# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Samanantar dataset.""" from pathlib import Path import datasets _CITATION = """\ @misc{ramesh2021samanantar, title={Samanantar: The Largest Publicly Available Parallel Corpora Collection for 11 Indic Languages}, author={Gowtham Ramesh and Sumanth Doddapaneni and Aravinth Bheemaraj and Mayank Jobanputra and Raghavan AK and Ajitesh Sharma and Sujit Sahoo and Harshita Diddee and Mahalakshmi J and Divyanshu Kakwani and Navneet Kumar and Aswin Pradeep and Srihari Nagaraj and Kumar Deepak and Vivek Raghavan and Anoop Kunchukuttan and Pratyush Kumar and Mitesh Shantadevi Khapra}, year={2021}, eprint={2104.05596}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ Samanantar is the largest publicly available parallel corpora collection for Indic languages: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu. The corpus has 49.6M sentence pairs between English to Indian Languages. """ _HOMEPAGE = "https://indicnlp.ai4bharat.org/samanantar/" _LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International" _URLS = { "0.3.0": "https://objectstore.e2enetworks.net/ai4b-public-nlu-nlg/samanantar_paper_version.zip", } _LANGUAGES = ["as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te"] class SamanantarConfig(datasets.BuilderConfig): VERSION = datasets.Version("0.3.0") def __init__(self, language=None, version=VERSION, **kwargs): super().__init__(name=language, version=version, **kwargs) self.language = language class Samanantar(datasets.GeneratorBasedBuilder): """Samanantar dataset.""" BUILDER_CONFIG_CLASS = SamanantarConfig BUILDER_CONFIGS = [SamanantarConfig(language=language) for language in _LANGUAGES] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "idx": datasets.Value("int64"), "src": datasets.Value("string"), "tgt": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS[str(self.config.version)] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_dir": (Path(data_dir) / "v2" / f"en-{self.config.language}"), }, ), ] def _generate_examples(self, data_dir): src_path = data_dir / "train.en" tgt_path = data_dir / f"train.{self.config.language}" with src_path.open(encoding="utf-8") as src_file, tgt_path.open(encoding="utf-8") as tgt_file: for idx, (src_line, tgt_line) in enumerate(zip(src_file, tgt_file)): yield idx, {"idx": idx, "src": src_line.strip(), "tgt": tgt_line.strip()}