic O +and O +industrial S-APPL +users O +to O +rapidly O +select O +the O +most O +ideal O +formulation O +to O +deliver O +printability S-PARA +and O +a O +predicted S-CONPRI +processing O +window O +for O +a O +chosen O +application O +. O + + +Controlling O +cooling S-MANP +airflow O +is O +feasible O +in O +FFF S-MANP +process O +for O +enhancing O +performance S-CONPRI +. O + + +Cooling S-MANP +airflow O +has O +opposite O +influence O +on O +geometric O +quality S-CONPRI +and O +mechanical B-PRO +strength E-PRO +. O + + +Void S-CONPRI +and O +crystallinity O +of O +printed O +PLA S-MATE +model S-CONPRI +are O +influenced O +by O +the O +airflow O +cooling S-MANP +. O + + +The O +dimensional O +quality S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +a O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +-printed O +3D B-APPL +model E-APPL +are O +influenced O +by O +several O +process B-CONPRI +parameters E-CONPRI +. O + + +A O +forced-air O +cooling S-MANP +system O +that O +moves O +along O +with O +the O +print B-MACEQ +head E-MACEQ +was O +designed S-FEAT +and O +installed O +on O +a O +commercial O +3D S-CONPRI +FFF O +printer S-MACEQ +to O +control O +the O +cooling S-MANP +of O +the O +printed O +model S-CONPRI +. O + + +The O +quality S-CONPRI +of O +the O +printed O +polylactide O +( O +PLA S-MATE +) O +model S-CONPRI +, O +including O +the O +dimensions S-FEAT +and O +mechanical B-CONPRI +properties E-CONPRI +, O +was O +investigated O +for O +different O +cooling S-MANP +air O +velocities O +. O + + +It O +was O +found O +that O +the O +cooling S-MANP +air O +velocity O +had O +different O +influences O +on O +the O +dimensional O +quality S-CONPRI +and O +mechanical B-PRO +strength E-PRO +of O +the O +printed O +model S-CONPRI +. O + + +More O +specifically O +, O +higher O +cooling S-MANP +speeds O +generated O +better O +geometric O +accuracy S-CHAR +but O +lower O +mechanical B-PRO +strength E-PRO +. O + + +With O +the O +highest O +and O +lowest O +cooling S-MANP +air O +speeds O +of O +5 O +m/s O +and O +0 O +m/s O +, O +respectively O +, O +the O +tensile B-PRO +strengths E-PRO +of O +the O +printed O +models O +differed O +by O +4-fold O +. O + + +In O +order O +to O +determine O +a O +suitable O +cooling S-MANP +air O +velocity O +setting O +for O +each O +specific O +printing O +material S-MATE +, O +a O +design S-FEAT +model O +was O +proposed O +. O + + +The O +determined O +printing O +parameters S-CONPRI +were O +employed O +in O +the O +fabrication S-MANP +of O +a O +Rubik O +’ O +s S-MATE +cube S-CONPRI +, O +as S-MATE +an O +example O +. O + + +The O +assembled O +cube S-CONPRI +demonstrated O +satisfactory O +performance S-CONPRI +both O +in O +the O +dimensional O +quality S-CONPRI +and O +in O +the O +mechanical S-APPL +function O +. O + + +Therefore O +, O +the O +cooling S-MANP +air O +velocity O +can O +be S-MATE +employed O +as S-MATE +an O +additional O +control O +parameter S-CONPRI +in O +3D B-MANP +printing E-MANP +for O +a O +specified O +model S-CONPRI +. O + + +Material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +is O +widely O +used O +for O +porous B-FEAT +scaffolds E-FEAT +in O +which O +polymer B-MATE +filaments E-MATE +are O +extruded S-MANP +in O +the O +form O +of O +log-pile O +structures O +. O + + +These O +structures O +are O +typically O +designed S-FEAT +with O +the O +assumption O +that O +filaments S-MATE +have O +a O +continuous O +cylindrical S-CONPRI +profile O +. O + + +However O +, O +as S-MATE +a O +filament S-MATE +is O +extruded S-MANP +, O +it O +interacts O +with O +previously O +printed O +filaments S-MATE +( O +e.g O +. O + + +on O +lower O +3D B-MANP +printed E-MANP +layers O +) O +and O +its O +geometry S-CONPRI +varies O +from O +the O +cylindrical S-CONPRI +form O +. O + + +No O +models O +currently O +exist O +that O +can O +predict O +this O +critical O +variation S-CONPRI +, O +which O +impacts O +filament S-MATE +geometry O +, O +pore B-PARA +size E-PARA +and O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Therefore O +, O +expensive O +time-consuming O +trial-and-error S-CONPRI +approaches O +to O +scaffold S-FEAT +design S-FEAT +are O +currently O +necessary O +. O + + +Multiphysics O +models O +for O +material B-MANP +extrusion E-MANP +are O +extremely O +computationally-demanding O +and O +not O +feasible O +for O +the O +size-scales O +involved O +in O +scaffold S-FEAT +structures.This O +paper O +presents O +a O +new O +computationally-efficient O +method O +, O +called O +the O +VOLume S-CONPRI +COnserving O +model S-CONPRI +for O +3D B-MANP +printing E-MANP +( O +VOLCO O +) O +. O + + +The O +VOLCO O +model S-CONPRI +simulates O +material B-MANP +extrusion E-MANP +during O +manufacturing S-MANP +and O +generates O +a O +voxelised O +3D-geometry-model O +of O +the O +predicted B-CONPRI +microarchitecture E-CONPRI +. O + + +The O +extrusion-deposition O +process S-CONPRI +is O +simulated O +in O +3D S-CONPRI +as O +a O +filament S-MATE +that O +elongates O +in O +the O +direction O +that O +the O +print-head O +travels O +. O + + +For O +each O +simulation S-ENAT +step O +in O +the O +model S-CONPRI +, O +a O +set S-APPL +volume O +of O +new O +material S-MATE +is O +simulated O +at O +the O +end O +of O +the O +filament S-MATE +. O + + +When O +previously O +3D B-MANP +printed E-MANP +filaments O +obstruct O +the O +deposition S-CONPRI +of O +this O +new O +material S-MATE +, O +it O +is O +deposited O +into O +the O +nearest O +neighbouring O +voxels S-CONPRI +according O +to O +a O +minimum O +distance O +criterion O +. O + + +This O +leads O +to O +filament S-MATE +spreading O +and O +widening.Experimental O +validation S-CONPRI +demonstrates O +the O +ability O +of O +VOLCO O +to O +simulate O +the O +geometry S-CONPRI +of O +3D B-MANP +printed E-MANP +filaments O +. O + + +In O +addition O +, O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +simulations S-ENAT +utilising O +3D-geometry-models O +generated O +by O +VOLCO O +demonstrate O +its O +value O +and O +applicability O +for O +predicting O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +presented O +method O +enables O +structures O +to O +be S-MATE +validated O +and O +optimised O +prior O +to O +manufacture S-CONPRI +. O + + +Potential O +future O +adaptations O +of O +the O +model S-CONPRI +and O +integration O +into O +3D B-MANP +printing E-MANP +software O +are O +discussed O +. O + + +A O +new O +stitching O +algorithm S-CONPRI +that O +self-adapts O +to O +the O +object O +geometry S-CONPRI +is O +introduced O +. O + + +For O +slender O +objects O +, O +printing O +time O +can O +be S-MATE +reduced O +by O +25 O +% O +with O +the O +new O +algorithm S-CONPRI +. O + + +An O +inevitable O +trade-off O +between O +resolution S-PARA +and O +total O +size O +exists O +when O +3D B-MANP +printing E-MANP +objects O +. O + + +While O +it O +is O +capable O +of O +reaching O +a O +sub-micron S-FEAT +feature B-PARA +size E-PARA +, O +it O +needs O +to O +combine O +a O +high O +precision S-CHAR +movement O +mechanism S-CONPRI +with O +a O +lower O +precision S-CHAR +one O +when O +writing O +centimetric O +size O +objects O +. O + + +As S-MATE +is O +demonstrated O +on O +a O +winding S-CONPRI +microfluidic O +channel S-APPL +, O +this O +can O +lead S-MATE +to O +substantial O +manufacturing S-MANP +time O +gains O +of O +up O +to O +25 O +% O +. O + + +In O +this O +paper O +, O +a O +non-conventional O +way O +of O +additive B-MANP +manufacturing E-MANP +, O +curved-layered O +printing O +, O +has O +been O +applied O +to O +large-scale O +construction S-APPL +process O +. O + + +Despite O +the O +number O +of O +research S-CONPRI +works O +on O +Curved O +Layered O +Fused B-CONPRI +Deposition E-CONPRI +Modelling O +( O +CLFDM O +) O +over O +the O +last O +decade O +, O +few O +practical O +applications O +have O +been O +reported O +. O + + +The O +method O +was O +evaluated O +with O +the O +3D S-CONPRI +Concrete O +Printing B-MANP +process E-MANP +developed O +at O +Loughborough O +University O +. O + + +The O +evaluation O +of O +the O +method O +including O +the O +results O +of O +simulation S-ENAT +and O +printing O +revealed O +three O +principal O +benefits O +compared O +with O +existing O +flat-layered O +printing O +paths O +, O +which O +are O +particularly O +beneficial O +to O +large-scale O +AM B-MANP +techniques E-MANP +: O +( O +i O +) O +better O +surface B-PARA +quality E-PARA +, O +( O +ii O +) O +shorter O +printing O +time O +and O +( O +iii O +) O +higher O +surface S-CONPRI +strengths S-PRO +. O + + +Despite O +the O +enormous O +potential O +of O +additive B-MANP +manufacturing E-MANP +in O +fabricating S-MANP +three-dimensional O +battery S-APPL +electrodes O +, O +the O +structures O +realized O +through O +this O +technology S-CONPRI +are O +mainly O +limited O +to O +the O +interdigitated O +geometries S-CONPRI +due O +to O +the O +nature O +of O +the O +manufacturing B-MANP +process E-MANP +. O + + +This O +work O +reports O +a O +major O +advance O +in O +3D S-CONPRI +batteries O +, O +where O +highly O +complex O +and O +controlled O +3D S-CONPRI +electrode O +architectures O +with O +a O +lattice B-FEAT +structure E-FEAT +and O +a O +hierarchical O +porosity S-PRO +are O +realized O +by O +3D B-MANP +printing E-MANP +. O + + +Microlattice O +electrodes S-MACEQ +with O +porous S-PRO +solid O +truss S-MACEQ +members O +( O +Ag O +) O +are O +fabricated S-CONPRI +by O +Aerosol O +Jet O +3D B-MANP +printing E-MANP +that O +leads O +to O +an O +unprecedented O +improvement O +in O +the O +battery S-APPL +performance O +such O +as S-MATE +400 O +% O +increase O +in O +specific O +capacity S-CONPRI +, O +100 O +% O +increase O +in O +areal O +capacity S-CONPRI +, O +and O +a O +high O +electrode S-MACEQ +volume O +utilization O +when O +compared O +to O +a O +thin O +solid O +Ag O +block O +electrode S-MACEQ +. O + + +Further O +, O +the O +microlattice O +electrodes S-MACEQ +retain O +their O +morphologies S-CONPRI +after O +40 O +electrochemical S-CONPRI +cycles O +, O +demonstrating O +their O +mechanical S-APPL +robustness O +. O + + +These O +results O +indicate O +that O +the O +3D S-CONPRI +microlattice O +structure S-CONPRI +with O +a O +hierarchical O +porosity S-PRO +enhances O +the O +electrolyte S-APPL +transport O +through O +the O +electrode S-MACEQ +volume O +, O +increases O +the O +available O +surface B-PARA +area E-PARA +for O +electrochemical S-CONPRI +reaction O +, O +and O +relieves O +the O +intercalation-induced O +stress S-PRO +; O +leading O +to O +an O +extremely O +robust O +high O +capacity S-CONPRI +battery S-APPL +system O +. O + + +Results O +presented O +in O +this O +work O +can O +lead S-MATE +to O +new O +avenues O +for O +improving O +the O +performance S-CONPRI +of O +a O +wide O +range S-PARA +of O +electrochemical S-CONPRI +energy O +storage O +systems O +. O + + +Pores S-PRO +are O +common O +defects S-CONPRI +in O +the O +process S-CONPRI +of O +directed O +laser S-ENAT +deposition S-CONPRI +( O +DLD O +) O +which O +not O +only O +greatly O +reduce O +the O +fracture S-CONPRI +toughness O +of O +ceramic B-MATE +materials E-MATE +, O +but O +also O +lead S-MATE +to O +the O +failure S-CONPRI +of O +shaped O +parts O +. O + + +In O +this O +paper O +, O +the O +formation O +mechanism S-CONPRI +of O +pores S-PRO +was O +analyzed O +and O +the O +effects O +of O +laser B-PARA +power E-PARA +, O +feeding O +rate O +, O +scanning B-PARA +speed E-PARA +and O +ultrasonic O +power S-PARA +on O +pores S-PRO +were O +investigated O +. O + + +Transmission B-CHAR +electron I-CHAR +microscope E-CHAR +, O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +observation O +and O +X-ray B-CHAR +diffraction I-CHAR +analysis E-CHAR +were O +carried O +out O +for O +sample S-CONPRI +microstructure S-CONPRI +and O +phase B-CONPRI +composition E-CONPRI +respectively O +. O + + +The O +relative B-PRO +density E-PRO +of O +samples S-CONPRI +was O +measured O +by O +the O +progressive O +focused O +ion S-CONPRI +beam S-MACEQ +and O +the O +porosity S-PRO +was O +calculated O +by O +image S-CONPRI +processing O +software B-CONPRI +Image E-CONPRI +. O + + +The O +results O +show O +that O +the O +pores S-PRO +are O +divided O +into O +gas S-CONPRI +holes O +and O +shrinkage S-CONPRI +cavities O +. O + + +The O +appearance O +of O +circular O +gas S-CONPRI +holes O +with O +smooth O +inner O +walls O +are O +caused O +by O +the O +feeding O +method O +by O +gas S-CONPRI +forced O +blowing S-MANP +, O +the O +gas S-CONPRI +mixed O +with O +powder S-MATE +itself O +, O +and O +the O +gas S-CONPRI +in O +the O +molten B-CONPRI +pool E-CONPRI +formed O +by O +gasification O +of O +low-melting O +impurities S-PRO +and O +alumina/zirconia O +during O +laser B-CONPRI +processing E-CONPRI +. O + + +The O +gas S-CONPRI +holes O +are O +evenly O +distributed O +in O +the O +cross-section O +of O +the O +thin-walled O +specimen O +parallel O +to O +the O +scanning B-PARA +speed E-PARA +. O + + +As S-MATE +the O +temperature S-PARA +changes O +drastically O +, O +the O +material S-MATE +around O +the O +melt S-CONPRI +solidifies O +first O +, O +the O +melt S-CONPRI +will O +be S-MATE +attached O +to O +the O +solidified O +material S-MATE +to O +shrink S-FEAT +, O +so O +that O +the O +melt S-CONPRI +can O +not O +be S-MATE +filled O +as S-MATE +a O +solid O +and O +finally O +the O +shrinkage S-CONPRI +cavities O +are O +formed O +. O + + +Generally O +the O +shrinkage S-CONPRI +cavities O +are O +irregular O +and O +the O +pore S-PRO +wall O +is O +relatively O +rough O +, O +mainly O +concentrated O +on O +the O +top O +of O +thin-walled O +samples S-CONPRI +. O + + +The O +laser B-PARA +power E-PARA +has O +the O +greatest O +influence O +on O +the O +pores S-PRO +, O +which O +has O +the O +greatest O +effect O +on O +the O +porosity S-PRO +but O +little O +effect O +on O +the O +shrinkage S-CONPRI +cavities O +. O + + +When O +the O +ultrasonic O +power S-PARA +is O +180 O +W O +, O +the O +porosity S-PRO +reaches O +a O +minimum O +of O +0.1±0.05 O +% O +and O +the O +relative B-PRO +density E-PRO +is O +99.9±0.1 O +% O +. O + + +Traditional O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +bioprinting S-APPL +techniques O +of O +reactive B-MATE +materials E-MATE +usually O +include O +a O +mixing S-CONPRI +step O +of O +reactive O +agents O +prior O +to O +deposition S-CONPRI +, O +leading O +to O +potential O +changes O +in O +the O +rheological S-PRO +and O +biocompatibility S-PRO +properties O +of O +the O +resulting O +ink S-MATE +. O + + +During O +intersecting O +jets O +printing O +, O +reactive B-MATE +materials E-MATE +are O +dispensed O +separately O +, O +colliding O +and O +mixing S-CONPRI +with O +each O +other O +in O +air O +before O +landing O +on O +a O +previously O +deposited B-CHAR +layer E-CHAR +. O + + +While O +this O +enables O +reactive B-MATE +material E-MATE +printing O +using O +a O +printing-then-mixing O +approach O +, O +the O +resulting O +excess O +fluid S-MATE +may O +compromise O +the O +printing O +quality S-CONPRI +and O +accuracy S-CHAR +. O + + +This O +study O +aims O +to O +improve O +the O +performance S-CONPRI +of O +intersecting O +jets–based O +reactive B-MATE +material E-MATE +printing O +by O +introducing O +a O +stainless-steel O +wire O +mesh O +and O +fibrous S-PRO +tissue O +paper–based O +liquid-absorbing O +system O +, O +which O +functions O +as S-MATE +a O +method O +to O +remove O +the O +excess O +resultant O +liquid O +from O +the O +printing O +zone O +. O + + +By O +selecting O +a O +proper O +wire O +mesh O +, O +the O +proposed O +liquid-absorbing O +system O +can O +absorb O +up O +to O +65–90 O +% O +of O +the O +excess O +liquid O +( O +water O +herein O +) O +resulting O +from O +printing O +aqueous O +reactive O +sodium S-MATE +alginate S-MATE +and O +calcium S-MATE +chloride O +inks O +, O +which O +are O +selected O +as S-MATE +model O +materials S-CONPRI +in O +this O +study O +. O + + +By O +controlling O +the O +tilt B-FEAT +angles E-FEAT +of O +intersecting O +jets O +, O +the O +incident O +angle O +of O +post-collision O +droplets S-CONPRI +is O +desirable O +to O +be S-MATE +less O +than O +14° O +to O +avoid O +droplet S-CONPRI +bouncing O +on O +the O +top O +of O +a O +previously O +deposited B-CHAR +layer E-CHAR +during O +3D B-MANP +bioprinting E-MANP +. O + + +Using O +the O +liquid-absorbing O +system O +, O +different O +3D B-CONPRI +structures E-CONPRI +have O +been O +successfully O +printed O +using O +intersecting O +jets O +printing O +. O + + +For O +tubular S-FEAT +alginate S-MATE +constructs O +printed O +in O +air O +from O +sodium S-MATE +alginate S-MATE +and O +calcium S-MATE +chloride O +inks O +, O +a O +2.5 O +height-diameter O +ratio O +can O +be S-MATE +achieved O +. O + + +The O +proposed O +printing B-ENAT +technology E-ENAT +does O +not O +influence O +the O +post-printing O +cell B-CHAR +viability E-CHAR +while O +printing O +3T3 O +cells S-APPL +, O +demonstrating O +its O +promising O +potential O +for O +bioprinting S-APPL +applications O +. O + + +Methodology S-CONPRI +and O +challenges O +of O +3D B-MANP +printing E-MANP +repairs O +outlined O +. O + + +Repeatable O +geopolymer O +temperature S-PARA +sensor S-MACEQ +presented O +. O + + +Adhesion S-PRO +strength O +between O +printed O +patch O +and O +concrete S-MATE +substrate O +0.6 O +MPa S-CONPRI +. O + + +This O +paper O +addresses O +this O +issue O +by O +outlining O +, O +for O +the O +first O +time O +a O +3D S-CONPRI +printable O +temperature S-PARA +sensing S-APPL +repair O +for O +concrete S-MATE +. O + + +The O +multifunctional O +material S-MATE +used O +in O +this O +study O +is O +a O +geopolymer O +: O +a O +durable O +alternative O +to O +ordinary O +Portland O +cement S-MATE +repairs O +, O +which O +can O +be S-MATE +electrically O +interrogated O +to O +act O +as S-MATE +a O +sensor S-MACEQ +. O + + +In O +this O +paper O +, O +we O +outline O +the O +material S-MATE +and O +3D B-MANP +printing E-MANP +process O +development O +, O +and O +demonstrate O +3D B-MANP +printed E-MANP +repair O +patches O +with O +a O +temperature S-PARA +sensing S-APPL +precision S-CHAR +of O +0.1 O +°C O +, O +a O +long-term O +sensing S-APPL +repeatability S-CONPRI +of O +0.3 O +°C O +, O +a O +compressive B-PRO +strength E-PRO +of O +24 O +MPa S-CONPRI +, O +and O +an O +adhesion S-PRO +strength O +to O +concrete S-MATE +of O +0.6 O +MPa S-CONPRI +. O + + +The O +work O +demonstrates O +the O +feasibility S-CONPRI +of O +using O +additive B-MANP +manufacturing E-MANP +as O +a O +new O +means O +of O +applying O +repairs O +to O +concrete S-MATE +substrates O +, O +and O +provides O +one O +clear O +pathway O +to O +removing O +some O +of O +the O +barriers O +to O +the O +field O +deployment O +of O +multifunctional O +materials S-CONPRI +in O +a O +civil O +engineering S-APPL +context O +. O + + +The O +process S-CONPRI +shown O +here O +could O +enhance O +the O +design S-FEAT +versatility O +of O +self-sensing O +repairs O +, O +unlock O +remote O +deployment O +, O +and O +de-cost O +and O +de-risk O +actions O +that O +prolong O +the O +lifespan O +and O +performance S-CONPRI +of O +existing O +concrete S-MATE +structures O +. O + + +Brittle S-PRO +polymers O +suffer O +from O +the O +lack O +of O +stretchability S-FEAT +, O +which O +limits S-CONPRI +their O +application O +when O +large O +deformation S-CONPRI +is O +required O +. O + + +To O +address O +this O +limitation O +, O +we O +investigate O +the O +stretchability S-FEAT +of O +a O +set S-APPL +of O +cellular B-MATE +materials E-MATE +with O +conventional O +and O +novel O +cell S-APPL +architectures O +through O +3D B-MANP +printing E-MANP +, O +experimental S-CONPRI +testing O +, O +and O +computational O +simulation S-ENAT +. O + + +The O +presence O +of O +sharp O +corners O +restricts O +the O +stretchability S-FEAT +of O +the O +honeycomb S-CONPRI +and O +arrowhead O +cellular O +architectures O +. O + + +A O +new O +class O +of O +accordion-like O +cellular O +architecture S-APPL +with O +sinusoidal O +struts S-MACEQ +is O +designed S-FEAT +to O +enhance O +the O +planar O +stretchability S-FEAT +of O +cellular O +solids O +. O + + +These O +accordion-like O +sinusoidal O +architectures O +exhibit O +an O +enhancement O +in O +the O +stretchability S-FEAT +of O +the O +cellular B-MATE +materials E-MATE +even O +for O +those O +samples B-CONPRI +fabricated E-CONPRI +from O +brittle S-PRO +polymers O +. O + + +The O +manufacturability S-CONPRI +of O +the O +proposed O +architectures O +is O +demonstrated O +utilizing O +SLA S-MACEQ +and O +FDM B-MANP +additive I-MANP +manufacturing I-MANP +techniques E-MANP +. O + + +We O +customize O +the O +3D B-MANP +printing E-MANP +settings O +to O +fabricate S-MANP +specimens O +with O +tailored O +architectures O +for O +experimental S-CONPRI +testing O +. O + + +Comparing O +the O +stress-strain O +curves O +obtained O +by O +experimental S-CONPRI +testing O +on O +the O +3D B-MANP +printed E-MANP +samples O +with O +numerical B-ENAT +simulation E-ENAT +confirms O +that O +the O +failure S-CONPRI +strains O +for O +sinusoidal O +architectures O +can O +be S-MATE +as S-MATE +high O +as S-MATE +20 O +times O +that O +of O +conventional O +honeycombs O +without O +compromising O +the O +energy B-CHAR +absorption E-CHAR +efficiency O +of O +the O +cellular B-MATE +materials E-MATE +. O + + +The O +stress-strain O +curves O +for O +3D B-MANP +printed E-MANP +samples O +fabricated S-CONPRI +from O +flexible O +polymers S-MATE +are O +presented O +to O +show O +that O +energy O +dissipation O +in O +a O +hysteresis B-CHAR +loop E-CHAR +also O +can O +be S-MATE +enhanced O +by O +exploiting O +the O +accordion-like O +sinusoidal O +architectural O +designs S-FEAT +. O + + +The O +sinusoidal O +struts S-MACEQ +in O +accordion-like O +cellular O +architectures O +offer O +a O +design S-FEAT +route O +to O +extend O +the O +material B-CONPRI +property E-CONPRI +chart O +to O +achieve O +ultrahigh O +stretchability S-FEAT +in O +lightweight B-CONPRI +3D E-CONPRI +printable O +brittle S-PRO +and O +flexible O +polymers S-MATE +for O +applications O +that O +require O +combined O +stretchability S-FEAT +, O +lightweighting S-PRO +, O +and O +energy B-CHAR +absorption E-CHAR +such O +as S-MATE +soft O +robotics S-APPL +, O +stretchable B-MACEQ +electronics E-MACEQ +, O +and O +wearable O +protection O +shields O +. O + + +In O +additive S-MATE +construction O +, O +ambitious O +goals O +to O +fabricate S-MANP +a O +concrete S-MATE +building O +in O +less O +than O +24 O +h O +are O +attempted O +. O + + +This O +analysis O +included O +a O +study O +of O +the O +variation S-CONPRI +in O +comprehensive O +layer S-PARA +print O +times O +, O +expected O +trends S-CONPRI +and O +forecasting O +for O +what O +is O +expected O +in O +future O +prints O +of O +similar O +types O +. O + + +Furthermore O +, O +the O +study O +included O +a O +determination O +and O +comparison O +of O +print S-MANP +time O +, O +elapsed O +time O +and O +construction S-APPL +time O +, O +as S-MATE +well O +as S-MATE +a O +look O +at O +the O +effect O +of O +environmental O +conditions O +on O +the O +delay O +events O +. O + + +Upon O +finishing S-MANP +, O +the O +analysis O +concluded O +that O +the O +3D B-MANP +printed E-MANP +building O +was O +completed O +in O +14-hours O +of O +print S-MANP +time O +, O +31.2-hours O +elapsed O +time O +, O +or O +a O +total O +of O +5 O +days O +of O +construction S-APPL +time O +. O + + +Anisotropy S-PRO +of O +mechanical B-CONPRI +properties E-CONPRI +and O +support B-MATE +material E-MATE +removing O +are O +the O +two O +main O +problems O +when O +fabricating S-MANP +3D S-CONPRI +lattice O +structures O +by O +integrated O +printing O +via O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +. O + + +Aiming O +at O +these O +two O +problems O +, O +a O +snap-fit S-FEAT +method O +is O +introduced O +into O +PolyJet S-CONPRI +technology O +to O +fabricate S-MANP +polymer O +lattice B-FEAT +structures E-FEAT +with O +four O +typical O +configurations O +, O +namely O +BCC S-CONPRI +, O +BCC-Z O +, O +FCC S-CONPRI +and O +octet O +. O + + +Uniaxial O +compression B-CHAR +tests E-CHAR +indicate O +that O +both O +the O +strengths S-PRO +and O +energy B-CHAR +absorptions E-CHAR +of O +the O +four O +kinds O +of O +snap-fitted O +lattices S-CONPRI +are O +increased O +by O +over O +100 O +% O +compared O +to O +the O +integrated O +counterparts O +. O + + +The O +effect O +of O +strut B-PARA +thickness E-PARA +on O +compressive O +responses O +of O +the O +snap-fitted O +and O +integrated O +lattices S-CONPRI +is O +investigated O +. O + + +With O +the O +decrease O +of O +strut B-PARA +thickness E-PARA +, O +the O +advantage O +in O +the O +strength S-PRO +of O +the O +snap-fitted O +lattices S-CONPRI +becomes O +more O +obvious O +compared O +to O +the O +integrated O +counterparts O +. O + + +Ideal O +maximum O +strength S-PRO +models O +based O +on O +yield O +, O +elastic B-PRO +buckling E-PRO +and O +inelastic O +buckling S-PRO +are O +developed O +and O +are O +able O +to O +predict O +the O +compressive O +peak O +strengths S-PRO +of O +the O +snap-fitted O +PolyJet B-CONPRI +lattices E-CONPRI +. O + + +This O +study O +opens O +up O +an O +avenue O +for O +the O +fabrication S-MANP +of O +large O +scale O +3D B-MANP +printed E-MANP +lattice O +structures O +with O +optimal O +mechanical B-CONPRI +properties E-CONPRI +and O +without O +support B-MATE +material E-MATE +removing O +problem O +. O + + +This O +paper O +aims O +to O +study O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +mixed O +isotropic B-MATE +carbon I-MATE +fiber E-MATE +3D B-MANP +printed E-MANP +composites O +and O +further O +investigates S-CONPRI +the O +influence O +of O +hot O +press S-MACEQ +on O +the O +[ O +0°/45°/90° O +] O +2 O +fiber S-MATE +angles O +composite S-MATE +with O +varying O +temperature S-PARA +, O +pressure S-CONPRI +and O +time O +. O + + +Tensile B-CHAR +tests E-CHAR +, O +autoclave S-MACEQ +treatment O +and O +microstructural B-CHAR +observation E-CHAR +were O +utilized O +to O +characterize O +the O +composites S-MATE +. O + + +Results O +revealed O +that O +the O +[ O +0°/45°/90° O +] O +2 O +performed O +the O +highest O +tensile B-PRO +strength E-PRO +of O +79 O +MPa S-CONPRI +and O +modulus O +of O +3.51 O +GPa S-PRO +, O +compared O +to O +[ O +30°/45°/60° O +] O +2 O +and O +[ O +15°/45°/75° O +] O +2 O +. O + + +This O +is O +due O +to O +the O +fibers S-MATE +along O +the O +tensile S-PRO +axis O +angle O +that O +bears O +maximum O +load O +in O +longitudinal O +direction O +. O + + +At O +200 O +°C O +temperature S-PARA +, O +the O +hot B-MANP +pressed E-MANP +composites S-MATE +presented O +the O +highest O +tensile B-PRO +strength E-PRO +of O +98 O +MPa S-CONPRI +and O +modulus O +of O +3.93 O +GPa S-PRO +than O +non-hot O +pressed S-MANP +. O + + +Increased O +temperature S-PARA +caused O +better O +interface S-CONPRI +wettability O +between O +fibers S-MATE +and O +matrix O +. O + + +At O +200 O +kPa O +pressure S-CONPRI +, O +the O +hot B-MANP +pressed E-MANP +composites S-MATE +showed O +the O +highest O +tensile B-PRO +strength E-PRO +of O +100 O +MPa S-CONPRI +and O +modulus O +of O +4.06 O +GPa S-PRO +than O +non-hot O +pressed S-MANP +. O + + +Further O +increased O +pressure S-CONPRI +resulted O +in O +lower O +tensile B-PRO +strength E-PRO +and O +modulus O +, O +as S-MATE +the O +material S-MATE +became O +stiffer O +pushing O +more O +matrix O +material S-MATE +to O +side O +leaving O +numerous O +fibers S-MATE +unbounded O +by O +the O +matrix O +. O + + +For O +30 O +min O +withholding O +time O +, O +the O +hot B-MANP +pressed E-MANP +composites S-MATE +indicated O +the O +highest O +tensile B-PRO +strength E-PRO +of O +106 O +MPa S-CONPRI +and O +modulus O +of O +4.27 O +GPa S-PRO +than O +non-hot O +pressed S-MANP +. O + + +Increased O +time O +caused O +strongest O +interface B-CONPRI +bonding E-CONPRI +by O +removing O +the O +air O +gaps O +induced O +during O +printing O +between O +fibers S-MATE +and O +matrix O +. O + + +Results O +revealed O +that O +hot O +press S-MACEQ +significantly O +improved O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +carbon B-MATE +fiber E-MATE +3D B-MANP +printed E-MANP +composites O +. O + + +To O +realize O +the O +full O +potential O +of O +3D B-ENAT +Printing I-ENAT +technology E-ENAT +in O +the O +design S-FEAT +of O +materials S-CONPRI +and O +structures O +, O +it O +is O +indispensable O +to O +characterize O +and O +predict O +the O +mechanical B-CONPRI +response E-CONPRI +of O +3D B-MANP +Printing E-MANP +materials O +to O +external B-CONPRI +stimuli E-CONPRI +. O + + +This O +study O +is O +focused O +on O +hyperelastic O +strain S-PRO +measurements O +and O +constitutive O +parameters S-CONPRI +identification O +of O +3D B-MANP +printed E-MANP +soft O +polymers S-MATE +undergoing O +uniaxial O +deformation S-CONPRI +. O + + +A O +simple S-MANP +method O +using O +an O +optical S-CHAR +camera S-MACEQ +in O +conjunction O +with O +an O +image S-CONPRI +processing O +tool S-MACEQ +is O +proposed O +to O +accurately S-CHAR +measure O +the O +average S-CONPRI +strain O +experienced O +by O +rubbery O +polymers S-MATE +during O +a O +tensile B-CHAR +test E-CHAR +. O + + +The O +potential O +of O +the O +method O +is O +demonstrated O +through O +tensile B-CHAR +tests E-CHAR +of O +3D B-MANP +printed E-MANP +soft O +polymer S-MATE +by O +accurately S-CHAR +determining O +the O +stress–strain O +response O +and O +the O +Poisson O +'s O +ratio O +without O +using O +extensometers O +. O + + +Influence O +of O +printing O +direction O +on O +the O +anisotropic S-PRO +behavior O +of O +3D B-MANP +printed E-MANP +polymer O +is O +investigated O +by O +applying O +the O +proposed O +test O +method O +to O +specimens O +printed O +in O +two O +different O +directions O +. O + + +The O +Neo-Hookean O +constitutive O +parameters S-CONPRI +of O +the O +soft O +polymer S-MATE +are O +determined O +from O +the O +experimentally O +obtained O +stress–strain O +data S-CONPRI +. O + + +Moreover O +, O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +of O +the O +soft O +polymer S-MATE +is O +performed O +to O +show O +that O +the O +constitutive O +parameters S-CONPRI +determined O +can O +predict O +the O +mechanical B-CONPRI +response E-CONPRI +of O +the O +tested O +polymer S-MATE +accurately S-CHAR +if O +used O +in O +commercial O +FEA O +packages O +. O + + +The O +additive B-MANP +manufacturing E-MANP +of O +structural O +composites S-MATE +is O +a O +disruptive O +technology S-CONPRI +currently O +limited O +by O +its O +moderate O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Continuous O +fibre S-MATE +reinforcements O +have O +recently O +been O +developed O +to O +create O +high O +performance S-CONPRI +composites S-MATE +and O +open O +up O +encouraging O +prospects O +. O + + +In O +addition O +, O +to O +apply O +these O +materials S-CONPRI +to O +engineering S-APPL +applications O +, O +it O +is O +of O +high O +importance O +to O +evaluate O +the O +effect O +of O +environmental O +conditions O +on O +their O +mechanical S-APPL +performances O +, O +particularly O +when O +moisture-sensitive O +polymer S-MATE +is O +used O +( O +PolyAmide S-MATE +PA S-CHAR +for O +instance O +) O +which O +is O +currently O +lacking O +in O +the O +literature.This O +present O +article O +aims O +to O +investigate O +in O +more O +detail O +the O +relationship O +between O +the O +process S-CONPRI +, O +the O +mechanical B-CONPRI +behaviour E-CONPRI +and O +the O +induced O +properties S-CONPRI +of O +continuous O +carbon S-MATE +and O +glass B-MATE +fibres E-MATE +reinforced O +with O +a O +polyamide S-MATE +matrix O +manufactured S-CONPRI +using O +a O +commercial O +3D B-MACEQ +printer E-MACEQ +. O + + +In O +addition O +, O +their O +hygromechanical O +behaviour O +linked O +to O +moisture O +effect O +is O +investigated O +through O +sorption O +, O +hygroexpansion O +and O +mechanical B-CONPRI +properties E-CONPRI +characterization O +on O +a O +wide O +range S-PARA +of O +relative O +humidity O +( O +10–98 O +% O +Relative O +Humidity O +RH S-MATE +) O +.The O +printing B-MANP +process E-MANP +induces O +an O +original O +microstructure S-CONPRI +with O +multiscale O +singularities O +( O +intra/inter O +beads S-CHAR +porosity O +and O +filament S-MATE +loop O +) O +. O + + +Longitudinal O +tensile S-PRO +performance S-CONPRI +shows O +that O +the O +reinforcing O +mechanism S-CONPRI +is O +typical O +of O +composite S-MATE +laminates O +for O +glass S-MATE +and O +carbon S-MATE +. O + + +However O +, O +the O +rather O +poor O +transverse O +properties S-CONPRI +are O +not O +well O +fitted O +by O +the O +Rule B-CONPRI +Of I-CONPRI +Mixture E-CONPRI +( O +ROM O +) O +, O +thus O +underlining O +the O +specificity O +of O +the O +printing-induced O +microstructure S-CONPRI +and O +an O +anisotropic S-PRO +behaviour O +in O +the O +material.Non-negligible O +( O +5–6 O +% O +) O +moisture O +uptake O +is O +observed O +at O +98 O +% O +RH S-MATE +, O +as S-MATE +well O +as S-MATE +orthotropic O +hygroscopic S-PRO +expansion O +of O +PA/carbon O +and O +PA/glass O +composites S-MATE +. O + + +The O +consequences O +of O +various O +moisture O +contents O +on O +mechanical B-CONPRI +properties E-CONPRI +are O +studied O +, O +showing O +a O +reduction S-CONPRI +of O +PA/carbon O +stiffness S-PRO +and O +strength S-PRO +of O +25 O +and O +18 O +% O +in O +the O +longitudinal O +direction O +and O +45 O +and O +70 O +% O +in O +the O +transverse O +direction O +. O + + +For O +PA/glass O +composites S-MATE +, O +we O +obtain O +a O +reduction S-CONPRI +in O +strength S-PRO +of O +25 O +% O +in O +the O +longitudinal O +direction O +, O +along O +with O +a O +80 O +% O +reduction S-CONPRI +of O +stiffness S-PRO +and O +45 O +% O +in O +strength S-PRO +in O +the O +transverse O +direction O +. O + + +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +is O +one O +of O +the O +most O +popular O +3D B-MANP +printing E-MANP +processes O +that O +can O +be S-MATE +used O +to O +manufacture S-CONPRI +flexible O +parts O +. O + + +In O +this O +work O +, O +we O +investigate O +the O +impact S-CONPRI +of O +stacking O +sequence O +, O +slit O +size O +, O +and O +thickness O +on O +the O +tensile B-PRO +properties E-PRO +of O +3D B-MANP +printed E-MANP +flexible O +kirigami O +specimens O +. O + + +In O +addition O +, O +we O +demonstrate O +how O +the O +transition S-CONPRI +phenomenon O +and O +out-of-plane O +deformation S-CONPRI +can O +significantly O +improve O +percent O +elongation S-PRO +at O +their O +breaking O +point O +. O + + +Considering O +the O +deformed B-PRO +shape E-PRO +during O +testing S-CHAR +, O +specimens O +with O +a O +combination O +of O +layers O +printed O +along O +and O +transverse O +to O +their O +length O +showed O +the O +highest O +tensile S-PRO +break O +strength S-PRO +and O +the O +percent O +break O +elongation S-PRO +( O +2.43 O +MPa S-CONPRI +and O +183 O +% O +, O +respectively O +) O +. O + + +It O +is O +also O +determined O +that O +the O +occurrence O +of O +the O +transition S-CONPRI +phenomenon O +depends O +on O +the O +specimen O +’ O +s S-MATE +thickness O +, O +and O +was O +observed O +for O +the O +1 O +mm S-MANP +and O +1.5 O +mm S-MANP +thick O +samples S-CONPRI +. O + + +The O +heating S-MANP +of O +a O +polymer S-MATE +in O +a O +liquefier O +of O +a O +material B-MANP +extrusion I-MANP +3D I-MANP +printer E-MANP +is O +numerically O +studied O +. O + + +The O +polymer S-MATE +is O +taken O +as S-MATE +a O +generalized O +Newtonian B-CONPRI +fluid E-CONPRI +with O +a O +dynamical O +viscosity S-PRO +function O +of O +shear O +rate O +and O +temperature S-PARA +. O + + +The O +system O +of O +equations O +is O +solved O +using O +a O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +. O + + +The O +boundary B-CONPRI +conditions E-CONPRI +are O +adapted O +by O +comparison O +with O +the O +previous O +work O +of O +Peng O +et O +al S-MATE +. O + + +[ O +5 O +] O +showing O +that O +the O +thermal O +contact S-APPL +between O +the O +polymer S-MATE +and O +the O +liquefier O +is O +very O +well O +established O +. O + + +The O +limiting O +printing O +conditions O +are O +studied O +by O +determining O +the O +length O +over O +which O +the O +polymer S-MATE +temperature O +is O +below O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +. O + + +This O +provides O +a O +simple S-MANP +relation O +for O +the O +inlet S-MACEQ +velocity O +as S-MATE +a O +function O +of O +the O +working O +parameters S-CONPRI +and O +the O +polymer S-MATE +properties O +. O + + +The O +use O +of O +3D B-ENAT +printing I-ENAT +technologies E-ENAT +enhanced O +with O +component S-MACEQ +placement O +and O +electrical S-APPL +interconnect O +deposition S-CONPRI +enables O +electronic O +systems O +with O +freedom O +in O +fabrication S-MANP +and O +complex O +embedded O +circuitry O +. O + + +However O +, O +with O +more O +electrical S-APPL +functionality O +being O +integrated O +, O +new O +material S-MATE +requirements O +become O +increasingly O +important O +. O + + +This O +paper O +introduces O +a O +novel O +approach O +for O +processing O +adhesives S-MATE +with O +an O +extrusion-based O +UV-assisted O +3D S-CONPRI +dispensing O +process S-CONPRI +. O + + +A O +specimen O +study O +revealed O +promising O +results O +for O +three O +out O +of O +six O +adhesives S-MATE +( O +denoted O +as S-MATE +A O +, O +D O +, O +E O +) O +, O +for O +which O +an O +extensive O +anisotropy S-PRO +evaluation O +was O +performed O +: O +The O +relationship O +between O +the O +layered O +construction S-APPL +strategy O +and O +the O +material B-CONPRI +properties E-CONPRI +of O +the O +printed O +parts O +was O +characterized O +by O +micrograph O +analysis O +, O +tensile B-CHAR +testing E-CHAR +along O +with O +fracture S-CONPRI +analysis O +and O +laser S-ENAT +flash S-MATE +analysis O +. O + + +An O +exemplary O +study O +for O +one O +adhesive S-MATE +via O +tensile B-CHAR +testing E-CHAR +showed O +no O +significant O +difference O +between O +three O +printing O +orientations S-CONPRI +. O + + +However O +, O +different O +construction S-APPL +strategies O +influenced O +the O +degree O +of O +anisotropy S-PRO +. O + + +In O +addition O +, O +the O +evaluation O +of O +thermal O +anisotropy S-PRO +revealed O +a O +link O +between O +the O +thermal B-PRO +conductivity E-PRO +and O +the O +rate O +of O +the O +UV-curing O +for O +A O +and O +D. O +For O +material S-MATE +E O +, O +no O +significant O +difference O +was O +measured O +. O + + +The O +work O +presented O +in O +this O +article O +shows O +that O +dual-curing O +adhesives S-MATE +, O +in O +particular O +epoxy S-MATE +systems O +, O +are O +promising O +choices O +for O +additive B-MANP +manufacturing E-MANP +: O +It O +was O +possible O +to O +print S-MANP +fine O +geometries S-CONPRI +with O +good O +material B-CONPRI +properties E-CONPRI +and O +low O +anisotropy S-PRO +. O + + +The O +findings O +serve O +to O +derive O +first O +design B-CONPRI +rules E-CONPRI +and O +provide O +a O +basis O +for O +further O +studies O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +more O +commonly O +referred O +to O +as S-MATE +3D B-MANP +printing E-MANP +, O +is O +revolutionizing O +the O +manufacturing S-MANP +industry S-APPL +. O + + +With O +any O +new O +technology S-CONPRI +comes O +new O +rules O +and O +guidelines O +for O +the O +optimal O +use O +of O +said O +technology S-CONPRI +. O + + +Big O +Area S-PARA +Additive B-MANP +Manufacturing E-MANP +( O +BAAM O +) O +, O +developed O +by O +Cincinnati O +Incorporated O +and O +Oak O +Ridge O +National O +Laboratory S-CONPRI +’ O +s S-MATE +Manufacturing S-MANP +Demonstration O +Facility O +, O +requires O +a O +host O +of O +new O +design S-FEAT +parameters O +compared O +to O +small-scale O +3D B-MANP +printing E-MANP +to O +create O +large-scale O +parts O +. O + + +However O +, O +BAAM O +also O +creates O +new O +possibilities O +in O +material S-MATE +testing O +and O +various O +applications O +in O +the O +manufacturing S-MANP +industry S-APPL +. O + + +Most O +of O +the O +design S-FEAT +constraints O +of O +small-scale O +polymer S-MATE +3D B-MACEQ +printers E-MACEQ +still O +apply O +to O +BAAM O +. O + + +Beyond O +those O +constraints O +, O +new O +rules O +and O +limitations O +exist O +because O +BAAM O +’ O +s S-MATE +large-scale O +system O +significantly O +changes O +the O +thermal B-CONPRI +properties E-CONPRI +associated O +with O +small-scale O +AM S-MANP +. O + + +This O +work O +details O +both O +physical O +and O +software-related O +design B-CONPRI +considerations E-CONPRI +for O +additive B-MANP +manufacturing E-MANP +. O + + +After O +reading O +this O +guide O +, O +one O +will O +have O +a O +better O +understanding O +of O +slicing S-CONPRI +software O +’ O +s S-MATE +capabilities O +and O +limitations O +, O +different O +physical O +characteristics O +of O +design S-FEAT +and O +how O +to O +apply O +them O +appropriately O +for O +AM S-MANP +, O +and O +how O +to O +take O +the O +inherent O +nature O +of O +AM S-MANP +into O +consideration O +during O +the O +design B-CONPRI +process E-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +is O +considered O +a O +promising O +technology S-CONPRI +for O +many O +applications O +, O +such O +as S-MATE +in O +the O +construction S-APPL +industry O +. O + + +However O +, O +the O +size O +of O +a O +design S-FEAT +is O +constrained O +by O +the O +chamber O +volume S-CONPRI +of O +the O +3D B-MACEQ +printer E-MACEQ +, O +and O +large-scale O +additive B-MANP +manufacturing E-MANP +technology O +with O +flexible O +equipment S-MACEQ +is O +still O +unproven O +. O + + +This O +paper O +proposes O +a O +large-scale O +3D B-MANP +printing E-MANP +system O +composed O +of O +multiple O +robots S-MACEQ +working O +in O +collaboration O +. O + + +For O +this O +flexible O +and O +extensible O +3D B-MANP +printing E-MANP +system O +, O +the O +influences O +of O +the O +multi-robot O +layout S-CONPRI +on O +the O +maximum O +reachable O +area S-PARA +and O +the O +geometry S-CONPRI +adaptability O +are O +discussed O +. O + + +Furthermore O +, O +a O +printer S-MACEQ +task O +optimized O +scheduling O +algorithm S-CONPRI +based O +on O +efficiency O +egalitarianism O +is O +proposed O +in O +this O +paper O +, O +and O +a O +robot S-MACEQ +interference O +avoidance O +strategy O +is O +designed S-FEAT +by O +dividing O +the O +printing O +layer S-PARA +into O +several O +safe O +areas S-PARA +and O +interference O +areas S-PARA +. O + + +Poly O +( O +lactic O +acid O +) O +( O +PLA S-MATE +) O +and O +PLA S-MATE +grafted O +cellulose S-MATE +nanofibers O +( O +PLA-g-CNFs O +) O +mixture O +were O +extruded S-MANP +into O +filaments S-MATE +, O +and O +subsequently O +3D B-MANP +printed E-MANP +into O +composites S-MATE +. O + + +As-3D O +printed O +composites S-MATE +were O +then O +thermally O +annealed O +at O +a O +temperature S-PARA +above O +PLA S-MATE +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +( O +Tg S-CHAR +) O +. O + + +Dynamic B-CONPRI +mechanical I-CONPRI +analysis E-CONPRI +, O +including O +temperature S-PARA +ramp O +, O +frequency O +sweep O +, O +and O +creep S-PRO +for O +annealed O +composites S-MATE +, O +confirmed O +the O +enhanced O +responses O +to O +various O +viscoelastic S-PRO +factors O +. O + + +Such O +enhancements O +were O +ascribed O +to O +the O +presence O +of O +PLA S-MATE +crystalline O +regions O +containing O +both O +ɑ O +and O +ɑʹ O +phases O +, O +which O +were O +induced O +and O +developed O +through O +the O +annealing B-MANP +treatment E-MANP +. O + + +After O +3-point O +bending B-CHAR +test E-CHAR +at O +70 O +°C O +, O +unannealed O +composites S-MATE +were O +partially O +damaged O +, O +while O +annealed O +composites S-MATE +preserved O +the O +originally O +well-integrated O +layer S-PARA +structures O +. O + + +Experimental S-CONPRI +creep S-PRO +and O +recovery O +data S-CONPRI +essentially O +fitted O +to O +the O +Burger O +’ O +s S-MATE +model S-CONPRI +and O +Weibull O +’ O +s S-MATE +distribution S-CONPRI +function O +, O +respectively O +. O + + +The O +calculated O +parameters S-CONPRI +( O +e.g. O +, O +moduli O +) O +from O +numerical O +fitting O +curves O +demonstrated O +the O +synergetic O +effect O +of O +PLA-g-CNFs O +and O +annealing B-MANP +treatment E-MANP +on O +the O +enahncement O +of O +flexural O +properties S-CONPRI +for O +3D B-MANP +printed E-MANP +PLA O +composites S-MATE +. O + + +Patient-specific O +tissue-mimicking O +phantoms O +have O +a O +wide O +range S-PARA +of O +biomedical B-APPL +applications E-APPL +including O +validation S-CONPRI +of O +computational B-ENAT +models E-ENAT +and O +imaging S-APPL +techniques O +, O +medical B-APPL +device E-APPL +testing O +, O +surgery S-APPL +planning S-MANP +, O +medical S-APPL +education O +, O +doctor-patient O +interaction O +, O +etc O +. O + + +Although O +3D B-ENAT +printing I-ENAT +technologies E-ENAT +have O +demonstrated O +great O +potential O +in O +fabricating S-MANP +patient-specific O +phantoms O +, O +current O +3D B-MANP +printed E-MANP +phantoms O +are O +usually O +only O +geometrically O +accurate S-CHAR +. O + + +Mechanical B-CONPRI +properties E-CONPRI +of O +soft O +tissues O +can O +merely O +be S-MATE +mimicked O +at O +small O +strain S-PRO +situations O +, O +such O +as S-MATE +ultrasonic O +induced O +vibration O +. O + + +Under O +large O +deformation S-CONPRI +, O +the O +soft O +tissues O +and O +the O +3D B-MANP +printed E-MANP +phantoms O +behave O +differently O +. O + + +The O +essential O +barrier O +is O +the O +inherent O +difference O +in O +the O +stress-strain O +curves O +of O +soft O +tissues O +and O +3D S-CONPRI +printable O +polymers S-MATE +. O + + +This O +study O +investigated O +the O +feasibility S-CONPRI +of O +mimicking O +the O +strain-stiffening O +behavior O +of O +soft O +tissues O +using O +dual-material S-CONPRI +3D B-MANP +printed E-MANP +metamaterials O +with O +micro-structured O +reinforcement S-PARA +embedded O +in O +soft O +polymeric O +matrix O +. O + + +Three O +types O +of O +metamaterials S-MATE +were O +designed S-FEAT +and O +tested O +: O +sinusoidal O +wave O +, O +double O +helix O +, O +and O +interlocking O +chains O +. O + + +Even O +though O +the O +two O +base O +materials S-CONPRI +were O +strain-softening O +polymers S-MATE +, O +both O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +and O +uniaxial O +tension B-CHAR +tests E-CHAR +indicated O +that O +two O +of O +those O +dual-material S-CONPRI +designs S-FEAT +were O +able O +to O +exhibit O +strain-stiffening O +effects O +as S-MATE +a O +metamaterial S-MATE +. O + + +The O +effects O +of O +the O +design S-FEAT +parameters O +on O +the O +mechanical S-APPL +behavior O +of O +the O +metamaterials S-MATE +were O +also O +demonstrated O +. O + + +The O +results O +suggested O +that O +the O +fabrication S-MANP +of O +patient-specific O +tissue-mimicking O +phantoms O +with O +both O +geometrical O +and O +mechanical S-APPL +accuracies O +is O +possible O +with O +dual-material S-CONPRI +3D B-MANP +printed E-MANP +metamaterials O +. O + + +Direct O +ink S-MATE +writing O +with O +acoustophoresis O +is O +used O +to O +write O +tailored O +composite S-MATE +filaments O +. O + + +Nozzle S-MACEQ +rotational O +asymmetry O +and O +printer S-MACEQ +calibration S-CONPRI +influence O +direction O +dependence O +. O + + +Yield B-PRO +stress E-PRO +fluid S-MATE +support O +geometry S-CONPRI +influences O +direction O +dependence O +. O + + +Direct O +ink S-MATE +writing O +enables O +deposition S-CONPRI +of O +multiphase O +filaments S-MATE +with O +designed S-FEAT +microstructures O +. O + + +Using O +acoustophoresis O +, O +we O +establish O +a O +narrow O +distribution S-CONPRI +of O +microparticles O +at O +the O +center O +of O +a O +direct-write O +nozzle S-MACEQ +. O + + +The O +distribution S-CONPRI +shifts O +and O +widens O +after O +deposition S-CONPRI +depending O +on O +the O +printing O +direction O +. O + + +We O +use O +particle S-CONPRI +image S-CONPRI +velocimetry O +and O +digital O +image B-CONPRI +analysis E-CONPRI +to O +identify O +flows O +transverse O +to O +the O +printing O +direction O +and O +characterize O +particle S-CONPRI +distributions S-CONPRI +in O +the O +printed O +filament S-MATE +. O + + +Sources O +of O +direction-dependent O +effects O +include O +square O +nozzles S-MACEQ +, O +co-deposition O +of O +support B-MATE +material E-MATE +, O +a O +rotationally O +asymmetric O +microstructure S-CONPRI +established O +in O +the O +nozzle S-MACEQ +, O +and O +speed O +inaccuracies O +that O +occur O +in O +3-axis O +gantries O +. O + + +We O +propose O +an O +analytical O +model S-CONPRI +for O +predicting O +print S-MANP +direction-dependent O +flows O +and O +particle S-CONPRI +distributions S-CONPRI +as S-MATE +a O +function O +of O +anisotropy S-PRO +of O +the O +particle S-CONPRI +distribution S-CONPRI +in O +the O +nozzle S-MACEQ +, O +a O +disturbed O +zone O +near O +the O +nozzle S-MACEQ +, O +fluid S-MATE +reshaping O +of O +the O +print S-MANP +bead S-CHAR +, O +uniform O +rotation O +of O +the O +print S-MANP +bead S-CHAR +, O +calibration S-CONPRI +of O +the O +ink S-MATE +and O +support S-APPL +nozzle S-MACEQ +positions O +, O +and O +3D B-MACEQ +printer E-MACEQ +motor O +error S-CONPRI +. O + + +Using O +the O +model S-CONPRI +, O +we O +propose O +strategies O +for O +controlling O +direction O +dependent O +microstructures S-MATE +in O +direct O +ink S-MATE +writing O +. O + + +The O +analytical O +model S-CONPRI +can O +be S-MATE +easily O +adapted O +to O +similar O +direct-write O +applications O +to O +diagnose O +sources O +of O +direction O +dependent O +microstructures S-MATE +. O + + +Freeform B-CONPRI +3D E-CONPRI +printing O +combined O +with O +sacrificial B-MANP +molding E-MANP +promises O +to O +lead S-MATE +advances O +in O +production S-MANP +of O +highly O +complex O +tubular S-FEAT +systems O +for O +biomedical B-APPL +applications E-APPL +. O + + +Here O +we O +leverage O +a O +purpose-built O +isomalt S-MATE +3D B-MACEQ +printer E-MACEQ +to O +generate O +complex O +channel S-APPL +geometries O +in O +hydrogels S-MATE +which O +would O +be S-MATE +inaccessible O +with O +other O +techniques O +. O + + +To O +control O +the O +dissolution O +of O +the O +scaffold S-FEAT +, O +we O +propose O +an O +enabling O +technology S-CONPRI +consisting O +of O +an O +automated O +nebulizer O +coating S-APPL +system O +which O +applies O +octadecane O +to O +isomalt S-MATE +scaffolds O +. O + + +Octadecane O +, O +a O +saturated O +hydrocarbon O +, O +protects O +the O +rigid O +mold S-MACEQ +from O +dissolution O +and O +provides O +ample O +time O +for O +gels O +to O +set S-APPL +around O +the O +sacrificial O +structure S-CONPRI +. O + + +With O +a O +simplified O +model S-CONPRI +of O +the O +nebulizer O +system O +, O +the O +robotic O +motion O +was O +optimized O +for O +uniform O +coating S-APPL +. O + + +Using O +a O +combination O +of O +stimulated O +Raman B-CHAR +scattering E-CHAR +( O +SRS O +) O +microscopy S-CHAR +and O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +, O +the O +coating S-APPL +was O +characterized O +to O +assess O +surface B-PRO +roughness E-PRO +and O +consistency S-CONPRI +. O + + +Colorimetric O +measurements O +of O +dissolution O +rates O +allowed O +optimization S-CONPRI +of O +sprayer O +parameters S-CONPRI +, O +yielding O +a O +decrease O +in O +dissolution O +rates O +by O +at O +least O +4 O +orders O +of O +magnitude S-PARA +. O + + +Spontaneous O +Raman B-CHAR +scattering E-CHAR +microspectroscopy O +and O +white O +light O +microscopy S-CHAR +indicate O +cleared O +channels O +are O +free O +of O +octadecane O +following O +gentle O +flushing O +. O + + +The O +capabilities O +of O +the O +workflow S-CONPRI +are O +highlighted O +with O +several O +complex O +channel S-APPL +architectures O +including O +helices O +, O +blind O +channels O +, O +and O +multiple O +independent O +channels O +within O +polyacrylamide O +hydrogels S-MATE +of O +varying O +stiffnesses O +. O + + +This O +study O +is O +an O +investigation O +on O +the O +size O +dependence O +of O +strength S-PRO +of O +a O +3D B-MANP +printed E-MANP +acrylic O +polymer S-MATE +. O + + +3D B-MANP +printed E-MANP +beams O +are O +used O +in O +three-point O +bend O +fracture S-CONPRI +experiments O +. O + + +Three O +print S-MANP +modes O +of O +the O +PolyJet S-CONPRI +process O +are O +used O +to O +manufacture S-CONPRI +beams O +of O +dimensions S-FEAT +commonly O +considered O +in O +3D B-MANP +printed E-MANP +structures O +( O +1–5 O +mm S-MANP +) O +. O + + +It O +is O +found O +that O +for O +that O +range S-PARA +of O +dimensions S-FEAT +, O +the O +fracture S-CONPRI +response O +is O +in O +the O +nonlinear O +size-strength O +domain S-CONPRI +and O +specimens O +neither O +follow O +the O +limiting O +linear O +elastic S-PRO +fracture O +mechanics O +nor O +the O +strength S-PRO +criterion O +. O + + +Consequently O +, O +strength S-PRO +and O +toughness S-PRO +are O +size O +dependent O +. O + + +Moreover O +, O +a O +strong O +interaction O +between O +specimen O +dimensions S-FEAT +and O +print B-PARA +layer E-PARA +thickness O +was O +found O +. O + + +A O +size O +threshold O +exists O +below O +which O +there O +appears O +to O +be S-MATE +an O +interaction O +between O +specimen O +dimensions S-FEAT +and O +print B-PARA +layer E-PARA +thickness O +, O +and O +for O +specimens O +of O +dimension S-FEAT +below O +that O +threshold O +exhibit O +a O +declining O +strength S-PRO +with O +size O +. O + + +From O +the O +present O +experiments O +, O +the O +size O +threshold O +is O +estimated O +to O +be S-MATE +50 O +times O +the O +print B-PARA +layer E-PARA +thickness O +. O + + +The O +finding O +of O +a O +maximum O +strength S-PRO +relative O +to O +geometric O +dimensions S-FEAT +should O +be S-MATE +accounted O +for O +in O +designing O +with O +3D B-MANP +printed E-MANP +materials O +. O + + +In O +conventional O +additive B-MANP +manufacturing E-MANP +, O +most O +processes S-CONPRI +for O +creating O +the O +layers O +of O +a O +part O +are O +performed O +on O +a O +horizontal O +plane O +. O + + +In O +contrast O +, O +a O +conformal O +additive B-MANP +manufacturing I-MANP +process E-MANP +has O +been O +suggested O +in O +order O +to O +build S-PARA +a O +real O +3D B-CONPRI +structure E-CONPRI +on O +a O +freeform S-CONPRI +surface O +using O +a O +direct-print O +process S-CONPRI +based O +on O +material B-MANP +extrusion E-MANP +. O + + +A O +new O +algorithm S-CONPRI +was O +developed O +that O +is O +able O +to O +use O +the O +standard S-CONPRI +3D B-MANP +printing E-MANP +file O +format O +that O +includes O +both O +a O +3D B-APPL +model E-APPL +to O +be S-MATE +printed O +and O +a O +3D B-APPL +model E-APPL +of O +a O +freeform S-CONPRI +substrate O +along O +with O +the O +desired O +printing O +parameters S-CONPRI +as S-MATE +input O +, O +and O +it O +returns O +G-code S-ENAT +instructions O +for O +the O +3D B-MANP +printing E-MANP +process O +as S-MATE +output O +. O + + +A O +slicing S-CONPRI +surface O +was O +generated O +to O +slice S-CONPRI +the O +3D B-APPL +model E-APPL +by O +offsetting O +the O +surface S-CONPRI +of O +a O +freeform S-CONPRI +substrate O +model S-CONPRI +by O +a O +discrete O +amount O +( O +i.e. O +, O +layer B-PARA +thickness E-PARA +) O +for O +each O +layer S-PARA +. O + + +The O +perimeters O +of O +each O +layer S-PARA +( O +including O +the O +internal O +features O +) O +were O +extracted S-CONPRI +based O +on O +the O +intersections O +between O +the O +slicing S-CONPRI +surface O +and O +the O +3D B-APPL +model E-APPL +, O +and O +infill S-PARA +toolpaths O +were O +created O +by O +projecting O +2D B-FEAT +patterns E-FEAT +reflecting O +the O +features O +to O +be S-MATE +printed O +with O +a O +desired O +fill O +factor O +( O +in O +the O +x–y O +plane O +) O +onto O +the O +slicing S-CONPRI +surface O +to O +create O +3D S-CONPRI +patterns O +. O + + +Several O +3D B-APPL +models E-APPL +were O +sliced O +and O +printed O +on O +a O +freeform S-CONPRI +surface O +to O +validate O +the O +developed O +algorithm S-CONPRI +. O + + +A O +laser B-MANP +enhanced I-MANP +direct I-MANP +print I-MANP +additive I-MANP +manufacturing E-MANP +process O +is O +proposed O +for O +3D B-MANP +printing E-MANP +optical O +interconnects O +An O +optical S-CHAR +interconnect O +is O +directly O +printed O +on O +a O +circuit O +board O +for O +the O +first O +time O +using O +this O +process S-CONPRI +Transmitted O +optical S-CHAR +power O +of O +the O +3D B-MANP +printed E-MANP +optical O +fiber S-MATE +interconnects O +is O +63 O +% O +of O +that O +of O +a O +commercial O +fiber S-MATE +in O +these O +preliminary O +prototypes S-CONPRI +Processing O +conditions O +are O +established O +using O +fluid B-PRO +flow E-PRO +and O +heat B-CONPRI +transfer E-CONPRI +modeling O +Integrated O +photonics O +have O +many O +compelling O +advantages O +for O +computing O +and O +communication O +applications O +, O +including O +in O +high-speed O +and O +extremely O +wide O +bandwidth O +operations O +. O + + +Current O +systems O +are O +typically O +hybrid O +assemblies O +of O +packaged O +photonic O +devices O +where O +printed B-MACEQ +circuit I-MACEQ +boards E-MACEQ +often O +serve O +to O +route O +electrical S-APPL +signals O +and O +power S-PARA +, O +and O +in O +some O +cases O +, O +have O +runs O +of O +optical S-CHAR +fibers S-MATE +. O + + +We O +present O +a O +flexible O +, O +low O +cost O +assembly S-MANP +method O +of O +optical S-CHAR +interconnects O +for O +photonic O +systems O +that O +could O +enable O +higher O +transmission S-CHAR +rates O +, O +lower O +power S-PARA +requirements O +, O +improved O +signal O +integrity S-CONPRI +and O +timing O +, O +less O +heat S-CONPRI +generation O +, O +and O +improved O +security O +of O +communication O +signals O +. O + + +The O +new O +process S-CONPRI +is O +based O +on O +laser B-MANP +enhanced I-MANP +direct I-MANP +print I-MANP +additive I-MANP +manufacturing E-MANP +( O +LE-DPAM S-MANP +) O +that O +combines O +fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +of O +plastic S-MATE +, O +micro-dispensing O +of O +rubber-like O +materials S-CONPRI +, O +and O +picosecond O +laser S-ENAT +subtraction O +. O + + +The O +process S-CONPRI +is O +demonstrated O +by O +fabricating S-MANP +few-mode O +and O +multi-mode O +optical S-CHAR +fibers S-MATE +in O +a O +controlled O +manner O +such O +that O +compact S-MANP +, O +3-dimensional O +optical S-CHAR +interconnects O +can O +be S-MATE +printed O +along O +non-lineal O +paths O +. O + + +We O +have O +produced O +working O +optical S-CHAR +interconnects O +with O +fiber S-MATE +core S-MACEQ +diameters O +from O +70-μm O +to O +as S-MATE +small O +as S-MATE +12-μm O +. O + + +Our O +results O +demonstrate O +surface B-PRO +roughness E-PRO +of O +less O +than O +100 O +nm O +, O +and O +optical S-CHAR +transmitted O +power S-PARA +of O +63 O +% O +that O +of O +a O +commercial O +fiber S-MATE +, O +for O +proof O +of O +concept O +devices O +. O + + +The O +LE-DPAM S-MANP +approach O +could O +lead S-MATE +to O +large O +scale O +integrated O +photonic O +computing O +devices O +that O +would O +replace O +our O +current O +generation O +of O +servers O +, O +computers S-ENAT +, O +and O +phones O +. O + + +In O +this O +paper O +, O +we O +investigated O +the O +process S-CONPRI +variable O +effects O +on O +the O +damage S-PRO +and O +deformational O +behavior O +of O +fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +-printed O +specimens O +by O +performing O +tensile B-CHAR +tests E-CHAR +and O +inverse O +identification O +analyses O +. O + + +A O +characterization O +of O +the O +effects O +of O +different O +parametric O +variations S-CONPRI +of O +3D-printed S-MANP +specimens O +on O +fracture S-CONPRI +properties O +are O +a O +matter O +of O +considerable O +significance O +that O +are O +often O +overlooked O +. O + + +By O +combining O +the O +infill S-PARA +density S-PRO +and O +the O +layer B-PARA +thickness E-PARA +options O +that O +are O +available O +in O +the O +3D B-MACEQ +printer E-MACEQ +machine O +, O +six O +groups O +with O +different O +structural O +configurations O +can O +be S-MATE +obtained O +. O + + +The O +data S-CONPRI +and O +images S-CONPRI +obtained O +from O +experiments O +are O +employed O +to O +investigate O +the O +failure B-PRO +mechanism E-PRO +of O +3D-printed S-MANP +specimens O +and O +demonstrate O +the O +relationship O +that O +exists O +between O +structural O +variations S-CONPRI +and O +fracture S-CONPRI +mechanical O +properties S-CONPRI +. O + + +On O +the O +basis O +of O +experimental S-CONPRI +results O +, O +a O +Gurson-type O +porous B-PRO +plasticity E-PRO +model S-CONPRI +was O +used O +within O +a O +3D S-CONPRI +continuum O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +to O +characterize O +the O +process–damage O +parameter S-CONPRI +relationship O +through O +an O +inverse O +identification O +process S-CONPRI +. O + + +A O +PDMS O +contacting O +layer S-PARA +with O +nano-scaled O +pillars O +and O +an O +oxygen-permeable B-MATE +membrane E-MATE +were O +bonded O +together O +as S-MATE +the O +composite S-MATE +functional O +release O +film O +of O +rapid O +stereolithography S-MANP +. O + + +Optical S-CHAR +simulations O +demonstrated O +that O +the O +nano-texture O +would O +not O +influence O +the O +curing S-MANP +effect O +of O +the O +resin S-MATE +. O + + +Nowadays O +, O +along O +with O +the O +demand O +for O +new O +technologies S-CONPRI +and O +new O +materials S-CONPRI +, O +a O +revolution O +in O +3D B-ENAT +printing I-ENAT +technology E-ENAT +is O +emerging O +. O + + +In O +recent O +years O +, O +stereolithography B-MANP +3D I-MANP +printing E-MANP +has O +been O +widely O +used O +in O +both O +academia O +and O +industry S-APPL +, O +due O +to O +its O +fast O +forming S-MANP +speed O +, O +high O +precision S-CHAR +, O +and O +low-cost O +advantages O +. O + + +The O +continuous B-MANP +liquid I-MANP +interface I-MANP +production E-MANP +technology O +has O +made O +the O +printing B-PARA +speed E-PARA +even O +faster O +. O + + +However O +, O +the O +process S-CONPRI +of O +resin S-MATE +refilling O +constrains O +the O +printing B-PARA +speed E-PARA +and O +the O +printing O +capabilities O +of O +such O +technologies S-CONPRI +, O +since O +only O +hollow O +structures O +can O +be S-MATE +fabricated O +. O + + +In O +this O +study O +, O +a O +nano-textured O +hydrophobic O +PDMS O +contacting O +layer S-PARA +and O +an O +oxygen-permeable B-MATE +membrane E-MATE +were O +bonded O +together O +as S-MATE +the O +functional O +release O +film O +. O + + +The O +oxygen S-MATE +inhibition O +layer S-PARA +was O +successfully O +maintained O +by O +the O +molecular O +oxygen S-MATE +permeated O +through O +the O +composite S-MATE +release O +film O +, O +achieving O +rapid O +stereolithography S-MANP +, O +and O +key O +factors O +that O +affecting O +resin S-MATE +refilling O +are O +selectively O +studied O +by O +the O +orthogonal O +experiment S-CONPRI +. O + + +Additionally O +, O +optical S-CHAR +simulations O +also O +demonstrated O +that O +the O +nano-texture O +would O +not O +influence O +the O +curing S-MANP +effect O +of O +the O +resin S-MATE +. O + + +This O +work O +proposed O +a O +promising O +strategy O +for O +rapid O +stereolithography S-MANP +of O +3D B-APPL +models E-APPL +containing O +larger O +cross-sectional O +areas S-PARA +. O + + +A O +nano-textured O +PDMS O +contacting O +layer S-PARA +and O +an O +oxygen-permeable B-MATE +membrane E-MATE +were O +bonded O +together O +as S-MATE +the O +printing O +substrate S-MATE +, O +providing O +high O +oxygen S-MATE +permeability O +to O +form O +an O +oxygen S-MATE +inhibition O +layer S-PARA +. O + + +The O +introduction O +of O +the O +nano-texture O +on O +PDMS O +not O +only O +increased O +the O +refilling O +speed O +of O +the O +resin S-MATE +by O +two O +times O +and O +reduced O +the O +printing O +time O +by O +nearly O +25 O +% O +, O +and O +the O +printing O +reliability S-CHAR +of O +larger O +cross-sectional O +areas S-PARA +was O +remarkably O +improved.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +272 O +Fracture S-CONPRI +, O +the O +breakdown O +of O +materials S-CONPRI +as S-MATE +cracks O +advance O +, O +is O +one O +of O +the O +most O +intriguing O +materials S-CONPRI +phenomena O +; O +it O +can O +happen O +even O +to O +very O +tough O +biological B-MATE +tissues E-MATE +including O +tendons O +, O +skin O +, O +bone S-BIOP +and O +teeth O +, O +materials S-CONPRI +whose O +critical O +physiological O +functions O +can O +be S-MATE +compromised O +by O +structural O +irregularities O +. O + + +It O +has O +been O +suggested O +that O +creating O +composites S-MATE +by O +mixing B-CONPRI +heterogeneous E-CONPRI +constituents O +of O +contrasting O +material B-CONPRI +properties E-CONPRI +can O +yield O +designs S-FEAT +that O +can O +better O +adapt O +to O +stress B-CHAR +concentration E-CHAR +, O +leading O +to O +synthetic B-MATE +materials E-MATE +with O +higher O +toughness S-PRO +than O +their O +constituents O +. O + + +Here O +, O +an O +optimization B-CONPRI +algorithm E-CONPRI +is O +used O +to O +assess O +material S-MATE +fracture B-PRO +resistance E-PRO +in O +the O +presence O +of O +a O +crack O +. O + + +The O +analysis O +is O +further O +extended O +through O +experiments O +that O +involve O +the O +use O +of O +additive B-MANP +manufacturing E-MANP +. O + + +Optimal O +solutions O +are O +composed O +solely O +of O +soft O +and O +stiff O +material B-MATE +elements E-MATE +, O +and O +are O +compared O +to O +various O +benchmarks O +. O + + +Multi-material S-CONPRI +three-dimensional-printing O +( O +3D-printing S-MANP +) O +is O +used O +to O +create O +material S-MATE +samples O +. O + + +Experimental S-CONPRI +results O +and O +mechanical B-CHAR +testing E-CHAR +show O +that O +an O +algorithmic O +design S-FEAT +coupled O +with O +3D-printing S-MANP +technology O +can O +generate O +morphologies S-CONPRI +of O +composites S-MATE +more O +than O +20 O +times O +tougher O +than O +the O +stiffest O +base O +material S-MATE +, O +and O +more O +than O +twice O +as S-MATE +strong O +as S-MATE +the O +strongest O +base O +material S-MATE +. O + + +Direct O +comparison O +of O +strain S-PRO +fields O +around O +cracks O +shows O +excellent O +agreement O +between O +simulation S-ENAT +and O +experiment S-CONPRI +. O + + +The O +results O +suggest O +that O +the O +systematic O +use O +of O +microstructure S-CONPRI +optimization O +to O +generate O +enhanced O +fracture B-PRO +resistance E-PRO +constitutes O +a O +new O +materials S-CONPRI +design S-FEAT +paradigm O +. O + + +Three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printed O +highly O +conductive O +graphene-based O +nanocomposites O +have O +led S-APPL +to O +a O +paradigm O +shift O +in O +the O +development O +of O +flexible O +electronics S-CONPRI +as S-MATE +well O +as S-MATE +customized O +therapeutic S-CONPRI +devices O +. O + + +This O +article O +addresses O +the O +deployment O +and O +characterization O +of O +a O +piezoelectric-pneumatic O +material-jetting O +( O +PPMJ O +) O +additive B-MANP +manufacturing I-MANP +process E-MANP +to O +print S-MANP +graphene-based O +nanocomposites O +with O +3D B-CONPRI +structures E-CONPRI +. O + + +Here O +, O +development O +of O +a O +graphene-silicone O +ink S-MATE +, O +so-called O +MJ-3DG O +, O +with O +a O +high O +content O +of O +graphene S-MATE +( O +70 O +wt O +% O +) O +and O +its O +adoption O +for O +the O +PPMJ O +process S-CONPRI +to O +3D B-MANP +print E-MANP +a O +highly O +conductive O +graphene-silicone O +structure S-CONPRI +is O +demonstrated O +. O + + +The O +robust O +3D B-MANP +printed E-MANP +structure O +from O +MJ-3DG O +ink S-MATE +with O +the O +surface B-PRO +roughness E-PRO +around O +2.99 O +( O +µm O +) O +has O +the O +resistivity S-PRO +as S-MATE +low O +as S-MATE +0.41 O +( O +Ω.cm O +) O +. O + + +This O +low O +resistivity S-PRO +is O +fairly O +comparable O +with O +the O +previously O +reported O +extrusion-based O +3D-printed S-MANP +graphene O +structures O +that O +are O +the O +highest O +among O +all O +the O +carbon-based O +3D-printed S-MANP +structures O +reported O +to O +date O +. O + + +Furthermore O +, O +in O +contrast O +to O +the O +extrusion-based B-MACEQ +systems E-MACEQ +, O +the O +high O +process S-CONPRI +speed O +( O +up O +to O +500 O +mm/s O +) O +and O +the O +drop-on-demand O +nature O +of O +PPMJ O +provide O +internal O +design B-CONPRI +flexibility E-CONPRI +for O +3D B-MANP +printed E-MANP +structures O +and O +make O +the O +development O +of O +smart O +graphene-based O +electronic O +and O +biomonitoring O +devices O +possible O +. O + + +Owing O +to O +the O +lack O +of O +optimization S-CONPRI +, O +the O +dimensional B-CHAR +accuracy E-CHAR +of O +low-cost O +3D B-MACEQ +printers E-MACEQ +is O +quite O +limited O +. O + + +In O +order O +to O +enhance O +the O +performances O +of O +a O +Prusa O +i3 O +3D B-MACEQ +printer E-MACEQ +, O +an O +optimization S-CONPRI +challenge O +was O +assigned O +to O +the O +students O +of O +the O +Specializing O +Master O +in O +Industrial S-APPL +Automation S-CONPRI +of O +the O +Politecnico O +di O +Torino O +. O + + +The O +enhancements O +were O +applied O +to O +four O +printers S-MACEQ +by O +manufacturing S-MANP +new O +self-replicated O +parts O +by O +means O +of O +the O +same O +3D B-MACEQ +printers E-MACEQ +. O + + +The O +benchmarking O +involved O +the O +fabrication S-MANP +of O +replicas O +of O +an O +innovative O +reference O +artifact O +by O +means O +of O +the O +modified O +printers S-MACEQ +. O + + +A O +coordinate B-MACEQ +measuring I-MACEQ +machine E-MACEQ +( O +CMM S-MACEQ +) O +was O +then O +used O +to O +inspect O +the O +dimensions S-FEAT +of O +the O +replicas O +. O + + +Measures O +were O +used O +to O +compare O +the O +performances O +of O +the O +four O +optimized O +printers S-MACEQ +in O +terms O +of O +dimensional B-CHAR +accuracy E-CHAR +using O +ISO S-MANS +IT O +grades O +. O + + +The O +form O +errors S-CONPRI +of O +the O +geometrical B-FEAT +features E-FEAT +of O +the O +replicas O +were O +also O +evaluated O +according O +to O +the O +GD S-MATE +& O +T O +system O +. O + + +The O +benchmarking O +results O +show O +that O +the O +most O +effective O +modifications O +to O +the O +original O +printer S-MACEQ +were O +those O +related O +to O +the O +improvement O +of O +the O +structure S-CONPRI +stiffness S-PRO +and O +chatter O +reduction S-CONPRI +. O + + +Extrusion-based O +3D B-MANP +printing E-MANP +of O +photo-curable S-FEAT +hydrogel S-MATE +materials O +can O +be S-MATE +used O +for O +the O +generation O +of O +complex O +objects O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +without O +the O +need O +for O +molds S-MACEQ +. O + + +Photo-curing O +often O +is O +the O +final O +step S-CONPRI +of O +the O +3D B-MANP +printing E-MANP +process O +, O +fixing O +the O +shape O +of O +the O +generated O +object O +. O + + +However O +, O +the O +fabricated S-CONPRI +objects O +have O +to O +support S-APPL +themselves O +before O +curing S-MANP +, O +limiting O +the O +size O +of O +the O +objects O +. O + + +In O +this O +contribution O +, O +intermediate O +curing S-MANP +after O +completing O +each O +individual O +layer S-PARA +with O +poly O +( O +ethylene O +glycol O +) O +diacrylate S-MATE +as S-MATE +a O +radically O +curing S-MANP +hydrogel O +system O +was O +investigated O +compared O +with O +single O +curing S-MANP +of O +the O +whole O +structure S-CONPRI +after O +complete O +layered O +deposition S-CONPRI +, O +and O +its O +effect O +on O +the O +mechanical B-CONPRI +properties E-CONPRI +and O +achievable O +object O +size O +was O +assessed O +. O + + +Defect-free O +hydrogel S-MATE +samples O +for O +mechanical B-CHAR +testing E-CHAR +were O +obtained O +with O +an O +optimized O +washing/swelling O +protocol S-CONPRI +. O + + +It O +was O +found O +that O +hydrogel S-MATE +objects O +cured S-MANP +after O +completion O +without O +intermediate O +curing S-MANP +steps O +had O +the O +highest O +fracture S-CONPRI +stresses O +and O +compression S-PRO +at O +break O +with O +32.5 O +N S-MATE +cm−2 O +and O +44 O +% O +, O +respectively O +. O + + +With O +increasing O +intermediate O +curing B-PARA +time E-PARA +, O +both O +the O +fracture S-CONPRI +stress O +and O +the O +compression S-PRO +at O +break O +decreased O +down O +to O +7.8 O +N S-MATE +cm−2 O +and O +26 O +% O +, O +respectively O +, O +for O +5 O +s S-MATE +intermediate O +curing S-MANP +. O + + +Long O +intermediate O +curing B-PARA +times E-PARA +between O +the O +layers O +lead S-MATE +to O +preferred O +crack O +formation O +parallel O +to O +the O +layers O +due O +to O +decreased O +chemical O +bonding S-CONPRI +. O + + +However O +, O +the O +formation O +of O +higher O +hydrogel S-MATE +objects O +than O +enabled O +by O +the O +yield B-PRO +stress E-PRO +of O +the O +hydrogel S-MATE +was O +only O +possible O +with O +intermediate O +curing S-MANP +due O +to O +the O +better O +self-support O +of O +partially O +cured S-MANP +objects O +. O + + +The O +effect O +of O +printing B-PARA +speed E-PARA +on O +quality S-CONPRI +of O +parts O +fabricated S-CONPRI +via O +Binder B-MANP +Jetting E-MANP +process O +is O +experimentally O +evaluated O +. O + + +The O +dimensional B-CHAR +accuracy E-CHAR +of O +printed O +samples S-CONPRI +reduces O +linearly O +with O +increasing O +printing B-PARA +speed E-PARA +due O +to O +the O +enhanced O +spreading O +of O +droplets S-CONPRI +under O +more O +significant O +inertia O +forces S-CONPRI +. O + + +Saturation O +level O +of O +printed O +features O +is O +also O +linearly O +influenced O +by O +the O +printing B-PARA +speed E-PARA +, O +which O +can O +be S-MATE +attributed O +to O +increase O +of O +dimensional O +inaccuracy O +. O + + +Binder B-MANP +Jetting E-MANP +Process O +is O +an O +Additive B-MANP +Manufacturing E-MANP +technique O +( O +AM S-MANP +) O +in O +which O +a O +liquid B-MATE +binder E-MATE +is O +employed O +for O +establishing O +the O +initial O +strength S-PRO +and O +fabricating S-MANP +the O +geometry S-CONPRI +of O +components S-MACEQ +. O + + +In O +this O +process S-CONPRI +, O +the O +delivery O +of O +the O +binding O +agent O +is O +accomplished O +through O +a O +drop-on-demand O +( O +DOD S-MANP +) O +printhead O +by O +deposition S-CONPRI +of O +picoliter-sized O +droplets S-CONPRI +of O +the O +liquid B-MATE +binder E-MATE +. O + + +The O +velocity O +of O +the O +droplets S-CONPRI +impinging O +the O +powder B-MACEQ +bed E-MACEQ +surface O +might O +have O +significant O +effect O +on O +droplet S-CONPRI +spreading O +and O +absorption S-CONPRI +dynamics O +, O +which O +can O +be S-MATE +manifested O +in O +quality S-CONPRI +and O +integrity S-CONPRI +of O +the O +fabricated S-CONPRI +parts O +. O + + +In O +the O +present O +study O +, O +the O +effect O +of O +the O +printing B-PARA +speed E-PARA +on O +dimensional B-CHAR +accuracy E-CHAR +and O +equilibrium S-CONPRI +saturation O +level O +of O +printed O +samples S-CONPRI +is O +experimentally O +investigated O +and O +the O +observed O +trends S-CONPRI +are O +discussed O +in O +detail O +. O + + +Big O +Area S-PARA +Additive B-MANP +Manufacturing E-MANP +( O +BAAM O +) O +is O +a O +large O +format O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +. O + + +However O +, O +at O +this O +scale O +, O +lack O +of O +high O +print B-PARA +resolution E-PARA +and O +extruder S-MACEQ +flowrate O +control O +lead S-MATE +to O +potentially O +significant O +geometric O +deviations O +in O +the O +printed O +part O +. O + + +Multi-resolution O +printing O +, O +extrusion S-MANP +diversion O +, O +and O +feedforward O +extruder S-MACEQ +control O +are O +examined O +herein O +. O + + +These O +methods O +were O +all O +found O +to O +be S-MATE +effective O +in O +mitigating O +phenomena O +detrimental O +to O +geometric O +part O +quality S-CONPRI +on O +the O +BAAM O +process S-CONPRI +. O + + +A O +space O +frame O +lattice S-CONPRI +and O +shell S-MACEQ +finite B-CONPRI +element I-CONPRI +model E-CONPRI +was O +created O +to O +predict O +the O +linearly O +elastic S-PRO +response O +of O +test O +coupons O +made O +with O +a O +modified O +polyetherimide O +( O +PEI O +) O +material S-MATE +. O + + +This O +approach O +was O +employed O +because O +it O +provides O +an O +efficient O +procedure O +to O +design S-FEAT +and O +optimize O +3D B-APPL +printed I-APPL +parts E-APPL +. O + + +The O +modeled O +coupons O +were O +3D B-MANP +printed E-MANP +by O +extrusion S-MANP +of O +molten O +thermoplastic B-MATE +polymer E-MATE +. O + + +The O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +was O +verified O +by O +comparing O +the O +predicted S-CONPRI +values O +of O +elastic B-PRO +modulus E-PRO +, O +shear B-PRO +modulus E-PRO +, O +and O +Poisson O +’ O +s S-MATE +ratio O +in O +two O +material S-MATE +directions O +with O +the O +corresponding O +values O +obtained O +from O +quasi-static S-CONPRI +mechanical S-APPL +experiments O +. O + + +The O +values O +obtained O +for O +the O +moduli O +and O +the O +Poisson O +’ O +s S-MATE +ratios O +from O +the O +finite B-CONPRI +element I-CONPRI +model E-CONPRI +matched O +closely O +with O +those O +obtained O +from O +the O +experiments O +. O + + +Material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +MEAM O +) O +, O +also O +known O +as S-MATE +three-dimensional O +( O +3D S-CONPRI +) O +printing O +, O +is O +a O +popular O +additive B-MANP +manufacturing E-MANP +technique O +suitable O +for O +producing O +3D S-CONPRI +shapes O +using O +thermoplastic B-MATE +materials E-MATE +. O + + +The O +majority O +of O +companies S-APPL +that O +design S-FEAT +and O +test O +3D B-MANP +printing E-MANP +machines O +work O +with O +thermoplastic S-MATE +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +and O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +filaments S-MATE +. O + + +It O +is O +, O +however O +, O +crucial O +to O +utilize O +different O +types O +of O +filaments S-MATE +for O +a O +broader O +range S-PARA +of O +applications O +with O +different O +mechanical B-CONPRI +property E-CONPRI +requirements O +. O + + +MEAM O +techniques O +may O +be S-MATE +used O +for O +the O +production S-MANP +of O +SMP-based O +parts O +, O +allowing O +for O +smart B-FEAT +structures E-FEAT +to O +be S-MATE +created O +in O +a O +wide O +variety O +of O +geometries S-CONPRI +. O + + +In O +this O +work O +, O +a O +commercial O +3D-printer O +was O +used O +to O +produce O +3D B-MANP +printed E-MANP +polyurethane-based O +SMP O +specimens O +. O + + +Mechanical S-APPL +and O +thermomechanical S-CONPRI +testing S-CHAR +was O +conducted O +to O +study O +the O +effects O +of O +testing S-CHAR +temperatures S-PARA +and O +annealing S-MANP +heat O +treatments O +on O +the O +tensile S-PRO +and O +shape O +memory O +properties S-CONPRI +of O +the O +samples S-CONPRI +. O + + +3D B-MANP +printing E-MANP +was O +shown O +to O +be S-MATE +a O +suitable O +technique O +for O +producing O +SMP O +parts O +capable O +of O +retaining O +good O +shape O +memory O +characteristics O +. O + + +Different O +annealing S-MANP +heat O +treatments O +and O +test O +temperatures S-PARA +were O +found O +to O +have O +considerable O +effects O +on O +the O +SMP O +specimen O +properties S-CONPRI +. O + + +In O +particular O +, O +annealing S-MANP +the O +specimens O +at O +85 O +°C O +for O +2 O +h O +helped O +to O +improve O +the O +rate O +of O +shape O +recovery O +and O +the O +consistency S-CONPRI +of O +mechanical B-CHAR +test E-CHAR +results O +. O + + +A O +systematic O +approach O +on O +the O +numerical B-ENAT +simulation E-ENAT +of O +electrified O +jet O +printing O +is O +studied O +. O + + +The O +Volume B-CONPRI +of I-CONPRI +Fluid E-CONPRI +( O +VOF S-CONPRI +) O +method O +which O +suits O +for O +modeling S-ENAT +multiphase O +flows O +with O +a O +continuous O +interface S-CONPRI +is O +used O +. O + + +The O +surface B-PRO +tension E-PRO +force S-CONPRI +is O +calculated O +with O +the O +Continuum B-CONPRI +Surface I-CONPRI +Force E-CONPRI +( O +CSF S-CONPRI +) O +method O +and O +the O +electric O +forces S-CONPRI +are O +added O +to O +the O +momentum O +equation O +by O +taking O +the O +divergence O +of O +the O +Maxwell O +stress S-PRO +tensor O +. O + + +Employing O +these O +dimensionless O +numbers O +, O +the O +number O +of O +effective O +parameters S-CONPRI +is O +reduced O +, O +and O +a O +relative O +comparison O +of O +the O +importance O +of O +competing O +forces S-CONPRI +on O +the O +process S-CONPRI +becomes O +possible O +. O + + +In O +this O +study O +, O +an O +elastoplastic O +constitutive O +model S-CONPRI +is O +developed O +to O +implement O +a O +quantitative S-CONPRI +description O +of O +the O +mechanical S-APPL +behavior O +of O +materials B-CONPRI +fabricated E-CONPRI +by O +stereolithography S-MANP +( O +SLA S-MACEQ +) O +. O + + +Considering O +the O +characteristics O +of O +the O +SLA S-MACEQ +printing B-MANP +process E-MANP +and O +the O +influence O +of O +the O +printing O +angle O +and O +layer B-PARA +thickness E-PARA +, O +the O +transversely O +isotropic B-PRO +elastic E-PRO +model O +and O +the O +Hill O +anisotropic S-PRO +yield O +model S-CONPRI +are O +used O +to O +describe O +the O +mechanical S-APPL +behavior O +of O +SLA-printed O +materials S-CONPRI +. O + + +In O +the O +analysis O +of O +the O +elasticity S-PRO +and O +strength S-PRO +of O +SLA-printed O +materials S-CONPRI +, O +equations O +to O +predict O +the O +elastic B-PRO +modulus E-PRO +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +are O +derived O +. O + + +Uniaxial O +tensile B-CHAR +tests E-CHAR +are O +carried O +out O +to O +obtain O +the O +elastic B-PRO +modulus E-PRO +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +of O +the O +standard S-CONPRI +SLA-printed O +materials S-CONPRI +under O +different O +printing O +angles O +and O +layer B-PARA +thicknesses E-PARA +. O + + +The O +parameters S-CONPRI +of O +the O +constitutive O +model S-CONPRI +are O +employed O +in O +ABAQUS S-ENAT +to O +simulate O +the O +mechanical S-APPL +behavior O +of O +a O +cellular B-FEAT +structure E-FEAT +and O +compare O +it O +with O +the O +experimental S-CONPRI +results O +. O + + +The O +results O +demonstrate O +that O +the O +elastoplastic O +constitutive O +model S-CONPRI +developed O +in O +this O +study O +can O +effectively O +describe O +the O +mechanical S-APPL +behavior O +of O +SLA-printed O +materials S-CONPRI +. O + + +Transparent B-CONPRI +materials E-CONPRI +for O +fused B-MANP +filament I-MANP +fabrication E-MANP +printers O +are O +widely O +available O +and O +may O +be S-MATE +useful O +for O +constructing O +3D B-MANP +printed E-MANP +devices O +with O +applications O +in O +UV/VIS O +spectroscopy S-CONPRI +. O + + +In O +this O +study O +, O +colourless O +polylactic B-MATE +acid E-MATE +, O +HD O +Glass S-MATE +and O +T-Glase O +were O +evaluated O +as S-MATE +construction O +materials S-CONPRI +for O +biochemical O +sensors S-MACEQ +, O +which O +contain O +immobilised O +enzymes O +, O +for O +analysis O +by O +UV/VIS O +spectrophotometry O +. O + + +Experiments O +were O +conducted O +on O +both O +the O +native O +3D B-MANP +print E-MANP +and O +after O +coating S-APPL +with O +XTC-3D® O +, O +a O +transparent S-CONPRI +epoxy S-MATE +resin O +used O +to O +improve O +optical S-CHAR +transparency O +of O +3D B-MANP +prints E-MANP +. O + + +Individual O +enzymes O +were O +immobilised O +within O +the O +3D B-MANP +prints E-MANP +by O +coupling O +the O +enzymes O +to O +tosyl-activated O +magnetic O +beads S-CHAR +and O +attracted O +to O +the O +print S-MANP +surface O +by O +magnets S-APPL +embedded O +in O +the O +3D B-MANP +print E-MANP +. O + + +A O +transparent S-CONPRI +3D B-MANP +printed E-MANP +device O +was O +demonstrated O +using O +enzymatic O +assays O +of O +lactose O +and O +glucose O +. O + + +Further O +studies O +showed O +that O +enzyme O +assays O +performed O +in O +these O +3D B-MANP +printed E-MANP +devices O +are O +reproducible O +, O +accurate S-CHAR +and O +of O +comparable O +sensitivity S-PARA +to O +the O +same O +assays O +performed O +in O +polystyrene S-MATE +cuvettes O +. O + + +Additive B-MANP +manufacturing E-MANP +is O +now O +considered O +as S-MATE +a O +new O +paradigm O +that O +is O +foreseen O +to O +improve O +progress O +in O +many O +fields O +. O + + +The O +field O +of O +tissue B-CONPRI +engineering E-CONPRI +has O +been O +facing S-MANP +the O +need O +for O +tissue O +vascularization S-CONPRI +when O +producing O +thick O +tissues O +. O + + +The O +use O +of O +sugar B-MATE +glass E-MATE +as S-MATE +a O +fugitive O +ink S-MATE +to O +produce O +vascular O +networks O +through O +rapid O +casting S-MANP +may O +offer O +the O +key O +to O +vascularization S-CONPRI +of O +thick O +tissues O +produced O +by O +tissue B-CONPRI +engineering E-CONPRI +. O + + +Here O +, O +a O +3D B-MACEQ +printer I-MACEQ +head E-MACEQ +capable O +of O +producing O +complex B-CONPRI +structures E-CONPRI +out O +of O +sugar B-MATE +glass E-MATE +is O +presented O +. O + + +This O +printer S-MACEQ +head O +uses O +a O +motorized O +heated O +syringe S-MACEQ +fitted O +with O +a O +custom O +made O +nozzle S-MACEQ +. O + + +The O +printer S-MACEQ +head O +was O +adapted O +to O +be S-MATE +mounted O +on O +a O +commercially O +available O +3D B-MACEQ +printer E-MACEQ +. O + + +A O +mathematical S-CONPRI +model O +was O +derived O +to O +predict O +the O +diameter S-CONPRI +of O +the O +filaments S-MATE +based O +on O +the O +printer S-MACEQ +head O +feed S-PARA +rate O +and O +extrusion B-PARA +rate E-PARA +. O + + +Using O +a O +1 O +mm S-MANP +diameter S-CONPRI +nozzle O +, O +the O +printer S-MACEQ +accurately S-CHAR +produced O +filaments S-MATE +ranging O +from O +0.3 O +mm S-MANP +to O +3.2 O +mm S-MANP +in O +diameter S-CONPRI +. O + + +One O +of O +the O +main O +advantages O +of O +this O +manufacturing S-MANP +method O +is O +the O +self-supporting S-FEAT +behaviour O +of O +sugar B-MATE +glass E-MATE +that O +allows O +the O +production S-MANP +of O +long O +, O +horizontal O +, O +curved O +, O +as S-MATE +well O +as S-MATE +overhanging O +filaments S-MATE +needed O +to O +produce O +complex O +vascular O +networks O +. O + + +Finally O +, O +to O +establish O +a O +proof O +of O +concept O +, O +polydimethylsiloxane S-MATE +was O +used O +as S-MATE +the O +gel S-MATE +matrix O +during O +the O +rapid O +casting S-MANP +to O +produce O +various O +“ O +vascularized O +” O +constructs O +that O +were O +successfully O +perfused O +, O +which O +suggests O +that O +this O +new O +fabrication S-MANP +method O +can O +be S-MATE +used O +in O +a O +number O +of O +tissue B-CONPRI +engineering E-CONPRI +applications O +, O +including O +the O +vascularization S-CONPRI +of O +thick O +tissues O +. O + + +3D S-CONPRI +printable O +zwitterionic O +nanoclay O +hydrogel S-MATE +with O +self-supporting S-FEAT +abilities O +. O + + +Printing B-PARA +speed E-PARA +had O +a O +considerable O +effect O +on O +the O +material S-MATE +’ O +s S-MATE +tensile O +properties S-CONPRI +. O + + +Increased O +aging O +time O +of O +the O +pre-gels O +significantly O +reduced O +strain S-PRO +at O +failure S-CONPRI +. O + + +Excellent O +recovery O +of O +compressed O +hydrogels S-MATE +when O +left O +for O +24 O +h O +at O +room O +temperature S-PARA +. O + + +A O +UV-curable O +nanoclay-zwitterionic O +hydrogel S-MATE +is O +synthesised O +and O +evaluated O +though O +rheological S-PRO +and O +mechanical B-CHAR +testing E-CHAR +. O + + +Compression S-PRO +and O +tensile S-PRO +samples S-CONPRI +are O +printed O +and O +compared O +to O +cast S-MANP +samples O +. O + + +The O +pre-gel O +aging O +time O +showed O +that O +an O +increased O +time O +resulted O +in O +a O +lower O +strain S-PRO +at O +failure S-CONPRI +for O +both O +cast S-MANP +and O +extruded S-MANP +samples O +. O + + +Furthermore O +, O +the O +compressed O +samples S-CONPRI +display O +self-healing O +abilities O +at O +room O +temperature S-PARA +and O +almost O +completely O +returns O +to O +its O +original O +state O +before O +compression S-PRO +occurred O +. O + + +Net-shape O +98 O +% O +dense O +objects O +have O +been O +fabricated S-CONPRI +from O +a O +rapidly B-MANP +solidified E-MANP +ferrous O +powder S-MATE +using O +binder S-MATE +jet O +3D B-MANP +printing E-MANP +and O +molten O +bronze S-MATE +infiltration O +. O + + +X-ray B-CHAR +diffraction E-CHAR +, O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +, O +and O +differential O +thermal B-CHAR +analysis E-CHAR +were O +used O +to O +characterize O +the O +structural O +evolution S-CONPRI +of O +the O +powder B-MACEQ +feedstock E-MACEQ +during O +an O +infiltration S-CONPRI +heating S-MANP +cycle O +. O + + +Microindentation O +and O +bend B-CHAR +tests E-CHAR +were O +performed O +on O +the O +infiltrated O +material S-MATE +to O +evaluate O +its O +mechanical B-CONPRI +properties E-CONPRI +. O + + +It O +was O +found O +that O +infiltration S-CONPRI +improved O +the O +strength S-PRO +of O +the O +sintered S-MANP +preforms O +by O +eliminating O +the O +stress B-CHAR +concentration E-CHAR +points O +at O +interparticle O +necks O +. O + + +We O +have O +printed O +microscale S-CONPRI +3-dimensional O +tissue O +scaffolds S-FEAT +using O +cellulose B-MATE +acetate E-MATE +( O +CA S-MATE +) O +for O +the O +first O +time O +and O +produced O +a O +range S-PARA +of O +pore B-PARA +sizes E-PARA +ranging O +from O +99 O +to O +608 O +μm O +that O +are O +potentially O +favorable O +for O +tissue B-CONPRI +engineering E-CONPRI +. O + + +In O +the O +process S-CONPRI +we O +have O +elucidated O +some O +of O +the O +formulation-fabrication-morphology O +relationships O +which O +enabled O +advancements O +in O +ink S-MATE +development O +, O +optimization S-CONPRI +of O +fabrication S-MANP +parameters O +, O +and O +morphological O +control O +. O + + +We O +believe O +this O +study O +will O +increase O +the O +knowledge O +base O +for O +additive B-MANP +manufacturing E-MANP +of O +CA S-MATE +and O +enable O +further O +research S-CONPRI +into O +the O +use O +of O +3D-printed S-MANP +CA O +for O +tissue B-CONPRI +engineering E-CONPRI +applications O +. O + + +Also O +, O +our O +findings O +on O +printing O +optimization S-CONPRI +may O +provide O +some O +practical O +principles O +and O +methodologies O +that O +are O +applicable O +for O +the O +ink S-MATE +development O +using O +other O +biomaterials S-MATE +. O + + +Anisotropy S-PRO +in O +dielectric S-MACEQ +properties O +can O +have O +deleterious O +effects O +in O +structures O +intended O +for O +use O +in O +high-field O +environments O +. O + + +We O +show O +that O +dielectric S-MACEQ +anisotropy S-PRO +is O +introduced O +into O +parts O +fabricated S-CONPRI +using O +additive B-MANP +manufacturing E-MANP +techniques O +based O +on O +the O +orientation S-CONPRI +in O +which O +the O +part O +is O +printed O +. O + + +Dielectric B-PRO +strength E-PRO +testing O +data S-CONPRI +, O +based O +on O +the O +ASTM O +D149 O +standard S-CONPRI +, O +are O +presented O +for O +samples B-CONPRI +fabricated E-CONPRI +using O +the O +polymer S-MATE +jetting S-MANP +( O +PolyJet S-CONPRI +) O +, O +stereolithography S-MANP +( O +SLA S-MACEQ +) O +, O +fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +, O +and O +selective B-MANP +laser I-MANP +sintering E-MANP +( O +SLS S-MANP +) O +additive B-MANP +manufacturing E-MANP +techniques O +. O + + +Each O +printing O +technique O +was O +found O +to O +introduce O +anisotropic S-PRO +dielectric O +properties S-CONPRI +within O +the O +sample S-CONPRI +coupons O +that O +were O +a O +function O +of O +the O +original O +orientation S-CONPRI +in O +which O +the O +part O +was O +printed O +, O +and O +the O +direction O +of O +structural O +susceptibility S-PRO +was O +found O +to O +be S-MATE +print-method O +dependent O +. O + + +Differences O +in O +dielectric B-PRO +strength E-PRO +for O +coupons O +printed O +in O +different O +orientations S-CONPRI +were O +found O +to O +exceed O +70 O +% O +for O +some O +combinations O +of O +printing O +technique O +and O +polymer S-MATE +. O + + +Overall O +, O +test O +coupons O +printed O +with O +stereolithography S-MANP +( O +SLA S-MACEQ +) O +were O +found O +to O +exhibit O +the O +lowest O +degree O +of O +dielectric B-PRO +strength I-PRO +anisotropy E-PRO +between O +print S-MANP +orientations S-CONPRI +. O + + +Dielectric S-MACEQ +failure O +mechanisms O +are O +discussed O +. O + + +Effect O +of O +deposition S-CONPRI +velocity O +on O +the O +width O +, O +continuity O +and O +mechanical B-CONPRI +properties E-CONPRI +of O +printed O +mortar O +. O + + +The O +pumping O +flow B-PARA +rate E-PARA +influences O +the O +printed O +mortar O +specimens O +. O + + +Mechanical B-PRO +strength E-PRO +of O +multi-layered O +printed O +specimens O +in O +the O +presence/absence O +of O +glass B-MATE +fibre E-MATE +, O +compared O +with O +moulded S-MACEQ +mortar O +. O + + +An O +adaptable O +industrial B-MACEQ +robot E-MACEQ +end-effector O +orientation S-CONPRI +and O +velocity O +control O +approach O +for O +versatile O +novel O +form O +fabrication S-MANP +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +are O +widely O +used O +in O +various O +fields O +of O +industry S-APPL +and O +research S-CONPRI +. O + + +Continual O +research S-CONPRI +has O +enabled O +AM B-MANP +technologies E-MANP +to O +be S-MATE +considered O +as S-MATE +a O +feasible O +substitute O +for O +certain O +applications O +in O +the O +construction S-APPL +industry O +, O +particularly O +given O +the O +advances O +in O +the O +use O +of O +glass B-MATE +fibre E-MATE +reinforced O +mortar O +. O + + +An O +investigation O +of O +the O +resulting O +mechanical B-CONPRI +properties E-CONPRI +of O +various O +mortar O +mixes O +extruded S-MANP +using O +a O +robotic B-MACEQ +arm E-MACEQ +is O +presented O +. O + + +The O +nozzle S-MACEQ +paths O +were O +projected O +via O +‘ O +spline O +’ O +interpolation S-CONPRI +to O +obtain O +the O +desired O +trajectory O +and O +deposition S-CONPRI +velocity O +in O +the O +reference O +frame O +of O +the O +manipulator S-MACEQ +. O + + +In O +this O +study O +, O +the O +mixes O +consist O +of O +ordinary O +Portland O +cement S-MATE +, O +fine O +sand S-MATE +, O +chopped O +glass B-MATE +fibres E-MATE +( O +6 O +mm S-MANP +) O +and O +chemical O +admixtures O +, O +which O +are O +used O +to O +print S-MANP +prismatic- O +and O +cubic-shaped O +specimens O +. O + + +Mechanical B-PRO +strength E-PRO +tests O +were O +performed O +on O +the O +printed O +specimens O +to O +evaluate O +the O +behaviour O +of O +the O +materials S-CONPRI +in O +the O +presence O +and O +absence O +of O +glass B-MATE +fibre E-MATE +. O + + +Robot S-MACEQ +end-effector O +velocity O +tests O +were O +performed O +to O +examine O +the O +printability S-PARA +and O +extrudability O +of O +the O +mortar O +mixes O +. O + + +The O +results O +show O +that O +printed O +specimens O +with O +glass B-MATE +fibre E-MATE +have O +enhanced O +compressive B-PRO +strength E-PRO +compared O +with O +specimens O +without O +glass B-MATE +fibre E-MATE +. O + + +Blends S-MATE +of O +raco-PP O +and O +amorphous O +PP O +show O +best O +3D B-MANP +printing E-MANP +performances O +. O + + +Tailored O +polypropylene S-MATE +features O +enhanced O +interlayer O +bonding S-CONPRI +quality O +and O +reduced O +warpage S-CONPRI +. O + + +3D B-MANP +printed E-MANP +frog O +with O +PP O +as S-MATE +test O +sample S-CONPRI +demonstrates O +outstanding O +part O +performance S-CONPRI +. O + + +This O +paper O +reports O +on O +the O +optimization S-CONPRI +of O +polypropylene S-MATE +( O +PP O +) O +feedstock B-MATE +material E-MATE +towards O +extrusion-based O +additive B-MANP +manufacturing E-MANP +. O + + +To O +achieve O +this O +, O +two O +commercially O +available O +grades O +of O +polypropylene/ethylene O +random O +copolymers S-MATE +( O +raco O +PP O +) O +were O +modified O +, O +aiming O +to O +reduce O +warp O +deformation S-CONPRI +caused O +by O +shrinkage S-CONPRI +and O +at O +the O +same O +time O +reduce O +the O +anisotropic S-PRO +property O +by O +improving O +the O +interlayer O +bonding S-CONPRI +quality O +of O +3D B-APPL +printed I-APPL +parts E-APPL +processed O +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +A O +β-nucleating O +agent O +, O +several O +amorphous O +polypropylenes S-MATE +( O +aPP O +) O +and O +one O +linear O +low-density O +polyethylene S-MATE +( O +LLDPE O +) O +were O +selected O +as S-MATE +additive S-MATE +or O +blending S-MANP +component O +with O +the O +goal O +to O +reduce O +shrinkage S-CONPRI +. O + + +The O +polypropylene B-MATE +feedstock E-MATE +material S-MATE +optimization O +was O +conducted O +by O +a O +combination O +of O +a O +lab-scale O +filament S-MATE +rod O +processing O +method O +and O +utilizing O +printed O +square O +tubes O +to O +optimize O +printing B-CONPRI +performance E-CONPRI +. O + + +The O +achieved O +results O +demonstrate O +that O +the O +crystallization S-CONPRI +behavior O +and O +E-modulus O +of O +polypropylene S-MATE +play O +significant O +roles O +for O +warp O +deformation S-CONPRI +in O +extrusion-based O +3D B-APPL +printed I-APPL +parts E-APPL +. O + + +The O +investigated O +polymer B-MATE +blend E-MATE +of O +raco O +PP O +and O +LLDPE O +shows O +no O +significant O +contribution O +to O +reduce O +warpage S-CONPRI +and O +impairs O +also O +the O +interlayer O +bonding S-CONPRI +. O + + +With O +two O +aPP O +grades O +warp O +deformation S-CONPRI +could O +be S-MATE +drastically O +reduced O +. O + + +In O +addition O +, O +the O +interlayer O +bonding S-CONPRI +quality O +is O +remarkably O +enhanced O +in O +these O +blends S-MATE +in O +spite O +of O +slight O +decreases O +in O +stiffness S-PRO +and O +strength S-PRO +. O + + +In O +conclusion O +, O +the O +optimized O +PP O +feedstock B-MATE +material E-MATE +features O +less O +warp O +deformation S-CONPRI +, O +high O +stiffness S-PRO +, O +and O +most O +importantly O +, O +outstanding O +interlayer O +bonding S-CONPRI +qualities O +. O + + +This O +paper O +investigates S-CONPRI +the O +effect O +of O +interlayer O +cooling S-MANP +on O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +structures O +that O +are O +3D B-MANP +printed E-MANP +using O +fusion S-CONPRI +based O +material B-MANP +extrusion E-MANP +. O + + +Two O +different O +types O +of O +samples S-CONPRI +were O +prepared O +, O +one O +designed S-FEAT +to O +measure O +the O +compressive B-PRO +strength E-PRO +of O +the O +structural O +material S-MATE +, O +and O +the O +other O +designed S-FEAT +to O +measure O +the O +shear B-PRO +strength E-PRO +of O +the O +structural O +material S-MATE +. O + + +As S-MATE +the O +wait O +time O +in O +between O +layers O +was O +increased O +, O +the O +effective O +yield B-PRO +strength E-PRO +was O +decreased O +for O +both O +types O +of O +samples S-CONPRI +. O + + +Temperature S-PARA +data S-CONPRI +was O +collected O +from O +the O +top O +layer S-PARA +of O +the O +structures O +after O +each O +successive O +layer S-PARA +deposition S-CONPRI +. O + + +This O +data S-CONPRI +revealed O +significant O +cooling S-MANP +over O +the O +wait O +times O +being O +considered O +. O + + +These O +trends S-CONPRI +prove O +that O +additional O +care O +needs O +to O +be S-MATE +taken O +when O +selecting O +the O +print S-MANP +settings O +for O +structural B-CONPRI +components E-CONPRI +that O +are O +manufactured S-CONPRI +using O +fused B-MANP +filament I-MANP +fabrication E-MANP +. O + + +This O +study O +shows O +that O +printing B-MANP +processes E-MANP +that O +require O +additional O +time O +( O +i.e O +. O + + +larger O +parts O +, O +finer O +geometries S-CONPRI +, O +etc O +. O + + +) O +will O +inherently O +lead S-MATE +to O +a O +reduction S-CONPRI +in O +the O +mechanical B-PRO +strength E-PRO +of O +the O +printed O +structure S-CONPRI +. O + + +To O +improve O +printing O +fidelity O +, O +reducing O +the O +slice S-CONPRI +thickness O +to O +eliminate O +the O +staircase O +effect O +is O +of O +great O +importance O +for O +digital B-MANP +light I-MANP +processing E-MANP +( O +DLP S-MANP +) O +technology S-CONPRI +. O + + +However O +, O +using O +a O +thinner O +slice S-CONPRI +printing O +model S-CONPRI +leads O +to O +a O +longer O +total O +printing O +time O +in O +the O +conventional O +DLP S-MANP +approach O +, O +which O +significantly O +reduces O +printing O +efficiency O +. O + + +In O +this O +work O +, O +a O +tunable O +pre-curing O +DLP S-MANP +approach O +was O +developed O +where O +the O +relationship O +between O +the O +forming S-MANP +layer O +thickness O +and O +ultraviolet S-CONPRI +( O +UV S-CONPRI +) O +exposure S-CONPRI +time O +is O +theoretically O +analyzed O +, O +and O +the O +curing S-MANP +process O +of O +photo-curable S-FEAT +solutions O +is O +divided O +into O +two O +sub-processes O +: O +pre-curing O +and O +further O +curing S-MANP +. O + + +In O +the O +pre-curing O +process S-CONPRI +, O +the O +photo-curable S-FEAT +solution O +is O +initially O +pre-cured O +and O +kept O +at O +the O +pre-gelled O +state O +due O +to O +continuous O +UV B-CONPRI +exposure E-CONPRI +during O +subsequent O +DLP S-MANP +printing O +. O + + +Then O +, O +the O +pre-cured O +photo-curable S-FEAT +solution O +is O +quickly O +cured S-MANP +to O +form O +a O +designed S-FEAT +thickness O +in O +each O +printing O +cycle O +. O + + +Also O +, O +the O +UV S-CONPRI +absorbing O +agent O +is O +added O +to O +the O +photo-curable S-FEAT +hydrogel S-MATE +solutions O +to O +regulate O +the O +pre-curing O +process S-CONPRI +. O + + +Using O +a O +10 O +μm O +slice S-CONPRI +for O +DLP S-MANP +printing O +, O +the O +total O +printing O +time O +of O +the O +tunable O +pre-curing O +DLP S-MANP +is O +approximately O +5.6 O +% O +of O +the O +conventional O +DLP S-MANP +, O +and O +the O +staircase O +effect O +on O +the O +surface S-CONPRI +is O +significantly O +eliminated O +using O +10 O +μm O +slice S-CONPRI +tunable O +pre-curing O +DLP S-MANP +approach O +, O +which O +leads O +to O +a O +better O +printing O +fidelity O +. O + + +Moreover O +, O +the O +reduction S-CONPRI +of O +UV B-CONPRI +exposure E-CONPRI +time O +and O +slice S-CONPRI +thickness O +is O +beneficial O +for O +cell B-CHAR +viability E-CHAR +during O +DLP S-MANP +bioprinting S-APPL +of O +thick O +bulk O +structures O +, O +which O +is O +demonstrated O +by O +the O +printing O +of O +PC12 O +cell-laden O +gelatin O +methacrylate O +( O +GelMA O +) O +bioinks O +. O + + +Using O +the O +tunable O +pre-curing O +DLP S-MANP +approach O +, O +the O +PC12 O +cells S-APPL +achieved O +higher O +cell B-CHAR +viability E-CHAR +( O +90.2 O +± O +6.1 O +% O +) O +and O +better O +cell S-APPL +morphology O +than O +the O +conventional O +DLP S-MANP +approach O +( O +54.5 O +± O +4.8 O +% O +) O +. O + + +The O +tunable O +pre-curing O +DLP S-MANP +approach O +provides O +a O +promising O +alternative O +to O +extend O +the O +application O +of O +DLP S-MANP +printing O +greatly O +. O + + +This O +paper O +proposes O +an O +electromagnetic O +based O +planar O +pressure S-CONPRI +sensor O +using O +a O +substrate S-MATE +integrated O +waveguide O +( O +SIW O +) O +. O + + +The O +proposed O +pressure S-CONPRI +sensor O +is O +inspired O +by O +a O +rectangular O +SIW O +cavity O +and O +is O +additively B-MANP +manufactured E-MANP +using O +3D B-MANP +printed E-MANP +dielectric O +material S-MATE +with O +inkjet S-MANP +printed O +conductive O +pattern S-CONPRI +. O + + +We O +inserted O +meshed O +material S-MATE +at O +the O +SIW O +centre O +, O +to O +facilitate O +soft O +pressing S-MANP +, O +and O +simplify O +producing O +frequency O +shifts O +due O +to O +capacitive O +coupling O +perturbation O +from O +different O +pressure S-CONPRI +levels O +. O + + +This O +paper O +investigates S-CONPRI +the O +bending S-MANP +behaviors O +of O +a O +bi-material O +structure S-CONPRI +( O +BMS O +) O +using O +both O +experimental S-CONPRI +and O +numerical O +methods O +The O +BMS O +is O +a O +composite B-MATE +material E-MATE +built O +by O +a O +3D-printed S-MANP +, O +open-cellular O +brittle S-PRO +plaster O +structure S-CONPRI +filled O +with O +a O +silicone B-MATE +elastomer E-MATE +. O + + +The O +composition S-CONPRI +and O +configuration S-CONPRI +of O +the O +two O +materials S-CONPRI +determine O +the O +overall O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Four-point O +bending B-CHAR +test E-CHAR +results O +show O +a O +non-linear O +elastic S-PRO +property O +, O +enhanced O +strength S-PRO +and O +toughness S-PRO +of O +BMS O +samples S-CONPRI +compared O +to O +either O +material S-MATE +phase O +alone O +. O + + +Such O +behavior O +is O +believed O +to O +be S-MATE +a O +result O +of O +delayed O +microcrack O +propagation O +in O +the O +brittle S-PRO +phase O +and O +a O +hardening S-MANP +effect O +of O +elastomer S-MATE +. O + + +In O +the O +numerical O +study O +, O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +is O +employed O +to O +verify O +these O +hypotheses O +. O + + +The O +FEA O +incorporates O +a O +brittle S-PRO +cracking O +material S-MATE +model O +for O +the O +plaster O +and O +a O +hyperelastic O +model S-CONPRI +for O +the O +silicone S-MATE +. O + + +The O +brittle S-PRO +cracking O +model S-CONPRI +enables O +the O +estimation O +of O +element S-MATE +degradation S-CONPRI +as S-MATE +a O +result O +of O +crack O +development O +and O +thus O +eliminates O +the O +need O +for O +the O +extremely O +refined O +mesh O +. O + + +Simulation S-ENAT +result O +confirms O +the O +non-linear O +elastic S-PRO +transition O +and O +crack-induced O +material S-MATE +degradation S-CONPRI +and O +visualizes O +the O +silicone S-MATE +strengthening O +mechanism S-CONPRI +that O +can O +avoid O +rapid O +structural O +rupture O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +rapidly O +becoming O +one O +of O +the O +most O +popular O +manufacturing S-MANP +techniques O +for O +short O +run O +part O +production S-MANP +and O +rapid B-ENAT +prototyping E-ENAT +. O + + +AM S-MANP +encompasses O +a O +range S-PARA +of O +technologies S-CONPRI +, O +including O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +process S-CONPRI +. O + + +The O +purpose O +of O +this O +paper O +is O +to O +evaluate O +and O +benchmark S-MANS +the O +mechanical S-APPL +performance O +of O +polyamide B-MATE +12 E-MATE +( O +PA12 S-MATE +) O +parts O +, O +fabricated S-CONPRI +using O +a O +production S-MANP +scale O +powder B-MANP +bed I-MANP +fusion E-MANP +printing O +process S-CONPRI +( O +HP O +Multi B-MANP +Jet I-MANP +Fusion E-MANP +printing O +process S-CONPRI +) O +. O + + +This O +system O +has O +a O +build B-PARA +volume E-PARA +is O +380 O +× O +254 O +× O +350 O +mm S-MANP +. O + + +The O +printed O +polymer S-MATE +parts O +were O +examined O +to O +determine O +their O +hydrophobicity O +, O +morphology S-CONPRI +, O +porosity S-PRO +and O +roughness S-PRO +. O + + +Chemical O +and O +thermal B-CONPRI +properties E-CONPRI +of O +the O +PA12 S-MATE +parts O +were O +also O +evaluated O +using O +attenuated O +total O +reflection S-CHAR +infrared S-CONPRI +spectroscopy O +( O +ATR O +FT-IR S-CHAR +) O +, O +x-ray B-CHAR +photoelectron I-CHAR +spectroscopy E-CHAR +( O +XPS S-CHAR +) O +and O +differential O +scanning S-CONPRI +calorimetry O +( O +DSC S-CHAR +) O +. O + + +The O +study O +highlights O +the O +influence O +of O +build B-PARA +orientation E-PARA +on O +the O +tensile S-PRO +( O +ISO S-MANS +527-1:2012 O +) O +and O +flexural O +( O +ISO S-MANS +178:2010 O +) O +properties S-CONPRI +. O + + +In O +terms O +of O +tensile B-PRO +strength E-PRO +, O +the O +parts O +exhibited O +isotropic S-PRO +behaviour O +with O +a O +maximum O +tensile B-PRO +strength E-PRO +of O +49 O +MPa S-CONPRI +. O + + +In O +terms O +of O +flexural O +testing S-CHAR +, O +the O +build B-PARA +orientations E-PARA +had O +a O +significant O +effect O +on O +the O +strength S-PRO +of O +the O +printed O +part O +. O + + +The O +Z O +orientation S-CONPRI +exhibited O +a O +40 O +% O +higher O +flexural B-PRO +strength E-PRO +, O +when O +compared O +to O +that O +of O +the O +X O +orientation S-CONPRI +. O + + +The O +maximum O +flexural B-PRO +strength E-PRO +observed O +was O +70 O +MPa S-CONPRI +. O + + +The O +results O +of O +this O +rapid O +, O +production S-MANP +scale O +AM S-MANP +study O +are O +compared O +with O +previous O +studies O +that O +detail O +the O +mechanical S-APPL +performance O +of O +PA12 S-MATE +, O +fabricated S-CONPRI +using O +PBF S-MANP +processes O +, O +such O +as S-MATE +selective O +laser B-MANP +sintering E-MANP +. O + + +Fab O +labs O +, O +which O +offer O +small-scale O +distributed O +digital B-MANP +fabrication E-MANP +, O +are O +forming S-MANP +a O +Green O +Fab O +Lab O +Network O +, O +which O +embraces O +concepts O +of O +an O +open O +source S-APPL +symbiotic O +economy O +and O +circular O +economy O +patterns O +. O + + +With O +the O +use O +of O +industrial S-APPL +3D B-MACEQ +printers E-MACEQ +capable O +of O +fused S-CONPRI +particle O +fabrication/ O +fused S-CONPRI +granular O +fabrication S-MANP +( O +FPF/FGF O +) O +printing O +directly O +from O +waste O +plastic S-MATE +streams O +, O +green O +fab O +labs O +could O +act O +as S-MATE +defacto O +recycling S-CONPRI +centers O +for O +converting O +waste O +plastics S-MATE +into O +valuable O +products O +for O +their O +communities O +. O + + +Thus O +, O +in O +this O +study O +the O +Gigabot O +X O +, O +an O +open O +source S-APPL +industrial S-APPL +3D B-MACEQ +printer E-MACEQ +, O +which O +has O +been O +shown O +to O +be S-MATE +amenable O +to O +a O +wide O +array O +of O +recyclables O +for O +FPF/FGF O +3D B-MANP +printing E-MANP +, O +is O +used O +to O +evaluate O +this O +economic O +potential O +. O + + +An O +economic O +life B-CONPRI +cycle E-CONPRI +analysis O +of O +the O +technology S-CONPRI +is O +completed O +comprised O +of O +three O +cases O +studies O +using O +FPF O +for O +large O +sporting O +equipment S-MACEQ +products O +. O + + +Sensitivities S-PARA +are O +run O +on O +the O +electricity O +costs O +for O +operation O +, O +materials S-CONPRI +costs O +from O +various O +feed S-PARA +stocks O +and O +the O +capacity S-CONPRI +factors O +of O +the O +3D B-MACEQ +printers E-MACEQ +. O + + +The O +results O +showed O +that O +FPF/FGF O +3D B-MANP +printing E-MANP +is O +capable O +of O +energy O +efficient O +production S-MANP +of O +a O +wide O +range S-PARA +of O +large O +high-value O +sporting O +goods O +products O +. O + + +For O +the O +case B-CONPRI +study E-CONPRI +products O +analyzed O +even O +the O +lowest O +capacity S-CONPRI +factor O +( O +starting O +only O +one O +print S-MANP +per O +week O +) O +represented O +a O +profit O +when O +comparing O +to O +high-end O +value O +products O +. O + + +For O +some O +products O +the O +profit O +potential O +and O +return B-CONPRI +on I-CONPRI +investment E-CONPRI +was O +substantial O +( O +e.g O +. O + + +The O +results O +clearly O +show O +that O +open O +source S-APPL +industrial S-APPL +FPF/FGF O +3D B-MACEQ +printers E-MACEQ +have O +significant O +economic O +potential O +when O +used O +as S-MATE +a O +distributed O +recycling/manufacturing O +system O +using O +recyclable S-CONPRI +feed S-PARA +stocks O +in O +the O +green O +fab O +lab O +context O +. O + + +It O +is O +well-known O +that O +the O +effective O +mechanical B-CONPRI +properties E-CONPRI +of O +cellular B-FEAT +structures E-FEAT +can O +be S-MATE +tuned O +by O +varying O +its O +relative B-PRO +density E-PRO +. O + + +With O +the O +advancement O +of O +3D B-MANP +printing E-MANP +, O +variable-density O +cellular B-FEAT +structures E-FEAT +can O +be S-MATE +fabricated O +with O +high O +precision S-CHAR +using O +this O +emerging O +manufacturing B-MANP +technology E-MANP +. O + + +Taking O +advantage O +of O +this O +unique O +ability O +to O +fabricate S-MANP +variable-density O +cellular B-FEAT +structure E-FEAT +, O +an O +efficient O +homogenization-based O +topology B-FEAT +optimization E-FEAT +method O +for O +natural O +frequency O +optimization S-CONPRI +is O +presented O +in O +this O +work O +. O + + +The O +method O +is O +demonstrated O +using O +a O +cantilevered O +plate O +with O +a O +honeycomb B-FEAT +structure E-FEAT +and O +is O +validated O +by O +detailed O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +and O +experiment S-CONPRI +. O + + +It O +is O +shown O +that O +the O +optimal O +design S-FEAT +can O +be S-MATE +fabricated O +by O +3D B-MANP +printing E-MANP +and O +shows O +significant O +enhancement O +in O +natural O +frequency O +and O +reduction S-CONPRI +in O +weight S-PARA +. O + + +Among O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +, O +binder B-MANP +jetting E-MANP +( O +BJ S-MANP +) O +produces O +workpieces O +that O +could O +be S-MATE +used O +in O +a O +great O +variety O +of O +applications O +, O +such O +as S-MATE +decorative O +parts O +, O +prototypes S-CONPRI +, O +foundry S-MANP +molds O +, O +bone B-APPL +implants E-APPL +, O +and O +others O +. O + + +This O +technique O +includes O +the O +powder S-MATE +deposition S-CONPRI +to O +form O +the O +layers O +, O +binder S-MATE +application O +, O +and O +post-processing S-CONPRI +to O +enhance O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Fibers S-MATE +can O +be S-MATE +mixed O +with O +traditional O +raw B-MATE +material E-MATE +powder S-MATE +in O +order O +to O +produce O +composite S-MATE +parts O +that O +are O +stronger O +. O + + +Sisal O +fibers S-MATE +are O +considered O +to O +be S-MATE +a O +promising O +reinforcement S-PARA +in O +composites S-MATE +because O +of O +their O +low O +cost O +, O +high O +strength S-PRO +, O +and O +lack O +of O +risk O +to O +human O +health O +. O + + +In O +Brazil O +, O +sisal O +fibers S-MATE +are O +abundant O +and O +there O +has O +been O +no O +previous O +study O +on O +the O +application O +of O +this O +fiber S-MATE +in O +binder B-MANP +jetting E-MANP +. O + + +This O +article O +proposes O +the O +production S-MANP +of O +gypsum–sisal O +fiber S-MATE +parts O +using O +BJ S-MANP +and O +the O +analysis O +of O +the O +effects O +of O +some O +manufacturing S-MANP +parameters O +, O +such O +as S-MATE +the O +presence O +of O +fiber S-MATE +, O +printing O +orientation S-CONPRI +, O +and O +post-processing S-CONPRI +. O + + +A O +material S-MATE +characterization O +is O +performed O +on O +raw B-MATE +materials E-MATE +and O +printed O +parts O +in O +the O +form O +of O +thermogravimetric B-CHAR +analysis E-CHAR +( O +TGA S-CHAR +) O +, O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +. O + + +A O +complete O +24 O +factorial B-CONPRI +design E-CONPRI +for O +analysis O +of O +variance O +was O +performed O +to O +evaluate O +the O +mechanical B-PRO +strength E-PRO +and O +porosity S-PRO +of O +the O +manufactured S-CONPRI +parts O +. O + + +It O +was O +observed O +that O +the O +fibers S-MATE +had O +a O +positive O +influence O +on O +the O +mechanical B-PRO +strength E-PRO +of O +the O +infiltrated O +parts O +, O +but O +a O +loss O +of O +strength S-PRO +was O +verified O +on O +the O +green B-PRO +parts E-PRO +. O + + +The O +reason O +for O +a O +loss O +of O +mechanical B-PRO +strength E-PRO +correlated S-CONPRI +with O +the O +increase O +in O +porosity S-PRO +caused O +by O +the O +fiber S-MATE +during O +the O +printing B-MANP +process E-MANP +; O +however O +, O +this O +increased O +porosity S-PRO +contributed O +to O +a O +more O +efficient O +infiltration S-CONPRI +post-processing O +. O + + +We O +experimentally O +and O +numerically O +investigate O +elastic S-PRO +wave O +propagation O +in O +a O +class O +of O +lightweight S-CONPRI +architected O +materials S-CONPRI +composed O +of O +hollow O +spheres O +and O +binders S-MATE +. O + + +Elastic S-PRO +wave O +transmission S-CHAR +tests O +demonstrate O +the O +existence O +of O +vibration O +mitigation O +capability O +in O +the O +proposed O +architected O +foams O +, O +which O +is O +validated O +against O +the O +numerically O +predicted S-CONPRI +phononic O +band O +gap O +. O + + +We O +further O +describe O +that O +the O +phononic O +band O +gap O +properties S-CONPRI +can O +be S-MATE +significantly O +altered O +through O +changing O +hollow O +sphere O +thickness O +and O +binder S-MATE +size O +in O +the O +architected O +foams O +. O + + +At O +the O +threshold O +stiffness S-PRO +contrast O +of O +50 O +, O +the O +proposed O +architected O +foam S-MATE +requires O +only O +a O +volume B-PARA +fraction E-PARA +of O +10.8 O +% O +while O +exhibiting O +an O +omnidirectional O +band O +gap O +size O +exceeding O +130 O +% O +. O + + +The O +proposed O +design S-FEAT +paradigm O +and O +physical O +mechanisms O +are O +robust O +and O +applicable O +to O +architected O +foams O +with O +other O +topologies S-CONPRI +, O +thus O +providing O +new O +opportunities O +to O +design S-FEAT +phononic O +metamaterials S-MATE +for O +low-frequency O +vibration O +control O +. O + + +Additive B-MANP +manufacturing E-MANP +of O +polymer S-MATE +derived O +ceramics S-MATE +with O +fused B-MANP +filament I-MANP +fabrication E-MANP +. O + + +Producing O +ceramics S-MATE +with O +hollow O +struts S-MACEQ +by O +surface S-CONPRI +coating S-APPL +with O +preceramic O +polymers S-MATE +. O + + +Creating O +a O +multi-level O +porous S-PRO +system O +with O +stable O +geometry S-CONPRI +. O + + +All O +3-D S-CONPRI +printing O +materials S-CONPRI +produced O +ceramics S-MATE +skins O +of O +less O +than O +100 O +microns O +. O + + +A O +promising O +method O +for O +obtaining O +ceramic S-MATE +components O +with O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +to O +use O +a O +two-step O +process S-CONPRI +of O +first O +printing O +the O +artifact O +in O +polymer S-MATE +and O +then O +converting O +it O +to O +ceramic S-MATE +using O +pyrolysis S-MANP +to O +form O +polymer S-MATE +derived O +ceramics S-MATE +( O +PDCs O +) O +. O + + +AM S-MANP +of O +ceramic S-MATE +components O +using O +PDCs O +has O +been O +demonstrated O +with O +a O +number O +of O +high-cost O +techniques O +, O +but O +data S-CONPRI +is O +lacking O +for O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +-based O +3-D S-CONPRI +printing O +. O + + +This O +study O +investigates S-CONPRI +the O +potential O +of O +lower-cost O +, O +more O +widespread O +and O +accessible O +FFF-based O +3-D S-CONPRI +printing O +of O +PDCs O +. O + + +Low-cost O +FFF S-MANP +machines O +have O +a O +resolution S-PARA +limit S-CONPRI +set O +by O +the O +nozzle S-MACEQ +width O +, O +which O +is O +inferior O +to O +the O +resolutions O +obtained O +with O +expensive O +stereolithography S-MANP +or O +selective B-MANP +laser I-MANP +sintering E-MANP +AM S-MANP +systems O +. O + + +However O +, O +to O +match O +the O +performance S-CONPRI +a O +partial O +PDC O +conversion O +is O +used O +here O +, O +where O +only O +the O +outer O +surface S-CONPRI +of O +the O +printed O +polymer S-MATE +frame O +is O +converted O +to O +ceramic S-MATE +. O + + +Here O +the O +FFF-based O +3-D S-CONPRI +printed O +sample S-CONPRI +is O +coated S-APPL +with O +a O +preceramic O +polymer S-MATE +and O +then O +it O +is O +converted O +into O +the O +corresponding O +PDC O +sample S-CONPRI +with O +a O +high O +temperature S-PARA +pyrolysis S-MANP +process S-CONPRI +. O + + +A O +screening O +experiment S-CONPRI +is O +performed O +on O +commercial O +filaments S-MATE +to O +obtain O +ceramic S-MATE +3-D S-CONPRI +prints O +by O +surface S-CONPRI +coating S-APPL +both O +hard O +thermoplastics S-MATE +: O +poly O +lactic O +acid O +( O +PLA S-MATE +) O +, O +polycarbonate S-MATE +( O +PC S-MATE +) O +, O +nylon B-MATE +alloys E-MATE +, O +polypropylene S-MATE +( O +PP O +) O +, O +polyethylene B-MATE +terephthalate E-MATE +glycol O +( O +PETG O +) O +, O +polyethylene B-MATE +terephthalate E-MATE +( O +PET O +) O +, O +and O +co-polyesters O +; O +and O +flexible O +materials S-CONPRI +including O +: O +flexible O +PLA S-MATE +, O +thermoplastic B-MATE +elastomer E-MATE +and O +thermoplastic B-MATE +polyurethane I-MATE +filaments E-MATE +. O + + +Mass O +and O +volume S-CONPRI +changes O +were O +quantified O +for O +the O +soaking O +and O +pyrolysis S-MANP +steps O +to O +form O +a O +hollow O +ceramic S-MATE +skin O +. O + + +All O +3-D S-CONPRI +printing O +materials S-CONPRI +extruded S-MANP +at O +250 O +microns O +successfully O +produced O +hollow O +ceramics S-MATE +skins O +of O +less O +than O +100 O +microns O +. O + + +The O +novel O +results O +developed O +here O +can O +be S-MATE +used O +to O +choose O +FFF-based O +polymers S-MATE +to O +use O +for O +PDC O +processing O +on O +a O +wide O +range S-PARA +of O +applications O +such O +as S-MATE +heat O +exchangers O +, O +heat B-MACEQ +sinks E-MACEQ +, O +scaffoldings O +for O +bone B-CONPRI +tissue I-CONPRI +growth E-CONPRI +, O +chemical/ O +gas S-CONPRI +filters S-APPL +and O +custom O +scientific O +hardware O +. O + + +Additive B-MANP +manufacturing E-MANP +via O +3-D S-CONPRI +printing O +technologies S-CONPRI +have O +become O +a O +frontier O +in O +materials S-CONPRI +research O +, O +including O +its O +application O +in O +the O +development O +and O +recycling S-CONPRI +of O +permanent B-MATE +magnets E-MATE +. O + + +This O +work O +addresses O +the O +opportunity O +to O +integrate O +magnetic B-CONPRI +field E-CONPRI +sources O +into O +3-D S-CONPRI +printing O +process S-CONPRI +in O +order O +to O +enable O +printing O +, O +alignment O +of O +anisotropic S-PRO +permanent O +magnets S-APPL +or O +magnetizing O +of O +magnetic O +filler O +materials S-CONPRI +, O +without O +requiring O +further O +processing O +. O + + +A O +non-axisymmetric O +electromagnet-type O +field O +source S-APPL +architecture S-APPL +was O +designed S-FEAT +, O +modelled O +, O +constructed O +, O +installed O +to O +a O +fused S-CONPRI +filament S-MATE +commercial O +3-D S-CONPRI +printer O +, O +and O +tested O +. O + + +The O +testing S-CHAR +was O +performed O +by O +applying O +magnetic B-CONPRI +field E-CONPRI +while O +printing O +composite S-MATE +anisotropic S-PRO +Nd-Fe-B O ++ O +Sm-Fe-N O +powders S-MATE +bonded O +in O +Nylon12 O +( O +65 O +vol. O +% O +) O +and O +recycled S-CONPRI +Sm-Co O +powder S-MATE +bonded O +in O +PLA S-MATE +( O +15 O +vol. O +% O +) O +. O + + +Magnetic B-CHAR +characterization E-CHAR +indicated O +that O +the O +degree-of-alignment O +of O +the O +magnet S-APPL +powders O +increased O +both O +with O +alignment O +field O +strength S-PRO +( O +controlled O +by O +the O +electric O +current O +applied O +to O +the O +magnetizing O +system O +) O +and O +the O +printing O +temperature S-PARA +. O + + +Both O +coercivity O +and O +remanence O +were O +found O +to O +be S-MATE +strongly O +dependent O +on O +the O +degree-of-alignment O +, O +except O +for O +printing O +performed O +below O +but O +near O +the O +Curie B-PARA +temperature E-PARA +of O +Nd-Fe-B O +( O +310 O +° O +C S-MATE +) O +. O + + +The O +variations S-CONPRI +in O +coercivity O +were O +consistent O +with O +previous O +observations O +in O +bonded O +magnet S-APPL +materials O +. O + + +This O +work O +verifies O +that O +integration O +of O +magnetic B-CONPRI +field E-CONPRI +sources O +into O +3-D S-CONPRI +printing O +processes S-CONPRI +will O +result O +in O +magnetic O +alignment O +of O +particles S-CONPRI +while O +ensuring O +that O +other O +advantages O +of O +3-D S-CONPRI +printing O +are O +retained O +. O + + +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +is O +the O +most O +popular O +additive B-MANP +manufacturing E-MANP +method O +because O +of O +its O +numerous O +capabilities O +and O +relatively O +low O +cost O +. O + + +This O +comes O +with O +a O +trade O +off O +as S-MATE +FFF O +printed O +parts O +are O +typically O +weak O +in O +the O +layer S-PARA +deposition B-PARA +direction E-PARA +due O +to O +insufficient O +interlayer O +bonding S-CONPRI +. O + + +This O +research S-CONPRI +adopts O +the O +method O +of O +cold O +plasma S-CONPRI +treatment O +and O +investigates S-CONPRI +the O +potential O +enhancement O +of O +interlayer O +bonding S-CONPRI +by O +altering O +the O +printed O +surface S-CONPRI +prior O +to O +the O +deposition S-CONPRI +of O +the O +next O +layer S-PARA +. O + + +Polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +is O +used O +as S-MATE +the O +printing O +material S-MATE +, O +due O +to O +its O +ubiquity O +in O +industry S-APPL +. O + + +The O +bonding B-PRO +strength E-PRO +is O +measured O +by O +the O +shear O +bond B-CONPRI +strength E-CONPRI +test O +. O + + +The O +results O +show O +that O +bond B-CONPRI +strength E-CONPRI +improved O +over O +100 O +% O +with O +30 O +s S-MATE +of O +treatment O +and O +over O +50 O +% O +with O +300 O +s S-MATE +of O +treatment O +. O + + +This O +indicates O +that O +wettability S-CONPRI +may O +not O +be S-MATE +the O +dominant O +mechanism S-CONPRI +for O +enhanced O +bonding S-CONPRI +after O +treatment O +. O + + +Using O +3D B-MANP +printed E-MANP +, O +patient-specific O +medical S-APPL +phantoms O +has O +become O +increasingly O +popular O +for O +use O +in O +biomedical B-APPL +applications E-APPL +including O +medical B-APPL +device E-APPL +testing O +, O +medical S-APPL +education O +, O +and O +surgical O +planning S-MANP +, O +etc O +. O + + +To O +overcome O +the O +inherent O +differences O +in O +mechanical B-CONPRI +properties E-CONPRI +between O +biological B-MATE +tissues E-MATE +and O +printable O +polymers S-MATE +, O +metamaterials S-MATE +are O +being O +introduced O +to O +mimic S-MACEQ +the O +mechanical B-CONPRI +response E-CONPRI +of O +the O +biological B-MATE +tissues E-MATE +. O + + +However O +, O +the O +existing O +trial-and-error S-CONPRI +approaches O +for O +finding O +the O +geometric O +parameters S-CONPRI +of O +the O +metamaterial S-MATE +result O +in O +time-consuming O +trials O +, O +which O +can O +not O +meet O +the O +urgent O +needs O +for O +medical B-APPL +applications E-APPL +. O + + +We O +addressed O +this O +issue O +by O +proposing O +an O +optimization-based O +statistical O +approach O +with O +an O +easy-to-evaluate O +surrogate O +model S-CONPRI +to O +guide O +the O +design B-CONPRI +process E-CONPRI +and O +reduce O +the O +design S-FEAT +time O +. O + + +In O +this O +paper O +, O +several O +validation S-CONPRI +tests O +were O +reported O +, O +including O +a O +biomedical B-APPL +application E-APPL +of O +mimicking O +the O +mechanical B-CONPRI +response E-CONPRI +of O +human O +articular O +cartilage O +. O + + +The O +proposed O +approach O +achieves O +excellent O +accuracy S-CHAR +both O +visually O +and O +quantitatively S-CONPRI +. O + + +This O +data-driven O +approach O +demonstrates O +efficacy O +and O +flexibility S-PRO +in O +building O +the O +surrogate O +model S-CONPRI +even O +when O +no O +obvious O +physical O +trends S-CONPRI +can O +be S-MATE +extracted O +. O + + +With O +the O +proposed O +statistical O +approach O +, O +we O +can O +efficiently O +design S-FEAT +the O +metamaterial S-MATE +and O +3D-print O +mechanically O +accurate S-CHAR +phantoms O +for O +sophisticated O +engineering S-APPL +applications O +. O + + +Cartilage O +regeneration S-CONPRI +is O +challenging O +because O +of O +the O +poor O +intrinsic O +self-repair O +capacity S-CONPRI +of O +avascular O +tissue O +. O + + +Three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +bioprinting S-APPL +has O +gained O +significant O +attention O +in O +the O +field O +of O +tissue B-CONPRI +engineering E-CONPRI +and O +is O +a O +promising O +technology S-CONPRI +to O +overcome O +current O +difficulties O +in O +cartilage O +regeneration S-CONPRI +. O + + +Although O +bioink O +is O +an O +essential O +component S-MACEQ +of O +bioprinting S-APPL +technology O +, O +several O +challenges O +remain O +in O +satisfying O +different O +requirements O +for O +ideal O +bioink O +, O +including O +biocompatibility S-PRO +and O +printability S-PARA +based O +on O +specific O +biological O +requirements O +. O + + +Gelatin O +and O +hyaluronic O +acid O +( O +HA O +) O +have O +been O +shown O +to O +be S-MATE +ideal O +biomimetic S-CONPRI +hydrogel O +sources O +for O +cartilage O +regeneration S-CONPRI +. O + + +However O +, O +controlling O +their O +structure S-CONPRI +, O +mechanical B-CONPRI +properties E-CONPRI +, O +biocompatibility S-PRO +, O +and O +degradation B-CHAR +rate E-CHAR +for O +cartilage O +repair O +remains O +a O +challenge O +. O + + +Here O +, O +we O +show O +a O +photocurable O +bioink O +created O +by O +hybridization O +of O +gelatin O +methacryloyl O +( O +GelMA O +) O +and O +glycidyl-methacrylated O +HA O +( O +GMHA O +) O +for O +material B-MANP +extrusion I-MANP +3D I-MANP +bioprinting E-MANP +in O +cartilage O +regeneration S-CONPRI +. O + + +GelMA O +and O +GMHA O +were O +mixed O +in O +various O +ratios O +, O +and O +the O +mixture O +of O +7 O +% O +GelMA O +and O +5 O +% O +GMHA O +bioink O +( O +G7H5 O +) O +demonstrated O +the O +most O +reliable O +mechanical B-CONPRI +properties E-CONPRI +, O +rheological B-PRO +properties E-PRO +, O +and O +printability S-PARA +. O + + +This O +bioink O +also O +provided O +an O +excellent O +microenvironment O +for O +chondrogenesis O +of O +tonsil-derived O +mesenchymal B-MATE +stem I-MATE +cells E-MATE +( O +TMSCs O +) O +in O +vitro O +and O +in O +vivo O +. O + + +In O +summary O +, O +this O +study O +presents O +the O +ideal O +formulation O +of O +GelMA/GMHA O +hybrid O +bioink O +to O +generate O +a O +well-suited O +photocurable O +bioink O +for O +cartilage O +regeneration S-CONPRI +of O +TMSCs O +using O +a O +material B-MANP +extrusion E-MANP +bioprinter S-MACEQ +, O +and O +could O +be S-MATE +applied O +to O +cartilage O +tissue B-CONPRI +engineering E-CONPRI +. O + + +Fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +is O +one O +of O +the O +most O +popular O +additive B-MANP +manufacturing I-MANP +processes E-MANP +. O + + +However O +, O +structural O +applications O +of O +FFF S-MANP +are O +still O +limited O +by O +unwanted O +variations S-CONPRI +in O +mechanical B-PRO +strength E-PRO +and O +structural O +dimensions S-FEAT +of O +printed O +parts O +. O + + +The O +samples S-CONPRI +were O +prepared O +by O +a O +low-cost O +open-source S-CONPRI +FFF B-MACEQ +3D I-MACEQ +printer E-MACEQ +, O +and O +full O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +geometrical O +characterizations O +were O +performed O +on O +them O +using O +X-ray B-CHAR +micro I-CHAR +computed I-CHAR +tomography E-CHAR +( O +micro-CT S-CHAR +) O +. O + + +The O +results O +showed O +significant O +geometry S-CONPRI +variation O +depending O +on O +different O +printing O +conditions O +, O +including O +print S-MANP +speed O +, O +layer B-PARA +height E-PARA +, O +and O +nozzle S-MACEQ +temperature O +. O + + +Based O +on O +the O +results O +, O +we O +demonstrated O +the O +effects O +of O +reducing O +layer B-PARA +height E-PARA +and O +increasing O +nozzle S-MACEQ +temperature O +as S-MATE +well O +as S-MATE +compensating O +material B-MANP +extrusion E-MANP +rate O +to O +improve O +geometric O +precision S-CHAR +with O +minimum O +0.8 O +% O +deviation O +. O + + +Moreover O +, O +uniaxial O +tensile S-PRO +and O +Mode O +III O +tear O +tests O +results O +showed O +that O +there O +are O +linear O +relations O +between O +bonding S-CONPRI +zone O +geometry S-CONPRI +and O +bonding B-PRO +strength E-PRO +. O + + +In O +addition O +, O +from O +the O +3D B-FEAT +geometry E-FEAT +of O +the O +resulting O +printed O +part O +, O +we O +could O +estimate O +the O +Young O +’ O +s S-MATE +modulus O +in O +the O +extrudate S-MATE +stacking O +direction O +using O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +, O +which O +showed O +good O +agreement O +with O +the O +measured O +value O +. O + + +Our O +experimental B-CONPRI +data E-CONPRI +may O +also O +serve O +as S-MATE +benchmark O +data S-CONPRI +for O +future O +multi-physics O +simulation S-ENAT +models O +. O + + +The O +process B-ENAT +simulation E-ENAT +tool O +Additive3D O +has O +been O +developed O +in O +Abaqus© O +2017 O +to O +model S-CONPRI +the O +Extrusion S-MANP +Deposition S-CONPRI +Additive B-MANP +Manufacturing E-MANP +( O +EDAM O +) O +process S-CONPRI +for O +fiber-reinforced O +thermoplastic B-MATE +composites E-MATE +. O + + +This O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +method O +encompasses O +material S-MATE +deposition B-MANP +processes E-MANP +where O +geometries S-CONPRI +are O +constructed O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +and O +the O +resulting O +layer S-PARA +properties O +are O +highly O +anisotropic.The O +goal O +is O +to O +predict O +final O +deformed B-PRO +shapes E-PRO +and O +residual B-PRO +stresses E-PRO +of O +printed O +geometries S-CONPRI +due O +to O +the O +printing B-MANP +process E-MANP +and O +the O +material S-MATE +anisotropy S-PRO +. O + + +The O +resulting O +design S-FEAT +tool O +allows O +to O +assess O +the O +outcomes O +of O +the O +printing B-MANP +process E-MANP +based O +on O +the O +part O +geometry S-CONPRI +, O +the O +printing O +material S-MATE +and O +the O +position O +control O +parameters.Material O +properties S-CONPRI +were O +characterized O +, O +and O +validation S-CONPRI +experiments O +, O +without O +additional O +calibration S-CONPRI +, O +show O +an O +excellent O +agreement O +between O +modeled O +and O +measured O +part O +deformation S-CONPRI +states O +with O +relative O +deviations O +below O +7 O +% O +. O + + +Due O +to O +the O +physics-based O +nature O +of O +the O +developed O +simulation S-ENAT +tools O +, O +the O +simulations S-ENAT +can O +be S-MATE +extended O +to O +account O +for O +different O +part O +scales O +, O +printing O +materials S-CONPRI +and O +printing O +histories O +. O + + +Binder S-MATE +jet O +printing O +is O +one O +additive B-MANP +manufacturing E-MANP +technique O +utilized O +in O +today O +’ O +s S-MATE +industry S-APPL +that O +uses O +an O +adhesive S-MATE +to O +bind S-MANP +powders O +together O +selectively O +in O +a O +bed S-MACEQ +. O + + +Post-printing O +processes S-CONPRI +are O +necessary O +for O +binder S-MATE +jet O +printed O +parts O +to O +increase O +key O +properties S-CONPRI +in O +materials S-CONPRI +such O +as S-MATE +density O +, O +but O +the O +full O +effects O +of O +this O +post-processing S-CONPRI +are O +not O +yet O +well O +understood O +. O + + +This O +study O +aims O +to O +enhance O +the O +understanding O +of O +how O +the O +process S-CONPRI +of O +sintering S-MANP +can O +affect O +the O +density S-PRO +evolution O +of O +a O +Ti-6Al-4 B-MATE +V E-MATE +binder S-MATE +jet O +printed O +part O +. O + + +Results O +show O +that O +the O +density S-PRO +is O +lower O +at O +the O +edges O +of O +the O +part O +and O +higher O +in O +regions O +of O +significant O +topological O +curvature O +, O +likely O +due O +to O +variations S-CONPRI +originating O +from O +the O +printing B-MANP +process E-MANP +that O +are O +propagated O +. O + + +These O +printing B-MANP +process E-MANP +effects O +can O +be S-MATE +due O +to O +binder- O +or O +powder-related O +occurrences O +, O +which O +are O +described O +in O +relation O +to O +the O +obtained O +results O +. O + + +Binder S-MATE +effects O +include O +high-velocity O +impact S-CONPRI +, O +particle S-CONPRI +disruption O +, O +and O +excessive O +spreading O +. O + + +Powder S-MATE +effects O +include O +printhead O +and O +recoater O +speed O +, O +satellite O +particles S-CONPRI +, O +and O +changing O +pressure S-CONPRI +throughout O +the O +powder B-MACEQ +bed E-MACEQ +. O + + +These O +factors O +affected O +the O +coordination O +number O +of O +particles S-CONPRI +in O +the O +green B-PRO +part E-PRO +, O +and O +caused O +sintering S-MANP +to O +progress O +more O +slowly O +in O +certain O +areas S-PARA +. O + + +In O +large O +area S-PARA +pellet O +extrusion S-MANP +additive B-MANP +manufacturing E-MANP +, O +the O +temperature S-PARA +of O +the O +substrate S-MATE +just O +before O +the O +deposition S-CONPRI +of O +a O +new O +subsequent O +layer S-PARA +affects O +the O +overall O +structure S-CONPRI +of O +the O +part O +. O + + +Warping S-CONPRI +and O +cracking S-CONPRI +occur O +if O +the O +substrate S-MATE +temperature O +is O +below O +a O +material-specific O +threshold O +, O +and O +deformation S-CONPRI +and O +deposition S-CONPRI +adhesion S-PRO +failure O +occur O +if O +the O +substrate S-MATE +temperature O +is O +above O +a O +different O +threshold O +. O + + +Currently O +, O +Big O +Area S-PARA +Additive B-MANP +Manufacturing E-MANP +( O +BAAM O +) O +machine S-MACEQ +users O +mitigate O +this O +problem O +by O +trial B-CONPRI +and I-CONPRI +error E-CONPRI +, O +which O +is O +costly O +and O +may O +result O +in O +decreased O +mechanical B-CONPRI +properties E-CONPRI +, O +monetary O +losses O +and O +time O +inefficiencies O +. O + + +Through O +thermal O +imaging S-APPL +, O +the O +range S-PARA +of O +temperatures S-PARA +present O +during O +the O +printing O +of O +a O +20 O +wt O +. O + + +% O +carbon B-MATE +fiber E-MATE +reinforced O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS-20CF O +) O +single-bead O +vertical S-CONPRI +wall O +via O +the O +BAAM O +machine S-MACEQ +was O +measured O +. O + + +Compression B-CHAR +tests E-CHAR +were O +performed O +to O +understand O +the O +material S-MATE +behavior O +at O +those O +temperatures S-PARA +. O + + +Optical S-CHAR +imaging S-APPL +was O +performed O +to O +identify O +a O +relationship O +between O +porosity S-PRO +in O +the O +printed O +bead S-CHAR +and O +plateau O +regions O +in O +the O +compression S-PRO +curves O +at O +temperatures S-PARA +of O +170 O +°C O +and O +below O +. O + + +From O +the O +thermal O +imaging S-APPL +and O +compressive O +testing S-CHAR +, O +it O +was O +concluded O +that O +if O +the O +substrate S-MATE +temperature O +is O +above O +200 O +°C O +, O +it O +will O +not O +be S-MATE +able O +to O +withstand O +the O +load O +exerted O +by O +the O +deposition S-CONPRI +of O +a O +new O +layer S-PARA +without O +experiencing O +deformation S-CONPRI +. O + + +This O +behavior O +was O +attributed O +to O +the O +experimentally O +obtained O +low O +compressive B-PRO +strength E-PRO +of O +ABS-20CF O +observed O +at O +temperatures S-PARA +above O +200 O +°C O +. O + + +Taking O +advantage O +of O +an O +extended O +design S-FEAT +and O +manufacturing S-MANP +space O +for O +composites S-MATE +, O +the O +technology S-CONPRI +of O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +of O +continuous O +fibre-reinforced O +thermoplastics S-MATE +shows O +great O +potential O +for O +the O +production S-MANP +of O +the O +next O +generation O +of O +lightweight S-CONPRI +structural O +parts O +. O + + +This O +process S-CONPRI +still O +has O +room O +for O +development O +. O + + +Moreover O +, O +knowledge O +of O +the O +mechanical B-CONPRI +behaviour E-CONPRI +of O +the O +resulting O +3D B-MANP +printed E-MANP +composites O +is O +still O +limited O +. O + + +In O +this O +work O +, O +the O +intra- O +and O +inter-laminar O +behaviours O +of O +carbon S-MATE +fibre/polyamide O +printed O +laminates S-CONPRI +were O +extensively O +characterised O +to O +determine O +ply O +elastic S-PRO +and O +strength B-PRO +properties E-PRO +, O +as S-MATE +well O +as S-MATE +interface O +strength S-PRO +and O +fracture S-CONPRI +characteristics O +. O + + +Moreover O +, O +the O +effects O +of O +eventual O +production S-MANP +defects S-CONPRI +on O +these O +properties S-CONPRI +were O +analysed O +, O +putting O +in O +evidence O +some O +of O +the O +present O +shortcomings O +of O +the O +FFF S-MANP +process O +. O + + +Such O +defects S-CONPRI +include O +non-homogeneous O +fibre S-MATE +distribution S-CONPRI +, O +large O +amounts O +of O +intra- O +and O +interlaminar O +voids S-CONPRI +, O +and O +weak O +interlayer O +bonding S-CONPRI +, O +which O +are O +likely O +to O +be S-MATE +due O +to O +insufficient O +thermo-mechanical B-CONPRI +consolidation E-CONPRI +of O +the O +material S-MATE +during O +the O +FFF S-MANP +process O +, O +and O +have O +significant O +influence O +on O +the O +matrix-dominated O +mechanical B-CONPRI +properties E-CONPRI +. O + + +As S-MATE +a O +result O +, O +the O +transverse O +and O +interlaminar O +properties S-CONPRI +were O +found O +to O +be S-MATE +lower O +than O +those O +obtained O +through O +hot O +compression S-PRO +moulding O +of O +carbon S-MATE +fibre/polyamide O +laminates S-CONPRI +. O + + +Besides O +highlighting O +possible O +process S-CONPRI +improvements O +, O +the O +mechanical S-APPL +characterisation O +carried O +out O +in O +this O +work O +promises O +a O +significant O +contribution O +to O +the O +abilities O +of O +designing O +and O +simulating O +general O +3D B-MANP +printed E-MANP +composite O +parts O +. O + + +The O +most O +common O +method O +for O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +of O +polymers S-MATE +is O +melt B-MANP +extrusion E-MANP +, O +which O +normally O +requires O +several O +pre-processing O +steps O +to O +compound O +and O +extrude S-MANP +filament O +feedstock S-MATE +, O +resulting O +in O +an O +overall O +long O +melt S-CONPRI +residency O +time O +. O + + +Consequently O +a O +typical O +melt S-CONPRI +extrusion-based O +AM B-MANP +process E-MANP +is O +time/cost O +consuming O +, O +and O +limited O +in O +the O +availability B-CONPRI +of I-CONPRI +materials E-CONPRI +that O +can O +be S-MATE +processed O +. O + + +Polyvinyl O +alcohol O +( O +PVOH O +) O +is O +one O +of O +the O +heat-sensitive O +polymers S-MATE +demonstrating O +a O +thermal B-MANP +decomposition E-MANP +temperature S-PARA +overlapping O +its O +processing O +window O +. O + + +This O +study O +proposed O +to O +use O +a O +pellet-fed O +material B-MANP +extrusion E-MANP +technique O +to O +directly O +process S-CONPRI +PVOH O +granules S-CONPRI +without O +the O +necessity O +of O +using O +any O +pre-processing O +steps O +. O + + +The O +approach O +essentially O +combined O +compounding O +, O +extrusion S-MANP +and O +AM S-MANP +, O +allowing O +multi-material B-MANP +printing E-MANP +with O +minimum O +exposure S-CONPRI +to O +heat S-CONPRI +during O +the O +process S-CONPRI +. O + + +The O +processing O +parameters S-CONPRI +were O +determined O +via O +thermal O +and O +rheological S-PRO +characterisation O +of O +PVOH O +. O + + +Effects O +of O +processing O +temperature S-PARA +and O +time O +on O +the O +thermal B-MANP +decomposition E-MANP +of O +PVOH O +were O +demonstrated O +, O +which O +further O +affected O +the O +tensile B-PRO +properties E-PRO +and O +solubility S-PRO +. O + + +The O +pellet-fed O +material B-MANP +extrusion E-MANP +technology O +demonstrated O +good O +3D S-CONPRI +printability O +, O +multi-material B-MANP +printing E-MANP +capability O +, O +and O +great O +versatility O +in O +processing O +polymer B-MATE +melts E-MATE +. O + + +In O +this O +paper O +, O +we O +investigate O +the O +print S-MANP +orientation S-CONPRI +effects O +on O +the O +macrostructure O +, O +the O +mechanical S-APPL +and O +thermal B-CONPRI +properties E-CONPRI +, O +and O +the O +strain S-PRO +field O +behavior O +of O +ULTEM® O +9085 O +using O +a O +Stratasys S-APPL +Fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +400 O +Printer S-MACEQ +. O + + +The O +tensile B-PRO +strength E-PRO +, O +failure S-CONPRI +strain O +, O +Poisson O +’ O +s S-MATE +ratio O +, O +coefficient B-PRO +of I-PRO +thermal I-PRO +expansion E-PRO +and O +modulus O +were O +all O +shown O +to O +vary O +significantly O +depending O +on O +the O +build B-PARA +orientation E-PARA +of O +identical O +dogbones O +. O + + +FDM S-MANP +parts O +ranged O +in O +strength S-PRO +from O +46 O +to O +85 O +% O +of O +strengths S-PRO +attainable O +from O +comparable O +injection-molded O +parts O +. O + + +The O +coefficient O +of O +variation S-CONPRI +( O +CV O +) O +increased O +from O +2 O +to O +13 O +% O +as S-MATE +the O +primary O +layer S-PARA +orientation O +deviated O +from O +the O +primary O +load O +direction O +. O + + +CAT O +scan O +and O +SEM S-CHAR +were O +employed O +to O +relate O +the O +corresponding O +macrostructure O +to O +the O +mechanical B-CONPRI +response E-CONPRI +of O +the O +material S-MATE +along O +the O +parts O +’ O +3-primary O +directions O +, O +using O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +DIC S-CONPRI +) O +. O + + +The O +fracture S-CONPRI +surfaces O +of O +these O +parts O +further O +suggest O +that O +3D S-CONPRI +FDM O +materials S-CONPRI +behave O +more O +like O +laminated O +composite B-CONPRI +structures E-CONPRI +than O +isotropic S-PRO +cast S-MANP +resins O +and O +therefore O +design S-FEAT +allowables O +should O +reflect O +actual O +part O +build S-PARA +configurations O +. O + + +One O +of O +the O +main O +benefits O +of O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +, O +also O +known O +as S-MATE +fused O +filament S-MATE +fabrication S-MANP +( O +FFF S-MANP +) O +or O +3D B-MANP +printing E-MANP +, O +is O +the O +flexibility S-PRO +in O +terms O +of O +printing O +materials S-CONPRI +. O + + +Locally O +reinforced S-CONPRI +components S-MACEQ +can O +be S-MATE +easily O +produced O +by O +selectively O +combining O +reinforced S-CONPRI +with O +unfilled O +tough O +thermoplastics S-MATE +. O + + +However O +, O +such O +multi-material S-CONPRI +composites S-MATE +usually O +lack O +sufficient O +weld B-PRO +strength E-PRO +in O +order O +to O +be S-MATE +able O +to O +withstand O +operation O +loads O +. O + + +The O +present O +study O +attempts O +to O +close O +this O +gap O +by O +characterising O +the O +cohesion O +between O +the O +strands O +of O +two O +materials S-CONPRI +with O +different O +stiffness S-PRO +, O +namely O +neat O +PLA S-MATE +and O +short O +carbon B-MATE +fibre E-MATE +reinforced O +PLA S-MATE +( O +CF-PLA O +) O +, O +produced O +by O +FFF S-MANP +using O +advanced O +fracture S-CONPRI +mechanical O +techniques O +. O + + +The O +full O +set S-APPL +of O +engineering S-APPL +constants O +of O +both O +materials S-CONPRI +were O +obtained O +under O +the O +assumption O +of O +transverse O +isotropy O +from O +tensile B-CHAR +tests E-CHAR +in O +combination O +with O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +. O + + +Both O +tests O +were O +in O +good O +correlation O +with O +each O +other O +and O +revealed O +that O +the O +interlayer O +PLA/CF-PLA O +bonding S-CONPRI +was O +at O +least O +as S-MATE +tough O +as S-MATE +the O +interlayer O +CF-PLA/CF-PLA O +bonding S-CONPRI +. O + + +In O +this O +work O +, O +systematic O +studies O +were O +carried O +out O +on O +SLS S-MANP +( O +selective B-MANP +laser I-MANP +sintering E-MANP +) O +printed O +samples S-CONPRI +, O +with O +two O +different O +geometries S-CONPRI +, O +standard S-CONPRI +test O +samples S-CONPRI +dumb-bells O +( O +dog O +bones O +) O +and O +tubes O +( O +Ø O +30 O +mm S-MANP +and O +150 O +mm S-MANP +long O +) O +, O +consisting O +of O +two O +different O +materials S-CONPRI +, O +viz O +. O + + +PA12 S-MATE +( O +polyamide S-MATE +) O +with O +and O +without O +the O +addition O +of O +carbon B-MATE +fibres E-MATE +( O +CFs O +) O +. O + + +These O +samples S-CONPRI +were O +tested O +according O +to O +their O +respective O +ISO B-MANS +standards E-MANS +. O + + +The O +standard S-CONPRI +test O +samples S-CONPRI +exhibited O +relatively O +small O +differences O +with O +regards O +to O +printing O +directions O +when O +PA12 S-MATE +was O +used O +alone O +. O + + +Their O +tensile B-PRO +strengths E-PRO +( O +σm O +) O +were O +approx O +. O + + +75 O +% O +–80 O +% O +of O +the O +injection-moulded O +sample S-CONPRI +. O + + +The O +addition O +of O +carbon B-MATE +fibres E-MATE +significantly O +enhanced O +the O +tensile B-PRO +strengths E-PRO +, O +namely O +50 O +% O +greater O +for O +the O +vertically O +printed O +test O +sample S-CONPRI +and O +more O +than O +100 O +% O +greater O +for O +the O +horizontally O +printed O +samples S-CONPRI +, O +compared O +to O +the O +respective O +objects O +consisting O +of O +PA12 S-MATE +alone O +. O + + +The O +strong O +difference O +in O +printing O +directions O +can O +be S-MATE +attributed O +to O +the O +orientation S-CONPRI +of O +the O +carbon B-MATE +fibres E-MATE +. O + + +Mechanical B-CHAR +tests E-CHAR +on O +the O +SLS S-MANP +printed O +tubes O +confirmed O +the O +trends S-CONPRI +that O +were O +found O +in O +the O +standard S-CONPRI +test O +samples S-CONPRI +. O + + +Porosity S-PRO +and O +pore S-PRO +structure O +inside O +the O +SLS S-MANP +printed O +tubes O +were O +studied O +by O +combining O +optical B-CHAR +microscopy E-CHAR +and O +X-ray B-CHAR +microtomography E-CHAR +with O +image B-CONPRI +analysis E-CONPRI +. O + + +It O +was O +found O +that O +porosity S-PRO +was O +a O +general O +phenomenon O +inside O +the O +SLS S-MANP +printed O +samples S-CONPRI +. O + + +Nevertheless O +, O +there O +were O +significant O +differences O +in O +porosity S-PRO +, O +which O +probably O +depended O +on O +the O +properties S-CONPRI +of O +the O +materials S-CONPRI +used O +, O +both O +with O +and O +without O +carbon B-MATE +fibres E-MATE +, O +thus O +causing O +significant O +differences O +in O +light O +absorption S-CONPRI +and O +heat B-PRO +conductivity E-PRO +. O + + +The O +printed O +samples S-CONPRI +made O +of O +PA12 S-MATE +alone O +possessed O +quite O +a O +high O +level O +of O +porosity S-PRO +( O +4.7 O +% O +) O +, O +of O +which O +the O +size O +of O +the O +biggest O +pore S-PRO +was O +hundreds O +of O +microns O +. O + + +The O +twenty O +biggest O +pores S-PRO +with O +an O +average S-CONPRI +size O +of O +75*104 O +μ O +m3 O +accounted O +for O +43 O +% O +of O +the O +total O +porosity S-PRO +. O + + +However O +, O +the O +porosity S-PRO +of O +the O +printed O +samples S-CONPRI +made O +from O +PA12 S-MATE ++ O +CF O +was O +only O +0.68 O +% O +, O +with O +the O +biggest O +pore S-PRO +being O +only O +tens O +of O +microns O +. O + + +The O +corresponding O +average S-CONPRI +pore O +size O +of O +the O +20 O +biggest O +pores S-PRO +was O +72*103 O +μ O +m3 O +, O +which O +was O +one O +order O +of O +magnitude S-PARA +smaller O +than O +the O +printed O +samples S-CONPRI +made O +from O +PA12 S-MATE +alone O +. O + + +Pores S-PRO +inside O +the O +SLS S-MANP +printed O +samples S-CONPRI +were O +probably O +responsible O +for O +a O +spread S-CONPRI +in O +the O +mechanical B-CONPRI +properties E-CONPRI +measured O +, O +e.g O +. O + + +tensile B-PRO +strengths E-PRO +, O +tensile S-PRO +( O +Young O +’ O +s S-MATE +) O +modulus O +, O +strain S-PRO +at O +break O +, O +etc O +. O + + +The O +ratios O +of O +their O +standard B-CHAR +deviations E-CHAR +to O +their O +corresponding O +mean O +values O +in O +the O +standard S-CONPRI +test O +samples S-CONPRI +could O +probably O +be S-MATE +used O +as S-MATE +an O +indicator O +of O +porosity S-PRO +, O +i.e O +. O + + +An O +integrated O +wearable O +3-D S-CONPRI +printable O +microfluidic O +pump O +was O +developed O +, O +which O +uses O +a O +novel O +actuation O +process S-CONPRI +. O + + +Fused B-CONPRI +deposition E-CONPRI +manufacture O +3-D S-CONPRI +printing O +was O +used O +as S-MATE +a O +means O +to O +accurately S-CHAR +produce O +this O +device O +. O + + +This O +resulted O +in O +the O +fabrication S-MANP +of O +high O +precision S-CHAR +integrated O +parts O +made O +from O +poly-lactic-acid O +bioplastic O +. O + + +By O +integrating O +an O +electro-magnetically O +actuated O +closed O +diffuser O +nozzle S-MACEQ +pump O +configuration S-CONPRI +a O +micro-fabricated O +microfluidic O +pump O +has O +been O +produced O +. O + + +Biofluids O +have O +been O +driven O +through O +the O +device O +by O +actuating O +a O +composite S-MATE +polydimethylsiloxane O +diaphragm O +actuated O +polymeric O +microstructure S-CONPRI +diaphragm O +membrane O +using O +electromagnetic B-CONPRI +force E-CONPRI +. O + + +This O +composite S-MATE +diaphragm O +was O +made O +by O +suspending O +10 O +μm O +iron S-MATE +particles O +in O +the O +polydimethylsiloxane S-MATE +at O +concentrations O +of O +30 O +% O +, O +40 O +% O +and O +50 O +% O +. O + + +It O +is O +shown O +that O +this O +device O +acts O +as S-MATE +an O +effective O +electromagnetic B-CONPRI +force E-CONPRI +actuated O +a O +pump O +. O + + +The O +integration O +of O +3D B-MANP +printed E-MANP +devices O +to O +form O +a O +micropump O +is O +proven O +through O +practical O +testing S-CHAR +which O +demonstrate O +a O +controllable O +flow B-PARA +rate E-PARA +was O +generated O +. O + + +The O +Bladder O +Assisted O +Composite B-MANP +Manufacturing E-MANP +( O +BACM O +) O +technique O +allows O +fabrication S-MANP +of O +complex O +hollow O +composite S-MATE +geometries O +. O + + +However O +, O +traditional O +bladder O +manufacturing S-MANP +methods O +require O +multiple O +steps O +and O +a O +master O +geometry S-CONPRI +which O +increases O +the O +cost O +and O +the O +manufacturing S-MANP +time O +. O + + +Hence O +, O +additively B-MANP +manufactured E-MANP +bladders O +are O +presented O +as S-MATE +an O +alternative O +solution S-CONPRI +to O +bladders O +manufactured S-CONPRI +through O +traditional O +methods O +. O + + +The O +use O +of O +printed O +bladders O +is O +demonstrated O +by O +consolidating O +and O +curing S-MANP +a O +composite S-MATE +part O +made O +out O +of O +an O +aerospace S-APPL +grade O +composite S-MATE +prepreg O +material S-MATE +, O +IM7/8552 O +. O + + +Bladders O +are O +additively B-MANP +manufactured E-MANP +using O +the O +Fused B-MANP +Deposition I-MANP +Modeling E-MANP +( O +FDM S-MANP +) O +technique O +with O +Thermoplastic B-MATE +Polyurethane E-MATE +( O +TPU O +) O +. O + + +Based O +on O +the O +results O +of O +a O +thermomechanical S-CONPRI +investigation O +of O +the O +TPU O +, O +a O +two-step O +curing S-MANP +cycle O +for O +manufacturing S-MANP +a O +composite S-MATE +part O +with O +IM7/8552 O +prepreg S-MATE +was O +designed S-FEAT +. O + + +The O +part B-CONPRI +consolidation E-CONPRI +achieved O +with O +this O +method O +was O +characterized O +by O +measuring O +void S-CONPRI +content O +and O +comparing O +it O +to O +the O +void S-CONPRI +content O +in O +a O +sample S-CONPRI +cured S-MANP +in O +a O +standard S-CONPRI +autoclave S-MACEQ +process O +. O + + +The O +low O +void S-CONPRI +content O +achieved O +with O +the O +BACM O +method O +demonstrated O +the O +potential O +of O +this O +technology S-CONPRI +for O +providing O +bladders O +for O +short O +production B-PARA +runs E-PARA +or O +prototyping S-CONPRI +. O + + +As S-MATE +more O +manufacturing B-MANP +processes E-MANP +and O +research S-CONPRI +institutions O +adopt O +customized O +manufacturing S-MANP +as S-MATE +a O +key O +element S-MATE +in O +their O +design S-FEAT +strategies O +and O +finished O +products O +, O +the O +resulting O +mechanical B-CONPRI +properties E-CONPRI +of O +parts O +produced O +through O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +must O +be S-MATE +characterized O +and O +understood O +. O + + +In O +polymer B-MANP +extrusion E-MANP +( O +PE S-MANP +) O +, O +the O +most O +recently O +extruded S-MANP +polymer O +filament S-MATE +must O +bond O +to O +the O +previously O +extruded S-MANP +filament O +via O +polymer B-CONPRI +diffusion E-CONPRI +to O +form O +a O +“ O +weld S-FEAT +” O +. O + + +The O +strength S-PRO +of O +the O +weld B-PARA +limits E-PARA +the O +performance S-CONPRI +of O +the O +manufactured S-CONPRI +part O +and O +is O +controlled O +through O +processing O +conditions O +. O + + +Understanding O +the O +role O +of O +processing O +conditions O +, O +specifically O +extruder S-MACEQ +velocity O +and O +extruder S-MACEQ +temperature O +, O +on O +the O +overall O +strength S-PRO +of O +the O +weld S-FEAT +will O +allow O +optimization S-CONPRI +of O +PE-AM S-MATE +parts O +. O + + +Here O +, O +the O +fracture S-CONPRI +toughness O +of O +a O +single O +weld S-FEAT +is O +determined O +through O +a O +facile O +“ O +trouser O +tear O +” O +Mode B-CONPRI +III I-CONPRI +fracture E-CONPRI +experiment S-CONPRI +. O + + +The O +actual O +weld B-PARA +thickness E-PARA +is O +observed O +directly O +by O +optical B-CHAR +microscopy E-CHAR +( O +OM S-CHAR +) O +characterization O +of O +cross B-CONPRI +sections E-CONPRI +of O +PE-AM S-MATE +samples O +. O + + +Representative O +data S-CONPRI +of O +weld B-PRO +strength E-PRO +as S-MATE +a O +function O +of O +printing O +parameters S-CONPRI +on O +a O +commercial O +3D B-MACEQ +printer E-MACEQ +demonstrates O +the O +robustness S-PRO +of O +the O +method O +. O + + +Digital B-MANP +light I-MANP +processing E-MANP +technology O +( O +DLP S-MANP +) O +is O +an O +effective O +additive B-MANP +manufacturing E-MANP +method O +to O +fabricate S-MANP +ceramic S-MATE +components O +with O +high O +precision S-CHAR +and O +complicated O +structure S-CONPRI +. O + + +Here O +, O +a O +novel O +strategy O +to O +prepare O +chopped O +carbon B-MATE +fibers E-MATE +( O +Cf O +) O +/SiC O +ceramic B-FEAT +composites E-FEAT +through O +stereolithography S-MANP +Cf O +combined O +with O +liquid O +silicon S-MATE +infiltration S-CONPRI +is O +presented O +. O + + +The O +3D-architectured O +bodies O +possessed O +high O +printing O +stableness O +and O +accuracy S-CHAR +with O +the O +forming S-MANP +deviation O +of O +less O +than O +5 O +% O +. O + + +Moreover O +, O +the O +tightly O +bonded O +adjacent O +layers O +can O +contribute O +to O +the O +synergistic O +effect O +from O +curing S-MANP +adhesion S-PRO +of O +photosensitive B-MATE +resin E-MATE +and O +crisscrossed O +pinning O +of O +chopped O +carbon B-MATE +fibers E-MATE +. O + + +As-prepared O +components S-MACEQ +after O +liquid O +silicon S-MATE +infiltration S-CONPRI +were O +dense O +and O +exhibited O +maximum O +flexural B-PRO +strength E-PRO +of O +262.6 O +MPa S-CONPRI +. O + + +This O +strategy O +demonstrates O +a O +promising O +prospect O +and O +tantalizing O +possibility O +to O +fabricate S-MANP +SiC O +ceramic B-FEAT +composites E-FEAT +with O +complex B-PRO +shapes E-PRO +and O +structures O +. O + + +Successful O +3D B-MANP +printing E-MANP +of O +metatsable O +high O +entropy O +alloy S-MATE +Fe40Mn20Co20Cr15Si5 O +( O +CS-HEA O +) O +is O +acheived O +. O + + +CS-HEA O +demonstrated O +Excellent O +printability S-PARA +due O +to O +very O +low O +defect S-CONPRI +denisty O +. O + + +High O +entropy O +alloys S-MATE +( O +HEAs O +) O +have O +attracted O +scientific O +interest O +due O +to O +their O +good O +mechanical B-CONPRI +properties E-CONPRI +and O +failure S-CONPRI +resistance O +, O +whereas O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +emerged O +as S-MATE +a O +powerful O +yet O +flexible O +processing O +route O +for O +advanced O +materials S-CONPRI +. O + + +However O +, O +limitations O +inherent O +in O +both O +these O +fields O +include O +HEAs O +display O +inferior O +mechanical B-CONPRI +properties E-CONPRI +in O +as S-MATE +cast O +condition O +; O +and O +AM S-MANP +demands O +expansion O +of O +printable O +alloys S-MATE +. O + + +dominated O +microstructure S-CONPRI +after O +laser B-MANP +powder I-MANP +bed I-MANP +fusion I-MANP +additive I-MANP +manufacturing E-MANP +has O +been O +evaluated O +. O + + +As-printed O +CS-HEA O +showed O +higher O +strength S-PRO +due O +to O +high O +work O +hardenability S-PRO +, O +whereas O +substantial O +uniform O +ductility S-PRO +is O +associated O +with O +a O +combination O +of O +transformation O +and O +twinning S-CONPRI +induced O +plasticity S-PRO +during O +deformation S-CONPRI +. O + + +Additionally O +, O +very O +low O +volume S-CONPRI +percent O +of O +voids S-CONPRI +( O +∼0.1 O +% O +) O +along O +with O +high O +strength-ductility O +shows O +excellent O +printability S-PARA +of O +the O +CS-HEA O +using O +laser-based B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Izod O +impact B-CHAR +test E-CHAR +specimens O +were O +fabricated S-CONPRI +via O +a O +desktop B-FEAT +grade E-FEAT +material O +extrusion S-MANP +3D B-MACEQ +printer E-MACEQ +process O +using O +ABS S-MATE +in O +four O +build B-PARA +orientations E-PARA +. O + + +The O +3D B-MANP +printed E-MANP +impact O +test O +specimens O +were O +examined O +in O +order O +to O +compare O +the O +effect O +of O +stress S-PRO +concentrator O +fabrication S-MANP +on O +impact B-CHAR +test E-CHAR +data S-CONPRI +where O +two O +methods O +were O +used O +to O +fabricate S-MANP +the O +stress S-PRO +concentrating O +notch S-FEAT +: O +( O +1 O +) O +printing O +the O +stress S-PRO +concentrator O +; O +and O +( O +2 O +) O +machining S-MANP +the O +stress S-PRO +concentrator O +where O +the O +dimensions S-FEAT +of O +the O +notch S-FEAT +matched O +those O +specified O +in O +the O +ASTM O +standard S-CONPRI +D256-10 O +. O + + +In O +both O +test O +cases O +, O +sensitivity S-PARA +to O +build B-PARA +orientation E-PARA +was O +also O +observed O +. O + + +The O +sample S-CONPRI +sets O +with O +printed O +stress S-PRO +concentrators O +were O +found O +to O +be S-MATE +statistically O +similar O +to O +their O +counterparts O +with O +milled S-MANP +stress O +concentrators O +. O + + +The O +experiment S-CONPRI +was O +repeated O +again O +on O +a O +commercial B-FEAT +grade E-FEAT +material O +extrusion S-MANP +3D B-MACEQ +printer E-MACEQ +using O +ABS S-MATE +, O +PC S-MATE +, O +PC-ABS O +, O +and O +Ultem O +9085 O +and O +differences O +in O +impact B-CHAR +test E-CHAR +results O +were O +observed O +most O +notably O +when O +Ultem O +9085 O +was O +tested O +. O + + +Scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +was O +utilized O +to O +perform O +fractograpy O +on O +impact B-CHAR +test E-CHAR +specimens O +to O +explore O +the O +effect O +of O +stress S-PRO +concentrator O +fabrication S-MANP +on O +the O +fracture S-CONPRI +surface O +morphology S-CONPRI +of O +the O +failed O +specimens O +. O + + +The O +work O +here O +demonstrates O +the O +need O +for O +materials S-CONPRI +testing O +standards S-CONPRI +that O +are O +specific O +to O +additive B-MANP +manufacturing E-MANP +technologies O +; O +as S-MATE +well O +as S-MATE +concluding O +that O +all-printed O +impact B-CHAR +test E-CHAR +specimens O +may O +offer O +the O +best O +representation O +of O +the O +impact S-CONPRI +characteristics O +of O +3D B-MANP +printed E-MANP +structures O +. O + + +In O +recent O +years O +3D B-MANP +printing E-MANP +has O +gained O +popularity O +amongst O +industry S-APPL +professionals O +and O +hobbyists O +alike O +, O +with O +many O +new O +types O +of O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +apparatus O +types O +becoming O +available O +on O +the O +market O +. O + + +A O +massively O +overlooked O +component S-MACEQ +of O +FFF S-MANP +is O +the O +requirement O +for O +a O +simple S-MANP +method O +to O +calculate O +the O +geometries S-CONPRI +of O +polymer S-MATE +depositions O +extruded S-MANP +during O +the O +FFF S-MANP +process O +. O + + +Manufacturers O +have O +so O +far O +achieved O +adequate O +methods O +to O +calculate O +tool-paths O +through O +so O +called O +slicer S-ENAT +software O +packages O +which O +calculate O +the O +required O +velocities O +of O +extrusion S-MANP +from O +prior O +knowledge O +and O +data S-CONPRI +. O + + +Presented O +here O +is O +a O +method O +for O +obtaining O +a O +series O +of O +equations O +for O +predicting O +height O +, O +width O +and O +cross-sectional O +area S-PARA +values O +for O +given O +processing O +parameters S-CONPRI +within O +the O +FFF S-MANP +process O +for O +initial O +laydown O +on O +to O +a O +glass S-MATE +surface O +. O + + +This O +work O +investigates S-CONPRI +the O +evolution S-CONPRI +of O +the O +tensile S-PRO +and O +structural O +properties S-CONPRI +of O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +, O +formed O +polymers S-MATE +under O +gamma O +irradiation S-MANP +. O + + +Commercial O +off-the-shelf O +print S-MANP +filaments S-MATE +of O +Poly O +( O +lactic O +acid O +) O +( O +PLA S-MATE +) O +, O +Thermoplastic B-MATE +polyurethane E-MATE +( O +TPU O +) O +, O +Chlorinated O +polyethylene B-MATE +elastomer E-MATE +( O +CPE O +) O +, O +Nylon S-MATE +, O +Acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +and O +Polycarbonate S-MATE +( O +PC S-MATE +) O +were O +exposed O +to O +gamma-ray O +doses O +of O +up O +to O +5.3 O +MGy O +. O + + +The O +suitability O +of O +FFF-formed O +components S-MACEQ +made O +from O +these O +materials S-CONPRI +for O +use O +in O +radiation S-MANP +environments O +is O +evaluated O +by O +considering O +their O +structural O +properties S-CONPRI +. O + + +We O +identify O +clear O +trends S-CONPRI +in O +the O +structural O +properties S-CONPRI +of O +all O +the O +materials S-CONPRI +tested O +and O +correlate O +them O +with O +changes O +in O +the O +chemical O +structure S-CONPRI +. O + + +We O +find O +that O +Nylon S-MATE +shows O +the O +best O +performance S-CONPRI +under O +these O +conditions O +, O +with O +no O +change O +in O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +an O +increase O +in O +stiffness S-PRO +. O + + +However O +, O +some O +of O +our O +findings O +suggest O +that O +the O +effect O +of O +additives S-MATE +to O +this O +type O +of O +filament S-MATE +may O +result O +in O +potentially O +undesirable O +adhesive S-MATE +properties O +. O + + +The O +organic O +polymer B-MATE +PLA E-MATE +was O +notably O +more O +radiation-sensitive O +than O +the O +other O +materials S-CONPRI +tested O +, O +showing O +50 O +% O +decrease O +in O +Young O +’ O +s S-MATE +Modulus O +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +at O +order O +of O +magnitude S-PARA +lower O +radiation S-MANP +dose O +. O + + +A O +mechanism S-CONPRI +is O +proposed O +whereby O +FFF-processed O +components S-MACEQ +would O +have O +substantially O +different O +radiation S-MANP +tolerances O +than O +bulk O +material S-MATE +. O + + +In O +this O +article O +, O +we O +report O +the O +synthesis O +of O +a O +series O +of O +multi-branched O +benzylidene O +( O +BI S-MATE +) O +ketone-based O +photo-initiators O +for O +two-photon B-ENAT +polymerisation E-ENAT +based O +3D S-CONPRI +printing/additive O +manufacturing S-MANP +. O + + +The O +successful O +fabrication S-MANP +of O +complex O +3D B-CONPRI +structures E-CONPRI +at O +high O +writing O +speeds O +( O +up O +to O +100 O +mm/s O +) O +indicated O +that O +the O +four-branched O +initiator O +4-BI O +could O +potentially O +increase O +the O +fabrication S-MANP +efficiency O +and O +hence O +become O +a O +promising O +initiator O +for O +two-photon B-ENAT +polymerisation E-ENAT +. O + + +A O +path B-CONPRI +planning I-CONPRI +methodology E-CONPRI +is O +proposed O +for O +FFF S-MANP +based O +on O +stress S-PRO +orientations S-CONPRI +. O + + +Specimens O +created O +with O +the O +stress-based O +path O +exhibit O +better O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Anisotropy S-PRO +of O +tool-paths O +leads O +to O +stress S-PRO +redistribution O +of O +stress S-PRO +components S-MACEQ +. O + + +Different O +tool-paths O +are O +broken O +with O +variable O +fracture S-CONPRI +processes O +and O +surfaces S-CONPRI +. O + + +Tool-path S-PARA +planning S-MANP +has O +a O +considerable O +impact S-CONPRI +on O +the O +quality S-CONPRI +of O +components S-MACEQ +printed O +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +This O +research S-CONPRI +proposes O +a O +path O +generation O +strategy O +based O +on O +the O +orientations S-CONPRI +of O +the O +maximum O +principal B-PRO +stresses E-PRO +. O + + +According O +to O +stress S-PRO +calculations O +from O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +( O +FEA O +) O +of O +the O +components S-MACEQ +, O +tool-paths O +, O +which O +are O +programmed O +as S-MATE +parallel O +to O +the O +maximum O +principal B-PRO +stress E-PRO +directions O +, O +are O +constructed O +with O +the O +depth-first O +search O +( O +DFS O +) O +method O +and O +a O +connection O +criterion O +. O + + +The O +Dijkstra O +algorithm S-CONPRI +is O +engaged O +to O +reduce O +the O +nozzle S-MACEQ +jump O +distance O +and O +shorten O +the O +production S-MANP +time O +. O + + +Stretching O +tests O +of O +different O +specimens O +printed O +with O +the O +developed O +path O +generation O +algorithms S-CONPRI +demonstrate O +that O +the O +model S-CONPRI +with O +the O +stress-based O +path O +has O +better O +mechanical S-APPL +performance O +. O + + +The O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +DIC S-CONPRI +) O +method O +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +( O +SEM S-CHAR +) O +are O +employed O +to O +observe O +the O +fracture S-CONPRI +processes O +and O +fracture S-CONPRI +surfaces O +, O +respectively O +. O + + +Corresponding O +results O +of O +DIC S-CONPRI +and O +SEM S-CHAR +reveal O +that O +different O +path O +filling O +forms O +exhibit O +variable O +failure S-CONPRI +patterns O +because O +of O +filament S-MATE +anisotropy S-PRO +. O + + +The O +filling O +fraction S-CONPRI +is O +calculated O +and O +indicates O +that O +the O +deposition B-CHAR +quality E-CHAR +of O +the O +advanced O +path O +is O +not O +compromised O +. O + + +This O +work O +provides O +a O +synthesis O +methodology S-CONPRI +for O +improving O +the O +mechanical S-APPL +performance O +of O +3D B-MANP +printing E-MANP +products O +. O + + +In O +the O +context O +of O +the O +large O +format O +additive B-MANP +manufacturing E-MANP +in O +ambient O +conditions O +, O +extrusion S-MANP +materials O +need O +to O +be S-MATE +thermally O +stable O +, O +thus O +short O +fiber-reinforced O +composites S-MATE +have O +been O +developed O +to O +tailor O +the O +thermal O +behavior O +. O + + +However O +, O +lack O +of O +public O +knowledge O +in O +material B-CONPRI +properties E-CONPRI +and O +dataset O +lead S-MATE +to O +improper O +processing O +; O +yielding O +degradation S-CONPRI +of O +materials S-CONPRI +during O +trial O +& O +error S-CONPRI +operations O +which O +not O +only O +increase O +cost O +but O +also O +reduce O +the O +quality S-CONPRI +of O +printed O +parts O +. O + + +This O +research S-CONPRI +investigated O +neat O +and O +composite B-MATE +ABS E-MATE +filled O +with O +short B-MATE +carbon I-MATE +fiber E-MATE +( O +ABS/CF O +) O +and O +glass B-MATE +fiber E-MATE +( O +ABS/GF O +) O +using O +thermophysical O +and O +thermomechanical S-CONPRI +characterization O +techniques O +to O +generate O +dataset O +and O +knowledge O +that O +can O +be S-MATE +used O +to O +process B-CONPRI +materials E-CONPRI +without O +degrading O +the O +properties S-CONPRI +as S-MATE +well O +as S-MATE +achieving O +the O +quality S-CONPRI +parts O +in O +future O +. O + + +Thermogravimetric B-CHAR +analysis E-CHAR +was O +performed O +to O +study O +the O +degradation S-CONPRI +behavior O +. O + + +Differential O +scanning S-CONPRI +calorimetry O +( O +DSC S-CHAR +) O +analyzed O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +( O +Tg S-CHAR +) O +and O +specific B-PRO +heat E-PRO +to O +understand O +the O +heat B-CONPRI +dissipation E-CONPRI +of O +neat O +and O +composite B-MATE +materials E-MATE +. O + + +While O +the O +Tg S-CHAR +measured O +in O +DSC S-CHAR +was O +not O +significantly O +different O +, O +the O +dynamic B-CONPRI +mechanical I-CONPRI +analysis E-CONPRI +showed O +that O +Tg S-CHAR +in O +ABS/CF O +was O +increased O +due O +to O +the O +impeded O +polymer S-MATE +chain O +mobility O +. O + + +The O +thermomechanical S-CONPRI +analysis O +described O +the O +deformation S-CONPRI +behavior O +before O +and O +after O +the O +transition S-CONPRI +temperature S-PARA +which O +suggested O +that O +ABS/CF O +has O +the O +highest O +thermal B-PRO +stability E-PRO +to O +retain O +the O +shape O +at O +elevated O +temperature S-PARA +followed O +by O +ABS/GF O +and O +neat O +ABS S-MATE +. O + + +The O +findings O +of O +this O +article O +can O +be S-MATE +used O +during O +the O +modeling S-ENAT +of O +pellet-fed O +large O +format O +AM S-MANP +and O +developing O +empirical S-CONPRI +process O +parameters S-CONPRI +. O + + +The O +use O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +rapidly O +expanding O +in O +many O +industries S-APPL +mostly O +because O +of O +the O +flexibility S-PRO +to O +manufacture S-CONPRI +complex B-CONPRI +geometries E-CONPRI +. O + + +Recently O +, O +a O +family O +of O +technologies S-CONPRI +that O +produce O +fiber S-MATE +reinforced O +components S-MACEQ +has O +been O +introduced O +, O +widening O +the O +options O +available O +to O +designers O +. O + + +AM S-MANP +fiber O +reinforced S-CONPRI +composites S-MATE +are O +characterized O +by O +the O +fact O +that O +process S-CONPRI +related O +parameters S-CONPRI +such O +as S-MATE +the O +amount O +of O +reinforcement S-PARA +fiber S-MATE +, O +or O +printing O +architecture S-APPL +, O +significantly O +affect O +the O +tensile B-PRO +properties E-PRO +of O +final O +parts O +. O + + +To O +find O +optimal B-FEAT +structures E-FEAT +using O +new O +AM B-MANP +technologies E-MANP +, O +guidelines O +for O +the O +design S-FEAT +of O +3D B-MANP +printed E-MANP +composite O +parts O +are O +needed O +. O + + +This O +paper O +presents O +an O +evaluation O +of O +the O +effects O +that O +different O +geometric O +parameters S-CONPRI +have O +on O +the O +tensile B-PRO +properties E-PRO +of O +3D B-MANP +printed E-MANP +composites O +manufactured S-CONPRI +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +out O +of O +continuous O +and O +chopped O +carbon B-MATE +fiber E-MATE +reinforcement O +. O + + +Parameters S-CONPRI +such O +as S-MATE +infill O +density S-PRO +and O +infill S-PARA +patterns O +of O +chopped O +composite B-MATE +material E-MATE +, O +as S-MATE +well O +as S-MATE +fiber O +volume B-PARA +fraction E-PARA +and O +printing O +architecture S-APPL +of O +continuous B-MATE +fiber I-MATE +reinforcement E-MATE +( O +CFR O +) O +composites S-MATE +are O +varied O +. O + + +The O +effect O +of O +the O +location O +of O +the O +initial O +deposit O +point O +of O +reinforcement S-PARA +fibers S-MATE +on O +the O +tensile B-PRO +properties E-PRO +of O +the O +test O +specimens O +is O +studied O +. O + + +Also O +, O +the O +effect O +that O +the O +fiber S-MATE +deposition S-CONPRI +pattern O +has O +on O +tensile S-PRO +performance S-CONPRI +is O +quantified O +. O + + +Considering O +the O +geometric O +parameters S-CONPRI +that O +were O +studied O +, O +a O +variation S-CONPRI +of O +the O +Rule B-CONPRI +of I-CONPRI +Mixtures E-CONPRI +( O +ROM O +) O +that O +provides O +a O +way O +to O +estimate O +the O +elastic B-PRO +modulus E-PRO +of O +a O +3D B-MANP +printed E-MANP +composite O +is O +proposed O +. O + + +Findings O +may O +be S-MATE +used O +by O +designers O +to O +define O +the O +best O +construction S-APPL +parameters O +for O +3D B-MANP +printed E-MANP +composite O +parts O +. O + + +The O +application O +space O +for O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +printing O +, O +such O +as S-MATE +fused O +filament S-MATE +fabrication S-MANP +( O +FFF S-MANP +) O +, O +has O +grown O +significantly O +through O +the O +use O +of O +high-performance O +composite B-MATE +materials E-MATE +. O + + +While O +the O +mechanical S-APPL +, O +thermal O +, O +optical S-CHAR +, O +and O +electrical B-CONPRI +properties E-CONPRI +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +polymer B-MATE +composites E-MATE +are O +being O +actively O +studied O +, O +the O +magnetic O +properties S-CONPRI +of O +AM B-MACEQ +parts E-MACEQ +have O +seen O +much O +less O +attention O +. O + + +Prior O +research S-CONPRI +has O +shown O +that O +the O +structural O +print S-MANP +settings O +for O +FFF S-MANP +influence O +the O +magnetic O +properties S-CONPRI +of O +the O +printed O +part O +( O +Bollig O +et O +al. O +, O +2017 O +) O +. O + + +However O +, O +the O +structural B-CONPRI +hierarchy E-CONPRI +present O +in O +the O +FFF S-MANP +process O +complicates O +a O +simple S-MANP +analysis O +of O +how O +these O +magnetic O +differences O +arise O +. O + + +Here O +, O +a O +magnetic O +filament S-MATE +consisting O +of O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +polymer S-MATE +and O +40 O +wt. O +% O +iron S-MATE +was O +used O +to O +print S-MANP +a O +variety O +of O +samples S-CONPRI +to O +investigate O +how O +the O +macroscopic S-CONPRI +sample O +shape O +and O +the O +mesoscopic O +infill S-PARA +orientation O +and O +infill B-PARA +percentage E-PARA +affects O +the O +magnetic O +properties S-CONPRI +. O + + +The O +array O +of O +samples S-CONPRI +systematically O +covered O +different O +aspect B-FEAT +ratios E-FEAT +( O +length O +: O +width O +) O +, O +edge O +contours S-FEAT +( O +rectangular O +vs. O +ellipsoidal O +) O +, O +two O +infill S-PARA +orientations O +( O +long O +axis O +alignment O +vs. O +short O +axis O +alignment O +) O +, O +and O +varying O +infill B-PARA +percentages E-PARA +. O + + +The O +key O +results O +show O +that O +the O +highest O +magnetic B-CHAR +susceptibility E-CHAR +was O +seen O +for O +magnetic B-CONPRI +fields E-CONPRI +applied O +parallel O +to O +the O +infill S-PARA +orientation O +. O + + +The O +macroscopic B-CONPRI +geometry E-CONPRI +increased O +the O +magnetic B-CHAR +susceptibility E-CHAR +parallel O +to O +the O +long O +axis O +of O +the O +sample S-CONPRI +. O + + +Lastly O +, O +certain O +factors O +, O +such O +as S-MATE +edge O +contours S-FEAT +and O +infill B-PARA +percentage E-PARA +, O +only O +affected O +the O +magnetic B-CHAR +susceptibility E-CHAR +when O +the O +magnetic B-CONPRI +field E-CONPRI +was O +applied O +transverse O +to O +the O +infill S-PARA +orientation O +, O +but O +had O +no O +effect O +when O +field O +was O +applied O +along O +the O +infill S-PARA +direction O +. O + + +Elucidating O +how O +the O +part O +shape O +, O +infill S-PARA +orientation O +, O +and O +infill B-PARA +percentage E-PARA +affects O +the O +magnetic O +properties S-CONPRI +of O +AM B-MACEQ +parts E-MACEQ +will O +help O +the O +community O +better O +understand O +how O +an O +FFF S-MANP +process O +can O +be S-MATE +utilized O +to O +make O +optimal O +magnetic O +components S-MACEQ +, O +such O +as S-MATE +transformer O +cores S-MACEQ +, O +electric O +motors O +, O +and O +electromagnetic O +interference O +shielding O +. O + + +The O +interface S-CONPRI +between O +layers O +has O +bulk-material O +strength S-PRO +. O + + +Filament-scale O +grooves O +reduce O +load-bearing S-FEAT +capacity S-CONPRI +at O +the O +interface S-CONPRI +. O + + +Toughness S-PRO +and O +strain-at-fracture O +are O +higher O +in O +the O +direction O +of O +extruded S-MANP +filaments O +. O + + +Aspect B-FEAT +ratio E-FEAT +has O +an O +important O +effect O +on O +load-bearing S-FEAT +capacity S-CONPRI +. O + + +Strain-localisation O +is O +a O +predominant O +cause O +of O +fracture S-CONPRI +, O +based O +on O +simulation S-ENAT +. O + + +This O +study O +demonstrates O +that O +the O +interface S-CONPRI +between O +layers O +in O +3D-printed S-MANP +polylactide O +has O +strength S-PRO +of O +the O +bulk O +filament S-MATE +. O + + +Specially O +designed S-FEAT +3D-printed S-MANP +tensile O +specimens O +were O +developed O +to O +test O +mechanical B-CONPRI +properties E-CONPRI +in O +the O +direction O +of O +the O +extruded S-MANP +filament O +( O +F S-MANP +specimens O +) O +, O +representing O +bulk O +material B-CONPRI +properties E-CONPRI +, O +and O +normal O +to O +the O +interface S-CONPRI +between O +3D-printed S-MANP +layers O +( O +Z O +specimens O +) O +. O + + +A O +wide O +range S-PARA +of O +cross-sectional O +aspect B-FEAT +ratios E-FEAT +for O +extruded-filament O +geometries S-CONPRI +were O +considered O +by O +printing O +with O +five O +different O +LHs O +and O +five O +different O +EFWs O +. O + + +Both O +F S-MANP +and O +Z O +specimens O +demonstrated O +bulk O +material B-PRO +strength E-PRO +. O + + +In O +contrast O +, O +strain-at-fracture O +, O +specific O +load-bearing S-FEAT +capacity S-CONPRI +, O +and O +toughness S-PRO +were O +found O +to O +be S-MATE +lower O +in O +Z O +specimens O +due O +to O +the O +presence O +of O +filament-scale O +geometric O +features O +( O +grooves O +between O +extruded S-MANP +filaments O +) O +. O + + +The O +different O +trends S-CONPRI +for O +strength S-PRO +as S-MATE +compared O +to O +other O +mechanical B-CONPRI +properties E-CONPRI +were O +evaluated O +with O +finite-element O +analysis O +. O + + +It O +was O +found O +that O +anisotropy S-PRO +was O +caused O +by O +the O +extruded-filament O +geometry S-CONPRI +and O +localised O +strain S-PRO +( O +as S-MATE +opposed O +to O +assumed O +incomplete O +bonding S-CONPRI +of O +the O +polymer S-MATE +across O +the O +interlayer O +interface S-CONPRI +) O +. O + + +Additionally O +, O +effects O +of O +variation S-CONPRI +in O +print S-MANP +speed O +and O +layer S-PARA +time O +were O +studied O +and O +found O +to O +have O +no O +influence O +on O +interlayer O +bond B-CONPRI +strength E-CONPRI +. O + + +The O +relevance O +of O +the O +results O +to O +other O +materials S-CONPRI +, O +toolpath S-PARA +design S-FEAT +, O +industrial S-APPL +applications O +, O +and O +future O +research S-CONPRI +is O +discussed O +. O + + +Multi-photon O +polymerization S-MANP +, O +like O +the O +so-called O +direct B-ENAT +laser I-ENAT +writing E-ENAT +( O +DLW O +) O +technique O +allows O +for O +flexible O +additive B-MANP +manufacturing E-MANP +of O +three-dimensional S-CONPRI +ultra-precise O +structures O +on O +the O +micro- S-CHAR +and O +nanoscale O +. O + + +A O +possible O +application O +for O +DLW O +is O +the O +manufacturing S-MANP +of O +measurement B-CONPRI +standards E-CONPRI +for O +calibration S-CONPRI +procedures O +of O +optical B-CHAR +measurement E-CHAR +instruments O +. O + + +This O +requires O +flexible O +and O +high O +precision S-CHAR +manufacturing S-MANP +of O +individualized O +geometries S-CONPRI +with O +high O +quality S-CONPRI +surfaces O +. O + + +However O +, O +many O +of O +the O +process B-CONPRI +parameters E-CONPRI +in O +DLW O +have O +to O +be S-MATE +selected O +based O +on O +experience O +and O +previous O +knowledge.In O +this O +article O +, O +the O +influence O +of O +DLW O +process B-CONPRI +parameters E-CONPRI +on O +the O +micro-geometry O +and O +surface B-PRO +roughness E-PRO +produced O +are O +systematically O +studied O +, O +and O +optimized O +in O +terms O +of O +printing B-PARA +speed E-PARA +and O +manufacturing S-MANP +accuracy S-CHAR +. O + + +Resulting O +microstructures S-MATE +are O +being O +evaluated O +with O +different O +measurement S-CHAR +techniques O +, O +i.e. O +, O +a O +stylus S-MACEQ +instrument O +, O +SEM S-CHAR +and O +AFM O +. O + + +Based O +on O +optimized O +process B-CONPRI +parameters E-CONPRI +, O +a O +new O +measurement B-CONPRI +standard E-CONPRI +for O +the O +novel O +interferometric O +measurement S-CHAR +instrument O +Ellipso-Height-Topometer O +is O +manufactured S-CONPRI +and O +examined O +as S-MATE +a O +case B-CONPRI +study E-CONPRI +. O + + +As S-MATE +a O +result O +, O +it O +can O +be S-MATE +shown O +, O +that O +DLW O +is O +able O +to O +manufacture S-CONPRI +ultra-precise O +micro O +geometries S-CONPRI +in O +a O +very O +flexible O +and O +very O +fast O +way O +and O +satisfies O +the O +tolerances S-PARA +for O +manufacturing S-MANP +of O +the O +designed S-FEAT +measurement O +standard S-CONPRI +. O + + +The O +spreading O +of O +molten O +polymer S-MATE +between O +the O +moving O +printing B-MACEQ +head E-MACEQ +and O +the O +substrate S-MATE +in O +extrusion S-MANP +additive B-MANP +manufacturing E-MANP +is O +studied O +. O + + +Finite B-CONPRI +element E-CONPRI +computation S-CONPRI +and O +an O +analytical O +model S-CONPRI +have O +been O +used O +. O + + +The O +hypotheses O +of O +the O +analytical O +model S-CONPRI +are O +qualitatively O +justified O +by O +the O +results O +of O +the O +numerical O +computation S-CONPRI +. O + + +The O +analytical O +calculation O +is O +a O +powerful O +tool S-MACEQ +to O +rapidly O +evaluate O +the O +relationships O +between O +processing O +parameters S-CONPRI +( O +extrusion B-PARA +rate E-PARA +, O +printing B-MACEQ +head E-MACEQ +velocity O +, O +gap O +between O +the O +printing B-MACEQ +head E-MACEQ +and O +the O +substrate S-MATE +) O +and O +some O +characteristics O +of O +the O +deposition S-CONPRI +( O +dimensions S-FEAT +of O +the O +deposited O +filament S-MATE +, O +pressure S-CONPRI +at O +the O +printing B-MACEQ +head E-MACEQ +nozzle S-MACEQ +, O +separating O +force S-CONPRI +between O +substrate S-MATE +and O +printing B-MACEQ +head E-MACEQ +) O +. O + + +An O +isothermal S-CONPRI +hypothesis O +is O +discussed O +. O + + +The O +viscous O +non-Newtonian O +behavior O +is O +accounted O +for O +through O +an O +approximate O +shear B-CONPRI +thinning E-CONPRI +power S-PARA +law O +model S-CONPRI +. O + + +A O +printing O +processing O +window O +is O +defined O +following O +several O +requirements O +: O +a O +continuous O +deposit O +, O +without O +spreading O +in O +front O +of O +the O +printing B-MACEQ +head E-MACEQ +, O +maximum O +and O +minimum O +spreading O +pressures S-CONPRI +, O +an O +upper-limit O +for O +the O +separating O +force S-CONPRI +between O +head O +and O +substrate S-MATE +. O + + +A O +heated O +build S-PARA +environment O +in O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +used O +to O +promote O +layer S-PARA +bonding S-CONPRI +in O +printed O +parts O +and O +reduce O +the O +difference O +in O +temperature S-PARA +between O +the O +extrusion S-MANP +and O +environment O +decreasing O +the O +shrinkage S-CONPRI +, O +residual B-PRO +stresses E-PRO +, O +and O +part O +deformation S-CONPRI +. O + + +A O +build S-PARA +environment O +capable O +of O +maintaining O +a O +high-temperature O +( O +> O +200 O +°C O +) O +is O +often O +required O +to O +enable O +high-quality O +FFF S-MANP +printing O +of O +high-glass-transition O +, O +high-performance O +polymers S-MATE +such O +as S-MATE +nylon O +, O +PPSF O +, O +and O +ULTEM O +. O + + +Industrial-scale O +AM S-MANP +systems O +are O +capable O +of O +printing O +such O +polymers S-MATE +, O +as S-MATE +they O +offer O +a O +controlled O +, O +high-temperature O +printing O +environment O +; O +however O +, O +the O +machine S-MACEQ +cost O +often O +exceeds O +> O +$ O +100,000 O +. O + + +Many O +of O +these O +printers S-MACEQ +use O +bed S-MACEQ +heating O +rather O +than O +controlled O +environment O +heating S-MANP +, O +which O +can O +lead S-MATE +to O +inhomogeneous O +heat B-CONPRI +transfer E-CONPRI +and O +inconsistent O +properties S-CONPRI +. O + + +The O +key O +barrier O +to O +offering O +high-temperature O +environments O +for O +desktop-scale O +FFF S-MANP +systems O +in O +a O +cost-effective O +manner O +is O +that O +the O +electrical S-APPL +components S-MACEQ +must O +be S-MATE +compatible O +with O +, O +protected O +from O +, O +or O +removed O +from O +environments O +exceeding O +100 O +°C.To O +enable O +desktop-scale O +FFF S-MANP +printing O +of O +high-performance O +polymers S-MATE +at O +a O +low O +cost O +and O +high O +quality S-CONPRI +, O +the O +authors O +present O +a O +novel O +inverted O +FFF S-MANP +system O +design S-FEAT +that O +provides O +a O +build S-PARA +environment O +of O +up O +to O +400 O +°C O +. O + + +The O +inverted O +configuration S-CONPRI +effectively O +isolates O +the O +system O +electronics S-CONPRI +from O +the O +heated O +build S-PARA +environment O +, O +which O +allows O +for O +the O +use O +of O +inexpensive O +components S-MACEQ +. O + + +In O +this O +paper O +, O +the O +authors O +verify O +the O +inverted O +design S-FEAT +concept O +analytically O +via O +a O +computational B-CHAR +fluid I-CHAR +dynamics E-CHAR +model O +. O + + +The O +concept O +is O +then O +experimentally B-CONPRI +validated E-CONPRI +via O +a O +comparison O +of O +the O +strength S-PRO +of O +PPSF O +components S-MACEQ +printed O +on O +the O +inverted O +desktop-scale O +FFF S-MANP +system O +. O + + +Additively B-MANP +manufactured E-MANP +parts O +made O +with O +polymer B-MANP +extrusion E-MANP +techniques O +can O +be S-MATE +50–75 O +% O +weaker O +in O +the O +z-direction S-FEAT +( O +across O +layers O +) O +than O +in O +the O +x- O +and O +y-directions O +. O + + +This O +is O +particularly O +a O +challenge O +when O +printing O +large-scale O +parts O +, O +such O +as S-MATE +with O +the O +Big O +Area S-PARA +Additive B-MANP +Manufacturing E-MANP +( O +BAAM O +) O +system O +, O +because O +layer S-PARA +times O +can O +exceed O +several O +minutes O +. O + + +The O +current O +work O +presents O +a O +method O +for O +controlling O +the O +temperature S-PARA +of O +the O +substrate B-MATE +material E-MATE +on O +the O +BAAM O +just O +prior O +to O +deposition S-CONPRI +using O +infrared S-CONPRI +heating S-MANP +lamps O +. O + + +Long O +layer S-PARA +times O +were O +also O +simulated O +by O +actively O +cooling S-MANP +the O +material S-MATE +following O +deposition S-CONPRI +of O +each O +layer S-PARA +. O + + +The O +effect O +of O +substrate S-MATE +temperature O +on O +the O +z-direction S-FEAT +mechanical B-CONPRI +properties E-CONPRI +of O +20 O +% O +carbon B-MATE +fiber E-MATE +reinforced O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +was O +measured O +for O +an O +initial O +temperature S-PARA +ranging O +from O +50 O +°C O +to O +150 O +°C O +and O +a O +preheated O +temperature S-PARA +ranging O +from O +150 O +°C O +to O +220 O +°C O +. O + + +Infrared S-CONPRI +preheating O +proved O +to O +be S-MATE +very O +effective O +when O +applied O +to O +substrates O +that O +had O +cooled O +considerably O +, O +almost O +doubling O +the O +tensile B-PRO +strength E-PRO +and O +increasing O +the O +fracture S-CONPRI +toughness O +by O +a O +factor O +of O +7x O +. O + + +Poly-l-lactic O +acid O +( O +PLLA O +) O +is O +a O +bioresorbable O +polymer S-MATE +used O +in O +a O +variety O +of O +biomedical B-APPL +applications E-APPL +. O + + +Many O +3D B-MACEQ +printers E-MACEQ +employ O +the O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +approach O +with O +the O +ubiquitous O +low-cost O +poly-lactic O +acid O +( O +PLA S-MATE +) O +fiber S-MATE +. O + + +However O +, O +use O +of O +the O +FFF S-MANP +approach O +to O +fabricate S-MANP +scaffolds O +with O +medical S-APPL +grade O +PLLA O +polymer S-MATE +remains O +largely O +unexplored O +. O + + +In O +this O +study O +, O +high O +molecular O +weight S-PARA +PL-32 O +pellets S-CONPRI +were O +extruded S-MANP +into O +∼1.7 O +mm S-MANP +diameter S-CONPRI +PLLA O +fiber S-MATE +. O + + +Melt S-CONPRI +rheometric O +data S-CONPRI +of O +the O +PLLA O +polymer S-MATE +was O +analyzed O +and O +demonstrated O +pseudo-plastic O +behavior O +with O +a O +flow O +index O +of O +n S-MATE += O +0.465 O +( O +< O +1 O +) O +. O + + +Differential O +scanning S-CONPRI +calorimetry O +( O +DSC S-CHAR +) O +was O +conducted O +using O +samples S-CONPRI +from O +the O +extruded S-MANP +fiber O +to O +obtain O +thermal B-CONPRI +properties E-CONPRI +. O + + +DSC S-CHAR +of O +the O +3D B-MANP +printed E-MANP +struts O +was O +also O +analyzed O +to O +assess O +changes O +in O +thermal B-CONPRI +properties E-CONPRI +due O +to O +FFF S-MANP +. O + + +The O +DSC S-CHAR +and O +rheometric O +analysis O +results O +were O +subsequently O +used O +to O +define O +appropriate O +FFF S-MANP +process O +parameters S-CONPRI +. O + + +Constant O +porosity S-PRO +scaffolds O +were O +FFF S-MANP +3D B-MANP +printed E-MANP +with O +4 O +distinct O +laydown O +patterns O +; O +0/90° O +rectilinear O +( O +control O +) O +, O +45/135° O +rectilinear O +, O +Archimedean O +chords O +, O +and O +honeycomb S-CONPRI +using O +the O +in-house O +developed O +custom O +multi-modality O +3D S-CONPRI +bioprinter O +( O +CMMB O +) O +. O + + +The O +effect O +of O +laydown O +pattern S-CONPRI +on O +scaffold S-FEAT +bulk O +erosion O +( O +weight S-PARA +loss O +) O +was O +studied O +by O +immersion O +in O +phosphate-buffered O +saline O +( O +PBS S-MATE +) O +over O +a O +6-month O +period O +and O +measured O +monthly O +. O + + +Cross-sectional O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +images S-CONPRI +of O +the O +6-month O +degraded O +scaffolds S-FEAT +showed O +noticeable O +structural O +deterioration O +. O + + +The O +study O +demonstrates O +successful O +processing O +of O +PLLA O +fiber S-MATE +from O +PL-32 O +pellets S-CONPRI +and O +FFF-based O +3D B-MANP +printing E-MANP +of O +bioresorbable O +scaffolds S-FEAT +with O +pre-defined O +laydown O +patterns O +using O +medical S-APPL +grade O +PLLA O +polymer S-MATE +which O +could O +prove O +beneficial O +in O +biomedical B-APPL +applications E-APPL +. O + + +Filament S-MATE +printed O +GO S-MATE +structures O +are O +mechanically O +stable O +by O +rapid O +freezing O +in O +liquid O +nitrogen S-MATE +and O +lyiophilization O +. O + + +Thermally O +reduced O +GO S-MATE +( O +rGO S-MATE +) O +structures O +are O +rapidly O +infiltrated O +with O +a O +preceramic O +polymer S-MATE +under O +vacuum O +conditions O +. O + + +The O +composite B-CONPRI +structure E-CONPRI +perfectly O +replicates O +the O +printed O +GO S-MATE +structure O +. O + + +The O +hybrid B-MATE +composite E-MATE +structure O +( O +rGO/SiCN O +) O +shows O +high O +strength S-PRO +and O +electrical B-PRO +conductivity E-PRO +. O + + +Steady O +graphene B-MATE +oxide E-MATE +( O +GO S-MATE +) O +scaffolds S-FEAT +created O +by O +direct O +ink S-MATE +writing O +are O +used O +to O +develop O +a O +silicon S-MATE +carbonitride O +( O +SiCN O +) O +-graphene O +oxide S-MATE +hybrid O +material S-MATE +through O +a O +preceramic O +polymer S-MATE +route O +. O + + +For O +achieving O +mechanically O +stable O +GO S-MATE +scaffolds O +, O +the O +drying S-MANP +method O +is O +critical O +as S-MATE +the O +ink S-MATE +contains O +about O +5 O +wt. O +% O +of O +GO S-MATE +, O +10 O +wt. O +% O +of O +polyelectrolytes O +and O +85 O +wt. O +% O +of O +water O +. O + + +The O +liquid O +preceramic O +polymer S-MATE +( O +polysilazane O +type O +) O +quickly O +infiltrates O +the O +3D S-CONPRI +scaffolds O +, O +under O +vacuum O +conditions O +, O +entirely O +covering O +the O +GO S-MATE +network O +creating O +a O +replica O +of O +the O +original O +scaffold S-FEAT +. O + + +The O +hybrid O +cellular B-FEAT +structure E-FEAT +-once O +thermally B-MANP +treated E-MANP +for O +GO S-MATE +reduction O +and O +ceramic S-MATE +conversion- O +consists O +of O +a O +network O +of O +reduced O +GO S-MATE +( O +∼10 O +wt. O +% O +) O +embedded O +in O +an O +amorphous O +SiCN O +matrix O +following O +the O +designed S-FEAT +architecture S-APPL +. O + + +The O +3D S-CONPRI +hybrid O +structures O +show O +notable O +electrical B-PRO +conductivity E-PRO +( O +890 O +S S-MATE +m−1 O +at O +room O +temperature S-PARA +) O +, O +thermal B-PRO +stability E-PRO +and O +considerable O +strength S-PRO +, O +about O +20 O +times O +higher O +than O +the O +single O +GO S-MATE +scaffold O +. O + + +Single-operation O +, O +hybrid-AM O +fabrication S-MANP +of O +form-factor O +free O +supercapacitors O +. O + + +As-printed O +gravimetric O +EDLC O +electrode S-MACEQ +capacitance O +of O +116.4 O +±0.6 O +F S-MANP +g−1 O +at O +10 O +mV O +s−1 O +. O + + +Detailed O +insight O +into O +FFF S-MANP +and O +DIW S-MANP +processing O +parameters S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +may O +offer O +a O +flexible O +, O +cost-effective O +approach O +to O +address O +conventional B-MANP +manufacturing E-MANP +limitations O +, O +such O +as S-MATE +time-consuming O +, O +high O +work-in-progress O +, O +multi-step O +assembly S-MANP +. O + + +In O +principle O +AM S-MANP +can O +also O +allow O +more O +novel O +geometric O +or O +even O +bespoke O +designs S-FEAT +of O +structural O +and O +functional O +products O +. O + + +However O +, O +in O +terms O +of O +energy B-APPL +storage E-APPL +devices O +such O +as S-MATE +batteries O +and O +supercapacitors O +, O +the O +benefits O +of O +AM S-MANP +have O +not O +yet O +been O +explored O +to O +any O +significant O +extent O +. O + + +In O +this O +paper O +, O +a O +hybrid-AM O +system O +, O +combining O +low-cost O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +and O +direct O +ink S-MATE +writing O +( O +DIW S-MANP +) O +techniques O +, O +has O +been O +designed S-FEAT +to O +fabricate S-MANP +supercapacitors O +( O +electro-chemical O +double O +layer S-PARA +capacitors S-APPL +, O +EDLCs O +) O +in O +a O +single O +, O +automated O +operation O +. O + + +The O +inherent O +flexibility S-PRO +of O +the O +AM B-MANP +process E-MANP +provided O +an O +opportunity O +to O +address O +restrictions O +in O +geometric O +form O +factor O +associated O +with O +conventional O +planar O +supercapacitor S-APPL +manufacturing B-MANP +approaches E-MANP +. O + + +Functioning O +, O +ring-shaped O +EDLC O +devices O +were O +manufactured S-CONPRI +in O +a O +single O +, O +multi-material S-CONPRI +operation O +comprising O +symmetric O +activated O +carbon S-MATE +electrodes O +in O +a O +1Μ O +potassium O +hydroxide S-MATE +( O +KOH O +) O +electrolyte S-APPL +hydrogel O +. O + + +The O +work O +aims O +to O +accelerate O +progress O +towards O +monolithic S-PRO +integration O +of O +energy B-APPL +storage E-APPL +devices O +in O +product O +manufacture S-CONPRI +, O +offering O +an O +alternative O +fabrication S-MANP +process O +for O +applications O +with O +irregular O +volume/shape O +and O +mass-customization O +requirements O +. O + + +A O +novel O +method O +to O +quantify O +the O +pore B-PARA +size E-PARA +distribution S-CONPRI +and O +porosity S-PRO +was O +proposed O +. O + + +New O +method O +exhibits O +high O +precision S-CHAR +, O +information O +and O +repeatability S-CONPRI +but O +low O +cost O +. O + + +Electron B-MANP +beam I-MANP +melting E-MANP +( O +EBM S-MANP +) O +is O +a O +representative O +powder-bed O +fusion S-CONPRI +additive B-MANP +manufacturing E-MANP +technology O +, O +which O +is O +suitable O +for O +producing O +near-net-shape S-MANP +metallic S-MATE +components S-MACEQ +with O +complex B-CONPRI +geometries E-CONPRI +and O +near-full O +densities O +. O + + +However O +, O +various O +types O +of O +pores S-PRO +are O +usually O +present O +in O +the O +additively B-MANP +manufactured E-MANP +components O +. O + + +These O +pores S-PRO +may O +affect O +mechanical B-CONPRI +properties E-CONPRI +, O +particularly O +the O +fatigue S-PRO +properties O +. O + + +Therefore O +, O +inspection S-CHAR +of O +size O +, O +quantity O +and O +distribution S-CONPRI +of O +pores S-PRO +is O +critical O +for O +the O +process B-CONPRI +control E-CONPRI +and O +assessment O +of O +additively B-MANP +manufactured E-MANP +components O +. O + + +Here O +, O +we O +propose O +a O +method O +to O +quantify O +the O +pore B-PARA +size E-PARA +distribution S-CONPRI +and O +porosity S-PRO +of O +additively B-MANP +manufactured E-MANP +components O +by O +utilizing O +scanning B-CHAR +optical I-CHAR +microscopy E-CHAR +. O + + +The O +advantages O +and O +limitations O +of O +the O +developed O +method O +are O +discussed O +based O +on O +the O +comparison O +study O +between O +Archimedes B-CHAR +method E-CHAR +, O +conventional O +optical B-CHAR +microscopy E-CHAR +and O +x-ray B-CHAR +computed I-CHAR +tomography E-CHAR +. O + + +This O +provides O +a O +new O +metrology S-CONPRI +for O +measurement S-CHAR +of O +not O +only O +pores S-PRO +but O +also O +micro-cracks S-CONPRI +, O +which O +are O +the O +common O +defects S-CONPRI +in O +additively B-MANP +manufactured E-MANP +components O +. O + + +Four-dimensional O +( O +4D S-CONPRI +) O +printing O +has O +great O +potential O +for O +fabricating S-MANP +patient-specific O +, O +stimuli-responsive O +3D B-CONPRI +structures E-CONPRI +for O +the O +medical S-APPL +sector O +. O + + +Porous S-PRO +Shape O +memory O +polymers S-MATE +have O +high O +volumetric O +expansion O +and O +enhanced O +biological O +activity O +, O +which O +make O +them O +as S-MATE +ideal O +candidates O +for O +implant S-APPL +materials O +through O +minimally O +invasive O +surgical O +procedures O +. O + + +In O +this O +paper O +, O +the O +porous S-PRO +SMPU O +was O +fabricated S-CONPRI +by O +combining O +extrusion S-MANP +, O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +and O +salt S-MATE +leaching S-MANP +. O + + +The O +filament S-MATE +for O +FFF S-MANP +was O +produced O +by O +extruding S-MANP +the O +mixture O +of O +SMPU O +, O +NaCl S-MATE +, O +and O +Tungsten S-MATE +at O +the O +desired O +composition S-CONPRI +. O + + +The O +3D B-MANP +printed E-MANP +and O +salt S-MATE +leached O +porous S-PRO +SMPU O +was O +observed O +to O +have O +the O +porosity S-PRO +in O +the O +range S-PARA +of O +32.7–36 O +% O +and O +pore B-PARA +sizes E-PARA +of O +< O +250 O +μm O +with O +anthe O +interconnected O +network O +. O + + +The O +feasibility S-CONPRI +of O +combining O +fused B-MANP +filament I-MANP +fabrication E-MANP +and O +salt S-MATE +leaching S-MANP +technique O +was O +established O +for O +fabricating S-MANP +the O +radiopaque O +porous S-PRO +SMPU O +having O +the O +required O +characteristics O +for O +embolization O +, O +which O +can O +be S-MATE +explored O +by O +the O +Interventional O +Radiologist O +. O + + +Limitations O +for O +the O +current O +clinical O +treatment O +strategies O +for O +breast O +reconstruction S-CONPRI +have O +prompted O +researchers O +and O +bioengineers O +to O +develop O +unique O +techniques O +based O +on O +tissue B-CONPRI +engineering E-CONPRI +and O +regenerative O +medicine S-CONPRI +( O +TE S-MATE +& O +RM O +) O +principles O +. O + + +Recently O +, O +scaffold-guided O +soft O +TE S-MATE +has O +emerged O +as S-MATE +a O +promising O +approach O +due O +to O +its O +potential O +to O +modulate O +the O +process S-CONPRI +of O +tissue O +regeneration S-CONPRI +. O + + +Herein O +, O +we O +utilized O +additive S-MATE +biomanufacturing O +( O +ABM O +) O +to O +develop O +an O +original O +design-based O +concept O +for O +scaffolds S-FEAT +which O +can O +be S-MATE +applied O +in O +TE-based O +breast O +reconstruction S-CONPRI +procedures O +. O + + +The O +scaffold S-FEAT +design S-FEAT +addresses O +biomechanical S-APPL +and O +biological O +requirements O +for O +medium O +to O +large-volume O +regeneration S-CONPRI +with O +the O +potential O +of O +customization O +. O + + +The O +model S-CONPRI +is O +composed O +of O +two O +independent O +structural B-CONPRI +components E-CONPRI +. O + + +The O +external O +structure S-CONPRI +provides O +biomechanical S-APPL +stability O +to O +minimize O +load O +transduction O +to O +the O +newly O +formed O +tissue O +while O +the O +internal B-PRO +structure E-PRO +provides O +a O +large O +pore S-PRO +and O +fully O +interconnected O +pore S-PRO +architecture S-APPL +to O +facilitate O +tissue O +regeneration S-CONPRI +. O + + +A O +methodology S-CONPRI +was O +established O +to O +design S-FEAT +, O +optimize O +and O +3D B-MANP +print E-MANP +the O +external O +structure S-CONPRI +with O +customized O +biomechanical B-PRO +properties E-PRO +. O + + +The O +internal B-PRO +structure E-PRO +was O +also O +designed S-FEAT +and O +printed O +with O +a O +gradient O +of O +pore B-PARA +size E-PARA +and O +a O +channel S-APPL +structure O +to O +facilitate O +lipoaspirated O +fat O +delivery O +and O +entrapment O +. O + + +A O +fused S-CONPRI +filament S-MATE +fabrication-based O +printing O +strategy O +was O +employed O +to O +print S-MANP +two O +structures O +as S-MATE +a O +monolithic S-PRO +breast O +implant S-APPL +. O + + +Numerical B-ENAT +simulations E-ENAT +of O +material S-MATE +deposition S-CONPRI +at O +corners O +in O +material B-MANP +extrusion I-MANP +AM E-MANP +. O + + +Toolpath S-PARA +smoothing O +and O +over-extrusion O +affect O +the O +corner O +rounding O +and O +swelling S-CONPRI +. O + + +An O +optimal O +amount O +of O +toolpath S-PARA +smoothing O +improves O +the O +quality S-CONPRI +of O +the O +corner O +. O + + +A O +uniform O +track O +width O +is O +obtained O +with O +a O +proportional O +extrusion B-PARA +rate E-PARA +. O + + +The O +material S-MATE +deposition S-CONPRI +along O +a O +toolpath S-PARA +with O +a O +sharp O +corner O +is O +simulated O +with O +a O +computational B-CHAR +fluid I-CHAR +dynamics E-CHAR +model O +. O + + +We O +investigate O +the O +effects O +of O +smoothing O +the O +toolpath S-PARA +and O +material S-MATE +over-extrusion O +on O +the O +corner O +rounding O +and O +the O +corner O +swelling S-CONPRI +, O +for O +90° O +and O +30° O +turns O +. O + + +The O +toolpath S-PARA +motion O +is O +controlled O +with O +trapezoidal O +velocity O +profiles S-FEAT +constrained O +by O +a O +maximal O +acceleration O +. O + + +The O +toolpath S-PARA +smoothing O +of O +the O +corner O +is O +parametrized O +by O +a O +blending S-MANP +acceleration O +factor O +. O + + +Analytical B-CONPRI +solutions E-CONPRI +for O +the O +deviation O +of O +the O +smoothed O +toolpath S-PARA +from O +the O +trajectory O +of O +the O +sharp O +corner O +, O +as S-MATE +well O +as S-MATE +the O +additional O +printing O +time O +required O +by O +the O +deceleration O +and O +acceleration O +phases O +in O +the O +vicinity O +of O +the O +turn O +are O +provided O +. O + + +Moreover O +, O +several O +scenarios O +with O +different O +blending S-MANP +acceleration O +factors O +are O +simulated O +, O +for O +the O +cases O +of O +a O +constant O +extrusion B-PARA +rate E-PARA +and O +an O +extrusion B-PARA +rate E-PARA +proportional O +to O +the O +printing B-MACEQ +head E-MACEQ +speed O +. O + + +The O +constant O +extrusion B-PARA +rate E-PARA +causes O +material S-MATE +over-extrusion O +during O +the O +deceleration O +and O +acceleration O +phases O +of O +the O +printing B-MACEQ +head E-MACEQ +. O + + +However O +, O +the O +toolpath S-PARA +smoothing O +reduces O +the O +corner O +swelling S-CONPRI +. O + + +A O +uniform O +road O +width O +is O +obtained O +with O +the O +proportional O +extrusion B-PARA +rate E-PARA +. O + + +Proper O +support S-APPL +geometry S-CONPRI +design S-FEAT +is O +critical O +for O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +techniques O +to O +be S-MATE +successful O +, O +particularly O +for O +material S-MATE +deposition S-CONPRI +AM B-MANP +techniques E-MANP +, O +such O +as S-MATE +fused O +deposition B-CONPRI +modeling E-CONPRI +( O +FDM S-MANP +) O +. O + + +Many O +methods O +have O +been O +proposed O +for O +support S-APPL +geometry S-CONPRI +generation O +, O +mostly O +geared O +toward O +FDM S-MANP +and O +most O +often O +with O +the O +objective O +of O +minimizing O +support-material O +use O +and O +part-construction O +time O +. O + + +Here O +, O +two O +new O +support S-APPL +geometry B-CONPRI +algorithms E-CONPRI +are O +proposed O +, O +which O +are O +particularly O +suitable O +for O +weak O +support B-MATE +materials E-MATE +: O +the O +shell S-MACEQ +technique O +, O +whereby O +the O +primary O +support B-MATE +material E-MATE +would O +collapse O +under O +its O +own O +weight S-PARA +and O +thus O +a O +second O +support B-MATE +material E-MATE +is O +used O +to O +create O +a O +containment O +shell S-MACEQ +; O +the O +film O +technique O +, O +whereby O +a O +second O +support B-MATE +material E-MATE +is O +deposited O +as S-MATE +a O +thin O +film O +between O +the O +part O +and O +the O +primary O +support B-MATE +material E-MATE +. O + + +The O +proposed O +techniques O +also O +facilitate O +support B-MATE +material E-MATE +removal O +, O +a O +laborious O +manual O +step S-CONPRI +for O +many O +AM B-MANP +processes E-MANP +. O + + +Both O +techniques O +are O +demonstrated O +through O +the O +construction S-APPL +of O +parts O +using O +an O +experimental S-CONPRI +large-scale O +3D S-CONPRI +foam O +printer S-MACEQ +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +promising O +approach O +for O +fabricating S-MANP +structures O +to O +serve O +as S-MATE +bone O +substitutes O +, O +or O +as S-MATE +biomaterial O +components S-MACEQ +in O +biphasic O +implants S-APPL +for O +repair O +of O +osteochondral O +defects S-CONPRI +. O + + +In O +this O +study O +, O +the O +three B-MANP +dimensional I-MANP +printing E-MANP +( O +3DP S-MANP +) O +AM B-MANP +process E-MANP +was O +investigated O +to O +determine O +the O +effect O +of O +powder S-MATE +layer S-PARA +orientation O +on O +mechanical S-APPL +and O +structural O +properties S-CONPRI +of O +fabricated S-CONPRI +parts O +. O + + +Five O +types O +of O +standard S-CONPRI +cylindrical S-CONPRI +parts O +were O +manufactured S-CONPRI +via O +AM S-MANP +with O +0° O +, O +30° O +, O +45° O +, O +60° O +and O +90° O +stacking O +layer S-PARA +orientations O +relative O +to O +the O +vertical S-CONPRI +z-axis O +of O +the O +print S-MANP +bed S-MACEQ +, O +using O +amorphous O +calcium S-MATE +polyphosphate O +( O +CPP O +) O +powder S-MATE +of O +irregular O +particle S-CONPRI +shape O +, O +average B-FEAT +aspect I-FEAT +ratio E-FEAT +≈1.70 O +and O +particle S-CONPRI +size O +between O +75 O +and O +150 O +μm O +. O + + +It O +was O +concluded O +that O +layer S-PARA +orientation O +had O +an O +effect O +on O +porosity S-PRO +and O +compressive B-PRO +strength E-PRO +, O +based O +on O +induced O +powder B-MATE +particle E-MATE +orientation S-CONPRI +in O +the O +green B-PRO +part E-PRO +during O +powder S-MATE +layering O +. O + + +The O +resulting O +bulk B-PRO +porosity E-PRO +values O +ranged O +between O +30.0 O +± O +2.4 O +% O +and O +38.2 O +± O +2.7 O +% O +, O +while O +the O +compressive B-PRO +strength E-PRO +ranged O +between O +13.50 O +± O +1.95 O +MPa S-CONPRI +and O +45.13 O +± O +6.82 O +MPa S-CONPRI +. O + + +The O +orientation S-CONPRI +with O +the O +highest O +compressive B-PRO +strength E-PRO +was O +90° O +, O +while O +orientations S-CONPRI +with O +the O +weakest O +compressive B-PRO +strength E-PRO +were O +0° O +and O +45° O +. O + + +The O +stacking O +layer S-PARA +orientation O +which O +results O +in O +the O +highest O +strength S-PRO +performance S-CONPRI +along O +a O +preferred O +loading O +orientation S-CONPRI +can O +be S-MATE +implemented O +to O +further O +optimize O +mechanical B-PRO +strength E-PRO +of O +constructs O +along O +the O +maximum O +loading O +direction O +. O + + +Recent O +efforts O +in O +the O +bone S-BIOP +and O +tissue B-CONPRI +engineering E-CONPRI +field O +have O +been O +made O +to O +create O +resorbable O +bone B-BIOP +scaffolds E-BIOP +that O +mimic S-MACEQ +the O +structure S-CONPRI +and O +function O +of O +natural O +bone S-BIOP +. O + + +While O +enhancing O +mechanical B-PRO +strength E-PRO +through O +increased O +ceramics S-MATE +loading O +has O +been O +shown O +for O +sintered S-MANP +parts O +, O +few O +studies O +have O +reported O +that O +the O +crosslinked O +polymer S-MATE +provides O +strength S-PRO +for O +the O +composite S-MATE +parts O +without O +post B-CONPRI +processing E-CONPRI +. O + + +The O +objective O +of O +this O +study O +is O +to O +assess O +the O +effect O +of O +amylose O +content O +on O +the O +mechanical S-APPL +and O +physical B-PRO +properties E-PRO +of O +starch-hydroxyapatite O +( O +HA O +) O +composite S-MATE +scaffolds O +for O +bone S-BIOP +and O +tissue B-CONPRI +engineering E-CONPRI +applications O +. O + + +Starch-HA O +composite S-MATE +scaffolds O +utilizing O +corn O +, O +potato O +, O +and O +cassava O +sources O +of O +gelatinized O +starch S-BIOP +were O +fabricated S-CONPRI +through O +the O +utilization O +of O +a O +self-designed O +and O +built O +solid O +freeform S-CONPRI +fabricator O +( O +SFF O +) O +. O + + +It O +was O +hypothesized O +that O +the O +mechanical B-PRO +strength E-PRO +of O +the O +starch-HA O +scaffolds S-FEAT +would O +increase O +with O +increasing O +amylose O +content O +based O +on O +the O +botanical O +source S-APPL +and O +weight S-PARA +percentage O +added O +. O + + +Overall O +, O +compressive B-PRO +strengths E-PRO +of O +scaffolds S-FEAT +were O +achieved O +up O +to O +12.49 O +± O +0.22 O +MPa S-CONPRI +, O +through O +the O +implementation O +of O +5.46 O +wt O +% O +corn O +starch S-BIOP +with O +a O +total O +amylose O +content O +of O +1.37 O +% O +. O + + +The O +authors O +propose O +a O +reinforcement S-PARA +mechanism S-CONPRI +through O +a O +matrix O +of O +gelled O +starch S-BIOP +particles S-CONPRI +and O +interlocking O +of O +hydroxyl-rich O +amylose O +with O +hydroxyapatite S-MATE +through O +hydrogen B-CONPRI +bonding E-CONPRI +. O + + +XRD S-CHAR +, O +FTIR S-CHAR +, O +and O +FESEM S-CHAR +were O +utilized O +to O +further O +characterize O +these O +scaffold S-FEAT +structures O +, O +ultimately O +elucidating O +amylose O +as S-MATE +a O +biologically O +relevant O +reinforcement S-PARA +phase S-CONPRI +of O +resorbable O +bone B-BIOP +scaffolds E-BIOP +. O + + +Significant O +efforts O +have O +been O +made O +to O +treat O +bone S-BIOP +disorders O +through O +the O +development O +of O +composite S-MATE +scaffolds O +utilizing O +calcium B-MATE +phosphate E-MATE +( O +CaP O +) O +using O +additive B-MANP +manufacturing E-MANP +techniques O +. O + + +However O +, O +the O +incorporation O +of O +natural O +polymers S-MATE +with O +CaP O +during O +3D B-MANP +printing E-MANP +is O +difficult O +and O +remains O +a O +formidable O +challenge O +in O +bone S-BIOP +and O +tissue B-CONPRI +engineering E-CONPRI +applications O +. O + + +The O +objective O +of O +this O +study O +is O +to O +understand O +the O +use O +of O +a O +natural O +polymer B-MATE +binder E-MATE +system O +in O +ceramic B-FEAT +composite E-FEAT +scaffolds O +using O +a O +ceramic S-MATE +slurry-based O +solid O +freeform S-CONPRI +fabricator O +( O +SFF O +) O +. O + + +This O +was O +achieved O +through O +the O +utilization O +of O +naturally O +sourced O +gelatinized O +starch S-BIOP +with O +hydroxyapatite S-MATE +( O +HA O +) O +ceramic S-MATE +in O +order O +to O +obtain O +high O +mechanical B-PRO +strength E-PRO +and O +enhanced O +biological O +properties S-CONPRI +of O +the O +green B-PRO +part E-PRO +without O +the O +need O +for O +cross-linking S-CONPRI +or O +post B-CONPRI +processing E-CONPRI +. O + + +The O +parametric O +effects O +of O +solids O +loading O +, O +polycaprolactone O +( O +PCL S-MATE +) O +polymer S-MATE +addition O +, O +and O +designed S-FEAT +porosity O +on O +starch-HA O +composite S-MATE +scaffolds O +were O +measured O +via O +mechanical B-PRO +strength E-PRO +, O +microstructure S-CONPRI +, O +and O +in O +vitro O +biocompatibility S-PRO +utilizing O +human O +osteoblast B-BIOP +cells E-BIOP +. O + + +It O +was O +hypothesized O +that O +starch S-BIOP +incorporation O +would O +improve O +the O +mechanical B-PRO +strength E-PRO +of O +the O +scaffolds S-FEAT +and O +increase O +proliferation O +of O +osteoblast B-BIOP +cells E-BIOP +in O +vitro O +. O + + +Starch S-BIOP +loading O +was O +shown O +to O +improve O +mechanical B-PRO +strength E-PRO +from O +4.07 O +± O +0.66 O +MPa S-CONPRI +to O +10.35 O +± O +1.10 O +MPa S-CONPRI +, O +more O +closely O +resembling O +the O +mechanical B-PRO +strength E-PRO +of O +cancellous B-BIOP +bone E-BIOP +. O + + +Based O +on O +these O +results O +, O +a O +reinforcing O +mechanism S-CONPRI +of O +gelatinized O +starch S-BIOP +based O +on O +interparticle O +and O +apatite S-MATE +crystal O +interlocking O +is O +proposed O +. O + + +Morphological B-CHAR +characterization E-CHAR +utilizing O +FESEM S-CHAR +and O +MTT O +cell B-CHAR +viability E-CHAR +assay O +showed O +enhanced O +osteoblast B-BIOP +cell E-BIOP +proliferation O +in O +the O +presence O +of O +starch S-BIOP +and O +PCL S-MATE +. O + + +Overall O +, O +the O +utilization O +of O +starch S-BIOP +as S-MATE +a O +natural O +binder S-MATE +system O +in O +SFF O +scaffolds S-FEAT +was O +found O +to O +improve O +both O +compressive B-PRO +strength E-PRO +and O +in O +vitro O +biocompatibility S-PRO +. O + + +a O +) O +Ceramic S-MATE +slurry O +preparation O +of O +starch S-BIOP +and O +hydroxyapaitite O +( O +HA O +) O +utilized O +for O +fabrication S-MANP +of O +bone B-BIOP +scaffolds E-BIOP +without O +the O +need O +for O +post B-CONPRI +processing E-CONPRI +. O + + +b S-MATE +) O +Schematic O +of O +Solid O +Freeform S-CONPRI +Fabricator O +. O + + +c S-MATE +) O +Representation O +of O +scaffold B-CONPRI +model E-CONPRI +utilizing O +solid O +works O +file S-MANS +and O +CURA O +program O +and O +final O +scaffold S-FEAT +prints O +d O +) O +in O +vitro O +cell S-APPL +work O +regarding O +the O +proliferation O +of O +osteoblast B-BIOP +cells E-BIOP +utilizing O +starch S-BIOP +based O +composite S-MATE +HA O +scaffolds S-FEAT +, O +ultimately O +acquiring O +sufficient O +mechanical B-PRO +integrity E-PRO +and O +enhanced O +biactivity O +to O +be S-MATE +utilized O +in O +bone S-BIOP +repair.Download O +: O +Download O +high-res B-CONPRI +image E-CONPRI +( O +217 O +Bonding S-CONPRI +in O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +remains O +a O +key O +challenge O +in O +improving O +part O +properties S-CONPRI +. O + + +For O +thermally O +driven O +AM S-MANP +methods O +, O +such O +as S-MATE +material O +extrusion B-MANP +AM E-MANP +( O +MatEx O +) O +, O +temperature S-PARA +governs O +bonding S-CONPRI +. O + + +Experimental S-CONPRI +measurements O +of O +temperature S-PARA +are O +limited O +in O +their O +ability O +to O +probe S-MACEQ +many O +points O +in O +space O +and O +time O +during O +a O +process S-CONPRI +without O +disturbing O +the O +temperature S-PARA +profiles S-FEAT +being O +measured O +. O + + +These O +limitations O +may O +be S-MATE +overcome O +with O +computational B-ENAT +methods E-ENAT +; O +however O +, O +computing O +power S-PARA +considerations O +confined O +simulations S-ENAT +to O +one O +or O +two O +dimensions S-FEAT +until O +recently O +. O + + +Additionally O +, O +most O +existing O +models O +have O +had O +only O +limited O +ability O +to O +modify O +geometry S-CONPRI +or O +process B-CONPRI +parameters E-CONPRI +. O + + +In O +this O +work O +, O +an O +adaptable O +FEA O +model S-CONPRI +capable O +of O +simulating O +heat B-CONPRI +transfer E-CONPRI +in O +3D S-CONPRI +and O +at O +sufficiently O +small O +time B-FEAT +scales E-FEAT +to O +capture O +the O +rapid O +cooling S-MANP +in O +AM S-MANP +is O +presented O +. O + + +Cooling S-MANP +trends O +from O +simulation S-ENAT +are O +shown O +to O +be S-MATE +in O +agreement O +with O +experimental B-CONPRI +data E-CONPRI +. O + + +Temperature S-PARA +profiles S-FEAT +are O +collapsed O +to O +equivalent O +time O +at O +a O +reference O +temperature S-PARA +and O +predict O +little O +variation S-CONPRI +in O +bonding S-CONPRI +along O +the O +z-axis S-CONPRI +of O +a O +part O +or O +with O +changes O +in O +print S-MANP +speed O +. O + + +A O +previously O +unreported O +peak O +in O +cooling B-PARA +rates E-PARA +for O +print S-MANP +speeds O +between O +10 O +and O +30 O +mm/s O +is O +shown O +. O + + +Uniformity O +in O +equivalent O +time O +at O +Tg S-CHAR +suggests O +weld B-PRO +strength E-PRO +will O +not O +vary O +with O +print S-MANP +speed O +; O +however O +, O +high O +cooling B-PARA +rates E-PARA +for O +common O +print S-MANP +speeds O +may O +lead S-MATE +to O +greater O +residual B-PRO +stresses E-PRO +and O +reduced O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Demonstrates O +PBF S-MANP +printing O +of O +high-performance O +polymer S-MATE +, O +PPS O +, O +on O +standard S-CONPRI +printer S-MACEQ +. O + + +Evaluates O +the O +universality O +of O +print S-MANP +parameter S-CONPRI +selection O +methods O +for O +non-polyamides O +. O + + +XY O +plane O +printed O +dogbones O +show O +failure S-CONPRI +at O +61.8 O +± O +4.0 O +MPa S-CONPRI +and O +3.27 O +± O +0.22 O +% O +. O + + +In O +this O +paper O +, O +the O +authors O +present O +evidence O +of O +printing O +poly O +( O +phenylene O +sulfide O +) O +( O +PPS O +) O +, O +a O +high-performance O +polymer S-MATE +, O +via O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +using O +a O +bed S-MACEQ +temperature O +of O +230 O +°C O +, O +which O +is O +significantly O +below O +both O +its O +observed O +melting B-PARA +temperature E-PARA +( O +Tm O +˜ O +285 O +°C O +) O +and O +its O +observed O +onset O +temperature S-PARA +of O +crystallization S-CONPRI +( O +Tc O +˜ O +255 O +°C O +) O +. O + + +This O +contradicts O +existing O +material S-MATE +screening O +guidelines O +for O +PBF S-MANP +, O +which O +suggest O +maintaining O +bed S-MACEQ +temperature O +above O +the O +observed O +onset O +of O +crystallization S-CONPRI +. O + + +Existing O +methods O +for O +theoretically O +determining O +processing O +bounds O +were O +used O +to O +predict O +a O +range S-PARA +of O +energy B-PARA +densities E-PARA +at O +which O +PPS O +can O +be S-MATE +printed O +. O + + +One O +combination O +of O +process B-CONPRI +parameter E-CONPRI +values O +was O +selected O +based O +on O +machine S-MACEQ +constraints O +imposed O +by O +typical O +PBF B-MACEQ +machines E-MACEQ +not O +designed S-FEAT +to O +print S-MANP +high-temperature O +polymers S-MATE +and O +used O +to O +fabricate S-MANP +multilayer O +, O +complex O +parts O +. O + + +The O +presented O +process B-CONPRI +parameters E-CONPRI +result O +in O +final O +part O +density S-PRO +upwards O +of O +1.18 O +g/cm3 O +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +elongation S-PRO +of O +62 O +MPa S-CONPRI +and O +3.3 O +% O +, O +respectively O +. O + + +Hypotheses O +on O +the O +generalizability O +of O +low-temperature O +PBF S-MANP +printing O +of O +high-performance O +polymers S-MATE +, O +and O +steps O +towards O +updating O +materials S-CONPRI +and O +process B-CONPRI +parameter E-CONPRI +selection O +guidelines O +for O +PBF S-MANP +, O +are O +also O +presented O +. O + + +We O +demonstrate O +a O +novel O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +nozzle S-MACEQ +design S-FEAT +to O +enable O +measurements O +of O +in-situ S-CONPRI +conditions O +inside O +FFF S-MANP +nozzles O +, O +which O +is O +critical O +to O +ensuring O +that O +the O +polymer B-MATE +extrudate E-MATE +is O +flowing O +at O +appropriate O +temperature S-PARA +and O +flow B-PARA +rate E-PARA +during O +the O +part O +build S-PARA +process O +. O + + +Testing S-CHAR +was O +performed O +with O +ABS S-MATE +filament O +using O +a O +modified O +Monoprice O +Maker O +Select O +3D B-MACEQ +printer E-MACEQ +. O + + +In-situ S-CONPRI +measurements O +using O +the O +printer S-MACEQ +’ O +s S-MATE +default O +temperature S-PARA +control O +settings O +showed O +an O +11 O +°C O +decrease O +in O +temperature S-PARA +and O +significant O +fluctuation O +in O +pressure S-CONPRI +during O +printing O +as S-MATE +well O +as S-MATE +fluctuations O +while O +idle O +of O +± O +2 O +°C O +and O +±14 O +kPa O +. O + + +These O +deviations O +were O +eliminated O +at O +lower O +flow B-PARA +rates E-PARA +with O +a O +properly O +calibrated S-CONPRI +proportional–integral–derivative O +( O +PID O +) O +system O +. O + + +At O +the O +highest O +tested O +flow B-PARA +rates E-PARA +, O +decreases O +in O +melt S-CONPRI +temperature O +as S-MATE +high O +as S-MATE +6.5 O +°C O +were O +observed O +, O +even O +with O +a O +properly O +calibrated S-CONPRI +PID O +, O +providing O +critical O +insight O +into O +the O +significance O +of O +flow B-PARA +rate E-PARA +and O +PID O +calibration S-CONPRI +on O +actual O +polymer B-MATE +melt E-MATE +temperature O +inside O +the O +FFF S-MANP +nozzle O +. O + + +Pressure S-CONPRI +readings O +ranging O +from O +140 O +to O +6900 O +kPa O +were O +measured O +over O +a O +range S-PARA +of O +filament S-MATE +feed S-PARA +rates O +and O +corresponding O +extrusion S-MANP +flow O +rates O +. O + + +In-situ S-CONPRI +pressure O +measurements O +were O +higher O +than O +theoretical B-CONPRI +predictions E-CONPRI +using O +a O +power-law O +fluid S-MATE +model O +, O +suggesting O +that O +the O +assumptions O +used O +for O +theoretical S-CONPRI +calculations O +may O +not O +be S-MATE +completely O +capturing O +the O +dynamics O +in O +the O +FFF S-MANP +liquefier O +. O + + +Our O +nozzle S-MACEQ +prototype O +succeeded O +in O +measuring O +the O +internal O +conditions O +of O +FFF S-MANP +nozzles O +, O +thereby O +providing O +a O +number O +of O +important O +insights O +into O +the O +printing B-MANP +process E-MANP +which O +are O +vital O +for O +monitoring O +and O +improving O +FFF S-MANP +printed O +parts O +. O + + +Increasing O +void S-CONPRI +size O +in O +printed O +objects O +through O +FFF S-MANP +negatively O +affects O +strength S-PRO +Novel O +method O +of O +FFF S-MANP +proposed O +to O +reduce O +the O +void S-CONPRI +size O +Novel O +method O +reduces O +cross-sectional O +void S-CONPRI +surface B-PARA +area E-PARA +by O +18.0 O +% O +Novel O +method O +improves O +density S-PRO +by O +6.5 O +% O +per O +mm S-MANP +increase O +in O +nozzle S-MACEQ +size O +Novel O +method O +improves O +max O +. O + + +shear B-PRO +stress E-PRO +by O +7.2 O +% O +per O +mm S-MANP +increase O +in O +nozzle S-MACEQ +size O +Additive B-MANP +manufacturing E-MANP +techniques O +, O +such O +as S-MATE +Fused O +Filament S-MATE +Fabrication S-MANP +( O +FFF S-MANP +) O +, O +are O +rapidly O +revolutionising O +the O +manufacturing S-MANP +and O +mining O +sectors O +. O + + +Firstly O +, O +an O +alternative O +method O +of O +filament S-MATE +positioning O +in O +material B-MANP +extrusion E-MANP +is O +proposed O +, O +referred O +to O +as S-MATE +the O +‘ O +offset S-CONPRI +method O +’ O +, O +which O +aims O +to O +reduce O +the O +volume S-CONPRI +of O +empty O +cavities O +between O +deposited O +material S-MATE +. O + + +Then O +the O +shear B-PRO +properties E-PRO +, O +density S-PRO +properties O +, O +and O +cross-sectional O +void S-CONPRI +surface B-PARA +area E-PARA +are O +compared O +to O +structures O +printed O +using O +the O +aligned O +printing O +method O +. O + + +Experimental S-CONPRI +results O +on O +solid O +printed O +( O +no O +infill S-PARA +) O +samples S-CONPRI +, O +through O +four O +different- O +sized O +nozzles S-MACEQ +, O +have O +shown O +the O +newly O +proposed O +method O +produces O +a O +6.5 O +% O +increase O +in O +density S-PRO +and O +a O +7.2 O +% O +improvement O +in O +maximum O +in-plane O +shear B-PRO +stress E-PRO +per O +millimetre O +increase O +in O +nozzle S-MACEQ +size O +, O +compared O +with O +the O +aligned O +method O +of O +FFF S-MANP +. O + + +The O +offset S-CONPRI +method O +was O +found O +to O +produce O +a O +material S-MATE +with O +increased O +interlayer O +contact S-APPL +, O +compared O +to O +the O +aligned O +method O +, O +which O +results O +in O +a O +higher O +fictitious O +shear B-PRO +stress E-PRO +modulus O +. O + + +The O +effect O +of O +the O +increased O +interlayer O +contact S-APPL +on O +the O +fictitious O +shear B-PRO +modulus E-PRO +and O +real O +shear B-PRO +stress E-PRO +was O +investigated O +using O +a O +FEM S-CONPRI +analysis O +of O +the O +unit B-CONPRI +cells E-CONPRI +. O + + +In O +short O +, O +using O +the O +same O +feedstock B-MATE +material E-MATE +, O +the O +offset S-CONPRI +method O +produces O +a O +stiffer O +material S-MATE +with O +a O +higher O +fictitious O +shear B-PRO +strength E-PRO +than O +the O +aligned O +method O +of O +FFF S-MANP +printing O +. O + + +This O +study O +focuses O +on O +the O +characterization O +of O +additive B-MANP +manufacturing E-MANP +technology O +based O +on O +composite S-MATE +filament O +fabrication S-MANP +( O +CFF O +) O +. O + + +CFF O +utilizes O +a O +similar O +method O +of O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +printing O +as S-MATE +fused O +filament S-MATE +fabrication S-MANP +but O +is O +also O +capable O +of O +reinforcing O +parts O +with O +layers O +of O +various O +continuous B-MATE +fibers E-MATE +into O +a O +polymer S-MATE +matrix O +. O + + +Due O +to O +the O +orthotropic S-MATE +characteristics O +of O +additive B-MANP +manufacturing E-MANP +based O +on O +fused B-MANP +filament I-MANP +fabrication E-MANP +, O +3D B-APPL +printed I-APPL +parts E-APPL +may O +present O +different O +mechanical S-APPL +behavior O +under O +different O +orientations S-CONPRI +of O +stress S-PRO +. O + + +Furthermore O +, O +technologies S-CONPRI +such O +as S-MATE +CFF O +allow O +a O +range S-PARA +of O +configurations O +to O +fabricate S-MANP +and O +reinforce O +the O +parts O +. O + + +In O +this O +study O +, O +mechanical S-APPL +characterization O +of O +polyamide S-MATE +6 O +( O +PA6 O +) O +reinforced S-CONPRI +with O +carbon B-MATE +fiber E-MATE +was O +conducted O +by O +design B-CONPRI +of I-CONPRI +experiment E-CONPRI +as S-MATE +a O +statistical B-CONPRI +method E-CONPRI +, O +to O +investigate O +the O +effect O +of O +reinforcement S-PARA +pattern S-CONPRI +, O +reinforcement S-PARA +distribution S-CONPRI +, O +print S-MANP +orientation S-CONPRI +and O +percentage O +of O +fiber S-MATE +on O +compressive O +and O +flexural O +mechanical B-CONPRI +properties E-CONPRI +. O + + +CFF B-MANP +technology E-MANP +3D B-MANP +print E-MANP +stronger O +parts O +than O +conventional O +additive B-MANP +manufacturing E-MANP +technologies O +. O + + +Maximized O +compressive O +response O +was O +achieved O +with O +a O +0.2444 O +Carbon B-MATE +Fiber E-MATE +volume O +ratio O +, O +concentric O +and O +equidistant O +reinforcement S-PARA +configuration S-CONPRI +, O +resulting O +in O +a O +compressive O +modulus O +of O +2.102 O +GPa S-PRO +and O +a O +stress S-PRO +at O +proportional B-PARA +limit E-PARA +of O +53.3 O +MPa S-CONPRI +. O + + +Maximized O +flexural O +response O +was O +achieved O +with O +0.4893 O +Carbon B-MATE +Fiber E-MATE +volume O +ratio O +, O +concentric O +reinforcement S-PARA +and O +perpendicular O +to O +the O +applied O +force S-CONPRI +, O +resulting O +in O +a O +flexural O +modulus O +of O +14.17 O +GPa S-PRO +and O +a O +proportional B-PARA +limit E-PARA +of O +231.1 O +MPa S-CONPRI +. O + + +This O +study O +presents O +development O +of O +a O +test O +method O +for O +characterization O +of O +interlayer O +, O +mode-I O +fracture S-CONPRI +toughness O +of O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +materials S-CONPRI +using O +a O +modified O +double O +cantilever B-MACEQ +beam E-MACEQ +( O +DCB O +) O +test O +. O + + +This O +test O +consists O +of O +DCB O +specimen O +fabricated S-CONPRI +from O +using O +unidirectional S-CONPRI +FFF S-MANP +layers O +, O +an O +8 O +μm O +Kapton O +starter O +crack O +inserted O +in O +the O +midplane S-CONPRI +during O +the O +printing B-MANP +process E-MANP +, O +and O +reinforcing O +glass/epoxy O +doublers O +to O +prevent O +DCB O +arm O +failure S-CONPRI +during O +loading O +. O + + +DCB O +specimens O +are O +manufactured S-CONPRI +with O +a O +commercially O +available O +3D B-MACEQ +printer E-MACEQ +using O +unreinforced O +Acrylonitrile B-MATE +Butadiene I-MATE +Styrene E-MATE +( O +ABS S-MATE +) O +and O +chopped O +carbon-fiber-reinforced O +ABS S-MATE +( O +CF-ABS O +) O +filaments S-MATE +. O + + +To O +examine O +the O +effect O +of O +the O +FFF S-MANP +printing O +process S-CONPRI +on O +fracture S-CONPRI +toughness O +, O +additional O +ABS S-MATE +and O +CF-ABS O +specimens O +are O +hot-press O +molded O +using O +the O +filament S-MATE +material O +, O +and O +tested O +with O +the O +single O +end O +notch S-FEAT +bend O +( O +SENB O +) O +specimen O +configuration S-CONPRI +. O + + +The O +fracture S-CONPRI +toughness O +data S-CONPRI +from O +DCB O +and O +SENB O +tests O +reveal O +that O +the O +FFF S-MANP +process O +significantly O +lowers O +the O +mode-I O +fracture S-CONPRI +toughness O +of O +ABS S-MATE +and O +CF-ABS O +. O + + +For O +both O +materials S-CONPRI +, O +in B-CONPRI +situ E-CONPRI +thermal O +imaging S-APPL +and O +post-mortem O +fractography S-CHAR +shows O +, O +respectively O +, O +rapid O +cool-down O +of O +the O +rasters O +during O +filament S-MATE +deposition S-CONPRI +and O +presence O +of O +voids S-CONPRI +between O +adjacent O +raster O +roads O +; O +both O +of O +which O +serve O +to O +reduce O +fracture S-CONPRI +toughness O +. O + + +For O +CF-ABS O +specimens O +, O +fracture S-CONPRI +toughness O +is O +further O +reduced O +by O +inclusion S-MATE +of O +poorly O +wetted O +chopped O +carbon B-MATE +fibers E-MATE +. O + + +Although O +this O +study O +did O +not O +attempt O +to O +optimize O +the O +fracture S-CONPRI +performance O +of O +FFF S-MANP +specimens O +, O +the O +results O +demonstrate O +that O +the O +proposed O +methodology S-CONPRI +is O +suitable O +for O +design S-FEAT +and O +optimization S-CONPRI +of O +FFF S-MANP +processes O +for O +improved O +interlayer O +fracture S-CONPRI +performance O +. O + + +Polyimides S-MATE +are O +a O +group O +of O +high O +performance S-CONPRI +thermal O +stable O +dielectric S-MACEQ +materials O +used O +in O +diverse O +applications O +. O + + +In O +this O +article O +, O +we O +synthesized O +and O +developed O +a O +high-performance O +polyimide O +precursor B-MATE +ink E-MATE +for O +a O +Material B-MANP +Jetting E-MANP +( O +MJ S-MANP +) O +process S-CONPRI +. O + + +The O +proposed O +ink S-MATE +formulation O +was O +shown O +to O +form O +a O +uniform O +and O +dense O +polyimide O +film O +through O +reactive O +MJ S-MANP +utilising O +real-time O +thermo-imidisation O +process S-CONPRI +. O + + +By O +means O +of O +selectively O +depositing O +4 O +μm O +thick O +patches O +at O +the O +cross-over O +points O +of O +two O +circuit O +patterns O +, O +a O +traditional O +double-sided O +printed B-MACEQ +circuit I-MACEQ +board E-MACEQ +( O +PCB O +) O +can O +be S-MATE +printed O +on O +one O +side O +, O +providing O +the O +user O +with O +higher O +design B-CONPRI +freedom E-CONPRI +to O +achieve O +a O +more O +compact S-MANP +high O +performance S-CONPRI +PCB O +structure S-CONPRI +. O + + +This O +study O +presents O +development O +of O +a O +test O +method O +for O +characterization O +of O +interlayer O +, O +mode-I O +fracture S-CONPRI +toughness O +of O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +materials S-CONPRI +using O +a O +modified O +double O +cantilever B-MACEQ +beam E-MACEQ +( O +DCB O +) O +test O +. O + + +This O +test O +consists O +of O +DCB O +specimen O +fabricated S-CONPRI +from O +using O +unidirectional S-CONPRI +FFF S-MANP +layers O +, O +an O +8 O +μm O +Kapton O +starter O +crack O +inserted O +in O +the O +midplane S-CONPRI +during O +the O +printing B-MANP +process E-MANP +, O +and O +reinforcing O +glass/epoxy O +doublers O +to O +prevent O +DCB O +arm O +failure S-CONPRI +during O +loading O +. O + + +DCB O +specimens O +are O +manufactured S-CONPRI +with O +a O +commercially O +available O +3D B-MACEQ +printer E-MACEQ +using O +unreinforced O +Acrylonitrile B-MATE +Butadiene I-MATE +Styrene E-MATE +( O +ABS S-MATE +) O +and O +chopped O +carbon-fiber-reinforced O +ABS S-MATE +( O +CF-ABS O +) O +filaments S-MATE +. O + + +To O +examine O +the O +effect O +of O +the O +FFF S-MANP +printing O +process S-CONPRI +on O +fracture S-CONPRI +toughness O +, O +additional O +ABS S-MATE +and O +CF-ABS O +specimens O +are O +hot-press O +molded O +using O +the O +filament S-MATE +material O +, O +and O +tested O +with O +the O +single O +end O +notch S-FEAT +bend O +( O +SENB O +) O +specimen O +configuration S-CONPRI +. O + + +The O +fracture S-CONPRI +toughness O +data S-CONPRI +from O +DCB O +and O +SENB O +tests O +reveal O +that O +the O +FFF S-MANP +process O +significantly O +lowers O +the O +mode-I O +fracture S-CONPRI +toughness O +of O +ABS S-MATE +and O +CF-ABS O +. O + + +For O +both O +materials S-CONPRI +, O +in B-CONPRI +situ E-CONPRI +thermal O +imaging S-APPL +and O +post-mortem O +fractography S-CHAR +shows O +, O +respectively O +, O +rapid O +cool-down O +of O +the O +rasters O +during O +filament S-MATE +deposition S-CONPRI +and O +presence O +of O +voids S-CONPRI +between O +adjacent O +raster O +roads O +; O +both O +of O +which O +serve O +to O +reduce O +fracture S-CONPRI +toughness O +. O + + +For O +CF-ABS O +specimens O +, O +fracture S-CONPRI +toughness O +is O +further O +reduced O +by O +inclusion S-MATE +of O +poorly O +wetted O +chopped O +carbon B-MATE +fibers E-MATE +. O + + +Although O +this O +study O +did O +not O +attempt O +to O +optimize O +the O +fracture S-CONPRI +performance O +of O +FFF S-MANP +specimens O +, O +the O +results O +demonstrate O +that O +the O +proposed O +methodology S-CONPRI +is O +suitable O +for O +design S-FEAT +and O +optimization S-CONPRI +of O +FFF S-MANP +processes O +for O +improved O +interlayer O +fracture S-CONPRI +performance O +. O + + +This O +paper O +presents O +an O +end-to-end O +design B-CONPRI +process E-CONPRI +for O +compliance O +minimization-based O +topological B-FEAT +optimization E-FEAT +of O +cellular B-FEAT +structures E-FEAT +through O +to O +the O +realization O +of O +a O +final O +printed O +product O +. O + + +Homogenization S-MANP +is O +used O +to O +derive O +properties S-CONPRI +representative O +of O +these O +structures O +through O +direct O +numerical B-ENAT +simulation E-ENAT +of O +unit B-CONPRI +cell E-CONPRI +models O +. O + + +The O +resulting O +homogenized S-MANP +properties O +are O +then O +used O +assuming O +uniform O +distribution S-CONPRI +of O +the O +cellular B-FEAT +structure E-FEAT +to O +compute O +the O +macroscale S-CONPRI +structure O +. O + + +Results O +are O +presented O +that O +illustrate O +the O +fine-scale O +stresses O +developed O +in O +the O +macroscale S-CONPRI +optimized O +part O +as S-MATE +well O +as S-MATE +the O +effect O +that O +fine-scale O +structure S-CONPRI +has O +on O +the O +optimized O +topology S-CONPRI +. O + + +Quite O +fine O +cellular B-FEAT +structures E-FEAT +are O +shown O +to O +be S-MATE +possible O +using O +this O +method O +. O + + +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +is O +the O +most O +widely O +available O +Additive B-MANP +Manufacturing E-MANP +technology O +. O + + +Offering O +the O +possibility O +of O +producing O +complex B-CONPRI +geometries E-CONPRI +in O +a O +compressed O +product B-CONPRI +development E-CONPRI +cycle O +and O +in O +a O +plethora O +of O +materials S-CONPRI +, O +it O +comes O +as S-MATE +no O +surprise O +that O +FFF S-MANP +is O +attractive O +to O +multiple O +industries S-APPL +, O +including O +the O +automotive S-APPL +and O +aerospace S-APPL +segments O +. O + + +However O +, O +the O +high O +anisotropy S-PRO +of O +parts O +developed O +through O +this O +technique O +implies O +that O +failure S-CONPRI +prediction O +is O +extremely O +difficult O +-a O +requirement O +that O +must O +be S-MATE +satisfied O +to O +guarantee O +the O +safety S-CONPRI +of O +the O +final O +user O +. O + + +This O +work O +applies O +a O +criterion O +that O +incorporates O +stress S-PRO +interactions O +to O +define O +a O +3D S-CONPRI +failure O +envelope O +that O +could O +prove O +an O +invaluable O +tool S-MACEQ +in O +formalizing O +the O +embrace O +of O +FFF S-MANP +in O +industry S-APPL +. O + + +Tensile S-PRO +, O +compressive O +and O +torsion B-CHAR +tests E-CHAR +were O +executed O +on O +coupons O +developed O +in O +a O +traditional O +FFF S-MANP +printer O +, O +as S-MATE +well O +as S-MATE +a O +customized O +, O +6-axis O +robotic O +printer S-MACEQ +necessary O +to O +produce O +specimens O +in O +out O +of O +ordinary O +orientations S-CONPRI +. O + + +These O +tests O +were O +used O +to O +calculate O +the O +parameters S-CONPRI +of O +the O +mathematical S-CONPRI +function O +that O +describe O +the O +failure S-CONPRI +envelope O +. O + + +Mechanical B-CHAR +tests E-CHAR +clearly O +showed O +significant O +difference O +between O +tensile S-PRO +, O +compressive O +and O +shear B-PRO +strengths E-PRO +. O + + +The O +calculated O +envelope O +shows O +strong O +interactions O +between O +axial O +loads O +, O +and O +a O +considerable O +interaction O +between O +shear B-PRO +stresses E-PRO +and O +loads O +applied O +in O +directions O +parallel O +and O +perpendicular O +to O +the O +beads S-CHAR +. O + + +A O +new O +class O +of O +high-performance O +resins S-MATE +are O +available O +for O +additive B-MANP +manufacturing E-MANP +with O +the O +introduction O +of O +Digital B-MANP +Light I-MANP +Synthesis E-MANP +( O +DLS S-MANP +) O +technology S-CONPRI +. O + + +In O +combination O +with O +Continuous B-MANP +Liquid I-MANP +Interface I-MANP +Production E-MANP +( O +CLIP S-MANP +) O +, O +DLS S-MANP +uses O +ultraviolet B-CONPRI +light E-CONPRI +and O +oxygen S-MATE +to O +continuously O +grow O +objects O +from O +a O +pool O +of O +resin S-MATE +instead O +of O +printing O +them O +layer-by-layer S-CONPRI +, O +subsequently O +increasing O +the O +printing B-PARA +speed E-PARA +and O +the O +mechanical S-APPL +performance O +. O + + +For O +many O +DLS S-MANP +resin O +systems O +, O +a O +secondary O +thermal O +curing S-MANP +step O +is O +required O +in O +order O +to O +reach O +the O +final O +material B-CONPRI +properties E-CONPRI +after O +printing O +. O + + +This O +step S-CONPRI +is O +a O +major O +limiting O +factor O +in O +the O +production S-MANP +time O +of O +the O +DLS S-MANP +process O +, O +as S-MATE +materials O +may O +require O +several O +hours O +of O +thermal O +post O +curing S-MANP +. O + + +The O +aim O +of O +this O +study O +is O +to O +optimize O +this O +secondary O +curing S-MANP +cycle O +for O +the O +epoxy-based O +resin S-MATE +EPX O +82 O +by O +reducing O +the O +thermal O +curing B-PARA +time E-PARA +while O +avoiding O +a O +negative O +influence O +on O +the O +final O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Differential O +scanning S-CONPRI +calorimetry O +( O +DSC S-CHAR +) O +was O +used O +with O +different O +heating S-MANP +rates O +and O +a O +chemical B-CONPRI +reaction E-CONPRI +model O +was O +developed O +. O + + +The O +Di O +Benedetto O +relationship O +was O +used O +to O +include O +diffusion S-CONPRI +control O +for O +high O +degrees O +of O +cure S-CONPRI +. O + + +Powder B-MANP +Bed I-MANP +Fusion E-MANP +( O +PBF S-MANP +) O +is O +a O +range S-PARA +of O +advanced O +manufacturing B-MANP +technologies E-MANP +that O +can O +fabricate S-MANP +three-dimensional O +assets O +directly O +from O +CAD S-ENAT +data O +, O +on O +a O +successive O +layer-by-layer S-CONPRI +strategy O +by O +using O +thermal B-CONPRI +energy E-CONPRI +, O +typically O +from O +a O +laser B-MACEQ +source E-MACEQ +, O +to O +irradiate O +and O +fuse S-MANP +particles O +within O +a O +powder S-MATE +bed.The O +aim O +of O +this O +paper O +was O +to O +investigate O +the O +application O +of O +this O +advanced O +manufacturing S-MANP +technique O +to O +process S-CONPRI +ceramic S-MATE +multicomponent O +materials S-CONPRI +into O +3D S-CONPRI +layered O +structures O +. O + + +The O +materials S-CONPRI +used O +matched O +those O +found O +on O +the O +Lunar O +and O +Martian O +surfaces S-CONPRI +. O + + +The O +indigenous O +extra-terrestrial O +Lunar O +and O +Martian O +materials S-CONPRI +could O +potentially O +be S-MATE +used O +for O +manufacturing S-MANP +physical O +assets O +onsite O +( O +i.e. O +, O +off-world O +) O +on O +future O +planetary O +exploration O +missions O +and O +could O +cover O +a O +range S-PARA +of O +potential O +applications O +including O +: O +infrastructure O +, O +radiation S-MANP +shielding O +, O +thermal O +storage O +, O +etc.Two O +different O +simulants O +of O +the O +mineralogical O +and O +basic O +properties S-CONPRI +of O +Lunar O +and O +Martian O +indigenous O +materials S-CONPRI +were O +used O +for O +the O +purpose O +of O +this O +study O +and O +processed S-CONPRI +with O +commercially O +available O +laser B-MANP +additive I-MANP +manufacturing E-MANP +equipment S-MACEQ +. O + + +The O +results O +of O +the O +laser B-CONPRI +processing E-CONPRI +were O +investigated O +and O +quantified O +through O +mechanical S-APPL +hardness S-PRO +testing O +, O +optical S-CHAR +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +, O +X-ray S-CHAR +fluorescence S-CHAR +spectroscopy O +, O +thermo-gravimetric O +analysis O +, O +spectrometry O +, O +and O +finally O +X-ray S-CHAR +diffraction.The O +research S-CONPRI +resulted O +in O +the O +identification O +of O +a O +range S-PARA +of O +process B-CONPRI +parameters E-CONPRI +that O +resulted O +in O +the O +successful O +manufacture S-CONPRI +of O +three-dimensional S-CONPRI +components S-MACEQ +from O +Lunar O +and O +Martian O +ceramic S-MATE +multicomponent O +simulant O +materials S-CONPRI +. O + + +The O +feasibility S-CONPRI +of O +using O +thermal O +based O +additive B-MANP +manufacturing E-MANP +with O +multi-component O +ceramic B-MATE +materials E-MATE +has O +therefore O +been O +established O +, O +which O +represents O +a O +potential O +solution S-CONPRI +to O +off-world O +bulk O +structure B-CONPRI +manufacture E-CONPRI +for O +future O +human O +space O +exploration O +. O + + +This O +study O +investigates S-CONPRI +the O +moisture O +absorption S-CONPRI +characteristics O +of O +the O +ULTEM® O +9085 O +filament S-MATE +and O +how O +the O +uptake O +concentration O +affects O +the O +quality S-CONPRI +of O +material B-MANP +extrusion E-MANP +manufactured B-CONPRI +3-D E-CONPRI +parts O +. O + + +The O +rate O +of O +transport S-CHAR +was O +modeled O +by O +Fickian O +diffusion S-CONPRI +and O +diffusion S-CONPRI +coefficients O +were O +obtained O +for O +various O +exposure S-CONPRI +conditions O +. O + + +Moduli O +, O +strain S-PRO +to O +failure S-CONPRI +and O +ultimate B-PRO +strength E-PRO +were O +evaluated O +in O +the O +XY O +( O +flat O +horizontal O +) O +and O +ZX O +( O +vertical S-CONPRI +) O +direction O +relative O +to O +the O +build B-MACEQ +plate E-MACEQ +orientation O +. O + + +Image B-CONPRI +analyses E-CONPRI +of O +cross-sections S-CONPRI +as S-MATE +well O +as S-MATE +their O +corresponding O +fracture S-CONPRI +surfaces O +were O +evaluated O +for O +consolidation S-CONPRI +, O +porosity S-PRO +distribution S-CONPRI +and O +failure S-CONPRI +behavior O +. O + + +Mechanical B-CHAR +test E-CHAR +data S-CONPRI +showed O +a O +significant O +decrease O +in O +tensile B-PRO +strength E-PRO +( O +> O +60 O +% O +) O +and O +failure S-CONPRI +strain O +( O +> O +50 O +% O +) O +over O +the O +range S-PARA +of O +filament S-MATE +moisture O +levels O +investigated O +. O + + +A O +decrease O +in O +failure S-CONPRI +strain O +of O +41 O +% O +was O +observed O +with O +moisture O +levels O +as S-MATE +low O +as S-MATE +0.16 O +% O +. O + + +This O +degradation S-CONPRI +was O +especially O +sensitive O +in O +parts O +printed O +in O +the O +vertical S-CONPRI +direction O +, O +which O +resulted O +in O +an O +ultimate O +failure S-CONPRI +strain O +of O +only O +1 O +% O +. O + + +The O +changes O +in O +mechanical S-APPL +performance O +are O +believed O +to O +be S-MATE +due O +to O +a O +combination O +of O +entrapped O +volatiles O +resulting O +in O +increased O +porosity S-PRO +at O +higher O +moisture O +levels O +as S-MATE +well O +as S-MATE +moisture O +induced O +pseudo-crosslinking O +at O +lower O +concentrations O +. O + + +Optical S-CHAR +micrographs O +showed O +that O +specimens O +with O +0.16 O +% O +moisture O +or O +greater O +were O +filled O +with O +observable O +porosity S-PRO +and O +increased O +surface B-PRO +roughness E-PRO +. O + + +The O +rheological S-PRO +behavior O +of O +extruded S-MANP +material O +indicated O +plasticization O +as S-MATE +evidenced O +by O +melt B-PARA +flow I-PARA +index E-PARA +measurements O +and O +changes O +in O +the O +flow O +characteristics O +of O +moisture-exposed O +extrudate S-MATE +. O + + +DMA B-CONPRI +data E-CONPRI +show O +a O +distinct O +decrease O +in O +Tg S-CHAR +with O +increased O +moisture O +content O +, O +which O +is O +consistent O +with O +plasticization O +. O + + +The O +absorption S-CONPRI +characteristics O +at O +room O +temperature S-PARA +lab O +conditions O +indicate O +that O +the O +material S-MATE +will O +reach O +an O +unacceptable O +level O +within O +one O +hour O +of O +room-temperature O +exposure S-CONPRI +. O + + +This O +investigation O +emphasized O +the O +need O +for O +awareness O +of O +the O +moisture O +sensitivities S-PARA +of O +ULTEM® O +9085 O +when O +manufacturing S-MANP +high-quality O +material B-MANP +extrusion E-MANP +processed O +structures O +. O + + +Stereolithography S-MANP +( O +SL S-MANP +) O +is O +an O +additive B-MANP +manufacturing E-MANP +technique O +that O +uses O +light O +to O +cure S-CONPRI +liquid O +resins S-MATE +into O +thin O +layers O +and O +fabricate S-MANP +3-dimensional O +objects O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +. O + + +SL S-MANP +is O +of O +high O +interest O +for O +small-volume O +manufacturing S-MANP +and O +rapid B-ENAT +prototyping E-ENAT +because O +of O +its O +ability O +to O +relatively O +quickly O +create O +objects O +with O +intricate O +100 O +μm O +or O +smaller O +features O +. O + + +However O +, O +widespread O +adoption O +of O +SL S-MANP +faces O +a O +number O +of O +obstacles O +including O +unsuitable O +thermomechanical B-CONPRI +properties E-CONPRI +, O +anisotropic S-PRO +properties O +, O +and O +limited O +resolution S-PARA +and O +fidelity O +. O + + +In O +this O +work O +, O +we O +incorporate O +a O +reversible O +addition-fragmentation O +chain O +transfer O +( O +RAFT S-MACEQ +) O +agent O +into O +a O +glassy O +acrylate O +formulation O +to O +modify O +mechanical B-CONPRI +properties E-CONPRI +and O +improve O +resolution S-PARA +of O +objects O +printed O +using O +digital B-MANP +light I-MANP +processing E-MANP +( O +DLP S-MANP +) O +SL S-MANP +. O + + +Incorporating O +a O +small O +amount O +of O +a O +trithiocarbonate O +RAFT S-MACEQ +agent O +into O +the O +formulation O +leads O +to O +increased O +elongation S-PRO +and O +toughness S-PRO +accompanied O +by O +a O +small O +decrease O +in O +tensile S-PRO +modulus O +. O + + +To O +determine O +anisotropic S-PRO +properties O +of O +DLP S-MANP +SL O +, O +samples S-CONPRI +were O +printed O +in O +“ O +horizontal O +” O +or O +“ O +vertical S-CONPRI +” O +directions O +, O +where O +the O +long O +axis O +of O +the O +sample S-CONPRI +was O +printed O +in O +the O +x-axis O +or O +z-axis S-CONPRI +, O +respectively O +. O + + +RAFT S-MACEQ +samples O +printed O +in O +a O +vertical B-CONPRI +orientation E-CONPRI +exhibit O +a O +higher O +modulus O +than O +non-RAFT O +controls O +prior O +to O +post-cure O +in O +addition O +to O +a O +similar O +modulus O +with O +increased O +toughness S-PRO +upon O +UV S-CONPRI +post-cure O +due O +to O +the O +living/controlled O +nature O +of O +RAFT S-MACEQ +polymerization S-MANP +. O + + +Furthermore O +, O +incorporating O +a O +RAFT S-MACEQ +agent O +into O +the O +formulation O +allows O +significantly O +higher O +fidelity O +printing O +of O +a O +broad O +range S-PARA +of O +positive O +and O +negative O +features O +as S-MATE +small O +as S-MATE +100 O +μm O +. O + + +The O +RAFT S-MACEQ +formulation O +allows O +objects O +to O +be S-MATE +printed O +with O +significantly O +better O +fidelity O +than O +non-RAFT O +formulations O +, O +even O +when O +a O +radical O +scavenger O +is O +incorporated O +to O +mimic S-MACEQ +reaction O +rates O +observed O +from O +the O +RAFT S-MACEQ +formulation O +. O + + +Additionally O +, O +the O +RAFT S-MACEQ +agent O +significantly O +increases O +the O +critical O +energy O +parameter S-CONPRI +determined O +from O +the O +SL S-MANP +working O +curve O +, O +indicating O +an O +increase O +in O +gel B-PRO +point E-PRO +conversion O +. O + + +This O +work O +demonstrates O +the O +benefits O +of O +using O +controlled/living O +polymerization S-MANP +in O +a O +highly O +cross-linked O +acrylate O +system O +to O +improve O +toughness S-PRO +, O +modify O +anisotropic S-PRO +properties O +, O +and O +print S-MANP +high-fidelity S-CONPRI +features O +with O +enhanced O +properties S-CONPRI +in O +3D B-MANP +printed E-MANP +materials O +. O + + +Support B-FEAT +structures E-FEAT +and O +materials S-CONPRI +are O +indispensable O +components S-MACEQ +in O +many O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +systems O +in O +order O +to O +fabricate S-MANP +complex O +3D B-CONPRI +structures E-CONPRI +. O + + +For O +inkjet-based O +AM B-MANP +techniques E-MANP +( O +known O +as S-MATE +Material O +Jetting S-MANP +) O +, O +there O +is O +a O +paucity O +of O +studies O +on O +specific O +inks O +for O +fabricating S-MANP +such O +support B-FEAT +structures E-FEAT +. O + + +This O +limits S-CONPRI +the O +potential O +of O +fabricating S-MANP +complex O +3D B-APPL +objects E-APPL +containing O +overhanging B-CONPRI +structures E-CONPRI +. O + + +In O +this O +paper O +, O +we O +investigate O +the O +use O +of O +Tripropylene O +Glycol O +Diacrylated O +( O +TPGDA O +) O +to O +prepare O +a O +thermally O +stable O +ink S-MATE +with O +reliable O +printability S-PARA +to O +produce O +removable O +support B-FEAT +structures E-FEAT +in O +an O +experimental S-CONPRI +Material O +Jetting S-MANP +system O +. O + + +The O +addition O +of O +TGME O +to O +the O +TPGDA O +was O +found O +to O +considerably O +reduce O +the O +modulus O +of O +the O +photocured O +structure S-CONPRI +from O +575 O +MPa S-CONPRI +down O +to O +27 O +MPa S-CONPRI +by O +forming S-MANP +micro-pores O +in O +the O +cured S-MANP +structure O +. O + + +The O +cured S-MANP +support O +structure S-CONPRI +was O +shown O +to O +be S-MATE +easily O +removed O +following O +the O +fabrication S-MANP +process O +. O + + +During O +TG-IR O +tests O +the O +T5 O +% O +temperature S-PARA +of O +the O +support B-FEAT +structure E-FEAT +was O +above O +150 O +°C O +whilst O +the O +majority O +of O +decomposition S-PRO +happened O +around O +400 O +°C O +. O + + +Specimens O +containing O +overhanging B-CONPRI +structures E-CONPRI +( O +gate-like O +structure S-CONPRI +, O +propeller O +structure S-CONPRI +) O +were O +successfully O +manufactured S-CONPRI +to O +highlight O +the O +viability O +of O +the O +ink S-MATE +as S-MATE +a O +support B-MATE +material E-MATE +. O + + +The O +potential O +of O +topology B-FEAT +optimization E-FEAT +to O +amplify O +the O +benefits O +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +, O +by O +fully O +exploiting O +the O +vast O +design B-CONPRI +space E-CONPRI +that O +AM S-MANP +allows O +, O +is O +widely O +recognized O +. O + + +However O +, O +existing O +topology B-FEAT +optimization E-FEAT +approaches O +do O +not O +consider O +AM-specific O +limitations O +during O +the O +design B-CONPRI +process E-CONPRI +, O +resulting O +in O +designs S-FEAT +that O +are O +not O +self-supporting S-FEAT +. O + + +This O +leads O +to O +additional O +effort O +and O +costs O +in O +post-processing S-CONPRI +and O +use O +of O +sacrificial O +support B-FEAT +structures E-FEAT +. O + + +To O +overcome O +this O +difficulty O +, O +this O +paper O +presents O +a O +topology B-FEAT +optimization E-FEAT +formulation O +that O +includes O +a O +simplified O +AM S-MANP +fabrication O +model S-CONPRI +implemented O +as S-MATE +a O +layerwise O +filtering O +procedure O +. O + + +Unprintable O +geometries S-CONPRI +are O +effectively O +excluded O +from O +the O +design B-CONPRI +space E-CONPRI +, O +resulting O +in O +fully O +self-supporting S-FEAT +optimized O +designs S-FEAT +. O + + +The O +procedure O +is O +demonstrated O +on O +numerical O +examples O +involving O +compliance O +minimization O +, O +eigenfrequency O +maximization O +and O +compliant B-CONPRI +mechanism E-CONPRI +design O +. O + + +Despite O +the O +applied O +restrictions O +, O +in O +suitable O +orientations S-CONPRI +fully O +printable O +AM-restrained O +designs S-FEAT +matched O +the O +performance S-CONPRI +of O +reference O +designs S-FEAT +obtained O +by O +conventional O +topology B-FEAT +optimization E-FEAT +. O + + +To O +enable O +the O +advancement O +of O +large-scale O +additive B-MANP +manufacturing I-MANP +processes E-MANP +, O +it O +is O +necessary O +to O +establish O +and O +standardize O +methodologies O +to O +characterize O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +printed O +test O +coupons O +. O + + +Due O +to O +the O +large O +size O +of O +the O +print S-MANP +beads S-CHAR +, O +conventional O +test O +standards S-CONPRI +are O +inadequate O +. O + + +The O +focus O +of O +this O +study O +was O +to O +determine O +the O +feasibility S-CONPRI +of O +using O +Digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +( O +DIC S-CONPRI +) O +technology S-CONPRI +as S-MATE +a O +key O +enabler O +for O +robust O +data S-CONPRI +collection O +of O +strain S-PRO +measurements O +of O +large O +3D B-APPL +printed I-APPL +parts E-APPL +. O + + +) O +glass S-MATE +filled O +ABS S-MATE +test O +coupons O +for O +adequate O +contrast O +. O + + +Through O +this O +technique O +, O +Poisson O +'s O +ratio O +and O +elastic B-PRO +modulus E-PRO +were O +measured O +and O +stress B-CONPRI +strain I-CONPRI +curves E-CONPRI +were O +generated O +. O + + +The O +data S-CONPRI +produced O +by O +DIC B-CONPRI +correlated E-CONPRI +well O +with O +failure S-CONPRI +analysis O +performed O +on O +spent O +test O +coupons O +. O + + +Additionally O +, O +fracture S-CONPRI +surface O +analysis O +of O +the O +specimens O +revealed O +poor O +adhesion S-PRO +among O +the O +ABS B-MATE +matrix E-MATE +and O +glass B-MATE +fibers E-MATE +. O + + +This O +matrix/fiber O +debonding O +demonstrated O +the O +need O +for O +improved O +printing O +parameters S-CONPRI +to O +maximize O +tensile B-PRO +strength E-PRO +. O + + +Finally O +, O +critical O +length O +analysis O +of O +the O +fibers S-MATE +revealed O +them O +to O +be S-MATE +dimensionally O +inadequate O +. O + + +In O +this O +work O +, O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +was O +reinforced S-CONPRI +with O +a O +thermotropic B-MATE +liquid I-MATE +crystalline I-MATE +polymer E-MATE +( O +TLCP O +) O +for O +use O +in O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +As S-MATE +ABS S-MATE +and O +the O +selected O +TLCP O +do O +not O +exhibit O +overlapping O +processing O +temperatures S-PARA +, O +the O +composite S-MATE +filaments O +were O +generated O +using O +a O +dual O +extrusion S-MANP +technology O +which O +allows O +processing O +of O +such O +matrix-TLCP O +combinations O +. O + + +The O +40.0 O +wt. O +% O +TLCP/ABS O +filaments S-MATE +exhibited O +a O +tensile B-PRO +strength E-PRO +and O +modulus O +of O +169.2 O +± O +4.0 O +MPa S-CONPRI +and O +39.9 O +± O +3.7 O +GPa S-PRO +, O +respectively O +, O +due O +to O +a O +nearly O +continuous O +reinforcement S-PARA +of O +the O +filament S-MATE +. O + + +The O +postprocessing S-CONPRI +of O +the O +filaments S-MATE +in O +FFF S-MANP +was O +carried O +out O +below O +the O +melting B-PARA +temperature E-PARA +of O +the O +TLCP O +, O +which O +allowed O +the O +printer S-MACEQ +to O +take O +sharp O +turns O +despite O +having O +nearly O +continuous O +reinforcement S-PARA +. O + + +On O +printing O +with O +the O +40.0 O +wt. O +% O +TLCP/ABS O +filaments S-MATE +, O +the O +tensile B-PRO +strength E-PRO +and O +modulus O +in O +the O +print S-MANP +direction O +were O +74.9 O +± O +2.4 O +MPa S-CONPRI +and O +16.5 O +± O +0.8 O +GPa S-PRO +, O +respectively O +. O + + +The O +compression S-PRO +molded O +specimens O +exhibited O +a O +tensile B-PRO +strength E-PRO +and O +modulus O +of O +79.6 O +± O +4.4 O +MPa S-CONPRI +and O +12.3 O +± O +1.2 O +GPa S-PRO +, O +respectively O +, O +whereas O +the O +injection O +molded O +specimens O +exhibited O +51.3 O +± O +3.0 O +MPa S-CONPRI +and O +4.5 O +± O +0.1 O +GPa S-PRO +, O +respectively O +. O + + +Moisture O +absorption S-CONPRI +degrades O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +polymeric O +parts O +that O +are O +3D-printed S-MANP +by O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +. O + + +This O +limitation O +is O +particularly O +significant O +for O +short O +fiber-reinforced O +polymers S-MATE +because O +the O +mechanical S-APPL +enhancement O +obtained O +by O +the O +fiber B-FEAT +reinforcement E-FEAT +can O +be S-MATE +compromised O +by O +the O +plasticizing O +effect O +introduced O +by O +water O +absorption S-CONPRI +. O + + +Therefore O +, O +the O +present O +work O +investigates S-CONPRI +the O +effects O +of O +two O +different O +coatings S-APPL +, O +a O +UV B-CONPRI +cured E-CONPRI +acrylate O +resin S-MATE +and O +an O +acrylic S-MATE +varnish O +, O +on O +the O +moisture O +absorption S-CONPRI +of O +FFF B-MANP +3D-printed E-MANP +samples O +consisting O +of O +polyamide S-MATE +reinforced O +by O +short B-MATE +carbon I-MATE +fibers E-MATE +. O + + +The O +coating S-APPL +effects O +were O +evaluated O +by O +conducting O +tensile B-CHAR +tests E-CHAR +to O +compare O +the O +Young O +’ O +s S-MATE +modulus O +, O +yield B-PRO +stress E-PRO +, O +and O +ultimate O +stress S-PRO +of O +the O +coated S-APPL +and O +uncoated O +specimens O +. O + + +The O +results O +demonstrated O +a O +significant O +reduction S-CONPRI +of O +CI S-MATE +and O +OP O +with O +both O +the O +acrylic S-MATE +and O +UV S-CONPRI +resin B-MATE +coatings E-MATE +, O +as S-MATE +well O +as S-MATE +considerable O +enhancements O +of O +these O +samples S-CONPRI +’ O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Stress-strain O +curves O +evidenced O +a O +strain S-PRO +reduction S-CONPRI +after O +water O +immersion O +, O +which O +can O +be S-MATE +ascribed O +to O +a O +greater O +stability S-PRO +against O +different O +moisture O +conditions O +. O + + +These O +findings O +indicate O +the O +significant O +potential O +of O +the O +proposed O +coating S-APPL +processes O +to O +extend O +the O +use O +of O +FFF B-MANP +3D-printed E-MANP +composite B-MATE +materials E-MATE +to O +a O +broader O +range S-PARA +of O +applications O +. O + + +In O +this O +paper O +, O +the O +effects O +of O +part O +build B-PARA +directions E-PARA +or O +raster B-PARA +orientations E-PARA +have O +been O +studied O +on O +the O +strain-life O +fatigue S-PRO +parameters O +of O +a O +wide O +range S-PARA +of O +3D B-MANP +printed E-MANP +plastic O +materials S-CONPRI +. O + + +These O +materials S-CONPRI +have O +been O +manufactured S-CONPRI +through O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +, O +also O +known O +under O +its O +trademarked O +name O +Fused B-MANP +Deposition I-MANP +Modeling E-MANP +( O +FDM S-MANP +) O +. O + + +To O +do O +so O +, O +precise O +analyses O +of O +fatigue S-PRO +data S-CONPRI +with O +the O +Ramberg-Osgood O +form O +of O +stress-strain O +curves O +were O +utilized O +through O +a O +strain-based O +approach O +to O +fatigue S-PRO +. O + + +Materials S-CONPRI +considered O +in O +this O +study O +were O +Ultem O +9085 O +, O +Polycarbonate S-MATE +( O +PC S-MATE +) O +, O +and O +Polylactic B-MATE +Acid E-MATE +( O +PLA S-MATE +) O +. O + + +Additive B-MANP +manufactured E-MANP +plastic O +parts O +that O +are O +FDM-processed O +exhibited O +large O +anisotropy S-PRO +of O +strain-life O +fatigue S-PRO +parameters O +. O + + +Hence O +, O +the O +upper O +and O +lower O +bounds O +for O +fatigue B-PRO +life E-PRO +prediction O +were O +introduced O +based O +on O +the O +strongest O +and O +weakest O +part O +build B-PARA +directions E-PARA +or O +raster B-PARA +orientations E-PARA +of O +3D B-MANP +printed E-MANP +materials O +. O + + +For O +all O +materials S-CONPRI +studied O +in O +the O +present O +paper O +, O +fill O +densities O +, O +which O +seem O +to O +have O +significant O +impact S-CONPRI +on O +fatigue B-PRO +strength E-PRO +of O +3D B-APPL +printed I-APPL +parts E-APPL +, O +have O +been O +selected O +based O +on O +the O +maximum O +fatigue B-PRO +strength E-PRO +of O +each O +part O +. O + + +Results O +showed O +that O +, O +in O +some O +build B-PARA +orientations E-PARA +, O +the O +transition S-CONPRI +fatigue B-PRO +life E-PRO +does O +not O +exist O +. O + + +In O +other O +orientations S-CONPRI +, O +in O +which O +the O +plastic S-MATE +strain O +components S-MACEQ +are O +high O +enough O +, O +transition S-CONPRI +fatigue B-PRO +lives E-PRO +vary O +roughly O +between O +20–400 O +cycles O +. O + + +This O +means O +that O +if O +the O +part O +design S-FEAT +in O +very O +low O +cycle O +fatigue S-PRO +regime O +is O +of O +interest O +, O +plastic S-MATE +strains O +and O +more O +complicated O +plasticity S-PRO +analysis O +are O +needed O +. O + + +Results O +show O +that O +the O +load O +ratio O +has O +no O +major O +impact S-CONPRI +on O +the O +fatigue S-PRO +parameters O +of O +3D B-MANP +printed E-MANP +PC O +parts O +. O + + +In O +addition O +, O +changing O +in O +the O +loading O +type O +from O +tensile B-PRO +fatigue E-PRO +to O +rotating O +bending S-MANP +fatigue O +can O +significantly O +impact S-CONPRI +the O +fatigue B-PRO +strength E-PRO +coefficient O +of O +3D B-MANP +printed E-MANP +PLA O +specimens O +however O +, O +it O +does O +not O +noticeably O +alter O +the O +fatigue B-PRO +strength E-PRO +exponents O +. O + + +Material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +utilizes O +a O +thermoplastic B-MATE +polymer E-MATE +in O +the O +form O +of O +a O +solid O +filament S-MATE +as S-MATE +a O +built O +material S-MATE +. O + + +The O +polymer B-MATE +melts E-MATE +inside O +the O +hot-end O +channel S-APPL +and O +flows O +under O +the O +pressure S-CONPRI +generated O +by O +the O +filament S-MATE +feeding O +force S-CONPRI +. O + + +The O +flow O +of O +polymer S-MATE +through O +the O +hot-end O +is O +not O +fully O +understood O +yet O +, O +as S-MATE +it O +involves O +many O +complex O +phenomena O +, O +such O +as S-MATE +phase O +transition S-CONPRI +, O +shear O +rate O +and O +temperature S-PARA +dependent O +viscosity S-PRO +, O +as S-MATE +well O +as S-MATE +viscoelastic O +effects O +. O + + +In O +this O +paper O +, O +we O +investigate O +experimentally O +the O +filament S-MATE +feeding O +force S-CONPRI +, O +as S-MATE +a O +function O +of O +the O +feeding O +rate O +, O +for O +different O +materials S-CONPRI +( O +PLA S-MATE +and O +ABS S-MATE +) O +, O +liquefier O +temperatures S-PARA +, O +nozzle B-CONPRI +diameters E-CONPRI +, O +and O +lengths O +of O +the O +liquefier O +. O + + +Increasing O +the O +liquefier O +length O +and O +liquefier O +temperature S-PARA +are O +found O +to O +extend O +the O +linear O +extrusion S-MANP +regime O +. O + + +A O +model S-CONPRI +solely O +based O +on O +heat B-CONPRI +transfer E-CONPRI +considerations O +is O +proposed O +to O +estimate O +the O +maximum O +feeding O +rate O +before O +the O +extrusion S-MANP +becomes O +unstable O +. O + + +The O +modelling S-ENAT +results O +agree O +well O +with O +the O +measurements O +. O + + +The O +model S-CONPRI +can O +be S-MATE +used O +to O +select O +the O +hot-end O +design S-FEAT +as S-MATE +well O +as S-MATE +appropriate O +printing O +parameters S-CONPRI +. O + + +This O +paper O +details O +a O +novel O +study O +and O +manufacturing B-MANP +approach E-MANP +of O +fiber B-FEAT +alignment E-FEAT +in O +flexible O +hybrid O +carbon B-MATE +fiber E-MATE +composites O +using O +Material B-MANP +extrusion E-MANP +. O + + +Varying O +carbon B-MATE +fiber E-MATE +volume O +fractions O +from O +0 O +to O +4 O +vol O +% O +was O +melt S-CONPRI +blended O +with O +a O +masterbatch O +of O +TPU O ++ O +10 O +wt O +% O +MWCNT O +followed O +by O +extrusion S-MANP +. O + + +The O +final O +extrudate S-MATE +was O +then O +filament S-MATE +wound O +onto O +a O +spool S-MACEQ +and O +two O +different O +filament S-MATE +layout O +orientations S-CONPRI +, O +0° O +and O +45° O +, O +were O +printed O +to O +compare O +their O +mechanical B-CONPRI +properties E-CONPRI +to O +validate O +the O +effect O +of O +fiber B-FEAT +alignment E-FEAT +during O +the O +printing B-MANP +process E-MANP +for O +these O +flexible O +fiber B-MATE +composites E-MATE +. O + + +The O +0° O +printed O +composites S-MATE +exhibited O +up O +to O +34 O +% O +improvement O +in O +stiffness S-PRO +as S-MATE +compared O +to O +the O +45° O +composite S-MATE +. O + + +To O +validate O +this O +fiber B-FEAT +orientation E-FEAT +, O +the O +flexible O +composite S-MATE +was O +textured O +using O +fiber-debonding O +and O +pullout O +phenomenon O +and O +the O +surfaces S-CONPRI +were O +visually O +and O +quantifiably O +characterized O +using O +SEM S-CHAR +images S-CONPRI +and O +surface B-PRO +roughness E-PRO +respectively O +. O + + +To O +further O +elucidate O +the O +fiber B-FEAT +alignment E-FEAT +as S-MATE +indicated O +by O +the O +surface B-PRO +roughness E-PRO +, O +a O +water O +contact S-APPL +angle O +hydrophobicity O +test O +was O +conducted O +to O +prove O +that O +the O +0° O +printed O +composite S-MATE +showed O +higher O +contact S-APPL +angle O +as S-MATE +compared O +with O +the O +45° O +orientation S-CONPRI +, O +confirming O +greater O +entrapment O +due O +to O +fiber B-FEAT +alignment E-FEAT +at O +the O +surface S-CONPRI +. O + + +These O +composites S-MATE +are O +expected O +to O +find O +future O +potential O +in O +high O +strength S-PRO +and O +surface B-MANP +texturing E-MANP +applications O +. O + + +Conventional O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +is O +capable O +of O +building O +complex B-CONPRI +structures E-CONPRI +. O + + +Overhanging B-FEAT +features E-FEAT +require O +the O +use O +of O +support B-FEAT +structures E-FEAT +. O + + +Printing O +the O +support B-FEAT +structure E-FEAT +requires O +additional O +time O +and O +material S-MATE +. O + + +Conventional O +processes S-CONPRI +need O +time O +to O +remove O +support B-MATE +material E-MATE +and O +may O +lead S-MATE +to O +degraded O +surface B-FEAT +finish E-FEAT +. O + + +The O +use O +of O +support B-FEAT +structures E-FEAT +can O +be S-MATE +avoided O +by O +dynamically O +reorienting O +the O +build-platform O +. O + + +This O +paper O +presents O +a O +novel O +approach O +to O +build S-PARA +accurate S-CHAR +thin O +shell S-MACEQ +parts O +using O +supportless O +extrusion-based O +additive B-MANP +manufacturing E-MANP +. O + + +We O +describe O +the O +layer S-PARA +slicing O +algorithm S-CONPRI +, O +the O +tool-path S-PARA +planning S-MANP +algorithm S-CONPRI +, O +and O +the O +neural O +network-based O +compensated O +trajectory O +generation O +scheme O +to O +use O +a O +3 O +degree O +of O +freedom O +build-platform O +and O +a O +3 O +degree O +of O +freedom O +extrusion S-MANP +tool O +to O +build S-PARA +accurate S-CHAR +thin O +shell S-MACEQ +parts O +using O +two O +manipulators S-MACEQ +. O + + +Such O +thin O +shell S-MACEQ +parts O +can O +not O +be S-MATE +built O +without O +supports S-APPL +by O +previous O +supportless O +AM B-MANP +processes E-MANP +. O + + +We O +illustrate O +the O +usefulness O +of O +our O +algorithms S-CONPRI +by O +building O +several O +thin O +shell S-MACEQ +parts O +. O + + +Material B-MANP +extrusion E-MANP +( O +MEX O +) O +is O +a O +well O +established O +production S-MANP +method O +in O +additive B-MANP +manufacturing E-MANP +. O + + +However O +, O +internal O +residual S-CONPRI +strains O +are O +accumulated O +during O +the O +layer-by-layer S-CONPRI +fabrication S-MANP +process O +. O + + +They O +bring O +about O +shape O +distortions O +and O +a O +degradation S-CONPRI +of O +mechanical B-CONPRI +properties E-CONPRI +. O + + +In O +this O +paper O +, O +an O +in-situ S-CONPRI +distributed O +measurement S-CHAR +of O +residual S-CONPRI +strains O +in O +MEX O +fabricated S-CONPRI +thermoplastic O +specimens O +is O +achieved O +for O +the O +first O +time O +. O + + +This O +innovative O +measuring O +system O +consists O +of O +an O +Optical S-CHAR +Backscatter O +Reflectometry O +( O +OBR O +) O +interrogation O +unit O +connected O +to O +a O +distributed O +fiber S-MATE +optic O +strain S-PRO +sensor S-MACEQ +which O +is O +embedded O +during O +the O +MEX O +process S-CONPRI +. O + + +The O +characteristic O +residual S-CONPRI +strain O +distribution S-CONPRI +inside O +3D B-MANP +printed E-MANP +components O +is O +revealed O +and O +numerically O +validated O +. O + + +The O +main O +mechanisms O +of O +residual S-CONPRI +strain O +creation O +and O +the O +sensing S-APPL +principles O +of O +in-situ S-CONPRI +OBR O +are O +described O +. O + + +A O +minimum O +measuring O +range S-PARA +of O +4 O +mm S-MANP +and O +a O +spatial O +resolution S-PARA +of O +0.15 O +mm S-MANP +were O +experimentally O +demonstrated O +. O + + +The O +potential O +of O +in-situ S-CONPRI +OBR O +technology S-CONPRI +for O +detecting O +invisible O +manufacturing S-MANP +defects S-CONPRI +was O +shown O +by O +a O +trial O +experiment S-CONPRI +. O + + +To O +aid O +in O +the O +transition S-CONPRI +of O +3D B-APPL +printed I-APPL +parts E-APPL +from O +prototypes S-CONPRI +to O +functional O +products O +it O +is O +necessary O +to O +investigate O +the O +mechanical B-PRO +anisotropy E-PRO +induced O +by O +the O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +process S-CONPRI +. O + + +Since O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +an O +FFF S-MANP +part O +are O +most O +greatly O +affected O +by O +the O +bead S-CHAR +orientation O +and O +printed O +density S-PRO +, O +or O +solidity O +ratio O +, O +techniques O +to O +precisely O +control O +these O +variables O +are O +required O +. O + + +An O +open O +source S-APPL +Python O +program O +, O +SciSlice O +, O +was O +developed O +to O +create O +the O +desired O +tool S-MACEQ +paths/layer O +orientations S-CONPRI +and O +convert O +them O +into O +machine S-MACEQ +commands O +( O +e.g O +. O + + +G-Code S-ENAT +) O +. O + + +SciSlice O +was O +then O +used O +to O +develop O +tool B-CONPRI +paths E-CONPRI +which O +either O +directly O +printed O +tensile B-MACEQ +specimens E-MACEQ +or O +printed O +sheets S-MATE +from O +which O +specimens O +could O +be S-MATE +water-jet O +cut O +. O + + +The O +effects O +of O +proper O +bed S-MACEQ +leveling O +and O +feed S-PARA +wheel O +adjustment O +are O +noted O +and O +a O +careful O +analysis O +of O +both O +bead S-CHAR +orientation O +and O +solidity O +ratio O +are O +presented O +. O + + +Finally O +, O +it O +is O +shown O +that O +with O +proper O +bead S-CHAR +orientation O +, O +low O +layer B-PARA +heights E-PARA +, O +and O +a O +maximum O +solidity O +ratio O +, O +tensile B-PRO +strengths E-PRO +within O +3 O +% O +of O +injection O +molded O +parts O +are O +achievable O +. O + + +In O +this O +paper O +the O +authors O +present O +a O +novel O +design S-FEAT +tool O +for O +realizing O +dielectric S-MACEQ +structures O +with O +spatially O +varying O +electromagnetic O +properties S-CONPRI +via O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +To O +create O +tool B-CONPRI +paths E-CONPRI +ideal O +for O +AM B-MANP +processes E-MANP +, O +space-filling O +curves O +were O +utilized O +. O + + +Using O +fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +, O +spatially O +varying O +structures O +were O +printed O +that O +produced O +a O +spatially O +varying O +relative O +permittivity O +. O + + +Furthermore O +, O +the O +authors O +verified O +that O +this O +design S-FEAT +tool O +can O +be S-MATE +applied O +to O +practical O +structures O +by O +designing O +, O +printing O +and O +testing S-CHAR +a O +gradient O +index O +flat O +lens S-MANP +. O + + +Strain-rate O +dependence O +is O +anisotropic S-PRO +in O +Material B-MANP +Extrusion I-MANP +Additive I-MANP +Manufacturing E-MANP +. O + + +Strain-rate O +dependence O +in O +ME-AM S-MANP +is O +different O +from O +compression S-PRO +molded O +products O +. O + + +Ree-Eyring O +flow O +rule O +can O +adequately O +describe O +the O +yield O +kinetics O +of O +ME-AM S-MANP +components S-MACEQ +. O + + +Compression S-PRO +molded O +samples S-CONPRI +show O +brittle S-PRO +stress-strain O +behavior O +. O + + +Several O +ME-AM S-MANP +samples O +show O +semi-ductile O +stress-strain O +behavior O +. O + + +The O +strain-rate O +dependence O +of O +the O +yield B-PRO +stress E-PRO +for O +Material B-MANP +Extrusion I-MANP +Additive I-MANP +Manufacturing E-MANP +( O +ME-AM S-MANP +) O +polylactide O +samples S-CONPRI +was O +investigated O +. O + + +Apparent O +densities O +of O +the O +ME-AM S-MANP +processed O +tensile B-CHAR +test E-CHAR +specimens O +were O +measured O +and O +taken O +into O +account O +in O +order O +to O +study O +the O +effects O +of O +the O +ME-AM S-MANP +processing O +step S-CONPRI +on O +the O +material S-MATE +behavior O +. O + + +Three O +different O +printing O +parameters S-CONPRI +were O +changed O +to O +investigate O +their O +influence O +on O +mechanical B-CONPRI +properties E-CONPRI +, O +i.e O +. O + + +infill S-PARA +velocity O +, O +infill S-PARA +orientation O +angle O +, O +and O +bed S-MACEQ +temperature O +. O + + +Additionally O +, O +compression S-PRO +molded O +test O +samples S-CONPRI +were O +manufactured S-CONPRI +in O +order O +to O +determine O +bulk O +properties S-CONPRI +, O +which O +have O +been O +compared O +to O +the O +ME-AM S-MANP +sample O +sets O +. O + + +Anisotropy S-PRO +was O +detected O +in O +the O +strain-rate O +dependence O +of O +the O +yield B-PRO +stresses E-PRO +. O + + +The O +Ree-Eyring O +modification O +of O +the O +Eyring O +flow O +rule O +is O +able O +to O +accurately S-CHAR +describe O +the O +strain-rate O +dependence O +of O +the O +yield B-PRO +stresses E-PRO +, O +taking O +two O +molecular O +deformation S-CONPRI +processes O +into O +account O +to O +describe O +the O +yield O +kinetics O +. O + + +The O +results O +from O +this O +paper O +further O +show O +a O +change O +from O +a O +brittle S-PRO +behavior O +in O +case O +of O +compression S-PRO +molded O +samples S-CONPRI +to O +a O +semi-ductile O +behavior O +for O +some O +of O +the O +ME-AM S-MANP +sample O +sets O +. O + + +This O +change O +is O +attributed O +to O +the O +processing O +phase S-CONPRI +and O +stresses O +the O +importance O +that O +the O +temperature S-PARA +profile S-FEAT +( O +initial O +fast O +cooling S-MANP +combined O +with O +successive O +heating S-MANP +cycles O +) O +and O +the O +strain S-PRO +profile S-FEAT +during O +ME-AM S-MANP +processing O +have O +on O +the O +resulting O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Both O +these O +profiles S-FEAT +are O +significantly O +different O +from O +the O +thermo-mechanical S-CONPRI +history O +that O +material B-MATE +elements E-MATE +experience O +during O +conventional O +processing O +methods O +, O +e.g O +. O + + +injection O +or O +compression B-MANP +molding E-MANP +. O + + +This O +paper O +can O +be S-MATE +seen O +as S-MATE +initial O +work O +that O +can O +help O +to O +further O +develop O +predictive O +numerical O +tools S-MACEQ +for O +Material B-MANP +Extrusion I-MANP +Additive I-MANP +Manufacturing E-MANP +, O +as S-MATE +well O +as S-MATE +for O +the O +design S-FEAT +of O +structural B-CONPRI +components E-CONPRI +. O + + +This O +study O +investigates S-CONPRI +the O +suitability O +of O +direct O +write O +( O +DW O +) O +technology S-CONPRI +for O +the O +fabrication S-MANP +of O +high-resolution S-PARA +wear O +sensors S-MACEQ +. O + + +The O +sintered S-MANP +lines O +exhibited O +an O +electrical B-CHAR +resistivity E-CHAR +of O +5.29 O +× O +10−8 O +Ω O +m O +( O +about O +three O +times O +bulk O +silver S-MATE +resistivity S-PRO +reported O +in O +the O +literature O +) O +with O +a O +standard B-CHAR +deviation E-CHAR +of O +3.68 O +× O +10-9 O +Ω O +m O +( O +ca S-MATE +. O + + +7 O +% O +variation S-CONPRI +) O +. O + + +To O +determine O +the O +conditions O +needed O +to O +consistently O +create O +fine O +conductive O +lines O +, O +we O +simulated O +the O +volumetric O +flow B-PARA +rate E-PARA +and O +analyzed O +the O +effects O +on O +line O +geometry S-CONPRI +of O +several O +printing O +parameters S-CONPRI +including O +valve O +opening O +, O +dispensing O +gap O +, O +and O +substrate S-MATE +translation O +speed O +. O + + +Our O +results O +indicate O +decreasing O +the O +valve O +opening O +, O +decreasing O +the O +dispensing O +gap O +, O +and/or O +increasing O +the O +translation B-PARA +speed E-PARA +of O +the O +substrate S-MATE +reduces O +the O +resultant O +printing O +flow B-PARA +rate E-PARA +and O +cross-sectional O +area S-PARA +of O +DW O +lines O +. O + + +Comprehensive O +mechanical B-CHAR +tests E-CHAR +are O +carried O +out O +on O +two O +new O +PolyJet S-CONPRI +elastomers S-MATE +. O + + +The O +stress-strain O +response O +of O +PolyJet S-CONPRI +elastomers S-MATE +is O +highly O +sensitive O +to O +strain B-CONPRI +rate E-CONPRI +. O + + +A O +visco-hyperelastic O +material S-MATE +model O +captures O +the O +strain B-PRO +rate I-PRO +sensitivity E-PRO +of O +the O +elastomers S-MATE +. O + + +The O +elastomers S-MATE +fully O +recover O +after O +20 O +s S-MATE +after O +repeated O +cyclic B-PRO +loading E-PRO +. O + + +Anisotropy S-PRO +in O +the O +elastomers S-MATE +is O +dependent O +on O +strain S-PRO +and O +strain B-CONPRI +rate E-CONPRI +. O + + +Material B-MANP +jetting E-MANP +, O +particularly O +PolyJet S-CONPRI +technology O +, O +is O +an O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +which O +has O +introduced O +novel O +flexible O +elastomers S-MATE +used O +in O +bio-inspired S-CONPRI +soft O +robots S-MACEQ +, O +compliant O +structures O +and O +dampers O +. O + + +Finite B-CONPRI +Element I-CONPRI +Analysis E-CONPRI +( O +FEA O +) O +is O +a O +key O +tool S-MACEQ +for O +the O +development O +of O +such O +applications O +, O +which O +requires O +comprehensive O +material S-MATE +characterisation O +utilising O +advanced O +material S-MATE +models O +. O + + +However O +, O +in O +contrast O +to O +conventional O +rubbers S-MATE +, O +PolyJet S-CONPRI +elastomers S-MATE +have O +been O +less O +explored O +leading O +to O +a O +few O +material S-MATE +models O +with O +various O +limitations O +in O +fidelity O +. O + + +Therefore O +, O +one O +aim O +of O +this O +study O +was O +to O +characterise O +the O +mechanical B-CONPRI +response E-CONPRI +of O +the O +latest O +PolyJet S-CONPRI +elastomers S-MATE +, O +Agilus30 O +( O +A30 O +) O +and O +Tango+ O +( O +T+ O +) O +, O +under O +large O +strain S-PRO +tension-compression O +and O +time-dependent O +high-frequency/relaxation O +loadings O +. O + + +Another O +aim O +was O +to O +calibrate O +a O +visco-hyperelastic O +material S-MATE +model O +to O +accurately S-CHAR +predict O +these O +responses O +. O + + +Tensile S-PRO +, O +compressive O +, O +cyclic O +, O +dynamic B-CONPRI +mechanical I-CONPRI +analysis E-CONPRI +( O +DMA S-CONPRI +) O +and O +stress B-CONPRI +relaxation E-CONPRI +tests O +were O +carried O +out O +on O +pristine O +A30 O +and O +T+ O +samples S-CONPRI +. O + + +Quasi-static S-CONPRI +tension-compression O +tests O +were O +used O +to O +calibrate O +a O +3-term O +Ogden O +hyperelastic O +model S-CONPRI +. O + + +Stress B-CONPRI +relaxation E-CONPRI +and O +DMA S-CONPRI +results O +were O +combined O +to O +determine O +the O +constants O +of O +a O +5-term O +Prony O +series O +across O +a O +large O +window O +of O +relaxation O +time O +( O +10 O +μs–100 O +s S-MATE +) O +. O + + +A O +numerical O +time-stepping O +scheme O +was O +employed O +to O +predict O +the O +visco-hyperelastic O +response O +of O +the O +3D-printed S-MANP +elastomers O +at O +large O +strains O +and O +different O +strain B-CONPRI +rates E-CONPRI +. O + + +In O +addition O +, O +the O +anisotropy S-PRO +in O +the O +elastomers S-MATE +, O +which O +stemmed O +from O +build B-PARA +orientation E-PARA +, O +was O +explored O +. O + + +Highly O +nonlinear O +stress-strain O +relationships O +were O +observed O +in O +both O +elastomers S-MATE +, O +with O +a O +strong O +dependency O +on O +strain B-CONPRI +rate E-CONPRI +. O + + +Relaxation O +tests O +revealed O +that O +A30 O +and O +T+ O +elastomers S-MATE +relax O +to O +50 O +% O +and O +70 O +% O +of O +their O +peak O +stress S-PRO +values O +respectively O +in O +less O +than O +20 O +s. O +The O +effect O +of O +orientation S-CONPRI +on O +the O +loading O +response O +was O +most O +pronounced O +with O +prints O +along O +the O +Z-direction S-FEAT +, O +particularly O +at O +large O +strains O +and O +lower O +strain B-CONPRI +rates E-CONPRI +. O + + +Moreover O +, O +the O +visco-hyperelastic O +material S-MATE +model O +accurately S-CHAR +predicted O +the O +large O +strain S-PRO +and O +time-dependent O +behaviour O +of O +both O +elastomers S-MATE +. O + + +Our O +findings O +will O +allow O +for O +the O +development O +of O +more O +accurate S-CHAR +computational O +models O +of O +3D-printed S-MANP +elastomers O +, O +which O +can O +be S-MATE +utilised O +for O +computer-aided B-ENAT +design E-ENAT +in O +novel O +applications O +requiring O +flexible O +or O +rate-sensitive O +AM B-MATE +materials E-MATE +. O + + +Measures O +thermal B-PRO +conductivity E-PRO +of O +additively B-MANP +manufactured E-MANP +components O +. O + + +Demonstrates O +significant O +direction-dependence O +of O +thermal B-PRO +conductivity E-PRO +. O + + +Demonstrates O +significant O +effect O +of O +process B-CONPRI +parameters E-CONPRI +. O + + +Results O +may O +be S-MATE +helpful O +in O +design S-FEAT +of O +3D-printed S-MANP +heat O +transfer O +components S-MACEQ +. O + + +Additive B-MANP +manufacturing E-MANP +, O +or O +3D B-MANP +printing E-MANP +, O +is O +an O +exciting O +manufacturing S-MANP +technique O +based O +on O +layer-by-layer S-CONPRI +build-up O +as S-MATE +opposed O +to O +the O +subtractive S-MANP +approach O +in O +most O +traditional O +machining S-MANP +processes O +. O + + +Specifically O +, O +in O +polymer-based O +additive B-MANP +manufacturing I-MANP +processes E-MANP +, O +filaments S-MATE +of O +a O +polymer S-MATE +are O +dispensed O +from O +a O +rastering O +extruder S-MACEQ +to O +define O +each O +layer S-PARA +. O + + +Due O +to O +the O +directional O +nature O +of O +this O +process S-CONPRI +, O +it O +is O +of O +interest O +to O +determine O +whether O +thermal O +transport S-CHAR +properties S-CONPRI +of O +the O +built O +part O +are O +direction O +dependent O +. O + + +Such O +an O +understanding O +is O +critical O +for O +accurate S-CHAR +design O +of O +components S-MACEQ +that O +serve O +a O +thermal O +function O +. O + + +This O +paper O +reports O +measurement S-CHAR +of O +thermal B-PRO +conductivity E-PRO +of O +additively B-MANP +manufactured E-MANP +polymer O +samples S-CONPRI +in O +the O +filament S-MATE +rastering O +direction O +and O +in O +the O +build B-PARA +direction E-PARA +. O + + +Samples S-CONPRI +are O +designed S-FEAT +and O +built O +in O +order O +to O +force S-CONPRI +heat O +flow O +only O +in O +one O +direction O +during O +thermal B-CONPRI +property E-CONPRI +measurement S-CHAR +. O + + +Experimental B-CONPRI +data E-CONPRI +indicate O +significant O +anisotropy S-PRO +in O +thermal B-PRO +conductivity E-PRO +, O +with O +the O +value O +in O +the O +build B-PARA +direction E-PARA +being O +much O +lower O +than O +in O +the O +raster O +direction O +. O + + +Both O +thermal B-PRO +conductivities E-PRO +are O +found O +to O +depend O +strongly O +on O +the O +air O +gap O +between O +adjacent O +filaments S-MATE +. O + + +A O +theoretical S-CONPRI +thermal O +conduction O +model S-CONPRI +is O +found O +to O +be S-MATE +in O +good O +agreement O +with O +experimental B-CONPRI +data E-CONPRI +. O + + +Cross B-CONPRI +section E-CONPRI +images O +of O +samples S-CONPRI +confirm O +the O +strong O +effect O +of O +the O +gap O +on O +the O +microstructure S-CONPRI +, O +and O +hence O +on O +thermal B-CONPRI +properties E-CONPRI +. O + + +Results O +from O +this O +paper O +provide O +a O +key O +insight O +into O +the O +anisotropic S-PRO +nature O +of O +thermal O +conduction O +in O +additively B-MANP +manufactured E-MANP +components O +, O +and O +establish O +the O +presence O +of O +significant O +inter-layer O +thermal O +contact S-APPL +resistance O +. O + + +These O +results O +may O +be S-MATE +helpful O +in O +the O +fundamental O +understanding O +of O +heat B-CONPRI +transfer E-CONPRI +in O +3D-printed S-MANP +components O +, O +as S-MATE +well O +as S-MATE +in O +accurate S-CHAR +design O +and O +fabrication S-MANP +of O +heat B-CONPRI +transfer E-CONPRI +components S-MACEQ +through O +3D B-MANP +printing E-MANP +. O + + +A O +computational B-CHAR +fluid I-CHAR +dynamics E-CHAR +model O +is O +used O +to O +predict O +the O +mesostructure O +formed O +by O +the O +successive O +deposition S-CONPRI +of O +parallel O +strands O +in O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +The O +numerical O +model S-CONPRI +simulates O +the O +extrusion S-MANP +of O +the O +material S-MATE +onto O +the O +substrate S-MATE +. O + + +The O +simulated O +mesostructures O +are O +compared O +to O +optical S-CHAR +micrographs O +of O +the O +mesostructures O +of O +3D-printed S-MANP +samples O +, O +and O +the O +predictions S-CONPRI +agree O +well O +with O +the O +experiments O +. O + + +In O +addition O +, O +the O +influence O +of O +the O +layer B-PARA +thickness E-PARA +, O +the O +strand-to-strand O +distance O +, O +and O +the O +deposition B-CONPRI +configuration E-CONPRI +( O +with O +aligned O +or O +skewed O +layers O +) O +on O +the O +formation O +of O +the O +mesostructure O +is O +investigated O +. O + + +The O +simulations S-ENAT +provide O +detailed O +information O +about O +the O +porosity S-PRO +, O +the O +inter- O +and O +intra-layer O +bond O +line O +densities O +, O +and O +the O +surface B-PRO +roughness E-PRO +of O +the O +mesostructures O +, O +which O +potentially O +can O +be S-MATE +used O +in O +a O +model-based O +slicing S-CONPRI +software O +. O + + +Lithography-based O +Additive B-MANP +Manufacturing E-MANP +Technologies O +( O +L-AMT O +) O +exploit O +the O +curing S-MANP +of O +photosensitive O +materials S-CONPRI +upon O +light B-CONPRI +exposure E-CONPRI +. O + + +We O +developed O +a O +hybrid O +exposure S-CONPRI +concept O +. O + + +This O +system O +is O +able O +to O +overcome O +the O +challenge O +of O +providing O +good O +surface B-PARA +qualities E-PARA +and O +excellent O +feature S-FEAT +resolution O +as S-MATE +well O +as S-MATE +a O +throughput S-CHAR +similar O +to O +dynamic S-CONPRI +mask-based O +L-AMT O +systems O +by O +combining O +two O +light B-MACEQ +sources E-MACEQ +. O + + +A O +Digital B-MANP +Light I-MANP +Processing E-MANP +( O +DLP® O +) O +Light O +Engine O +( O +LE O +) O +with O +a O +building O +area S-PARA +of O +144 O +x O +90 O +mm² O +offers O +a O +pixelsize O +of O +56 O +μm O +. O + + +In O +order O +to O +further O +improve O +the O +achievable O +resolution S-PARA +, O +a O +continuous O +laser-exposed O +contour S-FEAT +line O +( O +spot B-PARA +size E-PARA +20 O +μm O +) O +on O +the O +outside O +of O +the O +projected O +envelope O +can O +be S-MATE +written O +with O +an O +additional O +scanning S-CONPRI +laser-system O +. O + + +The O +matching O +of O +the O +DLP® O +projection O +mask S-CONPRI +and O +the O +laser-contour O +is O +crucial O +for O +accurate S-CHAR +printing O +. O + + +Therefore O +a O +calibration S-CONPRI +tool O +was O +developed O +, O +which O +facilitates O +the O +alignment O +of O +the O +two O +light B-MACEQ +sources E-MACEQ +. O + + +A O +dichroic O +coated S-APPL +mirror O +enables O +a O +perpendicular O +alignment O +of O +the O +DLP® O +light O +beam S-MACEQ +and O +the O +laser B-CONPRI +beam E-CONPRI +. O + + +In O +this O +paper O +, O +we O +formulate O +the O +generation O +of O +support B-FEAT +structures E-FEAT +for O +additive B-MANP +manufacturing E-MANP +as O +a O +topology B-FEAT +optimization E-FEAT +problem O +. O + + +Compared O +with O +usual O +geometric O +considerations O +based O +support B-FEAT +structure E-FEAT +design S-FEAT +, O +this O +formulation O +affords O +mechanistic O +meaning O +to O +the O +computed O +support B-FEAT +structures E-FEAT +. O + + +Moreover O +, O +our O +study O +reveals O +that O +the O +topology B-FEAT +optimization E-FEAT +formulation O +generally O +leads O +to O +self-supporting B-FEAT +designs E-FEAT +without O +extraneous O +self-supporting S-FEAT +constraints O +. O + + +The O +resulting O +support B-FEAT +structures E-FEAT +have O +been O +3D B-MANP +printed E-MANP +, O +demonstrating O +that O +the O +computed O +designs S-FEAT +can O +successfully O +be S-MATE +used O +as S-MATE +supports O +. O + + +To O +better O +understand O +the O +impact S-CONPRI +of O +complex B-CONPRI +structure E-CONPRI +on O +mechanical B-CONPRI +properties E-CONPRI +in O +additively B-MANP +manufactured E-MANP +ceramics O +, O +truss S-MACEQ +structures O +were O +3D B-MANP +printed E-MANP +in O +preceramic O +polymer S-MATE +and O +mechanically O +evaluated O +in O +the O +pyrolyzed O +SiOC O +state O +. O + + +Specimens O +were O +printed O +using O +digital B-MANP +light I-MANP +processing E-MANP +with O +a O +siloxane O +polymer B-MATE +resin E-MATE +blend S-MATE +. O + + +Four O +different O +designs S-FEAT +were O +printed O +: O +two O +bending-dominant O +Kelvin O +cell S-APPL +structures O +, O +a O +stretching-dominant O +octet B-CONPRI +structure E-CONPRI +, O +and O +a O +mixture O +of O +the O +two O +with O +geometries S-CONPRI +chosen O +for O +equivalent O +stiffness S-PRO +. O + + +Mechanical S-APPL +characterization O +was O +done O +at O +multiple O +length B-CHAR +scales E-CHAR +: O +uniaxial O +compression S-PRO +to O +evaluate O +the O +entire O +truss S-MACEQ +structure S-CONPRI +, O +and O +three-point O +flexure S-MACEQ +to O +assess O +individual O +beam S-MACEQ +elements O +. O + + +After O +pyrolysis S-MANP +, O +it O +was O +found O +that O +truss S-MACEQ +designs S-FEAT +exhibited O +different O +shrinkages O +at O +the O +beam S-MACEQ +element O +scale O +despite O +being O +composed O +of O +the O +same O +preceramic O +polymer S-MATE +and O +exhibiting O +isotropic S-PRO +shrinkage O +at O +the O +macro-truss O +scale O +. O + + +This O +manner O +of O +nonuniform O +shrinkage S-CONPRI +has O +rarely O +, O +if O +ever O +been O +reported O +, O +as S-MATE +it O +is O +standard S-CONPRI +practice O +in O +additive B-MANP +manufacturing E-MANP +to O +report O +only O +bulk O +linear O +shrinkage S-CONPRI +. O + + +In O +uniaxial O +compression S-PRO +, O +Kelvin O +structures O +with O +thicker O +beams O +exhibited O +the O +highest O +strength S-PRO +of O +10 O +MPa S-CONPRI +, O +and O +octet B-CONPRI +structures E-CONPRI +exhibited O +the O +lowest O +strength S-PRO +of O +3.8 O +MPa S-CONPRI +. O + + +In O +beam S-MACEQ +element O +flexure S-MACEQ +however O +, O +the O +octet O +beams O +had O +the O +highest O +strength S-PRO +, O +1.9 O +GPa S-PRO +, O +four O +times O +stronger O +than O +the O +Kelvin O +beam S-MACEQ +elements O +and O +500 O +times O +stronger O +than O +the O +octet O +bulk O +structure S-CONPRI +. O + + +Achieving O +better O +control O +in O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +relies O +on O +a O +molecular O +understanding O +of O +how O +thermoplastic S-MATE +printing O +materials S-CONPRI +behave O +during O +the O +printing B-MANP +process E-MANP +. O + + +For O +semi-crystalline O +polymers S-MATE +, O +the O +ultimate O +crystal O +morphology S-CONPRI +and O +how O +it O +develops O +during O +cooling S-MANP +is O +crucial O +to O +determining O +part O +properties S-CONPRI +. O + + +Here O +crystallisation O +kinetics O +are O +added O +to O +a O +previously-developed O +model S-CONPRI +, O +which O +contains O +a O +molecularly-aware O +constitutive O +equation O +to O +describe O +polymer S-MATE +stretch O +and O +orientation S-CONPRI +during O +typical O +non-isothermal O +FFF S-MANP +flow O +, O +and O +conditions O +under O +which O +flow-enhanced O +nucleation S-CONPRI +occurs O +due O +to O +residual S-CONPRI +stretch O +are O +revealed O +. O + + +Flow-enhanced O +nucleation S-CONPRI +leads O +to O +accelerated O +crystallisation O +times O +at O +the O +surface S-CONPRI +of O +a O +deposited O +filament S-MATE +, O +whilst O +the O +bulk O +of O +the O +filament S-MATE +is O +governed O +by O +slower O +quiescent O +kinetics O +. O + + +The O +predicted S-CONPRI +time O +to O +10 O +% O +crystallinity O +, O +t10 O +, O +is O +in O +quantitative S-CONPRI +agreement O +with O +in-situ S-CONPRI +Raman O +spectroscopy S-CONPRI +measurements O +of O +polycaprolactone O +( O +PCL S-MATE +) O +. O + + +The O +model S-CONPRI +highlights O +important O +features O +not O +captured O +by O +a O +single O +measurement S-CHAR +of O +t10 O +. O + + +In O +particular O +, O +the O +crystal O +morphology S-CONPRI +varies O +cross-sectionally O +, O +with O +smaller O +spherulites O +forming S-MANP +in O +an O +outer O +skin O +layer S-PARA +, O +explaining O +features O +observed O +in O +full O +transient S-CONPRI +crystallisation O +measurements O +. O + + +Finally O +, O +exploitation O +of O +flow-enhanced O +crystallisation O +is O +proposed O +as S-MATE +a O +mechanism S-CONPRI +to O +increase O +weld B-PRO +strength E-PRO +at O +the O +interface S-CONPRI +between O +deposited O +filaments S-MATE +. O + + +In O +nature O +, O +mesoscopic O +or O +microscopic O +cellular B-FEAT +structures E-FEAT +like O +trabecular B-MATE +bone E-MATE +, O +wood S-MATE +, O +shell S-MACEQ +, O +and O +sea O +urchin O +, O +can O +have O +high O +load-carrying O +capacity S-CONPRI +. O + + +These O +cellular B-FEAT +structures E-FEAT +with O +diverse O +shapes O +, O +forms O +and O +designs S-FEAT +can O +be S-MATE +mainly O +classified O +into O +open O +and O +closed O +cell S-APPL +cellular O +structures O +. O + + +It O +is O +difficult O +to O +replicate O +these O +natural O +complex O +lattice B-FEAT +structures E-FEAT +with O +traditional B-MANP +manufacturing E-MANP +, O +but O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technology S-CONPRI +development O +has O +allowed O +engineers O +and O +scientists O +to O +mimic S-MACEQ +these O +natural O +structures O +. O + + +Fabricating S-MANP +close O +cell S-APPL +lattice O +structures O +is O +still O +considered O +difficult O +due O +to O +the O +support B-FEAT +structure E-FEAT +within O +the O +lattices S-CONPRI +. O + + +This O +paper O +evaluates O +a O +novel O +way O +of O +fabricating S-MANP +a O +close O +cell S-APPL +lattice O +structure S-CONPRI +with O +a O +material B-MANP +extrusion E-MANP +process O +. O + + +The O +design S-FEAT +eliminates O +the O +need O +for O +support B-FEAT +structures E-FEAT +and O +the O +subsequent O +post-processing S-CONPRI +required O +to O +remove O +them O +. O + + +A O +shell-shaped O +close O +cell S-APPL +lattice O +structure S-CONPRI +bio-mimicking O +a O +sea O +urchin O +shape O +was O +introduced O +for O +the O +load-bearing S-FEAT +structure O +application O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +proposed O +structure S-CONPRI +, O +including O +stiffness S-PRO +, O +deformation S-CONPRI +behavior O +and O +energy B-CHAR +absorption E-CHAR +, O +were O +compared O +with O +those O +of O +benchmarked O +honeycomb S-CONPRI +and O +open O +cell S-APPL +sea O +urchin O +( O +SU O +) O +lattice B-FEAT +structures E-FEAT +of O +the O +same O +density S-PRO +. O + + +SU O +lattice B-FEAT +structures E-FEAT +and O +honeycomb S-CONPRI +periodic O +lattice B-FEAT +structures E-FEAT +with O +varied O +sizes O +but O +the O +same O +morphology S-CONPRI +and O +fixed O +density S-PRO +were O +designed S-FEAT +and O +printed O +in O +polylactic B-MATE +acid I-MATE +material E-MATE +( O +PLA S-MATE +) O +. O + + +Their O +physical O +characteristics O +, O +deformation S-CONPRI +behavior O +, O +and O +compressive O +properties S-CONPRI +were O +investigated O +experimentally O +and O +via O +finite B-CONPRI +element I-CONPRI +analysis E-CONPRI +. O + + +The O +effect O +of O +the O +unit B-CONPRI +cell E-CONPRI +size O +on O +mechanical B-CONPRI +properties E-CONPRI +was O +studied O +and O +discussed O +, O +and O +the O +rankings O +of O +better O +performances O +were O +drawn O +. O + + +A O +possible O +application O +of O +the O +closed O +cell S-APPL +is O +for O +fabricating S-MANP +the O +load O +bearing O +structure S-CONPRI +; O +it O +can O +also O +be S-MATE +encapsulated O +within O +a O +fluid S-MATE +to O +impart O +strength S-PRO +and O +damping O +characteristics O +. O + + +An O +anisotropic S-PRO +cohesive O +zone O +model S-CONPRI +with O +XFEM O +is O +developed O +to O +capture O +fracture S-CONPRI +in O +additively B-MANP +manufactured E-MANP +polymer O +materials S-CONPRI +. O + + +The O +XFEM O +is O +able O +to O +model S-CONPRI +crack B-CONPRI +propagations E-CONPRI +in O +3D B-MANP +printed E-MANP +materials O +without O +knowing O +a O +priori O +the O +crack O +path O +. O + + +Parametric O +studies O +show O +that O +the O +competition O +between O +inter-layer O +failure S-CONPRI +and O +max O +principal B-PRO +stress E-PRO +failure S-CONPRI +largely O +affects O +the O +kinked O +cracks O +. O + + +The O +fracture S-CONPRI +of O +additively B-MANP +manufactured E-MANP +polymer O +materials S-CONPRI +with O +various O +layer S-PARA +orientations O +is O +studied O +using O +the O +extended O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +( O +XFEM O +) O +in O +an O +anisotropic S-PRO +cohesive O +zone O +model S-CONPRI +( O +CZM O +) O +. O + + +The O +single O +edge O +notched O +bending S-MANP +( O +SENB O +) O +specimens O +made O +of O +acrylonitrile-butadiene-styrene O +( O +ABS S-MATE +) O +materials S-CONPRI +through O +fused B-MANP +filament I-MANP +fabrications E-MANP +with O +various O +crack O +tip/layer O +orientations S-CONPRI +are O +considered O +. O + + +The O +XFEM O +coupled O +with O +anisotropic S-PRO +CZM O +is O +employed O +to O +model S-CONPRI +the O +brittle B-CONPRI +fracture E-CONPRI +( O +fracture S-CONPRI +between O +layers O +) O +, O +ductile B-CONPRI +fracture E-CONPRI +( O +fracture S-CONPRI +through O +layers O +) O +, O +as S-MATE +well O +as S-MATE +kinked O +fracture S-CONPRI +behaviors O +of O +ABS S-MATE +specimens O +printed O +with O +vertical S-CONPRI +, O +horizontal O +, O +and O +oblique O +layer S-PARA +orientations O +, O +respectively O +. O + + +Both O +elastic S-PRO +and O +elastoplastic O +fracture S-CONPRI +models O +, O +coupled O +with O +linear O +or O +exponential O +traction-separation O +laws O +, O +are O +developed O +for O +the O +inter-layer O +and O +cross-layer O +fracture S-CONPRI +, O +respectively O +. O + + +For O +mixed O +inter-/cross- O +layer S-PARA +fracture S-CONPRI +, O +an O +anisotropic S-PRO +cohesive O +zone O +model S-CONPRI +is O +developed O +to O +predict O +the O +kinked O +crack B-CONPRI +propagations E-CONPRI +. O + + +Two O +crack O +initiation O +and O +evolution S-CONPRI +criteria O +are O +defined O +to O +include O +both O +crack B-CONPRI +propagation E-CONPRI +between O +layers O +( O +weak O +plane O +failure S-CONPRI +) O +and O +crack O +penetration S-CONPRI +through O +layers O +( O +maximum B-CONPRI +principal I-CONPRI +stress I-CONPRI +failure E-CONPRI +) O +that O +jointly O +determine O +the O +zig-zag O +crack B-CONPRI +growth E-CONPRI +paths O +. O + + +The O +anisotropic S-PRO +cohesive O +zone O +model S-CONPRI +with O +XFEM O +developed O +in O +this O +study O +is O +able O +to O +capture O +different O +fracture S-CONPRI +behaviors O +of O +additively B-MANP +manufactured E-MANP +ABS S-MATE +samples O +with O +different O +layer S-PARA +orientations O +. O + + +A O +conformal O +, O +compliant O +and O +multi-layer O +tactile O +sensor S-MACEQ +was O +built O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +using O +a O +hybrid B-CONPRI +manufacturing E-CONPRI +process O +including O +conformal O +Direct-Print O +( O +DP O +) O +technology S-CONPRI +and O +layer B-CONPRI +by I-CONPRI +layer E-CONPRI +soft O +molding S-MANP +process O +with O +a O +developed O +piezoresistive O +polymer/nanocomposite O +. O + + +A O +multi-layer O +conformal O +skin O +structure S-CONPRI +of O +the O +sensor S-MACEQ +was O +created O +using O +the O +soft O +molding S-MANP +process O +along O +with O +a O +highly O +flexible O +rubber B-MATE +material E-MATE +. O + + +Two O +layers O +of O +sensing S-APPL +elements S-MATE +were O +designed S-FEAT +, O +where O +the O +sensing S-APPL +elements S-MATE +in O +the O +lower O +sensing S-APPL +layer S-PARA +were O +orthogonally O +placed O +against O +those O +in O +the O +upper O +sensing S-APPL +layer S-PARA +so O +that O +the O +sensing S-APPL +elements S-MATE +in O +two O +layers O +could O +cross O +each O +other O +with O +an O +insulating B-CONPRI +layer E-CONPRI +between O +them O +. O + + +A O +conformal O +printing O +algorithm S-CONPRI +was O +developed O +to O +advance O +the O +capability O +of O +DP O +technology S-CONPRI +. O + + +Thus O +, O +all O +the O +sensing S-APPL +elements S-MATE +were O +printed O +uniformly O +within O +the O +conformal O +skin O +structure S-CONPRI +. O + + +Several O +experiments O +on O +position O +detection O +were O +performed O +to O +evaluate O +the O +performance S-CONPRI +of O +the O +fabricated S-CONPRI +conformal O +sensor S-MACEQ +. O + + +The O +results O +showed O +that O +the O +sensor S-MACEQ +can O +detect O +locations O +of O +external O +forces S-CONPRI +applied O +on O +the O +sensor S-MACEQ +surface O +due O +to O +the O +multiple O +layers O +of O +sensing S-APPL +elements S-MATE +. O + + +It O +is O +concluded O +that O +the O +suggested O +manufacturing S-MANP +methods O +and O +developed O +materials S-CONPRI +are O +promising O +tools S-MACEQ +to O +develop O +conformal O +, O +compliant O +tactile O +sensors S-MACEQ +. O + + +Microstereolithography S-MANP +( O +MSL O +) O +has O +been O +employed O +to O +create O +3D S-CONPRI +microstructures O +for O +a O +wide O +range S-PARA +of O +applications O +. O + + +Despite O +the O +many O +advantages O +of O +using O +this O +process S-CONPRI +, O +there O +are O +still O +several O +drawbacks O +such O +as S-MATE +the O +need O +to O +use O +a O +large O +amount O +of O +a O +material S-MATE +compared O +to O +the O +volume S-CONPRI +of O +the O +microstructure S-CONPRI +to O +be S-MATE +built O +, O +oxygen S-MATE +inhibition O +, O +and O +difficulty O +in O +processing O +highly O +viscous O +photopolymers S-MATE +. O + + +To O +minimize O +the O +amount O +of O +material S-MATE +required O +, O +the O +use O +of O +a O +liquid O +bridge S-APPL +has O +been O +suggested O +as S-MATE +a O +modification O +to O +the O +existing O +microstereolithography S-MANP +process O +. O + + +A O +liquid O +bridge S-APPL +can O +be S-MATE +easily O +found O +in O +nature O +after O +a O +rainfall O +. O + + +Basically O +, O +a O +bridge S-APPL +can O +be S-MATE +formed O +between O +two O +solid O +bodies O +, O +where O +surface B-PRO +tension E-PRO +can O +sustain O +a O +liquid O +bridge S-APPL +against O +a O +gravitational O +force S-CONPRI +, O +which O +tends O +to O +destroy O +it O +. O + + +With O +this O +natural O +phenomenon O +, O +a O +photopolymer S-MATE +can O +be S-MATE +intentionally O +formed O +between O +two O +substrates O +: O +a O +transparent S-CONPRI +substrate S-MATE +with O +a O +low O +surface S-CONPRI +energy O +can O +be S-MATE +used O +as S-MATE +a O +top O +substrate S-MATE +, O +while O +another O +substrate S-MATE +with O +a O +higher O +surface S-CONPRI +energy O +can O +be S-MATE +used O +to O +hold O +the O +fabricated S-CONPRI +structure O +together O +. O + + +This O +process S-CONPRI +, O +called O +liquid O +bridge S-APPL +microstereolithography O +( O +LBMSL O +) O +, O +is O +advantageous O +since O +it O +uses O +a O +relatively O +small O +amount O +of O +a O +material S-MATE +, O +removes O +oxygen S-MATE +inhibition O +due O +to O +the O +constraint O +of O +the O +material S-MATE +surface O +, O +and O +offers O +the O +possibility O +of O +utilizing O +a O +highly O +viscous O +material S-MATE +. O + + +In O +this O +study O +, O +a O +mathematical S-CONPRI +model O +was O +taken O +to O +simulate O +a O +liquid O +bridge S-APPL +with O +a O +certain O +volume S-CONPRI +and O +height O +. O + + +Adhesion S-PRO +tests O +were O +accomplished O +to O +ensure O +the O +fabricated S-CONPRI +layer O +detaches O +from O +the O +top O +substrate S-MATE +while O +the O +fabricated S-CONPRI +structure O +remains O +attached O +to O +the O +bottom O +structure S-CONPRI +. O + + +Finally O +, O +various O +3D S-CONPRI +microstructures O +were O +fabricated S-CONPRI +by O +LBMSL O +; O +these O +fabricated S-CONPRI +microstructures O +provide O +compelling O +evidence O +that O +LBMSL O +is O +advantageous O +over O +the O +existing O +process S-CONPRI +for O +MSL O +. O + + +The O +paper O +presents O +a O +method O +to O +optimize O +build B-PARA +orientation E-PARA +and O +topological O +layout S-CONPRI +simultaneously O +in O +density-based O +topology B-FEAT +optimization E-FEAT +for O +additive B-MANP +manufacturing E-MANP +. O + + +Support B-FEAT +structures E-FEAT +are O +required O +in O +additive B-MANP +manufacturing E-MANP +of O +parts O +of O +complex B-PRO +shape E-PRO +. O + + +To O +eliminate O +or O +reduce O +support B-FEAT +structures E-FEAT +during O +the O +additive S-MATE +processes O +, O +we O +constrain O +the O +lower O +bound O +of O +the O +overhang B-PARA +angle E-PARA +of O +the O +optimized O +design S-FEAT +. O + + +In O +this O +method O +, O +the O +build B-PARA +orientation E-PARA +and O +the O +density B-PRO +field E-PRO +used O +to O +represent O +the O +part O +are O +simultaneously O +optimized O +to O +satisfy O +the O +overhang B-PARA +angle E-PARA +constraints O +for O +part O +self-support O +. O + + +The O +first O +directional O +gradient O +based O +global O +constraint O +controls O +the O +overhang B-PARA +angle E-PARA +of O +the O +solid/void O +interface S-CONPRI +inside O +the O +design S-FEAT +domain O +to O +eliminate O +the O +internal O +supports S-APPL +. O + + +The O +second O +density-based O +global O +constraint O +controls O +the O +angle O +of O +the O +design S-FEAT +domain O +boundary S-FEAT +to O +reduce O +the O +external O +supports S-APPL +. O + + +Numerical O +examples O +on O +both O +2D S-CONPRI +and O +3D S-CONPRI +linear O +elastic S-PRO +problems O +are O +presented O +to O +demonstrate O +the O +validity O +and O +efficiency O +of O +the O +proposed O +formulations O +in O +the O +build B-PARA +orientation E-PARA +optimization O +and O +in O +the O +overhang B-PARA +angle E-PARA +control O +. O + + +As S-MATE +the O +application O +space O +for O +large-scale O +3D B-MANP +printed E-MANP +components O +continues O +to O +grow O +, O +it O +is O +necessary O +to O +identify O +appropriate O +processing O +conditions O +for O +high-performance O +thermoplastics S-MATE +on O +large O +format O +Additive B-MANP +Manufacturing E-MANP +( O +LFAM O +) O +systems O +. O + + +This O +study O +compares O +the O +rheological S-PRO +behavior O +of O +a O +high-performance O +thermoplastic S-MATE +, O +polyphenylsulfone O +( O +PPSU O +) O +, O +with O +that O +of O +a O +commonly O +used O +low-temperature O +polymer S-MATE +, O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +, O +to O +identify O +suitable O +processing O +conditions O +for O +large O +format O +AM S-MANP +systems O +. O + + +The O +linear O +viscoelastic B-PRO +properties E-PRO +( O +complex O +viscosity S-PRO +, O +storage O +modulus O +, O +loss O +modulus O +, O +and O +tan O +delta O +) O +of O +these O +materials S-CONPRI +are O +evaluated O +as S-MATE +a O +function O +of O +temperature S-PARA +, O +angular O +frequency O +, O +and O +carbon B-MATE +fiber E-MATE +content O +. O + + +The O +addition O +of O +20–35 O +% O +by O +weight S-PARA +of O +carbon B-MATE +fiber E-MATE +increased O +the O +shear B-CONPRI +thinning E-CONPRI +effect O +of O +both O +thermoplastics S-MATE +, O +showing O +a O +potential O +variation S-CONPRI +of O +2–3 O +x O +over O +the O +range S-PARA +of O +expected O +LFAM O +extrusion S-MANP +shear O +rates O +( O +10–100 O +s−1 O +) O +. O + + +Sustainable S-CONPRI +and O +environmentally O +friendly O +process S-CONPRI +for O +spherical S-CONPRI +poly O +( O +L-lactide O +) O +( O +PLLA O +) O +particles S-CONPRI +for O +Additive B-MANP +Manufacturing E-MANP +. O + + +PLLA O +microspheres S-CONPRI +produced O +by O +liquid-liquid O +phase S-CONPRI +separation O +and O +precipitation S-CONPRI +using O +triacetin O +as S-MATE +solvent O +. O + + +Particle S-CONPRI +characterization O +with O +respect O +to O +processability O +in O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +of O +polymers S-MATE +. O + + +Narrowly O +distributed O +, O +spherical S-CONPRI +PLLA O +powders S-MATE +show O +excellent O +flowability O +. O + + +Manufacturing S-MANP +and O +mechanical S-APPL +characterization O +of O +3D B-MANP +printed E-MANP +tensile O +test O +bars O +and O +complex O +porous S-PRO +gyroid O +specimens O +. O + + +In O +this O +work O +, O +the O +development O +and O +processing O +behavior O +of O +poly O +( O +L-lactide O +) O +( O +PLLA O +) O +particles S-CONPRI +for O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +of O +polymers S-MATE +obtained O +via O +a O +green O +and O +sustainable B-CONPRI +process E-CONPRI +route O +are O +thoroughly O +studied O +. O + + +Liquid-liquid O +phase S-CONPRI +separation O +and O +precipitation S-CONPRI +from O +triacetin O +, O +a O +non-toxic O +solvent O +, O +are O +applied O +for O +the O +production S-MANP +of O +highly O +spherical S-CONPRI +PLLA O +particles S-CONPRI +of O +excellent O +flowability O +. O + + +Starting O +from O +the O +measured O +cloud-point O +diagram O +of O +the O +PLLA-triacetin O +system O +, O +appropriate O +temperature S-PARA +profiles S-FEAT +for O +the O +precipitation S-CONPRI +process O +are O +derived O +. O + + +The O +effect O +of O +process B-CONPRI +parameters E-CONPRI +on O +the O +product O +properties S-CONPRI +is O +addressed O +in O +detail O +; O +the O +PLLA O +particles S-CONPRI +are O +characterized O +regarding O +their O +size O +distribution S-CONPRI +and O +morphology S-CONPRI +. O + + +Furthermore O +, O +material B-CONPRI +properties E-CONPRI +including O +thermal O +behavior O +( O +c.f O +. O + + +processing O +window O +for O +powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +) O +and O +powder S-MATE +flowability O +are O +assessed O +. O + + +The O +spherical S-CONPRI +PLLA O +particles S-CONPRI +of O +narrow O +size O +distribution S-CONPRI +display O +a O +wide O +sintering S-MANP +window O +of O +59 O +K S-MATE +and O +an O +excellent O +flowability O +due O +to O +the O +intrinsic O +surface B-PRO +roughness E-PRO +of O +the O +particles S-CONPRI +. O + + +Thus O +, O +tensile B-CHAR +test E-CHAR +bars O +and O +complex O +porous S-PRO +gyroid O +specimens O +were O +successfully O +manufactured S-CONPRI +via O +PBF S-MANP +without O +the O +need O +for O +any O +additional O +surface S-CONPRI +functionalization O +of O +the O +particles S-CONPRI +with O +flow O +agents O +. O + + +The O +high O +potential O +of O +the O +newly O +developed O +PLLA O +powders S-MATE +produced O +via O +an O +environmentally O +friendly O +approach O +omitting O +the O +use O +of O +halogenated O +or O +toxic O +solvents O +, O +as S-MATE +well O +as S-MATE +flowing O +aids O +, O +is O +demonstrated O +by O +mechanical B-CHAR +testing E-CHAR +of O +the O +printed O +specimens O +. O + + +Composite S-MATE +textiles O +have O +found O +widespread O +use O +and O +advantages O +in O +various O +industries S-APPL +and O +applications O +. O + + +The O +constant O +demand O +for O +high-quality O +products O +and O +services O +requires O +companies S-APPL +to O +minimize O +their O +manufacturing B-CONPRI +costs E-CONPRI +and O +delivery O +time O +in O +order O +to O +compete O +with O +general O +and O +niche O +marketplaces O +. O + + +Creation O +of O +molding S-MANP +and O +tooling S-CONPRI +options O +for O +advanced B-MATE +composites E-MATE +encompasses O +a O +large O +portion O +of O +fabrication B-PARA +time E-PARA +, O +making O +it O +a O +costly O +process S-CONPRI +and O +a O +restraining O +factor O +. O + + +This O +research S-CONPRI +discusses O +a O +preliminary O +investigation O +into O +the O +use O +and O +control O +of O +soluble S-CONPRI +polymer S-MATE +compounds O +and O +additive B-MANP +manufacturing E-MANP +to O +fabricate S-MANP +sacrificial O +molds S-MACEQ +. O + + +These O +molds S-MACEQ +suffer O +from O +dimensional O +errors S-CONPRI +due O +to O +several O +factors O +, O +which O +have O +also O +been O +characterized O +. O + + +The O +basic O +soluble S-CONPRI +mold S-MACEQ +of O +a O +composite S-MATE +is O +3D B-MANP +printed E-MANP +to O +meet O +the O +desired O +dimensions S-FEAT +and O +geometry S-CONPRI +of O +holistic O +structures O +or O +spliced O +components S-MACEQ +. O + + +The O +time O +taken O +to O +dissolve O +the O +mold S-MACEQ +depends O +on O +the O +rate O +of O +agitation S-CONPRI +of O +the O +solvent O +. O + + +This O +process S-CONPRI +is O +steered O +towards O +enabling O +the O +implantation S-MANP +of O +optoelectronic O +devices O +within O +the O +composite S-MATE +to O +provide O +a O +sensing S-APPL +capability O +for O +structural O +health O +monitoring O +. O + + +The O +shape O +deviation O +of O +the O +3D B-MANP +printed E-MANP +mold O +is O +also O +studied O +and O +compared O +to O +its O +original O +dimensions S-FEAT +to O +optimize O +the O +dimensional O +quality S-CONPRI +to O +produce O +dimensionally O +accurate S-CHAR +parts O +of O +up O +to O +0.02 O +% O +error S-CONPRI +. O + + +In O +order O +to O +use O +selective B-MANP +laser I-MANP +sintering E-MANP +to O +manufacture S-CONPRI +structural O +parts O +for O +automotive S-APPL +and O +aerospace S-APPL +applications O +, O +the O +failure S-CONPRI +conditions O +of O +such O +a O +component S-MACEQ +must O +be S-MATE +understood O +and O +predicted S-CONPRI +. O + + +A O +3D S-CONPRI +failure O +criterion O +for O +anisotropic S-PRO +materials O +that O +incorporates O +stress S-PRO +interactions O +is O +implemented O +to O +predict O +failure S-CONPRI +of O +selective B-MANP +laser E-MANP +sintered O +parts O +manufactured S-CONPRI +using O +polyamide B-MATE +12 E-MATE +powder O +. O + + +Special O +test O +specimens O +that O +capture O +tensile S-PRO +, O +compressive O +and O +shear B-PRO +strengths E-PRO +, O +as S-MATE +single O +or O +combined O +loads O +, O +were O +designed S-FEAT +, O +manufactured S-CONPRI +and O +tested O +. O + + +Results O +show O +that O +significant O +differences O +exist O +between O +tensile S-PRO +and O +compressive B-PRO +strengths E-PRO +, O +and O +that O +failure S-CONPRI +of O +additive B-APPL +manufactured I-APPL +parts E-APPL +is O +strongly O +influenced O +by O +the O +interaction O +between O +stresses O +. O + + +The O +test O +data S-CONPRI +shows O +an O +excellent O +fit S-CONPRI +with O +a O +tensor S-CONPRI +based O +failure S-CONPRI +criterion O +that O +includes O +interaction O +strength S-PRO +tensor O +components S-MACEQ +, O +thus O +being O +able O +to O +capture O +the O +strength S-PRO +behavior O +of O +SLS S-MANP +printed O +components S-MACEQ +under O +complex O +loading O +conditions O +. O + + +Vat B-MANP +photopolymerization E-MANP +( O +VP O +) O +of O +silicone S-MATE +can O +produce O +better O +finish O +and O +higher B-PARA +resolution E-PARA +than O +the O +conventional O +extrusion-based O +method O +. O + + +One O +challenge O +in O +the O +current O +bottom-up O +VP O +processes S-CONPRI +is O +the O +separation O +that O +forms O +between O +the O +cured S-MANP +part O +and O +vat S-MACEQ +at O +each O +layer S-PARA +. O + + +Oxygen-inhibition O +is O +commonly O +adopted O +as S-MATE +a O +solution S-CONPRI +( O +i.e O +. O + + +LOPP O +is O +achieved O +by O +a O +low-absorbance O +wavelength S-CONPRI +and O +a O +gradient O +light O +beam S-MACEQ +. O + + +The O +first O +experiment S-CONPRI +measured O +the O +effect O +of O +beam S-MACEQ +power O +; O +the O +second O +experiment S-CONPRI +measured O +the O +effect O +of O +scanning B-PARA +speed E-PARA +. O + + +The O +curing S-MANP +speed O +of O +385 O +nm O +at O +the O +same O +power S-PARA +level O +was O +10 O +times O +slower O +than O +375 O +nm O +, O +but O +could O +be S-MATE +scaled O +up O +non-linearly O +by O +the O +beam S-MACEQ +power O +. O + + +A O +tripled O +light O +power S-PARA +of O +385 O +nm O +can O +accelerate O +the O +process S-CONPRI +by O +a O +factor O +of O +7 O +and O +be S-MATE +comparable O +to O +that O +of O +375 O +nm O +. O + + +Thus O +, O +this O +study O +confirms O +the O +feasibility S-CONPRI +of O +an O +optically O +created O +dead O +zone O +and O +also O +uncovers O +the O +necessity O +of O +high-power O +light B-MACEQ +source E-MACEQ +for O +this O +application O +. O + + +Fused B-CONPRI +deposition E-CONPRI +modelling O +( O +FDM S-MANP +) O +is O +a O +well-known O +additive B-MANP +manufacturing E-MANP +technique O +, O +which O +can O +transfer O +digital O +three-dimensional S-CONPRI +( O +3D S-CONPRI +) O +models O +into O +functional B-CONPRI +components E-CONPRI +directly O +. O + + +Despite O +many O +advantages O +FDM S-MANP +can O +offer O +, O +poor O +surface B-CHAR +accuracy E-CHAR +of O +fabricated S-CONPRI +objects O +has O +always O +been O +a O +big O +issue O +that O +attracts O +increasing O +attention O +. O + + +To O +study O +the O +influence O +on O +the O +surface B-FEAT +profiles E-FEAT +imposed O +by O +various O +process B-CONPRI +parameters E-CONPRI +effectively O +as S-MATE +well O +as S-MATE +quantitatively O +, O +the O +mathematical S-CONPRI +model O +of O +the O +surface B-FEAT +profile E-FEAT +need O +to O +be S-MATE +developed O +. O + + +In O +this O +work O +, O +a O +new O +surface B-FEAT +profile E-FEAT +model S-CONPRI +is O +developed O +to O +characterize O +the O +surface B-FEAT +profile E-FEAT +of O +FDM S-MANP +fabricated S-CONPRI +parts O +. O + + +The O +process B-CONPRI +parameters E-CONPRI +are O +classified O +into O +two O +groups O +( O +i.e O +. O + + +pre-process O +parameters S-CONPRI +and O +fabrication S-MANP +process O +parameters S-CONPRI +) O +to O +investigate O +the O +impacts O +on O +surface B-CHAR +characterization E-CHAR +. O + + +Corresponding O +experiments O +are O +conducted O +using O +an O +FDM S-MANP +machine O +to O +make O +comparison O +with O +the O +predicted S-CONPRI +values O +and O +to O +validate O +the O +reliability S-CHAR +and O +effectiveness S-CONPRI +of O +the O +proposed O +surface B-ENAT +models E-ENAT +. O + + +Both O +the O +experimental S-CONPRI +results O +and O +theoretical S-CONPRI +values O +indicate O +that O +the O +surface B-CHAR +accuracy E-CHAR +of O +the O +top O +surface S-CONPRI +is O +mainly O +determined O +by O +the O +ratio O +between O +molten O +paste O +flowrate O +and O +the O +nozzle S-MACEQ +feedrate O +under O +specified O +layer B-PARA +thickness E-PARA +and O +path O +spacing O +. O + + +On O +the O +other O +hand O +, O +the O +surface B-PARA +quality E-PARA +of O +the O +side O +surface S-CONPRI +is O +primarily O +affected O +by O +the O +layer B-PARA +thickness E-PARA +and O +the O +stratification O +angle O +of O +the O +surface S-CONPRI +. O + + +At O +the O +same O +time O +, O +some O +optimization S-CONPRI +approaches O +for O +the O +surface S-CONPRI +improvement O +are O +presented O +: O +appropriate O +ratio O +between O +paste O +flowrate O +and O +fabrication S-MANP +speed O +are O +required O +for O +desirable O +top O +surface S-CONPRI +and O +thinner O +layer B-PARA +thickness E-PARA +can O +, O +to O +some O +extent O +, O +alleviate O +the O +staircase O +effect O +out O +of O +the O +slicing S-CONPRI +procedure O +and O +the O +stratification O +angle O +of O +the O +side O +surface S-CONPRI +should O +be S-MATE +confined O +to O +a O +range S-PARA +to O +avoid O +large O +geometric O +errors S-CONPRI +. O + + +In O +this O +study O +, O +an O +in B-CONPRI +situ E-CONPRI +bioprinting-based O +methodological O +workflow S-CONPRI +is O +advanced O +to O +directly O +fabricate S-MANP +a O +custom O +engineered O +skin O +graft O +onto O +a O +skin O +burn O +phantom O +. O + + +To O +illustrate O +this O +modular S-CONPRI +approach O +, O +a O +burn O +phantom O +is O +first O +created O +by O +mold S-MACEQ +casting S-MANP +gelatin-alginate O +hydrogel S-MATE +material O +to O +simulate O +a O +burn O +wound O +bed S-MACEQ +with O +arbitrary O +2D S-CONPRI +shape O +and O +uniform O +depth O +. O + + +The O +cast S-MANP +hydrogel O +phantom O +is O +then O +placed O +on O +the O +printer B-MACEQ +platform E-MACEQ +to O +host O +the O +to-be-printed O +skin O +graft O +. O + + +This O +is O +followed O +by O +implementing O +a O +contour B-CONPRI +calibration E-CONPRI +process O +based O +on O +fiducial O +markers O +to O +yield O +the O +real O +dimension S-FEAT +and O +pose O +of O +the O +burn O +phantom O +. O + + +A O +new O +directed O +toolpath S-PARA +generation O +algorithm S-CONPRI +is O +detailed O +to O +generate O +a O +burn-specific O +toolpath S-PARA +for O +the O +microextrusion-based O +bioprinting S-APPL +process O +. O + + +Based O +on O +this O +method O +, O +the O +bioprinted O +cell-laden O +gelatin-alginate O +hydrogel B-MATE +filaments E-MATE +are O +precisely O +arranged O +in O +a O +meshed O +pattern S-CONPRI +that O +is O +bound O +by O +the O +burn O +phantom O +contour S-FEAT +. O + + +Internal B-FEAT +geometries E-FEAT +defined O +by O +the O +filament S-MATE +and O +pore S-PRO +dimensional O +characteristics O +of O +the O +printed B-CONPRI +construct E-CONPRI +design S-FEAT +can O +be S-MATE +controlled O +to O +promote O +cell B-CHAR +viability E-CHAR +, O +proliferation O +, O +and O +nutrient O +delivery O +. O + + +Printed O +cell-laden O +multi-layered O +constructs O +are O +evaluated O +for O +single O +filament S-MATE +and O +pore S-PRO +dimensional O +precision S-CHAR +, O +alignment O +of O +filaments S-MATE +between O +layers O +, O +and O +positional O +accuracy S-CHAR +of O +the O +filaments S-MATE +within O +the O +extracted B-CONPRI +contour E-CONPRI +. O + + +Finally O +, O +a O +24-hour O +time O +course O +incubation O +study O +reveals O +that O +the O +printed B-CONPRI +constructs E-CONPRI +preserve O +their O +structural O +properties S-CONPRI +while O +cells S-APPL +proliferate O +and O +maintain O +their O +spatial O +positioning O +. O + + +X-ray S-CHAR +interferometry S-CONPRI +provides O +a O +dark-field O +image S-CONPRI +, O +essentially O +a O +small-angle O +X-ray S-CHAR +scattering O +image S-CONPRI +, O +of O +the O +voids S-CONPRI +and O +print S-MANP +defects S-CONPRI +in O +an O +additively B-MANP +manufactured E-MANP +polymer O +object O +. O + + +The O +samples S-CONPRI +studied O +included O +Stanford O +Bunnies O +, O +fabricated S-CONPRI +from O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +and O +polylactic B-MATE +acid E-MATE +( O +PLA S-MATE +) O +, O +and O +a O +quadratic O +test O +object O +fabricated S-CONPRI +from O +PLA S-MATE +. O + + +The O +dark-field O +projection O +images S-CONPRI +show O +orientation-dependent O +X-ray S-CHAR +scattering O +which O +is O +due O +to O +anisotropic S-PRO +voids O +and O +gaps O +at O +the O +filament-to-filament O +interface S-CONPRI +in O +these O +fused B-MANP +deposition I-MANP +modeling E-MANP +additive B-MANP +manufacturing E-MANP +objects O +. O + + +SEM S-CHAR +corroborates O +the O +existence O +of O +gaps O +between O +filaments.The O +absorption S-CONPRI +and O +dark-field O +volumes O +are O +used O +to O +correlate O +printhead O +trajectory O +with O +print S-MANP +defect S-CONPRI +density O +. O + + +There O +is O +a O +slight O +increase O +in O +X-ray S-CHAR +scattering O +, O +hence O +print S-MANP +defect S-CONPRI +density O +, O +at O +regions O +with O +high O +curvature.Two O +X-ray S-CHAR +interferometry S-CONPRI +techniques O +were O +used O +: O +stepped-grating O +and O +single-shot O +. O + + +As S-MATE +currently O +developed O +, O +stepped-grating O +has O +the O +larger O +field-of-view—examination O +of O +an O +entire O +test O +object—whilst O +single-shot O +has O +the O +potential O +for O +real-time O +, O +in B-CONPRI +situ E-CONPRI +measurement O +of O +the O +printing B-MANP +process E-MANP +within O +1 O +mm S-MANP +of O +the O +printhead O +. O + + +Efficient O +generation O +of O +freeform S-CONPRI +TPMS O +porous B-FEAT +scaffolds E-FEAT +. O + + +Hierarchical O +scaffold S-FEAT +construction S-APPL +based O +on O +fractal O +sheet S-MATE +TPMSs O +. O + + +Porosity S-PRO +distribution S-CONPRI +manipulation O +according O +to O +CT S-ENAT +images O +. O + + +The O +external O +geometry S-CONPRI +design S-FEAT +and O +manipulation O +of O +internal O +porosity S-PRO +distribution S-CONPRI +according O +to O +the O +actual O +application O +demands O +are O +the O +main O +challenges O +of O +scaffold S-FEAT +generation O +; O +moreover O +, O +computational B-CONPRI +efficiency E-CONPRI +is O +a O +key O +factor O +that O +should O +be S-MATE +considered O +. O + + +This O +paper O +proposes O +efficient O +generation O +strategies O +for O +constructing O +internal O +porous S-PRO +architectures O +by O +using O +triply B-CONPRI +periodic I-CONPRI +minimal I-CONPRI +surfaces E-CONPRI +( O +TPMSs O +) O +and O +external O +freeform S-CONPRI +shapes O +through O +T-spline O +surfaces S-CONPRI +. O + + +After O +discretizing O +the O +geometries S-CONPRI +as S-MATE +slicing O +contours S-FEAT +, O +TPMSs O +can O +be S-MATE +efficiently O +extracted S-CONPRI +using O +the O +intersection-interpolation O +method O +in O +2D S-CONPRI +space O +, O +and O +then O +be S-MATE +offset O +as S-MATE +infill O +areas S-PARA +of O +sheet S-MATE +solids O +. O + + +Based O +on O +the O +proposed O +fractal O +sheet S-MATE +TPMSs O +, O +hierarchical O +scaffolds S-FEAT +are O +further O +generated O +using O +the O +refined O +constrained O +Delaunay O +triangulation O +method O +to O +construct O +multiscale O +pores S-PRO +. O + + +The O +porosity S-PRO +features O +can O +be S-MATE +conveniently O +controlled O +in O +2D S-CONPRI +space O +according O +to O +the O +actual O +computed B-CHAR +tomography E-CHAR +images O +. O + + +Eventually O +, O +the O +resulting O +infill B-PARA +areas E-PARA +can O +be S-MATE +directly O +fabricated S-CONPRI +as S-MATE +scaffolds O +by O +additive B-MANP +manufacturing E-MANP +technology O +. O + + +Several O +experimental S-CONPRI +instances O +validate O +the O +effectiveness S-CONPRI +and O +efficiency O +of O +the O +proposed O +strategies O +. O + + +Additive B-MANP +manufacturing E-MANP +allows O +design B-CONPRI +freedom E-CONPRI +and O +reduces O +the O +cost O +to O +manufacture S-CONPRI +a O +complex O +form O +. O + + +Prefabrication O +can O +be S-MATE +more O +time-efficient O +than O +additive B-MANP +manufacturing E-MANP +. O + + +Schedule O +shortening O +is O +not O +the O +main O +advantage O +of O +Additive B-MANP +manufacturing E-MANP +in O +construction S-APPL +. O + + +A O +breakeven O +point O +should O +be S-MATE +determined O +to O +choose O +the O +manufacturing S-MANP +method O +that O +suits O +best O +the O +need O +. O + + +The O +objective O +of O +this O +paper O +is O +to O +present O +a O +reflection S-CHAR +on O +the O +use O +of O +Additive B-MANP +manufacturing E-MANP +in O +construction S-APPL +. O + + +In O +this O +research S-CONPRI +examples O +from O +manufacturing S-MANP +industries S-APPL +are O +presented O +. O + + +Some O +Advantages O +of O +additive B-MANP +manufacturing E-MANP +in O +industry S-APPL +were O +identified O +. O + + +Relevant O +cases O +used O +to O +promote O +AM S-MANP +for O +construction S-APPL +are O +: O +building O +rate O +improvement O +and O +schedules O +shortening O +. O + + +Firstly O +, O +a O +comparison O +between O +construction S-APPL +and O +manufacturing S-MANP +industry S-APPL +was O +presented O +. O + + +Secondly O +, O +Design S-FEAT +and O +Building O +rate O +for O +construction S-APPL +were O +studied O +using O +data S-CONPRI +from O +a O +French O +construction S-APPL +company S-APPL +. O + + +Finally O +a O +comparison O +was O +made O +between O +conventional O +processes S-CONPRI +and O +Additive B-MANP +manufacturing E-MANP +. O + + +Conventional O +processes S-CONPRI +included O +prefabrication O +and O +casting S-MANP +on O +site O +. O + + +Results O +showed O +that O +pre-casting O +may O +be S-MATE +faster O +than O +AM S-MANP +in O +some O +cases O +. O + + +Time O +saving O +is O +not O +necessary O +the O +best O +advantage O +from O +applying O +additive B-MANP +manufacturing E-MANP +to O +construction S-APPL +. O + + +Leveraging O +the O +technology S-CONPRI +'s O +unique O +ability O +to O +selectively O +place O +multiple O +materials S-CONPRI +throughout O +a O +part O +volume S-CONPRI +, O +the O +authors O +demonstrate O +a O +new O +approach O +for O +the O +fabrication S-MANP +of O +a O +new O +physical O +security O +feature S-FEAT +for O +additively B-MANP +manufactured E-MANP +parts O +. O + + +Specifically O +, O +the O +authors O +create O +photopolymer S-MATE +suspensions O +featuring O +quantum O +dots O +– O +a O +nanoparticle O +that O +absorbs O +ultraviolet B-CONPRI +light E-CONPRI +and O +emits O +light O +in O +the O +visible O +spectrum O +– O +that O +are O +then O +embedded O +into O +objects O +created O +by O +PolyJet B-MANP +material I-MANP +jetting E-MANP +. O + + +While O +the O +quantum O +dots O +appear O +ordered O +at O +the O +macroscale S-CONPRI +, O +their O +stochastic S-CONPRI +arrangement O +at O +the O +microscale S-CONPRI +( O +via O +the O +inkjetted O +droplet S-CONPRI +) O +provide O +the O +randomness O +necessary O +to O +serve O +as S-MATE +the O +key O +element S-MATE +of O +a O +Physical O +Unclonable O +Function O +, O +essentially O +transforming O +the O +3D B-MANP +printed E-MANP +object O +itself O +as S-MATE +an O +anti-counterfeiting O +system O +. O + + +In O +this O +work O +the O +authors O +explore O +the O +effects O +of O +quantum O +dot O +loading O +on O +optical S-CHAR +signatures O +of O +the O +nanoparticles S-CONPRI +in O +the O +photopolymer S-MATE +matrix O +. O + + +Quantum O +dot O +loadings O +as S-MATE +low O +as S-MATE +5 O +× O +10−3 O +wt. O +% O +can O +be S-MATE +detected O +inside O +the O +object O +with O +a O +fluorescent O +microscope S-MACEQ +, O +while O +this O +same O +concentration O +is O +invisible O +to O +the O +naked O +eye O +. O + + +By O +adjusting O +the O +magnification S-CONPRI +of O +the O +fluorescent O +microscope S-MACEQ +, O +we O +demonstrate O +the O +feasibility S-CONPRI +of O +a O +new O +paradigm O +for O +three-dimensional S-CONPRI +security O +patterns O +. O + + +The O +adaptation O +of O +inkjet S-MANP +technology O +for O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +enabled O +the O +highest O +standards S-CONPRI +of O +print S-MANP +speed O +and O +print B-PARA +resolution E-PARA +in O +the O +industry S-APPL +. O + + +However O +, O +inkjet S-MANP +printheads O +impose O +strict O +limitations O +on O +ink S-MATE +properties O +. O + + +Ink S-MATE +compositions O +ex O +volatility O +, O +rehydration O +, O +surface B-PRO +tension E-PRO +, O +chemical B-PRO +stability E-PRO +, O +abrasiveness O +, O +and O +electrical B-CONPRI +properties E-CONPRI +that O +deviate O +from O +printhead O +specifications S-PARA +shorten O +its O +service B-CONPRI +life E-CONPRI +. O + + +Frequent O +and O +complex O +maintenance O +procedures O +are O +necessary O +, O +but O +replacement O +is O +the O +only O +solution S-CONPRI +to O +declining O +print B-CONPRI +quality E-CONPRI +, O +accruing O +heavy O +maintenance O +costs O +. O + + +This O +is O +especially O +limiting O +for O +AM S-MANP +as O +part O +quality S-CONPRI +and O +properties S-CONPRI +are O +closely O +dependent O +on O +ink S-MATE +composition S-CONPRI +. O + + +We O +propose O +an O +ink S-MATE +deposition S-CONPRI +system O +designed S-FEAT +for O +robustness S-PRO +by O +implementing O +modular S-CONPRI +and O +dedicated O +components S-MACEQ +. O + + +The O +system O +deposits O +ink S-MATE +in O +a O +continuous O +jet O +. O + + +We O +find O +optimal B-PARA +process E-PARA +parameters O +and O +evaluate O +system O +performance S-CONPRI +in O +comparison O +to O +inkjet S-MANP +and O +material B-MANP +extrusion E-MANP +( O +ME O +) O +. O + + +The O +system O +produces O +line O +widths O +between O +0.3-0.5mm O +, O +indicating O +print B-PARA +resolution E-PARA +capabilities O +are O +comparable O +to O +commercial O +ME O +systems O +. O + + +Sandwich B-FEAT +structures E-FEAT +are O +extensively O +used O +in O +aviation O +industries S-APPL +to O +reduce O +the O +overall O +weight S-PARA +of O +the O +system O +. O + + +Although O +the O +mechanical S-APPL +behavior O +of O +these O +structures O +has O +been O +widely O +studied O +, O +the O +performance S-CONPRI +of O +core S-MACEQ +shape O +in O +vibration O +response O +has O +been O +minimally O +explored O +. O + + +This O +study O +focuses O +on O +understanding O +the O +various O +influences O +of O +sandwich B-FEAT +structures E-FEAT +considering O +the O +following O +parameters S-CONPRI +: O +( O +i O +) O +nature O +of O +core S-MACEQ +shape O +, O +( O +ii O +) O +number O +of O +infill S-PARA +shapes O +, O +and O +( O +iii O +) O +orientation S-CONPRI +of O +cores S-MACEQ +, O +which O +affect O +the O +dynamic S-CONPRI +behavior O +of O +sandwich B-FEAT +structures E-FEAT +. O + + +Nine O +sandwich B-FEAT +structures E-FEAT +comprising O +three O +different O +core S-MACEQ +shapes O +, O +hexagon O +, O +triangle O +, O +and O +square O +shapes O +, O +in O +three O +different O +orientations S-CONPRI +, O +namely O +0° O +, O +45° O +, O +and O +90° O +, O +were O +considered O +for O +the O +present O +study O +. O + + +These O +structures O +in O +the O +beginning O +were O +put O +by O +modal O +analysis O +using O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +( O +FEM S-CONPRI +) O +. O + + +All O +the O +nine O +structures O +were O +printed O +using O +the O +fused B-CONPRI +deposition E-CONPRI +method O +to O +validate O +the O +FEM S-CONPRI +findings O +, O +while O +the O +DEWE O +soft O +data B-MACEQ +acquisition I-MACEQ +system E-MACEQ +was O +used O +to O +estimate O +the O +modal O +parameters S-CONPRI +( O +i O +) O +natural O +frequency O +and O +( O +ii O +) O +damping O +ratio O +. O + + +This O +study O +demonstrates O +that O +although O +the O +square O +core S-MACEQ +orientated O +at O +0° O +exhibited O +superior O +stiffness S-PRO +in O +bending S-MANP +loads O +, O +the O +hexagonal S-FEAT +core S-MACEQ +orientated O +at O +0° O +displayed O +an O +admirable O +combination O +of O +both O +stiffness S-PRO +and O +damping O +properties S-CONPRI +. O + + +Additive B-MANP +manufacturing E-MANP +shows O +an O +intrinsic O +compatibility O +with O +building O +in O +extra-terrestrial O +colonization O +. O + + +The O +use O +of O +raw B-MATE +materials E-MATE +found O +in B-CONPRI +situ E-CONPRI +can O +drastically O +reduce O +the O +complexity S-CONPRI +of O +the O +material S-MATE +supply O +chain O +. O + + +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +( O +LPBF S-MANP +) O +is O +a O +flexible O +option O +for O +producing O +components S-MACEQ +starting O +from O +powder B-MACEQ +feedstock E-MACEQ +. O + + +This O +work O +addresses O +the O +processability O +of O +lunar O +highlands O +regolith O +simulant O +NU-LHT-2 O +M O +by O +Laser B-MANP +Powder I-MANP +Bed I-MANP +Fusion E-MANP +on O +an O +open O +prototypal O +system O +. O + + +The O +investigation O +into O +the O +influence O +of O +process B-CONPRI +parameters E-CONPRI +and O +different O +base O +plate O +materials S-CONPRI +( O +carbon B-MATE +steel E-MATE +, O +self-supporting S-FEAT +deposition S-CONPRI +and O +refractory S-APPL +clay S-MATE +) O +was O +enabled O +by O +the O +in-house O +developed O +LPBF S-MANP +machine O +. O + + +The O +process B-CONPRI +feasibility E-CONPRI +window O +for O +multi-layer O +deposition S-CONPRI +was O +determined O +on O +the O +refractory S-APPL +clay S-MATE +base O +plate O +which O +ensured O +stable O +deposition S-CONPRI +. O + + +Finally O +, O +process B-CONPRI +parameters E-CONPRI +were O +studied O +to O +produce O +multi-layer O +cubical O +samples S-CONPRI +which O +were O +further O +analysed O +for O +their O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Specimens O +presented O +compressive O +yield B-PRO +stress E-PRO +values O +in O +excess O +of O +31.4 O +MPa S-CONPRI +and O +micro O +hardness S-PRO +values O +in O +excess O +of O +680 O +HV O +, O +showing O +the O +potential O +of O +the O +technology S-CONPRI +for O +the O +deposition S-CONPRI +of O +lunar O +regolith O +components S-MACEQ +. O + + +Carbon B-MATE +fiber E-MATE +reinforced O +polymer S-MATE +( O +CFRP O +) O +composite S-MATE +is O +known O +for O +its O +high O +stiffness-to-weight O +ratio O +and O +hence O +is O +of O +great O +interest O +in O +several O +engineering S-APPL +fields O +such O +as S-MATE +aerospace S-APPL +, O +automotive S-APPL +, O +defense O +, O +etc O +. O + + +However O +, O +such O +a O +composite S-MATE +is O +not O +suitable O +for O +energy O +dissipation O +as S-MATE +failure O +occurs O +with O +very O +little O +or O +no O +plastic B-PRO +deformation E-PRO +. O + + +Herein O +, O +we O +present O +an O +extendable O +multi-material S-CONPRI +projection O +microstereolithography S-MANP +process O +capable O +of O +producing O +carbon-fiber-reinforced O +cellular B-MATE +materials E-MATE +that O +achieve O +simultaneously O +high O +specific B-PRO +stiffness E-PRO +and O +damping O +coefficient O +. O + + +Inspired O +by O +the O +upper O +bounds O +of O +stiffness-loss O +coefficient O +in O +a O +two-phase O +composite S-MATE +, O +we O +designed S-FEAT +and O +additively B-MANP +manufactured E-MANP +CFRP O +microlattices O +with O +soft O +phases O +architected O +into O +selected O +stiff-phase O +struts S-MACEQ +. O + + +Our O +results O +, O +confirmed O +by O +experimental S-CONPRI +and O +analytical O +calculations O +, O +revealed O +that O +the O +damping O +performance S-CONPRI +can O +be S-MATE +significantly O +enhanced O +by O +the O +addition O +of O +only O +a O +small O +fraction S-CONPRI +of O +the O +soft O +phase S-CONPRI +. O + + +The O +presented O +design S-FEAT +and O +additive B-MANP +manufacturing E-MANP +strategy O +allow O +for O +optimizing O +mutually O +exclusive O +properties S-CONPRI +. O + + +As S-MATE +a O +result O +, O +these O +CFRP O +microlattices O +achieved O +high O +specific B-PRO +stiffness E-PRO +comparable O +to O +commercial O +CFRP O +, O +technical O +ceramics S-MATE +, O +and O +composites S-MATE +, O +while O +being O +dissipative O +like O +elastomers S-MATE +. O + + +This O +paper O +presents O +an O +experimental S-CONPRI +approach O +to O +investigate O +the O +effects O +of O +variation S-CONPRI +in O +the O +process B-CONPRI +parameter E-CONPRI +settings O +, O +found O +commonly O +in O +most O +fused B-CONPRI +deposition E-CONPRI +modelling O +printers S-MACEQ +, O +on O +the O +geometrical O +properties S-CONPRI +of O +the O +printed O +parts O +. O + + +A O +benchmark S-MANS +component O +was O +designed S-FEAT +to O +include O +simple S-MANP +geometric O +features O +which O +allows O +for O +measurement S-CHAR +for O +both O +dimensional B-CHAR +accuracy E-CHAR +and O +geometric O +characteristics O +. O + + +Taguchi O +’ O +s S-MATE +design B-CONPRI +of I-CONPRI +experiment E-CONPRI +statistical O +approach O +was O +used O +to O +establish O +the O +relationship O +between O +varying O +process B-CONPRI +parameter E-CONPRI +settings O +on O +the O +geometrical O +properties S-CONPRI +of O +the O +benchmark S-MANS +component O +. O + + +The O +critical O +process B-CONPRI +parameters E-CONPRI +affecting O +both O +the O +dimensional B-CHAR +accuracy E-CHAR +and O +geometric O +characteristics O +are O +identified O +and O +the O +theoretical S-CONPRI +optimum O +print S-MANP +settings O +were O +found O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +a O +key O +enabler O +for O +architectured O +lattice S-CONPRI +materials O +, O +because O +of O +the O +geometric O +complexity S-CONPRI +of O +parts O +that O +can O +be S-MATE +produced O +. O + + +Recent O +advancements O +in O +AM S-MANP +have O +enabled O +rapid O +production S-MANP +speeds O +, O +high O +spatial O +resolution S-PARA +, O +and O +a O +variety O +of O +engineering S-APPL +polymers O +. O + + +An O +open O +question O +remains O +whether O +production S-MANP +grade O +AM S-MANP +can O +accurately S-CHAR +and O +repeatably O +produce O +lattice S-CONPRI +parts O +. O + + +This O +study O +presents O +design S-FEAT +, O +production S-MANP +, O +and O +mechanical B-CONPRI +property E-CONPRI +testing O +of O +hexagonal S-FEAT +lattice O +parts O +manufactured S-CONPRI +using O +continuous B-MANP +liquid I-MANP +interface I-MANP +production E-MANP +( O +CLIP S-MANP +) O +based O +AM S-MANP +. O + + +We O +printed O +and O +tested O +84 O +parts O +, O +in O +three O +polymer B-MATE +materials E-MATE +having O +relative B-PRO +density E-PRO +ranging O +from O +0.06 O +to O +0.23 O +. O + + +Lattice S-CONPRI +wall O +structures O +were O +reliably O +printed O +when O +truss S-MACEQ +aspect B-FEAT +ratio E-FEAT +was O +in O +the O +range S-PARA +5 O +to O +20 O +and O +wall B-FEAT +thicknesses E-FEAT +were O +0.35 O +or O +0.5 O +mm S-MANP +. O + + +The O +printed O +lattice S-CONPRI +parts O +, O +each O +comprising O +hundreds O +of O +slender O +walls O +, O +were O +measured O +using O +high B-PARA +resolution E-PARA +optical O +scanning S-CONPRI +. O + + +The O +images S-CONPRI +were O +analyzed O +to O +evaluate O +the O +difference O +between O +the O +printed O +parts O +and O +their O +designs S-FEAT +, O +and O +the O +effect O +of O +geometric O +deviations O +on O +the O +mechanical S-APPL +behavior O +. O + + +The O +measured O +elastic B-PRO +moduli E-PRO +of O +the O +printed O +parts O +are O +close O +to O +the O +values O +expected O +from O +the O +materials S-CONPRI +specifications O +. O + + +The O +measured O +strength S-PRO +of O +the O +printed O +parts O +deviates O +by O +7 O +% O +from O +the O +behavior O +predicted S-CONPRI +from O +the O +scanned O +geometry S-CONPRI +. O + + +The O +failure B-PRO +mode E-PRO +of O +the O +printed O +structures O +depends O +upon O +the O +material S-MATE +and O +part O +geometry S-CONPRI +. O + + +To O +our O +knowledge O +, O +this O +is O +the O +largest O +study O +on O +the O +accuracy S-CHAR +and O +performance S-CONPRI +of O +AM S-MANP +lattice O +parts O +, O +and O +the O +first O +study O +of O +its O +type O +for O +lattice S-CONPRI +parts O +made O +using O +CLIP S-MANP +. O + + +Over O +the O +past O +two O +decades O +, O +additive B-MANP +manufacturing E-MANP +has O +opened O +a O +new O +window O +of O +opportunities O +in O +fabricating S-MANP +complex O +porous S-PRO +matrix O +structures O +such O +as S-MATE +cellular O +solids O +. O + + +Several O +factors O +including O +design S-FEAT +, O +material S-MATE +and O +process B-CONPRI +parameters E-CONPRI +can O +selectively O +be S-MATE +varied O +to O +tailor O +the O +porous S-PRO +properties O +of O +products O +based O +on O +the O +intended O +application O +. O + + +This O +article O +addresses O +the O +effect O +of O +variable O +throughout O +layer B-PARA +thickness E-PARA +configuration S-CONPRI +in O +the O +binder-jet O +additive B-MANP +manufacturing E-MANP +of O +titanium S-MATE +structures O +for O +orthopedic O +applications O +. O + + +Two O +layer B-PARA +thicknesses E-PARA +of O +80 O +and O +150 O +μm O +are O +selectively O +controlled O +inside O +of O +each O +titanium S-MATE +sample S-CONPRI +with O +four O +different O +configurations O +. O + + +Several O +studies O +were O +performed O +, O +including O +shrinkage S-CONPRI +analysis O +, O +porosity S-PRO +measurements O +, O +and O +mechanical S-APPL +compression B-CHAR +tests E-CHAR +to O +quantify O +the O +effect O +of O +layer B-PARA +thickness E-PARA +on O +part O +quality S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +. O + + +The O +results O +of O +the O +porosity S-PRO +measurement S-CHAR +revealed O +that O +there O +is O +about O +5 O +% O +variation S-CONPRI +among O +the O +samples S-CONPRI +with O +different O +layer B-PARA +thickness E-PARA +configuration S-CONPRI +. O + + +Bulk B-PRO +porosity E-PRO +values O +obtained O +from O +micro O +computed B-CHAR +tomography E-CHAR +( O +μCT O +) O +scan O +data S-CONPRI +placed O +the O +bulk B-PRO +porosity E-PRO +of O +the O +samples S-CONPRI +combining O +more O +than O +one O +layer B-PARA +thickness E-PARA +, O +in O +between O +of O +the O +results O +for O +control O +specimens O +, O +which O +were O +manufactured S-CONPRI +by O +applying O +a O +single O +layer B-PARA +thickness E-PARA +throughout O +the O +samples S-CONPRI +. O + + +Mechanical B-CONPRI +properties E-CONPRI +did O +not O +show O +any O +significant O +variation S-CONPRI +, O +which O +is O +attributed O +to O +the O +low O +range S-PARA +of O +the O +porosity S-PRO +deviation O +( O +less O +than O +5 O +% O +) O +. O + + +The O +highest O +Young O +’ O +s S-MATE +modulus O +of O +3.50 O +± O +0.4 O +GPa S-PRO +and O +yield B-PRO +stress E-PRO +of O +175 O +± O +25 O +MPa S-CONPRI +were O +obtained O +from O +analysis O +of O +the O +data S-CONPRI +achieved O +from O +the O +compression B-CHAR +test E-CHAR +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +techniques O +provide O +significant O +advantages O +over O +conventional O +subtractive B-MANP +manufacturing E-MANP +techniques O +in O +terms O +of O +the O +wide O +range S-PARA +of O +part O +geometry S-CONPRI +that O +can O +be S-MATE +obtained O +. O + + +Powder S-MATE +delivery O +is O +a O +process S-CONPRI +that O +occurs O +thousands O +of O +times O +during O +the O +AM S-MANP +build O +process S-CONPRI +, O +consequently O +assessment O +of O +delivery O +quality S-CONPRI +would O +be S-MATE +advantageous O +in O +the O +process S-CONPRI +in O +order O +to O +provide O +feedback S-PARA +for O +process B-CONPRI +control E-CONPRI +. O + + +This O +paper O +presents O +an O +in-situ S-CONPRI +quantitative O +inspection S-CHAR +technique O +for O +assessing O +the O +whole O +of O +the O +powder B-MACEQ +bed E-MACEQ +post O +raking O +, O +by O +using O +fringe O +projection O +profilometry O +. O + + +In O +order O +to O +increase O +accuracy S-CHAR +and O +traceability O +of O +the O +inspection S-CHAR +technique O +, O +an O +accepted O +fringe O +projection O +method O +, O +is O +enhanced O +using O +a O +novel O +surface S-CONPRI +fitting O +algorithm S-CONPRI +employed O +to O +reduce O +the O +influence O +of O +phase B-CONPRI +error E-CONPRI +and O +random O +noise O +during O +calibration S-CONPRI +. O + + +A O +simulation S-ENAT +was O +conducted O +to O +verify O +the O +accuracy S-CHAR +of O +the O +proposed O +system O +calibration S-CONPRI +. O + + +The O +proposed O +in-situ S-CONPRI +inspection O +technique O +has O +been O +applied O +in O +an O +Electron B-CONPRI +Beam E-CONPRI +Powder O +Bed B-MANP +Fusion E-MANP +( O +PBF-EB O +) O +machine S-MACEQ +, O +also O +known O +as S-MATE +Electron O +Beam S-MACEQ +Melting O +( O +EBM S-MANP +) O +. O + + +Some O +examples O +of O +melting S-MANP +edge O +swelling S-CONPRI +and O +excessive O +powder S-MATE +delivery O +due O +to O +rake O +damage S-PRO +during O +a O +real O +part O +build S-PARA +are O +used O +to O +demonstrate O +the O +system O +capability O +on O +the O +actual O +EBM S-MANP +machine O +. O + + +Experimental S-CONPRI +results O +demonstrate O +that O +powder S-MATE +defects S-CONPRI +can O +be S-MATE +efficiently O +inspected O +and O +the O +results O +used O +as S-MATE +feedback O +information O +in O +a O +build S-PARA +process O +. O + + +The O +Big O +Area S-PARA +Additive B-MANP +Manufacturing E-MANP +( O +BAAM O +) O +system O +can O +print S-MANP +structures O +on O +the O +order O +of O +several O +meters O +at O +high O +extrusion B-PARA +rates E-PARA +, O +thereby O +having O +the O +potential O +to O +significantly O +impact S-CONPRI +automotive S-APPL +, O +aerospace S-APPL +and O +energy O +sectors O +. O + + +The O +functional O +use O +of O +such O +parts O +, O +however O +, O +may O +be S-MATE +limited O +by O +mechanical B-PRO +anisotropy E-PRO +, O +in O +which O +the O +strength S-PRO +of O +printed O +parts O +across O +successive O +layers O +in O +the O +build B-PARA +direction E-PARA +( O +z-direction S-FEAT +) O +can O +be S-MATE +significantly O +lower O +than O +the O +corresponding O +in-plane B-PRO +strength E-PRO +( O +x-y O +directions O +) O +. O + + +This O +has O +been O +primarily O +attributed O +to O +poor O +bonding S-CONPRI +between O +printed O +layers O +since O +the O +lower O +layers O +cool O +below O +the O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +( O +Tg S-CHAR +) O +before O +the O +next O +layer S-PARA +is O +deposited O +. O + + +Therefore O +, O +the O +potential O +of O +using O +infrared S-CONPRI +heating S-MANP +is O +considered O +for O +increasing O +the O +surface S-CONPRI +temperature O +of O +the O +printed O +layer S-PARA +just O +prior O +to O +deposition S-CONPRI +of O +new O +material S-MATE +to O +improve O +the O +interlayer B-CONPRI +strength E-CONPRI +of O +the O +components S-MACEQ +. O + + +This O +study O +found O +significant O +improvements O +in O +bond B-CONPRI +strength E-CONPRI +for O +the O +deposition S-CONPRI +of O +acrylonitrile B-MATE +butadiene I-MATE +styrene E-MATE +( O +ABS S-MATE +) O +reinforced S-CONPRI +with O +20 O +% O +chopped O +carbon B-MATE +fiber E-MATE +when O +the O +surface S-CONPRI +temperature O +of O +the O +substrate B-MATE +material E-MATE +was O +increased O +from O +below O +Tg S-CHAR +to O +close O +to O +or O +above O +Tg S-CHAR +using O +infrared S-CONPRI +heating S-MANP +. O + + +The O +use O +of O +Magnetic O +Resonance O +Imaging S-APPL +( O +MRI O +) O +for O +monitoring O +, O +studying O +and O +performing O +output O +quality S-CONPRI +measurements O +of O +the O +acrylate-based O +polymeric O +patterns O +manufactured S-CONPRI +using O +stereolithography S-MANP +( O +SL S-MANP +) O +was O +introduced O +in O +this O +work O +. O + + +The O +effects O +of O +build B-PARA +parameters E-PARA +and O +humid O +environment O +on O +sample S-CONPRI +homogeneity O +, O +distribution S-CONPRI +of O +crosslink O +density S-PRO +, O +stability S-PRO +and O +defect S-CONPRI +formation O +were O +examined O +. O + + +The O +spatial O +resolution S-PARA +of O +the O +method O +was O +found O +to O +be S-MATE +sufficient O +to O +identify O +patterns O +according O +to O +the O +build B-PARA +parameters E-PARA +used O +and O +to O +detect O +specific O +hatch-predicted O +crosslink O +density S-PRO +variations O +. O + + +Qualitative S-CONPRI +information O +obtained O +using O +MRI O +visualisation O +was O +supplemented O +by O +quantitative B-CHAR +measurements E-CHAR +of O +Nuclear B-CONPRI +Magnetic I-CONPRI +Resonance E-CONPRI +( O +NMR S-CHAR +) O +relaxation O +times O +and O +1H O +NMR S-CHAR +spectra O +. O + + +NMR S-CHAR +spectroscopy O +confirmed O +the O +identity O +of O +the O +chemical B-CONPRI +composition E-CONPRI +among O +the O +patterns O +and O +showed O +that O +the O +crosslink O +density S-PRO +variation O +observed O +via O +spatially O +resolved O +T2-profiles O +stems O +from O +the O +difference O +of O +the O +build B-PARA +parameters E-PARA +. O + + +Different O +types O +of O +defects S-CONPRI +in O +the O +samples S-CONPRI +were O +observed O +and O +classified O +; O +some O +defects S-CONPRI +originated O +from O +local O +matrix O +continuity O +failures O +( O +partially O +cured S-MANP +resin O +trapping O +within O +the O +polymer S-MATE +or O +bubbles O +formation O +) O +, O +while O +other O +defects S-CONPRI +were O +found O +in O +the O +form O +of O +bulk O +layering O +. O + + +MRI O +visualisation O +coupled O +with O +relaxometry O +and O +1H O +spectroscopy S-CONPRI +of O +patterns O +during O +their O +interaction O +with O +humidity O +allowed O +tracking O +water O +distribution S-CONPRI +inside O +the O +sample S-CONPRI +and O +observing O +effects O +of O +swelling S-CONPRI +, O +fracturing O +and O +chemical O +decomposition S-PRO +. O + + +As S-MATE +a O +result O +, O +the O +approach O +presented O +in O +this O +work O +improves O +the O +output O +quality B-CONPRI +control E-CONPRI +and O +current O +testing S-CHAR +techniques O +, O +provides O +insight O +how O +physical B-PRO +properties E-PRO +of O +the O +3D B-APPL +parts E-APPL +are O +affected O +by O +different O +technical O +parameters S-CONPRI +, O +and O +eventually O +can O +help O +the O +use O +of O +SL S-MANP +technologies O +for O +a O +variety O +of O +applications O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +evolving O +from O +rapid B-ENAT +prototyping E-ENAT +to O +production S-MANP +of O +structural B-CONPRI +components E-CONPRI +. O + + +The O +widespread O +application O +of O +AM S-MANP +demands O +a O +high O +level O +of O +mechanical S-APPL +performance O +from O +these O +components S-MACEQ +, O +and O +it O +is O +therefore O +essential O +to O +improve O +feedstock B-MATE +material E-MATE +in O +order O +to O +meet O +these O +mechanical S-APPL +expectations O +. O + + +However O +, O +compared O +to O +traditional B-MANP +manufacturing E-MANP +techniques O +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +AM B-MATE +materials E-MATE +and O +their O +resulting O +components S-MACEQ +are O +not O +well O +understood O +. O + + +In O +this O +study O +, O +we O +investigated O +the O +processability O +, O +microstructure S-CONPRI +, O +and O +mechanical S-APPL +performance O +of O +twin-screw O +compounded O +short B-MATE +carbon I-MATE +fiber I-MATE +reinforced I-MATE +polyphenylene I-MATE +sulfide E-MATE +( O +PPS O +) O +pellets S-CONPRI +as S-MATE +a O +feedstock B-MATE +material E-MATE +for O +big O +area S-PARA +AM S-MANP +( O +BAAM O +) O +. O + + +The O +performance S-CONPRI +of O +the O +AM S-MANP +components O +was O +compared O +to O +that O +of O +traditional O +processing O +methods O +, O +namely O +injection B-MANP +molding E-MANP +( O +IM O +) O +and O +extrusion-compression O +molding S-MANP +( O +ECM S-MANP +) O +. O + + +It O +was O +found O +that O +the O +AM S-MANP +composites O +exhibited O +118 O +% O +lower O +tensile B-PRO +strength E-PRO +and O +55 O +% O +lower O +tensile S-PRO +modulus O +when O +compared O +to O +traditional O +injection B-MANP +molding E-MANP +composite S-MATE +specimens O +; O +however O +, O +AM S-MANP +composites O +exhibited O +comparable O +properties S-CONPRI +to O +ECM S-MANP +composites S-MATE +. O + + +This O +response O +was O +attributed O +to O +highly O +aligned O +fibers S-MATE +in O +IM O +and O +AM S-MANP +samples O +. O + + +However O +, O +the O +AM S-MANP +composites O +contained O +porosity S-PRO +( O +15.5 O +% O +volume S-CONPRI +) O +, O +which O +reduced O +their O +mechanical B-CONPRI +properties E-CONPRI +in O +comparison O +to O +ECM S-MANP +composites S-MATE +. O + + +The O +IM O +process S-CONPRI +showed O +the O +maximum O +amount O +of O +fiber S-MATE +attrition O +with O +minimum O +porosity S-PRO +( O +0.007 O +% O +volume S-CONPRI +) O +, O +while O +the O +ECM S-MANP +process O +exhibited O +the O +least O +fiber S-MATE +attrition O +with O +4.3 O +% O +volume S-CONPRI +porosity S-PRO +. O + + +Composite B-MANP +manufacturing E-MANP +processes O +adapted O +for O +assisted-additive O +manufacturing S-MANP +( O +AM S-MANP +) O +have O +recently O +been O +proposed O +. O + + +Extrusion-based O +AM S-MANP +utilizes O +shear-driven O +alignment O +in O +producing O +printed O +structures O +where O +polymers S-MATE +and O +fibers S-MATE +naturally O +align O +parallel O +to O +the O +material S-MATE +flow O +. O + + +Convergent O +flow O +geometries S-CONPRI +become O +the O +dominant O +processing O +route O +for O +thermoplastic-melts O +and O +thermoset O +polymer B-MANP +extrusions E-MANP +. O + + +For O +rotational O +fibers S-MATE +, O +the O +phenomenon O +known O +as S-MATE +Jeffrey O +orbits O +poses O +issues O +during O +extrusion S-MANP +through O +a O +convergent O +channel S-APPL +, O +resulting O +in O +a O +randomized O +fiber S-MATE +architecture S-APPL +. O + + +Methods O +of O +minimizing O +Jeffrey O +orbits O +include O +the O +application O +of O +an O +additional O +external O +force S-CONPRI +such O +as S-MATE +a O +magnetic B-CONPRI +field E-CONPRI +to O +arrest O +or O +counteract O +the O +rotation O +. O + + +This O +work O +explores O +a O +combination O +of O +magnetic O +forces S-CONPRI +in O +conjunction O +with O +adjusted O +channel S-APPL +geometries O +using O +theory O +and O +experimental S-CONPRI +observations O +. O + + +The O +findings O +suggest O +the O +ability O +to O +alter O +fiber B-FEAT +orientation E-FEAT +in O +flow O +in O +a O +300 O +cP O +viscosity S-PRO +matrix O +by O +modifying O +the O +extrusion S-MANP +channel S-APPL +geometry O +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +has O +largely O +relieved O +the O +design B-CONPRI +freedom E-CONPRI +of O +functional O +parts O +. O + + +Topology B-FEAT +optimization E-FEAT +has O +been O +widely O +used O +to O +design S-FEAT +lightweight O +structures O +fabricated S-CONPRI +by O +AM S-MANP +. O + + +In O +this O +paper O +, O +a O +general O +design S-FEAT +method O +is O +proposed O +to O +design S-FEAT +solid O +lattice S-CONPRI +hybrid O +structures O +. O + + +An O +optimization B-CONPRI +algorithm E-CONPRI +is O +used O +in O +this O +method O +that O +can O +generate O +a O +functionally B-CONPRI +graded E-CONPRI +heterogeneous O +lattice B-FEAT +structure E-FEAT +connecting O +the O +solid O +part O +. O + + +The O +manufacturability S-CONPRI +can O +be S-MATE +improved O +due O +to O +the O +lattice B-FEAT +structure E-FEAT +supporting O +the O +overhangs S-PARA +. O + + +A O +hybrid O +element S-MATE +model O +is O +used O +to O +simulate O +the O +mechanical S-APPL +performance O +and O +optimize O +the O +material S-MATE +distribution S-CONPRI +of O +the O +lattice B-FEAT +structure E-FEAT +. O + + +To O +validate O +the O +design S-FEAT +theory O +and O +the O +advantage O +of O +the O +hybrid O +structure S-CONPRI +, O +a O +three-point B-CHAR +bending E-CHAR +beam S-MACEQ +is O +designed S-FEAT +by O +the O +proposed O +method O +and O +the O +existing O +methods O +. O + + +Both O +the O +simulation S-ENAT +result O +and O +the O +experimental S-CONPRI +result O +show O +that O +the O +hybrid O +structure S-CONPRI +has O +a O +higher O +stiffness S-PRO +, O +yield B-PRO +strength E-PRO +, O +and O +critical O +buckling B-CHAR +load E-CHAR +than O +the O +pure O +solid O +structure S-CONPRI +and O +the O +pure O +lattice B-FEAT +structure E-FEAT +. O + + +Advancements O +in O +distributed O +recycling S-CONPRI +technologies O +now O +allow O +for O +on-demand O +reconstitution O +of O +traditionally O +neglected O +MRE O +pouch O +waste O +into O +useful O +appliances O +via O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +In O +this O +work O +, O +we O +demonstrate O +recycling S-CONPRI +of O +MRE O +pouch O +materials S-CONPRI +through O +a O +combined O +compounding O +, O +filament S-MATE +extrusion S-MANP +, O +and O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +additive B-MANP +manufacturing E-MANP +protocol O +. O + + +Mechanical B-CONPRI +properties E-CONPRI +and O +barrier O +properties S-CONPRI +of O +additively B-MANP +manufactured E-MANP +structures O +were O +evaluated O +through O +tensile B-CHAR +testing E-CHAR +and O +water O +vapor O +transmission S-CHAR +testing S-CHAR +, O +respectively O +, O +and O +found O +to O +be S-MATE +comparable O +to O +the O +native O +pouch O +materials S-CONPRI +. O + + +Differential O +Scanning S-CONPRI +Calorimetry O +and O +Thermogravimetric B-CHAR +Analysis E-CHAR +of O +the O +extruded S-MANP +filament O +and O +printed O +materials S-CONPRI +were O +contrasted O +with O +native O +pouch O +materials S-CONPRI +, O +showing O +minimal O +effects O +of O +the O +manufacturing B-MANP +process E-MANP +on O +critical O +thermal O +transitions O +in O +the O +polymer S-MATE +. O + + +To O +reduce O +the O +lead B-PARA +time E-PARA +, O +polymer S-MATE +fuel O +tanks O +could O +be S-MATE +toollessly O +produced O +using O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +technologies S-CONPRI +. O + + +Detailed O +knowledge O +of O +the O +performance S-CONPRI +of O +AM S-MANP +polymers O +is O +essential O +for O +the O +design S-FEAT +and O +development O +of O +such O +components S-MACEQ +. O + + +In O +instrumented O +static O +( O +0.01 O +mm/s O +) O +and O +dynamic S-CONPRI +( O +2.5 O +m/s O +) O +three-point B-CHAR +bending E-CHAR +and O +puncture O +tests O +, O +the O +impact S-CONPRI +behaviors O +of O +polyamide S-MATE +and O +methacrylate-based O +photopolymer S-MATE +test O +specimens O +were O +compared O +. O + + +The O +polyamide S-MATE +test O +specimens O +were O +produced O +by O +laser B-MANP +sintering E-MANP +and O +multijet O +fusion S-CONPRI +, O +and O +the O +photopolymer S-MATE +test O +specimens O +were O +produced O +by O +a O +hot O +lithography S-CONPRI +process O +. O + + +Fractography S-CHAR +was O +performed O +using O +stereo O +light O +and O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +to O +investigate O +the O +fracture S-CONPRI +surface O +morphology S-CONPRI +. O + + +The O +test O +results O +were O +used O +to O +analyze O +the O +relationships O +among O +the O +surface B-PRO +roughness E-PRO +, O +shear B-PRO +modulus E-PRO +, O +and O +glass B-CONPRI +transition I-CONPRI +temperature E-CONPRI +. O + + +The O +AM S-MANP +polymers O +revealed O +comparable O +force–displacement O +behaviors O +in O +a O +static O +three-point B-CHAR +bending I-CHAR +test E-CHAR +, O +but O +their O +impact S-CONPRI +behaviors O +differed O +greatly O +. O + + +The O +obtained O +results O +highlight O +that O +the O +impact S-CONPRI +performance O +of O +AM S-MANP +polymers O +is O +an O +essential O +design S-FEAT +variable O +for O +fluid-containing O +parts O +. O + + +This O +investigation O +focuses O +on O +geometric O +parameters S-CONPRI +of O +nozzles S-MACEQ +used O +in O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +. O + + +They O +are O +mainly O +responsible O +for O +the O +extrusion S-MANP +force O +. O + + +Typical O +nozzles S-MACEQ +are O +made O +of O +brass S-MATE +and O +feature S-FEAT +a O +decrease O +in O +diameter S-CONPRI +from O +an O +entry O +channel S-APPL +to O +a O +capillary O +with O +a O +conical O +section O +in O +between O +. O + + +Commercially O +available O +and O +custom O +nozzles S-MACEQ +with O +various O +of O +these O +parameters S-CONPRI +were O +investigated O +on O +a O +test O +stand O +using O +Polylactic B-MATE +Acid E-MATE +( O +PLA S-MATE +) O +filament S-MATE +. O + + +All O +nozzles S-MACEQ +exhibit O +a O +common O +behavior O +. O + + +The O +extrusion S-MANP +force O +rises O +linearly O +with O +increasing O +filament S-MATE +feed S-PARA +velocity O +. O + + +Here O +, O +unmolten O +plastic S-MATE +reaches O +the O +nozzle S-MACEQ +. O + + +This O +characteristic O +is O +dependent O +on O +extrusion S-MANP +temperature O +and O +geometric O +parameters S-CONPRI +of O +the O +nozzles S-MACEQ +. O + + +Different O +capillary O +lengths O +were O +used O +to O +determine O +the O +entry O +pressure S-CONPRI +loss O +at O +different O +filament S-MATE +feed S-PARA +velocities O +. O + + +The O +material S-MATE +and O +coating S-APPL +of O +the O +nozzles S-MACEQ +had O +no O +significant O +influence O +on O +extrusion S-MANP +force O +. O + + +A O +higher O +thermal O +mass O +, O +two O +conical O +sections O +or O +two O +entry O +channels O +have O +a O +positive O +effect O +on O +extrusion S-MANP +forces O +and O +maximum O +filament S-MATE +feed S-PARA +velocities O +, O +thus O +maximal O +build B-CHAR +rate E-CHAR +. O + + +Multi-material B-MANP +additive I-MANP +manufacturing E-MANP +enables O +high-performance O +heterogeneous S-CONPRI +design S-FEAT +at O +the O +mesoscale S-CONPRI +, O +through O +which O +bulk O +parts O +can O +be S-MATE +engineered O +to O +adapt O +to O +complex O +loading O +conditions O +. O + + +The O +optimization S-CONPRI +of O +multi-material S-CONPRI +parts O +relies O +on O +accurate S-CHAR +forward O +prediction S-CONPRI +, O +which O +is O +challenging O +to O +achieve O +owing O +to O +the O +complex O +processing O +conditions O +in O +additive B-MANP +manufacturing E-MANP +and O +the O +resultant O +uncertainties O +in O +material B-CONPRI +properties E-CONPRI +. O + + +To O +address O +these O +limitations O +, O +here O +we O +present O +a O +new O +model B-CONPRI +calibration E-CONPRI +and O +model S-CONPRI +selection O +framework S-CONPRI +based O +on O +the O +high O +dimensional O +, O +local-scale O +deformation B-CONPRI +data E-CONPRI +. O + + +By O +matching O +the O +pixel-level O +deformation B-CONPRI +data E-CONPRI +from O +digital B-CONPRI +image I-CONPRI +correlation E-CONPRI +experiments O +and O +constitutive O +modeling S-ENAT +, O +the O +presented O +framework S-CONPRI +enables O +more O +accurate S-CHAR +prediction O +and O +significant O +reduction S-CONPRI +of O +the O +prediction S-CONPRI +uncertainties O +, O +as S-MATE +compared O +to O +the O +single O +material S-MATE +calibration S-CONPRI +approach O +that O +is O +widely O +used O +in O +additive B-MANP +manufacturing E-MANP +. O + + +In O +turn O +, O +this O +enables O +quantitative S-CONPRI +comparison O +of O +the O +candidate O +models O +, O +so O +the O +most O +accurate S-CHAR +and O +computationally O +efficient O +constitutive O +model S-CONPRI +can O +be S-MATE +selected O +for O +forward O +prediction S-CONPRI +in O +heterogeneous S-CONPRI +material O +design S-FEAT +. O + + +The O +advantages O +of O +the O +framework S-CONPRI +are O +demonstrated O +using O +a O +multi-polymer O +system O +manufactured S-CONPRI +by O +dual-extrusion O +additive B-MANP +manufacturing E-MANP +, O +which O +consists O +of O +two O +constituent O +materials S-CONPRI +with O +dramatically O +different O +deformation S-CONPRI +behaviors O +. O + + +Despite O +the O +potential O +benefits O +of O +photopolymerization-based S-CONPRI +additive B-MANP +manufacturing E-MANP +, O +photochemical S-MATE +reactions O +in O +free-radical O +polymerization S-MANP +rarely O +proceed O +to O +completion O +, O +leading O +to O +the O +accumulation O +of O +residual S-CONPRI +monomer S-MATE +in O +polymer S-MATE +networks O +. O + + +In O +the O +absence O +of O +residual S-CONPRI +methyl O +methacrylate O +, O +other O +potentially O +toxic O +acrylic S-MATE +esters O +were O +observed O +thus O +emphasizing O +the O +need O +to O +thoroughly O +scrutinize O +additively B-MANP +manufactured E-MANP +dental O +devices O +prior O +to O +their O +use O +. O + + +In O +the O +long O +term O +, O +standards S-CONPRI +for O +medical B-APPL +devices E-APPL +in O +dentistry S-APPL +could O +be S-MATE +revised O +to O +reflect O +the O +current O +trends S-CONPRI +in O +biomaterials S-MATE +and O +precursors O +they O +are O +generated O +from O +. O + + +The O +tensile B-PRO +strength E-PRO +and O +strain S-PRO +properties S-CONPRI +as S-MATE +well O +as S-MATE +failure O +modes O +in O +silicone S-MATE +dumbbell O +specimens O +fabricated S-CONPRI +by O +extrusion-based O +additive B-MANP +manufacturing E-MANP +are O +investigated O +. O + + +Effects O +of O +process B-CONPRI +parameters E-CONPRI +, O +specifically O +the O +infill S-PARA +direction O +( O +0° O +, O +±45° O +, O +and O +90° O +relative O +to O +the O +tensile S-PRO +direction O +) O +and O +adjacent O +line O +spacing O +on O +the O +void S-CONPRI +formation O +and O +ultimate B-PRO +tensile I-PRO +strength E-PRO +are O +studied O +and O +compared O +to O +the O +baseline O +of O +stamped O +silicone S-MATE +specimens O +. O + + +The O +additive B-MANP +manufactured E-MANP +specimens O +with O +±45° O +and O +90° O +infill S-PARA +direction O +and O +either O +the O +minimal O +or O +small O +void S-CONPRI +extrusion S-MANP +configuration S-CONPRI +had O +the O +strongest O +ultimate B-PRO +tensile I-PRO +strength E-PRO +( O +average S-CONPRI +ranged O +from O +1.44 O +to O +1.51 O +MPa S-CONPRI +) O +. O + + +This O +strength S-PRO +is O +close O +to O +that O +of O +the O +sheet S-MATE +stamped O +specimens O +which O +have O +an O +average S-CONPRI +ultimate O +tensile B-PRO +strength E-PRO +of O +1.63 O +MPa S-CONPRI +. O + + +As S-MATE +the O +void S-CONPRI +size O +became O +larger O +and O +more O +elongated O +in O +shape O +, O +the O +average S-CONPRI +ultimate O +tensile B-PRO +strength E-PRO +significantly O +reduced O +to O +1.15 O +and O +0.90 O +MPa S-CONPRI +for O +specimens O +with O +±45° O +and O +90° O +infill S-PARA +direction O +, O +respectively O +. O + + +Counterintuitively O +, O +specimens O +with O +0° O +infill S-PARA +direction O +were O +consistently O +the O +worst O +performing O +due O +to O +the O +tangency O +voids S-CONPRI +and O +poor O +edge O +surface B-FEAT +finish E-FEAT +resulting O +from O +the O +toolpath S-PARA +. O + + +We O +show O +that O +, O +to O +maximize O +ultimate B-PRO +tensile I-PRO +strength E-PRO +of O +silicone S-MATE +parts O +made O +by O +extrusion-based O +additive B-MANP +manufacturing E-MANP +, O +it O +is O +important O +to O +select O +process B-CONPRI +parameters E-CONPRI +which O +minimize O +the O +elongated O +voids S-CONPRI +, O +infill S-PARA +tangency O +voids S-CONPRI +, O +and O +surface S-CONPRI +edges O +. O + + +If O +these O +conditions O +can O +be S-MATE +achieved O +, O +the O +infill S-PARA +direction O +does O +not O +play O +a O +significant O +role O +in O +tensile B-PRO +strength E-PRO +of O +the O +tensile B-MACEQ +specimen E-MACEQ +. O + + +As S-MATE +part O +of O +a O +larger O +study O +on O +the O +laser B-MANP +sintering E-MANP +( O +LS O +) O +of O +nano-composite O +structures O +for O +biomedical B-APPL +applications E-APPL +, O +a O +wet O +mixing S-CONPRI +method O +was O +used O +to O +coat O +Polyamide B-MATE +12 E-MATE +( O +PA12 S-MATE +) O +particles S-CONPRI +with O +nano-hydroxyapatite O +( O +nHA O +) O +. O + + +The O +addition O +of O +nHA O +significantly O +affected O +powder S-MATE +processability O +due O +to O +laser S-ENAT +absorption S-CONPRI +and O +heat B-CONPRI +transfer E-CONPRI +effects O +which O +led S-APPL +to O +part O +warping S-CONPRI +. O + + +Nano-composites O +containing O +0.5–1.5 O +wt O +% O +nHA O +were O +successfully O +produced O +and O +tensile B-CHAR +testing E-CHAR +showed O +that O +0.5 O +wt O +% O +nHA O +provided O +the O +greatest O +reinforcement S-PARA +with O +a O +20 O +% O +and O +15 O +% O +increase O +in O +modulus O +and O +strength S-PRO +respectively O +. O + + +However O +, O +the O +elongation S-PRO +at O +break O +had O +significantly O +declined O +which O +was O +likely O +due O +to O +the O +formation O +of O +nHA O +aggregates S-MATE +at O +the O +sintering S-MANP +borders O +following O +the O +processing O +of O +the O +coated S-APPL +powders O +despite O +being O +initially O +well O +dispersed O +on O +the O +particle S-CONPRI +surface O +. O + + +An O +intelligent O +optimization S-CONPRI +system O +is O +proposed O +to O +establish O +quantitative S-CONPRI +relationships O +between O +process B-CONPRI +parameters E-CONPRI +and O +multiple O +optimization S-CONPRI +objectives O +, O +including O +mechanical B-CONPRI +properties E-CONPRI +, O +productivity S-CONPRI +, O +energy O +efficiency O +, O +etc O +. O + + +Contour S-FEAT +maps O +of O +operation O +window O +, O +productivity S-CONPRI +and O +energy O +efficiency O +can O +be S-MATE +developed O +to O +predict O +optimal O +parameters S-CONPRI +by O +considering O +the O +constraints O +of O +mechanical B-CONPRI +properties E-CONPRI +and O +material S-MATE +degradation S-CONPRI +. O + + +Using O +a O +facile O +data-driven O +approach O +, O +the O +relationships O +between O +process B-CONPRI +parameters E-CONPRI +and O +optimization S-CONPRI +objectives O +can O +be S-MATE +utilized O +in O +the O +process B-CONPRI +optimization E-CONPRI +and O +material S-MATE +selection O +. O + + +Powder B-MANP +bed I-MANP +fusion E-MANP +( O +PBF S-MANP +) O +represents O +a O +class O +of O +additive B-MANP +manufacturing I-MANP +processes E-MANP +with O +the O +unique O +advantage O +of O +being O +able O +to O +fabricate S-MANP +functional O +products O +with O +complex O +three-dimensional B-CONPRI +geometries E-CONPRI +. O + + +PBF S-MANP +has O +been O +broadly O +applied O +in O +highly O +value-added O +industries S-APPL +, O +including O +the O +biomedical S-APPL +device O +and O +aerospace B-APPL +industries E-APPL +. O + + +However O +, O +it O +is O +challenging O +to O +construct O +a O +comprehensive O +knowledgebase O +to O +guide O +material S-MATE +selection O +and O +process B-CONPRI +optimization E-CONPRI +decisions O +to O +satisfy O +the O +product O +standards S-CONPRI +of O +various O +industries S-APPL +based O +on O +a O +poor O +understanding O +of O +process-structure-property/performance O +relationships O +for O +each O +type O +of O +thermoplastic S-MATE +. O + + +In O +this O +paper O +, O +an O +intelligent O +optimization S-CONPRI +system O +is O +proposed O +to O +establish O +quantitative S-CONPRI +relationships O +between O +process B-CONPRI +parameters E-CONPRI +and O +multiple O +optimization S-CONPRI +objectives O +, O +including O +mechanical B-CONPRI +properties E-CONPRI +, O +productivity S-CONPRI +, O +energy O +efficiency O +, O +and O +degree O +of O +material S-MATE +degradation S-CONPRI +. O + + +Polyurethane S-MATE +is O +considered O +as S-MATE +a O +representative O +thermoplastic S-MATE +because O +it O +is O +sensitive O +to O +thermal-induced O +degradation S-CONPRI +and O +has O +a O +relatively O +narrow O +process S-CONPRI +window O +. O + + +Material S-MATE +and O +powder S-MATE +properties O +as S-MATE +functions O +of O +temperature S-PARA +are O +investigated O +using O +systematic O +material S-MATE +screening O +. O + + +Numerical O +models O +are O +created O +to O +analyze O +the O +interactions O +between O +laser B-CONPRI +beams E-CONPRI +and O +polymeric O +powders S-MATE +by O +considering O +the O +effects O +of O +chamber O +thermal O +conditions O +, O +laser S-ENAT +parameters O +, O +temperature-dependent O +properties S-CONPRI +, O +and O +phase S-CONPRI +transitions O +of O +polymers S-MATE +, O +as S-MATE +well O +as S-MATE +laser O +beam S-MACEQ +characteristics O +. O + + +The O +theoretically O +predicted S-CONPRI +features O +of O +melting S-MANP +pools O +are O +validated O +experimentally O +and O +then O +utilized O +to O +develop O +quantitative S-CONPRI +relationships O +between O +process B-CONPRI +parameters E-CONPRI +and O +multiple O +optimization S-CONPRI +objectives O +. O + + +The O +established O +relationships O +can O +guide O +process B-CONPRI +parameter E-CONPRI +optimization S-CONPRI +and O +material S-MATE +selection O +decisions O +for O +polymer S-MATE +PBF S-MANP +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +is O +emerging O +as S-MATE +a O +promising O +technology S-CONPRI +to O +fabricate S-MANP +cost-effective O +, O +customized O +functional O +parts O +. O + + +Designing O +such O +functional O +, O +i.e. O +, O +load O +bearing O +, O +parts O +can O +be S-MATE +challenging O +and O +time O +consuming O +where O +the O +goal O +is O +to O +balance O +performance S-CONPRI +and O +material S-MATE +usage O +. O + + +Topology B-FEAT +optimization E-FEAT +( O +TO O +) O +is O +a O +powerful O +design S-FEAT +method O +which O +can O +complement O +AM S-MANP +by O +automating O +the O +design B-CONPRI +process E-CONPRI +. O + + +However O +, O +for O +TO O +to O +be S-MATE +a O +useful O +methodology S-CONPRI +, O +the O +underlying O +mathematical S-CONPRI +model O +must O +be S-MATE +carefully O +constructed O +. O + + +Specifically O +, O +it O +is O +well O +established O +that O +parts O +fabricated S-CONPRI +through O +some O +AM B-MANP +technologies E-MANP +, O +such O +as S-MATE +fused O +deposition B-CONPRI +modeling E-CONPRI +( O +FDM S-MANP +) O +, O +exhibit O +behavioral O +anisotropicity O +. O + + +This O +induced O +anisotropy S-PRO +can O +have O +a O +negative O +impact S-CONPRI +on O +functionality O +of O +the O +part O +, O +and O +must O +be S-MATE +considered O +. O + + +In O +the O +present O +work O +, O +a O +strength-based O +topology B-FEAT +optimization E-FEAT +method O +for O +structures O +with O +anisotropic S-PRO +materials O +is O +presented O +. O + + +More O +specifically O +, O +we O +propose O +a O +new O +topological B-CONPRI +sensitivity E-CONPRI +formulation O +based O +on O +strength S-PRO +ratio O +of O +non-homogeneous O +failure S-CONPRI +criteria O +, O +such O +as S-MATE +Tsai-Wu O +. O + + +The O +rapid O +transition S-CONPRI +of O +the O +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +process S-CONPRI +from O +small O +scale O +prototype S-CONPRI +models O +to O +large O +scale O +polymer S-MATE +deposition S-CONPRI +has O +been O +driven O +, O +in O +part O +, O +by O +the O +addition O +of O +short B-MATE +carbon I-MATE +fibers E-MATE +to O +the O +polymer B-MATE +feedstock E-MATE +. O + + +The O +addition O +of O +short B-MATE +carbon I-MATE +fibers E-MATE +improves O +both O +the O +mechanical S-APPL +and O +thermal B-CONPRI +properties E-CONPRI +of O +the O +printed O +beads S-CHAR +. O + + +The O +improvements O +to O +the O +anisotropic S-PRO +mechanical O +and O +thermal B-CONPRI +properties E-CONPRI +of O +the O +polymer B-MATE +feedstock E-MATE +are O +dependent O +on O +the O +spatially O +varying O +orientation S-CONPRI +of O +short B-MATE +carbon I-MATE +fibers E-MATE +which O +is O +itself O +a O +function O +of O +the O +velocity O +gradients O +in O +the O +flow O +field O +throughout O +the O +nozzle S-MACEQ +and O +in O +the O +extrudate S-MATE +during O +deposition S-CONPRI +flow O +. O + + +This O +paper O +presents O +a O +computational O +approach O +for O +simulating O +the O +deposition S-CONPRI +flow O +that O +occurs O +in O +the O +Large O +Area S-PARA +Additive B-MANP +Manufacturing E-MANP +( O +LAAM O +) O +process S-CONPRI +and O +the O +effects O +on O +the O +final O +short B-MATE +fiber E-MATE +orientation S-CONPRI +state O +in O +the O +deposited O +polymer S-MATE +bead S-CHAR +and O +the O +resulting O +bead S-CHAR +mechanical O +and O +thermal B-CONPRI +properties E-CONPRI +. O + + +The O +finite B-CONPRI +element I-CONPRI +method E-CONPRI +is O +used O +to O +evaluate O +Stokes O +flow O +for O +a O +two-dimensional S-CONPRI +planar O +flow O +field O +within O +a O +Strangpresse O +Model S-CONPRI +19 O +LAAM O +polymer S-MATE +deposition S-CONPRI +nozzle O +. O + + +A O +shape O +optimization S-CONPRI +method O +is O +employed O +to O +compute O +the O +shape O +of O +the O +polymer B-MATE +melt E-MATE +flow O +free B-CONPRI +surface E-CONPRI +below O +the O +nozzle S-MACEQ +exit O +as S-MATE +the O +bead S-CHAR +is O +deposited O +on O +a O +moving O +print S-MANP +platform S-MACEQ +. O + + +Three O +nozzle S-MACEQ +configurations O +are O +considered O +in O +this O +study O +. O + + +Fiber B-FEAT +orientation E-FEAT +tensors O +are O +calculated O +throughout O +the O +fluid S-MATE +domain S-CONPRI +using O +the O +Folgar-Tucker O +fiber S-MATE +interaction O +model S-CONPRI +. O + + +The O +effective O +bulk O +mechanical B-CONPRI +properties E-CONPRI +, O +specifically O +the O +longitudinal O +and O +transverse O +moduli O +, O +and O +the O +coefficient B-PRO +of I-PRO +thermal I-PRO +expansion E-PRO +, O +are O +also O +calculated O +for O +the O +deposited B-CHAR +bead E-CHAR +based O +on O +the O +spatially O +varying O +fiber B-FEAT +orientation E-FEAT +tensors O +. O + + +Fiber B-FEAT +orientation E-FEAT +is O +found O +to O +be S-MATE +highly O +aligned O +along O +the O +deposition B-PARA +direction E-PARA +of O +the O +resulting O +bead S-CHAR +and O +the O +computed O +properties S-CONPRI +through O +the O +thickness O +of O +the O +bead S-CHAR +are O +found O +to O +be S-MATE +affected O +by O +nozzle S-MACEQ +height O +during O +deposition S-CONPRI +. O + + +Significant O +improvements O +to O +the O +throughput S-CHAR +of O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +are O +essential O +to O +their O +cost-effectiveness O +and O +competitiveness O +with O +traditional O +processing O +routes O +. O + + +Moreover O +, O +high-throughput O +AM B-MANP +processes E-MANP +, O +in O +combination O +with O +the O +geometric O +versatility O +of O +AM S-MANP +, O +will O +enable O +entirely O +new O +workflows S-CONPRI +for O +product B-FEAT +design E-FEAT +and O +customization O +. O + + +We O +present O +the O +design S-FEAT +and O +validation S-CONPRI +of O +a O +desktop-scale O +extrusion B-MANP +AM E-MANP +system O +that O +achieves O +a O +much O +greater O +build B-CHAR +rate E-CHAR +than O +benchmarked O +commercial O +systems O +. O + + +This O +system O +, O +which O +we O +call O +‘ O +FastFFF O +’ O +, O +is O +motivated O +by O +our O +recent O +analysis O +of O +the O +rate-limiting O +mechanisms O +to O +conventional O +fused B-MANP +filament I-MANP +fabrication E-MANP +( O +FFF S-MANP +) O +technology S-CONPRI +. O + + +The O +FastFFF O +system O +mutually O +overcomes O +these O +limits S-CONPRI +, O +using O +a O +nut-feed O +extruder S-MACEQ +, O +laser-heated O +polymer S-MATE +liquefier O +, O +and O +servo-driven O +parallel O +gantry O +system O +to O +achieve O +high O +extrusion S-MANP +force O +, O +rapid O +filament S-MATE +heating O +, O +and O +fast O +gantry O +motion O +, O +respectively O +. O + + +The O +extrusion S-MANP +and O +heating S-MANP +mechanisms O +are O +contained O +in O +a O +compact S-MANP +printhead O +that O +receives O +a O +threaded O +filament S-MATE +and O +augments O +conduction O +heat B-CONPRI +transfer E-CONPRI +with O +a O +fiber-coupled O +diode S-APPL +laser O +. O + + +The O +prototype S-CONPRI +system O +achieves O +a O +volumetric O +build B-CHAR +rate E-CHAR +of O +127 O +cm3/hr O +, O +which O +is O +approximately O +7-fold O +greater O +than O +commercial O +desktop O +FFF S-MANP +systems O +, O +at O +comparable O +resolution S-PARA +; O +the O +maximum O +extrusion B-PARA +rate E-PARA +of O +the O +printhead O +is O +∼14-fold O +greater O +( O +282 O +cm3/hr O +) O +than O +our O +benchmarks O +. O + + +The O +performance B-CONPRI +limits E-CONPRI +of O +the O +printhead O +and O +motion O +systems O +are O +characterized O +, O +and O +the O +tradeoffs O +between O +build B-CHAR +rate E-CHAR +and O +resolution S-PARA +are O +assessed O +and O +discussed O +. O + + +High-speed O +desktop O +AM S-MANP +raises O +the O +possibility O +of O +new O +use O +cases O +and O +business B-APPL +models E-APPL +for O +AM S-MANP +, O +where O +handheld O +parts O +are O +built O +in O +minutes O +rather O +than O +hours O +. O + + +Adaptation O +of O +this O +technology S-CONPRI +to O +print S-MANP +high-temperature O +thermoplastics S-MATE +and O +composite B-MATE +materials E-MATE +, O +which O +require O +high O +extrusion S-MANP +forces O +, O +is O +also O +of O +interest O +. O + + +The O +driver O +for O +this O +research S-CONPRI +is O +the O +development O +of O +multi-material B-MANP +additive I-MANP +manufacturing E-MANP +processes O +that O +provide O +the O +potential O +for O +multi-functional O +parts O +to O +be S-MATE +manufactured O +in O +a O +single O +operation O +. O + + +In O +order O +to O +exploit O +the O +potential O +benefits O +of O +this O +emergent O +technology S-CONPRI +, O +new O +design S-FEAT +, O +analysis O +and O +optimization S-CONPRI +methods O +are O +needed O +. O + + +This O +paper O +presents O +a O +method O +that O +enables O +in O +the O +optimization S-CONPRI +of O +a O +multifunctional O +part O +by O +coupling O +both O +the O +system O +and O +structural B-FEAT +design E-FEAT +aspects O +. O + + +This O +is O +achieved O +by O +incorporating O +the O +effects O +of O +a O +system O +, O +comprised O +of O +a O +number O +of O +connected O +functional B-CONPRI +components E-CONPRI +, O +on O +the O +structural O +response O +of O +a O +part O +within O +a O +structural O +topology B-FEAT +optimization E-FEAT +procedure O +. O + + +The O +potential O +of O +the O +proposed O +method O +is O +demonstrated O +by O +performing O +a O +coupled O +optimization S-CONPRI +on O +a O +cantilever S-FEAT +plate O +with O +integrated O +components S-MACEQ +and O +circuitry O +. O + + +Biocompatible S-PRO +and O +biodegradable O +poly O +( O +lactic O +acid O +) O +( O +PLA S-MATE +) O +and O +hydroxyapatite S-MATE +( O +HAP O +) O +are O +widely O +used O +for O +bone S-BIOP +repair O +. O + + +In O +this O +study O +, O +microspheres S-CONPRI +consisting O +of O +poly O +( O +lactic O +acid O +) O +( O +PLA S-MATE +) O +and O +nano-hydroxyapatite O +( O +nano-HAP O +) O +were O +synthesized O +by O +emulsion S-MATE +solvent O +evaporation S-CONPRI +and O +were O +then O +used O +to O +fabricate S-MANP +layered O +parts O +using O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +. O + + +The O +effect O +of O +various O +parameters S-CONPRI +of O +the O +emulsion S-MATE +solvent O +evaporation S-CONPRI +technique O +on O +the O +size O +and O +morphology S-CONPRI +of O +the O +resulting O +PLA/nano-HAP O +microspheres S-CONPRI +was O +examined O +. O + + +We O +also O +evaluated O +how O +L-PBF S-MANP +parameters O +affected O +the O +physicochemical O +and O +biological O +properties S-CONPRI +of O +the O +fabricated S-CONPRI +parts O +. O + + +Nano-HAP O +was O +uniformly O +incorporated O +into O +PLA S-MATE +microspheres S-CONPRI +. O + + +Incorporation O +of O +HAP O +particles S-CONPRI +triggered O +pore S-PRO +formation O +on O +the O +microsphere O +surface S-CONPRI +. O + + +Layered O +parts O +fabricated S-CONPRI +by O +L-PBF S-MANP +using O +these O +composite S-MATE +microspheres O +as S-MATE +a O +material S-MATE +source O +showed O +good O +biocompatibility S-PRO +and O +osteogenesis O +. O + + +A O +10 O +wt O +% O +of O +nano-HAP O +content O +in O +the O +layered O +part O +could O +effectively O +facilitate O +osteogenic O +differentiation O +of O +rat O +mesenchymal B-MATE +stem I-MATE +cells E-MATE +( O +rMSCs O +) O +. O + + +Thus O +, O +L-PBF S-MANP +is O +a O +promising O +technology S-CONPRI +that O +can O +be S-MATE +used O +for O +manufacturing S-MANP +bone-repair O +implants S-APPL +consisting O +of O +PLA/nano-HAP O +composites S-MATE +materials O +. O + + +In O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +processes S-CONPRI +, O +part O +and O +process S-CONPRI +attributes O +are O +often O +optimized O +with O +build S-PARA +orientation/tool-path O +direction O +. O + + +Both O +of O +them O +may O +alter O +the O +layer S-PARA +topology O +and O +tool-path S-PARA +pattern S-CONPRI +which O +implicitly O +affect O +the O +part O +and O +process S-CONPRI +attributes O +. O + + +However O +, O +optimizing O +either O +build B-PARA +orientation E-PARA +or O +tool-path S-PARA +direction O +independently O +undermines O +the O +hierarchical O +relationship O +in O +the O +AM B-MANP +process E-MANP +plan O +and O +may O +produce O +a O +sub-optimal O +solution S-CONPRI +. O + + +In O +this O +paper O +, O +an O +integrated O +framework S-CONPRI +is O +proposed O +to O +quantify O +their O +combined O +effect O +on O +the O +part O +and O +process S-CONPRI +attributes O +by O +analyzing O +the O +generated O +geometry S-CONPRI +. O + + +The O +proposed O +methodology S-CONPRI +is O +designed S-FEAT +on O +the O +basis O +of O +the O +layer S-PARA +geometries S-CONPRI +to O +ensure O +manufacturability S-CONPRI +and O +minimize O +fabrication S-MANP +complexity S-CONPRI +in O +AM B-MANP +processes E-MANP +. O + + +Both O +build B-PARA +orientation E-PARA +and O +tool-path/deposition O +direction O +are O +concurrently O +optimized O +using O +a O +Genetic B-CONPRI +Algorithm E-CONPRI +( O +GA S-MATE +) O +. O + + +Multi B-MANP +Jet I-MANP +Fusion E-MANP +process O +. O + + +Modelling S-ENAT +the O +capillarity O +effect O +in O +Multi B-MANP +Jet I-MANP +Fusion E-MANP +technology O +. O + + +Multi B-MANP +Jet I-MANP +Fusion E-MANP +is O +a O +powder-based B-MANP +Additive I-MANP +Manufacturing E-MANP +technology O +patented O +by O +Hewlett-Packard O +Inc O +. O + + +It O +is O +characterised O +by O +the O +use O +of O +lamps O +instead O +of O +lasers O +to O +heat S-CONPRI +and O +melt S-CONPRI +polymers O +and O +by O +fusing S-CONPRI +and O +detailing O +agents O +that O +are O +jetted O +on O +the O +polymeric O +particles S-CONPRI +to O +modify O +and O +to O +control O +their O +heat B-PRO +absorption E-PRO +and O +thus O +selectively O +melt S-CONPRI +them O +. O + + +The O +high O +production S-MANP +rate O +and O +excellent O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +manufactured S-CONPRI +parts O +, O +even O +in O +comparison O +with O +Laser B-MANP +Sintering E-MANP +, O +together O +with O +the O +overall O +product B-CONPRI +quality E-CONPRI +make O +this O +technology S-CONPRI +effective O +for O +a O +production S-MANP +of O +small O +series O +of O +end-parts O +rather O +than O +functional O +prototypes.In O +the O +present O +paper O +, O +the O +so-called O +capillarity O +effect O +is O +investigated O +. O + + +A O +benchmark S-MANS +geometry O +was O +designed S-FEAT +to O +be S-MATE +affected O +by O +the O +capillarity O +effect O +and O +then O +manufactured S-CONPRI +by O +the O +MJF S-MANP +process O +. O + + +Values O +of O +the O +contact S-APPL +angle O +and O +of O +the O +characteristic O +length O +of O +the O +capillary O +, O +which O +are O +necessary O +to O +implement O +the O +analytical O +model S-CONPRI +, O +were O +obtained O +by O +experimental S-CONPRI +measurements O +made O +on O +the O +benchmark S-MANS +geometry.As O +a O +result O +the O +capillarity O +effect O +showed O +a O +dependence O +on O +the O +border O +edge O +orientation S-CONPRI +. O + + +The O +comparison O +between O +calculated O +shapes O +of O +the O +plane O +affected O +by O +the O +capillarity O +effect O +through O +the O +analytical O +model S-CONPRI +was O +in O +accordance O +with O +the O +experimental S-CONPRI +measurements O +thus O +allowing O +a O +reliable O +prediction S-CONPRI +to O +be S-MATE +made O +. O + + +Experiment S-CONPRI +to O +identify O +influence O +factors O +of O +nozzle S-MACEQ +clogging O +. O + + +Identification O +of O +reasons O +causing O +clogging O +of O +sphere-filled O +polycarbonate S-MATE +. O + + +Model S-CONPRI +for O +the O +occurrence O +of O +nozzle S-MACEQ +clogging O +. O + + +Mathematical S-CONPRI +viscosity O +model S-CONPRI +to O +approximate O +printability S-PARA +of O +materials S-CONPRI +. O + + +Fused B-MANP +filament I-MANP +fabrication E-MANP +with O +reinforced S-CONPRI +or O +filled O +polymers S-MATE +provides O +improved O +material B-CONPRI +properties E-CONPRI +compared O +to O +ordinary O +feedstock S-MATE +. O + + +A O +current O +limitation O +of O +these O +materials S-CONPRI +is O +the O +occurrence O +of O +nozzle S-MACEQ +clogging O +at O +higher O +filler O +contents O +. O + + +In O +this O +work O +, O +an O +experiment S-CONPRI +is O +designed S-FEAT +to O +identify O +the O +factors O +causing O +nozzle S-MACEQ +clogging O +. O + + +Glass S-MATE +sphere-filled O +polycarbonate S-MATE +is O +investigated O +by O +varying O +nozzle S-MACEQ +and O +filler O +diameters O +, O +the O +resin S-MATE +viscosity O +, O +the O +filler O +content O +, O +and O +the O +extrusion B-PARA +pressure E-PARA +. O + + +Based O +on O +these O +results O +, O +a O +model S-CONPRI +for O +the O +clogging O +of O +sphere-filled O +polymers S-MATE +is O +proposed O +. O + + +Last O +, O +a O +mathematical S-CONPRI +model O +is O +derived O +, O +which O +approximates O +the O +printability S-PARA +of O +filled O +polymers S-MATE +without O +the O +preparation O +of O +composites S-MATE +. O + + +This O +model S-CONPRI +is O +based O +on O +the O +nozzle S-MACEQ +geometry S-CONPRI +, O +the O +filler O +type O +and O +content O +, O +the O +resin S-MATE +viscosity O +, O +and O +the O +printer S-MACEQ +’ O +s S-MATE +maximum O +extrusion S-MANP +force O +. O + + +In O +this O +study O +, O +we O +propose O +a O +tool-path S-PARA +generation O +approach O +for O +material S-MATE +extrusion-based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +that O +considers O +the O +machining S-MANP +efficiency O +and O +fabrication S-MANP +precision O +, O +which O +are O +inherent O +drawbacks O +of O +general O +AM B-MANP +techniques E-MANP +compared O +with O +conventional B-MANP +manufacturing E-MANP +methods O +. O + + +These O +three O +modules O +interact O +to O +affect O +the O +efficiency O +and O +precision S-CHAR +of O +AM S-MANP +significantly O +. O + + +In O +order O +to O +find O +an O +optimal O +inclination S-FEAT +, O +we O +first O +analyze O +the O +impacts O +on O +the O +fabrication S-MANP +efficiency O +and O +manufacturing S-MANP +accuracy S-CHAR +with O +different O +inclinations S-FEAT +. O + + +A O +comparatively O +accurate S-CHAR +building O +time O +model S-CONPRI +is O +developed O +subsequently O +to O +obtain O +the O +optimal O +tool-path S-PARA +inclination S-FEAT +, O +but O +without O +compromising O +the O +machining S-MANP +precision O +, O +based O +on O +the O +analysis O +of O +a O +geometrical O +accuracy S-CHAR +model O +. O + + +The O +proposed O +approach O +employs O +different O +inclinations S-FEAT +in O +distinct O +layers O +according O +to O +specific O +manufacturing S-MANP +scenarios O +and O +technological O +requirements O +. O + + +Fused B-MANP +deposition I-MANP +modeling E-MANP +( O +FDM S-MANP +) O +is O +shown O +to O +be S-MATE +a O +future-oriented O +technology S-CONPRI +. O + + +In O +this O +study O +, O +short-term O +creep S-PRO +deformation O +of O +PC-ABS O +parts O +created O +by O +FDM S-MANP +under O +different O +fabrication S-MANP +conditions O +was O +investigated O +using O +a O +recently O +innovative O +class O +of O +experimental B-CONPRI +design E-CONPRI +− O +definitive O +screening O +design S-FEAT +( O +DSD O +) O +− O +along O +with O +graphical O +analysis O +. O + + +Short-term O +creep S-PRO +experiments O +were O +conducted O +at O +prescribed O +combinations O +of O +FDM S-MANP +operating O +conditions O +, O +namely O +layer B-PARA +thickness E-PARA +, O +air O +gap O +, O +raster O +angle O +, O +build B-PARA +orientation E-PARA +, O +road O +width O +and O +number O +of O +contours S-FEAT +, O +as S-MATE +per O +DSD O +matrix O +. O + + +The O +results O +have O +shown O +that O +layer B-PARA +thickness E-PARA +, O +number O +of O +contours S-FEAT +, O +raster O +angle O +and O +build B-PARA +orientation E-PARA +have O +a O +major O +effect O +on O +the O +creep S-PRO +rate O +of O +the O +parts O +. O + + +However O +, O +road O +width O +and O +air O +gap O +have O +least O +impact S-CONPRI +on O +the O +creep S-PRO +rate O +of O +FDM S-MANP +processed O +prototypes S-CONPRI +. O + + +We O +present O +the O +design S-FEAT +and O +characterisation O +of O +a O +high-speed O +sintering S-MANP +additive B-MANP +manufacturing E-MANP +benchmarking O +artefact O +following O +a O +design-for-metrology O +approach O +. O + + +In O +an O +important O +improvement O +over O +conventional O +approaches O +, O +the O +specifications S-PARA +and O +operating O +principles O +of O +the O +instruments O +that O +would O +be S-MATE +used O +to O +measure O +the O +manufactured S-CONPRI +artefact O +were O +taken O +into O +account O +during O +its O +design B-CONPRI +process E-CONPRI +. O + + +With O +the O +design-for-metrology O +methodology S-CONPRI +, O +we O +aim O +to O +improve O +and O +facilitate O +measurements O +on O +parts O +produced O +using O +additive B-MANP +manufacturing E-MANP +. O + + +The O +benchmarking O +artefact O +has O +a O +number O +of O +geometrical B-FEAT +features E-FEAT +, O +including O +sphericity O +, O +cylindricity S-CONPRI +, O +coaxiality O +and O +minimum B-PARA +feature I-PARA +size E-PARA +, O +all O +of O +which O +are O +measured O +using O +contact S-APPL +, O +optical S-CHAR +and O +X-ray B-CHAR +computed I-CHAR +tomography E-CHAR +coordinate S-PARA +measuring O +systems O +. O + + +The O +results O +highlight O +the O +differences O +between O +the O +measuring O +methods O +, O +and O +the O +need O +to O +establish O +a O +specification S-PARA +standards O +and O +guidance O +for O +the O +dimensional O +assessment O +of O +additive B-MANP +manufacturing E-MANP +parts O +. O + + +Low O +molecular O +weight S-PARA +gelators O +can O +facilitate O +direct O +writing O +of O +epoxy S-MATE +resin O +. O + + +Low O +viscosity S-PRO +ink S-MATE +preparation O +. O + + +Processing-enabled O +manipulation O +of O +matrix O +morphology S-CONPRI +. O + + +Cured S-MANP +epoxy O +resin S-MATE +kinetically O +traps O +low O +molecular O +weight S-PARA +gelator O +. O + + +Direct O +writing O +a O +thermosetting O +resin S-MATE +typically O +requires O +a O +rheological S-PRO +modifier O +or O +peripheral O +reaction O +rate-modulating O +equipment S-MACEQ +to O +enable O +shape B-CONPRI +fidelity E-CONPRI +during O +parts O +fabrication S-MANP +. O + + +These O +low O +molecular O +weight S-PARA +gelators O +( O +LMWG S-CONPRI +) O +are O +thermally B-MANP +activated E-MANP +to O +produce O +sufficient O +yield B-PRO +stress E-PRO +for O +self-supporting S-FEAT +, O +reactive O +, O +physical O +gels O +. O + + +Physical O +gelation O +occurs O +by O +assembly S-MANP +of O +the O +LMWG S-CONPRI +into O +supramolecular B-CONPRI +morphologies E-CONPRI +that O +vary O +by O +mode O +of O +processing O +. O + + +Flow O +of O +the O +form-stable O +epoxy S-MATE +resin O +is O +induced O +by O +yielding O +of O +the O +physical O +gel S-MATE +structure O +. O + + +When O +the O +physical O +gel S-MATE +is O +cured S-MANP +at O +temperatures S-PARA +below O +the O +melt S-CONPRI +transition O +of O +the O +organic O +gelator O +, O +the O +network O +structure S-CONPRI +likely O +kinetically O +traps O +the O +organic O +gelator O +in O +a O +metastable S-PRO +state O +. O + + +Recrystallization S-CONPRI +of O +the O +kinetically O +trapped O +organic O +gelator O +is O +impeded O +when O +the O +network O +is O +post-cured O +above O +the O +melt S-CONPRI +transition O +temperature S-PARA +of O +the O +organic O +gelator O +. O + + +The O +use O +of O +low O +molecular O +weight S-PARA +agents O +that O +physically O +gel S-MATE +by O +thermal O +activation O +, O +generates O +low O +viscosity S-PRO +solution S-CONPRI +processability O +and O +suggests O +that O +this O +platform S-MACEQ +may O +be S-MATE +suitable O +for O +high O +solids O +loading O +applications O +amenable O +to O +direct O +writing O +. O + + +The O +effect O +on O +fatigue S-PRO +resistance O +of O +additively B-MANP +manufactured E-MANP +( O +AM S-MANP +) O +AlSi10Mg S-MATE +specimens O +fabricated S-CONPRI +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +following O +surface B-MANP +treatment E-MANP +by O +shot-peening O +was O +investigated O +. O + + +Specimen O +surface S-CONPRI +was O +shot-peened O +with O +either O +steel S-MATE +or O +ceramic S-MATE +balls O +. O + + +Nano-indentation O +measurements O +revealed O +that O +shot-peening O +caused O +surface B-MANP +hardening E-MANP +, O +with O +the O +hardness S-PRO +profile O +from O +the O +surface S-CONPRI +to O +the O +interior O +of O +the O +bulk O +disappearing O +50 O +μm O +below O +the O +surface S-CONPRI +. O + + +Surfaces S-CONPRI +polished O +before O +shot-peening O +or O +following O +removal O +of O +about O +25–30 O +μm O +from O +the O +surface S-CONPRI +after O +shot-peening O +by O +either O +mechanical S-APPL +or O +electrolytic O +polishing S-MANP +showed O +improved O +fatigue S-PRO +resistance O +and O +fatigue S-PRO +limit O +. O + + +The O +fracture S-CONPRI +area S-PARA +of O +AM-SLM O +AlSi10Mg S-MATE +specimens O +before O +and O +after O +shot-peening O +displayed O +a O +ductile B-CONPRI +fracture E-CONPRI +with O +relatively O +deep O +dimples O +. O + + +In O +contrast O +to O +AM S-MANP +specimens O +, O +the O +final O +fracture S-CONPRI +area S-PARA +of O +die-cast O +samples S-CONPRI +exhibited O +a O +brittle B-CONPRI +fracture E-CONPRI +surface O +, O +containing O +numerous O +cleavage O +facets S-CONPRI +and O +micro-cracks S-CONPRI +. O + + +The O +extrusion-based O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +moisture-cured O +silicone B-MATE +elastomer E-MATE +with O +minimal O +voids S-CONPRI +and O +high O +strength S-PRO +, O +elongation S-PRO +, O +and O +fatigue B-PRO +life E-PRO +is O +presented O +. O + + +Due O +to O +the O +soft O +nature O +and O +extended O +cure S-CONPRI +time O +of O +moisture-cured O +silicone S-MATE +, O +AM S-MANP +is O +technically O +challenging O +. O + + +This O +compression S-PRO +is O +exploited O +to O +prevent O +void S-CONPRI +formation O +in O +silicone S-MATE +AM S-MANP +. O + + +This O +research S-CONPRI +aims O +to O +explore O +process B-CONPRI +parameters E-CONPRI +for O +voidless O +silicone S-MATE +AM S-MANP +of O +solid O +and O +thin-wall O +structures O +for O +pneumatic O +actuators S-MACEQ +. O + + +Experiments O +were O +performed O +to O +study O +effects O +of O +flowrate O +, O +layer B-PARA +height E-PARA +, O +and O +distance O +between O +adjacent O +silicone S-MATE +lines O +on O +the O +solid O +and O +thin-wall O +vertical S-CONPRI +layer S-PARA +deformation S-CONPRI +and O +void S-CONPRI +generation O +. O + + +The O +results O +were O +then O +applied O +in O +AM S-MANP +of O +two O +thin-walled O +hollow O +silicone S-MATE +pneumatic O +parts O +: O +the O +sphere-like O +balloons O +and O +finger O +pneumatic O +actuators S-MACEQ +. O + + +The O +sphere-like O +balloons O +exhibited O +diametric O +expansion O +between O +152 O +and O +207 O +% O +with O +burst O +stress S-PRO +between O +1.46 O +and O +2.55 O +MPa S-CONPRI +( O +which O +is O +comparable O +to O +the O +base O +material B-CONPRI +properties E-CONPRI +) O +while O +the O +pneumatic O +finger O +actuators S-MACEQ +were O +able O +to O +fully O +articulate O +over O +30,000 O +cycles O +before O +failure S-CONPRI +. O + + +Fiber S-MATE +trajectory O +of O +composite B-CONPRI +structures E-CONPRI +is O +optimized O +for O +Additive B-MANP +manufacturing E-MANP +. O + + +The O +stiffness S-PRO +and O +strength S-PRO +were O +simultaneously O +improved O +by O +the O +proposed O +method O +. O + + +A O +methodology S-CONPRI +of O +fiber S-MATE +trajectory O +optimization S-CONPRI +is O +proposed O +for O +Additive B-MANP +Manufacturing E-MANP +of O +composites S-MATE +. O + + +The O +present O +method O +aligns O +fiber S-MATE +with O +a O +physically-determined O +load O +path O +to O +simultaneously O +increase O +the O +stiffness S-PRO +and O +strength S-PRO +of O +the O +composite B-CONPRI +structures E-CONPRI +. O + + +In O +the O +case O +of O +open-hole O +panel O +, O +the O +deformation S-CONPRI +and O +the O +failure S-CONPRI +index O +were O +decreased O +by O +8 O +% O +and O +55 O +% O +compared O +to O +those O +obtained O +by O +the O +unidirectional B-CONPRI +structure E-CONPRI +. O + + +In O +the O +case O +of O +PAF O +, O +the O +decrease O +in O +failure S-CONPRI +index O +was O +76 O +% O +, O +but O +the O +reduction S-CONPRI +of O +deformation S-CONPRI +was O +not O +significant O +( O +6 O +% O +) O +. O + + +The O +present O +method O +also O +identified O +the O +structural O +members O +that O +did O +not O +contribute O +to O +strength S-PRO +and O +rigidity O +, O +which O +in O +turn O +realized O +the O +appropriate O +weight S-PARA +savings O +and O +increased O +the O +specific B-PRO +strength E-PRO +and O +specific B-PRO +stiffness E-PRO +. O + + +Microstructures S-MATE +with O +spatially-varying O +properties S-CONPRI +such O +as S-MATE +trabecular O +bone S-BIOP +are O +widely O +seen O +in O +nature O +. O + + +These O +functionally B-MATE +graded I-MATE +materials E-MATE +possess O +smoothly O +changing O +microstructural S-CONPRI +topologies O +that O +enable O +excellent O +micro O +and O +macroscale S-CONPRI +performance O +. O + + +The O +fabrication S-MANP +of O +such O +microstructural B-CONPRI +materials E-CONPRI +is O +now O +enabled O +by O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +. O + + +A O +challenging O +aspect O +in O +the O +computational O +design S-FEAT +of O +such O +materials S-CONPRI +is O +ensuring O +compatibility O +between O +adjacent O +microstructures S-MATE +. O + + +Existing O +works O +address O +this O +problem O +by O +ensuring O +geometric O +connectivity O +between O +adjacent O +microstructural S-CONPRI +unit O +cells S-APPL +. O + + +In O +this O +paper O +, O +we O +aim O +to O +find O +the O +optimal O +connectivity O +between O +topology S-CONPRI +optimized O +microstructures S-MATE +. O + + +Recognizing O +the O +fact O +that O +the O +optimality O +of O +connectivity O +can O +be S-MATE +evaluated O +by O +the O +resulting O +physical B-PRO +properties E-PRO +of O +the O +assemblies O +, O +we O +propose O +to O +consider O +the O +assembly S-MANP +of O +adjacent O +cells S-APPL +together O +with O +the O +optimization S-CONPRI +of O +individual O +cells S-APPL +. O + + +In O +particular O +, O +our O +method O +simultaneously O +optimizes O +the O +physical B-PRO +properties E-PRO +of O +the O +individual O +cells S-APPL +as S-MATE +well O +as S-MATE +those O +of O +neighbouring O +pairs O +, O +to O +ensure O +material S-MATE +connectivity O +and O +smoothly O +varying O +physical B-PRO +properties E-PRO +. O + + +We O +demonstrate O +the O +application O +of O +our O +method O +in O +the O +design S-FEAT +of O +functionally B-MATE +graded I-MATE +materials E-MATE +for O +implant S-APPL +design S-FEAT +( O +including O +an O +implant S-APPL +prototype O +made O +by O +AM S-MANP +) O +, O +and O +in O +the O +multiscale O +optimization S-CONPRI +of O +structures O +. O + + +An O +analytical O +model S-CONPRI +was O +created O +to O +illustrate O +the O +powder S-MATE +stream O +distribution S-CONPRI +under O +the O +four-jet O +nozzles S-MACEQ +in O +direct B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +. O + + +Weight S-PARA +measurement S-CHAR +method O +was O +used O +to O +validate O +the O +powder S-MATE +flow O +distributions S-CONPRI +at O +different O +positions O +under O +the O +nozzle S-MACEQ +. O + + +Analyzed O +the O +effects O +of O +the O +input O +variables O +on O +the O +powder S-MATE +stream O +distribution S-CONPRI +. O + + +Estimated O +the O +powder S-MATE +deposition S-CONPRI +efficiency O +( O +PDE O +) O +based O +on O +the O +simulation S-ENAT +results O +. O + + +As S-MATE +an O +important O +factor O +during O +direct B-MANP +energy I-MANP +deposition E-MANP +( O +DED S-MANP +) O +additive B-MANP +manufacturing I-MANP +process E-MANP +, O +powder S-MATE +stream O +distribution S-CONPRI +will O +not O +only O +affect O +the O +deposition B-PARA +rate E-PARA +, O +but O +also O +the O +powder-gas O +and O +power-powder O +interactions O +, O +and O +thus O +the O +consequent O +quality S-CONPRI +and O +property S-CONPRI +of O +the O +fabricated S-CONPRI +part O +. O + + +This O +paper O +created O +an O +analytical O +model S-CONPRI +to O +illustrate O +the O +powder S-MATE +stream O +distribution S-CONPRI +under O +the O +four-jet O +nozzles S-MACEQ +in O +the O +DED S-MANP +. O + + +To O +validate O +the O +proposed O +model S-CONPRI +, O +weight S-PARA +measurement S-CHAR +method O +was O +used O +to O +track O +the O +powder S-MATE +stream O +distributions S-CONPRI +at O +different O +positions O +under O +the O +nozzle S-MACEQ +. O + + +Additionally O +, O +the O +effects O +of O +the O +input O +variables O +, O +including O +powder B-PARA +flow I-PARA +rate E-PARA +, O +gas B-PARA +flow I-PARA +rate E-PARA +and O +particle S-CONPRI +size O +, O +on O +the O +powder S-MATE +stream O +distribution S-CONPRI +were O +also O +analyzed O +. O + + +The O +results O +suggest O +a O +relatively O +good O +agreement O +between O +the O +modelling S-ENAT +and O +experimental S-CONPRI +measurements O +. O + + +At O +the O +end O +, O +the O +powder S-MATE +deposition S-CONPRI +efficiency O +( O +PDE O +) O +was O +estimated O +based O +on O +the O +simulation S-ENAT +results O +. O + + +The O +influence O +of O +build B-PARA +orientation E-PARA +, O +layer B-PARA +thickness E-PARA +, O +strain B-CONPRI +rate E-CONPRI +and O +size B-CONPRI +effect E-CONPRI +on O +the O +Young O +’ O +s S-MATE +modulus O +, O +ultimate B-PRO +tensile I-PRO +strength E-PRO +and O +fracture S-CONPRI +strains O +in O +vat B-MANP +photopolymerization E-MANP +based O +additively B-MANP +manufactured E-MANP +specimens O +is O +investigated O +. O + + +Mechanical B-CHAR +testing E-CHAR +and O +subsequent O +scanning B-CHAR +electron I-CHAR +microscopy E-CHAR +tests O +on O +additively B-MANP +manufactured E-MANP +specimens O +are O +conducted O +. O + + +Anisotropy S-PRO +in O +mechanical S-APPL +behavior O +is O +only O +observed O +in O +specimens O +fabricated S-CONPRI +in O +different O +planes O +. O + + +An O +increase O +in O +layer B-PARA +thickness E-PARA +and O +decrease O +in O +strain B-CONPRI +rate E-CONPRI +resulted O +in O +lower O +strength S-PRO +, O +stiffness S-PRO +and O +higher O +fracture S-CONPRI +strains O +. O + + +No O +significant O +size B-CONPRI +effect E-CONPRI +on O +strength S-PRO +and O +failure S-CONPRI +strains O +is O +observed O +. O + + +Cure S-CONPRI +kinetics O +is O +found O +to O +have O +significant O +influence O +on O +mechanical B-CONPRI +properties E-CONPRI +of O +additively B-MANP +manufactured E-MANP +specimens O +. O + + +Warping S-CONPRI +and O +delamination S-CONPRI +in O +material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +MatEx O +) O +parts O +are O +well O +documented O +and O +irreversible O +thermal O +strain S-PRO +( O +ITε O +) O +has O +also O +recently O +been O +reported O +. O + + +As S-MATE +parts O +are O +built O +up O +as S-MATE +a O +collection O +of O +roads O +, O +they O +are O +analogous O +to O +fiber B-MATE +reinforced I-MATE +composites E-MATE +. O + + +However O +, O +the O +lack O +of O +bonding S-CONPRI +between O +the O +matrix O +, O +air O +, O +and O +the O +reinforcing B-APPL +phase E-APPL +, O +polymer S-MATE +roads O +, O +necessitates O +the O +development O +of O +a O +micromechanical O +model S-CONPRI +for O +these O +parts O +. O + + +In O +this O +work O +, O +a O +micromechanical O +model S-CONPRI +for O +MatEx O +parts O +is O +developed O +to O +describe O +bulk O +part O +behavior O +that O +incorporates O +void B-CONPRI +fraction E-CONPRI +, O +road O +morphology S-CONPRI +, O +and O +bonding S-CONPRI +between O +and O +within O +layers O +. O + + +Combining O +stress S-PRO +accumulation O +within O +roads O +with O +the O +micromechanical O +model S-CONPRI +successfully O +predicted S-CONPRI +ITε O +and O +provided O +a O +rationale O +for O +ITε O +dependence O +on O +both O +layer B-PARA +thickness E-PARA +and O +raster O +angle O +. O + + +Additionally O +, O +the O +micromechanical O +model S-CONPRI +developed O +can O +be S-MATE +used O +to O +explain O +bonding S-CONPRI +limitations O +in O +MatEx O +based O +on O +road O +and O +bond O +geometry S-CONPRI +. O + + +Material S-MATE +anisotropy S-PRO +model O +formulation O +for O +the O +full O +three O +dimensional O +space O +. O + + +Efficient O +optimization S-CONPRI +of O +lattice B-FEAT +structures E-FEAT +with O +respect O +to O +material S-MATE +anisotropy S-PRO +. O + + +Effects O +of O +the O +material S-MATE +anisotropy S-PRO +on O +lightweight B-CONPRI +lattice E-CONPRI +structures O +. O + + +Finding O +the O +optimized O +build B-PARA +orientation E-PARA +with O +respect O +to O +the O +material S-MATE +anisotropy S-PRO +. O + + +Large O +increase O +in O +accuracy S-CHAR +, O +hence O +, O +safety S-CONPRI +compared O +to O +conventional O +approaches O +. O + + +The O +build B-PARA +orientation E-PARA +is O +one O +the O +most O +influential O +factors O +on O +material B-CONPRI +properties E-CONPRI +in O +additively B-MANP +manufactured E-MANP +parts O +. O + + +Advanced O +applications O +, O +such O +as S-MATE +lattice O +structures O +optimized O +for O +lightweight S-CONPRI +, O +often O +rely O +on O +small O +safety S-CONPRI +margins O +and O +are O +, O +hence O +, O +particularly O +affected O +, O +but O +research S-CONPRI +has O +not O +gone O +far O +beyond O +the O +pure O +empirical S-CONPRI +characterization O +. O + + +The O +focus O +of O +this O +paper O +is O +to O +investigate O +in O +detail O +the O +influence O +of O +anisotropy S-PRO +induced O +through O +fabrication S-MANP +on O +the O +mechanical S-APPL +performance O +and O +build B-PARA +orientation E-PARA +of O +whole O +structures O +when O +subject O +to O +optimization S-CONPRI +. O + + +First O +, O +a O +material B-CONPRI +property E-CONPRI +model O +for O +both O +compression S-PRO +and O +tension O +states O +is O +formulated O +. O + + +Then O +, O +the O +Generalized O +Optimality O +Criteria O +method O +is O +extended O +for O +fixed O +topology B-CONPRI +lattice E-CONPRI +structures O +with O +respect O +to O +constraints O +in O +displacement O +, O +stress S-PRO +, O +and O +Euler O +buckling S-PRO +. O + + +The O +two O +latter O +are O +formulated O +as S-MATE +local O +constraints O +that O +are O +handled O +in O +combination O +with O +Fully-Stressed O +Design S-FEAT +recursion O +. O + + +The O +results O +reveal O +significant O +safety S-CONPRI +threads O +likely O +leading O +to O +premature O +failure S-CONPRI +when O +using O +properties S-CONPRI +from O +one-directional O +tests O +, O +as S-MATE +is O +so O +far O +the O +case O +, O +rather O +than O +the O +full O +anisotropy S-PRO +model O +developed O +herein O +. O + + +If O +used O +inversely O +, O +the O +algorithm S-CONPRI +yields O +the O +optimal O +orientation S-CONPRI +of O +a O +structure S-CONPRI +on O +the O +build B-MACEQ +platform E-MACEQ +, O +allowing O +further O +weight S-PARA +reduction S-CONPRI +while O +maintaining O +the O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Selective B-MANP +Laser I-MANP +Melting E-MANP +( O +SLM S-MANP +) O +facilitates O +the O +formation O +of O +complex O +, O +stochastic S-CONPRI +or O +non-stochastic O +, O +metallic S-MATE +cellular B-FEAT +structures E-FEAT +. O + + +There O +is O +a O +high O +level O +of O +interest O +in O +these O +structures O +recently O +, O +particularly O +due O +to O +their O +high O +strength B-PRO +to I-PRO +weight I-PRO +ratios E-PRO +and O +osteoconductive S-PRO +properties O +. O + + +While O +the O +ability O +to O +in-situ S-CONPRI +monitor O +the O +SLM S-MANP +process S-CONPRI +is O +of O +key O +importance O +for O +future O +quality B-CONPRI +control E-CONPRI +methods.In O +this O +work O +lattice B-FEAT +structures E-FEAT +were O +fabricated S-CONPRI +, O +using O +the O +single O +exposure S-CONPRI +scanning O +strategy O +, O +on O +a O +Renishaw O +500M O +SLM S-MANP +machine S-MACEQ +. O + + +The O +build S-PARA +process O +was O +also O +monitored O +using O +a O +co-axial O +in-situ S-CONPRI +process O +monitoring O +system.It O +was O +found O +that O +by O +increasing O +the O +energy O +input O +, O +through O +increasing O +the O +laser B-PARA +power E-PARA +and/or O +exposure S-CONPRI +time O +, O +the O +lattice S-CONPRI +strut O +diameters O +, O +within O +the O +1.5 O +mm S-MANP +diamond S-MATE +unit O +cells S-APPL +, O +increased O +from O +119 O +to O +293 O +μm O +, O +resulting O +in O +the O +major O +pore S-PRO +diameter S-CONPRI +decreasing O +from O +1106 O +to O +932 O +μm O +. O + + +The O +effect O +of O +systematically O +altering O +the O +laser B-CONPRI +beam E-CONPRI +spot O +size O +on O +the O +cellular B-FEAT +structures E-FEAT +was O +also O +evaluated O +. O + + +It O +was O +observed O +that O +by O +doubling O +the O +laser B-CONPRI +beam E-CONPRI +spot O +size O +, O +that O +there O +was O +a O +17 O +% O +reduction S-CONPRI +in O +strut B-PARA +diameter E-PARA +and O +a O +22 O +% O +reduction S-CONPRI +in O +mechanical B-PRO +strength E-PRO +of O +the O +structures O +. O + + +It O +was O +also O +observed O +that O +at O +constant O +energy O +input O +levels O +, O +the O +lattice B-FEAT +structures E-FEAT +created O +using O +a O +focused O +laser S-ENAT +exhibited O +an O +81 O +% O +lower O +mechanical B-PRO +strength E-PRO +than O +the O +structures O +created O +using O +a O +de-focused O +laser S-ENAT +. O + + +Thus O +, O +demonstrating O +that O +the O +mode O +of O +energy O +input O +is O +critical O +to O +achieving O +the O +desired O +strength S-PRO +in O +these O +structures.Based O +on O +the O +outputs O +from O +the O +in-situ S-CONPRI +monitoring O +system O +, O +a O +broadly O +linear O +correlation O +was O +obtained O +between O +the O +laser S-ENAT +input O +energy O +, O +the O +associated O +process B-CONPRI +monitoring E-CONPRI +data S-CONPRI +generated O +and O +the O +mechanical B-PRO +strength E-PRO +of O +the O +lattice B-FEAT +structures E-FEAT +. O + + +Elevated O +heat-treatment O +temperatures S-PARA +increased O +mechanical B-CONPRI +properties E-CONPRI +. O + + +Long O +heat-treatment O +times O +decreased O +ductility S-PRO +and O +Young O +’ O +s S-MATE +modulus O +. O + + +All O +elevated O +temperature S-PARA +heat-treatments O +yielded O +similar O +percent O +crystallinity O +. O + + +Increasing O +print S-MANP +and O +heat-treatment O +temperature S-PARA +increased O +inter-road O +bonding S-CONPRI +. O + + +Post-processing S-CONPRI +heat-treatments O +increased O +mechanical B-CONPRI +properties E-CONPRI +of O +printed O +parts O +. O + + +Material B-MANP +extrusion I-MANP +additive I-MANP +manufacturing E-MANP +( O +MEAM O +) O +and O +other O +additive B-MANP +manufacturing E-MANP +methods O +provide O +part O +design S-FEAT +options O +that O +would O +be S-MATE +difficult O +or O +impossible O +to O +realize O +with O +conventional B-MANP +manufacturing E-MANP +methods O +. O + + +However O +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +parts O +produced O +with O +MEAM O +are O +lower O +than O +bulk O +material B-CONPRI +properties E-CONPRI +because O +of O +the O +interfaces O +between O +roads O +and O +layers O +inherent O +to O +the O +additive S-MATE +build O +technique O +of O +MEAM O +. O + + +The O +effects O +of O +material S-MATE +dependent O +MEAM O +process B-CONPRI +parameters E-CONPRI +on O +the O +interlayer O +bonding S-CONPRI +and O +percent O +crystallinity O +of O +MEAM O +parts O +fabricated S-CONPRI +with O +polyphenylene O +sulfide O +( O +PPS O +) O +were O +examined O +in O +this O +study O +using O +a O +design B-CONPRI +of I-CONPRI +experiments E-CONPRI +technique O +known O +as S-MATE +the O +Taguchi B-CONPRI +method E-CONPRI +. O + + +The O +MEAM O +parameters S-CONPRI +studied O +were O +print S-MANP +temperature O +, O +heat-treatment O +time O +, O +and O +heat-treatment O +temperature S-PARA +. O + + +Heat-treatment O +temperature S-PARA +was O +shown O +to O +be S-MATE +the O +most O +influential O +parameter S-CONPRI +on O +all O +the O +studied O +properties S-CONPRI +. O + + +Utilizing O +heat-treatments O +on O +MEAM O +parts O +increased O +the O +ultimate B-PRO +tensile I-PRO +strength E-PRO +( O +UTS S-PRO +) O +from O +52 O +% O +of O +the O +PPS O +film O +UTS S-PRO +to O +80 O +% O +. O + + +The O +study O +showed O +that O +utilizing O +post-processing S-CONPRI +heat-treatments O +on O +MEAM O +parts O +could O +improve O +the O +interlayer O +bonding S-CONPRI +in O +these O +parts O +. O + + +Ultra O +High O +Molecular O +Weight S-PARA +Polyethylene S-MATE +( O +UHMWPE O +) O +is O +a O +semi-crystalline O +polymer S-MATE +that O +has O +remarkable O +properties S-CONPRI +of O +high O +mechanical B-CONPRI +properties E-CONPRI +, O +excellent O +wear B-PRO +resistance E-PRO +, O +low O +friction S-CONPRI +and O +chemical B-PRO +resistance E-PRO +, O +and O +it O +is O +found O +in O +many O +applications O +such O +sporting O +goods O +, O +medical S-APPL +artificial B-APPL +joints E-APPL +, O +bullet O +proof O +jackets O +and O +armours O +, O +ropes O +and O +fishing O +lines O +[ O +1 O +] O +. O + + +UHMWPE O +parts O +can O +not O +be S-MATE +produced O +easily O +by O +many O +conventional O +processes S-CONPRI +because O +of O +its O +very O +high O +melt S-CONPRI +viscosity O +resulting O +from O +its O +very O +long O +chains O +[ O +2 O +] O +. O + + +Additive B-MANP +Manufacturing E-MANP +( O +AM S-MANP +) O +is O +moving O +from O +being O +an O +industrial S-APPL +rapid O +prototyping B-CONPRI +process E-CONPRI +to O +becoming O +a O +mainstream O +manufacturing B-MANP +process E-MANP +in O +a O +wide O +range S-PARA +of O +applications O +. O + + +Laser B-MANP +sintering E-MANP +of O +polymers S-MATE +is O +one O +of O +the O +AM B-MANP +techniques E-MANP +that O +is O +most O +promising O +process S-CONPRI +owing O +to O +its O +ability O +to O +produce O +parts O +with O +complex B-CONPRI +geometries E-CONPRI +, O +accurate S-CHAR +dimensions O +, O +and O +good O +mechanical B-PRO +strength E-PRO +[ O +3 O +] O +. O + + +This O +paper O +reports O +attempts O +to O +laser-sinter O +UHMWPE O +and O +assesses O +the O +effects O +of O +laser B-PARA +energy I-PARA +density E-PARA +on O +the O +flexural O +properties S-CONPRI +of O +the O +sintered S-MANP +parts O +. O + + +The O +properties S-CONPRI +of O +the O +UHMWPE O +sintered S-MANP +parts O +were O +evaluated O +by O +performing O +flexural O +three B-CONPRI +point I-CONPRI +bending E-CONPRI +tests O +and O +were O +compared O +in O +terms O +of O +flexural B-PRO +strength E-PRO +, O +flexural O +modulus O +and O +ductility S-PRO +( O +deflection O +) O +. O + + +Part O +dimensions S-FEAT +and O +relative B-PRO +density E-PRO +were O +evaluated O +in O +order O +to O +optimise O +the O +laser B-MANP +sintering E-MANP +parameters O +. O + + +Thermal B-CHAR +analysis E-CHAR +of O +samples S-CONPRI +was O +made O +by O +differential O +scanning S-CONPRI +calorimetry O +( O +DSC S-CHAR +) O +for O +the O +virgin B-MATE +powder E-MATE +. O + + +Results O +show O +that O +flexural B-PRO +strength E-PRO +, O +modulus O +and O +ductility S-PRO +are O +influenced O +by O +laser B-PARA +energy I-PARA +density E-PARA +and O +flexural B-PRO +strength E-PRO +and O +modulus O +of O +1.37 O +MPa S-CONPRI +and O +32.12 O +MPa S-CONPRI +respectively O +are O +still O +achievable O +at O +a O +lower O +laser B-PARA +energy I-PARA +density E-PARA +of O +0.016 O +J/mm2 O +( O +Laser B-PARA +power E-PARA +of O +6 O +W O +) O +. O + + +Part O +dimensions S-FEAT +and O +bulk O +density S-PRO +are O +also O +influenced O +by O +laser B-PARA +energy I-PARA +density E-PARA +. O + + +γ-Fe O +phase S-CONPRI +increase O +with O +the O +increasing O +SS316L O +content O +. O + + +The O +increase O +of O +SS316L O +content O +improves O +general O +and O +pitting B-CONPRI +corrosion E-CONPRI +resistance O +. O + + +Graded O +material S-MATE +with O +SS316L O +content O +≥50 O +wt. O +% O +still O +has O +relatively O +high O +microhardness S-CONPRI +. O + + +Graded O +material S-MATE +with O +SS316L O +content O +≥50 O +wt. O +% O +has O +lower O +pitting S-CONPRI +susceptibility O +. O + + +Composition-graded O +materials S-CONPRI +could O +be S-MATE +designed O +to O +rapidly O +establish O +the O +structure-property O +with O +high-throughput O +methods O +. O + + +In O +this O +study O +, O +stainless B-MATE +steel E-MATE +316L O +( O +SS316L O +) O +- O +431 O +( O +SS431 O +) O +graded O +material S-MATE +with O +the O +SS316L O +content O +ranging O +from O +0 O +to O +100 O +wt. O +% O +was O +fabricated S-CONPRI +by O +directed B-MANP +energy I-MANP +deposition I-MANP +additive I-MANP +manufacturing E-MANP +. O + + +Composition S-CONPRI +, O +phase S-CONPRI +constitution O +, O +microstructure S-CONPRI +and O +corrosion B-PRO +behavior E-PRO +of O +the O +graded O +material S-MATE +were O +characterized O +by O +laser-induced O +breakdown O +spectroscopy S-CONPRI +( O +LIBS O +) O +, O +micro-beam O +X-ray B-CHAR +diffraction E-CHAR +( O +XRD S-CHAR +) O +, O +scanning B-MACEQ +electron I-MACEQ +microscope E-MACEQ +( O +SEM S-CHAR +) O +and O +high-throughput O +local O +electrochemical S-CONPRI +techniques O +respectively O +. O + + +Accordingly O +, O +the O +dominant O +microstructure S-CONPRI +varies O +from O +equiaxed O +dendrites S-BIOP +to O +a O +mixture O +of O +dendritic O +and O +cellular B-FEAT +structures E-FEAT +. O + + +As S-MATE +the O +content O +of O +SS316L O +increases O +, O +the O +reduced O +carbides S-MATE +at O +grain B-CONPRI +boundaries E-CONPRI +and O +the O +increasing O +compactness O +of O +passive O +film O +improve O +the O +general O +and O +pitting B-CONPRI +corrosion E-CONPRI +resistance O +of O +the O +material S-MATE +. O + + +Such O +a O +high-throughput O +screening O +process S-CONPRI +allows O +one O +to O +reliably O +select O +the O +constituents O +with O +the O +presence O +of O +SS316L O +over O +50 O +wt. O +% O +as S-MATE +a O +potential O +component S-MACEQ +under O +the O +requirement O +of O +high O +corrosion B-CONPRI +resistance E-CONPRI +and O +wear B-PRO +resistance E-PRO +. O + + +Fused B-MANP +Filament I-MANP +Fabrication E-MANP +( O +FFF S-MANP +) O +is O +an O +additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +method O +that O +relies O +on O +the O +thermal O +extrusion S-MANP +of O +a O +thermoplastic B-MATE +feedstock E-MATE +from O +a O +mobile O +deposition S-CONPRI +head O +. O + + +Conventional O +FFF S-MANP +constructs O +components S-MACEQ +from O +stacks O +of O +individual O +extruded S-MANP +layers O +using O +tool B-CONPRI +paths E-CONPRI +with O +fixed O +z-values O +in O +each O +individual O +layer S-PARA +. O + + +Consequently O +, O +the O +manufactured S-CONPRI +components S-MACEQ +often O +contain O +inherent O +weaknesses O +in O +the O +z-axis S-CONPRI +due O +to O +the O +relatively O +weak O +thermal O +fusion B-CONPRI +bonding E-CONPRI +that O +occurs O +between O +individual O +layers O +, O +as S-MATE +well O +as S-MATE +poor O +surface B-FEAT +finish E-FEAT +in O +shallow O +sloped O +contours S-FEAT +. O + + +This O +study O +demonstrates O +the O +use O +of O +Curved O +Layer S-PARA +FFF S-MANP +( O +CLFFF O +) O +tool B-CONPRI +paths E-CONPRI +in O +tandem O +with O +a O +commercially O +available O +parallel O +, O +or O +delta O +, O +style O +FFF S-MANP +system O +to O +allow O +the O +deposition S-CONPRI +head O +to O +follow O +the O +topology S-CONPRI +of O +the O +component S-MACEQ +. O + + +By O +incorporating O +a O +delta O +robot S-MACEQ +and O +CLFFF O +tool B-CONPRI +paths E-CONPRI +in O +this O +way O +, O +improvements O +in O +the O +surface B-FEAT +finish E-FEAT +of O +the O +manufactured S-CONPRI +parts O +has O +been O +observed O +, O +and O +time O +costs O +associated O +with O +Cartesian O +robot S-MACEQ +based O +CLFFF O +manufacturing S-MANP +have O +been O +notably O +reduced O +. O + + +Furthermore O +, O +employing O +a O +delta O +robot S-MACEQ +provides O +additional O +flexibility S-PRO +to O +CLFFF O +manufacturing S-MANP +and O +increases O +the O +feasibility S-CONPRI +of O +its O +application O +for O +advanced O +manufacturing S-MANP +. O + + +The O +study O +has O +also O +demonstrated O +a O +viable O +approach O +to O +multi-material S-CONPRI +FFF S-MANP +by O +decoupling O +support B-FEAT +structure E-FEAT +and O +part O +manufacture S-CONPRI +into O +regions O +of O +CLFFF O +and O +static O +z O +tool S-MACEQ +pathing O +in O +an O +appropriate O +fashion S-CONPRI +. O + + +Reducing O +the O +relative O +quality S-CONPRI +of O +lattice S-CONPRI +materials O +is O +a O +key O +factor O +in O +expanding O +their O +scope O +of O +application O +. O + + +Experimental S-CONPRI +samples O +of O +Ti6Al4V S-MATE +, O +including O +both O +VPOS O +and O +a O +body-centered O +cubic O +( O +BCC S-CONPRI +) O +octahedral O +model S-CONPRI +, O +are O +prepared O +by O +selective B-MANP +laser I-MANP +melting E-MANP +( O +SLM S-MANP +) O +. O + + +The O +influence O +of O +pose O +( O +θ O +) O +on O +the O +relative B-PRO +density E-PRO +of O +the O +lattice B-FEAT +structures E-FEAT +is O +evaluated O +analytically O +. O + + +The O +mechanical B-CONPRI +response E-CONPRI +and O +specific B-CONPRI +energy I-CONPRI +absorption E-CONPRI +( O +SEA O +) O +of O +these O +structures O +under O +compression S-PRO +are O +investigated O +. O + + +Compared O +with O +the O +experimental B-CONPRI +BCC E-CONPRI +data S-CONPRI +, O +the O +relative B-PRO +density E-PRO +of O +the O +VPOS O +samples S-CONPRI +is O +reduced O +, O +and O +their O +SEA O +values O +are O +improved O +. O + + +The O +mechanical B-CONPRI +properties E-CONPRI +of O +the O +VPOSs O +in O +the O +z O +and O +y S-MATE +directions O +are O +optimized O +when O +θ=43° O +. O + + +When O +θ O += O +10° O +, O +the O +z-direction S-FEAT +SEA O +is O +maximum O +( O +∼2.4 O +times O +the O +BCC S-CONPRI +value O +) O +. O + + +Among O +the O +various O +Ti6Al4V S-MATE +octahedral O +lattice B-FEAT +structures E-FEAT +, O +the O +structure S-CONPRI +with O +θ O += O +43° O +exhibits O +the O +best O +mechanical B-CONPRI +properties E-CONPRI +at O +unit O +density S-PRO +. O + + +This O +study O +demonstrates O +that O +the O +performance S-CONPRI +of O +lattice B-FEAT +structures E-FEAT +can O +be S-MATE +improved O +to O +different O +degrees O +by O +varying O +the O +unit B-CONPRI +cell E-CONPRI +pose O +. O + + +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +has O +gone O +through O +major O +developments O +in O +the O +past O +decade O +, O +enabling O +the O +rapid O +manufacture S-CONPRI +of O +complex B-CONPRI +geometries E-CONPRI +from O +traditional O +engineering B-MATE +materials E-MATE +. O + + +This O +study O +aims O +to O +facilitate O +the O +development O +and O +additive B-MANP +manufacturing E-MANP +of O +a O +new O +generation O +of O +fast O +and O +simple S-MANP +digital O +components S-MACEQ +with O +integrated O +magnetic O +shape O +memory O +( O +MSM O +) O +alloy S-MATE +sections O +that O +can O +be S-MATE +actuated O +by O +an O +external O +magnetic B-CONPRI +field E-CONPRI +. O + + +Here O +, O +we O +employ O +a O +systematic O +design B-CONPRI +of I-CONPRI +experiments E-CONPRI +( O +DoE O +) O +approach O +for O +investigating O +laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +L-PBF S-MANP +) O +of O +a O +Ni-Mn-Ga O +based O +MSM O +alloy S-MATE +. O + + +The O +effects O +of O +the O +applied O +process B-CONPRI +parameters E-CONPRI +on O +the O +chemical B-CONPRI +composition E-CONPRI +and O +relative B-PRO +density E-PRO +are O +determined O +, O +and O +detailed O +investigations O +are O +conducted O +on O +the O +microstructural S-CONPRI +properties O +of O +the O +as-deposited O +material S-MATE +obtained O +using O +optimized O +parameters S-CONPRI +. O + + +The O +results O +show O +that O +although O +the O +L-PBF S-MANP +of O +Ni-Mn-Ga O +is O +characterized O +by O +an O +ever-present O +loss O +of O +Mn S-MATE +, O +deposition S-CONPRI +of O +Ni-Mn-Ga O +with O +a O +high O +relative B-PRO +density E-PRO +of O +98.3 O +% O +and O +a O +minimal O +loss O +of O +Mn S-MATE +at O +∼1.1 O +at. O +% O +is O +feasible O +. O + + +However O +, O +combined O +measurements O +by O +the O +low-field O +ac O +magnetic B-CHAR +susceptibility E-CHAR +method O +( O +LFMS O +) O +and O +DSC S-CHAR +revealed O +that O +the O +phase S-CONPRI +transformation O +of O +the O +as-deposited O +material S-MATE +from O +martensite S-MATE +to O +austenite S-MATE +, O +and O +vice O +versa O +, O +was O +broad O +and O +occurred O +in O +a O +paramagnetic O +state O +. O + + +Inspection S-CHAR +by O +SEM S-CHAR +revealed O +a O +layered O +microstructure S-CONPRI +with O +a O +stripe-like O +surface S-CONPRI +relief O +that O +originated O +from O +the O +presence O +of O +martensitic O +twins O +within O +the O +sample S-CONPRI +. O + + +Overall O +, O +L-PBF S-MANP +shows O +high O +potential O +for O +the O +production S-MANP +of O +functional O +Ni-Mn-Ga O +based O +MSM O +alloys S-MATE +. O + + +Fabricated S-CONPRI +Schwarz O +P S-MATE +unit O +cell-based O +scaffolds S-FEAT +underwent O +geometrical O +transformations O +in O +the O +form O +of O +shrinkage S-CONPRI +. O + + +Computational O +effective O +modulus O +of O +the O +original O +Schwarz O +P S-MATE +unit O +cell S-APPL +under-estimated O +the O +experimental S-CONPRI +modulus O +by O +86.05 O +% O +. O + + +Computational O +effective O +modulus O +of O +the O +reconstructed O +unit B-CONPRI +cell E-CONPRI +over-estimated O +the O +experimental S-CONPRI +modulus O +by O +6.94 O +% O +. O + + +Micromechanical O +analysis O +was O +able O +to O +accommodate O +geometrical O +transformations O +of O +the O +Schwarz O +P S-MATE +unit O +cell S-APPL +. O + + +Schwarz O +P S-MATE +unit O +cell-based O +tissue O +scaffolds S-FEAT +comprised O +of O +poly O +( O +D O +, O +L-lactide-co- O +ε O +-caprolactone O +) O +( O +PLCL O +) O +fabricated S-CONPRI +via O +the O +additive B-MANP +manufacturing E-MANP +technique O +, O +two-photon B-ENAT +polymerisation E-ENAT +( O +2PP O +) O +were O +found O +to O +undergo O +geometrical O +transformations O +from O +the O +original O +input O +design S-FEAT +. O + + +A O +Schwarz O +P S-MATE +unit O +cell S-APPL +surface O +geometry S-CONPRI +CAD B-ENAT +model E-ENAT +was O +reconstructed O +to O +take O +into O +account O +the O +geometrical O +transformations O +through O +CAD S-ENAT +modeling O +techniques O +using O +measurements O +obtained O +from O +an O +image-based O +averaging O +technique O +before O +its O +implementation O +for O +micromechanical O +analysis O +. O + + +Effective O +modulus O +results O +obtained O +from O +computational O +mechanical S-APPL +characterization O +via O +micromechanical O +analysis O +of O +the O +reconstructed O +unit B-CONPRI +cell E-CONPRI +assigned O +with O +the O +same O +material S-MATE +model O +making O +up O +the O +fabricated S-CONPRI +scaffolds O +demonstrated O +excellent O +agreement O +with O +a O +small O +margin O +of O +error S-CONPRI +at O +6.94 O +% O +from O +the O +experimental S-CONPRI +mean O +modulus O +( O +0.69 O +± O +0.29 O +MPa S-CONPRI +) O +. O + + +The O +inter-relationships O +between O +different O +dimensional O +parameters S-CONPRI +making O +up O +the O +Schwarz O +P S-MATE +architecture S-APPL +and O +resulting O +effective O +modulus O +are O +also O +assessed O +and O +discussed O +. O + + +With O +the O +ability O +to O +accommodate O +the O +geometrical O +transformations O +, O +maintain O +efficiency O +in O +terms O +of O +time O +and O +computational O +resources O +, O +micromechanical O +analysis O +has O +the O +potential O +to O +be S-MATE +implemented O +in O +tissue O +scaffolds S-FEAT +with O +a O +periodic O +microstructure S-CONPRI +as S-MATE +well O +as S-MATE +other O +structures O +outside O +the O +field O +of O +tissue B-CONPRI +engineering E-CONPRI +in O +general O +. O + + +Nanoparticle-enhanced B-MATE +Al I-MATE +7075 E-MATE +can O +be S-MATE +used O +to O +make O +crack-free B-CONPRI +welds E-CONPRI +, O +overlays S-FEAT +, O +and O +multi-layer O +parts O +via O +arc B-MANP +welding E-MANP +. O + + +Hardness S-PRO +of O +deposited O +nanoparticle-enhanced B-MATE +Al I-MATE +7075 E-MATE +weld O +material S-MATE +return O +to O +that O +of O +parent O +alloy S-MATE +after O +T73 B-MANP +heat I-MANP +treatment E-MANP +. O + + +Post-weld O +T73 B-MANP +heat I-MANP +treatment E-MANP +of O +nanoparticle-enhanced B-MATE +Al I-MATE +7075 E-MATE +results O +in O +tensile B-PRO +properties E-PRO +indiscernible O +from O +parent O +alloy S-MATE +. O + + +Aluminum B-MATE +alloy I-MATE +7075 E-MATE +( O +Al B-MATE +7075 E-MATE +) O +with O +a O +T73 B-MANP +heat I-MANP +treatment E-MANP +is O +commonly O +used O +in O +aerospace S-APPL +applications O +due O +to O +exceptional O +specific B-PRO +strength E-PRO +properties S-CONPRI +. O + + +Challenges O +with O +manufacturing S-MANP +the O +material S-MATE +from O +the O +melt S-CONPRI +has O +previously O +limited O +the O +processing O +of O +Al B-MATE +7075 E-MATE +via O +welding S-MANP +, O +casting S-MANP +, O +and O +additive B-MANP +manufacturing E-MANP +. O + + +Recent O +research S-CONPRI +has O +shown O +the O +capabilities O +of O +nanoparticle B-MATE +additives E-MATE +to O +control O +the O +solidification S-CONPRI +behavior O +of O +high-strength O +aluminum B-MATE +alloys E-MATE +, O +showcasing O +the O +first O +Al B-MATE +7075 E-MATE +components O +processed S-CONPRI +via O +casting S-MANP +, O +welding S-MANP +, O +and O +AM S-MANP +. O + + +In O +this O +work O +, O +the O +properties S-CONPRI +of O +nanoparticle-enhanced B-MATE +aluminum I-MATE +7075 E-MATE +are O +investigated O +on O +welded B-MACEQ +parts E-MACEQ +, O +overlays S-FEAT +and O +through O +wire-based B-MANP +additive I-MANP +manufacturing E-MANP +. O + + +The O +hardness S-PRO +and O +tensile B-PRO +strength E-PRO +of O +the O +deposited O +materials S-CONPRI +were O +measured O +in O +the O +as-welded O +and O +T73 B-MANP +heat-treated E-MANP +conditions O +showing O +that O +the O +properties S-CONPRI +of O +Al B-MATE +7075 I-MATE +T73 E-MATE +can O +be S-MATE +recovered O +in O +welded S-MANP +and O +layer-deposited O +parts O +. O + + +The O +work O +shows O +that O +Al B-MATE +7075 E-MATE +now O +has O +the O +potential O +to O +be S-MATE +conventionally O +welded S-MANP +or O +additively B-MANP +manufactured E-MANP +from O +wire O +into O +high-strength O +, O +crack-free B-CONPRI +parts E-CONPRI +. O + + +The O +dissimilar O +resistance B-MANP +spot I-MANP +welding E-MANP +of O +additively B-MATE +manufactured I-MATE +steel E-MATE +to O +conventional B-MATE +automotive I-MATE +steel E-MATE +has O +attracted O +significant O +attention O +from O +automotive S-APPL +manufacturer O +. O + + +However O +, O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +dissimilar O +spot B-FEAT +welds E-FEAT +could O +be S-MATE +affected O +by O +the O +printed O +properties S-CONPRI +of O +additively B-MATE +manufactured I-MATE +steels E-MATE +, O +limiting O +the O +further O +application O +of O +3D B-MANP +printing E-MANP +process O +in O +auto-body B-MANP +assembly I-MANP +line E-MANP +. O + + +This O +paper O +proposed O +an O +approach O +to O +improve O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +spot-welded B-PRO +joints E-PRO +of O +additive B-MATE +manufactured I-MATE +steels E-MATE +by O +the O +design S-FEAT +of O +binder B-MANP +jetting E-MANP +printed O +steels S-MATE +with O +the O +addition O +of O +nanoparticles S-CONPRI +. O + + +Cu-Sn B-MATE +nanoparticles E-MATE +have O +been O +injected O +to O +the O +stainless B-MATE +steel E-MATE +via O +binder B-MANP +jetting E-MANP +process O +, O +aiming O +to O +fill O +the O +voids S-CONPRI +between O +steel S-MATE +particles S-CONPRI +and O +reduce O +the O +microstructure B-CONPRI +heterogeneity E-CONPRI +in O +the O +spot B-FEAT +welds E-FEAT +. O + + +The O +microstructure B-CONPRI +evolution E-CONPRI +, O +sintering S-MANP +behavior O +of O +nanoparticles S-CONPRI +and O +mechanical B-CONPRI +properties E-CONPRI +of O +resistance B-MANP +spot I-MANP +welded E-MANP +stainless O +steel S-MATE +were O +characterized O +and O +analyzed O +. O + + +The O +sintering S-MANP +behavior O +of O +Cu-Sn B-MATE +nanoparticles E-MATE +during O +welding S-MANP +process S-CONPRI +attributes O +to O +the O +formation O +of O +transition S-CONPRI +zone O +with O +homogenous O +microstructure S-CONPRI +, O +resulting O +to O +the O +improvement O +of O +hardness S-PRO +property O +and O +lap-shear B-PRO +strength E-PRO +of O +spot-welded B-PRO +joints E-PRO +. O + + +Compared O +to O +the O +spot B-FEAT +welds E-FEAT +of O +selective B-MANP +laser I-MANP +melting E-MANP +printed O +stainless B-MATE +steels E-MATE +, O +the O +resistance B-MANP +spot I-MANP +welded E-MANP +stainless O +steel S-MATE +via O +binder B-MANP +jetting E-MANP +process O +shows O +better O +mechanical B-CONPRI +properties E-CONPRI +with O +48 O +% O +increase O +of O +energy B-CHAR +absorption E-CHAR +and O +19 O +% O +increase O +of O +peak O +load O +. O + + +Additively B-MANP +manufactured E-MANP +plates O +are O +successfully O +joined O +using O +FSW S-MANP +for O +the O +first O +time O +. O + + +Weld B-CONPRI +microstructure E-CONPRI +consists O +of O +( O +α O ++ O +β O +) O +phase S-CONPRI +and O +very O +fine O +equiaxed O +α O +grain S-CONPRI +with O +a O +refined O +β O +phase S-CONPRI +at O +the O +grain B-CONPRI +boundary E-CONPRI +. O + + +The O +tensile B-PRO +strength E-PRO +of O +the O +FSW S-MANP +is O +nearly O +equal O +to O +the O +base O +material S-MATE +at O +a O +relatively O +higher O +tool B-PARA +rotation I-PARA +speed E-PARA +. O + + +Significant O +tool B-CONPRI +wear E-CONPRI +is O +observed O +at O +lower O +tool B-PARA +rotation I-PARA +speeds E-PARA +, O +resulting O +in O +lower O +weld B-PRO +strength E-PRO +. O + + +Additive B-MANP +manufacturing E-MANP +of O +titanium B-MATE +alloy I-MATE +Ti-6Al-4 I-MATE +V E-MATE +has O +significantly O +increased O +over O +the O +past O +few O +years O +, O +primarily O +due O +to O +its O +broad O +application O +over O +the O +conventional B-MANP +manufacturing E-MANP +process O +for O +complex O +and O +near B-MANP +net I-MANP +shape E-MANP +production O +. O + + +We O +study O +the O +feasibility S-CONPRI +of O +friction B-MANP +stir I-MANP +welding E-MANP +of O +Ti-6Al-4 B-MATE +V E-MATE +plates O +made O +by O +electron B-MANP +beam I-MANP +melting E-MANP +, O +performing O +both O +microstructural S-CONPRI +and O +mechanical B-CONPRI +analysis E-CONPRI +. O + + +Microstructures S-MATE +for O +all O +the O +welds S-FEAT +reveal O +lamellar S-CONPRI +( O +α O ++ O +β O +) O +phase S-CONPRI +and O +very O +fine O +equiaxed O +α O +grain S-CONPRI +with O +the O +prior O +β O +phase S-CONPRI +at O +grain B-CONPRI +boundaries E-CONPRI +in O +the O +stirred O +zone O +. O + + +Microhardness S-CONPRI +at O +different O +depths O +of O +the O +joint S-CONPRI +is O +measured O +and O +the O +strength S-PRO +of O +the O +joint S-CONPRI +is O +determined O +using O +a O +tensile B-CHAR +test E-CHAR +. O + + +The O +results O +obtained O +prove O +the O +feasibility S-CONPRI +of O +the O +process S-CONPRI +and O +provide O +the O +necessary O +processing O +conditions O +. O + + +The O +Additive B-MANP +manufacturing E-MANP +technologies O +familiarize O +many O +innovative O +and O +monetary O +gains O +when O +compared O +to O +conservative O +subtractive B-MANP +manufacturing E-MANP +methods O +in O +rapid B-ENAT +prototyping E-ENAT +( O +RP S-ENAT +) O +and O +small O +production B-CHAR +capacity E-CHAR +. O + + +In O +other O +exceedingly O +industrialized O +fields O +including O +aerospace S-APPL +, O +automobile S-APPL +, O +and O +bio-medical B-APPL +industries E-APPL +, O +additive B-MANP +manufacturing E-MANP +has O +turned O +out O +to O +be S-MATE +a O +subject O +of O +high O +interest O +. O + + +Nowadays O +, O +Additive B-MANP +manufacturing E-MANP +( O +AM S-MANP +) O +of O +Titanium B-MATE +alloys E-MATE +has O +grown O +into O +an O +imperative O +field O +of O +study O +. O + + +The O +foremost O +prominence O +of O +Titanium B-MATE +alloys E-MATE +is O +excellent O +strength B-PRO +to I-PRO +weight I-PRO +ratio E-PRO +, O +high O +weathering B-PRO +resistance E-PRO +, O +and O +admirable O +characteristics O +involving O +high O +tensile B-PRO +strength E-PRO +and O +toughness S-PRO +with O +comparatively O +low O +electrical S-APPL +and O +thermal B-PRO +conductivity E-PRO +. O + + +The O +manufacturing S-MANP +of O +Titanium S-MATE +through O +AM B-MANP +technology E-MANP +is O +marginally O +expensive O +and O +durable O +as S-MATE +it O +enables O +to O +create O +freedom O +in O +design S-FEAT +community O +to O +fabricate S-MANP +user O +defined O +and O +complex B-CONPRI +structures E-CONPRI +which O +is O +hard O +to O +produce O +through O +other O +conventional B-MANP +manufacturing E-MANP +methods O +. O + + +The O +Ti-6Al-4V B-MATE +alloy E-MATE +is O +popularly O +known O +as S-MATE +the O +“ O +work O +horse O +” O +of O +titanium S-MATE +is O +comprehensively O +used O +in O +aerospace S-APPL +and O +biomedical B-APPL +industries E-APPL +. O + + +At O +present O +, O +several O +studies O +have O +focused O +on O +hybrid B-CONPRI +manufacturing E-CONPRI +and O +enhancing O +the O +mechanical B-CONPRI +properties E-CONPRI +of O +Ti-6Al-4V S-MATE +with O +additive B-MANP +manufacturing E-MANP +techniques O +. O + + +In O +this O +research S-CONPRI +work O +, O +a O +short O +review O +on O +additive B-MANP +manufacturing E-MANP +of O +Ti-6Al-4V B-MATE +alloys E-MATE +has O +been O +investigated O +to O +define O +its O +mechanical S-APPL +and O +metallurgical S-APPL +properties O +in O +both O +as-built O +and O +heat S-CONPRI +treated O +conditions O +. O + + +Using O +tungsten B-MANP +inert I-MANP +gas I-MANP +welding E-MANP +, O +a O +simple S-MANP +technique O +to O +additively O +construct O +single-channel O +multilayer O +Ti B-MATE +alloy E-MATE +( O +Ti-6Al-4V S-MATE +) O +was O +developed O +. O + + +In O +the O +manufacturing B-MANP +process E-MANP +, O +the O +flow B-PARA +rate E-PARA +of O +nitrogen S-MATE +is O +used O +to O +control O +the O +microstructure S-CONPRI +and O +composition S-CONPRI +of O +each O +individual O +layer S-PARA +. O + + +The O +use O +of O +nitrogen S-MATE +leads O +to O +the O +formation O +of O +TiN S-MATE +particles S-CONPRI +, O +whose O +amount O +increases O +with O +the O +flow B-PARA +rate E-PARA +of O +nitrogen S-MATE +. O + + +There O +is O +no O +significant O +difference O +in O +the O +elastic B-PRO +moduli E-PRO +among O +individual O +layers O +. O + + +Increasing O +the O +flow B-PARA +rate E-PARA +of O +nitrogen S-MATE +results O +in O +an O +increase O +in O +the O +compression B-PRO +strength E-PRO +of O +the O +individual O +layers O +and O +a O +decrease O +in O +the O +ductility S-PRO +of O +individual O +layers O +. O + + +The O +Vickers B-PRO +hardness E-PRO +increases O +gradually O +from O +300 O +to O +400 O +HV O +for O +the O +base B-MATE +metal E-MATE +to O +∼1000 O +HV O +for O +the O +top O +layer S-PARA +of O +the O +Ti B-MATE +alloy E-MATE +, O +and O +the O +compressive B-PRO +strength E-PRO +of O +the O +Ti B-MATE +alloy E-MATE +reaches O +1.92 O +GPa S-PRO +at O +a O +1.5 O +L/min O +nitrogen B-PARA +flow I-PARA +rate E-PARA +. O + + +The O +technique O +developed O +in O +this O +work O +provides O +a O +feasible O +route O +to O +additively O +construct O +single-channel O +multilayer O +structures O +with O +spatial B-CHAR +distributions E-CHAR +of O +the O +composition S-CONPRI +and O +microstructures S-MATE +. O + + +Direct O +observation O +of O +pore S-PRO +formation O +dynamics O +during O +LPBF S-MANP +additive B-MANP +manufacturing E-MANP +. O + + +Revealed O +three O +new O +pore S-PRO +formation O +mechanisms O +. O + + +Reconfirmed O +three O +previously O +studied O +pore S-PRO +formation O +mechanisms O +Laser B-MANP +powder I-MANP +bed I-MANP +fusion E-MANP +( O +LPBF S-MANP +) O +is O +a O +3D B-ENAT +printing I-ENAT +technology E-ENAT +that O +can O +print S-MANP +parts O +with O +complex B-CONPRI +geometries E-CONPRI +that O +are O +unachievable O +by O +conventional B-MANP +manufacturing E-MANP +technologies O +. O + + +However O +, O +pores S-PRO +formed O +during O +the O +printing B-MANP +process E-MANP +impair O +the O +mechanical S-APPL +performance O +of O +the O +printed O +parts O +, O +severely O +hindering O +their O +widespread O +application O +. O + + +Here O +, O +we O +report O +six O +pore S-PRO +formation O +mechanisms O +that O +were O +observed O +during O +the O +LPBF S-MANP +process O +. O + + +Our O +results O +reconfirm O +three O +pore S-PRO +formation O +mechanisms O +- O +keyhole O +induced O +pores S-PRO +, O +pore S-PRO +formation O +from O +feedstock S-MATE +powder O +and O +pore S-PRO +formation O +along O +the O +melting B-CONPRI +boundary E-CONPRI +during O +laser S-ENAT +melting O +from O +vaporization O +of O +a O +volatile O +substance S-CONPRI +or O +an O +expansion O +of O +a O +tiny O +trapped O +gas S-CONPRI +. O + + +We O +also O +observe O +three O +new O +pore S-PRO +formation O +mechanisms O +: O +( O +1 O +) O +pore S-PRO +trapped O +by O +surface S-CONPRI +fluctuation O +, O +( O +2 O +) O +pore S-PRO +formation O +due O +to O +depression O +zone O +fluctuation O +when O +the O +depression O +zone O +is O +shallow O +and O +( O +3 O +) O +pore S-PRO +formation O +from O +a O +crack O +. O + + +The O +results O +presented O +here O +provide O +direct O +evidence O +and O +insight O +into O +pore S-PRO +formation O +mechanisms O +during O +the O +LPBF S-MANP +process O +, O +which O +may O +guide O +the O +development O +of O +pore S-PRO +elimination/mitigation O +approaches O +. O + + +Since O +certain O +laser B-CONPRI +processing E-CONPRI +conditions O +studied O +here O +are O +similar O +to O +the O +situations O +in O +high O +energy B-PARA +density E-PARA +laser O +welding S-MANP +, O +the O +results O +presented O +here O +also O +have O +implications O +for O +laser B-MANP +welding E-MANP +. O + + +The O +processes S-CONPRI +of O +ultrasonic B-MANP +spot I-MANP +welding E-MANP +and O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +are O +modelled O +by O +approximating O +the O +weld S-FEAT +interface S-CONPRI +as S-MATE +rough O +metallic S-MATE +surfaces O +in O +sliding O +contact S-APPL +. O + + +It O +is O +assumed O +that O +bonding S-CONPRI +is O +due O +to O +athermal B-CONPRI +plastic I-CONPRI +deformation E-CONPRI +of O +surface B-CONPRI +asperities E-CONPRI +and O +the O +associated O +growth O +of O +metallic S-MATE +junctions S-APPL +along O +the O +weld S-FEAT +interface S-CONPRI +. O + + +To O +link O +the O +process S-CONPRI +variables O +and O +the O +extent O +of O +junction S-APPL +growth O +, O +an O +expression O +for O +the O +real O +contact S-APPL +area S-PARA +at O +the O +weld S-FEAT +interface S-CONPRI +is O +combined O +with O +process-specific O +frictional O +heating S-MANP +models O +developed O +here O +. O + + +The O +resulting O +framework S-CONPRI +is O +validated O +by O +comparing O +its O +predictions S-CONPRI +of O +the O +weld B-PRO +strength E-PRO +with O +data S-CONPRI +from O +the O +ultrasonic B-MANP +welding E-MANP +literature O +. O + + +The O +close O +agreement O +between O +the O +framework S-CONPRI +'s O +predictions S-CONPRI +and O +the O +experimental B-CONPRI +data E-CONPRI +demonstrates O +that O +the O +surface B-CONPRI +asperities E-CONPRI +soften O +due O +to O +frictional O +heating S-MANP +, O +while O +acoustic B-CONPRI +softening I-CONPRI +effects E-CONPRI +are O +insignificant O +. O + + +The O +junction S-APPL +growth O +model S-CONPRI +is O +used O +to O +identify O +parameter S-CONPRI +sets O +for O +ultrasonic B-MANP +spot I-MANP +welding E-MANP +and O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +that O +maximize O +the O +weld B-PRO +strength E-PRO +while O +simultaneously O +minimizing O +the O +thermal O +excursion O +at O +the O +weld S-FEAT +interface S-CONPRI +. O + + +It O +is O +found O +that O +in O +ultrasonic B-MANP +spot I-MANP +welding E-MANP +, O +certain O +processing O +conditions O +can O +cause O +interfacial B-CONPRI +melting E-CONPRI +, O +although O +melting S-MANP +is O +not O +required O +to O +form O +strong O +bonds O +. O + + +It O +is O +also O +shown O +that O +in O +ultrasonic B-MANP +additive I-MANP +manufacturing E-MANP +, O +the O +deposition B-PARA +rate E-PARA +is O +highest O +when O +the O +positions O +of O +the O +peak O +temperature S-PARA +and O +complete O +interfacial B-CONPRI +bonding E-CONPRI +coincide O +underneath O +the O +sonotrode S-MACEQ +. O + + +If O +the O +position O +of O +complete O +interfacial B-CONPRI +bonding E-CONPRI +leads O +the O +position O +of O +the O +peak O +temperature S-PARA +, O +there O +is O +excessive O +heating S-MANP +of O +the O +build S-PARA +, O +and O +the O +sonotrode S-MACEQ +velocity O +can O +be S-MATE +increased O +without O +degrading O +bond B-CONPRI +quality E-CONPRI +. O + + +Although O +Additive B-MANP +Manufacturing E-MANP +implementation O +is O +rapidly O +growing O +, O +industrial B-CONPRI +sectors E-CONPRI +are O +demanding O +an O +increase O +of O +manufactured S-CONPRI +part O +size O +which O +most O +extended O +processes S-CONPRI +, O +such O +as S-MATE +Selective O +Laser S-ENAT +Melting O +( O +SLM S-MANP +) O +or O +Laser B-MANP +Metal I-MANP +Deposition E-MANP +( O +LMD S-MANP +) O +, O +are O +not O +able O +to O +offer O +. O + + +In O +this O +sense O +, O +Wire-Arc B-MANP +Additive I-MANP +Manufacturing E-MANP +( O +WAAM S-MANP +) O +offers O +high B-PARA +deposition I-PARA +rates E-PARA +and O +quality S-CONPRI +without O +size O +limits S-CONPRI +, O +becoming O +the O +best O +alternative O +for O +additive B-MANP +manufacturing E-MANP +of O +medium-large O +size O +parts O +with O +high O +mechanical S-APPL +requirements O +such O +as S-MATE +structural O +parts O +in O +the O +aeronautical S-APPL +industry.WAAM O +technology S-CONPRI +adds O +material S-MATE +in O +form O +of O +wire O +using O +an O +arc B-MANP +welding E-MANP +process O +in O +order O +to O +melt S-CONPRI +both O +the O +wire O +and O +the O +substrate S-MATE +. O + + +There O +are O +three O +welding S-MANP +processes S-CONPRI +that O +are O +mainly O +used O +in O +WAAM S-MANP +: O +Plasma B-MANP +Arc I-MANP +Welding E-MANP +( O +PAW S-MANP +) O +, O +Gas B-MANP +Tungsten I-MANP +Arc I-MANP +Welding E-MANP +( O +GTAW S-MANP +or O +TIG S-MANP +) O +and O +Gas B-MANP +Metal I-MANP +Arc I-MANP +Welding E-MANP +( O +GMAW S-MANP +or O +MIG S-MANP +) O +. O + + +This O +paper O +studies O +these O +processes S-CONPRI +regarding O +on O +their O +capabilities O +for O +additive B-MANP +manufacturing E-MANP +and O +compares O +the O +mechanical B-CONPRI +properties E-CONPRI +obtained O +by O +the O +different O +welding S-MANP +technologies S-CONPRI +applied O +in O +WAAM S-MANP +. O + + +Obtained O +results O +show O +the O +applicability O +of O +the O +technology S-CONPRI +as S-MATE +an O +alternative O +of O +traditional O +metallic S-MATE +preforms O +manufacturing B-MANP +processes E-MANP +, O +such O +as S-MATE +casting O +or O +forging S-MANP +. O + + +A O +weak B-CONPRI +coupling I-CONPRI +modeling I-CONPRI +method E-CONPRI +is O +developed O +for O +arc B-MANP +welding E-MANP +based O +additive B-MANP +manufacturing E-MANP +. O + + +This O +weak B-CONPRI +coupling I-CONPRI +modeling I-CONPRI +method E-CONPRI +is O +capable O +of O +simulating O +the O +complex O +heat B-CONPRI +and I-CONPRI +mass I-CONPRI +transfer E-CONPRI +effectively O +and O +efficiently O +. O + + +In O +arc B-MANP +welding E-MANP +based O +additive B-MANP +manufacturing E-MANP +, O +the O +surface B-CONPRI +topographies E-CONPRI +of O +deposited B-CHAR +layer E-CHAR +are O +more O +complex O +than O +conventional B-MANP +welding E-MANP +, O +therefore O +, O +the O +distribution S-CONPRI +of O +the O +electromagnetic B-CONPRI +force E-CONPRI +in O +molten B-CONPRI +pool E-CONPRI +, O +arc B-PARA +pressure E-PARA +, O +plasma S-CONPRI +shear O +stress S-PRO +and O +heat B-CONPRI +flux E-CONPRI +on O +molten B-CONPRI +pool E-CONPRI +surface O +are O +not O +the O +same O +as S-MATE +the O +conventional B-MANP +welding E-MANP +. O + + +A O +three-dimensional S-CONPRI +weak O +coupling O +modeling S-ENAT +method O +of O +the O +arc S-CONPRI +and O +metal B-CONPRI +transport E-CONPRI +is O +developed O +to O +simulate O +the O +arc S-CONPRI +, O +molten B-CONPRI +pool E-CONPRI +dynamic S-CONPRI +and O +droplet S-CONPRI +impingement O +in O +arc B-MANP +welding E-MANP +based O +additive B-MANP +manufacturing E-MANP +. O + + +In O +the O +arc S-CONPRI +model O +, O +the O +molten B-CONPRI +pool E-CONPRI +is O +simplified O +to O +be S-MATE +solid O +state O +on O +the O +basis O +of O +experimentally O +observed O +results O +. O + + +The O +arc S-CONPRI +is O +simulated O +firstly O +, O +and O +then O +the O +electromagnetic B-CONPRI +force E-CONPRI +, O +arc B-PARA +pressure E-PARA +, O +plasma S-CONPRI +shear O +stress S-PRO +and O +heat B-CONPRI +flux E-CONPRI +are O +extracted S-CONPRI +and O +transmitted O +to O +metal B-CONPRI +transport E-CONPRI +model O +. O + + +The O +volume B-CONPRI +of I-CONPRI +fluid E-CONPRI +( O +VOF S-CONPRI +) O +method O +is O +employed O +to O +track O +free B-CONPRI +surface E-CONPRI +of O +molten B-CONPRI +pool E-CONPRI +and O +droplet S-CONPRI +, O +and O +the O +continuum B-CONPRI +surface I-CONPRI +force E-CONPRI +( O +CSF S-CONPRI +) O +method O +is O +applied O +to O +transform O +all O +the O +surface B-CONPRI +forces E-CONPRI +on O +free B-CONPRI +surface E-CONPRI +as S-MATE +localized O +body B-CONPRI +forces E-CONPRI +. O + + +This O +weak B-CONPRI +coupling I-CONPRI +model E-CONPRI +has O +better O +accuracy S-CHAR +than O +empirical S-CONPRI +model O +and O +decreases O +computational O +consumption O +. O + + +The O +molten B-CONPRI +pool E-CONPRI +morphology O +and O +cross-sectional O +profile S-FEAT +of O +simulated O +results O +accord O +well O +with O +experimental S-CONPRI +results O +in O +both O +single-bead O +deposition S-CONPRI +and O +overlapping O +deposition S-CONPRI +, O +which O +indicates O +that O +this O +weak B-CONPRI +coupling I-CONPRI +modeling I-CONPRI +method E-CONPRI +is O +capable O +of O +simulating O +the O +complex O +heat B-CONPRI +and I-CONPRI +mass I-CONPRI +transfer E-CONPRI +phenomena O +in O +arc B-MANP +welding E-MANP +based O +additive B-MANP +manufacturing E-MANP +. O + + +Laser B-MANP +additive I-MANP +manufacturing E-MANP +is O +an O +advanced O +, O +very O +perspective O +technology S-CONPRI +with O +potentially O +wide O +industrial S-APPL +applications O +, O +one O +of O +them O +being O +an O +improvement O +of O +durability S-PRO +of O +forms O +and O +dies S-MACEQ +. O + + +The O +aim O +is O +to O +improve O +surface S-CONPRI +properties S-CONPRI +like O +wear B-PRO +resistance E-PRO +using O +special O +layers O +of O +powder S-MATE +sintered O +or O +remelted O +by O +laser B-CONPRI +beam E-CONPRI +. O + + +At O +present O +, O +dies S-MACEQ +are O +manufactured S-CONPRI +by O +machining S-MANP +with O +following O +bulk B-MANP +heat I-MANP +treatment E-MANP +, O +which O +is O +an O +expensive O +process S-CONPRI +. O + + +Concerning O +repairs O +of O +dies S-MACEQ +, O +they O +are O +usually O +performed O +manually O +, O +using O +arc S-CONPRI +or O +plasma B-MANP +welding E-MANP +with O +numerous O +difficulties O +and O +disadvantages O +in O +comparison O +with O +promising O +and O +advanced O +laser S-ENAT +overlaying O +. O + + +The O +paper O +contains O +results O +of O +a O +comprehensive O +evaluation O +of O +several O +types O +of O +hard O +overlayed O +powder S-MATE +of O +H13 B-MATE +tool I-MATE +steel E-MATE +on O +a O +S355 B-MATE +structural I-MATE +steel E-MATE +using O +laser B-CONPRI +beam E-CONPRI +. O +