diff --git a/AndersonAcceleration.h b/AndersonAcceleration.h new file mode 100644 index 0000000000000000000000000000000000000000..edd85804e96a2902bc21ce1c909df0c7e122d650 --- /dev/null +++ b/AndersonAcceleration.h @@ -0,0 +1,132 @@ +#ifndef ANDERSONACCELERATION_H_ +#define ANDERSONACCELERATION_H_ + +#include "Types.h" +#include +#include +#include +#include +#include + +class AndersonAcceleration +{ +public: + AndersonAcceleration() + :m_(-1), dim_(-1), iter_(-1), col_idx_(-1) {} + + void replace(const Scalar *u) + { + current_u_ = Eigen::Map(u, dim_); + } + + const VectorX& compute(const Scalar* g) + { + assert(iter_ >= 0); + + Eigen::Map G(g, dim_); + current_F_ = G - current_u_; + + if (iter_ == 0) + { + prev_dF_.col(0) = -current_F_; + prev_dG_.col(0) = -G; + current_u_ = G; + } + else + { + prev_dF_.col(col_idx_) += current_F_; + prev_dG_.col(col_idx_) += G; + + Scalar eps = 1e-14; + Scalar scale = std::max(eps, prev_dF_.col(col_idx_).norm()); + dF_scale_(col_idx_) = scale; + prev_dF_.col(col_idx_) /= scale; + + int m_k = std::min(m_, iter_); + + + if (m_k == 1) + { + theta_(0) = 0; + Scalar dF_sqrnorm = prev_dF_.col(col_idx_).squaredNorm(); + M_(0, 0) = dF_sqrnorm; + Scalar dF_norm = std::sqrt(dF_sqrnorm); + + if (dF_norm > eps) { + theta_(0) = (prev_dF_.col(col_idx_) / dF_norm).dot(current_F_ / dF_norm); + } + } + else + { + // Update the normal equation matrix, for the column and row corresponding to the new dF column + VectorX new_inner_prod = (prev_dF_.col(col_idx_).transpose() * prev_dF_.block(0, 0, dim_, m_k)).transpose(); + M_.block(col_idx_, 0, 1, m_k) = new_inner_prod.transpose(); + M_.block(0, col_idx_, m_k, 1) = new_inner_prod; + + // Solve normal equation + cod_.compute(M_.block(0, 0, m_k, m_k)); + theta_.head(m_k) = cod_.solve(prev_dF_.block(0, 0, dim_, m_k).transpose() * current_F_); + } + + // Use rescaled theata to compute new u + current_u_ = G - prev_dG_.block(0, 0, dim_, m_k) * ((theta_.head(m_k).array() / dF_scale_.head(m_k).array()).matrix()); + col_idx_ = (col_idx_ + 1) % m_; + prev_dF_.col(col_idx_) = -current_F_; + prev_dG_.col(col_idx_) = -G; + } + + iter_++; + return current_u_; + } + void reset(const Scalar *u) + { + iter_ = 0; + col_idx_ = 0; + current_u_ = Eigen::Map(u, dim_); + } + + // m: number of previous iterations used + // d: dimension of variables + // u0: initial variable values + void init(int m, int d, const Scalar* u0) + { + assert(m > 0); + m_ = m; + dim_ = d; + current_u_.resize(d); + current_F_.resize(d); + prev_dG_.resize(d, m); + prev_dF_.resize(d, m); + M_.resize(m, m); + theta_.resize(m); + dF_scale_.resize(m); + current_u_ = Eigen::Map(u0, d); + iter_ = 0; + col_idx_ = 0; + } + +private: + VectorX current_u_; + VectorX current_F_; + MatrixXX prev_dG_; + MatrixXX prev_dF_; + MatrixXX M_; // Normal equations matrix for the computing theta + VectorX theta_; // theta value computed from normal equations + VectorX dF_scale_; // The scaling factor for each column of prev_dF + Eigen::CompleteOrthogonalDecomposition cod_; + + int m_; // Number of previous iterates used for Andreson Acceleration + int dim_; // Dimension of variables + int iter_; // Iteration count since initialization + int col_idx_; // Index for history matrix column to store the next value + int m_k_; + + Eigen::Matrix4d current_T_; + Eigen::Matrix4d current_F_T_; + + MatrixXX T_prev_dF_; + MatrixXX T_prev_dG_; +}; + + +#endif /* ANDERSONACCELERATION_H_ */ diff --git a/FRICP.h b/FRICP.h new file mode 100644 index 0000000000000000000000000000000000000000..4bf6c350243c2b378403ba0b9564fd83b4fb36e7 --- /dev/null +++ b/FRICP.h @@ -0,0 +1,942 @@ +#ifndef FRICP_H +#define FRICP_H +#include "ICP.h" +#include +#include +#include "median.h" +#include +#define SAME_THRESHOLD 1e-6 +#include + +template +typename std::enable_if::is_integer, bool>::type +almost_equal(T x, T y, int ulp) +{ + // the machine epsilon has to be scaled to the magnitude of the values used + // and multiplied by the desired precision in ULPs (units in the last place) + return std::fabs(x-y) <= std::numeric_limits::epsilon() * std::fabs(x+y) * ulp + // unless the result is subnormal + || std::fabs(x-y) < std::numeric_limits::min(); +} +template +class FRICP +{ +public: + typedef double Scalar; + typedef Eigen::Matrix MatrixNX; + typedef Eigen::Matrix MatrixNN; + typedef Eigen::Matrix AffineMatrixN; + typedef Eigen::Transform AffineNd; + typedef Eigen::Matrix VectorN; + typedef nanoflann::KDTreeAdaptor KDtree; + typedef Eigen::Matrix Vector6; + double test_total_construct_time=.0; + double test_total_solve_time=.0; + int test_total_iters=0; + + FRICP(){}; + ~FRICP(){}; + +private: + AffineMatrixN LogMatrix(const AffineMatrixN& T) + { + Eigen::RealSchur schur(T); + AffineMatrixN U = schur.matrixU(); + AffineMatrixN R = schur.matrixT(); + std::vector selected(N, true); + MatrixNN mat_B = MatrixNN::Zero(N, N); + MatrixNN mat_V = MatrixNN::Identity(N, N); + + for (int i = 0; i < N; i++) + { + if (selected[i] && fabs(R(i, i) - 1)> SAME_THRESHOLD) + { + int pair_second = -1; + for (int j = i + 1; j 0) + { + selected[i] = false; + R(i, i) = R(i, i) < -1 ? -1 : R(i, i); + double theta = acos(R(i, i)); + if (R(i, pair_second) < 0) + { + theta = -theta; + } + mat_B(i, pair_second) += theta; + mat_B(pair_second, i) += -theta; + mat_V(i, pair_second) += -theta / 2; + mat_V(pair_second, i) += theta / 2; + double coeff = 1 - (theta * R(i, pair_second)) / (2 * (1 - R(i, i))); + mat_V(i, i) += -coeff; + mat_V(pair_second, pair_second) += -coeff; + } + } + } + + AffineMatrixN LogTrim = AffineMatrixN::Zero(); + LogTrim.block(0, 0, N, N) = mat_B; + LogTrim.block(0, N, N, 1) = mat_V * R.block(0, N, N, 1); + AffineMatrixN res = U * LogTrim * U.transpose(); + return res; + } + + inline Vector6 RotToEuler(const AffineNd& T) + { + Vector6 res; + res.head(3) = T.rotation().eulerAngles(0,1,2); + res.tail(3) = T.translation(); + return res; + } + + inline AffineMatrixN EulerToRot(const Vector6& v) + { + MatrixNN s (Eigen::AngleAxis(v(0), Vector3::UnitX()) + * Eigen::AngleAxis(v(1), Vector3::UnitY()) + * Eigen::AngleAxis(v(2), Vector3::UnitZ())); + + AffineMatrixN m = AffineMatrixN::Zero(); + m.block(0,0,3,3) = s; + m(3,3) = 1; + m.col(3).head(3) = v.tail(3); + return m; + } + inline Vector6 LogToVec(const Eigen::Matrix4d& LogT) + { + Vector6 res; + res[0] = -LogT(1, 2); + res[1] = LogT(0, 2); + res[2] = -LogT(0, 1); + res[3] = LogT(0, 3); + res[4] = LogT(1, 3); + res[5] = LogT(2, 3); + return res; + } + + inline AffineMatrixN VecToLog(const Vector6& v) + { + AffineMatrixN m = AffineMatrixN::Zero(); + m << 0, -v[2], v[1], v[3], + v[2], 0, -v[0], v[4], + -v[1], v[0], 0, v[5], + 0, 0, 0, 0; + return m; + } + + double FindKnearestMed(const KDtree& kdtree, + const MatrixNX& X, int nk) + { + Eigen::VectorXd X_nearest(X.cols()); +#pragma omp parallel for + for(int i = 0; i(dist, nk); + igl::median(k_dist.tail(nk-1), X_nearest[i]); + delete[]id; + delete[]dist; + } + double med; + igl::median(X_nearest, med); + return sqrt(med); + } + /// Find self normal edge median of point cloud + double FindKnearestNormMed(const KDtree& kdtree, const Eigen::Matrix3Xd & X, int nk, const Eigen::Matrix3Xd & norm_x) + { + Eigen::VectorXd X_nearest(X.cols()); +#pragma omp parallel for + for(int i = 0; i(dist, nk); + for(int s = 1; s + AffineNd point_to_point(Eigen::MatrixBase& X, + Eigen::MatrixBase& Y, + const Eigen::MatrixBase& w) { + int dim = X.rows(); + /// Normalize weight vector + Eigen::VectorXd w_normalized = w / w.sum(); + /// De-mean + Eigen::VectorXd X_mean(dim), Y_mean(dim); + for (int i = 0; i svd(sigma, Eigen::ComputeFullU | Eigen::ComputeFullV); + if (svd.matrixU().determinant()*svd.matrixV().determinant() < 0.0) { + VectorN S = VectorN::Ones(dim); S(dim-1) = -1.0; + transformation.linear() = svd.matrixV()*S.asDiagonal()*svd.matrixU().transpose(); + } + else { + transformation.linear() = svd.matrixV()*svd.matrixU().transpose(); + } + transformation.translation() = Y_mean - transformation.linear()*X_mean; + /// Re-apply mean + X.colwise() += X_mean; + Y.colwise() += Y_mean; + /// Return transformation + return transformation; + } + + template + Eigen::Affine3d point_to_plane(Eigen::MatrixBase& X, + Eigen::MatrixBase& Y, + const Eigen::MatrixBase& Norm, + const Eigen::MatrixBase& w, + const Eigen::MatrixBase& u) { + typedef Eigen::Matrix Matrix66; + typedef Eigen::Matrix Vector6; + typedef Eigen::Block Block33; + /// Normalize weight vector + Eigen::VectorXd w_normalized = w / w.sum(); + /// De-mean + Eigen::Vector3d X_mean; + for (int i = 0; i<3; ++i) + X_mean(i) = (X.row(i).array()*w_normalized.transpose().array()).sum(); + X.colwise() -= X_mean; + Y.colwise() -= X_mean; + /// Prepare LHS and RHS + Matrix66 LHS = Matrix66::Zero(); + Vector6 RHS = Vector6::Zero(); + Block33 TL = LHS.topLeftCorner<3, 3>(); + Block33 TR = LHS.topRightCorner<3, 3>(); + Block33 BR = LHS.bottomRightCorner<3, 3>(); + Eigen::MatrixXd C = Eigen::MatrixXd::Zero(3, X.cols()); + +#pragma omp parallel + { +#pragma omp for + for (int i = 0; i().rankUpdate(C.col(i), w(i)); +#pragma omp section + for (int i = 0; i().rankUpdate(Norm.col(i), w(i)); +#pragma omp section + for (int i = 0; i() += C.col(i)*dist_to_plane; + RHS.tail<3>() += Norm.col(i)*dist_to_plane; + } + } + } + LHS = LHS.selfadjointView(); + /// Compute transformation + Eigen::Affine3d transformation; + Eigen::LDLT ldlt(LHS); + RHS = ldlt.solve(RHS); + transformation = Eigen::AngleAxisd(RHS(0), Eigen::Vector3d::UnitX()) * + Eigen::AngleAxisd(RHS(1), Eigen::Vector3d::UnitY()) * + Eigen::AngleAxisd(RHS(2), Eigen::Vector3d::UnitZ()); + transformation.translation() = RHS.tail<3>(); + + /// Apply transformation + /// Re-apply mean + X.colwise() += X_mean; + Y.colwise() += X_mean; + transformation.translation() += X_mean - transformation.linear()*X_mean; + /// Return transformation + return transformation; + } + + template + double point_to_plane_gaussnewton(const Eigen::MatrixBase& X, + const Eigen::MatrixBase& Y, + const Eigen::MatrixBase& norm_y, + const Eigen::MatrixBase& w, + Matrix44 Tk, Vector6& dir) { + typedef Eigen::Matrix Matrix66; + typedef Eigen::Matrix Matrix126; + typedef Eigen::Matrix Matrix93; + typedef Eigen::Block Block93; + typedef Eigen::Block Block33; + typedef Eigen::Matrix Vector12; + typedef Eigen::Matrix Vector9; + typedef Eigen::Matrix Matrix42; + /// Normalize weight vector + Eigen::VectorXd w_normalized = w / w.sum(); + /// Prepare LHS and RHS + Matrix66 LHS = Matrix66::Zero(); + Vector6 RHS = Vector6::Zero(); + + Vector6 log_T = LogToVec(LogMatrix(Tk)); + Matrix33 B = VecToLog(log_T).block(0, 0, 3, 3); + double a = log_T[0]; + double b = log_T[1]; + double c = log_T[2]; + Matrix33 R = Tk.block(0, 0, 3, 3); + Vector3 t = Tk.block(0, 3, 3, 1); + Vector3 u = log_T.tail(3); + + Matrix93 dbdw = Matrix93::Zero(); + dbdw(1, 2) = dbdw(5, 0) = dbdw(6, 1) = -1; + dbdw(2, 1) = dbdw(3, 2) = dbdw(7, 0) = 1; + Matrix93 db2dw = Matrix93::Zero(); + db2dw(3, 1) = db2dw(4, 0) = db2dw(6, 2) = db2dw(8, 0) = a; + db2dw(0, 1) = db2dw(1, 0) = db2dw(7, 2) = db2dw(8, 1) = b; + db2dw(0, 2) = db2dw(2, 0) = db2dw(4, 2) = db2dw(5, 1) = c; + db2dw(1, 1) = db2dw(2, 2) = -2 * a; + db2dw(3, 0) = db2dw(5, 2) = -2 * b; + db2dw(6, 0) = db2dw(7, 1) = -2 * c; + double theta = std::sqrt(a*a + b*b + c*c); + double st = sin(theta), ct = cos(theta); + + Matrix42 coeff = Matrix42::Zero(); + if (theta>SAME_THRESHOLD) + { + coeff << st / theta, (1 - ct) / (theta*theta), + (theta*ct - st) / (theta*theta*theta), (theta*st - 2 * (1 - ct)) / pow(theta, 4), + (1 - ct) / (theta*theta), (theta - st) / pow(theta, 3), + (theta*st - 2 * (1 - ct)) / pow(theta, 4), (theta*(1 - ct) - 3 * (theta - st)) / pow(theta, 5); + } + else + coeff(0, 0) = 1; + + Matrix93 tempB3; + tempB3.block<3, 3>(0, 0) = a*B; + tempB3.block<3, 3>(3, 0) = b*B; + tempB3.block<3, 3>(6, 0) = c*B; + Matrix33 B2 = B*B; + Matrix93 temp2B3; + temp2B3.block<3, 3>(0, 0) = a*B2; + temp2B3.block<3, 3>(3, 0) = b*B2; + temp2B3.block<3, 3>(6, 0) = c*B2; + Matrix93 dRdw = coeff(0, 0)*dbdw + coeff(1, 0)*tempB3 + + coeff(2, 0)*db2dw + coeff(3, 0)*temp2B3; + Vector9 dtdw = coeff(0, 1) * dbdw*u + coeff(1, 1) * tempB3*u + + coeff(2, 1) * db2dw*u + coeff(3, 1)*temp2B3*u; + Matrix33 dtdu = Matrix33::Identity() + coeff(2, 0)*B + coeff(2, 1) * B2; + + Eigen::VectorXd rk(X.cols()); + Eigen::MatrixXd Jk(X.cols(), 6); +#pragma omp for + for (int i = 0; i < X.cols(); i++) + { + Vector3 xi = X.col(i); + Vector3 yi = Y.col(i); + Vector3 ni = norm_y.col(i); + double wi = sqrt(w_normalized[i]); + + Matrix33 dedR = wi*ni * xi.transpose(); + Vector3 dedt = wi*ni; + + Vector6 dedx; + dedx(0) = (dedR.cwiseProduct(dRdw.block(0, 0, 3, 3))).sum() + + dedt.dot(dtdw.head<3>()); + dedx(1) = (dedR.cwiseProduct(dRdw.block(3, 0, 3, 3))).sum() + + dedt.dot(dtdw.segment<3>(3)); + dedx(2) = (dedR.cwiseProduct(dRdw.block(6, 0, 3, 3))).sum() + + dedt.dot(dtdw.tail<3>()); + dedx(3) = dedt.dot(dtdu.col(0)); + dedx(4) = dedt.dot(dtdu.col(1)); + dedx(5) = dedt.dot(dtdu.col(2)); + + Jk.row(i) = dedx.transpose(); + rk[i] = wi * ni.dot(R*xi-yi+t); + } + LHS = Jk.transpose() * Jk; + RHS = -Jk.transpose() * rk; + Eigen::CompleteOrthogonalDecomposition cod_(LHS); + dir = cod_.solve(RHS); + double gTd = -RHS.dot(dir); + return gTd; + } + + +public: + void point_to_point(MatrixNX& X, MatrixNX& Y, VectorN& source_mean, + VectorN& target_mean, ICP::Parameters& par){ + /// Build kd-tree + KDtree kdtree(Y); + /// Buffers + MatrixNX Q = MatrixNX::Zero(N, X.cols()); + VectorX W = VectorX::Zero(X.cols()); + AffineNd T; + if (par.use_init) T.matrix() = par.init_trans; + else T = AffineNd::Identity(); + MatrixXX To1 = T.matrix(); + MatrixXX To2 = T.matrix(); + int nPoints = X.cols(); + + //Anderson Acc para + AndersonAcceleration accelerator_; + AffineNd SVD_T = T; + double energy = .0, last_energy = std::numeric_limits::max(); + + //ground truth point clouds + MatrixNX X_gt = X; + if(par.has_groundtruth) + { + VectorN temp_trans = par.gt_trans.col(N).head(N); + X_gt.colwise() += source_mean; + X_gt = par.gt_trans.block(0, 0, N, N) * X_gt; + X_gt.colwise() += temp_trans - target_mean; + } + + //output para + std::string file_out = par.out_path; + std::vector times, energys, gt_mses; + double begin_time, end_time, run_time; + double gt_mse = 0.0; + + // dynamic welsch paras + double nu1 = 1, nu2 = 1; + double begin_init = omp_get_wtime(); + + //Find initial closest point +#pragma omp parallel for + for (int i = 0; inu2? nu1:nu2; + } + double end_init = omp_get_wtime(); + double init_time = end_init - begin_init; + + //AA init + accelerator_.init(par.anderson_m, (N + 1) * (N + 1), LogMatrix(T.matrix()).data()); + + begin_time = omp_get_wtime(); + bool stop1 = false; + while(!stop1) + { + /// run ICP + int icp = 0; + for (; icp + void point_to_plane(Eigen::Matrix3Xd& X, + Eigen::Matrix3Xd& Y, Eigen::Matrix3Xd& norm_x, Eigen::Matrix3Xd& norm_y, + Eigen::Vector3d& source_mean, Eigen::Vector3d& target_mean, + ICP::Parameters &par) { + /// Build kd-tree + KDtree kdtree(Y); + /// Buffers + Eigen::Matrix3Xd Qp = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::Matrix3Xd Qn = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::VectorXd W = Eigen::VectorXd::Zero(X.cols()); + Eigen::Matrix3Xd ori_X = X; + AffineNd T; + if (par.use_init) T.matrix() = par.init_trans; + else T = AffineNd::Identity(); + AffineMatrixN To1 = T.matrix(); + X = T*X; + + Eigen::Matrix3Xd X_gt = X; + if(par.has_groundtruth) + { + Eigen::Vector3d temp_trans = par.gt_trans.block(0, 3, 3, 1); + X_gt = ori_X; + X_gt.colwise() += source_mean; + X_gt = par.gt_trans.block(0, 0, 3, 3) * X_gt; + X_gt.colwise() += temp_trans - target_mean; + } + + std::vector times, energys, gt_mses; + double begin_time, end_time, run_time; + double gt_mse = 0.0; + + ///dynamic welsch, calc k-nearest points with itself; + double begin_init = omp_get_wtime(); + + //Anderson Acc para + AndersonAcceleration accelerator_; + AffineNd LG_T = T; + double energy = 0.0, prev_res = std::numeric_limits::max(), res = 0.0; + + + // Find closest point +#pragma omp parallel for + for (int i = 0; i + void point_to_plane_GN(Eigen::Matrix3Xd& X, + Eigen::Matrix3Xd& Y, Eigen::Matrix3Xd& norm_x, Eigen::Matrix3Xd& norm_y, + Eigen::Vector3d& source_mean, Eigen::Vector3d& target_mean, + ICP::Parameters &par) { + /// Build kd-tree + KDtree kdtree(Y); + /// Buffers + Eigen::Matrix3Xd Qp = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::Matrix3Xd Qn = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::VectorXd W = Eigen::VectorXd::Zero(X.cols()); + Eigen::Matrix3Xd ori_X = X; + AffineNd T; + if (par.use_init) T.matrix() = par.init_trans; + else T = AffineNd::Identity(); + AffineMatrixN To1 = T.matrix(); + X = T*X; + + Eigen::Matrix3Xd X_gt = X; + if(par.has_groundtruth) + { + Eigen::Vector3d temp_trans = par.gt_trans.block(0, 3, 3, 1); + X_gt = ori_X; + X_gt.colwise() += source_mean; + X_gt = par.gt_trans.block(0, 0, 3, 3) * X_gt; + X_gt.colwise() += temp_trans - target_mean; + } + + std::vector times, energys, gt_mses; + double begin_time, end_time, run_time; + double gt_mse; + + ///dynamic welsch, calc k-nearest points with itself; + double nu1 = 1, nu2 = 1; + double begin_init = omp_get_wtime(); + + //Anderson Acc para + AndersonAcceleration accelerator_; + Vector6 LG_T; + Vector6 Dir; + //add time test + double energy = 0.0, prev_energy = std::numeric_limits::max(); + if(par.use_AA) + { + Eigen::Matrix4d log_T = LogMatrix(T.matrix()); + LG_T = LogToVec(log_T); + accelerator_.init(par.anderson_m, 6, LG_T.data()); + } + + // Find closest point +#pragma omp parallel for + for (int i = 0; inu2? nu1:nu2; + } + double end_init = omp_get_wtime(); + double init_time = end_init - begin_init; + + begin_time = omp_get_wtime(); + int total_iter = 0; + double test_total_time = 0.0; + bool stop1 = false; + par.max_icp = 6; + while(!stop1) + { + par.max_icp = std::min(par.max_icp+1, 10); + /// ICP + for(int icp=0; icp +/////////////////////////////////////////////////////////////////////////////// +/// namespace nanoflann: NANOFLANN KD-tree adaptor for EIGEN +/// namespace RigidMotionEstimator: functions to compute the rigid motion +/// namespace SICP: sparse ICP implementation +/// namespace ICP: reweighted ICP implementation +/////////////////////////////////////////////////////////////////////////////// +#ifndef ICP_H +#define ICP_H +#include +#include +#include +#include +#include +#include +#include + +#define TUPLE_SCALE 0.95 +#define TUPLE_MAX_CNT 1000 + + +/////////////////////////////////////////////////////////////////////////////// +namespace nanoflann { + /// KD-tree adaptor for working with data directly stored in an Eigen Matrix, without duplicating the data storage. + /// This code is adapted from the KDTreeEigenMatrixAdaptor class of nanoflann.hpp + template + struct KDTreeAdaptor { + typedef KDTreeAdaptor self_t; + typedef typename MatrixType::Scalar num_t; + typedef typename Distance::template traits::distance_t metric_t; + typedef KDTreeSingleIndexAdaptor< metric_t, self_t, DIM, IndexType> index_t; + index_t* index; + KDTreeAdaptor(const MatrixType &mat, const int leaf_max_size = 10) : m_data_matrix(mat) { + const size_t dims = mat.rows(); + index = new index_t(dims, *this, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size, dims)); + index->buildIndex(); + } + ~KDTreeAdaptor() { delete index; } + const MatrixType &m_data_matrix; + /// Query for the num_closest closest points to a given point (entered as query_point[0:dim-1]). + inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq) const { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + } + /// Query for the closest points to a given point (entered as query_point[0:dim-1]). + inline IndexType closest(const num_t *query_point) const { + IndexType out_indices; + num_t out_distances_sq; + query(query_point, 1, &out_indices, &out_distances_sq); + return out_indices; + } + const self_t & derived() const { return *this; } + self_t & derived() { return *this; } + inline size_t kdtree_get_point_count() const { return m_data_matrix.cols(); } + /// Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class: + inline num_t kdtree_distance(const num_t *p1, const size_t idx_p2, size_t size) const { + num_t s = 0; + for (size_t i = 0; i bool kdtree_get_bbox(BBOX&) const { return false; } + }; +} +/////////////////////////////////////////////////////////////////////////////// +/// Compute the rigid motion for point-to-point and point-to-plane distances +namespace RigidMotionEstimator { + /// @param Source (one 3D point per column) + /// @param Target (one 3D point per column) + /// @param Confidence weights + template + Eigen::Affine3d point_to_point(Eigen::MatrixBase& X, + Eigen::MatrixBase& Y, + const Eigen::MatrixBase& w) { + int dim = X.rows(); + /// Normalize weight vector + Eigen::VectorXd w_normalized = w / w.sum(); + /// De-mean + Eigen::VectorXd X_mean(dim), Y_mean(dim); + for (int i = 0; i svd(sigma, Eigen::ComputeFullU | Eigen::ComputeFullV); + if (svd.matrixU().determinant()*svd.matrixV().determinant() < 0.0) { + VectorX S = VectorX::Ones(dim); S(dim-1) = -1.0; + transformation.linear() = svd.matrixV()*S.asDiagonal()*svd.matrixU().transpose(); + } + else { + transformation.linear() = svd.matrixV()*svd.matrixU().transpose(); + } + transformation.translation() = Y_mean - transformation.linear()*X_mean; + /// Re-apply mean + X.colwise() += X_mean; + Y.colwise() += Y_mean; + /// Apply transformation +// X = transformation*X; + /// Return transformation + return transformation; + } + /// @param Source (one 3D point per column) + /// @param Target (one 3D point per column) + template + inline Eigen::Affine3d point_to_point(Eigen::MatrixBase& X, + Eigen::MatrixBase& Y) { + return point_to_point(X, Y, Eigen::VectorXd::Ones(X.cols())); + } + /// @param Source (one 3D point per column) + /// @param Target (one 3D point per column) + /// @param Target normals (one 3D normal per column) + /// @param Confidence weights + /// @param Right hand side + template + Eigen::Affine3d point_to_plane(Eigen::MatrixBase& X, + Eigen::MatrixBase& Y, + Eigen::MatrixBase& N, + const Eigen::MatrixBase& w, + const Eigen::MatrixBase& u) { + typedef Eigen::Matrix Matrix66; + typedef Eigen::Matrix Vector6; + typedef Eigen::Block Block33; + /// Normalize weight vector + Eigen::VectorXd w_normalized = w / w.sum(); + /// De-mean + Eigen::Vector3d X_mean; + for (int i = 0; i<3; ++i) + X_mean(i) = (X.row(i).array()*w_normalized.transpose().array()).sum(); + X.colwise() -= X_mean; + Y.colwise() -= X_mean; + /// Prepare LHS and RHS + Matrix66 LHS = Matrix66::Zero(); + Vector6 RHS = Vector6::Zero(); + Block33 TL = LHS.topLeftCorner<3, 3>(); + Block33 TR = LHS.topRightCorner<3, 3>(); + Block33 BR = LHS.bottomRightCorner<3, 3>(); + Eigen::MatrixXd C = Eigen::MatrixXd::Zero(3, X.cols()); +#pragma omp parallel + { +#pragma omp for + for (int i = 0; i().rankUpdate(C.col(i), w(i)); +#pragma omp section + for (int i = 0; i().rankUpdate(N.col(i), w(i)); +#pragma omp section + for (int i = 0; i() += C.col(i)*dist_to_plane; + RHS.tail<3>() += N.col(i)*dist_to_plane; + } + } + } + LHS = LHS.selfadjointView(); + /// Compute transformation + Eigen::Affine3d transformation; + Eigen::LDLT ldlt(LHS); + RHS = ldlt.solve(RHS); + transformation = Eigen::AngleAxisd(RHS(0), Eigen::Vector3d::UnitX()) * + Eigen::AngleAxisd(RHS(1), Eigen::Vector3d::UnitY()) * + Eigen::AngleAxisd(RHS(2), Eigen::Vector3d::UnitZ()); + transformation.translation() = RHS.tail<3>(); + /// Apply transformation + X = transformation*X; + /// Re-apply mean + X.colwise() += X_mean; + Y.colwise() += X_mean; + transformation.translation() += -transformation.linear() * X_mean + X_mean; + /// Return transformation + return transformation; + } + /// @param Source (one 3D point per column) + /// @param Target (one 3D point per column) + /// @param Target normals (one 3D normal per column) + /// @param Confidence weights + template + inline Eigen::Affine3d point_to_plane(Eigen::MatrixBase& X, + Eigen::MatrixBase& Yp, + Eigen::MatrixBase& Yn, + const Eigen::MatrixBase& w) { + return point_to_plane(X, Yp, Yn, w, Eigen::VectorXd::Zero(X.cols())); + } +} +/////////////////////////////////////////////////////////////////////////////// +/// ICP implementation using ADMM/ALM/Penalty method +namespace SICP { + struct Parameters { + bool use_penalty = false; /// if use_penalty then penalty method else ADMM or ALM (see max_inner) + double p = 1.0; /// p norm + double mu = 10.0; /// penalty weight + double alpha = 1.2; /// penalty increase factor + double max_mu = 1e5; /// max penalty + int max_icp = 100; /// max ICP iteration + int max_outer = 100; /// max outer iteration + int max_inner = 1; /// max inner iteration. If max_inner=1 then ADMM else ALM + double stop = 1e-5; /// stopping criteria + bool print_icpn = false; /// (debug) print ICP iteration + Eigen::Matrix4d init_trans = Eigen::Matrix4d::Identity(); + Eigen::Matrix4d gt_trans = Eigen::Matrix4d::Identity(); + bool has_groundtruth = false; + int convergence_iter = 0; + double convergence_mse = 0.0; + double convergence_gt_mse = 0.0; + Eigen::Matrix4d res_trans = Eigen::Matrix4d::Identity(); + std::string file_err = ""; + std::string out_path = ""; + int total_iters = 0; + }; + /// Shrinkage operator (Automatic loop unrolling using template) + template + inline double shrinkage(double mu, double n, double p, double s) { + return shrinkage(mu, n, p, 1.0 - (p / mu)*std::pow(n, p - 2.0)*std::pow(s, p - 1.0)); + } + template<> + inline double shrinkage<0>(double, double, double, double s) { return s; } + /// 3D Shrinkage for point-to-point + template + inline void shrink(Eigen::Matrix3Xd& Q, double mu, double p) { + double Ba = std::pow((2.0 / mu)*(1.0 - p), 1.0 / (2.0 - p)); + double ha = Ba + (p / mu)*std::pow(Ba, p - 1.0); +#pragma omp parallel for + for (int i = 0; i ha) w = shrinkage(mu, n, p, (Ba / n + 1.0) / 2.0); + Q.col(i) *= w; + } + } + /// 1D Shrinkage for point-to-plane + template + inline void shrink(Eigen::VectorXd& y, double mu, double p) { + double Ba = std::pow((2.0 / mu)*(1.0 - p), 1.0 / (2.0 - p)); + double ha = Ba + (p / mu)*std::pow(Ba, p - 1.0); +#pragma omp parallel for + for (int i = 0; i ha) s = shrinkage(mu, n, p, (Ba / n + 1.0) / 2.0); + y(i) *= s; + } + } + /// Sparse ICP with point to point + /// @param Source (one 3D point per column) + /// @param Target (one 3D point per column) + /// @param Parameters + template + void point_to_point(Eigen::MatrixBase& X, + Eigen::MatrixBase& Y, Eigen::Vector3d& source_mean, Eigen::Vector3d& target_mean, + Parameters& par) { + /// Build kd-tree + nanoflann::KDTreeAdaptor, 3, nanoflann::metric_L2_Simple> kdtree(Y); + /// Buffers + Eigen::Matrix3Xd Q = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::Matrix3Xd Z = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::Matrix3Xd C = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::Matrix3Xd ori_X = X; + Eigen::Affine3d T(par.init_trans); + Eigen::Matrix3Xd X_gt; + int nPoints = X.cols(); + X = T * X; + Eigen::Matrix3Xd Xo1 = X; + Eigen::Matrix3Xd Xo2 = X; + double gt_mse = 0.0, run_time; + double begin_time, end_time; + std::vector gt_mses, times; + + if(par.has_groundtruth) + { + Eigen::Vector3d temp_trans = par.gt_trans.block(0, 3, 3, 1); + X_gt = ori_X; + X_gt.colwise() += source_mean; + X_gt = par.gt_trans.block(0, 0, 3, 3) * X_gt; + X_gt.colwise() += temp_trans - target_mean; + } + + begin_time = omp_get_wtime(); + + /// ICP + int icp; + for (icp = 0; icp + void point_to_plane(Eigen::MatrixBase& X, + Eigen::MatrixBase& Y, + Eigen::MatrixBase& N, Eigen::Vector3d source_mean, Eigen::Vector3d target_mean, + Parameters &par) { + /// Build kd-tree + nanoflann::KDTreeAdaptor, 3, nanoflann::metric_L2_Simple> kdtree(Y); + /// Buffers + Eigen::Matrix3Xd Qp = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::Matrix3Xd Qn = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::VectorXd Z = Eigen::VectorXd::Zero(X.cols()); + Eigen::VectorXd C = Eigen::VectorXd::Zero(X.cols()); + Eigen::Matrix3Xd ori_X = X; + Eigen::Affine3d T(par.init_trans); + Eigen::Matrix3Xd X_gt; + int nPoints = X.cols(); + X = T*X; + Eigen::Matrix3Xd Xo1 = X; + Eigen::Matrix3Xd Xo2 = X; + double gt_mse = 0.0, run_time; + double begin_time, end_time; + std::vector gt_mses, times; + + if(par.has_groundtruth) + { + Eigen::Vector3d temp_trans = par.gt_trans.block(0, 3, 3, 1); + X_gt = ori_X; + X_gt.colwise() += source_mean; + X_gt = par.gt_trans.block(0, 0, 3, 3) * X_gt; + X_gt.colwise() += temp_trans - target_mean; + } + + begin_time = omp_get_wtime(); + + /// ICP + int icp; + int total_iters = 0; + for (icp = 0; icp p) r(i) = 0.0; + else r(i) = std::pow((1.0 - std::pow(r(i) / p, 2.0)), 2.0); + } + } + /// @param Residuals + /// @param Parameter + void fair_weight(Eigen::VectorXd& r, double p) { + for (int i = 0; i &left, + const std::pair &right) { + return left.second < right.second; + } + }; + /// @param Residuals + /// @param Parameter + void trimmed_weight(Eigen::VectorXd& r, double p) { + std::vector > sortedDist(r.rows()); + for (int i = 0; i(i, r(i)); + } + std::sort(sortedDist.begin(), sortedDist.end(), sort_pred()); + r.setZero(); + int nbV = r.rows()*p; + for (int i = 0; i p) w = 0.0; + else w = std::pow((1.0 - std::pow(r(i) / p, 2.0)), 2.0); + + energy += (r(i)*r(i))*w; + } + return energy; + } + /// @param Residuals + /// @param Parameter + double fair_energy(Eigen::VectorXd& r, double p) { + double energy = 0; + for (int i = 0; i > sortedDist(r.rows()); + for (int i = 0; i(i, r(i)); + } + std::sort(sortedDist.begin(), sortedDist.end(), sort_pred()); + Eigen::VectorXd t = r; + t.setZero(); + double energy = 0; + int nbV = r.rows()*p; + for (int i = 0; i Vector3; + typedef Eigen::Matrix Vector6; + typedef Eigen::Matrix Matrix3; + typedef Eigen::Matrix Matrix4; + typedef Eigen::Matrix VectorX; + typedef Eigen::Matrix Matrix6X; + + ///aaicp + /////////////////////////////////////////////////////////////////////////////////////////// + Vector6 Matrix42Vector6 (const Matrix4 m) + { + Vector6 v; + Matrix3 s = m.block(0,0,3,3); + v.head(3) = s.eulerAngles(0, 1, 2); + v.tail(3) = m.col(3).head(3); + return v; + } + + /////////////////////////////////////////////////////////////////////////////////////////// + Matrix4 Vector62Matrix4 (const Vector6 v) + { + Matrix3 s (Eigen::AngleAxis(v(0), Vector3::UnitX()) + * Eigen::AngleAxis(v(1), Vector3::UnitY()) + * Eigen::AngleAxis(v(2), Vector3::UnitZ())); + Matrix4 m = Matrix4::Zero(); + m.block(0,0,3,3) = s; + m(3,3) = 1; + m.col(3).head(3) = v.tail(3); + return m; + } + + /////////////////////////////////////////////////////////////////////////////////////////// + int alphas_cond (VectorX alphas) + { + double alpha_limit_min_ = -10; + double alpha_limit_max_ = 10; + return alpha_limit_min_ < alphas.minCoeff() && alphas.maxCoeff() < alpha_limit_max_ && alphas(alphas.size()-1) > 0; + } + + /////////////////////////////////////////////////////////////////////////////////////////// + VectorX get_alphas_lstsq (const Matrix6X f) + { + Matrix6X A = f.leftCols(f.cols()-1); + A *= -1; + A += f.rightCols(1) * VectorX::Constant(f.cols()-1, 1).transpose(); + VectorX sol = A.colPivHouseholderQr().solve(f.rightCols(1)); + sol.conservativeResize(sol.size()+1); + sol[sol.size()-1] = 0; + sol[sol.size()-1] = 1-sol.sum(); + return sol; + } + + /////////////////////////////////////////////////////////////////////////////////////////// + VectorX get_next_u (const Matrix6X u, const Matrix6X g, const Matrix6X f, std::vector & save_alphas) + { + int i = 1; + double beta_ = 1.0; + save_alphas.clear(); + Vector6 sol = ((1-beta_)*u.col(u.cols()-1) + beta_*g.col(g.cols()-1)); + VectorX sol_alphas(1); + sol_alphas << 1; + + i = 2; + for (; i <= f.cols(); i++) + { + VectorX alphas = get_alphas_lstsq(f.rightCols(i)); + if (!alphas_cond(alphas)) + { + break; + } + sol = (1-beta_)*u.rightCols(i)*alphas + beta_*g.rightCols(i)*alphas; + sol_alphas = alphas; + } + for(int i= 0; i + void point_to_point_aaicp(Eigen::MatrixBase& X,Eigen::MatrixBase& Y, Eigen::MatrixBase& source_mean, + Eigen::MatrixBase& target_mean, + ICP::Parameters& par) { + /// Build kd-tree + nanoflann::KDTreeAdaptor, 3, nanoflann::metric_L2_Simple> kdtree(Y); + /// Buffers + Eigen::Matrix3Xd Q = Eigen::Matrix3Xd::Zero(3, X.cols()); + Eigen::VectorXd W = Eigen::VectorXd::Zero(X.cols()); + Eigen::Matrix3Xd ori_X = X; + + double prev_energy = std::numeric_limits::max(), energy = std::numeric_limits::max(); + Eigen::Affine3d T; + if(par.use_init) + { + T.linear() = par.init_trans.block(0,0,3,3); + T.translation() = par.init_trans.block(0,3,3,1); + } + else + T = Eigen::Affine3d::Identity(); + Eigen::Matrix3Xd X_gt = X; + ///stop criterion paras + MatrixXX To1 =T.matrix(); + MatrixXX To2 = T.matrix(); + + ///AA paras + Matrix6X u(6,0), g(6,0), f(6,0); + Vector6 u_next, u_k; + Matrix4 transformation = Matrix4::Identity(); + Matrix4 final_transformation = Matrix4::Identity(); + + ///output para + std::vector times, energys, gt_mses; + double gt_mse; + double begin_time, end_time, run_time; + begin_time = omp_get_wtime(); + + ///output coeffs + std::vector> coeffs; + coeffs.clear(); + std::vector alphas; + + X = T * X; + ///groud truth target point cloud + if(par.has_groundtruth) + { + Eigen::Vector3d temp_trans = par.gt_trans.block(0, 3, 3, 1); + X_gt = ori_X; + X_gt.colwise() += source_mean; + X_gt = par.gt_trans.block(0, 0, 3, 3) * X_gt; + X_gt.colwise() += temp_trans - target_mean; + } + + ///begin ICP + int icp = 0; + for (; icp par.error_overflow_threshold_) { + u_next = u_k = g.rightCols(1); + prev_energy = std::numeric_limits::max(); + u = u.rightCols(2); + g = g.rightCols(1); + f = f.rightCols(1); + } + else + { + prev_energy = energy; + + g.conservativeResize(g.rows(),g.cols()+1); + g.col(g.cols()-1) = g_k; + + Vector6 f_k = g_k - u_k; + f.conservativeResize(f.rows(),f.cols()+1); + f.col(f.cols()-1) = f_k; + + u_next = get_next_u(u, g, f, alphas); + u.conservativeResize(u.rows(),u.cols()+1); + u.col(u.cols()-1) = u_next; + + u_k = u_next; + accept_aa = true; + } + } + ///init + else + { + // Calculate energy + W = (X - Q).colwise().norm(); + prev_energy = get_energy(par.f, W, par.p); + Vector6 u0 = Matrix42Vector6(Matrix4::Identity()); + u.conservativeResize(u.rows(),u.cols()+1); + u.col(0)=u0; + + Vector6 u1 = Matrix42Vector6(transformation * final_transformation); + g.conservativeResize(g.rows(),g.cols()+1); + g.col(0)=u1; + + u.conservativeResize(u.rows(),u.cols()+1); + + u.col(1)=u1; + + f.conservativeResize(f.rows(),f.cols()+1); + f.col(0)=u1 - u0; + + u_next = u1; + u_k = u1; + + energy = prev_energy; + } + + transformation = Vector62Matrix4(u_next)*(final_transformation.inverse()); + final_transformation = Vector62Matrix4(u_next); + X = final_transformation.block(0,0,3,3) * ori_X; + Vector3 trans = final_transformation.block(0,3,3,1); + X.colwise() += trans; + + energys.push_back(energy); + + if (par.print_energy) + std::cout << "icp iter = " << icp << ", Energy = " << energy << ", gt_mse = " << gt_mse<< std::endl; + + /// Stopping criteria + double stop2 = (final_transformation - To2).norm(); + To2 = final_transformation; + if (stop2 < par.stop && icp) break; + } + + W = (X - Q).colwise().norm(); + double last_energy = get_energy(par.f, W, par.p); + gt_mse = pow((X - X_gt).norm(),2) / X.cols(); + + final_transformation.block(0,3,3,1) += -final_transformation.block(0, 0, 3, 3)*source_mean + target_mean; + X.colwise() += target_mean; + + ///save convergence result + par.convergence_energy = last_energy; + par.convergence_gt_mse = gt_mse; + par.convergence_iter = icp; + par.res_trans = final_transformation; + + ///output + if (par.print_output) + { + std::ofstream out_res(par.out_path); + if (!out_res.is_open()) + { + std::cout << "Can't open out file " << par.out_path << std::endl; + } + ///output time and energy + out_res.precision(16); + for (int i = 0; i + +#ifdef USE_FLOAT_SCALAR +typedef float Scalar +#else +typedef double Scalar; +#endif + +#ifdef EIGEN_DONT_ALIGN +#define EIGEN_ALIGNMENT Eigen::DontAlign +#else +#define EIGEN_ALIGNMENT Eigen::AutoAlign +#endif + + +template < int Rows, int Cols, int Options = (Eigen::ColMajor | EIGEN_ALIGNMENT) > +using MatrixT = Eigen::Matrix; ///< A typedef of the dense matrix of Eigen. +typedef MatrixT<2, 1> Vector2; ///< A 2d column vector. +typedef MatrixT<2, 2> Matrix22; ///< A 2 by 2 matrix. +typedef MatrixT<2, 3> Matrix23; ///< A 2 by 3 matrix. +typedef MatrixT<3, 1> Vector3; ///< A 3d column vector. +typedef MatrixT<3, 2> Matrix32; ///< A 3 by 2 matrix. +typedef MatrixT<3, 3> Matrix33; ///< A 3 by 3 matrix. +typedef MatrixT<3, 4> Matrix34; ///< A 3 by 4 matrix. +typedef MatrixT<4, 1> Vector4; ///< A 4d column vector. +typedef MatrixT<4, 4> Matrix44; ///< A 4 by 4 matrix. +typedef MatrixT<4, Eigen::Dynamic> Matrix4X; ///< A 4 by n matrix. +typedef MatrixT<3, Eigen::Dynamic> Matrix3X; ///< A 3 by n matrix. +typedef MatrixT MatrixX3; ///< A n by 3 matrix. +typedef MatrixT<2, Eigen::Dynamic> Matrix2X; ///< A 2 by n matrix. +typedef MatrixT MatrixX2; ///< A n by 2 matrix. +typedef MatrixT VectorX; ///< A nd column vector. +typedef MatrixT MatrixXX; ///< A n by m matrix. +typedef Eigen::Matrix EigenMatrix12; + +// eigen quaternions +typedef Eigen::AngleAxis EigenAngleAxis; +typedef Eigen::Quaternion EigenQuaternion; + +// Conversion between a 3d vector type to Eigen::Vector3d +template +inline Vector3 to_eigen_vec3(const Vec_T &vec) +{ + return Vector3(vec[0], vec[1], vec[2]); +} + + +template +inline Vec_T from_eigen_vec3(const Vector3 &vec) +{ + Vec_T v; + v[0] = vec(0); + v[1] = vec(1); + v[2] = vec(2); + + return v; +} + + +class Matrix3333 // 3x3 matrix: each element is a 3x3 matrix +{ +public: + Matrix3333(); + Matrix3333(const Matrix3333& other); + ~Matrix3333() {} + + void SetZero(); // [0 0 0; 0 0 0; 0 0 0]; 0 = 3x3 zeros + void SetIdentity(); //[I 0 0; 0 I 0; 0 0 I]; 0 = 3x3 zeros, I = 3x3 identity + + // operators + Matrix33& operator() (int row, int col); + Matrix3333 operator+ (const Matrix3333& plus); + Matrix3333 operator- (const Matrix3333& minus); + Matrix3333 operator* (const Matrix33& multi); + friend Matrix3333 operator* (const Matrix33& multi1, Matrix3333& multi2); + Matrix3333 operator* (Scalar multi); + friend Matrix3333 operator* (Scalar multi1, Matrix3333& multi2); + Matrix3333 transpose(); + Matrix33 Contract(const Matrix33& multi); // this operator is commutative + Matrix3333 Contract(Matrix3333& multi); + +//protected: + + Matrix33 mat[3][3]; +}; + +class Matrix2222 // 2x2 matrix: each element is a 2x2 matrix +{ +public: + Matrix2222(); + Matrix2222(const Matrix2222& other); + ~Matrix2222() {} + + void SetZero(); // [0 0; 0 0]; 0 = 2x2 zeros + void SetIdentity(); //[I 0; 0 I;]; 0 = 2x2 zeros, I = 2x2 identity + + // operators and basic functions + Matrix22& operator() (int row, int col); + Matrix2222 operator+ (const Matrix2222& plus); + Matrix2222 operator- (const Matrix2222& minus); + Matrix2222 operator* (const Matrix22& multi); + friend Matrix2222 operator* (const Matrix22& multi1, Matrix2222& multi2); + Matrix2222 operator* (Scalar multi); + friend Matrix2222 operator* (Scalar multi1, Matrix2222& multi2); + Matrix2222 transpose(); + Matrix22 Contract(const Matrix22& multi); // this operator is commutative + Matrix2222 Contract(Matrix2222& multi); + +protected: + + Matrix22 mat[2][2]; +}; + +// dst = src1 \kron src2 +void directProduct(Matrix3333& dst, const Matrix33& src1, const Matrix33& src2); +void directProduct(Matrix2222& dst, const Matrix22& src1, const Matrix22& src2); +#endif // TYPES_H +/////////////////////////////////////////////////////////////////////////////// diff --git a/build/CMakeCache.txt b/build/CMakeCache.txt new file mode 100644 index 0000000000000000000000000000000000000000..a8ea9ef5c51580672eb8545682e0be5d202a2a97 --- /dev/null +++ b/build/CMakeCache.txt @@ -0,0 +1,422 @@ +# This is the CMakeCache file. +# For build in directory: /home/cam/Desktop/ICP/Fast-Robust-ICP/build +# It was generated by CMake: /usr/local/bin/cmake +# You can edit this file to change values found and used by cmake. +# If you do not want to change any of the values, simply exit the editor. +# If you do want to change a value, simply edit, save, and exit the editor. +# The syntax for the file is as follows: +# KEY:TYPE=VALUE +# KEY is the name of a variable in the cache. +# TYPE is a hint to GUIs for the type of VALUE, DO NOT EDIT TYPE!. +# VALUE is the current value for the KEY. + +######################## +# EXTERNAL cache entries +######################## + +//Path to a program. +CMAKE_ADDR2LINE:FILEPATH=/usr/bin/addr2line + +//Path to a program. +CMAKE_AR:FILEPATH=/usr/bin/ar + +//Choose the type of build, options are: None Debug Release RelWithDebInfo +// MinSizeRel ... +CMAKE_BUILD_TYPE:STRING=Release + +//Enable/Disable color output during build. +CMAKE_COLOR_MAKEFILE:BOOL=ON + +//CXX compiler +CMAKE_CXX_COMPILER:FILEPATH=/usr/bin/c++ + +//A wrapper around 'ar' adding the appropriate '--plugin' option +// for the GCC compiler +CMAKE_CXX_COMPILER_AR:FILEPATH=/usr/bin/gcc-ar-11 + +//A wrapper around 'ranlib' adding the appropriate '--plugin' option +// for the GCC compiler +CMAKE_CXX_COMPILER_RANLIB:FILEPATH=/usr/bin/gcc-ranlib-11 + +//Flags used by the CXX compiler during all build types. +CMAKE_CXX_FLAGS:STRING= + +//Flags used by the CXX compiler during DEBUG builds. +CMAKE_CXX_FLAGS_DEBUG:STRING=-g + +//Flags used by the CXX compiler during MINSIZEREL builds. +CMAKE_CXX_FLAGS_MINSIZEREL:STRING=-Os -DNDEBUG + +//Flags used by the CXX compiler during RELEASE builds. +CMAKE_CXX_FLAGS_RELEASE:STRING=-O3 -DNDEBUG + +//Flags used by the CXX compiler during RELWITHDEBINFO builds. +CMAKE_CXX_FLAGS_RELWITHDEBINFO:STRING=-O2 -g -DNDEBUG + +//C compiler +CMAKE_C_COMPILER:FILEPATH=/usr/bin/cc + +//A wrapper around 'ar' adding the appropriate '--plugin' option +// for the GCC compiler +CMAKE_C_COMPILER_AR:FILEPATH=/usr/bin/gcc-ar-11 + +//A wrapper around 'ranlib' adding the appropriate '--plugin' option +// for the GCC compiler +CMAKE_C_COMPILER_RANLIB:FILEPATH=/usr/bin/gcc-ranlib-11 + +//Flags used by the C compiler during all build types. +CMAKE_C_FLAGS:STRING= + +//Flags used by the C compiler during DEBUG builds. +CMAKE_C_FLAGS_DEBUG:STRING=-g + +//Flags used by the C compiler during MINSIZEREL builds. +CMAKE_C_FLAGS_MINSIZEREL:STRING=-Os -DNDEBUG + +//Flags used by the C compiler during RELEASE builds. +CMAKE_C_FLAGS_RELEASE:STRING=-O3 -DNDEBUG + +//Flags used by the C compiler during RELWITHDEBINFO builds. +CMAKE_C_FLAGS_RELWITHDEBINFO:STRING=-O2 -g -DNDEBUG + +//Path to a program. +CMAKE_DLLTOOL:FILEPATH=CMAKE_DLLTOOL-NOTFOUND + +//Flags used by the linker during all build types. +CMAKE_EXE_LINKER_FLAGS:STRING= + +//Flags used by the linker during DEBUG builds. +CMAKE_EXE_LINKER_FLAGS_DEBUG:STRING= + +//Flags used by the linker during MINSIZEREL builds. +CMAKE_EXE_LINKER_FLAGS_MINSIZEREL:STRING= + +//Flags used by the linker during RELEASE builds. +CMAKE_EXE_LINKER_FLAGS_RELEASE:STRING= + +//Flags used by the linker during RELWITHDEBINFO builds. +CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO:STRING= + +//Enable/Disable output of compile commands during generation. +CMAKE_EXPORT_COMPILE_COMMANDS:BOOL= + +//Value Computed by CMake. +CMAKE_FIND_PACKAGE_REDIRECTS_DIR:STATIC=/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/pkgRedirects + +//Install path prefix, prepended onto install directories. +CMAKE_INSTALL_PREFIX:PATH=/usr/local + +//Path to a program. +CMAKE_LINKER:FILEPATH=/usr/bin/ld + +//Path to a program. +CMAKE_MAKE_PROGRAM:FILEPATH=/usr/bin/gmake + +//Flags used by the linker during the creation of modules during +// all build types. +CMAKE_MODULE_LINKER_FLAGS:STRING= + +//Flags used by the linker during the creation of modules during +// DEBUG builds. +CMAKE_MODULE_LINKER_FLAGS_DEBUG:STRING= + +//Flags used by the linker during the creation of modules during +// MINSIZEREL builds. +CMAKE_MODULE_LINKER_FLAGS_MINSIZEREL:STRING= + +//Flags used by the linker during the creation of modules during +// RELEASE builds. +CMAKE_MODULE_LINKER_FLAGS_RELEASE:STRING= + +//Flags used by the linker during the creation of modules during +// RELWITHDEBINFO builds. +CMAKE_MODULE_LINKER_FLAGS_RELWITHDEBINFO:STRING= + +//Path to a program. +CMAKE_NM:FILEPATH=/usr/bin/nm + +//Path to a program. +CMAKE_OBJCOPY:FILEPATH=/usr/bin/objcopy + +//Path to a program. +CMAKE_OBJDUMP:FILEPATH=/usr/bin/objdump + +//Value Computed by CMake +CMAKE_PROJECT_DESCRIPTION:STATIC= + +//Value Computed by CMake +CMAKE_PROJECT_HOMEPAGE_URL:STATIC= + +//Value Computed by CMake +CMAKE_PROJECT_NAME:STATIC=FRICP + +//Path to a program. +CMAKE_RANLIB:FILEPATH=/usr/bin/ranlib + +//Path to a program. +CMAKE_READELF:FILEPATH=/usr/bin/readelf + +//Flags used by the linker during the creation of shared libraries +// during all build types. +CMAKE_SHARED_LINKER_FLAGS:STRING= + +//Flags used by the linker during the creation of shared libraries +// during DEBUG builds. +CMAKE_SHARED_LINKER_FLAGS_DEBUG:STRING= + +//Flags used by the linker during the creation of shared libraries +// during MINSIZEREL builds. +CMAKE_SHARED_LINKER_FLAGS_MINSIZEREL:STRING= + +//Flags used by the linker during the creation of shared libraries +// during RELEASE builds. +CMAKE_SHARED_LINKER_FLAGS_RELEASE:STRING= + +//Flags used by the linker during the creation of shared libraries +// during RELWITHDEBINFO builds. +CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO:STRING= + +//If set, runtime paths are not added when installing shared libraries, +// but are added when building. +CMAKE_SKIP_INSTALL_RPATH:BOOL=NO + +//If set, runtime paths are not added when using shared libraries. +CMAKE_SKIP_RPATH:BOOL=NO + +//Flags used by the linker during the creation of static libraries +// during all build types. +CMAKE_STATIC_LINKER_FLAGS:STRING= + +//Flags used by the linker during the creation of static libraries +// during DEBUG builds. +CMAKE_STATIC_LINKER_FLAGS_DEBUG:STRING= + +//Flags used by the linker during the creation of static libraries +// during MINSIZEREL builds. +CMAKE_STATIC_LINKER_FLAGS_MINSIZEREL:STRING= + +//Flags used by the linker during the creation of static libraries +// during RELEASE builds. +CMAKE_STATIC_LINKER_FLAGS_RELEASE:STRING= + +//Flags used by the linker during the creation of static libraries +// during RELWITHDEBINFO builds. +CMAKE_STATIC_LINKER_FLAGS_RELWITHDEBINFO:STRING= + +//Path to a program. +CMAKE_STRIP:FILEPATH=/usr/bin/strip + +//If this value is on, makefiles will be generated without the +// .SILENT directive, and all commands will be echoed to the console +// during the make. This is useful for debugging only. With Visual +// Studio IDE projects all commands are done without /nologo. +CMAKE_VERBOSE_MAKEFILE:BOOL=FALSE + +//Path to a file. +EIGEN3_INCLUDE_DIRS:PATH=/usr/include/eigen3 + +//Value Computed by CMake +FRICP_BINARY_DIR:STATIC=/home/cam/Desktop/ICP/Fast-Robust-ICP/build + +//Value Computed by CMake +FRICP_IS_TOP_LEVEL:STATIC=ON + +//Value Computed by CMake +FRICP_SOURCE_DIR:STATIC=/home/cam/Desktop/ICP/Fast-Robust-ICP + +//Path to a file. +NANOFLANN_INCLUDE_DIR:PATH=/home/cam/Desktop/ICP/Fast-Robust-ICP/include + +//CXX compiler flags for OpenMP parallelization +OpenMP_CXX_FLAGS:STRING=-fopenmp + +//CXX compiler libraries for OpenMP parallelization +OpenMP_CXX_LIB_NAMES:STRING=gomp;pthread + +//C compiler flags for OpenMP parallelization +OpenMP_C_FLAGS:STRING=-fopenmp + +//C compiler libraries for OpenMP parallelization +OpenMP_C_LIB_NAMES:STRING=gomp;pthread + +//Path to the gomp library for OpenMP +OpenMP_gomp_LIBRARY:FILEPATH=/usr/lib/gcc/x86_64-linux-gnu/11/libgomp.so + +//Path to the pthread library for OpenMP +OpenMP_pthread_LIBRARY:FILEPATH=/usr/lib/x86_64-linux-gnu/libpthread.a + + +######################## +# INTERNAL cache entries +######################## + +//ADVANCED property for variable: CMAKE_ADDR2LINE +CMAKE_ADDR2LINE-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_AR +CMAKE_AR-ADVANCED:INTERNAL=1 +//This is the directory where this CMakeCache.txt was created +CMAKE_CACHEFILE_DIR:INTERNAL=/home/cam/Desktop/ICP/Fast-Robust-ICP/build +//Major version of cmake used to create the current loaded cache +CMAKE_CACHE_MAJOR_VERSION:INTERNAL=3 +//Minor version of cmake used to create the current loaded cache +CMAKE_CACHE_MINOR_VERSION:INTERNAL=26 +//Patch version of cmake used to create the current loaded cache +CMAKE_CACHE_PATCH_VERSION:INTERNAL=0 +//ADVANCED property for variable: CMAKE_COLOR_MAKEFILE +CMAKE_COLOR_MAKEFILE-ADVANCED:INTERNAL=1 +//Path to CMake executable. +CMAKE_COMMAND:INTERNAL=/usr/local/bin/cmake +//Path to cpack program executable. +CMAKE_CPACK_COMMAND:INTERNAL=/usr/local/bin/cpack +//Path to ctest program executable. +CMAKE_CTEST_COMMAND:INTERNAL=/usr/local/bin/ctest +//ADVANCED property for variable: CMAKE_CXX_COMPILER +CMAKE_CXX_COMPILER-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_CXX_COMPILER_AR +CMAKE_CXX_COMPILER_AR-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_CXX_COMPILER_RANLIB +CMAKE_CXX_COMPILER_RANLIB-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_CXX_FLAGS +CMAKE_CXX_FLAGS-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_CXX_FLAGS_DEBUG +CMAKE_CXX_FLAGS_DEBUG-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_CXX_FLAGS_MINSIZEREL +CMAKE_CXX_FLAGS_MINSIZEREL-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_CXX_FLAGS_RELEASE +CMAKE_CXX_FLAGS_RELEASE-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_CXX_FLAGS_RELWITHDEBINFO +CMAKE_CXX_FLAGS_RELWITHDEBINFO-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_C_COMPILER +CMAKE_C_COMPILER-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_C_COMPILER_AR +CMAKE_C_COMPILER_AR-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_C_COMPILER_RANLIB +CMAKE_C_COMPILER_RANLIB-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_C_FLAGS +CMAKE_C_FLAGS-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_C_FLAGS_DEBUG +CMAKE_C_FLAGS_DEBUG-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_C_FLAGS_MINSIZEREL +CMAKE_C_FLAGS_MINSIZEREL-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_C_FLAGS_RELEASE +CMAKE_C_FLAGS_RELEASE-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_C_FLAGS_RELWITHDEBINFO +CMAKE_C_FLAGS_RELWITHDEBINFO-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_DLLTOOL +CMAKE_DLLTOOL-ADVANCED:INTERNAL=1 +//Executable file format +CMAKE_EXECUTABLE_FORMAT:INTERNAL=ELF +//ADVANCED property for variable: CMAKE_EXE_LINKER_FLAGS +CMAKE_EXE_LINKER_FLAGS-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_EXE_LINKER_FLAGS_DEBUG +CMAKE_EXE_LINKER_FLAGS_DEBUG-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_EXE_LINKER_FLAGS_MINSIZEREL +CMAKE_EXE_LINKER_FLAGS_MINSIZEREL-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_EXE_LINKER_FLAGS_RELEASE +CMAKE_EXE_LINKER_FLAGS_RELEASE-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO +CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_EXPORT_COMPILE_COMMANDS +CMAKE_EXPORT_COMPILE_COMMANDS-ADVANCED:INTERNAL=1 +//Name of external makefile project generator. +CMAKE_EXTRA_GENERATOR:INTERNAL= +//Name of generator. +CMAKE_GENERATOR:INTERNAL=Unix Makefiles +//Generator instance identifier. +CMAKE_GENERATOR_INSTANCE:INTERNAL= +//Name of generator platform. +CMAKE_GENERATOR_PLATFORM:INTERNAL= +//Name of generator toolset. +CMAKE_GENERATOR_TOOLSET:INTERNAL= +//Source directory with the top level CMakeLists.txt file for this +// project +CMAKE_HOME_DIRECTORY:INTERNAL=/home/cam/Desktop/ICP/Fast-Robust-ICP +//Install .so files without execute permission. +CMAKE_INSTALL_SO_NO_EXE:INTERNAL=1 +//ADVANCED property for variable: CMAKE_LINKER +CMAKE_LINKER-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_MAKE_PROGRAM +CMAKE_MAKE_PROGRAM-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_MODULE_LINKER_FLAGS +CMAKE_MODULE_LINKER_FLAGS-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_MODULE_LINKER_FLAGS_DEBUG +CMAKE_MODULE_LINKER_FLAGS_DEBUG-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_MODULE_LINKER_FLAGS_MINSIZEREL +CMAKE_MODULE_LINKER_FLAGS_MINSIZEREL-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_MODULE_LINKER_FLAGS_RELEASE +CMAKE_MODULE_LINKER_FLAGS_RELEASE-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_MODULE_LINKER_FLAGS_RELWITHDEBINFO +CMAKE_MODULE_LINKER_FLAGS_RELWITHDEBINFO-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_NM +CMAKE_NM-ADVANCED:INTERNAL=1 +//number of local generators +CMAKE_NUMBER_OF_MAKEFILES:INTERNAL=1 +//ADVANCED property for variable: CMAKE_OBJCOPY +CMAKE_OBJCOPY-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_OBJDUMP +CMAKE_OBJDUMP-ADVANCED:INTERNAL=1 +//Platform information initialized +CMAKE_PLATFORM_INFO_INITIALIZED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_RANLIB +CMAKE_RANLIB-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_READELF +CMAKE_READELF-ADVANCED:INTERNAL=1 +//Path to CMake installation. +CMAKE_ROOT:INTERNAL=/usr/local/share/cmake-3.26 +//ADVANCED property for variable: CMAKE_SHARED_LINKER_FLAGS +CMAKE_SHARED_LINKER_FLAGS-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_SHARED_LINKER_FLAGS_DEBUG +CMAKE_SHARED_LINKER_FLAGS_DEBUG-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_SHARED_LINKER_FLAGS_MINSIZEREL +CMAKE_SHARED_LINKER_FLAGS_MINSIZEREL-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_SHARED_LINKER_FLAGS_RELEASE +CMAKE_SHARED_LINKER_FLAGS_RELEASE-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO +CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_SKIP_INSTALL_RPATH +CMAKE_SKIP_INSTALL_RPATH-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_SKIP_RPATH +CMAKE_SKIP_RPATH-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_STATIC_LINKER_FLAGS +CMAKE_STATIC_LINKER_FLAGS-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_STATIC_LINKER_FLAGS_DEBUG +CMAKE_STATIC_LINKER_FLAGS_DEBUG-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_STATIC_LINKER_FLAGS_MINSIZEREL +CMAKE_STATIC_LINKER_FLAGS_MINSIZEREL-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_STATIC_LINKER_FLAGS_RELEASE +CMAKE_STATIC_LINKER_FLAGS_RELEASE-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_STATIC_LINKER_FLAGS_RELWITHDEBINFO +CMAKE_STATIC_LINKER_FLAGS_RELWITHDEBINFO-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: CMAKE_STRIP +CMAKE_STRIP-ADVANCED:INTERNAL=1 +//uname command +CMAKE_UNAME:INTERNAL=/usr/bin/uname +//ADVANCED property for variable: CMAKE_VERBOSE_MAKEFILE +CMAKE_VERBOSE_MAKEFILE-ADVANCED:INTERNAL=1 +//Result of TRY_COMPILE +OpenMP_COMPILE_RESULT_CXX_fopenmp:INTERNAL=TRUE +//Result of TRY_COMPILE +OpenMP_COMPILE_RESULT_C_fopenmp:INTERNAL=TRUE +//ADVANCED property for variable: OpenMP_CXX_FLAGS +OpenMP_CXX_FLAGS-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: OpenMP_CXX_LIB_NAMES +OpenMP_CXX_LIB_NAMES-ADVANCED:INTERNAL=1 +//CXX compiler's OpenMP specification date +OpenMP_CXX_SPEC_DATE:INTERNAL=201511 +//ADVANCED property for variable: OpenMP_C_FLAGS +OpenMP_C_FLAGS-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: OpenMP_C_LIB_NAMES +OpenMP_C_LIB_NAMES-ADVANCED:INTERNAL=1 +//C compiler's OpenMP specification date +OpenMP_C_SPEC_DATE:INTERNAL=201511 +//Result of TRY_COMPILE +OpenMP_SPECTEST_CXX_:INTERNAL=TRUE +//Result of TRY_COMPILE +OpenMP_SPECTEST_C_:INTERNAL=TRUE +//ADVANCED property for variable: OpenMP_gomp_LIBRARY +OpenMP_gomp_LIBRARY-ADVANCED:INTERNAL=1 +//ADVANCED property for variable: OpenMP_pthread_LIBRARY +OpenMP_pthread_LIBRARY-ADVANCED:INTERNAL=1 +//linker supports push/pop state +_CMAKE_LINKER_PUSHPOP_STATE_SUPPORTED:INTERNAL=TRUE + diff --git a/build/CMakeFiles/3.26.0/CMakeCCompiler.cmake b/build/CMakeFiles/3.26.0/CMakeCCompiler.cmake new file mode 100644 index 0000000000000000000000000000000000000000..6ab5144672c185391ea790d979668332ed45a6ee --- /dev/null +++ b/build/CMakeFiles/3.26.0/CMakeCCompiler.cmake @@ -0,0 +1,72 @@ +set(CMAKE_C_COMPILER "/usr/bin/cc") +set(CMAKE_C_COMPILER_ARG1 "") +set(CMAKE_C_COMPILER_ID "GNU") +set(CMAKE_C_COMPILER_VERSION "11.4.0") +set(CMAKE_C_COMPILER_VERSION_INTERNAL "") +set(CMAKE_C_COMPILER_WRAPPER "") +set(CMAKE_C_STANDARD_COMPUTED_DEFAULT "17") +set(CMAKE_C_EXTENSIONS_COMPUTED_DEFAULT "ON") +set(CMAKE_C_COMPILE_FEATURES "c_std_90;c_function_prototypes;c_std_99;c_restrict;c_variadic_macros;c_std_11;c_static_assert;c_std_17;c_std_23") +set(CMAKE_C90_COMPILE_FEATURES "c_std_90;c_function_prototypes") +set(CMAKE_C99_COMPILE_FEATURES "c_std_99;c_restrict;c_variadic_macros") +set(CMAKE_C11_COMPILE_FEATURES "c_std_11;c_static_assert") +set(CMAKE_C17_COMPILE_FEATURES "c_std_17") +set(CMAKE_C23_COMPILE_FEATURES "c_std_23") + +set(CMAKE_C_PLATFORM_ID "Linux") +set(CMAKE_C_SIMULATE_ID "") +set(CMAKE_C_COMPILER_FRONTEND_VARIANT "GNU") +set(CMAKE_C_SIMULATE_VERSION "") + + + + +set(CMAKE_AR "/usr/bin/ar") +set(CMAKE_C_COMPILER_AR "/usr/bin/gcc-ar-11") +set(CMAKE_RANLIB "/usr/bin/ranlib") +set(CMAKE_C_COMPILER_RANLIB "/usr/bin/gcc-ranlib-11") +set(CMAKE_LINKER "/usr/bin/ld") +set(CMAKE_MT "") +set(CMAKE_COMPILER_IS_GNUCC 1) +set(CMAKE_C_COMPILER_LOADED 1) +set(CMAKE_C_COMPILER_WORKS TRUE) +set(CMAKE_C_ABI_COMPILED TRUE) + +set(CMAKE_C_COMPILER_ENV_VAR "CC") + +set(CMAKE_C_COMPILER_ID_RUN 1) +set(CMAKE_C_SOURCE_FILE_EXTENSIONS c;m) +set(CMAKE_C_IGNORE_EXTENSIONS h;H;o;O;obj;OBJ;def;DEF;rc;RC) +set(CMAKE_C_LINKER_PREFERENCE 10) + +# Save compiler ABI information. +set(CMAKE_C_SIZEOF_DATA_PTR "8") +set(CMAKE_C_COMPILER_ABI "ELF") +set(CMAKE_C_BYTE_ORDER "LITTLE_ENDIAN") +set(CMAKE_C_LIBRARY_ARCHITECTURE "x86_64-linux-gnu") + +if(CMAKE_C_SIZEOF_DATA_PTR) + set(CMAKE_SIZEOF_VOID_P "${CMAKE_C_SIZEOF_DATA_PTR}") +endif() + +if(CMAKE_C_COMPILER_ABI) + set(CMAKE_INTERNAL_PLATFORM_ABI "${CMAKE_C_COMPILER_ABI}") +endif() + +if(CMAKE_C_LIBRARY_ARCHITECTURE) + set(CMAKE_LIBRARY_ARCHITECTURE "x86_64-linux-gnu") +endif() + +set(CMAKE_C_CL_SHOWINCLUDES_PREFIX "") +if(CMAKE_C_CL_SHOWINCLUDES_PREFIX) + set(CMAKE_CL_SHOWINCLUDES_PREFIX "${CMAKE_C_CL_SHOWINCLUDES_PREFIX}") +endif() + + + + + +set(CMAKE_C_IMPLICIT_INCLUDE_DIRECTORIES "/usr/lib/gcc/x86_64-linux-gnu/11/include;/usr/local/include;/usr/include/x86_64-linux-gnu;/usr/include") +set(CMAKE_C_IMPLICIT_LINK_LIBRARIES "gcc;gcc_s;c;gcc;gcc_s") +set(CMAKE_C_IMPLICIT_LINK_DIRECTORIES "/usr/lib/gcc/x86_64-linux-gnu/11;/usr/lib/x86_64-linux-gnu;/usr/lib;/lib/x86_64-linux-gnu;/lib") +set(CMAKE_C_IMPLICIT_LINK_FRAMEWORK_DIRECTORIES "") diff --git a/build/CMakeFiles/3.26.0/CMakeCXXCompiler.cmake b/build/CMakeFiles/3.26.0/CMakeCXXCompiler.cmake new file mode 100644 index 0000000000000000000000000000000000000000..c3dc3f0da670e3fdad0c5afe522557f7d9212980 --- /dev/null +++ b/build/CMakeFiles/3.26.0/CMakeCXXCompiler.cmake @@ -0,0 +1,83 @@ +set(CMAKE_CXX_COMPILER "/usr/bin/c++") +set(CMAKE_CXX_COMPILER_ARG1 "") +set(CMAKE_CXX_COMPILER_ID "GNU") +set(CMAKE_CXX_COMPILER_VERSION "11.4.0") +set(CMAKE_CXX_COMPILER_VERSION_INTERNAL "") +set(CMAKE_CXX_COMPILER_WRAPPER "") +set(CMAKE_CXX_STANDARD_COMPUTED_DEFAULT "17") +set(CMAKE_CXX_EXTENSIONS_COMPUTED_DEFAULT "ON") +set(CMAKE_CXX_COMPILE_FEATURES "cxx_std_98;cxx_template_template_parameters;cxx_std_11;cxx_alias_templates;cxx_alignas;cxx_alignof;cxx_attributes;cxx_auto_type;cxx_constexpr;cxx_decltype;cxx_decltype_incomplete_return_types;cxx_default_function_template_args;cxx_defaulted_functions;cxx_defaulted_move_initializers;cxx_delegating_constructors;cxx_deleted_functions;cxx_enum_forward_declarations;cxx_explicit_conversions;cxx_extended_friend_declarations;cxx_extern_templates;cxx_final;cxx_func_identifier;cxx_generalized_initializers;cxx_inheriting_constructors;cxx_inline_namespaces;cxx_lambdas;cxx_local_type_template_args;cxx_long_long_type;cxx_noexcept;cxx_nonstatic_member_init;cxx_nullptr;cxx_override;cxx_range_for;cxx_raw_string_literals;cxx_reference_qualified_functions;cxx_right_angle_brackets;cxx_rvalue_references;cxx_sizeof_member;cxx_static_assert;cxx_strong_enums;cxx_thread_local;cxx_trailing_return_types;cxx_unicode_literals;cxx_uniform_initialization;cxx_unrestricted_unions;cxx_user_literals;cxx_variadic_macros;cxx_variadic_templates;cxx_std_14;cxx_aggregate_default_initializers;cxx_attribute_deprecated;cxx_binary_literals;cxx_contextual_conversions;cxx_decltype_auto;cxx_digit_separators;cxx_generic_lambdas;cxx_lambda_init_captures;cxx_relaxed_constexpr;cxx_return_type_deduction;cxx_variable_templates;cxx_std_17;cxx_std_20;cxx_std_23") +set(CMAKE_CXX98_COMPILE_FEATURES "cxx_std_98;cxx_template_template_parameters") +set(CMAKE_CXX11_COMPILE_FEATURES "cxx_std_11;cxx_alias_templates;cxx_alignas;cxx_alignof;cxx_attributes;cxx_auto_type;cxx_constexpr;cxx_decltype;cxx_decltype_incomplete_return_types;cxx_default_function_template_args;cxx_defaulted_functions;cxx_defaulted_move_initializers;cxx_delegating_constructors;cxx_deleted_functions;cxx_enum_forward_declarations;cxx_explicit_conversions;cxx_extended_friend_declarations;cxx_extern_templates;cxx_final;cxx_func_identifier;cxx_generalized_initializers;cxx_inheriting_constructors;cxx_inline_namespaces;cxx_lambdas;cxx_local_type_template_args;cxx_long_long_type;cxx_noexcept;cxx_nonstatic_member_init;cxx_nullptr;cxx_override;cxx_range_for;cxx_raw_string_literals;cxx_reference_qualified_functions;cxx_right_angle_brackets;cxx_rvalue_references;cxx_sizeof_member;cxx_static_assert;cxx_strong_enums;cxx_thread_local;cxx_trailing_return_types;cxx_unicode_literals;cxx_uniform_initialization;cxx_unrestricted_unions;cxx_user_literals;cxx_variadic_macros;cxx_variadic_templates") +set(CMAKE_CXX14_COMPILE_FEATURES "cxx_std_14;cxx_aggregate_default_initializers;cxx_attribute_deprecated;cxx_binary_literals;cxx_contextual_conversions;cxx_decltype_auto;cxx_digit_separators;cxx_generic_lambdas;cxx_lambda_init_captures;cxx_relaxed_constexpr;cxx_return_type_deduction;cxx_variable_templates") +set(CMAKE_CXX17_COMPILE_FEATURES "cxx_std_17") +set(CMAKE_CXX20_COMPILE_FEATURES "cxx_std_20") +set(CMAKE_CXX23_COMPILE_FEATURES "cxx_std_23") + +set(CMAKE_CXX_PLATFORM_ID "Linux") +set(CMAKE_CXX_SIMULATE_ID "") +set(CMAKE_CXX_COMPILER_FRONTEND_VARIANT "GNU") +set(CMAKE_CXX_SIMULATE_VERSION "") + + + + +set(CMAKE_AR "/usr/bin/ar") +set(CMAKE_CXX_COMPILER_AR "/usr/bin/gcc-ar-11") +set(CMAKE_RANLIB "/usr/bin/ranlib") +set(CMAKE_CXX_COMPILER_RANLIB "/usr/bin/gcc-ranlib-11") +set(CMAKE_LINKER "/usr/bin/ld") +set(CMAKE_MT "") +set(CMAKE_COMPILER_IS_GNUCXX 1) +set(CMAKE_CXX_COMPILER_LOADED 1) +set(CMAKE_CXX_COMPILER_WORKS TRUE) +set(CMAKE_CXX_ABI_COMPILED TRUE) + +set(CMAKE_CXX_COMPILER_ENV_VAR "CXX") + +set(CMAKE_CXX_COMPILER_ID_RUN 1) +set(CMAKE_CXX_SOURCE_FILE_EXTENSIONS C;M;c++;cc;cpp;cxx;m;mm;mpp;CPP;ixx;cppm) +set(CMAKE_CXX_IGNORE_EXTENSIONS inl;h;hpp;HPP;H;o;O;obj;OBJ;def;DEF;rc;RC) + +foreach (lang C OBJC OBJCXX) + if (CMAKE_${lang}_COMPILER_ID_RUN) + foreach(extension IN LISTS CMAKE_${lang}_SOURCE_FILE_EXTENSIONS) + list(REMOVE_ITEM CMAKE_CXX_SOURCE_FILE_EXTENSIONS ${extension}) + endforeach() + endif() +endforeach() + +set(CMAKE_CXX_LINKER_PREFERENCE 30) +set(CMAKE_CXX_LINKER_PREFERENCE_PROPAGATES 1) + +# Save compiler ABI information. +set(CMAKE_CXX_SIZEOF_DATA_PTR "8") +set(CMAKE_CXX_COMPILER_ABI "ELF") +set(CMAKE_CXX_BYTE_ORDER "LITTLE_ENDIAN") +set(CMAKE_CXX_LIBRARY_ARCHITECTURE "x86_64-linux-gnu") + +if(CMAKE_CXX_SIZEOF_DATA_PTR) + set(CMAKE_SIZEOF_VOID_P "${CMAKE_CXX_SIZEOF_DATA_PTR}") +endif() + +if(CMAKE_CXX_COMPILER_ABI) + set(CMAKE_INTERNAL_PLATFORM_ABI "${CMAKE_CXX_COMPILER_ABI}") +endif() + +if(CMAKE_CXX_LIBRARY_ARCHITECTURE) + set(CMAKE_LIBRARY_ARCHITECTURE "x86_64-linux-gnu") +endif() + +set(CMAKE_CXX_CL_SHOWINCLUDES_PREFIX "") +if(CMAKE_CXX_CL_SHOWINCLUDES_PREFIX) + set(CMAKE_CL_SHOWINCLUDES_PREFIX "${CMAKE_CXX_CL_SHOWINCLUDES_PREFIX}") +endif() + + + + + +set(CMAKE_CXX_IMPLICIT_INCLUDE_DIRECTORIES "/usr/include/c++/11;/usr/include/x86_64-linux-gnu/c++/11;/usr/include/c++/11/backward;/usr/lib/gcc/x86_64-linux-gnu/11/include;/usr/local/include;/usr/include/x86_64-linux-gnu;/usr/include") +set(CMAKE_CXX_IMPLICIT_LINK_LIBRARIES "stdc++;m;gcc_s;gcc;c;gcc_s;gcc") +set(CMAKE_CXX_IMPLICIT_LINK_DIRECTORIES "/usr/lib/gcc/x86_64-linux-gnu/11;/usr/lib/x86_64-linux-gnu;/usr/lib;/lib/x86_64-linux-gnu;/lib") +set(CMAKE_CXX_IMPLICIT_LINK_FRAMEWORK_DIRECTORIES "") diff --git a/build/CMakeFiles/3.26.0/CMakeSystem.cmake b/build/CMakeFiles/3.26.0/CMakeSystem.cmake new file mode 100644 index 0000000000000000000000000000000000000000..6cb17c68a9400b9ad92f71920d9096c357556f28 --- /dev/null +++ b/build/CMakeFiles/3.26.0/CMakeSystem.cmake @@ -0,0 +1,15 @@ +set(CMAKE_HOST_SYSTEM "Linux-6.8.0-85-generic") +set(CMAKE_HOST_SYSTEM_NAME "Linux") +set(CMAKE_HOST_SYSTEM_VERSION "6.8.0-85-generic") +set(CMAKE_HOST_SYSTEM_PROCESSOR "x86_64") + + + +set(CMAKE_SYSTEM "Linux-6.8.0-85-generic") +set(CMAKE_SYSTEM_NAME "Linux") +set(CMAKE_SYSTEM_VERSION "6.8.0-85-generic") +set(CMAKE_SYSTEM_PROCESSOR "x86_64") + +set(CMAKE_CROSSCOMPILING "FALSE") + +set(CMAKE_SYSTEM_LOADED 1) diff --git a/build/CMakeFiles/3.26.0/CompilerIdC/CMakeCCompilerId.c b/build/CMakeFiles/3.26.0/CompilerIdC/CMakeCCompilerId.c new file mode 100644 index 0000000000000000000000000000000000000000..88155ff20cb6a788920d888b832d81cfa22cdd8d --- /dev/null +++ b/build/CMakeFiles/3.26.0/CompilerIdC/CMakeCCompilerId.c @@ -0,0 +1,866 @@ +#ifdef __cplusplus +# error "A C++ compiler has been selected for C." +#endif + +#if defined(__18CXX) +# define ID_VOID_MAIN +#endif +#if defined(__CLASSIC_C__) +/* cv-qualifiers did not exist in K&R C */ +# define const +# define volatile +#endif + +#if !defined(__has_include) +/* If the compiler does not have __has_include, pretend the answer is + always no. */ +# define __has_include(x) 0 +#endif + + +/* Version number components: V=Version, R=Revision, P=Patch + Version date components: YYYY=Year, MM=Month, DD=Day */ + +#if defined(__INTEL_COMPILER) || defined(__ICC) +# define COMPILER_ID "Intel" +# if defined(_MSC_VER) +# define SIMULATE_ID "MSVC" +# endif +# if defined(__GNUC__) +# define SIMULATE_ID "GNU" +# endif + /* __INTEL_COMPILER = VRP prior to 2021, and then VVVV for 2021 and later, + except that a few beta releases use the old format with V=2021. */ +# if __INTEL_COMPILER < 2021 || __INTEL_COMPILER == 202110 || __INTEL_COMPILER == 202111 +# define COMPILER_VERSION_MAJOR DEC(__INTEL_COMPILER/100) +# define COMPILER_VERSION_MINOR DEC(__INTEL_COMPILER/10 % 10) +# if defined(__INTEL_COMPILER_UPDATE) +# define COMPILER_VERSION_PATCH DEC(__INTEL_COMPILER_UPDATE) +# else +# define COMPILER_VERSION_PATCH DEC(__INTEL_COMPILER % 10) +# endif +# else +# define COMPILER_VERSION_MAJOR DEC(__INTEL_COMPILER) +# define COMPILER_VERSION_MINOR DEC(__INTEL_COMPILER_UPDATE) + /* The third version component from --version is an update index, + but no macro is provided for it. */ +# define COMPILER_VERSION_PATCH DEC(0) +# endif +# if defined(__INTEL_COMPILER_BUILD_DATE) + /* __INTEL_COMPILER_BUILD_DATE = YYYYMMDD */ +# define COMPILER_VERSION_TWEAK DEC(__INTEL_COMPILER_BUILD_DATE) +# endif +# if defined(_MSC_VER) + /* _MSC_VER = VVRR */ +# define SIMULATE_VERSION_MAJOR DEC(_MSC_VER / 100) +# define SIMULATE_VERSION_MINOR DEC(_MSC_VER % 100) +# endif +# if defined(__GNUC__) +# define SIMULATE_VERSION_MAJOR DEC(__GNUC__) +# elif defined(__GNUG__) +# define SIMULATE_VERSION_MAJOR DEC(__GNUG__) +# endif +# if defined(__GNUC_MINOR__) +# define SIMULATE_VERSION_MINOR DEC(__GNUC_MINOR__) +# endif +# if defined(__GNUC_PATCHLEVEL__) +# define SIMULATE_VERSION_PATCH DEC(__GNUC_PATCHLEVEL__) +# endif + +#elif (defined(__clang__) && defined(__INTEL_CLANG_COMPILER)) || defined(__INTEL_LLVM_COMPILER) +# define COMPILER_ID "IntelLLVM" +#if defined(_MSC_VER) +# define SIMULATE_ID "MSVC" +#endif +#if defined(__GNUC__) +# define SIMULATE_ID "GNU" +#endif +/* __INTEL_LLVM_COMPILER = VVVVRP prior to 2021.2.0, VVVVRRPP for 2021.2.0 and + * later. Look for 6 digit vs. 8 digit version number to decide encoding. + * VVVV is no smaller than the current year when a version is released. + */ +#if __INTEL_LLVM_COMPILER < 1000000L +# define COMPILER_VERSION_MAJOR DEC(__INTEL_LLVM_COMPILER/100) +# define COMPILER_VERSION_MINOR DEC(__INTEL_LLVM_COMPILER/10 % 10) +# define COMPILER_VERSION_PATCH DEC(__INTEL_LLVM_COMPILER % 10) +#else +# define COMPILER_VERSION_MAJOR DEC(__INTEL_LLVM_COMPILER/10000) +# define COMPILER_VERSION_MINOR DEC(__INTEL_LLVM_COMPILER/100 % 100) +# define COMPILER_VERSION_PATCH DEC(__INTEL_LLVM_COMPILER % 100) +#endif +#if defined(_MSC_VER) + /* _MSC_VER = VVRR */ +# define SIMULATE_VERSION_MAJOR DEC(_MSC_VER / 100) +# define SIMULATE_VERSION_MINOR DEC(_MSC_VER % 100) +#endif +#if defined(__GNUC__) +# define SIMULATE_VERSION_MAJOR DEC(__GNUC__) +#elif defined(__GNUG__) +# define SIMULATE_VERSION_MAJOR DEC(__GNUG__) +#endif +#if defined(__GNUC_MINOR__) +# define SIMULATE_VERSION_MINOR DEC(__GNUC_MINOR__) +#endif +#if defined(__GNUC_PATCHLEVEL__) +# define SIMULATE_VERSION_PATCH DEC(__GNUC_PATCHLEVEL__) +#endif + +#elif defined(__PATHCC__) +# define COMPILER_ID "PathScale" +# define COMPILER_VERSION_MAJOR DEC(__PATHCC__) +# define COMPILER_VERSION_MINOR DEC(__PATHCC_MINOR__) +# if defined(__PATHCC_PATCHLEVEL__) +# define COMPILER_VERSION_PATCH DEC(__PATHCC_PATCHLEVEL__) +# endif + +#elif defined(__BORLANDC__) && defined(__CODEGEARC_VERSION__) +# define COMPILER_ID "Embarcadero" +# define COMPILER_VERSION_MAJOR HEX(__CODEGEARC_VERSION__>>24 & 0x00FF) +# define COMPILER_VERSION_MINOR HEX(__CODEGEARC_VERSION__>>16 & 0x00FF) +# define COMPILER_VERSION_PATCH DEC(__CODEGEARC_VERSION__ & 0xFFFF) + +#elif defined(__BORLANDC__) +# define COMPILER_ID "Borland" + /* __BORLANDC__ = 0xVRR */ +# define COMPILER_VERSION_MAJOR HEX(__BORLANDC__>>8) +# define COMPILER_VERSION_MINOR HEX(__BORLANDC__ & 0xFF) + +#elif defined(__WATCOMC__) && __WATCOMC__ < 1200 +# define COMPILER_ID "Watcom" + /* __WATCOMC__ = VVRR */ +# define COMPILER_VERSION_MAJOR DEC(__WATCOMC__ / 100) +# define COMPILER_VERSION_MINOR DEC((__WATCOMC__ / 10) % 10) +# if (__WATCOMC__ % 10) > 0 +# define COMPILER_VERSION_PATCH DEC(__WATCOMC__ % 10) +# endif + +#elif defined(__WATCOMC__) +# define COMPILER_ID "OpenWatcom" + /* __WATCOMC__ = VVRP + 1100 */ +# define COMPILER_VERSION_MAJOR DEC((__WATCOMC__ - 1100) / 100) +# define COMPILER_VERSION_MINOR DEC((__WATCOMC__ / 10) % 10) +# if (__WATCOMC__ % 10) > 0 +# define COMPILER_VERSION_PATCH DEC(__WATCOMC__ % 10) +# endif + +#elif defined(__SUNPRO_C) +# define COMPILER_ID "SunPro" +# if __SUNPRO_C >= 0x5100 + /* __SUNPRO_C = 0xVRRP */ +# define COMPILER_VERSION_MAJOR HEX(__SUNPRO_C>>12) +# define COMPILER_VERSION_MINOR HEX(__SUNPRO_C>>4 & 0xFF) +# define COMPILER_VERSION_PATCH HEX(__SUNPRO_C & 0xF) +# else + /* __SUNPRO_CC = 0xVRP */ +# define COMPILER_VERSION_MAJOR HEX(__SUNPRO_C>>8) +# define COMPILER_VERSION_MINOR HEX(__SUNPRO_C>>4 & 0xF) +# define COMPILER_VERSION_PATCH HEX(__SUNPRO_C & 0xF) +# endif + +#elif defined(__HP_cc) +# define COMPILER_ID "HP" + /* __HP_cc = VVRRPP */ +# define COMPILER_VERSION_MAJOR DEC(__HP_cc/10000) +# define COMPILER_VERSION_MINOR DEC(__HP_cc/100 % 100) +# define COMPILER_VERSION_PATCH DEC(__HP_cc % 100) + +#elif defined(__DECC) +# define COMPILER_ID "Compaq" + /* __DECC_VER = VVRRTPPPP */ +# define COMPILER_VERSION_MAJOR DEC(__DECC_VER/10000000) +# define COMPILER_VERSION_MINOR DEC(__DECC_VER/100000 % 100) +# define COMPILER_VERSION_PATCH DEC(__DECC_VER % 10000) + +#elif defined(__IBMC__) && defined(__COMPILER_VER__) +# define COMPILER_ID "zOS" + /* __IBMC__ = VRP */ +# define COMPILER_VERSION_MAJOR DEC(__IBMC__/100) +# define COMPILER_VERSION_MINOR DEC(__IBMC__/10 % 10) +# define COMPILER_VERSION_PATCH DEC(__IBMC__ % 10) + +#elif defined(__open_xl__) && defined(__clang__) +# define COMPILER_ID "IBMClang" +# define COMPILER_VERSION_MAJOR DEC(__open_xl_version__) +# define COMPILER_VERSION_MINOR DEC(__open_xl_release__) +# define COMPILER_VERSION_PATCH DEC(__open_xl_modification__) +# define COMPILER_VERSION_TWEAK DEC(__open_xl_ptf_fix_level__) + + +#elif defined(__ibmxl__) && defined(__clang__) +# define COMPILER_ID "XLClang" +# define COMPILER_VERSION_MAJOR DEC(__ibmxl_version__) +# define COMPILER_VERSION_MINOR DEC(__ibmxl_release__) +# define COMPILER_VERSION_PATCH DEC(__ibmxl_modification__) +# define COMPILER_VERSION_TWEAK DEC(__ibmxl_ptf_fix_level__) + + +#elif defined(__IBMC__) && !defined(__COMPILER_VER__) && __IBMC__ >= 800 +# define COMPILER_ID "XL" + /* __IBMC__ = VRP */ +# define COMPILER_VERSION_MAJOR DEC(__IBMC__/100) +# define COMPILER_VERSION_MINOR DEC(__IBMC__/10 % 10) +# define COMPILER_VERSION_PATCH DEC(__IBMC__ % 10) + +#elif defined(__IBMC__) && !defined(__COMPILER_VER__) && __IBMC__ < 800 +# define COMPILER_ID "VisualAge" + /* __IBMC__ = VRP */ +# define COMPILER_VERSION_MAJOR DEC(__IBMC__/100) +# define COMPILER_VERSION_MINOR DEC(__IBMC__/10 % 10) +# define COMPILER_VERSION_PATCH DEC(__IBMC__ % 10) + +#elif defined(__NVCOMPILER) +# define COMPILER_ID "NVHPC" +# define COMPILER_VERSION_MAJOR DEC(__NVCOMPILER_MAJOR__) +# define COMPILER_VERSION_MINOR DEC(__NVCOMPILER_MINOR__) +# if defined(__NVCOMPILER_PATCHLEVEL__) +# define COMPILER_VERSION_PATCH DEC(__NVCOMPILER_PATCHLEVEL__) +# endif + +#elif defined(__PGI) +# define COMPILER_ID "PGI" +# define COMPILER_VERSION_MAJOR DEC(__PGIC__) +# define COMPILER_VERSION_MINOR DEC(__PGIC_MINOR__) +# if defined(__PGIC_PATCHLEVEL__) +# define COMPILER_VERSION_PATCH DEC(__PGIC_PATCHLEVEL__) +# endif + +#elif defined(_CRAYC) +# define COMPILER_ID "Cray" +# define COMPILER_VERSION_MAJOR DEC(_RELEASE_MAJOR) +# define COMPILER_VERSION_MINOR DEC(_RELEASE_MINOR) + +#elif defined(__TI_COMPILER_VERSION__) +# define COMPILER_ID "TI" + /* __TI_COMPILER_VERSION__ = VVVRRRPPP */ +# define COMPILER_VERSION_MAJOR DEC(__TI_COMPILER_VERSION__/1000000) +# define COMPILER_VERSION_MINOR DEC(__TI_COMPILER_VERSION__/1000 % 1000) +# define COMPILER_VERSION_PATCH DEC(__TI_COMPILER_VERSION__ % 1000) + +#elif defined(__CLANG_FUJITSU) +# define COMPILER_ID "FujitsuClang" +# define COMPILER_VERSION_MAJOR DEC(__FCC_major__) +# define COMPILER_VERSION_MINOR DEC(__FCC_minor__) +# define COMPILER_VERSION_PATCH DEC(__FCC_patchlevel__) +# define COMPILER_VERSION_INTERNAL_STR __clang_version__ + + +#elif defined(__FUJITSU) +# define COMPILER_ID "Fujitsu" +# if defined(__FCC_version__) +# define COMPILER_VERSION __FCC_version__ +# elif defined(__FCC_major__) +# define COMPILER_VERSION_MAJOR DEC(__FCC_major__) +# define COMPILER_VERSION_MINOR DEC(__FCC_minor__) +# define COMPILER_VERSION_PATCH DEC(__FCC_patchlevel__) +# endif +# if defined(__fcc_version) +# define COMPILER_VERSION_INTERNAL DEC(__fcc_version) +# elif defined(__FCC_VERSION) +# define COMPILER_VERSION_INTERNAL DEC(__FCC_VERSION) +# endif + + +#elif defined(__ghs__) +# define COMPILER_ID "GHS" +/* __GHS_VERSION_NUMBER = VVVVRP */ +# ifdef __GHS_VERSION_NUMBER +# define COMPILER_VERSION_MAJOR DEC(__GHS_VERSION_NUMBER / 100) +# define COMPILER_VERSION_MINOR DEC(__GHS_VERSION_NUMBER / 10 % 10) +# define COMPILER_VERSION_PATCH DEC(__GHS_VERSION_NUMBER % 10) +# endif + +#elif defined(__TASKING__) +# define COMPILER_ID "Tasking" + # define COMPILER_VERSION_MAJOR DEC(__VERSION__/1000) + # define COMPILER_VERSION_MINOR DEC(__VERSION__ % 100) +# define COMPILER_VERSION_INTERNAL DEC(__VERSION__) + +#elif defined(__TINYC__) +# define COMPILER_ID "TinyCC" + +#elif defined(__BCC__) +# define COMPILER_ID "Bruce" + +#elif defined(__SCO_VERSION__) +# define COMPILER_ID "SCO" + +#elif defined(__ARMCC_VERSION) && !defined(__clang__) +# define COMPILER_ID "ARMCC" +#if __ARMCC_VERSION >= 1000000 + /* __ARMCC_VERSION = VRRPPPP */ + # define COMPILER_VERSION_MAJOR DEC(__ARMCC_VERSION/1000000) + # define COMPILER_VERSION_MINOR DEC(__ARMCC_VERSION/10000 % 100) + # define COMPILER_VERSION_PATCH DEC(__ARMCC_VERSION % 10000) +#else + /* __ARMCC_VERSION = VRPPPP */ + # define COMPILER_VERSION_MAJOR DEC(__ARMCC_VERSION/100000) + # define COMPILER_VERSION_MINOR DEC(__ARMCC_VERSION/10000 % 10) + # define COMPILER_VERSION_PATCH DEC(__ARMCC_VERSION % 10000) +#endif + + +#elif defined(__clang__) && defined(__apple_build_version__) +# define COMPILER_ID "AppleClang" +# if defined(_MSC_VER) +# define SIMULATE_ID "MSVC" +# endif +# define COMPILER_VERSION_MAJOR DEC(__clang_major__) +# define COMPILER_VERSION_MINOR DEC(__clang_minor__) +# define COMPILER_VERSION_PATCH DEC(__clang_patchlevel__) +# if defined(_MSC_VER) + /* _MSC_VER = VVRR */ +# define SIMULATE_VERSION_MAJOR DEC(_MSC_VER / 100) +# define SIMULATE_VERSION_MINOR DEC(_MSC_VER % 100) +# endif +# define COMPILER_VERSION_TWEAK DEC(__apple_build_version__) + +#elif defined(__clang__) && defined(__ARMCOMPILER_VERSION) +# define COMPILER_ID "ARMClang" + # define COMPILER_VERSION_MAJOR DEC(__ARMCOMPILER_VERSION/1000000) + # define COMPILER_VERSION_MINOR DEC(__ARMCOMPILER_VERSION/10000 % 100) + # define COMPILER_VERSION_PATCH DEC(__ARMCOMPILER_VERSION % 10000) +# define COMPILER_VERSION_INTERNAL DEC(__ARMCOMPILER_VERSION) + +#elif defined(__clang__) +# define COMPILER_ID "Clang" +# if defined(_MSC_VER) +# define SIMULATE_ID "MSVC" +# endif +# define COMPILER_VERSION_MAJOR DEC(__clang_major__) +# define COMPILER_VERSION_MINOR DEC(__clang_minor__) +# define COMPILER_VERSION_PATCH DEC(__clang_patchlevel__) +# if defined(_MSC_VER) + /* _MSC_VER = VVRR */ +# define SIMULATE_VERSION_MAJOR DEC(_MSC_VER / 100) +# define SIMULATE_VERSION_MINOR DEC(_MSC_VER % 100) +# endif + +#elif defined(__LCC__) && (defined(__GNUC__) || defined(__GNUG__) || defined(__MCST__)) +# define COMPILER_ID "LCC" +# define COMPILER_VERSION_MAJOR DEC(__LCC__ / 100) +# define COMPILER_VERSION_MINOR DEC(__LCC__ % 100) +# if defined(__LCC_MINOR__) +# define COMPILER_VERSION_PATCH DEC(__LCC_MINOR__) +# endif +# if defined(__GNUC__) && defined(__GNUC_MINOR__) +# define SIMULATE_ID "GNU" +# define SIMULATE_VERSION_MAJOR DEC(__GNUC__) +# define SIMULATE_VERSION_MINOR DEC(__GNUC_MINOR__) +# if defined(__GNUC_PATCHLEVEL__) +# define SIMULATE_VERSION_PATCH DEC(__GNUC_PATCHLEVEL__) +# endif +# endif + +#elif defined(__GNUC__) +# define COMPILER_ID "GNU" +# define COMPILER_VERSION_MAJOR DEC(__GNUC__) +# if defined(__GNUC_MINOR__) +# define COMPILER_VERSION_MINOR DEC(__GNUC_MINOR__) +# endif +# if defined(__GNUC_PATCHLEVEL__) +# define COMPILER_VERSION_PATCH DEC(__GNUC_PATCHLEVEL__) +# endif + +#elif defined(_MSC_VER) +# define COMPILER_ID "MSVC" + /* _MSC_VER = VVRR */ +# define COMPILER_VERSION_MAJOR DEC(_MSC_VER / 100) +# define COMPILER_VERSION_MINOR DEC(_MSC_VER % 100) +# if defined(_MSC_FULL_VER) +# if _MSC_VER >= 1400 + /* _MSC_FULL_VER = VVRRPPPPP */ +# define COMPILER_VERSION_PATCH DEC(_MSC_FULL_VER % 100000) +# else + /* _MSC_FULL_VER = VVRRPPPP */ +# define COMPILER_VERSION_PATCH DEC(_MSC_FULL_VER % 10000) +# endif +# endif +# if defined(_MSC_BUILD) +# define COMPILER_VERSION_TWEAK DEC(_MSC_BUILD) +# endif + +#elif defined(_ADI_COMPILER) +# define COMPILER_ID "ADSP" +#if defined(__VERSIONNUM__) + /* __VERSIONNUM__ = 0xVVRRPPTT */ +# define COMPILER_VERSION_MAJOR DEC(__VERSIONNUM__ >> 24 & 0xFF) +# define COMPILER_VERSION_MINOR DEC(__VERSIONNUM__ >> 16 & 0xFF) +# define COMPILER_VERSION_PATCH DEC(__VERSIONNUM__ >> 8 & 0xFF) +# define COMPILER_VERSION_TWEAK DEC(__VERSIONNUM__ & 0xFF) +#endif + +#elif defined(__IAR_SYSTEMS_ICC__) || defined(__IAR_SYSTEMS_ICC) +# define COMPILER_ID "IAR" +# if defined(__VER__) && defined(__ICCARM__) +# define COMPILER_VERSION_MAJOR DEC((__VER__) / 1000000) +# define COMPILER_VERSION_MINOR DEC(((__VER__) / 1000) % 1000) +# define COMPILER_VERSION_PATCH DEC((__VER__) % 1000) +# define COMPILER_VERSION_INTERNAL DEC(__IAR_SYSTEMS_ICC__) +# elif defined(__VER__) && (defined(__ICCAVR__) || defined(__ICCRX__) || defined(__ICCRH850__) || defined(__ICCRL78__) || defined(__ICC430__) || defined(__ICCRISCV__) || defined(__ICCV850__) || defined(__ICC8051__) || defined(__ICCSTM8__)) +# define COMPILER_VERSION_MAJOR DEC((__VER__) / 100) +# define COMPILER_VERSION_MINOR DEC((__VER__) - (((__VER__) / 100)*100)) +# define COMPILER_VERSION_PATCH DEC(__SUBVERSION__) +# define COMPILER_VERSION_INTERNAL DEC(__IAR_SYSTEMS_ICC__) +# endif + +#elif defined(__SDCC_VERSION_MAJOR) || defined(SDCC) +# define COMPILER_ID "SDCC" +# if defined(__SDCC_VERSION_MAJOR) +# define COMPILER_VERSION_MAJOR DEC(__SDCC_VERSION_MAJOR) +# define COMPILER_VERSION_MINOR DEC(__SDCC_VERSION_MINOR) +# define COMPILER_VERSION_PATCH DEC(__SDCC_VERSION_PATCH) +# else + /* SDCC = VRP */ +# define COMPILER_VERSION_MAJOR DEC(SDCC/100) +# define COMPILER_VERSION_MINOR DEC(SDCC/10 % 10) +# define COMPILER_VERSION_PATCH DEC(SDCC % 10) +# endif + + +/* These compilers are either not known or too old to define an + identification macro. Try to identify the platform and guess that + it is the native compiler. */ +#elif defined(__hpux) || defined(__hpua) +# define COMPILER_ID "HP" + +#else /* unknown compiler */ +# define COMPILER_ID "" +#endif + +/* Construct the string literal in pieces to prevent the source from + getting matched. Store it in a pointer rather than an array + because some compilers will just produce instructions to fill the + array rather than assigning a pointer to a static array. */ +char const* info_compiler = "INFO" ":" "compiler[" COMPILER_ID "]"; +#ifdef SIMULATE_ID +char const* info_simulate = "INFO" ":" "simulate[" SIMULATE_ID "]"; +#endif + +#ifdef __QNXNTO__ +char const* qnxnto = "INFO" ":" "qnxnto[]"; +#endif + +#if defined(__CRAYXT_COMPUTE_LINUX_TARGET) +char const *info_cray = "INFO" ":" "compiler_wrapper[CrayPrgEnv]"; +#endif + +#define STRINGIFY_HELPER(X) #X +#define STRINGIFY(X) STRINGIFY_HELPER(X) + +/* Identify known platforms by name. */ +#if defined(__linux) || defined(__linux__) || defined(linux) +# define PLATFORM_ID "Linux" + +#elif defined(__MSYS__) +# define PLATFORM_ID "MSYS" + +#elif defined(__CYGWIN__) +# define PLATFORM_ID "Cygwin" + +#elif defined(__MINGW32__) +# define PLATFORM_ID "MinGW" + +#elif defined(__APPLE__) +# define PLATFORM_ID "Darwin" + +#elif defined(_WIN32) || defined(__WIN32__) || defined(WIN32) +# define PLATFORM_ID "Windows" + +#elif defined(__FreeBSD__) || defined(__FreeBSD) +# define PLATFORM_ID "FreeBSD" + +#elif defined(__NetBSD__) || defined(__NetBSD) +# define PLATFORM_ID "NetBSD" + +#elif defined(__OpenBSD__) || defined(__OPENBSD) +# define PLATFORM_ID "OpenBSD" + +#elif defined(__sun) || defined(sun) +# define PLATFORM_ID "SunOS" + +#elif defined(_AIX) || defined(__AIX) || defined(__AIX__) || defined(__aix) || defined(__aix__) +# define PLATFORM_ID "AIX" + +#elif defined(__hpux) || defined(__hpux__) +# define PLATFORM_ID "HP-UX" + +#elif defined(__HAIKU__) +# define PLATFORM_ID "Haiku" + +#elif defined(__BeOS) || defined(__BEOS__) || defined(_BEOS) +# define PLATFORM_ID "BeOS" + +#elif defined(__QNX__) || defined(__QNXNTO__) +# define PLATFORM_ID "QNX" + +#elif defined(__tru64) || defined(_tru64) || defined(__TRU64__) +# define PLATFORM_ID "Tru64" + +#elif defined(__riscos) || defined(__riscos__) +# define PLATFORM_ID "RISCos" + +#elif defined(__sinix) || defined(__sinix__) || defined(__SINIX__) +# define PLATFORM_ID "SINIX" + +#elif defined(__UNIX_SV__) +# define PLATFORM_ID "UNIX_SV" + +#elif defined(__bsdos__) +# define PLATFORM_ID "BSDOS" + +#elif defined(_MPRAS) || defined(MPRAS) +# define PLATFORM_ID "MP-RAS" + +#elif defined(__osf) || defined(__osf__) +# define PLATFORM_ID "OSF1" + +#elif defined(_SCO_SV) || defined(SCO_SV) || defined(sco_sv) +# define PLATFORM_ID "SCO_SV" + +#elif defined(__ultrix) || defined(__ultrix__) || defined(_ULTRIX) +# define PLATFORM_ID "ULTRIX" + +#elif defined(__XENIX__) || defined(_XENIX) || defined(XENIX) +# define PLATFORM_ID "Xenix" + +#elif defined(__WATCOMC__) +# if defined(__LINUX__) +# define PLATFORM_ID "Linux" + +# elif defined(__DOS__) +# define PLATFORM_ID "DOS" + +# elif defined(__OS2__) +# define PLATFORM_ID "OS2" + +# elif defined(__WINDOWS__) +# define PLATFORM_ID "Windows3x" + +# elif defined(__VXWORKS__) +# define PLATFORM_ID "VxWorks" + +# else /* unknown platform */ +# define PLATFORM_ID +# endif + +#elif defined(__INTEGRITY) +# if defined(INT_178B) +# define PLATFORM_ID "Integrity178" + +# else /* regular Integrity */ +# define PLATFORM_ID "Integrity" +# endif + +# elif defined(_ADI_COMPILER) +# define PLATFORM_ID "ADSP" + +#else /* unknown platform */ +# define PLATFORM_ID + +#endif + +/* For windows compilers MSVC and Intel we can determine + the architecture of the compiler being used. This is because + the compilers do not have flags that can change the architecture, + but rather depend on which compiler is being used +*/ +#if defined(_WIN32) && defined(_MSC_VER) +# if defined(_M_IA64) +# define ARCHITECTURE_ID "IA64" + +# elif defined(_M_ARM64EC) +# define ARCHITECTURE_ID "ARM64EC" + +# elif defined(_M_X64) || defined(_M_AMD64) +# define ARCHITECTURE_ID "x64" + +# elif defined(_M_IX86) +# define ARCHITECTURE_ID "X86" + +# elif defined(_M_ARM64) +# define ARCHITECTURE_ID "ARM64" + +# elif defined(_M_ARM) +# if _M_ARM == 4 +# define ARCHITECTURE_ID "ARMV4I" +# elif _M_ARM == 5 +# define ARCHITECTURE_ID "ARMV5I" +# else +# define ARCHITECTURE_ID "ARMV" STRINGIFY(_M_ARM) +# endif + +# elif defined(_M_MIPS) +# define ARCHITECTURE_ID "MIPS" + +# elif defined(_M_SH) +# define ARCHITECTURE_ID "SHx" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +#elif defined(__WATCOMC__) +# if defined(_M_I86) +# define ARCHITECTURE_ID "I86" + +# elif defined(_M_IX86) +# define ARCHITECTURE_ID "X86" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +#elif defined(__IAR_SYSTEMS_ICC__) || defined(__IAR_SYSTEMS_ICC) +# if defined(__ICCARM__) +# define ARCHITECTURE_ID "ARM" + +# elif defined(__ICCRX__) +# define ARCHITECTURE_ID "RX" + +# elif defined(__ICCRH850__) +# define ARCHITECTURE_ID "RH850" + +# elif defined(__ICCRL78__) +# define ARCHITECTURE_ID "RL78" + +# elif defined(__ICCRISCV__) +# define ARCHITECTURE_ID "RISCV" + +# elif defined(__ICCAVR__) +# define ARCHITECTURE_ID "AVR" + +# elif defined(__ICC430__) +# define ARCHITECTURE_ID "MSP430" + +# elif defined(__ICCV850__) +# define ARCHITECTURE_ID "V850" + +# elif defined(__ICC8051__) +# define ARCHITECTURE_ID "8051" + +# elif defined(__ICCSTM8__) +# define ARCHITECTURE_ID "STM8" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +#elif defined(__ghs__) +# if defined(__PPC64__) +# define ARCHITECTURE_ID "PPC64" + +# elif defined(__ppc__) +# define ARCHITECTURE_ID "PPC" + +# elif defined(__ARM__) +# define ARCHITECTURE_ID "ARM" + +# elif defined(__x86_64__) +# define ARCHITECTURE_ID "x64" + +# elif defined(__i386__) +# define ARCHITECTURE_ID "X86" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +#elif defined(__TI_COMPILER_VERSION__) +# if defined(__TI_ARM__) +# define ARCHITECTURE_ID "ARM" + +# elif defined(__MSP430__) +# define ARCHITECTURE_ID "MSP430" + +# elif defined(__TMS320C28XX__) +# define ARCHITECTURE_ID "TMS320C28x" + +# elif defined(__TMS320C6X__) || defined(_TMS320C6X) +# define ARCHITECTURE_ID "TMS320C6x" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +# elif defined(__ADSPSHARC__) +# define ARCHITECTURE_ID "SHARC" + +# elif defined(__ADSPBLACKFIN__) +# define ARCHITECTURE_ID "Blackfin" + +#elif defined(__TASKING__) + +# if defined(__CTC__) || defined(__CPTC__) +# define ARCHITECTURE_ID "TriCore" + +# elif defined(__CMCS__) +# define ARCHITECTURE_ID "MCS" + +# elif defined(__CARM__) +# define ARCHITECTURE_ID "ARM" + +# elif defined(__CARC__) +# define ARCHITECTURE_ID "ARC" + +# elif defined(__C51__) +# define ARCHITECTURE_ID "8051" + +# elif defined(__CPCP__) +# define ARCHITECTURE_ID "PCP" + +# else +# define ARCHITECTURE_ID "" +# endif + +#else +# define ARCHITECTURE_ID +#endif + +/* Convert integer to decimal digit literals. */ +#define DEC(n) \ + ('0' + (((n) / 10000000)%10)), \ + ('0' + (((n) / 1000000)%10)), \ + ('0' + (((n) / 100000)%10)), \ + ('0' + (((n) / 10000)%10)), \ + ('0' + (((n) / 1000)%10)), \ + ('0' + (((n) / 100)%10)), \ + ('0' + (((n) / 10)%10)), \ + ('0' + ((n) % 10)) + +/* Convert integer to hex digit literals. */ +#define HEX(n) \ + ('0' + ((n)>>28 & 0xF)), \ + ('0' + ((n)>>24 & 0xF)), \ + ('0' + ((n)>>20 & 0xF)), \ + ('0' + ((n)>>16 & 0xF)), \ + ('0' + ((n)>>12 & 0xF)), \ + ('0' + ((n)>>8 & 0xF)), \ + ('0' + ((n)>>4 & 0xF)), \ + ('0' + ((n) & 0xF)) + +/* Construct a string literal encoding the version number. */ +#ifdef COMPILER_VERSION +char const* info_version = "INFO" ":" "compiler_version[" COMPILER_VERSION "]"; + +/* Construct a string literal encoding the version number components. */ +#elif defined(COMPILER_VERSION_MAJOR) +char const info_version[] = { + 'I', 'N', 'F', 'O', ':', + 'c','o','m','p','i','l','e','r','_','v','e','r','s','i','o','n','[', + COMPILER_VERSION_MAJOR, +# ifdef COMPILER_VERSION_MINOR + '.', COMPILER_VERSION_MINOR, +# ifdef COMPILER_VERSION_PATCH + '.', COMPILER_VERSION_PATCH, +# ifdef COMPILER_VERSION_TWEAK + '.', COMPILER_VERSION_TWEAK, +# endif +# endif +# endif + ']','\0'}; +#endif + +/* Construct a string literal encoding the internal version number. */ +#ifdef COMPILER_VERSION_INTERNAL +char const info_version_internal[] = { + 'I', 'N', 'F', 'O', ':', + 'c','o','m','p','i','l','e','r','_','v','e','r','s','i','o','n','_', + 'i','n','t','e','r','n','a','l','[', + COMPILER_VERSION_INTERNAL,']','\0'}; +#elif defined(COMPILER_VERSION_INTERNAL_STR) +char const* info_version_internal = "INFO" ":" "compiler_version_internal[" COMPILER_VERSION_INTERNAL_STR "]"; +#endif + +/* Construct a string literal encoding the version number components. */ +#ifdef SIMULATE_VERSION_MAJOR +char const info_simulate_version[] = { + 'I', 'N', 'F', 'O', ':', + 's','i','m','u','l','a','t','e','_','v','e','r','s','i','o','n','[', + SIMULATE_VERSION_MAJOR, +# ifdef SIMULATE_VERSION_MINOR + '.', SIMULATE_VERSION_MINOR, +# ifdef SIMULATE_VERSION_PATCH + '.', SIMULATE_VERSION_PATCH, +# ifdef SIMULATE_VERSION_TWEAK + '.', SIMULATE_VERSION_TWEAK, +# endif +# endif +# endif + ']','\0'}; +#endif + +/* Construct the string literal in pieces to prevent the source from + getting matched. Store it in a pointer rather than an array + because some compilers will just produce instructions to fill the + array rather than assigning a pointer to a static array. */ +char const* info_platform = "INFO" ":" "platform[" PLATFORM_ID "]"; +char const* info_arch = "INFO" ":" "arch[" ARCHITECTURE_ID "]"; + + + +#if !defined(__STDC__) && !defined(__clang__) +# if defined(_MSC_VER) || defined(__ibmxl__) || defined(__IBMC__) +# define C_VERSION "90" +# else +# define C_VERSION +# endif +#elif __STDC_VERSION__ > 201710L +# define C_VERSION "23" +#elif __STDC_VERSION__ >= 201710L +# define C_VERSION "17" +#elif __STDC_VERSION__ >= 201000L +# define C_VERSION "11" +#elif __STDC_VERSION__ >= 199901L +# define C_VERSION "99" +#else +# define C_VERSION "90" +#endif +const char* info_language_standard_default = + "INFO" ":" "standard_default[" C_VERSION "]"; + +const char* info_language_extensions_default = "INFO" ":" "extensions_default[" +#if (defined(__clang__) || defined(__GNUC__) || defined(__xlC__) || \ + defined(__TI_COMPILER_VERSION__)) && \ + !defined(__STRICT_ANSI__) + "ON" +#else + "OFF" +#endif +"]"; + +/*--------------------------------------------------------------------------*/ + +#ifdef ID_VOID_MAIN +void main() {} +#else +# if defined(__CLASSIC_C__) +int main(argc, argv) int argc; char *argv[]; +# else +int main(int argc, char* argv[]) +# endif +{ + int require = 0; + require += info_compiler[argc]; + require += info_platform[argc]; + require += info_arch[argc]; +#ifdef COMPILER_VERSION_MAJOR + require += info_version[argc]; +#endif +#ifdef COMPILER_VERSION_INTERNAL + require += info_version_internal[argc]; +#endif +#ifdef SIMULATE_ID + require += info_simulate[argc]; +#endif +#ifdef SIMULATE_VERSION_MAJOR + require += info_simulate_version[argc]; +#endif +#if defined(__CRAYXT_COMPUTE_LINUX_TARGET) + require += info_cray[argc]; +#endif + require += info_language_standard_default[argc]; + require += info_language_extensions_default[argc]; + (void)argv; + return require; +} +#endif diff --git a/build/CMakeFiles/3.26.0/CompilerIdC/a.out b/build/CMakeFiles/3.26.0/CompilerIdC/a.out new file mode 100644 index 0000000000000000000000000000000000000000..8b8c27e76b2d5951bf9014e281b5e321a68c6ff6 Binary files /dev/null and b/build/CMakeFiles/3.26.0/CompilerIdC/a.out differ diff --git a/build/CMakeFiles/3.26.0/CompilerIdCXX/CMakeCXXCompilerId.cpp b/build/CMakeFiles/3.26.0/CompilerIdCXX/CMakeCXXCompilerId.cpp new file mode 100644 index 0000000000000000000000000000000000000000..746b1672e6408e180134871066e63c54fb6e474d --- /dev/null +++ b/build/CMakeFiles/3.26.0/CompilerIdCXX/CMakeCXXCompilerId.cpp @@ -0,0 +1,855 @@ +/* This source file must have a .cpp extension so that all C++ compilers + recognize the extension without flags. Borland does not know .cxx for + example. */ +#ifndef __cplusplus +# error "A C compiler has been selected for C++." +#endif + +#if !defined(__has_include) +/* If the compiler does not have __has_include, pretend the answer is + always no. */ +# define __has_include(x) 0 +#endif + + +/* Version number components: V=Version, R=Revision, P=Patch + Version date components: YYYY=Year, MM=Month, DD=Day */ + +#if defined(__COMO__) +# define COMPILER_ID "Comeau" + /* __COMO_VERSION__ = VRR */ +# define COMPILER_VERSION_MAJOR DEC(__COMO_VERSION__ / 100) +# define COMPILER_VERSION_MINOR DEC(__COMO_VERSION__ % 100) + +#elif defined(__INTEL_COMPILER) || defined(__ICC) +# define COMPILER_ID "Intel" +# if defined(_MSC_VER) +# define SIMULATE_ID "MSVC" +# endif +# if defined(__GNUC__) +# define SIMULATE_ID "GNU" +# endif + /* __INTEL_COMPILER = VRP prior to 2021, and then VVVV for 2021 and later, + except that a few beta releases use the old format with V=2021. */ +# if __INTEL_COMPILER < 2021 || __INTEL_COMPILER == 202110 || __INTEL_COMPILER == 202111 +# define COMPILER_VERSION_MAJOR DEC(__INTEL_COMPILER/100) +# define COMPILER_VERSION_MINOR DEC(__INTEL_COMPILER/10 % 10) +# if defined(__INTEL_COMPILER_UPDATE) +# define COMPILER_VERSION_PATCH DEC(__INTEL_COMPILER_UPDATE) +# else +# define COMPILER_VERSION_PATCH DEC(__INTEL_COMPILER % 10) +# endif +# else +# define COMPILER_VERSION_MAJOR DEC(__INTEL_COMPILER) +# define COMPILER_VERSION_MINOR DEC(__INTEL_COMPILER_UPDATE) + /* The third version component from --version is an update index, + but no macro is provided for it. */ +# define COMPILER_VERSION_PATCH DEC(0) +# endif +# if defined(__INTEL_COMPILER_BUILD_DATE) + /* __INTEL_COMPILER_BUILD_DATE = YYYYMMDD */ +# define COMPILER_VERSION_TWEAK DEC(__INTEL_COMPILER_BUILD_DATE) +# endif +# if defined(_MSC_VER) + /* _MSC_VER = VVRR */ +# define SIMULATE_VERSION_MAJOR DEC(_MSC_VER / 100) +# define SIMULATE_VERSION_MINOR DEC(_MSC_VER % 100) +# endif +# if defined(__GNUC__) +# define SIMULATE_VERSION_MAJOR DEC(__GNUC__) +# elif defined(__GNUG__) +# define SIMULATE_VERSION_MAJOR DEC(__GNUG__) +# endif +# if defined(__GNUC_MINOR__) +# define SIMULATE_VERSION_MINOR DEC(__GNUC_MINOR__) +# endif +# if defined(__GNUC_PATCHLEVEL__) +# define SIMULATE_VERSION_PATCH DEC(__GNUC_PATCHLEVEL__) +# endif + +#elif (defined(__clang__) && defined(__INTEL_CLANG_COMPILER)) || defined(__INTEL_LLVM_COMPILER) +# define COMPILER_ID "IntelLLVM" +#if defined(_MSC_VER) +# define SIMULATE_ID "MSVC" +#endif +#if defined(__GNUC__) +# define SIMULATE_ID "GNU" +#endif +/* __INTEL_LLVM_COMPILER = VVVVRP prior to 2021.2.0, VVVVRRPP for 2021.2.0 and + * later. Look for 6 digit vs. 8 digit version number to decide encoding. + * VVVV is no smaller than the current year when a version is released. + */ +#if __INTEL_LLVM_COMPILER < 1000000L +# define COMPILER_VERSION_MAJOR DEC(__INTEL_LLVM_COMPILER/100) +# define COMPILER_VERSION_MINOR DEC(__INTEL_LLVM_COMPILER/10 % 10) +# define COMPILER_VERSION_PATCH DEC(__INTEL_LLVM_COMPILER % 10) +#else +# define COMPILER_VERSION_MAJOR DEC(__INTEL_LLVM_COMPILER/10000) +# define COMPILER_VERSION_MINOR DEC(__INTEL_LLVM_COMPILER/100 % 100) +# define COMPILER_VERSION_PATCH DEC(__INTEL_LLVM_COMPILER % 100) +#endif +#if defined(_MSC_VER) + /* _MSC_VER = VVRR */ +# define SIMULATE_VERSION_MAJOR DEC(_MSC_VER / 100) +# define SIMULATE_VERSION_MINOR DEC(_MSC_VER % 100) +#endif +#if defined(__GNUC__) +# define SIMULATE_VERSION_MAJOR DEC(__GNUC__) +#elif defined(__GNUG__) +# define SIMULATE_VERSION_MAJOR DEC(__GNUG__) +#endif +#if defined(__GNUC_MINOR__) +# define SIMULATE_VERSION_MINOR DEC(__GNUC_MINOR__) +#endif +#if defined(__GNUC_PATCHLEVEL__) +# define SIMULATE_VERSION_PATCH DEC(__GNUC_PATCHLEVEL__) +#endif + +#elif defined(__PATHCC__) +# define COMPILER_ID "PathScale" +# define COMPILER_VERSION_MAJOR DEC(__PATHCC__) +# define COMPILER_VERSION_MINOR DEC(__PATHCC_MINOR__) +# if defined(__PATHCC_PATCHLEVEL__) +# define COMPILER_VERSION_PATCH DEC(__PATHCC_PATCHLEVEL__) +# endif + +#elif defined(__BORLANDC__) && defined(__CODEGEARC_VERSION__) +# define COMPILER_ID "Embarcadero" +# define COMPILER_VERSION_MAJOR HEX(__CODEGEARC_VERSION__>>24 & 0x00FF) +# define COMPILER_VERSION_MINOR HEX(__CODEGEARC_VERSION__>>16 & 0x00FF) +# define COMPILER_VERSION_PATCH DEC(__CODEGEARC_VERSION__ & 0xFFFF) + +#elif defined(__BORLANDC__) +# define COMPILER_ID "Borland" + /* __BORLANDC__ = 0xVRR */ +# define COMPILER_VERSION_MAJOR HEX(__BORLANDC__>>8) +# define COMPILER_VERSION_MINOR HEX(__BORLANDC__ & 0xFF) + +#elif defined(__WATCOMC__) && __WATCOMC__ < 1200 +# define COMPILER_ID "Watcom" + /* __WATCOMC__ = VVRR */ +# define COMPILER_VERSION_MAJOR DEC(__WATCOMC__ / 100) +# define COMPILER_VERSION_MINOR DEC((__WATCOMC__ / 10) % 10) +# if (__WATCOMC__ % 10) > 0 +# define COMPILER_VERSION_PATCH DEC(__WATCOMC__ % 10) +# endif + +#elif defined(__WATCOMC__) +# define COMPILER_ID "OpenWatcom" + /* __WATCOMC__ = VVRP + 1100 */ +# define COMPILER_VERSION_MAJOR DEC((__WATCOMC__ - 1100) / 100) +# define COMPILER_VERSION_MINOR DEC((__WATCOMC__ / 10) % 10) +# if (__WATCOMC__ % 10) > 0 +# define COMPILER_VERSION_PATCH DEC(__WATCOMC__ % 10) +# endif + +#elif defined(__SUNPRO_CC) +# define COMPILER_ID "SunPro" +# if __SUNPRO_CC >= 0x5100 + /* __SUNPRO_CC = 0xVRRP */ +# define COMPILER_VERSION_MAJOR HEX(__SUNPRO_CC>>12) +# define COMPILER_VERSION_MINOR HEX(__SUNPRO_CC>>4 & 0xFF) +# define COMPILER_VERSION_PATCH HEX(__SUNPRO_CC & 0xF) +# else + /* __SUNPRO_CC = 0xVRP */ +# define COMPILER_VERSION_MAJOR HEX(__SUNPRO_CC>>8) +# define COMPILER_VERSION_MINOR HEX(__SUNPRO_CC>>4 & 0xF) +# define COMPILER_VERSION_PATCH HEX(__SUNPRO_CC & 0xF) +# endif + +#elif defined(__HP_aCC) +# define COMPILER_ID "HP" + /* __HP_aCC = VVRRPP */ +# define COMPILER_VERSION_MAJOR DEC(__HP_aCC/10000) +# define COMPILER_VERSION_MINOR DEC(__HP_aCC/100 % 100) +# define COMPILER_VERSION_PATCH DEC(__HP_aCC % 100) + +#elif defined(__DECCXX) +# define COMPILER_ID "Compaq" + /* __DECCXX_VER = VVRRTPPPP */ +# define COMPILER_VERSION_MAJOR DEC(__DECCXX_VER/10000000) +# define COMPILER_VERSION_MINOR DEC(__DECCXX_VER/100000 % 100) +# define COMPILER_VERSION_PATCH DEC(__DECCXX_VER % 10000) + +#elif defined(__IBMCPP__) && defined(__COMPILER_VER__) +# define COMPILER_ID "zOS" + /* __IBMCPP__ = VRP */ +# define COMPILER_VERSION_MAJOR DEC(__IBMCPP__/100) +# define COMPILER_VERSION_MINOR DEC(__IBMCPP__/10 % 10) +# define COMPILER_VERSION_PATCH DEC(__IBMCPP__ % 10) + +#elif defined(__open_xl__) && defined(__clang__) +# define COMPILER_ID "IBMClang" +# define COMPILER_VERSION_MAJOR DEC(__open_xl_version__) +# define COMPILER_VERSION_MINOR DEC(__open_xl_release__) +# define COMPILER_VERSION_PATCH DEC(__open_xl_modification__) +# define COMPILER_VERSION_TWEAK DEC(__open_xl_ptf_fix_level__) + + +#elif defined(__ibmxl__) && defined(__clang__) +# define COMPILER_ID "XLClang" +# define COMPILER_VERSION_MAJOR DEC(__ibmxl_version__) +# define COMPILER_VERSION_MINOR DEC(__ibmxl_release__) +# define COMPILER_VERSION_PATCH DEC(__ibmxl_modification__) +# define COMPILER_VERSION_TWEAK DEC(__ibmxl_ptf_fix_level__) + + +#elif defined(__IBMCPP__) && !defined(__COMPILER_VER__) && __IBMCPP__ >= 800 +# define COMPILER_ID "XL" + /* __IBMCPP__ = VRP */ +# define COMPILER_VERSION_MAJOR DEC(__IBMCPP__/100) +# define COMPILER_VERSION_MINOR DEC(__IBMCPP__/10 % 10) +# define COMPILER_VERSION_PATCH DEC(__IBMCPP__ % 10) + +#elif defined(__IBMCPP__) && !defined(__COMPILER_VER__) && __IBMCPP__ < 800 +# define COMPILER_ID "VisualAge" + /* __IBMCPP__ = VRP */ +# define COMPILER_VERSION_MAJOR DEC(__IBMCPP__/100) +# define COMPILER_VERSION_MINOR DEC(__IBMCPP__/10 % 10) +# define COMPILER_VERSION_PATCH DEC(__IBMCPP__ % 10) + +#elif defined(__NVCOMPILER) +# define COMPILER_ID "NVHPC" +# define COMPILER_VERSION_MAJOR DEC(__NVCOMPILER_MAJOR__) +# define COMPILER_VERSION_MINOR DEC(__NVCOMPILER_MINOR__) +# if defined(__NVCOMPILER_PATCHLEVEL__) +# define COMPILER_VERSION_PATCH DEC(__NVCOMPILER_PATCHLEVEL__) +# endif + +#elif defined(__PGI) +# define COMPILER_ID "PGI" +# define COMPILER_VERSION_MAJOR DEC(__PGIC__) +# define COMPILER_VERSION_MINOR DEC(__PGIC_MINOR__) +# if defined(__PGIC_PATCHLEVEL__) +# define COMPILER_VERSION_PATCH DEC(__PGIC_PATCHLEVEL__) +# endif + +#elif defined(_CRAYC) +# define COMPILER_ID "Cray" +# define COMPILER_VERSION_MAJOR DEC(_RELEASE_MAJOR) +# define COMPILER_VERSION_MINOR DEC(_RELEASE_MINOR) + +#elif defined(__TI_COMPILER_VERSION__) +# define COMPILER_ID "TI" + /* __TI_COMPILER_VERSION__ = VVVRRRPPP */ +# define COMPILER_VERSION_MAJOR DEC(__TI_COMPILER_VERSION__/1000000) +# define COMPILER_VERSION_MINOR DEC(__TI_COMPILER_VERSION__/1000 % 1000) +# define COMPILER_VERSION_PATCH DEC(__TI_COMPILER_VERSION__ % 1000) + +#elif defined(__CLANG_FUJITSU) +# define COMPILER_ID "FujitsuClang" +# define COMPILER_VERSION_MAJOR DEC(__FCC_major__) +# define COMPILER_VERSION_MINOR DEC(__FCC_minor__) +# define COMPILER_VERSION_PATCH DEC(__FCC_patchlevel__) +# define COMPILER_VERSION_INTERNAL_STR __clang_version__ + + +#elif defined(__FUJITSU) +# define COMPILER_ID "Fujitsu" +# if defined(__FCC_version__) +# define COMPILER_VERSION __FCC_version__ +# elif defined(__FCC_major__) +# define COMPILER_VERSION_MAJOR DEC(__FCC_major__) +# define COMPILER_VERSION_MINOR DEC(__FCC_minor__) +# define COMPILER_VERSION_PATCH DEC(__FCC_patchlevel__) +# endif +# if defined(__fcc_version) +# define COMPILER_VERSION_INTERNAL DEC(__fcc_version) +# elif defined(__FCC_VERSION) +# define COMPILER_VERSION_INTERNAL DEC(__FCC_VERSION) +# endif + + +#elif defined(__ghs__) +# define COMPILER_ID "GHS" +/* __GHS_VERSION_NUMBER = VVVVRP */ +# ifdef __GHS_VERSION_NUMBER +# define COMPILER_VERSION_MAJOR DEC(__GHS_VERSION_NUMBER / 100) +# define COMPILER_VERSION_MINOR DEC(__GHS_VERSION_NUMBER / 10 % 10) +# define COMPILER_VERSION_PATCH DEC(__GHS_VERSION_NUMBER % 10) +# endif + +#elif defined(__TASKING__) +# define COMPILER_ID "Tasking" + # define COMPILER_VERSION_MAJOR DEC(__VERSION__/1000) + # define COMPILER_VERSION_MINOR DEC(__VERSION__ % 100) +# define COMPILER_VERSION_INTERNAL DEC(__VERSION__) + +#elif defined(__SCO_VERSION__) +# define COMPILER_ID "SCO" + +#elif defined(__ARMCC_VERSION) && !defined(__clang__) +# define COMPILER_ID "ARMCC" +#if __ARMCC_VERSION >= 1000000 + /* __ARMCC_VERSION = VRRPPPP */ + # define COMPILER_VERSION_MAJOR DEC(__ARMCC_VERSION/1000000) + # define COMPILER_VERSION_MINOR DEC(__ARMCC_VERSION/10000 % 100) + # define COMPILER_VERSION_PATCH DEC(__ARMCC_VERSION % 10000) +#else + /* __ARMCC_VERSION = VRPPPP */ + # define COMPILER_VERSION_MAJOR DEC(__ARMCC_VERSION/100000) + # define COMPILER_VERSION_MINOR DEC(__ARMCC_VERSION/10000 % 10) + # define COMPILER_VERSION_PATCH DEC(__ARMCC_VERSION % 10000) +#endif + + +#elif defined(__clang__) && defined(__apple_build_version__) +# define COMPILER_ID "AppleClang" +# if defined(_MSC_VER) +# define SIMULATE_ID "MSVC" +# endif +# define COMPILER_VERSION_MAJOR DEC(__clang_major__) +# define COMPILER_VERSION_MINOR DEC(__clang_minor__) +# define COMPILER_VERSION_PATCH DEC(__clang_patchlevel__) +# if defined(_MSC_VER) + /* _MSC_VER = VVRR */ +# define SIMULATE_VERSION_MAJOR DEC(_MSC_VER / 100) +# define SIMULATE_VERSION_MINOR DEC(_MSC_VER % 100) +# endif +# define COMPILER_VERSION_TWEAK DEC(__apple_build_version__) + +#elif defined(__clang__) && defined(__ARMCOMPILER_VERSION) +# define COMPILER_ID "ARMClang" + # define COMPILER_VERSION_MAJOR DEC(__ARMCOMPILER_VERSION/1000000) + # define COMPILER_VERSION_MINOR DEC(__ARMCOMPILER_VERSION/10000 % 100) + # define COMPILER_VERSION_PATCH DEC(__ARMCOMPILER_VERSION % 10000) +# define COMPILER_VERSION_INTERNAL DEC(__ARMCOMPILER_VERSION) + +#elif defined(__clang__) +# define COMPILER_ID "Clang" +# if defined(_MSC_VER) +# define SIMULATE_ID "MSVC" +# endif +# define COMPILER_VERSION_MAJOR DEC(__clang_major__) +# define COMPILER_VERSION_MINOR DEC(__clang_minor__) +# define COMPILER_VERSION_PATCH DEC(__clang_patchlevel__) +# if defined(_MSC_VER) + /* _MSC_VER = VVRR */ +# define SIMULATE_VERSION_MAJOR DEC(_MSC_VER / 100) +# define SIMULATE_VERSION_MINOR DEC(_MSC_VER % 100) +# endif + +#elif defined(__LCC__) && (defined(__GNUC__) || defined(__GNUG__) || defined(__MCST__)) +# define COMPILER_ID "LCC" +# define COMPILER_VERSION_MAJOR DEC(__LCC__ / 100) +# define COMPILER_VERSION_MINOR DEC(__LCC__ % 100) +# if defined(__LCC_MINOR__) +# define COMPILER_VERSION_PATCH DEC(__LCC_MINOR__) +# endif +# if defined(__GNUC__) && defined(__GNUC_MINOR__) +# define SIMULATE_ID "GNU" +# define SIMULATE_VERSION_MAJOR DEC(__GNUC__) +# define SIMULATE_VERSION_MINOR DEC(__GNUC_MINOR__) +# if defined(__GNUC_PATCHLEVEL__) +# define SIMULATE_VERSION_PATCH DEC(__GNUC_PATCHLEVEL__) +# endif +# endif + +#elif defined(__GNUC__) || defined(__GNUG__) +# define COMPILER_ID "GNU" +# if defined(__GNUC__) +# define COMPILER_VERSION_MAJOR DEC(__GNUC__) +# else +# define COMPILER_VERSION_MAJOR DEC(__GNUG__) +# endif +# if defined(__GNUC_MINOR__) +# define COMPILER_VERSION_MINOR DEC(__GNUC_MINOR__) +# endif +# if defined(__GNUC_PATCHLEVEL__) +# define COMPILER_VERSION_PATCH DEC(__GNUC_PATCHLEVEL__) +# endif + +#elif defined(_MSC_VER) +# define COMPILER_ID "MSVC" + /* _MSC_VER = VVRR */ +# define COMPILER_VERSION_MAJOR DEC(_MSC_VER / 100) +# define COMPILER_VERSION_MINOR DEC(_MSC_VER % 100) +# if defined(_MSC_FULL_VER) +# if _MSC_VER >= 1400 + /* _MSC_FULL_VER = VVRRPPPPP */ +# define COMPILER_VERSION_PATCH DEC(_MSC_FULL_VER % 100000) +# else + /* _MSC_FULL_VER = VVRRPPPP */ +# define COMPILER_VERSION_PATCH DEC(_MSC_FULL_VER % 10000) +# endif +# endif +# if defined(_MSC_BUILD) +# define COMPILER_VERSION_TWEAK DEC(_MSC_BUILD) +# endif + +#elif defined(_ADI_COMPILER) +# define COMPILER_ID "ADSP" +#if defined(__VERSIONNUM__) + /* __VERSIONNUM__ = 0xVVRRPPTT */ +# define COMPILER_VERSION_MAJOR DEC(__VERSIONNUM__ >> 24 & 0xFF) +# define COMPILER_VERSION_MINOR DEC(__VERSIONNUM__ >> 16 & 0xFF) +# define COMPILER_VERSION_PATCH DEC(__VERSIONNUM__ >> 8 & 0xFF) +# define COMPILER_VERSION_TWEAK DEC(__VERSIONNUM__ & 0xFF) +#endif + +#elif defined(__IAR_SYSTEMS_ICC__) || defined(__IAR_SYSTEMS_ICC) +# define COMPILER_ID "IAR" +# if defined(__VER__) && defined(__ICCARM__) +# define COMPILER_VERSION_MAJOR DEC((__VER__) / 1000000) +# define COMPILER_VERSION_MINOR DEC(((__VER__) / 1000) % 1000) +# define COMPILER_VERSION_PATCH DEC((__VER__) % 1000) +# define COMPILER_VERSION_INTERNAL DEC(__IAR_SYSTEMS_ICC__) +# elif defined(__VER__) && (defined(__ICCAVR__) || defined(__ICCRX__) || defined(__ICCRH850__) || defined(__ICCRL78__) || defined(__ICC430__) || defined(__ICCRISCV__) || defined(__ICCV850__) || defined(__ICC8051__) || defined(__ICCSTM8__)) +# define COMPILER_VERSION_MAJOR DEC((__VER__) / 100) +# define COMPILER_VERSION_MINOR DEC((__VER__) - (((__VER__) / 100)*100)) +# define COMPILER_VERSION_PATCH DEC(__SUBVERSION__) +# define COMPILER_VERSION_INTERNAL DEC(__IAR_SYSTEMS_ICC__) +# endif + + +/* These compilers are either not known or too old to define an + identification macro. Try to identify the platform and guess that + it is the native compiler. */ +#elif defined(__hpux) || defined(__hpua) +# define COMPILER_ID "HP" + +#else /* unknown compiler */ +# define COMPILER_ID "" +#endif + +/* Construct the string literal in pieces to prevent the source from + getting matched. Store it in a pointer rather than an array + because some compilers will just produce instructions to fill the + array rather than assigning a pointer to a static array. */ +char const* info_compiler = "INFO" ":" "compiler[" COMPILER_ID "]"; +#ifdef SIMULATE_ID +char const* info_simulate = "INFO" ":" "simulate[" SIMULATE_ID "]"; +#endif + +#ifdef __QNXNTO__ +char const* qnxnto = "INFO" ":" "qnxnto[]"; +#endif + +#if defined(__CRAYXT_COMPUTE_LINUX_TARGET) +char const *info_cray = "INFO" ":" "compiler_wrapper[CrayPrgEnv]"; +#endif + +#define STRINGIFY_HELPER(X) #X +#define STRINGIFY(X) STRINGIFY_HELPER(X) + +/* Identify known platforms by name. */ +#if defined(__linux) || defined(__linux__) || defined(linux) +# define PLATFORM_ID "Linux" + +#elif defined(__MSYS__) +# define PLATFORM_ID "MSYS" + +#elif defined(__CYGWIN__) +# define PLATFORM_ID "Cygwin" + +#elif defined(__MINGW32__) +# define PLATFORM_ID "MinGW" + +#elif defined(__APPLE__) +# define PLATFORM_ID "Darwin" + +#elif defined(_WIN32) || defined(__WIN32__) || defined(WIN32) +# define PLATFORM_ID "Windows" + +#elif defined(__FreeBSD__) || defined(__FreeBSD) +# define PLATFORM_ID "FreeBSD" + +#elif defined(__NetBSD__) || defined(__NetBSD) +# define PLATFORM_ID "NetBSD" + +#elif defined(__OpenBSD__) || defined(__OPENBSD) +# define PLATFORM_ID "OpenBSD" + +#elif defined(__sun) || defined(sun) +# define PLATFORM_ID "SunOS" + +#elif defined(_AIX) || defined(__AIX) || defined(__AIX__) || defined(__aix) || defined(__aix__) +# define PLATFORM_ID "AIX" + +#elif defined(__hpux) || defined(__hpux__) +# define PLATFORM_ID "HP-UX" + +#elif defined(__HAIKU__) +# define PLATFORM_ID "Haiku" + +#elif defined(__BeOS) || defined(__BEOS__) || defined(_BEOS) +# define PLATFORM_ID "BeOS" + +#elif defined(__QNX__) || defined(__QNXNTO__) +# define PLATFORM_ID "QNX" + +#elif defined(__tru64) || defined(_tru64) || defined(__TRU64__) +# define PLATFORM_ID "Tru64" + +#elif defined(__riscos) || defined(__riscos__) +# define PLATFORM_ID "RISCos" + +#elif defined(__sinix) || defined(__sinix__) || defined(__SINIX__) +# define PLATFORM_ID "SINIX" + +#elif defined(__UNIX_SV__) +# define PLATFORM_ID "UNIX_SV" + +#elif defined(__bsdos__) +# define PLATFORM_ID "BSDOS" + +#elif defined(_MPRAS) || defined(MPRAS) +# define PLATFORM_ID "MP-RAS" + +#elif defined(__osf) || defined(__osf__) +# define PLATFORM_ID "OSF1" + +#elif defined(_SCO_SV) || defined(SCO_SV) || defined(sco_sv) +# define PLATFORM_ID "SCO_SV" + +#elif defined(__ultrix) || defined(__ultrix__) || defined(_ULTRIX) +# define PLATFORM_ID "ULTRIX" + +#elif defined(__XENIX__) || defined(_XENIX) || defined(XENIX) +# define PLATFORM_ID "Xenix" + +#elif defined(__WATCOMC__) +# if defined(__LINUX__) +# define PLATFORM_ID "Linux" + +# elif defined(__DOS__) +# define PLATFORM_ID "DOS" + +# elif defined(__OS2__) +# define PLATFORM_ID "OS2" + +# elif defined(__WINDOWS__) +# define PLATFORM_ID "Windows3x" + +# elif defined(__VXWORKS__) +# define PLATFORM_ID "VxWorks" + +# else /* unknown platform */ +# define PLATFORM_ID +# endif + +#elif defined(__INTEGRITY) +# if defined(INT_178B) +# define PLATFORM_ID "Integrity178" + +# else /* regular Integrity */ +# define PLATFORM_ID "Integrity" +# endif + +# elif defined(_ADI_COMPILER) +# define PLATFORM_ID "ADSP" + +#else /* unknown platform */ +# define PLATFORM_ID + +#endif + +/* For windows compilers MSVC and Intel we can determine + the architecture of the compiler being used. This is because + the compilers do not have flags that can change the architecture, + but rather depend on which compiler is being used +*/ +#if defined(_WIN32) && defined(_MSC_VER) +# if defined(_M_IA64) +# define ARCHITECTURE_ID "IA64" + +# elif defined(_M_ARM64EC) +# define ARCHITECTURE_ID "ARM64EC" + +# elif defined(_M_X64) || defined(_M_AMD64) +# define ARCHITECTURE_ID "x64" + +# elif defined(_M_IX86) +# define ARCHITECTURE_ID "X86" + +# elif defined(_M_ARM64) +# define ARCHITECTURE_ID "ARM64" + +# elif defined(_M_ARM) +# if _M_ARM == 4 +# define ARCHITECTURE_ID "ARMV4I" +# elif _M_ARM == 5 +# define ARCHITECTURE_ID "ARMV5I" +# else +# define ARCHITECTURE_ID "ARMV" STRINGIFY(_M_ARM) +# endif + +# elif defined(_M_MIPS) +# define ARCHITECTURE_ID "MIPS" + +# elif defined(_M_SH) +# define ARCHITECTURE_ID "SHx" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +#elif defined(__WATCOMC__) +# if defined(_M_I86) +# define ARCHITECTURE_ID "I86" + +# elif defined(_M_IX86) +# define ARCHITECTURE_ID "X86" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +#elif defined(__IAR_SYSTEMS_ICC__) || defined(__IAR_SYSTEMS_ICC) +# if defined(__ICCARM__) +# define ARCHITECTURE_ID "ARM" + +# elif defined(__ICCRX__) +# define ARCHITECTURE_ID "RX" + +# elif defined(__ICCRH850__) +# define ARCHITECTURE_ID "RH850" + +# elif defined(__ICCRL78__) +# define ARCHITECTURE_ID "RL78" + +# elif defined(__ICCRISCV__) +# define ARCHITECTURE_ID "RISCV" + +# elif defined(__ICCAVR__) +# define ARCHITECTURE_ID "AVR" + +# elif defined(__ICC430__) +# define ARCHITECTURE_ID "MSP430" + +# elif defined(__ICCV850__) +# define ARCHITECTURE_ID "V850" + +# elif defined(__ICC8051__) +# define ARCHITECTURE_ID "8051" + +# elif defined(__ICCSTM8__) +# define ARCHITECTURE_ID "STM8" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +#elif defined(__ghs__) +# if defined(__PPC64__) +# define ARCHITECTURE_ID "PPC64" + +# elif defined(__ppc__) +# define ARCHITECTURE_ID "PPC" + +# elif defined(__ARM__) +# define ARCHITECTURE_ID "ARM" + +# elif defined(__x86_64__) +# define ARCHITECTURE_ID "x64" + +# elif defined(__i386__) +# define ARCHITECTURE_ID "X86" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +#elif defined(__TI_COMPILER_VERSION__) +# if defined(__TI_ARM__) +# define ARCHITECTURE_ID "ARM" + +# elif defined(__MSP430__) +# define ARCHITECTURE_ID "MSP430" + +# elif defined(__TMS320C28XX__) +# define ARCHITECTURE_ID "TMS320C28x" + +# elif defined(__TMS320C6X__) || defined(_TMS320C6X) +# define ARCHITECTURE_ID "TMS320C6x" + +# else /* unknown architecture */ +# define ARCHITECTURE_ID "" +# endif + +# elif defined(__ADSPSHARC__) +# define ARCHITECTURE_ID "SHARC" + +# elif defined(__ADSPBLACKFIN__) +# define ARCHITECTURE_ID "Blackfin" + +#elif defined(__TASKING__) + +# if defined(__CTC__) || defined(__CPTC__) +# define ARCHITECTURE_ID "TriCore" + +# elif defined(__CMCS__) +# define ARCHITECTURE_ID "MCS" + +# elif defined(__CARM__) +# define ARCHITECTURE_ID "ARM" + +# elif defined(__CARC__) +# define ARCHITECTURE_ID "ARC" + +# elif defined(__C51__) +# define ARCHITECTURE_ID "8051" + +# elif defined(__CPCP__) +# define ARCHITECTURE_ID "PCP" + +# else +# define ARCHITECTURE_ID "" +# endif + +#else +# define ARCHITECTURE_ID +#endif + +/* Convert integer to decimal digit literals. */ +#define DEC(n) \ + ('0' + (((n) / 10000000)%10)), \ + ('0' + (((n) / 1000000)%10)), \ + ('0' + (((n) / 100000)%10)), \ + ('0' + (((n) / 10000)%10)), \ + ('0' + (((n) / 1000)%10)), \ + ('0' + (((n) / 100)%10)), \ + ('0' + (((n) / 10)%10)), \ + ('0' + ((n) % 10)) + +/* Convert integer to hex digit literals. */ +#define HEX(n) \ + ('0' + ((n)>>28 & 0xF)), \ + ('0' + ((n)>>24 & 0xF)), \ + ('0' + ((n)>>20 & 0xF)), \ + ('0' + ((n)>>16 & 0xF)), \ + ('0' + ((n)>>12 & 0xF)), \ + ('0' + ((n)>>8 & 0xF)), \ + ('0' + ((n)>>4 & 0xF)), \ + ('0' + ((n) & 0xF)) + +/* Construct a string literal encoding the version number. */ +#ifdef COMPILER_VERSION +char const* info_version = "INFO" ":" "compiler_version[" COMPILER_VERSION "]"; + +/* Construct a string literal encoding the version number components. */ +#elif defined(COMPILER_VERSION_MAJOR) +char const info_version[] = { + 'I', 'N', 'F', 'O', ':', + 'c','o','m','p','i','l','e','r','_','v','e','r','s','i','o','n','[', + COMPILER_VERSION_MAJOR, +# ifdef COMPILER_VERSION_MINOR + '.', COMPILER_VERSION_MINOR, +# ifdef COMPILER_VERSION_PATCH + '.', COMPILER_VERSION_PATCH, +# ifdef COMPILER_VERSION_TWEAK + '.', COMPILER_VERSION_TWEAK, +# endif +# endif +# endif + ']','\0'}; +#endif + +/* Construct a string literal encoding the internal version number. */ +#ifdef COMPILER_VERSION_INTERNAL +char const info_version_internal[] = { + 'I', 'N', 'F', 'O', ':', + 'c','o','m','p','i','l','e','r','_','v','e','r','s','i','o','n','_', + 'i','n','t','e','r','n','a','l','[', + COMPILER_VERSION_INTERNAL,']','\0'}; +#elif defined(COMPILER_VERSION_INTERNAL_STR) +char const* info_version_internal = "INFO" ":" "compiler_version_internal[" COMPILER_VERSION_INTERNAL_STR "]"; +#endif + +/* Construct a string literal encoding the version number components. */ +#ifdef SIMULATE_VERSION_MAJOR +char const info_simulate_version[] = { + 'I', 'N', 'F', 'O', ':', + 's','i','m','u','l','a','t','e','_','v','e','r','s','i','o','n','[', + SIMULATE_VERSION_MAJOR, +# ifdef SIMULATE_VERSION_MINOR + '.', SIMULATE_VERSION_MINOR, +# ifdef SIMULATE_VERSION_PATCH + '.', SIMULATE_VERSION_PATCH, +# ifdef SIMULATE_VERSION_TWEAK + '.', SIMULATE_VERSION_TWEAK, +# endif +# endif +# endif + ']','\0'}; +#endif + +/* Construct the string literal in pieces to prevent the source from + getting matched. Store it in a pointer rather than an array + because some compilers will just produce instructions to fill the + array rather than assigning a pointer to a static array. */ +char const* info_platform = "INFO" ":" "platform[" PLATFORM_ID "]"; +char const* info_arch = "INFO" ":" "arch[" ARCHITECTURE_ID "]"; + + + +#if defined(__INTEL_COMPILER) && defined(_MSVC_LANG) && _MSVC_LANG < 201403L +# if defined(__INTEL_CXX11_MODE__) +# if defined(__cpp_aggregate_nsdmi) +# define CXX_STD 201402L +# else +# define CXX_STD 201103L +# endif +# else +# define CXX_STD 199711L +# endif +#elif defined(_MSC_VER) && defined(_MSVC_LANG) +# define CXX_STD _MSVC_LANG +#else +# define CXX_STD __cplusplus +#endif + +const char* info_language_standard_default = "INFO" ":" "standard_default[" +#if CXX_STD > 202002L + "23" +#elif CXX_STD > 201703L + "20" +#elif CXX_STD >= 201703L + "17" +#elif CXX_STD >= 201402L + "14" +#elif CXX_STD >= 201103L + "11" +#else + "98" +#endif +"]"; + +const char* info_language_extensions_default = "INFO" ":" "extensions_default[" +#if (defined(__clang__) || defined(__GNUC__) || defined(__xlC__) || \ + defined(__TI_COMPILER_VERSION__)) && \ + !defined(__STRICT_ANSI__) + "ON" +#else + "OFF" +#endif +"]"; + +/*--------------------------------------------------------------------------*/ + +int main(int argc, char* argv[]) +{ + int require = 0; + require += info_compiler[argc]; + require += info_platform[argc]; + require += info_arch[argc]; +#ifdef COMPILER_VERSION_MAJOR + require += info_version[argc]; +#endif +#ifdef COMPILER_VERSION_INTERNAL + require += info_version_internal[argc]; +#endif +#ifdef SIMULATE_ID + require += info_simulate[argc]; +#endif +#ifdef SIMULATE_VERSION_MAJOR + require += info_simulate_version[argc]; +#endif +#if defined(__CRAYXT_COMPUTE_LINUX_TARGET) + require += info_cray[argc]; +#endif + require += info_language_standard_default[argc]; + require += info_language_extensions_default[argc]; + (void)argv; + return require; +} diff --git a/build/CMakeFiles/3.26.0/CompilerIdCXX/a.out b/build/CMakeFiles/3.26.0/CompilerIdCXX/a.out new file mode 100644 index 0000000000000000000000000000000000000000..f42a64b331bded04287f0a0c90c22f4b073c82c9 Binary files /dev/null and b/build/CMakeFiles/3.26.0/CompilerIdCXX/a.out differ diff --git a/build/CMakeFiles/CMakeConfigureLog.yaml b/build/CMakeFiles/CMakeConfigureLog.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f24392b70210b3f79c1e03ce3b83f9f4e79b4475 --- /dev/null +++ b/build/CMakeFiles/CMakeConfigureLog.yaml @@ -0,0 +1,1021 @@ + +--- +events: + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineSystem.cmake:204 (message)" + - "CMakeLists.txt:2 (project)" + message: | + The system is: Linux - 6.8.0-85-generic - x86_64 + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:17 (message)" + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:64 (__determine_compiler_id_test)" + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCCompiler.cmake:123 (CMAKE_DETERMINE_COMPILER_ID)" + - "CMakeLists.txt:2 (project)" + message: | + Compiling the C compiler identification source file "CMakeCCompilerId.c" succeeded. + Compiler: /usr/bin/cc + Build flags: + Id flags: + + The output was: + 0 + + + Compilation of the C compiler identification source "CMakeCCompilerId.c" produced "a.out" + + The C compiler identification is GNU, found in: + /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/3.26.0/CompilerIdC/a.out + + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:17 (message)" + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake:64 (__determine_compiler_id_test)" + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCXXCompiler.cmake:126 (CMAKE_DETERMINE_COMPILER_ID)" + - "CMakeLists.txt:2 (project)" + message: | + Compiling the CXX compiler identification source file "CMakeCXXCompilerId.cpp" succeeded. + Compiler: /usr/bin/c++ + Build flags: + Id flags: + + The output was: + 0 + + + Compilation of the CXX compiler identification source "CMakeCXXCompilerId.cpp" produced "a.out" + + The CXX compiler identification is GNU, found in: + /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/3.26.0/CompilerIdCXX/a.out + + - + kind: "try_compile-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerABI.cmake:57 (try_compile)" + - "/usr/local/share/cmake-3.26/Modules/CMakeTestCCompiler.cmake:26 (CMAKE_DETERMINE_COMPILER_ABI)" + - "CMakeLists.txt:2 (project)" + checks: + - "Detecting C compiler ABI info" + directories: + source: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-abxTT3" + binary: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-abxTT3" + cmakeVariables: + CMAKE_C_FLAGS: "" + buildResult: + variable: "CMAKE_C_ABI_COMPILED" + cached: true + stdout: | + Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-abxTT3 + + Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_d7aad/fast && /usr/bin/gmake -f CMakeFiles/cmTC_d7aad.dir/build.make CMakeFiles/cmTC_d7aad.dir/build + gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-abxTT3' + Building C object CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o + /usr/bin/cc -v -o CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o -c /usr/local/share/cmake-3.26/Modules/CMakeCCompilerABI.c + Using built-in specs. + COLLECT_GCC=/usr/bin/cc + OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa + OFFLOAD_TARGET_DEFAULT=1 + Target: x86_64-linux-gnu + Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2 + Thread model: posix + Supported LTO compression algorithms: zlib zstd + gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) + COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o' '-c' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_d7aad.dir/' + /usr/lib/gcc/x86_64-linux-gnu/11/cc1 -quiet -v -imultiarch x86_64-linux-gnu /usr/local/share/cmake-3.26/Modules/CMakeCCompilerABI.c -quiet -dumpdir CMakeFiles/cmTC_d7aad.dir/ -dumpbase CMakeCCompilerABI.c.c -dumpbase-ext .c -mtune=generic -march=x86-64 -version -fasynchronous-unwind-tables -fstack-protector-strong -Wformat -Wformat-security -fstack-clash-protection -fcf-protection -o /tmp/ccoBKM3r.s + GNU C17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu) + compiled by GNU C version 11.4.0, GMP version 6.2.1, MPFR version 4.1.0, MPC version 1.2.1, isl version isl-0.24-GMP + + GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072 + ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu" + ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/include-fixed" + ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/../../../../x86_64-linux-gnu/include" + #include "..." search starts here: + #include <...> search starts here: + /usr/lib/gcc/x86_64-linux-gnu/11/include + /usr/local/include + /usr/include/x86_64-linux-gnu + /usr/include + End of search list. + GNU C17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu) + compiled by GNU C version 11.4.0, GMP version 6.2.1, MPFR version 4.1.0, MPC version 1.2.1, isl version isl-0.24-GMP + + GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072 + Compiler executable checksum: 4011c2103cba78949d7e02d0f0047a3d + COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o' '-c' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_d7aad.dir/' + as -v --64 -o CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o /tmp/ccoBKM3r.s + GNU assembler version 2.38 (x86_64-linux-gnu) using BFD version (GNU Binutils for Ubuntu) 2.38 + COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/ + LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/ + COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o' '-c' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.' + Linking C executable cmTC_d7aad + /usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_d7aad.dir/link.txt --verbose=1 + /usr/bin/cc -v -rdynamic CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o -o cmTC_d7aad + Using built-in specs. + COLLECT_GCC=/usr/bin/cc + COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper + OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa + OFFLOAD_TARGET_DEFAULT=1 + Target: x86_64-linux-gnu + Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2 + Thread model: posix + Supported LTO compression algorithms: zlib zstd + gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) + COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/ + LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/ + COLLECT_GCC_OPTIONS='-v' '-rdynamic' '-o' 'cmTC_d7aad' '-mtune=generic' '-march=x86-64' '-dumpdir' 'cmTC_d7aad.' + /usr/lib/gcc/x86_64-linux-gnu/11/collect2 -plugin /usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper -plugin-opt=-fresolution=/tmp/ccPjbLEh.res -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s --build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -export-dynamic -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie -z now -z relro -o cmTC_d7aad /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o -L/usr/lib/gcc/x86_64-linux-gnu/11 -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/11/../../.. CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o -lgcc --push-state --as-needed -lgcc_s --pop-state -lc -lgcc --push-state --as-needed -lgcc_s --pop-state /usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o + COLLECT_GCC_OPTIONS='-v' '-rdynamic' '-o' 'cmTC_d7aad' '-mtune=generic' '-march=x86-64' '-dumpdir' 'cmTC_d7aad.' + gmake[1]: Leaving directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-abxTT3' + + exitCode: 0 + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerABI.cmake:127 (message)" + - "/usr/local/share/cmake-3.26/Modules/CMakeTestCCompiler.cmake:26 (CMAKE_DETERMINE_COMPILER_ABI)" + - "CMakeLists.txt:2 (project)" + message: | + Parsed C implicit include dir info: rv=done + found start of include info + found start of implicit include info + add: [/usr/lib/gcc/x86_64-linux-gnu/11/include] + add: [/usr/local/include] + add: [/usr/include/x86_64-linux-gnu] + add: [/usr/include] + end of search list found + collapse include dir [/usr/lib/gcc/x86_64-linux-gnu/11/include] ==> [/usr/lib/gcc/x86_64-linux-gnu/11/include] + collapse include dir [/usr/local/include] ==> [/usr/local/include] + collapse include dir [/usr/include/x86_64-linux-gnu] ==> [/usr/include/x86_64-linux-gnu] + collapse include dir [/usr/include] ==> [/usr/include] + implicit include dirs: [/usr/lib/gcc/x86_64-linux-gnu/11/include;/usr/local/include;/usr/include/x86_64-linux-gnu;/usr/include] + + + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerABI.cmake:152 (message)" + - "/usr/local/share/cmake-3.26/Modules/CMakeTestCCompiler.cmake:26 (CMAKE_DETERMINE_COMPILER_ABI)" + - "CMakeLists.txt:2 (project)" + message: | + Parsed C implicit link information: + link line regex: [^( *|.*[/\\])(ld|CMAKE_LINK_STARTFILE-NOTFOUND|([^/\\]+-)?ld|collect2)[^/\\]*( |$)] + ignore line: [Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-abxTT3] + ignore line: [] + ignore line: [Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_d7aad/fast && /usr/bin/gmake -f CMakeFiles/cmTC_d7aad.dir/build.make CMakeFiles/cmTC_d7aad.dir/build] + ignore line: [gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-abxTT3'] + ignore line: [Building C object CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o] + ignore line: [/usr/bin/cc -v -o CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o -c /usr/local/share/cmake-3.26/Modules/CMakeCCompilerABI.c] + ignore line: [Using built-in specs.] + ignore line: [COLLECT_GCC=/usr/bin/cc] + ignore line: [OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa] + ignore line: [OFFLOAD_TARGET_DEFAULT=1] + ignore line: [Target: x86_64-linux-gnu] + ignore line: [Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c ada c++ go brig d fortran objc obj-c++ m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32 m64 mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2] + ignore line: [Thread model: posix] + ignore line: [Supported LTO compression algorithms: zlib zstd] + ignore line: [gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) ] + ignore line: [COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o' '-c' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_d7aad.dir/'] + ignore line: [ /usr/lib/gcc/x86_64-linux-gnu/11/cc1 -quiet -v -imultiarch x86_64-linux-gnu /usr/local/share/cmake-3.26/Modules/CMakeCCompilerABI.c -quiet -dumpdir CMakeFiles/cmTC_d7aad.dir/ -dumpbase CMakeCCompilerABI.c.c -dumpbase-ext .c -mtune=generic -march=x86-64 -version -fasynchronous-unwind-tables -fstack-protector-strong -Wformat -Wformat-security -fstack-clash-protection -fcf-protection -o /tmp/ccoBKM3r.s] + ignore line: [GNU C17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu)] + ignore line: [ compiled by GNU C version 11.4.0 GMP version 6.2.1 MPFR version 4.1.0 MPC version 1.2.1 isl version isl-0.24-GMP] + ignore line: [] + ignore line: [GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072] + ignore line: [ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu"] + ignore line: [ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/include-fixed"] + ignore line: [ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/../../../../x86_64-linux-gnu/include"] + ignore line: [#include "..." search starts here:] + ignore line: [#include <...> search starts here:] + ignore line: [ /usr/lib/gcc/x86_64-linux-gnu/11/include] + ignore line: [ /usr/local/include] + ignore line: [ /usr/include/x86_64-linux-gnu] + ignore line: [ /usr/include] + ignore line: [End of search list.] + ignore line: [GNU C17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu)] + ignore line: [ compiled by GNU C version 11.4.0 GMP version 6.2.1 MPFR version 4.1.0 MPC version 1.2.1 isl version isl-0.24-GMP] + ignore line: [] + ignore line: [GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072] + ignore line: [Compiler executable checksum: 4011c2103cba78949d7e02d0f0047a3d] + ignore line: [COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o' '-c' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_d7aad.dir/'] + ignore line: [ as -v --64 -o CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o /tmp/ccoBKM3r.s] + ignore line: [GNU assembler version 2.38 (x86_64-linux-gnu) using BFD version (GNU Binutils for Ubuntu) 2.38] + ignore line: [COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/] + ignore line: [LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/] + ignore line: [COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o' '-c' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.'] + ignore line: [Linking C executable cmTC_d7aad] + ignore line: [/usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_d7aad.dir/link.txt --verbose=1] + ignore line: [/usr/bin/cc -v -rdynamic CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o -o cmTC_d7aad ] + ignore line: [Using built-in specs.] + ignore line: [COLLECT_GCC=/usr/bin/cc] + ignore line: [COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper] + ignore line: [OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa] + ignore line: [OFFLOAD_TARGET_DEFAULT=1] + ignore line: [Target: x86_64-linux-gnu] + ignore line: [Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c ada c++ go brig d fortran objc obj-c++ m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32 m64 mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2] + ignore line: [Thread model: posix] + ignore line: [Supported LTO compression algorithms: zlib zstd] + ignore line: [gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) ] + ignore line: [COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/] + ignore line: [LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/] + ignore line: [COLLECT_GCC_OPTIONS='-v' '-rdynamic' '-o' 'cmTC_d7aad' '-mtune=generic' '-march=x86-64' '-dumpdir' 'cmTC_d7aad.'] + link line: [ /usr/lib/gcc/x86_64-linux-gnu/11/collect2 -plugin /usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper -plugin-opt=-fresolution=/tmp/ccPjbLEh.res -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s --build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -export-dynamic -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie -z now -z relro -o cmTC_d7aad /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o -L/usr/lib/gcc/x86_64-linux-gnu/11 -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/11/../../.. CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o -lgcc --push-state --as-needed -lgcc_s --pop-state -lc -lgcc --push-state --as-needed -lgcc_s --pop-state /usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/collect2] ==> ignore + arg [-plugin] ==> ignore + arg [/usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so] ==> ignore + arg [-plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper] ==> ignore + arg [-plugin-opt=-fresolution=/tmp/ccPjbLEh.res] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc_s] ==> ignore + arg [-plugin-opt=-pass-through=-lc] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc_s] ==> ignore + arg [--build-id] ==> ignore + arg [--eh-frame-hdr] ==> ignore + arg [-m] ==> ignore + arg [elf_x86_64] ==> ignore + arg [--hash-style=gnu] ==> ignore + arg [--as-needed] ==> ignore + arg [-export-dynamic] ==> ignore + arg [-dynamic-linker] ==> ignore + arg [/lib64/ld-linux-x86-64.so.2] ==> ignore + arg [-pie] ==> ignore + arg [-znow] ==> ignore + arg [-zrelro] ==> ignore + arg [-o] ==> ignore + arg [cmTC_d7aad] ==> ignore + arg [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] + arg [-L/lib/x86_64-linux-gnu] ==> dir [/lib/x86_64-linux-gnu] + arg [-L/lib/../lib] ==> dir [/lib/../lib] + arg [-L/usr/lib/x86_64-linux-gnu] ==> dir [/usr/lib/x86_64-linux-gnu] + arg [-L/usr/lib/../lib] ==> dir [/usr/lib/../lib] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../..] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../..] + arg [CMakeFiles/cmTC_d7aad.dir/CMakeCCompilerABI.c.o] ==> ignore + arg [-lgcc] ==> lib [gcc] + arg [--push-state] ==> ignore + arg [--as-needed] ==> ignore + arg [-lgcc_s] ==> lib [gcc_s] + arg [--pop-state] ==> ignore + arg [-lc] ==> lib [c] + arg [-lgcc] ==> lib [gcc] + arg [--push-state] ==> ignore + arg [--as-needed] ==> ignore + arg [-lgcc_s] ==> lib [gcc_s] + arg [--pop-state] ==> ignore + arg [/usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o] + collapse obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o] ==> [/usr/lib/x86_64-linux-gnu/Scrt1.o] + collapse obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o] ==> [/usr/lib/x86_64-linux-gnu/crti.o] + collapse obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o] ==> [/usr/lib/x86_64-linux-gnu/crtn.o] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11] ==> [/usr/lib/gcc/x86_64-linux-gnu/11] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] ==> [/usr/lib/x86_64-linux-gnu] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] ==> [/usr/lib] + collapse library dir [/lib/x86_64-linux-gnu] ==> [/lib/x86_64-linux-gnu] + collapse library dir [/lib/../lib] ==> [/lib] + collapse library dir [/usr/lib/x86_64-linux-gnu] ==> [/usr/lib/x86_64-linux-gnu] + collapse library dir [/usr/lib/../lib] ==> [/usr/lib] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../..] ==> [/usr/lib] + implicit libs: [gcc;gcc_s;c;gcc;gcc_s] + implicit objs: [/usr/lib/x86_64-linux-gnu/Scrt1.o;/usr/lib/x86_64-linux-gnu/crti.o;/usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o;/usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o;/usr/lib/x86_64-linux-gnu/crtn.o] + implicit dirs: [/usr/lib/gcc/x86_64-linux-gnu/11;/usr/lib/x86_64-linux-gnu;/usr/lib;/lib/x86_64-linux-gnu;/lib] + implicit fwks: [] + + + - + kind: "try_compile-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerABI.cmake:57 (try_compile)" + - "/usr/local/share/cmake-3.26/Modules/CMakeTestCXXCompiler.cmake:26 (CMAKE_DETERMINE_COMPILER_ABI)" + - "CMakeLists.txt:2 (project)" + checks: + - "Detecting CXX compiler ABI info" + directories: + source: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-mOzZEB" + binary: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-mOzZEB" + cmakeVariables: + CMAKE_CXX_FLAGS: "" + buildResult: + variable: "CMAKE_CXX_ABI_COMPILED" + cached: true + stdout: | + Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-mOzZEB + + Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_f00aa/fast && /usr/bin/gmake -f CMakeFiles/cmTC_f00aa.dir/build.make CMakeFiles/cmTC_f00aa.dir/build + gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-mOzZEB' + Building CXX object CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o + /usr/bin/c++ -v -o CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o -c /usr/local/share/cmake-3.26/Modules/CMakeCXXCompilerABI.cpp + Using built-in specs. + COLLECT_GCC=/usr/bin/c++ + OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa + OFFLOAD_TARGET_DEFAULT=1 + Target: x86_64-linux-gnu + Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2 + Thread model: posix + Supported LTO compression algorithms: zlib zstd + gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) + COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_f00aa.dir/' + /usr/lib/gcc/x86_64-linux-gnu/11/cc1plus -quiet -v -imultiarch x86_64-linux-gnu -D_GNU_SOURCE /usr/local/share/cmake-3.26/Modules/CMakeCXXCompilerABI.cpp -quiet -dumpdir CMakeFiles/cmTC_f00aa.dir/ -dumpbase CMakeCXXCompilerABI.cpp.cpp -dumpbase-ext .cpp -mtune=generic -march=x86-64 -version -fasynchronous-unwind-tables -fstack-protector-strong -Wformat -Wformat-security -fstack-clash-protection -fcf-protection -o /tmp/cc5G7J2m.s + GNU C++17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu) + compiled by GNU C version 11.4.0, GMP version 6.2.1, MPFR version 4.1.0, MPC version 1.2.1, isl version isl-0.24-GMP + + GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072 + ignoring duplicate directory "/usr/include/x86_64-linux-gnu/c++/11" + ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu" + ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/include-fixed" + ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/../../../../x86_64-linux-gnu/include" + #include "..." search starts here: + #include <...> search starts here: + /usr/include/c++/11 + /usr/include/x86_64-linux-gnu/c++/11 + /usr/include/c++/11/backward + /usr/lib/gcc/x86_64-linux-gnu/11/include + /usr/local/include + /usr/include/x86_64-linux-gnu + /usr/include + End of search list. + GNU C++17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu) + compiled by GNU C version 11.4.0, GMP version 6.2.1, MPFR version 4.1.0, MPC version 1.2.1, isl version isl-0.24-GMP + + GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072 + Compiler executable checksum: 6c87588fc345655b93b8c25f48f88886 + COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_f00aa.dir/' + as -v --64 -o CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o /tmp/cc5G7J2m.s + GNU assembler version 2.38 (x86_64-linux-gnu) using BFD version (GNU Binutils for Ubuntu) 2.38 + COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/ + LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/ + COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.' + Linking CXX executable cmTC_f00aa + /usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_f00aa.dir/link.txt --verbose=1 + /usr/bin/c++ -v -rdynamic CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o -o cmTC_f00aa + Using built-in specs. + COLLECT_GCC=/usr/bin/c++ + COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper + OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa + OFFLOAD_TARGET_DEFAULT=1 + Target: x86_64-linux-gnu + Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2 + Thread model: posix + Supported LTO compression algorithms: zlib zstd + gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) + COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/ + LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/ + COLLECT_GCC_OPTIONS='-v' '-rdynamic' '-o' 'cmTC_f00aa' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'cmTC_f00aa.' + /usr/lib/gcc/x86_64-linux-gnu/11/collect2 -plugin /usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper -plugin-opt=-fresolution=/tmp/ccfErqBA.res -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lgcc --build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -export-dynamic -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie -z now -z relro -o cmTC_f00aa /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o -L/usr/lib/gcc/x86_64-linux-gnu/11 -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/11/../../.. CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o -lstdc++ -lm -lgcc_s -lgcc -lc -lgcc_s -lgcc /usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o + COLLECT_GCC_OPTIONS='-v' '-rdynamic' '-o' 'cmTC_f00aa' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'cmTC_f00aa.' + gmake[1]: Leaving directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-mOzZEB' + + exitCode: 0 + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerABI.cmake:127 (message)" + - "/usr/local/share/cmake-3.26/Modules/CMakeTestCXXCompiler.cmake:26 (CMAKE_DETERMINE_COMPILER_ABI)" + - "CMakeLists.txt:2 (project)" + message: | + Parsed CXX implicit include dir info: rv=done + found start of include info + found start of implicit include info + add: [/usr/include/c++/11] + add: [/usr/include/x86_64-linux-gnu/c++/11] + add: [/usr/include/c++/11/backward] + add: [/usr/lib/gcc/x86_64-linux-gnu/11/include] + add: [/usr/local/include] + add: [/usr/include/x86_64-linux-gnu] + add: [/usr/include] + end of search list found + collapse include dir [/usr/include/c++/11] ==> [/usr/include/c++/11] + collapse include dir [/usr/include/x86_64-linux-gnu/c++/11] ==> [/usr/include/x86_64-linux-gnu/c++/11] + collapse include dir [/usr/include/c++/11/backward] ==> [/usr/include/c++/11/backward] + collapse include dir [/usr/lib/gcc/x86_64-linux-gnu/11/include] ==> [/usr/lib/gcc/x86_64-linux-gnu/11/include] + collapse include dir [/usr/local/include] ==> [/usr/local/include] + collapse include dir [/usr/include/x86_64-linux-gnu] ==> [/usr/include/x86_64-linux-gnu] + collapse include dir [/usr/include] ==> [/usr/include] + implicit include dirs: [/usr/include/c++/11;/usr/include/x86_64-linux-gnu/c++/11;/usr/include/c++/11/backward;/usr/lib/gcc/x86_64-linux-gnu/11/include;/usr/local/include;/usr/include/x86_64-linux-gnu;/usr/include] + + + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerABI.cmake:152 (message)" + - "/usr/local/share/cmake-3.26/Modules/CMakeTestCXXCompiler.cmake:26 (CMAKE_DETERMINE_COMPILER_ABI)" + - "CMakeLists.txt:2 (project)" + message: | + Parsed CXX implicit link information: + link line regex: [^( *|.*[/\\])(ld|CMAKE_LINK_STARTFILE-NOTFOUND|([^/\\]+-)?ld|collect2)[^/\\]*( |$)] + ignore line: [Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-mOzZEB] + ignore line: [] + ignore line: [Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_f00aa/fast && /usr/bin/gmake -f CMakeFiles/cmTC_f00aa.dir/build.make CMakeFiles/cmTC_f00aa.dir/build] + ignore line: [gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-mOzZEB'] + ignore line: [Building CXX object CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o] + ignore line: [/usr/bin/c++ -v -o CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o -c /usr/local/share/cmake-3.26/Modules/CMakeCXXCompilerABI.cpp] + ignore line: [Using built-in specs.] + ignore line: [COLLECT_GCC=/usr/bin/c++] + ignore line: [OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa] + ignore line: [OFFLOAD_TARGET_DEFAULT=1] + ignore line: [Target: x86_64-linux-gnu] + ignore line: [Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c ada c++ go brig d fortran objc obj-c++ m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32 m64 mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2] + ignore line: [Thread model: posix] + ignore line: [Supported LTO compression algorithms: zlib zstd] + ignore line: [gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) ] + ignore line: [COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_f00aa.dir/'] + ignore line: [ /usr/lib/gcc/x86_64-linux-gnu/11/cc1plus -quiet -v -imultiarch x86_64-linux-gnu -D_GNU_SOURCE /usr/local/share/cmake-3.26/Modules/CMakeCXXCompilerABI.cpp -quiet -dumpdir CMakeFiles/cmTC_f00aa.dir/ -dumpbase CMakeCXXCompilerABI.cpp.cpp -dumpbase-ext .cpp -mtune=generic -march=x86-64 -version -fasynchronous-unwind-tables -fstack-protector-strong -Wformat -Wformat-security -fstack-clash-protection -fcf-protection -o /tmp/cc5G7J2m.s] + ignore line: [GNU C++17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu)] + ignore line: [ compiled by GNU C version 11.4.0 GMP version 6.2.1 MPFR version 4.1.0 MPC version 1.2.1 isl version isl-0.24-GMP] + ignore line: [] + ignore line: [GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072] + ignore line: [ignoring duplicate directory "/usr/include/x86_64-linux-gnu/c++/11"] + ignore line: [ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu"] + ignore line: [ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/include-fixed"] + ignore line: [ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/../../../../x86_64-linux-gnu/include"] + ignore line: [#include "..." search starts here:] + ignore line: [#include <...> search starts here:] + ignore line: [ /usr/include/c++/11] + ignore line: [ /usr/include/x86_64-linux-gnu/c++/11] + ignore line: [ /usr/include/c++/11/backward] + ignore line: [ /usr/lib/gcc/x86_64-linux-gnu/11/include] + ignore line: [ /usr/local/include] + ignore line: [ /usr/include/x86_64-linux-gnu] + ignore line: [ /usr/include] + ignore line: [End of search list.] + ignore line: [GNU C++17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu)] + ignore line: [ compiled by GNU C version 11.4.0 GMP version 6.2.1 MPFR version 4.1.0 MPC version 1.2.1 isl version isl-0.24-GMP] + ignore line: [] + ignore line: [GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072] + ignore line: [Compiler executable checksum: 6c87588fc345655b93b8c25f48f88886] + ignore line: [COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_f00aa.dir/'] + ignore line: [ as -v --64 -o CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o /tmp/cc5G7J2m.s] + ignore line: [GNU assembler version 2.38 (x86_64-linux-gnu) using BFD version (GNU Binutils for Ubuntu) 2.38] + ignore line: [COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/] + ignore line: [LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/] + ignore line: [COLLECT_GCC_OPTIONS='-v' '-o' 'CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.'] + ignore line: [Linking CXX executable cmTC_f00aa] + ignore line: [/usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_f00aa.dir/link.txt --verbose=1] + ignore line: [/usr/bin/c++ -v -rdynamic CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o -o cmTC_f00aa ] + ignore line: [Using built-in specs.] + ignore line: [COLLECT_GCC=/usr/bin/c++] + ignore line: [COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper] + ignore line: [OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa] + ignore line: [OFFLOAD_TARGET_DEFAULT=1] + ignore line: [Target: x86_64-linux-gnu] + ignore line: [Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c ada c++ go brig d fortran objc obj-c++ m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32 m64 mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2] + ignore line: [Thread model: posix] + ignore line: [Supported LTO compression algorithms: zlib zstd] + ignore line: [gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) ] + ignore line: [COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/] + ignore line: [LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/] + ignore line: [COLLECT_GCC_OPTIONS='-v' '-rdynamic' '-o' 'cmTC_f00aa' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-dumpdir' 'cmTC_f00aa.'] + link line: [ /usr/lib/gcc/x86_64-linux-gnu/11/collect2 -plugin /usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper -plugin-opt=-fresolution=/tmp/ccfErqBA.res -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lgcc --build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -export-dynamic -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie -z now -z relro -o cmTC_f00aa /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o -L/usr/lib/gcc/x86_64-linux-gnu/11 -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/11/../../.. CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o -lstdc++ -lm -lgcc_s -lgcc -lc -lgcc_s -lgcc /usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/collect2] ==> ignore + arg [-plugin] ==> ignore + arg [/usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so] ==> ignore + arg [-plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper] ==> ignore + arg [-plugin-opt=-fresolution=/tmp/ccfErqBA.res] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc_s] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc] ==> ignore + arg [-plugin-opt=-pass-through=-lc] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc_s] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc] ==> ignore + arg [--build-id] ==> ignore + arg [--eh-frame-hdr] ==> ignore + arg [-m] ==> ignore + arg [elf_x86_64] ==> ignore + arg [--hash-style=gnu] ==> ignore + arg [--as-needed] ==> ignore + arg [-export-dynamic] ==> ignore + arg [-dynamic-linker] ==> ignore + arg [/lib64/ld-linux-x86-64.so.2] ==> ignore + arg [-pie] ==> ignore + arg [-znow] ==> ignore + arg [-zrelro] ==> ignore + arg [-o] ==> ignore + arg [cmTC_f00aa] ==> ignore + arg [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] + arg [-L/lib/x86_64-linux-gnu] ==> dir [/lib/x86_64-linux-gnu] + arg [-L/lib/../lib] ==> dir [/lib/../lib] + arg [-L/usr/lib/x86_64-linux-gnu] ==> dir [/usr/lib/x86_64-linux-gnu] + arg [-L/usr/lib/../lib] ==> dir [/usr/lib/../lib] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../..] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../..] + arg [CMakeFiles/cmTC_f00aa.dir/CMakeCXXCompilerABI.cpp.o] ==> ignore + arg [-lstdc++] ==> lib [stdc++] + arg [-lm] ==> lib [m] + arg [-lgcc_s] ==> lib [gcc_s] + arg [-lgcc] ==> lib [gcc] + arg [-lc] ==> lib [c] + arg [-lgcc_s] ==> lib [gcc_s] + arg [-lgcc] ==> lib [gcc] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o] ==> obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o] + collapse obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o] ==> [/usr/lib/x86_64-linux-gnu/Scrt1.o] + collapse obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o] ==> [/usr/lib/x86_64-linux-gnu/crti.o] + collapse obj [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o] ==> [/usr/lib/x86_64-linux-gnu/crtn.o] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11] ==> [/usr/lib/gcc/x86_64-linux-gnu/11] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] ==> [/usr/lib/x86_64-linux-gnu] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] ==> [/usr/lib] + collapse library dir [/lib/x86_64-linux-gnu] ==> [/lib/x86_64-linux-gnu] + collapse library dir [/lib/../lib] ==> [/lib] + collapse library dir [/usr/lib/x86_64-linux-gnu] ==> [/usr/lib/x86_64-linux-gnu] + collapse library dir [/usr/lib/../lib] ==> [/usr/lib] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../..] ==> [/usr/lib] + implicit libs: [stdc++;m;gcc_s;gcc;c;gcc_s;gcc] + implicit objs: [/usr/lib/x86_64-linux-gnu/Scrt1.o;/usr/lib/x86_64-linux-gnu/crti.o;/usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o;/usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o;/usr/lib/x86_64-linux-gnu/crtn.o] + implicit dirs: [/usr/lib/gcc/x86_64-linux-gnu/11;/usr/lib/x86_64-linux-gnu;/usr/lib;/lib/x86_64-linux-gnu;/lib] + implicit fwks: [] + + + - + kind: "try_compile-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:219 (try_compile)" + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:483 (_OPENMP_GET_FLAGS)" + - "CMakeLists.txt:11 (find_package)" + description: "Detecting C OpenMP compiler info" + directories: + source: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2" + binary: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2" + cmakeVariables: + CMAKE_C_FLAGS: "" + CMAKE_MODULE_PATH: "/home/cam/Desktop/ICP/Fast-Robust-ICP/cmake" + buildResult: + variable: "OpenMP_COMPILE_RESULT_C_fopenmp" + cached: true + stdout: | + Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2 + + Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_d752a/fast && /usr/bin/gmake -f CMakeFiles/cmTC_d752a.dir/build.make CMakeFiles/cmTC_d752a.dir/build + gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2' + Building C object CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o + /usr/bin/cc -fopenmp -v -o CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o -c /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2/OpenMPTryFlag.c + Using built-in specs. + COLLECT_GCC=/usr/bin/cc + OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa + OFFLOAD_TARGET_DEFAULT=1 + Target: x86_64-linux-gnu + Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2 + Thread model: posix + Supported LTO compression algorithms: zlib zstd + gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) + COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o' '-c' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_d752a.dir/' + /usr/lib/gcc/x86_64-linux-gnu/11/cc1 -quiet -v -imultiarch x86_64-linux-gnu -D_REENTRANT /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2/OpenMPTryFlag.c -quiet -dumpdir CMakeFiles/cmTC_d752a.dir/ -dumpbase OpenMPTryFlag.c.c -dumpbase-ext .c -mtune=generic -march=x86-64 -version -fopenmp -fasynchronous-unwind-tables -fstack-protector-strong -Wformat -Wformat-security -fstack-clash-protection -fcf-protection -o /tmp/ccDzrBwj.s + GNU C17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu) + compiled by GNU C version 11.4.0, GMP version 6.2.1, MPFR version 4.1.0, MPC version 1.2.1, isl version isl-0.24-GMP + + GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072 + ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu" + ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/include-fixed" + ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/../../../../x86_64-linux-gnu/include" + #include "..." search starts here: + #include <...> search starts here: + /usr/lib/gcc/x86_64-linux-gnu/11/include + /usr/local/include + /usr/include/x86_64-linux-gnu + /usr/include + End of search list. + GNU C17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu) + compiled by GNU C version 11.4.0, GMP version 6.2.1, MPFR version 4.1.0, MPC version 1.2.1, isl version isl-0.24-GMP + + GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072 + Compiler executable checksum: 4011c2103cba78949d7e02d0f0047a3d + COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o' '-c' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_d752a.dir/' + as -v --64 -o CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o /tmp/ccDzrBwj.s + GNU assembler version 2.38 (x86_64-linux-gnu) using BFD version (GNU Binutils for Ubuntu) 2.38 + COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/ + LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/ + COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o' '-c' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.' + Linking C executable cmTC_d752a + /usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_d752a.dir/link.txt --verbose=1 + /usr/bin/cc -fopenmp -v -rdynamic CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o -o cmTC_d752a -v + Using built-in specs. + COLLECT_GCC=/usr/bin/cc + COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper + OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa + OFFLOAD_TARGET_DEFAULT=1 + Target: x86_64-linux-gnu + Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2 + Thread model: posix + Supported LTO compression algorithms: zlib zstd + gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) + COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/ + LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/ + Reading specs from /usr/lib/gcc/x86_64-linux-gnu/11/libgomp.spec + COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-rdynamic' '-o' 'cmTC_d752a' '-v' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'cmTC_d752a.' + /usr/lib/gcc/x86_64-linux-gnu/11/collect2 -plugin /usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper -plugin-opt=-fresolution=/tmp/ccgGbVmq.res -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lpthread -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s --build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -export-dynamic -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie -z now -z relro -o cmTC_d752a /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o /usr/lib/gcc/x86_64-linux-gnu/11/crtoffloadbegin.o -L/usr/lib/gcc/x86_64-linux-gnu/11 -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/11/../../.. CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o -lgomp -lgcc --push-state --as-needed -lgcc_s --pop-state -lpthread -lc -lgcc --push-state --as-needed -lgcc_s --pop-state /usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o /usr/lib/gcc/x86_64-linux-gnu/11/crtoffloadend.o + COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-rdynamic' '-o' 'cmTC_d752a' '-v' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'cmTC_d752a.' + gmake[1]: Leaving directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2' + + exitCode: 0 + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:262 (message)" + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:483 (_OPENMP_GET_FLAGS)" + - "CMakeLists.txt:11 (find_package)" + message: | + Parsed C OpenMP implicit link information from above output: + link line regex: [^( *|.*[/\\])(ld|CMAKE_LINK_STARTFILE-NOTFOUND|([^/\\]+-)?ld|collect2)[^/\\]*( |$)] + ignore line: [Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2] + ignore line: [] + ignore line: [Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_d752a/fast && /usr/bin/gmake -f CMakeFiles/cmTC_d752a.dir/build.make CMakeFiles/cmTC_d752a.dir/build] + ignore line: [gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2'] + ignore line: [Building C object CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o] + ignore line: [/usr/bin/cc -fopenmp -v -o CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o -c /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2/OpenMPTryFlag.c] + ignore line: [Using built-in specs.] + ignore line: [COLLECT_GCC=/usr/bin/cc] + ignore line: [OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa] + ignore line: [OFFLOAD_TARGET_DEFAULT=1] + ignore line: [Target: x86_64-linux-gnu] + ignore line: [Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c ada c++ go brig d fortran objc obj-c++ m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32 m64 mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2] + ignore line: [Thread model: posix] + ignore line: [Supported LTO compression algorithms: zlib zstd] + ignore line: [gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) ] + ignore line: [COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o' '-c' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_d752a.dir/'] + ignore line: [ /usr/lib/gcc/x86_64-linux-gnu/11/cc1 -quiet -v -imultiarch x86_64-linux-gnu -D_REENTRANT /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-CBqMK2/OpenMPTryFlag.c -quiet -dumpdir CMakeFiles/cmTC_d752a.dir/ -dumpbase OpenMPTryFlag.c.c -dumpbase-ext .c -mtune=generic -march=x86-64 -version -fopenmp -fasynchronous-unwind-tables -fstack-protector-strong -Wformat -Wformat-security -fstack-clash-protection -fcf-protection -o /tmp/ccDzrBwj.s] + ignore line: [GNU C17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu)] + ignore line: [ compiled by GNU C version 11.4.0 GMP version 6.2.1 MPFR version 4.1.0 MPC version 1.2.1 isl version isl-0.24-GMP] + ignore line: [] + ignore line: [GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072] + ignore line: [ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu"] + ignore line: [ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/include-fixed"] + ignore line: [ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/../../../../x86_64-linux-gnu/include"] + ignore line: [#include "..." search starts here:] + ignore line: [#include <...> search starts here:] + ignore line: [ /usr/lib/gcc/x86_64-linux-gnu/11/include] + ignore line: [ /usr/local/include] + ignore line: [ /usr/include/x86_64-linux-gnu] + ignore line: [ /usr/include] + ignore line: [End of search list.] + ignore line: [GNU C17 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu)] + ignore line: [ compiled by GNU C version 11.4.0 GMP version 6.2.1 MPFR version 4.1.0 MPC version 1.2.1 isl version isl-0.24-GMP] + ignore line: [] + ignore line: [GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072] + ignore line: [Compiler executable checksum: 4011c2103cba78949d7e02d0f0047a3d] + ignore line: [COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o' '-c' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_d752a.dir/'] + ignore line: [ as -v --64 -o CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o /tmp/ccDzrBwj.s] + ignore line: [GNU assembler version 2.38 (x86_64-linux-gnu) using BFD version (GNU Binutils for Ubuntu) 2.38] + ignore line: [COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/] + ignore line: [LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/] + ignore line: [COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o' '-c' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.'] + ignore line: [Linking C executable cmTC_d752a] + ignore line: [/usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_d752a.dir/link.txt --verbose=1] + ignore line: [/usr/bin/cc -fopenmp -v -rdynamic CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o -o cmTC_d752a -v ] + ignore line: [Using built-in specs.] + ignore line: [COLLECT_GCC=/usr/bin/cc] + ignore line: [COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper] + ignore line: [OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa] + ignore line: [OFFLOAD_TARGET_DEFAULT=1] + ignore line: [Target: x86_64-linux-gnu] + ignore line: [Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c ada c++ go brig d fortran objc obj-c++ m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32 m64 mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2] + ignore line: [Thread model: posix] + ignore line: [Supported LTO compression algorithms: zlib zstd] + ignore line: [gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) ] + ignore line: [COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/] + ignore line: [LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/] + ignore line: [Reading specs from /usr/lib/gcc/x86_64-linux-gnu/11/libgomp.spec] + ignore line: [COLLECT_GCC_OPTIONS='-fopenmp' '-v' '-rdynamic' '-o' 'cmTC_d752a' '-v' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'cmTC_d752a.'] + link line: [ /usr/lib/gcc/x86_64-linux-gnu/11/collect2 -plugin /usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper -plugin-opt=-fresolution=/tmp/ccgGbVmq.res -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lpthread -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lgcc_s --build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -export-dynamic -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie -z now -z relro -o cmTC_d752a /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o /usr/lib/gcc/x86_64-linux-gnu/11/crtoffloadbegin.o -L/usr/lib/gcc/x86_64-linux-gnu/11 -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/11/../../.. CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o -lgomp -lgcc --push-state --as-needed -lgcc_s --pop-state -lpthread -lc -lgcc --push-state --as-needed -lgcc_s --pop-state /usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o /usr/lib/gcc/x86_64-linux-gnu/11/crtoffloadend.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/collect2] ==> ignore + arg [-plugin] ==> ignore + arg [/usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so] ==> ignore + arg [-plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper] ==> ignore + arg [-plugin-opt=-fresolution=/tmp/ccgGbVmq.res] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc_s] ==> ignore + arg [-plugin-opt=-pass-through=-lpthread] ==> ignore + arg [-plugin-opt=-pass-through=-lc] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc_s] ==> ignore + arg [--build-id] ==> ignore + arg [--eh-frame-hdr] ==> ignore + arg [-m] ==> ignore + arg [elf_x86_64] ==> ignore + arg [--hash-style=gnu] ==> ignore + arg [--as-needed] ==> ignore + arg [-export-dynamic] ==> ignore + arg [-dynamic-linker] ==> ignore + arg [/lib64/ld-linux-x86-64.so.2] ==> ignore + arg [-pie] ==> ignore + arg [-znow] ==> ignore + arg [-zrelro] ==> ignore + arg [-o] ==> ignore + arg [cmTC_d752a] ==> ignore + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] + arg [-L/lib/x86_64-linux-gnu] ==> dir [/lib/x86_64-linux-gnu] + arg [-L/lib/../lib] ==> dir [/lib/../lib] + arg [-L/usr/lib/x86_64-linux-gnu] ==> dir [/usr/lib/x86_64-linux-gnu] + arg [-L/usr/lib/../lib] ==> dir [/usr/lib/../lib] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../..] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../..] + arg [CMakeFiles/cmTC_d752a.dir/OpenMPTryFlag.c.o] ==> ignore + arg [-lgomp] ==> lib [gomp] + arg [-lgcc] ==> lib [gcc] + arg [--push-state] ==> ignore + arg [--as-needed] ==> ignore + arg [-lgcc_s] ==> lib [gcc_s] + arg [--pop-state] ==> ignore + arg [-lpthread] ==> lib [pthread] + arg [-lc] ==> lib [c] + arg [-lgcc] ==> lib [gcc] + arg [--push-state] ==> ignore + arg [--as-needed] ==> ignore + arg [-lgcc_s] ==> lib [gcc_s] + arg [--pop-state] ==> ignore + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11] ==> [/usr/lib/gcc/x86_64-linux-gnu/11] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] ==> [/usr/lib/x86_64-linux-gnu] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] ==> [/usr/lib] + collapse library dir [/lib/x86_64-linux-gnu] ==> [/lib/x86_64-linux-gnu] + collapse library dir [/lib/../lib] ==> [/lib] + collapse library dir [/usr/lib/x86_64-linux-gnu] ==> [/usr/lib/x86_64-linux-gnu] + collapse library dir [/usr/lib/../lib] ==> [/usr/lib] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../..] ==> [/usr/lib] + implicit libs: [gomp;gcc;gcc_s;pthread;c;gcc;gcc_s] + implicit objs: [] + implicit dirs: [/usr/lib/gcc/x86_64-linux-gnu/11;/usr/lib/x86_64-linux-gnu;/usr/lib;/lib/x86_64-linux-gnu;/lib] + implicit fwks: [] + + + - + kind: "try_compile-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:219 (try_compile)" + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:483 (_OPENMP_GET_FLAGS)" + - "CMakeLists.txt:11 (find_package)" + description: "Detecting CXX OpenMP compiler info" + directories: + source: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY" + binary: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY" + cmakeVariables: + CMAKE_CXX_FLAGS: " -std=c++14" + CMAKE_MODULE_PATH: "/home/cam/Desktop/ICP/Fast-Robust-ICP/cmake" + buildResult: + variable: "OpenMP_COMPILE_RESULT_CXX_fopenmp" + cached: true + stdout: | + Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY + + Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_6102a/fast && /usr/bin/gmake -f CMakeFiles/cmTC_6102a.dir/build.make CMakeFiles/cmTC_6102a.dir/build + gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY' + Building CXX object CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o + /usr/bin/c++ -std=c++14 -fopenmp -v -o CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o -c /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY/OpenMPTryFlag.cpp + Using built-in specs. + COLLECT_GCC=/usr/bin/c++ + OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa + OFFLOAD_TARGET_DEFAULT=1 + Target: x86_64-linux-gnu + Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2 + Thread model: posix + Supported LTO compression algorithms: zlib zstd + gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) + COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_6102a.dir/' + /usr/lib/gcc/x86_64-linux-gnu/11/cc1plus -quiet -v -imultiarch x86_64-linux-gnu -D_GNU_SOURCE -D_REENTRANT /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY/OpenMPTryFlag.cpp -quiet -dumpdir CMakeFiles/cmTC_6102a.dir/ -dumpbase OpenMPTryFlag.cpp.cpp -dumpbase-ext .cpp -mtune=generic -march=x86-64 -std=c++14 -version -fopenmp -fasynchronous-unwind-tables -fstack-protector-strong -Wformat -Wformat-security -fstack-clash-protection -fcf-protection -o /tmp/ccDU6bqo.s + GNU C++14 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu) + compiled by GNU C version 11.4.0, GMP version 6.2.1, MPFR version 4.1.0, MPC version 1.2.1, isl version isl-0.24-GMP + + GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072 + ignoring duplicate directory "/usr/include/x86_64-linux-gnu/c++/11" + ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu" + ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/include-fixed" + ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/../../../../x86_64-linux-gnu/include" + #include "..." search starts here: + #include <...> search starts here: + /usr/include/c++/11 + /usr/include/x86_64-linux-gnu/c++/11 + /usr/include/c++/11/backward + /usr/lib/gcc/x86_64-linux-gnu/11/include + /usr/local/include + /usr/include/x86_64-linux-gnu + /usr/include + End of search list. + GNU C++14 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu) + compiled by GNU C version 11.4.0, GMP version 6.2.1, MPFR version 4.1.0, MPC version 1.2.1, isl version isl-0.24-GMP + + GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072 + Compiler executable checksum: 6c87588fc345655b93b8c25f48f88886 + COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_6102a.dir/' + as -v --64 -o CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o /tmp/ccDU6bqo.s + GNU assembler version 2.38 (x86_64-linux-gnu) using BFD version (GNU Binutils for Ubuntu) 2.38 + COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/ + LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/ + COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.' + Linking CXX executable cmTC_6102a + /usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_6102a.dir/link.txt --verbose=1 + /usr/bin/c++ -std=c++14 -fopenmp -v -rdynamic CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o -o cmTC_6102a -v + Using built-in specs. + COLLECT_GCC=/usr/bin/c++ + COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper + OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa + OFFLOAD_TARGET_DEFAULT=1 + Target: x86_64-linux-gnu + Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c,ada,c++,go,brig,d,fortran,objc,obj-c++,m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32,m64,mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr,amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2 + Thread model: posix + Supported LTO compression algorithms: zlib zstd + gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) + COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/ + LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/ + Reading specs from /usr/lib/gcc/x86_64-linux-gnu/11/libgomp.spec + COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-rdynamic' '-o' 'cmTC_6102a' '-v' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'cmTC_6102a.' + /usr/lib/gcc/x86_64-linux-gnu/11/collect2 -plugin /usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper -plugin-opt=-fresolution=/tmp/ccsZovjK.res -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lpthread -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lgcc --build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -export-dynamic -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie -z now -z relro -o cmTC_6102a /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o /usr/lib/gcc/x86_64-linux-gnu/11/crtoffloadbegin.o -L/usr/lib/gcc/x86_64-linux-gnu/11 -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/11/../../.. CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o -lstdc++ -lm -lgomp -lgcc_s -lgcc -lpthread -lc -lgcc_s -lgcc /usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o /usr/lib/gcc/x86_64-linux-gnu/11/crtoffloadend.o + COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-rdynamic' '-o' 'cmTC_6102a' '-v' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'cmTC_6102a.' + gmake[1]: Leaving directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY' + + exitCode: 0 + - + kind: "message-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:262 (message)" + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:483 (_OPENMP_GET_FLAGS)" + - "CMakeLists.txt:11 (find_package)" + message: | + Parsed CXX OpenMP implicit link information from above output: + link line regex: [^( *|.*[/\\])(ld|CMAKE_LINK_STARTFILE-NOTFOUND|([^/\\]+-)?ld|collect2)[^/\\]*( |$)] + ignore line: [Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY] + ignore line: [] + ignore line: [Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_6102a/fast && /usr/bin/gmake -f CMakeFiles/cmTC_6102a.dir/build.make CMakeFiles/cmTC_6102a.dir/build] + ignore line: [gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY'] + ignore line: [Building CXX object CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o] + ignore line: [/usr/bin/c++ -std=c++14 -fopenmp -v -o CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o -c /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY/OpenMPTryFlag.cpp] + ignore line: [Using built-in specs.] + ignore line: [COLLECT_GCC=/usr/bin/c++] + ignore line: [OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa] + ignore line: [OFFLOAD_TARGET_DEFAULT=1] + ignore line: [Target: x86_64-linux-gnu] + ignore line: [Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c ada c++ go brig d fortran objc obj-c++ m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32 m64 mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2] + ignore line: [Thread model: posix] + ignore line: [Supported LTO compression algorithms: zlib zstd] + ignore line: [gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) ] + ignore line: [COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_6102a.dir/'] + ignore line: [ /usr/lib/gcc/x86_64-linux-gnu/11/cc1plus -quiet -v -imultiarch x86_64-linux-gnu -D_GNU_SOURCE -D_REENTRANT /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-YfIdjY/OpenMPTryFlag.cpp -quiet -dumpdir CMakeFiles/cmTC_6102a.dir/ -dumpbase OpenMPTryFlag.cpp.cpp -dumpbase-ext .cpp -mtune=generic -march=x86-64 -std=c++14 -version -fopenmp -fasynchronous-unwind-tables -fstack-protector-strong -Wformat -Wformat-security -fstack-clash-protection -fcf-protection -o /tmp/ccDU6bqo.s] + ignore line: [GNU C++14 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu)] + ignore line: [ compiled by GNU C version 11.4.0 GMP version 6.2.1 MPFR version 4.1.0 MPC version 1.2.1 isl version isl-0.24-GMP] + ignore line: [] + ignore line: [GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072] + ignore line: [ignoring duplicate directory "/usr/include/x86_64-linux-gnu/c++/11"] + ignore line: [ignoring nonexistent directory "/usr/local/include/x86_64-linux-gnu"] + ignore line: [ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/include-fixed"] + ignore line: [ignoring nonexistent directory "/usr/lib/gcc/x86_64-linux-gnu/11/../../../../x86_64-linux-gnu/include"] + ignore line: [#include "..." search starts here:] + ignore line: [#include <...> search starts here:] + ignore line: [ /usr/include/c++/11] + ignore line: [ /usr/include/x86_64-linux-gnu/c++/11] + ignore line: [ /usr/include/c++/11/backward] + ignore line: [ /usr/lib/gcc/x86_64-linux-gnu/11/include] + ignore line: [ /usr/local/include] + ignore line: [ /usr/include/x86_64-linux-gnu] + ignore line: [ /usr/include] + ignore line: [End of search list.] + ignore line: [GNU C++14 (Ubuntu 11.4.0-1ubuntu1~22.04.2) version 11.4.0 (x86_64-linux-gnu)] + ignore line: [ compiled by GNU C version 11.4.0 GMP version 6.2.1 MPFR version 4.1.0 MPC version 1.2.1 isl version isl-0.24-GMP] + ignore line: [] + ignore line: [GGC heuristics: --param ggc-min-expand=100 --param ggc-min-heapsize=131072] + ignore line: [Compiler executable checksum: 6c87588fc345655b93b8c25f48f88886] + ignore line: [COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_6102a.dir/'] + ignore line: [ as -v --64 -o CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o /tmp/ccDU6bqo.s] + ignore line: [GNU assembler version 2.38 (x86_64-linux-gnu) using BFD version (GNU Binutils for Ubuntu) 2.38] + ignore line: [COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/] + ignore line: [LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/] + ignore line: [COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-o' 'CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o' '-c' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.'] + ignore line: [Linking CXX executable cmTC_6102a] + ignore line: [/usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_6102a.dir/link.txt --verbose=1] + ignore line: [/usr/bin/c++ -std=c++14 -fopenmp -v -rdynamic CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o -o cmTC_6102a -v ] + ignore line: [Using built-in specs.] + ignore line: [COLLECT_GCC=/usr/bin/c++] + ignore line: [COLLECT_LTO_WRAPPER=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper] + ignore line: [OFFLOAD_TARGET_NAMES=nvptx-none:amdgcn-amdhsa] + ignore line: [OFFLOAD_TARGET_DEFAULT=1] + ignore line: [Target: x86_64-linux-gnu] + ignore line: [Configured with: ../src/configure -v --with-pkgversion='Ubuntu 11.4.0-1ubuntu1~22.04.2' --with-bugurl=file:///usr/share/doc/gcc-11/README.Bugs --enable-languages=c ada c++ go brig d fortran objc obj-c++ m2 --prefix=/usr --with-gcc-major-version-only --program-suffix=-11 --program-prefix=x86_64-linux-gnu- --enable-shared --enable-linker-build-id --libexecdir=/usr/lib --without-included-gettext --enable-threads=posix --libdir=/usr/lib --enable-nls --enable-bootstrap --enable-clocale=gnu --enable-libstdcxx-debug --enable-libstdcxx-time=yes --with-default-libstdcxx-abi=new --enable-gnu-unique-object --disable-vtable-verify --enable-plugin --enable-default-pie --with-system-zlib --enable-libphobos-checking=release --with-target-system-zlib=auto --enable-objc-gc=auto --enable-multiarch --disable-werror --enable-cet --with-arch-32=i686 --with-abi=m64 --with-multilib-list=m32 m64 mx32 --enable-multilib --with-tune=generic --enable-offload-targets=nvptx-none=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-nvptx/usr amdgcn-amdhsa=/build/gcc-11-2Y5pKs/gcc-11-11.4.0/debian/tmp-gcn/usr --without-cuda-driver --enable-checking=release --build=x86_64-linux-gnu --host=x86_64-linux-gnu --target=x86_64-linux-gnu --with-build-config=bootstrap-lto-lean --enable-link-serialization=2] + ignore line: [Thread model: posix] + ignore line: [Supported LTO compression algorithms: zlib zstd] + ignore line: [gcc version 11.4.0 (Ubuntu 11.4.0-1ubuntu1~22.04.2) ] + ignore line: [COMPILER_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/] + ignore line: [LIBRARY_PATH=/usr/lib/gcc/x86_64-linux-gnu/11/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib/:/lib/x86_64-linux-gnu/:/lib/../lib/:/usr/lib/x86_64-linux-gnu/:/usr/lib/../lib/:/usr/lib/gcc/x86_64-linux-gnu/11/../../../:/lib/:/usr/lib/] + ignore line: [Reading specs from /usr/lib/gcc/x86_64-linux-gnu/11/libgomp.spec] + ignore line: [COLLECT_GCC_OPTIONS='-std=c++14' '-fopenmp' '-v' '-rdynamic' '-o' 'cmTC_6102a' '-v' '-shared-libgcc' '-mtune=generic' '-march=x86-64' '-pthread' '-dumpdir' 'cmTC_6102a.'] + link line: [ /usr/lib/gcc/x86_64-linux-gnu/11/collect2 -plugin /usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so -plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper -plugin-opt=-fresolution=/tmp/ccsZovjK.res -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lgcc -plugin-opt=-pass-through=-lpthread -plugin-opt=-pass-through=-lc -plugin-opt=-pass-through=-lgcc_s -plugin-opt=-pass-through=-lgcc --build-id --eh-frame-hdr -m elf_x86_64 --hash-style=gnu --as-needed -export-dynamic -dynamic-linker /lib64/ld-linux-x86-64.so.2 -pie -z now -z relro -o cmTC_6102a /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/Scrt1.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crti.o /usr/lib/gcc/x86_64-linux-gnu/11/crtbeginS.o /usr/lib/gcc/x86_64-linux-gnu/11/crtoffloadbegin.o -L/usr/lib/gcc/x86_64-linux-gnu/11 -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu -L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib -L/lib/x86_64-linux-gnu -L/lib/../lib -L/usr/lib/x86_64-linux-gnu -L/usr/lib/../lib -L/usr/lib/gcc/x86_64-linux-gnu/11/../../.. CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o -lstdc++ -lm -lgomp -lgcc_s -lgcc -lpthread -lc -lgcc_s -lgcc /usr/lib/gcc/x86_64-linux-gnu/11/crtendS.o /usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu/crtn.o /usr/lib/gcc/x86_64-linux-gnu/11/crtoffloadend.o] + arg [/usr/lib/gcc/x86_64-linux-gnu/11/collect2] ==> ignore + arg [-plugin] ==> ignore + arg [/usr/lib/gcc/x86_64-linux-gnu/11/liblto_plugin.so] ==> ignore + arg [-plugin-opt=/usr/lib/gcc/x86_64-linux-gnu/11/lto-wrapper] ==> ignore + arg [-plugin-opt=-fresolution=/tmp/ccsZovjK.res] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc_s] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc] ==> ignore + arg [-plugin-opt=-pass-through=-lpthread] ==> ignore + arg [-plugin-opt=-pass-through=-lc] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc_s] ==> ignore + arg [-plugin-opt=-pass-through=-lgcc] ==> ignore + arg [--build-id] ==> ignore + arg [--eh-frame-hdr] ==> ignore + arg [-m] ==> ignore + arg [elf_x86_64] ==> ignore + arg [--hash-style=gnu] ==> ignore + arg [--as-needed] ==> ignore + arg [-export-dynamic] ==> ignore + arg [-dynamic-linker] ==> ignore + arg [/lib64/ld-linux-x86-64.so.2] ==> ignore + arg [-pie] ==> ignore + arg [-znow] ==> ignore + arg [-zrelro] ==> ignore + arg [-o] ==> ignore + arg [cmTC_6102a] ==> ignore + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] + arg [-L/lib/x86_64-linux-gnu] ==> dir [/lib/x86_64-linux-gnu] + arg [-L/lib/../lib] ==> dir [/lib/../lib] + arg [-L/usr/lib/x86_64-linux-gnu] ==> dir [/usr/lib/x86_64-linux-gnu] + arg [-L/usr/lib/../lib] ==> dir [/usr/lib/../lib] + arg [-L/usr/lib/gcc/x86_64-linux-gnu/11/../../..] ==> dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../..] + arg [CMakeFiles/cmTC_6102a.dir/OpenMPTryFlag.cpp.o] ==> ignore + arg [-lstdc++] ==> lib [stdc++] + arg [-lm] ==> lib [m] + arg [-lgomp] ==> lib [gomp] + arg [-lgcc_s] ==> lib [gcc_s] + arg [-lgcc] ==> lib [gcc] + arg [-lpthread] ==> lib [pthread] + arg [-lc] ==> lib [c] + arg [-lgcc_s] ==> lib [gcc_s] + arg [-lgcc] ==> lib [gcc] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11] ==> [/usr/lib/gcc/x86_64-linux-gnu/11] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../x86_64-linux-gnu] ==> [/usr/lib/x86_64-linux-gnu] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../../../lib] ==> [/usr/lib] + collapse library dir [/lib/x86_64-linux-gnu] ==> [/lib/x86_64-linux-gnu] + collapse library dir [/lib/../lib] ==> [/lib] + collapse library dir [/usr/lib/x86_64-linux-gnu] ==> [/usr/lib/x86_64-linux-gnu] + collapse library dir [/usr/lib/../lib] ==> [/usr/lib] + collapse library dir [/usr/lib/gcc/x86_64-linux-gnu/11/../../..] ==> [/usr/lib] + implicit libs: [stdc++;m;gomp;gcc_s;gcc;pthread;c;gcc_s;gcc] + implicit objs: [] + implicit dirs: [/usr/lib/gcc/x86_64-linux-gnu/11;/usr/lib/x86_64-linux-gnu;/usr/lib;/lib/x86_64-linux-gnu;/lib] + implicit fwks: [] + + + - + kind: "try_compile-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:419 (try_compile)" + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:557 (_OPENMP_GET_SPEC_DATE)" + - "CMakeLists.txt:11 (find_package)" + description: "Detecting C OpenMP version" + directories: + source: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-WYVkmF" + binary: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-WYVkmF" + cmakeVariables: + CMAKE_C_FLAGS: "" + CMAKE_MODULE_PATH: "/home/cam/Desktop/ICP/Fast-Robust-ICP/cmake" + buildResult: + variable: "OpenMP_SPECTEST_C_" + cached: true + stdout: | + Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-WYVkmF + + Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_a45ce/fast && /usr/bin/gmake -f CMakeFiles/cmTC_a45ce.dir/build.make CMakeFiles/cmTC_a45ce.dir/build + gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-WYVkmF' + Building C object CMakeFiles/cmTC_a45ce.dir/OpenMPCheckVersion.c.o + /usr/bin/cc -fopenmp -o CMakeFiles/cmTC_a45ce.dir/OpenMPCheckVersion.c.o -c /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-WYVkmF/OpenMPCheckVersion.c + Linking C executable cmTC_a45ce + /usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_a45ce.dir/link.txt --verbose=1 + /usr/bin/cc -fopenmp -rdynamic CMakeFiles/cmTC_a45ce.dir/OpenMPCheckVersion.c.o -o cmTC_a45ce + gmake[1]: Leaving directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-WYVkmF' + + exitCode: 0 + - + kind: "try_compile-v1" + backtrace: + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:419 (try_compile)" + - "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake:557 (_OPENMP_GET_SPEC_DATE)" + - "CMakeLists.txt:11 (find_package)" + description: "Detecting CXX OpenMP version" + directories: + source: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-ptQBq6" + binary: "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-ptQBq6" + cmakeVariables: + CMAKE_CXX_FLAGS: " -std=c++14" + CMAKE_MODULE_PATH: "/home/cam/Desktop/ICP/Fast-Robust-ICP/cmake" + buildResult: + variable: "OpenMP_SPECTEST_CXX_" + cached: true + stdout: | + Change Dir: /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-ptQBq6 + + Run Build Command(s):/usr/local/bin/cmake -E env VERBOSE=1 /usr/bin/gmake -f Makefile cmTC_e7e3e/fast && /usr/bin/gmake -f CMakeFiles/cmTC_e7e3e.dir/build.make CMakeFiles/cmTC_e7e3e.dir/build + gmake[1]: Entering directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-ptQBq6' + Building CXX object CMakeFiles/cmTC_e7e3e.dir/OpenMPCheckVersion.cpp.o + /usr/bin/c++ -std=c++14 -fopenmp -o CMakeFiles/cmTC_e7e3e.dir/OpenMPCheckVersion.cpp.o -c /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-ptQBq6/OpenMPCheckVersion.cpp + Linking CXX executable cmTC_e7e3e + /usr/local/bin/cmake -E cmake_link_script CMakeFiles/cmTC_e7e3e.dir/link.txt --verbose=1 + /usr/bin/c++ -std=c++14 -fopenmp -rdynamic CMakeFiles/cmTC_e7e3e.dir/OpenMPCheckVersion.cpp.o -o cmTC_e7e3e + gmake[1]: Leaving directory '/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/CMakeScratch/TryCompile-ptQBq6' + + exitCode: 0 +... diff --git a/build/CMakeFiles/CMakeDirectoryInformation.cmake b/build/CMakeFiles/CMakeDirectoryInformation.cmake new file mode 100644 index 0000000000000000000000000000000000000000..e99186c5c76ae245704a22afb876ec5c63418cf5 --- /dev/null +++ b/build/CMakeFiles/CMakeDirectoryInformation.cmake @@ -0,0 +1,16 @@ +# CMAKE generated file: DO NOT EDIT! +# Generated by "Unix Makefiles" Generator, CMake Version 3.26 + +# Relative path conversion top directories. +set(CMAKE_RELATIVE_PATH_TOP_SOURCE "/home/cam/Desktop/ICP/Fast-Robust-ICP") +set(CMAKE_RELATIVE_PATH_TOP_BINARY "/home/cam/Desktop/ICP/Fast-Robust-ICP/build") + +# Force unix paths in dependencies. +set(CMAKE_FORCE_UNIX_PATHS 1) + + +# The C and CXX include file regular expressions for this directory. +set(CMAKE_C_INCLUDE_REGEX_SCAN "^.*$") +set(CMAKE_C_INCLUDE_REGEX_COMPLAIN "^$") +set(CMAKE_CXX_INCLUDE_REGEX_SCAN ${CMAKE_C_INCLUDE_REGEX_SCAN}) +set(CMAKE_CXX_INCLUDE_REGEX_COMPLAIN ${CMAKE_C_INCLUDE_REGEX_COMPLAIN}) diff --git a/build/CMakeFiles/FRICP.dir/DependInfo.cmake b/build/CMakeFiles/FRICP.dir/DependInfo.cmake new file mode 100644 index 0000000000000000000000000000000000000000..4d1d63683c7044083605db0be6be32ba701d4375 --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/DependInfo.cmake @@ -0,0 +1,19 @@ + +# Consider dependencies only in project. +set(CMAKE_DEPENDS_IN_PROJECT_ONLY OFF) + +# The set of languages for which implicit dependencies are needed: +set(CMAKE_DEPENDS_LANGUAGES + ) + +# The set of dependency files which are needed: +set(CMAKE_DEPENDS_DEPENDENCY_FILES + "/home/cam/Desktop/ICP/Fast-Robust-ICP/main.cpp" "CMakeFiles/FRICP.dir/main.cpp.o" "gcc" "CMakeFiles/FRICP.dir/main.cpp.o.d" + ) + +# Targets to which this target links which contain Fortran sources. +set(CMAKE_Fortran_TARGET_LINKED_INFO_FILES + ) + +# Fortran module output directory. +set(CMAKE_Fortran_TARGET_MODULE_DIR "") diff --git a/build/CMakeFiles/FRICP.dir/build.make b/build/CMakeFiles/FRICP.dir/build.make new file mode 100644 index 0000000000000000000000000000000000000000..6420680081b57c2623192645872a6c09500b752d --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/build.make @@ -0,0 +1,110 @@ +# CMAKE generated file: DO NOT EDIT! +# Generated by "Unix Makefiles" Generator, CMake Version 3.26 + +# Delete rule output on recipe failure. +.DELETE_ON_ERROR: + +#============================================================================= +# Special targets provided by cmake. + +# Disable implicit rules so canonical targets will work. +.SUFFIXES: + +# Disable VCS-based implicit rules. +% : %,v + +# Disable VCS-based implicit rules. +% : RCS/% + +# Disable VCS-based implicit rules. +% : RCS/%,v + +# Disable VCS-based implicit rules. +% : SCCS/s.% + +# Disable VCS-based implicit rules. +% : s.% + +.SUFFIXES: .hpux_make_needs_suffix_list + +# Command-line flag to silence nested $(MAKE). +$(VERBOSE)MAKESILENT = -s + +#Suppress display of executed commands. +$(VERBOSE).SILENT: + +# A target that is always out of date. +cmake_force: +.PHONY : cmake_force + +#============================================================================= +# Set environment variables for the build. + +# The shell in which to execute make rules. +SHELL = /bin/sh + +# The CMake executable. +CMAKE_COMMAND = /usr/local/bin/cmake + +# The command to remove a file. +RM = /usr/local/bin/cmake -E rm -f + +# Escaping for special characters. +EQUALS = = + +# The top-level source directory on which CMake was run. +CMAKE_SOURCE_DIR = /home/cam/Desktop/ICP/Fast-Robust-ICP + +# The top-level build directory on which CMake was run. +CMAKE_BINARY_DIR = /home/cam/Desktop/ICP/Fast-Robust-ICP/build + +# Include any dependencies generated for this target. +include CMakeFiles/FRICP.dir/depend.make +# Include any dependencies generated by the compiler for this target. +include CMakeFiles/FRICP.dir/compiler_depend.make + +# Include the progress variables for this target. +include CMakeFiles/FRICP.dir/progress.make + +# Include the compile flags for this target's objects. +include CMakeFiles/FRICP.dir/flags.make + +CMakeFiles/FRICP.dir/main.cpp.o: CMakeFiles/FRICP.dir/flags.make +CMakeFiles/FRICP.dir/main.cpp.o: /home/cam/Desktop/ICP/Fast-Robust-ICP/main.cpp +CMakeFiles/FRICP.dir/main.cpp.o: CMakeFiles/FRICP.dir/compiler_depend.ts + @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green --progress-dir=/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles --progress-num=$(CMAKE_PROGRESS_1) "Building CXX object CMakeFiles/FRICP.dir/main.cpp.o" + /usr/bin/c++ $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -MD -MT CMakeFiles/FRICP.dir/main.cpp.o -MF CMakeFiles/FRICP.dir/main.cpp.o.d -o CMakeFiles/FRICP.dir/main.cpp.o -c /home/cam/Desktop/ICP/Fast-Robust-ICP/main.cpp + +CMakeFiles/FRICP.dir/main.cpp.i: cmake_force + @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green "Preprocessing CXX source to CMakeFiles/FRICP.dir/main.cpp.i" + /usr/bin/c++ $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -E /home/cam/Desktop/ICP/Fast-Robust-ICP/main.cpp > CMakeFiles/FRICP.dir/main.cpp.i + +CMakeFiles/FRICP.dir/main.cpp.s: cmake_force + @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green "Compiling CXX source to assembly CMakeFiles/FRICP.dir/main.cpp.s" + /usr/bin/c++ $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -S /home/cam/Desktop/ICP/Fast-Robust-ICP/main.cpp -o CMakeFiles/FRICP.dir/main.cpp.s + +# Object files for target FRICP +FRICP_OBJECTS = \ +"CMakeFiles/FRICP.dir/main.cpp.o" + +# External object files for target FRICP +FRICP_EXTERNAL_OBJECTS = + +FRICP: CMakeFiles/FRICP.dir/main.cpp.o +FRICP: CMakeFiles/FRICP.dir/build.make +FRICP: CMakeFiles/FRICP.dir/link.txt + @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --green --bold --progress-dir=/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles --progress-num=$(CMAKE_PROGRESS_2) "Linking CXX executable FRICP" + $(CMAKE_COMMAND) -E cmake_link_script CMakeFiles/FRICP.dir/link.txt --verbose=$(VERBOSE) + +# Rule to build all files generated by this target. +CMakeFiles/FRICP.dir/build: FRICP +.PHONY : CMakeFiles/FRICP.dir/build + +CMakeFiles/FRICP.dir/clean: + $(CMAKE_COMMAND) -P CMakeFiles/FRICP.dir/cmake_clean.cmake +.PHONY : CMakeFiles/FRICP.dir/clean + +CMakeFiles/FRICP.dir/depend: + cd /home/cam/Desktop/ICP/Fast-Robust-ICP/build && $(CMAKE_COMMAND) -E cmake_depends "Unix Makefiles" /home/cam/Desktop/ICP/Fast-Robust-ICP /home/cam/Desktop/ICP/Fast-Robust-ICP /home/cam/Desktop/ICP/Fast-Robust-ICP/build /home/cam/Desktop/ICP/Fast-Robust-ICP/build /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/FRICP.dir/DependInfo.cmake --color=$(COLOR) +.PHONY : CMakeFiles/FRICP.dir/depend + diff --git a/build/CMakeFiles/FRICP.dir/cmake_clean.cmake b/build/CMakeFiles/FRICP.dir/cmake_clean.cmake new file mode 100644 index 0000000000000000000000000000000000000000..5564a3e1730643060c0ba706e25dd172096b112b --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/cmake_clean.cmake @@ -0,0 +1,11 @@ +file(REMOVE_RECURSE + "CMakeFiles/FRICP.dir/main.cpp.o" + "CMakeFiles/FRICP.dir/main.cpp.o.d" + "FRICP" + "FRICP.pdb" +) + +# Per-language clean rules from dependency scanning. +foreach(lang CXX) + include(CMakeFiles/FRICP.dir/cmake_clean_${lang}.cmake OPTIONAL) +endforeach() diff --git a/build/CMakeFiles/FRICP.dir/compiler_depend.make b/build/CMakeFiles/FRICP.dir/compiler_depend.make new file mode 100644 index 0000000000000000000000000000000000000000..05e0eadf5fd455a9960f336e9b9b719825017d94 --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/compiler_depend.make @@ -0,0 +1,2 @@ +# Empty compiler generated dependencies file for FRICP. +# This may be replaced when dependencies are built. diff --git a/build/CMakeFiles/FRICP.dir/compiler_depend.ts b/build/CMakeFiles/FRICP.dir/compiler_depend.ts new file mode 100644 index 0000000000000000000000000000000000000000..796585c54029c42d72922a8e222732b82ed60f4c --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/compiler_depend.ts @@ -0,0 +1,2 @@ +# CMAKE generated file: DO NOT EDIT! +# Timestamp file for compiler generated dependencies management for FRICP. diff --git a/build/CMakeFiles/FRICP.dir/depend.make b/build/CMakeFiles/FRICP.dir/depend.make new file mode 100644 index 0000000000000000000000000000000000000000..03fab74c56ebd880051c7b06bd952c9f8ba0955a --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/depend.make @@ -0,0 +1,2 @@ +# Empty dependencies file for FRICP. +# This may be replaced when dependencies are built. diff --git a/build/CMakeFiles/FRICP.dir/flags.make b/build/CMakeFiles/FRICP.dir/flags.make new file mode 100644 index 0000000000000000000000000000000000000000..fffc7572fb668a9991e3d064d630de2951d94350 --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/flags.make @@ -0,0 +1,10 @@ +# CMAKE generated file: DO NOT EDIT! +# Generated by "Unix Makefiles" Generator, CMake Version 3.26 + +# compile CXX with /usr/bin/c++ +CXX_DEFINES = + +CXX_INCLUDES = -I/usr/include/eigen3 -I/home/cam/Desktop/ICP/Fast-Robust-ICP/include -I/home/cam/Desktop/ICP/Fast-Robust-ICP/. + +CXX_FLAGS = -std=c++14 -fopenmp -O3 -DNDEBUG + diff --git a/build/CMakeFiles/FRICP.dir/link.txt b/build/CMakeFiles/FRICP.dir/link.txt new file mode 100644 index 0000000000000000000000000000000000000000..3393fc7c4142a462d9f5f14787c2a0eb1c1b1b9b --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/link.txt @@ -0,0 +1 @@ +/usr/bin/c++ -std=c++14 -fopenmp -O3 -DNDEBUG -rdynamic CMakeFiles/FRICP.dir/main.cpp.o -o FRICP diff --git a/build/CMakeFiles/FRICP.dir/main.cpp.o.d b/build/CMakeFiles/FRICP.dir/main.cpp.o.d new file mode 100644 index 0000000000000000000000000000000000000000..09a165b3db305a0836482caab524619ab16407c3 --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/main.cpp.o.d @@ -0,0 +1,422 @@ +CMakeFiles/FRICP.dir/main.cpp.o: \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/main.cpp \ + /usr/include/stdc-predef.h /usr/include/c++/11/iostream \ + /usr/include/x86_64-linux-gnu/c++/11/bits/c++config.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/os_defines.h \ + /usr/include/features.h /usr/include/features-time64.h \ + /usr/include/x86_64-linux-gnu/bits/wordsize.h \ + /usr/include/x86_64-linux-gnu/bits/timesize.h \ + /usr/include/x86_64-linux-gnu/sys/cdefs.h \ + /usr/include/x86_64-linux-gnu/bits/long-double.h \ + /usr/include/x86_64-linux-gnu/gnu/stubs.h \ + /usr/include/x86_64-linux-gnu/gnu/stubs-64.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/cpu_defines.h \ + /usr/include/c++/11/ostream /usr/include/c++/11/ios \ + /usr/include/c++/11/iosfwd /usr/include/c++/11/bits/stringfwd.h \ + /usr/include/c++/11/bits/memoryfwd.h /usr/include/c++/11/bits/postypes.h \ + /usr/include/c++/11/cwchar /usr/include/wchar.h \ + /usr/include/x86_64-linux-gnu/bits/libc-header-start.h \ + /usr/include/x86_64-linux-gnu/bits/floatn.h \ + /usr/include/x86_64-linux-gnu/bits/floatn-common.h \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/stddef.h \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/stdarg.h \ + /usr/include/x86_64-linux-gnu/bits/wchar.h \ + /usr/include/x86_64-linux-gnu/bits/types/wint_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/mbstate_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/__mbstate_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/__FILE.h \ + /usr/include/x86_64-linux-gnu/bits/types/FILE.h \ + /usr/include/x86_64-linux-gnu/bits/types/locale_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/__locale_t.h \ + /usr/include/x86_64-linux-gnu/bits/wchar2.h \ + /usr/include/c++/11/exception /usr/include/c++/11/bits/exception.h \ + /usr/include/c++/11/bits/exception_ptr.h \ + /usr/include/c++/11/bits/exception_defines.h \ + /usr/include/c++/11/bits/cxxabi_init_exception.h \ + /usr/include/c++/11/typeinfo /usr/include/c++/11/bits/hash_bytes.h \ + /usr/include/c++/11/new /usr/include/c++/11/bits/move.h \ + /usr/include/c++/11/type_traits \ + /usr/include/c++/11/bits/nested_exception.h \ + /usr/include/c++/11/bits/char_traits.h \ + /usr/include/c++/11/bits/stl_algobase.h \ + /usr/include/c++/11/bits/functexcept.h \ + /usr/include/c++/11/bits/cpp_type_traits.h \ + /usr/include/c++/11/ext/type_traits.h \ + /usr/include/c++/11/ext/numeric_traits.h \ + /usr/include/c++/11/bits/stl_pair.h \ + /usr/include/c++/11/bits/stl_iterator_base_types.h \ + /usr/include/c++/11/bits/stl_iterator_base_funcs.h \ + /usr/include/c++/11/bits/concept_check.h \ + /usr/include/c++/11/debug/assertions.h \ + /usr/include/c++/11/bits/stl_iterator.h \ + /usr/include/c++/11/bits/ptr_traits.h /usr/include/c++/11/debug/debug.h \ + /usr/include/c++/11/bits/predefined_ops.h /usr/include/c++/11/cstdint \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/stdint.h /usr/include/stdint.h \ + /usr/include/x86_64-linux-gnu/bits/types.h \ + /usr/include/x86_64-linux-gnu/bits/typesizes.h \ + /usr/include/x86_64-linux-gnu/bits/time64.h \ + /usr/include/x86_64-linux-gnu/bits/stdint-intn.h \ + /usr/include/x86_64-linux-gnu/bits/stdint-uintn.h \ + /usr/include/c++/11/bits/localefwd.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/c++locale.h \ + /usr/include/c++/11/clocale /usr/include/locale.h \ + /usr/include/x86_64-linux-gnu/bits/locale.h /usr/include/c++/11/cctype \ + /usr/include/ctype.h /usr/include/x86_64-linux-gnu/bits/endian.h \ + /usr/include/x86_64-linux-gnu/bits/endianness.h \ + /usr/include/c++/11/bits/ios_base.h /usr/include/c++/11/ext/atomicity.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/gthr.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/gthr-default.h \ + /usr/include/pthread.h /usr/include/sched.h \ + /usr/include/x86_64-linux-gnu/bits/types/time_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/struct_timespec.h \ + /usr/include/x86_64-linux-gnu/bits/sched.h \ + /usr/include/x86_64-linux-gnu/bits/types/struct_sched_param.h \ + /usr/include/x86_64-linux-gnu/bits/cpu-set.h /usr/include/time.h \ + /usr/include/x86_64-linux-gnu/bits/time.h \ + /usr/include/x86_64-linux-gnu/bits/timex.h \ + /usr/include/x86_64-linux-gnu/bits/types/struct_timeval.h \ + /usr/include/x86_64-linux-gnu/bits/types/clock_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/struct_tm.h \ + /usr/include/x86_64-linux-gnu/bits/types/clockid_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/timer_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/struct_itimerspec.h \ + /usr/include/x86_64-linux-gnu/bits/pthreadtypes.h \ + /usr/include/x86_64-linux-gnu/bits/thread-shared-types.h \ + /usr/include/x86_64-linux-gnu/bits/pthreadtypes-arch.h \ + /usr/include/x86_64-linux-gnu/bits/atomic_wide_counter.h \ + /usr/include/x86_64-linux-gnu/bits/struct_mutex.h \ + /usr/include/x86_64-linux-gnu/bits/struct_rwlock.h \ + /usr/include/x86_64-linux-gnu/bits/setjmp.h \ + /usr/include/x86_64-linux-gnu/bits/types/__sigset_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/struct___jmp_buf_tag.h \ + /usr/include/x86_64-linux-gnu/bits/pthread_stack_min-dynamic.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/atomic_word.h \ + /usr/include/x86_64-linux-gnu/sys/single_threaded.h \ + /usr/include/c++/11/bits/locale_classes.h /usr/include/c++/11/string \ + /usr/include/c++/11/bits/allocator.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/c++allocator.h \ + /usr/include/c++/11/ext/new_allocator.h \ + /usr/include/c++/11/bits/ostream_insert.h \ + /usr/include/c++/11/bits/cxxabi_forced.h \ + /usr/include/c++/11/bits/stl_function.h \ + /usr/include/c++/11/backward/binders.h \ + /usr/include/c++/11/bits/range_access.h \ + /usr/include/c++/11/initializer_list \ + /usr/include/c++/11/bits/basic_string.h \ + /usr/include/c++/11/ext/alloc_traits.h \ + /usr/include/c++/11/bits/alloc_traits.h \ + /usr/include/c++/11/bits/stl_construct.h \ + /usr/include/c++/11/ext/string_conversions.h /usr/include/c++/11/cstdlib \ + /usr/include/stdlib.h /usr/include/x86_64-linux-gnu/bits/waitflags.h \ + /usr/include/x86_64-linux-gnu/bits/waitstatus.h \ + /usr/include/x86_64-linux-gnu/sys/types.h /usr/include/endian.h \ + /usr/include/x86_64-linux-gnu/bits/byteswap.h \ + /usr/include/x86_64-linux-gnu/bits/uintn-identity.h \ + /usr/include/x86_64-linux-gnu/sys/select.h \ + /usr/include/x86_64-linux-gnu/bits/select.h \ + /usr/include/x86_64-linux-gnu/bits/types/sigset_t.h \ + /usr/include/x86_64-linux-gnu/bits/select2.h /usr/include/alloca.h \ + /usr/include/x86_64-linux-gnu/bits/stdlib-bsearch.h \ + /usr/include/x86_64-linux-gnu/bits/stdlib-float.h \ + /usr/include/x86_64-linux-gnu/bits/stdlib.h \ + /usr/include/c++/11/bits/std_abs.h /usr/include/c++/11/cstdio \ + /usr/include/stdio.h /usr/include/x86_64-linux-gnu/bits/types/__fpos_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/__fpos64_t.h \ + /usr/include/x86_64-linux-gnu/bits/types/struct_FILE.h \ + /usr/include/x86_64-linux-gnu/bits/types/cookie_io_functions_t.h \ + /usr/include/x86_64-linux-gnu/bits/stdio_lim.h \ + /usr/include/x86_64-linux-gnu/bits/stdio.h \ + /usr/include/x86_64-linux-gnu/bits/stdio2.h /usr/include/c++/11/cerrno \ + /usr/include/errno.h /usr/include/x86_64-linux-gnu/bits/errno.h \ + /usr/include/linux/errno.h /usr/include/x86_64-linux-gnu/asm/errno.h \ + /usr/include/asm-generic/errno.h /usr/include/asm-generic/errno-base.h \ + /usr/include/x86_64-linux-gnu/bits/types/error_t.h \ + /usr/include/c++/11/bits/charconv.h \ + /usr/include/c++/11/bits/functional_hash.h \ + /usr/include/c++/11/bits/basic_string.tcc \ + /usr/include/c++/11/bits/locale_classes.tcc \ + /usr/include/c++/11/system_error \ + /usr/include/x86_64-linux-gnu/c++/11/bits/error_constants.h \ + /usr/include/c++/11/stdexcept /usr/include/c++/11/streambuf \ + /usr/include/c++/11/bits/streambuf.tcc \ + /usr/include/c++/11/bits/basic_ios.h \ + /usr/include/c++/11/bits/locale_facets.h /usr/include/c++/11/cwctype \ + /usr/include/wctype.h /usr/include/x86_64-linux-gnu/bits/wctype-wchar.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/ctype_base.h \ + /usr/include/c++/11/bits/streambuf_iterator.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/ctype_inline.h \ + /usr/include/c++/11/bits/locale_facets.tcc \ + /usr/include/c++/11/bits/basic_ios.tcc \ + /usr/include/c++/11/bits/ostream.tcc /usr/include/c++/11/istream \ + /usr/include/c++/11/bits/istream.tcc \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/ICP.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/nanoflann.hpp \ + /usr/include/c++/11/vector /usr/include/c++/11/bits/stl_uninitialized.h \ + /usr/include/c++/11/bits/stl_vector.h \ + /usr/include/c++/11/bits/stl_bvector.h \ + /usr/include/c++/11/bits/vector.tcc /usr/include/c++/11/cassert \ + /usr/include/assert.h /usr/include/c++/11/algorithm \ + /usr/include/c++/11/utility /usr/include/c++/11/bits/stl_relops.h \ + /usr/include/c++/11/bits/stl_algo.h \ + /usr/include/c++/11/bits/algorithmfwd.h \ + /usr/include/c++/11/bits/stl_heap.h \ + /usr/include/c++/11/bits/stl_tempbuf.h \ + /usr/include/c++/11/bits/uniform_int_dist.h /usr/include/c++/11/cmath \ + /usr/include/math.h /usr/include/x86_64-linux-gnu/bits/math-vector.h \ + /usr/include/x86_64-linux-gnu/bits/libm-simd-decl-stubs.h \ + /usr/include/x86_64-linux-gnu/bits/flt-eval-method.h \ + /usr/include/x86_64-linux-gnu/bits/fp-logb.h \ + /usr/include/x86_64-linux-gnu/bits/fp-fast.h \ + /usr/include/x86_64-linux-gnu/bits/mathcalls-helper-functions.h \ + /usr/include/x86_64-linux-gnu/bits/mathcalls.h \ + /usr/include/x86_64-linux-gnu/bits/mathcalls-narrow.h \ + /usr/include/x86_64-linux-gnu/bits/iscanonical.h \ + /usr/include/c++/11/limits \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/./AndersonAcceleration.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/./Types.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/Dense \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/Core \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/DisableStupidWarnings.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/Macros.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/ConfigureVectorization.h \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/mmintrin.h \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/emmintrin.h \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/xmmintrin.h \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/mm_malloc.h \ + /usr/include/c++/11/stdlib.h /usr/include/c++/11/complex \ + /usr/include/c++/11/sstream /usr/include/c++/11/bits/sstream.tcc \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/MKL_support.h \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/omp.h \ + /usr/include/c++/11/cstddef /usr/include/c++/11/functional \ + /usr/include/c++/11/tuple /usr/include/c++/11/array \ + /usr/include/c++/11/bits/uses_allocator.h \ + /usr/include/c++/11/bits/invoke.h /usr/include/c++/11/bits/refwrap.h \ + /usr/include/c++/11/bits/std_function.h /usr/include/c++/11/cstring \ + /usr/include/string.h /usr/include/strings.h \ + /usr/include/x86_64-linux-gnu/bits/strings_fortified.h \ + /usr/include/x86_64-linux-gnu/bits/string_fortified.h \ + /usr/include/c++/11/climits \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/limits.h \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/syslimits.h \ + /usr/include/limits.h /usr/include/x86_64-linux-gnu/bits/posix1_lim.h \ + /usr/include/x86_64-linux-gnu/bits/local_lim.h \ + /usr/include/linux/limits.h \ + /usr/include/x86_64-linux-gnu/bits/posix2_lim.h \ + /usr/include/x86_64-linux-gnu/bits/xopen_lim.h \ + /usr/include/x86_64-linux-gnu/bits/uio_lim.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/Constants.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/Meta.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/ForwardDeclarations.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/StaticAssert.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/XprHelper.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/Memory.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/IntegralConstant.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/SymbolicIndex.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/NumTraits.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/MathFunctions.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/GenericPacketMath.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/MathFunctionsImpl.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/Default/ConjHelper.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/Default/Half.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/Default/BFloat16.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/Default/TypeCasting.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctionsFwd.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/SSE/PacketMath.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/SSE/TypeCasting.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/SSE/MathFunctions.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/SSE/Complex.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/Default/Settings.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/arch/Default/GenericPacketMathFunctions.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/functors/TernaryFunctors.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/functors/BinaryFunctors.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/functors/UnaryFunctors.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/functors/NullaryFunctors.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/functors/StlFunctors.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/functors/AssignmentFunctors.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/IndexedViewHelper.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/ReshapedHelper.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/ArithmeticSequence.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/IO.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/DenseCoeffsBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/DenseBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/CommonCwiseUnaryOps.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/BlockMethods.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/IndexedViewMethods.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/IndexedViewMethods.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/ReshapedMethods.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/ReshapedMethods.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/MatrixBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/CommonCwiseBinaryOps.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/MatrixCwiseUnaryOps.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/MatrixCwiseBinaryOps.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/EigenBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Product.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/CoreEvaluators.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/AssignEvaluator.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Assign.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/ArrayBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/ArrayCwiseUnaryOps.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/../plugins/ArrayCwiseBinaryOps.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/BlasUtil.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/DenseStorage.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/NestByValue.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/ReturnByValue.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/NoAlias.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/PlainObjectBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Matrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Array.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/CwiseTernaryOp.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/CwiseBinaryOp.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/CwiseUnaryOp.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/CwiseNullaryOp.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/CwiseUnaryView.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/SelfCwiseBinaryOp.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Dot.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/StableNorm.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Stride.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/MapBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Map.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Ref.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Block.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/VectorBlock.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/IndexedView.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Reshaped.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Transpose.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/DiagonalMatrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Diagonal.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/DiagonalProduct.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Redux.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Visitor.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Fuzzy.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Swap.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/CommaInitializer.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/GeneralProduct.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Solve.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Inverse.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/SolverBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/PermutationMatrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Transpositions.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/TriangularMatrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/SelfAdjointView.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/GeneralBlockPanelKernel.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/Parallelizer.h \ + /usr/include/c++/11/atomic /usr/include/c++/11/bits/atomic_base.h \ + /usr/include/c++/11/bits/atomic_lockfree_defines.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/ProductEvaluators.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/GeneralMatrixVector.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/GeneralMatrixMatrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/SolveTriangular.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/SelfadjointMatrixVector.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/SelfadjointMatrixMatrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/SelfadjointProduct.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/SelfadjointRank2Update.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/TriangularMatrixVector.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/TriangularMatrixMatrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/TriangularSolverMatrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/products/TriangularSolverVector.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/BandMatrix.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/CoreIterators.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/ConditionEstimator.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/BooleanRedux.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Select.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/VectorwiseOp.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/PartialReduxEvaluator.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Random.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Replicate.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/Reverse.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/ArrayWrapper.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/StlIterators.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/GlobalFunctions.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Core/util/ReenableStupidWarnings.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/LU \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/misc/Kernel.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/misc/Image.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/LU/FullPivLU.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/LU/PartialPivLU.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/LU/Determinant.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/LU/InverseImpl.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/LU/arch/InverseSize4.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/Cholesky \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/Jacobi \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Jacobi/Jacobi.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Cholesky/LLT.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Cholesky/LDLT.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/QR \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/Householder \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Householder/Householder.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Householder/HouseholderSequence.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Householder/BlockHouseholder.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/QR/HouseholderQR.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/QR/FullPivHouseholderQR.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/QR/ColPivHouseholderQR.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/SVD \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/misc/RealSvd2x2.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/SVD/UpperBidiagonalization.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/SVD/SVDBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/SVD/JacobiSVD.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/SVD/BDCSVD.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/Geometry \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/OrthoMethods.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/EulerAngles.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/Homogeneous.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/RotationBase.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/Rotation2D.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/Quaternion.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/AngleAxis.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/Transform.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/Translation.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/Scaling.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/Hyperplane.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/ParametrizedLine.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/AlignedBox.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/Umeyama.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/Eigenvalues \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/RealSchur.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/./HessenbergDecomposition.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/EigenSolver.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/./RealSchur.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/./Tridiagonalization.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/ComplexSchur.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/./ComplexSchur.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/RealQZ.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/./RealQZ.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h \ + /usr/include/c++/11/fstream /usr/include/c++/11/bits/codecvt.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/basic_file.h \ + /usr/include/x86_64-linux-gnu/c++/11/bits/c++io.h \ + /usr/include/c++/11/bits/fstream.tcc \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/./median.h \ + /usr/include/eigen3/Eigen/Dense /usr/include/eigen3/Eigen/Core \ + /usr/include/eigen3/Eigen/LU /usr/include/eigen3/Eigen/Cholesky \ + /usr/include/eigen3/Eigen/QR /usr/include/eigen3/Eigen/SVD \ + /usr/include/eigen3/Eigen/Geometry /usr/include/eigen3/Eigen/Eigenvalues \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/io_pc.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/FRICP.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/MatrixFunctions \ + /usr/include/c++/11/cfloat \ + /usr/lib/gcc/x86_64-linux-gnu/11/include/float.h \ + /usr/include/c++/11/list /usr/include/c++/11/bits/stl_list.h \ + /usr/include/c++/11/bits/allocated_ptr.h \ + /usr/include/c++/11/ext/aligned_buffer.h \ + /usr/include/c++/11/bits/list.tcc \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/../../Eigen/Core \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/../../Eigen/LU \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/../../Eigen/Eigenvalues \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/../../Eigen/src/Core/util/DisableStupidWarnings.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/include/eigen/unsupported/Eigen/../../Eigen/src/Core/util/ReenableStupidWarnings.h \ + /home/cam/Desktop/ICP/Fast-Robust-ICP/median.h diff --git a/build/CMakeFiles/FRICP.dir/progress.make b/build/CMakeFiles/FRICP.dir/progress.make new file mode 100644 index 0000000000000000000000000000000000000000..abadeb0c3abaa81d622026fcd3ae096d03dd29b7 --- /dev/null +++ b/build/CMakeFiles/FRICP.dir/progress.make @@ -0,0 +1,3 @@ +CMAKE_PROGRESS_1 = 1 +CMAKE_PROGRESS_2 = 2 + diff --git a/build/CMakeFiles/Makefile.cmake b/build/CMakeFiles/Makefile.cmake new file mode 100644 index 0000000000000000000000000000000000000000..324dfd36a56f89b6d6514fcd2a4589820e0624a0 --- /dev/null +++ b/build/CMakeFiles/Makefile.cmake @@ -0,0 +1,133 @@ +# CMAKE generated file: DO NOT EDIT! +# Generated by "Unix Makefiles" Generator, CMake Version 3.26 + +# The generator used is: +set(CMAKE_DEPENDS_GENERATOR "Unix Makefiles") + +# The top level Makefile was generated from the following files: +set(CMAKE_MAKEFILE_DEPENDS + "CMakeCache.txt" + "/home/cam/Desktop/ICP/Fast-Robust-ICP/CMakeLists.txt" + "CMakeFiles/3.26.0/CMakeCCompiler.cmake" + "CMakeFiles/3.26.0/CMakeCXXCompiler.cmake" + "CMakeFiles/3.26.0/CMakeSystem.cmake" + "/home/cam/Desktop/ICP/Fast-Robust-ICP/cmake/FindEigen3.cmake" + "/home/cam/Desktop/ICP/Fast-Robust-ICP/cmake/FindNanoFlann.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeCCompiler.cmake.in" + "/usr/local/share/cmake-3.26/Modules/CMakeCCompilerABI.c" + "/usr/local/share/cmake-3.26/Modules/CMakeCInformation.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeCXXCompiler.cmake.in" + "/usr/local/share/cmake-3.26/Modules/CMakeCXXCompilerABI.cpp" + "/usr/local/share/cmake-3.26/Modules/CMakeCXXInformation.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeCommonLanguageInclude.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeCompilerIdDetection.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCXXCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompileFeatures.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerABI.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeDetermineCompilerId.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeDetermineSystem.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeFindBinUtils.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeGenericSystem.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeInitializeConfigs.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeLanguageInformation.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeParseImplicitIncludeInfo.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeParseImplicitLinkInfo.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeParseLibraryArchitecture.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeSystem.cmake.in" + "/usr/local/share/cmake-3.26/Modules/CMakeSystemSpecificInformation.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeSystemSpecificInitialize.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeTestCCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeTestCXXCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeTestCompilerCommon.cmake" + "/usr/local/share/cmake-3.26/Modules/CMakeUnixFindMake.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/ADSP-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/ARMCC-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/ARMClang-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/AppleClang-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Borland-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Bruce-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/CMakeCommonCompilerMacros.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Clang-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Clang-DetermineCompilerInternal.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Comeau-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Compaq-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Compaq-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Cray-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Embarcadero-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Fujitsu-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/FujitsuClang-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/GHS-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/GNU-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/GNU-C.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/GNU-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/GNU-CXX.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/GNU-FindBinUtils.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/GNU.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/HP-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/HP-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/IAR-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/IBMCPP-C-DetermineVersionInternal.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/IBMCPP-CXX-DetermineVersionInternal.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/IBMClang-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/IBMClang-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Intel-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/IntelLLVM-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/LCC-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/LCC-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/MSVC-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/NVHPC-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/NVIDIA-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/OpenWatcom-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/PGI-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/PathScale-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/SCO-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/SDCC-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/SunPro-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/SunPro-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/TI-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Tasking-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/TinyCC-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/VisualAge-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/VisualAge-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/Watcom-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/XL-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/XL-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/XLClang-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/XLClang-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/zOS-C-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/Compiler/zOS-CXX-DetermineCompiler.cmake" + "/usr/local/share/cmake-3.26/Modules/FindOpenMP.cmake" + "/usr/local/share/cmake-3.26/Modules/FindPackageHandleStandardArgs.cmake" + "/usr/local/share/cmake-3.26/Modules/FindPackageMessage.cmake" + "/usr/local/share/cmake-3.26/Modules/Internal/FeatureTesting.cmake" + "/usr/local/share/cmake-3.26/Modules/Platform/Linux-Determine-CXX.cmake" + "/usr/local/share/cmake-3.26/Modules/Platform/Linux-GNU-C.cmake" + "/usr/local/share/cmake-3.26/Modules/Platform/Linux-GNU-CXX.cmake" + "/usr/local/share/cmake-3.26/Modules/Platform/Linux-GNU.cmake" + "/usr/local/share/cmake-3.26/Modules/Platform/Linux.cmake" + "/usr/local/share/cmake-3.26/Modules/Platform/UnixPaths.cmake" + ) + +# The corresponding makefile is: +set(CMAKE_MAKEFILE_OUTPUTS + "Makefile" + "CMakeFiles/cmake.check_cache" + ) + +# Byproducts of CMake generate step: +set(CMAKE_MAKEFILE_PRODUCTS + "CMakeFiles/3.26.0/CMakeSystem.cmake" + "CMakeFiles/3.26.0/CMakeCCompiler.cmake" + "CMakeFiles/3.26.0/CMakeCXXCompiler.cmake" + "CMakeFiles/3.26.0/CMakeCCompiler.cmake" + "CMakeFiles/3.26.0/CMakeCXXCompiler.cmake" + "CMakeFiles/CMakeDirectoryInformation.cmake" + ) + +# Dependency information for all targets: +set(CMAKE_DEPEND_INFO_FILES + "CMakeFiles/FRICP.dir/DependInfo.cmake" + "CMakeFiles/data.dir/DependInfo.cmake" + ) diff --git a/build/CMakeFiles/Makefile2 b/build/CMakeFiles/Makefile2 new file mode 100644 index 0000000000000000000000000000000000000000..b971ee5a042a872dae832035d7ffa1b89c9c7ff3 --- /dev/null +++ b/build/CMakeFiles/Makefile2 @@ -0,0 +1,139 @@ +# CMAKE generated file: DO NOT EDIT! +# Generated by "Unix Makefiles" Generator, CMake Version 3.26 + +# Default target executed when no arguments are given to make. +default_target: all +.PHONY : default_target + +#============================================================================= +# Special targets provided by cmake. + +# Disable implicit rules so canonical targets will work. +.SUFFIXES: + +# Disable VCS-based implicit rules. +% : %,v + +# Disable VCS-based implicit rules. +% : RCS/% + +# Disable VCS-based implicit rules. +% : RCS/%,v + +# Disable VCS-based implicit rules. +% : SCCS/s.% + +# Disable VCS-based implicit rules. +% : s.% + +.SUFFIXES: .hpux_make_needs_suffix_list + +# Command-line flag to silence nested $(MAKE). +$(VERBOSE)MAKESILENT = -s + +#Suppress display of executed commands. +$(VERBOSE).SILENT: + +# A target that is always out of date. +cmake_force: +.PHONY : cmake_force + +#============================================================================= +# Set environment variables for the build. + +# The shell in which to execute make rules. +SHELL = /bin/sh + +# The CMake executable. +CMAKE_COMMAND = /usr/local/bin/cmake + +# The command to remove a file. +RM = /usr/local/bin/cmake -E rm -f + +# Escaping for special characters. +EQUALS = = + +# The top-level source directory on which CMake was run. +CMAKE_SOURCE_DIR = /home/cam/Desktop/ICP/Fast-Robust-ICP + +# The top-level build directory on which CMake was run. +CMAKE_BINARY_DIR = /home/cam/Desktop/ICP/Fast-Robust-ICP/build + +#============================================================================= +# Directory level rules for the build root directory + +# The main recursive "all" target. +all: CMakeFiles/FRICP.dir/all +.PHONY : all + +# The main recursive "preinstall" target. +preinstall: +.PHONY : preinstall + +# The main recursive "clean" target. +clean: CMakeFiles/FRICP.dir/clean +clean: CMakeFiles/data.dir/clean +.PHONY : clean + +#============================================================================= +# Target rules for target CMakeFiles/FRICP.dir + +# All Build rule for target. +CMakeFiles/FRICP.dir/all: + $(MAKE) $(MAKESILENT) -f CMakeFiles/FRICP.dir/build.make CMakeFiles/FRICP.dir/depend + $(MAKE) $(MAKESILENT) -f CMakeFiles/FRICP.dir/build.make CMakeFiles/FRICP.dir/build + @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --progress-dir=/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles --progress-num=1,2 "Built target FRICP" +.PHONY : CMakeFiles/FRICP.dir/all + +# Build rule for subdir invocation for target. +CMakeFiles/FRICP.dir/rule: cmake_check_build_system + $(CMAKE_COMMAND) -E cmake_progress_start /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles 2 + $(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 CMakeFiles/FRICP.dir/all + $(CMAKE_COMMAND) -E cmake_progress_start /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles 0 +.PHONY : CMakeFiles/FRICP.dir/rule + +# Convenience name for target. +FRICP: CMakeFiles/FRICP.dir/rule +.PHONY : FRICP + +# clean rule for target. +CMakeFiles/FRICP.dir/clean: + $(MAKE) $(MAKESILENT) -f CMakeFiles/FRICP.dir/build.make CMakeFiles/FRICP.dir/clean +.PHONY : CMakeFiles/FRICP.dir/clean + +#============================================================================= +# Target rules for target CMakeFiles/data.dir + +# All Build rule for target. +CMakeFiles/data.dir/all: + $(MAKE) $(MAKESILENT) -f CMakeFiles/data.dir/build.make CMakeFiles/data.dir/depend + $(MAKE) $(MAKESILENT) -f CMakeFiles/data.dir/build.make CMakeFiles/data.dir/build + @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --progress-dir=/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles --progress-num= "Built target data" +.PHONY : CMakeFiles/data.dir/all + +# Build rule for subdir invocation for target. +CMakeFiles/data.dir/rule: cmake_check_build_system + $(CMAKE_COMMAND) -E cmake_progress_start /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles 0 + $(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 CMakeFiles/data.dir/all + $(CMAKE_COMMAND) -E cmake_progress_start /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles 0 +.PHONY : CMakeFiles/data.dir/rule + +# Convenience name for target. +data: CMakeFiles/data.dir/rule +.PHONY : data + +# clean rule for target. +CMakeFiles/data.dir/clean: + $(MAKE) $(MAKESILENT) -f CMakeFiles/data.dir/build.make CMakeFiles/data.dir/clean +.PHONY : CMakeFiles/data.dir/clean + +#============================================================================= +# Special targets to cleanup operation of make. + +# Special rule to run CMake to check the build system integrity. +# No rule that depends on this can have commands that come from listfiles +# because they might be regenerated. +cmake_check_build_system: + $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 0 +.PHONY : cmake_check_build_system + diff --git a/build/CMakeFiles/TargetDirectories.txt b/build/CMakeFiles/TargetDirectories.txt new file mode 100644 index 0000000000000000000000000000000000000000..7bb637677addc64d47a46fe07240515ff00b77ad --- /dev/null +++ b/build/CMakeFiles/TargetDirectories.txt @@ -0,0 +1,4 @@ +/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/FRICP.dir +/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/data.dir +/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/edit_cache.dir +/home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/rebuild_cache.dir diff --git a/build/CMakeFiles/cmake.check_cache b/build/CMakeFiles/cmake.check_cache new file mode 100644 index 0000000000000000000000000000000000000000..3dccd731726d7faa8b29d8d7dba3b981a53ca497 --- /dev/null +++ b/build/CMakeFiles/cmake.check_cache @@ -0,0 +1 @@ +# This file is generated by cmake for dependency checking of the CMakeCache.txt file diff --git a/build/CMakeFiles/data.dir/DependInfo.cmake b/build/CMakeFiles/data.dir/DependInfo.cmake new file mode 100644 index 0000000000000000000000000000000000000000..45a25b7803ef690647c5d5ceeb27ad44011b8f31 --- /dev/null +++ b/build/CMakeFiles/data.dir/DependInfo.cmake @@ -0,0 +1,18 @@ + +# Consider dependencies only in project. +set(CMAKE_DEPENDS_IN_PROJECT_ONLY OFF) + +# The set of languages for which implicit dependencies are needed: +set(CMAKE_DEPENDS_LANGUAGES + ) + +# The set of dependency files which are needed: +set(CMAKE_DEPENDS_DEPENDENCY_FILES + ) + +# Targets to which this target links which contain Fortran sources. +set(CMAKE_Fortran_TARGET_LINKED_INFO_FILES + ) + +# Fortran module output directory. +set(CMAKE_Fortran_TARGET_MODULE_DIR "") diff --git a/build/CMakeFiles/data.dir/build.make b/build/CMakeFiles/data.dir/build.make new file mode 100644 index 0000000000000000000000000000000000000000..1c96c3a882956c00033f97479a8c6d9d505ecaac --- /dev/null +++ b/build/CMakeFiles/data.dir/build.make @@ -0,0 +1,83 @@ +# CMAKE generated file: DO NOT EDIT! +# Generated by "Unix Makefiles" Generator, CMake Version 3.26 + +# Delete rule output on recipe failure. +.DELETE_ON_ERROR: + +#============================================================================= +# Special targets provided by cmake. + +# Disable implicit rules so canonical targets will work. +.SUFFIXES: + +# Disable VCS-based implicit rules. +% : %,v + +# Disable VCS-based implicit rules. +% : RCS/% + +# Disable VCS-based implicit rules. +% : RCS/%,v + +# Disable VCS-based implicit rules. +% : SCCS/s.% + +# Disable VCS-based implicit rules. +% : s.% + +.SUFFIXES: .hpux_make_needs_suffix_list + +# Command-line flag to silence nested $(MAKE). +$(VERBOSE)MAKESILENT = -s + +#Suppress display of executed commands. +$(VERBOSE).SILENT: + +# A target that is always out of date. +cmake_force: +.PHONY : cmake_force + +#============================================================================= +# Set environment variables for the build. + +# The shell in which to execute make rules. +SHELL = /bin/sh + +# The CMake executable. +CMAKE_COMMAND = /usr/local/bin/cmake + +# The command to remove a file. +RM = /usr/local/bin/cmake -E rm -f + +# Escaping for special characters. +EQUALS = = + +# The top-level source directory on which CMake was run. +CMAKE_SOURCE_DIR = /home/cam/Desktop/ICP/Fast-Robust-ICP + +# The top-level build directory on which CMake was run. +CMAKE_BINARY_DIR = /home/cam/Desktop/ICP/Fast-Robust-ICP/build + +# Utility rule file for data. + +# Include any custom commands dependencies for this target. +include CMakeFiles/data.dir/compiler_depend.make + +# Include the progress variables for this target. +include CMakeFiles/data.dir/progress.make + +data: CMakeFiles/data.dir/build.make +.PHONY : data + +# Rule to build all files generated by this target. +CMakeFiles/data.dir/build: data +.PHONY : CMakeFiles/data.dir/build + +CMakeFiles/data.dir/clean: + $(CMAKE_COMMAND) -P CMakeFiles/data.dir/cmake_clean.cmake +.PHONY : CMakeFiles/data.dir/clean + +CMakeFiles/data.dir/depend: + cd /home/cam/Desktop/ICP/Fast-Robust-ICP/build && $(CMAKE_COMMAND) -E cmake_depends "Unix Makefiles" /home/cam/Desktop/ICP/Fast-Robust-ICP /home/cam/Desktop/ICP/Fast-Robust-ICP /home/cam/Desktop/ICP/Fast-Robust-ICP/build /home/cam/Desktop/ICP/Fast-Robust-ICP/build /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles/data.dir/DependInfo.cmake --color=$(COLOR) +.PHONY : CMakeFiles/data.dir/depend + diff --git a/build/CMakeFiles/data.dir/cmake_clean.cmake b/build/CMakeFiles/data.dir/cmake_clean.cmake new file mode 100644 index 0000000000000000000000000000000000000000..8fc1cda2f30aa2b84767a5e1314b6a09607f4238 --- /dev/null +++ b/build/CMakeFiles/data.dir/cmake_clean.cmake @@ -0,0 +1,5 @@ + +# Per-language clean rules from dependency scanning. +foreach(lang ) + include(CMakeFiles/data.dir/cmake_clean_${lang}.cmake OPTIONAL) +endforeach() diff --git a/build/CMakeFiles/data.dir/compiler_depend.make b/build/CMakeFiles/data.dir/compiler_depend.make new file mode 100644 index 0000000000000000000000000000000000000000..98a772e9a6700acc976846253edfeca7b3ba1298 --- /dev/null +++ b/build/CMakeFiles/data.dir/compiler_depend.make @@ -0,0 +1,2 @@ +# Empty custom commands generated dependencies file for data. +# This may be replaced when dependencies are built. diff --git a/build/CMakeFiles/data.dir/compiler_depend.ts b/build/CMakeFiles/data.dir/compiler_depend.ts new file mode 100644 index 0000000000000000000000000000000000000000..88fe0d3080f037ee31748f5cac2775040bebd327 --- /dev/null +++ b/build/CMakeFiles/data.dir/compiler_depend.ts @@ -0,0 +1,2 @@ +# CMAKE generated file: DO NOT EDIT! +# Timestamp file for custom commands dependencies management for data. diff --git a/build/CMakeFiles/data.dir/progress.make b/build/CMakeFiles/data.dir/progress.make new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/build/CMakeFiles/data.dir/progress.make @@ -0,0 +1 @@ + diff --git a/build/CMakeFiles/progress.marks b/build/CMakeFiles/progress.marks new file mode 100644 index 0000000000000000000000000000000000000000..0cfbf08886fca9a91cb753ec8734c84fcbe52c9f --- /dev/null +++ b/build/CMakeFiles/progress.marks @@ -0,0 +1 @@ +2 diff --git a/build/Makefile b/build/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..9d451b6c9e3c74836cd4c083b8395435ef0eeb0c --- /dev/null +++ b/build/Makefile @@ -0,0 +1,195 @@ +# CMAKE generated file: DO NOT EDIT! +# Generated by "Unix Makefiles" Generator, CMake Version 3.26 + +# Default target executed when no arguments are given to make. +default_target: all +.PHONY : default_target + +# Allow only one "make -f Makefile2" at a time, but pass parallelism. +.NOTPARALLEL: + +#============================================================================= +# Special targets provided by cmake. + +# Disable implicit rules so canonical targets will work. +.SUFFIXES: + +# Disable VCS-based implicit rules. +% : %,v + +# Disable VCS-based implicit rules. +% : RCS/% + +# Disable VCS-based implicit rules. +% : RCS/%,v + +# Disable VCS-based implicit rules. +% : SCCS/s.% + +# Disable VCS-based implicit rules. +% : s.% + +.SUFFIXES: .hpux_make_needs_suffix_list + +# Command-line flag to silence nested $(MAKE). +$(VERBOSE)MAKESILENT = -s + +#Suppress display of executed commands. +$(VERBOSE).SILENT: + +# A target that is always out of date. +cmake_force: +.PHONY : cmake_force + +#============================================================================= +# Set environment variables for the build. + +# The shell in which to execute make rules. +SHELL = /bin/sh + +# The CMake executable. +CMAKE_COMMAND = /usr/local/bin/cmake + +# The command to remove a file. +RM = /usr/local/bin/cmake -E rm -f + +# Escaping for special characters. +EQUALS = = + +# The top-level source directory on which CMake was run. +CMAKE_SOURCE_DIR = /home/cam/Desktop/ICP/Fast-Robust-ICP + +# The top-level build directory on which CMake was run. +CMAKE_BINARY_DIR = /home/cam/Desktop/ICP/Fast-Robust-ICP/build + +#============================================================================= +# Targets provided globally by CMake. + +# Special rule for the target edit_cache +edit_cache: + @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --cyan "No interactive CMake dialog available..." + /usr/local/bin/cmake -E echo No\ interactive\ CMake\ dialog\ available. +.PHONY : edit_cache + +# Special rule for the target edit_cache +edit_cache/fast: edit_cache +.PHONY : edit_cache/fast + +# Special rule for the target rebuild_cache +rebuild_cache: + @$(CMAKE_COMMAND) -E cmake_echo_color --switch=$(COLOR) --cyan "Running CMake to regenerate build system..." + /usr/local/bin/cmake --regenerate-during-build -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) +.PHONY : rebuild_cache + +# Special rule for the target rebuild_cache +rebuild_cache/fast: rebuild_cache +.PHONY : rebuild_cache/fast + +# The main all target +all: cmake_check_build_system + $(CMAKE_COMMAND) -E cmake_progress_start /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles /home/cam/Desktop/ICP/Fast-Robust-ICP/build//CMakeFiles/progress.marks + $(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 all + $(CMAKE_COMMAND) -E cmake_progress_start /home/cam/Desktop/ICP/Fast-Robust-ICP/build/CMakeFiles 0 +.PHONY : all + +# The main clean target +clean: + $(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 clean +.PHONY : clean + +# The main clean target +clean/fast: clean +.PHONY : clean/fast + +# Prepare targets for installation. +preinstall: all + $(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 preinstall +.PHONY : preinstall + +# Prepare targets for installation. +preinstall/fast: + $(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 preinstall +.PHONY : preinstall/fast + +# clear depends +depend: + $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 1 +.PHONY : depend + +#============================================================================= +# Target rules for targets named FRICP + +# Build rule for target. +FRICP: cmake_check_build_system + $(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 FRICP +.PHONY : FRICP + +# fast build rule for target. +FRICP/fast: + $(MAKE) $(MAKESILENT) -f CMakeFiles/FRICP.dir/build.make CMakeFiles/FRICP.dir/build +.PHONY : FRICP/fast + +#============================================================================= +# Target rules for targets named data + +# Build rule for target. +data: cmake_check_build_system + $(MAKE) $(MAKESILENT) -f CMakeFiles/Makefile2 data +.PHONY : data + +# fast build rule for target. +data/fast: + $(MAKE) $(MAKESILENT) -f CMakeFiles/data.dir/build.make CMakeFiles/data.dir/build +.PHONY : data/fast + +main.o: main.cpp.o +.PHONY : main.o + +# target to build an object file +main.cpp.o: + $(MAKE) $(MAKESILENT) -f CMakeFiles/FRICP.dir/build.make CMakeFiles/FRICP.dir/main.cpp.o +.PHONY : main.cpp.o + +main.i: main.cpp.i +.PHONY : main.i + +# target to preprocess a source file +main.cpp.i: + $(MAKE) $(MAKESILENT) -f CMakeFiles/FRICP.dir/build.make CMakeFiles/FRICP.dir/main.cpp.i +.PHONY : main.cpp.i + +main.s: main.cpp.s +.PHONY : main.s + +# target to generate assembly for a file +main.cpp.s: + $(MAKE) $(MAKESILENT) -f CMakeFiles/FRICP.dir/build.make CMakeFiles/FRICP.dir/main.cpp.s +.PHONY : main.cpp.s + +# Help Target +help: + @echo "The following are some of the valid targets for this Makefile:" + @echo "... all (the default if no target is provided)" + @echo "... clean" + @echo "... depend" + @echo "... edit_cache" + @echo "... rebuild_cache" + @echo "... data" + @echo "... FRICP" + @echo "... main.o" + @echo "... main.i" + @echo "... main.s" +.PHONY : help + + + +#============================================================================= +# Special targets to cleanup operation of make. + +# Special rule to run CMake to check the build system integrity. +# No rule that depends on this can have commands that come from listfiles +# because they might be regenerated. +cmake_check_build_system: + $(CMAKE_COMMAND) -S$(CMAKE_SOURCE_DIR) -B$(CMAKE_BINARY_DIR) --check-build-system CMakeFiles/Makefile.cmake 0 +.PHONY : cmake_check_build_system + diff --git a/build/cmake_install.cmake b/build/cmake_install.cmake new file mode 100644 index 0000000000000000000000000000000000000000..05f80be5f8b4915bc6e74199409751f572d2ee8f --- /dev/null +++ b/build/cmake_install.cmake @@ -0,0 +1,54 @@ +# Install script for directory: /home/cam/Desktop/ICP/Fast-Robust-ICP + +# Set the install prefix +if(NOT DEFINED CMAKE_INSTALL_PREFIX) + set(CMAKE_INSTALL_PREFIX "/usr/local") +endif() +string(REGEX REPLACE "/$" "" CMAKE_INSTALL_PREFIX "${CMAKE_INSTALL_PREFIX}") + +# Set the install configuration name. +if(NOT DEFINED CMAKE_INSTALL_CONFIG_NAME) + if(BUILD_TYPE) + string(REGEX REPLACE "^[^A-Za-z0-9_]+" "" + CMAKE_INSTALL_CONFIG_NAME "${BUILD_TYPE}") + else() + set(CMAKE_INSTALL_CONFIG_NAME "Release") + endif() + message(STATUS "Install configuration: \"${CMAKE_INSTALL_CONFIG_NAME}\"") +endif() + +# Set the component getting installed. +if(NOT CMAKE_INSTALL_COMPONENT) + if(COMPONENT) + message(STATUS "Install component: \"${COMPONENT}\"") + set(CMAKE_INSTALL_COMPONENT "${COMPONENT}") + else() + set(CMAKE_INSTALL_COMPONENT) + endif() +endif() + +# Install shared libraries without execute permission? +if(NOT DEFINED CMAKE_INSTALL_SO_NO_EXE) + set(CMAKE_INSTALL_SO_NO_EXE "1") +endif() + +# Is this installation the result of a crosscompile? +if(NOT DEFINED CMAKE_CROSSCOMPILING) + set(CMAKE_CROSSCOMPILING "FALSE") +endif() + +# Set default install directory permissions. +if(NOT DEFINED CMAKE_OBJDUMP) + set(CMAKE_OBJDUMP "/usr/bin/objdump") +endif() + +if(CMAKE_INSTALL_COMPONENT) + set(CMAKE_INSTALL_MANIFEST "install_manifest_${CMAKE_INSTALL_COMPONENT}.txt") +else() + set(CMAKE_INSTALL_MANIFEST "install_manifest.txt") +endif() + +string(REPLACE ";" "\n" CMAKE_INSTALL_MANIFEST_CONTENT + "${CMAKE_INSTALL_MANIFEST_FILES}") +file(WRITE "/home/cam/Desktop/ICP/Fast-Robust-ICP/build/${CMAKE_INSTALL_MANIFEST}" + "${CMAKE_INSTALL_MANIFEST_CONTENT}") diff --git a/cmake/FindEigen3.cmake b/cmake/FindEigen3.cmake new file mode 100644 index 0000000000000000000000000000000000000000..35e0e4d6ed2d4e6d63e07bd80d29c56c7bfe74ef --- /dev/null +++ b/cmake/FindEigen3.cmake @@ -0,0 +1,18 @@ +FIND_PATH( EIGEN3_INCLUDE_DIRS Eigen/Geometry + $ENV{EIGEN3DIR}/include + /usr/local/include/eigen3 + /usr/local/include + /usr/local/X11R6/include + /usr/X11R6/include + /usr/X11/include + /usr/include/X11 + /usr/include/eigen3/ + /usr/include + /opt/X11/include + /opt/include + ${CMAKE_SOURCE_DIR}/external/eigen/include) + +SET(EIGEN3_FOUND "NO") +IF(EIGEN3_INCLUDE_DIRS) + SET(EIGEN3_FOUND "YES") +ENDIF() diff --git a/cmake/FindNanoFlann.cmake b/cmake/FindNanoFlann.cmake new file mode 100644 index 0000000000000000000000000000000000000000..7c99294bcffb3fead15a0892d5d5c4f3c6e56649 --- /dev/null +++ b/cmake/FindNanoFlann.cmake @@ -0,0 +1,24 @@ +FIND_PATH( + # filled variable + NANOFLANN_INCLUDE_DIR + # what I am looking for? + nanoflann.hpp + # where should I look? + $ENV{NANOFLANN_DIR} + ${CMAKE_SOURCE_DIR}/include) + +IF(NANOFLANN_INCLUDE_DIR) + SET(NANOFLANN_FOUND TRUE) +else() + SET(NANOFLANN_FOUND FALSE) +ENDIF() + +IF(NANOFLANN_FOUND) + IF(NOT CMAKE_FIND_QUIETLY) + MESSAGE(STATUS "Found NanoFlann: ${NANOFLANN_INCLUDE_DIR}") + ENDIF() +ELSE() + IF(NANOFLANN_FOUND_REQUIRED) + MESSAGE(FATAL_ERROR "Could not find NanoFlann") + ENDIF() +ENDIF() diff --git a/data/, b/data/, new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/data/data.json b/data/data.json new file mode 100644 index 0000000000000000000000000000000000000000..1ec1440fb33e92ef6b9716149016ec3a6491e84e --- /dev/null +++ b/data/data.json @@ -0,0 +1,729 @@ +{ + "bottle2_100_standing": [ + "100_1", + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11", + "100_12" + ], + "bottle2_100_lying": [ + "100_13", + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20" + ], + "bottle2_75_staning": [ + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11", + "75_12" + ], + "bottle2_75_lying": [ + "75_1", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20" + ], + "bottle2_50_standing": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11", + "50_12" + ], + "bottle2_50_lying": [ + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_20" + ], + "bottle2_25_standing": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11" + ], + "bottle2_25_lying": [ + "25_12", + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20", + "25_21", + "25_22", + "25_23" + ], + "bottle2_0_standing": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10", + "0_11", + "0_12", + "0_13" + ], + "bottle2_0_lying": [ + "0_14", + "0_15", + "0_16", + "0_17", + "0_18", + "0_19" + ], + "glasses_100_standing": [ + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11", + "100_12", + "100_13" + ], + "glasses_100_lying": [ + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20", + "100_21", + "100_1", + "100_2" + ], + "glasses_75_lying": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20" + ], + "glasses_50_lying": [ + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_20", + "50_21" + ], + "glasses_25_lying": [ + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20", + "25_21" + ], + "glasses_0_lying": [ + "0_11", + "0_12", + "0_13", + "0_14", + "0_15", + "0_16", + "0_17", + "0_18", + "0_19" + ], + "glasses_75_standing": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11" + ], + "glasses_50_standing": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11", + "50_12" + ], + "glasses_25_standing": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11", + "25_12" + ], + "glasses_0_standing": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10", + "0_11", + "0_12", + "0_13" + ], + "lightbulb_100_standing": [ + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7" + ], + "lightbulb_75_standing": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17" + ], + "lightbulb_50_standing": [ + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_1", + "50_2", + "50_3" + ], + "lightbulb_25_standing": [ + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8" + ], + "lightbulb_0_standing": [ + "0_13", + "0_14", + "0_15", + "0_16" + ], + "lightbulb_100_lying": [ + "100_8", + "100_9", + "100_10", + "100_11", + "100_12", + "100_13", + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20" + ], + "lightbulb_75_lying": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11", + "75_18", + "75_19", + "75_20" + ], + "lightbulb_50_lying": [ + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11", + "50_12", + "50_20", + "50_21" + ], + "lightbulb_25_lying": [ + "25_9", + "25_10", + "25_11", + "25_12", + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20", + "25_21" + ], + "lightbulb_0_lying": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10", + "0_11", + "0_12" + ], + "lighter_100_lying": [ + "100_13", + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20", + "100_21" + ], + "lighter_75_lying": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20", + "75_21" + ], + "lighter_50_lying": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11" + ], + "lighter_25_lying": [ + "25_12", + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20", + "25_21" + ], + "lighter_0_lying": [ + "0_13", + "0_14", + "0_15", + "0_16", + "0_17", + "0_18", + "0_19" + ], + "lighter_100_standing": [ + "100_1", + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11", + "100_12" + ], + "lighter_75_standing": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11" + ], + "lighter_50_standing": [ + "50_12", + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_20", + "50_21" + ], + "lighter_25_standing": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11" + ], + "lighter_0_standing": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10", + "0_11", + "0_12" + ], + "magnifying_glass_100_standing": [ + "100_12", + "100_13", + "100_14", + "100_15", + "100_16", + "100_17" + ], + "magnifying_glass_75_standing": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20" + ], + "magnifying_glass_50_standing": [ + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19" + ], + "magnifying_glass_25_standing": [ + "25_13", + "25_14", + "25_15", + "25_16", + "25_17" + ], + "magnifying_glass_0_standing": [ + "0_3", + "0_4", + "0_5", + "0_6", + "0_8", + "0_15" + ], + "magnifying_glass_100_lying": [ + "100_1", + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11", + "100_18", + "100_19", + "100_20", + "100_21" + ], + "magnifying_glass_75_lying": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11" + ], + "magnifying_glass_50_lying": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11", + "50_12", + "50_13", + "50_20", + "50_21" + ], + "magnifying_glass_25_lying": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11", + "25_12", + "25_18", + "25_19", + "25_20", + "25_21" + ], + "magnifying_glass_0_lying": [ + "0_10", + "0_11", + "0_12", + "0_13", + "0_14", + "0_1", + "0_2", + "0_7", + "0_16", + "0_17", + "0_18", + "0_19" + ], + "spray_100_standing": [ + "100_1", + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11" + ], + "spray_75_standing": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11" + ], + "spray_50_standing": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11" + ], + "spray_25_standing": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11" + ], + "spray_0_standing": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10" + ], + "spray_100_lying": [ + "100_12", + "100_13", + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20" + ], + "spray_75_lying": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20", + "75_21" + ], + "spray_50_lying": [ + "50_12", + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_20" + ], + "spray_25_lying": [ + "25_12", + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20" + ], + "spray_0_lying": [ + "0_11", + "0_12", + "0_13", + "0_14", + "0_15", + "0_16", + "0_17", + "0_18", + "0_19" + ] +} \ No newline at end of file diff --git a/data/inference.ipynb b/data/inference.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..3227fa063af58065b7ea6e1c5dc4f61fc184cdae --- /dev/null +++ b/data/inference.ipynb @@ -0,0 +1,178 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Source PCD" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Jupyter environment detected. Enabling Open3D WebVisualizer.\n", + "[Open3D INFO] WebRTC GUI backend enabled.\n", + "[Open3D INFO] WebRTCWindowSystem: HTTP handshake server disabled.\n", + "Source shape: (14806, 3)\n" + ] + } + ], + "source": [ + "import open3d as o3d\n", + "import numpy as np\n", + "\n", + "source_path = \"source.ply\"\n", + "source_pcd = o3d.io.read_point_cloud(source_path)\n", + "\n", + "source_pcd_array = np.asarray(source_pcd.points)\n", + "print(\"Source shape:\", source_pcd_array.shape)\n", + "\n", + "o3d.visualization.draw_geometries([source_pcd])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Target PCD" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Target shape: (15446, 3)\n" + ] + } + ], + "source": [ + "target_path = \"target.ply\"\n", + "target_pcd = o3d.io.read_point_cloud(target_path)\n", + "\n", + "target_pcd_array = np.asarray(target_pcd.points)\n", + "print(\"Target shape:\", target_pcd_array.shape)\n", + "\n", + "o3d.visualization.draw_geometries([target_pcd])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Transformed Source PCD" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Transformed shape: (15446, 3)\n" + ] + } + ], + "source": [ + "transformed_path = \"res/m3reg_pc.ply\"\n", + "transformed_pcd = o3d.io.read_point_cloud(transformed_path)\n", + "\n", + "transformed_pcd_array = np.asarray(transformed_pcd.points)\n", + "print(\"Transformed shape:\", transformed_pcd_array.shape)\n", + "\n", + "o3d.visualization.draw_geometries([transformed_pcd])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Source (Original) + Target" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "source_pcd.paint_uniform_color([1, 0, 0])\n", + "target_pcd.paint_uniform_color([0, 1, 0])\n", + "\n", + "vis = o3d.visualization.Visualizer()\n", + "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n", + "vis.add_geometry(source_pcd)\n", + "vis.add_geometry(target_pcd)\n", + "\n", + "vis.run()\n", + "vis.destroy_window()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Transformed + Target" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_pcd.paint_uniform_color([1, 0, 0])\n", + "target_pcd.paint_uniform_color([0, 1, 0])\n", + "\n", + "vis = o3d.visualization.Visualizer()\n", + "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n", + "vis.add_geometry(transformed_pcd)\n", + "vis.add_geometry(target_pcd)\n", + "\n", + "vis.run()\n", + "vis.destroy_window()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/data/object_data.json b/data/object_data.json new file mode 100644 index 0000000000000000000000000000000000000000..96d7df09878d4750d29643c76f84ad66efe9dbb1 --- /dev/null +++ b/data/object_data.json @@ -0,0 +1,741 @@ +{ + "bottle2": { + "100_standing": [ + "100_1", + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11", + "100_12" + ], + "100_lying": [ + "100_13", + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20" + ], + "75_staning": [ + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11", + "75_12" + ], + "75_lying": [ + "75_1", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20" + ], + "50_standing": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11", + "50_12" + ], + "50_lying": [ + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_20" + ], + "25_standing": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11" + ], + "25_lying": [ + "25_12", + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20", + "25_21", + "25_22", + "25_23" + ], + "0_standing": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10", + "0_11", + "0_12", + "0_13" + ], + "0_lying": [ + "0_14", + "0_15", + "0_16", + "0_17", + "0_18", + "0_19" + ] + }, + "glasses": { + "100_standing": [ + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11", + "100_12", + "100_13" + ], + "100_lying": [ + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20", + "100_21", + "100_1", + "100_2" + ], + "75_lying": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20" + ], + "50_lying": [ + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_20", + "50_21" + ], + "25_lying": [ + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20", + "25_21" + ], + "0_lying": [ + "0_11", + "0_12", + "0_13", + "0_14", + "0_15", + "0_16", + "0_17", + "0_18", + "0_19" + ], + "75_standing": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11" + ], + "50_standing": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11", + "50_12" + ], + "25_standing": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11", + "25_12" + ], + "0_standing": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10", + "0_11", + "0_12", + "0_13" + ] + }, + "lightbulb": { + "100_standing": [ + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7" + ], + "75_standing": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17" + ], + "50_standing": [ + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_1", + "50_2", + "50_3" + ], + "25_standing": [ + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8" + ], + "0_standing": [ + "0_13", + "0_14", + "0_15", + "0_16" + ], + "100_lying": [ + "100_8", + "100_9", + "100_10", + "100_11", + "100_12", + "100_13", + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20" + ], + "75_lying": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11", + "75_18", + "75_19", + "75_20" + ], + "50_lying": [ + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11", + "50_12", + "50_20", + "50_21" + ], + "25_lying": [ + "25_9", + "25_10", + "25_11", + "25_12", + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20", + "25_21" + ], + "0_lying": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10", + "0_11", + "0_12" + ] + }, + "lighter": { + "100_lying": [ + "100_13", + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20", + "100_21" + ], + "75_lying": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20", + "75_21" + ], + "50_lying": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11" + ], + "25_lying": [ + "25_12", + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20", + "25_21" + ], + "0_lying": [ + "0_13", + "0_14", + "0_15", + "0_16", + "0_17", + "0_18", + "0_19" + ], + "100_standing": [ + "100_1", + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11", + "100_12" + ], + "75_standing": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11" + ], + "50_standing": [ + "50_12", + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_20", + "50_21" + ], + "25_standing": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11" + ], + "0_standing": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10", + "0_11", + "0_12" + ] + }, + "magnifying_glass": { + "100_standing": [ + "100_12", + "100_13", + "100_14", + "100_15", + "100_16", + "100_17" + ], + "75_standing": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20" + ], + "50_standing": [ + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19" + ], + "25_standing": [ + "25_13", + "25_14", + "25_15", + "25_16", + "25_17" + ], + "0_standing": [ + "0_3", + "0_4", + "0_5", + "0_6", + "0_8", + "0_15" + ], + "100_lying": [ + "100_1", + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11", + "100_18", + "100_19", + "100_20", + "100_21" + ], + "75_lying": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11" + ], + "50_lying": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11", + "50_12", + "50_13", + "50_20", + "50_21" + ], + "25_lying": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11", + "25_12", + "25_18", + "25_19", + "25_20", + "25_21" + ], + "0_lying": [ + "0_10", + "0_11", + "0_12", + "0_13", + "0_14", + "0_1", + "0_2", + "0_7", + "0_16", + "0_17", + "0_18", + "0_19" + ] + }, + "spray": { + "100_standing": [ + "100_1", + "100_2", + "100_3", + "100_4", + "100_5", + "100_6", + "100_7", + "100_8", + "100_9", + "100_10", + "100_11" + ], + "75_standing": [ + "75_1", + "75_2", + "75_3", + "75_4", + "75_5", + "75_6", + "75_7", + "75_8", + "75_9", + "75_10", + "75_11" + ], + "50_standing": [ + "50_1", + "50_2", + "50_3", + "50_4", + "50_5", + "50_6", + "50_7", + "50_8", + "50_9", + "50_10", + "50_11" + ], + "25_standing": [ + "25_1", + "25_2", + "25_3", + "25_4", + "25_5", + "25_6", + "25_7", + "25_8", + "25_9", + "25_10", + "25_11" + ], + "0_standing": [ + "0_1", + "0_2", + "0_3", + "0_4", + "0_5", + "0_6", + "0_7", + "0_8", + "0_9", + "0_10" + ], + "100_lying": [ + "100_12", + "100_13", + "100_14", + "100_15", + "100_16", + "100_17", + "100_18", + "100_19", + "100_20" + ], + "75_lying": [ + "75_12", + "75_13", + "75_14", + "75_15", + "75_16", + "75_17", + "75_18", + "75_19", + "75_20", + "75_21" + ], + "50_lying": [ + "50_12", + "50_13", + "50_14", + "50_15", + "50_16", + "50_17", + "50_18", + "50_19", + "50_20" + ], + "25_lying": [ + "25_12", + "25_13", + "25_14", + "25_15", + "25_16", + "25_17", + "25_18", + "25_19", + "25_20" + ], + "0_lying": [ + "0_11", + "0_12", + "0_13", + "0_14", + "0_15", + "0_16", + "0_17", + "0_18", + "0_19" + ] + } +} \ No newline at end of file diff --git a/data/ply_files.json b/data/ply_files.json new file mode 100644 index 0000000000000000000000000000000000000000..dc96e1fd01378d2563acd72be9c481064a0a15cf --- /dev/null +++ b/data/ply_files.json @@ -0,0 +1,7 @@ +{ + "100": [], + "75": [], + "50": [], + "25": [], + "0": [] +} \ No newline at end of file diff --git a/data/source.ply b/data/source.ply new file mode 100644 index 0000000000000000000000000000000000000000..17f3f0ca25e291e0150e7c00eb2811738194f113 --- /dev/null +++ b/data/source.ply @@ -0,0 +1,14818 @@ +ply +format ascii 1.0 +element vertex 14806 +property float x +property float y +property float z +property float nx +property float ny +property float nz +element face 0 +property list uchar int vertex_indices +end_header +0.91441 -0.536438 0.822624 -0.0442205 -0.930906 0.362575 +0.933494 -0.545228 0.820276 0.073409 -0.981856 0.174844 +0.912867 -0.547316 0.816379 -0.0383691 -0.956544 0.289055 +0.900383 -0.545431 0.813507 -0.058965 -0.949199 0.309103 +0.887065 -0.543988 0.810538 -0.16475 -0.891075 0.4229 +0.879618 -0.539648 0.808306 -0.174749 -0.885239 0.431065 +0.872729 -0.535043 0.806149 -0.195844 -0.872929 0.446811 +0.929943 -0.549 0.812457 0.0972333 -0.990009 0.102127 +0.90949 -0.551004 0.808612 -0.0417756 -0.952311 0.302259 +0.895237 -0.549995 0.805536 -0.0701911 -0.959041 0.274436 +0.881461 -0.548791 0.802536 -0.114982 -0.93445 0.337022 +0.870158 -0.546391 0.799835 -0.20383 -0.883217 0.422352 +0.860684 -0.543105 0.797373 -0.225288 -0.862965 0.45226 +0.852503 -0.539194 0.795066 -0.244212 -0.846428 0.473202 +0.846665 -0.534108 0.793054 -0.289128 -0.779194 0.556115 +0.958424 -0.545169 0.809888 0.142525 -0.989727 -0.0112815 +0.926771 -0.552588 0.804692 0.0849436 -0.991089 0.102605 +0.908655 -0.55343 0.801166 0.030956 -0.984807 0.170873 +0.893322 -0.552955 0.797987 -0.0623784 -0.954324 0.292193 +0.879493 -0.551781 0.794995 -0.117945 -0.937864 0.326344 +0.866487 -0.550232 0.792108 -0.183303 -0.906221 0.381006 +0.855374 -0.547774 0.789459 -0.218015 -0.867629 0.446868 +0.84456 -0.545194 0.786846 -0.234114 -0.829373 0.50728 +0.834883 -0.54207 0.78438 -0.254755 -0.811482 0.525925 +0.827752 -0.53768 0.782219 -0.296484 -0.759736 0.578705 +0.825744 -0.530688 0.780664 -0.305522 -0.741005 0.597971 +0.95458 -0.549087 0.802007 0.179878 -0.981747 -0.0617929 +0.929756 -0.55314 0.797689 0.102879 -0.994467 0.0212873 +0.910631 -0.554471 0.794062 0.0610749 -0.99249 0.105987 +0.892727 -0.555263 0.790598 -0.0582777 -0.957551 0.282313 +0.87822 -0.554415 0.787545 -0.113344 -0.941023 0.318796 +0.864609 -0.553173 0.784603 -0.170043 -0.908454 0.381834 +0.850981 -0.551976 0.781673 -0.214774 -0.869783 0.444243 +0.839726 -0.549634 0.779022 -0.201313 -0.858915 0.470892 +0.828352 -0.547374 0.776373 -0.257034 -0.800464 0.541472 +0.818977 -0.544133 0.773951 -0.279377 -0.765622 0.57946 +0.812126 -0.539629 0.771837 -0.310676 -0.71335 0.628182 +0.80835 -0.533561 0.770075 -0.321033 -0.690988 0.647669 +0.965195 -0.545932 0.795856 0.202413 -0.96089 -0.188997 +0.938817 -0.550714 0.79139 0.164264 -0.980762 -0.105471 +0.917376 -0.553161 0.78752 0.115259 -0.993304 0.00800628 +0.894349 -0.556463 0.783475 -0.058314 -0.957508 0.282453 +0.877786 -0.556637 0.780204 -0.0819597 -0.960105 0.267359 +0.863542 -0.555711 0.77721 -0.121549 -0.932995 0.338742 +0.849197 -0.554866 0.774212 -0.203742 -0.865147 0.45827 +0.835676 -0.553666 0.771313 -0.215936 -0.841261 0.495632 +0.822515 -0.552311 0.768466 -0.21517 -0.807952 0.548559 +0.812153 -0.54958 0.765951 -0.267453 -0.758783 0.593902 +0.803729 -0.545896 0.763661 -0.309667 -0.707279 0.635502 +0.79776 -0.540973 0.761651 -0.333493 -0.680437 0.652524 +0.79236 -0.535757 0.759717 -0.359096 -0.630864 0.687794 +0.982057 -0.539732 0.790403 0.257323 -0.89102 -0.373993 +0.954045 -0.545275 0.78578 0.225401 -0.936573 -0.268378 +0.929209 -0.549358 0.781545 0.189278 -0.978574 -0.0810507 +0.901989 -0.554696 0.777046 0.0965372 -0.993864 0.0540015 +0.878541 -0.558267 0.773003 -0.079361 -0.957656 0.276764 +0.862661 -0.558144 0.76984 -0.110234 -0.927327 0.357651 +0.848011 -0.557456 0.76682 -0.14545 -0.900392 0.410048 +0.833625 -0.556684 0.763849 -0.195214 -0.844842 0.498132 +0.81871 -0.556219 0.76082 -0.218764 -0.808049 0.546992 +0.806962 -0.554202 0.758161 -0.261967 -0.765745 0.587375 +0.796693 -0.551461 0.755669 -0.298456 -0.717312 0.629594 +0.788574 -0.547649 0.753429 -0.340236 -0.673331 0.656404 +0.78168 -0.543222 0.751328 -0.387438 -0.622263 0.680206 +0.778221 -0.537046 0.749617 -0.406392 -0.585155 0.70174 +0.974267 -0.537408 0.780682 0.266933 -0.889458 -0.370961 +0.945988 -0.543125 0.776092 0.238839 -0.938247 -0.250302 +0.91524 -0.550171 0.771232 0.171967 -0.983283 -0.0598554 +0.884501 -0.557318 0.76639 -0.0271859 -0.967966 0.249608 +0.862055 -0.560443 0.762503 -0.0815428 -0.944389 0.318562 +0.846635 -0.56014 0.759425 -0.12359 -0.893674 0.431363 +0.830486 -0.560254 0.756271 -0.174154 -0.835924 0.520483 +0.815396 -0.559877 0.753245 -0.214387 -0.799473 0.561142 +0.802221 -0.558582 0.75044 -0.247422 -0.761679 0.598855 +0.790583 -0.556542 0.747818 -0.310701 -0.718766 0.621965 +0.782113 -0.552927 0.745548 -0.338001 -0.67623 0.654577 +0.774346 -0.548964 0.743359 -0.380503 -0.633135 0.67406 +0.768058 -0.54426 0.741333 -0.401218 -0.597469 0.694304 +0.766008 -0.537376 0.739786 -0.442287 -0.540683 0.715572 +0.922608 -0.448181 0.755615 -0.190307 0.161951 0.968274 +0.92416 -0.439068 0.754398 -0.190307 0.161951 0.968274 +0.921652 -0.432061 0.752733 -0.18955 0.162668 0.968303 +0.916707 -0.426325 0.750804 -0.190958 0.161196 0.968272 +0.909112 -0.421991 0.748584 -0.311133 0.0378803 0.949612 +0.902923 -0.416925 0.746521 -0.316238 0.0387925 0.947887 +0.897822 -0.411297 0.744581 -0.316238 0.0387925 0.947887 +0.88891 -0.407705 0.742229 -0.30998 0.0214341 0.950501 +0.883758 -0.402123 0.740279 -0.309289 0.0211608 0.950733 +0.968736 -0.533992 0.771242 0.260119 -0.888352 -0.378378 +0.939118 -0.540408 0.766556 0.249364 -0.924806 -0.287322 +0.900805 -0.55125 0.760909 0.181324 -0.981285 -0.0648331 +0.865976 -0.560496 0.755677 -0.0276908 -0.956318 0.291018 +0.845443 -0.562728 0.752056 -0.0865429 -0.905641 0.415121 +0.827793 -0.563592 0.748755 -0.162557 -0.831171 0.531725 +0.810521 -0.564314 0.745517 -0.208379 -0.796214 0.567998 +0.796678 -0.563367 0.742657 -0.255523 -0.758579 0.599388 +0.785343 -0.56118 0.740081 -0.289044 -0.7245 0.625742 +0.775663 -0.558191 0.737693 -0.357177 -0.676812 0.643701 +0.767591 -0.554398 0.735479 -0.360615 -0.656779 0.662269 +0.75971 -0.550522 0.733293 -0.418112 -0.585857 0.694229 +0.754206 -0.545442 0.731367 -0.423642 -0.567773 0.705806 +0.752695 -0.538303 0.729869 -0.467867 -0.499454 0.729141 +0.86065 -0.474185 0.740122 -0.3848 0.167848 0.90761 +0.86675 -0.462814 0.7394 -0.378278 0.132363 0.916181 +0.869037 -0.453406 0.738265 -0.374225 0.0968258 0.922269 +0.868178 -0.445619 0.736784 -0.349084 0.0796856 0.933697 +0.867104 -0.437944 0.735287 -0.342891 0.0757467 0.936316 +0.863374 -0.431663 0.733503 -0.339074 0.0618844 0.938722 +0.858366 -0.426054 0.731583 -0.324471 0.0250781 0.945563 +0.851366 -0.421527 0.729456 -0.334874 0.0215103 0.942017 +0.842486 -0.418025 0.727136 -0.330088 0.00230338 0.943947 +0.833946 -0.414357 0.724854 -0.329081 -0.0393513 0.943481 +0.824588 -0.411152 0.72249 -0.330039 -0.072052 0.941214 +0.81979 -0.405496 0.720609 -0.324359 -0.0832953 0.94226 +0.967592 -0.528416 0.7623 0.256943 -0.868808 -0.423267 +0.933621 -0.537026 0.757182 0.25823 -0.891134 -0.373095 +0.874205 -0.558409 0.749312 0.0468677 -0.987631 0.149632 +0.845152 -0.56487 0.744788 -0.0146481 -0.9346 0.355401 +0.824984 -0.566985 0.741243 -0.146437 -0.839581 0.523127 +0.806394 -0.568371 0.737887 -0.20388 -0.80631 0.555247 +0.791599 -0.567906 0.734944 -0.2266 -0.785147 0.576366 +0.779639 -0.566048 0.73232 -0.282743 -0.72836 0.624138 +0.770111 -0.562985 0.729958 -0.322279 -0.699718 0.637599 +0.761145 -0.559665 0.727665 -0.358516 -0.659297 0.660905 +0.753303 -0.555781 0.725489 -0.39833 -0.612305 0.682947 +0.746243 -0.551516 0.723403 -0.423423 -0.565746 0.707563 +0.741163 -0.546241 0.72153 -0.453962 -0.508125 0.731934 +0.739432 -0.539236 0.720006 -0.575447 -0.0813437 0.813784 +0.827305 -0.485445 0.727905 -0.408882 0.150543 0.900085 +0.83201 -0.474853 0.727022 -0.393904 0.133397 0.90942 +0.834879 -0.465189 0.725942 -0.384226 0.0982388 0.917998 +0.836291 -0.456269 0.724703 -0.374451 0.0543391 0.925653 +0.834299 -0.44913 0.723116 -0.371071 0.0419273 0.927658 +0.830106 -0.443165 0.721295 -0.366473 0.0366361 0.929707 +0.824619 -0.437882 0.719338 -0.349071 0.0121502 0.937017 +0.818571 -0.432916 0.717326 -0.344224 -0.0188172 0.938699 +0.810189 -0.429211 0.715082 -0.357511 -0.0545732 0.932313 +0.801863 -0.425497 0.712847 -0.352997 -0.068544 0.93311 +0.792421 -0.422414 0.710497 -0.345828 -0.0929707 0.933681 +0.785083 -0.418206 0.708369 -0.355872 -0.098052 0.929377 +0.783487 -0.410859 0.706814 -0.356915 -0.101966 0.928555 +0.970698 -0.520729 0.753797 0.283088 -0.828271 -0.483559 +0.92812 -0.53365 0.747825 0.275173 -0.870422 -0.408226 +0.855415 -0.561744 0.738651 0.0407139 -0.969434 0.241951 +0.823677 -0.569616 0.733903 -0.103346 -0.874784 0.473364 +0.803191 -0.571962 0.730368 -0.188896 -0.811748 0.552617 +0.787656 -0.571868 0.727377 -0.218404 -0.793531 0.567986 +0.775722 -0.570007 0.724768 -0.275943 -0.750567 0.600421 +0.76424 -0.567942 0.722217 -0.307314 -0.717545 0.62505 +0.754939 -0.564799 0.719896 -0.347475 -0.673215 0.652721 +0.746654 -0.561164 0.717684 -0.380009 -0.631468 0.6759 +0.73901 -0.55721 0.715548 -0.402223 -0.590034 0.700054 +0.732545 -0.552666 0.713535 -0.430157 -0.541407 0.722387 +0.727355 -0.54747 0.711657 -0.466896 -0.475495 0.745595 +0.724865 -0.540871 0.710059 -0.572345 -0.10072 0.813804 +0.80072 -0.493257 0.716517 -0.451215 0.142322 0.880994 +0.805097 -0.482872 0.715591 -0.435718 0.12268 0.891684 +0.808161 -0.473148 0.714522 -0.407448 0.0692728 0.910597 +0.808076 -0.465069 0.713127 -0.392804 0.0436328 0.918586 +0.806468 -0.457773 0.711585 -0.392958 0.018352 0.919373 +0.803901 -0.450991 0.709936 -0.382836 0.000159897 0.923816 +0.797523 -0.446242 0.707907 -0.365228 -0.0204893 0.930693 +0.789289 -0.442502 0.70569 -0.363756 -0.0504726 0.930126 +0.780378 -0.439154 0.703411 -0.36007 -0.0768168 0.929758 +0.771756 -0.435663 0.701164 -0.349282 -0.089119 0.93277 +0.760546 -0.433606 0.698661 -0.38927 -0.0707815 0.9184 +0.756266 -0.427791 0.696851 -0.396302 -0.0613027 0.916071 +0.764688 -0.415002 0.696294 -0.401097 -0.0382874 0.915235 +0.883083 -0.549962 0.734317 0.16573 -0.986109 -0.0111163 +0.823466 -0.571711 0.726686 -0.0414206 -0.905215 0.422932 +0.801081 -0.574994 0.72299 -0.133467 -0.871043 0.472729 +0.784658 -0.575351 0.719922 -0.184942 -0.81942 0.54254 +0.771165 -0.574275 0.717171 -0.252268 -0.773359 0.581617 +0.758675 -0.57274 0.714528 -0.306797 -0.715194 0.627994 +0.748963 -0.569813 0.712182 -0.347097 -0.681286 0.644494 +0.740235 -0.566414 0.709938 -0.364604 -0.651465 0.665325 +0.732248 -0.562653 0.707771 -0.402105 -0.595965 0.695081 +0.725416 -0.558308 0.705732 -0.415235 -0.558198 0.718329 +0.719024 -0.553752 0.703731 -0.444621 -0.510155 0.736244 +0.713954 -0.548521 0.701871 -0.527787 -0.290137 0.798287 +0.713863 -0.540691 0.700518 -0.547561 0.0444007 0.835587 +0.776806 -0.499742 0.705501 -0.459196 0.114879 0.880876 +0.782847 -0.488512 0.704729 -0.44596 0.0759242 0.891826 +0.785286 -0.47915 0.703589 -0.436226 0.0356793 0.899129 +0.784047 -0.471715 0.702085 -0.395846 0.0122584 0.918235 +0.782971 -0.464185 0.700589 -0.391117 -0.0189933 0.920145 +0.778751 -0.458322 0.698789 -0.386169 -0.0254883 0.922076 +0.770591 -0.454585 0.696596 -0.373474 -0.0577248 0.925843 +0.759663 -0.45236 0.694134 -0.381615 -0.0565564 0.92259 +0.747229 -0.450989 0.691534 -0.396834 -0.0430876 0.916879 +0.736931 -0.448485 0.68914 -0.3897 -0.030953 0.920422 +0.731441 -0.443383 0.687225 -0.437392 0.0102609 0.899212 +0.745633 -0.427487 0.687207 -0.427938 0.00656637 0.903784 +0.829598 -0.57063 0.720127 0.0133674 -0.928732 0.370513 +0.798903 -0.578059 0.715604 -0.105778 -0.882634 0.458006 +0.781964 -0.578678 0.712513 -0.185691 -0.82942 0.526861 +0.766827 -0.578431 0.709614 -0.215465 -0.802627 0.556206 +0.754474 -0.576829 0.707006 -0.287964 -0.742484 0.604809 +0.743392 -0.574612 0.704532 -0.3145 -0.708963 0.631238 +0.734193 -0.57146 0.702249 -0.349579 -0.661513 0.663473 +0.725219 -0.568225 0.699999 -0.375484 -0.636197 0.673993 +0.717747 -0.564228 0.6979 -0.414701 -0.566684 0.711964 +0.710948 -0.559894 0.695875 -0.417954 -0.542365 0.728804 +0.70468 -0.555307 0.693902 -0.45426 -0.481394 0.749606 +0.699735 -0.550033 0.692057 -0.525674 -0.298419 0.796625 +0.698255 -0.542946 0.690559 -0.546451 0.0788042 0.833775 +0.759046 -0.503056 0.695183 -0.470551 0.326704 0.819663 +0.763704 -0.492578 0.694261 -0.445012 0.0210114 0.895278 +0.764888 -0.483897 0.692995 -0.421832 -0.021329 0.906423 +0.761786 -0.477492 0.691309 -0.378696 -0.0613635 0.923484 +0.756959 -0.472003 0.689448 -0.38341 -0.0610162 0.92156 +0.750695 -0.467293 0.687454 -0.395023 -0.0408324 0.917763 +0.73665 -0.466791 0.684718 -0.399018 -0.0323946 0.916371 +0.725096 -0.464981 0.682227 -0.425662 -0.00606543 0.904862 +0.714949 -0.462445 0.679871 -0.445292 0.0298417 0.894888 +0.711188 -0.456443 0.678135 -0.465495 0.0500059 0.883637 +0.724957 -0.440836 0.678052 -0.47 0.0627521 0.880434 +0.347935 -0.468556 0.611608 -0.287038 -0.0154072 0.957796 +0.338899 -0.466362 0.609525 -0.318168 0.0166515 0.947888 +0.333672 -0.461884 0.607771 -0.331977 0.0643185 0.941093 +0.332468 -0.45497 0.606353 -0.348744 0.106855 0.931107 +0.332628 -0.447216 0.60505 -0.357604 0.117849 0.926408 +0.797798 -0.580581 0.708344 -0.0808178 -0.896597 0.43541 +0.779314 -0.581973 0.705124 -0.147192 -0.865079 0.479557 +0.763741 -0.581957 0.702201 -0.190511 -0.820655 0.538732 +0.749896 -0.581113 0.699457 -0.279375 -0.761021 0.585489 +0.738977 -0.578814 0.697017 -0.293178 -0.72782 0.61994 +0.727704 -0.576734 0.694543 -0.337666 -0.679673 0.651172 +0.718509 -0.573618 0.692285 -0.356021 -0.650217 0.671169 +0.710511 -0.569912 0.690144 -0.391556 -0.612644 0.686551 +0.702888 -0.566017 0.688047 -0.408011 -0.559962 0.721089 +0.696406 -0.561559 0.68606 -0.442542 -0.507217 0.739518 +0.690761 -0.556667 0.684158 -0.541632 -0.282042 0.791889 +0.686432 -0.551103 0.682379 -0.566211 -0.137619 0.812691 +0.684137 -0.54446 0.680802 -0.551436 0.116903 0.825986 +0.738998 -0.507625 0.684714 -0.448372 0.349105 0.822854 +0.745407 -0.496232 0.683944 -0.401613 -0.0707859 0.913069 +0.743218 -0.489383 0.682353 -0.385575 -0.092516 0.918026 +0.737949 -0.484175 0.680463 -0.36707 -0.0973504 0.925084 +0.729453 -0.4807 0.67827 -0.424385 -0.0439695 0.904414 +0.71641 -0.479699 0.675655 -0.438599 -0.0184023 0.898495 +0.704082 -0.478352 0.673116 -0.439666 -0.00913233 0.898115 +0.6981 -0.473593 0.671167 -0.437263 0.0196563 0.899119 +0.697694 -0.465803 0.669749 -0.468498 0.028582 0.883002 +0.70823 -0.45201 0.669342 -0.509658 0.115033 0.852652 +0.731582 -0.431098 0.670102 -0.542277 0.154573 0.825859 +0.404838 -0.505502 0.621743 -0.121476 -0.309054 0.943255 +0.389449 -0.506838 0.61909 -0.156347 -0.289061 0.944458 +0.373424 -0.5086 0.616393 -0.206189 -0.217652 0.954 +0.364481 -0.506264 0.614316 -0.222557 -0.184538 0.957295 +0.354619 -0.504492 0.612157 -0.253371 -0.159784 0.954082 +0.345386 -0.502368 0.610065 -0.277859 -0.14946 0.948924 +0.338932 -0.498633 0.608203 -0.292366 -0.104629 0.950566 +0.332621 -0.494814 0.606366 -0.31079 -0.0778514 0.947285 +0.326171 -0.4911 0.604518 -0.332355 -0.0586658 0.941328 +0.321078 -0.486581 0.602782 -0.346632 -0.0378885 0.937235 +0.316077 -0.482011 0.60105 -0.37361 -0.0137911 0.927483 +0.309848 -0.478191 0.599227 -0.403491 0.027764 0.914562 +0.306291 -0.472768 0.597619 -0.419845 0.063389 0.90538 +0.303128 -0.467099 0.596047 -0.456162 0.086249 0.885706 +0.300327 -0.461207 0.594507 -0.480037 0.124286 0.868399 +0.303465 -0.451664 0.59344 -0.484222 0.168361 0.858593 +0.305392 -0.442834 0.592276 -0.478216 0.21877 0.850558 +0.305765 -0.434947 0.590982 -0.503949 0.272288 0.819692 +0.307871 -0.425956 0.589829 -0.493464 0.331699 0.804033 +0.313739 -0.414596 0.588964 -0.460208 0.422662 0.780747 +0.798855 -0.582025 0.701298 -0.0122931 -0.92971 0.36809 +0.777665 -0.584765 0.697838 -0.0964174 -0.9063 0.411492 +0.761399 -0.585097 0.694872 -0.161742 -0.863432 0.477833 +0.746726 -0.584672 0.692075 -0.223042 -0.817084 0.531626 +0.735167 -0.582708 0.689586 -0.286927 -0.743913 0.603546 +0.721721 -0.581743 0.686921 -0.323772 -0.700603 0.635869 +0.712407 -0.578692 0.684659 -0.330336 -0.679292 0.655316 +0.703677 -0.575373 0.682458 -0.369524 -0.628542 0.684389 +0.695375 -0.571851 0.680301 -0.408457 -0.595698 0.691597 +0.688344 -0.567689 0.678273 -0.425195 -0.534793 0.73021 +0.682076 -0.563144 0.676317 -0.463107 -0.478167 0.74625 +0.677296 -0.557833 0.674501 -0.548842 -0.266041 0.792462 +0.673015 -0.55226 0.672741 -0.566654 -0.150565 0.810083 +0.67101 -0.545493 0.671193 -0.548485 0.0852148 0.831807 +0.722839 -0.510184 0.67469 -0.459545 0.310212 0.832218 +0.725403 -0.500855 0.673545 -0.356758 -0.1334 0.924624 +0.720813 -0.495315 0.671733 -0.393703 -0.0713456 0.916465 +0.711242 -0.492456 0.669454 -0.439885 -0.0211306 0.897806 +0.698856 -0.491144 0.666919 -0.423742 0.0201127 0.90556 +0.684182 -0.491094 0.664185 -0.42853 0.00535877 0.903512 +0.681362 -0.484666 0.662542 -0.43658 0.0122542 0.899582 +0.686242 -0.474031 0.661602 -0.463248 0.0520234 0.8847 +0.698019 -0.459594 0.66128 -0.508986 0.104473 0.854411 +0.710628 -0.444624 0.661025 -0.575116 0.220258 0.787863 +0.404455 -0.522815 0.617711 -0.120581 -0.322785 0.93876 +0.389834 -0.523673 0.615147 -0.147327 -0.312503 0.938423 +0.374595 -0.524934 0.612529 -0.18356 -0.284321 0.940992 +0.360765 -0.525424 0.610043 -0.217837 -0.285128 0.933408 +0.350166 -0.524076 0.607839 -0.243426 -0.257717 0.935055 +0.343514 -0.520438 0.605975 -0.260516 -0.238079 0.935655 +0.335438 -0.517659 0.603988 -0.285861 -0.21626 0.93355 +0.326846 -0.5152 0.601969 -0.310951 -0.192449 0.930738 +0.319169 -0.512228 0.60002 -0.335527 -0.164282 0.927595 +0.313 -0.508377 0.598204 -0.361709 -0.138858 0.921891 +0.306793 -0.50455 0.59639 -0.390082 -0.117514 0.913251 +0.301228 -0.500366 0.594627 -0.424281 -0.0754586 0.902381 +0.295638 -0.496196 0.592866 -0.452665 -0.0511849 0.89021 +0.291559 -0.491123 0.591225 -0.485442 -0.0119673 0.874187 +0.288713 -0.485306 0.589682 -0.510841 0.0326297 0.859056 +0.286805 -0.478913 0.588215 -0.526487 0.0615982 0.84795 +0.285443 -0.472189 0.586796 -0.561864 0.103875 0.820681 +0.284492 -0.465193 0.585406 -0.586569 0.142298 0.797301 +0.285957 -0.456696 0.584201 -0.611548 0.198079 0.76601 +0.287905 -0.447883 0.583028 -0.615246 0.247756 0.748391 +0.2896 -0.439195 0.581837 -0.634109 0.298213 0.713425 +0.291262 -0.430512 0.580636 -0.626595 0.372921 0.68433 +0.296832 -0.419348 0.579728 -0.629406 0.435142 0.643816 +0.317721 -0.398526 0.579992 -0.5883 0.548204 0.594455 +0.31345 -0.234905 0.550766 -0.276733 0.0606446 0.959031 +0.310265 -0.228972 0.549144 -0.313291 0.0974726 0.944641 +0.306759 -0.223254 0.547496 -0.317389 0.102986 0.942687 +0.303507 -0.217355 0.545868 -0.317389 0.102986 0.942687 +0.301395 -0.210675 0.544314 -0.320687 0.104667 0.941385 +0.298945 -0.204228 0.542739 -0.18031 0.168376 0.969092 +0.29571 -0.198312 0.541108 -0.572708 -0.0153558 0.819615 +0.29338 -0.191771 0.539537 -0.544794 0.0132391 0.838465 +0.294293 -0.182957 0.538176 -0.421083 0.198942 0.884936 +0.810047 -0.578397 0.695237 0.0556612 -0.955142 0.290872 +0.776555 -0.587288 0.690617 -0.0661968 -0.92292 0.379259 +0.759321 -0.588101 0.687583 -0.107516 -0.89506 0.432791 +0.744404 -0.587799 0.684784 -0.192496 -0.852342 0.48627 +0.730433 -0.587068 0.68208 -0.236606 -0.79867 0.553304 +0.717538 -0.585823 0.679484 -0.284679 -0.756341 0.588988 +0.706901 -0.58346 0.677108 -0.322369 -0.704389 0.632387 +0.696599 -0.580957 0.674777 -0.357639 -0.662901 0.657767 +0.688168 -0.577515 0.672621 -0.38954 -0.612684 0.687662 +0.680666 -0.573616 0.670558 -0.42976 -0.572292 0.698418 +0.674562 -0.569002 0.668623 -0.456594 -0.507539 0.730703 +0.668488 -0.564382 0.666698 -0.508087 -0.391264 0.767308 +0.663764 -0.55906 0.664894 -0.550876 -0.192343 0.81212 +0.660478 -0.552991 0.66323 -0.565028 -0.138299 0.813399 +0.659667 -0.545602 0.661792 -0.589677 0.0173117 0.807453 +0.70343 -0.514512 0.664424 -0.419836 0.284741 0.861778 +0.702012 -0.507336 0.66291 -0.396423 0.146854 0.906248 +0.692708 -0.504372 0.660678 -0.393233 0.145397 0.90787 +0.681641 -0.502379 0.658288 -0.389499 0.145929 0.909394 +0.665542 -0.503137 0.655453 -0.372767 0.153481 0.915144 +0.664115 -0.495996 0.653939 -0.451107 -0.00125771 0.892469 +0.672351 -0.483576 0.653288 -0.427347 0.0690412 0.901447 +0.686664 -0.467788 0.653173 -0.482284 0.118498 0.867963 +0.702145 -0.451279 0.653144 -0.551464 0.223333 0.803748 +0.419223 -0.531409 0.614984 -0.101187 -0.331396 0.938051 +0.399813 -0.534935 0.612024 -0.132049 -0.265087 0.95514 +0.383117 -0.536965 0.609298 -0.1725 -0.269668 0.947377 +0.370821 -0.536519 0.606958 -0.204879 -0.297045 0.932626 +0.354438 -0.53848 0.604276 -0.23206 -0.301363 0.92484 +0.34556 -0.536132 0.602232 -0.245647 -0.309234 0.918712 +0.337752 -0.533178 0.600277 -0.254149 -0.302652 0.918592 +0.327481 -0.531694 0.598125 -0.283486 -0.281714 0.916664 +0.31816 -0.529683 0.59605 -0.318338 -0.258737 0.911985 +0.310255 -0.526862 0.594101 -0.348411 -0.239969 0.906104 +0.302598 -0.523907 0.592174 -0.386552 -0.208938 0.898289 +0.296027 -0.520329 0.590339 -0.42605 -0.186389 0.885291 +0.290335 -0.516242 0.588572 -0.462106 -0.153746 0.873395 +0.284908 -0.512003 0.586833 -0.499494 -0.124741 0.857289 +0.281139 -0.506784 0.585224 -0.535648 -0.0894976 0.839685 +0.278093 -0.501118 0.583676 -0.567547 -0.0396513 0.822386 +0.276119 -0.494806 0.582206 -0.590218 -0.000985043 0.807243 +0.274749 -0.488113 0.580787 -0.604093 0.0392439 0.795948 +0.273843 -0.481134 0.579403 -0.630485 0.0957277 0.770277 +0.273524 -0.473779 0.578056 -0.652121 0.142366 0.744627 +0.273399 -0.466301 0.576728 -0.672974 0.189136 0.715076 +0.274795 -0.457851 0.575512 -0.678203 0.227535 0.698762 +0.276683 -0.449087 0.574329 -0.69372 0.280165 0.663521 +0.277862 -0.440733 0.573084 -0.698568 0.341289 0.628907 +0.280505 -0.431443 0.571947 -0.693958 0.402435 0.597049 +0.288424 -0.418816 0.571204 -0.663415 0.48154 0.572712 +0.308032 -0.398768 0.571316 -0.626042 0.562288 0.540279 +0.357073 -0.272347 0.558263 -0.1092 -0.0631984 0.992009 +0.347802 -0.270406 0.55622 -0.124736 -0.063585 0.990151 +0.318662 -0.281664 0.552813 -0.160103 -0.00868515 0.987062 +0.307965 -0.280774 0.550683 -0.163367 0.0197752 0.986368 +0.280208 -0.291314 0.547412 -0.24061 -0.00063127 0.970622 +0.270401 -0.289945 0.54536 -0.303549 0.0172323 0.95266 +0.265213 -0.28549 0.543631 -0.314689 0.0255851 0.948849 +0.262075 -0.27966 0.542028 -0.333192 0.0348145 0.942216 +0.277161 -0.261471 0.541632 -0.274233 0.0759289 0.958661 +0.277951 -0.252921 0.540285 -0.285096 0.0892095 0.954338 +0.272625 -0.24853 0.538534 -0.283508 0.0892328 0.954809 +0.266669 -0.244575 0.536752 -0.295591 0.091108 0.950961 +0.252462 -0.246304 0.534429 -0.324941 0.102555 0.940158 +0.241853 -0.245602 0.53235 -0.382284 0.0913118 0.919523 +0.237177 -0.240831 0.530655 -0.417113 0.142333 0.897641 +0.233797 -0.23516 0.529046 -0.471465 0.180597 0.863194 +0.235225 -0.226143 0.527731 -0.495217 0.204458 0.844368 +0.234892 -0.218328 0.526306 -0.544864 0.256668 0.798276 +0.236027 -0.209471 0.524963 -0.513052 0.278484 0.811927 +0.243884 -0.195847 0.524036 -0.543399 0.33144 0.771274 +0.273295 -0.166914 0.5244 -0.382191 0.389287 0.838084 +0.781434 -0.586803 0.683977 -0.00569114 -0.950796 0.309767 +0.758514 -0.590463 0.680429 -0.081181 -0.919701 0.384138 +0.742972 -0.590477 0.677585 -0.155946 -0.87658 0.455289 +0.728416 -0.590035 0.674849 -0.214835 -0.834217 0.507867 +0.714587 -0.589271 0.67218 -0.236572 -0.799468 0.552165 +0.701915 -0.587955 0.669634 -0.295952 -0.742699 0.600677 +0.691685 -0.585424 0.66732 -0.344081 -0.688108 0.63884 +0.682081 -0.582595 0.665068 -0.36936 -0.652902 0.661281 +0.673241 -0.5794 0.662893 -0.425395 -0.590449 0.685864 +0.666644 -0.575055 0.660924 -0.449371 -0.551871 0.702499 +0.660491 -0.570495 0.658998 -0.46228 -0.500001 0.732322 +0.655271 -0.565453 0.657152 -0.495506 -0.441993 0.74774 +0.650983 -0.559928 0.655401 -0.513196 -0.376122 0.771468 +0.647725 -0.553859 0.653741 -0.566886 -0.12431 0.814363 +0.650375 -0.544654 0.652608 -0.600319 0.0322734 0.799109 +0.681972 -0.519988 0.654054 -0.466425 0.252166 0.847857 +0.676238 -0.515152 0.652155 -0.461673 0.236036 0.855071 +0.665311 -0.513125 0.649801 -0.440976 0.207754 0.873143 +0.421666 -0.636695 0.626953 -0.292452 -0.176655 0.939822 +0.420178 -0.630115 0.625526 -0.316015 -0.159403 0.935268 +0.421885 -0.62178 0.62438 -0.315528 -0.0570569 0.9472 +0.426719 -0.611724 0.623493 -0.342205 0.0464125 0.938478 +0.684533 -0.462928 0.644496 -0.541059 0.213795 0.813354 +0.447514 -0.540032 0.614705 -0.0924334 -0.391088 0.915701 +0.430412 -0.542094 0.611937 -0.0916072 -0.337258 0.936944 +0.41291 -0.544447 0.609152 -0.122133 -0.255416 0.959087 +0.395012 -0.547085 0.606345 -0.16502 -0.270017 0.948611 +0.379871 -0.54821 0.603774 -0.207302 -0.269781 0.940342 +0.368167 -0.54742 0.601492 -0.23541 -0.290068 0.927601 +0.353225 -0.54852 0.598956 -0.26053 -0.31534 0.912516 +0.342409 -0.547294 0.59676 -0.268274 -0.33936 0.901589 +0.331824 -0.545963 0.594592 -0.278059 -0.353189 0.893275 +0.319447 -0.545714 0.592289 -0.304589 -0.367187 0.878863 +0.311285 -0.543028 0.590325 -0.331095 -0.350484 0.876093 +0.304139 -0.539773 0.588443 -0.371255 -0.325134 0.869747 +0.297182 -0.536423 0.58658 -0.411742 -0.295904 0.861923 +0.290433 -0.532957 0.584739 -0.460637 -0.261908 0.848068 +0.284968 -0.528747 0.583004 -0.499285 -0.233578 0.83436 +0.28011 -0.524189 0.581311 -0.529327 -0.203332 0.823692 +0.275812 -0.519296 0.579669 -0.562885 -0.160742 0.810755 +0.271817 -0.51423 0.578051 -0.600466 -0.122296 0.790243 +0.268797 -0.508577 0.5765 -0.63624 -0.0765256 0.767688 +0.266801 -0.502302 0.575036 -0.650991 -0.0412172 0.757966 +0.265443 -0.49563 0.573615 -0.683922 0.0140375 0.72942 +0.264553 -0.488661 0.572229 -0.704621 0.0606355 0.706989 +0.264241 -0.481329 0.570887 -0.717842 0.124031 0.685069 +0.264168 -0.473838 0.569552 -0.730831 0.166329 0.661982 +0.264469 -0.466099 0.568249 -0.743025 0.219998 0.632072 +0.265735 -0.457742 0.567012 -0.754299 0.278697 0.594441 +0.267643 -0.44897 0.56582 -0.753945 0.322608 0.572269 +0.270007 -0.439878 0.564658 -0.747613 0.384667 0.541393 +0.276093 -0.428428 0.563761 -0.725713 0.450726 0.519796 +0.2848 -0.415288 0.563046 -0.699602 0.497291 0.513088 +0.307867 -0.39302 0.563347 -0.643765 0.508118 0.572174 +0.357458 -0.298159 0.555754 -0.116106 -0.0698331 0.990779 +0.329119 -0.308646 0.552419 -0.130532 -0.0853235 0.987766 +0.318638 -0.307555 0.550308 -0.120176 -0.104272 0.987262 +0.307476 -0.306939 0.548161 -0.150422 -0.118644 0.981477 +0.278517 -0.318112 0.544822 -0.223688 -0.152911 0.962591 +0.269679 -0.316074 0.542856 -0.294432 -0.136009 0.945944 +0.262605 -0.312894 0.540998 -0.340612 -0.11221 0.933483 +0.256703 -0.308939 0.539229 -0.384648 -0.0865842 0.918994 +0.251257 -0.304701 0.537488 -0.403655 -0.0679197 0.912387 +0.246323 -0.30012 0.535783 -0.421318 -0.0704592 0.904172 +0.245232 -0.292957 0.534326 -0.407156 -0.0298755 0.91287 +0.244286 -0.285682 0.53287 -0.385702 0.00918332 0.922578 +0.243662 -0.278177 0.531437 -0.387187 0.01492 0.921881 +0.240299 -0.272532 0.529834 -0.394379 0.0197349 0.918736 +0.236043 -0.267492 0.528168 -0.418144 0.0464173 0.907193 +0.226656 -0.265979 0.526189 -0.483865 0.0431831 0.874076 +0.221805 -0.261373 0.524493 -0.514753 0.0646632 0.854897 +0.218633 -0.255607 0.522896 -0.555718 0.117065 0.823088 +0.216879 -0.248857 0.52139 -0.581291 0.15405 0.79898 +0.219075 -0.239349 0.520123 -0.60221 0.19414 0.774373 +0.225248 -0.227028 0.519085 -0.595778 0.220227 0.772366 +0.227314 -0.217542 0.517803 -0.597899 0.258652 0.758694 +0.230387 -0.20732 0.516566 -0.575938 0.270262 0.771527 +0.236562 -0.194875 0.515507 -0.558019 0.308958 0.770168 +0.25789 -0.171625 0.515329 -0.425442 0.375297 0.823499 +0.277561 -0.149433 0.515024 -0.405261 0.411187 0.816511 +0.796606 -0.581163 0.678268 0.112545 -0.977876 0.176339 +0.759094 -0.592124 0.673399 -0.0294982 -0.945784 0.323453 +0.74169 -0.593075 0.670413 -0.101722 -0.912224 0.396864 +0.726317 -0.593042 0.667622 -0.183113 -0.86069 0.475061 +0.712119 -0.592473 0.664942 -0.207423 -0.833518 0.512077 +0.699056 -0.59136 0.662376 -0.275745 -0.7689 0.576852 +0.687551 -0.589479 0.659959 -0.311699 -0.744057 0.590952 +0.676615 -0.587349 0.657604 -0.378819 -0.666403 0.642187 +0.667299 -0.584406 0.655391 -0.394117 -0.631677 0.667576 +0.659481 -0.580713 0.653324 -0.434402 -0.588323 0.682036 +0.653065 -0.576303 0.651377 -0.433958 -0.557965 0.707358 +0.64732 -0.57155 0.649498 -0.461179 -0.497517 0.734705 +0.642767 -0.566186 0.647722 -0.491805 -0.43543 0.754008 +0.639613 -0.560086 0.646079 -0.503635 -0.390221 0.770765 +0.637813 -0.553263 0.644544 -0.540852 -0.311699 0.781232 +0.641515 -0.543495 0.643491 -0.58839 0.066267 0.805857 +0.418769 -0.654805 0.622757 -0.167076 -0.396545 0.902684 +0.409614 -0.652368 0.62066 -0.285389 -0.334994 0.89796 +0.402848 -0.648677 0.618781 -0.337722 -0.296325 0.893384 +0.39825 -0.643818 0.617097 -0.396338 -0.214602 0.892671 +0.397145 -0.637066 0.615702 -0.419861 -0.164561 0.892546 +0.394178 -0.631324 0.614152 -0.457131 -0.111902 0.882331 +0.388795 -0.626899 0.612389 -0.488839 -0.0645949 0.869979 +0.381009 -0.623805 0.610432 -0.53778 -0.0245212 0.842729 +0.376323 -0.619021 0.608741 -0.551458 0.00975021 0.834146 +0.373104 -0.613435 0.607166 -0.586961 0.012859 0.809513 +0.373245 -0.605973 0.605873 -0.588927 0.0200688 0.807936 +0.373404 -0.598481 0.604582 -0.585228 0.0113798 0.810789 +0.395546 -0.578645 0.605097 -0.390107 0.07175 0.917969 +0.391558 -0.573415 0.603449 -0.368451 0.00603121 0.929628 +0.382765 -0.570902 0.601414 -0.355632 -0.0760583 0.931526 +0.379089 -0.565501 0.599794 -0.311448 -0.156356 0.937312 +0.372482 -0.561777 0.597937 -0.315133 -0.19575 0.92864 +0.364559 -0.558823 0.595978 -0.305462 -0.24757 0.919457 +0.351756 -0.558693 0.593635 -0.320952 -0.304719 0.896736 +0.341493 -0.557135 0.591497 -0.316696 -0.345077 0.883529 +0.327723 -0.557631 0.589088 -0.312909 -0.387141 0.867301 +0.318024 -0.555818 0.587012 -0.318338 -0.400707 0.859124 +0.309396 -0.55341 0.585016 -0.335932 -0.394865 0.85512 +0.301606 -0.550528 0.583094 -0.373599 -0.375134 0.84835 +0.294578 -0.547221 0.581234 -0.42253 -0.356252 0.833399 +0.288117 -0.543603 0.57943 -0.458824 -0.327788 0.825855 +0.282154 -0.539694 0.577658 -0.512638 -0.289632 0.80828 +0.277129 -0.535241 0.575959 -0.54199 -0.257309 0.800025 +0.272402 -0.530622 0.574288 -0.580529 -0.23023 0.781011 +0.268119 -0.525738 0.572648 -0.614976 -0.18791 0.765829 +0.264157 -0.520668 0.571032 -0.642348 -0.1468 0.752222 +0.260686 -0.515309 0.569455 -0.67324 -0.116489 0.730191 +0.258166 -0.50937 0.567953 -0.705616 -0.0596623 0.706078 +0.256981 -0.502617 0.566545 -0.733115 -0.000213163 0.680104 +0.256262 -0.495564 0.565169 -0.746358 0.0472403 0.663866 +0.255804 -0.488345 0.56381 -0.765383 0.100629 0.635659 +0.256057 -0.480674 0.562501 -0.776805 0.14814 0.612068 +0.25676 -0.472705 0.561226 -0.794612 0.210171 0.569578 +0.258077 -0.464346 0.559986 -0.798932 0.260085 0.542276 +0.259844 -0.455675 0.558774 -0.805045 0.311743 0.504696 +0.262059 -0.446707 0.557595 -0.809238 0.366948 0.458783 +0.267503 -0.435691 0.556634 -0.801694 0.415018 0.430171 +0.274504 -0.423645 0.555781 -0.762653 0.468067 0.446401 +0.286203 -0.408596 0.555246 -0.708744 0.484775 0.512519 +0.310209 -0.385675 0.555548 -0.655721 0.418561 0.62836 +0.326751 -0.335909 0.549761 -0.251825 -0.101257 0.962461 +0.316249 -0.334801 0.54766 -0.194859 -0.131074 0.972034 +0.306987 -0.332928 0.545646 -0.19652 -0.144857 0.969741 +0.289799 -0.336247 0.543116 -0.242213 -0.203782 0.948581 +0.278682 -0.335658 0.541003 -0.249644 -0.226786 0.941408 +0.269164 -0.334061 0.538993 -0.274747 -0.222639 0.935386 +0.261562 -0.331225 0.537114 -0.326038 -0.207355 0.922336 +0.25512 -0.327638 0.535312 -0.364521 -0.185961 0.912437 +0.24876 -0.324012 0.533515 -0.399348 -0.156109 0.903411 +0.241453 -0.321029 0.531667 -0.43293 -0.141517 0.890249 +0.235913 -0.316884 0.529931 -0.446217 -0.118182 0.887086 +0.232335 -0.311439 0.528318 -0.458726 -0.102807 0.882611 +0.230845 -0.304582 0.526841 -0.464458 -0.0872365 0.881288 +0.229792 -0.297422 0.52538 -0.469111 -0.0702651 0.880339 +0.228354 -0.290505 0.523902 -0.474703 -0.0455746 0.878965 +0.222131 -0.286841 0.522124 -0.4941 -0.0340562 0.868738 +0.214807 -0.283949 0.520288 -0.51767 -0.0218985 0.8553 +0.21027 -0.279159 0.518617 -0.537293 0.0122299 0.843307 +0.20786 -0.272907 0.517074 -0.552652 0.0581651 0.83138 +0.206768 -0.265742 0.515617 -0.583649 0.101472 0.80564 +0.206431 -0.258038 0.514193 -0.606047 0.155074 0.780165 +0.206095 -0.250324 0.512769 -0.630976 0.18171 0.754222 +0.207184 -0.241597 0.511429 -0.65014 0.219166 0.727518 +0.212563 -0.229838 0.510327 -0.641759 0.220884 0.734409 +0.222937 -0.21452 0.509502 -0.632882 0.25247 0.731928 +0.225256 -0.204826 0.50821 -0.614235 0.272185 0.740696 +0.229271 -0.193893 0.507007 -0.588766 0.287731 0.755358 +0.242207 -0.176576 0.506296 -0.495244 0.349456 0.79537 +0.26365 -0.153112 0.50604 -0.40277 0.413831 0.816407 +0.290833 -0.125404 0.506078 -0.552567 0.541221 0.633836 +0.767255 -0.589981 0.667063 0.0399824 -0.969034 0.243669 +0.742945 -0.594385 0.663471 -0.0425774 -0.955247 0.292732 +0.725752 -0.595272 0.660535 -0.0751952 -0.935463 0.345335 +0.710434 -0.59527 0.657779 -0.187139 -0.859065 0.476433 +0.696617 -0.594537 0.655165 -0.236124 -0.820516 0.520576 +0.684077 -0.593198 0.652672 -0.273692 -0.778397 0.564971 +0.672365 -0.591471 0.650264 -0.324592 -0.740889 0.587982 +0.662019 -0.589067 0.647975 -0.377084 -0.667175 0.642406 +0.653968 -0.585503 0.645894 -0.407193 -0.614954 0.675297 +0.647169 -0.581309 0.643927 -0.419505 -0.582874 0.695898 +0.640683 -0.576959 0.641989 -0.427008 -0.555212 0.713726 +0.634924 -0.57224 0.640115 -0.450154 -0.498799 0.740648 +0.630433 -0.566861 0.638357 -0.469536 -0.454052 0.757214 +0.627004 -0.560922 0.63668 -0.485389 -0.394339 0.780318 +0.424448 -0.660935 0.618012 -0.139544 -0.46721 0.873066 +0.406755 -0.663047 0.615201 -0.271458 -0.447664 0.852003 +0.397364 -0.660762 0.613113 -0.329962 -0.419018 0.845901 +0.390673 -0.657046 0.611249 -0.392731 -0.361118 0.845787 +0.38585 -0.652343 0.609541 -0.458181 -0.290882 0.839916 +0.383417 -0.646341 0.608041 -0.481932 -0.230808 0.845262 +0.380671 -0.640511 0.606511 -0.533213 -0.160296 0.830657 +0.376688 -0.635348 0.604881 -0.574099 -0.0984637 0.812844 +0.372056 -0.630548 0.60319 -0.616082 -0.0779129 0.783818 +0.36817 -0.625341 0.601574 -0.638947 -0.0526929 0.767444 +0.365301 -0.619572 0.600033 -0.657332 -0.0454748 0.752227 +0.363743 -0.613083 0.598598 -0.637445 -0.016863 0.770312 +0.363116 -0.606053 0.597236 -0.625635 -0.00588768 0.780092 +0.364082 -0.59812 0.596001 -0.616939 -0.0344553 0.786256 +0.363029 -0.591309 0.594605 -0.600315 -0.0545338 0.797902 +0.361779 -0.584595 0.593192 -0.570997 -0.102411 0.814539 +0.358332 -0.579118 0.591597 -0.52201 -0.160637 0.837676 +0.354188 -0.57404 0.589949 -0.465626 -0.218495 0.857585 +0.349967 -0.569013 0.588296 -0.420124 -0.275129 0.864753 +0.341076 -0.566655 0.586282 -0.365965 -0.335153 0.868183 +0.32941 -0.565925 0.584056 -0.350369 -0.392637 0.850341 +0.317847 -0.565175 0.581842 -0.341267 -0.438632 0.831348 +0.309354 -0.562686 0.579871 -0.348317 -0.446658 0.824119 +0.301349 -0.559929 0.577943 -0.377778 -0.431275 0.81932 +0.293658 -0.557006 0.576043 -0.421145 -0.408539 0.809774 +0.287172 -0.553405 0.574234 -0.464096 -0.382628 0.79888 +0.281196 -0.549503 0.572469 -0.501821 -0.354958 0.788784 +0.275542 -0.545431 0.570733 -0.540703 -0.321426 0.777385 +0.270724 -0.540879 0.569054 -0.583989 -0.279713 0.762048 +0.266355 -0.536059 0.567413 -0.619083 -0.245035 0.746119 +0.262333 -0.531035 0.565795 -0.646996 -0.209269 0.733213 +0.258637 -0.525819 0.564209 -0.675396 -0.170448 0.717487 +0.255235 -0.520426 0.562639 -0.707397 -0.126117 0.695475 +0.252424 -0.51468 0.561117 -0.732757 -0.0775209 0.67606 +0.250487 -0.508398 0.559648 -0.760542 -0.020204 0.648974 +0.249199 -0.501712 0.55823 -0.778947 0.0372252 0.625983 +0.249174 -0.494242 0.556905 -0.798174 0.0705877 0.598278 +0.2496 -0.48649 0.555602 -0.813674 0.137607 0.5648 +0.250184 -0.478618 0.554307 -0.826495 0.203934 0.524706 +0.252168 -0.469853 0.55311 -0.82861 0.267184 0.491954 +0.254527 -0.460843 0.551934 -0.831481 0.30957 0.461309 +0.257036 -0.451701 0.550764 -0.831282 0.362378 0.421488 +0.260743 -0.441786 0.54967 -0.824533 0.408395 0.391613 +0.268116 -0.429535 0.548826 -0.805905 0.443545 0.392156 +0.276385 -0.416672 0.548028 -0.785583 0.431291 0.443674 +0.29046 -0.400076 0.54761 -0.740946 0.393051 0.544528 +0.312346 -0.37843 0.547709 -0.648725 0.233065 0.724456 +0.324336 -0.36299 0.547117 -0.558734 0.164927 0.812782 +0.324745 -0.354881 0.545751 -0.428214 0.053975 0.902064 +0.313564 -0.354199 0.54362 -0.381514 -0.0202211 0.924142 +0.306566 -0.350853 0.541769 -0.333267 -0.0697156 0.940252 +0.296042 -0.349804 0.539696 -0.295612 -0.195279 0.935136 +0.28225 -0.350916 0.537414 -0.318999 -0.239132 0.917092 +0.271285 -0.350239 0.535317 -0.320941 -0.297582 0.899134 +0.262561 -0.348123 0.533373 -0.329209 -0.313966 0.890531 +0.255269 -0.345095 0.531523 -0.358571 -0.300665 0.883758 +0.249098 -0.341353 0.529749 -0.392345 -0.276899 0.877151 +0.242248 -0.33806 0.52793 -0.424072 -0.255387 0.868872 +0.235625 -0.334641 0.526135 -0.457126 -0.229293 0.859337 +0.22988 -0.330652 0.524395 -0.4781 -0.202307 0.854688 +0.225364 -0.325856 0.522732 -0.494374 -0.182431 0.84989 +0.222237 -0.32013 0.521156 -0.501979 -0.157803 0.850363 +0.220489 -0.313475 0.519656 -0.495474 -0.12473 0.859621 +0.217876 -0.307387 0.518103 -0.504293 -0.101362 0.857563 +0.21354 -0.302475 0.516453 -0.51804 -0.0852975 0.851093 +0.208369 -0.298129 0.514758 -0.530449 -0.0678897 0.844995 +0.203725 -0.293441 0.513085 -0.552263 -0.046916 0.832349 +0.199919 -0.288175 0.51147 -0.583651 -0.0122509 0.811912 +0.197335 -0.282076 0.509924 -0.603312 0.0279951 0.797013 +0.196538 -0.274737 0.508474 -0.628361 0.0900701 0.77269 +0.197829 -0.265935 0.507144 -0.639458 0.134312 0.757003 +0.198537 -0.257515 0.505779 -0.65574 0.179518 0.733334 +0.19942 -0.248958 0.504414 -0.657526 0.206557 0.724564 +0.201025 -0.239868 0.503091 -0.665905 0.22199 0.712243 +0.206789 -0.227827 0.501988 -0.654128 0.223172 0.722711 +0.215545 -0.213634 0.501047 -0.643465 0.239212 0.727139 +0.216688 -0.204761 0.499679 -0.630559 0.241219 0.737704 +0.214722 -0.198088 0.49814 -0.620496 0.264636 0.738209 +0.212454 -0.191616 0.496584 -0.626437 0.270067 0.731191 +0.210846 -0.184671 0.495061 -0.619414 0.291669 0.728874 +0.215912 -0.172916 0.493885 -0.596086 0.325182 0.734124 +0.226554 -0.157097 0.49299 -0.549306 0.385527 0.741372 +0.236406 -0.141788 0.492044 -0.486644 0.421363 0.765265 +0.747888 -0.593844 0.656854 0.00230997 -0.97785 0.209299 +0.725851 -0.597164 0.653517 -0.04973 -0.945544 0.321676 +0.709637 -0.597611 0.650707 -0.0848635 -0.938041 0.335973 +0.695293 -0.597147 0.64807 -0.187973 -0.873685 0.448711 +0.681859 -0.596268 0.645519 -0.23295 -0.82375 0.516885 +0.669504 -0.594868 0.643066 -0.307888 -0.762245 0.569376 +0.658715 -0.592698 0.640755 -0.345243 -0.726067 0.594671 +0.648886 -0.590066 0.63853 -0.374457 -0.666747 0.644384 +0.640883 -0.586504 0.636469 -0.370396 -0.637017 0.67603 +0.633537 -0.582623 0.634462 -0.383492 -0.620162 0.68435 +0.627117 -0.578262 0.632542 -0.40376 -0.567259 0.717771 +0.621865 -0.573298 0.63072 -0.43916 -0.509093 0.740246 +0.617039 -0.568125 0.628934 -0.448629 -0.459762 0.766389 +0.411332 -0.66973 0.610386 -0.188299 -0.561743 0.805598 +0.397798 -0.669639 0.607955 -0.320539 -0.509803 0.798347 +0.388438 -0.667359 0.605878 -0.36225 -0.478589 0.79983 +0.381845 -0.663615 0.604033 -0.440724 -0.397487 0.804841 +0.376501 -0.659205 0.602293 -0.48616 -0.327885 0.810025 +0.372561 -0.65404 0.600672 -0.527413 -0.276442 0.803377 +0.370587 -0.647816 0.599207 -0.570337 -0.193006 0.798413 +0.368187 -0.641811 0.597707 -0.606624 -0.131165 0.784093 +0.365002 -0.636237 0.596145 -0.626708 -0.0938937 0.773577 +0.362202 -0.63045 0.594615 -0.650929 -0.0488488 0.757565 +0.359361 -0.624684 0.593077 -0.670251 -0.0359896 0.741262 +0.357764 -0.618219 0.591637 -0.680981 -0.0393287 0.731245 +0.356777 -0.61141 0.590247 -0.691104 -0.0707908 0.719281 +0.356492 -0.604198 0.588913 -0.663814 -0.0631917 0.745223 +0.354244 -0.598079 0.587416 -0.633579 -0.0982394 0.767416 +0.35153 -0.592213 0.58589 -0.598324 -0.150581 0.786977 +0.348808 -0.586351 0.584356 -0.565246 -0.207227 0.79847 +0.345186 -0.580993 0.582751 -0.504261 -0.265637 0.82168 +0.340301 -0.576361 0.581055 -0.450358 -0.318486 0.834113 +0.331311 -0.574089 0.57905 -0.402342 -0.391113 0.827739 +0.321075 -0.572558 0.576952 -0.377992 -0.440932 0.814065 +0.310651 -0.571167 0.574839 -0.358768 -0.469757 0.806607 +0.301689 -0.568954 0.572852 -0.369237 -0.473243 0.799815 +0.294005 -0.566025 0.570958 -0.407896 -0.451819 0.793397 +0.287085 -0.562673 0.569122 -0.445226 -0.422536 0.789453 +0.280942 -0.558875 0.567351 -0.486756 -0.392852 0.780215 +0.275121 -0.55491 0.565601 -0.528692 -0.359801 0.768784 +0.269689 -0.55072 0.563889 -0.56278 -0.328277 0.758626 +0.265108 -0.546033 0.562237 -0.606016 -0.282132 0.743737 +0.261019 -0.54106 0.560617 -0.627241 -0.250351 0.737491 +0.257296 -0.535872 0.559028 -0.662507 -0.210165 0.718968 +0.253744 -0.530582 0.557453 -0.680731 -0.168792 0.712822 +0.250489 -0.525113 0.555892 -0.695597 -0.130753 0.706433 +0.247796 -0.51931 0.554383 -0.728838 -0.0707828 0.681017 +0.246173 -0.512845 0.552939 -0.753448 -0.011799 0.6574 +0.244899 -0.506168 0.551517 -0.786274 0.0429347 0.616384 +0.24415 -0.499155 0.550132 -0.806291 0.0694589 0.587428 +0.244268 -0.491598 0.548808 -0.82878 0.135254 0.542983 +0.245046 -0.483622 0.547524 -0.84034 0.200799 0.503496 +0.246905 -0.47496 0.546306 -0.853834 0.256894 0.45274 +0.249643 -0.465727 0.545152 -0.859033 0.309674 0.407633 +0.252778 -0.456216 0.544008 -0.857645 0.353664 0.373319 +0.256638 -0.446217 0.542915 -0.852838 0.395133 0.341376 +0.26242 -0.434986 0.54194 -0.837904 0.420756 0.34768 +0.270253 -0.422416 0.541093 -0.828527 0.403094 0.388663 +0.280127 -0.408503 0.540373 -0.791568 0.359437 0.494193 +0.294579 -0.391623 0.539938 -0.68477 0.315792 0.656785 +0.305025 -0.377206 0.539229 -0.606996 0.164888 0.777411 +0.307534 -0.367806 0.538 -0.514893 0.0583519 0.855267 +0.301564 -0.363812 0.536222 -0.403495 -0.0700377 0.912297 +0.288567 -0.364361 0.534004 -0.404801 -0.149844 0.902043 +0.277871 -0.363471 0.531937 -0.418435 -0.240466 0.875836 +0.26855 -0.361714 0.529962 -0.381489 -0.29163 0.877165 +0.260039 -0.359469 0.528045 -0.378516 -0.336086 0.862422 +0.252141 -0.356842 0.526165 -0.379717 -0.363843 0.850549 +0.244467 -0.354089 0.524307 -0.41119 -0.3624 0.836414 +0.23816 -0.350459 0.522529 -0.437745 -0.336289 0.83384 +0.232072 -0.346694 0.52078 -0.471946 -0.310772 0.825039 +0.226159 -0.342823 0.519028 -0.491557 -0.276811 0.82568 +0.221051 -0.338437 0.517338 -0.513123 -0.257089 0.818907 +0.216981 -0.333365 0.515704 -0.528455 -0.228903 0.81752 +0.214385 -0.327302 0.514158 -0.534337 -0.206797 0.819585 +0.212015 -0.321085 0.512628 -0.546947 -0.185598 0.816336 +0.209144 -0.315197 0.511068 -0.55276 -0.159221 0.817989 +0.205068 -0.310129 0.509436 -0.576697 -0.137578 0.805291 +0.19978 -0.305883 0.507738 -0.590537 -0.114778 0.798807 +0.194537 -0.301626 0.506042 -0.606555 -0.0894384 0.789995 +0.190354 -0.296645 0.504404 -0.624758 -0.0559736 0.778809 +0.187907 -0.290477 0.50287 -0.641226 -0.0113503 0.767268 +0.186323 -0.283699 0.501381 -0.667162 0.0514934 0.743131 +0.186444 -0.275742 0.499979 -0.685458 0.111704 0.719494 +0.188582 -0.266362 0.498689 -0.687746 0.152459 0.709762 +0.193841 -0.254777 0.497555 -0.690825 0.200546 0.694653 +0.196239 -0.245152 0.496271 -0.680924 0.212475 0.700854 +0.198495 -0.235591 0.494965 -0.672033 0.213865 0.708966 +0.201341 -0.225594 0.49369 -0.658764 0.211774 0.721929 +0.201713 -0.217321 0.492275 -0.65743 0.214123 0.722452 +0.199666 -0.210733 0.490741 -0.650017 0.217866 0.728019 +0.197673 -0.204103 0.489203 -0.645161 0.237268 0.726272 +0.198025 -0.1958 0.48778 -0.640552 0.27106 0.718485 +0.201439 -0.185268 0.486507 -0.636408 0.317653 0.702908 +0.204483 -0.17497 0.485217 -0.649623 0.344507 0.67772 +0.209542 -0.163191 0.484019 -0.65918 0.367616 0.656003 +0.219542 -0.147781 0.483046 -0.665208 0.382815 0.641055 +0.234153 -0.128937 0.482292 -0.557034 0.440345 0.704138 +0.771548 -0.583881 0.651848 0.156948 -0.983947 0.0849516 +0.729661 -0.59718 0.646828 0.0164541 -0.982351 0.186326 +0.709505 -0.599614 0.643701 -0.0607862 -0.949199 0.30875 +0.694258 -0.599607 0.640997 -0.159956 -0.903366 0.397924 +0.680286 -0.598995 0.63842 -0.185273 -0.873443 0.450303 +0.667538 -0.597807 0.635952 -0.277265 -0.808021 0.519834 +0.655633 -0.596211 0.633565 -0.324365 -0.753602 0.571729 +0.644613 -0.594202 0.631254 -0.325531 -0.735306 0.594436 +0.635622 -0.591163 0.629117 -0.321773 -0.713463 0.622443 +0.627759 -0.587554 0.627082 -0.326117 -0.68599 0.650435 +0.620062 -0.583884 0.625061 -0.338635 -0.686156 0.643829 +0.613732 -0.579509 0.623155 -0.367436 -0.632524 0.681839 +0.422015 -0.673195 0.606059 -0.0135308 -0.647969 0.761547 +0.403527 -0.675689 0.603243 -0.187753 -0.645685 0.740162 +0.391731 -0.674688 0.600974 -0.322611 -0.562597 0.761188 +0.382001 -0.672616 0.59888 -0.3719 -0.523209 0.766774 +0.374488 -0.669372 0.596976 -0.46104 -0.436572 0.772559 +0.368329 -0.665421 0.595176 -0.501464 -0.388053 0.77327 +0.363231 -0.660905 0.593464 -0.557749 -0.293414 0.776416 +0.360767 -0.65497 0.59196 -0.594476 -0.240365 0.767347 +0.358938 -0.648678 0.590515 -0.626897 -0.165598 0.7613 +0.3581 -0.641836 0.589139 -0.648337 -0.113189 0.752893 +0.356664 -0.635315 0.587714 -0.672403 -0.0640679 0.737407 +0.355343 -0.628719 0.586299 -0.683617 -0.0387369 0.728813 +0.353831 -0.622219 0.584865 -0.691583 -0.0358757 0.721406 +0.352415 -0.615669 0.583436 -0.691718 -0.0549021 0.720079 +0.35087 -0.609172 0.582 -0.690603 -0.103247 0.715826 +0.347393 -0.603747 0.580415 -0.677048 -0.134756 0.723497 +0.344397 -0.598062 0.578859 -0.634335 -0.195293 0.747983 +0.342191 -0.591924 0.57737 -0.592603 -0.25204 0.765047 +0.338545 -0.586599 0.57577 -0.518819 -0.314987 0.794738 +0.333273 -0.582205 0.574048 -0.467388 -0.376075 0.800073 +0.323718 -0.580261 0.572015 -0.418572 -0.428396 0.800798 +0.313353 -0.578819 0.569919 -0.385719 -0.469531 0.794205 +0.303442 -0.577147 0.567871 -0.375462 -0.491212 0.785964 +0.294726 -0.574811 0.565908 -0.392864 -0.479778 0.78452 +0.287447 -0.571658 0.564054 -0.426795 -0.455846 0.781056 +0.280886 -0.568108 0.562257 -0.467324 -0.426275 0.774531 +0.274875 -0.564251 0.560509 -0.509514 -0.391527 0.766226 +0.269263 -0.560176 0.558783 -0.542034 -0.359541 0.759559 +0.264045 -0.555869 0.557085 -0.572895 -0.324422 0.75269 +0.259882 -0.550948 0.555471 -0.602783 -0.288904 0.743766 +0.256009 -0.545865 0.553868 -0.627423 -0.247214 0.738395 +0.252644 -0.540474 0.552309 -0.653644 -0.208542 0.727503 +0.249367 -0.535027 0.550754 -0.679998 -0.169862 0.713267 +0.246411 -0.529392 0.54922 -0.707369 -0.141318 0.692574 +0.244137 -0.523344 0.54773 -0.734835 -0.0820769 0.673262 +0.242502 -0.516904 0.546292 -0.768368 -0.0179393 0.639756 +0.241271 -0.510209 0.544869 -0.787584 0.0455952 0.614517 +0.240677 -0.503116 0.543495 -0.801332 0.0836507 0.592343 +0.240637 -0.495663 0.542149 -0.83074 0.148538 0.536476 +0.241073 -0.487915 0.54084 -0.849966 0.206487 0.484686 +0.242943 -0.479256 0.539617 -0.872237 0.254867 0.417425 +0.245502 -0.470142 0.538428 -0.873348 0.30499 0.379794 +0.249355 -0.460203 0.537332 -0.867346 0.355086 0.348748 +0.25347 -0.450056 0.536237 -0.862176 0.393072 0.319606 +0.258684 -0.439193 0.535212 -0.856434 0.41192 0.311197 +0.265319 -0.427398 0.534267 -0.84882 0.391526 0.355264 +0.272534 -0.415182 0.533354 -0.856784 0.310717 0.411551 +0.283153 -0.40076 0.532645 -0.759531 0.235251 0.60644 +0.28851 -0.389623 0.531591 -0.676677 0.173688 0.715501 +0.288211 -0.382056 0.53018 -0.589108 0.0360783 0.807248 +0.284857 -0.376439 0.528586 -0.532167 -0.113517 0.838994 +0.276068 -0.374316 0.52665 -0.510521 -0.181589 0.840473 +0.268483 -0.371434 0.524793 -0.447249 -0.280824 0.849179 +0.260403 -0.368902 0.52291 -0.439671 -0.34038 0.831162 +0.251798 -0.366732 0.520996 -0.43879 -0.381829 0.813431 +0.243983 -0.364066 0.519138 -0.42073 -0.413688 0.807372 +0.236831 -0.360987 0.51732 -0.445193 -0.401664 0.800294 +0.23054 -0.357371 0.515556 -0.468541 -0.381185 0.796973 +0.224534 -0.353564 0.513811 -0.495802 -0.358642 0.790922 +0.218973 -0.349484 0.512096 -0.521299 -0.334234 0.785197 +0.214511 -0.344685 0.510453 -0.54287 -0.299968 0.784419 +0.210656 -0.339485 0.508833 -0.556373 -0.279556 0.782494 +0.207636 -0.333717 0.507264 -0.566476 -0.249601 0.785369 +0.204595 -0.327972 0.505698 -0.575412 -0.214465 0.789243 +0.200281 -0.323079 0.504061 -0.588696 -0.19688 0.784012 +0.194821 -0.318977 0.502359 -0.614455 -0.181304 0.767838 +0.190103 -0.314368 0.500698 -0.6415 -0.160915 0.750056 +0.185809 -0.309483 0.499057 -0.661349 -0.138526 0.737175 +0.182507 -0.303921 0.497479 -0.678201 -0.109094 0.726734 +0.179988 -0.297826 0.495941 -0.697393 -0.0446811 0.715294 +0.178106 -0.291276 0.494431 -0.718278 0.00802445 0.695711 +0.177506 -0.283839 0.492992 -0.725333 0.0719582 0.684628 +0.178147 -0.275527 0.491616 -0.731484 0.125835 0.670147 +0.180063 -0.266309 0.490298 -0.733912 0.168459 0.658024 +0.187256 -0.253367 0.489253 -0.717378 0.18799 0.670842 +0.19198 -0.242101 0.488066 -0.696693 0.198462 0.68937 +0.192941 -0.233454 0.486688 -0.680287 0.199686 0.70522 +0.190765 -0.227004 0.485143 -0.682014 0.190715 0.706034 +0.187919 -0.221012 0.483568 -0.678538 0.193886 0.708515 +0.185176 -0.214956 0.481996 -0.677269 0.19832 0.708503 +0.18332 -0.20826 0.480462 -0.675999 0.230985 0.699765 +0.186433 -0.197992 0.47917 -0.683534 0.286497 0.671342 +0.193941 -0.184521 0.478084 -0.673442 0.33562 0.658661 +0.200155 -0.171942 0.476926 -0.694465 0.354629 0.626064 +0.204457 -0.160684 0.475665 -0.70106 0.380862 0.602875 +0.211181 -0.147633 0.474514 -0.705908 0.392557 0.58957 +0.220933 -0.132326 0.473497 -0.682885 0.409183 0.605176 +0.267358 -0.0900878 0.474131 -0.43181 -1.11569 1.25251 +0.743165 -0.592303 0.64093 0.107608 -0.992981 0.0491127 +0.713226 -0.599659 0.63701 0.00344269 -0.977657 0.210181 +0.694376 -0.601479 0.634036 -0.11972 -0.927676 0.353675 +0.67905 -0.601559 0.63136 -0.160225 -0.903282 0.398009 +0.665711 -0.600671 0.628861 -0.230195 -0.856668 0.461659 +0.653728 -0.599119 0.626487 -0.288004 -0.79865 0.528405 +0.642145 -0.597394 0.624144 -0.276634 -0.782759 0.55746 +0.631653 -0.595142 0.621894 -0.28755 -0.757062 0.586662 +0.621525 -0.592726 0.619684 -0.280747 -0.749663 0.599325 +0.613105 -0.589441 0.61762 -0.284665 -0.735361 0.614988 +0.604599 -0.586222 0.615547 -0.315863 -0.699042 0.641538 +0.412337 -0.680117 0.598771 -0.0858263 -0.724534 0.683876 +0.397597 -0.680641 0.596282 -0.197415 -0.6845 0.701775 +0.385993 -0.679546 0.594046 -0.333351 -0.605718 0.722485 +0.376188 -0.677524 0.591966 -0.395138 -0.566845 0.722879 +0.368094 -0.674609 0.590017 -0.484502 -0.486969 0.726718 +0.361862 -0.670709 0.588222 -0.518281 -0.439956 0.733365 +0.35661 -0.666292 0.586504 -0.583396 -0.341229 0.737029 +0.352077 -0.661494 0.584847 -0.607253 -0.288382 0.740324 +0.349253 -0.655769 0.58332 -0.647843 -0.211875 0.731716 +0.347105 -0.649665 0.581843 -0.678787 -0.142316 0.720413 +0.347845 -0.64198 0.580584 -0.689181 -0.0944871 0.718402 +0.349431 -0.633798 0.579393 -0.697115 -0.0487948 0.715297 +0.350004 -0.626157 0.578112 -0.703243 -0.0316153 0.710245 +0.348509 -0.619657 0.57668 -0.695667 -0.0453103 0.716934 +0.345836 -0.6138 0.575153 -0.680717 -0.0849559 0.727605 +0.342461 -0.608338 0.573576 -0.667923 -0.122498 0.73408 +0.339267 -0.602777 0.572016 -0.62089 -0.201607 0.757528 +0.336739 -0.596826 0.570502 -0.581251 -0.274573 0.766 +0.331872 -0.592209 0.56881 -0.523669 -0.349207 0.777061 +0.325822 -0.588272 0.56704 -0.46186 -0.395596 0.793845 +0.315257 -0.586926 0.564947 -0.414031 -0.448285 0.792225 +0.305386 -0.585217 0.56291 -0.387145 -0.484393 0.784528 +0.296442 -0.583005 0.56094 -0.381976 -0.496737 0.779326 +0.288369 -0.580308 0.559044 -0.404206 -0.478751 0.779368 +0.281483 -0.576937 0.557229 -0.440818 -0.450926 0.77611 +0.275042 -0.573337 0.555446 -0.475762 -0.422752 0.771318 +0.26933 -0.569315 0.553724 -0.511274 -0.386086 0.767813 +0.264076 -0.565037 0.552031 -0.542523 -0.355267 0.76122 +0.259028 -0.560646 0.550353 -0.572999 -0.311652 0.757988 +0.254635 -0.555874 0.548721 -0.592071 -0.280157 0.755622 +0.250798 -0.550773 0.547133 -0.61178 -0.246639 0.751594 +0.24746 -0.545384 0.545569 -0.637803 -0.204744 0.742488 +0.244736 -0.53962 0.544058 -0.662363 -0.161525 0.731563 +0.242222 -0.533732 0.542552 -0.669955 -0.119212 0.732768 +0.240055 -0.527631 0.541076 -0.699451 -0.0659561 0.711631 +0.238685 -0.521042 0.539649 -0.7279 -0.00816431 0.685635 +0.237661 -0.514234 0.538241 -0.767758 0.0465762 0.639044 +0.237187 -0.507076 0.536864 -0.792895 0.0895209 0.602747 +0.237276 -0.49956 0.535523 -0.824821 0.164594 0.540905 +0.237579 -0.491898 0.534198 -0.856061 0.216561 0.469319 +0.239117 -0.483455 0.532941 -0.864466 0.270329 0.423817 +0.24173 -0.474325 0.531761 -0.882695 0.308143 0.354819 +0.245824 -0.464247 0.530655 -0.878807 0.353558 0.320461 +0.250733 -0.453625 0.529604 -0.871986 0.398897 0.283762 +0.255619 -0.442983 0.528539 -0.872697 0.399569 0.280617 +0.261377 -0.431744 0.527522 -0.868882 0.365179 0.334197 +0.267093 -0.420496 0.526499 -0.864524 0.294936 0.406952 +0.274485 -0.408139 0.52557 -0.844049 0.183945 0.503732 +0.279254 -0.397408 0.524464 -0.732667 0.122736 0.669429 +0.279872 -0.389276 0.523112 -0.679842 -0.0194889 0.7331 +0.276201 -0.383881 0.521494 -0.5984 -0.144076 0.788136 +0.269083 -0.3807 0.519671 -0.572739 -0.222416 0.788987 +0.261466 -0.377864 0.517822 -0.530554 -0.332767 0.779602 +0.253316 -0.375391 0.515948 -0.499897 -0.386513 0.775056 +0.245237 -0.37289 0.514081 -0.465884 -0.431832 0.772317 +0.237571 -0.370147 0.512241 -0.459826 -0.449781 0.765674 +0.230502 -0.367028 0.510446 -0.475136 -0.449396 0.756499 +0.224177 -0.363441 0.508685 -0.495813 -0.430893 0.75399 +0.218389 -0.359512 0.506961 -0.520125 -0.403413 0.752813 +0.213208 -0.355194 0.505281 -0.548329 -0.380342 0.744766 +0.208801 -0.350371 0.503636 -0.574773 -0.34813 0.740569 +0.204923 -0.345203 0.502021 -0.591213 -0.320049 0.740295 +0.200985 -0.340071 0.500409 -0.606436 -0.298054 0.737157 +0.196691 -0.335183 0.498776 -0.621515 -0.279149 0.73198 +0.192125 -0.330476 0.497128 -0.640076 -0.254264 0.72502 +0.186881 -0.326244 0.495447 -0.659446 -0.230082 0.715676 +0.182563 -0.321391 0.493811 -0.676022 -0.202357 0.708552 +0.179236 -0.315862 0.492231 -0.694163 -0.180807 0.696739 +0.176356 -0.310033 0.490675 -0.714896 -0.136665 0.685745 +0.174122 -0.303749 0.489149 -0.733338 -0.0892224 0.673984 +0.172304 -0.297183 0.48765 -0.751156 -0.0373803 0.659065 +0.171379 -0.289989 0.486192 -0.763783 0.0227605 0.645073 +0.171223 -0.282247 0.484768 -0.771401 0.0951668 0.629194 +0.171841 -0.273944 0.483377 -0.767173 0.137124 0.626612 +0.174477 -0.264219 0.482083 -0.758376 0.168185 0.629747 +0.179427 -0.252841 0.480899 -0.741209 0.172714 0.648676 +0.184141 -0.241586 0.479698 -0.722573 0.168571 0.670427 +0.18171 -0.235332 0.478145 -0.720317 0.16006 0.674924 +0.178788 -0.229432 0.47657 -0.718509 0.159431 0.676997 +0.175582 -0.223725 0.474974 -0.724876 0.159779 0.670094 +0.174577 -0.216442 0.473489 -0.724537 0.192271 0.661876 +0.176354 -0.207157 0.472128 -0.714598 0.256425 0.650842 +0.179262 -0.197033 0.470812 -0.709188 0.31759 0.629436 +0.189585 -0.181529 0.469823 -0.709057 0.360006 0.606328 +0.197893 -0.167408 0.468735 -0.716608 0.375822 0.587563 +0.202081 -0.156226 0.467457 -0.709882 0.387352 0.588239 +0.206196 -0.145057 0.466161 -0.702624 0.395898 0.591256 +0.214524 -0.130767 0.465044 -0.698988 0.389337 0.599862 +0.267379 -0.0837257 0.465833 -0.43181 -1.11569 1.25251 +0.722916 -0.596688 0.630804 0.0764832 -0.991279 0.107322 +0.697442 -0.601848 0.627308 0.0016804 -0.974078 0.226213 +0.679254 -0.603379 0.624428 -0.113633 -0.926097 0.359769 +0.665072 -0.602915 0.621882 -0.203931 -0.878237 0.432565 +0.651942 -0.601959 0.619426 -0.237362 -0.838991 0.489646 +0.639974 -0.600432 0.617064 -0.25871 -0.81406 0.519977 +0.628464 -0.598707 0.614753 -0.252634 -0.806906 0.53393 +0.61796 -0.596491 0.612525 -0.247354 -0.791068 0.55949 +0.606113 -0.595016 0.610203 -0.244836 -0.763658 0.597397 +0.429086 -0.680405 0.594907 0.0795716 -0.771869 0.630783 +0.405973 -0.68529 0.591775 -0.12619 -0.754622 0.643912 +0.392608 -0.685093 0.589413 -0.211021 -0.72661 0.653842 +0.381503 -0.683737 0.58724 -0.331709 -0.651228 0.682548 +0.371868 -0.68163 0.585185 -0.40244 -0.606384 0.685814 +0.364622 -0.678268 0.583317 -0.482196 -0.539088 0.690559 +0.357806 -0.674694 0.581483 -0.520163 -0.490336 0.699286 +0.352103 -0.670526 0.579736 -0.580488 -0.408505 0.704386 +0.34722 -0.665925 0.578055 -0.615933 -0.334447 0.713283 +0.342795 -0.661086 0.576405 -0.649682 -0.248873 0.718314 +0.339079 -0.655866 0.574815 -0.678207 -0.180174 0.712441 +0.337089 -0.649688 0.573352 -0.690286 -0.127135 0.712278 +0.337187 -0.642359 0.57204 -0.698483 -0.0826625 0.710836 +0.33909 -0.634015 0.570862 -0.701482 -0.0534742 0.710679 +0.342113 -0.625032 0.569753 -0.698641 -0.0498766 0.713732 +0.340793 -0.618438 0.568329 -0.676038 -0.0758702 0.732951 +0.337859 -0.612737 0.566792 -0.654004 -0.107767 0.748776 +0.335134 -0.606915 0.565259 -0.609815 -0.18387 0.770921 +0.33185 -0.601412 0.563689 -0.562472 -0.258229 0.785456 +0.325723 -0.597522 0.561922 -0.503664 -0.337628 0.795193 +0.317764 -0.594682 0.560025 -0.450401 -0.400605 0.797906 +0.307286 -0.593301 0.557956 -0.411288 -0.437889 0.799435 +0.298316 -0.591086 0.555991 -0.387622 -0.469352 0.793384 +0.290274 -0.58837 0.5541 -0.385968 -0.481264 0.787028 +0.282624 -0.585437 0.552242 -0.414515 -0.466185 0.781569 +0.276196 -0.581827 0.550465 -0.451917 -0.437194 0.777581 +0.269967 -0.578105 0.548714 -0.476525 -0.409401 0.778019 +0.263986 -0.574253 0.546975 -0.504722 -0.37535 0.777412 +0.258665 -0.570025 0.545287 -0.527325 -0.345626 0.776189 +0.253753 -0.565566 0.54362 -0.544016 -0.308183 0.78043 +0.249297 -0.560849 0.54199 -0.558149 -0.272217 0.783815 +0.245069 -0.555997 0.540377 -0.576286 -0.237081 0.782105 +0.241766 -0.550592 0.538829 -0.589311 -0.1915 0.784883 +0.239012 -0.544866 0.537308 -0.602698 -0.15053 0.783642 +0.235853 -0.539378 0.535769 -0.624798 -0.106649 0.773468 +0.233773 -0.533242 0.534291 -0.656106 -0.0710724 0.751314 +0.232513 -0.526601 0.532869 -0.684194 -0.0126277 0.729191 +0.231656 -0.519704 0.531473 -0.715373 0.0645233 0.695756 +0.23222 -0.511933 0.530161 -0.733635 0.11197 0.670256 +0.23249 -0.504322 0.528829 -0.797296 0.170708 0.578946 +0.233205 -0.496419 0.527517 -0.832992 0.246611 0.495285 +0.235311 -0.487642 0.526295 -0.866406 0.275245 0.41663 +0.237968 -0.478497 0.5251 -0.87879 0.325756 0.348729 +0.242219 -0.468342 0.523998 -0.890238 0.347903 0.294006 +0.247505 -0.457493 0.522951 -0.876701 0.396829 0.271886 +0.252737 -0.446646 0.521893 -0.877785 0.389323 0.279145 +0.258367 -0.43551 0.520856 -0.885158 0.34173 0.315777 +0.263265 -0.424786 0.519765 -0.881151 0.260334 0.394715 +0.268316 -0.413932 0.518673 -0.857219 0.162681 0.48858 +0.269764 -0.40533 0.517364 -0.80957 0.0259522 0.586448 +0.269171 -0.397995 0.515934 -0.760919 -0.0502474 0.646898 +0.266541 -0.391964 0.514385 -0.676911 -0.18295 0.712966 +0.260939 -0.387827 0.512662 -0.645857 -0.25327 0.720225 +0.254946 -0.383957 0.51092 -0.552676 -0.36262 0.750371 +0.248012 -0.380711 0.509122 -0.518826 -0.403823 0.75349 +0.240293 -0.377996 0.507291 -0.488135 -0.450421 0.74756 +0.232847 -0.375119 0.505471 -0.478739 -0.471277 0.740748 +0.225788 -0.372003 0.503683 -0.490848 -0.471089 0.7329 +0.219517 -0.368387 0.501936 -0.516084 -0.460845 0.721998 +0.213627 -0.364538 0.500216 -0.540038 -0.436859 0.719384 +0.208365 -0.36029 0.498536 -0.567174 -0.409293 0.714698 +0.203336 -0.355887 0.496856 -0.593333 -0.384682 0.707089 +0.198457 -0.351394 0.495201 -0.617295 -0.356506 0.70132 +0.194566 -0.346251 0.49359 -0.637151 -0.338746 0.692308 +0.190292 -0.341369 0.491959 -0.656374 -0.31814 0.684076 +0.185622 -0.336752 0.490317 -0.676504 -0.297081 0.673858 +0.181624 -0.331695 0.488701 -0.697231 -0.27 0.664056 +0.178002 -0.326379 0.487113 -0.716564 -0.24358 0.653609 +0.174731 -0.320826 0.485531 -0.734297 -0.214245 0.644132 +0.17197 -0.314928 0.483988 -0.748096 -0.172095 0.640888 +0.169537 -0.308798 0.482456 -0.768153 -0.12237 0.628462 +0.167223 -0.302585 0.480923 -0.789285 -0.0743585 0.609507 +0.166047 -0.295577 0.479448 -0.800865 -0.00250989 0.59884 +0.165502 -0.288118 0.478002 -0.80943 0.0446764 0.585514 +0.165483 -0.280281 0.476584 -0.804012 0.10482 0.585301 +0.167338 -0.271125 0.475244 -0.796045 0.130488 0.591003 +0.169981 -0.26138 0.473938 -0.780634 0.149656 0.606807 +0.17391 -0.250707 0.472687 -0.766465 0.152084 0.624021 +0.173133 -0.243318 0.471212 -0.76156 0.142459 0.632243 +0.171161 -0.236765 0.469677 -0.760631 0.143452 0.633136 +0.168394 -0.23077 0.46811 -0.760812 0.142999 0.633021 +0.166694 -0.224009 0.46659 -0.758566 0.155259 0.632829 +0.166341 -0.21627 0.465126 -0.756147 0.208951 0.620147 +0.168539 -0.206687 0.463771 -0.748208 0.280402 0.601299 +0.17824 -0.191662 0.462738 -0.732201 0.35116 0.583582 +0.188663 -0.17606 0.461718 -0.722484 0.381029 0.576915 +0.196003 -0.162611 0.46056 -0.727308 0.376931 0.573539 +0.199152 -0.152172 0.459215 -0.719446 0.377501 0.583 +0.201128 -0.142547 0.457816 -0.716739 0.377383 0.586402 +0.20534 -0.131261 0.456502 -0.701467 0.41681 0.578111 +0.706228 -0.599316 0.621038 0.0811811 -0.989275 0.121434 +0.681661 -0.60408 0.617671 -0.0697304 -0.955682 0.286027 +0.66449 -0.605134 0.614902 -0.163019 -0.906493 0.389484 +0.650801 -0.604457 0.612421 -0.212683 -0.87251 0.439878 +0.638109 -0.603312 0.610031 -0.223959 -0.840157 0.493943 +0.625458 -0.602179 0.607638 -0.219655 -0.826465 0.518371 +0.612193 -0.601406 0.605213 -0.19703 -0.836346 0.511573 +0.59938 -0.600443 0.60283 -0.181186 -0.81117 0.556036 +0.421018 -0.686454 0.587769 0.0521434 -0.807948 0.586943 +0.400894 -0.68977 0.584905 -0.144269 -0.781595 0.606876 +0.388596 -0.68902 0.58265 -0.220382 -0.750911 0.622547 +0.377823 -0.687495 0.580512 -0.337544 -0.695937 0.633827 +0.368776 -0.685081 0.578517 -0.405114 -0.637881 0.654975 +0.361184 -0.681909 0.576631 -0.478721 -0.579317 0.659711 +0.354204 -0.678429 0.574797 -0.525812 -0.530912 0.664571 +0.348273 -0.674397 0.573038 -0.571991 -0.458845 0.679918 +0.343198 -0.669906 0.571349 -0.608007 -0.381725 0.696142 +0.338529 -0.665203 0.569686 -0.63889 -0.297185 0.709578 +0.334605 -0.660107 0.568083 -0.665511 -0.218296 0.713752 +0.331244 -0.654697 0.566513 -0.683891 -0.147306 0.714557 +0.329388 -0.648461 0.565063 -0.677802 -0.101293 0.728233 +0.329403 -0.641186 0.563741 -0.681007 -0.0858932 0.727222 +0.331452 -0.632762 0.562558 -0.671939 -0.0655082 0.737703 +0.333933 -0.624072 0.561398 -0.656655 -0.074551 0.750498 +0.333319 -0.617092 0.560026 -0.633878 -0.108717 0.765753 +0.33066 -0.611245 0.558501 -0.595755 -0.175439 0.783771 +0.326782 -0.606094 0.556891 -0.550667 -0.247429 0.79721 +0.319653 -0.602777 0.555058 -0.48468 -0.331934 0.809263 +0.310573 -0.600585 0.553096 -0.44179 -0.373992 0.815445 +0.300347 -0.599075 0.551059 -0.410087 -0.421272 0.808925 +0.291626 -0.596733 0.549132 -0.391937 -0.446608 0.804317 +0.283616 -0.594009 0.547258 -0.395295 -0.452839 0.799174 +0.276396 -0.590848 0.545431 -0.419417 -0.437283 0.795534 +0.269668 -0.587416 0.543647 -0.445783 -0.416023 0.792592 +0.263314 -0.58378 0.541895 -0.465515 -0.390768 0.794102 +0.257512 -0.57984 0.540177 -0.477102 -0.363136 0.800316 +0.252513 -0.575442 0.538516 -0.499208 -0.329778 0.801274 +0.247626 -0.570981 0.536859 -0.507722 -0.29887 0.808019 +0.243034 -0.566362 0.535222 -0.516623 -0.26332 0.814717 +0.238575 -0.561654 0.5336 -0.524771 -0.227681 0.820229 +0.233854 -0.557114 0.531964 -0.530288 -0.193706 0.825393 +0.229295 -0.552488 0.530336 -0.535636 -0.148417 0.831304 +0.225288 -0.547531 0.528743 -0.545919 -0.108084 0.830837 +0.220928 -0.542798 0.527124 -0.554851 -0.0647545 0.829426 +0.218378 -0.53697 0.525622 -0.570193 -0.0209403 0.821244 +0.216402 -0.530784 0.524157 -0.578855 0.0395303 0.814472 +0.216795 -0.523157 0.522833 -0.601893 0.107145 0.791357 +0.219929 -0.513834 0.521678 -0.650444 0.185657 0.736514 +0.224168 -0.503804 0.52058 -0.724929 0.260083 0.637837 +0.230191 -0.49264 0.519589 -0.806425 0.336209 0.486461 +0.233745 -0.482959 0.518433 -0.858257 0.356794 0.368908 +0.238423 -0.472544 0.517342 -0.877789 0.375642 0.297288 +0.244387 -0.461296 0.516324 -0.878773 0.397573 0.263997 +0.250097 -0.450158 0.515279 -0.880416 0.386461 0.274799 +0.25559 -0.439116 0.514213 -0.890096 0.328008 0.316446 +0.260479 -0.42842 0.513106 -0.891253 0.244608 0.381882 +0.264492 -0.418228 0.511942 -0.863072 0.15601 0.480382 +0.264506 -0.410548 0.51054 -0.815542 0.0315882 0.577836 +0.263358 -0.403585 0.509078 -0.778831 -0.0686394 0.623467 +0.261071 -0.397344 0.50755 -0.692021 -0.213559 0.689564 +0.255917 -0.39294 0.505858 -0.651362 -0.283121 0.703967 +0.250004 -0.389037 0.504122 -0.565986 -0.381445 0.730861 +0.24309 -0.385782 0.50234 -0.540165 -0.43307 0.721576 +0.235451 -0.383023 0.500523 -0.512706 -0.480409 0.711575 +0.228213 -0.380019 0.498731 -0.504282 -0.497921 0.705532 +0.221465 -0.376713 0.496966 -0.51528 -0.496788 0.698346 +0.215176 -0.373126 0.495224 -0.537213 -0.488363 0.68768 +0.2092 -0.369337 0.493509 -0.566539 -0.469531 0.677181 +0.203701 -0.365256 0.491816 -0.594419 -0.447547 0.668108 +0.198756 -0.360815 0.490158 -0.620231 -0.419238 0.662987 +0.194045 -0.356218 0.488508 -0.646015 -0.400208 0.649998 +0.189547 -0.351492 0.486871 -0.666033 -0.376377 0.644003 +0.185316 -0.346591 0.485248 -0.684208 -0.350575 0.639497 +0.181308 -0.341546 0.483642 -0.70105 -0.323351 0.635588 +0.177651 -0.336261 0.482051 -0.721486 -0.295187 0.626356 +0.174049 -0.330951 0.480458 -0.743969 -0.272453 0.610146 +0.170885 -0.325339 0.478889 -0.764619 -0.235874 0.599767 +0.168057 -0.319494 0.477342 -0.783824 -0.198838 0.588288 +0.165328 -0.313577 0.475795 -0.803995 -0.160977 0.572432 +0.162979 -0.307395 0.474259 -0.82176 -0.108629 0.559385 +0.161461 -0.300641 0.472765 -0.832509 -0.0575157 0.551016 +0.160737 -0.293323 0.471313 -0.838894 0.00730267 0.544246 +0.160719 -0.285505 0.469884 -0.837414 0.0503061 0.544248 +0.161145 -0.277354 0.468471 -0.832999 0.0959286 0.544894 +0.162593 -0.268475 0.467105 -0.821797 0.114907 0.558074 +0.165894 -0.258266 0.465813 -0.801051 0.13368 0.583479 +0.165652 -0.25052 0.464365 -0.793727 0.129985 0.594222 +0.16446 -0.243428 0.462867 -0.792317 0.12531 0.597101 +0.16234 -0.236998 0.461325 -0.799999 0.125931 0.586634 +0.160912 -0.230055 0.459819 -0.798134 0.137252 0.586638 +0.160194 -0.222604 0.458336 -0.801583 0.16398 0.574956 +0.160511 -0.214392 0.456891 -0.798148 0.225368 0.558721 +0.164408 -0.203578 0.455597 -0.781954 0.297586 0.547714 +0.176872 -0.186539 0.454644 -0.750482 0.369236 0.548125 +0.18883 -0.169789 0.453649 -0.735453 0.383512 0.558593 +0.191666 -0.159595 0.45228 -0.734032 0.373376 0.567261 +0.193366 -0.150202 0.450863 -0.731806 0.367836 0.573723 +0.194164 -0.141441 0.449404 -0.725135 0.386774 0.569724 +0.200729 -0.128412 0.448166 -0.698165 0.457327 0.550834 +0.737285 -0.585483 0.616458 0.244901 -0.959197 -0.141302 +0.689657 -0.601926 0.61134 0.00424596 -0.980724 0.195357 +0.666798 -0.605875 0.608155 -0.0861445 -0.946488 0.311032 +0.650701 -0.60643 0.605513 -0.167359 -0.902261 0.397387 +0.636901 -0.605845 0.603044 -0.176199 -0.881127 0.438828 +0.623105 -0.605307 0.600595 -0.195085 -0.851996 0.485844 +0.608846 -0.60506 0.598108 -0.146414 -0.855435 0.496784 +0.457515 -0.676468 0.585337 0.254453 -0.823647 0.506814 +0.414123 -0.691879 0.580747 0.0289896 -0.834555 0.550163 +0.397073 -0.693587 0.578148 -0.140295 -0.811175 0.567725 +0.385038 -0.6927 0.575931 -0.236915 -0.774711 0.586255 +0.374529 -0.691037 0.573832 -0.345511 -0.715331 0.607392 +0.365446 -0.688651 0.571847 -0.399662 -0.678884 0.615944 +0.357809 -0.685508 0.569964 -0.480511 -0.605543 0.634372 +0.351168 -0.681854 0.568159 -0.505683 -0.578561 0.639963 +0.344972 -0.677969 0.566395 -0.568154 -0.493085 0.658838 +0.339676 -0.67361 0.564693 -0.591781 -0.439261 0.675904 +0.334817 -0.66902 0.563017 -0.626642 -0.350888 0.695843 +0.330678 -0.66405 0.5614 -0.645837 -0.278437 0.710892 +0.327207 -0.658707 0.559836 -0.657679 -0.194031 0.72788 +0.325024 -0.652663 0.558356 -0.64968 -0.142883 0.746659 +0.323674 -0.646151 0.556933 -0.6492 -0.108926 0.752778 +0.32415 -0.638615 0.55563 -0.640998 -0.0873125 0.762561 +0.325117 -0.63079 0.554365 -0.620353 -0.0922721 0.778876 +0.327185 -0.62234 0.55317 -0.60791 -0.105187 0.787008 +0.325293 -0.616076 0.551702 -0.569925 -0.164045 0.805155 +0.321118 -0.611093 0.550073 -0.524712 -0.237843 0.817379 +0.312861 -0.60843 0.548175 -0.474681 -0.301918 0.826755 +0.303665 -0.606323 0.546223 -0.429229 -0.351159 0.832136 +0.294043 -0.604482 0.544239 -0.401198 -0.390464 0.828601 +0.285587 -0.602003 0.542345 -0.398912 -0.416515 0.816936 +0.277934 -0.599076 0.540502 -0.40526 -0.412585 0.815804 +0.270342 -0.596148 0.538665 -0.420957 -0.406047 0.811124 +0.26347 -0.592814 0.536883 -0.435035 -0.390935 0.81112 +0.256745 -0.589413 0.535114 -0.44402 -0.368544 0.816714 +0.250122 -0.585964 0.533351 -0.450313 -0.349044 0.821819 +0.244893 -0.581712 0.531673 -0.451859 -0.323136 0.831509 +0.239702 -0.577451 0.530012 -0.463089 -0.293025 0.836471 +0.234279 -0.57333 0.528332 -0.467422 -0.253377 0.846945 +0.228894 -0.569203 0.526653 -0.465882 -0.226827 0.855281 +0.223558 -0.565051 0.524982 -0.463262 -0.192233 0.865121 +0.217745 -0.561195 0.523281 -0.463149 -0.140558 0.875065 +0.212346 -0.557101 0.52161 -0.472513 -0.107484 0.874746 +0.207305 -0.552806 0.519961 -0.491521 -0.049172 0.869476 +0.203236 -0.547922 0.518373 -0.50348 -0.00321627 0.864001 +0.20014 -0.542465 0.516847 -0.510219 0.0487575 0.858662 +0.198141 -0.536331 0.515382 -0.543874 0.109681 0.831968 +0.19846 -0.52877 0.514053 -0.568075 0.168712 0.805498 +0.200799 -0.519965 0.512838 -0.575834 0.23262 0.783775 +0.208881 -0.507589 0.511958 -0.616545 0.316627 0.720846 +0.227576 -0.48861 0.511677 -0.796269 0.418819 0.436517 +0.234433 -0.476864 0.510693 -0.878685 0.377978 0.291625 +0.241355 -0.465033 0.509713 -0.879082 0.400466 0.258535 +0.246527 -0.45425 0.508616 -0.883057 0.383684 0.270179 +0.252451 -0.442955 0.507562 -0.890525 0.327691 0.315572 +0.256745 -0.432641 0.506411 -0.89557 0.229901 0.380921 +0.260712 -0.42249 0.505231 -0.877357 0.128742 0.462244 +0.260518 -0.414952 0.503812 -0.841668 0.027667 0.539285 +0.259225 -0.4081 0.50234 -0.784547 -0.0735531 0.615693 +0.256636 -0.402063 0.500792 -0.70047 -0.229116 0.675906 +0.251354 -0.397756 0.499097 -0.66785 -0.32124 0.671401 +0.245309 -0.393941 0.49737 -0.587197 -0.404628 0.701053 +0.238682 -0.390511 0.495612 -0.556019 -0.452666 0.697092 +0.231296 -0.387601 0.493811 -0.530087 -0.496378 0.687471 +0.224009 -0.384634 0.492024 -0.529909 -0.514259 0.67434 +0.217197 -0.381383 0.490267 -0.541317 -0.523951 0.65761 +0.211008 -0.377738 0.488544 -0.561806 -0.511202 0.650421 +0.205499 -0.373653 0.486856 -0.589247 -0.496798 0.637166 +0.200147 -0.369478 0.485177 -0.618379 -0.474634 0.626363 +0.195011 -0.365175 0.483512 -0.643781 -0.451287 0.617968 +0.190415 -0.36052 0.481874 -0.668957 -0.42694 0.608456 +0.18597 -0.355763 0.480241 -0.68863 -0.407086 0.600058 +0.181611 -0.350957 0.478622 -0.708564 -0.381438 0.593668 +0.177949 -0.345693 0.477034 -0.729883 -0.353968 0.584788 +0.174245 -0.340448 0.475441 -0.749704 -0.327487 0.575063 +0.170727 -0.335083 0.473858 -0.77047 -0.297589 0.563753 +0.167546 -0.329491 0.472285 -0.793331 -0.268911 0.546179 +0.1645 -0.32381 0.470725 -0.81335 -0.23036 0.534224 +0.161912 -0.317805 0.469186 -0.829822 -0.189548 0.52485 +0.15974 -0.311518 0.467665 -0.84357 -0.14543 0.516953 +0.157825 -0.305044 0.466155 -0.852821 -0.0924723 0.513949 +0.156725 -0.297999 0.464677 -0.859241 -0.0373139 0.510208 +0.156255 -0.290506 0.46322 -0.859198 0.0126016 0.511486 +0.155907 -0.282917 0.46177 -0.856176 0.0520116 0.514061 +0.156767 -0.274458 0.46037 -0.842609 0.0877566 0.531327 +0.159023 -0.265 0.459028 -0.833125 0.106841 0.542667 +0.159725 -0.256617 0.457609 -0.823109 0.111274 0.556876 +0.159226 -0.24906 0.456143 -0.813853 0.118157 0.568931 +0.15719 -0.242576 0.454604 -0.813834 0.12133 0.56829 +0.155664 -0.235723 0.453094 -0.820578 0.125692 0.557541 +0.154858 -0.228346 0.451604 -0.825007 0.153789 0.543794 +0.155211 -0.220121 0.45016 -0.82503 0.197654 0.529395 +0.157076 -0.210793 0.448765 -0.823303 0.248666 0.510233 +0.162332 -0.198992 0.447502 -0.799271 0.319695 0.508883 +0.177181 -0.180191 0.4466 -0.755474 0.377934 0.535185 +0.182275 -0.16839 0.445306 -0.747375 0.370289 0.551648 +0.183605 -0.159293 0.44387 -0.740091 0.364145 0.56539 +0.18365 -0.151115 0.442379 -0.739424 0.356642 0.571016 +0.187306 -0.140261 0.441014 -0.721354 0.40398 0.562537 +0.197415 -0.124619 0.439881 -0.69247 0.484548 0.534507 +0.711883 -0.592539 0.606051 0.194672 -0.979529 -0.0512641 +0.676071 -0.60305 0.601929 0.00021074 -0.97953 0.201304 +0.653567 -0.606874 0.598824 -0.142544 -0.925944 0.349729 +0.636913 -0.607752 0.596161 -0.14942 -0.891377 0.427927 +0.620921 -0.608348 0.593562 -0.130084 -0.900007 0.416012 +0.60444 -0.609245 0.590942 -0.0638582 -0.879285 0.471996 +0.435612 -0.689732 0.577174 0.162849 -0.849972 0.501029 +0.409673 -0.696019 0.573938 -0.00574657 -0.855608 0.517595 +0.393534 -0.697255 0.571436 -0.145238 -0.824536 0.546852 +0.381279 -0.696485 0.569218 -0.233331 -0.794006 0.561348 +0.371263 -0.694567 0.567167 -0.34238 -0.735792 0.584283 +0.362147 -0.692199 0.565191 -0.392602 -0.701079 0.595277 +0.354898 -0.688858 0.563351 -0.465987 -0.642708 0.608099 +0.348211 -0.685232 0.561548 -0.499535 -0.592455 0.632031 +0.342063 -0.681325 0.55979 -0.546219 -0.539036 0.641158 +0.336452 -0.677147 0.558072 -0.573892 -0.477213 0.665519 +0.331209 -0.672771 0.55638 -0.591484 -0.421884 0.687141 +0.326712 -0.668002 0.55474 -0.60869 -0.331449 0.720859 +0.322783 -0.662924 0.553142 -0.634449 -0.25993 0.727949 +0.320133 -0.65715 0.551627 -0.625793 -0.19657 0.754814 +0.317637 -0.651278 0.550128 -0.614322 -0.143764 0.775849 +0.316942 -0.644415 0.548744 -0.601226 -0.114157 0.790883 +0.316113 -0.637608 0.547354 -0.587535 -0.105153 0.802338 +0.317001 -0.62983 0.54607 -0.572012 -0.1094 0.812916 +0.315457 -0.623407 0.544628 -0.532845 -0.148118 0.833148 +0.311509 -0.618315 0.543025 -0.496151 -0.2005 0.844769 +0.303406 -0.615585 0.541149 -0.455598 -0.255312 0.852787 +0.295511 -0.612758 0.539293 -0.422606 -0.304193 0.85374 +0.287479 -0.610025 0.53743 -0.398764 -0.349363 0.847899 +0.27936 -0.607368 0.535563 -0.398315 -0.371915 0.838466 +0.271216 -0.604743 0.533699 -0.410996 -0.372105 0.832238 +0.263304 -0.602003 0.531863 -0.416094 -0.362165 0.834088 +0.256124 -0.598863 0.530066 -0.419772 -0.358255 0.833933 +0.249058 -0.595675 0.528286 -0.41704 -0.35036 0.838645 +0.242058 -0.592465 0.526506 -0.414983 -0.338684 0.844441 +0.23619 -0.588605 0.524808 -0.416368 -0.320098 0.850985 +0.230255 -0.584798 0.5231 -0.413466 -0.298642 0.860151 +0.223429 -0.581536 0.521347 -0.413172 -0.26671 0.870721 +0.216406 -0.578403 0.519576 -0.422237 -0.240191 0.874085 +0.210287 -0.574745 0.51787 -0.438365 -0.210895 0.873705 +0.205156 -0.570507 0.51622 -0.452377 -0.180117 0.873449 +0.199692 -0.566479 0.514559 -0.477312 -0.131783 0.868796 +0.194249 -0.562457 0.512892 -0.516634 -0.0905779 0.851401 +0.190916 -0.557165 0.511359 -0.544926 -0.0479312 0.837112 +0.18821 -0.551488 0.509854 -0.565656 0.0161694 0.824483 +0.186163 -0.54542 0.508387 -0.59181 0.091523 0.800865 +0.185742 -0.538347 0.507019 -0.609424 0.161126 0.7763 +0.186069 -0.530801 0.505684 -0.628479 0.220881 0.745806 +0.189501 -0.521332 0.504521 -0.62612 0.29242 0.722816 +0.197092 -0.509258 0.503582 -0.598202 0.384014 0.703341 +0.225765 -0.484079 0.503806 -0.753867 0.517429 0.404909 +0.235824 -0.470321 0.502975 -0.866971 0.424511 0.26106 +0.242802 -0.458424 0.501967 -0.883604 0.383512 0.268628 +0.248374 -0.447368 0.500874 -0.891638 0.329056 0.310972 +0.252666 -0.437067 0.499711 -0.902593 0.215036 0.372939 +0.256342 -0.427124 0.498498 -0.883781 0.0980087 0.457521 +0.256194 -0.419574 0.497089 -0.846244 0.00964705 0.532709 +0.254707 -0.412855 0.495599 -0.79921 -0.106154 0.591604 +0.251677 -0.407114 0.494027 -0.735828 -0.243125 0.632018 +0.246735 -0.402591 0.492358 -0.670307 -0.334296 0.662521 +0.241078 -0.398538 0.490657 -0.609307 -0.422523 0.670983 +0.234591 -0.395036 0.488917 -0.574227 -0.469227 0.670887 +0.227132 -0.392177 0.487123 -0.55323 -0.513481 0.655952 +0.219724 -0.389303 0.485338 -0.551584 -0.533218 0.641432 +0.2132 -0.385867 0.483603 -0.560225 -0.540043 0.628094 +0.207027 -0.382219 0.481888 -0.584368 -0.528906 0.615446 +0.201802 -0.377961 0.480226 -0.609713 -0.512564 0.60459 +0.19675 -0.373606 0.478562 -0.636807 -0.492706 0.593059 +0.192039 -0.369023 0.476923 -0.662783 -0.472047 0.581283 +0.187495 -0.364335 0.475291 -0.686481 -0.453506 0.568398 +0.183095 -0.359564 0.473667 -0.709017 -0.433153 0.556481 +0.178773 -0.354746 0.472047 -0.730078 -0.409435 0.547127 +0.175013 -0.349541 0.470458 -0.750146 -0.380756 0.540655 +0.171511 -0.344177 0.468877 -0.768817 -0.3491 0.535771 +0.167906 -0.338875 0.467295 -0.792795 -0.316289 0.520996 +0.16465 -0.333348 0.465721 -0.810389 -0.283261 0.512867 +0.161695 -0.327611 0.464164 -0.825697 -0.254951 0.503213 +0.158987 -0.321699 0.462621 -0.843146 -0.211619 0.49429 +0.156696 -0.315497 0.461094 -0.854801 -0.171542 0.489782 +0.154753 -0.309049 0.459578 -0.863753 -0.130651 0.486682 +0.153266 -0.302289 0.458078 -0.868039 -0.0777689 0.490366 +0.152423 -0.295067 0.456606 -0.86867 -0.0259333 0.494713 +0.151796 -0.28768 0.455145 -0.863939 0.0156284 0.503354 +0.151719 -0.279896 0.453696 -0.854378 0.0520496 0.517037 +0.15269 -0.27136 0.452288 -0.845533 0.0774908 0.52827 +0.154584 -0.262152 0.450917 -0.833445 0.0996549 0.543542 +0.154878 -0.254047 0.449473 -0.832363 0.106594 0.543882 +0.153295 -0.247258 0.447956 -0.831775 0.114975 0.543075 +0.151676 -0.240486 0.446434 -0.831279 0.11671 0.543465 +0.150498 -0.233387 0.444929 -0.841438 0.137754 0.5225 +0.150764 -0.225236 0.44348 -0.843076 0.179104 0.507093 +0.152156 -0.21627 0.442064 -0.842843 0.229353 0.486838 +0.155229 -0.206056 0.440703 -0.83457 0.28016 0.474345 +0.162574 -0.192722 0.439493 -0.802499 0.338384 0.491417 +0.171002 -0.178545 0.43831 -0.772106 0.360476 0.523363 +0.174335 -0.168018 0.436938 -0.761111 0.352389 0.544548 +0.174412 -0.159851 0.435444 -0.754129 0.349187 0.5562 +0.176224 -0.150381 0.434013 -0.747157 0.360448 0.55842 +0.181013 -0.138691 0.432671 -0.718871 0.442176 0.536381 +0.195398 -0.119866 0.431642 -0.68544 0.528237 0.501136 +0.662667 -0.604116 0.592575 -0.0600312 -0.96739 0.246077 +0.640058 -0.60804 0.589507 -0.103579 -0.928776 0.355877 +0.621727 -0.609839 0.586769 -0.109935 -0.894362 0.433625 +0.601569 -0.61264 0.583899 -0.0790705 -0.8959 0.437165 +0.429143 -0.694922 0.57019 0.141739 -0.862299 0.486161 +0.405933 -0.69978 0.5672 -0.01781 -0.86934 0.493894 +0.390432 -0.700677 0.564761 -0.148544 -0.839429 0.522776 +0.378322 -0.699836 0.56257 -0.235802 -0.809988 0.536953 +0.368096 -0.698037 0.560527 -0.338906 -0.756625 0.559161 +0.359083 -0.69562 0.558566 -0.37771 -0.721625 0.580168 +0.351937 -0.692231 0.556738 -0.455753 -0.660839 0.596305 +0.345211 -0.688626 0.554945 -0.483585 -0.620699 0.617152 +0.338567 -0.684997 0.553161 -0.527718 -0.565986 0.633383 +0.332749 -0.68093 0.551435 -0.54447 -0.522979 0.65578 +0.327321 -0.676671 0.549731 -0.567448 -0.456099 0.685549 +0.322407 -0.672138 0.548069 -0.573702 -0.407693 0.710388 +0.31735 -0.667688 0.546399 -0.584096 -0.340109 0.736992 +0.313603 -0.66253 0.544814 -0.590092 -0.25707 0.765314 +0.310112 -0.657226 0.543249 -0.575898 -0.213894 0.789045 +0.306403 -0.652045 0.541668 -0.565759 -0.172204 0.806389 +0.30338 -0.64649 0.540133 -0.543598 -0.15259 0.82536 +0.301288 -0.640405 0.538659 -0.509028 -0.145843 0.848304 +0.298557 -0.634674 0.537139 -0.495215 -0.160019 0.853907 +0.294394 -0.629753 0.535533 -0.466112 -0.186245 0.8649 +0.289942 -0.624998 0.533908 -0.439911 -0.224113 0.869627 +0.284433 -0.620841 0.532212 -0.412956 -0.262992 0.871953 +0.278423 -0.616982 0.530493 -0.410646 -0.304129 0.859579 +0.271782 -0.613501 0.528729 -0.406574 -0.327076 0.853064 +0.264255 -0.610534 0.526919 -0.409396 -0.339047 0.84702 +0.255936 -0.608042 0.525065 -0.407376 -0.334311 0.849871 +0.248383 -0.605134 0.523259 -0.403326 -0.340744 0.849247 +0.2407 -0.602318 0.521448 -0.399679 -0.342715 0.850178 +0.233155 -0.599449 0.519653 -0.396271 -0.338255 0.853553 +0.225816 -0.596468 0.517872 -0.395236 -0.330158 0.857196 +0.218299 -0.593616 0.516082 -0.405676 -0.322325 0.855297 +0.210998 -0.590653 0.51431 -0.419547 -0.318729 0.849936 +0.204515 -0.587226 0.512588 -0.439019 -0.298686 0.847378 +0.198585 -0.583483 0.510904 -0.474826 -0.270545 0.837464 +0.192913 -0.579594 0.509233 -0.512635 -0.250381 0.821289 +0.187621 -0.575501 0.507585 -0.555851 -0.196201 0.807796 +0.183046 -0.57098 0.505981 -0.596974 -0.15397 0.787348 +0.179607 -0.565774 0.504442 -0.640385 -0.0972275 0.761875 +0.176917 -0.560122 0.502946 -0.660374 -0.0496542 0.749294 +0.174697 -0.55418 0.501469 -0.6887 0.0217741 0.724719 +0.175635 -0.54631 0.500176 -0.696592 0.10544 0.709677 +0.176408 -0.538519 0.498864 -0.694742 0.183001 0.695589 +0.177868 -0.530284 0.497586 -0.695487 0.261163 0.669396 +0.18163 -0.520612 0.496429 -0.680514 0.333056 0.652667 +0.189167 -0.508569 0.495461 -0.636154 0.447997 0.628178 +0.229205 -0.47628 0.49621 -0.827948 0.481506 0.287497 +0.237769 -0.463423 0.495268 -0.884203 0.383237 0.267047 +0.244453 -0.451686 0.494217 -0.896569 0.32069 0.305487 +0.248308 -0.441675 0.493013 -0.909641 0.19164 0.368548 +0.251681 -0.431934 0.491782 -0.885193 0.0615181 0.461139 +0.251647 -0.424323 0.490368 -0.862237 -0.0347639 0.50531 +0.250254 -0.417554 0.488883 -0.814386 -0.137946 0.563689 +0.24745 -0.411688 0.487325 -0.752202 -0.260762 0.60514 +0.242883 -0.406936 0.485683 -0.688444 -0.358126 0.630707 +0.237187 -0.402924 0.483979 -0.625556 -0.444023 0.641501 +0.230039 -0.399848 0.48221 -0.599959 -0.489579 0.632741 +0.22285 -0.396821 0.480448 -0.578263 -0.532148 0.61841 +0.215967 -0.393612 0.478702 -0.57297 -0.548219 0.60923 +0.209819 -0.389948 0.476993 -0.582861 -0.556961 0.591667 +0.204061 -0.386036 0.475301 -0.605948 -0.546522 0.578049 +0.198783 -0.38182 0.473635 -0.630361 -0.530061 0.567169 +0.194044 -0.377262 0.472 -0.65546 -0.510808 0.55628 +0.189459 -0.372599 0.470369 -0.680558 -0.487746 0.546758 +0.184949 -0.367908 0.468739 -0.69717 -0.469729 0.541581 +0.180434 -0.363209 0.467114 -0.719298 -0.447024 0.53177 +0.176277 -0.358284 0.465508 -0.742921 -0.420931 0.520466 +0.172457 -0.353138 0.46391 -0.76553 -0.394583 0.508203 +0.168894 -0.347819 0.462336 -0.787964 -0.367446 0.494063 +0.165495 -0.34239 0.460756 -0.807103 -0.339125 0.4833 +0.162255 -0.336858 0.459192 -0.825141 -0.30399 0.476166 +0.159167 -0.331214 0.457629 -0.839058 -0.27253 0.470861 +0.156446 -0.325321 0.456081 -0.853468 -0.241563 0.46178 +0.154098 -0.319172 0.454553 -0.864023 -0.199436 0.462264 +0.151965 -0.312863 0.45303 -0.870139 -0.164567 0.464517 +0.150575 -0.306042 0.451532 -0.876229 -0.121049 0.466444 +0.149495 -0.298988 0.450046 -0.87425 -0.0700556 0.480396 +0.148696 -0.291739 0.448572 -0.868764 -0.0208638 0.494787 +0.148597 -0.283979 0.447118 -0.861181 0.0165808 0.508029 +0.148554 -0.276167 0.445664 -0.85181 0.0470199 0.521734 +0.149784 -0.267443 0.44426 -0.844663 0.0765341 0.529799 +0.150965 -0.258725 0.442845 -0.841577 0.0935425 0.531975 +0.150401 -0.251223 0.441365 -0.840996 0.110749 0.529585 +0.149102 -0.244233 0.43985 -0.841738 0.123165 0.525648 +0.14775 -0.237271 0.438338 -0.844007 0.141608 0.517299 +0.147378 -0.229588 0.436855 -0.851416 0.173199 0.495069 +0.147922 -0.221239 0.435398 -0.858816 0.203945 0.469938 +0.150298 -0.211546 0.434011 -0.848203 0.253315 0.46517 +0.154997 -0.200144 0.432689 -0.837571 0.293784 0.460614 +0.161346 -0.187506 0.431414 -0.804207 0.338452 0.48857 +0.167029 -0.175306 0.430111 -0.787897 0.341797 0.512244 +0.16672 -0.167436 0.428606 -0.780704 0.338955 0.524986 +0.167168 -0.15899 0.427118 -0.773911 0.331564 0.539562 +0.169856 -0.148876 0.425699 -0.758695 0.379555 0.529451 +0.176894 -0.135524 0.424412 -0.723224 0.476047 0.500326 +0.20599 -0.105757 0.423784 -0.659896 0.59234 0.462245 +0.238752 -0.0730958 0.423241 -0.582332 0.597866 0.550859 +0.649978 -0.604848 0.583324 -0.0576312 -0.966169 0.251393 +0.624241 -0.610443 0.580085 -0.0695498 -0.922019 0.380848 +0.4748 -0.680312 0.568229 0.292413 -0.841096 0.455031 +0.424703 -0.699036 0.563375 0.108492 -0.879664 0.463057 +0.402435 -0.703412 0.56049 -0.0181895 -0.881251 0.472299 +0.387172 -0.704186 0.558091 -0.154322 -0.850185 0.50336 +0.375192 -0.703283 0.555936 -0.234394 -0.82317 0.517158 +0.365163 -0.701383 0.553911 -0.331583 -0.772916 0.540976 +0.356137 -0.698971 0.551964 -0.365463 -0.741856 0.562215 +0.348787 -0.695699 0.550131 -0.435068 -0.68503 0.584337 +0.341658 -0.692321 0.548323 -0.460071 -0.648123 0.606854 +0.334918 -0.688751 0.546537 -0.501099 -0.593681 0.629638 +0.328904 -0.684799 0.544804 -0.516111 -0.550317 0.656338 +0.322723 -0.680954 0.543059 -0.524472 -0.514065 0.678724 +0.316852 -0.676945 0.541341 -0.533758 -0.457394 0.711261 +0.310916 -0.672989 0.539616 -0.535193 -0.401413 0.74326 +0.305606 -0.668705 0.537939 -0.536508 -0.350183 0.767809 +0.30074 -0.664176 0.53629 -0.53798 -0.306142 0.785401 +0.295001 -0.660148 0.53458 -0.525975 -0.258927 0.810128 +0.290422 -0.655477 0.532955 -0.514194 -0.235932 0.824586 +0.286473 -0.650457 0.531361 -0.501597 -0.20858 0.83958 +0.282895 -0.645243 0.529801 -0.48217 -0.209496 0.850661 +0.279666 -0.639828 0.528256 -0.47003 -0.21279 0.856617 +0.276851 -0.634175 0.52674 -0.454946 -0.231628 0.859868 +0.272766 -0.62925 0.52514 -0.43826 -0.250162 0.863335 +0.268421 -0.624468 0.523534 -0.425742 -0.26912 0.863898 +0.262938 -0.620337 0.521854 -0.420362 -0.292731 0.858839 +0.25539 -0.617407 0.520052 -0.419022 -0.314301 0.851843 +0.247088 -0.614928 0.518209 -0.413102 -0.331502 0.848205 +0.238816 -0.612455 0.516378 -0.405968 -0.347956 0.845055 +0.230938 -0.60977 0.514565 -0.405823 -0.36555 0.837663 +0.223323 -0.60696 0.512776 -0.411594 -0.378476 0.829064 +0.214926 -0.604617 0.510948 -0.423582 -0.383257 0.820787 +0.207343 -0.601831 0.509168 -0.438892 -0.378324 0.815013 +0.200706 -0.598499 0.507447 -0.470447 -0.374052 0.799228 +0.194607 -0.59487 0.505758 -0.501438 -0.360611 0.78646 +0.188993 -0.590962 0.504095 -0.542365 -0.332836 0.771402 +0.183972 -0.586713 0.502475 -0.589576 -0.307035 0.747081 +0.179191 -0.582321 0.500861 -0.632486 -0.258223 0.730261 +0.174742 -0.577746 0.49927 -0.672194 -0.211157 0.709625 +0.171944 -0.57218 0.497768 -0.704418 -0.158784 0.691798 +0.169628 -0.566325 0.496295 -0.729024 -0.0980901 0.677423 +0.167557 -0.560305 0.494837 -0.753953 -0.0226661 0.656538 +0.166825 -0.553468 0.493442 -0.767644 0.0390042 0.639688 +0.166992 -0.546079 0.492098 -0.77784 0.121784 0.616549 +0.168294 -0.537965 0.490804 -0.775054 0.227293 0.5896 +0.171385 -0.528737 0.489605 -0.760745 0.284868 0.583195 +0.176122 -0.518452 0.488476 -0.734433 0.397398 0.550167 +0.186016 -0.504934 0.487609 -0.681564 0.505566 0.529032 +0.232853 -0.46833 0.488598 -0.886072 0.386194 0.256382 +0.239552 -0.456607 0.487528 -0.901999 0.310966 0.299494 +0.24402 -0.446232 0.48634 -0.908337 0.1806 0.377238 +0.247353 -0.43653 0.485091 -0.89696 0.0425862 0.440054 +0.246989 -0.429137 0.48366 -0.872232 -0.059033 0.485516 +0.245521 -0.422435 0.482168 -0.822049 -0.15466 0.548011 +0.242759 -0.41655 0.480617 -0.759402 -0.274892 0.589697 +0.238027 -0.411919 0.478966 -0.70839 -0.376927 0.59675 +0.232412 -0.407863 0.477282 -0.651632 -0.458544 0.604247 +0.225632 -0.40456 0.47554 -0.622311 -0.505502 0.59766 +0.219061 -0.401151 0.473814 -0.605842 -0.541998 0.582403 +0.212543 -0.397708 0.472093 -0.60183 -0.560088 0.569301 +0.2069 -0.393723 0.470409 -0.60594 -0.568602 0.556352 +0.201545 -0.389555 0.468747 -0.623149 -0.561324 0.544611 +0.196399 -0.385263 0.467091 -0.647878 -0.546473 0.530682 +0.191633 -0.380722 0.465457 -0.673046 -0.526738 0.51919 +0.187001 -0.376107 0.463825 -0.693281 -0.507689 0.511481 +0.182271 -0.371553 0.462193 -0.714057 -0.488449 0.501538 +0.177971 -0.366727 0.460581 -0.7377 -0.464556 0.489884 +0.173895 -0.36176 0.458979 -0.758317 -0.439946 0.481045 +0.170163 -0.356556 0.457391 -0.780822 -0.412482 0.46923 +0.166612 -0.351239 0.455817 -0.798786 -0.384496 0.462714 +0.163216 -0.345816 0.45424 -0.816954 -0.35786 0.452243 +0.160021 -0.340255 0.45268 -0.835302 -0.323574 0.444488 +0.156964 -0.334601 0.451118 -0.849955 -0.292849 0.437968 +0.154188 -0.328752 0.449568 -0.859937 -0.259575 0.439465 +0.151853 -0.322595 0.448039 -0.868393 -0.228972 0.439847 +0.149684 -0.316327 0.446515 -0.874022 -0.194888 0.445089 +0.147927 -0.309765 0.444999 -0.878369 -0.152738 0.452922 +0.146689 -0.30283 0.443502 -0.878402 -0.118928 0.462888 +0.145823 -0.295632 0.442026 -0.872102 -0.073818 0.483724 +0.145605 -0.287967 0.440559 -0.865611 -0.021349 0.500262 +0.145801 -0.279995 0.439114 -0.855633 0.0192264 0.517225 +0.146534 -0.271635 0.43768 -0.848391 0.0533196 0.526679 +0.147601 -0.263008 0.436254 -0.84317 0.0792164 0.531779 +0.147229 -0.255386 0.434777 -0.839601 0.104295 0.533098 +0.146727 -0.247839 0.433289 -0.842858 0.129122 0.522415 +0.145173 -0.241027 0.431764 -0.847324 0.148327 0.509943 +0.144436 -0.233619 0.430264 -0.851802 0.173689 0.494233 +0.14415 -0.225874 0.428775 -0.858955 0.206668 0.468492 +0.14519 -0.217161 0.427333 -0.859738 0.239447 0.451127 +0.149311 -0.206197 0.425976 -0.851469 0.275477 0.446221 +0.154845 -0.194177 0.424663 -0.841111 0.298697 0.450902 +0.158867 -0.183196 0.423293 -0.81734 0.324707 0.475943 +0.158743 -0.17522 0.421787 -0.810168 0.324199 0.488385 +0.159298 -0.166718 0.420297 -0.803245 0.32109 0.501696 +0.16063 -0.157629 0.418832 -0.794359 0.350685 0.495997 +0.165503 -0.145905 0.417459 -0.773882 0.419621 0.474368 +0.178706 -0.127967 0.416323 -0.724485 0.520425 0.451974 +0.204026 -0.100933 0.41551 -0.665662 0.59694 0.447834 +0.213324 -0.0857017 0.41422 -0.645261 0.589611 0.485796 +0.635468 -0.606556 0.57399 -0.037348 -0.96059 0.275452 +0.456955 -0.691383 0.560431 0.269682 -0.861071 0.43108 +0.420165 -0.703208 0.556576 0.0837948 -0.892411 0.443377 +0.39986 -0.706559 0.553859 -0.0280056 -0.888855 0.457333 +0.384064 -0.70761 0.551454 -0.158195 -0.856878 0.490647 +0.372704 -0.706382 0.549349 -0.222675 -0.833314 0.505968 +0.362393 -0.70463 0.547325 -0.312769 -0.789643 0.527863 +0.353267 -0.702287 0.545379 -0.346118 -0.761456 0.548077 +0.3453 -0.69934 0.543519 -0.408606 -0.709392 0.574288 +0.337832 -0.69615 0.541694 -0.433661 -0.674022 0.598025 +0.33074 -0.692774 0.53989 -0.459654 -0.633849 0.622055 +0.323891 -0.689287 0.538113 -0.490207 -0.580094 0.650528 +0.317127 -0.685763 0.536344 -0.49277 -0.551459 0.673105 +0.310446 -0.682216 0.534576 -0.497941 -0.515425 0.697419 +0.303857 -0.678633 0.532823 -0.501271 -0.479093 0.720553 +0.297788 -0.674777 0.5311 -0.506476 -0.437941 0.742758 +0.291933 -0.670811 0.529395 -0.514657 -0.394643 0.761173 +0.28657 -0.666584 0.527727 -0.515584 -0.34944 0.782346 +0.28173 -0.662081 0.526086 -0.515693 -0.320005 0.794769 +0.27709 -0.65747 0.524456 -0.518803 -0.306212 0.798172 +0.272992 -0.652567 0.522868 -0.513136 -0.28209 0.810627 +0.268695 -0.647774 0.521263 -0.503801 -0.269964 0.820551 +0.264432 -0.642965 0.519666 -0.490754 -0.274314 0.82699 +0.260892 -0.637754 0.518111 -0.472387 -0.273578 0.837858 +0.256464 -0.633054 0.5165 -0.461954 -0.294596 0.836547 +0.251495 -0.628658 0.51486 -0.449963 -0.312187 0.836703 +0.244959 -0.625173 0.513134 -0.442466 -0.332954 0.832686 +0.237091 -0.622459 0.51133 -0.440495 -0.368176 0.818787 +0.229802 -0.619443 0.509561 -0.43596 -0.390754 0.81071 +0.222282 -0.61657 0.50779 -0.443422 -0.407643 0.798252 +0.215343 -0.613383 0.506052 -0.451625 -0.42708 0.78335 +0.207565 -0.610701 0.504264 -0.474626 -0.447839 0.75774 +0.200679 -0.607515 0.502538 -0.501822 -0.444831 0.741822 +0.194219 -0.604095 0.500835 -0.528159 -0.43569 0.72885 +0.188692 -0.600138 0.499185 -0.569203 -0.421427 0.70598 +0.183427 -0.596042 0.497554 -0.607685 -0.39344 0.689874 +0.178092 -0.591991 0.495915 -0.649182 -0.35368 0.673403 +0.173418 -0.587556 0.494321 -0.690433 -0.316122 0.650667 +0.169359 -0.582759 0.492754 -0.727214 -0.2667 0.63248 +0.166716 -0.577112 0.491262 -0.761148 -0.210495 0.61347 +0.164362 -0.571284 0.489785 -0.793477 -0.15306 0.58904 +0.162444 -0.565195 0.488332 -0.809299 -0.0820334 0.58164 +0.161396 -0.558568 0.486918 -0.827226 -0.00263219 0.561863 +0.160866 -0.551611 0.485536 -0.838709 0.065157 0.540669 +0.16168 -0.543817 0.48421 -0.836181 0.154162 0.526343 +0.163403 -0.535446 0.482933 -0.816966 0.25022 0.519574 +0.167037 -0.525872 0.481741 -0.797821 0.349731 0.491091 +0.173653 -0.514421 0.480695 -0.757439 0.435823 0.486154 +0.186622 -0.498962 0.479945 -0.671147 0.569542 0.474535 +0.234132 -0.461841 0.480835 -0.907277 0.301117 0.293558 +0.239621 -0.450842 0.479686 -0.917609 0.158352 0.364579 +0.242944 -0.441168 0.478426 -0.906662 0.00804287 0.421781 +0.242974 -0.433546 0.477008 -0.874034 -0.099155 0.475638 +0.241696 -0.426733 0.475522 -0.82679 -0.187949 0.530183 +0.238655 -0.421034 0.473959 -0.777675 -0.286413 0.559632 +0.233761 -0.416514 0.472304 -0.730241 -0.396467 0.556383 +0.228303 -0.412367 0.470629 -0.672874 -0.46997 0.571288 +0.22202 -0.408756 0.468921 -0.647019 -0.52039 0.55728 +0.215738 -0.405163 0.467217 -0.631249 -0.552935 0.543862 +0.210033 -0.401208 0.465535 -0.62162 -0.571381 0.535831 +0.204575 -0.397102 0.46387 -0.625179 -0.581443 0.520649 +0.19932 -0.39288 0.462213 -0.64177 -0.574322 0.50822 +0.194282 -0.388517 0.460573 -0.664492 -0.56176 0.492826 +0.189603 -0.383929 0.458943 -0.683514 -0.545339 0.485194 +0.184909 -0.37936 0.457318 -0.705346 -0.52602 0.475175 +0.180273 -0.374753 0.455696 -0.727354 -0.502611 0.467267 +0.176043 -0.369883 0.454086 -0.748068 -0.480174 0.45807 +0.171916 -0.364949 0.452481 -0.771632 -0.452951 0.446565 +0.168083 -0.359826 0.450896 -0.789306 -0.42697 0.441241 +0.164538 -0.354506 0.449314 -0.809038 -0.399142 0.431443 +0.161238 -0.34902 0.447747 -0.824536 -0.372177 0.426176 +0.15806 -0.343459 0.446189 -0.841202 -0.340636 0.419937 +0.155062 -0.337768 0.444631 -0.854831 -0.309545 0.416466 +0.152209 -0.331984 0.443081 -0.865549 -0.279907 0.415303 +0.149848 -0.325856 0.44154 -0.871492 -0.251668 0.42091 +0.147633 -0.319617 0.440011 -0.874965 -0.222335 0.430121 +0.145637 -0.313232 0.43849 -0.876986 -0.192928 0.440084 +0.144181 -0.306461 0.43699 -0.876386 -0.162544 0.453351 +0.142976 -0.299508 0.435486 -0.873653 -0.117635 0.472114 +0.141918 -0.292432 0.433998 -0.866329 -0.0668774 0.494976 +0.141499 -0.284906 0.432515 -0.858641 -0.0189243 0.512226 +0.140296 -0.277913 0.431017 -0.852822 0.00927792 0.522119 +0.139414 -0.270687 0.429517 -0.847227 0.050119 0.528862 +0.138034 -0.263799 0.428004 -0.84469 0.0806358 0.529146 +0.138633 -0.255498 0.426549 -0.845456 0.108379 0.522932 +0.140671 -0.24615 0.425141 -0.849191 0.145067 0.507769 +0.140928 -0.238047 0.423671 -0.853936 0.173649 0.49055 +0.141117 -0.229976 0.422195 -0.856033 0.214029 0.470532 +0.14111 -0.222032 0.420705 -0.861278 0.237854 0.449029 +0.143932 -0.212023 0.419307 -0.861109 0.260523 0.436597 +0.148832 -0.200477 0.417955 -0.85293 0.282981 0.43867 +0.153201 -0.189265 0.416578 -0.84139 0.298829 0.450293 +0.1535 -0.180999 0.41508 -0.833645 0.309933 0.457142 +0.153594 -0.172858 0.413579 -0.825821 0.312575 0.469378 +0.154174 -0.164341 0.412087 -0.82438 0.328715 0.460808 +0.157145 -0.15404 0.41065 -0.8177 0.370296 0.440734 +0.164475 -0.140483 0.409325 -0.782821 0.457106 0.422193 +0.189074 -0.114033 0.408437 -0.715548 0.561398 0.415722 +0.199686 -0.0978743 0.407164 -0.693414 0.576661 0.432018 +0.21863 -0.0754035 0.406091 -0.639067 0.585409 0.498889 +0.124286 0.131781 0.351838 -0.353461 -0.172165 0.91947 +0.448077 -0.697804 0.553293 0.244759 -0.87487 0.41797 +0.416663 -0.706833 0.549864 0.0795027 -0.900097 0.428374 +0.397315 -0.709684 0.547242 -0.0292431 -0.897716 0.439605 +0.381486 -0.710751 0.544853 -0.152331 -0.866769 0.474878 +0.369812 -0.70969 0.542751 -0.217086 -0.844962 0.488788 +0.359606 -0.707892 0.54075 -0.298769 -0.805754 0.51137 +0.35033 -0.705623 0.538807 -0.330665 -0.781428 0.52918 +0.341825 -0.702972 0.536921 -0.383304 -0.73677 0.556999 +0.333967 -0.699998 0.535081 -0.402166 -0.707854 0.580695 +0.326371 -0.696903 0.533258 -0.43051 -0.666936 0.608159 +0.319245 -0.693571 0.531469 -0.448481 -0.630933 0.633078 +0.312246 -0.690188 0.529688 -0.464981 -0.594827 0.655724 +0.30483 -0.687049 0.527888 -0.468126 -0.561224 0.682559 +0.297677 -0.683777 0.52611 -0.480278 -0.532224 0.697188 +0.291374 -0.680065 0.524385 -0.491827 -0.495773 0.715761 +0.285516 -0.676118 0.522682 -0.502964 -0.474997 0.722084 +0.280003 -0.671995 0.52101 -0.51284 -0.434934 0.740155 +0.274747 -0.667728 0.519349 -0.521824 -0.394492 0.756356 +0.269653 -0.663391 0.517711 -0.526369 -0.361764 0.769457 +0.264779 -0.658933 0.516079 -0.520754 -0.335762 0.784907 +0.259942 -0.654463 0.514447 -0.525527 -0.331416 0.783573 +0.255115 -0.649995 0.512817 -0.521078 -0.337227 0.784064 +0.250575 -0.645371 0.511207 -0.516109 -0.344137 0.784348 +0.245989 -0.640775 0.5096 -0.507785 -0.353031 0.785827 +0.241344 -0.636227 0.507983 -0.493973 -0.366674 0.788379 +0.23525 -0.632506 0.506289 -0.48805 -0.384764 0.783432 +0.228974 -0.628907 0.504592 -0.481465 -0.408477 0.775459 +0.222505 -0.625429 0.502884 -0.478445 -0.431639 0.764708 +0.215884 -0.62205 0.501168 -0.487241 -0.456627 0.744371 +0.208977 -0.618858 0.499439 -0.501382 -0.472806 0.724619 +0.201907 -0.615779 0.497706 -0.521149 -0.486931 0.700929 +0.195568 -0.61228 0.49602 -0.546039 -0.488783 0.680392 +0.189464 -0.60867 0.494343 -0.577052 -0.474442 0.664767 +0.184268 -0.604528 0.492718 -0.616681 -0.454983 0.642414 +0.179063 -0.600402 0.491094 -0.651545 -0.432461 0.623272 +0.173852 -0.59629 0.489466 -0.693366 -0.40396 0.596708 +0.169506 -0.591663 0.48789 -0.733514 -0.35811 0.57768 +0.165698 -0.586726 0.486342 -0.771689 -0.311235 0.554642 +0.162664 -0.581325 0.484834 -0.803772 -0.251144 0.539329 +0.160439 -0.575432 0.48336 -0.822474 -0.192573 0.535213 +0.158545 -0.569339 0.481909 -0.847183 -0.121239 0.517282 +0.15736 -0.562807 0.480489 -0.870681 -0.0482627 0.489473 +0.1567 -0.555944 0.479094 -0.869125 0.0270919 0.493849 +0.156932 -0.548518 0.47774 -0.88101 0.107495 0.460722 +0.157964 -0.540588 0.476418 -0.869932 0.192634 0.453993 +0.160195 -0.531901 0.475151 -0.854645 0.303468 0.421297 +0.164671 -0.521789 0.473985 -0.823729 0.38785 0.413574 +0.173491 -0.508946 0.473016 -0.779624 0.493034 0.386137 +0.22892 -0.466946 0.474177 -0.916411 0.288627 0.277283 +0.235226 -0.455456 0.473047 -0.928706 0.12879 0.347734 +0.239477 -0.445209 0.471815 -0.913995 -0.0209772 0.405183 +0.23964 -0.437514 0.4704 -0.883645 -0.128017 0.450314 +0.23845 -0.430656 0.468919 -0.831594 -0.240605 0.50056 +0.235361 -0.424994 0.467352 -0.798164 -0.30679 0.518471 +0.230416 -0.420523 0.465703 -0.751429 -0.39489 0.528599 +0.22505 -0.416324 0.464041 -0.698338 -0.476701 0.533932 +0.219189 -0.412446 0.462355 -0.678625 -0.523548 0.515137 +0.213344 -0.408578 0.460673 -0.654778 -0.557483 0.51037 +0.207847 -0.404495 0.459011 -0.643554 -0.582903 0.496048 +0.202658 -0.40022 0.457362 -0.644716 -0.588598 0.487745 +0.197601 -0.395871 0.455716 -0.659434 -0.583917 0.473486 +0.192633 -0.391464 0.454081 -0.673799 -0.572584 0.467057 +0.187735 -0.387023 0.452449 -0.692574 -0.557461 0.457796 +0.183077 -0.38244 0.450823 -0.713387 -0.538039 0.448989 +0.178626 -0.377715 0.449213 -0.735286 -0.515436 0.440093 +0.17433 -0.372895 0.447603 -0.753695 -0.492673 0.434992 +0.170167 -0.367988 0.446008 -0.776243 -0.465183 0.425501 +0.16629 -0.362894 0.444418 -0.795709 -0.438262 0.41806 +0.162742 -0.357585 0.442838 -0.814039 -0.409702 0.411686 +0.15949 -0.352077 0.441278 -0.831182 -0.380502 0.405406 +0.156416 -0.346453 0.439715 -0.844046 -0.356335 0.400765 +0.153408 -0.340776 0.43816 -0.856138 -0.327745 0.399512 +0.150654 -0.334922 0.43661 -0.864444 -0.300734 0.40286 +0.148258 -0.328824 0.435073 -0.870365 -0.275039 0.408435 +0.145979 -0.322642 0.433543 -0.873888 -0.248291 0.417936 +0.14383 -0.316364 0.432012 -0.875048 -0.224564 0.428791 +0.14202 -0.309845 0.430491 -0.87556 -0.191783 0.443412 +0.140349 -0.303221 0.428975 -0.873311 -0.160659 0.459907 +0.13834 -0.296825 0.427451 -0.869703 -0.133371 0.475215 +0.136687 -0.290172 0.42593 -0.863306 -0.0793121 0.498409 +0.134292 -0.284032 0.424384 -0.85921 -0.0364557 0.510322 +0.13223 -0.277653 0.422852 -0.856124 -0.0014399 0.516769 +0.13094 -0.27072 0.421337 -0.852801 0.0403127 0.520678 +0.130431 -0.263221 0.419853 -0.853133 0.077341 0.515929 +0.130805 -0.255089 0.418386 -0.855042 0.125831 0.503061 +0.13469 -0.244424 0.417016 -0.857427 0.171463 0.4852 +0.137312 -0.234624 0.4156 -0.858642 0.211977 0.466689 +0.137516 -0.226537 0.414122 -0.862469 0.237278 0.447043 +0.139014 -0.217498 0.412668 -0.863641 0.258496 0.432784 +0.142355 -0.207106 0.411259 -0.865517 0.26438 0.425422 +0.147398 -0.195431 0.409888 -0.858455 0.28191 0.428463 +0.148841 -0.186347 0.408419 -0.850517 0.294963 0.435452 +0.14933 -0.177928 0.406919 -0.848694 0.303325 0.433259 +0.149379 -0.169818 0.405405 -0.845266 0.322754 0.425857 +0.151538 -0.160136 0.403938 -0.837302 0.362002 0.409732 +0.15652 -0.148333 0.402541 -0.818121 0.418628 0.394245 +0.167921 -0.131721 0.401279 -0.769992 0.507131 0.387209 +0.187915 -0.108635 0.400211 -0.726509 0.556179 0.403546 +0.194933 -0.0951267 0.398816 -0.71305 0.553132 0.430819 +0.225573 -0.0638516 0.397949 -0.615304 0.616334 0.491461 +0.14096 0.117399 0.350103 -0.202792 -0.290963 0.934995 +0.131818 0.118529 0.348398 -0.275834 -0.273972 0.921334 +0.124024 0.120764 0.346713 -0.360221 -0.266084 0.894114 +0.118007 0.124447 0.345035 -0.417306 -0.232867 0.878424 +0.119878 0.134738 0.343409 -0.439312 -0.148829 0.88592 +0.440455 -0.70356 0.546274 0.218958 -0.892624 0.394056 +0.413787 -0.710131 0.543203 0.0656101 -0.909256 0.411036 +0.394759 -0.712807 0.540631 -0.0266781 -0.905808 0.42285 +0.37932 -0.713679 0.538302 -0.151889 -0.877767 0.454375 +0.367506 -0.712692 0.536205 -0.205364 -0.859879 0.467371 +0.357059 -0.711021 0.534194 -0.282451 -0.823978 0.491205 +0.347368 -0.708973 0.532243 -0.318279 -0.798729 0.510619 +0.338888 -0.70632 0.530375 -0.358909 -0.763749 0.536538 +0.33081 -0.703464 0.528527 -0.389202 -0.72979 0.562077 +0.322838 -0.70058 0.526689 -0.400356 -0.709431 0.580019 +0.315378 -0.697431 0.52489 -0.418423 -0.681707 0.600165 +0.307882 -0.694323 0.523089 -0.436837 -0.645238 0.626772 +0.300274 -0.691292 0.521289 -0.456388 -0.616017 0.642053 +0.292977 -0.688118 0.519514 -0.470794 -0.583314 0.66189 +0.286404 -0.684557 0.517776 -0.487842 -0.552511 0.675827 +0.28002 -0.680913 0.516059 -0.506717 -0.520155 0.687514 +0.274085 -0.67703 0.514366 -0.52678 -0.509113 0.680666 +0.268792 -0.672801 0.51271 -0.54113 -0.477656 0.692116 +0.263757 -0.668445 0.511073 -0.551341 -0.451014 0.701861 +0.258929 -0.663976 0.50945 -0.556569 -0.426498 0.712974 +0.253668 -0.659756 0.507799 -0.555462 -0.410892 0.722931 +0.248583 -0.655446 0.506167 -0.551865 -0.409218 0.726626 +0.243813 -0.650968 0.504548 -0.546479 -0.409726 0.7304 +0.238661 -0.64671 0.502915 -0.538559 -0.409824 0.736206 +0.233124 -0.642679 0.501261 -0.533014 -0.420444 0.73425 +0.227763 -0.638557 0.49961 -0.533022 -0.443092 0.720802 +0.222257 -0.634532 0.49796 -0.532551 -0.462985 0.708545 +0.216665 -0.63057 0.49631 -0.53079 -0.485999 0.69431 +0.210574 -0.626896 0.494634 -0.532773 -0.501666 0.681531 +0.20427 -0.623367 0.492944 -0.547676 -0.516421 0.658302 +0.197843 -0.619913 0.491258 -0.572142 -0.523693 0.631189 +0.19184 -0.616237 0.489592 -0.592223 -0.522797 0.613152 +0.185821 -0.612579 0.487927 -0.62558 -0.517903 0.58346 +0.180585 -0.608471 0.486305 -0.655279 -0.503417 0.563189 +0.175304 -0.604393 0.48468 -0.690152 -0.473963 0.546855 +0.170809 -0.59987 0.483098 -0.73189 -0.441119 0.519376 +0.166885 -0.595004 0.481548 -0.770228 -0.397771 0.498526 +0.163291 -0.589938 0.480015 -0.801072 -0.349241 0.48612 +0.16013 -0.58462 0.478497 -0.834032 -0.29748 0.464648 +0.157659 -0.57889 0.477018 -0.860525 -0.234962 0.451982 +0.155631 -0.572883 0.475552 -0.88592 -0.170154 0.431502 +0.15441 -0.566383 0.474129 -0.903191 -0.0906081 0.419565 +0.15354 -0.559653 0.472721 -0.914339 -0.0254849 0.404149 +0.153512 -0.552402 0.471345 -0.920477 0.0784824 0.382833 +0.154326 -0.544621 0.470008 -0.915766 0.138729 0.376997 +0.155999 -0.536287 0.468711 -0.898925 0.253615 0.357229 +0.159164 -0.527009 0.467467 -0.868027 0.349613 0.352559 +0.164798 -0.516162 0.466336 -0.825905 0.461145 0.324385 +0.179326 -0.499729 0.465584 -0.734893 0.612136 0.291927 +0.232252 -0.459168 0.466489 -0.938513 0.0952275 0.331849 +0.236705 -0.448814 0.465259 -0.91905 -0.0486366 0.391128 +0.237182 -0.440923 0.463849 -0.869762 -0.207207 0.447862 +0.236162 -0.433968 0.462368 -0.840584 -0.268001 0.470738 +0.2332 -0.428236 0.460812 -0.78988 -0.374997 0.485251 +0.228049 -0.423891 0.459159 -0.76262 -0.422413 0.489874 +0.22249 -0.419825 0.457487 -0.717098 -0.494418 0.491244 +0.216681 -0.415929 0.455817 -0.700774 -0.526611 0.481247 +0.211026 -0.411938 0.454146 -0.678282 -0.564662 0.470203 +0.206067 -0.407517 0.452508 -0.661814 -0.588713 0.464134 +0.20102 -0.403151 0.450874 -0.659464 -0.598805 0.454467 +0.195943 -0.398813 0.449229 -0.66867 -0.595384 0.44542 +0.190804 -0.394531 0.447591 -0.684283 -0.5848 0.435623 +0.186103 -0.389964 0.445972 -0.701675 -0.568449 0.429555 +0.181464 -0.385368 0.444353 -0.720622 -0.551064 0.420751 +0.176952 -0.38069 0.442741 -0.740366 -0.528786 0.415023 +0.172659 -0.375875 0.441139 -0.76084 -0.505248 0.407243 +0.168463 -0.371 0.439541 -0.780022 -0.479407 0.402163 +0.164636 -0.365873 0.437955 -0.799738 -0.449855 0.397554 +0.161182 -0.360514 0.43638 -0.818013 -0.421438 0.391463 +0.157861 -0.355051 0.434817 -0.833984 -0.393479 0.386838 +0.154901 -0.349352 0.433261 -0.846583 -0.36789 0.38465 +0.152059 -0.34357 0.431712 -0.856007 -0.344772 0.385207 +0.149239 -0.337767 0.43016 -0.86309 -0.322792 0.388434 +0.146725 -0.331752 0.428617 -0.868573 -0.296712 0.396919 +0.144422 -0.325589 0.427082 -0.871403 -0.27112 0.408838 +0.142314 -0.319292 0.425557 -0.872041 -0.254138 0.418281 +0.139969 -0.313147 0.424015 -0.872052 -0.228823 0.432627 +0.137727 -0.306925 0.422478 -0.871498 -0.1994 0.448028 +0.135167 -0.300921 0.420934 -0.870194 -0.172642 0.461472 +0.132518 -0.294977 0.41938 -0.867738 -0.141096 0.476575 +0.12983 -0.289055 0.417828 -0.867966 -0.100732 0.486299 +0.127655 -0.282767 0.416291 -0.866794 -0.0470817 0.496438 +0.126156 -0.276 0.414772 -0.865855 0.00389861 0.50028 +0.12522 -0.26882 0.413262 -0.865884 0.0500044 0.497739 +0.124935 -0.261165 0.411778 -0.869546 0.101229 0.483365 +0.126686 -0.252048 0.410335 -0.869983 0.156167 0.467698 +0.130509 -0.241414 0.408952 -0.869093 0.203259 0.450956 +0.133482 -0.231361 0.407534 -0.86545 0.239442 0.440071 +0.134843 -0.222436 0.406071 -0.866691 0.25642 0.427897 +0.136556 -0.213228 0.404613 -0.867052 0.266537 0.420927 +0.140268 -0.202546 0.403192 -0.867247 0.269286 0.418768 +0.144236 -0.191639 0.40178 -0.862217 0.284199 0.419298 +0.145341 -0.182789 0.40029 -0.858853 0.298393 0.416334 +0.145209 -0.174833 0.398763 -0.857358 0.308444 0.412067 +0.146831 -0.165551 0.39728 -0.851856 0.34425 0.394757 +0.150711 -0.15459 0.395832 -0.842434 0.390494 0.371241 +0.159555 -0.139899 0.394495 -0.805106 0.46758 0.36493 +0.175714 -0.119707 0.393299 -0.750749 0.538148 0.383112 +0.185496 -0.104173 0.391951 -0.731216 0.543898 0.4117 +0.19242 -0.0907115 0.390526 -0.71627 0.545445 0.435255 +0.148582 0.104203 0.346659 -0.144629 -0.394664 0.907371 +0.139781 0.105648 0.344967 -0.230275 -0.378837 0.896358 +0.129958 0.106223 0.343269 -0.332078 -0.392521 0.857703 +0.118773 0.105629 0.341575 -0.401853 -0.402256 0.82262 +0.111319 0.108104 0.339901 -0.479327 -0.371253 0.795245 +0.108234 0.114208 0.338248 -0.512991 -0.323951 0.794919 +0.107111 0.12195 0.336606 -0.559754 -0.242241 0.792461 +0.43512 -0.708127 0.539432 0.192938 -0.906608 0.375286 +0.410955 -0.713395 0.536561 0.0632407 -0.916089 0.39596 +0.392436 -0.715811 0.534052 -0.033506 -0.91281 0.407007 +0.377596 -0.716369 0.531781 -0.139457 -0.892996 0.427914 +0.365202 -0.715684 0.529663 -0.193726 -0.874089 0.445463 +0.35447 -0.714168 0.527656 -0.265441 -0.844042 0.465978 +0.344938 -0.712045 0.525724 -0.300162 -0.819467 0.488239 +0.336253 -0.70949 0.523853 -0.33834 -0.791452 0.509049 +0.327947 -0.706771 0.522 -0.37054 -0.761769 0.531421 +0.31992 -0.703915 0.520173 -0.387424 -0.743368 0.545258 +0.311926 -0.701065 0.518358 -0.402425 -0.718924 0.566749 +0.304126 -0.698128 0.516546 -0.424398 -0.692553 0.583316 +0.296516 -0.695107 0.514755 -0.445464 -0.668774 0.595232 +0.288761 -0.692185 0.512959 -0.471011 -0.646066 0.600624 +0.281807 -0.688844 0.511215 -0.491731 -0.613872 0.617546 +0.27554 -0.685144 0.509503 -0.508365 -0.586937 0.630137 +0.27004 -0.681026 0.507848 -0.527455 -0.549506 0.647947 +0.264586 -0.676899 0.506187 -0.542774 -0.528905 0.652424 +0.259443 -0.672611 0.504547 -0.553653 -0.499597 0.666236 +0.25438 -0.668278 0.50292 -0.561918 -0.483631 0.67108 +0.249237 -0.664007 0.501284 -0.561829 -0.470169 0.680654 +0.244038 -0.65977 0.499651 -0.575702 -0.472127 0.667581 +0.238774 -0.655576 0.498007 -0.573522 -0.459466 0.678206 +0.233316 -0.651512 0.49636 -0.568378 -0.462589 0.680411 +0.228066 -0.647324 0.494727 -0.565151 -0.470161 0.677905 +0.22257 -0.643301 0.493086 -0.563143 -0.48938 0.665865 +0.217186 -0.639214 0.491448 -0.559674 -0.503561 0.658173 +0.212237 -0.634882 0.489832 -0.565413 -0.520107 0.640154 +0.206413 -0.631074 0.48818 -0.573574 -0.528261 0.626062 +0.20058 -0.627271 0.486522 -0.585456 -0.536627 0.607678 +0.194647 -0.623549 0.484866 -0.60845 -0.543309 0.57845 +0.188743 -0.619818 0.483212 -0.626269 -0.543072 0.559339 +0.182824 -0.616105 0.481558 -0.656113 -0.539341 0.527852 +0.177654 -0.61196 0.47995 -0.690848 -0.525633 0.496426 +0.172908 -0.60758 0.478355 -0.722587 -0.497162 0.48031 +0.168705 -0.602881 0.476789 -0.754629 -0.465211 0.462725 +0.16495 -0.597926 0.475249 -0.788874 -0.415584 0.452733 +0.16146 -0.592812 0.473722 -0.82336 -0.374639 0.426292 +0.158399 -0.58744 0.472209 -0.854194 -0.31433 0.414183 +0.155867 -0.581741 0.470724 -0.878138 -0.268955 0.395647 +0.153687 -0.575835 0.469259 -0.902686 -0.195128 0.383515 +0.152176 -0.569512 0.467813 -0.925662 -0.121779 0.358217 +0.151327 -0.56279 0.466402 -0.932878 -0.0587155 0.355374 +0.150966 -0.555748 0.465014 -0.944296 0.0309044 0.327642 +0.151359 -0.548227 0.463644 -0.937421 0.109381 0.330574 +0.152666 -0.540136 0.462324 -0.930705 0.205792 0.302386 +0.154699 -0.531564 0.46102 -0.913295 0.295066 0.280765 +0.158887 -0.521634 0.45981 -0.871665 0.413145 0.263653 +0.168287 -0.508422 0.458813 -0.81239 0.53609 0.22941 +0.227603 -0.463928 0.459879 -0.943874 0.082883 0.319737 +0.234921 -0.451785 0.45875 -0.920698 -0.0977836 0.377824 +0.235403 -0.443902 0.457336 -0.878386 -0.228583 0.419746 +0.234445 -0.436919 0.455854 -0.850559 -0.297685 0.433512 +0.230989 -0.431498 0.454272 -0.806733 -0.381054 0.451642 +0.226194 -0.426937 0.452639 -0.780098 -0.428352 0.45603 +0.220702 -0.422834 0.450981 -0.735983 -0.492846 0.464146 +0.21504 -0.418845 0.449318 -0.719796 -0.527698 0.451031 +0.209744 -0.414626 0.447673 -0.68894 -0.573805 0.442843 +0.204566 -0.410352 0.446032 -0.677281 -0.595138 0.432553 +0.199533 -0.405984 0.4444 -0.673668 -0.607983 0.420151 +0.19452 -0.401604 0.442765 -0.679077 -0.605744 0.414643 +0.189496 -0.39725 0.44113 -0.693048 -0.595561 0.406191 +0.184689 -0.392756 0.439511 -0.708798 -0.580697 0.400496 +0.179958 -0.388227 0.43789 -0.726577 -0.561909 0.395405 +0.175451 -0.383553 0.436288 -0.743543 -0.540952 0.393083 +0.17108 -0.378787 0.434683 -0.76467 -0.515585 0.386593 +0.166887 -0.373917 0.433086 -0.783392 -0.490968 0.381114 +0.163143 -0.368749 0.431506 -0.802845 -0.463037 0.375549 +0.159665 -0.363395 0.42993 -0.820625 -0.43404 0.371732 +0.156456 -0.35787 0.42837 -0.835513 -0.407138 0.368995 +0.153593 -0.352113 0.426818 -0.847447 -0.381711 0.368958 +0.150803 -0.346297 0.425273 -0.8552 -0.359782 0.373083 +0.148188 -0.340365 0.423724 -0.861603 -0.338263 0.378442 +0.145355 -0.334569 0.422173 -0.865551 -0.319983 0.385269 +0.142567 -0.328746 0.420619 -0.867538 -0.29945 0.397122 +0.139898 -0.322839 0.419073 -0.868755 -0.278321 0.409637 +0.137294 -0.316881 0.417527 -0.869302 -0.256349 0.422609 +0.134684 -0.310927 0.415982 -0.8696 -0.231335 0.43621 +0.13187 -0.305102 0.414425 -0.869893 -0.211315 0.44568 +0.129222 -0.299174 0.412875 -0.871616 -0.175121 0.45784 +0.126442 -0.29332 0.411323 -0.873689 -0.146165 0.464007 +0.12421 -0.287084 0.409786 -0.878736 -0.0932555 0.46811 +0.122511 -0.280471 0.408254 -0.881425 -0.0481257 0.469865 +0.121235 -0.273547 0.406742 -0.883083 0.0184114 0.468855 +0.120665 -0.26611 0.405236 -0.887067 0.0734594 0.455759 +0.121218 -0.257853 0.403763 -0.887526 0.134016 0.440838 +0.123434 -0.248393 0.402323 -0.885443 0.183753 0.426879 +0.127416 -0.237641 0.400918 -0.8803 0.225092 0.417618 +0.130626 -0.227398 0.399492 -0.873781 0.255616 0.413725 +0.132554 -0.21805 0.398027 -0.872314 0.264269 0.411377 +0.134388 -0.208753 0.39656 -0.872604 0.268014 0.408327 +0.137923 -0.198183 0.395126 -0.871949 0.275217 0.404921 +0.140942 -0.187949 0.393669 -0.867016 0.289812 0.405328 +0.14156 -0.179452 0.392155 -0.86504 0.309889 0.394555 +0.142518 -0.170681 0.390645 -0.859128 0.343755 0.37912 +0.145839 -0.160143 0.389176 -0.858907 0.373395 0.350509 +0.15263 -0.147004 0.387776 -0.839797 0.422372 0.341089 +0.164942 -0.129696 0.386466 -0.792191 0.505371 0.342102 +0.176204 -0.1131 0.385126 -0.756174 0.529792 0.384084 +0.182921 -0.0998267 0.383682 -0.739216 0.525044 0.421767 +0.19287 -0.0840753 0.382289 -0.718579 0.540691 0.437376 +0.158908 0.0932025 0.343233 -0.0586786 -0.512616 0.856611 +0.148455 0.093343 0.341533 -0.152693 -0.505789 0.849037 +0.140326 0.0953426 0.33985 -0.246801 -0.484087 0.839493 +0.133563 0.0984473 0.338177 -0.318373 -0.468961 0.823842 +0.114286 0.0911914 0.336464 -0.445225 -0.497935 0.744202 +0.1077 0.0943822 0.334804 -0.510001 -0.476266 0.71629 +0.102376 0.0985897 0.333151 -0.554274 -0.44308 0.704598 +0.0982894 0.103834 0.331508 -0.611665 -0.401927 0.681412 +0.0961505 0.110698 0.329863 -0.647071 -0.3361 0.684351 +0.11375 0.134162 0.328234 -0.568134 -0.135667 0.811675 +0.430839 -0.712147 0.532674 0.185812 -0.91455 0.359271 +0.408138 -0.716654 0.529935 0.0499384 -0.92622 0.373666 +0.390622 -0.718546 0.527509 -0.030657 -0.921588 0.386958 +0.376016 -0.718976 0.525275 -0.134263 -0.904244 0.405362 +0.364078 -0.718059 0.523207 -0.183909 -0.887984 0.421499 +0.353147 -0.71664 0.521198 -0.246487 -0.864204 0.438629 +0.343081 -0.714803 0.519255 -0.281882 -0.842894 0.458339 +0.333963 -0.712484 0.517369 -0.323806 -0.816827 0.477435 +0.325548 -0.709821 0.515519 -0.352203 -0.793427 0.496414 +0.317226 -0.707132 0.513688 -0.375769 -0.773913 0.509762 +0.308893 -0.704468 0.511853 -0.396434 -0.752424 0.526022 +0.301146 -0.701501 0.510064 -0.414187 -0.736492 0.534816 +0.293082 -0.698739 0.508255 -0.439308 -0.71014 0.550192 +0.285669 -0.695634 0.506485 -0.46621 -0.678405 0.567816 +0.278889 -0.692199 0.504759 -0.488271 -0.661394 0.56934 +0.272454 -0.688603 0.503048 -0.50854 -0.634605 0.581948 +0.266411 -0.684789 0.501369 -0.532428 -0.61275 0.584002 +0.261156 -0.680562 0.499725 -0.547308 -0.580784 0.602614 +0.255545 -0.676541 0.498066 -0.56153 -0.553946 0.614676 +0.250266 -0.672337 0.496427 -0.571299 -0.531859 0.625095 +0.245163 -0.668054 0.494807 -0.577833 -0.515684 0.632597 +0.239887 -0.663867 0.493171 -0.58149 -0.502964 0.63945 +0.23473 -0.659629 0.491543 -0.582224 -0.499769 0.641286 +0.229667 -0.65534 0.489925 -0.58439 -0.499291 0.639685 +0.224519 -0.651116 0.4883 -0.586878 -0.506885 0.63138 +0.219106 -0.647039 0.486661 -0.588556 -0.50971 0.627532 +0.213786 -0.642927 0.48504 -0.593061 -0.518453 0.616023 +0.208601 -0.638744 0.483413 -0.598184 -0.531207 0.599998 +0.203223 -0.634679 0.481789 -0.609504 -0.543139 0.577499 +0.197846 -0.630632 0.480162 -0.621573 -0.550995 0.556823 +0.192109 -0.626794 0.478519 -0.639439 -0.556806 0.530175 +0.186239 -0.623046 0.476878 -0.66024 -0.558049 0.502659 +0.180887 -0.619009 0.475255 -0.69125 -0.552652 0.465564 +0.175896 -0.614764 0.473654 -0.719749 -0.540217 0.436037 +0.171245 -0.610338 0.472073 -0.742162 -0.521383 0.421136 +0.167094 -0.605606 0.470512 -0.777067 -0.485782 0.400228 +0.16338 -0.600632 0.468981 -0.812477 -0.443348 0.37858 +0.159858 -0.595539 0.467446 -0.84316 -0.394932 0.364844 +0.156682 -0.590239 0.465932 -0.871478 -0.344546 0.349019 +0.154128 -0.584561 0.46445 -0.894231 -0.295668 0.336055 +0.151969 -0.578646 0.462977 -0.922859 -0.224615 0.312858 +0.150504 -0.572311 0.46154 -0.944811 -0.147849 0.292357 +0.149256 -0.565824 0.460101 -0.955139 -0.0961245 0.280121 +0.148823 -0.558838 0.458705 -0.963713 0.00281022 0.266926 +0.148658 -0.551667 0.457312 -0.964368 0.0685552 0.255526 +0.149774 -0.543702 0.455966 -0.956824 0.17272 0.233787 +0.151815 -0.535143 0.454665 -0.934669 0.277825 0.221826 +0.15519 -0.52573 0.453401 -0.908878 0.371399 0.189743 +0.16295 -0.513557 0.452315 -0.847227 0.499695 0.180312 +0.178529 -0.49644 0.451526 -0.727154 0.670357 0.147882 +0.232774 -0.454991 0.452242 -0.906126 -0.167972 0.38823 +0.233655 -0.44686 0.450829 -0.880954 -0.246138 0.404148 +0.232386 -0.44008 0.449335 -0.849293 -0.328226 0.413485 +0.228896 -0.434689 0.447758 -0.814128 -0.406303 0.414866 +0.22422 -0.430063 0.446135 -0.787765 -0.444297 0.426646 +0.219153 -0.42568 0.444496 -0.752708 -0.497107 0.431644 +0.213675 -0.421585 0.442841 -0.734827 -0.523358 0.431422 +0.208388 -0.417367 0.441204 -0.705037 -0.574679 0.415534 +0.203424 -0.412948 0.439573 -0.690305 -0.597474 0.40805 +0.198331 -0.408626 0.437938 -0.683905 -0.612242 0.396782 +0.193257 -0.404292 0.43631 -0.68832 -0.613141 0.387651 +0.188381 -0.399844 0.434688 -0.698233 -0.604884 0.382864 +0.183514 -0.395397 0.433066 -0.71139 -0.591635 0.379331 +0.178705 -0.390915 0.43145 -0.728871 -0.572242 0.37588 +0.174153 -0.386271 0.429842 -0.746937 -0.551986 0.370673 +0.169793 -0.381507 0.42824 -0.767562 -0.526761 0.365201 +0.165606 -0.376632 0.426649 -0.786073 -0.502128 0.360496 +0.161813 -0.371501 0.425066 -0.805134 -0.475569 0.354392 +0.158324 -0.366173 0.423495 -0.821894 -0.448832 0.350772 +0.155076 -0.360671 0.421937 -0.835558 -0.421771 0.352068 +0.152338 -0.354825 0.420389 -0.846226 -0.398031 0.354223 +0.149663 -0.348939 0.41884 -0.853278 -0.376564 0.360713 +0.146988 -0.343053 0.417296 -0.859068 -0.354129 0.369587 +0.144068 -0.337332 0.415739 -0.861456 -0.341662 0.375711 +0.141051 -0.33167 0.414179 -0.863486 -0.324139 0.386428 +0.137878 -0.326104 0.412621 -0.864685 -0.303307 0.400407 +0.134835 -0.320459 0.411062 -0.866048 -0.285491 0.410434 +0.131853 -0.314765 0.409505 -0.867868 -0.26248 0.421793 +0.128878 -0.30907 0.407942 -0.870385 -0.235902 0.432181 +0.126363 -0.303057 0.4064 -0.874983 -0.211577 0.435476 +0.123817 -0.297046 0.404855 -0.881623 -0.17429 0.438593 +0.121548 -0.290853 0.403308 -0.891271 -0.129604 0.434557 +0.119682 -0.284355 0.401773 -0.89877 -0.0819183 0.430701 +0.118304 -0.277514 0.400255 -0.905504 -0.0270702 0.423472 +0.117404 -0.270321 0.398738 -0.911834 0.0415399 0.408453 +0.11729 -0.262555 0.397242 -0.914058 0.106936 0.391232 +0.118857 -0.253577 0.395778 -0.905664 0.164257 0.390887 +0.121817 -0.243564 0.394345 -0.900662 0.203005 0.384182 +0.12578 -0.23281 0.392922 -0.890418 0.239369 0.387115 +0.128388 -0.222994 0.391463 -0.885597 0.25756 0.386498 +0.129682 -0.21409 0.389977 -0.881505 0.263846 0.391578 +0.131577 -0.204732 0.388492 -0.880823 0.268545 0.389917 +0.134904 -0.194307 0.387034 -0.876841 0.282988 0.388675 +0.137353 -0.184477 0.385552 -0.874965 0.300754 0.37945 +0.138803 -0.175364 0.384045 -0.870217 0.333094 0.363002 +0.141852 -0.165037 0.382562 -0.865456 0.367787 0.340175 +0.147556 -0.152719 0.381117 -0.856262 0.404191 0.321629 +0.15701 -0.137565 0.379733 -0.821807 0.470466 0.321394 +0.165887 -0.122774 0.378323 -0.788062 0.505498 0.351328 +0.174855 -0.107856 0.376904 -0.761942 0.515749 0.391722 +0.182352 -0.0939746 0.37545 -0.746588 0.520531 0.414308 +0.191415 -0.0788514 0.374001 -0.718677 0.551873 0.423014 +0.161016 0.0841737 0.338114 -0.0593901 -0.585156 0.808744 +0.151914 0.0854282 0.33643 -0.150419 -0.596653 0.788277 +0.141466 0.0855486 0.334751 -0.232849 -0.599856 0.765477 +0.125816 0.0813752 0.333065 -0.361882 -0.60601 0.708374 +0.116366 0.0822259 0.331397 -0.437053 -0.586666 0.681768 +0.109693 0.085345 0.329747 -0.497126 -0.57676 0.64824 +0.104079 0.0893134 0.3281 -0.549792 -0.540068 0.637224 +0.0988427 0.0935965 0.326453 -0.591428 -0.513458 0.621753 +0.0940996 0.0982755 0.324804 -0.661656 -0.454564 0.596307 +0.0916252 0.104843 0.32316 -0.698588 -0.390396 0.599637 +0.0983187 0.119119 0.321501 -0.702082 -0.283892 0.653058 +0.427829 -0.715499 0.526014 0.180665 -0.922894 0.340041 +0.406563 -0.719271 0.523387 0.0530548 -0.932405 0.357503 +0.389522 -0.720905 0.521023 -0.0292008 -0.929896 0.366664 +0.375005 -0.72129 0.518817 -0.11279 -0.917369 0.381726 +0.36313 -0.720329 0.516768 -0.176598 -0.899675 0.399247 +0.351981 -0.719034 0.51476 -0.236446 -0.879177 0.413694 +0.341684 -0.717314 0.512815 -0.26806 -0.864404 0.425384 +0.332122 -0.715239 0.510914 -0.306081 -0.841999 0.444243 +0.32366 -0.712598 0.509082 -0.339306 -0.822716 0.456084 +0.315267 -0.709951 0.507254 -0.366885 -0.80163 0.472001 +0.306763 -0.707374 0.505425 -0.385947 -0.788056 0.479597 +0.298651 -0.704619 0.503621 -0.410522 -0.770224 0.488087 +0.291217 -0.701509 0.501857 -0.434058 -0.748852 0.500813 +0.283136 -0.698778 0.500061 -0.45964 -0.722692 0.516186 +0.276299 -0.695378 0.498337 -0.4873 -0.696589 0.526598 +0.269912 -0.691757 0.49664 -0.507887 -0.671879 0.539101 +0.263703 -0.688049 0.494955 -0.527219 -0.644879 0.553328 +0.257831 -0.684165 0.493282 -0.546279 -0.619184 0.564084 +0.252274 -0.680116 0.491637 -0.561198 -0.596376 0.573927 +0.246954 -0.675945 0.490001 -0.572118 -0.572963 0.586851 +0.24168 -0.671761 0.488374 -0.585324 -0.560805 0.585571 +0.236356 -0.667611 0.486743 -0.594267 -0.550853 0.586009 +0.231423 -0.663258 0.48513 -0.599475 -0.541582 0.589338 +0.226414 -0.658943 0.483519 -0.601004 -0.530131 0.598128 +0.221452 -0.654615 0.48191 -0.604547 -0.526439 0.597817 +0.216111 -0.65051 0.48028 -0.6099 -0.528787 0.59026 +0.210942 -0.646323 0.478669 -0.614363 -0.534786 0.580139 +0.206 -0.642 0.477063 -0.623078 -0.543692 0.562291 +0.201002 -0.63773 0.475464 -0.634347 -0.550773 0.542451 +0.195727 -0.633617 0.473846 -0.648692 -0.558349 0.517151 +0.189968 -0.629801 0.472206 -0.66865 -0.562989 0.485748 +0.184653 -0.625739 0.470596 -0.69493 -0.564406 0.445553 +0.179369 -0.621657 0.468984 -0.713995 -0.557968 0.422943 +0.17443 -0.617394 0.467391 -0.736892 -0.54779 0.396128 +0.170074 -0.612793 0.465819 -0.762809 -0.526294 0.375681 +0.165932 -0.608063 0.464268 -0.795225 -0.498581 0.345011 +0.162199 -0.603102 0.462729 -0.822332 -0.463315 0.330319 +0.158639 -0.598033 0.461197 -0.853942 -0.417415 0.310721 +0.155485 -0.592726 0.459684 -0.884666 -0.36553 0.289403 +0.152829 -0.587115 0.458192 -0.907536 -0.315614 0.277063 +0.150532 -0.581294 0.456722 -0.936026 -0.241166 0.256309 +0.148967 -0.575014 0.455272 -0.953006 -0.178549 0.244745 +0.147811 -0.568486 0.45384 -0.965332 -0.113595 0.235013 +0.146798 -0.561859 0.452414 -0.976939 -0.0403413 0.209669 +0.146953 -0.554499 0.451029 -0.977186 0.0422759 0.208138 +0.147703 -0.546764 0.449664 -0.973403 0.13901 0.182104 +0.149507 -0.538358 0.448339 -0.958758 0.229801 0.167258 +0.152197 -0.52938 0.447038 -0.924785 0.353133 0.141668 +0.157319 -0.518861 0.445836 -0.883757 0.451585 0.122656 +0.169762 -0.503735 0.44489 -0.777954 0.620161 0.100929 +0.227512 -0.460142 0.445621 -0.913794 -0.157532 0.374384 +0.230716 -0.45057 0.444297 -0.88219 -0.266712 0.388079 +0.230174 -0.443336 0.442825 -0.841008 -0.352886 0.410093 +0.226815 -0.437873 0.441249 -0.81625 -0.39472 0.421821 +0.222479 -0.43303 0.439639 -0.785039 -0.458298 0.416744 +0.217718 -0.428465 0.438015 -0.764405 -0.501399 0.405323 +0.212472 -0.424211 0.436382 -0.735384 -0.538657 0.411167 +0.207514 -0.419788 0.434751 -0.717957 -0.572428 0.396059 +0.202314 -0.415524 0.43312 -0.705998 -0.594906 0.38426 +0.197252 -0.411182 0.43149 -0.694953 -0.614677 0.373112 +0.19235 -0.406749 0.429869 -0.69448 -0.617862 0.368705 +0.187595 -0.402223 0.428255 -0.701417 -0.612752 0.364074 +0.182677 -0.397807 0.426637 -0.713141 -0.601413 0.360184 +0.177813 -0.393366 0.425026 -0.730375 -0.582988 0.355918 +0.173148 -0.3888 0.423418 -0.749936 -0.560421 0.351462 +0.16871 -0.384095 0.421814 -0.769525 -0.538009 0.344062 +0.16449 -0.379239 0.420226 -0.787607 -0.514148 0.3396 +0.160736 -0.374084 0.418648 -0.805923 -0.487341 0.336139 +0.157253 -0.36875 0.417077 -0.821301 -0.4617 0.335105 +0.153965 -0.363284 0.415515 -0.834251 -0.437116 0.336087 +0.151118 -0.357524 0.413963 -0.843349 -0.415331 0.340977 +0.148389 -0.351681 0.412417 -0.849966 -0.394133 0.349593 +0.14582 -0.34572 0.410874 -0.85596 -0.374157 0.356849 +0.142781 -0.340082 0.40931 -0.858491 -0.356661 0.36849 +0.139608 -0.334526 0.407754 -0.859649 -0.340485 0.380885 +0.136217 -0.329125 0.406183 -0.860993 -0.326133 0.390294 +0.132935 -0.323656 0.404621 -0.862901 -0.312135 0.39746 +0.129736 -0.318116 0.403056 -0.866829 -0.287371 0.407462 +0.126659 -0.312503 0.401495 -0.871358 -0.26157 0.415112 +0.123938 -0.306628 0.399944 -0.879808 -0.233595 0.413969 +0.121478 -0.300571 0.398403 -0.88994 -0.197393 0.411148 +0.119268 -0.294342 0.396862 -0.900399 -0.151189 0.407952 +0.117399 -0.287857 0.395321 -0.913615 -0.107039 0.392237 +0.115836 -0.281149 0.393795 -0.920972 -0.055324 0.385681 +0.114893 -0.274002 0.392277 -0.930545 0.0117994 0.365986 +0.114615 -0.266359 0.390772 -0.932444 0.0800756 0.35233 +0.115253 -0.258053 0.38928 -0.928749 0.137396 0.344305 +0.117493 -0.248579 0.387814 -0.919595 0.181542 0.348407 +0.120938 -0.238213 0.386373 -0.911121 0.215804 0.351125 +0.124528 -0.227695 0.384926 -0.900104 0.243361 0.361368 +0.125825 -0.218812 0.383428 -0.892835 0.255657 0.37079 +0.126692 -0.210214 0.38192 -0.88907 0.263689 0.374194 +0.128676 -0.200785 0.380426 -0.88666 0.272662 0.373484 +0.131965 -0.190372 0.378944 -0.883948 0.29235 0.364919 +0.134864 -0.180203 0.377454 -0.876883 0.332022 0.347616 +0.137471 -0.170226 0.375958 -0.872555 0.363229 0.326667 +0.143049 -0.15801 0.374495 -0.864773 0.395778 0.309076 +0.151113 -0.14391 0.373062 -0.851019 0.426226 0.306751 +0.158246 -0.130449 0.371602 -0.816328 0.477046 0.32563 +0.164286 -0.117743 0.370119 -0.79024 0.492488 0.364663 +0.176683 -0.100218 0.368711 -0.761772 0.510572 0.398772 +0.182505 -0.0875622 0.367205 -0.752012 0.522724 0.401544 +0.194324 -0.0703291 0.365768 -0.694088 0.613366 0.37686 +0.165778 0.0773092 0.333007 -0.00412899 -0.663236 0.7484 +0.155648 0.0777477 0.331328 -0.103525 -0.675953 0.729638 +0.141683 0.0750299 0.329655 -0.230075 -0.68596 0.690307 +0.128555 0.0729419 0.327995 -0.328629 -0.699776 0.634285 +0.121181 0.0755092 0.326339 -0.393497 -0.679376 0.619361 +0.114428 0.0785721 0.324693 -0.478544 -0.640364 0.600775 +0.10843 0.0822405 0.323052 -0.51315 -0.623683 0.589657 +0.103167 0.0865074 0.321407 -0.562799 -0.595552 0.573216 +0.0976804 0.0905736 0.319763 -0.60741 -0.551413 0.571838 +0.09264 0.0949992 0.318124 -0.66018 -0.519136 0.542826 +0.0892398 0.100791 0.316477 -0.713479 -0.472842 0.517076 +0.0922161 0.111928 0.314814 -0.744427 -0.35085 0.568094 +0.468457 -0.703691 0.523238 0.289285 -0.89591 0.337135 +0.426474 -0.718001 0.519451 0.182126 -0.927033 0.327782 +0.40577 -0.721469 0.516897 0.0477347 -0.939807 0.338359 +0.388253 -0.723352 0.514532 -0.0227576 -0.937293 0.347803 +0.374039 -0.723577 0.512364 -0.105271 -0.92908 0.354584 +0.362285 -0.722553 0.510334 -0.162889 -0.913775 0.372135 +0.351096 -0.721276 0.50835 -0.2253 -0.895257 0.384391 +0.340579 -0.719674 0.506404 -0.259995 -0.880909 0.395475 +0.330983 -0.717615 0.504513 -0.29165 -0.865069 0.408163 +0.322047 -0.71523 0.502659 -0.325604 -0.84597 0.422276 +0.313452 -0.712689 0.500831 -0.353912 -0.827957 0.435012 +0.304914 -0.710139 0.499012 -0.376875 -0.810135 0.449051 +0.297144 -0.707191 0.49724 -0.402356 -0.794381 0.455049 +0.289055 -0.704446 0.495447 -0.426231 -0.774559 0.467319 +0.281213 -0.701582 0.493673 -0.451221 -0.758679 0.469902 +0.274547 -0.698098 0.491968 -0.477771 -0.73599 0.47964 +0.267907 -0.694615 0.490266 -0.504921 -0.709293 0.491894 +0.261227 -0.691168 0.48856 -0.525371 -0.684029 0.506054 +0.255444 -0.687242 0.486909 -0.543424 -0.662878 0.515056 +0.249718 -0.68329 0.485256 -0.560807 -0.637684 0.528065 +0.244105 -0.679294 0.483611 -0.574391 -0.616098 0.538978 +0.238667 -0.675204 0.481976 -0.585747 -0.595683 0.549602 +0.233389 -0.671041 0.480354 -0.59504 -0.578512 0.5579 +0.228303 -0.666773 0.47874 -0.602927 -0.559006 0.569203 +0.223359 -0.662434 0.477137 -0.610169 -0.550532 0.569744 +0.218605 -0.657994 0.475543 -0.617021 -0.546743 0.566002 +0.213448 -0.653796 0.473931 -0.62667 -0.546306 0.555731 +0.208487 -0.649486 0.472326 -0.636933 -0.547792 0.542439 +0.203737 -0.645069 0.470738 -0.648087 -0.549765 0.527012 +0.198713 -0.640814 0.46914 -0.66281 -0.551898 0.506056 +0.19358 -0.636628 0.467533 -0.677003 -0.555209 0.483126 +0.188235 -0.632575 0.465922 -0.699976 -0.556694 0.447354 +0.18305 -0.628432 0.464321 -0.720526 -0.558541 0.410942 +0.178166 -0.624132 0.462732 -0.738772 -0.555777 0.38122 +0.173696 -0.619591 0.461163 -0.760656 -0.54694 0.349657 +0.169357 -0.614976 0.459597 -0.785945 -0.531 0.31675 +0.165207 -0.610261 0.45804 -0.811545 -0.506688 0.290968 +0.161416 -0.605336 0.456506 -0.835301 -0.478976 0.269917 +0.157875 -0.600253 0.45498 -0.865187 -0.438881 0.242559 +0.154689 -0.594968 0.453461 -0.894283 -0.38726 0.224251 +0.151998 -0.589386 0.451973 -0.916928 -0.33971 0.20938 +0.149664 -0.583591 0.450489 -0.940106 -0.278657 0.196346 +0.147972 -0.577392 0.449039 -0.963584 -0.191857 0.18627 +0.146732 -0.570919 0.447597 -0.976424 -0.132785 0.17019 +0.145857 -0.564215 0.446172 -0.98619 -0.0547815 0.156296 +0.145871 -0.556945 0.444773 -0.989751 0.0111872 0.142364 +0.146057 -0.549565 0.443387 -0.986249 0.115347 0.11835 +0.147877 -0.541155 0.442046 -0.973492 0.205501 0.100423 +0.150552 -0.532196 0.44074 -0.940517 0.330273 0.0796722 +0.155782 -0.521624 0.43952 -0.900312 0.430166 0.0663026 +0.165838 -0.507997 0.438462 -0.812783 0.581022 0.0423888 +0.216832 -0.468672 0.438837 -0.911275 0.162816 0.378245 +0.227883 -0.454203 0.437773 -0.87939 -0.281539 0.383939 +0.227697 -0.446755 0.436315 -0.850133 -0.347721 0.395428 +0.225134 -0.440791 0.434763 -0.825747 -0.3978 0.399872 +0.22101 -0.435816 0.433164 -0.79446 -0.453697 0.403721 +0.216347 -0.431196 0.431551 -0.775272 -0.497339 0.389367 +0.211467 -0.426713 0.429928 -0.750528 -0.532216 0.391735 +0.206602 -0.422239 0.428309 -0.732471 -0.569418 0.373159 +0.201434 -0.417952 0.426683 -0.712877 -0.597696 0.366834 +0.196469 -0.413548 0.425064 -0.703113 -0.613186 0.360048 +0.191547 -0.409127 0.423443 -0.700132 -0.621406 0.351667 +0.186712 -0.404659 0.421828 -0.705076 -0.618682 0.346557 +0.181845 -0.400211 0.420215 -0.715605 -0.60901 0.342079 +0.176954 -0.395796 0.418607 -0.732599 -0.591814 0.336235 +0.171965 -0.391442 0.416989 -0.752339 -0.5697 0.330796 +0.167427 -0.386805 0.415392 -0.771037 -0.547395 0.325361 +0.163167 -0.381985 0.413801 -0.787719 -0.525736 0.321094 +0.159416 -0.376835 0.412224 -0.804694 -0.500032 0.320055 +0.155958 -0.371485 0.410658 -0.819227 -0.475469 0.320617 +0.152715 -0.365991 0.409095 -0.831088 -0.45232 0.323571 +0.150083 -0.360088 0.407552 -0.83962 -0.430582 0.331115 +0.14725 -0.354319 0.405999 -0.845505 -0.411842 0.339862 +0.144313 -0.348615 0.404445 -0.849535 -0.395077 0.349577 +0.14122 -0.34302 0.402885 -0.852395 -0.378222 0.361068 +0.137945 -0.337546 0.401322 -0.854277 -0.362426 0.372638 +0.134404 -0.332247 0.399755 -0.856743 -0.348689 0.380012 +0.13105 -0.326832 0.398191 -0.860977 -0.327402 0.389265 +0.127791 -0.321341 0.396626 -0.866134 -0.308113 0.393544 +0.124731 -0.315713 0.395069 -0.873879 -0.284184 0.39443 +0.121916 -0.309917 0.393513 -0.884649 -0.252327 0.392078 +0.119388 -0.303922 0.391965 -0.898951 -0.214233 0.382086 +0.117316 -0.297598 0.390428 -0.912349 -0.174511 0.370357 +0.115427 -0.291141 0.388893 -0.927304 -0.121045 0.354198 +0.113825 -0.28447 0.387356 -0.938393 -0.0801243 0.336151 +0.112844 -0.277348 0.385832 -0.946605 -0.0114764 0.322192 +0.112379 -0.269849 0.384321 -0.952022 0.0500135 0.301916 +0.112732 -0.261761 0.382816 -0.949744 0.104037 0.295236 +0.114818 -0.2524 0.38134 -0.939919 0.153197 0.305093 +0.117096 -0.242884 0.379868 -0.931385 0.187612 0.311966 +0.12017 -0.232758 0.378395 -0.919176 0.218539 0.327654 +0.122249 -0.223325 0.376902 -0.910483 0.236071 0.339544 +0.123042 -0.214794 0.375387 -0.903704 0.248434 0.348713 +0.124104 -0.20605 0.373869 -0.8966 0.267231 0.353121 +0.126467 -0.196327 0.372365 -0.893249 0.284058 0.348448 +0.129937 -0.185761 0.370871 -0.885697 0.323797 0.332707 +0.133414 -0.175161 0.369379 -0.877831 0.361815 0.31385 +0.138591 -0.163264 0.367891 -0.872991 0.388374 0.295045 +0.145419 -0.150105 0.36642 -0.869627 0.404772 0.28268 +0.151958 -0.137097 0.364943 -0.848845 0.436424 0.298323 +0.156029 -0.125886 0.363414 -0.826021 0.460994 0.324305 +0.161227 -0.113793 0.361898 -0.804433 0.47904 0.351294 +0.177605 -0.0932493 0.360492 -0.766152 0.514135 0.385587 +0.183328 -0.0806356 0.358957 -0.741895 0.571953 0.349944 +0.176079 0.0748933 0.327902 0.11405 -0.700227 0.704751 +0.160053 0.0706098 0.32623 -0.0615061 -0.73694 0.673155 +0.14421 0.0664085 0.324578 -0.228091 -0.749746 0.621174 +0.133966 0.0666907 0.322927 -0.281541 -0.742522 0.60778 +0.126839 0.069478 0.321281 -0.347615 -0.726865 0.592312 +0.12013 0.0725953 0.319634 -0.412313 -0.706406 0.575316 +0.114142 0.0762799 0.317997 -0.491931 -0.668693 0.557543 +0.108186 0.0799818 0.316352 -0.53996 -0.652974 0.531101 +0.102517 0.0839106 0.314718 -0.573238 -0.635552 0.517176 +0.0971106 0.0880352 0.313077 -0.622597 -0.609403 0.490921 +0.0920849 0.0924809 0.311443 -0.660979 -0.587652 0.46666 +0.0879517 0.0976568 0.309803 -0.711803 -0.503916 0.489291 +0.0887737 0.106977 0.308138 -0.744218 -0.455513 0.488515 +0.462339 -0.708646 0.516346 0.283272 -0.905703 0.315373 +0.426155 -0.719971 0.512957 0.175049 -0.935002 0.308432 +0.404304 -0.724019 0.510375 0.0526671 -0.946822 0.317419 +0.387077 -0.725747 0.508053 -0.0230362 -0.945469 0.324899 +0.373451 -0.725668 0.505937 -0.0996158 -0.938631 0.330225 +0.361508 -0.72474 0.503912 -0.145872 -0.927428 0.344384 +0.350305 -0.723468 0.501944 -0.209678 -0.909757 0.358298 +0.339855 -0.721829 0.500012 -0.25147 -0.894645 0.369288 +0.330431 -0.719675 0.498144 -0.280766 -0.883333 0.37536 +0.321162 -0.717469 0.496287 -0.3148 -0.866578 0.387226 +0.312279 -0.715081 0.494453 -0.343163 -0.851571 0.396317 +0.303527 -0.712644 0.492633 -0.369359 -0.836262 0.405267 +0.295461 -0.709864 0.490851 -0.395552 -0.818595 0.416464 +0.287633 -0.706978 0.489088 -0.41879 -0.801454 0.426951 +0.280032 -0.703985 0.487336 -0.443633 -0.783697 0.434753 +0.273068 -0.70067 0.485621 -0.468448 -0.762741 0.445852 +0.266071 -0.697384 0.483909 -0.494018 -0.738086 0.459538 +0.259313 -0.693983 0.482207 -0.517451 -0.716602 0.467681 +0.253486 -0.690084 0.480558 -0.538771 -0.696788 0.473511 +0.247435 -0.686315 0.478897 -0.55722 -0.673372 0.485877 +0.241421 -0.682545 0.477236 -0.573344 -0.650553 0.498054 +0.23594 -0.678488 0.475613 -0.584931 -0.632144 0.508184 +0.230629 -0.674344 0.473993 -0.597361 -0.613066 0.517021 +0.225502 -0.670111 0.472383 -0.61016 -0.595808 0.522224 +0.220481 -0.665819 0.470777 -0.62116 -0.581358 0.52553 +0.215163 -0.661705 0.469162 -0.632663 -0.571394 0.522731 +0.210673 -0.657134 0.467584 -0.643937 -0.561985 0.519152 +0.206061 -0.652636 0.466004 -0.656541 -0.554691 0.511149 +0.201285 -0.648234 0.464418 -0.673832 -0.551823 0.491366 +0.196447 -0.643879 0.46283 -0.692429 -0.548895 0.468248 +0.191638 -0.639508 0.46124 -0.710158 -0.550415 0.438997 +0.18677 -0.63519 0.459656 -0.728746 -0.550947 0.406676 +0.182202 -0.630692 0.458081 -0.748268 -0.550044 0.370871 +0.177541 -0.626261 0.456505 -0.770817 -0.546356 0.32762 +0.173214 -0.621636 0.454946 -0.785447 -0.542212 0.298465 +0.168969 -0.61697 0.453392 -0.804247 -0.530698 0.267484 +0.164807 -0.612262 0.451836 -0.827332 -0.5113 0.232585 +0.161034 -0.607326 0.450299 -0.850246 -0.483476 0.208163 +0.157465 -0.60227 0.448776 -0.874146 -0.451994 0.177681 +0.154209 -0.597028 0.447255 -0.900733 -0.403838 0.159984 +0.151525 -0.591443 0.445766 -0.919643 -0.364255 0.146886 +0.149103 -0.585694 0.444279 -0.945751 -0.299155 0.126737 +0.147363 -0.579536 0.442818 -0.96814 -0.22151 0.11679 +0.146078 -0.573089 0.441378 -0.981259 -0.158373 0.109762 +0.145172 -0.566406 0.439947 -0.992236 -0.0834025 0.0922597 +0.144921 -0.559314 0.438534 -0.996815 -0.0126427 0.0787426 +0.145353 -0.551785 0.437144 -0.994466 0.0904906 0.053384 +0.14692 -0.543541 0.435795 -0.979885 0.19394 0.0470253 +0.149558 -0.53461 0.434469 -0.956384 0.29159 0.0174594 +0.154072 -0.524483 0.433211 -0.910374 0.413427 0.0172615 +0.162752 -0.511726 0.432084 -0.848378 0.529258 -0.0118621 +0.177988 -0.494814 0.43116 -0.718679 0.69534 -0.00149919 +0.222249 -0.459586 0.43118 -0.893601 -0.213078 0.395064 +0.224507 -0.450619 0.429787 -0.863993 -0.310239 0.396567 +0.223205 -0.443871 0.428283 -0.823423 -0.410014 0.392254 +0.219186 -0.438837 0.426695 -0.798106 -0.4641 0.384239 +0.215131 -0.433827 0.425101 -0.783854 -0.493044 0.377466 +0.210591 -0.429132 0.423491 -0.763137 -0.524358 0.377716 +0.205891 -0.424553 0.421876 -0.7436 -0.561159 0.363539 +0.200858 -0.420181 0.420259 -0.72822 -0.586965 0.353792 +0.195793 -0.415847 0.418639 -0.713109 -0.610313 0.344957 +0.19091 -0.4114 0.417025 -0.706 -0.622843 0.33709 +0.186113 -0.406906 0.415422 -0.70937 -0.622131 0.331281 +0.181095 -0.402561 0.413803 -0.718913 -0.614788 0.324345 +0.176104 -0.398216 0.412195 -0.734432 -0.599261 0.318584 +0.171082 -0.39389 0.410588 -0.753769 -0.578234 0.312218 +0.166498 -0.389282 0.408986 -0.770937 -0.557365 0.308226 +0.162196 -0.384495 0.407399 -0.785972 -0.537439 0.305626 +0.158459 -0.379338 0.405822 -0.802061 -0.512638 0.306431 +0.154979 -0.374009 0.40426 -0.815753 -0.48898 0.308943 +0.151689 -0.368555 0.402692 -0.826541 -0.467249 0.313859 +0.148861 -0.362782 0.401147 -0.83408 -0.448132 0.321695 +0.145866 -0.357125 0.39959 -0.839835 -0.429783 0.33161 +0.14272 -0.351571 0.398029 -0.84375 -0.413551 0.342142 +0.13937 -0.346152 0.396464 -0.846321 -0.398849 0.353074 +0.136089 -0.340683 0.394902 -0.848887 -0.383603 0.363647 +0.132719 -0.335285 0.393342 -0.852959 -0.367432 0.370747 +0.129346 -0.329884 0.391772 -0.858907 -0.347015 0.376642 +0.126096 -0.324394 0.390207 -0.866973 -0.326415 0.376577 +0.123051 -0.318759 0.388652 -0.877107 -0.29996 0.375109 +0.120258 -0.312956 0.387102 -0.889925 -0.268032 0.369041 +0.117618 -0.307041 0.385548 -0.90701 -0.227063 0.354649 +0.115425 -0.300811 0.384007 -0.922475 -0.186998 0.337744 +0.113767 -0.294194 0.382471 -0.938324 -0.134073 0.318704 +0.11215 -0.28754 0.380937 -0.948768 -0.0912287 0.302515 +0.111218 -0.280398 0.379413 -0.958443 -0.0356019 0.283053 +0.110632 -0.272995 0.377889 -0.963192 0.0313245 0.266982 +0.110374 -0.265343 0.376369 -0.962515 0.0784997 0.25962 +0.112414 -0.256033 0.374885 -0.95649 0.120805 0.265578 +0.114501 -0.24666 0.373391 -0.945422 0.162563 0.2824 +0.116818 -0.237095 0.371903 -0.936146 0.189692 0.296051 +0.118837 -0.227712 0.3704 -0.925677 0.213968 0.311993 +0.119502 -0.21929 0.368877 -0.918924 0.230981 0.319727 +0.120377 -0.210693 0.367345 -0.912539 0.24803 0.325197 +0.122089 -0.201459 0.365826 -0.904318 0.273489 0.327735 +0.125065 -0.191275 0.364316 -0.896108 0.312314 0.315355 +0.128907 -0.180418 0.36281 -0.886938 0.354986 0.295508 +0.133753 -0.168793 0.36131 -0.878743 0.386846 0.279572 +0.140666 -0.155586 0.35982 -0.873913 0.404926 0.268907 +0.146599 -0.143054 0.358313 -0.875903 0.404068 0.263674 +0.150245 -0.132181 0.356773 -0.851298 0.433158 0.296083 +0.153303 -0.121714 0.355218 -0.834456 0.45226 0.314872 +0.158738 -0.109413 0.353682 -0.815577 0.473862 0.332097 +0.174103 -0.0895964 0.352216 -0.764571 0.554541 0.328506 +0.185197 -0.0729097 0.3507 -0.741099 0.593514 0.313868 +0.165506 0.0643147 0.321137 -0.0182197 -0.796156 0.604819 +0.152057 0.0620875 0.319489 -0.146577 -0.802387 0.578526 +0.140663 0.0614794 0.317848 -0.24923 -0.796617 0.550715 +0.132901 0.0637668 0.316216 -0.298698 -0.785043 0.542669 +0.125774 0.0665561 0.314577 -0.365738 -0.768186 0.525478 +0.119617 0.0701252 0.312937 -0.437835 -0.729905 0.52492 +0.113741 0.0738977 0.311298 -0.509135 -0.697664 0.504031 +0.108008 0.0777875 0.309667 -0.548136 -0.677661 0.490228 +0.102501 0.0818442 0.308033 -0.580489 -0.661342 0.475038 +0.0966519 0.0856052 0.306398 -0.632853 -0.625717 0.456043 +0.0911538 0.0896491 0.304769 -0.659839 -0.60193 0.449771 +0.0866468 0.0945084 0.303139 -0.695914 -0.561702 0.447429 +0.0877579 0.104065 0.30146 -0.740632 -0.4831 0.466989 +0.459078 -0.71213 0.509639 0.271922 -0.916914 0.292113 +0.426223 -0.721732 0.506488 0.173237 -0.941207 0.290035 +0.40348 -0.726234 0.503893 0.0514734 -0.954569 0.293511 +0.386409 -0.727883 0.501606 -0.0176368 -0.953401 0.301193 +0.372913 -0.727725 0.499514 -0.0944453 -0.946814 0.30761 +0.360779 -0.726904 0.497499 -0.134679 -0.939942 0.313645 +0.34952 -0.725655 0.495537 -0.196417 -0.92377 0.32874 +0.339337 -0.723869 0.493641 -0.237465 -0.909176 0.342069 +0.32989 -0.721734 0.491785 -0.271751 -0.898253 0.345391 +0.320658 -0.719502 0.48994 -0.304698 -0.884246 0.353932 +0.311536 -0.717244 0.488107 -0.333079 -0.870829 0.361546 +0.302657 -0.714875 0.486292 -0.361112 -0.855791 0.370433 +0.294558 -0.712113 0.484519 -0.387338 -0.839953 0.380067 +0.286541 -0.709325 0.482755 -0.411851 -0.823751 0.389633 +0.27897 -0.706321 0.48101 -0.435466 -0.80673 0.399448 +0.271635 -0.70321 0.479286 -0.461605 -0.785975 0.411298 +0.264668 -0.699903 0.47758 -0.485302 -0.765509 0.422468 +0.258207 -0.696347 0.475907 -0.508243 -0.744978 0.432085 +0.251728 -0.692805 0.474228 -0.527678 -0.723825 0.444561 +0.245278 -0.689269 0.472554 -0.548101 -0.699823 0.458075 +0.239117 -0.685578 0.4709 -0.564415 -0.680429 0.467391 +0.233672 -0.681507 0.469276 -0.58062 -0.659025 0.478087 +0.227942 -0.677607 0.467643 -0.593772 -0.640914 0.486481 +0.222657 -0.673463 0.466032 -0.611151 -0.620575 0.491308 +0.217346 -0.669345 0.464418 -0.627576 -0.603085 0.492379 +0.212216 -0.665136 0.462821 -0.643666 -0.586493 0.491651 +0.20772 -0.660567 0.461243 -0.659909 -0.57399 0.484826 +0.203237 -0.656006 0.459677 -0.679752 -0.561812 0.471491 +0.1989 -0.651363 0.458113 -0.697982 -0.553628 0.45422 +0.194511 -0.646753 0.456542 -0.717804 -0.547957 0.429536 +0.190203 -0.642099 0.454986 -0.736892 -0.544743 0.400307 +0.185995 -0.637393 0.453426 -0.755391 -0.543372 0.36624 +0.181665 -0.632764 0.451865 -0.771376 -0.540834 0.335378 +0.177307 -0.628158 0.450307 -0.789511 -0.538765 0.293946 +0.173024 -0.623516 0.448748 -0.807926 -0.532631 0.252111 +0.168771 -0.618853 0.447193 -0.824074 -0.521012 0.22237 +0.164588 -0.614157 0.445645 -0.843433 -0.504017 0.185977 +0.160856 -0.609197 0.444108 -0.863068 -0.481469 0.152646 +0.157345 -0.604105 0.442582 -0.880227 -0.45794 0.124468 +0.154155 -0.598828 0.441072 -0.90267 -0.418739 0.0992222 +0.151401 -0.593288 0.439573 -0.92322 -0.374265 0.0871338 +0.148948 -0.58756 0.438087 -0.946553 -0.314954 0.0695879 +0.147073 -0.581486 0.436618 -0.968381 -0.245097 0.0465489 +0.145609 -0.575153 0.435166 -0.982964 -0.178353 0.04441 +0.1445 -0.568591 0.433722 -0.994104 -0.10661 0.019758 +0.144562 -0.561312 0.432317 -0.999642 -0.0259245 0.00672963 +0.145113 -0.553716 0.430928 -0.997628 0.068101 -0.0099592 +0.146157 -0.545797 0.429547 -0.988674 0.147721 -0.0265175 +0.14818 -0.537255 0.428194 -0.963989 0.263715 -0.0343304 +0.151875 -0.527645 0.426898 -0.928804 0.367615 -0.0466986 +0.160837 -0.514728 0.425752 -0.859305 0.508312 -0.0566939 +0.176739 -0.497416 0.424816 -0.753207 0.655607 -0.0534715 +0.216413 -0.465101 0.4246 -0.91039 -0.0898784 0.403869 +0.22138 -0.454436 0.423287 -0.866161 -0.309002 0.39279 +0.220893 -0.447181 0.4218 -0.844153 -0.368645 0.389237 +0.217857 -0.44153 0.420241 -0.818807 -0.423564 0.387491 +0.213939 -0.436444 0.418649 -0.788137 -0.492632 0.368991 +0.209454 -0.43172 0.417053 -0.78011 -0.512977 0.358166 +0.204859 -0.427064 0.415446 -0.754835 -0.555726 0.348417 +0.200041 -0.422567 0.413833 -0.735374 -0.590289 0.332844 +0.19508 -0.418168 0.412223 -0.721666 -0.609161 0.32882 +0.190267 -0.413676 0.410612 -0.713141 -0.622796 0.321798 +0.18528 -0.409309 0.409006 -0.71358 -0.626042 0.314445 +0.180352 -0.404906 0.407398 -0.722129 -0.61941 0.307995 +0.175485 -0.400473 0.405796 -0.736438 -0.605641 0.301427 +0.170448 -0.396166 0.404186 -0.753629 -0.586651 0.296452 +0.165777 -0.391619 0.402589 -0.770657 -0.56508 0.294572 +0.161424 -0.386863 0.401005 -0.785048 -0.544984 0.294435 +0.157664 -0.38173 0.399431 -0.799092 -0.523565 0.295522 +0.154054 -0.376491 0.397863 -0.811576 -0.50104 0.300506 +0.150633 -0.371127 0.396298 -0.820747 -0.481817 0.306966 +0.147784 -0.365377 0.394748 -0.828413 -0.462793 0.315522 +0.144631 -0.359828 0.393186 -0.834011 -0.445737 0.325185 +0.141306 -0.354404 0.391623 -0.837644 -0.431154 0.335349 +0.137788 -0.349099 0.390055 -0.840821 -0.416702 0.345513 +0.134313 -0.343776 0.388494 -0.844676 -0.401332 0.354195 +0.130808 -0.338464 0.386926 -0.850678 -0.382785 0.360307 +0.127643 -0.332922 0.385365 -0.859587 -0.361014 0.361631 +0.124411 -0.327432 0.383803 -0.870273 -0.337772 0.358518 +0.12127 -0.321872 0.382248 -0.882993 -0.311103 0.351479 +0.118477 -0.316071 0.380691 -0.898007 -0.279496 0.3398 +0.115927 -0.310099 0.379139 -0.916365 -0.238246 0.321735 +0.11378 -0.303842 0.377597 -0.932731 -0.192547 0.304857 +0.112113 -0.297239 0.376061 -0.948195 -0.145205 0.28256 +0.110673 -0.290469 0.374525 -0.959027 -0.100643 0.264836 +0.109791 -0.283295 0.372998 -0.967115 -0.042961 0.250687 +0.10944 -0.275738 0.371476 -0.97262 0.00543257 0.232339 +0.109629 -0.267772 0.369961 -0.97096 0.0615596 0.231187 +0.110642 -0.259195 0.368448 -0.966761 0.0970466 0.236547 +0.112549 -0.249962 0.366946 -0.95867 0.134346 0.250805 +0.11434 -0.240788 0.365432 -0.948513 0.168841 0.267986 +0.115549 -0.232009 0.363911 -0.940084 0.189779 0.283241 +0.116074 -0.223695 0.362376 -0.932756 0.20845 0.294136 +0.116767 -0.215249 0.360843 -0.927079 0.226478 0.298718 +0.118047 -0.206341 0.359306 -0.920045 0.247898 0.303419 +0.120683 -0.196427 0.357781 -0.907216 0.300818 0.294054 +0.124195 -0.185832 0.356261 -0.89767 0.343941 0.275486 +0.129113 -0.174166 0.354749 -0.887411 0.379575 0.261585 +0.136217 -0.160837 0.35324 -0.883776 0.397955 0.246112 +0.14252 -0.148043 0.351721 -0.87857 0.40625 0.25115 +0.146103 -0.137241 0.350168 -0.881177 0.397628 0.255771 +0.148068 -0.127601 0.348593 -0.85961 0.425958 0.282193 +0.151493 -0.116845 0.347028 -0.844199 0.44724 0.295476 +0.159103 -0.102894 0.34548 -0.813916 0.502924 0.290878 +0.173395 -0.0838379 0.343961 -0.761219 0.580158 0.289764 +0.178443 0.0640132 0.316009 0.0908037 -0.811085 0.577837 +0.16039 0.0581463 0.314393 -0.0606469 -0.840302 0.538717 +0.148424 0.0570977 0.312765 -0.18668 -0.828771 0.527531 +0.139266 0.0582871 0.311139 -0.252032 -0.825797 0.504521 +0.131657 0.0607055 0.309505 -0.320725 -0.808334 0.493692 +0.12533 0.0641453 0.307872 -0.379803 -0.793434 0.47562 +0.119317 0.0678249 0.306242 -0.447514 -0.759237 0.472536 +0.113607 0.0717364 0.304608 -0.52007 -0.729577 0.444123 +0.107808 0.0755597 0.30298 -0.558992 -0.702657 0.440231 +0.102064 0.0794256 0.301353 -0.597782 -0.681803 0.421665 +0.0961012 0.083094 0.299731 -0.624834 -0.659335 0.418161 +0.090432 0.086996 0.298103 -0.653501 -0.632931 0.415134 +0.0857597 0.0917069 0.296476 -0.685622 -0.599365 0.41314 +0.0852885 0.0999333 0.294803 -0.706615 -0.574971 0.412436 +0.458814 -0.714079 0.503099 0.267397 -0.925522 0.268157 +0.426245 -0.723523 0.500015 0.178314 -0.946812 0.267869 +0.403215 -0.728159 0.497442 0.0586352 -0.961187 0.269594 +0.386084 -0.729838 0.495179 -0.00941337 -0.960998 0.276397 +0.372423 -0.72976 0.493099 -0.0854443 -0.955035 0.283916 +0.36012 -0.729022 0.491094 -0.128454 -0.948805 0.288565 +0.348592 -0.727912 0.489134 -0.187652 -0.935349 0.299849 +0.338223 -0.72623 0.487239 -0.235312 -0.920067 0.31322 +0.329051 -0.723947 0.48541 -0.264066 -0.908276 0.324508 +0.320047 -0.721593 0.483589 -0.29294 -0.898093 0.328046 +0.31118 -0.719198 0.481778 -0.327125 -0.883728 0.334687 +0.302474 -0.716736 0.47998 -0.348531 -0.874447 0.337446 +0.294162 -0.714088 0.478207 -0.377008 -0.859563 0.34499 +0.285967 -0.711399 0.476449 -0.403931 -0.843139 0.354902 +0.278013 -0.708597 0.474694 -0.426872 -0.827937 0.363734 +0.270538 -0.705562 0.472975 -0.451891 -0.809717 0.374371 +0.263601 -0.702244 0.471277 -0.475461 -0.791373 0.384273 +0.256695 -0.69893 0.469591 -0.498844 -0.770127 0.397569 +0.249941 -0.69555 0.467909 -0.520546 -0.74815 0.411468 +0.243555 -0.691972 0.466246 -0.537669 -0.73055 0.420963 +0.237527 -0.688223 0.464599 -0.555624 -0.709398 0.433632 +0.23163 -0.6844 0.462961 -0.574487 -0.688045 0.443353 +0.226035 -0.68043 0.46134 -0.592817 -0.66643 0.452149 +0.220157 -0.676622 0.459708 -0.610963 -0.64642 0.457019 +0.214722 -0.672578 0.458099 -0.630757 -0.625445 0.459311 +0.209607 -0.668361 0.456502 -0.652894 -0.604345 0.456616 +0.204702 -0.664039 0.454915 -0.67675 -0.585047 0.446911 +0.200129 -0.659534 0.453345 -0.695294 -0.570714 0.436866 +0.195733 -0.654927 0.451783 -0.718899 -0.556813 0.416107 +0.191999 -0.649948 0.450249 -0.741783 -0.544894 0.390958 +0.188327 -0.644941 0.448713 -0.760447 -0.538314 0.363234 +0.184895 -0.63979 0.447188 -0.778272 -0.531403 0.334519 +0.181083 -0.63486 0.44565 -0.797703 -0.52525 0.296281 +0.17706 -0.630063 0.444108 -0.816703 -0.519999 0.250195 +0.172904 -0.62534 0.442557 -0.830134 -0.51501 0.213645 +0.168663 -0.62068 0.441005 -0.845136 -0.506285 0.171525 +0.164421 -0.616019 0.439452 -0.858714 -0.495217 0.131793 +0.160841 -0.610972 0.437923 -0.87328 -0.477321 0.0977134 +0.15736 -0.605859 0.436404 -0.888645 -0.453747 0.06651 +0.154018 -0.60068 0.434887 -0.906058 -0.421829 0.0334183 +0.151354 -0.595084 0.43339 -0.922174 -0.386552 0.0131552 +0.148981 -0.589313 0.43191 -0.94286 -0.333179 0.00272275 +0.147075 -0.58326 0.430435 -0.962636 -0.270352 -0.0155543 +0.145617 -0.576925 0.428982 -0.9788 -0.202532 -0.0305227 +0.144549 -0.57034 0.42753 -0.992269 -0.11499 -0.046675 +0.144732 -0.562985 0.426125 -0.997293 -0.0415721 -0.060648 +0.145053 -0.555537 0.424719 -0.995667 0.0508644 -0.0778493 +0.145612 -0.547913 0.423317 -0.986291 0.14205 -0.0839889 +0.147788 -0.539288 0.421958 -0.963955 0.246027 -0.101296 +0.151873 -0.529447 0.420658 -0.933488 0.344825 -0.0984671 +0.159651 -0.517269 0.419455 -0.872092 0.47654 -0.111199 +0.174005 -0.500937 0.418439 -0.768023 0.635035 -0.0828933 +0.208484 -0.471909 0.417979 -0.910094 0.329735 0.251001 +0.218277 -0.458236 0.416794 -0.892349 -0.236284 0.384554 +0.219444 -0.449954 0.415355 -0.858961 -0.350827 0.372972 +0.21612 -0.444487 0.413782 -0.829866 -0.412504 0.375718 +0.212619 -0.439137 0.412212 -0.81367 -0.459588 0.355977 +0.20844 -0.434219 0.410621 -0.792899 -0.505507 0.340257 +0.203991 -0.429482 0.409024 -0.771789 -0.54352 0.33004 +0.199199 -0.424966 0.407416 -0.751347 -0.57741 0.319491 +0.194481 -0.420414 0.405815 -0.733129 -0.602567 0.315333 +0.189655 -0.415931 0.404206 -0.721319 -0.621541 0.305589 +0.184506 -0.411674 0.402596 -0.719287 -0.627626 0.297847 +0.179628 -0.407238 0.400993 -0.72538 -0.623602 0.291451 +0.174746 -0.402824 0.399393 -0.738262 -0.61086 0.286041 +0.169707 -0.398513 0.397796 -0.752899 -0.594387 0.282574 +0.165063 -0.393951 0.3962 -0.768064 -0.574627 0.282635 +0.160726 -0.389193 0.394616 -0.780933 -0.55601 0.2846 +0.157013 -0.38402 0.393046 -0.793724 -0.535954 0.287676 +0.153507 -0.378718 0.39148 -0.805465 -0.514415 0.294284 +0.150267 -0.373231 0.389917 -0.814822 -0.494954 0.301807 +0.147269 -0.367584 0.388362 -0.821819 -0.477682 0.310536 +0.143988 -0.362131 0.386804 -0.827629 -0.461417 0.319569 +0.140298 -0.356953 0.385234 -0.832479 -0.445278 0.329704 +0.136491 -0.351855 0.383666 -0.836417 -0.432883 0.336185 +0.132926 -0.346589 0.382094 -0.842112 -0.417106 0.341862 +0.12937 -0.341325 0.380533 -0.850913 -0.397439 0.343499 +0.125857 -0.336028 0.378966 -0.862268 -0.374457 0.340992 +0.122657 -0.330515 0.37741 -0.874274 -0.350432 0.335921 +0.119488 -0.324984 0.375851 -0.889266 -0.32366 0.323188 +0.116779 -0.31913 0.374297 -0.907055 -0.287597 0.307473 +0.114213 -0.313177 0.372749 -0.924173 -0.248628 0.289979 +0.112131 -0.306881 0.371202 -0.941887 -0.20151 0.268782 +0.110691 -0.300126 0.369668 -0.956351 -0.155317 0.247521 +0.109368 -0.293275 0.368131 -0.967091 -0.110559 0.229157 +0.108522 -0.286083 0.366594 -0.974198 -0.061822 0.217061 +0.108176 -0.278522 0.365073 -0.978429 -0.00963919 0.206356 +0.108412 -0.270533 0.363541 -0.978658 0.0337219 0.202711 +0.109444 -0.261961 0.362029 -0.97495 0.074765 0.209483 +0.110681 -0.253213 0.360503 -0.968583 0.109028 0.223516 +0.112106 -0.244311 0.358982 -0.960969 0.138037 0.239757 +0.112829 -0.235885 0.357446 -0.953709 0.162769 0.252875 +0.113125 -0.227751 0.355901 -0.945362 0.186969 0.267085 +0.113587 -0.219476 0.354362 -0.938437 0.208404 0.275507 +0.114757 -0.210666 0.352816 -0.930611 0.236692 0.279179 +0.116999 -0.201054 0.35128 -0.92256 0.278287 0.267282 +0.120134 -0.190754 0.349741 -0.908835 0.332396 0.252057 +0.124533 -0.179489 0.348206 -0.896782 0.371625 0.240162 +0.13071 -0.166866 0.346677 -0.890136 0.394074 0.228829 +0.137901 -0.153435 0.345144 -0.889786 0.397333 0.224516 +0.14214 -0.142157 0.343584 -0.888051 0.39562 0.2342 +0.144581 -0.132177 0.342003 -0.890638 0.391918 0.230575 +0.146692 -0.122422 0.340421 -0.867666 0.42924 0.250818 +0.151719 -0.110435 0.338837 -0.846329 0.469845 0.25094 +0.164393 -0.0926354 0.337281 -0.796239 0.5515 0.248702 +0.177463 -0.0744416 0.335707 -0.728622 0.650467 0.214486 +0.170603 0.0556583 0.309267 0.00664239 -0.870293 0.492491 +0.157944 0.0541158 0.307661 -0.0956149 -0.874408 0.475679 +0.147442 0.0542574 0.306042 -0.198091 -0.861289 0.467913 +0.138009 0.0552177 0.304429 -0.267361 -0.855032 0.444342 +0.13115 0.0582369 0.3028 -0.339457 -0.834995 0.433075 +0.124895 0.0617333 0.301175 -0.384051 -0.817342 0.429488 +0.119059 0.065559 0.299543 -0.465964 -0.782087 0.413785 +0.113258 0.0694 0.297917 -0.515491 -0.753349 0.408333 +0.107413 0.0731851 0.296294 -0.552008 -0.725334 0.411313 +0.101428 0.0768496 0.294677 -0.585296 -0.704304 0.401729 +0.0949195 0.0800646 0.293065 -0.623878 -0.667431 0.406586 +0.0888899 0.0836581 0.291453 -0.651051 -0.640926 0.40663 +0.0841005 0.0882672 0.289825 -0.682205 -0.609041 0.404556 +0.0836551 0.096509 0.28815 -0.710711 -0.573825 0.406959 +0.456873 -0.716888 0.496477 0.261212 -0.93371 0.244856 +0.424454 -0.726236 0.493463 0.177635 -0.952829 0.246098 +0.403338 -0.729891 0.491018 0.061954 -0.967333 0.245827 +0.38678 -0.731258 0.488804 0.00599836 -0.96828 0.249798 +0.372575 -0.731462 0.486718 -0.0756655 -0.963142 0.258132 +0.359847 -0.730941 0.484718 -0.12054 -0.955531 0.269131 +0.348208 -0.729884 0.482768 -0.17343 -0.946396 0.272502 +0.33786 -0.728188 0.480887 -0.221961 -0.932482 0.284979 +0.328224 -0.726149 0.479043 -0.253577 -0.921116 0.295373 +0.319411 -0.723699 0.47724 -0.290735 -0.90737 0.30357 +0.310755 -0.721186 0.475451 -0.316352 -0.89815 0.305365 +0.302133 -0.718684 0.473675 -0.34172 -0.886228 0.312779 +0.293645 -0.716127 0.471899 -0.36686 -0.873514 0.319982 +0.28545 -0.713437 0.470148 -0.39302 -0.859284 0.327366 +0.277499 -0.710637 0.468411 -0.419295 -0.843138 0.336619 +0.270095 -0.707557 0.466695 -0.441635 -0.829674 0.34147 +0.262776 -0.704458 0.464991 -0.465681 -0.811943 0.35198 +0.255674 -0.701247 0.463303 -0.489007 -0.792937 0.363488 +0.248782 -0.697943 0.461618 -0.509546 -0.774952 0.373915 +0.242312 -0.694416 0.45996 -0.530243 -0.754267 0.387202 +0.236222 -0.690694 0.458322 -0.548266 -0.735389 0.398255 +0.230317 -0.686886 0.456686 -0.567162 -0.714905 0.408948 +0.224274 -0.683169 0.455053 -0.587814 -0.692597 0.418073 +0.218111 -0.679519 0.453416 -0.609955 -0.670698 0.422041 +0.212698 -0.675471 0.451809 -0.633687 -0.646493 0.424837 +0.207467 -0.671324 0.450217 -0.659121 -0.623327 0.420743 +0.202085 -0.667282 0.448614 -0.68694 -0.601336 0.408057 +0.197405 -0.662833 0.447048 -0.71373 -0.577172 0.396816 +0.193102 -0.658187 0.445485 -0.740907 -0.556898 0.375393 +0.189418 -0.653191 0.44396 -0.764994 -0.540151 0.350745 +0.186082 -0.647992 0.44244 -0.784122 -0.526961 0.327818 +0.183027 -0.642631 0.440931 -0.806233 -0.514588 0.291868 +0.17998 -0.637266 0.439422 -0.825154 -0.505631 0.251906 +0.176514 -0.632146 0.437902 -0.841404 -0.499603 0.206004 +0.17287 -0.627129 0.436367 -0.853472 -0.494327 0.165004 +0.168815 -0.62235 0.434827 -0.865676 -0.48695 0.116126 +0.164732 -0.6176 0.433283 -0.873705 -0.480696 0.0746453 +0.16115 -0.612552 0.431754 -0.8822 -0.468881 0.043313 +0.157675 -0.607445 0.430235 -0.895531 -0.444921 0.00834826 +0.154296 -0.602278 0.428719 -0.906697 -0.42121 -0.0219688 +0.151612 -0.596698 0.427216 -0.916764 -0.395857 -0.0532923 +0.149175 -0.590967 0.425731 -0.934305 -0.348435 -0.0752804 +0.147379 -0.584846 0.424258 -0.954526 -0.283553 -0.0920784 +0.146043 -0.578434 0.422806 -0.969638 -0.222339 -0.101828 +0.145011 -0.571837 0.421354 -0.981785 -0.143315 -0.124738 +0.145047 -0.564577 0.419936 -0.989815 -0.0546561 -0.131449 +0.145076 -0.557305 0.418514 -0.98925 0.0250538 -0.144069 +0.145756 -0.549617 0.417107 -0.982827 0.10641 -0.150764 +0.147946 -0.540975 0.415738 -0.962857 0.217697 -0.159729 +0.151848 -0.531254 0.414418 -0.935245 0.320404 -0.150522 +0.15967 -0.519062 0.4132 -0.878458 0.455306 -0.144941 +0.172025 -0.503993 0.41209 -0.796844 0.590285 -0.128857 +0.195235 -0.482045 0.411262 -0.814453 0.580227 -0.00231228 +0.213487 -0.463096 0.410271 -0.933281 -0.127767 0.335651 +0.216383 -0.453734 0.408875 -0.88502 -0.3112 0.346257 +0.215048 -0.447023 0.407353 -0.860774 -0.375757 0.343327 +0.211188 -0.441897 0.405773 -0.835182 -0.442366 0.326779 +0.207369 -0.436755 0.404192 -0.815746 -0.482394 0.319147 +0.203189 -0.431847 0.402603 -0.784201 -0.535609 0.313294 +0.198641 -0.42718 0.401005 -0.76179 -0.57138 0.305292 +0.193814 -0.422695 0.399402 -0.742987 -0.600025 0.296545 +0.188961 -0.418242 0.397806 -0.730416 -0.618816 0.289069 +0.18388 -0.413935 0.396197 -0.725041 -0.628131 0.282432 +0.178994 -0.409511 0.394603 -0.728616 -0.626343 0.277153 +0.174117 -0.405093 0.393005 -0.738418 -0.616356 0.27358 +0.169123 -0.400756 0.391405 -0.751058 -0.601551 0.27212 +0.164475 -0.396201 0.389817 -0.763483 -0.584953 0.273724 +0.160161 -0.391421 0.38823 -0.776814 -0.565309 0.277462 +0.156634 -0.386129 0.386673 -0.788331 -0.546816 0.282006 +0.153299 -0.380719 0.385112 -0.799486 -0.52633 0.289477 +0.150073 -0.375225 0.38355 -0.80855 -0.509033 0.295182 +0.146807 -0.369763 0.38199 -0.815522 -0.492295 0.30425 +0.143236 -0.364502 0.380421 -0.822038 -0.476342 0.312012 +0.139172 -0.359583 0.378846 -0.827887 -0.461611 0.318619 +0.135441 -0.354437 0.377281 -0.833882 -0.446665 0.324239 +0.131653 -0.349328 0.375711 -0.842141 -0.429868 0.325595 +0.127999 -0.344134 0.374149 -0.85273 -0.410302 0.323271 +0.124451 -0.338868 0.372579 -0.866257 -0.385357 0.317959 +0.121047 -0.3335 0.371022 -0.881333 -0.359473 0.306642 +0.117961 -0.327916 0.369467 -0.897088 -0.331065 0.292624 +0.115263 -0.322065 0.367914 -0.915605 -0.292048 0.276362 +0.112778 -0.316055 0.36636 -0.932063 -0.25522 0.257145 +0.110784 -0.309702 0.364816 -0.949434 -0.20757 0.235564 +0.109416 -0.302906 0.363279 -0.962966 -0.161622 0.215812 +0.108247 -0.295959 0.36174 -0.972929 -0.117331 0.199108 +0.107381 -0.288778 0.360205 -0.979186 -0.0777508 0.187481 +0.107127 -0.281165 0.35867 -0.983636 -0.0233976 0.178639 +0.107388 -0.27316 0.357138 -0.983347 0.0159778 0.181033 +0.108304 -0.264674 0.355613 -0.981644 0.048243 0.184524 +0.109414 -0.256023 0.354083 -0.975718 0.0848731 0.201914 +0.110317 -0.247502 0.352549 -0.971287 0.109349 0.211293 +0.11057 -0.239426 0.350999 -0.964222 0.135356 0.227936 +0.110236 -0.231756 0.349443 -0.957667 0.159051 0.239952 +0.110643 -0.223537 0.347897 -0.951997 0.180605 0.247148 +0.111976 -0.214618 0.346347 -0.94411 0.214156 0.250587 +0.114271 -0.204975 0.344801 -0.934026 0.26198 0.242822 +0.117318 -0.194752 0.343249 -0.918795 0.320063 0.231035 +0.12084 -0.184143 0.341695 -0.905762 0.364421 0.216317 +0.126425 -0.171977 0.340141 -0.897102 0.391592 0.204608 +0.133598 -0.158589 0.338593 -0.895993 0.39655 0.19986 +0.139193 -0.14631 0.337022 -0.895382 0.393689 0.208089 +0.141784 -0.136241 0.335434 -0.89754 0.38953 0.206606 +0.143742 -0.126602 0.333836 -0.897074 0.395031 0.198011 +0.147701 -0.115435 0.332237 -0.873641 0.442153 0.203105 +0.155769 -0.101132 0.330642 -0.836378 0.50917 0.203021 +0.170001 -0.082101 0.329039 -0.762147 0.62229 0.178569 +0.188802 0.0595144 0.304074 0.14163 -0.863418 0.484201 +0.168928 0.052266 0.302524 -0.020924 -0.89455 0.44648 +0.156787 0.0511276 0.300925 -0.112726 -0.900746 0.419465 +0.146922 0.0517772 0.299323 -0.199809 -0.885193 0.420133 +0.137843 0.0530322 0.29772 -0.272931 -0.873505 0.40311 +0.130908 0.0559882 0.296098 -0.339163 -0.851875 0.399094 +0.124585 0.059435 0.294479 -0.394188 -0.833191 0.387827 +0.118421 0.0629884 0.292858 -0.454336 -0.801879 0.388033 +0.11229 0.0665551 0.291243 -0.514835 -0.766854 0.383251 +0.105727 0.0697448 0.289632 -0.552597 -0.740017 0.383422 +0.0985651 0.0724332 0.288037 -0.586916 -0.711263 0.386826 +0.0917949 0.0754251 0.286438 -0.613721 -0.688699 0.386058 +0.0861636 0.0793383 0.284826 -0.636948 -0.666521 0.387359 +0.0824073 0.0848135 0.28319 -0.667415 -0.636531 0.386506 +0.0831041 0.0940005 0.281489 -0.688249 -0.611968 0.389626 +0.456465 -0.718908 0.489941 0.267835 -0.935357 0.231027 +0.425179 -0.727664 0.48703 0.176835 -0.958342 0.2243 +0.402922 -0.73189 0.484569 0.0683775 -0.973022 0.220353 +0.387014 -0.732921 0.482414 0.0181741 -0.974595 0.22324 +0.37295 -0.733049 0.480352 -0.0691117 -0.970142 0.232484 +0.3605 -0.732374 0.478382 -0.109219 -0.964513 0.240388 +0.348226 -0.731654 0.476415 -0.167853 -0.952913 0.252553 +0.337801 -0.729992 0.474541 -0.208705 -0.943958 0.255705 +0.327876 -0.728104 0.4727 -0.242445 -0.9331 0.265605 +0.318937 -0.72572 0.470908 -0.280022 -0.919555 0.275695 +0.310221 -0.72324 0.469129 -0.309902 -0.907915 0.282226 +0.301763 -0.720644 0.467362 -0.33759 -0.896092 0.288192 +0.293685 -0.71787 0.465619 -0.356005 -0.88786 0.291487 +0.285457 -0.715196 0.463878 -0.381682 -0.875088 0.297554 +0.277356 -0.712473 0.462135 -0.407208 -0.860706 0.305563 +0.269881 -0.709433 0.460431 -0.431178 -0.845563 0.31482 +0.262474 -0.706379 0.458729 -0.454766 -0.831054 0.320218 +0.255184 -0.703267 0.457039 -0.477506 -0.815093 0.328045 +0.248195 -0.700021 0.45536 -0.499627 -0.797195 0.338903 +0.241485 -0.696624 0.453702 -0.518202 -0.781059 0.348445 +0.234952 -0.693151 0.452052 -0.53866 -0.761638 0.360215 +0.228938 -0.689408 0.450422 -0.560194 -0.742106 0.368054 +0.222845 -0.685713 0.448789 -0.582153 -0.7211 0.375653 +0.216709 -0.682062 0.447163 -0.607915 -0.696389 0.38142 +0.211278 -0.678025 0.445556 -0.635556 -0.670091 0.383467 +0.205742 -0.674051 0.443955 -0.666576 -0.641949 0.378916 +0.200315 -0.670035 0.44236 -0.695622 -0.616073 0.369547 +0.195687 -0.66557 0.440796 -0.726224 -0.588149 0.355919 +0.191377 -0.660927 0.439242 -0.755803 -0.561818 0.336336 +0.187582 -0.655996 0.437704 -0.782607 -0.537569 0.313918 +0.184274 -0.650784 0.436192 -0.804585 -0.518849 0.288859 +0.181362 -0.645353 0.434688 -0.829943 -0.499911 0.247555 +0.17865 -0.639794 0.433195 -0.847772 -0.487575 0.208697 +0.175525 -0.634478 0.431682 -0.864101 -0.475368 0.165399 +0.172592 -0.629052 0.430177 -0.874794 -0.469834 0.118289 +0.169074 -0.623964 0.428652 -0.882108 -0.465146 0.0743245 +0.166071 -0.61857 0.427148 -0.887839 -0.459259 0.0286649 +0.162012 -0.613804 0.425603 -0.894245 -0.447291 -0.0160313 +0.158525 -0.608704 0.424085 -0.900063 -0.432434 -0.0537433 +0.155101 -0.603567 0.422565 -0.906957 -0.413503 -0.0802674 +0.152372 -0.598012 0.421063 -0.915348 -0.387204 -0.110508 +0.150007 -0.592239 0.419575 -0.926907 -0.348664 -0.138841 +0.148216 -0.586115 0.418102 -0.941218 -0.296825 -0.161257 +0.147055 -0.579596 0.416649 -0.956591 -0.236759 -0.169938 +0.145953 -0.573042 0.415191 -0.971183 -0.147303 -0.187364 +0.145709 -0.565951 0.413757 -0.977321 -0.0766702 -0.197394 +0.145693 -0.558708 0.41233 -0.9793 0.00771313 -0.202265 +0.146801 -0.550763 0.410926 -0.974955 0.0877516 -0.204361 +0.14898 -0.542132 0.40955 -0.960035 0.189241 -0.206205 +0.152693 -0.532524 0.408209 -0.939058 0.274975 -0.206298 +0.159586 -0.52092 0.406942 -0.887321 0.422239 -0.185406 +0.17113 -0.506356 0.405783 -0.803823 0.573841 -0.156764 +0.189929 -0.487201 0.404785 -0.782065 0.619691 -0.0660189 +0.206062 -0.469605 0.40371 -0.958572 0.230693 0.167095 +0.214215 -0.456943 0.402427 -0.915146 -0.27366 0.296003 +0.212828 -0.450275 0.400903 -0.882585 -0.368116 0.292465 +0.210322 -0.444302 0.399356 -0.859507 -0.416496 0.296275 +0.206497 -0.439164 0.397776 -0.824749 -0.482671 0.29465 +0.202347 -0.434246 0.396194 -0.799335 -0.529061 0.284884 +0.197964 -0.429473 0.394604 -0.774217 -0.565313 0.284623 +0.193099 -0.425012 0.393002 -0.754738 -0.596775 0.272453 +0.188228 -0.42057 0.391405 -0.739353 -0.616759 0.270122 +0.183305 -0.416161 0.389811 -0.730314 -0.629414 0.265482 +0.178454 -0.411724 0.388218 -0.731 -0.629739 0.262809 +0.173597 -0.407291 0.386625 -0.7378 -0.62217 0.261827 +0.168693 -0.402898 0.385028 -0.747772 -0.609519 0.263296 +0.16432 -0.398154 0.383445 -0.75896 -0.594404 0.265828 +0.160092 -0.393328 0.381869 -0.771241 -0.576369 0.270164 +0.156572 -0.388034 0.380305 -0.783072 -0.55747 0.275725 +0.153244 -0.382619 0.378743 -0.794111 -0.538397 0.281987 +0.149912 -0.377198 0.37718 -0.803403 -0.520477 0.289218 +0.146256 -0.371998 0.375616 -0.811005 -0.503989 0.297097 +0.14214 -0.36711 0.374045 -0.818597 -0.488265 0.302487 +0.138038 -0.362215 0.372474 -0.825229 -0.475438 0.304888 +0.1341 -0.357209 0.370899 -0.833544 -0.4593 0.307 +0.13036 -0.352077 0.369336 -0.843129 -0.442133 0.306027 +0.126633 -0.346938 0.367773 -0.856323 -0.420544 0.299754 +0.123142 -0.341634 0.366207 -0.871944 -0.394585 0.289853 +0.119729 -0.336282 0.364645 -0.887857 -0.366948 0.277596 +0.116709 -0.330658 0.363093 -0.904316 -0.336953 0.262062 +0.11414 -0.324717 0.36154 -0.92219 -0.29944 0.244748 +0.11179 -0.318622 0.359993 -0.94004 -0.257423 0.223737 +0.110053 -0.312093 0.358447 -0.9557 -0.212366 0.203807 +0.108679 -0.305302 0.356902 -0.967888 -0.169295 0.185831 +0.107504 -0.298359 0.355364 -0.976867 -0.125718 0.17299 +0.106812 -0.291073 0.35382 -0.983519 -0.0822992 0.160988 +0.106395 -0.28357 0.352281 -0.987089 -0.0388945 0.155373 +0.106715 -0.27553 0.350745 -0.987223 -0.00554354 0.159252 +0.107282 -0.2673 0.349209 -0.985223 0.0333955 0.167989 +0.10785 -0.259043 0.347669 -0.981358 0.0633013 0.181467 +0.10837 -0.250809 0.34612 -0.977284 0.0872482 0.193142 +0.10846 -0.242859 0.344569 -0.973403 0.108865 0.201582 +0.108204 -0.235143 0.34301 -0.967535 0.13678 0.212524 +0.108558 -0.226971 0.341447 -0.960919 0.164673 0.222526 +0.109559 -0.218305 0.339888 -0.954118 0.197808 0.224793 +0.111441 -0.208976 0.338332 -0.94541 0.246115 0.213604 +0.114401 -0.198828 0.336765 -0.9325 0.297479 0.204813 +0.117908 -0.188241 0.335199 -0.915474 0.353028 0.193078 +0.122673 -0.176694 0.333632 -0.904315 0.386186 0.181864 +0.130033 -0.16318 0.332057 -0.90174 0.396149 0.173003 +0.135479 -0.151035 0.330472 -0.904579 0.388668 0.175136 +0.139017 -0.140264 0.328875 -0.904035 0.387473 0.180515 +0.141642 -0.130151 0.327271 -0.902514 0.393484 0.175047 +0.144445 -0.119866 0.325659 -0.895148 0.418427 0.153717 +0.150232 -0.107293 0.324036 -0.865423 0.479727 0.144587 +0.163506 -0.0890176 0.3224 -0.802628 0.5823 0.129286 +0.188412 -0.0618101 0.32073 -0.71274 0.689832 0.127023 +0.182646 0.052542 0.297339 0.0872353 -0.896393 0.434595 +0.167358 0.0489486 0.295782 -0.0140575 -0.914263 0.404877 +0.156182 0.0485835 0.294197 -0.111568 -0.914249 0.389489 +0.146575 0.0494415 0.292609 -0.210812 -0.90299 0.374389 +0.137712 0.0508767 0.291014 -0.271984 -0.888723 0.369051 +0.130739 0.0538067 0.289402 -0.337594 -0.86666 0.367329 +0.123707 0.0566614 0.287797 -0.38524 -0.847243 0.365745 +0.116806 0.0596197 0.286193 -0.451759 -0.81404 0.365039 +0.109918 0.0625563 0.284588 -0.517376 -0.774923 0.363067 +0.102882 0.0653585 0.282993 -0.545825 -0.752292 0.368961 +0.095677 0.0680026 0.281405 -0.579316 -0.723405 0.375604 +0.0900354 0.0719189 0.279801 -0.602606 -0.703857 0.3761 +0.0850994 0.0764076 0.278186 -0.625648 -0.682656 0.377553 +0.0814349 0.081949 0.27655 -0.656432 -0.653608 0.376688 +0.0808178 0.0900358 0.274865 -0.695762 -0.608462 0.381694 +0.457973 -0.719947 0.483495 0.275764 -0.936212 0.21786 +0.427263 -0.728396 0.480665 0.183304 -0.961221 0.206046 +0.404198 -0.733025 0.478195 0.073592 -0.97747 0.197831 +0.386923 -0.734753 0.476003 0.0170074 -0.979556 0.200454 +0.373463 -0.734559 0.47399 -0.0507279 -0.979186 0.196526 +0.360805 -0.733993 0.472025 -0.0961093 -0.972661 0.211412 +0.34868 -0.73318 0.470089 -0.14846 -0.963484 0.222844 +0.337611 -0.731858 0.468199 -0.200464 -0.951852 0.231936 +0.327597 -0.730011 0.466367 -0.233856 -0.94405 0.232558 +0.318576 -0.72767 0.464577 -0.266793 -0.933483 0.239654 +0.309896 -0.725172 0.462813 -0.302121 -0.920218 0.248846 +0.301398 -0.722597 0.461055 -0.328847 -0.909362 0.254798 +0.293081 -0.719953 0.459313 -0.350674 -0.899486 0.260678 +0.285152 -0.717116 0.457592 -0.373779 -0.888513 0.266152 +0.277348 -0.714237 0.455879 -0.397113 -0.876933 0.270726 +0.269636 -0.711319 0.454166 -0.420502 -0.863532 0.278375 +0.262197 -0.708282 0.452472 -0.444201 -0.848571 0.287428 +0.25483 -0.705217 0.450787 -0.466488 -0.833336 0.296547 +0.247596 -0.702094 0.449108 -0.488345 -0.818956 0.301382 +0.240958 -0.698669 0.447458 -0.510552 -0.802755 0.308095 +0.234552 -0.695125 0.445817 -0.527156 -0.78862 0.316522 +0.228285 -0.691521 0.444182 -0.550753 -0.768541 0.325603 +0.222076 -0.687896 0.442555 -0.574663 -0.748035 0.331975 +0.215933 -0.68425 0.440929 -0.603331 -0.723052 0.336435 +0.210132 -0.680422 0.439322 -0.635602 -0.694561 0.337038 +0.204619 -0.676441 0.437729 -0.669503 -0.661923 0.337084 +0.199225 -0.672405 0.436132 -0.702567 -0.631752 0.327551 +0.194578 -0.667951 0.434577 -0.737574 -0.599379 0.311012 +0.190106 -0.663408 0.433016 -0.772322 -0.563264 0.293689 +0.186305 -0.658477 0.431487 -0.796671 -0.539322 0.272853 +0.182942 -0.653309 0.429971 -0.825954 -0.509934 0.24035 +0.179976 -0.647905 0.42846 -0.852512 -0.481965 0.202322 +0.177693 -0.642106 0.426981 -0.871109 -0.463504 0.162273 +0.175004 -0.636543 0.425481 -0.883634 -0.451779 0.122827 +0.172755 -0.630715 0.423999 -0.894064 -0.441817 0.0738089 +0.170236 -0.625037 0.42251 -0.899241 -0.43662 0.0269893 +0.168038 -0.619176 0.421024 -0.902902 -0.429278 -0.0220824 +0.164083 -0.614343 0.419489 -0.903713 -0.423577 -0.0623301 +0.160286 -0.609423 0.417954 -0.904814 -0.413996 -0.0995892 +0.156919 -0.604248 0.416437 -0.907966 -0.397759 -0.131855 +0.154185 -0.598698 0.414936 -0.912524 -0.375559 -0.162036 +0.151432 -0.593148 0.413434 -0.920584 -0.346569 -0.180038 +0.149597 -0.587053 0.411956 -0.931415 -0.30427 -0.19971 +0.148658 -0.580405 0.410509 -0.945391 -0.241136 -0.219294 +0.14787 -0.573657 0.40905 -0.958172 -0.16405 -0.234511 +0.147232 -0.566804 0.407604 -0.966057 -0.0856165 -0.243729 +0.147123 -0.559612 0.406165 -0.96849 -0.0152877 -0.248583 +0.148116 -0.551741 0.404752 -0.965316 0.0763077 -0.249683 +0.150316 -0.543101 0.403361 -0.954842 0.15973 -0.250525 +0.154791 -0.533031 0.402026 -0.936489 0.262039 -0.233078 +0.160106 -0.522401 0.400698 -0.891943 0.393189 -0.223246 +0.16999 -0.508884 0.399471 -0.823562 0.532684 -0.194921 +0.1863 -0.491291 0.398382 -0.76898 0.62672 -0.126064 +0.202594 -0.473614 0.397272 -0.927988 0.371002 0.0345854 +0.210892 -0.460889 0.395963 -0.952987 -0.204701 0.223412 +0.211626 -0.452885 0.394488 -0.907699 -0.351341 0.22944 +0.209037 -0.446967 0.392938 -0.871105 -0.428762 0.239459 +0.205682 -0.441535 0.39137 -0.841519 -0.481785 0.244396 +0.201581 -0.436587 0.389787 -0.814521 -0.52271 0.251656 +0.197258 -0.431776 0.388199 -0.78805 -0.561567 0.252226 +0.192389 -0.427323 0.386608 -0.76283 -0.596704 0.249069 +0.18755 -0.422862 0.38501 -0.74583 -0.617865 0.24896 +0.182669 -0.418434 0.383422 -0.733925 -0.632375 0.247907 +0.177905 -0.413935 0.381829 -0.731779 -0.634678 0.248362 +0.173117 -0.409458 0.380241 -0.735682 -0.629427 0.250186 +0.168329 -0.40499 0.378653 -0.744047 -0.618227 0.253356 +0.164323 -0.400017 0.37708 -0.75451 -0.603575 0.257706 +0.160295 -0.395056 0.375508 -0.765863 -0.587359 0.26166 +0.156666 -0.389831 0.37394 -0.777103 -0.569728 0.267432 +0.153242 -0.384475 0.372385 -0.787761 -0.551633 0.274103 +0.149357 -0.379426 0.370812 -0.797476 -0.53418 0.280507 +0.145282 -0.374514 0.36924 -0.80638 -0.517908 0.285521 +0.141028 -0.369719 0.36767 -0.815591 -0.501877 0.287977 +0.136952 -0.364807 0.366097 -0.824142 -0.486999 0.289175 +0.132937 -0.359865 0.364529 -0.834132 -0.470692 0.28753 +0.128989 -0.354872 0.362965 -0.846411 -0.452016 0.281545 +0.125247 -0.349751 0.361404 -0.861264 -0.428604 0.272986 +0.121878 -0.344372 0.35984 -0.877321 -0.402434 0.261447 +0.118666 -0.338884 0.358286 -0.895211 -0.372796 0.244173 +0.115697 -0.33323 0.356726 -0.911799 -0.342561 0.226438 +0.113142 -0.327278 0.355178 -0.929343 -0.304594 0.208666 +0.111106 -0.320973 0.353627 -0.94632 -0.261956 0.189355 +0.109381 -0.314436 0.352079 -0.960488 -0.219182 0.171525 +0.107991 -0.307664 0.350538 -0.97126 -0.177211 0.158901 +0.106907 -0.300666 0.348995 -0.979967 -0.135205 0.146231 +0.106264 -0.293343 0.347447 -0.985969 -0.0924405 0.138995 +0.105991 -0.285743 0.345905 -0.989391 -0.0565873 0.133809 +0.106104 -0.27786 0.344357 -0.989953 -0.0239605 0.139349 +0.106277 -0.269913 0.342813 -0.988673 0.011378 0.149652 +0.106539 -0.261884 0.341259 -0.986381 0.0384817 0.159912 +0.106671 -0.253929 0.339704 -0.983049 0.0639377 0.171837 +0.106483 -0.246191 0.338145 -0.978507 0.0923082 0.184397 +0.106279 -0.238446 0.336576 -0.975042 0.115852 0.189397 +0.106385 -0.230463 0.335011 -0.971006 0.140871 0.193142 +0.107457 -0.221754 0.333449 -0.963837 0.181393 0.19523 +0.109258 -0.212498 0.331878 -0.95554 0.231112 0.183114 +0.11192 -0.202573 0.330305 -0.944453 0.280233 0.171691 +0.115191 -0.192181 0.328726 -0.928027 0.337172 0.158373 +0.11932 -0.181116 0.327137 -0.912765 0.378885 0.15266 +0.126445 -0.167789 0.325543 -0.906321 0.395074 0.149998 +0.132409 -0.155273 0.323943 -0.909248 0.389615 0.146521 +0.136544 -0.144075 0.322329 -0.912056 0.383369 0.145543 +0.139575 -0.133667 0.320717 -0.909195 0.390818 0.14362 +0.142772 -0.123099 0.31909 -0.899772 0.418203 0.124567 +0.147709 -0.111183 0.317452 -0.882284 0.459381 0.102682 +0.158654 -0.0946726 0.315793 -0.83305 0.548374 0.072903 +0.172638 -0.0757921 0.314101 -0.769006 0.6347 0.0760684 +0.201504 0.0568366 0.292071 0.0438184 -0.876764 0.478921 +0.181153 0.0492857 0.290581 0.036745 -0.912658 0.407071 +0.166608 0.0462943 0.289043 -0.0371726 -0.935302 0.351894 +0.156114 0.0464812 0.28747 -0.112941 -0.930664 0.34801 +0.146418 0.0472688 0.28589 -0.19438 -0.918742 0.343701 +0.13738 0.0485565 0.284313 -0.265251 -0.903423 0.336853 +0.129601 0.0508356 0.28272 -0.338459 -0.876831 0.341488 +0.122218 0.0534056 0.281125 -0.383581 -0.857314 0.343335 +0.114777 0.055914 0.279539 -0.451641 -0.821567 0.347921 +0.108009 0.0589466 0.277947 -0.507119 -0.788327 0.348384 +0.101654 0.0623064 0.276352 -0.537005 -0.763749 0.358212 +0.0950173 0.0654124 0.274761 -0.565513 -0.737908 0.368357 +0.0891461 0.0691362 0.273165 -0.590078 -0.718196 0.368785 +0.083968 0.0734284 0.271552 -0.633857 -0.685526 0.358161 +0.0804094 0.0790436 0.269916 -0.669004 -0.650766 0.359079 +0.0803805 0.0876182 0.268217 -0.699039 -0.618618 0.358687 +0.460963 -0.720236 0.477108 0.273029 -0.943116 0.189708 +0.429563 -0.729015 0.474294 0.189262 -0.965056 0.181242 +0.405859 -0.733961 0.47184 0.0802113 -0.981427 0.17427 +0.388273 -0.735832 0.469661 0.0257101 -0.98488 0.171323 +0.374261 -0.735925 0.467643 -0.0396813 -0.985103 0.167323 +0.361074 -0.735623 0.465669 -0.0888018 -0.979699 0.179734 +0.349214 -0.734676 0.463764 -0.137057 -0.972698 0.187279 +0.337936 -0.733462 0.461881 -0.186615 -0.962714 0.195852 +0.32773 -0.731707 0.460053 -0.22608 -0.952312 0.204919 +0.318517 -0.729472 0.458271 -0.260232 -0.942321 0.210502 +0.309752 -0.727008 0.456507 -0.287709 -0.933898 0.212272 +0.30125 -0.72444 0.454765 -0.316919 -0.922672 0.219636 +0.292933 -0.721793 0.453031 -0.341177 -0.912419 0.226035 +0.285016 -0.718947 0.451317 -0.363887 -0.902238 0.231414 +0.277232 -0.716055 0.44961 -0.386036 -0.891617 0.236636 +0.269333 -0.713241 0.447904 -0.410454 -0.878703 0.243743 +0.261869 -0.710218 0.44622 -0.433482 -0.865559 0.250802 +0.254652 -0.707065 0.444542 -0.454542 -0.853169 0.255921 +0.24759 -0.703858 0.442883 -0.476362 -0.838594 0.264272 +0.240627 -0.700598 0.441227 -0.49837 -0.822928 0.272797 +0.233986 -0.697192 0.439581 -0.519321 -0.807699 0.279162 +0.227868 -0.6935 0.437962 -0.541819 -0.791489 0.282804 +0.22174 -0.689833 0.436341 -0.56895 -0.771741 0.284099 +0.215598 -0.686185 0.434721 -0.597375 -0.749377 0.285619 +0.20969 -0.682413 0.433118 -0.630775 -0.720809 0.287327 +0.204081 -0.678492 0.431523 -0.667835 -0.686486 0.287636 +0.198766 -0.674411 0.42994 -0.705285 -0.650458 0.281919 +0.193974 -0.67004 0.428374 -0.743236 -0.613366 0.267171 +0.189544 -0.665478 0.42682 -0.782324 -0.571689 0.247269 +0.185666 -0.660597 0.425287 -0.813804 -0.536792 0.22266 +0.182323 -0.655418 0.423772 -0.84456 -0.500151 0.191226 +0.179234 -0.650087 0.422267 -0.871465 -0.465591 0.154194 +0.176907 -0.644317 0.420783 -0.888381 -0.442747 0.121471 +0.174852 -0.638385 0.419301 -0.903274 -0.423206 0.070665 +0.173123 -0.632258 0.417833 -0.910813 -0.41179 0.029115 +0.171644 -0.625975 0.416368 -0.912929 -0.407731 -0.0177946 +0.170202 -0.619669 0.414906 -0.9132 -0.402707 -0.0623839 +0.166415 -0.614733 0.41337 -0.912059 -0.398082 -0.0983888 +0.163064 -0.609541 0.411851 -0.910219 -0.392111 -0.133228 +0.159794 -0.604305 0.410336 -0.911038 -0.378988 -0.162409 +0.156438 -0.599118 0.408818 -0.912391 -0.365697 -0.183871 +0.153482 -0.593685 0.40731 -0.918317 -0.337876 -0.206235 +0.151622 -0.587608 0.405826 -0.929713 -0.290323 -0.226594 +0.150706 -0.580939 0.404366 -0.939192 -0.239179 -0.246398 +0.149988 -0.574147 0.402913 -0.950371 -0.167936 -0.261905 +0.149428 -0.567247 0.401463 -0.959251 -0.0905497 -0.267654 +0.149378 -0.560022 0.400014 -0.961894 -0.0309598 -0.271666 +0.150658 -0.551966 0.398598 -0.959688 0.0643051 -0.273614 +0.15307 -0.543197 0.397203 -0.951742 0.151795 -0.266729 +0.156272 -0.533906 0.39582 -0.932644 0.242223 -0.267401 +0.160952 -0.523677 0.394466 -0.892849 0.376599 -0.24697 +0.169984 -0.510697 0.393195 -0.825373 0.51942 -0.22128 +0.184462 -0.494261 0.392025 -0.773952 0.6116 -0.164154 +0.202009 -0.475823 0.390904 -0.921654 0.38711 -0.0264269 +0.209879 -0.463371 0.389567 -0.977041 -0.169247 0.129403 +0.210472 -0.455458 0.388077 -0.924098 -0.351054 0.151006 +0.20792 -0.449527 0.386526 -0.875842 -0.450156 0.173953 +0.204911 -0.443877 0.38497 -0.84841 -0.495742 0.185582 +0.200836 -0.438913 0.383385 -0.822033 -0.529809 0.208722 +0.19642 -0.434167 0.381805 -0.802462 -0.557752 0.212056 +0.191646 -0.429655 0.380217 -0.765208 -0.605203 0.219513 +0.186884 -0.425143 0.378628 -0.751032 -0.6213 0.22347 +0.182138 -0.420631 0.377042 -0.73489 -0.638387 0.228911 +0.177418 -0.416102 0.375455 -0.730519 -0.641963 0.232866 +0.172844 -0.411494 0.373868 -0.732608 -0.637847 0.237561 +0.168124 -0.40698 0.372292 -0.739303 -0.628006 0.24298 +0.164152 -0.401978 0.370715 -0.749208 -0.614219 0.247837 +0.160273 -0.396923 0.36915 -0.760385 -0.597972 0.253465 +0.15646 -0.39183 0.367581 -0.771483 -0.580841 0.259685 +0.152523 -0.386814 0.366011 -0.782002 -0.564616 0.263974 +0.14827 -0.382018 0.364441 -0.793032 -0.546649 0.26884 +0.143966 -0.377256 0.362868 -0.803135 -0.530396 0.271394 +0.139831 -0.372389 0.3613 -0.813556 -0.514152 0.271618 +0.13568 -0.367532 0.359733 -0.824639 -0.497754 0.268723 +0.131553 -0.362667 0.358166 -0.836554 -0.480503 0.263238 +0.12776 -0.357578 0.3566 -0.850547 -0.459959 0.254967 +0.124037 -0.352445 0.355039 -0.867022 -0.435047 0.242912 +0.120831 -0.346954 0.353486 -0.88327 -0.409459 0.228422 +0.117708 -0.341411 0.351929 -0.900138 -0.380807 0.211511 +0.114996 -0.335579 0.350372 -0.918986 -0.34433 0.192094 +0.112839 -0.329365 0.348823 -0.935164 -0.308851 0.173442 +0.11084 -0.323034 0.347276 -0.951023 -0.267208 0.155414 +0.108886 -0.31666 0.345722 -0.963541 -0.227258 0.141217 +0.107529 -0.309869 0.344173 -0.974221 -0.185521 0.128355 +0.10651 -0.302832 0.342625 -0.982059 -0.144029 0.121719 +0.105971 -0.295436 0.341077 -0.987541 -0.106054 0.116252 +0.105724 -0.28782 0.339528 -0.990646 -0.0684044 0.118076 +0.105606 -0.280111 0.337975 -0.992 -0.0441826 0.118252 +0.105514 -0.272356 0.336422 -0.99154 -0.0152296 0.128899 +0.105548 -0.26449 0.334861 -0.989762 0.0163346 0.141792 +0.105254 -0.256856 0.333295 -0.987719 0.0392619 0.151233 +0.104597 -0.249455 0.331727 -0.984633 0.0680759 0.160822 +0.104412 -0.241708 0.33016 -0.981187 0.0967194 0.167087 +0.104623 -0.233653 0.328588 -0.977633 0.123765 0.17005 +0.105804 -0.224878 0.327019 -0.972406 0.162862 0.167041 +0.107434 -0.215748 0.325439 -0.963789 0.21708 0.154878 +0.110152 -0.205802 0.323852 -0.95151 0.272146 0.143407 +0.113125 -0.195634 0.322259 -0.938078 0.320635 0.131158 +0.117029 -0.184739 0.320658 -0.921627 0.368167 0.122702 +0.122955 -0.172322 0.319053 -0.911604 0.392387 0.122515 +0.129711 -0.159232 0.317428 -0.911395 0.393071 0.121879 +0.134136 -0.14783 0.315801 -0.914711 0.386401 0.118316 +0.137481 -0.137197 0.314172 -0.914466 0.39014 0.107434 +0.140845 -0.12651 0.312532 -0.904646 0.415902 0.0929577 +0.145759 -0.11463 0.310885 -0.889525 0.45157 0.0694984 +0.154759 -0.0996141 0.309198 -0.846368 0.53014 0.0511222 +0.167853 -0.081428 0.307479 -0.784708 0.618758 0.0370166 +0.247606 0.0738149 0.288173 -0.177633 -0.275424 0.94477 +0.22224 0.0625119 0.286736 -0.053726 -0.642156 0.76469 +0.19569 0.0501605 0.285344 -0.0201655 -0.898168 0.439192 +0.179934 0.046264 0.283832 0.0107914 -0.923754 0.382837 +0.166724 0.0443279 0.2823 -0.0491564 -0.941626 0.333054 +0.156126 0.0444278 0.280745 -0.107478 -0.939302 0.325822 +0.146568 0.0453325 0.279173 -0.189517 -0.931845 0.309431 +0.137534 0.0466323 0.277603 -0.257548 -0.913439 0.315118 +0.129287 0.0485292 0.276033 -0.327165 -0.889127 0.32003 +0.121322 0.0506341 0.274456 -0.372288 -0.869469 0.324695 +0.113788 0.053062 0.272881 -0.438777 -0.834676 0.332853 +0.107095 0.0561608 0.271294 -0.496765 -0.79948 0.337724 +0.100809 0.0595657 0.269703 -0.529642 -0.773926 0.347158 +0.0942337 0.0627194 0.268123 -0.550185 -0.754106 0.358637 +0.0887274 0.0667486 0.266519 -0.59046 -0.725876 0.35279 +0.0838099 0.0712496 0.264912 -0.625741 -0.699537 0.345101 +0.080074 0.0767197 0.263277 -0.666255 -0.66183 0.343637 +0.0796103 0.0849162 0.261581 -0.694812 -0.632626 0.342083 +0.462943 -0.721035 0.470672 0.279337 -0.94329 0.17938 +0.431046 -0.730057 0.467892 0.197519 -0.967522 0.157765 +0.407613 -0.734848 0.465482 0.0925983 -0.985088 0.145016 +0.390425 -0.73651 0.463344 0.0393795 -0.989358 0.140079 +0.376226 -0.736686 0.461344 -0.0237412 -0.989873 0.139961 +0.362576 -0.736616 0.459368 -0.0717964 -0.986911 0.144407 +0.349993 -0.736037 0.457445 -0.123808 -0.980107 0.155121 +0.338573 -0.734895 0.455581 -0.168829 -0.972563 0.160059 +0.328374 -0.733133 0.45376 -0.215479 -0.961995 0.167734 +0.318562 -0.731208 0.451966 -0.248153 -0.952928 0.174212 +0.309712 -0.728795 0.450214 -0.279974 -0.943232 0.178685 +0.301168 -0.726244 0.448473 -0.305385 -0.934528 0.182747 +0.292909 -0.723563 0.446759 -0.330298 -0.92426 0.191435 +0.284972 -0.720727 0.445052 -0.351433 -0.915998 0.193501 +0.277168 -0.717844 0.443354 -0.378446 -0.90372 0.200173 +0.269276 -0.715024 0.441657 -0.400319 -0.893079 0.205317 +0.261768 -0.712018 0.439972 -0.420455 -0.883001 0.208634 +0.254484 -0.708913 0.438307 -0.442863 -0.870348 0.21533 +0.247498 -0.705656 0.436658 -0.464697 -0.85744 0.221029 +0.240705 -0.702308 0.435012 -0.487265 -0.842878 0.22832 +0.233935 -0.69897 0.43337 -0.509926 -0.827926 0.233484 +0.227427 -0.695494 0.431745 -0.532397 -0.813077 0.235503 +0.221355 -0.6918 0.430129 -0.562532 -0.790955 0.240728 +0.21543 -0.688031 0.428525 -0.591813 -0.768161 0.244307 +0.209483 -0.684282 0.426923 -0.627385 -0.741652 0.237362 +0.203855 -0.680371 0.425337 -0.663948 -0.711548 0.22994 +0.198623 -0.676238 0.423756 -0.705545 -0.673109 0.221655 +0.193836 -0.671874 0.422193 -0.746678 -0.630599 0.211701 +0.189369 -0.667324 0.420645 -0.788818 -0.583602 0.192801 +0.185501 -0.662445 0.419115 -0.824733 -0.538378 0.173104 +0.182109 -0.657288 0.417592 -0.857776 -0.492762 0.146311 +0.178998 -0.651979 0.41609 -0.882818 -0.456733 0.109674 +0.176777 -0.646153 0.414602 -0.903141 -0.423848 0.068474 +0.174755 -0.640199 0.413126 -0.915664 -0.40078 0.0305616 +0.173242 -0.633949 0.411657 -0.923001 -0.38452 -0.0146126 +0.172518 -0.627231 0.410211 -0.924247 -0.377361 -0.0580261 +0.171683 -0.620565 0.408759 -0.922786 -0.374176 -0.0919657 +0.168837 -0.615067 0.407253 -0.920621 -0.369609 -0.125884 +0.165892 -0.609638 0.405746 -0.917901 -0.364698 -0.156379 +0.162798 -0.604285 0.404229 -0.917004 -0.355113 -0.181651 +0.15964 -0.598972 0.402715 -0.916393 -0.345507 -0.202115 +0.156724 -0.593518 0.401204 -0.920413 -0.322818 -0.220514 +0.154625 -0.587572 0.399715 -0.928791 -0.280919 -0.241729 +0.153179 -0.581227 0.398237 -0.938465 -0.229636 -0.257976 +0.152248 -0.574561 0.396769 -0.947168 -0.17615 -0.268036 +0.151607 -0.567706 0.395307 -0.954963 -0.104484 -0.277723 +0.152318 -0.560015 0.393872 -0.959683 -0.0395203 -0.278292 +0.154163 -0.55161 0.392457 -0.956108 0.0543362 -0.287934 +0.156501 -0.542879 0.391049 -0.949483 0.147935 -0.276762 +0.158931 -0.534065 0.389638 -0.927116 0.255064 -0.274589 +0.161671 -0.525033 0.388228 -0.90144 0.342423 -0.264865 +0.169388 -0.512881 0.386907 -0.844668 0.472402 -0.25174 +0.183553 -0.49665 0.385693 -0.77923 0.59643 -0.192544 +0.201484 -0.477985 0.384538 -0.922707 0.366303 -0.120134 +0.209258 -0.465607 0.383179 -0.99803 -0.058917 0.0215313 +0.209175 -0.458126 0.381674 -0.941164 -0.333543 0.054382 +0.206968 -0.451978 0.380128 -0.887258 -0.451491 0.0944837 +0.204088 -0.44625 0.378572 -0.833279 -0.536653 0.132852 +0.200302 -0.441104 0.376995 -0.815981 -0.555688 0.159327 +0.196007 -0.436284 0.375415 -0.803423 -0.571465 0.167146 +0.191287 -0.431737 0.373831 -0.757273 -0.625453 0.188008 +0.186555 -0.427206 0.372249 -0.751104 -0.630973 0.194208 +0.181854 -0.422666 0.37066 -0.732472 -0.64864 0.206766 +0.177125 -0.41815 0.369082 -0.726781 -0.652045 0.215935 +0.172459 -0.413596 0.367501 -0.72764 -0.648311 0.22413 +0.168077 -0.408865 0.365927 -0.733779 -0.639044 0.230639 +0.163927 -0.403988 0.364356 -0.743069 -0.625891 0.236875 +0.159861 -0.399051 0.362786 -0.754064 -0.610186 0.243029 +0.15572 -0.394178 0.361216 -0.765766 -0.593112 0.248637 +0.151431 -0.389397 0.359647 -0.777331 -0.576625 0.251519 +0.147074 -0.384676 0.358078 -0.789185 -0.55888 0.254641 +0.14279 -0.379903 0.356503 -0.801197 -0.541778 0.254087 +0.138598 -0.375078 0.35494 -0.813048 -0.525007 0.25164 +0.134432 -0.370236 0.353375 -0.825916 -0.506806 0.247005 +0.130482 -0.365254 0.351812 -0.840226 -0.486781 0.238879 +0.126701 -0.360157 0.350246 -0.855803 -0.465055 0.226549 +0.123141 -0.354913 0.348689 -0.8729 -0.439928 0.210974 +0.120024 -0.349377 0.347133 -0.890116 -0.412417 0.193926 +0.117307 -0.343557 0.345579 -0.906594 -0.383766 0.175533 +0.11482 -0.337572 0.34403 -0.924481 -0.34776 0.1562 +0.112826 -0.331249 0.342477 -0.939669 -0.312531 0.139093 +0.110975 -0.32481 0.340925 -0.954225 -0.271666 0.125114 +0.109262 -0.318277 0.339373 -0.965687 -0.234188 0.112279 +0.107761 -0.311586 0.337817 -0.975672 -0.193653 0.102784 +0.106429 -0.304764 0.336262 -0.983394 -0.154161 0.0957644 +0.10577 -0.297461 0.334709 -0.9888 -0.115353 0.0946988 +0.105245 -0.290058 0.333153 -0.991389 -0.0870495 0.0978317 +0.105161 -0.282318 0.331596 -0.992973 -0.0585801 0.102828 +0.104846 -0.274722 0.330036 -0.993306 -0.0322734 0.110904 +0.104448 -0.26718 0.328466 -0.992829 -0.00869311 0.119228 +0.10401 -0.259643 0.326903 -0.991566 0.0171678 0.128456 +0.10335 -0.252254 0.325329 -0.98952 0.045167 0.13715 +0.102966 -0.24466 0.323757 -0.986754 0.0762558 0.143186 +0.103198 -0.236595 0.322175 -0.983745 0.106371 0.144676 +0.104122 -0.228011 0.32059 -0.979625 0.146229 0.137663 +0.105655 -0.21897 0.319006 -0.971819 0.198968 0.126402 +0.108314 -0.209072 0.31741 -0.959096 0.258733 0.114857 +0.111344 -0.198871 0.315806 -0.946544 0.305694 0.102981 +0.114747 -0.188361 0.314195 -0.931303 0.352365 0.0922728 +0.120009 -0.176442 0.31257 -0.918806 0.384196 0.0904932 +0.12695 -0.163235 0.310927 -0.914397 0.393398 0.0954826 +0.132028 -0.151363 0.309279 -0.915775 0.391727 0.0889211 +0.135699 -0.140496 0.307633 -0.916076 0.393561 0.0768995 +0.138953 -0.129906 0.30599 -0.910794 0.408752 0.0581197 +0.143538 -0.118272 0.304316 -0.896151 0.442136 0.0378204 +0.152296 -0.103456 0.302615 -0.863624 0.504058 0.00892114 +0.164662 -0.0858374 0.30087 -0.803876 0.594796 -0.000328322 +0.194676 -0.0547296 0.298959 -0.722587 0.691273 -0.00302031 +0.295659 0.0306831 0.29639 -0.251882 0.0440682 0.966755 +0.296439 0.0399652 0.294652 -0.251882 0.0440682 0.966755 +0.287283 0.0503331 0.291265 -0.216773 -0.0417126 0.975331 +0.279959 0.0533869 0.289603 -0.222729 -0.0480873 0.973693 +0.270404 0.0546949 0.287967 -0.264068 -0.117386 0.957335 +0.257343 0.053237 0.286384 -0.287463 -0.190865 0.938582 +0.246894 0.0537723 0.284772 -0.258238 -0.279854 0.92466 +0.238404 0.0558046 0.283149 -0.245145 -0.399038 0.883556 +0.227368 0.0558084 0.281561 -0.138509 -0.626633 0.766907 +0.21294 0.0530933 0.280033 -0.105203 -0.751722 0.651035 +0.193274 0.0461802 0.278595 -0.0529874 -0.895403 0.442092 +0.18003 0.044271 0.27707 -0.0394162 -0.924475 0.379201 +0.167137 0.0425979 0.275552 -0.0667173 -0.942309 0.328031 +0.156302 0.0425219 0.274016 -0.117646 -0.946806 0.299529 +0.146656 0.0433573 0.27246 -0.171132 -0.940761 0.292719 +0.137882 0.0448578 0.270898 -0.245161 -0.923953 0.293611 +0.129478 0.0466337 0.269341 -0.317682 -0.898143 0.304004 +0.121395 0.0486415 0.267776 -0.35852 -0.881484 0.307327 +0.113747 0.0509833 0.266212 -0.423737 -0.848907 0.315919 +0.107024 0.0540563 0.264629 -0.481386 -0.813573 0.326137 +0.100554 0.0573129 0.263048 -0.512452 -0.790261 0.335978 +0.094271 0.0607128 0.261468 -0.54231 -0.767983 0.340738 +0.0886663 0.0646565 0.259875 -0.584713 -0.739532 0.333473 +0.083598 0.0690304 0.258276 -0.620356 -0.709294 0.334756 +0.0794869 0.0741865 0.25665 -0.657029 -0.678863 0.327807 +0.0777744 0.0813361 0.254977 -0.692674 -0.644094 0.324569 +0.466444 -0.721071 0.464287 0.283549 -0.945729 0.158736 +0.434184 -0.73025 0.46155 0.205776 -0.969113 0.135932 +0.409854 -0.735485 0.45914 0.100161 -0.98836 0.114518 +0.392756 -0.73709 0.457036 0.0476167 -0.992452 0.113014 +0.37852 -0.737277 0.45505 -0.00991225 -0.994216 0.106936 +0.364633 -0.737323 0.45308 -0.0574356 -0.992108 0.111464 +0.351729 -0.736903 0.451166 -0.104328 -0.987686 0.116595 +0.340112 -0.735856 0.449308 -0.155536 -0.97972 0.126337 +0.329491 -0.734319 0.447484 -0.197005 -0.971638 0.130807 +0.319641 -0.732403 0.445705 -0.232301 -0.962924 0.137168 +0.310297 -0.730241 0.443945 -0.265708 -0.953869 0.139768 +0.301371 -0.727891 0.442201 -0.294568 -0.944643 0.144502 +0.293087 -0.725226 0.440487 -0.317672 -0.93663 0.14768 +0.284904 -0.722524 0.438782 -0.342671 -0.927399 0.150034 +0.277005 -0.719689 0.437088 -0.364791 -0.918365 0.153405 +0.269061 -0.716899 0.435399 -0.390043 -0.906882 0.159474 +0.261572 -0.713877 0.433728 -0.413995 -0.895163 0.165198 +0.254332 -0.710745 0.43207 -0.432637 -0.885982 0.166919 +0.247381 -0.707473 0.430428 -0.452716 -0.875003 0.171526 +0.240548 -0.704145 0.428791 -0.473995 -0.862536 0.177097 +0.23391 -0.700733 0.427159 -0.496668 -0.848817 0.181191 +0.227584 -0.69716 0.425541 -0.521684 -0.832617 0.186001 +0.221342 -0.693551 0.423931 -0.550949 -0.8132 0.187515 +0.215307 -0.689848 0.422333 -0.584701 -0.78896 0.188858 +0.209335 -0.686115 0.420733 -0.618896 -0.76433 0.181019 +0.203713 -0.6822 0.419144 -0.660947 -0.7289 0.178478 +0.198478 -0.678076 0.417575 -0.703916 -0.690727 0.165522 +0.193704 -0.673692 0.416015 -0.745233 -0.649166 0.152351 +0.189178 -0.669189 0.414467 -0.790763 -0.596742 0.136359 +0.185354 -0.664281 0.412941 -0.83065 -0.545012 0.113943 +0.182005 -0.659105 0.411425 -0.864138 -0.494794 0.0919034 +0.178972 -0.653749 0.409919 -0.893426 -0.445678 0.0562151 +0.176625 -0.647992 0.408428 -0.91483 -0.403445 0.0178471 +0.174577 -0.642056 0.406946 -0.926487 -0.375834 -0.0192258 +0.173025 -0.635829 0.405479 -0.931473 -0.359742 -0.0542661 +0.17272 -0.62887 0.404037 -0.930775 -0.354272 -0.0902772 +0.17263 -0.621767 0.402599 -0.929344 -0.349827 -0.118067 +0.171138 -0.615478 0.401121 -0.927098 -0.346067 -0.143965 +0.169419 -0.609314 0.399638 -0.923293 -0.34402 -0.170823 +0.166651 -0.603766 0.398129 -0.921117 -0.339294 -0.19085 +0.163577 -0.598401 0.396617 -0.922941 -0.323174 -0.209136 +0.160869 -0.592809 0.395107 -0.925878 -0.303788 -0.224638 +0.158721 -0.586885 0.393612 -0.933309 -0.265985 -0.241219 +0.157187 -0.580586 0.392129 -0.942149 -0.217522 -0.25503 +0.155875 -0.574141 0.390648 -0.949315 -0.17466 -0.261334 +0.155549 -0.567089 0.389191 -0.956975 -0.0990466 -0.272745 +0.156522 -0.559231 0.387748 -0.960325 -0.0183289 -0.278281 +0.158766 -0.550581 0.386327 -0.957115 0.070988 -0.280879 +0.159257 -0.542979 0.38487 -0.95128 0.129715 -0.279715 +0.160527 -0.534881 0.383428 -0.926564 0.246702 -0.28393 +0.162326 -0.526431 0.381983 -0.905149 0.322455 -0.276999 +0.169106 -0.514866 0.380631 -0.869788 0.420336 -0.258434 +0.182356 -0.499215 0.37937 -0.783672 0.574838 -0.235417 +0.202089 -0.479439 0.378203 -0.951235 0.280126 -0.129157 +0.207414 -0.468602 0.37678 -0.998329 -0.0387658 -0.0428646 +0.207695 -0.460905 0.375274 -0.975563 -0.217064 -0.0340645 +0.206385 -0.454192 0.373738 -0.869501 -0.492939 0.0313004 +0.203476 -0.448489 0.372186 -0.817501 -0.568305 0.0933865 +0.199762 -0.443299 0.370612 -0.812662 -0.57268 0.107792 +0.195608 -0.438389 0.36904 -0.802338 -0.583422 0.125986 +0.1915 -0.433454 0.367458 -0.756627 -0.635568 0.153521 +0.187018 -0.428765 0.365886 -0.743814 -0.646697 0.168886 +0.182495 -0.424106 0.364301 -0.727422 -0.66109 0.183902 +0.177674 -0.419645 0.362727 -0.719695 -0.665667 0.197299 +0.172891 -0.415173 0.361146 -0.720548 -0.661586 0.20764 +0.168101 -0.410703 0.359566 -0.72673 -0.652059 0.216065 +0.163523 -0.406103 0.35799 -0.736118 -0.638747 0.223903 +0.159064 -0.401435 0.356424 -0.748643 -0.622067 0.229275 +0.15471 -0.396704 0.354853 -0.760743 -0.605529 0.23368 +0.150328 -0.39199 0.353283 -0.773203 -0.588912 0.235247 +0.146021 -0.387236 0.351718 -0.786602 -0.570427 0.23637 +0.141727 -0.382474 0.350154 -0.800067 -0.552306 0.234201 +0.137756 -0.377503 0.348592 -0.813939 -0.53368 0.229539 +0.133681 -0.372607 0.34703 -0.829184 -0.513772 0.220212 +0.129829 -0.367553 0.345466 -0.84577 -0.491086 0.208585 +0.126123 -0.362419 0.343907 -0.862678 -0.467578 0.192766 +0.122646 -0.357122 0.342351 -0.879879 -0.441793 0.175018 +0.119806 -0.351387 0.340791 -0.896405 -0.414276 0.15758 +0.117148 -0.345529 0.339241 -0.912014 -0.385838 0.139138 +0.114745 -0.339496 0.337688 -0.928591 -0.350376 0.122291 +0.112825 -0.333119 0.336129 -0.942212 -0.316365 0.110232 +0.111032 -0.326645 0.334575 -0.95576 -0.278257 0.095381 +0.109401 -0.32006 0.333024 -0.96774 -0.237469 0.0841881 +0.10787 -0.31339 0.331464 -0.975863 -0.204888 0.075576 +0.106458 -0.306627 0.329907 -0.983043 -0.168998 0.0711681 +0.105566 -0.299494 0.328351 -0.988547 -0.132087 0.0730084 +0.104907 -0.292177 0.326786 -0.991738 -0.102746 0.0767999 +0.104386 -0.284754 0.325225 -0.99353 -0.07598 0.0844179 +0.103959 -0.277249 0.323653 -0.994625 -0.0510932 0.0900614 +0.103527 -0.26974 0.32208 -0.994809 -0.0272133 0.0980555 +0.102936 -0.262318 0.320506 -0.994485 -0.00499367 0.104756 +0.102112 -0.255049 0.318931 -0.9938 0.0228993 0.108794 +0.101673 -0.247498 0.317355 -0.991951 0.057056 0.113037 +0.101781 -0.239537 0.315772 -0.989543 0.0895879 0.113039 +0.102734 -0.230939 0.314179 -0.985385 0.132232 0.107384 +0.104442 -0.221767 0.312579 -0.977204 0.188046 0.098542 +0.10699 -0.211966 0.310973 -0.96576 0.24598 0.0824643 +0.109877 -0.201877 0.309359 -0.951761 0.298057 0.0728856 +0.113252 -0.191398 0.307737 -0.938766 0.338397 0.064847 +0.118562 -0.179455 0.306086 -0.924625 0.375326 0.0648085 +0.124049 -0.167339 0.304435 -0.918224 0.390047 0.0687715 +0.129527 -0.155179 0.302773 -0.916854 0.393859 0.0652172 +0.133829 -0.143853 0.301114 -0.915634 0.399106 0.0482724 +0.137519 -0.132946 0.299444 -0.911015 0.411042 0.0330883 +0.142187 -0.121263 0.297766 -0.898084 0.439751 0.00821925 +0.151489 -0.106048 0.296028 -0.858947 0.511475 -0.0245368 +0.16306 -0.089047 0.294255 -0.80985 0.586007 -0.0271696 +0.182471 -0.0660135 0.292392 -0.755591 0.654256 -0.0321095 +0.266309 0.00622949 0.289798 -0.473551 -0.0971301 0.875395 +0.263799 0.0129141 0.2881 -0.429421 -0.109291 0.896467 +0.262049 0.0201824 0.286387 -0.410445 -0.143832 0.90047 +0.257678 0.0254415 0.284714 -0.407342 -0.175007 0.896351 +0.252724 0.0302484 0.28304 -0.379594 -0.238836 0.893792 +0.246847 0.0343454 0.281388 -0.411342 -0.253484 0.875525 +0.240122 0.0377568 0.279749 -0.381521 -0.351335 0.854989 +0.233789 0.0414542 0.278102 -0.380966 -0.41668 0.825376 +0.227021 0.0448035 0.276465 -0.279693 -0.55579 0.78286 +0.218224 0.0465445 0.274868 -0.2545 -0.667319 0.69994 +0.207685 0.0468798 0.273302 -0.183517 -0.794634 0.578688 +0.192131 0.0432112 0.271833 -0.118182 -0.891702 0.436923 +0.179953 0.0421547 0.270313 -0.0866801 -0.927396 0.363901 +0.167416 0.0407694 0.268806 -0.0929689 -0.944259 0.315805 +0.156877 0.0409241 0.267282 -0.124927 -0.950147 0.285684 +0.14723 0.041763 0.265741 -0.169658 -0.945679 0.277321 +0.138183 0.043054 0.264195 -0.240016 -0.930466 0.276815 +0.129596 0.0446842 0.26265 -0.303435 -0.909708 0.283477 +0.121476 0.0466639 0.261096 -0.344174 -0.892735 0.290813 +0.113906 0.0490652 0.259539 -0.394739 -0.867605 0.302396 +0.107313 0.0522481 0.257966 -0.462947 -0.829155 0.313341 +0.100803 0.0554707 0.256389 -0.505371 -0.803748 0.313987 +0.0944084 0.0587786 0.25482 -0.541155 -0.778791 0.317234 +0.0886998 0.0626306 0.253232 -0.573323 -0.756448 0.314784 +0.0833639 0.0667877 0.251644 -0.610146 -0.727187 0.314518 +0.07867 0.071462 0.250033 -0.646835 -0.697809 0.307683 +0.0770971 0.0787305 0.248351 -0.691461 -0.65691 0.300586 +0.673252 -0.633258 0.46875 -0.065195 -0.835139 0.546164 +0.645268 -0.639719 0.46612 -0.139427 -0.900002 0.412987 +0.471968 -0.720075 0.457975 0.284837 -0.947198 0.147257 +0.436664 -0.730788 0.455168 0.211882 -0.969864 0.120299 +0.41362 -0.735351 0.452849 0.106827 -0.990151 0.0905098 +0.396347 -0.73703 0.450762 0.0613914 -0.99454 0.0844019 +0.380815 -0.737868 0.448751 -0.000695911 -0.997072 0.0764788 +0.367156 -0.737794 0.446811 -0.0416218 -0.996329 0.0748095 +0.353878 -0.737559 0.444899 -0.0881944 -0.993428 0.0729683 +0.341752 -0.736764 0.443029 -0.137155 -0.9871 0.0825982 +0.330991 -0.73529 0.441225 -0.179932 -0.979943 0.0856638 +0.321005 -0.73344 0.439448 -0.216296 -0.972138 0.0903588 +0.311522 -0.731354 0.437692 -0.249984 -0.963914 0.0915386 +0.30243 -0.729094 0.435955 -0.282398 -0.954418 0.0966416 +0.293685 -0.726661 0.434239 -0.30781 -0.946151 0.100253 +0.285501 -0.723956 0.432542 -0.332156 -0.937509 0.10368 +0.27743 -0.721218 0.430854 -0.355246 -0.928599 0.107259 +0.269599 -0.718363 0.429176 -0.371938 -0.922548 0.102799 +0.261975 -0.715413 0.42751 -0.396269 -0.911797 0.107692 +0.254565 -0.712376 0.425851 -0.419042 -0.90073 0.114415 +0.247551 -0.709132 0.424218 -0.439845 -0.890014 0.120059 +0.24077 -0.705772 0.422585 -0.46312 -0.877451 0.124902 +0.234104 -0.702373 0.420962 -0.489128 -0.86244 0.130194 +0.227639 -0.698878 0.419343 -0.513077 -0.848658 0.128581 +0.221522 -0.695198 0.417743 -0.538719 -0.833494 0.122764 +0.215469 -0.691507 0.416144 -0.572176 -0.81078 0.123493 +0.209476 -0.687784 0.414552 -0.61015 -0.783092 0.120349 +0.203808 -0.683894 0.412975 -0.651454 -0.749907 0.115104 +0.198418 -0.679849 0.411401 -0.699241 -0.706657 0.108152 +0.193691 -0.675455 0.409843 -0.744229 -0.661032 0.0957041 +0.189219 -0.670908 0.408298 -0.789226 -0.609666 0.0736825 +0.185191 -0.666119 0.406765 -0.830399 -0.555042 0.0486549 +0.181904 -0.660911 0.405256 -0.866284 -0.498842 0.0266291 +0.178983 -0.655493 0.403754 -0.895964 -0.444116 -0.00341385 +0.17663 -0.649741 0.402263 -0.918169 -0.394786 -0.0333158 +0.17467 -0.64376 0.400779 -0.929948 -0.362121 -0.0637614 +0.173341 -0.637406 0.399309 -0.934592 -0.344017 -0.0904933 +0.173265 -0.630314 0.397865 -0.936487 -0.330973 -0.115978 +0.173698 -0.622905 0.396432 -0.936284 -0.324724 -0.133894 +0.17381 -0.61567 0.394987 -0.93286 -0.325382 -0.154591 +0.173045 -0.608945 0.393528 -0.930049 -0.323983 -0.173332 +0.17074 -0.603112 0.392024 -0.928112 -0.322899 -0.185325 +0.168369 -0.597318 0.390522 -0.929717 -0.309935 -0.198914 +0.165842 -0.591612 0.389019 -0.93351 -0.288955 -0.212285 +0.163792 -0.585618 0.387523 -0.941645 -0.25024 -0.225129 +0.162265 -0.579301 0.386028 -0.950261 -0.202814 -0.23637 +0.160993 -0.572823 0.384543 -0.958144 -0.140909 -0.249207 +0.160977 -0.565582 0.383077 -0.962915 -0.0898112 -0.25442 +0.162062 -0.557647 0.381634 -0.964322 -0.00154302 -0.264728 +0.163165 -0.549683 0.380179 -0.959439 0.078748 -0.270698 +0.162242 -0.542935 0.378693 -0.946924 0.167042 -0.274649 +0.162131 -0.535685 0.377209 -0.930452 0.239959 -0.276911 +0.163108 -0.527747 0.375748 -0.909796 0.303809 -0.28279 +0.169345 -0.516528 0.374364 -0.869709 0.411518 -0.272505 +0.181846 -0.501352 0.373056 -0.785987 0.557926 -0.26635 +0.203337 -0.480496 0.37187 -0.96573 0.191636 -0.175045 +0.207707 -0.470258 0.370417 -0.978994 -0.106959 -0.173577 +0.20811 -0.462487 0.368911 -0.961385 -0.232314 -0.147542 +0.2062 -0.456155 0.367364 -0.842288 -0.538901 0.0116737 +0.203446 -0.450359 0.365804 -0.817715 -0.574475 0.036343 +0.199873 -0.445079 0.364237 -0.793712 -0.605478 0.0584535 +0.195869 -0.440069 0.362664 -0.780744 -0.618206 0.09089 +0.191771 -0.435133 0.361091 -0.756046 -0.643771 0.118133 +0.187421 -0.430354 0.359516 -0.735837 -0.662633 0.139506 +0.182895 -0.425695 0.357938 -0.716465 -0.679651 0.157331 +0.177976 -0.421304 0.356365 -0.710859 -0.681619 0.173422 +0.173038 -0.416926 0.354785 -0.711269 -0.677592 0.186988 +0.168033 -0.412598 0.353211 -0.718054 -0.667355 0.197577 +0.16322 -0.408161 0.351636 -0.729107 -0.652786 0.205603 +0.15843 -0.403706 0.350066 -0.742215 -0.636075 0.211014 +0.153703 -0.399225 0.348497 -0.756634 -0.617543 0.214815 +0.14928 -0.394543 0.346931 -0.771225 -0.598827 0.215913 +0.145031 -0.389754 0.345364 -0.784965 -0.58176 0.213042 +0.141046 -0.384785 0.3438 -0.800379 -0.562472 0.207411 +0.137183 -0.379743 0.342248 -0.816646 -0.542026 0.198237 +0.133387 -0.374665 0.340684 -0.833747 -0.519806 0.186198 +0.129579 -0.369582 0.339127 -0.850485 -0.497123 0.171886 +0.126122 -0.364275 0.33757 -0.868813 -0.470429 0.154473 +0.12279 -0.35888 0.336014 -0.884971 -0.444492 0.138752 +0.119901 -0.353184 0.334457 -0.901412 -0.41598 0.120073 +0.117228 -0.347345 0.332903 -0.915895 -0.387346 0.105362 +0.114835 -0.341297 0.331348 -0.930399 -0.354402 0.093581 +0.113012 -0.33486 0.329792 -0.943873 -0.320875 0.0783766 +0.111302 -0.328336 0.328233 -0.956648 -0.283241 0.0678037 +0.109719 -0.321714 0.326679 -0.967446 -0.24611 0.058986 +0.108155 -0.315065 0.325112 -0.975838 -0.212168 0.0522073 +0.106605 -0.308407 0.323551 -0.981707 -0.184437 0.0472536 +0.105543 -0.30139 0.321991 -0.987284 -0.151076 0.0494623 +0.104599 -0.294288 0.320421 -0.991086 -0.120975 0.0558037 +0.103855 -0.287022 0.318853 -0.993439 -0.0952068 0.0633554 +0.10309 -0.279763 0.317277 -0.995192 -0.068675 0.0698257 +0.102447 -0.272402 0.315704 -0.996084 -0.0480049 0.0742407 +0.101783 -0.265035 0.314129 -0.996684 -0.0224339 0.0782177 +0.101114 -0.257674 0.312545 -0.996848 0.00304303 0.079273 +0.100829 -0.250012 0.310957 -0.995998 0.0383532 0.0807228 +0.100979 -0.242018 0.30937 -0.993947 0.0765234 0.078826 +0.101789 -0.233536 0.307775 -0.989802 0.120296 0.0763023 +0.103509 -0.224368 0.306163 -0.982747 0.172587 0.0665165 +0.105807 -0.214753 0.304545 -0.971477 0.231057 0.053352 +0.108826 -0.204578 0.302916 -0.958439 0.281613 0.0457071 +0.112307 -0.194027 0.301279 -0.942219 0.332214 0.0430838 +0.116417 -0.182982 0.29963 -0.93023 0.364543 0.0421978 +0.122248 -0.170617 0.297951 -0.921297 0.386489 0.0428827 +0.127289 -0.158804 0.296276 -0.917479 0.395705 0.0406036 +0.131766 -0.147357 0.294597 -0.915567 0.401202 0.0278344 +0.13628 -0.135844 0.292914 -0.911745 0.410657 0.0089799 +0.141116 -0.124045 0.291208 -0.90072 0.434288 -0.00984378 +0.149778 -0.109321 0.289458 -0.863232 0.502125 -0.0519762 +0.160936 -0.0926462 0.287662 -0.833606 0.548963 -0.061184 +0.17608 -0.0728788 0.285805 -0.775111 0.629436 -0.0548925 +0.25162 -0.00701989 0.283133 -0.682287 -0.172237 0.710506 +0.25514 0.00422978 0.281361 -0.648304 -0.227354 0.726645 +0.252569 0.0108411 0.279665 -0.58874 -0.210025 0.78056 +0.249004 0.0166953 0.277981 -0.563156 -0.262196 0.783651 +0.244757 0.0220298 0.276309 -0.536907 -0.31793 0.781442 +0.239273 0.0263977 0.27466 -0.541679 -0.3279 0.773994 +0.233431 0.0304806 0.273013 -0.463408 -0.432169 0.773617 +0.227328 0.0343416 0.271379 -0.461763 -0.483023 0.743952 +0.22019 0.0373842 0.269757 -0.373191 -0.626548 0.684227 +0.212071 0.0396366 0.268164 -0.298387 -0.739105 0.603895 +0.203921 0.0418423 0.266569 -0.213827 -0.811361 0.544035 +0.191681 0.0407884 0.265068 -0.15989 -0.879351 0.448528 +0.179733 0.0399233 0.263562 -0.118627 -0.922484 0.367359 +0.167821 0.0390287 0.262067 -0.128824 -0.943411 0.305586 +0.157256 0.0391788 0.26055 -0.129923 -0.950024 0.283856 +0.147457 0.039891 0.259025 -0.168735 -0.948138 0.26938 +0.138384 0.0411713 0.257494 -0.231893 -0.935626 0.266142 +0.129684 0.0427066 0.25596 -0.289887 -0.918107 0.270271 +0.121599 0.0447203 0.254417 -0.331053 -0.90198 0.277198 +0.114266 0.047315 0.252868 -0.380339 -0.879515 0.286001 +0.107623 0.0504513 0.2513 -0.446688 -0.845445 0.292736 +0.101296 0.0538351 0.249727 -0.500839 -0.817878 0.28326 +0.0950785 0.0572874 0.248155 -0.529607 -0.79617 0.292628 +0.088921 0.060777 0.246588 -0.562069 -0.77424 0.290919 +0.083316 0.0647056 0.245006 -0.598619 -0.745358 0.293424 +0.0783113 0.0691191 0.243412 -0.63871 -0.714245 0.286188 +0.0765315 0.0762046 0.241732 -0.683225 -0.673396 0.282385 +0.673843 -0.642542 0.46343 -0.0976282 -0.884102 0.456983 +0.653005 -0.645359 0.461103 -0.149934 -0.91458 0.375587 +0.63846 -0.645058 0.459023 -0.140916 -0.92592 0.350452 +0.476777 -0.719451 0.451615 0.298472 -0.947491 0.114786 +0.440183 -0.730792 0.448824 0.220691 -0.96993 0.102625 +0.41698 -0.735427 0.44653 0.119534 -0.990264 0.0713512 +0.399404 -0.737245 0.444456 0.0700998 -0.99576 0.0595673 +0.384252 -0.737876 0.442478 0.0163006 -0.998946 0.0429345 +0.370075 -0.738056 0.440543 -0.0305297 -0.998714 0.0404896 +0.356592 -0.737916 0.438644 -0.0723114 -0.996733 0.0360013 +0.34399 -0.737362 0.436771 -0.118866 -0.992228 0.0368341 +0.332785 -0.736116 0.434964 -0.166932 -0.984995 0.0438227 +0.322697 -0.734316 0.4332 -0.204178 -0.977711 0.0489212 +0.313084 -0.732292 0.431447 -0.238585 -0.969795 0.0507606 +0.303954 -0.730043 0.429724 -0.265642 -0.962933 0.0468439 +0.29502 -0.727707 0.428006 -0.294599 -0.954251 0.0511442 +0.286555 -0.72515 0.426309 -0.318083 -0.946531 0.0538825 +0.278485 -0.722397 0.424634 -0.340206 -0.939016 0.0501023 +0.270682 -0.719531 0.422964 -0.364151 -0.92969 0.0554092 +0.262952 -0.716639 0.421301 -0.382224 -0.922147 0.0595918 +0.255604 -0.713557 0.419661 -0.405365 -0.911807 0.0654778 +0.248577 -0.710321 0.418027 -0.425826 -0.902573 0.063529 +0.241756 -0.706984 0.416398 -0.445399 -0.893032 0.0641373 +0.234946 -0.703665 0.414781 -0.470285 -0.879902 0.0678531 +0.228247 -0.700296 0.413161 -0.498731 -0.863845 0.0709851 +0.221884 -0.696749 0.411563 -0.528883 -0.846105 0.0662677 +0.215882 -0.693024 0.40997 -0.566494 -0.821227 0.0683456 +0.209876 -0.689308 0.408386 -0.598465 -0.798999 0.0586558 +0.20436 -0.685333 0.40681 -0.638583 -0.768032 0.0483574 +0.198884 -0.681339 0.405241 -0.688799 -0.724015 0.0368618 +0.194084 -0.67698 0.403684 -0.731242 -0.681867 0.0184881 +0.189584 -0.672448 0.402147 -0.78256 -0.622567 0.00343527 +0.185564 -0.667655 0.400613 -0.825634 -0.564027 -0.0141822 +0.182283 -0.662445 0.399097 -0.865925 -0.498796 -0.0371026 +0.179357 -0.657031 0.397596 -0.889016 -0.453964 -0.0597298 +0.177035 -0.651259 0.396102 -0.913507 -0.397794 -0.0852409 +0.175125 -0.645259 0.394618 -0.928302 -0.356265 -0.106457 +0.17379 -0.638906 0.393149 -0.93518 -0.332074 -0.123145 +0.173955 -0.631673 0.391709 -0.938276 -0.319377 -0.132801 +0.174656 -0.62411 0.390271 -0.938831 -0.312893 -0.143857 +0.175206 -0.616622 0.38883 -0.936919 -0.312279 -0.157051 +0.174637 -0.609769 0.387359 -0.935047 -0.314008 -0.164581 +0.172629 -0.603768 0.385865 -0.936503 -0.304982 -0.173059 +0.170394 -0.597889 0.384363 -0.933933 -0.311096 -0.176039 +0.168282 -0.591937 0.382863 -0.941929 -0.279385 -0.186313 +0.166085 -0.586019 0.381356 -0.950996 -0.238777 -0.196449 +0.164599 -0.579682 0.379869 -0.958883 -0.19015 -0.210681 +0.16344 -0.573128 0.378377 -0.965689 -0.134987 -0.221859 +0.162876 -0.56621 0.376898 -0.969877 -0.0779575 -0.230782 +0.16455 -0.557921 0.375448 -0.969234 0.00650306 -0.246053 +0.165715 -0.549913 0.373987 -0.963368 0.0813791 -0.25554 +0.164081 -0.543609 0.372488 -0.951501 0.159045 -0.263345 +0.163748 -0.536489 0.37099 -0.934061 0.235231 -0.268696 +0.164929 -0.528426 0.369526 -0.908846 0.309415 -0.279754 +0.169995 -0.517934 0.368099 -0.865992 0.408503 -0.288416 +0.182691 -0.502644 0.366772 -0.771392 0.555227 -0.310931 +0.206445 -0.480387 0.365564 -0.949869 0.158629 -0.26942 +0.209672 -0.470863 0.364082 -0.953592 -0.167244 -0.250382 +0.209678 -0.463343 0.362552 -0.919706 -0.36811 -0.136507 +0.207428 -0.457224 0.361001 -0.819424 -0.571815 -0.0396436 +0.204417 -0.451587 0.35944 -0.793424 -0.60843 -0.0170615 +0.200593 -0.446463 0.357871 -0.784526 -0.619887 0.0161047 +0.196643 -0.441425 0.356303 -0.760739 -0.646874 0.0532024 +0.192522 -0.436496 0.354731 -0.747693 -0.658663 0.084381 +0.1878 -0.431965 0.353157 -0.722292 -0.682898 0.109284 +0.183034 -0.427462 0.35158 -0.705145 -0.696805 0.131279 +0.177917 -0.423196 0.350002 -0.699183 -0.699389 0.148321 +0.172881 -0.418876 0.348427 -0.700801 -0.694255 0.163978 +0.167791 -0.414611 0.346852 -0.709443 -0.682695 0.174985 +0.16295 -0.410188 0.345285 -0.722101 -0.667162 0.182933 +0.158155 -0.405738 0.343717 -0.735504 -0.651353 0.186483 +0.153427 -0.401254 0.342146 -0.751936 -0.631746 0.188387 +0.149008 -0.396577 0.34059 -0.768856 -0.611455 0.187036 +0.144771 -0.39178 0.339029 -0.785389 -0.591668 0.181915 +0.140862 -0.386763 0.337461 -0.802651 -0.570568 0.173793 +0.13702 -0.381711 0.335909 -0.820532 -0.548701 0.160167 +0.133254 -0.376611 0.33435 -0.837929 -0.525829 0.146223 +0.129832 -0.371273 0.332791 -0.85534 -0.500561 0.13354 +0.126458 -0.365913 0.331238 -0.872714 -0.474206 0.116189 +0.1231 -0.360536 0.329675 -0.88899 -0.446878 0.099986 +0.120302 -0.354783 0.328121 -0.90401 -0.418612 0.0867779 +0.117705 -0.348879 0.326566 -0.918251 -0.389372 0.0721445 +0.115389 -0.342785 0.325007 -0.931373 -0.359001 0.0605268 +0.113512 -0.336392 0.323448 -0.944498 -0.324559 0.0508494 +0.111719 -0.329919 0.321887 -0.955831 -0.291024 0.0411259 +0.110038 -0.323367 0.320332 -0.965819 -0.256888 0.0346528 +0.108376 -0.316789 0.318765 -0.974612 -0.221683 0.031406 +0.106745 -0.310191 0.317196 -0.980669 -0.193303 0.0303389 +0.105435 -0.303348 0.31563 -0.985325 -0.16771 0.0317284 +0.104336 -0.296357 0.314064 -0.989665 -0.138968 0.0353882 +0.103457 -0.289189 0.312483 -0.992769 -0.11274 0.0412383 +0.102649 -0.281964 0.310912 -0.995065 -0.087676 0.0464639 +0.101843 -0.274724 0.30933 -0.996831 -0.0621337 0.0496937 +0.100986 -0.267505 0.307748 -0.99802 -0.0382727 0.0499102 +0.100415 -0.260075 0.306165 -0.998687 -0.0121295 0.0497824 +0.100131 -0.252415 0.304571 -0.998638 0.0209171 0.0477894 +0.100187 -0.244501 0.30297 -0.997223 0.0597353 0.0444675 +0.101157 -0.235904 0.301363 -0.993668 0.104514 0.0412235 +0.102675 -0.226888 0.299753 -0.986943 0.157576 0.0333768 +0.104868 -0.217361 0.298123 -0.976372 0.215068 0.0210718 +0.10784 -0.207225 0.296483 -0.964352 0.264012 0.0179909 +0.110776 -0.197088 0.294839 -0.950287 0.310891 0.0173508 +0.115174 -0.185834 0.293167 -0.934722 0.354713 0.0217508 +0.120455 -0.173892 0.291483 -0.92363 0.382587 0.0231381 +0.125979 -0.161724 0.289784 -0.918278 0.395541 0.0176831 +0.129983 -0.150637 0.288092 -0.913282 0.407306 0.00441449 +0.135732 -0.138215 0.286377 -0.904112 0.426744 -0.0217042 +0.140561 -0.126435 0.28466 -0.897477 0.4395 -0.0370715 +0.148856 -0.111997 0.282889 -0.863008 0.499297 -0.0769576 +0.158662 -0.0963629 0.281083 -0.837378 0.538818 -0.092049 +0.174538 -0.0760554 0.279172 -0.782726 0.617849 -0.0748506 +0.240529 -0.0175203 0.276483 -0.720172 -0.202134 0.663697 +0.246613 -0.00434478 0.274662 -0.681774 -0.24889 0.687924 +0.245418 0.00330459 0.272949 -0.657393 -0.297322 0.692412 +0.24301 0.0100244 0.271252 -0.624953 -0.305226 0.718519 +0.23934 0.0157777 0.269573 -0.594193 -0.367484 0.715466 +0.23394 0.0201979 0.267926 -0.566496 -0.406967 0.716562 +0.228115 0.0242842 0.266287 -0.55176 -0.44774 0.703627 +0.221956 0.0280883 0.264663 -0.485089 -0.565237 0.66723 +0.215455 0.0316145 0.26304 -0.412478 -0.651142 0.637086 +0.2084 0.0346948 0.261433 -0.354853 -0.743617 0.566667 +0.200196 0.0368443 0.259856 -0.27823 -0.812949 0.511567 +0.190528 0.0378187 0.25832 -0.210562 -0.873772 0.43839 +0.179742 0.0378698 0.256806 -0.172506 -0.912459 0.371027 +0.168472 0.0374917 0.255318 -0.144205 -0.939217 0.311573 +0.157994 0.0377189 0.253814 -0.148432 -0.94894 0.278354 +0.148098 0.0383572 0.252305 -0.166169 -0.950403 0.26291 +0.138717 0.0393867 0.25079 -0.223676 -0.939958 0.257774 +0.130217 0.041094 0.249266 -0.279829 -0.924488 0.258882 +0.122066 0.0430538 0.247737 -0.318256 -0.910324 0.264625 +0.114436 0.0454113 0.246193 -0.366307 -0.891619 0.266149 +0.107642 0.0484304 0.244639 -0.444022 -0.85607 0.264553 +0.100978 0.0515292 0.243087 -0.490455 -0.832039 0.259164 +0.0947065 0.0549403 0.24152 -0.524208 -0.807825 0.26949 +0.0884481 0.058344 0.239963 -0.557228 -0.782965 0.276521 +0.0824403 0.0619352 0.238393 -0.58882 -0.759615 0.276184 +0.0767159 0.0657579 0.236826 -0.62916 -0.726673 0.275869 +0.0753722 0.0732009 0.235132 -0.671894 -0.688501 0.272994 +0.681886 -0.648091 0.458388 -0.107942 -0.900633 0.420961 +0.663783 -0.649486 0.456183 -0.157822 -0.929281 0.333959 +0.648965 -0.649288 0.454104 -0.165542 -0.938755 0.302219 +0.636113 -0.648139 0.452101 -0.160197 -0.94645 0.280305 +0.482823 -0.718212 0.445277 0.30524 -0.94642 0.105451 +0.446053 -0.729608 0.442545 0.225916 -0.970241 0.0871435 +0.421216 -0.735049 0.440232 0.129723 -0.990261 0.0505448 +0.403219 -0.737077 0.438169 0.0797322 -0.996214 0.034695 +0.387725 -0.737871 0.436198 0.0188872 -0.999665 0.0177273 +0.373419 -0.738099 0.434278 -0.0168081 -0.999856 0.00278125 +0.35951 -0.738175 0.432383 -0.0594423 -0.998213 -0.00629399 +0.346818 -0.737662 0.430528 -0.100724 -0.994832 -0.01283 +0.335561 -0.73643 0.428729 -0.144147 -0.989381 -0.018652 +0.324991 -0.734872 0.42696 -0.179028 -0.983729 -0.0150847 +0.315201 -0.732936 0.42522 -0.21952 -0.975554 -0.0104146 +0.305993 -0.730716 0.423497 -0.251516 -0.967824 -0.00760061 +0.297095 -0.728365 0.421795 -0.279211 -0.960213 -0.00554273 +0.288485 -0.725875 0.420109 -0.299154 -0.954177 -0.0072939 +0.280093 -0.723295 0.418429 -0.322832 -0.946447 -0.00425866 +0.272105 -0.720516 0.416762 -0.34294 -0.939357 -0.001263 +0.264507 -0.717547 0.41511 -0.36347 -0.931607 -0.000407851 +0.256951 -0.714576 0.413468 -0.3857 -0.922621 0.00277742 +0.249611 -0.711507 0.411831 -0.411139 -0.91154 0.00776968 +0.242744 -0.708194 0.410218 -0.432513 -0.901573 0.00992575 +0.236104 -0.704777 0.408609 -0.454041 -0.890923 0.0101976 +0.229262 -0.701476 0.406993 -0.480325 -0.877017 0.0114126 +0.222753 -0.698011 0.405392 -0.514814 -0.857216 0.0121736 +0.216731 -0.694296 0.403808 -0.549634 -0.835334 0.010986 +0.210883 -0.690491 0.402226 -0.589001 -0.808115 0.00544625 +0.205323 -0.686531 0.400656 -0.632024 -0.774933 -0.00503329 +0.19991 -0.682507 0.399093 -0.677736 -0.734979 -0.0219416 +0.194911 -0.67826 0.397538 -0.725846 -0.686685 -0.0401834 +0.190425 -0.67372 0.395999 -0.770163 -0.634874 -0.0615113 +0.186234 -0.669023 0.394466 -0.818291 -0.569329 -0.079167 +0.183187 -0.663678 0.392954 -0.856869 -0.506761 -0.0947061 +0.180314 -0.658233 0.39145 -0.883822 -0.453454 -0.115065 +0.177789 -0.652578 0.389952 -0.908138 -0.39848 -0.12845 +0.176069 -0.646466 0.388472 -0.922172 -0.359401 -0.142929 +0.174849 -0.640045 0.386998 -0.930816 -0.335326 -0.145393 +0.175149 -0.63274 0.385554 -0.936051 -0.31747 -0.151727 +0.17583 -0.625191 0.384109 -0.938648 -0.309185 -0.152797 +0.175862 -0.618001 0.382652 -0.939028 -0.308148 -0.152546 +0.175043 -0.611305 0.381173 -0.938963 -0.308499 -0.15224 +0.172902 -0.605378 0.379667 -0.939806 -0.305213 -0.153649 +0.170414 -0.59965 0.378163 -0.941259 -0.301172 -0.152734 +0.168346 -0.593669 0.37666 -0.949877 -0.270468 -0.156785 +0.166146 -0.587761 0.375156 -0.957819 -0.234194 -0.166544 +0.164471 -0.581537 0.373655 -0.966146 -0.191949 -0.172387 +0.16338 -0.574949 0.372167 -0.972743 -0.136568 -0.187408 +0.163062 -0.567881 0.370684 -0.97606 -0.080901 -0.201895 +0.163749 -0.560198 0.36921 -0.974196 0.00400676 -0.225669 +0.165336 -0.551939 0.367751 -0.967904 0.0838139 -0.236932 +0.165184 -0.544724 0.366257 -0.953044 0.16846 -0.25165 +0.16553 -0.537193 0.364772 -0.938439 0.224759 -0.262329 +0.167218 -0.52881 0.363301 -0.908174 0.317638 -0.272628 +0.172104 -0.518432 0.361861 -0.865379 0.408468 -0.290299 +0.186828 -0.501893 0.360517 -0.758509 0.554929 -0.341642 +0.210391 -0.479761 0.359252 -0.917863 0.0876452 -0.387103 +0.212827 -0.470731 0.357752 -0.924499 -0.254201 -0.284049 +0.2122 -0.463597 0.356209 -0.835134 -0.531927 -0.140014 +0.209485 -0.457778 0.354647 -0.791219 -0.605481 -0.0858303 +0.205901 -0.452496 0.353079 -0.774438 -0.630681 -0.0498869 +0.201981 -0.447432 0.351507 -0.757316 -0.652834 -0.0167367 +0.197755 -0.442565 0.34994 -0.736248 -0.676545 0.0150456 +0.193367 -0.437811 0.348367 -0.723298 -0.6887 0.05033 +0.188474 -0.433375 0.346794 -0.701972 -0.707982 0.0774451 +0.183353 -0.429103 0.345214 -0.690503 -0.715927 0.103227 +0.177824 -0.425106 0.34364 -0.687956 -0.715202 0.1233 +0.172613 -0.420905 0.342068 -0.689151 -0.711408 0.13773 +0.167397 -0.416724 0.340501 -0.69876 -0.700264 0.146171 +0.162453 -0.412365 0.338933 -0.713157 -0.684142 0.152828 +0.157718 -0.407884 0.33737 -0.729729 -0.666141 0.154118 +0.153186 -0.403269 0.33581 -0.747501 -0.646538 0.152413 +0.148773 -0.39859 0.334246 -0.766911 -0.6245 0.147807 +0.144556 -0.393779 0.332685 -0.786388 -0.60172 0.139742 +0.140698 -0.388729 0.331129 -0.80463 -0.579722 0.128423 +0.136978 -0.383602 0.329569 -0.823272 -0.55594 0.11469 +0.13333 -0.378418 0.328018 -0.840042 -0.532828 0.102093 +0.130018 -0.373014 0.32646 -0.857375 -0.507223 0.0873731 +0.126711 -0.367604 0.324902 -0.874067 -0.480136 0.0740144 +0.123417 -0.362186 0.323344 -0.889725 -0.452085 0.0633278 +0.12074 -0.356341 0.321787 -0.90513 -0.422065 0.0509929 +0.118258 -0.350366 0.320232 -0.918784 -0.392472 0.0424448 +0.1161 -0.344166 0.31867 -0.930419 -0.364937 0.0337836 +0.114139 -0.337824 0.317108 -0.943018 -0.331762 0.0255163 +0.112201 -0.331461 0.315545 -0.954641 -0.297138 0.019199 +0.11035 -0.325024 0.313986 -0.963711 -0.266541 0.0147199 +0.108554 -0.318548 0.312415 -0.972067 -0.234389 0.0121271 +0.106826 -0.31201 0.310843 -0.978775 -0.204441 0.0142621 +0.105372 -0.305276 0.309275 -0.983783 -0.178857 0.0134543 +0.104215 -0.298321 0.307704 -0.987822 -0.155011 0.0133697 +0.103295 -0.29119 0.306121 -0.991577 -0.12842 0.0168607 +0.102376 -0.284044 0.304542 -0.994536 -0.102639 0.0190864 +0.101436 -0.276906 0.302957 -0.996569 -0.0796171 0.0226187 +0.100571 -0.269705 0.30137 -0.99829 -0.0541737 0.0219445 +0.100007 -0.262269 0.299779 -0.999583 -0.0235734 0.0166829 +0.0995708 -0.254723 0.298182 -0.999902 0.00940335 0.0104209 +0.0997033 -0.246761 0.296585 -0.998908 0.0460246 0.00795764 +0.100715 -0.238134 0.294966 -0.995992 0.0892446 0.00603291 +0.102169 -0.229172 0.293339 -0.989144 0.146921 -0.00312064 +0.104221 -0.21975 0.291706 -0.978888 0.204264 -0.00736926 +0.106867 -0.209865 0.290056 -0.967584 0.252184 -0.0136058 +0.110224 -0.199418 0.288393 -0.955528 0.294777 -0.00847889 +0.114076 -0.188576 0.286714 -0.940253 0.340448 -0.00440407 +0.11874 -0.177104 0.285014 -0.928136 0.372233 -0.0025159 +0.124022 -0.165124 0.283305 -0.920388 0.390975 -0.00490193 +0.129271 -0.15313 0.281584 -0.912683 0.408367 -0.0157306 +0.13434 -0.141221 0.279859 -0.905633 0.422445 -0.0370207 +0.139766 -0.128997 0.278114 -0.891528 0.448395 -0.0641944 +0.148233 -0.114453 0.276318 -0.86539 0.492068 -0.094718 +0.157795 -0.0990033 0.274486 -0.836439 0.537056 -0.109273 +0.172266 -0.0797791 0.272564 -0.794217 0.59951 -0.0990369 +0.197654 -0.0521509 0.270427 -0.711362 0.697707 -0.0846893 +0.239712 -0.0116647 0.267972 -0.712362 -0.290471 0.638879 +0.239682 -0.00314907 0.266231 -0.691048 -0.324508 0.645868 +0.237537 0.00376326 0.264535 -0.657066 -0.367568 0.658148 +0.234057 0.00964316 0.26286 -0.636854 -0.411212 0.652165 +0.228914 0.0142489 0.261209 -0.608858 -0.461462 0.645248 +0.223364 0.018525 0.259574 -0.595679 -0.497487 0.630615 +0.217771 0.0227673 0.257944 -0.54322 -0.579446 0.607582 +0.211991 0.0268407 0.256321 -0.46167 -0.664183 0.587981 +0.205026 0.0299792 0.254724 -0.405164 -0.747349 0.526606 +0.198117 0.0331421 0.253127 -0.327613 -0.809255 0.487624 +0.189374 0.0348401 0.251582 -0.258414 -0.868273 0.42347 +0.179363 0.035507 0.250064 -0.209605 -0.906439 0.366652 +0.168739 0.0356563 0.248574 -0.168145 -0.933219 0.317537 +0.158514 0.036078 0.247078 -0.160631 -0.947067 0.277962 +0.14868 0.0367772 0.245584 -0.175697 -0.949169 0.261175 +0.139275 0.0377883 0.244086 -0.220109 -0.942481 0.251558 +0.130774 0.0394971 0.242569 -0.269714 -0.929922 0.250005 +0.122665 0.0414935 0.24105 -0.309599 -0.916879 0.251959 +0.115005 0.0438276 0.239518 -0.355061 -0.900238 0.252 +0.107902 0.0465964 0.237979 -0.442835 -0.863919 0.239881 +0.100749 0.049307 0.236442 -0.486733 -0.838242 0.245851 +0.093962 0.0522862 0.234899 -0.520397 -0.81599 0.251692 +0.0877293 0.0557077 0.233348 -0.547551 -0.794029 0.264022 +0.0816236 0.059225 0.231795 -0.582896 -0.766733 0.268986 +0.0756579 0.0628346 0.230232 -0.619492 -0.737168 0.26984 +0.073574 0.0696625 0.228562 -0.661972 -0.699995 0.267958 +0.0793301 0.0830237 0.226627 -0.680261 -0.678645 0.276925 +0.715909 -0.648486 0.455805 -0.0902484 -0.838925 0.536713 +0.69137 -0.652951 0.453384 -0.125468 -0.907136 0.4017 +0.674169 -0.653848 0.451221 -0.151536 -0.932428 0.328048 +0.660074 -0.653248 0.449181 -0.17777 -0.946741 0.268475 +0.647886 -0.651733 0.447216 -0.176486 -0.955021 0.238306 +0.63521 -0.650494 0.445241 -0.17287 -0.962862 0.207401 +0.62371 -0.648711 0.443306 -0.219628 -0.966243 0.134683 +0.449171 -0.729828 0.436154 0.234784 -0.96927 0.0734561 +0.425039 -0.734895 0.43391 0.134915 -0.990479 0.0273916 +0.407081 -0.736883 0.431872 0.0845028 -0.996365 0.0108353 +0.39098 -0.737977 0.429909 0.0223675 -0.999542 -0.0204234 +0.376577 -0.738245 0.427997 -0.0125435 -0.999111 -0.0402679 +0.362823 -0.738228 0.426125 -0.0466943 -0.997406 -0.0547838 +0.349809 -0.737865 0.424278 -0.0890407 -0.993871 -0.0655284 +0.338692 -0.736558 0.422503 -0.128437 -0.988794 -0.0761001 +0.32818 -0.734962 0.420747 -0.157059 -0.984586 -0.0769616 +0.318197 -0.733115 0.419009 -0.193745 -0.978366 -0.0725532 +0.308844 -0.730965 0.417298 -0.225599 -0.971438 -0.073584 +0.299796 -0.728685 0.415599 -0.256681 -0.964139 -0.0674739 +0.29103 -0.726274 0.41391 -0.28268 -0.956838 -0.0674713 +0.282483 -0.723771 0.412233 -0.302219 -0.950533 -0.0717785 +0.27439 -0.721036 0.410576 -0.321703 -0.944188 -0.0708373 +0.266752 -0.718089 0.408933 -0.33922 -0.937928 -0.0722583 +0.259047 -0.715191 0.407295 -0.359654 -0.930389 -0.0708981 +0.251582 -0.712181 0.405661 -0.384633 -0.920668 -0.0665598 +0.244436 -0.709022 0.404044 -0.407411 -0.910974 -0.0643738 +0.237508 -0.705755 0.402435 -0.435145 -0.898306 -0.0608042 +0.230739 -0.702414 0.400832 -0.463097 -0.884286 -0.0598328 +0.224433 -0.698832 0.399237 -0.492075 -0.868312 -0.0624322 +0.218343 -0.69515 0.397655 -0.525418 -0.847836 -0.0714848 +0.2123 -0.691444 0.396079 -0.565481 -0.821155 -0.0770477 +0.206587 -0.68757 0.394508 -0.611897 -0.78584 -0.0896615 +0.20108 -0.683594 0.392947 -0.658962 -0.745637 -0.0989685 +0.196046 -0.679361 0.391393 -0.710299 -0.695354 -0.109359 +0.191627 -0.674786 0.389859 -0.75301 -0.643131 -0.139133 +0.187606 -0.669993 0.388327 -0.795886 -0.584773 -0.156863 +0.184389 -0.664741 0.386822 -0.834845 -0.524842 -0.166054 +0.181585 -0.659253 0.385314 -0.8671 -0.466063 -0.175852 +0.179384 -0.653417 0.383817 -0.892995 -0.413915 -0.176732 +0.177725 -0.647261 0.382333 -0.912133 -0.370532 -0.17527 +0.176745 -0.640708 0.380865 -0.922615 -0.344256 -0.173982 +0.176954 -0.633444 0.379407 -0.928805 -0.329553 -0.169456 +0.177375 -0.626049 0.377952 -0.93517 -0.316279 -0.159457 +0.176155 -0.619597 0.376461 -0.937973 -0.312789 -0.149569 +0.174611 -0.613326 0.374969 -0.939603 -0.311562 -0.141687 +0.172283 -0.607514 0.373467 -0.943148 -0.302755 -0.137157 +0.169861 -0.601753 0.371961 -0.94576 -0.296845 -0.131984 +0.167411 -0.596002 0.370447 -0.953307 -0.270693 -0.133906 +0.165218 -0.59009 0.36894 -0.962949 -0.228492 -0.143253 +0.16363 -0.583821 0.367445 -0.970469 -0.192378 -0.145534 +0.162522 -0.577247 0.365943 -0.976287 -0.146088 -0.159763 +0.161849 -0.570399 0.364458 -0.981098 -0.0821363 -0.175208 +0.162627 -0.562662 0.362978 -0.980031 -0.000994699 -0.198839 +0.16422 -0.554411 0.361506 -0.970809 0.0794551 -0.22631 +0.165972 -0.546035 0.360028 -0.960525 0.148 -0.235557 +0.167847 -0.537565 0.358554 -0.930337 0.255171 -0.263363 +0.169999 -0.528897 0.357074 -0.902714 0.325989 -0.280783 +0.175905 -0.517883 0.355623 -0.840786 0.431661 -0.326724 +0.194278 -0.499089 0.354282 -0.764377 0.519657 -0.381687 +0.217918 -0.4769 0.352955 -0.889253 -0.261364 -0.37539 +0.217092 -0.469907 0.351413 -0.843104 -0.477666 -0.247006 +0.215784 -0.463197 0.349863 -0.787942 -0.591434 -0.171327 +0.21186 -0.458127 0.348289 -0.758093 -0.63944 -0.128101 +0.207962 -0.453039 0.346722 -0.732976 -0.675587 -0.0795558 +0.203687 -0.448196 0.345147 -0.730512 -0.681281 -0.046972 +0.199095 -0.443556 0.343576 -0.71322 -0.700856 -0.0108469 +0.194421 -0.438986 0.342007 -0.69552 -0.71813 0.0232942 +0.189218 -0.434753 0.340428 -0.681671 -0.72988 0.0510032 +0.183867 -0.430629 0.338856 -0.671463 -0.73727 0.0746418 +0.178239 -0.426685 0.337284 -0.67234 -0.734481 0.0921811 +0.172738 -0.422679 0.335716 -0.67685 -0.728331 0.10681 +0.167437 -0.418548 0.334155 -0.688705 -0.71618 0.113014 +0.162468 -0.414205 0.332587 -0.7055 -0.699135 0.11611 +0.15767 -0.409764 0.331028 -0.724023 -0.68076 0.111163 +0.15307 -0.405199 0.329466 -0.743791 -0.659852 0.10664 +0.148756 -0.400448 0.327909 -0.764348 -0.637289 0.0981571 +0.144551 -0.395628 0.326355 -0.785283 -0.612889 0.0877327 +0.140636 -0.390631 0.324799 -0.804602 -0.588908 0.076173 +0.137003 -0.385441 0.32324 -0.822779 -0.564563 0.0656099 +0.133618 -0.380078 0.321686 -0.840027 -0.539771 0.0547805 +0.130212 -0.374739 0.320127 -0.856211 -0.514503 0.0467838 +0.126873 -0.369349 0.318571 -0.87239 -0.48734 0.0379097 +0.123905 -0.363711 0.317013 -0.888298 -0.458295 0.0298841 +0.1213 -0.357823 0.315453 -0.90345 -0.42802 0.0240072 +0.118921 -0.351785 0.313894 -0.917014 -0.398479 0.0173388 +0.116791 -0.345557 0.312335 -0.929387 -0.368911 0.0120043 +0.11477 -0.339263 0.310772 -0.940591 -0.339497 0.0056683 +0.112728 -0.332964 0.309205 -0.952119 -0.305725 0.00156313 +0.110726 -0.326643 0.307636 -0.961229 -0.275747 -0.00160202 +0.108805 -0.320251 0.306067 -0.969681 -0.24435 -0.00365249 +0.107012 -0.313763 0.304501 -0.976181 -0.21694 -0.00252718 +0.105493 -0.307072 0.30292 -0.981862 -0.189586 -0.00150896 +0.104301 -0.30015 0.301347 -0.986472 -0.163861 -0.00487622 +0.103276 -0.293091 0.299763 -0.99011 -0.140213 -0.00471505 +0.102286 -0.286002 0.298177 -0.993331 -0.115157 -0.00581413 +0.101351 -0.278861 0.296589 -0.995851 -0.0907311 -0.00689672 +0.100579 -0.271593 0.294996 -0.997728 -0.0667751 -0.00892212 +0.0998715 -0.264258 0.2934 -0.999266 -0.0357215 -0.0138296 +0.0993114 -0.256816 0.291801 -0.999755 -0.0019185 -0.021997 +0.0995798 -0.248755 0.290193 -0.999162 0.0303204 -0.0275358 +0.10044 -0.240243 0.288563 -0.99681 0.0745921 -0.0284165 +0.101669 -0.231449 0.286933 -0.990558 0.132679 -0.0345149 +0.103753 -0.222009 0.28529 -0.982323 0.182861 -0.0400541 +0.106349 -0.212159 0.283628 -0.970603 0.238163 -0.0347409 +0.10939 -0.201966 0.28195 -0.959898 0.27817 -0.0348977 +0.113081 -0.191254 0.280264 -0.946002 0.322842 -0.0292019 +0.117546 -0.179924 0.278556 -0.931855 0.361939 -0.0254433 +0.122355 -0.168313 0.276837 -0.921843 0.386564 -0.0278332 +0.128451 -0.155694 0.275083 -0.910221 0.412088 -0.0409876 +0.133842 -0.143559 0.273333 -0.900578 0.430616 -0.0594136 +0.139557 -0.131125 0.271566 -0.887521 0.453247 -0.0829019 +0.148308 -0.116369 0.269739 -0.864689 0.48954 -0.112537 +0.158505 -0.100464 0.267872 -0.834116 0.536066 -0.129935 +0.171386 -0.0824435 0.265941 -0.806058 0.578994 -0.12263 +0.190888 -0.0593148 0.26386 -0.762569 0.640611 -0.0900342 +0.234875 -0.0174085 0.261278 -0.77727 -0.32627 0.537959 +0.235163 -0.00866273 0.259527 -0.71348 -0.372445 0.59349 +0.23319 -0.00163882 0.257821 -0.68834 -0.401068 0.604427 +0.22935 0.00395684 0.256148 -0.670468 -0.442434 0.595589 +0.224574 0.00883641 0.254505 -0.648318 -0.488908 0.583655 +0.219565 0.0135187 0.252863 -0.620495 -0.537534 0.571001 +0.214096 0.0178488 0.251239 -0.600594 -0.579792 0.550571 +0.208733 0.0222406 0.249609 -0.52434 -0.6724 0.522442 +0.202737 0.0261276 0.247995 -0.440758 -0.755491 0.484733 +0.196081 0.0294871 0.246406 -0.373396 -0.806699 0.458054 +0.188329 0.0319559 0.24484 -0.306891 -0.859014 0.409773 +0.178897 0.0330831 0.243329 -0.254103 -0.901599 0.350074 +0.168587 0.0334754 0.241848 -0.203148 -0.929191 0.308764 +0.158526 0.0340377 0.240365 -0.177007 -0.943519 0.280076 +0.148934 0.0349346 0.238878 -0.182792 -0.947929 0.260804 +0.139935 0.0362691 0.23738 -0.206919 -0.94514 0.252777 +0.131182 0.037782 0.235879 -0.257728 -0.935067 0.243372 +0.122799 0.0395585 0.234372 -0.300311 -0.921886 0.244826 +0.114736 0.0415667 0.232863 -0.343473 -0.907327 0.242456 +0.107334 0.0440906 0.231339 -0.43596 -0.871749 0.223592 +0.100052 0.0466895 0.229817 -0.480621 -0.844955 0.234635 +0.0933743 0.049767 0.228284 -0.517997 -0.821311 0.239014 +0.0870377 0.0530975 0.226737 -0.548939 -0.796707 0.252836 +0.0808567 0.0565525 0.225192 -0.577258 -0.773132 0.262755 +0.0743736 0.0597327 0.22366 -0.609526 -0.746874 0.265815 +0.0692302 0.0640113 0.222085 -0.468981 -0.749722 0.466877 +0.0758898 0.0781105 0.220106 -0.670539 -0.688288 0.276836 +0.723089 -0.654575 0.450678 -0.102456 -0.874125 0.474774 +0.702304 -0.657124 0.448409 -0.149541 -0.907359 0.39286 +0.686101 -0.657471 0.446303 -0.163062 -0.934882 0.315291 +0.67147 -0.657098 0.444253 -0.167316 -0.949236 0.266379 +0.658916 -0.655725 0.442289 -0.193594 -0.961885 0.19313 +0.646703 -0.654223 0.440331 -0.193257 -0.967566 0.162698 +0.635398 -0.652293 0.438418 -0.213071 -0.970697 0.111126 +0.624389 -0.650252 0.436513 -0.222199 -0.971183 0.0862072 +0.458893 -0.72669 0.429959 0.250958 -0.965885 0.0639352 +0.430178 -0.734069 0.427609 0.141942 -0.989807 0.0116482 +0.41006 -0.737148 0.425532 0.0818918 -0.996404 -0.0217818 +0.394339 -0.738033 0.423601 0.0256194 -0.997649 -0.0635772 +0.380065 -0.738221 0.421722 0.00127791 -0.996606 -0.0823179 +0.366886 -0.737894 0.419883 -0.0383324 -0.994246 -0.100032 +0.354051 -0.737432 0.418059 -0.0753513 -0.989609 -0.122457 +0.342288 -0.736445 0.416271 -0.108121 -0.985653 -0.129608 +0.331838 -0.734806 0.414533 -0.140144 -0.981587 -0.129799 +0.321699 -0.733036 0.412801 -0.173934 -0.975309 -0.136084 +0.31231 -0.730896 0.411096 -0.202147 -0.969335 -0.139738 +0.303175 -0.728649 0.409412 -0.229842 -0.962702 -0.142759 +0.294236 -0.726316 0.407727 -0.254411 -0.956103 -0.145402 +0.285726 -0.723785 0.406062 -0.281553 -0.948189 -0.147192 +0.277587 -0.721078 0.404408 -0.303934 -0.941835 -0.143427 +0.269776 -0.718211 0.402767 -0.322314 -0.935751 -0.143129 +0.262141 -0.715265 0.40114 -0.34029 -0.929222 -0.144051 +0.254689 -0.712246 0.399512 -0.356978 -0.922045 -0.149672 +0.24723 -0.709244 0.397896 -0.37934 -0.914302 -0.141964 +0.240059 -0.7061 0.396287 -0.402273 -0.904509 -0.141562 +0.233195 -0.702808 0.394686 -0.436099 -0.889143 -0.138715 +0.226638 -0.699363 0.393094 -0.464344 -0.873553 -0.145913 +0.220258 -0.69583 0.391512 -0.502374 -0.851477 -0.150362 +0.214089 -0.692195 0.389933 -0.543222 -0.8248 -0.156893 +0.208496 -0.688254 0.388373 -0.582559 -0.795054 -0.168867 +0.203137 -0.684187 0.386812 -0.632934 -0.753768 -0.176715 +0.198139 -0.679928 0.385263 -0.682842 -0.703776 -0.19603 +0.193759 -0.675327 0.383735 -0.729994 -0.648887 -0.214607 +0.189599 -0.670612 0.382201 -0.774505 -0.590939 -0.225685 +0.18636 -0.665368 0.380687 -0.804869 -0.543074 -0.239288 +0.183555 -0.659878 0.379186 -0.846207 -0.480386 -0.230572 +0.181566 -0.65391 0.377694 -0.875019 -0.429376 -0.223557 +0.180294 -0.647532 0.376209 -0.891867 -0.396931 -0.216832 +0.179579 -0.640817 0.374733 -0.908855 -0.363308 -0.204913 +0.179305 -0.633839 0.373259 -0.918252 -0.347407 -0.190056 +0.178875 -0.626938 0.371789 -0.926771 -0.334012 -0.171851 +0.176439 -0.621196 0.370279 -0.932725 -0.326963 -0.152047 +0.174399 -0.615216 0.368778 -0.93678 -0.322119 -0.136682 +0.171804 -0.609563 0.367267 -0.942089 -0.310735 -0.12614 +0.169294 -0.603858 0.365757 -0.945537 -0.30298 -0.119016 +0.16697 -0.598038 0.364245 -0.953394 -0.276957 -0.119728 +0.16466 -0.592199 0.362738 -0.964443 -0.234171 -0.122535 +0.163302 -0.585796 0.36124 -0.970634 -0.201904 -0.130781 +0.162467 -0.579061 0.359741 -0.979359 -0.132976 -0.15223 +0.161724 -0.57226 0.358243 -0.983168 -0.0682484 -0.169482 +0.161986 -0.564837 0.356753 -0.98172 -0.00363606 -0.190293 +0.163507 -0.556633 0.355271 -0.973757 0.0802864 -0.212963 +0.166015 -0.547808 0.353793 -0.958645 0.150293 -0.241688 +0.169856 -0.538131 0.352322 -0.923327 0.271484 -0.271594 +0.173169 -0.528755 0.350844 -0.890986 0.337995 -0.303158 +0.181746 -0.516089 0.349396 -0.782976 0.509074 -0.357483 +0.206486 -0.493337 0.34805 -0.785625 0.391837 -0.47881 +0.224303 -0.474773 0.346627 -0.808856 -0.465248 -0.359577 +0.222946 -0.468084 0.34507 -0.75876 -0.600545 -0.252248 +0.220261 -0.462227 0.34351 -0.748447 -0.630228 -0.206492 +0.215668 -0.457572 0.341934 -0.739929 -0.653002 -0.161533 +0.210901 -0.453023 0.34036 -0.713178 -0.692136 -0.111018 +0.206058 -0.448538 0.338788 -0.704946 -0.705388 -0.074027 +0.200931 -0.444242 0.337209 -0.689319 -0.723578 -0.0357115 +0.195542 -0.440112 0.33564 -0.670506 -0.741905 -0.000546652 +0.190187 -0.43598 0.334073 -0.659194 -0.751457 0.0278314 +0.184417 -0.432124 0.332501 -0.653565 -0.755254 0.049449 +0.178703 -0.428231 0.330933 -0.654963 -0.753056 0.062707 +0.173293 -0.424169 0.329368 -0.664327 -0.744022 0.0714282 +0.167934 -0.420072 0.327809 -0.679307 -0.730106 0.0740785 +0.162872 -0.415794 0.326249 -0.698113 -0.712426 0.0713365 +0.158047 -0.41137 0.324683 -0.720336 -0.690502 0.0657584 +0.153396 -0.406835 0.323132 -0.741586 -0.668603 0.0549606 +0.148826 -0.402259 0.321578 -0.762262 -0.645609 0.04633 +0.144628 -0.397436 0.320023 -0.783762 -0.619942 0.0372608 +0.140879 -0.392319 0.318461 -0.802082 -0.596509 0.0289968 +0.137402 -0.387022 0.316907 -0.819562 -0.572511 0.023434 +0.133845 -0.381784 0.31535 -0.836982 -0.5469 0.0190325 +0.130413 -0.376461 0.313794 -0.85286 -0.522035 0.0104755 +0.127271 -0.37094 0.31224 -0.868751 -0.495177 0.00840259 +0.124491 -0.365177 0.310678 -0.884229 -0.467044 0.00335327 +0.121937 -0.359257 0.309122 -0.89971 -0.436489 -9.91535e-05 +0.119644 -0.353159 0.307557 -0.914205 -0.405239 -0.00308428 +0.117467 -0.34697 0.305996 -0.926103 -0.377236 -0.00514252 +0.115372 -0.340714 0.304426 -0.937686 -0.347384 -0.00836589 +0.11327 -0.334462 0.302857 -0.949111 -0.314745 -0.011067 +0.111143 -0.328226 0.301289 -0.959622 -0.280911 -0.0146262 +0.109235 -0.321827 0.29972 -0.967132 -0.253793 -0.0155889 +0.107474 -0.315321 0.298145 -0.974093 -0.225433 -0.0179325 +0.106025 -0.308585 0.296569 -0.979927 -0.198423 -0.0192475 +0.104799 -0.301678 0.294987 -0.985071 -0.170645 -0.0226796 +0.103772 -0.29463 0.293399 -0.988963 -0.145705 -0.026918 +0.102689 -0.287608 0.291811 -0.991832 -0.123302 -0.0326442 +0.101716 -0.280492 0.290219 -0.994418 -0.0990194 -0.036423 +0.101024 -0.273168 0.288619 -0.996287 -0.0761514 -0.0401677 +0.100105 -0.265993 0.287018 -0.997906 -0.0456352 -0.0458445 +0.0996122 -0.258501 0.285413 -0.998626 -0.0117901 -0.0510533 +0.0997426 -0.250538 0.283792 -0.998112 0.0246484 -0.056255 +0.100435 -0.242157 0.282164 -0.99608 0.0621085 -0.0629833 +0.101623 -0.233397 0.280529 -0.990995 0.114321 -0.0697035 +0.103457 -0.224146 0.278869 -0.983265 0.168511 -0.0692389 +0.1063 -0.21412 0.277196 -0.973563 0.218858 -0.0653887 +0.108842 -0.204298 0.27552 -0.962245 0.265773 -0.058743 +0.11219 -0.19384 0.273815 -0.949926 0.307371 -0.0562702 +0.116439 -0.182692 0.2721 -0.936537 0.346719 -0.0517988 +0.121728 -0.170728 0.27035 -0.922793 0.38184 -0.051495 +0.127273 -0.158526 0.26859 -0.909032 0.412089 -0.0619985 +0.133618 -0.14569 0.266808 -0.89826 0.43255 -0.0776527 +0.139159 -0.133396 0.265027 -0.883676 0.457141 -0.100696 +0.1484 -0.118281 0.263166 -0.862285 0.48969 -0.129112 +0.157157 -0.103461 0.261294 -0.839764 0.524078 -0.141914 +0.170721 -0.0849492 0.259317 -0.810526 0.571197 -0.129542 +0.186977 -0.0643042 0.25726 -0.77339 0.627068 -0.0930212 +0.231609 -0.0219389 0.254565 -0.86208 -0.170068 0.477381 +0.232043 -0.0130966 0.252805 -0.766317 -0.376584 0.520521 +0.229568 -0.00647204 0.251109 -0.740586 -0.429183 0.517045 +0.225913 -0.000742745 0.249437 -0.717595 -0.472561 0.511609 +0.221618 0.00449526 0.247785 -0.69044 -0.517407 0.505551 +0.216809 0.00932844 0.246148 -0.657386 -0.551914 0.513063 +0.211924 0.0140958 0.244505 -0.61808 -0.605853 0.500918 +0.206685 0.0185763 0.242883 -0.560131 -0.674501 0.480939 +0.200834 0.022575 0.241278 -0.48172 -0.753455 0.447496 +0.194435 0.0261354 0.23968 -0.408522 -0.80974 0.421226 +0.187168 0.0289867 0.238115 -0.343492 -0.857221 0.383649 +0.178236 0.0305048 0.236605 -0.282773 -0.895649 0.343299 +0.168704 0.0315205 0.23511 -0.224996 -0.923265 0.311385 +0.158973 0.0323436 0.233635 -0.192555 -0.939722 0.28257 +0.149576 0.0333996 0.232151 -0.190007 -0.945929 0.262901 +0.140577 0.0347377 0.230668 -0.207235 -0.944623 0.254449 +0.131439 0.0359375 0.229189 -0.248572 -0.93752 0.243452 +0.122818 0.037526 0.227705 -0.290811 -0.925933 0.240999 +0.114848 0.0396128 0.226202 -0.337594 -0.911002 0.236869 +0.107627 0.0422882 0.224684 -0.409987 -0.884798 0.22146 +0.100315 0.0448689 0.223169 -0.472425 -0.851779 0.22647 +0.092556 0.0470614 0.221676 -0.510107 -0.82931 0.228116 +0.0858551 0.0500912 0.220152 -0.557131 -0.791536 0.251149 +0.0397746 0.0206805 0.219998 -0.103985 -0.158145 0.981925 +0.0307469 0.0216447 0.218584 -0.178679 -0.169687 0.969165 +0.0248175 0.0251534 0.217063 -0.196865 -0.131852 0.971524 +0.0311779 0.0388703 0.215101 -0.18574 0.0278539 0.982203 +0.756296 -0.655692 0.447981 -0.0422961 -0.81962 0.571345 +0.730696 -0.660463 0.44556 -0.0981498 -0.883138 0.458731 +0.714107 -0.660904 0.443446 -0.130091 -0.917226 0.37653 +0.697256 -0.661527 0.441329 -0.186135 -0.93377 0.305659 +0.683019 -0.660909 0.439313 -0.181948 -0.954468 0.236405 +0.670586 -0.659442 0.437353 -0.202346 -0.965952 0.161225 +0.65874 -0.657715 0.435423 -0.210563 -0.969116 0.12837 +0.647679 -0.655631 0.43352 -0.21273 -0.974079 0.076926 +0.636764 -0.653509 0.431627 -0.244938 -0.969049 0.0308275 +0.625982 -0.651346 0.429753 -0.236512 -0.970376 0.0493111 +0.463848 -0.725987 0.423594 0.262512 -0.963715 0.0483943 +0.435184 -0.733312 0.421292 0.150429 -0.988574 -0.00967895 +0.413979 -0.736933 0.419213 0.0907752 -0.994072 -0.0598487 +0.398327 -0.73777 0.417307 0.0316304 -0.993605 -0.108399 +0.384278 -0.73783 0.41545 0.00385186 -0.992036 -0.125904 +0.371132 -0.737469 0.413629 -0.0351577 -0.98921 -0.142231 +0.358667 -0.7368 0.411828 -0.0646892 -0.985525 -0.156704 +0.346765 -0.735875 0.410058 -0.0980425 -0.980524 -0.170179 +0.336104 -0.734338 0.408319 -0.12108 -0.976204 -0.179904 +0.325836 -0.732617 0.4066 -0.153543 -0.970677 -0.184962 +0.316322 -0.730533 0.404905 -0.181745 -0.963799 -0.195094 +0.30707 -0.728339 0.403224 -0.214564 -0.956012 -0.200009 +0.298174 -0.725976 0.401549 -0.238251 -0.949565 -0.203874 +0.28958 -0.72348 0.399887 -0.256241 -0.943834 -0.208613 +0.281442 -0.72076 0.398245 -0.276157 -0.937741 -0.210671 +0.273649 -0.717876 0.396617 -0.298488 -0.93101 -0.210063 +0.265758 -0.715064 0.394983 -0.317354 -0.925346 -0.207418 +0.258067 -0.712162 0.393361 -0.335365 -0.918752 -0.208386 +0.250557 -0.709175 0.391743 -0.359988 -0.91031 -0.204321 +0.243252 -0.706103 0.390139 -0.383041 -0.900626 -0.205313 +0.236245 -0.70288 0.388543 -0.401662 -0.890816 -0.212406 +0.229491 -0.699535 0.386956 -0.429599 -0.875771 -0.220159 +0.22303 -0.696045 0.385376 -0.46891 -0.85471 -0.222701 +0.216787 -0.692445 0.3838 -0.51283 -0.826303 -0.232874 +0.211131 -0.688532 0.382241 -0.555084 -0.796031 -0.24128 +0.20571 -0.684491 0.380688 -0.604497 -0.754875 -0.254455 +0.200864 -0.680146 0.379147 -0.655036 -0.707098 -0.266346 +0.196443 -0.675555 0.37761 -0.696793 -0.659355 -0.282368 +0.192223 -0.670869 0.376077 -0.743812 -0.604423 -0.285335 +0.18895 -0.665644 0.374565 -0.7851 -0.547288 -0.289992 +0.186137 -0.660153 0.373056 -0.81598 -0.502394 -0.285969 +0.184212 -0.654146 0.371559 -0.846126 -0.458798 -0.271246 +0.183139 -0.647645 0.370079 -0.870425 -0.419975 -0.256869 +0.182628 -0.640814 0.368603 -0.888385 -0.391782 -0.23933 +0.181638 -0.634245 0.367114 -0.902017 -0.373877 -0.215827 +0.180225 -0.627913 0.365619 -0.911008 -0.363229 -0.195266 +0.177196 -0.622522 0.364098 -0.921263 -0.351608 -0.166271 +0.17444 -0.616969 0.362586 -0.929727 -0.339235 -0.143276 +0.171923 -0.611267 0.361077 -0.935777 -0.328681 -0.127636 +0.16954 -0.605482 0.359569 -0.943121 -0.311735 -0.115512 +0.167101 -0.599734 0.358056 -0.951455 -0.286167 -0.113321 +0.164677 -0.593968 0.35654 -0.964497 -0.23716 -0.116193 +0.163691 -0.587335 0.355044 -0.97207 -0.198557 -0.125128 +0.163234 -0.580376 0.353544 -0.98117 -0.130229 -0.142642 +0.162427 -0.573616 0.352041 -0.983835 -0.0637792 -0.167335 +0.162175 -0.566514 0.350541 -0.982213 -0.00389573 -0.187736 +0.163268 -0.558567 0.349048 -0.970377 0.0921946 -0.223318 +0.166508 -0.549301 0.347566 -0.957415 0.154469 -0.243917 +0.170804 -0.539357 0.346081 -0.922241 0.275176 -0.271576 +0.176544 -0.52848 0.344601 -0.848333 0.401773 -0.344834 +0.18792 -0.514088 0.343148 -0.737748 0.542357 -0.401965 +0.217996 -0.48803 0.341765 -0.828459 -0.0163604 -0.559811 +0.229477 -0.473391 0.340271 -0.724212 -0.603523 -0.333586 +0.227439 -0.467127 0.338704 -0.698944 -0.666996 -0.258059 +0.223468 -0.462066 0.337138 -0.69616 -0.687545 -0.206503 +0.218748 -0.457481 0.33556 -0.696233 -0.698259 -0.166416 +0.213679 -0.453118 0.333987 -0.679934 -0.722084 -0.127618 +0.208081 -0.44911 0.332412 -0.672397 -0.735049 -0.0870924 +0.202502 -0.44509 0.330842 -0.661067 -0.748531 -0.0518651 +0.196809 -0.441158 0.329275 -0.648509 -0.760926 -0.0207258 +0.190966 -0.437328 0.327703 -0.639211 -0.769002 0.0067431 +0.185237 -0.433442 0.326144 -0.634985 -0.772153 0.023971 +0.179367 -0.429654 0.32458 -0.641508 -0.766486 0.0310993 +0.173758 -0.425714 0.323018 -0.653428 -0.756127 0.0361178 +0.168601 -0.421483 0.321461 -0.670573 -0.741213 0.0305894 +0.163571 -0.417185 0.319899 -0.691135 -0.72236 0.02302 +0.158646 -0.412828 0.318348 -0.713851 -0.700168 0.0135309 +0.153995 -0.408294 0.316796 -0.736163 -0.676771 0.00680263 +0.149568 -0.40362 0.315239 -0.756619 -0.653855 -0.000726401 +0.145279 -0.398851 0.313689 -0.776343 -0.630242 -0.00929092 +0.141698 -0.393631 0.312127 -0.79473 -0.606844 -0.0120183 +0.138032 -0.388461 0.310577 -0.812652 -0.582594 -0.0134628 +0.13441 -0.383261 0.309024 -0.831177 -0.555871 -0.012367 +0.131076 -0.377877 0.307469 -0.846098 -0.532733 -0.0176796 +0.12809 -0.372252 0.305906 -0.862787 -0.505269 -0.0173422 +0.125378 -0.366439 0.304345 -0.879386 -0.475775 -0.0178118 +0.122923 -0.36045 0.302782 -0.894462 -0.446762 -0.0185358 +0.120487 -0.354449 0.301219 -0.909641 -0.414982 -0.0185083 +0.118187 -0.348335 0.299657 -0.922382 -0.385881 -0.0175393 +0.116038 -0.342123 0.298085 -0.934708 -0.354909 -0.0190312 +0.113949 -0.335864 0.296515 -0.946116 -0.323087 -0.0218765 +0.11187 -0.32959 0.294944 -0.956564 -0.290363 -0.0259548 +0.109963 -0.323193 0.293365 -0.965576 -0.258649 -0.0276674 +0.108169 -0.316706 0.291793 -0.972074 -0.232562 -0.031427 +0.106648 -0.310027 0.290207 -0.978175 -0.204446 -0.0371063 +0.105439 -0.303118 0.288628 -0.983328 -0.176694 -0.042965 +0.104452 -0.296038 0.287034 -0.987359 -0.150485 -0.0497742 +0.103412 -0.288983 0.285436 -0.990288 -0.127285 -0.0559327 +0.102552 -0.28179 0.283836 -0.992624 -0.103735 -0.0627465 +0.10178 -0.274525 0.282235 -0.994096 -0.0826826 -0.070259 +0.101131 -0.267157 0.280629 -0.995467 -0.054662 -0.0778301 +0.100649 -0.259653 0.279013 -0.996425 -0.0207235 -0.081913 +0.100552 -0.251866 0.277397 -0.995854 0.016475 -0.0894641 +0.100907 -0.243731 0.275765 -0.994169 0.0539324 -0.0933695 +0.101992 -0.235039 0.274114 -0.990415 0.0968584 -0.0984756 +0.104152 -0.225551 0.272443 -0.98313 0.15549 -0.0963194 +0.106234 -0.216097 0.270766 -0.9754 0.198395 -0.0960909 +0.108742 -0.206293 0.269076 -0.965174 0.246938 -0.086382 +0.112066 -0.195868 0.267369 -0.952105 0.29495 -0.0806354 +0.115927 -0.185002 0.265637 -0.939694 0.33334 -0.0765551 +0.120821 -0.173346 0.263885 -0.925204 0.371979 -0.0750342 +0.126161 -0.161305 0.262105 -0.909863 0.406735 -0.0819462 +0.132612 -0.1484 0.260302 -0.895036 0.435074 -0.0980841 +0.139264 -0.135285 0.258482 -0.879688 0.460298 -0.119481 +0.149018 -0.119792 0.256581 -0.859674 0.489352 -0.146608 +0.157049 -0.105529 0.254703 -0.841105 0.518348 -0.15446 +0.169156 -0.0881316 0.252722 -0.821208 0.55254 -0.142538 +0.18386 -0.0686736 0.250664 -0.792033 0.598639 -0.119646 +0.226493 -0.0278789 0.247916 -0.896644 -0.188941 0.400413 +0.229969 -0.0167318 0.246077 -0.787923 -0.413101 0.456645 +0.227472 -0.0101316 0.244376 -0.754297 -0.452168 0.476003 +0.223957 -0.0042964 0.242708 -0.737855 -0.474391 0.480129 +0.219867 0.00108627 0.241054 -0.715776 -0.515477 0.471114 +0.215244 0.00606126 0.23941 -0.676426 -0.570094 0.466305 +0.210494 0.0109303 0.237772 -0.649192 -0.610569 0.453604 +0.205387 0.01551 0.236144 -0.599643 -0.669904 0.437788 +0.19967 0.0196099 0.234544 -0.518477 -0.739361 0.429566 +0.193463 0.0233093 0.232954 -0.434883 -0.810358 0.392679 +0.186465 0.0263733 0.231388 -0.376251 -0.850314 0.36797 +0.177972 0.0282438 0.229872 -0.305517 -0.889246 0.340443 +0.16894 0.0296497 0.228379 -0.24816 -0.918147 0.308907 +0.159247 0.0305094 0.226914 -0.204137 -0.935543 0.28825 +0.149958 0.0316536 0.225443 -0.193758 -0.942956 0.270728 +0.141081 0.0330949 0.223962 -0.207096 -0.943203 0.259765 +0.131781 0.0341726 0.222505 -0.237043 -0.939353 0.247846 +0.122864 0.0355213 0.221043 -0.275345 -0.930545 0.241398 +0.114778 0.0375215 0.219548 -0.324618 -0.916668 0.233116 +0.106944 0.0396965 0.218061 -0.377605 -0.89643 0.232009 +0.0993097 0.0420047 0.216566 -0.468712 -0.857729 0.211215 +0.0919875 0.0445562 0.215068 -0.50436 -0.833621 0.225164 +0.0323218 0.00415047 0.21547 -0.165657 -0.216953 0.962024 +0.0154011 -0.00138331 0.21436 -0.224011 -0.225972 0.948028 +0.00755827 0.000501323 0.212932 -0.295727 -0.206871 0.932604 +0.000151305 0.00271587 0.211487 -0.334608 -0.19142 0.922711 +-0.00417341 0.00746908 0.20993 -0.396652 -0.133582 0.908198 +0.761001 -0.663062 0.44273 -0.0463393 -0.858393 0.510897 +0.73939 -0.665836 0.440463 -0.108019 -0.899751 0.422823 +0.724108 -0.665601 0.438404 -0.151635 -0.92651 0.344364 +0.708896 -0.665373 0.436359 -0.19841 -0.945856 0.256887 +0.695102 -0.664494 0.434359 -0.195619 -0.960934 0.195805 +0.682734 -0.662958 0.432412 -0.203103 -0.965393 0.163607 +0.67128 -0.660999 0.430503 -0.219429 -0.970631 0.0986256 +0.660066 -0.658956 0.428603 -0.230534 -0.972005 0.0453971 +0.649538 -0.656597 0.42673 -0.232091 -0.972012 0.0364544 +0.63929 -0.654128 0.424871 -0.24746 -0.968554 0.0258386 +0.628494 -0.65197 0.423004 -0.236703 -0.971509 0.0119528 +0.469788 -0.724792 0.417233 0.273928 -0.961128 0.0346265 +0.440457 -0.73243 0.41496 0.163622 -0.985803 -0.0376859 +0.419364 -0.735972 0.412919 0.0955749 -0.99145 -0.0888422 +0.402235 -0.737552 0.410992 0.0249636 -0.987882 -0.153189 +0.388747 -0.737311 0.409169 0.00613103 -0.985498 -0.169582 +0.375901 -0.736784 0.407377 -0.0242924 -0.979061 -0.202116 +0.363786 -0.735919 0.4056 -0.0484063 -0.972189 -0.229141 +0.352308 -0.734753 0.40385 -0.073444 -0.968209 -0.239118 +0.341366 -0.733353 0.402117 -0.0989609 -0.962721 -0.251748 +0.3309 -0.731726 0.400404 -0.130063 -0.955698 -0.264058 +0.321156 -0.729746 0.398712 -0.158707 -0.948057 -0.275683 +0.311718 -0.727638 0.397034 -0.183856 -0.941623 -0.282034 +0.302498 -0.725437 0.395368 -0.211805 -0.935214 -0.28375 +0.294061 -0.722839 0.393719 -0.227153 -0.929101 -0.291846 +0.285962 -0.720093 0.392082 -0.246184 -0.922521 -0.297239 +0.277983 -0.717297 0.390452 -0.267169 -0.916843 -0.296684 +0.270276 -0.714366 0.388837 -0.279058 -0.912119 -0.300277 +0.26257 -0.711463 0.387221 -0.296933 -0.905389 -0.303486 +0.25487 -0.708574 0.385609 -0.317067 -0.898414 -0.303845 +0.247247 -0.705662 0.383998 -0.339712 -0.889227 -0.306387 +0.240019 -0.702558 0.382402 -0.365892 -0.877237 -0.310772 +0.233223 -0.699229 0.380823 -0.396544 -0.865852 -0.305046 +0.226744 -0.695737 0.379249 -0.429533 -0.847329 -0.312307 +0.22033 -0.692224 0.377677 -0.46667 -0.824018 -0.321268 +0.21451 -0.688387 0.376114 -0.517582 -0.790193 -0.328185 +0.209004 -0.684398 0.374558 -0.558817 -0.755464 -0.342051 +0.204081 -0.680084 0.373017 -0.60674 -0.713534 -0.350338 +0.199579 -0.675534 0.371483 -0.664049 -0.660083 -0.351184 +0.195389 -0.670826 0.369954 -0.69795 -0.62198 -0.354975 +0.192235 -0.665518 0.368442 -0.737843 -0.57544 -0.352784 +0.189408 -0.660036 0.366933 -0.778181 -0.527317 -0.341132 +0.187764 -0.653863 0.365439 -0.808225 -0.489549 -0.327283 +0.186663 -0.647375 0.363944 -0.831482 -0.462068 -0.308434 +0.185786 -0.640745 0.362458 -0.861482 -0.428017 -0.273223 +0.18378 -0.634764 0.360953 -0.875618 -0.412536 -0.251214 +0.181119 -0.629161 0.35944 -0.890549 -0.397222 -0.221669 +0.177865 -0.623892 0.357919 -0.906183 -0.37906 -0.187473 +0.17507 -0.618361 0.35641 -0.917056 -0.363611 -0.163695 +0.17263 -0.612613 0.354896 -0.926754 -0.346308 -0.145595 +0.170113 -0.606914 0.353379 -0.935854 -0.329047 -0.126119 +0.167706 -0.601146 0.351866 -0.947601 -0.295077 -0.122394 +0.165491 -0.595259 0.350356 -0.960505 -0.245311 -0.131347 +0.16381 -0.589041 0.348848 -0.970879 -0.198824 -0.133647 +0.16336 -0.58208 0.347339 -0.980054 -0.119835 -0.158542 +0.162503 -0.575353 0.345832 -0.982578 -0.0637215 -0.174586 +0.162456 -0.568124 0.344328 -0.979527 0.00616501 -0.201218 +0.163906 -0.559977 0.342829 -0.967384 0.0939923 -0.235234 +0.167142 -0.550707 0.341337 -0.950209 0.162647 -0.2658 +0.171587 -0.540673 0.339837 -0.905195 0.283074 -0.317006 +0.179855 -0.528249 0.338347 -0.818636 0.429059 -0.381761 +0.196034 -0.510893 0.336881 -0.671676 0.575894 -0.466046 +0.232585 -0.480828 0.335454 -0.715008 -0.551948 -0.42909 +0.233126 -0.472969 0.333894 -0.66108 -0.688887 -0.297335 +0.230402 -0.46712 0.332325 -0.659827 -0.703662 -0.263605 +0.226052 -0.462295 0.330748 -0.657388 -0.722504 -0.214079 +0.220946 -0.457947 0.329175 -0.652167 -0.736339 -0.180231 +0.215613 -0.453748 0.327601 -0.644428 -0.75169 -0.140275 +0.209822 -0.449859 0.326035 -0.639255 -0.764076 -0.0868397 +0.203952 -0.446016 0.324466 -0.636801 -0.768523 -0.0621239 +0.197982 -0.442253 0.322906 -0.62569 -0.779355 -0.0334484 +0.191897 -0.438579 0.32134 -0.618748 -0.785506 -0.0115523 +0.186086 -0.434745 0.319778 -0.62399 -0.781429 -0.00265061 +0.180421 -0.430828 0.318226 -0.633464 -0.773772 0.000479328 +0.174781 -0.426898 0.316663 -0.646552 -0.762863 -0.00363219 +0.169265 -0.422905 0.315114 -0.66422 -0.747391 -0.0148501 +0.164311 -0.418558 0.313563 -0.685118 -0.727931 -0.0270377 +0.159466 -0.414143 0.312006 -0.706628 -0.706728 -0.0348262 +0.154764 -0.409639 0.310457 -0.72764 -0.684464 -0.0452768 +0.1505 -0.404854 0.308905 -0.746516 -0.663884 -0.0444153 +0.146472 -0.399919 0.307345 -0.765774 -0.641342 -0.0476348 +0.142944 -0.394653 0.305794 -0.783994 -0.61898 -0.0470977 +0.139425 -0.389391 0.304243 -0.801733 -0.595978 -0.0451172 +0.136068 -0.384013 0.302681 -0.821084 -0.569286 -0.0416643 +0.132885 -0.378517 0.301128 -0.838004 -0.544073 -0.0416546 +0.129767 -0.372982 0.299566 -0.854769 -0.517675 -0.0371794 +0.126767 -0.367363 0.29801 -0.872529 -0.487386 -0.0338991 +0.124047 -0.361549 0.296441 -0.889139 -0.456547 -0.0315449 +0.121415 -0.355677 0.294883 -0.90422 -0.425986 -0.0303536 +0.118837 -0.349764 0.293319 -0.917723 -0.396226 -0.0281231 +0.116743 -0.34351 0.291743 -0.931259 -0.36323 -0.0286582 +0.114692 -0.337227 0.290171 -0.943012 -0.331158 -0.0326313 +0.112645 -0.330933 0.288596 -0.953888 -0.298152 -0.0346776 +0.110681 -0.324572 0.287021 -0.963005 -0.266434 -0.0404256 +0.108722 -0.318207 0.28544 -0.97077 -0.235555 -0.0460562 +0.107184 -0.31153 0.283852 -0.976728 -0.207606 -0.053878 +0.106014 -0.304599 0.282263 -0.981813 -0.178707 -0.0640908 +0.105016 -0.297527 0.280664 -0.98543 -0.153141 -0.0739959 +0.104243 -0.290291 0.279062 -0.987978 -0.131009 -0.0820879 +0.103477 -0.283033 0.277455 -0.99009 -0.108055 -0.0896953 +0.10288 -0.275634 0.275846 -0.991576 -0.0862127 -0.0966725 +0.102432 -0.268127 0.274234 -0.992805 -0.0552347 -0.106238 +0.102061 -0.260547 0.272611 -0.993219 -0.0247333 -0.113594 +0.101735 -0.252911 0.270987 -0.992866 0.00917048 -0.11888 +0.101587 -0.245142 0.269355 -0.991697 0.0408972 -0.121924 +0.102924 -0.236281 0.267688 -0.988352 0.090448 -0.122385 +0.104636 -0.227119 0.266014 -0.982484 0.136674 -0.126677 +0.106699 -0.217677 0.26433 -0.97519 0.185042 -0.121507 +0.108984 -0.208047 0.262637 -0.966054 0.231974 -0.113707 +0.111819 -0.197984 0.260916 -0.954318 0.278874 -0.107266 +0.115633 -0.187158 0.259175 -0.941049 0.323476 -0.098948 +0.119983 -0.175905 0.257412 -0.926058 0.364531 -0.097648 +0.125793 -0.163533 0.255614 -0.913564 0.395006 -0.0968051 +0.132394 -0.150525 0.253784 -0.891733 0.437333 -0.116412 +0.13928 -0.137245 0.251939 -0.875425 0.463828 -0.135999 +0.149512 -0.121405 0.249998 -0.855743 0.492144 -0.159685 +0.157879 -0.106897 0.248093 -0.838949 0.518377 -0.165683 +0.169466 -0.089898 0.246089 -0.82659 0.541288 -0.154138 +0.182993 -0.0713458 0.244021 -0.806913 0.578415 -0.119698 +0.382099 0.0883663 0.237085 -0.658685 -0.675488 -0.331437 +0.228278 -0.0200675 0.239343 -0.806935 -0.4149 0.420374 +0.225706 -0.0135296 0.23765 -0.783711 -0.448847 0.429343 +0.222176 -0.0077145 0.235978 -0.760716 -0.487321 0.428753 +0.218419 -0.00208112 0.23432 -0.728297 -0.535037 0.428158 +0.214262 0.00325075 0.232665 -0.701695 -0.578224 0.41627 +0.209533 0.00812658 0.231033 -0.672115 -0.617107 0.409195 +0.204414 0.0126995 0.229407 -0.627817 -0.660388 0.41199 +0.198675 0.0167771 0.227811 -0.553684 -0.729122 0.402265 +0.19266 0.020624 0.226219 -0.470413 -0.797947 0.376823 +0.18556 0.0236102 0.224668 -0.402688 -0.844223 0.353736 +0.177491 0.0258056 0.223155 -0.333389 -0.880174 0.337857 +0.169074 0.0277096 0.221654 -0.276216 -0.908385 0.313915 +0.159706 0.0288258 0.22019 -0.231717 -0.927223 0.294223 +0.150274 0.0298575 0.218732 -0.200102 -0.938884 0.280099 +0.140877 0.030888 0.217285 -0.208337 -0.940571 0.268182 +0.131887 0.0322123 0.21583 -0.230902 -0.939227 0.254046 +0.123122 0.0336895 0.214365 -0.262334 -0.933874 0.243029 +0.114814 0.0355061 0.212895 -0.309533 -0.922022 0.232521 +0.0456753 -0.0120384 0.213666 -0.049784 -0.302618 0.951811 +0.0309384 -0.0156771 0.21248 -0.126081 -0.320445 0.938839 +0.0240454 -0.0129696 0.211014 -0.211145 -0.298488 0.930765 +0.0162146 -0.0110487 0.209585 -0.248845 -0.301118 0.920546 +0.00752815 -0.00985696 0.208195 -0.309356 -0.275752 0.910088 +-0.00115937 -0.00869072 0.206811 -0.365853 -0.267873 0.891289 +-0.00861418 -0.006529 0.205383 -0.428128 -0.264781 0.864059 +-0.0121448 -0.00114498 0.203803 -0.437895 -0.236281 0.867421 +-0.0122912 0.00706466 0.202077 -0.458538 -0.170394 0.872186 +0.773345 -0.666761 0.437709 -0.0356747 -0.881108 0.471569 +0.748957 -0.670813 0.435377 -0.107891 -0.907054 0.406956 +0.733469 -0.67064 0.433329 -0.15002 -0.93261 0.328227 +0.719266 -0.669876 0.431327 -0.183706 -0.951923 0.245143 +0.706849 -0.668287 0.429379 -0.219532 -0.962605 0.158738 +0.694887 -0.666512 0.427452 -0.214038 -0.968456 0.127598 +0.683305 -0.664577 0.425543 -0.219114 -0.973283 0.068635 +0.672627 -0.662232 0.423667 -0.240648 -0.970535 0.0123539 +0.662229 -0.659781 0.421807 -0.23236 -0.972589 0.00900536 +0.652528 -0.657005 0.419965 -0.259992 -0.963012 -0.0708066 +0.642267 -0.654529 0.41812 -0.25532 -0.96419 -0.0717624 +0.632219 -0.651984 0.416284 -0.270817 -0.954804 -0.122516 +0.484317 -0.71925 0.41107 0.311681 -0.950117 0.0115595 +0.446273 -0.731277 0.408629 0.169005 -0.983292 -0.0676284 +0.424027 -0.735382 0.406593 0.0992592 -0.985356 -0.138645 +0.407412 -0.736682 0.404702 0.0169623 -0.980905 -0.193746 +0.393587 -0.736602 0.402886 0.00672295 -0.973306 -0.229415 +0.381368 -0.735735 0.401117 -0.0176991 -0.965964 -0.258072 +0.369424 -0.734767 0.399363 -0.0493924 -0.962167 -0.267947 +0.358142 -0.733492 0.397629 -0.0614114 -0.954691 -0.291195 +0.347562 -0.73188 0.395916 -0.0881955 -0.949226 -0.301983 +0.337008 -0.730285 0.394219 -0.114186 -0.940759 -0.319272 +0.326863 -0.728501 0.392521 -0.140859 -0.935775 -0.323241 +0.317263 -0.726462 0.390853 -0.158738 -0.928904 -0.334577 +0.308017 -0.724265 0.389194 -0.18324 -0.921551 -0.342298 +0.299465 -0.721718 0.387554 -0.20487 -0.914409 -0.349124 +0.291383 -0.718943 0.38592 -0.225531 -0.909819 -0.348377 +0.28343 -0.716119 0.3843 -0.242192 -0.903332 -0.35403 +0.275467 -0.713319 0.382685 -0.262295 -0.897164 -0.355387 +0.267851 -0.71036 0.381072 -0.271703 -0.890876 -0.36403 +0.260165 -0.707447 0.379471 -0.287393 -0.883678 -0.369486 +0.252394 -0.704601 0.377864 -0.305162 -0.87565 -0.374318 +0.244881 -0.701635 0.376274 -0.329738 -0.866044 -0.375821 +0.237933 -0.69838 0.37469 -0.360621 -0.852442 -0.378545 +0.23094 -0.695163 0.373112 -0.391413 -0.835612 -0.385421 +0.224478 -0.691668 0.371547 -0.427093 -0.816707 -0.38805 +0.218785 -0.687752 0.369983 -0.469842 -0.788428 -0.397027 +0.213194 -0.683797 0.368436 -0.518501 -0.751188 -0.408504 +0.208156 -0.679542 0.3669 -0.557647 -0.715844 -0.420234 +0.203493 -0.675073 0.365362 -0.611364 -0.670169 -0.420842 +0.19925 -0.670381 0.363833 -0.653034 -0.631567 -0.417937 +0.196184 -0.665029 0.362318 -0.689043 -0.59675 -0.411229 +0.193443 -0.659486 0.360803 -0.728105 -0.561264 -0.393504 +0.191934 -0.65323 0.359309 -0.762561 -0.526697 -0.375621 +0.19001 -0.647208 0.357802 -0.792494 -0.498935 -0.350738 +0.188168 -0.641133 0.356298 -0.813608 -0.481439 -0.325969 +0.18481 -0.635928 0.354774 -0.845135 -0.453274 -0.283355 +0.1818 -0.630524 0.35326 -0.866179 -0.43254 -0.250289 +0.178477 -0.625304 0.351745 -0.886611 -0.410012 -0.214036 +0.175477 -0.619887 0.35022 -0.898576 -0.396216 -0.188614 +0.172716 -0.614338 0.348709 -0.913561 -0.372279 -0.163755 +0.170206 -0.608634 0.347193 -0.923746 -0.349621 -0.156389 +0.167837 -0.602843 0.345676 -0.938559 -0.307527 -0.156642 +0.165756 -0.596871 0.344167 -0.953748 -0.258149 -0.154027 +0.164402 -0.590463 0.342651 -0.965013 -0.201425 -0.167863 +0.163785 -0.583605 0.341144 -0.974522 -0.123824 -0.187011 +0.163517 -0.576522 0.339639 -0.976526 -0.0640509 -0.205657 +0.163658 -0.56918 0.338124 -0.973049 0.022751 -0.229474 +0.165308 -0.560914 0.336615 -0.955996 0.105599 -0.273716 +0.168488 -0.551683 0.335104 -0.935961 0.179141 -0.303127 +0.173296 -0.541431 0.333592 -0.894779 0.284686 -0.343986 +0.181861 -0.528825 0.332087 -0.795729 0.441827 -0.414252 +0.20996 -0.504129 0.330597 -0.693983 0.494679 -0.523147 +0.2371 -0.47988 0.32907 -0.626996 -0.702162 -0.33741 +0.236332 -0.472823 0.327502 -0.619752 -0.728162 -0.292726 +0.23255 -0.467638 0.325931 -0.617804 -0.74551 -0.250069 +0.227713 -0.463106 0.324354 -0.617964 -0.756943 -0.212508 +0.222478 -0.458834 0.322789 -0.622385 -0.762738 -0.175691 +0.216997 -0.454727 0.321215 -0.61261 -0.777693 -0.141083 +0.211194 -0.450832 0.319656 -0.610585 -0.7865 -0.0927617 +0.205374 -0.446968 0.318093 -0.611221 -0.788353 -0.0700643 +0.199541 -0.44311 0.316532 -0.604427 -0.795399 -0.0448183 +0.193495 -0.439413 0.314972 -0.607408 -0.79372 -0.0326347 +0.187634 -0.435598 0.313418 -0.614509 -0.788292 -0.0312017 +0.182001 -0.431661 0.311863 -0.627443 -0.777922 -0.0339392 +0.176444 -0.427676 0.310311 -0.642129 -0.765364 -0.0434533 +0.171039 -0.423606 0.308761 -0.659981 -0.749247 -0.0552752 +0.165651 -0.419534 0.307213 -0.679388 -0.730851 -0.0654847 +0.160743 -0.415157 0.305666 -0.698001 -0.711913 -0.0772998 +0.156032 -0.410657 0.304117 -0.716289 -0.692857 -0.0829505 +0.151914 -0.405775 0.302563 -0.734257 -0.673744 -0.0832943 +0.147994 -0.400771 0.301006 -0.752732 -0.653189 -0.0820984 +0.144853 -0.39524 0.29945 -0.772411 -0.630517 -0.0763496 +0.141796 -0.389659 0.297889 -0.791623 -0.607053 -0.069425 +0.138566 -0.384201 0.296335 -0.807775 -0.585776 -0.0660767 +0.135544 -0.378589 0.294771 -0.826692 -0.559378 -0.0606412 +0.132259 -0.373158 0.29321 -0.846798 -0.52918 -0.0538658 +0.128926 -0.367764 0.291652 -0.864756 -0.499869 -0.0482581 +0.125616 -0.362346 0.2901 -0.881979 -0.469307 -0.0431878 +0.122808 -0.356595 0.28853 -0.898952 -0.436181 -0.0404014 +0.11989 -0.350908 0.286973 -0.912654 -0.406909 -0.0385704 +0.117642 -0.344766 0.285401 -0.927098 -0.372727 -0.0395305 +0.115451 -0.338571 0.283822 -0.940267 -0.33766 -0.0433983 +0.113429 -0.332262 0.282247 -0.951488 -0.304065 -0.0470625 +0.111367 -0.325973 0.280666 -0.961383 -0.26983 -0.0541663 +0.109402 -0.319611 0.27909 -0.969337 -0.237945 -0.0613877 +0.107849 -0.312954 0.277498 -0.97543 -0.207934 -0.0727904 +0.106617 -0.306052 0.275903 -0.980277 -0.178277 -0.08528 +0.105533 -0.299044 0.274303 -0.98329 -0.154495 -0.0962939 +0.104985 -0.291652 0.272692 -0.985405 -0.132916 -0.106346 +0.104398 -0.284269 0.271073 -0.98701 -0.1112 -0.115954 +0.10402 -0.27672 0.269457 -0.988299 -0.0897913 -0.1233 +0.103638 -0.269164 0.267831 -0.989609 -0.0595804 -0.130865 +0.103355 -0.261523 0.266201 -0.99021 -0.0307423 -0.136159 +0.103109 -0.253831 0.264571 -0.98984 0.00358237 -0.142141 +0.103081 -0.245972 0.26293 -0.988498 0.0392729 -0.146042 +0.104081 -0.237356 0.261265 -0.985827 0.0781374 -0.148462 +0.105521 -0.22839 0.259582 -0.980886 0.123204 -0.150609 +0.107174 -0.21925 0.257893 -0.974123 0.17141 -0.147317 +0.109228 -0.209793 0.256188 -0.966819 0.213331 -0.14054 +0.111796 -0.199932 0.254468 -0.957793 0.256479 -0.129815 +0.115089 -0.189501 0.252725 -0.943509 0.306688 -0.125437 +0.119741 -0.178033 0.25094 -0.927321 0.354164 -0.121018 +0.125473 -0.165722 0.249125 -0.91363 0.389122 -0.117748 +0.13195 -0.152806 0.247274 -0.890098 0.436591 -0.130824 +0.139607 -0.13896 0.24539 -0.870209 0.468132 -0.15359 +0.150414 -0.122704 0.243403 -0.850986 0.496258 -0.171901 +0.158774 -0.108211 0.241469 -0.840776 0.512479 -0.174533 +0.170277 -0.091279 0.239443 -0.838128 0.52485 -0.148581 +0.183093 -0.0732796 0.237362 -0.82444 0.555835 -0.106516 +0.38569 0.088962 0.229906 -0.658685 -0.675488 -0.331437 +0.226112 -0.0237704 0.232637 -0.828958 -0.409023 0.381483 +0.223922 -0.0169438 0.230934 -0.801559 -0.453191 0.390027 +0.221036 -0.0106451 0.229245 -0.777846 -0.492496 0.390388 +0.21739 -0.00491892 0.227576 -0.751398 -0.53221 0.390067 +0.213303 0.000457946 0.225924 -0.716335 -0.575448 0.394617 +0.208836 0.00552982 0.224287 -0.686764 -0.606019 0.40137 +0.203484 0.00991783 0.222683 -0.639803 -0.658776 0.39581 +0.198057 0.0142399 0.221072 -0.574468 -0.723455 0.382885 +0.192124 0.0181578 0.219487 -0.492907 -0.783045 0.37932 +0.185304 0.0213538 0.217937 -0.412365 -0.836316 0.361294 +0.177477 0.023745 0.216422 -0.353617 -0.86787 0.348939 +0.169094 0.02567 0.214927 -0.294043 -0.897768 0.327952 +0.160045 0.0270462 0.213462 -0.245234 -0.918459 0.310315 +0.150569 0.0280475 0.212022 -0.206185 -0.931105 0.300884 +0.140969 0.0289214 0.210594 -0.205792 -0.936657 0.283413 +0.132045 0.0302976 0.209148 -0.226686 -0.938591 0.260119 +0.123331 0.0318227 0.207701 -0.253584 -0.934795 0.248706 +0.0426501 -0.0248184 0.209008 -0.0432661 -0.383724 0.922433 +0.031566 -0.0254756 0.207704 -0.100995 -0.391075 0.914801 +0.0242645 -0.0230959 0.206262 -0.180184 -0.358908 0.915816 +0.0173434 -0.0204305 0.204803 -0.262369 -0.343872 0.901619 +0.00923413 -0.0187487 0.203397 -0.314263 -0.341957 0.885609 +-0.000376775 -0.01833 0.202067 -0.37713 -0.350898 0.857114 +-0.00878828 -0.0169651 0.200684 -0.448737 -0.345843 0.824032 +-0.0149328 -0.0137415 0.199211 -0.48887 -0.32695 0.808771 +-0.0187831 -0.00863183 0.197651 -0.512458 -0.306827 0.802025 +-0.0198654 -0.00122454 0.195966 -0.528327 -0.265385 0.806499 +0.783298 -0.671648 0.432589 -0.0376429 -0.893514 0.447458 +0.762281 -0.674011 0.430381 -0.0866039 -0.919354 0.383785 +0.744246 -0.675015 0.42828 -0.141354 -0.936524 0.320847 +0.730227 -0.674125 0.426289 -0.181727 -0.956538 0.228063 +0.71755 -0.672632 0.424347 -0.19473 -0.966024 0.16994 +0.706313 -0.670461 0.422454 -0.223544 -0.970931 0.085574 +0.695732 -0.668001 0.420577 -0.236035 -0.970308 0.0528259 +0.685147 -0.665576 0.418712 -0.264573 -0.964177 -0.0191257 +0.675424 -0.662748 0.416872 -0.256748 -0.964412 -0.0631791 +0.665259 -0.660167 0.415027 -0.243177 -0.964621 -0.101836 +0.655531 -0.657405 0.413192 -0.250743 -0.958699 -0.134254 +0.646048 -0.654532 0.411378 -0.260803 -0.958268 -0.117074 +0.63647 -0.651737 0.409558 -0.268803 -0.952114 -0.145687 +0.626604 -0.64911 0.407743 -0.270141 -0.945955 -0.179424 +0.451907 -0.730218 0.402265 0.172058 -0.980114 -0.0988654 +0.42885 -0.734719 0.400248 0.0926955 -0.981373 -0.168272 +0.413294 -0.735461 0.3984 0.0106653 -0.968614 -0.248344 +0.399233 -0.735483 0.396603 -0.0051617 -0.956213 -0.29263 +0.387103 -0.734557 0.39485 -0.0274452 -0.948246 -0.31635 +0.375824 -0.733227 0.393119 -0.0267441 -0.933853 -0.35666 +0.365365 -0.731511 0.391416 -0.032709 -0.927048 -0.373515 +0.354362 -0.730093 0.389712 -0.0748306 -0.932162 -0.354224 +0.343474 -0.728659 0.388007 -0.0925097 -0.925237 -0.36794 +0.333967 -0.726527 0.38634 -0.105599 -0.912055 -0.39624 +0.323493 -0.724929 0.384665 -0.122876 -0.898595 -0.421225 +0.314402 -0.722636 0.383013 -0.147029 -0.894827 -0.421508 +0.305908 -0.720039 0.381383 -0.163608 -0.880213 -0.445487 +0.297563 -0.717398 0.379756 -0.19458 -0.879444 -0.434417 +0.28947 -0.714633 0.378137 -0.204092 -0.871433 -0.446041 +0.281534 -0.711806 0.376527 -0.220392 -0.865031 -0.450722 +0.273676 -0.708957 0.374918 -0.226235 -0.85609 -0.464681 +0.266131 -0.705957 0.373325 -0.244544 -0.851991 -0.462938 +0.258595 -0.702969 0.371728 -0.261041 -0.844373 -0.46786 +0.250818 -0.700139 0.370139 -0.286139 -0.833865 -0.472012 +0.243996 -0.696798 0.368562 -0.312583 -0.825388 -0.470135 +0.23705 -0.69354 0.366986 -0.334987 -0.811328 -0.479094 +0.22999 -0.690359 0.365418 -0.372823 -0.793878 -0.480376 +0.223838 -0.686692 0.363856 -0.415833 -0.772463 -0.479985 +0.218207 -0.682743 0.362305 -0.455069 -0.746264 -0.485802 +0.21331 -0.678402 0.36077 -0.507985 -0.711171 -0.485993 +0.208661 -0.673914 0.359237 -0.543954 -0.683904 -0.486199 +0.204256 -0.669304 0.357705 -0.597073 -0.649577 -0.470695 +0.20096 -0.664067 0.356188 -0.635837 -0.620215 -0.459398 +0.198115 -0.658572 0.354666 -0.670986 -0.592956 -0.445177 +0.196165 -0.652565 0.353161 -0.705374 -0.567855 -0.424251 +0.19299 -0.647254 0.351645 -0.745273 -0.539654 -0.391588 +0.19028 -0.641675 0.350124 -0.780054 -0.513023 -0.358223 +0.18677 -0.636553 0.348607 -0.802764 -0.49712 -0.329305 +0.183073 -0.631547 0.347085 -0.82768 -0.478635 -0.293008 +0.17984 -0.626273 0.345566 -0.854684 -0.451481 -0.256282 +0.176814 -0.620872 0.344042 -0.87463 -0.426857 -0.229813 +0.173856 -0.615435 0.342524 -0.888953 -0.404175 -0.215418 +0.171364 -0.60972 0.341014 -0.905662 -0.37317 -0.201298 +0.169047 -0.603896 0.339495 -0.925469 -0.322401 -0.198912 +0.167238 -0.597761 0.337979 -0.937863 -0.269628 -0.218434 +0.165749 -0.591435 0.336463 -0.951014 -0.207955 -0.228755 +0.165164 -0.584558 0.334954 -0.958806 -0.13007 -0.252531 +0.165058 -0.577379 0.333433 -0.963099 -0.0706609 -0.259706 +0.165608 -0.569794 0.331915 -0.958238 0.0274684 -0.284649 +0.168086 -0.561009 0.330398 -0.940134 0.107877 -0.323281 +0.171222 -0.55181 0.328874 -0.916461 0.192686 -0.350674 +0.176462 -0.541294 0.327348 -0.85241 0.322059 -0.411914 +0.188471 -0.52658 0.325814 -0.738429 0.478469 -0.475175 +0.238136 -0.488599 0.324249 -0.698015 -0.533673 -0.477461 +0.242877 -0.478157 0.322673 -0.572928 -0.759248 -0.308702 +0.239455 -0.472732 0.321101 -0.583424 -0.764982 -0.272798 +0.234781 -0.468089 0.319529 -0.582789 -0.773983 -0.247607 +0.229459 -0.463864 0.317959 -0.587643 -0.780595 -0.212949 +0.223934 -0.459772 0.316392 -0.57708 -0.803822 -0.144392 +0.218117 -0.455868 0.314829 -0.585102 -0.801642 -0.122587 +0.212218 -0.452034 0.313267 -0.594612 -0.796594 -0.108976 +0.206456 -0.448132 0.311709 -0.592155 -0.801974 -0.0786686 +0.20068 -0.444238 0.310159 -0.589054 -0.805866 -0.0599669 +0.194892 -0.440369 0.308598 -0.597685 -0.799789 -0.0557741 +0.189213 -0.436443 0.307049 -0.609659 -0.790475 -0.0588676 +0.183732 -0.432392 0.305498 -0.622685 -0.779424 -0.0690087 +0.178422 -0.428245 0.303945 -0.639124 -0.764818 -0.081083 +0.173078 -0.424129 0.302398 -0.657687 -0.747942 -0.0896198 +0.167694 -0.420051 0.300856 -0.674174 -0.731351 -0.103036 +0.162683 -0.415737 0.299309 -0.690609 -0.714651 -0.11106 +0.158005 -0.411218 0.297764 -0.70499 -0.700004 -0.11395 +0.153835 -0.406366 0.296213 -0.720875 -0.683976 -0.111883 +0.150376 -0.401042 0.294653 -0.738252 -0.665996 -0.106921 +0.147311 -0.395464 0.293093 -0.757709 -0.645035 -0.0990392 +0.144353 -0.389813 0.291534 -0.775007 -0.625288 -0.0915443 +0.141082 -0.384374 0.289972 -0.794449 -0.601462 -0.0842206 +0.137614 -0.379063 0.288415 -0.813947 -0.57592 -0.0761994 +0.134015 -0.373843 0.28686 -0.835519 -0.54525 -0.0679048 +0.130462 -0.368582 0.285306 -0.856211 -0.513026 -0.0608995 +0.126823 -0.363395 0.283755 -0.873826 -0.483079 -0.0553554 +0.123461 -0.358011 0.28219 -0.892222 -0.448493 -0.0528606 +0.120496 -0.352364 0.28063 -0.906971 -0.418003 -0.051736 +0.118145 -0.346286 0.279055 -0.922502 -0.382221 -0.0538271 +0.115859 -0.340166 0.277486 -0.936628 -0.345824 -0.055984 +0.114004 -0.333741 0.275898 -0.949265 -0.308195 -0.062533 +0.11204 -0.32738 0.274316 -0.959019 -0.274447 -0.0704403 +0.110241 -0.320901 0.272729 -0.967733 -0.238474 -0.0813765 +0.108781 -0.314176 0.271138 -0.973687 -0.2072 -0.0948877 +0.107529 -0.307299 0.269538 -0.978064 -0.178323 -0.10767 +0.106405 -0.300316 0.267933 -0.980876 -0.153708 -0.119407 +0.106006 -0.292818 0.266311 -0.982489 -0.132931 -0.130554 +0.105735 -0.285214 0.264683 -0.983788 -0.113212 -0.139084 +0.105351 -0.277669 0.26306 -0.985025 -0.0907741 -0.146586 +0.104945 -0.270132 0.261428 -0.986082 -0.063736 -0.153561 +0.104622 -0.262517 0.259794 -0.987021 -0.0325428 -0.157261 +0.104497 -0.254746 0.258149 -0.986204 -0.00350684 -0.165497 +0.104498 -0.246861 0.256502 -0.985115 0.0321863 -0.168858 +0.105227 -0.23844 0.254836 -0.982715 0.0690261 -0.171777 +0.106573 -0.229553 0.253148 -0.97814 0.115436 -0.172968 +0.108128 -0.220484 0.251451 -0.972584 0.158614 -0.170063 +0.109897 -0.211233 0.249738 -0.965729 0.199503 -0.166032 +0.11247 -0.201363 0.248008 -0.958936 0.236135 -0.157108 +0.115782 -0.190924 0.246249 -0.943202 0.295431 -0.151956 +0.120041 -0.179754 0.244459 -0.927034 0.346194 -0.144078 +0.125248 -0.167834 0.242634 -0.914465 0.3786 -0.14289 +0.131965 -0.154759 0.24076 -0.888017 0.434013 -0.151858 +0.139912 -0.14071 0.238838 -0.867279 0.469249 -0.166233 +0.151064 -0.124193 0.236823 -0.8494 0.494868 -0.183374 +0.159559 -0.109607 0.234856 -0.844328 0.505725 -0.17707 +0.169944 -0.0935319 0.232827 -0.851874 0.503462 -0.144348 +0.393577 0.0838978 0.224441 -0.658685 -0.675488 -0.331437 +0.388924 0.08927 0.222716 -0.658685 -0.675488 -0.331437 +0.22456 -0.0269966 0.225922 -0.847325 -0.372345 0.378682 +0.222511 -0.0200669 0.224216 -0.81113 -0.454352 0.368285 +0.219812 -0.0136269 0.222519 -0.791103 -0.492047 0.363382 +0.21627 -0.00783651 0.22085 -0.762341 -0.524073 0.379718 +0.212227 -0.00242991 0.219204 -0.726049 -0.567337 0.388564 +0.207896 0.00275126 0.21756 -0.691121 -0.605862 0.394058 +0.202977 0.00747585 0.21594 -0.644231 -0.653551 0.397287 +0.197601 0.0118319 0.214334 -0.593668 -0.706248 0.385712 +0.191847 0.0158775 0.212751 -0.516709 -0.768842 0.376687 +0.185083 0.0191255 0.2112 -0.434024 -0.818204 0.377049 +0.177391 0.02163 0.209687 -0.370311 -0.853164 0.367399 +0.169112 0.023632 0.208208 -0.309332 -0.88009 0.360216 +0.160246 0.0251604 0.206746 -0.253201 -0.905376 0.340857 +0.15077 0.0261653 0.205321 -0.211411 -0.925581 0.314017 +0.141322 0.0271531 0.203904 -0.203574 -0.932634 0.297915 +0.132427 0.0285671 0.202459 -0.219817 -0.934917 0.278589 +0.0428912 -0.0349254 0.204247 -0.0125779 -0.461542 0.887029 +0.0303652 -0.0367287 0.20301 -0.126551 -0.461615 0.878006 +0.0211677 -0.0358871 0.201656 -0.184064 -0.45793 0.869725 +0.0108624 -0.0359731 0.200349 -0.298157 -0.440878 0.846599 +0.00307504 -0.0340457 0.198946 -0.359805 -0.431841 0.827076 +-0.00357901 -0.0312206 0.197498 -0.413311 -0.408049 0.814045 +-0.0104064 -0.0285465 0.196061 -0.462854 -0.391056 0.795513 +-0.016297 -0.0251285 0.194588 -0.510676 -0.370282 0.775953 +-0.0212292 -0.0209306 0.193074 -0.522473 -0.361234 0.772355 +-0.0255067 -0.0161956 0.19154 -0.557997 -0.335771 0.75888 +-0.0268263 -0.00900807 0.189862 -0.569228 -0.308857 0.761962 +0.798614 -0.674006 0.4276 -0.0400369 -0.910481 0.411609 +0.775613 -0.677256 0.425367 -0.0700076 -0.929768 0.361428 +0.757721 -0.678129 0.423279 -0.115418 -0.952444 0.28201 +0.742182 -0.677929 0.421267 -0.165641 -0.965432 0.201256 +0.729273 -0.676505 0.419328 -0.195853 -0.968493 0.153833 +0.717555 -0.674534 0.417423 -0.247227 -0.966975 0.0619659 +0.707036 -0.672013 0.415559 -0.252761 -0.966554 0.0434172 +0.697638 -0.668975 0.413722 -0.262746 -0.963862 -0.0440124 +0.68786 -0.666143 0.411891 -0.268589 -0.957038 -0.109271 +0.678217 -0.663271 0.410062 -0.260184 -0.954242 -0.1474 +0.66868 -0.660368 0.408244 -0.267357 -0.945766 -0.18452 +0.659347 -0.657394 0.406427 -0.256038 -0.940759 -0.222302 +0.650696 -0.6541 0.404636 -0.253409 -0.941241 -0.223272 +0.641791 -0.650953 0.402848 -0.264489 -0.936255 -0.231245 +0.633577 -0.647485 0.401079 -0.292706 -0.925221 -0.241434 +0.457277 -0.729298 0.395886 0.182725 -0.976309 -0.115899 +0.434957 -0.733405 0.393915 0.0854381 -0.975365 -0.203384 +0.419914 -0.733866 0.392101 -0.00361781 -0.951256 -0.308379 +0.406934 -0.73332 0.390337 -0.00391863 -0.942864 -0.333158 +0.394943 -0.732304 0.388599 -0.0379751 -0.91133 -0.409922 +0.383769 -0.730893 0.386889 -0.0262356 -0.899386 -0.436368 +0.37307 -0.729278 0.38519 -0.042769 -0.885204 -0.463234 +0.362589 -0.72758 0.383499 -0.0373691 -0.874134 -0.484246 +0.351691 -0.72613 0.381811 -0.0392464 -0.864989 -0.500257 +0.34175 -0.724201 0.380146 -0.0688866 -0.867699 -0.492294 +0.331278 -0.722591 0.378476 -0.0969939 -0.865791 -0.490916 +0.32198 -0.720377 0.376831 -0.120556 -0.859975 -0.495892 +0.313124 -0.717959 0.375203 -0.138405 -0.850972 -0.506647 +0.304511 -0.715444 0.37358 -0.150477 -0.841579 -0.51875 +0.29635 -0.712695 0.37196 -0.168934 -0.835264 -0.523255 +0.288824 -0.709638 0.370363 -0.183116 -0.829169 -0.528155 +0.280768 -0.706874 0.368764 -0.198245 -0.82376 -0.531148 +0.273125 -0.703914 0.367172 -0.214264 -0.817898 -0.533979 +0.265833 -0.700775 0.365585 -0.223813 -0.810358 -0.541506 +0.258142 -0.697881 0.363996 -0.23988 -0.803383 -0.545008 +0.251204 -0.694581 0.362427 -0.261416 -0.797197 -0.544186 +0.244379 -0.691247 0.360859 -0.281782 -0.784563 -0.552323 +0.237748 -0.687811 0.359293 -0.30918 -0.767635 -0.561378 +0.231061 -0.684426 0.357734 -0.340052 -0.753225 -0.563043 +0.225028 -0.68069 0.356183 -0.387862 -0.734695 -0.556585 +0.219967 -0.676414 0.354638 -0.425557 -0.712927 -0.557347 +0.215078 -0.672056 0.353107 -0.487505 -0.686169 -0.539918 +0.210463 -0.66755 0.351572 -0.522492 -0.667753 -0.530197 +0.206548 -0.662651 0.350048 -0.569688 -0.643238 -0.511568 +0.203001 -0.657545 0.348524 -0.605767 -0.623531 -0.494224 +0.199613 -0.652349 0.347 -0.658862 -0.596898 -0.457836 +0.196449 -0.647026 0.345475 -0.698021 -0.574815 -0.42703 +0.192557 -0.642122 0.343951 -0.725587 -0.561326 -0.39804 +0.188678 -0.637212 0.342428 -0.762128 -0.535141 -0.364397 +0.185046 -0.632166 0.34091 -0.795875 -0.505996 -0.332492 +0.181789 -0.626897 0.339389 -0.819409 -0.487088 -0.302184 +0.178451 -0.62168 0.337866 -0.842121 -0.457135 -0.28611 +0.175502 -0.616231 0.336346 -0.863826 -0.423661 -0.272609 +0.173591 -0.610174 0.334831 -0.879908 -0.39227 -0.268117 +0.171332 -0.604315 0.333317 -0.899281 -0.339481 -0.275769 +0.169307 -0.598304 0.331794 -0.916974 -0.270986 -0.29279 +0.168107 -0.591801 0.330271 -0.928482 -0.21676 -0.301556 +0.167496 -0.584942 0.328757 -0.938122 -0.139163 -0.317115 +0.167343 -0.577786 0.327228 -0.936337 -0.0558325 -0.346636 +0.168203 -0.570011 0.325709 -0.929028 0.0449098 -0.367275 +0.170971 -0.56105 0.324177 -0.914715 0.118447 -0.38635 +0.17499 -0.55131 0.322638 -0.859687 0.255028 -0.442604 +0.181177 -0.540214 0.321092 -0.798211 0.36593 -0.478492 +0.205527 -0.517936 0.319503 -0.597353 0.588482 -0.54485 +0.24797 -0.484391 0.317838 -0.533046 -0.78749 -0.309388 +0.246478 -0.477775 0.316262 -0.535479 -0.79651 -0.280777 +0.241643 -0.473229 0.31469 -0.537094 -0.807283 -0.244594 +0.236834 -0.46867 0.313119 -0.548129 -0.808771 -0.213175 +0.231314 -0.464556 0.311556 -0.548696 -0.818763 -0.168997 +0.225416 -0.460694 0.309996 -0.560196 -0.815101 -0.14762 +0.219457 -0.456877 0.308439 -0.570788 -0.811766 -0.123439 +0.213487 -0.453085 0.306881 -0.57509 -0.811427 -0.10421 +0.207623 -0.449235 0.305326 -0.571784 -0.816226 -0.0826965 +0.201806 -0.445374 0.303779 -0.578574 -0.812117 -0.0756257 +0.196272 -0.441338 0.302226 -0.592719 -0.801376 -0.0805072 +0.190925 -0.437186 0.300677 -0.605979 -0.79038 -0.0899471 +0.185623 -0.433025 0.299131 -0.620666 -0.777416 -0.101972 +0.180445 -0.428788 0.297578 -0.637272 -0.762503 -0.11168 +0.175222 -0.424593 0.296038 -0.653418 -0.746825 -0.123685 +0.170209 -0.420264 0.294486 -0.668114 -0.731949 -0.133696 +0.165339 -0.415851 0.292943 -0.68023 -0.719918 -0.137865 +0.160716 -0.411289 0.291395 -0.693775 -0.707167 -0.13635 +0.156612 -0.406388 0.289846 -0.708251 -0.693464 -0.132245 +0.153205 -0.40103 0.288291 -0.724397 -0.678138 -0.124011 +0.150246 -0.39538 0.286724 -0.742854 -0.65963 -0.11427 +0.146703 -0.390106 0.285168 -0.761 -0.640113 -0.10552 +0.143458 -0.384651 0.283605 -0.780153 -0.618091 -0.0965748 +0.139332 -0.379771 0.282059 -0.800563 -0.592695 -0.0883817 +0.134942 -0.375072 0.280515 -0.823319 -0.561853 -0.0804212 +0.130886 -0.37016 0.278966 -0.845513 -0.52877 -0.0742153 +0.127094 -0.365074 0.277417 -0.864791 -0.497404 -0.0687401 +0.123716 -0.359707 0.275862 -0.884605 -0.46153 -0.0668196 +0.120794 -0.354028 0.274292 -0.899617 -0.4316 -0.0664047 +0.118297 -0.348057 0.272721 -0.91696 -0.392846 -0.0696923 +0.116205 -0.341792 0.271143 -0.932386 -0.353348 -0.0761642 +0.114453 -0.335302 0.269557 -0.945457 -0.314286 -0.0856452 +0.112688 -0.328805 0.267962 -0.955743 -0.278215 -0.095669 +0.111046 -0.32222 0.266371 -0.96489 -0.238957 -0.109026 +0.109711 -0.315412 0.264772 -0.97078 -0.206275 -0.122623 +0.108552 -0.30847 0.263166 -0.975511 -0.175855 -0.132108 +0.107595 -0.301367 0.261556 -0.977346 -0.153862 -0.145336 +0.107349 -0.293759 0.259921 -0.978977 -0.132181 -0.155345 +0.107055 -0.286172 0.258288 -0.980222 -0.114579 -0.161365 +0.106597 -0.278684 0.256655 -0.981356 -0.0935125 -0.167921 +0.106385 -0.271002 0.255015 -0.982096 -0.0690073 -0.175288 +0.106169 -0.263314 0.253373 -0.98342 -0.0383418 -0.177245 +0.105741 -0.255755 0.251734 -0.982974 -0.00671479 -0.183624 +0.105979 -0.247709 0.250073 -0.981777 0.0274307 -0.188051 +0.106624 -0.239344 0.248396 -0.979719 0.0633824 -0.190088 +0.107774 -0.230599 0.246699 -0.97596 0.105248 -0.190852 +0.109224 -0.221606 0.244995 -0.970717 0.147198 -0.189844 +0.110774 -0.212516 0.243285 -0.96444 0.184452 -0.189295 +0.112907 -0.202976 0.241546 -0.957824 0.22405 -0.179933 +0.116407 -0.192407 0.239774 -0.94359 0.282265 -0.173104 +0.120669 -0.181231 0.237968 -0.92784 0.333721 -0.166563 +0.125477 -0.169616 0.23613 -0.91403 0.370511 -0.165141 +0.132622 -0.156228 0.234229 -0.884004 0.434568 -0.172304 +0.140832 -0.141988 0.232279 -0.864059 0.469767 -0.18089 +0.151847 -0.125584 0.23023 -0.848945 0.493639 -0.18872 +0.16035 -0.110999 0.228241 -0.850234 0.498893 -0.167954 +0.167182 -0.0976084 0.226297 -0.863046 0.48636 -0.136404 +0.396893 0.0842608 0.217237 -0.658685 -0.675488 -0.331437 +0.392593 0.0899122 0.215502 -0.658685 -0.675488 -0.331437 +0.222974 -0.030239 0.219223 -0.857879 -0.357629 0.36898 +0.221299 -0.023039 0.217495 -0.829837 -0.385816 0.403133 +0.218963 -0.0163218 0.215788 -0.803136 -0.430276 0.412112 +0.215472 -0.0104998 0.214117 -0.771588 -0.477349 0.420464 +0.211478 -0.00505714 0.212467 -0.730011 -0.544465 0.413088 +0.207194 0.000164172 0.210826 -0.68327 -0.601625 0.413753 +0.202549 0.00509202 0.209199 -0.648224 -0.635114 0.420042 +0.197307 0.00954929 0.207596 -0.603871 -0.673334 0.426569 +0.191532 0.0135857 0.206021 -0.528206 -0.739975 0.416457 +0.184615 0.0167079 0.204488 -0.45101 -0.791822 0.411836 +0.177119 0.0193578 0.202973 -0.385308 -0.834105 0.394725 +0.169106 0.0215786 0.201489 -0.318993 -0.858142 0.40229 +0.160228 0.0230963 0.200045 -0.259421 -0.885958 0.384422 +0.150661 0.0240323 0.198637 -0.200033 -0.904186 0.377407 +0.141936 0.0256059 0.197193 -0.184618 -0.913862 0.361628 +0.0454224 -0.0431672 0.199394 0.0969741 -0.524906 0.845619 +0.0288963 -0.0481652 0.198343 -0.0899857 -0.544775 0.83374 +0.0179742 -0.0487043 0.197072 -0.238726 -0.522853 0.818313 +0.0102216 -0.0467178 0.195673 -0.289082 -0.516921 0.805744 +0.00327171 -0.0441176 0.194242 -0.352838 -0.494622 0.794264 +-0.00320233 -0.0411357 0.192797 -0.407369 -0.467272 0.784671 +-0.00919261 -0.0377857 0.191331 -0.460636 -0.443902 0.768613 +-0.0154459 -0.0346608 0.189879 -0.502763 -0.428514 0.750735 +-0.0209872 -0.0309577 0.188394 -0.549619 -0.411699 0.726927 +-0.0263468 -0.0271326 0.186914 -0.58579 -0.395843 0.707219 +-0.0304325 -0.022246 0.18537 -0.612741 -0.367275 0.699755 +-0.032591 -0.0157734 0.183736 -0.633257 -0.330496 0.699827 +-0.022755 0.000711409 0.181516 -0.619117 -0.239047 0.748031 +0.814243 -0.676268 0.422595 -0.0209966 -0.913495 0.406309 +0.789307 -0.680372 0.420333 -0.0605362 -0.94209 0.329853 +0.771978 -0.680926 0.418275 -0.103293 -0.956355 0.273347 +0.756037 -0.680867 0.416259 -0.151133 -0.971402 0.183136 +0.741728 -0.680067 0.414295 -0.186298 -0.972842 0.137382 +0.729787 -0.678166 0.4124 -0.235281 -0.970461 0.0533887 +0.718873 -0.67581 0.410533 -0.255973 -0.966684 0.000533869 +0.709213 -0.672867 0.408702 -0.256444 -0.965609 -0.0428369 +0.700423 -0.669519 0.406886 -0.284729 -0.947884 -0.142989 +0.691447 -0.666286 0.405079 -0.284133 -0.939048 -0.193539 +0.682521 -0.663047 0.403275 -0.284641 -0.919801 -0.270087 +0.673118 -0.660076 0.401468 -0.26707 -0.926484 -0.265148 +0.664862 -0.656552 0.399691 -0.275903 -0.917501 -0.286481 +0.656457 -0.653122 0.397913 -0.278259 -0.903728 -0.325343 +0.648346 -0.649562 0.396139 -0.266731 -0.905251 -0.330721 +0.640901 -0.645685 0.394389 -0.269953 -0.888917 -0.370071 +0.468486 -0.725425 0.38959 0.228406 -0.954469 -0.191891 +0.441534 -0.731859 0.387568 0.0900022 -0.961727 -0.258809 +0.426787 -0.732149 0.385779 -0.0136616 -0.937321 -0.3482 +0.414952 -0.730995 0.384054 -0.0295581 -0.919897 -0.391047 +0.404214 -0.729313 0.382351 -0.084178 -0.87425 -0.478123 +0.394405 -0.727178 0.380673 -0.0754688 -0.853321 -0.515897 +0.383545 -0.725615 0.378978 -0.0663558 -0.839795 -0.538834 +0.372486 -0.72419 0.377292 -0.0386524 -0.837664 -0.544818 +0.362168 -0.722413 0.375619 -0.0397977 -0.837971 -0.544261 +0.351128 -0.721047 0.373946 -0.0429591 -0.820955 -0.569375 +0.340937 -0.719258 0.372291 -0.060972 -0.817189 -0.573137 +0.331378 -0.717168 0.370652 -0.0804311 -0.813587 -0.575852 +0.32197 -0.715021 0.369014 -0.104902 -0.810857 -0.575767 +0.313439 -0.712436 0.367399 -0.117145 -0.802333 -0.585269 +0.30507 -0.709783 0.365791 -0.137979 -0.800683 -0.582984 +0.296947 -0.707025 0.364186 -0.14534 -0.793297 -0.591233 +0.289372 -0.703987 0.362598 -0.160303 -0.788302 -0.59404 +0.281804 -0.700961 0.361012 -0.178654 -0.785757 -0.592175 +0.274213 -0.697969 0.359425 -0.194539 -0.783127 -0.59065 +0.267014 -0.694777 0.35785 -0.202408 -0.763083 -0.613789 +0.260117 -0.691444 0.356276 -0.206883 -0.755729 -0.621349 +0.253607 -0.687913 0.354714 -0.222279 -0.74635 -0.627339 +0.247107 -0.684386 0.353153 -0.240702 -0.740939 -0.626955 +0.240869 -0.680722 0.351601 -0.268729 -0.734974 -0.622574 +0.235086 -0.67683 0.350051 -0.300841 -0.72379 -0.620986 +0.229163 -0.673014 0.348506 -0.345804 -0.71377 -0.609059 +0.223298 -0.66919 0.346965 -0.390868 -0.701981 -0.595355 +0.217947 -0.665074 0.345425 -0.448655 -0.683739 -0.575509 +0.212906 -0.660801 0.343892 -0.505506 -0.665324 -0.54937 +0.208604 -0.656111 0.342357 -0.547816 -0.650167 -0.52648 +0.20378 -0.651731 0.340826 -0.595339 -0.634148 -0.493386 +0.199498 -0.647042 0.339303 -0.640554 -0.614603 -0.460384 +0.195163 -0.642386 0.337774 -0.683762 -0.590302 -0.428968 +0.191304 -0.637464 0.336249 -0.720431 -0.570977 -0.393657 +0.187451 -0.632536 0.334731 -0.753595 -0.543119 -0.370292 +0.184319 -0.627193 0.333203 -0.783295 -0.515851 -0.34691 +0.181036 -0.621939 0.331684 -0.808063 -0.485385 -0.333823 +0.177642 -0.616747 0.330161 -0.834125 -0.44805 -0.321695 +0.175793 -0.610646 0.328642 -0.851852 -0.401618 -0.33623 +0.174169 -0.604404 0.327126 -0.870957 -0.340343 -0.354401 +0.17225 -0.598336 0.325601 -0.888842 -0.273568 -0.367588 +0.171124 -0.591779 0.324079 -0.9026 -0.220007 -0.370013 +0.171011 -0.584619 0.322546 -0.906758 -0.137089 -0.398742 +0.171076 -0.577326 0.321022 -0.904746 -0.0509564 -0.422894 +0.171292 -0.569935 0.319487 -0.899929 0.0412495 -0.434081 +0.174169 -0.560909 0.317942 -0.886661 0.121575 -0.446155 +0.178187 -0.551166 0.316386 -0.830319 0.259361 -0.493258 +0.189302 -0.537055 0.314803 -0.732139 0.408712 -0.544912 +0.254974 -0.489473 0.312999 -0.487358 -0.819906 -0.300396 +0.254421 -0.482279 0.31141 -0.482214 -0.833082 -0.271005 +0.250385 -0.477214 0.309837 -0.489481 -0.83733 -0.243493 +0.244859 -0.473087 0.30827 -0.501756 -0.83805 -0.214278 +0.239298 -0.468981 0.306705 -0.508793 -0.839526 -0.19059 +0.233422 -0.465094 0.305148 -0.519723 -0.836899 -0.171725 +0.227454 -0.461265 0.303589 -0.535313 -0.830826 -0.152214 +0.221267 -0.457596 0.302039 -0.547601 -0.827325 -0.125165 +0.215057 -0.453949 0.300492 -0.562872 -0.818706 -0.113556 +0.209001 -0.450216 0.298948 -0.56247 -0.82119 -0.0963077 +0.203179 -0.446348 0.297399 -0.575909 -0.811692 -0.0973867 +0.197886 -0.442155 0.295848 -0.589376 -0.800791 -0.106632 +0.192686 -0.437913 0.294297 -0.604671 -0.787674 -0.118079 +0.187483 -0.433679 0.292752 -0.619522 -0.774177 -0.129785 +0.182629 -0.429233 0.291202 -0.633824 -0.760608 -0.140513 +0.177727 -0.424823 0.289656 -0.648174 -0.746605 -0.14984 +0.173175 -0.420188 0.288114 -0.658768 -0.73634 -0.154371 +0.168444 -0.415682 0.286569 -0.671103 -0.725026 -0.154786 +0.164239 -0.410834 0.285014 -0.683158 -0.714528 -0.150812 +0.160301 -0.405814 0.28346 -0.695709 -0.703869 -0.143372 +0.156172 -0.400928 0.281912 -0.71104 -0.690341 -0.133608 +0.152995 -0.395412 0.280348 -0.728464 -0.67392 -0.123183 +0.149203 -0.39031 0.278795 -0.746611 -0.655398 -0.114131 +0.144601 -0.385741 0.277255 -0.767815 -0.6319 -0.105663 +0.13986 -0.381275 0.27572 -0.791189 -0.603702 -0.0977908 +0.135456 -0.376593 0.274178 -0.81322 -0.574505 -0.0928268 +0.131183 -0.371821 0.272636 -0.836051 -0.541916 -0.0857056 +0.127392 -0.366736 0.271086 -0.855016 -0.511825 -0.0835567 +0.124114 -0.3613 0.269525 -0.875755 -0.475258 -0.0847568 +0.121197 -0.355615 0.267961 -0.892826 -0.442245 -0.0853359 +0.118863 -0.349537 0.266381 -0.911355 -0.400918 -0.0932534 +0.116744 -0.343299 0.264798 -0.92742 -0.359351 -0.10372 +0.114909 -0.336863 0.263209 -0.941041 -0.319032 -0.112525 +0.113227 -0.330312 0.261615 -0.951768 -0.279526 -0.126498 +0.111675 -0.323656 0.260017 -0.959797 -0.242649 -0.141107 +0.110571 -0.31669 0.25841 -0.96549 -0.208608 -0.155923 +0.109584 -0.309625 0.256789 -0.970046 -0.178242 -0.165045 +0.108805 -0.302408 0.255168 -0.972458 -0.155719 -0.17343 +0.108435 -0.294886 0.253536 -0.974128 -0.134787 -0.181404 +0.108337 -0.28716 0.251895 -0.975517 -0.117311 -0.186024 +0.107954 -0.279619 0.250257 -0.976994 -0.0966426 -0.190109 +0.107624 -0.272021 0.24861 -0.978652 -0.0705509 -0.193036 +0.107326 -0.264386 0.246957 -0.979661 -0.0425509 -0.196098 +0.10685 -0.256868 0.245316 -0.979912 -0.00876399 -0.199236 +0.107252 -0.248698 0.24364 -0.979231 0.0231444 -0.201423 +0.108029 -0.240244 0.241955 -0.977051 0.0572104 -0.205181 +0.109153 -0.231516 0.240252 -0.973321 0.0967857 -0.208035 +0.110327 -0.222723 0.238539 -0.968515 0.139699 -0.206068 +0.111919 -0.213604 0.236818 -0.96234 0.176633 -0.206645 +0.11397 -0.204132 0.235072 -0.957034 0.209163 -0.200839 +0.116967 -0.193931 0.233294 -0.945368 0.260354 -0.196204 +0.121448 -0.182609 0.231465 -0.927429 0.322396 -0.189569 +0.126243 -0.171003 0.229622 -0.912852 0.36401 -0.184931 +0.133274 -0.157704 0.227692 -0.883068 0.429747 -0.188436 +0.141551 -0.143419 0.225714 -0.862268 0.468612 -0.192086 +0.152047 -0.127413 0.223657 -0.852145 0.48824 -0.188341 +0.16207 -0.111691 0.221594 -0.865763 0.480032 -0.141508 +0.16854 -0.0985802 0.219642 -0.883156 0.458865 -0.0973557 +0.176267 -0.0844539 0.217627 -0.903374 0.428486 -0.0177554 +0.395103 0.0896649 0.208323 -0.658685 -0.675488 -0.331437 +0.390943 0.095419 0.206585 -0.658685 -0.675488 -0.331437 +0.219682 -0.0263172 0.210801 -0.840312 -0.328875 0.430948 +0.217831 -0.0192351 0.209068 -0.812929 -0.384964 0.436978 +0.214489 -0.0132937 0.207398 -0.777568 -0.443833 0.445421 +0.210591 -0.00779055 0.205751 -0.731461 -0.518588 0.442754 +0.206352 -0.00254151 0.204108 -0.697215 -0.561979 0.445052 +0.201803 0.00246376 0.202479 -0.649868 -0.614968 0.446638 +0.196693 0.00702148 0.20088 -0.608574 -0.662099 0.437338 +0.190966 0.0110953 0.1993 -0.543297 -0.71489 0.440184 +0.183987 0.0141623 0.197774 -0.461523 -0.763757 0.451301 +0.176651 0.0169421 0.196267 -0.386977 -0.808981 0.442494 +0.168913 0.0193782 0.19478 -0.334866 -0.838138 0.43057 +0.159925 0.0208046 0.193356 -0.269762 -0.865068 0.422949 +0.150916 0.02219 0.191931 -0.206526 -0.885641 0.415918 +0.0657449 -0.0372141 0.193785 0.275068 -0.526187 0.804653 +0.0323034 -0.0556492 0.193485 -0.0660392 -0.592146 0.803122 +0.0218688 -0.0557807 0.192201 -0.147196 -0.58936 0.794349 +0.0127173 -0.0549129 0.190869 -0.27635 -0.565726 0.776908 +0.00527964 -0.0526881 0.189466 -0.340066 -0.553198 0.760478 +-0.00137637 -0.049858 0.18804 -0.404956 -0.529567 0.745366 +-0.00730004 -0.0464417 0.186573 -0.445911 -0.512308 0.733965 +-0.0131287 -0.0429663 0.185107 -0.498201 -0.483362 0.719832 +-0.0189552 -0.039505 0.183647 -0.550315 -0.466681 0.69236 +-0.0242843 -0.0356437 0.18216 -0.590509 -0.453792 0.667362 +-0.0298027 -0.0319508 0.180688 -0.616782 -0.427262 0.66108 +-0.0339148 -0.0271062 0.179151 -0.64555 -0.402548 0.649014 +-0.0373148 -0.0216755 0.177579 -0.66625 -0.369676 0.647651 +-0.0319004 -0.00889927 0.175557 -0.675057 -0.302577 0.672862 +0.826855 -0.680013 0.417477 -0.0150389 -0.919079 0.393791 +0.803898 -0.683112 0.41529 -0.0541992 -0.95135 0.30331 +0.786319 -0.683726 0.413239 -0.0932813 -0.965325 0.243817 +0.770773 -0.683424 0.411249 -0.140562 -0.975733 0.167895 +0.756059 -0.682771 0.40929 -0.169949 -0.9785 0.116864 +0.742971 -0.681388 0.407369 -0.211715 -0.976259 0.0457764 +0.731509 -0.679252 0.405494 -0.250164 -0.96738 -0.0399414 +0.7215 -0.676444 0.403664 -0.277001 -0.9559 -0.0975895 +0.71202 -0.673405 0.401842 -0.288445 -0.946423 -0.145206 +0.704452 -0.669456 0.400065 -0.299048 -0.930354 -0.212158 +0.696091 -0.665908 0.39828 -0.30399 -0.900711 -0.310339 +0.687563 -0.662466 0.396496 -0.292129 -0.886865 -0.357957 +0.679202 -0.658962 0.394712 -0.284416 -0.854085 -0.435484 +0.670898 -0.655449 0.392939 -0.272793 -0.846741 -0.456744 +0.662894 -0.651801 0.391177 -0.271566 -0.850097 -0.451206 +0.65507 -0.648088 0.389417 -0.286003 -0.839348 -0.462276 +0.647929 -0.644041 0.38767 -0.280529 -0.823739 -0.492703 +0.482844 -0.719975 0.383316 0.287369 -0.943007 -0.167802 +0.448904 -0.729916 0.381215 0.121103 -0.943677 -0.307912 +0.433972 -0.730279 0.379442 -0.0133299 -0.91252 -0.408817 +0.422628 -0.728854 0.377729 -0.0386219 -0.896601 -0.441154 +0.412501 -0.726834 0.376049 -0.0814844 -0.856218 -0.510148 +0.404236 -0.72389 0.374405 -0.115201 -0.820248 -0.560288 +0.395446 -0.72123 0.372749 -0.102045 -0.789371 -0.605377 +0.3875 -0.718151 0.37111 -0.0862821 -0.744804 -0.661682 +0.377565 -0.716142 0.369455 -0.0674793 -0.731229 -0.678787 +0.366514 -0.714745 0.367784 -0.0334459 -0.743984 -0.66736 +0.356182 -0.712999 0.366133 -0.0178729 -0.747681 -0.663816 +0.345306 -0.711569 0.364485 -0.0256851 -0.754745 -0.655517 +0.335043 -0.709849 0.362846 -0.042851 -0.752419 -0.657291 +0.325439 -0.707801 0.361221 -0.0666953 -0.754714 -0.652657 +0.317926 -0.704661 0.35963 -0.09071 -0.753682 -0.650949 +0.308456 -0.7026 0.358014 -0.116171 -0.752838 -0.647875 +0.301015 -0.69946 0.356429 -0.125614 -0.745785 -0.654236 +0.293574 -0.696337 0.354847 -0.130108 -0.726807 -0.674406 +0.285848 -0.6934 0.353261 -0.141329 -0.719374 -0.680094 +0.278131 -0.690465 0.351684 -0.149334 -0.715737 -0.682218 +0.270479 -0.687516 0.350109 -0.161389 -0.714188 -0.681096 +0.263704 -0.684102 0.348551 -0.171017 -0.709595 -0.683543 +0.257448 -0.680424 0.346993 -0.177495 -0.706902 -0.684679 +0.251144 -0.676782 0.34544 -0.200228 -0.705827 -0.679499 +0.244237 -0.673488 0.343881 -0.220942 -0.707323 -0.671475 +0.238097 -0.669778 0.342334 -0.256671 -0.704295 -0.661883 +0.232016 -0.666051 0.340796 -0.308714 -0.704552 -0.638986 +0.225357 -0.662655 0.339244 -0.357876 -0.698524 -0.619669 +0.219319 -0.658925 0.33771 -0.395208 -0.693357 -0.60255 +0.214006 -0.654802 0.33618 -0.484162 -0.680799 -0.549637 +0.208459 -0.650815 0.334645 -0.534449 -0.659129 -0.52907 +0.203391 -0.646569 0.333114 -0.580803 -0.639251 -0.50401 +0.198923 -0.641985 0.331591 -0.621941 -0.623023 -0.474374 +0.194399 -0.637438 0.330063 -0.668359 -0.595596 -0.445603 +0.190144 -0.632741 0.328539 -0.703875 -0.569212 -0.42492 +0.186779 -0.627521 0.32702 -0.73836 -0.537383 -0.407485 +0.183474 -0.622275 0.325492 -0.764514 -0.505339 -0.40019 +0.180238 -0.616993 0.323971 -0.794349 -0.461022 -0.395561 +0.178204 -0.610996 0.322451 -0.815694 -0.411527 -0.406559 +0.17648 -0.604811 0.320925 -0.841134 -0.347141 -0.414712 +0.174942 -0.598508 0.319402 -0.859721 -0.282888 -0.425268 +0.174348 -0.591634 0.317868 -0.867062 -0.212358 -0.450675 +0.174698 -0.584188 0.316333 -0.867182 -0.121968 -0.482824 +0.174645 -0.576964 0.314791 -0.864966 -0.0503177 -0.499302 +0.174819 -0.569592 0.31325 -0.860557 0.0377329 -0.507957 +0.178065 -0.560343 0.311694 -0.842312 0.133708 -0.522142 +0.184545 -0.549105 0.310109 -0.767364 0.304794 -0.56414 +0.21204 -0.525007 0.308409 -0.523179 0.551016 -0.650129 +0.261709 -0.487191 0.306549 -0.461875 -0.833115 -0.304291 +0.258929 -0.481353 0.304969 -0.459942 -0.846728 -0.267402 +0.253651 -0.477054 0.303401 -0.458199 -0.85786 -0.232662 +0.247746 -0.473149 0.301844 -0.469754 -0.857884 -0.208247 +0.241799 -0.469279 0.300284 -0.484884 -0.854657 -0.185609 +0.235731 -0.465502 0.298728 -0.494121 -0.853211 -0.166961 +0.229342 -0.461937 0.297184 -0.51003 -0.846667 -0.151743 +0.223067 -0.458312 0.295638 -0.52962 -0.836535 -0.140405 +0.216773 -0.454716 0.294095 -0.53883 -0.833702 -0.120848 +0.210588 -0.451064 0.292549 -0.555235 -0.823851 -0.113959 +0.204701 -0.447233 0.291012 -0.573793 -0.810302 -0.119048 +0.199393 -0.443046 0.289468 -0.588403 -0.797976 -0.130445 +0.194553 -0.438563 0.287919 -0.603846 -0.784215 -0.142751 +0.189855 -0.434012 0.286366 -0.617811 -0.771076 -0.154117 +0.18542 -0.429279 0.28481 -0.628918 -0.760469 -0.161705 +0.181077 -0.424507 0.283263 -0.638799 -0.750991 -0.16718 +0.176605 -0.419815 0.281712 -0.650653 -0.740016 -0.170374 +0.172242 -0.415055 0.280165 -0.661746 -0.730792 -0.167441 +0.168078 -0.410173 0.278614 -0.671099 -0.723626 -0.161223 +0.16395 -0.405276 0.277064 -0.682762 -0.714773 -0.151447 +0.159486 -0.400597 0.275519 -0.697584 -0.70274 -0.139766 +0.154788 -0.396087 0.273983 -0.71457 -0.687569 -0.128994 +0.15002 -0.39162 0.272445 -0.733131 -0.66938 -0.120202 +0.145208 -0.387199 0.270904 -0.755013 -0.645842 -0.113328 +0.140492 -0.382716 0.269374 -0.779053 -0.617513 -0.108414 +0.13603 -0.378069 0.267835 -0.803275 -0.586615 -0.103119 +0.131737 -0.373309 0.266295 -0.825273 -0.555527 -0.101556 +0.128171 -0.368069 0.264738 -0.847598 -0.521122 -0.100052 +0.124891 -0.362632 0.263183 -0.868013 -0.48528 -0.105155 +0.121975 -0.356948 0.261612 -0.886851 -0.448525 -0.110993 +0.119673 -0.350848 0.260037 -0.906815 -0.404235 -0.119496 +0.117573 -0.344601 0.258454 -0.922705 -0.363489 -0.128419 +0.115719 -0.338175 0.256858 -0.936194 -0.320607 -0.144052 +0.11413 -0.331561 0.255258 -0.945991 -0.281542 -0.160738 +0.112723 -0.324808 0.253651 -0.953983 -0.243922 -0.174415 +0.111639 -0.317831 0.252041 -0.959893 -0.210595 -0.185082 +0.11072 -0.310718 0.250416 -0.964405 -0.183295 -0.190591 +0.110075 -0.303402 0.248784 -0.966031 -0.159489 -0.203343 +0.109768 -0.29584 0.247148 -0.968969 -0.139431 -0.2041 +0.109663 -0.288115 0.245492 -0.970182 -0.121297 -0.209843 +0.109184 -0.280636 0.24385 -0.972318 -0.102239 -0.21011 +0.108759 -0.273115 0.242198 -0.974657 -0.0778538 -0.209719 +0.108374 -0.265543 0.240545 -0.976087 -0.0485139 -0.211899 +0.108001 -0.257946 0.238895 -0.976874 -0.0165389 -0.213179 +0.108423 -0.249766 0.237211 -0.976347 0.0190401 -0.215369 +0.109441 -0.241141 0.235507 -0.974319 0.0554603 -0.21824 +0.110587 -0.232393 0.233793 -0.97032 0.0927543 -0.223328 +0.111828 -0.223552 0.232075 -0.96578 0.130161 -0.224335 +0.113374 -0.214474 0.230336 -0.960251 0.168781 -0.222333 +0.115374 -0.205036 0.228585 -0.955549 0.197994 -0.218459 +0.118145 -0.195002 0.226802 -0.944643 0.246086 -0.217001 +0.12243 -0.183824 0.224959 -0.927311 0.308639 -0.211748 +0.127301 -0.172169 0.223096 -0.911741 0.355449 -0.205876 +0.134077 -0.159066 0.221157 -0.882215 0.422699 -0.20742 +0.141401 -0.145496 0.219191 -0.863161 0.461203 -0.205538 +0.152945 -0.128715 0.217063 -0.862584 0.47506 -0.173973 +0.163404 -0.112682 0.214957 -0.88104 0.459399 -0.112788 +0.170088 -0.0994026 0.212969 -0.900311 0.433155 -0.0426448 +0.178663 -0.0846495 0.210901 -0.915398 0.401861 0.0235543 +0.398633 0.0901976 0.201091 -0.658685 -0.675488 -0.331437 +0.394224 0.0957654 0.199366 -0.658685 -0.675488 -0.331437 +0.217637 -0.0299095 0.204127 -0.853918 -0.183127 0.487122 +0.216399 -0.0223804 0.202376 -0.823278 -0.301393 0.481014 +0.213198 -0.0163355 0.200703 -0.771422 -0.425737 0.472924 +0.209357 -0.0107803 0.199048 -0.738346 -0.476026 0.47775 +0.20525 -0.00544251 0.197403 -0.699519 -0.522324 0.4877 +0.20096 -0.000240821 0.195767 -0.659862 -0.578971 0.478932 +0.195679 0.00417838 0.194178 -0.608392 -0.638666 0.471131 +0.18991 0.00821935 0.19261 -0.537682 -0.687418 0.488217 +0.183031 0.0113685 0.191089 -0.468939 -0.744922 0.474541 +0.175864 0.0142796 0.189582 -0.399227 -0.780106 0.481719 +0.168034 0.0166371 0.188113 -0.335028 -0.815908 0.471223 +0.15916 0.0181513 0.186686 -0.267108 -0.842731 0.467397 +0.150319 0.0196692 0.185268 -0.204199 -0.859533 0.468517 +0.038358 -0.0610291 0.188506 0.0574039 -0.658277 0.750584 +0.0269817 -0.0618821 0.187274 -0.112999 -0.645257 0.755564 +0.0169144 -0.0617293 0.185995 -0.203735 -0.644377 0.737069 +0.00867115 -0.0601437 0.18464 -0.307218 -0.606906 0.732997 +0.00148137 -0.0577283 0.183237 -0.379585 -0.598499 0.70549 +-0.00489512 -0.0546752 0.1818 -0.43522 -0.574788 0.692967 +-0.0106955 -0.0511716 0.180339 -0.492887 -0.546634 0.676944 +-0.0163492 -0.0475589 0.178873 -0.541993 -0.530143 0.652069 +-0.0215339 -0.0435844 0.177381 -0.58109 -0.493926 0.646816 +-0.0268066 -0.0396838 0.175906 -0.615262 -0.481035 0.624547 +-0.0322513 -0.0359362 0.174435 -0.648697 -0.460613 0.605829 +-0.0364702 -0.0311922 0.172905 -0.663479 -0.440811 0.604551 +-0.0405195 -0.0263077 0.171372 -0.695833 -0.411576 0.588575 +-0.0376058 -0.0156272 0.169467 -0.720977 -0.331356 0.608601 +0.84933 -0.67918 0.412562 -0.00489062 -0.919076 0.394051 +0.81904 -0.685643 0.410233 -0.0580416 -0.956069 0.287342 +0.800741 -0.686538 0.408182 -0.0982839 -0.970681 0.21936 +0.785303 -0.686138 0.406202 -0.124453 -0.982188 0.140784 +0.770587 -0.685438 0.404255 -0.162592 -0.983608 0.0779769 +0.75717 -0.684165 0.402339 -0.198273 -0.979662 0.0308387 +0.745176 -0.682247 0.400468 -0.239458 -0.967506 -0.0812005 +0.734278 -0.679828 0.398617 -0.274604 -0.954842 -0.113447 +0.72503 -0.676643 0.396806 -0.286809 -0.943963 -0.163323 +0.71624 -0.673264 0.395006 -0.305136 -0.911379 -0.276188 +0.708946 -0.66917 0.393243 -0.309871 -0.897912 -0.312628 +0.701399 -0.665213 0.39148 -0.3223 -0.871383 -0.369884 +0.693862 -0.66127 0.389715 -0.317724 -0.821889 -0.47281 +0.686603 -0.657206 0.387961 -0.289231 -0.811445 -0.507843 +0.678957 -0.653346 0.386206 -0.286019 -0.782965 -0.552411 +0.670856 -0.649731 0.384443 -0.280067 -0.766774 -0.5776 +0.664103 -0.645462 0.382703 -0.279213 -0.744119 -0.606901 +0.659363 -0.640191 0.381002 -0.259613 -0.72041 -0.643127 +0.652029 -0.636235 0.379259 -0.284003 -0.699367 -0.655918 +0.459624 -0.726274 0.374881 0.146243 -0.933855 -0.326386 +0.441736 -0.728123 0.373083 0.0052767 -0.904792 -0.425821 +0.430438 -0.726656 0.371388 -0.0510947 -0.869481 -0.491319 +0.42072 -0.724407 0.369722 -0.0983041 -0.835549 -0.540552 +0.413131 -0.721087 0.368089 -0.134224 -0.781037 -0.609892 +0.405844 -0.717636 0.36646 -0.13423 -0.72891 -0.671322 +0.400006 -0.71344 0.364851 -0.150222 -0.695898 -0.702254 +0.394784 -0.708931 0.363253 -0.140932 -0.652466 -0.744599 +0.389329 -0.70456 0.361651 -0.125119 -0.610086 -0.782395 +0.383979 -0.70013 0.360055 -0.117895 -0.554121 -0.824045 +0.377344 -0.696397 0.35845 -0.0643502 -0.530084 -0.845501 +0.368494 -0.693856 0.356824 -0.0330794 -0.529937 -0.847392 +0.356164 -0.69319 0.355169 0.0246442 -0.564988 -0.824732 +0.340838 -0.694166 0.353505 -0.000752397 -0.642846 -0.765995 +0.331169 -0.692155 0.35189 -0.0164892 -0.648817 -0.760766 +0.324727 -0.688433 0.350306 -0.0299864 -0.641855 -0.76624 +0.314861 -0.686577 0.348701 -0.0575753 -0.655674 -0.752846 +0.304304 -0.685129 0.347101 -0.0844126 -0.651521 -0.75392 +0.295758 -0.682606 0.345522 -0.0823814 -0.629352 -0.772741 +0.288696 -0.67929 0.343953 -0.0894604 -0.634704 -0.767559 +0.280625 -0.676554 0.342382 -0.0981329 -0.639499 -0.762503 +0.271693 -0.674312 0.340811 -0.108233 -0.644961 -0.756514 +0.264468 -0.671151 0.339249 -0.120853 -0.656178 -0.744866 +0.25639 -0.668478 0.337692 -0.135795 -0.669362 -0.73042 +0.247971 -0.666015 0.336139 -0.162603 -0.680277 -0.714691 +0.24101 -0.662759 0.334593 -0.210388 -0.694761 -0.687782 +0.233331 -0.659927 0.333051 -0.270692 -0.707553 -0.652759 +0.226304 -0.656739 0.331507 -0.342636 -0.703114 -0.623081 +0.21972 -0.653319 0.329973 -0.390231 -0.698426 -0.599934 +0.213487 -0.649719 0.328443 -0.442705 -0.692679 -0.569391 +0.208193 -0.645582 0.326918 -0.513162 -0.671142 -0.535008 +0.203424 -0.641159 0.325389 -0.569434 -0.651369 -0.501464 +0.198734 -0.636703 0.323868 -0.61752 -0.619914 -0.484125 +0.19416 -0.632177 0.322339 -0.661501 -0.590705 -0.462044 +0.190219 -0.627296 0.320818 -0.696385 -0.557111 -0.452413 +0.186826 -0.622091 0.3193 -0.721631 -0.517164 -0.460206 +0.183921 -0.616598 0.317774 -0.759182 -0.469853 -0.450421 +0.181276 -0.610964 0.316246 -0.784926 -0.412366 -0.462435 +0.178951 -0.605129 0.314723 -0.808759 -0.346324 -0.475361 +0.17789 -0.598537 0.313184 -0.822828 -0.287395 -0.490263 +0.177496 -0.59154 0.311648 -0.835005 -0.20948 -0.508808 +0.17788 -0.584075 0.310104 -0.832903 -0.125636 -0.53897 +0.178186 -0.57663 0.308557 -0.836943 -0.0501092 -0.54499 +0.179314 -0.568672 0.307004 -0.823648 0.0460765 -0.565228 +0.18397 -0.55857 0.30542 -0.770068 0.196706 -0.60688 +0.196056 -0.543921 0.303775 -0.682108 0.359402 -0.636835 +0.270567 -0.491176 0.301666 -0.500444 -0.774771 -0.386377 +0.267931 -0.48524 0.300084 -0.476209 -0.80994 -0.342381 +0.263527 -0.480386 0.29851 -0.436886 -0.85243 -0.287219 +0.257967 -0.476251 0.296947 -0.435365 -0.86314 -0.255826 +0.251227 -0.47285 0.295395 -0.444298 -0.866798 -0.226407 +0.244803 -0.469271 0.293853 -0.459079 -0.864855 -0.203162 +0.238253 -0.465778 0.292304 -0.474875 -0.86087 -0.182752 +0.231737 -0.462294 0.290761 -0.491387 -0.854396 -0.168951 +0.225273 -0.458783 0.289222 -0.507367 -0.848043 -0.152982 +0.218816 -0.455277 0.287687 -0.522161 -0.841632 -0.137858 +0.212422 -0.451749 0.286152 -0.546055 -0.826346 -0.137753 +0.206267 -0.44809 0.284622 -0.568213 -0.810081 -0.144584 +0.200684 -0.444072 0.283085 -0.587697 -0.79454 -0.152708 +0.195939 -0.439532 0.28153 -0.602209 -0.780812 -0.166373 +0.191556 -0.434766 0.27998 -0.614918 -0.768788 -0.175622 +0.187704 -0.429667 0.278423 -0.623656 -0.760543 -0.18063 +0.18376 -0.424623 0.276869 -0.631888 -0.753188 -0.182831 +0.179782 -0.419609 0.275312 -0.639902 -0.746121 -0.183926 +0.175517 -0.414778 0.273765 -0.647511 -0.740768 -0.178864 +0.170901 -0.410183 0.272217 -0.659543 -0.732839 -0.167188 +0.166371 -0.405542 0.270675 -0.669416 -0.726262 -0.156289 +0.161262 -0.401286 0.269139 -0.684722 -0.714688 -0.142749 +0.156107 -0.397072 0.267617 -0.701706 -0.700123 -0.132054 +0.150836 -0.392941 0.266088 -0.721825 -0.68072 -0.124857 +0.145781 -0.388675 0.264563 -0.743611 -0.657425 -0.121801 +0.141033 -0.384213 0.263027 -0.768025 -0.62922 -0.119255 +0.13665 -0.379507 0.261489 -0.791401 -0.600109 -0.116424 +0.132645 -0.374562 0.259946 -0.815273 -0.566768 -0.118765 +0.129116 -0.369297 0.258395 -0.839555 -0.528932 -0.124012 +0.1261 -0.363682 0.256831 -0.861239 -0.491288 -0.130011 +0.123198 -0.357978 0.255264 -0.880193 -0.452217 -0.144083 +0.120878 -0.351893 0.253682 -0.899264 -0.406395 -0.161764 +0.118788 -0.345632 0.252089 -0.91425 -0.363251 -0.179433 +0.116815 -0.339289 0.250495 -0.926099 -0.324206 -0.192956 +0.115233 -0.33267 0.248894 -0.934949 -0.284713 -0.211682 +0.113897 -0.325876 0.247282 -0.941837 -0.251507 -0.222908 +0.11287 -0.318848 0.245659 -0.947821 -0.219901 -0.230822 +0.111964 -0.311728 0.244034 -0.952912 -0.193665 -0.233349 +0.111476 -0.304308 0.242391 -0.956943 -0.171431 -0.234247 +0.111181 -0.296734 0.240745 -0.96087 -0.149189 -0.233393 +0.111054 -0.289021 0.239089 -0.964094 -0.129883 -0.231629 +0.110409 -0.281673 0.237442 -0.967438 -0.109611 -0.22814 +0.109723 -0.274321 0.235797 -0.970641 -0.084012 -0.225387 +0.109324 -0.266769 0.23414 -0.972582 -0.0544643 -0.226093 +0.109198 -0.258998 0.232462 -0.973679 -0.0226012 -0.226803 +0.109802 -0.250681 0.23077 -0.973357 0.0171342 -0.228655 +0.11096 -0.241954 0.229056 -0.97097 0.0517976 -0.233528 +0.112201 -0.233143 0.227329 -0.96677 0.0875614 -0.240186 +0.113589 -0.224199 0.225591 -0.961959 0.124181 -0.243341 +0.115283 -0.215013 0.223841 -0.956903 0.161968 -0.241043 +0.117007 -0.205775 0.222088 -0.953448 0.188353 -0.2355 +0.119641 -0.195839 0.220293 -0.942009 0.241526 -0.232993 +0.123566 -0.184928 0.218449 -0.924782 0.302682 -0.230572 +0.128189 -0.173466 0.216576 -0.911566 0.343317 -0.22623 +0.135002 -0.160338 0.214613 -0.881209 0.416089 -0.224365 +0.14192 -0.147076 0.212634 -0.864139 0.45495 -0.215138 +0.15431 -0.129681 0.210447 -0.880325 0.452799 -0.141429 +0.163854 -0.114328 0.208349 -0.901448 0.428343 -0.062545 +0.171426 -0.100399 0.206304 -0.915331 0.402115 0.0217282 +0.178552 -0.0867426 0.204269 -0.910735 0.393881 0.124179 +0.184612 -0.0738351 0.202265 -0.902649 0.360886 0.23449 +0.397184 0.0958674 0.192145 -0.658685 -0.675488 -0.331437 +0.214696 -0.0341949 0.197504 -0.829352 -0.143851 0.539891 +0.214478 -0.0258854 0.195708 -0.807992 -0.225387 0.54438 +0.21176 -0.0194852 0.19401 -0.785643 -0.299305 0.541462 +0.208072 -0.0138183 0.192351 -0.732982 -0.444863 0.51462 +0.2039 -0.00853274 0.190721 -0.694333 -0.49372 0.523586 +0.19915 -0.00369348 0.189105 -0.656954 -0.533277 0.532943 +0.193843 0.000709087 0.187517 -0.590851 -0.615634 0.521431 +0.188104 0.00476007 0.18595 -0.538616 -0.661801 0.521452 +0.181554 0.00816842 0.184429 -0.480377 -0.70207 0.525676 +0.174328 0.0110174 0.18293 -0.406909 -0.753424 0.516506 +0.166585 0.0134494 0.181468 -0.328622 -0.793679 0.511938 +0.157227 0.0145831 0.180078 -0.251331 -0.817944 0.517495 +0.0542931 -0.0585793 0.183066 0.237446 -0.657142 0.715391 +0.0332967 -0.0670372 0.182289 -0.0162794 -0.708682 0.705341 +0.0225432 -0.0673977 0.181053 -0.174292 -0.697629 0.694937 +0.0123739 -0.0673393 0.179796 -0.256207 -0.685922 0.681078 +0.00485811 -0.0651746 0.178416 -0.359793 -0.659069 0.660437 +-0.00156514 -0.0621581 0.176981 -0.407953 -0.639724 0.651406 +-0.00772678 -0.0589331 0.175546 -0.462188 -0.619859 0.634158 +-0.0133673 -0.0553136 0.17408 -0.524051 -0.580214 0.623476 +-0.0187565 -0.0514954 0.172606 -0.572574 -0.550304 0.60772 +-0.0236986 -0.0473252 0.171113 -0.611783 -0.526034 0.59077 +-0.0289096 -0.0433784 0.16964 -0.636433 -0.50539 0.582697 +-0.0344178 -0.0396851 0.168177 -0.665882 -0.484466 0.567357 +-0.0390054 -0.0352527 0.16667 -0.690746 -0.462512 0.555834 +-0.0428982 -0.030247 0.16513 -0.731578 -0.42155 0.535808 +-0.0431156 -0.0221856 0.163386 -0.743862 -0.384554 0.546616 +0.835507 -0.687603 0.405168 -0.0593521 -0.959931 0.273879 +0.815634 -0.689182 0.403105 -0.0856987 -0.981709 0.170016 +0.799867 -0.688883 0.401135 -0.119442 -0.982504 0.142903 +0.785466 -0.687985 0.399202 -0.14836 -0.985406 0.0834538 +0.771556 -0.686906 0.397285 -0.187968 -0.982176 0.00101116 +0.758944 -0.685236 0.395401 -0.216868 -0.975283 -0.0423295 +0.747761 -0.682918 0.393558 -0.246112 -0.958072 -0.146725 +0.738823 -0.679557 0.391756 -0.282927 -0.937471 -0.20273 +0.729715 -0.676294 0.389954 -0.301372 -0.915319 -0.267144 +0.72166 -0.672537 0.388177 -0.316473 -0.881405 -0.350674 +0.714882 -0.668182 0.38643 -0.31658 -0.829138 -0.46077 +0.70827 -0.663754 0.384681 -0.308233 -0.792111 -0.526836 +0.70138 -0.659478 0.382935 -0.287065 -0.74174 -0.606149 +0.694692 -0.655113 0.381194 -0.288864 -0.732794 -0.616093 +0.688377 -0.650571 0.379453 -0.276826 -0.718402 -0.638174 +0.682458 -0.645855 0.377729 -0.261762 -0.70026 -0.664166 +0.679878 -0.639463 0.376053 -0.252309 -0.689165 -0.679259 +0.678781 -0.632324 0.374391 -0.23419 -0.666687 -0.70759 +0.674892 -0.62659 0.372698 -0.227835 -0.647844 -0.726905 +0.472995 -0.721304 0.368546 0.327021 -0.826227 -0.458701 +0.451709 -0.724845 0.366729 0.0303515 -0.891316 -0.452369 +0.438706 -0.724225 0.365024 -0.0235296 -0.868748 -0.494696 +0.429239 -0.721834 0.363371 -0.0757565 -0.81217 -0.578482 +0.421545 -0.718546 0.361736 -0.151297 -0.738762 -0.656765 +0.415102 -0.714634 0.360115 -0.154958 -0.705416 -0.691648 +0.409707 -0.710188 0.358518 -0.177773 -0.640214 -0.747344 +0.405036 -0.705375 0.356923 -0.185202 -0.606402 -0.773291 +0.400959 -0.700258 0.355333 -0.171727 -0.536554 -0.826209 +0.39788 -0.694613 0.353755 -0.17684 -0.487472 -0.855044 +0.395165 -0.688781 0.352174 -0.136463 -0.387468 -0.911727 +0.393097 -0.6826 0.350602 -0.144837 -0.308718 -0.940062 +0.391862 -0.675968 0.349037 -0.149199 -0.291719 -0.944797 +0.393046 -0.668029 0.347485 -0.0942188 -0.302113 -0.948605 +0.39635 -0.658934 0.345938 -0.0825745 -0.337335 -0.937756 +0.405102 -0.646876 0.344415 -0.0571162 -0.411353 -0.909684 +0.400063 -0.642231 0.342809 -0.0240711 -0.476035 -0.879097 +0.394422 -0.63792 0.341205 -0.0156396 -0.532967 -0.845991 +0.38479 -0.635795 0.339591 -0.0115709 -0.588323 -0.808544 +0.374334 -0.63415 0.337976 -0.0138582 -0.635277 -0.77216 +0.362193 -0.633458 0.336355 -0.0295243 -0.71762 -0.695809 +0.348096 -0.633889 0.334744 -0.0376188 -0.791482 -0.610035 +0.332777 -0.635045 0.333138 -0.0359785 -0.768704 -0.638593 +0.279394 -0.65744 0.331479 -0.0394002 -0.624638 -0.77992 +0.265172 -0.658173 0.329911 -0.0742783 -0.654248 -0.752623 +0.254087 -0.657191 0.328364 -0.109381 -0.680174 -0.724844 +0.243575 -0.655928 0.326818 -0.151657 -0.696812 -0.701038 +0.234831 -0.653687 0.325288 -0.228887 -0.712985 -0.662769 +0.226354 -0.651317 0.323751 -0.311374 -0.715491 -0.625397 +0.219273 -0.648184 0.322231 -0.3777 -0.708823 -0.595747 +0.21322 -0.644472 0.320698 -0.426296 -0.69599 -0.577816 +0.208147 -0.640218 0.319174 -0.48349 -0.660351 -0.574608 +0.203336 -0.63581 0.317653 -0.544155 -0.637731 -0.545154 +0.198888 -0.631203 0.316133 -0.58968 -0.605146 -0.534862 +0.195079 -0.626231 0.314609 -0.632099 -0.561086 -0.534447 +0.191541 -0.62111 0.313082 -0.661991 -0.523441 -0.536449 +0.188236 -0.615846 0.311558 -0.702741 -0.464323 -0.539036 +0.185544 -0.610221 0.310028 -0.721737 -0.41773 -0.551903 +0.183279 -0.604342 0.3085 -0.751624 -0.345477 -0.561879 +0.182213 -0.597753 0.306962 -0.755549 -0.281623 -0.591467 +0.181854 -0.590729 0.305414 -0.776361 -0.203812 -0.596427 +0.18189 -0.583464 0.303862 -0.777602 -0.118313 -0.617526 +0.183109 -0.575469 0.3023 -0.77737 -0.0359484 -0.628015 +0.185965 -0.566469 0.30072 -0.758468 0.053753 -0.649491 +0.193564 -0.554569 0.299091 -0.668217 0.246709 -0.70187 +0.281743 -0.493783 0.296754 -0.552075 -0.659171 -0.510595 +0.278934 -0.487939 0.295163 -0.507236 -0.739711 -0.442198 +0.273948 -0.483424 0.293593 -0.451152 -0.815204 -0.363187 +0.268093 -0.479442 0.292038 -0.418148 -0.855842 -0.304446 +0.261531 -0.475913 0.290488 -0.410443 -0.872258 -0.265901 +0.25467 -0.472578 0.28894 -0.411422 -0.87872 -0.242043 +0.247758 -0.469288 0.287406 -0.430868 -0.876119 -0.21626 +0.240787 -0.46606 0.285874 -0.452017 -0.870242 -0.195859 +0.234156 -0.462635 0.284334 -0.471559 -0.862413 -0.184055 +0.227624 -0.459155 0.282806 -0.485105 -0.859056 -0.163395 +0.221127 -0.455673 0.281271 -0.509248 -0.846271 -0.156506 +0.214759 -0.452128 0.279743 -0.535596 -0.828851 -0.161695 +0.208582 -0.448474 0.278213 -0.561077 -0.810652 -0.16744 +0.202701 -0.444639 0.276683 -0.582887 -0.793074 -0.176852 +0.19791 -0.440122 0.275139 -0.598469 -0.779178 -0.186324 +0.193527 -0.435357 0.273588 -0.609912 -0.768132 -0.194887 +0.189936 -0.430077 0.272028 -0.617549 -0.761352 -0.197427 +0.186196 -0.424899 0.270469 -0.623239 -0.756669 -0.197547 +0.182304 -0.419824 0.268913 -0.629233 -0.752363 -0.19498 +0.177677 -0.415227 0.267364 -0.63685 -0.747993 -0.186891 +0.172713 -0.410861 0.265831 -0.646972 -0.742465 -0.173712 +0.167717 -0.406515 0.264301 -0.656192 -0.737196 -0.1611 +0.162494 -0.402334 0.262772 -0.670229 -0.727145 -0.148499 +0.15716 -0.398231 0.261252 -0.688633 -0.71177 -0.138449 +0.151919 -0.39408 0.259729 -0.709933 -0.691236 -0.134864 +0.146923 -0.389776 0.258208 -0.735705 -0.664369 -0.131729 +0.142065 -0.38538 0.256678 -0.757854 -0.639955 -0.126946 +0.137785 -0.38061 0.255142 -0.782365 -0.608452 -0.133011 +0.133801 -0.375643 0.253595 -0.808069 -0.572006 -0.140837 +0.130262 -0.370377 0.252042 -0.83138 -0.533001 -0.157213 +0.127298 -0.36473 0.250476 -0.853063 -0.491119 -0.176313 +0.124756 -0.35879 0.248894 -0.871028 -0.454749 -0.185776 +0.122399 -0.352718 0.247312 -0.887817 -0.410728 -0.20757 +0.120176 -0.346557 0.245723 -0.901814 -0.365561 -0.230428 +0.118093 -0.340281 0.244134 -0.913075 -0.323585 -0.248166 +0.116505 -0.333668 0.242527 -0.921697 -0.285243 -0.262892 +0.115145 -0.326889 0.240908 -0.92654 -0.257281 -0.274464 +0.114236 -0.319782 0.239278 -0.933676 -0.230733 -0.273882 +0.113516 -0.312532 0.237639 -0.940077 -0.205844 -0.271815 +0.113131 -0.305031 0.235994 -0.944834 -0.187368 -0.268666 +0.112928 -0.297395 0.234334 -0.951056 -0.164894 -0.261348 +0.112451 -0.289934 0.232683 -0.956418 -0.144253 -0.253879 +0.111637 -0.282691 0.231029 -0.961841 -0.119498 -0.246135 +0.11066 -0.275556 0.229385 -0.966195 -0.0916166 -0.240985 +0.11042 -0.267889 0.227722 -0.968643 -0.0605527 -0.240967 +0.110534 -0.259945 0.226035 -0.969748 -0.02698 -0.242613 +0.11135 -0.251484 0.22432 -0.969037 0.0115051 -0.246649 +0.112785 -0.242557 0.222583 -0.96691 0.0522819 -0.249705 +0.114182 -0.233626 0.220841 -0.963022 0.0850243 -0.255658 +0.115644 -0.224629 0.219098 -0.957974 0.120845 -0.260161 +0.11725 -0.215501 0.217339 -0.952664 0.15436 -0.261927 +0.119012 -0.206243 0.215569 -0.948868 0.186522 -0.254676 +0.121152 -0.196674 0.213784 -0.939883 0.23209 -0.250511 +0.124695 -0.186036 0.211937 -0.922959 0.291397 -0.251463 +0.129203 -0.17466 0.210044 -0.909857 0.335552 -0.244062 +0.135782 -0.161718 0.208071 -0.885307 0.398224 -0.240107 +0.14345 -0.147904 0.206048 -0.87602 0.43663 -0.204803 +0.154069 -0.131832 0.203893 -0.896499 0.42904 -0.110532 +0.16458 -0.115772 0.201732 -0.91653 0.399897 0.00747151 +0.171395 -0.102418 0.199692 -0.924445 0.368006 0.0998692 +0.178159 -0.089042 0.19765 -0.904141 0.348744 0.246792 +0.183453 -0.076724 0.195655 -0.879789 0.353863 0.317414 +0.191415 -0.0623349 0.193545 -0.712243 0.400131 0.576719 +0.199073 -0.0481168 0.191426 -0.698027 0.248624 0.671524 +0.209161 -0.0319911 0.189197 -0.759501 -0.0676613 0.646978 +0.207977 -0.0244235 0.187433 -0.746307 -0.211606 0.63107 +0.204886 -0.0183125 0.185754 -0.731257 -0.302736 0.611241 +0.200815 -0.0129588 0.184117 -0.686447 -0.455408 0.566917 +0.195966 -0.00820347 0.182513 -0.627915 -0.497325 0.598658 +0.191074 -0.0034933 0.180913 -0.595964 -0.528005 0.605012 +0.185786 0.00090696 0.179335 -0.535108 -0.6271 0.566045 +0.179159 0.00424049 0.177817 -0.447192 -0.626435 0.638435 +0.17193 0.00709262 0.176334 -0.325665 -0.644029 0.692221 +0.162325 0.00805437 0.17497 -0.222169 -0.664081 0.71389 +0.0814303 -0.0473656 0.17704 0.34081 -0.661158 0.668371 +0.0423193 -0.0700576 0.177164 0.107403 -0.736983 0.667324 +0.028549 -0.0727859 0.176086 -0.0706942 -0.756209 0.6505 +0.0172446 -0.0735938 0.174891 -0.196419 -0.737423 0.64624 +0.00873381 -0.0722188 0.173567 -0.310227 -0.714068 0.627589 +0.00211331 -0.0693438 0.172157 -0.376471 -0.693867 0.613856 +-0.00406617 -0.0661309 0.170721 -0.430352 -0.667558 0.607589 +-0.00991771 -0.0626739 0.169275 -0.496259 -0.641368 0.58513 +-0.015502 -0.0590004 0.167809 -0.544028 -0.612377 0.573611 +-0.0208564 -0.0551679 0.166343 -0.600544 -0.576297 0.554283 +-0.0258747 -0.0510597 0.164858 -0.629199 -0.558254 0.540796 +-0.0312193 -0.0472297 0.163392 -0.658709 -0.540079 0.52385 +-0.0369254 -0.0437166 0.161954 -0.688723 -0.523555 0.501548 +-0.0413989 -0.0391965 0.160444 -0.722682 -0.495734 0.481642 +-0.0452662 -0.0341741 0.158902 -0.7554 -0.448801 0.477439 +-0.0447173 -0.0254804 0.157109 -0.778141 -0.40243 0.48223 +0.85363 -0.688863 0.400103 -0.0301916 -0.967561 0.250826 +0.831709 -0.691329 0.398018 -0.0745246 -0.972705 0.219754 +0.815003 -0.691419 0.396038 -0.104664 -0.989365 0.101012 +0.800008 -0.690752 0.394106 -0.125008 -0.990295 0.0607403 +0.786264 -0.689539 0.392205 -0.16722 -0.984448 0.053866 +0.77393 -0.6877 0.390338 -0.202337 -0.978749 -0.0333498 +0.762351 -0.685528 0.388492 -0.229333 -0.963675 -0.136887 +0.751764 -0.682921 0.386664 -0.255817 -0.950403 -0.1769 +0.743428 -0.679254 0.384883 -0.28971 -0.912049 -0.290235 +0.73613 -0.675108 0.383116 -0.311215 -0.874619 -0.371734 +0.7282 -0.671279 0.381349 -0.33656 -0.81617 -0.469676 +0.722156 -0.666543 0.37961 -0.323009 -0.771083 -0.548723 +0.716404 -0.66168 0.377876 -0.319399 -0.7118 -0.625561 +0.710542 -0.656883 0.376146 -0.303666 -0.684894 -0.66235 +0.706192 -0.651338 0.374441 -0.27881 -0.672373 -0.685697 +0.704336 -0.644563 0.372763 -0.228592 -0.666372 -0.709715 +0.706248 -0.635905 0.371131 -0.221988 -0.648821 -0.727842 +0.701794 -0.630406 0.369419 -0.203982 -0.644321 -0.73705 +0.694975 -0.626103 0.367681 -0.224476 -0.632023 -0.741727 +0.684648 -0.623586 0.365905 -0.231953 -0.617896 -0.751268 +0.67237 -0.622084 0.364114 -0.232496 -0.6152 -0.753311 +0.464442 -0.720178 0.360368 0.223954 -0.747539 -0.625324 +0.448587 -0.720985 0.358649 0.0911597 -0.761277 -0.641988 +0.438579 -0.71884 0.356988 -0.0228909 -0.743435 -0.668416 +0.430248 -0.71587 0.355355 -0.0913078 -0.665373 -0.740907 +0.422913 -0.712399 0.353734 -0.135186 -0.639843 -0.756522 +0.417919 -0.707724 0.352135 -0.144324 -0.577927 -0.803225 +0.41349 -0.702771 0.350544 -0.149827 -0.52264 -0.839284 +0.409858 -0.697396 0.348957 -0.150765 -0.441871 -0.88432 +0.407518 -0.69135 0.347376 -0.148124 -0.370915 -0.916778 +0.405718 -0.685015 0.345798 -0.159024 -0.318994 -0.934321 +0.405053 -0.678069 0.344226 -0.148539 -0.270885 -0.951081 +0.406574 -0.669943 0.342661 -0.119877 -0.294249 -0.948181 +0.424849 -0.652845 0.341169 -0.104513 -0.329667 -0.938294 +0.419801 -0.648168 0.339564 -0.0945248 -0.402177 -0.91067 +0.415781 -0.642946 0.337963 -0.06647 -0.456181 -0.887401 +0.41146 -0.637893 0.336359 -0.0458683 -0.510893 -0.858421 +0.40556 -0.633695 0.334758 -0.0352631 -0.584405 -0.810696 +0.39548 -0.631792 0.33314 -0.0133879 -0.648757 -0.760878 +0.384475 -0.630421 0.331533 -0.0346666 -0.694228 -0.71892 +0.373689 -0.628959 0.329931 -0.0280421 -0.732909 -0.67975 +0.362284 -0.627877 0.328339 -0.0330057 -0.790716 -0.611293 +0.35141 -0.626529 0.326748 -0.043261 -0.788249 -0.613835 +0.340757 -0.625097 0.325172 -0.0552817 -0.779892 -0.623469 +0.329141 -0.624231 0.323599 -0.0646487 -0.770231 -0.634481 +0.283495 -0.642484 0.322071 0.0437105 -0.61672 -0.785968 +0.260611 -0.648109 0.320543 -0.0416441 -0.679122 -0.732844 +0.24791 -0.648063 0.319022 -0.0955132 -0.70228 -0.705465 +0.236429 -0.647374 0.3175 -0.163989 -0.712904 -0.681817 +0.227828 -0.645077 0.315976 -0.254046 -0.703329 -0.66392 +0.220468 -0.642097 0.31446 -0.357534 -0.691399 -0.627805 +0.214146 -0.638539 0.31294 -0.392786 -0.675675 -0.623846 +0.208329 -0.634704 0.311424 -0.455288 -0.641428 -0.617481 +0.203304 -0.630427 0.309906 -0.514927 -0.603184 -0.609114 +0.200091 -0.625098 0.308374 -0.561755 -0.566627 -0.602799 +0.196897 -0.619755 0.30685 -0.609243 -0.503694 -0.612467 +0.193721 -0.614412 0.305319 -0.635257 -0.467325 -0.614863 +0.19114 -0.608711 0.303789 -0.669677 -0.395106 -0.628828 +0.188924 -0.602795 0.302249 -0.685713 -0.3371 -0.645106 +0.187605 -0.596344 0.300711 -0.701773 -0.269508 -0.659455 +0.187111 -0.589388 0.299154 -0.716082 -0.190569 -0.671499 +0.188079 -0.581549 0.29759 -0.711005 -0.101951 -0.695757 +0.189856 -0.573218 0.296007 -0.713232 -0.0309247 -0.700246 +0.19699 -0.561635 0.294369 -0.645749 0.149558 -0.74876 +0.291495 -0.497292 0.291832 -0.585684 -0.498961 -0.638758 +0.289927 -0.490685 0.290227 -0.553573 -0.617292 -0.559024 +0.285772 -0.485641 0.288648 -0.506596 -0.732903 -0.45411 +0.27973 -0.481746 0.287089 -0.448097 -0.813687 -0.370303 +0.272641 -0.478513 0.285546 -0.427117 -0.844964 -0.321882 +0.265491 -0.475327 0.284007 -0.392282 -0.879516 -0.269385 +0.258307 -0.472186 0.282476 -0.388637 -0.888087 -0.245484 +0.251028 -0.469122 0.280947 -0.401869 -0.887243 -0.226498 +0.243769 -0.466063 0.27942 -0.422932 -0.882199 -0.207013 +0.23692 -0.462759 0.277896 -0.448317 -0.872579 -0.193956 +0.230181 -0.459404 0.27637 -0.465706 -0.866357 -0.180405 +0.22353 -0.456015 0.274845 -0.495453 -0.850311 -0.177479 +0.217402 -0.452311 0.273323 -0.526468 -0.829767 -0.185255 +0.211336 -0.448579 0.271794 -0.552406 -0.81128 -0.191505 +0.205435 -0.444752 0.270272 -0.575963 -0.792733 -0.199607 +0.200536 -0.440304 0.268726 -0.591884 -0.779087 -0.206633 +0.196356 -0.435396 0.267175 -0.603219 -0.769043 -0.211429 +0.19274 -0.430132 0.265616 -0.611097 -0.762561 -0.212278 +0.18852 -0.425258 0.264062 -0.614208 -0.760737 -0.209829 +0.184583 -0.420209 0.262507 -0.618408 -0.759008 -0.203666 +0.179261 -0.416054 0.260977 -0.62618 -0.755383 -0.193117 +0.174005 -0.411876 0.259454 -0.633015 -0.752878 -0.180186 +0.168878 -0.407619 0.257925 -0.644853 -0.745956 -0.166476 +0.163612 -0.403454 0.256404 -0.656289 -0.737746 -0.158166 +0.158374 -0.399292 0.254885 -0.676466 -0.721372 -0.148382 +0.153362 -0.394979 0.253362 -0.700519 -0.698082 -0.148169 +0.148559 -0.390541 0.251833 -0.725728 -0.672293 -0.146093 +0.143726 -0.386128 0.250309 -0.751 -0.641997 -0.154398 +0.139494 -0.381322 0.248771 -0.77554 -0.608828 -0.166935 +0.135575 -0.376314 0.247221 -0.800271 -0.569037 -0.189115 +0.132219 -0.370927 0.245663 -0.821319 -0.533157 -0.202924 +0.129349 -0.365204 0.244095 -0.840213 -0.494761 -0.221936 +0.12673 -0.359311 0.242517 -0.858165 -0.4494 -0.248179 +0.124388 -0.353233 0.240927 -0.873071 -0.403904 -0.273145 +0.122085 -0.347119 0.239341 -0.885147 -0.360462 -0.29425 +0.120036 -0.340823 0.237744 -0.89431 -0.32419 -0.308398 +0.118313 -0.334294 0.236136 -0.902575 -0.289357 -0.318798 +0.11698 -0.327491 0.234514 -0.909243 -0.265796 -0.320364 +0.115961 -0.320461 0.232885 -0.915298 -0.245108 -0.319614 +0.115405 -0.313103 0.231234 -0.923723 -0.225452 -0.309688 +0.115273 -0.305425 0.22957 -0.931199 -0.207668 -0.299572 +0.114821 -0.29796 0.227914 -0.94039 -0.182992 -0.286674 +0.114354 -0.290486 0.226252 -0.947909 -0.162013 -0.274266 +0.113009 -0.283622 0.224615 -0.954646 -0.1355 -0.265124 +0.112045 -0.276481 0.222964 -0.959808 -0.104359 -0.260534 +0.111697 -0.268882 0.221292 -0.962991 -0.0703436 -0.260192 +0.112111 -0.260721 0.219589 -0.965477 -0.0321754 -0.258495 +0.113219 -0.252058 0.217861 -0.964399 0.00806019 -0.26433 +0.114792 -0.243023 0.216103 -0.961036 0.049238 -0.272001 +0.116235 -0.234066 0.214351 -0.957391 0.083867 -0.276348 +0.117618 -0.225128 0.212601 -0.953233 0.117538 -0.278446 +0.118959 -0.216193 0.210837 -0.948703 0.147223 -0.2798 +0.120699 -0.206943 0.20906 -0.944072 0.179944 -0.276312 +0.123168 -0.197131 0.207247 -0.936532 0.221917 -0.271404 +0.126257 -0.186839 0.205402 -0.920305 0.284334 -0.268689 +0.130868 -0.175385 0.203493 -0.905951 0.330923 -0.264086 +0.136714 -0.162984 0.201526 -0.887172 0.387712 -0.250213 +0.145418 -0.148406 0.199432 -0.893885 0.410335 -0.180547 +0.154342 -0.133605 0.197321 -0.91676 0.392517 -0.0740423 +0.164424 -0.117878 0.195144 -0.933303 0.350532 0.0779293 +0.171546 -0.104288 0.193077 -0.922672 0.331768 0.196483 +0.174755 -0.0936008 0.191167 -0.899517 0.270398 0.343151 +0.181442 -0.0802459 0.189091 -0.836802 0.310265 0.451108 +0.182987 -0.070734 0.187236 -0.695792 0.276772 0.662776 +0.186924 -0.0593858 0.185266 -0.591727 0.290757 0.751878 +0.191186 -0.0477427 0.183273 -0.595534 0.233986 0.768498 +0.193546 -0.0375094 0.181353 -0.585459 0.0784361 0.806899 +0.193758 -0.0289035 0.179536 -0.55254 -0.0748691 0.830117 +0.190401 -0.0230244 0.177871 -0.525269 -0.159519 0.83585 +0.186353 -0.0176824 0.176238 -0.486136 -0.199062 0.850909 +0.182122 -0.0124879 0.174617 -0.434127 -0.281713 0.85567 +0.177165 -0.00785831 0.173032 -0.361075 -0.37988 0.851654 +0.168978 -0.00575584 0.171598 -0.264866 -0.422896 0.866606 +0.153754 -0.00920813 0.170521 -0.0695442 -0.353497 0.932847 +0.122382 -0.02542 0.17026 -0.0277151 -0.327781 0.944347 +0.0597932 -0.0664363 0.171604 0.272541 -0.733765 0.622343 +0.0370385 -0.0762108 0.170986 0.0276487 -0.796926 0.603444 +0.0238274 -0.0785031 0.169903 -0.0993465 -0.802179 0.588763 +0.0140901 -0.0780777 0.168645 -0.214423 -0.783011 0.583882 +0.00617896 -0.0762181 0.167301 -0.334424 -0.751688 0.568443 +-0.000227883 -0.0731854 0.165888 -0.390517 -0.731165 0.55937 +-0.00637099 -0.0699481 0.164459 -0.463993 -0.700937 0.541663 +-0.0122977 -0.0665523 0.16302 -0.512919 -0.675173 0.530148 +-0.0179361 -0.0629367 0.16157 -0.574392 -0.638998 0.511621 +-0.0235321 -0.0593022 0.16012 -0.619382 -0.609611 0.494711 +-0.0286222 -0.0552629 0.158646 -0.650662 -0.590423 0.477536 +-0.0339592 -0.0514445 0.157191 -0.682708 -0.563486 0.465182 +-0.0391175 -0.0474828 0.155719 -0.712559 -0.541488 0.446151 +-0.0433441 -0.0427581 0.154201 -0.745289 -0.513416 0.42538 +-0.0469381 -0.0375147 0.152647 -0.762488 -0.491677 0.420554 +-0.0489206 -0.030939 0.150998 -0.790831 -0.45373 0.410749 +0.873085 -0.689568 0.39502 -0.0550037 -0.992556 0.108658 +0.847505 -0.693658 0.392894 -0.0989537 -0.987348 0.123908 +0.830692 -0.693748 0.390928 -0.0820406 -0.994289 0.0682603 +0.815219 -0.693254 0.389001 -0.112563 -0.988307 0.102857 +0.801314 -0.692066 0.3871 -0.154265 -0.987949 0.0125783 +0.788224 -0.690541 0.385229 -0.156612 -0.987401 -0.0226219 +0.776917 -0.688206 0.383394 -0.223571 -0.968232 -0.112006 +0.766779 -0.685345 0.381578 -0.250467 -0.943572 -0.216654 +0.757247 -0.682213 0.379785 -0.259635 -0.910824 -0.320921 +0.749602 -0.678198 0.378017 -0.278477 -0.881354 -0.381666 +0.742947 -0.673725 0.376268 -0.297929 -0.757779 -0.580526 +0.73649 -0.669172 0.374518 -0.286755 -0.690968 -0.663577 +0.732385 -0.663477 0.372808 -0.294407 -0.631557 -0.717259 +0.728384 -0.657736 0.371094 -0.255112 -0.606474 -0.753066 +0.72843 -0.65 0.369434 -0.22766 -0.610041 -0.758962 +0.736141 -0.638476 0.367854 -0.144424 -0.60613 -0.782143 +0.73454 -0.631511 0.366164 -0.110825 -0.64542 -0.755746 +0.725714 -0.628143 0.364402 -0.143448 -0.654516 -0.742316 +0.715626 -0.625422 0.362623 -0.217549 -0.657362 -0.721491 +0.702948 -0.624032 0.36083 -0.237692 -0.62958 -0.739683 +0.688441 -0.623593 0.359026 -0.243941 -0.596808 -0.764405 +0.680397 -0.619938 0.357282 -0.266043 -0.575889 -0.77303 +0.673247 -0.615843 0.355563 -0.28307 -0.557813 -0.780203 +0.669205 -0.610178 0.353864 -0.322076 -0.530632 -0.784027 +0.462682 -0.708301 0.350686 0.218549 -0.555622 -0.802198 +0.450068 -0.707473 0.349022 0.0800802 -0.577351 -0.81256 +0.445167 -0.702705 0.347418 0.000993474 -0.49445 -0.869206 +0.47143 -0.681768 0.345993 -0.219129 0.277351 0.935446 +0.458729 -0.681004 0.344328 -0.0305638 -0.28206 -0.958911 +0.453016 -0.676631 0.342711 -0.00851157 -0.271303 -0.962457 +0.447902 -0.671951 0.341099 -0.0415715 -0.255041 -0.966036 +0.445137 -0.666036 0.339504 -0.0711884 -0.267707 -0.960867 +0.443315 -0.659621 0.337899 -0.121543 -0.322102 -0.938871 +0.44421 -0.65175 0.336313 -0.126595 -0.369535 -0.920554 +0.442678 -0.645157 0.334707 -0.164837 -0.443014 -0.881231 +0.438761 -0.639839 0.333093 -0.174005 -0.486822 -0.855995 +0.428889 -0.637726 0.331475 -0.135158 -0.545951 -0.826844 +0.423366 -0.633288 0.329868 -0.101922 -0.584419 -0.805026 +0.417251 -0.629187 0.328263 -0.0703347 -0.629696 -0.773651 +0.407669 -0.626983 0.326658 -0.0247466 -0.669048 -0.742807 +0.395029 -0.626474 0.325059 -0.0127665 -0.691126 -0.722623 +0.382768 -0.6258 0.323471 -0.0304455 -0.75388 -0.656306 +0.371881 -0.624405 0.321883 -0.0219574 -0.77598 -0.630375 +0.361834 -0.622582 0.320301 -0.0284982 -0.781554 -0.623188 +0.352242 -0.620536 0.318734 -0.0457966 -0.776232 -0.628782 +0.344187 -0.617653 0.317162 -0.0663868 -0.767324 -0.637815 +0.335298 -0.615263 0.315599 -0.0867581 -0.757414 -0.647144 +0.32455 -0.613946 0.314049 -0.105422 -0.747584 -0.655747 +0.272647 -0.635887 0.31266 0.0793236 -0.647155 -0.758221 +0.253688 -0.639376 0.311179 -0.0217364 -0.686068 -0.727214 +0.241749 -0.638935 0.309681 -0.0984833 -0.693837 -0.713367 +0.23126 -0.637708 0.308177 -0.211345 -0.686119 -0.696113 +0.222881 -0.635308 0.306674 -0.293664 -0.671594 -0.680238 +0.215763 -0.632201 0.305164 -0.389477 -0.634103 -0.667999 +0.209943 -0.62836 0.303646 -0.428807 -0.609374 -0.666925 +0.205807 -0.623553 0.302123 -0.49148 -0.554369 -0.671657 +0.202481 -0.618284 0.300596 -0.518676 -0.516472 -0.681346 +0.199452 -0.612834 0.299061 -0.571313 -0.45904 -0.680357 +0.197077 -0.607007 0.297519 -0.588849 -0.39074 -0.707518 +0.195136 -0.600914 0.295979 -0.637778 -0.317422 -0.701772 +0.1942 -0.594221 0.294426 -0.649762 -0.270084 -0.710539 +0.194176 -0.586978 0.292858 -0.650361 -0.170354 -0.740277 +0.197629 -0.577651 0.291256 -0.644953 -0.0655759 -0.761404 +0.205947 -0.565384 0.289588 -0.54001 0.119455 -0.83314 +0.295703 -0.504157 0.286956 -0.602008 -0.32524 -0.729251 +0.298238 -0.495085 0.285298 -0.583388 -0.500086 -0.639979 +0.295564 -0.489133 0.283694 -0.551226 -0.600648 -0.579112 +0.291143 -0.484235 0.282117 -0.482935 -0.741752 -0.46538 +0.284691 -0.480582 0.280571 -0.43254 -0.813862 -0.387992 +0.277035 -0.477684 0.279046 -0.409228 -0.851623 -0.327523 +0.269637 -0.47464 0.277511 -0.383699 -0.877518 -0.287643 +0.261971 -0.471784 0.275995 -0.376354 -0.889287 -0.259859 +0.25472 -0.468692 0.27447 -0.379241 -0.893597 -0.24013 +0.247405 -0.465655 0.272951 -0.396457 -0.890459 -0.223392 +0.240111 -0.462621 0.271443 -0.42181 -0.882675 -0.207274 +0.233154 -0.459402 0.269922 -0.444903 -0.873455 -0.197837 +0.226426 -0.456048 0.268405 -0.480578 -0.854148 -0.198684 +0.220338 -0.452309 0.266886 -0.517041 -0.830565 -0.20696 +0.214346 -0.448523 0.265359 -0.541851 -0.81256 -0.214813 +0.208673 -0.444545 0.263837 -0.567268 -0.792891 -0.222556 +0.204165 -0.439839 0.262289 -0.583221 -0.780039 -0.226698 +0.199927 -0.434966 0.260734 -0.594175 -0.770698 -0.230177 +0.196301 -0.4297 0.259173 -0.599868 -0.766444 -0.229612 +0.19207 -0.424824 0.257617 -0.604501 -0.764384 -0.224268 +0.187239 -0.420339 0.256085 -0.605984 -0.765537 -0.216185 +0.181341 -0.416562 0.254576 -0.612603 -0.763895 -0.202934 +0.175715 -0.41262 0.253058 -0.617373 -0.762858 -0.192087 +0.17012 -0.408656 0.251547 -0.627838 -0.757329 -0.179642 +0.164794 -0.404537 0.250032 -0.644375 -0.745866 -0.168717 +0.15968 -0.400289 0.248506 -0.665914 -0.727261 -0.166282 +0.154949 -0.395796 0.246979 -0.687672 -0.706426 -0.167545 +0.150193 -0.391318 0.245455 -0.714288 -0.678166 -0.172868 +0.145412 -0.386872 0.243936 -0.742255 -0.641361 -0.194207 +0.141409 -0.381906 0.242388 -0.767194 -0.603662 -0.216807 +0.13771 -0.376738 0.240834 -0.786413 -0.572237 -0.232593 +0.134492 -0.371256 0.239276 -0.805588 -0.53012 -0.264576 +0.131834 -0.365387 0.2377 -0.824258 -0.484398 -0.293187 +0.129537 -0.35928 0.236108 -0.839936 -0.439874 -0.317831 +0.127308 -0.353114 0.234516 -0.853904 -0.396223 -0.337423 +0.125016 -0.346986 0.232921 -0.865018 -0.358207 -0.351328 +0.122839 -0.340773 0.231322 -0.87525 -0.323157 -0.359871 +0.12099 -0.334329 0.229717 -0.882016 -0.297823 -0.365168 +0.119526 -0.327615 0.228096 -0.889845 -0.277407 -0.362246 +0.118607 -0.320507 0.226456 -0.89889 -0.26328 -0.350256 +0.118123 -0.313092 0.224792 -0.909537 -0.245516 -0.335358 +0.118165 -0.30529 0.223114 -0.919976 -0.226115 -0.320182 +0.117319 -0.298096 0.221462 -0.929506 -0.202894 -0.307981 +0.116486 -0.290881 0.219812 -0.938815 -0.176923 -0.295507 +0.11501 -0.284106 0.218178 -0.946695 -0.150367 -0.284883 +0.113976 -0.277009 0.216522 -0.952905 -0.113262 -0.281323 +0.113127 -0.269765 0.214858 -0.957831 -0.0787717 -0.276322 +0.113802 -0.261421 0.213134 -0.959934 -0.0357005 -0.277946 +0.115136 -0.252594 0.211388 -0.959029 0.00574982 -0.283252 +0.116476 -0.24373 0.209634 -0.955229 0.0453009 -0.292377 +0.117881 -0.234801 0.207871 -0.951181 0.0821886 -0.297491 +0.119137 -0.225944 0.20611 -0.947955 0.110773 -0.298513 +0.120543 -0.216972 0.204338 -0.943939 0.139243 -0.299319 +0.122479 -0.207577 0.202544 -0.939431 0.173701 -0.295462 +0.124738 -0.197916 0.200725 -0.93237 0.212405 -0.292526 +0.128309 -0.18727 0.198848 -0.916827 0.279711 -0.284939 +0.132553 -0.176089 0.196938 -0.903665 0.325614 -0.278146 +0.138704 -0.163464 0.194939 -0.898866 0.368036 -0.237885 +0.147163 -0.149079 0.192828 -0.911156 0.382022 -0.154451 +0.155977 -0.134362 0.190688 -0.935791 0.352421 -0.00967796 +0.162643 -0.121188 0.188631 -0.94523 0.303348 0.120501 +0.170178 -0.107308 0.186525 -0.928582 0.250281 0.274034 +0.171242 -0.0982426 0.1847 -0.903027 0.243935 0.353606 +0.173708 -0.0880927 0.182801 -0.832356 0.207203 0.514053 +0.173928 -0.0796052 0.180996 -0.758081 0.19563 0.622125 +0.173353 -0.0717118 0.179219 -0.668375 0.150735 0.728391 +0.173253 -0.0634371 0.177426 -0.616229 0.184044 0.765761 +0.17187 -0.0561236 0.175682 -0.524984 0.150961 0.837617 +0.169374 -0.0496554 0.173996 -0.462802 0.115807 0.878864 +0.164714 -0.044845 0.172402 -0.406035 0.0506896 0.91245 +0.159832 -0.040221 0.170832 -0.361793 -0.0003187 0.932258 +0.154182 -0.036197 0.169294 -0.328811 -0.022327 0.944133 +0.14731 -0.0331302 0.167824 -0.285684 -0.0568326 0.956637 +0.137 -0.032767 0.166529 -0.24494 -0.125425 0.961392 +0.123564 -0.0348975 0.165405 -0.137232 -0.325251 0.935618 +0.0797445 -0.0609592 0.165871 0.265121 -0.754112 0.600856 +0.0545116 -0.0725877 0.165401 0.243702 -0.785652 0.568649 +0.0320269 -0.0821495 0.164812 -0.0172594 -0.838528 0.544587 +0.0208814 -0.0828071 0.163641 -0.127052 -0.832297 0.539575 +0.0115749 -0.0820419 0.162382 -0.253937 -0.818408 0.515485 +0.00381642 -0.0800704 0.161041 -0.344743 -0.791573 0.504545 +-0.00266664 -0.0771004 0.159636 -0.421912 -0.757515 0.498158 +-0.00897754 -0.0740064 0.158225 -0.479378 -0.728863 0.488831 +-0.0150595 -0.0707486 0.156804 -0.530505 -0.701922 0.475257 +-0.0208916 -0.0672927 0.155366 -0.596772 -0.662739 0.452371 +-0.0262433 -0.0634633 0.153918 -0.638956 -0.634781 0.434499 +-0.0310682 -0.0592205 0.152426 -0.673511 -0.603831 0.426345 +-0.0359132 -0.0550022 0.150946 -0.701136 -0.585236 0.407315 +-0.0406547 -0.0506958 0.149463 -0.726763 -0.562124 0.394755 +-0.0443848 -0.0455795 0.147919 -0.761138 -0.522562 0.384185 +-0.0481023 -0.0404385 0.146372 -0.787821 -0.489591 0.373681 +-0.0490414 -0.0330078 0.144655 -0.812311 -0.452813 0.367577 +0.896464 -0.688547 0.389964 -0.0833842 -0.994994 0.0550992 +0.865015 -0.695259 0.387761 -0.0641195 -0.991164 0.116118 +0.84586 -0.696371 0.385777 -0.0774777 -0.996489 0.0317473 +0.830675 -0.695695 0.383865 -0.114654 -0.992961 0.0297418 +0.816466 -0.694602 0.381973 -0.107593 -0.994133 0.0111757 +0.802997 -0.693211 0.380101 -0.161283 -0.986562 -0.0261838 +0.791911 -0.690728 0.378274 -0.178361 -0.976264 -0.12287 +0.781374 -0.688013 0.376457 -0.21169 -0.960568 -0.180272 +0.772225 -0.684668 0.374671 -0.238311 -0.910925 -0.336787 +0.76363 -0.681081 0.372894 -0.278006 -0.8614 -0.425093 +0.757159 -0.676492 0.371144 -0.289819 -0.750627 -0.593771 +0.751836 -0.671354 0.369414 -0.277691 -0.687165 -0.671337 +0.7492 -0.664932 0.367711 -0.262706 -0.560897 -0.785099 +0.751064 -0.656299 0.366057 -0.210194 -0.531298 -0.820695 +0.768403 -0.640082 0.364563 -0.0990554 -0.479937 -0.871694 +0.764312 -0.634309 0.362834 -0.0543711 -0.544143 -0.837229 +0.757155 -0.630045 0.361083 -0.0100639 -0.637564 -0.770332 +0.747139 -0.627208 0.359299 -0.0864436 -0.747514 -0.658598 +0.736292 -0.62481 0.357519 -0.111544 -0.706634 -0.698732 +0.719894 -0.625223 0.355699 -0.217338 -0.667422 -0.712259 +0.708588 -0.623134 0.353927 -0.271092 -0.630431 -0.727369 +0.693514 -0.622967 0.352136 -0.273976 -0.601787 -0.750193 +0.686346 -0.618858 0.350411 -0.297021 -0.567195 -0.768159 +0.682298 -0.613169 0.348715 -0.345625 -0.546896 -0.762527 +0.682499 -0.605326 0.347033 -0.414686 -0.442391 -0.79519 +0.683844 -0.596874 0.345361 -0.41491 -0.393191 -0.820518 +0.685726 -0.588128 0.343684 -0.432686 -0.283174 -0.855918 +0.688594 -0.578846 0.342007 -0.442853 -0.150106 -0.88394 +0.697478 -0.566418 0.340346 -0.410109 -0.0225378 -0.911759 +0.452184 -0.627039 0.324942 -0.150129 -0.553175 -0.819426 +0.441717 -0.625226 0.323334 -0.121007 -0.6056 -0.786514 +0.433705 -0.622109 0.321718 -0.0931049 -0.66406 -0.74186 +0.421984 -0.62103 0.320122 -0.0587763 -0.69074 -0.72071 +0.408119 -0.621154 0.318539 -0.00770409 -0.716633 -0.697409 +0.394417 -0.62124 0.316959 0.00497773 -0.737179 -0.675678 +0.381846 -0.620743 0.315392 -0.0145464 -0.767289 -0.641138 +0.371459 -0.619088 0.313828 -0.0194763 -0.777395 -0.628711 +0.361901 -0.616995 0.312259 -0.0358479 -0.775109 -0.630811 +0.353508 -0.614281 0.310696 -0.0522491 -0.767594 -0.638803 +0.345404 -0.611434 0.309135 -0.0722074 -0.751476 -0.655798 +0.337304 -0.608592 0.307577 -0.0901953 -0.740672 -0.665784 +0.326712 -0.607184 0.306037 -0.126683 -0.722701 -0.679452 +0.31627 -0.605727 0.304506 -0.143867 -0.707989 -0.691415 +0.265997 -0.626933 0.303253 0.0848019 -0.635272 -0.767618 +0.249737 -0.628948 0.301794 -0.024617 -0.650174 -0.759385 +0.23743 -0.628747 0.300321 -0.140367 -0.636374 -0.758501 +0.227791 -0.627055 0.298831 -0.223567 -0.628045 -0.745371 +0.221484 -0.623476 0.297323 -0.310365 -0.585687 -0.748761 +0.216178 -0.619317 0.295806 -0.383069 -0.545186 -0.745674 +0.21183 -0.614623 0.294283 -0.435862 -0.498228 -0.749529 +0.207891 -0.609687 0.292757 -0.473754 -0.446217 -0.759243 +0.205012 -0.604134 0.291219 -0.524105 -0.375317 -0.764494 +0.203566 -0.597739 0.289659 -0.545158 -0.310578 -0.778682 +0.203807 -0.590334 0.288085 -0.548557 -0.238786 -0.801291 +0.207161 -0.581066 0.286464 -0.500578 -0.118587 -0.85753 +0.29585 -0.520975 0.283767 -0.584461 -0.130339 -0.800886 +0.300056 -0.510942 0.282081 -0.591202 -0.243079 -0.769022 +0.30228 -0.502073 0.280413 -0.585272 -0.361667 -0.725709 +0.30328 -0.493911 0.278762 -0.555864 -0.504986 -0.660308 +0.300398 -0.488068 0.277164 -0.495379 -0.669474 -0.553538 +0.295793 -0.483273 0.275586 -0.46244 -0.753715 -0.466974 +0.289047 -0.479791 0.274046 -0.415865 -0.823244 -0.386427 +0.281081 -0.477067 0.272526 -0.399531 -0.850246 -0.342721 +0.273139 -0.47435 0.271019 -0.372122 -0.879672 -0.296151 +0.265618 -0.471396 0.269502 -0.357846 -0.894958 -0.266452 +0.258124 -0.468442 0.267986 -0.363181 -0.89965 -0.242345 +0.250692 -0.465474 0.266481 -0.380954 -0.894912 -0.232396 +0.243522 -0.462354 0.264972 -0.398698 -0.890738 -0.218238 +0.236502 -0.45916 0.263466 -0.427135 -0.878107 -0.215603 +0.229554 -0.455941 0.261954 -0.465347 -0.857238 -0.220447 +0.223437 -0.45221 0.260435 -0.502665 -0.833676 -0.228722 +0.217556 -0.448344 0.258913 -0.53079 -0.813338 -0.238209 +0.211956 -0.444314 0.257386 -0.556927 -0.793565 -0.245126 +0.207476 -0.43958 0.255842 -0.571929 -0.781431 -0.249525 +0.202942 -0.434888 0.254295 -0.584677 -0.771441 -0.251061 +0.198972 -0.429843 0.252739 -0.591959 -0.766628 -0.248726 +0.194383 -0.425192 0.251196 -0.593591 -0.767765 -0.241218 +0.189365 -0.420823 0.249667 -0.59413 -0.770388 -0.231327 +0.183091 -0.417285 0.24817 -0.596851 -0.771613 -0.219962 +0.177094 -0.413575 0.246667 -0.604228 -0.769816 -0.205653 +0.171361 -0.409703 0.245166 -0.617303 -0.762741 -0.192779 +0.16608 -0.405557 0.243648 -0.632281 -0.752141 -0.185758 +0.161032 -0.401257 0.24213 -0.655555 -0.731914 -0.185873 +0.156272 -0.396772 0.240604 -0.679798 -0.706721 -0.196013 +0.151637 -0.392219 0.239081 -0.707483 -0.672012 -0.218789 +0.147119 -0.387595 0.237551 -0.734744 -0.634496 -0.239928 +0.143274 -0.382523 0.236007 -0.755466 -0.601801 -0.259053 +0.139863 -0.377161 0.234443 -0.774818 -0.558831 -0.295577 +0.137101 -0.371366 0.232867 -0.791564 -0.514226 -0.330152 +0.134799 -0.365254 0.231273 -0.804605 -0.472227 -0.36002 +0.132833 -0.358908 0.229672 -0.817139 -0.43079 -0.383019 +0.130916 -0.352526 0.228066 -0.830192 -0.391391 -0.396983 +0.12877 -0.346293 0.226466 -0.843883 -0.353591 -0.403528 +0.126402 -0.340203 0.224873 -0.85135 -0.330918 -0.40706 +0.124631 -0.333696 0.223258 -0.862865 -0.313712 -0.396293 +0.123126 -0.327002 0.221631 -0.873441 -0.298882 -0.384409 +0.1225 -0.31969 0.219971 -0.884509 -0.285227 -0.369175 +0.122182 -0.312156 0.2183 -0.896536 -0.26857 -0.352268 +0.121863 -0.304594 0.216624 -0.908762 -0.245253 -0.337643 +0.120304 -0.297899 0.214992 -0.921184 -0.21821 -0.322189 +0.118809 -0.291137 0.21335 -0.930499 -0.190387 -0.312929 +0.117062 -0.284554 0.211728 -0.938207 -0.163804 -0.304855 +0.11589 -0.277553 0.210067 -0.94529 -0.123083 -0.302123 +0.115008 -0.270329 0.208404 -0.949448 -0.0851801 -0.302147 +0.115382 -0.262206 0.206682 -0.950827 -0.0384891 -0.307321 +0.116478 -0.253536 0.204936 -0.949221 0.000628022 -0.314609 +0.117789 -0.244701 0.20317 -0.945319 0.0412199 -0.323531 +0.119206 -0.23576 0.201397 -0.94153 0.075063 -0.328461 +0.120667 -0.226762 0.199623 -0.939094 0.100392 -0.32867 +0.122456 -0.217507 0.197819 -0.936175 0.129218 -0.326925 +0.124345 -0.208153 0.196014 -0.93355 0.162926 -0.319278 +0.126848 -0.198311 0.194174 -0.927946 0.203743 -0.312097 +0.130455 -0.187639 0.192279 -0.913981 0.268695 -0.304043 +0.134555 -0.176569 0.190358 -0.904784 0.314277 -0.287395 +0.14085 -0.163833 0.18833 -0.91138 0.341322 -0.229972 +0.148554 -0.150012 0.186231 -0.936026 0.331641 -0.117767 +0.157377 -0.135299 0.184068 -0.954387 0.292216 0.0612823 +0.162656 -0.123161 0.182052 -0.950854 0.24509 0.189224 +0.165329 -0.112933 0.180145 -0.930986 0.188146 0.312836 +0.166075 -0.104116 0.178326 -0.893094 0.121543 0.433141 +0.165809 -0.0960497 0.176543 -0.838399 0.109369 0.533969 +0.164649 -0.0886349 0.174803 -0.792564 0.0509936 0.607652 +0.162956 -0.0816074 0.173082 -0.738352 0.0380242 0.673343 +0.160337 -0.0752837 0.17141 -0.657298 -0.0302895 0.753022 +0.157107 -0.0694235 0.169762 -0.600215 -0.0746435 0.796349 +0.153012 -0.064221 0.168159 -0.552023 -0.112156 0.826252 +0.148483 -0.0593627 0.166581 -0.478211 -0.166517 0.862315 +0.143656 -0.0547296 0.165014 -0.450934 -0.179566 0.874309 +0.137904 -0.0508278 0.163496 -0.405524 -0.20459 0.890894 +0.130818 -0.0479741 0.162056 -0.360808 -0.233463 0.902947 +0.121571 -0.0468275 0.160728 -0.172111 -0.397561 0.90129 +0.098962 -0.0561684 0.160123 0.0402519 -0.656149 0.753559 +0.0681292 -0.0720775 0.15998 0.273919 -0.818787 0.504537 +0.0458346 -0.0813986 0.159407 0.154543 -0.85436 0.496171 +0.029172 -0.0863715 0.158547 -0.0272135 -0.873946 0.485261 +0.0187698 -0.0864468 0.157354 -0.137596 -0.87123 0.471197 +0.00946353 -0.0856804 0.156102 -0.253089 -0.851386 0.459446 +0.00160503 -0.0837921 0.154779 -0.3518 -0.816274 0.458187 +-0.00504611 -0.0809665 0.153393 -0.425637 -0.788358 0.444211 +-0.0114734 -0.0779688 0.151995 -0.493218 -0.753111 0.435386 +-0.0174968 -0.0746624 0.150583 -0.558732 -0.717454 0.416026 +-0.0228833 -0.0708642 0.14913 -0.60749 -0.686502 0.39959 +-0.0278538 -0.0667311 0.147658 -0.650693 -0.653985 0.385878 +-0.0324124 -0.0622709 0.146156 -0.688566 -0.624991 0.367779 +-0.0367711 -0.0576615 0.144651 -0.714106 -0.606149 0.350194 +-0.0412134 -0.0531182 0.143154 -0.740869 -0.574817 0.347417 +-0.0449683 -0.0480169 0.141612 -0.767888 -0.547507 0.332542 +-0.0482488 -0.0425219 0.140037 -0.805792 -0.508952 0.302767 +-0.0491872 -0.0350917 0.138321 -0.832187 -0.47269 0.289878 +0.882354 -0.697003 0.382598 -0.0972559 -0.995085 0.0186517 +0.862241 -0.698489 0.38061 -0.136069 -0.990561 -0.0165564 +0.846418 -0.69806 0.378698 -0.0925972 -0.995436 0.0231053 +0.832097 -0.696969 0.37682 -0.137347 -0.990462 -0.0110018 +0.818128 -0.695759 0.374945 -0.134183 -0.987845 -0.0784708 +0.80624 -0.693618 0.373117 -0.190376 -0.97455 -0.118363 +0.797002 -0.690257 0.371321 -0.180676 -0.972194 -0.148987 +0.788349 -0.686632 0.369545 -0.209946 -0.917071 -0.338977 +0.779456 -0.683154 0.367767 -0.235814 -0.851828 -0.467741 +0.774787 -0.677668 0.366031 -0.252335 -0.738157 -0.625662 +0.771384 -0.671585 0.364314 -0.202969 -0.537521 -0.81846 +0.776532 -0.661366 0.362686 -0.194313 -0.437297 -0.878075 +0.800891 -0.641816 0.361228 -0.105084 -0.371619 -0.922418 +0.799251 -0.634791 0.359513 -0.0963255 -0.569439 -0.816371 +0.789717 -0.631612 0.357724 -0.0503292 -0.640012 -0.766715 +0.781597 -0.627774 0.355954 -0.0557243 -0.721917 -0.689733 +0.771145 -0.625095 0.354175 0.00825683 -0.796354 -0.604775 +0.757475 -0.624037 0.352372 -0.02914 -0.828563 -0.559137 +0.744471 -0.622692 0.350583 -0.114865 -0.774893 -0.621569 +0.727492 -0.623367 0.34878 -0.202305 -0.727661 -0.655426 +0.710986 -0.623862 0.346998 -0.269501 -0.653721 -0.707121 +0.701242 -0.621003 0.345257 -0.281559 -0.630726 -0.723125 +0.696231 -0.615784 0.343544 -0.321208 -0.55471 -0.767543 +0.694518 -0.608899 0.341846 -0.365835 -0.485875 -0.793783 +0.696342 -0.600201 0.34016 -0.389125 -0.446206 -0.805905 +0.698169 -0.591483 0.338476 -0.396257 -0.336736 -0.85416 +0.700092 -0.582689 0.336782 -0.425324 -0.202601 -0.882073 +0.70699 -0.571302 0.3351 -0.424528 -0.0442279 -0.904335 +0.428038 -0.612124 0.311942 0.02212 -0.697623 -0.716124 +0.410836 -0.61408 0.310393 0.0180539 -0.728649 -0.684649 +0.396371 -0.614583 0.308844 0.0183893 -0.745923 -0.665778 +0.382617 -0.614754 0.307304 0.00362576 -0.757233 -0.653134 +0.372337 -0.61303 0.305748 -0.0113885 -0.754971 -0.655659 +0.363573 -0.610508 0.304189 -0.0313632 -0.755036 -0.654933 +0.354951 -0.607914 0.302633 -0.0461387 -0.742931 -0.667776 +0.346498 -0.605261 0.301087 -0.0714667 -0.733238 -0.676205 +0.336527 -0.603476 0.299553 -0.108626 -0.711038 -0.694713 +0.328154 -0.600825 0.298014 -0.138793 -0.695583 -0.704913 +0.320451 -0.597806 0.296473 -0.169842 -0.67168 -0.721111 +0.3132 -0.594554 0.294933 -0.197803 -0.647196 -0.736214 +0.305534 -0.591565 0.293403 -0.248145 -0.608485 -0.753771 +0.29875 -0.588078 0.291865 -0.289378 -0.5747 -0.765494 +0.243661 -0.612466 0.290848 -0.060447 -0.51992 -0.852075 +0.231744 -0.612089 0.289398 -0.212278 -0.522623 -0.825714 +0.22477 -0.608884 0.287894 -0.255012 -0.456198 -0.852557 +0.220225 -0.604274 0.286372 -0.338573 -0.415439 -0.844262 +0.217686 -0.598497 0.284821 -0.357169 -0.334844 -0.871958 +0.220188 -0.589745 0.283205 -0.379139 -0.245575 -0.892158 +0.296874 -0.537197 0.280572 -0.591476 -0.0838714 -0.80195 +0.300303 -0.527678 0.278898 -0.594936 -0.0692373 -0.800785 +0.303403 -0.518326 0.277219 -0.567445 -0.165141 -0.806681 +0.306997 -0.508654 0.275524 -0.584845 -0.299644 -0.753771 +0.308563 -0.500158 0.273853 -0.563352 -0.42215 -0.710229 +0.309246 -0.492176 0.272192 -0.518105 -0.568345 -0.63918 +0.305445 -0.486887 0.27061 -0.480099 -0.690216 -0.541393 +0.300309 -0.482399 0.269041 -0.432636 -0.77017 -0.468684 +0.293314 -0.479059 0.267511 -0.410378 -0.817931 -0.403213 +0.285079 -0.476487 0.266004 -0.376464 -0.860949 -0.342115 +0.27701 -0.47384 0.264501 -0.356652 -0.883587 -0.30344 +0.269109 -0.471105 0.263 -0.335476 -0.902846 -0.268938 +0.26137 -0.4683 0.261498 -0.346494 -0.903804 -0.251161 +0.25382 -0.465384 0.260002 -0.359469 -0.902631 -0.236728 +0.246824 -0.462158 0.258491 -0.382136 -0.894027 -0.233859 +0.239747 -0.458986 0.256993 -0.411811 -0.880446 -0.235002 +0.232683 -0.455835 0.255494 -0.451983 -0.858432 -0.242507 +0.226543 -0.452111 0.253975 -0.487448 -0.835027 -0.255195 +0.220648 -0.44825 0.25246 -0.51712 -0.814274 -0.263715 +0.215154 -0.444147 0.250935 -0.544445 -0.794216 -0.269815 +0.210091 -0.439778 0.2494 -0.562028 -0.781336 -0.271367 +0.205475 -0.435126 0.247863 -0.575181 -0.771479 -0.272008 +0.201475 -0.430088 0.246306 -0.579037 -0.769263 -0.270096 +0.196758 -0.425516 0.24477 -0.579854 -0.771522 -0.261767 +0.191777 -0.421124 0.243238 -0.579521 -0.775047 -0.251909 +0.18531 -0.417702 0.241752 -0.580736 -0.778118 -0.239328 +0.179013 -0.414182 0.240266 -0.586148 -0.777474 -0.227958 +0.172894 -0.410564 0.238774 -0.596473 -0.772518 -0.217801 +0.167518 -0.406464 0.237266 -0.615933 -0.758564 -0.212625 +0.162529 -0.402129 0.235746 -0.640892 -0.735438 -0.219976 +0.158272 -0.397309 0.23421 -0.672404 -0.699774 -0.241223 +0.153887 -0.392585 0.232676 -0.700868 -0.661268 -0.267412 +0.149573 -0.387817 0.231147 -0.723384 -0.627278 -0.288513 +0.145776 -0.382707 0.229598 -0.745331 -0.583685 -0.322173 +0.14251 -0.377248 0.228034 -0.763737 -0.537418 -0.357611 +0.140064 -0.371232 0.226442 -0.776224 -0.497683 -0.387026 +0.138245 -0.364792 0.224831 -0.786968 -0.458667 -0.412682 +0.136671 -0.358175 0.223208 -0.797646 -0.425204 -0.427741 +0.134893 -0.351689 0.221597 -0.809072 -0.390215 -0.439472 +0.133078 -0.345228 0.219982 -0.821441 -0.366656 -0.436803 +0.13103 -0.338909 0.218371 -0.836658 -0.345151 -0.425292 +0.129387 -0.332308 0.216746 -0.848153 -0.330703 -0.41385 +0.128028 -0.325508 0.215108 -0.859035 -0.320437 -0.399225 +0.127502 -0.318112 0.213436 -0.872658 -0.308149 -0.378831 +0.126506 -0.311035 0.211782 -0.885599 -0.290304 -0.362544 +0.1251 -0.304229 0.210137 -0.898714 -0.265145 -0.349304 +0.123008 -0.297895 0.208519 -0.910606 -0.237541 -0.338192 +0.121055 -0.291457 0.206896 -0.920594 -0.206255 -0.331613 +0.119154 -0.28497 0.205267 -0.927767 -0.174251 -0.329978 +0.117876 -0.278042 0.203614 -0.935873 -0.13149 -0.326883 +0.117014 -0.270809 0.201934 -0.938674 -0.0882308 -0.333329 +0.117107 -0.262876 0.200224 -0.940261 -0.0429244 -0.337739 +0.117961 -0.254393 0.198477 -0.938494 -0.00317355 -0.34528 +0.11945 -0.245426 0.196696 -0.933942 0.0352842 -0.355678 +0.121051 -0.236356 0.194902 -0.931561 0.0654026 -0.357653 +0.122376 -0.227456 0.193115 -0.930154 0.0906147 -0.355814 +0.123987 -0.218329 0.191315 -0.928335 0.119484 -0.35202 +0.125906 -0.208952 0.189494 -0.925199 0.144764 -0.350785 +0.128745 -0.198864 0.187627 -0.922207 0.18725 -0.338335 +0.132194 -0.188311 0.185722 -0.913584 0.247704 -0.322502 +0.137178 -0.176591 0.183745 -0.912555 0.296868 -0.281269 +0.143163 -0.164087 0.181712 -0.929176 0.309494 -0.2021 +0.150635 -0.150439 0.1796 -0.960966 0.271261 -0.0544286 +0.15629 -0.138078 0.177556 -0.969161 0.230764 0.0864614 +0.160856 -0.126485 0.175563 -0.953714 0.174943 0.244588 +0.16145 -0.117826 0.173743 -0.921407 0.117132 0.370523 +0.160567 -0.110242 0.171995 -0.866195 0.0441489 0.497752 +0.159088 -0.103102 0.170267 -0.84028 0.00244788 0.542148 +0.157092 -0.0963485 0.168567 -0.785461 -0.0329152 0.618036 +0.155008 -0.0896375 0.166869 -0.704768 -0.0849649 0.704331 +0.151776 -0.0838029 0.165226 -0.666909 -0.093548 0.739243 +0.148212 -0.0782235 0.163606 -0.611184 -0.141066 0.778816 +0.144091 -0.0730627 0.162009 -0.549919 -0.201618 0.810518 +0.13954 -0.0682417 0.160438 -0.509992 -0.224658 0.830324 +0.134825 -0.0635576 0.158877 -0.46725 -0.260121 0.844993 +0.128707 -0.0599562 0.157389 -0.401723 -0.313288 0.860506 +0.12084 -0.0577345 0.156002 -0.31472 -0.431856 0.845252 +0.110667 -0.0573319 0.154742 -0.188602 -0.535309 0.823332 +0.0904946 -0.0647919 0.154049 0.101306 -0.752639 0.650593 +0.0634157 -0.0777531 0.153764 0.254998 -0.85243 0.456444 +0.0428143 -0.0857426 0.153132 0.125808 -0.891343 0.435524 +0.0277733 -0.0894385 0.152214 -0.0350118 -0.906992 0.419691 +0.0173818 -0.0895034 0.151035 -0.154104 -0.900133 0.407449 +0.0079706 -0.0888232 0.149801 -0.269181 -0.876767 0.398524 +6.18115e-05 -0.0869811 0.148493 -0.361886 -0.847823 0.387601 +-0.00674018 -0.0842695 0.147127 -0.43489 -0.817793 0.376943 +-0.0129746 -0.0811263 0.145728 -0.513536 -0.777372 0.36328 +-0.0185679 -0.0774795 0.144289 -0.56581 -0.743407 0.356663 +-0.023608 -0.0734066 0.14282 -0.619791 -0.705608 0.343479 +-0.0284195 -0.0691426 0.141339 -0.662973 -0.676268 0.321135 +-0.032776 -0.0645215 0.139832 -0.696318 -0.64816 0.30827 +-0.0373199 -0.0600576 0.138346 -0.727845 -0.618987 0.295118 +-0.041529 -0.0553306 0.136827 -0.757201 -0.591997 0.27602 +-0.0454439 -0.0503606 0.135302 -0.785266 -0.56213 0.259551 +-0.0487818 -0.0449266 0.133735 -0.82633 -0.510088 0.238725 +-0.0501172 -0.0378196 0.132034 -0.851492 -0.472745 0.22688 +0.89966 -0.698827 0.37739 -0.078337 -0.994114 -0.0748487 +0.878486 -0.700737 0.375405 -0.09464 -0.989924 -0.105325 +0.86121 -0.700915 0.37349 -0.142434 -0.989745 -0.0110141 +0.847787 -0.699364 0.371631 -0.111529 -0.992945 -0.0403121 +0.835896 -0.697143 0.369792 -0.131985 -0.984967 -0.11145 +0.822351 -0.695726 0.367954 -0.149853 -0.978489 -0.141794 +0.811543 -0.693059 0.36614 -0.16387 -0.955631 -0.244779 +0.804261 -0.688764 0.364378 -0.205855 -0.896672 -0.391925 +0.798296 -0.683854 0.362627 -0.218494 -0.88285 -0.415737 +0.799347 -0.675621 0.360949 -0.162454 -0.522577 -0.836973 +0.811679 -0.661974 0.359365 -0.115483 -0.365726 -0.92353 +0.83206 -0.644401 0.357834 -0.119188 -0.344332 -0.931253 +0.828162 -0.638425 0.356083 -0.100858 -0.517019 -0.850012 +0.823317 -0.632913 0.354333 -0.0868815 -0.61605 -0.782901 +0.814803 -0.629184 0.352553 -0.0993314 -0.722487 -0.684213 +0.805089 -0.626071 0.350772 -0.0311735 -0.795531 -0.605111 +0.79418 -0.623558 0.348984 -0.0495559 -0.808645 -0.586208 +0.781968 -0.621722 0.347198 0.0136634 -0.904177 -0.426942 +0.766372 -0.621587 0.345398 -0.0497865 -0.872883 -0.485385 +0.747035 -0.623361 0.343601 -0.11262 -0.791712 -0.600425 +0.734304 -0.621913 0.341836 -0.217281 -0.750437 -0.624207 +0.715619 -0.623477 0.340064 -0.275811 -0.675564 -0.683769 +0.708326 -0.619381 0.338339 -0.31598 -0.59545 -0.738644 +0.707381 -0.612086 0.336638 -0.340133 -0.535446 -0.773051 +0.708237 -0.60388 0.334939 -0.370327 -0.461586 -0.806101 +0.710524 -0.594926 0.333241 -0.367466 -0.398974 -0.840112 +0.712633 -0.58603 0.33154 -0.414728 -0.240517 -0.877584 +0.71715 -0.575884 0.329833 -0.445089 -0.0525179 -0.893945 +0.434604 -0.602913 0.30372 0.0677544 -0.676423 -0.73339 +0.416164 -0.605551 0.302204 0.0676605 -0.701013 -0.709932 +0.401954 -0.605918 0.300676 0.052694 -0.718939 -0.693074 +0.38626 -0.607149 0.299172 0.0288587 -0.724801 -0.688354 +0.375806 -0.605527 0.297632 -0.000889248 -0.73007 -0.683372 +0.366172 -0.603483 0.296091 -0.0167753 -0.715133 -0.698787 +0.356718 -0.601353 0.294553 -0.0452641 -0.716258 -0.696367 +0.346783 -0.599535 0.293031 -0.0791774 -0.694744 -0.714886 +0.337888 -0.597149 0.291499 -0.114163 -0.675503 -0.728465 +0.331044 -0.593619 0.289954 -0.143355 -0.64821 -0.747846 +0.325033 -0.58964 0.288403 -0.172474 -0.60185 -0.779762 +0.319012 -0.585676 0.286854 -0.212135 -0.568269 -0.795028 +0.313312 -0.581543 0.285302 -0.280217 -0.512216 -0.811859 +0.309128 -0.576539 0.283737 -0.309152 -0.455492 -0.834838 +0.305691 -0.571106 0.282161 -0.371672 -0.409056 -0.833387 +0.304729 -0.564242 0.280551 -0.395334 -0.327342 -0.85823 +0.304136 -0.557156 0.27893 -0.445643 -0.266191 -0.854719 +0.304386 -0.549553 0.277295 -0.46655 -0.183597 -0.86523 +0.305286 -0.54156 0.275651 -0.493288 -0.121874 -0.861286 +0.305795 -0.533771 0.274011 -0.492451 -0.0761609 -0.867002 +0.308051 -0.524942 0.272331 -0.526496 -0.109107 -0.843147 +0.310848 -0.515752 0.27064 -0.538393 -0.225292 -0.812021 +0.315341 -0.505534 0.268922 -0.517569 -0.334286 -0.787638 +0.31637 -0.497352 0.267244 -0.491515 -0.519883 -0.698667 +0.315626 -0.490209 0.265605 -0.444317 -0.647713 -0.618909 +0.310721 -0.485563 0.264028 -0.43419 -0.730961 -0.526474 +0.305065 -0.481384 0.262476 -0.393173 -0.802915 -0.448044 +0.297462 -0.478396 0.26096 -0.38025 -0.833728 -0.400386 +0.289162 -0.475861 0.259469 -0.360874 -0.865049 -0.348514 +0.280685 -0.473443 0.257976 -0.333273 -0.892542 -0.303808 +0.272404 -0.470941 0.256488 -0.322502 -0.906418 -0.272767 +0.264658 -0.468125 0.254997 -0.32564 -0.9105 -0.254851 +0.257166 -0.465172 0.253507 -0.3441 -0.905724 -0.247508 +0.249895 -0.462104 0.252007 -0.371395 -0.893796 -0.251386 +0.242747 -0.458976 0.250515 -0.399002 -0.879293 -0.260082 +0.235719 -0.455781 0.249024 -0.440438 -0.857101 -0.267199 +0.229526 -0.452086 0.247514 -0.475481 -0.834049 -0.279789 +0.223725 -0.448161 0.245993 -0.505083 -0.811955 -0.29261 +0.218297 -0.444007 0.244469 -0.52958 -0.79361 -0.299551 +0.213613 -0.439386 0.242933 -0.547614 -0.779732 -0.303541 +0.209166 -0.434633 0.241386 -0.558753 -0.772528 -0.301653 +0.204927 -0.429741 0.239834 -0.562775 -0.771594 -0.296525 +0.200082 -0.425237 0.238304 -0.562331 -0.77496 -0.288482 +0.194809 -0.42103 0.236789 -0.562671 -0.778248 -0.278804 +0.188207 -0.41768 0.235308 -0.566245 -0.780294 -0.265537 +0.181689 -0.414305 0.233827 -0.570545 -0.779794 -0.25768 +0.17526 -0.410874 0.232352 -0.581337 -0.774803 -0.248451 +0.170032 -0.406682 0.230843 -0.598627 -0.758651 -0.257089 +0.165209 -0.402226 0.229325 -0.625 -0.732346 -0.270267 +0.160887 -0.397448 0.227784 -0.660465 -0.690185 -0.295689 +0.156589 -0.392661 0.226253 -0.687989 -0.653099 -0.316441 +0.15248 -0.387749 0.224715 -0.71479 -0.607034 -0.347254 +0.148756 -0.382587 0.223163 -0.734475 -0.564678 -0.376413 +0.145669 -0.377 0.22159 -0.75217 -0.519372 -0.405578 +0.143284 -0.370938 0.220002 -0.763507 -0.481269 -0.430626 +0.141816 -0.364249 0.218371 -0.772448 -0.451374 -0.44675 +0.140578 -0.357401 0.216732 -0.781753 -0.42065 -0.460344 +0.139423 -0.350483 0.215092 -0.793293 -0.403568 -0.455873 +0.138102 -0.343672 0.213447 -0.806814 -0.383802 -0.449164 +0.136471 -0.337062 0.211822 -0.821202 -0.368395 -0.435787 +0.134817 -0.330462 0.210187 -0.838025 -0.355187 -0.414193 +0.133069 -0.323907 0.208564 -0.850938 -0.343179 -0.397658 +0.131347 -0.317337 0.206931 -0.863871 -0.326739 -0.383367 +0.129504 -0.310845 0.205298 -0.876204 -0.307072 -0.371448 +0.127226 -0.304641 0.203685 -0.887723 -0.285585 -0.361097 +0.124956 -0.298424 0.202071 -0.900343 -0.252515 -0.354427 +0.122912 -0.292052 0.200448 -0.908845 -0.222337 -0.352941 +0.12103 -0.285556 0.19881 -0.917342 -0.186866 -0.351517 +0.119835 -0.27856 0.197149 -0.923771 -0.138761 -0.356921 +0.118974 -0.271327 0.19547 -0.927529 -0.092758 -0.362058 +0.119307 -0.263225 0.193734 -0.927882 -0.0467507 -0.36993 +0.120386 -0.254573 0.191966 -0.925115 -0.00422073 -0.379665 +0.122437 -0.245196 0.190149 -0.92197 0.0328492 -0.385865 +0.124134 -0.236051 0.188346 -0.920365 0.0591194 -0.386567 +0.125239 -0.227314 0.186561 -0.91824 0.0824689 -0.387343 +0.126061 -0.218751 0.184777 -0.917155 0.106651 -0.383993 +0.127842 -0.209468 0.182957 -0.916316 0.131132 -0.378378 +0.130862 -0.199258 0.181062 -0.916913 0.165181 -0.363298 +0.13444 -0.188612 0.179139 -0.91547 0.220155 -0.33682 +0.138867 -0.1773 0.177167 -0.925716 0.260414 -0.27429 +0.145483 -0.164337 0.175085 -0.951738 0.254205 -0.171972 +0.152953 -0.150689 0.17295 -0.977554 0.210122 -0.0153528 +0.156597 -0.139821 0.170987 -0.977829 0.171849 0.119665 +0.158558 -0.130182 0.1691 -0.954467 0.0940668 0.283098 +0.157364 -0.122857 0.16737 -0.919372 0.0491614 0.390305 +0.155548 -0.115994 0.165661 -0.878737 -0.023347 0.476734 +0.153513 -0.109291 0.163961 -0.826188 -0.0623937 0.559929 +0.15094 -0.102984 0.162291 -0.774968 -0.10743 0.622803 +0.148268 -0.0967466 0.160628 -0.734499 -0.159346 0.659636 +0.145287 -0.0907419 0.158975 -0.674493 -0.198125 0.7112 +0.141722 -0.0851715 0.157356 -0.622406 -0.233005 0.747207 +0.137563 -0.0800673 0.155769 -0.571549 -0.255648 0.779728 +0.132962 -0.0752941 0.154206 -0.530349 -0.279355 0.800432 +0.128186 -0.0706717 0.152654 -0.497178 -0.327866 0.803316 +0.121784 -0.0673102 0.151196 -0.417144 -0.400369 0.815902 +0.113761 -0.0652252 0.149828 -0.306803 -0.534993 0.787181 +0.101922 -0.0661384 0.148686 -0.111362 -0.70364 0.701777 +0.0832739 -0.0724216 0.147948 0.120262 -0.838447 0.53155 +0.0566535 -0.0850293 0.147684 0.210705 -0.901922 0.377016 +0.0411662 -0.0890095 0.1468 0.104326 -0.929481 0.353813 +0.0271021 -0.0919294 0.145842 -0.0491632 -0.939129 0.340031 +0.0164365 -0.0922095 0.144697 -0.162206 -0.92678 0.338776 +0.00709743 -0.0914716 0.14348 -0.272269 -0.905716 0.324886 +-0.000930205 -0.0897261 0.142183 -0.370708 -0.87505 0.31123 +-0.00761117 -0.0869225 0.140814 -0.449427 -0.837471 0.3109 +-0.0135999 -0.083584 0.139406 -0.503751 -0.81122 0.296911 +-0.0188259 -0.0796399 0.137956 -0.562514 -0.774231 0.290076 +-0.0237325 -0.075452 0.136478 -0.625415 -0.729446 0.277066 +-0.0284109 -0.0710874 0.134993 -0.668165 -0.698148 0.257187 +-0.0328108 -0.0665106 0.133493 -0.702551 -0.670514 0.238396 +-0.0373142 -0.0620119 0.132002 -0.734357 -0.639911 0.226353 +-0.0419491 -0.0576308 0.130519 -0.77037 -0.601537 0.211382 +-0.0459618 -0.0527471 0.128997 -0.803846 -0.564656 0.187077 +-0.0493139 -0.0473216 0.127432 -0.831624 -0.528882 0.169362 +-0.050384 -0.0400093 0.125714 -0.855678 -0.492311 0.159515 +0.916715 -0.700825 0.372144 -0.240018 -0.566542 -0.788303 +0.893343 -0.703673 0.37016 -0.147896 -0.942404 -0.300004 +0.876681 -0.703521 0.36826 -0.0990926 -0.991015 -0.0898428 +0.861802 -0.70259 0.366393 -0.132296 -0.966321 -0.220727 +0.850222 -0.70018 0.36457 -0.13301 -0.980053 -0.147669 +0.842024 -0.696231 0.362783 -0.152661 -0.956758 -0.247607 +0.83062 -0.693801 0.360978 -0.142832 -0.94927 -0.280154 +0.825298 -0.68854 0.359227 -0.158124 -0.84637 -0.508581 +0.827992 -0.679513 0.357549 -0.224771 -0.497574 -0.837794 +0.842957 -0.664652 0.355956 -0.143576 -0.337335 -0.930373 +0.85869 -0.649355 0.354361 -0.137724 -0.268836 -0.953289 +0.858591 -0.64153 0.352627 -0.144118 -0.454811 -0.87885 +0.853254 -0.6362 0.35086 -0.124704 -0.542082 -0.831023 +0.846506 -0.631561 0.349089 -0.103298 -0.63102 -0.768858 +0.838315 -0.627621 0.347312 -0.0887673 -0.683733 -0.724315 +0.828696 -0.624402 0.34553 -0.0817116 -0.761899 -0.642522 +0.818035 -0.621716 0.343747 -0.0454882 -0.82417 -0.564513 +0.806306 -0.619581 0.341966 -0.0233541 -0.855147 -0.51786 +0.79232 -0.618586 0.34018 0.0210305 -0.927477 -0.37329 +0.776174 -0.618693 0.338403 -0.0254172 -0.907685 -0.418881 +0.752379 -0.622654 0.336608 -0.118687 -0.845538 -0.520557 +0.737948 -0.62203 0.33486 -0.202152 -0.773979 -0.600076 +0.72272 -0.621855 0.333115 -0.277783 -0.684323 -0.674196 +0.719467 -0.615714 0.331407 -0.333879 -0.621523 -0.708685 +0.719635 -0.607846 0.329694 -0.362233 -0.491314 -0.792084 +0.722117 -0.598793 0.32799 -0.421252 -0.40623 -0.810879 +0.724043 -0.589993 0.326273 -0.438569 -0.358673 -0.824021 +0.727412 -0.580433 0.324554 -0.456472 -0.140983 -0.878498 +0.736505 -0.567916 0.322819 -0.450638 0.0662002 -0.890249 +0.424684 -0.595233 0.293952 0.104958 -0.672194 -0.732898 +0.410404 -0.595629 0.292441 0.0898954 -0.682428 -0.725404 +0.39399 -0.59726 0.290964 0.0529216 -0.69295 -0.719041 +0.38192 -0.596529 0.28945 0.0241621 -0.690679 -0.722756 +0.371061 -0.595158 0.287941 -0.00700243 -0.686987 -0.726637 +0.360634 -0.59357 0.28642 -0.039171 -0.677834 -0.734171 +0.349753 -0.592275 0.284919 -0.0726101 -0.65714 -0.750264 +0.341269 -0.58966 0.283402 -0.112098 -0.627724 -0.770323 +0.33445 -0.586114 0.281857 -0.143392 -0.591429 -0.793504 +0.328161 -0.582277 0.280313 -0.181698 -0.538952 -0.822508 +0.322741 -0.577961 0.27876 -0.245388 -0.485139 -0.839301 +0.318799 -0.572802 0.277186 -0.262969 -0.441543 -0.857838 +0.31568 -0.567166 0.2756 -0.30275 -0.391244 -0.869063 +0.315148 -0.560034 0.273974 -0.373225 -0.299939 -0.877918 +0.314449 -0.552978 0.27235 -0.390696 -0.239432 -0.888836 +0.313552 -0.546033 0.270728 -0.424674 -0.167067 -0.889799 +0.314271 -0.538127 0.269071 -0.416559 -0.121802 -0.900913 +0.315576 -0.529856 0.267399 -0.479367 -0.100562 -0.871835 +0.318717 -0.520477 0.265693 -0.485642 -0.164501 -0.85854 +0.324358 -0.50959 0.263929 -0.502381 -0.308971 -0.807558 +0.329302 -0.499075 0.262174 -0.464998 -0.490659 -0.736906 +0.325706 -0.493625 0.260581 -0.432638 -0.605298 -0.668162 +0.322384 -0.48802 0.258975 -0.411195 -0.723226 -0.554854 +0.315719 -0.484422 0.257439 -0.390742 -0.778126 -0.491772 +0.309172 -0.480769 0.255908 -0.365455 -0.820933 -0.438763 +0.301783 -0.47764 0.254393 -0.354852 -0.851343 -0.386389 +0.292862 -0.475466 0.252916 -0.345136 -0.87205 -0.347003 +0.28414 -0.473195 0.251442 -0.319298 -0.899146 -0.299312 +0.275821 -0.470701 0.249969 -0.307655 -0.910361 -0.276753 +0.267923 -0.467969 0.248486 -0.311233 -0.912161 -0.266642 +0.260326 -0.46508 0.246999 -0.330834 -0.904477 -0.269205 +0.252903 -0.462092 0.245513 -0.359617 -0.891465 -0.275621 +0.245743 -0.45896 0.244025 -0.390895 -0.875698 -0.283468 +0.238773 -0.455729 0.242539 -0.427738 -0.855384 -0.292163 +0.232548 -0.452051 0.241038 -0.462826 -0.83223 -0.305263 +0.226677 -0.448157 0.239526 -0.494111 -0.809192 -0.317905 +0.2211 -0.444092 0.238009 -0.516056 -0.792791 -0.324298 +0.21649 -0.43942 0.236469 -0.531728 -0.780988 -0.327602 +0.212317 -0.434479 0.234919 -0.540856 -0.773116 -0.331313 +0.208789 -0.429127 0.233347 -0.542951 -0.773265 -0.327517 +0.204056 -0.424545 0.231815 -0.542835 -0.776254 -0.320563 +0.198554 -0.42047 0.230302 -0.543087 -0.778997 -0.313405 +0.191535 -0.41739 0.228839 -0.548436 -0.78101 -0.298734 +0.18477 -0.414163 0.227372 -0.555274 -0.77818 -0.293437 +0.17837 -0.410706 0.225899 -0.561129 -0.776245 -0.287364 +0.17304 -0.406566 0.224395 -0.580444 -0.757077 -0.299866 +0.168104 -0.402186 0.222884 -0.611467 -0.72434 -0.318496 +0.164026 -0.397238 0.221342 -0.647124 -0.678416 -0.347826 +0.159981 -0.392273 0.219798 -0.680145 -0.634566 -0.367052 +0.156607 -0.386869 0.218234 -0.70235 -0.588568 -0.400365 +0.152998 -0.381617 0.21668 -0.724406 -0.544679 -0.422564 +0.149971 -0.375986 0.215102 -0.743131 -0.50365 -0.440561 +0.147418 -0.370028 0.213514 -0.752824 -0.474885 -0.455785 +0.146092 -0.363234 0.211872 -0.765587 -0.442891 -0.466609 +0.145191 -0.356156 0.210218 -0.776331 -0.425636 -0.464914 +0.14454 -0.34889 0.20855 -0.787857 -0.412083 -0.457679 +0.143452 -0.341909 0.206894 -0.800306 -0.401849 -0.445004 +0.141366 -0.3356 0.205274 -0.814328 -0.391702 -0.4283 +0.13915 -0.329367 0.20366 -0.830422 -0.377932 -0.409348 +0.136901 -0.323154 0.202049 -0.845078 -0.361082 -0.394287 +0.134192 -0.31726 0.200446 -0.856437 -0.345498 -0.383597 +0.131616 -0.311266 0.19884 -0.867494 -0.323634 -0.377777 +0.128977 -0.30531 0.197238 -0.879791 -0.298402 -0.370033 +0.126601 -0.299165 0.19563 -0.890777 -0.265511 -0.368809 +0.124599 -0.292762 0.193995 -0.899281 -0.233094 -0.370084 +0.122912 -0.286121 0.19235 -0.906016 -0.192585 -0.376889 +0.122043 -0.278903 0.190665 -0.911429 -0.14377 -0.385525 +0.121508 -0.271427 0.188966 -0.916235 -0.0935398 -0.38957 +0.121863 -0.263313 0.18723 -0.915568 -0.0506381 -0.398962 +0.123575 -0.254208 0.185421 -0.913456 -0.00871428 -0.406845 +0.125841 -0.244678 0.183579 -0.9108 0.0322709 -0.411586 +0.127622 -0.235467 0.181761 -0.908343 0.056369 -0.414411 +0.128673 -0.226758 0.179962 -0.907031 0.0735228 -0.414598 +0.128923 -0.218607 0.1782 -0.907436 0.0943086 -0.409469 +0.13041 -0.209542 0.176379 -0.909676 0.118716 -0.39799 +0.133129 -0.199546 0.174485 -0.914537 0.143368 -0.378244 +0.136565 -0.189006 0.172558 -0.925038 0.179344 -0.334874 +0.141792 -0.177106 0.170529 -0.947337 0.204235 -0.246661 +0.147876 -0.164536 0.168451 -0.972414 0.184392 -0.142872 +0.152857 -0.152725 0.166414 -0.988656 0.147186 0.0299027 +0.155969 -0.142263 0.164468 -0.983222 0.0939696 0.156346 +0.155823 -0.13419 0.16268 -0.957947 0.0358249 0.284703 +0.154083 -0.12729 0.160968 -0.92065 -0.0417207 0.388153 +0.151665 -0.12089 0.15929 -0.875132 -0.0838787 0.476559 +0.148966 -0.114694 0.157634 -0.83026 -0.143622 0.538556 +0.146416 -0.108385 0.155957 -0.786016 -0.166732 0.595299 +0.143491 -0.102353 0.154311 -0.745743 -0.217765 0.629639 +0.140141 -0.0966437 0.152679 -0.695316 -0.2559 0.671604 +0.136503 -0.0911433 0.15107 -0.651824 -0.30526 0.69422 +0.131915 -0.0863783 0.149509 -0.612628 -0.358854 0.70421 +0.127178 -0.0817301 0.147962 -0.567036 -0.404584 0.717484 +0.122362 -0.0771578 0.146418 -0.51649 -0.437435 0.73613 +0.1159 -0.0738587 0.144968 -0.449239 -0.513715 0.730945 +0.10811 -0.0716016 0.143606 -0.300847 -0.624421 0.720825 +0.0961397 -0.0726325 0.142489 -0.0709078 -0.789966 0.60904 +0.0781707 -0.0783874 0.141749 0.0877023 -0.886093 0.455137 +0.0549417 -0.0883413 0.141332 0.194569 -0.926797 0.321235 +0.0402351 -0.0916988 0.140427 0.0987265 -0.953475 0.284852 +0.0268698 -0.0940645 0.139449 -0.0504788 -0.963013 0.264683 +0.0163906 -0.0941998 0.13831 -0.158048 -0.954738 0.251988 +0.00699545 -0.0935015 0.137105 -0.264969 -0.932117 0.246886 +-0.00100626 -0.0917371 0.135822 -0.364003 -0.896708 0.251829 +-0.00729041 -0.0886108 0.134437 -0.431329 -0.870808 0.235901 +-0.0130543 -0.0850918 0.133014 -0.50246 -0.832319 0.234051 +-0.0180966 -0.0810004 0.131555 -0.557532 -0.802187 0.213668 +-0.0230259 -0.0768322 0.130086 -0.623238 -0.754883 0.204269 +-0.0279237 -0.0726427 0.128624 -0.677718 -0.711889 0.184153 +-0.0328355 -0.068473 0.127157 -0.710587 -0.681069 0.176663 +-0.0376302 -0.0642225 0.12569 -0.739707 -0.655659 0.151473 +-0.0424879 -0.0600282 0.124222 -0.775815 -0.616042 0.136395 +-0.0459703 -0.0547069 0.12267 -0.809144 -0.577945 0.106141 +-0.0490883 -0.0490861 0.121086 -0.841155 -0.533 0.0914834 +-0.0498943 -0.0415542 0.119342 -0.872821 -0.481863 0.077408 +0.931603 -0.703876 0.366843 -0.209567 -0.705504 -0.677014 +0.906866 -0.707273 0.364864 -0.107989 -0.956689 -0.27034 +0.893606 -0.705507 0.363016 -0.151581 -0.943603 -0.294342 +0.880536 -0.703705 0.361178 -0.132235 -0.976386 -0.170835 +0.866483 -0.702384 0.359332 -0.157938 -0.958926 -0.235619 +0.861436 -0.696943 0.357581 -0.152985 -0.868387 -0.471699 +0.856035 -0.691669 0.355821 -0.16018 -0.716061 -0.67941 +0.85661 -0.683614 0.354109 -0.193046 -0.43697 -0.878516 +0.869032 -0.669989 0.352476 -0.13176 -0.332649 -0.933801 +0.885433 -0.654426 0.350848 -0.15716 -0.252465 -0.954758 +0.885649 -0.646434 0.349111 -0.131129 -0.381982 -0.91482 +0.882041 -0.640236 0.34735 -0.143666 -0.446456 -0.883198 +0.876883 -0.634778 0.345576 -0.142155 -0.535531 -0.832466 +0.869932 -0.630184 0.343797 -0.122133 -0.636978 -0.761146 +0.861846 -0.626153 0.342017 -0.104187 -0.676846 -0.728714 +0.852545 -0.622728 0.340238 -0.0910424 -0.731586 -0.675643 +0.841391 -0.620221 0.338453 -0.048496 -0.795349 -0.604208 +0.829671 -0.618015 0.336671 -0.0527382 -0.831665 -0.552767 +0.816453 -0.616578 0.334897 -0.0099581 -0.890464 -0.454945 +0.802098 -0.615742 0.333131 0.0234602 -0.92147 -0.38774 +0.786462 -0.615583 0.331369 -0.020995 -0.903563 -0.427941 +0.761019 -0.620323 0.329608 -0.1206 -0.864186 -0.488507 +0.742707 -0.62161 0.327873 -0.191245 -0.797149 -0.572696 +0.730655 -0.619831 0.326155 -0.284704 -0.681704 -0.673962 +0.73021 -0.612269 0.324437 -0.37389 -0.550943 -0.746102 +0.731402 -0.603861 0.322712 -0.39572 -0.511359 -0.762836 +0.734693 -0.594378 0.320989 -0.422356 -0.395705 -0.815496 +0.738349 -0.584681 0.319255 -0.448342 -0.219099 -0.866594 +0.743656 -0.574105 0.317504 -0.470374 0.00663367 -0.882442 +0.41868 -0.585407 0.284152 0.102423 -0.63229 -0.767931 +0.403622 -0.586282 0.282683 0.0791727 -0.62285 -0.778325 +0.39058 -0.586078 0.281203 0.0505042 -0.6125 -0.788855 +0.381301 -0.583799 0.279679 0.0360193 -0.602515 -0.797294 +0.372394 -0.581345 0.278154 0.0101992 -0.587105 -0.809447 +0.360688 -0.580499 0.276676 -0.0522555 -0.591166 -0.804856 +0.348489 -0.579962 0.275211 -0.101473 -0.563146 -0.820103 +0.339436 -0.577674 0.273711 -0.148233 -0.52345 -0.839063 +0.333448 -0.573663 0.272162 -0.182743 -0.471722 -0.862603 +0.329212 -0.568647 0.27059 -0.218659 -0.407471 -0.886655 +0.326445 -0.562789 0.268991 -0.281076 -0.361719 -0.888907 +0.326098 -0.555525 0.267358 -0.297711 -0.286144 -0.910764 +0.327311 -0.547339 0.26568 -0.331997 -0.214631 -0.918538 +0.328516 -0.539139 0.264008 -0.339757 -0.144895 -0.929285 +0.329503 -0.531046 0.262332 -0.369334 -0.126722 -0.920617 +0.333007 -0.521448 0.260608 -0.377921 -0.232387 -0.896199 +0.340553 -0.509436 0.25879 -0.374316 -0.382776 -0.844613 +0.342451 -0.500718 0.257074 -0.380301 -0.525718 -0.760916 +0.340444 -0.494308 0.255438 -0.35063 -0.648182 -0.675958 +0.334928 -0.48998 0.25388 -0.335378 -0.724787 -0.601836 +0.328148 -0.486426 0.252351 -0.363245 -0.748791 -0.554406 +0.320779 -0.483239 0.250831 -0.333905 -0.832977 -0.441204 +0.313634 -0.479943 0.249314 -0.337215 -0.848684 -0.407457 +0.305932 -0.476993 0.247821 -0.315708 -0.883613 -0.345773 +0.297109 -0.474746 0.246352 -0.317515 -0.891975 -0.321813 +0.288007 -0.472695 0.244895 -0.306005 -0.904433 -0.297257 +0.27949 -0.470313 0.24343 -0.298201 -0.911141 -0.284428 +0.271685 -0.467514 0.241947 -0.303806 -0.909492 -0.28377 +0.263968 -0.464687 0.240472 -0.321772 -0.902172 -0.287314 +0.256162 -0.46193 0.239006 -0.348689 -0.888689 -0.297739 +0.249044 -0.458761 0.237521 -0.381289 -0.870934 -0.309989 +0.242301 -0.455381 0.236035 -0.413861 -0.850909 -0.323534 +0.235936 -0.451778 0.23454 -0.448344 -0.828704 -0.335018 +0.229871 -0.448001 0.233039 -0.478624 -0.807114 -0.345669 +0.224062 -0.444077 0.231533 -0.501808 -0.791304 -0.349325 +0.219474 -0.439382 0.229989 -0.518031 -0.77867 -0.354002 +0.21533 -0.434414 0.228435 -0.524004 -0.774237 -0.354933 +0.211894 -0.428998 0.226864 -0.524274 -0.773052 -0.357114 +0.207586 -0.424139 0.225315 -0.522917 -0.775483 -0.353817 +0.20252 -0.419778 0.223797 -0.521784 -0.777734 -0.350531 +0.195058 -0.416974 0.222358 -0.530399 -0.777474 -0.337953 +0.188122 -0.413842 0.220899 -0.54096 -0.773064 -0.331265 +0.181662 -0.410417 0.219435 -0.548744 -0.767855 -0.330575 +0.176385 -0.406247 0.217929 -0.565614 -0.747788 -0.3477 +0.171533 -0.401787 0.216415 -0.593729 -0.713917 -0.371227 +0.167323 -0.396929 0.214882 -0.63253 -0.668342 -0.391442 +0.164289 -0.391285 0.213301 -0.664379 -0.618915 -0.41898 +0.161291 -0.385626 0.21172 -0.690733 -0.573316 -0.440678 +0.158327 -0.379937 0.210143 -0.71536 -0.530172 -0.455168 +0.155712 -0.374012 0.208542 -0.73635 -0.494667 -0.461621 +0.152428 -0.368535 0.206978 -0.750003 -0.467473 -0.467938 +0.151203 -0.361664 0.205327 -0.762927 -0.446918 -0.467125 +0.150216 -0.354632 0.203668 -0.774958 -0.435392 -0.45812 +0.149278 -0.347551 0.202002 -0.786958 -0.425968 -0.446374 +0.147385 -0.341106 0.200375 -0.799458 -0.418945 -0.430524 +0.144945 -0.33503 0.198762 -0.812325 -0.408874 -0.415874 +0.142016 -0.329284 0.197175 -0.825838 -0.394872 -0.402576 +0.139314 -0.323385 0.195572 -0.839548 -0.376994 -0.391198 +0.136203 -0.317761 0.19399 -0.851112 -0.358113 -0.38388 +0.133463 -0.311876 0.192395 -0.861646 -0.333093 -0.382903 +0.130779 -0.30595 0.190787 -0.872374 -0.303933 -0.382871 +0.128617 -0.299658 0.189165 -0.882007 -0.270504 -0.385866 +0.126735 -0.293163 0.187527 -0.888353 -0.239422 -0.391799 +0.125308 -0.286339 0.185862 -0.896607 -0.188872 -0.400527 +0.124966 -0.278739 0.184151 -0.9012 -0.143826 -0.408843 +0.124906 -0.270924 0.182423 -0.905065 -0.0922542 -0.415147 +0.125491 -0.262639 0.180659 -0.903609 -0.0475722 -0.42571 +0.127203 -0.253535 0.178843 -0.901613 -0.00833452 -0.432463 +0.129287 -0.244127 0.176998 -0.896977 0.0294807 -0.441094 +0.131051 -0.234932 0.175166 -0.895378 0.0532282 -0.442115 +0.132398 -0.226 0.173342 -0.897641 0.0637106 -0.436098 +0.132485 -0.217959 0.171582 -0.902369 0.079472 -0.423573 +0.133255 -0.209414 0.169781 -0.907619 0.106758 -0.405994 +0.135474 -0.199778 0.167902 -0.918588 0.113591 -0.37854 +0.13927 -0.188972 0.165938 -0.936709 0.148812 -0.316908 +0.144394 -0.17715 0.163894 -0.965218 0.151507 -0.213075 +0.149789 -0.16508 0.161832 -0.986829 0.139711 -0.0815431 +0.153182 -0.154454 0.159859 -0.993363 0.0997632 0.0572463 +0.15331 -0.146205 0.158055 -0.982039 0.0376026 0.184897 +0.152865 -0.138369 0.15628 -0.957778 -0.0446869 0.284013 +0.150898 -0.13165 0.154582 -0.925512 -0.0936204 0.366962 +0.148385 -0.125324 0.152912 -0.877839 -0.142803 0.457172 +0.145489 -0.119285 0.15126 -0.834773 -0.190033 0.51676 +0.142248 -0.113508 0.14963 -0.801757 -0.222233 0.554797 +0.139009 -0.107731 0.147999 -0.751026 -0.276183 0.599735 +0.135735 -0.101975 0.146365 -0.715253 -0.308986 0.62685 +0.132045 -0.0965314 0.144763 -0.671481 -0.3462 0.655178 +0.127677 -0.0916063 0.143192 -0.637582 -0.379345 0.670513 +0.123037 -0.0868996 0.14164 -0.57211 -0.447785 0.687152 +0.118047 -0.082476 0.140114 -0.543684 -0.480399 0.688204 +0.111546 -0.0792135 0.138679 -0.448477 -0.57672 0.682835 +0.104292 -0.0765591 0.137294 -0.344202 -0.688835 0.63799 +0.0928208 -0.0772026 0.13617 -0.129669 -0.83057 0.541609 +0.0760572 -0.0820145 0.135388 0.0623275 -0.919864 0.387258 +0.054344 -0.0907804 0.134924 0.166098 -0.952632 0.254761 +0.0403743 -0.0935593 0.133997 0.0814876 -0.972982 0.216028 +0.0278943 -0.0952142 0.132987 -0.0395566 -0.978634 0.201773 +0.0173341 -0.0954058 0.13186 -0.155349 -0.967326 0.200372 +0.00795105 -0.0946959 0.130669 -0.247409 -0.95167 0.181972 +5.1296e-05 -0.0928385 0.12939 -0.346613 -0.922559 0.169548 +-0.00606292 -0.0895829 0.127997 -0.41098 -0.896479 0.165593 +-0.0118212 -0.0860568 0.126582 -0.489334 -0.858875 0.151284 +-0.0174985 -0.0824742 0.125167 -0.55819 -0.817369 0.142596 +-0.0227502 -0.0785624 0.123723 -0.616823 -0.777549 0.122263 +-0.0280041 -0.0746591 0.122288 -0.670534 -0.734086 0.107256 +-0.0332501 -0.0707702 0.120848 -0.716587 -0.69112 0.0941103 +-0.0381728 -0.0666127 0.119392 -0.74827 -0.659787 0.0691034 +-0.0426871 -0.0621388 0.117906 -0.781867 -0.62068 0.0586423 +-0.0462339 -0.0568851 0.116354 -0.803651 -0.591557 0.0648544 +-0.0492346 -0.051166 0.114767 -0.834323 -0.549561 0.0434488 +-0.0495179 -0.0432048 0.112977 -0.890493 -0.454973 -0.00475846 +0.989083 -0.695732 0.363657 0.0201832 -0.415139 -0.909533 +0.951666 -0.70464 0.361555 -0.09343 -0.512431 -0.853631 +0.926682 -0.708064 0.359599 -0.174006 -0.694591 -0.698044 +0.911146 -0.707287 0.357741 -0.210554 -0.574935 -0.790644 +0.898557 -0.705212 0.355913 -0.197265 -0.739977 -0.643057 +0.886828 -0.702776 0.354093 -0.144857 -0.838438 -0.525392 +0.881822 -0.697278 0.352331 -0.169407 -0.669425 -0.723307 +0.884229 -0.688363 0.350622 -0.199804 -0.401413 -0.893838 +0.894837 -0.675614 0.348953 -0.134215 -0.309203 -0.941478 +0.909228 -0.661038 0.347291 -0.147088 -0.246523 -0.957911 +0.911766 -0.65195 0.345552 -0.156765 -0.321161 -0.933959 +0.909481 -0.645091 0.343786 -0.166719 -0.407837 -0.897706 +0.905153 -0.639204 0.342011 -0.182625 -0.490756 -0.851943 +0.899988 -0.633706 0.340234 -0.173992 -0.541631 -0.822414 +0.893011 -0.629083 0.338453 -0.153032 -0.62426 -0.766082 +0.885052 -0.624941 0.336666 -0.126947 -0.692233 -0.710423 +0.876502 -0.621095 0.334888 -0.116968 -0.713403 -0.690924 +0.866321 -0.618058 0.333104 -0.0762641 -0.770736 -0.632574 +0.854272 -0.615953 0.331334 -0.0480711 -0.81971 -0.570758 +0.840759 -0.614598 0.329561 -0.0366135 -0.840082 -0.541223 +0.826608 -0.613588 0.327794 0.0173005 -0.898201 -0.439246 +0.811509 -0.613086 0.326047 0.0392005 -0.924396 -0.379414 +0.794958 -0.613353 0.324302 -0.0215113 -0.898231 -0.438999 +0.771756 -0.616961 0.322579 -0.105472 -0.858063 -0.502598 +0.748971 -0.620438 0.320869 -0.202215 -0.783858 -0.587091 +0.740271 -0.616978 0.31916 -0.283304 -0.687574 -0.668565 +0.741502 -0.608549 0.317428 -0.345078 -0.559333 -0.753703 +0.74385 -0.599553 0.315686 -0.362605 -0.504899 -0.783324 +0.747404 -0.589912 0.313941 -0.441799 -0.286357 -0.850184 +0.752522 -0.579447 0.312182 -0.469571 -0.125297 -0.873958 +0.775108 -0.560049 0.310345 -0.496845 0.186374 -0.847592 +0.435294 -0.570496 0.275693 0.116892 -0.590525 -0.79851 +0.417532 -0.572858 0.274283 0.0912118 -0.582846 -0.807448 +0.402714 -0.573631 0.272841 0.058819 -0.559083 -0.827023 +0.392274 -0.57199 0.271338 0.043534 -0.547099 -0.835936 +0.383838 -0.569245 0.269817 0.0236716 -0.531846 -0.84651 +0.375224 -0.56662 0.268295 -0.00604607 -0.485575 -0.874174 +0.365066 -0.564899 0.266815 -0.0360947 -0.474088 -0.879738 +0.35581 -0.562699 0.265318 -0.0994791 -0.414291 -0.904692 +0.349029 -0.559099 0.263786 -0.142619 -0.385991 -0.911412 +0.344921 -0.553973 0.262199 -0.192446 -0.309544 -0.931208 +0.346165 -0.545751 0.260516 -0.196524 -0.253528 -0.947154 +0.34775 -0.537304 0.258819 -0.231351 -0.19422 -0.953287 +0.350562 -0.528127 0.257092 -0.25434 -0.247133 -0.935006 +0.3549 -0.518026 0.255325 -0.28179 -0.338554 -0.897761 +0.359052 -0.507995 0.253558 -0.331459 -0.473983 -0.815766 +0.359404 -0.500171 0.251864 -0.282811 -0.578839 -0.764828 +0.355 -0.495156 0.250277 -0.316495 -0.662552 -0.678864 +0.348594 -0.491328 0.248733 -0.313628 -0.72479 -0.613447 +0.340985 -0.488241 0.247223 -0.322124 -0.772534 -0.547201 +0.333218 -0.485261 0.245716 -0.298853 -0.830046 -0.470862 +0.325008 -0.482568 0.24423 -0.303252 -0.854608 -0.421526 +0.317617 -0.479403 0.242721 -0.313348 -0.869814 -0.3811 +0.30989 -0.476459 0.241227 -0.304478 -0.891934 -0.334291 +0.30126 -0.47409 0.239769 -0.297391 -0.905506 -0.302687 +0.292295 -0.471943 0.238318 -0.300119 -0.907133 -0.295022 +0.283084 -0.469974 0.23688 -0.297466 -0.909129 -0.291545 +0.275115 -0.467271 0.235412 -0.303497 -0.904643 -0.299184 +0.267372 -0.46444 0.233943 -0.315962 -0.895911 -0.312268 +0.259884 -0.461479 0.232473 -0.33473 -0.883707 -0.327139 +0.252932 -0.458206 0.230994 -0.363713 -0.867208 -0.340094 +0.24631 -0.454733 0.229506 -0.394655 -0.848459 -0.352655 +0.240308 -0.450899 0.228005 -0.432226 -0.825357 -0.363273 +0.233508 -0.44757 0.226526 -0.463434 -0.804993 -0.370425 +0.227415 -0.44382 0.225028 -0.487746 -0.789254 -0.373072 +0.222677 -0.439212 0.223498 -0.503149 -0.779507 -0.373109 +0.218465 -0.434278 0.221946 -0.512865 -0.773195 -0.373015 +0.215167 -0.428768 0.220366 -0.509265 -0.773853 -0.376565 +0.211368 -0.42358 0.218808 -0.509359 -0.774336 -0.375446 +0.206931 -0.4188 0.217264 -0.509311 -0.774433 -0.37531 +0.199503 -0.415965 0.215829 -0.511975 -0.770669 -0.37941 +0.191974 -0.41321 0.214397 -0.520967 -0.76436 -0.379932 +0.185124 -0.410031 0.212949 -0.531685 -0.754595 -0.384575 +0.17972 -0.405927 0.211454 -0.548584 -0.732873 -0.402434 +0.174765 -0.40153 0.209945 -0.573737 -0.700834 -0.42386 +0.17076 -0.39653 0.208397 -0.609521 -0.659409 -0.440075 +0.16778 -0.390843 0.206819 -0.64371 -0.612961 -0.458167 +0.165224 -0.384881 0.205214 -0.676182 -0.569566 -0.467304 +0.164126 -0.377943 0.203559 -0.703489 -0.529629 -0.473917 +0.162505 -0.37135 0.201923 -0.725558 -0.49746 -0.475499 +0.159363 -0.365762 0.200346 -0.747227 -0.473119 -0.466702 +0.157017 -0.359636 0.198738 -0.762863 -0.457087 -0.457289 +0.154792 -0.35342 0.197119 -0.774994 -0.448386 -0.445349 +0.152831 -0.347025 0.19549 -0.785486 -0.444119 -0.431011 +0.150078 -0.341157 0.19389 -0.797852 -0.435469 -0.416892 +0.147281 -0.335324 0.192295 -0.809697 -0.423232 -0.40653 +0.144105 -0.329739 0.190715 -0.822488 -0.410057 -0.394166 +0.14105 -0.324074 0.189127 -0.834497 -0.388423 -0.390822 +0.137859 -0.318508 0.187543 -0.844156 -0.364598 -0.393027 +0.135094 -0.312639 0.185942 -0.854561 -0.335823 -0.396166 +0.132633 -0.306556 0.184334 -0.863355 -0.307803 -0.399843 +0.131189 -0.29976 0.182673 -0.873429 -0.270741 -0.404749 +0.129641 -0.293029 0.181011 -0.881874 -0.237262 -0.407438 +0.128489 -0.286003 0.17933 -0.888509 -0.188015 -0.418574 +0.128614 -0.278069 0.177584 -0.893099 -0.13694 -0.42851 +0.129327 -0.269707 0.175814 -0.892865 -0.0872401 -0.441794 +0.13036 -0.261098 0.174021 -0.89215 -0.0425406 -0.449732 +0.131986 -0.252042 0.172193 -0.887951 -0.00454535 -0.459916 +0.133494 -0.243042 0.17036 -0.885945 0.0254478 -0.463092 +0.134983 -0.234034 0.168531 -0.889871 0.0429529 -0.454185 +0.136168 -0.225213 0.166702 -0.896989 0.0447257 -0.439784 +0.136335 -0.217116 0.16493 -0.907007 0.0577672 -0.417136 +0.136484 -0.209003 0.163151 -0.91513 0.0769682 -0.395747 +0.138395 -0.199593 0.161273 -0.930537 0.085328 -0.356118 +0.142068 -0.188873 0.159303 -0.955936 0.102327 -0.275165 +0.146384 -0.177643 0.157287 -0.981664 0.0838003 -0.171217 +0.150067 -0.166841 0.155298 -0.996068 0.0778037 -0.0423492 +0.151871 -0.157383 0.1534 -0.995031 0.0334904 0.093761 +0.151595 -0.149446 0.151608 -0.978341 -0.0327846 0.204387 +0.150342 -0.142215 0.149871 -0.950679 -0.0955625 0.295087 +0.148007 -0.135775 0.148192 -0.917129 -0.142828 0.372121 +0.145313 -0.129603 0.146532 -0.875183 -0.214275 0.43375 +0.142421 -0.123571 0.144883 -0.84166 -0.238807 0.484335 +0.138976 -0.117953 0.143264 -0.804754 -0.28472 0.520868 +0.135534 -0.112342 0.141646 -0.765211 -0.327638 0.554171 +0.132011 -0.106781 0.140033 -0.745011 -0.349496 0.568164 +0.128241 -0.101412 0.138436 -0.695815 -0.404656 0.593377 +0.123977 -0.0964235 0.136867 -0.673669 -0.429614 0.601334 +0.119442 -0.0916416 0.135315 -0.610584 -0.512098 0.604104 +0.114309 -0.0873301 0.133802 -0.541645 -0.571341 0.616595 +0.108221 -0.0837724 0.13235 -0.510345 -0.609127 0.607053 +0.101376 -0.0808038 0.130951 -0.27361 -0.782113 0.559856 +0.090983 -0.0806145 0.129776 -0.185507 -0.85465 0.484935 +0.0688555 -0.0896117 0.129359 0.0684839 -0.954997 0.288606 +0.0544899 -0.0926276 0.128467 0.142614 -0.973598 0.178242 +0.0414167 -0.0946992 0.127501 0.0907035 -0.983868 0.154201 +0.0294246 -0.0959631 0.126483 -0.0112107 -0.992673 0.120319 +0.0183256 -0.0965735 0.125406 -0.136363 -0.983126 0.121942 +0.00879213 -0.0959784 0.124236 -0.227844 -0.966625 0.117155 +0.00119026 -0.093883 0.122951 -0.320601 -0.941873 0.100459 +-0.00502694 -0.0907062 0.121568 -0.396135 -0.913266 0.094988 +-0.0110239 -0.0873685 0.120175 -0.471265 -0.877652 0.0873978 +-0.0170364 -0.0840489 0.118785 -0.545054 -0.835343 0.0715592 +-0.0227711 -0.0805318 0.117389 -0.616546 -0.784978 0.0606599 +-0.0283335 -0.0768776 0.115968 -0.666458 -0.744306 0.0429157 +-0.0334144 -0.0728508 0.114528 -0.713924 -0.700078 0.014219 +-0.0381818 -0.0685716 0.113064 -0.741329 -0.670949 0.0161226 +-0.0424481 -0.0638952 0.11156 -0.776084 -0.630627 0.00217538 +-0.0457396 -0.058425 0.109989 -0.807337 -0.589588 -0.0243248 +-0.048164 -0.0522435 0.10836 -0.846008 -0.531862 -0.037347 +-0.0489154 -0.0446716 0.106605 -0.879717 -0.470611 -0.0679897 +1.01296 -0.694995 0.358321 0.126314 -0.483627 -0.866112 +0.972659 -0.705074 0.356244 0.00240957 -0.481155 -0.876632 +0.94649 -0.708947 0.354293 -0.0822896 -0.503407 -0.860122 +0.930944 -0.708109 0.352444 -0.158165 -0.601179 -0.783306 +0.920722 -0.704905 0.350634 -0.169027 -0.464704 -0.869185 +0.913057 -0.700563 0.348842 -0.210554 -0.574935 -0.790644 +0.912856 -0.692821 0.347103 -0.259186 -0.333602 -0.906385 +0.921861 -0.680832 0.345398 -0.162872 -0.283105 -0.945158 +0.93258 -0.668007 0.343698 -0.167412 -0.289092 -0.94255 +0.937027 -0.658023 0.341961 -0.175243 -0.277912 -0.944486 +0.935158 -0.650946 0.340182 -0.158823 -0.33452 -0.928909 +0.931849 -0.64454 0.338406 -0.188086 -0.439992 -0.878083 +0.927258 -0.638736 0.336618 -0.178679 -0.512563 -0.839853 +0.922435 -0.63304 0.334834 -0.174029 -0.565705 -0.806036 +0.915544 -0.628328 0.333048 -0.164088 -0.606882 -0.77767 +0.908042 -0.62392 0.331262 -0.145799 -0.664567 -0.732867 +0.899551 -0.619995 0.329478 -0.130488 -0.69839 -0.703723 +0.889873 -0.616664 0.327705 -0.105174 -0.731392 -0.673798 +0.878903 -0.613975 0.325931 -0.0842138 -0.784908 -0.613863 +0.866672 -0.611934 0.324167 -0.040907 -0.837059 -0.545582 +0.852799 -0.610725 0.322403 -0.0277816 -0.857487 -0.513755 +0.837876 -0.610059 0.320657 0.032342 -0.905777 -0.42252 +0.820999 -0.610404 0.318924 0.0428577 -0.92422 -0.379447 +0.800887 -0.612394 0.317209 -0.0124026 -0.904449 -0.426402 +0.782586 -0.613563 0.31551 -0.0734678 -0.865317 -0.495814 +0.757906 -0.617953 0.313837 -0.190885 -0.766992 -0.612607 +0.751333 -0.61341 0.312119 -0.266654 -0.690142 -0.672756 +0.752115 -0.605188 0.310379 -0.361561 -0.563445 -0.742835 +0.754933 -0.595933 0.308619 -0.39722 -0.410787 -0.820653 +0.759542 -0.585741 0.306848 -0.445994 -0.304592 -0.841614 +0.767912 -0.573614 0.305054 -0.489347 -0.109009 -0.86525 +0.409135 -0.556804 0.262829 0.0389746 -0.484418 -0.873968 +0.400584 -0.554092 0.261307 0.0407886 -0.440861 -0.896649 +0.396746 -0.548714 0.259701 0.0327969 -0.410803 -0.911135 +0.39031 -0.544824 0.258147 -0.0120161 -0.381732 -0.924195 +0.380451 -0.542911 0.256664 -0.0376263 -0.330759 -0.942965 +0.375271 -0.538333 0.255093 -0.0765844 -0.28175 -0.956427 +0.372579 -0.532326 0.253466 -0.123182 -0.301371 -0.945517 +0.371106 -0.525601 0.251812 -0.186464 -0.331608 -0.924807 +0.373334 -0.516712 0.250077 -0.245816 -0.429337 -0.869048 +0.3751 -0.508072 0.248343 -0.229765 -0.550029 -0.802918 +0.376511 -0.499616 0.246613 -0.2042 -0.700474 -0.683841 +0.371521 -0.494904 0.245036 -0.198545 -0.777124 -0.59721 +0.363345 -0.492093 0.243532 -0.225432 -0.790026 -0.570122 +0.354547 -0.48967 0.242048 -0.264988 -0.807045 -0.527693 +0.346597 -0.486764 0.24055 -0.269543 -0.839201 -0.472323 +0.338196 -0.484151 0.239072 -0.260171 -0.880054 -0.397263 +0.329266 -0.481886 0.237605 -0.282003 -0.884501 -0.371662 +0.320949 -0.479264 0.236132 -0.276553 -0.904641 -0.324259 +0.313035 -0.47643 0.234655 -0.289496 -0.906079 -0.308567 +0.30477 -0.47382 0.23319 -0.288942 -0.913925 -0.285052 +0.29634 -0.471345 0.231733 -0.297556 -0.909872 -0.289125 +0.28702 -0.46943 0.230305 -0.302135 -0.906469 -0.29501 +0.279027 -0.466729 0.228851 -0.309654 -0.898607 -0.310841 +0.271846 -0.463545 0.227373 -0.318187 -0.889237 -0.328656 +0.264808 -0.460291 0.22589 -0.331206 -0.877258 -0.347454 +0.257868 -0.456991 0.224415 -0.349476 -0.864106 -0.362199 +0.250987 -0.453675 0.22294 -0.376126 -0.848284 -0.37275 +0.244588 -0.450074 0.221449 -0.415974 -0.825721 -0.380987 +0.238326 -0.446405 0.219963 -0.45147 -0.805808 -0.383207 +0.231522 -0.443086 0.218495 -0.474004 -0.791456 -0.385899 +0.226084 -0.438912 0.216988 -0.490882 -0.781478 -0.385133 +0.221495 -0.434216 0.215449 -0.499416 -0.776234 -0.384767 +0.217977 -0.428841 0.213873 -0.502852 -0.773727 -0.385338 +0.214612 -0.423364 0.212294 -0.502995 -0.772626 -0.387358 +0.210788 -0.418183 0.210735 -0.503802 -0.768733 -0.393996 +0.204158 -0.414824 0.209281 -0.506746 -0.763846 -0.399687 +0.196586 -0.412084 0.207856 -0.514176 -0.752845 -0.410912 +0.1893 -0.409176 0.206432 -0.519258 -0.740853 -0.426039 +0.183878 -0.405075 0.204935 -0.535489 -0.718702 -0.44353 +0.17884 -0.400727 0.203431 -0.559158 -0.689477 -0.460398 +0.174632 -0.395843 0.201892 -0.591595 -0.651622 -0.474768 +0.171531 -0.390237 0.200314 -0.626877 -0.60811 -0.487062 +0.169072 -0.384199 0.198708 -0.660603 -0.575866 -0.481647 +0.168345 -0.377011 0.197029 -0.685713 -0.544301 -0.483254 +0.166766 -0.370375 0.195386 -0.713803 -0.514955 -0.474666 +0.164317 -0.364314 0.193775 -0.737887 -0.494506 -0.459333 +0.161133 -0.358744 0.19219 -0.759133 -0.475621 -0.444412 +0.157833 -0.353243 0.190619 -0.773884 -0.466056 -0.428831 +0.155207 -0.347298 0.189013 -0.785069 -0.458574 -0.416385 +0.152052 -0.3417 0.187433 -0.795371 -0.447559 -0.40875 +0.148732 -0.336213 0.185856 -0.807984 -0.437399 -0.394772 +0.145444 -0.330706 0.184276 -0.817259 -0.414263 -0.400592 +0.142415 -0.325025 0.182688 -0.82693 -0.393199 -0.401972 +0.139326 -0.319378 0.181101 -0.83722 -0.366728 -0.405676 +0.136892 -0.313282 0.179484 -0.848146 -0.340648 -0.405721 +0.134738 -0.30698 0.177852 -0.857672 -0.309464 -0.410648 +0.133928 -0.299746 0.176162 -0.867298 -0.267912 -0.419547 +0.133092 -0.292513 0.174461 -0.874621 -0.231159 -0.426151 +0.132679 -0.284959 0.17274 -0.881625 -0.177794 -0.437183 +0.133312 -0.276667 0.170962 -0.882707 -0.123636 -0.453368 +0.134208 -0.26817 0.169169 -0.88158 -0.0777089 -0.465594 +0.135234 -0.259553 0.167358 -0.880621 -0.0319996 -0.472741 +0.136452 -0.250772 0.165542 -0.878751 0.000105375 -0.477282 +0.137702 -0.241957 0.163713 -0.883381 0.0136004 -0.46846 +0.138995 -0.23308 0.161883 -0.892957 0.0288766 -0.449214 +0.140242 -0.224217 0.160043 -0.903024 0.0362382 -0.42806 +0.140727 -0.215874 0.158241 -0.91621 0.0351993 -0.39915 +0.140732 -0.207861 0.156457 -0.928028 0.0548787 -0.368445 +0.142607 -0.198476 0.154574 -0.949785 0.0614031 -0.30682 +0.145462 -0.188346 0.15263 -0.971539 0.049227 -0.231705 +0.148148 -0.178304 0.150681 -0.99182 0.0343222 -0.122944 +0.150083 -0.168787 0.148774 -0.999818 0.00567115 -0.0182085 +0.15086 -0.160096 0.146925 -0.991992 -0.0331041 0.121894 +0.149805 -0.152739 0.145175 -0.975702 -0.0897656 0.199867 +0.147771 -0.146096 0.143482 -0.941906 -0.146192 0.30239 +0.145318 -0.139754 0.141807 -0.914946 -0.19224 0.354847 +0.142535 -0.133655 0.14015 -0.880096 -0.23902 0.410243 +0.139519 -0.127724 0.138513 -0.851336 -0.275082 0.446715 +0.136068 -0.122126 0.136897 -0.809708 -0.32233 0.490384 +0.13265 -0.116493 0.135276 -0.773567 -0.359185 0.522091 +0.129147 -0.110936 0.133666 -0.752379 -0.380043 0.538045 +0.125205 -0.105707 0.132078 -0.714078 -0.436431 0.547377 +0.121121 -0.100591 0.130504 -0.697767 -0.459203 0.549776 +0.116861 -0.0956083 0.128937 -0.605061 -0.550843 0.574868 +0.111581 -0.0914179 0.12744 -0.584355 -0.59035 0.556791 +0.105696 -0.0877001 0.125984 -0.527815 -0.647271 0.549957 +0.0987664 -0.0848086 0.124596 -0.328105 -0.805782 0.493012 +0.0893614 -0.0838472 0.123375 -0.200026 -0.889789 0.410203 +0.0699263 -0.0907435 0.122827 0.0189766 -0.970362 0.240911 +0.0557897 -0.0935799 0.121936 0.104118 -0.984688 0.139829 +0.0424836 -0.0958209 0.121012 0.0768154 -0.995409 0.0571086 +0.0313569 -0.0964006 0.119941 -0.00390371 -0.998815 0.0485185 +0.0204407 -0.096858 0.118877 -0.108447 -0.993447 0.0360787 +0.011241 -0.0959951 0.117699 -0.190403 -0.981407 0.0242613 +0.00312228 -0.0942999 0.116452 -0.30639 -0.951571 0.0252904 +-0.00416512 -0.091964 0.115147 -0.379549 -0.92488 0.0232534 +-0.0104913 -0.0888839 0.113784 -0.460237 -0.887754 0.00873306 +-0.01659 -0.0856393 0.112411 -0.535147 -0.844673 -0.0121122 +-0.0224582 -0.0822228 0.111019 -0.596434 -0.802435 -0.0191411 +-0.0281193 -0.0786522 0.109617 -0.658671 -0.751428 -0.0388499 +-0.0329275 -0.0744066 0.108158 -0.700261 -0.711731 -0.0554611 +-0.0373512 -0.0698479 0.106675 -0.73269 -0.676721 -0.0722086 +-0.0411228 -0.0647654 0.105137 -0.770887 -0.632156 -0.0781674 +-0.0443911 -0.0592725 0.103562 -0.803741 -0.586412 -0.100603 +-0.0462219 -0.0525996 0.101887 -0.846497 -0.513121 -0.141951 +-0.0458176 -0.0440691 0.100035 -0.881573 -0.438732 -0.174195 +0.994627 -0.70515 0.350881 0.0471405 -0.480436 -0.875762 +0.967244 -0.709473 0.34895 -0.0479134 -0.447014 -0.893243 +0.956618 -0.706373 0.347137 -0.0840538 -0.434384 -0.896797 +0.947715 -0.702516 0.345332 -0.104282 -0.390923 -0.914497 +0.941661 -0.697387 0.343547 -0.156294 -0.303713 -0.939857 +0.949113 -0.686121 0.341817 -0.11752 -0.303408 -0.945586 +0.963339 -0.671714 0.34011 -0.0917489 -0.315419 -0.944507 +0.965672 -0.662698 0.338339 -0.115034 -0.324214 -0.938965 +0.962906 -0.656006 0.336552 -0.151756 -0.335561 -0.929714 +0.959009 -0.649829 0.334763 -0.154964 -0.42429 -0.892168 +0.954944 -0.643739 0.33297 -0.162256 -0.467114 -0.869183 +0.949685 -0.638204 0.331177 -0.172991 -0.537839 -0.825108 +0.944388 -0.632692 0.329387 -0.180352 -0.552852 -0.813529 +0.938271 -0.627576 0.327599 -0.165036 -0.591398 -0.78931 +0.929946 -0.623504 0.32581 -0.150493 -0.63419 -0.758389 +0.921259 -0.619634 0.32403 -0.138622 -0.700206 -0.700354 +0.912576 -0.615772 0.322251 -0.11914 -0.735538 -0.666925 +0.902396 -0.612651 0.320472 -0.104023 -0.75069 -0.652414 +0.891002 -0.610147 0.318713 -0.072107 -0.808276 -0.584371 +0.878512 -0.608201 0.316955 -0.0406319 -0.850388 -0.524586 +0.864349 -0.607099 0.315214 -0.00221502 -0.876599 -0.481218 +0.848397 -0.606909 0.313485 0.030486 -0.907045 -0.419933 +0.830801 -0.607581 0.311773 0.0464376 -0.921208 -0.38629 +0.808325 -0.610703 0.310094 -0.0190731 -0.902717 -0.429811 +0.789965 -0.611876 0.308415 -0.101128 -0.881567 -0.461103 +0.766333 -0.615728 0.306773 -0.187092 -0.762783 -0.619001 +0.762167 -0.609964 0.305048 -0.276801 -0.681823 -0.677125 +0.762644 -0.601881 0.303289 -0.386934 -0.470589 -0.792987 +0.766476 -0.592097 0.301513 -0.391695 -0.39457 -0.831198 +0.773624 -0.580611 0.299705 -0.430888 -0.289402 -0.854741 +0.522666 -0.486777 0.252214 0.248293 -0.966794 0.0605047 +0.501945 -0.490727 0.25091 0.121754 -0.98671 0.107617 +0.485938 -0.492074 0.249512 0.0708353 -0.990333 0.119274 +0.468163 -0.49448 0.248172 -0.00165243 -0.994621 0.103574 +0.453707 -0.495046 0.246771 -0.0478636 -0.996703 0.0655159 +0.44148 -0.494374 0.245326 -0.0705579 -0.996442 0.0460902 +0.42628 -0.495459 0.243963 -0.0819161 -0.996342 -0.0243312 +0.417038 -0.493132 0.242469 -0.0587242 -0.99005 -0.127878 +0.404922 -0.492512 0.241047 -0.0531086 -0.965214 -0.256017 +0.390554 -0.493248 0.239692 -0.0772497 -0.888385 -0.452555 +0.380472 -0.491518 0.238238 -0.12623 -0.882738 -0.452592 +0.372206 -0.488733 0.236741 -0.161509 -0.877528 -0.451509 +0.360317 -0.488121 0.235348 -0.197231 -0.876496 -0.439153 +0.351449 -0.485755 0.233887 -0.240615 -0.863894 -0.442485 +0.342953 -0.483188 0.23241 -0.231024 -0.908339 -0.348639 +0.333905 -0.480975 0.230961 -0.239753 -0.917988 -0.315939 +0.324996 -0.478702 0.229509 -0.267958 -0.914852 -0.302067 +0.316499 -0.476204 0.228057 -0.275068 -0.920695 -0.276874 +0.308802 -0.473247 0.226577 -0.288731 -0.917864 -0.272327 +0.300684 -0.470559 0.225123 -0.30025 -0.912132 -0.279044 +0.292005 -0.468242 0.223689 -0.313541 -0.903887 -0.291003 +0.283796 -0.465663 0.222245 -0.322023 -0.893865 -0.311942 +0.276552 -0.462505 0.220774 -0.330181 -0.883086 -0.333378 +0.270426 -0.458684 0.219272 -0.33941 -0.872283 -0.352028 +0.263729 -0.45522 0.217788 -0.342405 -0.864061 -0.368996 +0.256766 -0.451941 0.216322 -0.364862 -0.84905 -0.382089 +0.250026 -0.448537 0.214848 -0.394642 -0.830913 -0.392228 +0.243417 -0.44507 0.213377 -0.429933 -0.812076 -0.394577 +0.236656 -0.441703 0.211908 -0.462753 -0.796174 -0.38983 +0.230942 -0.4377 0.210409 -0.482028 -0.784394 -0.390352 +0.225562 -0.433493 0.2089 -0.494028 -0.777866 -0.388409 +0.221176 -0.428661 0.207364 -0.502824 -0.772235 -0.388359 +0.217842 -0.423165 0.205783 -0.50223 -0.770416 -0.392715 +0.214341 -0.417773 0.204204 -0.505969 -0.76555 -0.397402 +0.209082 -0.413516 0.202702 -0.510958 -0.756822 -0.407606 +0.201814 -0.410563 0.201269 -0.517484 -0.743798 -0.423055 +0.193688 -0.408192 0.199881 -0.527011 -0.728651 -0.437411 +0.188248 -0.404089 0.19839 -0.536867 -0.708324 -0.458314 +0.1832 -0.399742 0.196885 -0.554974 -0.684418 -0.472839 +0.178697 -0.395041 0.195363 -0.582767 -0.650456 -0.487124 +0.175536 -0.389464 0.193785 -0.61221 -0.616465 -0.495147 +0.172928 -0.383518 0.19218 -0.642085 -0.59039 -0.489047 +0.171566 -0.376742 0.190525 -0.673806 -0.561511 -0.480303 +0.169696 -0.370295 0.188884 -0.703591 -0.536009 -0.466535 +0.167242 -0.364237 0.187273 -0.729824 -0.513971 -0.450767 +0.163838 -0.3588 0.1857 -0.752258 -0.495431 -0.434346 +0.160377 -0.353414 0.184135 -0.768302 -0.483148 -0.419858 +0.156887 -0.34804 0.182561 -0.782863 -0.470174 -0.407508 +0.153362 -0.342694 0.180997 -0.793772 -0.456164 -0.402294 +0.149863 -0.337333 0.179425 -0.804379 -0.437819 -0.401609 +0.146498 -0.331873 0.177851 -0.814256 -0.419988 -0.400745 +0.143488 -0.32618 0.176261 -0.824343 -0.395496 -0.405023 +0.140822 -0.32024 0.174659 -0.835046 -0.37077 -0.406484 +0.13902 -0.313701 0.173003 -0.842187 -0.338766 -0.419475 +0.137582 -0.306903 0.171335 -0.850214 -0.306451 -0.428046 +0.137379 -0.299231 0.169605 -0.857658 -0.268767 -0.438391 +0.137214 -0.291532 0.167864 -0.865813 -0.224396 -0.44723 +0.137401 -0.283554 0.166104 -0.872659 -0.170668 -0.457536 +0.138103 -0.275205 0.164313 -0.873764 -0.113804 -0.472849 +0.138646 -0.266942 0.162526 -0.874625 -0.0677734 -0.480041 +0.139231 -0.25863 0.160732 -0.875273 -0.0272013 -0.482862 +0.140184 -0.250041 0.158914 -0.880143 -0.0093729 -0.474616 +0.141447 -0.241204 0.157073 -0.891216 0.00419465 -0.453562 +0.142907 -0.232211 0.155223 -0.903342 0.0100876 -0.428802 +0.144665 -0.222967 0.153347 -0.91574 0.0177469 -0.401381 +0.145957 -0.214034 0.151487 -0.933042 0.0141674 -0.359491 +0.146367 -0.205727 0.149671 -0.949496 0.0112477 -0.313578 +0.147131 -0.197132 0.147834 -0.965368 0.0106885 -0.260671 +0.148435 -0.18813 0.145967 -0.982869 -0.000230863 -0.184305 +0.14981 -0.179045 0.144079 -0.99723 -0.0228136 -0.0707857 +0.150541 -0.170411 0.14223 -0.998661 -0.0433086 0.0283024 +0.150098 -0.162621 0.140443 -0.984176 -0.112728 0.136706 +0.148241 -0.155863 0.138739 -0.963958 -0.15936 0.213047 +0.146089 -0.149304 0.137048 -0.936388 -0.202813 0.286436 +0.143227 -0.143278 0.135401 -0.908795 -0.241694 0.340111 +0.14018 -0.137384 0.133761 -0.877823 -0.282914 0.386505 +0.137162 -0.131464 0.132117 -0.850992 -0.320103 0.416351 +0.133739 -0.12585 0.130501 -0.815684 -0.359167 0.453495 +0.130301 -0.120243 0.128893 -0.794648 -0.384812 0.469527 +0.12695 -0.114577 0.127271 -0.771415 -0.410795 0.48597 +0.123042 -0.109329 0.125681 -0.734634 -0.460391 0.49835 +0.119002 -0.104183 0.124111 -0.698531 -0.503573 0.508399 +0.114806 -0.0991629 0.122541 -0.641971 -0.582973 0.498011 +0.109804 -0.0947581 0.121035 -0.593581 -0.641536 0.485894 +0.103617 -0.0912843 0.119601 -0.530187 -0.71484 0.455968 +0.0962635 -0.0887255 0.118252 -0.386355 -0.830235 0.401798 +0.0870304 -0.0876382 0.117033 -0.225911 -0.920569 0.318619 +0.0735294 -0.0899076 0.116114 -0.0669339 -0.979848 0.188201 +0.0584586 -0.093458 0.115316 0.0613931 -0.994863 0.0804871 +0.0459291 -0.0950852 0.114348 0.0800106 -0.996692 0.0142982 +0.0340481 -0.0962377 0.113352 0.0117749 -0.999413 -0.0322024 +0.0232762 -0.0965687 0.112287 -0.0766871 -0.996259 -0.0398597 +0.0138912 -0.0958405 0.111131 -0.167652 -0.984593 -0.049725 +0.00537293 -0.0944564 0.109922 -0.263229 -0.963245 -0.0535867 +-0.0026504 -0.0927116 0.10868 -0.362037 -0.930263 -0.0594994 +-0.00907235 -0.0897055 0.107333 -0.430764 -0.899098 -0.0778893 +-0.015478 -0.0866988 0.105982 -0.51384 -0.853326 -0.0883386 +-0.0212867 -0.0832321 0.104599 -0.585126 -0.803754 -0.107737 +-0.0267828 -0.079526 0.103187 -0.637381 -0.760373 -0.124815 +-0.0319096 -0.0755268 0.101749 -0.679909 -0.723325 -0.120515 +-0.0358807 -0.0706069 0.10023 -0.724118 -0.674726 -0.142821 +-0.039472 -0.0653696 0.0986875 -0.751289 -0.642301 -0.151707 +-0.0420738 -0.0593333 0.097061 -0.798399 -0.571698 -0.188999 +-0.0438991 -0.0526418 0.0953758 -0.831932 -0.509102 -0.220691 +-0.0424241 -0.0432295 0.0934274 -0.872467 -0.397268 -0.284571 +1.01922 -0.696206 0.343702 -0.239024 0.445803 0.862629 +0.989001 -0.701736 0.341792 0.0359346 -0.409708 -0.911509 +0.979174 -0.698232 0.339987 0.0206969 -0.37401 -0.927194 +0.988955 -0.685907 0.338241 -0.0050392 -0.355129 -0.934804 +1.00141 -0.672322 0.336489 -0.0617994 -0.395565 -0.916356 +1.00075 -0.66463 0.334698 -0.0578621 -0.395631 -0.916585 +0.997265 -0.658222 0.332898 -0.0747307 -0.387837 -0.918694 +0.991508 -0.652844 0.331089 -0.097206 -0.410194 -0.906804 +0.985573 -0.647564 0.329288 -0.120678 -0.46516 -0.876963 +0.979959 -0.64214 0.327489 -0.141711 -0.483181 -0.863976 +0.973177 -0.637273 0.325692 -0.149452 -0.539827 -0.828403 +0.966803 -0.632218 0.323896 -0.159519 -0.558883 -0.81376 +0.960301 -0.627242 0.322098 -0.153451 -0.584574 -0.796698 +0.952712 -0.622778 0.320309 -0.147402 -0.624982 -0.766598 +0.944282 -0.618734 0.318525 -0.145023 -0.678211 -0.720416 +0.93504 -0.61509 0.316739 -0.126402 -0.721792 -0.68047 +0.925284 -0.611714 0.31497 -0.120201 -0.742133 -0.659388 +0.914687 -0.608765 0.313202 -0.0919024 -0.779316 -0.619858 +0.902933 -0.606398 0.311451 -0.0703639 -0.829932 -0.553409 +0.889632 -0.60482 0.309706 -0.0291408 -0.864895 -0.501105 +0.875682 -0.603585 0.307976 -0.00156002 -0.889042 -0.457825 +0.859961 -0.603264 0.30627 0.0373757 -0.916166 -0.399055 +0.841281 -0.604435 0.304584 0.0710592 -0.917109 -0.392253 +0.818059 -0.607898 0.302935 -0.000760375 -0.912545 -0.408976 +0.795935 -0.610897 0.301306 -0.0797406 -0.864519 -0.496236 +0.775481 -0.613148 0.299675 -0.189892 -0.778496 -0.598235 +0.772739 -0.606655 0.297938 -0.290443 -0.653247 -0.699223 +0.7738 -0.598269 0.29617 -0.376604 -0.478918 -0.792974 +0.778203 -0.588176 0.294363 -0.396211 -0.432875 -0.809713 +0.787462 -0.57561 0.292509 -0.430142 -0.336689 -0.837627 +0.52912 -0.485049 0.245276 0.2483 -0.967535 0.0471691 +0.50424 -0.491348 0.244101 0.128711 -0.988551 0.0787474 +0.488386 -0.492594 0.242726 0.0895165 -0.989963 0.109365 +0.474012 -0.493044 0.241326 0.0281982 -0.995447 0.0910552 +0.459562 -0.493589 0.239944 -0.0307637 -0.995212 0.0927816 +0.44546 -0.493976 0.238563 -0.0707191 -0.99596 0.0553627 +0.434502 -0.492595 0.237113 -0.0956096 -0.995313 0.0145459 +0.423494 -0.49128 0.235666 -0.112465 -0.99338 -0.0234478 +0.411877 -0.490343 0.234245 -0.0852538 -0.98876 -0.12282 +0.400567 -0.48927 0.232828 -0.0803491 -0.972378 -0.219149 +0.388752 -0.488531 0.231427 -0.100234 -0.942682 -0.318284 +0.378378 -0.486977 0.229998 -0.127214 -0.925649 -0.356358 +0.367738 -0.485606 0.228586 -0.161437 -0.914889 -0.370022 +0.356202 -0.484801 0.227203 -0.195743 -0.918474 -0.343647 +0.347007 -0.482639 0.225759 -0.2105 -0.924657 -0.317332 +0.338783 -0.479923 0.224289 -0.225842 -0.930792 -0.287442 +0.329253 -0.478006 0.222873 -0.248824 -0.930758 -0.26791 +0.320202 -0.475834 0.221439 -0.2662 -0.928082 -0.260388 +0.312575 -0.472831 0.219971 -0.287494 -0.9231 -0.255414 +0.305221 -0.469668 0.218498 -0.304297 -0.914941 -0.265119 +0.297686 -0.466643 0.217032 -0.323799 -0.903316 -0.281382 +0.289397 -0.464094 0.215595 -0.339893 -0.889825 -0.304445 +0.281262 -0.461475 0.214163 -0.350089 -0.877957 -0.326543 +0.275321 -0.457523 0.212654 -0.351607 -0.869667 -0.346487 +0.269652 -0.453405 0.211141 -0.359075 -0.8599 -0.362822 +0.263534 -0.449585 0.209647 -0.366566 -0.849919 -0.378507 +0.257374 -0.445808 0.208161 -0.382324 -0.838322 -0.388648 +0.250759 -0.442317 0.206685 -0.40776 -0.822267 -0.397 +0.24355 -0.439231 0.205242 -0.437921 -0.806821 -0.396566 +0.237725 -0.435276 0.203752 -0.46321 -0.794571 -0.392548 +0.232232 -0.431128 0.202245 -0.48622 -0.782865 -0.388219 +0.227785 -0.426318 0.200702 -0.499034 -0.774045 -0.389643 +0.222939 -0.421768 0.199176 -0.510695 -0.765788 -0.390846 +0.218136 -0.417198 0.197657 -0.515249 -0.760385 -0.39539 +0.213167 -0.41275 0.196135 -0.52107 -0.75036 -0.406752 +0.20757 -0.408705 0.194652 -0.528774 -0.73691 -0.421145 +0.200198 -0.405831 0.193236 -0.53608 -0.721127 -0.438857 +0.194058 -0.402171 0.191778 -0.545905 -0.701722 -0.457794 +0.18845 -0.398169 0.190297 -0.557238 -0.681419 -0.474504 +0.183434 -0.393802 0.18879 -0.57863 -0.656745 -0.483605 +0.180186 -0.388271 0.187208 -0.602968 -0.629753 -0.489735 +0.177357 -0.382456 0.185615 -0.630366 -0.607486 -0.483322 +0.175316 -0.376133 0.18398 -0.660463 -0.581724 -0.47475 +0.172743 -0.370145 0.182376 -0.690087 -0.560041 -0.458403 +0.169604 -0.364532 0.180785 -0.715976 -0.538941 -0.44376 +0.165837 -0.359341 0.179229 -0.740222 -0.516397 -0.430589 +0.162116 -0.354123 0.177671 -0.761921 -0.500069 -0.411591 +0.158395 -0.348906 0.176113 -0.777024 -0.47835 -0.409166 +0.154859 -0.343556 0.174549 -0.789474 -0.460388 -0.405924 +0.151421 -0.338149 0.172979 -0.800164 -0.443999 -0.403242 +0.148233 -0.332573 0.171392 -0.808132 -0.421882 -0.411019 +0.145413 -0.326745 0.169796 -0.818151 -0.394997 -0.417859 +0.142996 -0.320633 0.16817 -0.827189 -0.366041 -0.42635 +0.14194 -0.313577 0.166483 -0.835186 -0.333527 -0.437293 +0.141849 -0.305842 0.164732 -0.842018 -0.297759 -0.449828 +0.142346 -0.297678 0.162957 -0.847609 -0.256782 -0.464352 +0.142519 -0.289721 0.161193 -0.85573 -0.206511 -0.474426 +0.14203 -0.282218 0.159461 -0.860533 -0.158999 -0.483944 +0.141451 -0.274754 0.157722 -0.866473 -0.10947 -0.487074 +0.141643 -0.266744 0.155948 -0.869957 -0.0640317 -0.488955 +0.142041 -0.258563 0.154153 -0.87829 -0.0353127 -0.476822 +0.143428 -0.249654 0.152298 -0.888904 -0.0234237 -0.457495 +0.145411 -0.240301 0.15041 -0.902049 -0.0142374 -0.431399 +0.14795 -0.230526 0.148488 -0.918363 -0.0120188 -0.395556 +0.149891 -0.22115 0.146583 -0.936009 -0.0100196 -0.351833 +0.149972 -0.213087 0.144786 -0.94953 -0.0132723 -0.313396 +0.149764 -0.205205 0.142998 -0.963216 -0.0222201 -0.26781 +0.149579 -0.197303 0.141207 -0.978086 -0.0315757 -0.205796 +0.150138 -0.188836 0.139367 -0.990232 -0.0428184 -0.132689 +0.150507 -0.180495 0.137532 -0.997142 -0.0614768 -0.0439107 +0.150481 -0.172417 0.135722 -0.992811 -0.100461 0.0650646 +0.14945 -0.165058 0.133959 -0.978521 -0.152101 0.139148 +0.147184 -0.158601 0.132281 -0.95618 -0.191766 0.221233 +0.144692 -0.15231 0.130605 -0.935045 -0.231626 0.268402 +0.141686 -0.146398 0.128965 -0.906436 -0.271238 0.323733 +0.138452 -0.140643 0.127341 -0.877972 -0.312121 0.362967 +0.135134 -0.134958 0.125717 -0.85446 -0.351012 0.383002 +0.131972 -0.12915 0.124087 -0.827608 -0.385517 0.407974 +0.128513 -0.123567 0.122475 -0.807278 -0.414552 0.420059 +0.12483 -0.118152 0.120882 -0.795175 -0.435939 0.421492 +0.1212 -0.112708 0.119279 -0.75993 -0.487619 0.429806 +0.117323 -0.107439 0.117695 -0.721862 -0.545462 0.425897 +0.113179 -0.102384 0.11613 -0.680322 -0.613124 0.401547 +0.107849 -0.0982403 0.114647 -0.625341 -0.673788 0.393646 +0.101562 -0.0948498 0.113231 -0.536806 -0.754009 0.378564 +0.0944536 -0.0920979 0.111868 -0.444429 -0.8319 0.332304 +0.0846783 -0.0914388 0.110708 -0.251435 -0.943174 0.217265 +0.075696 -0.0901962 0.10949 -0.135997 -0.97769 0.160084 +0.0642652 -0.0908997 0.108453 -0.00677719 -0.99785 0.0651844 +0.0509828 -0.0930877 0.107565 0.0463924 -0.998272 -0.0360714 +0.0382321 -0.0949128 0.106642 0.0240377 -0.995979 -0.0863135 +0.0271488 -0.0954729 0.105609 -0.0384913 -0.993477 -0.107345 +0.0173831 -0.0950322 0.104493 -0.132255 -0.983392 -0.1243 +0.00819421 -0.0941717 0.103346 -0.224403 -0.965486 -0.132216 +-0.000271286 -0.0927595 0.102151 -0.32698 -0.934697 -0.13938 +-0.0068908 -0.0899085 0.100815 -0.413005 -0.899781 -0.140789 +-0.0132692 -0.0868733 0.0994747 -0.493152 -0.854719 -0.162038 +-0.0193416 -0.0836119 0.0981084 -0.554777 -0.813629 -0.173868 +-0.0246723 -0.0797698 0.0966882 -0.606379 -0.77261 -0.18809 +-0.0296827 -0.0756688 0.0952527 -0.663938 -0.720747 -0.19928 +-0.0336263 -0.0707247 0.0937293 -0.699806 -0.683824 -0.206536 +-0.0371735 -0.0654446 0.0921735 -0.731622 -0.637285 -0.242071 +-0.0395594 -0.059225 0.0905313 -0.772989 -0.578371 -0.26072 +-0.0413232 -0.0524884 0.0888411 -0.81491 -0.49372 -0.303584 +-0.0383132 -0.0418094 0.0867583 -0.84151 -0.376996 -0.386956 +1.03899 -0.649283 0.327385 -0.00914201 -0.46558 -0.884958 +1.02974 -0.645416 0.325569 -0.0144242 -0.510047 -0.860026 +1.02004 -0.64179 0.323754 -0.0421167 -0.522088 -0.851851 +1.00971 -0.638474 0.321947 -0.0577198 -0.531071 -0.845359 +1.0008 -0.634523 0.320144 -0.0692317 -0.545376 -0.835328 +0.992502 -0.630308 0.318341 -0.104905 -0.562178 -0.820337 +0.984032 -0.6262 0.316547 -0.121608 -0.594565 -0.794799 +0.976296 -0.621757 0.314749 -0.127454 -0.619198 -0.774823 +0.967493 -0.61784 0.312969 -0.121552 -0.664929 -0.73695 +0.958377 -0.614083 0.311183 -0.120381 -0.712795 -0.690965 +0.94872 -0.61061 0.309409 -0.121695 -0.727191 -0.675563 +0.938297 -0.607524 0.307648 -0.100117 -0.768042 -0.632526 +0.926926 -0.604914 0.30589 -0.081767 -0.801703 -0.592104 +0.914406 -0.602888 0.30415 -0.0548538 -0.849094 -0.525387 +0.9014 -0.601137 0.302414 -0.0201741 -0.878212 -0.477846 +0.886772 -0.600214 0.300704 -0.00352782 -0.895854 -0.444336 +0.871177 -0.599793 0.299008 0.0297024 -0.916673 -0.398535 +0.85237 -0.600998 0.29735 0.0533155 -0.915359 -0.399095 +0.829337 -0.604335 0.295735 0.0393176 -0.9107 -0.411193 +0.803205 -0.609281 0.294163 -0.0588456 -0.88582 -0.460285 +0.785192 -0.610305 0.292543 -0.174027 -0.770415 -0.613332 +0.784036 -0.603002 0.290782 -0.276276 -0.682329 -0.676831 +0.785968 -0.594158 0.288992 -0.372946 -0.50298 -0.779694 +0.792098 -0.583182 0.28715 -0.404392 -0.456391 -0.792575 +0.534579 -0.483896 0.238345 0.266157 -0.96385 0.0124271 +0.507339 -0.491516 0.23726 0.169629 -0.98392 0.0559356 +0.490178 -0.493491 0.235945 0.103176 -0.991742 0.0761814 +0.476081 -0.493773 0.234563 0.0194649 -0.996891 0.076365 +0.462259 -0.493949 0.233181 -0.0245877 -0.996472 0.0802583 +0.44976 -0.493407 0.231774 -0.0708742 -0.996195 0.0507223 +0.437893 -0.49254 0.230362 -0.10273 -0.994588 0.0155336 +0.426301 -0.49154 0.228945 -0.122328 -0.992302 -0.0193381 +0.415142 -0.490338 0.227526 -0.109687 -0.991067 -0.0758851 +0.404693 -0.488746 0.226095 -0.0952445 -0.979776 -0.175983 +0.394017 -0.487319 0.224676 -0.1096 -0.968109 -0.225286 +0.383534 -0.485817 0.223264 -0.130195 -0.956183 -0.262231 +0.373127 -0.484293 0.221853 -0.156991 -0.947319 -0.279179 +0.362356 -0.483027 0.220461 -0.172949 -0.942225 -0.286881 +0.351908 -0.481597 0.21907 -0.192934 -0.942881 -0.271572 +0.342848 -0.479362 0.217628 -0.202464 -0.94633 -0.251929 +0.333844 -0.477122 0.216199 -0.229455 -0.940992 -0.248771 +0.323983 -0.475431 0.214806 -0.259348 -0.93541 -0.240309 +0.316036 -0.472601 0.213357 -0.283798 -0.927521 -0.24324 +0.308708 -0.469421 0.21189 -0.310301 -0.916025 -0.254194 +0.302236 -0.465729 0.210396 -0.334091 -0.903431 -0.268695 +0.296081 -0.461862 0.208888 -0.353752 -0.89079 -0.285225 +0.288494 -0.458893 0.207439 -0.36646 -0.877878 -0.308283 +0.281203 -0.45576 0.205985 -0.374988 -0.866309 -0.329992 +0.274913 -0.452018 0.204495 -0.380089 -0.856299 -0.349695 +0.269052 -0.448022 0.203 -0.382441 -0.848286 -0.366267 +0.262613 -0.444398 0.201515 -0.386576 -0.841173 -0.378137 +0.25677 -0.440416 0.200025 -0.402579 -0.830196 -0.385624 +0.25058 -0.436666 0.198542 -0.418958 -0.820855 -0.388164 +0.243703 -0.433366 0.197095 -0.446199 -0.805269 -0.390448 +0.238462 -0.429039 0.195578 -0.468087 -0.7948 -0.386248 +0.233165 -0.42476 0.194075 -0.49117 -0.78032 -0.387109 +0.227665 -0.420616 0.192576 -0.513202 -0.764515 -0.390056 +0.222237 -0.416444 0.191078 -0.524117 -0.754253 -0.39548 +0.217064 -0.412108 0.189573 -0.529041 -0.744593 -0.407061 +0.212357 -0.40748 0.188049 -0.537772 -0.729876 -0.421999 +0.206967 -0.403312 0.186554 -0.547772 -0.714483 -0.435272 +0.201628 -0.399112 0.185059 -0.555889 -0.699509 -0.449083 +0.195895 -0.395179 0.183582 -0.566276 -0.683331 -0.46086 +0.190451 -0.391067 0.182097 -0.583171 -0.663052 -0.469335 +0.186301 -0.386117 0.180562 -0.601557 -0.643676 -0.473086 +0.182717 -0.380792 0.178991 -0.622413 -0.62432 -0.472045 +0.179786 -0.375042 0.177396 -0.649749 -0.602092 -0.464016 +0.176173 -0.369739 0.175835 -0.674572 -0.581941 -0.454201 +0.171944 -0.364848 0.174299 -0.701014 -0.560803 -0.440545 +0.168074 -0.359721 0.172742 -0.724985 -0.539593 -0.428062 +0.164343 -0.354501 0.171183 -0.748678 -0.512717 -0.420241 +0.16082 -0.349145 0.169617 -0.767372 -0.490084 -0.413472 +0.157394 -0.343729 0.168047 -0.780232 -0.467211 -0.415876 +0.154046 -0.338251 0.166468 -0.791373 -0.442145 -0.422185 +0.150872 -0.332655 0.164887 -0.800486 -0.417484 -0.430035 +0.148426 -0.326568 0.163264 -0.809432 -0.386683 -0.441924 +0.146544 -0.320088 0.161606 -0.816675 -0.357118 -0.453333 +0.146896 -0.31205 0.159832 -0.821371 -0.327595 -0.466938 +0.147458 -0.303848 0.158046 -0.824659 -0.290874 -0.485109 +0.147767 -0.295812 0.156269 -0.83128 -0.243826 -0.499521 +0.146915 -0.288567 0.154547 -0.84016 -0.200281 -0.504003 +0.14565 -0.281589 0.152846 -0.848625 -0.158522 -0.504684 +0.14435 -0.274631 0.151153 -0.858385 -0.110487 -0.500966 +0.143815 -0.267123 0.149408 -0.868374 -0.0725752 -0.490572 +0.143865 -0.259184 0.147621 -0.883147 -0.0460736 -0.46683 +0.146488 -0.249404 0.14569 -0.898835 -0.0394486 -0.436511 +0.149841 -0.23908 0.143705 -0.917126 -0.0346403 -0.39709 +0.152768 -0.229012 0.141743 -0.934984 -0.0344619 -0.353012 +0.153242 -0.220684 0.139918 -0.94863 -0.0388133 -0.313999 +0.15209 -0.213501 0.138179 -0.959304 -0.0468285 -0.278467 +0.150901 -0.20633 0.136446 -0.97357 -0.0569412 -0.221177 +0.150499 -0.19858 0.134656 -0.982917 -0.0750317 -0.168052 +0.150688 -0.190392 0.132832 -0.991054 -0.0987319 -0.0898049 +0.150791 -0.182239 0.131008 -0.992549 -0.121678 -0.00632488 +0.149894 -0.174806 0.12924 -0.985236 -0.156061 0.0703961 +0.148451 -0.167757 0.127505 -0.9705 -0.195898 0.140549 +0.146044 -0.161405 0.125831 -0.95033 -0.234822 0.20428 +0.143267 -0.155328 0.124181 -0.926887 -0.272219 0.25841 +0.140201 -0.149464 0.122538 -0.900206 -0.311945 0.303838 +0.136956 -0.143733 0.120918 -0.880264 -0.342964 0.327888 +0.133669 -0.138028 0.119293 -0.857969 -0.378631 0.347171 +0.130291 -0.132385 0.117682 -0.84129 -0.400909 0.362634 +0.126858 -0.126786 0.116069 -0.822605 -0.434258 0.367071 +0.123361 -0.121242 0.114461 -0.809641 -0.462024 0.361961 +0.119719 -0.115805 0.112859 -0.786375 -0.509964 0.34864 +0.115701 -0.110655 0.111291 -0.745414 -0.563047 0.356842 +0.111394 -0.105727 0.109731 -0.704559 -0.610452 0.361864 +0.106099 -0.101567 0.108256 -0.658061 -0.673638 0.336405 +0.100615 -0.0975491 0.10679 -0.567283 -0.766254 0.301737 +0.0940659 -0.0943777 0.105403 -0.488828 -0.832422 0.261002 +0.0867441 -0.0918119 0.10407 -0.352395 -0.917781 0.183019 +0.0790331 -0.089579 0.102774 -0.204473 -0.972902 0.107954 +0.0677564 -0.0901399 0.101741 -0.0956074 -0.995351 0.0116802 +0.055762 -0.091307 0.100778 -0.0170851 -0.997823 -0.063702 +0.042008 -0.0939087 0.0999447 0.012649 -0.990687 -0.135577 +0.0309316 -0.0944489 0.0989325 -0.0347616 -0.98381 -0.175814 +0.0210537 -0.0940823 0.0978383 -0.101369 -0.976912 -0.188068 +0.0118938 -0.0931839 0.096693 -0.19014 -0.961349 -0.199143 +0.00306538 -0.0920597 0.0955325 -0.286676 -0.931252 -0.224918 +-0.00386565 -0.0894372 0.0942307 -0.360243 -0.901057 -0.241501 +-0.0103446 -0.0864799 0.0928995 -0.455537 -0.855752 -0.245309 +-0.016499 -0.0832738 0.0915462 -0.517211 -0.812238 -0.269745 +-0.0217901 -0.0793966 0.0901291 -0.583513 -0.762633 -0.279114 +-0.0267344 -0.075231 0.088684 -0.634965 -0.713306 -0.296674 +-0.0308058 -0.0703808 0.087172 -0.675583 -0.666275 -0.3157 +-0.0340566 -0.06486 0.085593 -0.714611 -0.613197 -0.336633 +-0.0366791 -0.058819 0.0839644 -0.746222 -0.555181 -0.367326 +-0.0382812 -0.0519431 0.0822558 -0.778489 -0.490124 -0.39209 +-0.0338372 -0.0400774 0.0800403 -0.787029 -0.387867 -0.479734 +1.04285 -0.625263 0.314492 -0.0115789 -0.573394 -0.819198 +1.02752 -0.624209 0.312704 -0.0330385 -0.600214 -0.799157 +1.01324 -0.622719 0.310923 -0.0448407 -0.595422 -0.802162 +1.00279 -0.619485 0.309132 -0.0585071 -0.624335 -0.778964 +0.992528 -0.616188 0.307345 -0.0692443 -0.657752 -0.750046 +0.982992 -0.612579 0.305564 -0.0817134 -0.682287 -0.726504 +0.97345 -0.608991 0.303787 -0.0943633 -0.725122 -0.682124 +0.962676 -0.60601 0.302028 -0.0912452 -0.743641 -0.662323 +0.951108 -0.60344 0.300276 -0.0819013 -0.780108 -0.620262 +0.939336 -0.600999 0.29853 -0.0661183 -0.821926 -0.565745 +0.926481 -0.599106 0.296798 -0.0448978 -0.850365 -0.524276 +0.913042 -0.59753 0.295088 -0.0298341 -0.876203 -0.481019 +0.897881 -0.596832 0.293392 -0.00237152 -0.89872 -0.438517 +0.882407 -0.596333 0.291712 0.0329095 -0.917465 -0.396455 +0.86424 -0.597192 0.29007 0.0442448 -0.919353 -0.390938 +0.841571 -0.600323 0.288486 0.0453941 -0.912756 -0.405977 +0.814171 -0.605856 0.286961 -0.0259603 -0.878245 -0.477506 +0.79718 -0.606337 0.285351 -0.177239 -0.798363 -0.575504 +0.795767 -0.599148 0.283587 -0.208879 -0.770341 -0.602449 +0.798883 -0.589693 0.281759 -0.2966 -0.592972 -0.748607 +0.808617 -0.576893 0.279854 -0.412558 -0.352814 -0.839834 +0.549517 -0.477394 0.231138 0.355852 -0.933599 -0.0420019 +0.509997 -0.491937 0.23043 0.18794 -0.982038 0.0167878 +0.492267 -0.494224 0.229152 0.10471 -0.992187 0.0678321 +0.478037 -0.494574 0.227789 0.0423311 -0.99765 0.053906 +0.464021 -0.494853 0.226438 -0.0198411 -0.998094 0.058459 +0.451568 -0.49427 0.225041 -0.0691247 -0.996763 0.0410635 +0.440276 -0.493066 0.223626 -0.112528 -0.993601 0.00979107 +0.429271 -0.491722 0.222211 -0.130686 -0.991306 -0.0153042 +0.417679 -0.490751 0.220823 -0.13376 -0.989827 -0.0485114 +0.407185 -0.489185 0.219403 -0.129266 -0.983316 -0.127994 +0.397143 -0.487376 0.217981 -0.136083 -0.977028 -0.164009 +0.387136 -0.485581 0.216558 -0.140957 -0.963051 -0.229487 +0.377218 -0.483766 0.215147 -0.160729 -0.955578 -0.247054 +0.367073 -0.482106 0.213744 -0.16842 -0.954104 -0.247627 +0.356783 -0.480569 0.212356 -0.175809 -0.955248 -0.237897 +0.347257 -0.478603 0.210944 -0.192506 -0.952798 -0.234775 +0.337798 -0.476628 0.209544 -0.217061 -0.94945 -0.226787 +0.327901 -0.474937 0.208164 -0.250753 -0.941069 -0.226961 +0.319341 -0.472479 0.206738 -0.282915 -0.930716 -0.231791 +0.311544 -0.469573 0.205293 -0.316391 -0.916653 -0.244218 +0.305103 -0.46586 0.203804 -0.34327 -0.902734 -0.259303 +0.299333 -0.461751 0.20229 -0.374936 -0.885833 -0.273356 +0.293868 -0.457463 0.200762 -0.38496 -0.8762 -0.289967 +0.288188 -0.453313 0.199255 -0.396751 -0.865514 -0.305736 +0.281649 -0.449713 0.197776 -0.405894 -0.855062 -0.322677 +0.274306 -0.446625 0.196336 -0.405921 -0.8477 -0.341516 +0.266896 -0.443595 0.194904 -0.405542 -0.842296 -0.35507 +0.260153 -0.44017 0.193447 -0.409262 -0.834296 -0.369397 +0.253782 -0.436528 0.191973 -0.41849 -0.827193 -0.374993 +0.247558 -0.432805 0.190501 -0.439738 -0.814572 -0.378292 +0.241459 -0.429012 0.189032 -0.461126 -0.799319 -0.385296 +0.235787 -0.424962 0.18754 -0.48349 -0.783315 -0.390713 +0.230677 -0.420571 0.186028 -0.50786 -0.765044 -0.395963 +0.22563 -0.41614 0.184519 -0.526983 -0.747652 -0.404112 +0.220653 -0.411676 0.183009 -0.537938 -0.732378 -0.417428 +0.216001 -0.407006 0.18148 -0.544905 -0.719443 -0.430676 +0.211732 -0.402096 0.179936 -0.547061 -0.71077 -0.442188 +0.207979 -0.396854 0.17837 -0.555463 -0.696499 -0.454258 +0.203158 -0.392312 0.176856 -0.565803 -0.685395 -0.45837 +0.19813 -0.387912 0.175355 -0.579177 -0.673795 -0.458864 +0.192729 -0.383768 0.173866 -0.593505 -0.656311 -0.465841 +0.188046 -0.379149 0.172355 -0.608342 -0.642078 -0.466538 +0.183577 -0.374404 0.170824 -0.635129 -0.620294 -0.460269 +0.179126 -0.369654 0.169303 -0.659263 -0.59931 -0.454093 +0.174589 -0.364956 0.167786 -0.687405 -0.576626 -0.441563 +0.170575 -0.359926 0.166237 -0.715322 -0.546929 -0.434954 +0.166936 -0.35464 0.164678 -0.735483 -0.520663 -0.433561 +0.163877 -0.348968 0.16308 -0.75222 -0.494493 -0.43548 +0.161035 -0.343148 0.161476 -0.76576 -0.466582 -0.442623 +0.158947 -0.336809 0.159833 -0.776464 -0.437561 -0.453479 +0.155521 -0.331377 0.158259 -0.788334 -0.407171 -0.461238 +0.153403 -0.325047 0.156616 -0.794584 -0.378007 -0.475129 +0.152444 -0.317919 0.154906 -0.799281 -0.350294 -0.488309 +0.153025 -0.30972 0.153107 -0.803783 -0.317058 -0.503396 +0.15249 -0.302272 0.151376 -0.807602 -0.283107 -0.517331 +0.151798 -0.294916 0.149635 -0.816219 -0.242915 -0.524194 +0.150133 -0.288225 0.147957 -0.827398 -0.207461 -0.521892 +0.148276 -0.281657 0.146289 -0.840852 -0.163688 -0.515922 +0.14673 -0.27487 0.144598 -0.854585 -0.120737 -0.505081 +0.146268 -0.267312 0.142839 -0.872612 -0.092455 -0.479583 +0.146413 -0.259298 0.141044 -0.888236 -0.0735149 -0.453467 +0.149647 -0.249083 0.139059 -0.908333 -0.0619557 -0.413631 +0.153702 -0.238258 0.13702 -0.927733 -0.0628421 -0.367917 +0.155203 -0.229206 0.135127 -0.944781 -0.065421 -0.321107 +0.153933 -0.22212 0.133399 -0.956607 -0.0622363 -0.284653 +0.152499 -0.215144 0.131675 -0.967144 -0.079845 -0.241367 +0.15133 -0.207963 0.129933 -0.978191 -0.0947813 -0.184821 +0.151009 -0.200156 0.128137 -0.983634 -0.123389 -0.131299 +0.15102 -0.192097 0.126312 -0.987886 -0.142027 -0.0625361 +0.150721 -0.184242 0.124507 -0.985064 -0.171496 0.0154633 +0.149387 -0.177125 0.122766 -0.977726 -0.197113 0.072089 +0.147386 -0.170495 0.121062 -0.961486 -0.230828 0.149211 +0.144808 -0.164281 0.119398 -0.944682 -0.265471 0.192619 +0.141915 -0.158293 0.11775 -0.922749 -0.306151 0.234104 +0.138823 -0.152453 0.116117 -0.901251 -0.339847 0.268795 +0.135582 -0.146719 0.114491 -0.882446 -0.371606 0.288441 +0.132261 -0.141042 0.112876 -0.865913 -0.396631 0.304758 +0.129117 -0.135235 0.111239 -0.852912 -0.42073 0.309074 +0.12578 -0.129575 0.109628 -0.836972 -0.450176 0.311157 +0.122299 -0.124015 0.108012 -0.818619 -0.481111 0.313682 +0.118484 -0.118716 0.106434 -0.799057 -0.517768 0.305654 +0.114408 -0.113612 0.104863 -0.772198 -0.560725 0.29883 +0.110164 -0.108641 0.103316 -0.723695 -0.626826 0.288712 +0.105188 -0.104237 0.101811 -0.675157 -0.690908 0.258474 +0.0998642 -0.100103 0.100339 -0.609757 -0.76054 0.223107 +0.0941493 -0.0962855 0.0988988 -0.514891 -0.835869 0.190293 +0.0875322 -0.093178 0.0975276 -0.397104 -0.906761 0.141757 +0.080617 -0.0903205 0.0961802 -0.291052 -0.953962 0.0724338 +0.0700596 -0.0903192 0.0951115 -0.166171 -0.985404 -0.0369818 +0.0589853 -0.0907613 0.0940908 -0.0728776 -0.990883 -0.113318 +0.0468619 -0.0920641 0.0931559 -0.0162869 -0.984891 -0.172411 +0.0347867 -0.0933701 0.0922326 -0.0257747 -0.974441 -0.223162 +0.024805 -0.0930796 0.0911557 -0.0788161 -0.966662 -0.243627 +0.0156054 -0.0922031 0.0900276 -0.154363 -0.947392 -0.280397 +0.00688907 -0.0909709 0.0888672 -0.239615 -0.925324 -0.293873 +-0.00040787 -0.0886291 0.0875986 -0.318209 -0.893178 -0.317771 +-0.00664148 -0.0854676 0.0862564 -0.400651 -0.852799 -0.334984 +-0.0131282 -0.0825141 0.0849323 -0.472761 -0.812423 -0.341273 +-0.0184004 -0.0786072 0.083511 -0.538644 -0.759813 -0.364071 +-0.0232141 -0.0743368 0.0820609 -0.592598 -0.706143 -0.387546 +-0.0274817 -0.0696297 0.0805652 -0.644053 -0.646874 -0.408352 +-0.0303321 -0.0637806 0.0789527 -0.671058 -0.606548 -0.42636 +-0.0326701 -0.0575081 0.0772947 -0.707542 -0.550395 -0.443224 +-0.0342796 -0.0506218 0.0755751 -0.736807 -0.462966 -0.492726 +-0.027287 -0.0366619 0.0731302 -0.738855 -0.362316 -0.568173 +1.02916 -0.609246 0.3016 -0.00197743 -0.633188 -0.773997 +1.01216 -0.609048 0.299862 -0.0386092 -0.66458 -0.74622 +0.999114 -0.607037 0.29811 -0.048786 -0.699622 -0.712847 +0.988383 -0.603979 0.296344 -0.0483525 -0.72567 -0.686343 +0.976563 -0.601461 0.294598 -0.0721111 -0.748397 -0.65932 +0.96433 -0.599177 0.292854 -0.0556631 -0.788688 -0.612269 +0.951491 -0.597208 0.29113 -0.0428953 -0.820618 -0.569866 +0.938279 -0.595465 0.289418 -0.0296066 -0.853758 -0.519829 +0.923895 -0.594313 0.287723 -0.0199348 -0.870567 -0.491648 +0.908557 -0.593673 0.286046 0.0084194 -0.892235 -0.451495 +0.892518 -0.593422 0.28439 0.0305127 -0.906618 -0.420848 +0.875215 -0.593838 0.282761 0.0292958 -0.913846 -0.405002 +0.854015 -0.596213 0.281185 0.0553862 -0.919385 -0.389443 +0.824405 -0.60279 0.27973 -0.0154331 -0.86773 -0.496798 +0.81206 -0.60096 0.278083 -0.0705813 -0.812645 -0.578469 +0.810121 -0.594 0.276308 -0.109268 -0.794726 -0.597052 +0.814896 -0.583693 0.274446 -0.109229 -0.779775 -0.616457 +0.515487 -0.490746 0.2235 0.225589 -0.974005 -0.0205956 +0.494328 -0.494969 0.222352 0.13567 -0.990594 0.0177817 +0.479361 -0.495732 0.221037 0.0463512 -0.998404 0.0322877 +0.465159 -0.49611 0.219706 -0.0167917 -0.999307 0.0332458 +0.452755 -0.495491 0.218328 -0.0641622 -0.997818 0.0156074 +0.44229 -0.493798 0.216904 -0.111907 -0.993703 -0.00549248 +0.431873 -0.492113 0.215479 -0.127741 -0.991342 -0.0303814 +0.420684 -0.490901 0.214093 -0.146336 -0.987631 -0.0563189 +0.410343 -0.489237 0.21268 -0.158609 -0.983197 -0.0903789 +0.400045 -0.487572 0.211277 -0.155357 -0.977774 -0.140791 +0.39004 -0.485764 0.209867 -0.15675 -0.96995 -0.186084 +0.380406 -0.483765 0.208453 -0.166221 -0.964261 -0.206325 +0.370962 -0.481683 0.207045 -0.173182 -0.961768 -0.212158 +0.361869 -0.479425 0.20562 -0.170253 -0.961117 -0.217414 +0.351914 -0.477697 0.20424 -0.180702 -0.959177 -0.217551 +0.341659 -0.476187 0.20287 -0.203538 -0.95548 -0.213612 +0.331657 -0.474555 0.20151 -0.244126 -0.944573 -0.219515 +0.322707 -0.472312 0.200107 -0.279778 -0.932996 -0.226367 +0.314496 -0.469657 0.198683 -0.317814 -0.918248 -0.236251 +0.307405 -0.466329 0.197218 -0.349876 -0.902949 -0.249541 +0.301784 -0.462127 0.195704 -0.378268 -0.886988 -0.264892 +0.296321 -0.457827 0.194188 -0.398701 -0.875323 -0.273587 +0.291321 -0.453255 0.192652 -0.415403 -0.862654 -0.288563 +0.286007 -0.448894 0.191128 -0.422818 -0.85483 -0.300818 +0.279621 -0.445197 0.189654 -0.427569 -0.847404 -0.314789 +0.271653 -0.442502 0.188251 -0.426267 -0.841172 -0.332756 +0.263681 -0.439832 0.186845 -0.421986 -0.835091 -0.352919 +0.256343 -0.436789 0.185425 -0.423978 -0.830065 -0.362266 +0.249834 -0.433238 0.183967 -0.435263 -0.817618 -0.376894 +0.243493 -0.4296 0.182512 -0.455767 -0.804862 -0.380098 +0.237418 -0.425802 0.181043 -0.48564 -0.783562 -0.387539 +0.232257 -0.421431 0.179538 -0.50771 -0.762229 -0.401546 +0.227342 -0.416912 0.178021 -0.526813 -0.741136 -0.416156 +0.222861 -0.412129 0.176488 -0.543165 -0.725043 -0.423422 +0.218615 -0.407193 0.17495 -0.549956 -0.710703 -0.438692 +0.214712 -0.402042 0.173391 -0.550674 -0.702168 -0.451353 +0.211609 -0.396373 0.17179 -0.554469 -0.689013 -0.466718 +0.207655 -0.391253 0.170233 -0.558922 -0.681894 -0.471833 +0.203515 -0.386263 0.168691 -0.5694 -0.671607 -0.474055 +0.197953 -0.382204 0.167216 -0.580837 -0.660128 -0.476298 +0.192197 -0.378289 0.165749 -0.597788 -0.648398 -0.471414 +0.186975 -0.374033 0.164265 -0.622013 -0.63017 -0.464742 +0.182203 -0.369486 0.162755 -0.642133 -0.614539 -0.458268 +0.177692 -0.364773 0.161235 -0.670376 -0.588797 -0.451568 +0.173568 -0.359807 0.1597 -0.69504 -0.557757 -0.453683 +0.170096 -0.354403 0.158128 -0.718123 -0.525233 -0.456542 +0.167383 -0.348488 0.156513 -0.730432 -0.497897 -0.467513 +0.165632 -0.341918 0.154847 -0.747566 -0.463191 -0.476024 +0.164293 -0.335065 0.153159 -0.757632 -0.428823 -0.492042 +0.161842 -0.328958 0.151522 -0.767329 -0.397614 -0.503102 +0.160745 -0.321922 0.149822 -0.772239 -0.365842 -0.519428 +0.159031 -0.315297 0.148146 -0.775605 -0.338262 -0.532932 +0.158081 -0.308142 0.146422 -0.778203 -0.306577 -0.548098 +0.15595 -0.301776 0.144769 -0.78203 -0.283461 -0.555049 +0.154065 -0.295245 0.1431 -0.794486 -0.246757 -0.55489 +0.152348 -0.288588 0.141416 -0.807129 -0.224596 -0.545986 +0.150727 -0.281856 0.139724 -0.828425 -0.185947 -0.528333 +0.149272 -0.275003 0.138026 -0.848964 -0.150173 -0.506663 +0.149061 -0.26726 0.136246 -0.874755 -0.117753 -0.47004 +0.149633 -0.258948 0.134413 -0.895101 -0.0980491 -0.43495 +0.153422 -0.248338 0.132384 -0.916268 -0.089065 -0.390539 +0.156131 -0.238453 0.130413 -0.933941 -0.0891381 -0.346135 +0.156327 -0.230336 0.128583 -0.948932 -0.0918501 -0.301811 +0.15457 -0.223599 0.126884 -0.961774 -0.0970057 -0.256086 +0.152708 -0.216934 0.125186 -0.970639 -0.121683 -0.207491 +0.151908 -0.209488 0.123416 -0.978495 -0.132484 -0.1581 +0.151484 -0.201763 0.121614 -0.981332 -0.161616 -0.104258 +0.15145 -0.193731 0.119791 -0.983713 -0.17478 -0.0419623 +0.150499 -0.186358 0.118025 -0.977175 -0.210747 0.0267054 +0.148782 -0.17953 0.116301 -0.967543 -0.238008 0.0849349 +0.146426 -0.173156 0.11462 -0.957515 -0.261467 0.121658 +0.14366 -0.167085 0.112962 -0.937841 -0.302035 0.170967 +0.140846 -0.16105 0.11131 -0.919506 -0.33448 0.206473 +0.137599 -0.15532 0.10969 -0.902381 -0.364502 0.229886 +0.134423 -0.149548 0.10806 -0.886006 -0.391786 0.247987 +0.131236 -0.143772 0.106435 -0.875567 -0.410282 0.255047 +0.127878 -0.138136 0.104819 -0.864392 -0.432253 0.256874 +0.124496 -0.132506 0.103203 -0.852097 -0.458004 0.253303 +0.121053 -0.126931 0.101595 -0.835485 -0.491036 0.246673 +0.117325 -0.121571 0.100009 -0.813385 -0.532028 0.23527 +0.113406 -0.116352 0.0984335 -0.791771 -0.57151 0.215584 +0.109327 -0.111257 0.0968643 -0.749497 -0.630528 0.201714 +0.10472 -0.106576 0.0953447 -0.688683 -0.700862 0.185764 +0.0998309 -0.102109 0.0938417 -0.626474 -0.762319 0.162482 +0.0946868 -0.0978492 0.0923636 -0.554673 -0.821846 0.130027 +0.0886461 -0.0942946 0.0909553 -0.454102 -0.887596 0.0772351 +0.0820837 -0.091161 0.0895911 -0.333033 -0.942712 0.0195728 +0.0729913 -0.0900097 0.0884233 -0.221841 -0.973559 -0.054508 +0.0634105 -0.0892738 0.0873013 -0.128258 -0.981162 -0.144478 +0.0520275 -0.0899753 0.0863237 -0.0556086 -0.978752 -0.197366 +0.040798 -0.0906086 0.0853504 -0.0427058 -0.96507 -0.258488 +0.0289968 -0.0917273 0.0844308 -0.0771636 -0.949355 -0.304588 +0.0204078 -0.0903571 0.0832579 -0.142832 -0.927585 -0.345235 +0.011393 -0.0893459 0.0821301 -0.204237 -0.906959 -0.368393 +0.00404955 -0.0870302 0.0808704 -0.284442 -0.873969 -0.394045 +-0.00230872 -0.0839518 0.0795448 -0.367815 -0.832177 -0.414963 +-0.00837018 -0.0806525 0.0781858 -0.431996 -0.793766 -0.428155 +-0.0140293 -0.0770381 0.0768055 -0.493559 -0.7432 -0.451724 +-0.0189714 -0.0728601 0.0753651 -0.551359 -0.691539 -0.466667 +-0.0236553 -0.0684854 0.0739023 -0.604706 -0.637584 -0.477303 +-0.0265101 -0.0626283 0.0722886 -0.615741 -0.597098 -0.514137 +-0.0286369 -0.0561676 0.0706128 -0.646349 -0.539002 -0.540102 +-0.030383 -0.0493905 0.0688991 -0.692032 -0.460165 -0.556183 +-0.0203698 -0.0329371 0.0661576 -0.694346 -0.331554 -0.638713 +1.02769 -0.595681 0.290483 0.0183294 -0.674045 -0.738464 +1.00673 -0.597365 0.288816 -0.0146617 -0.726297 -0.687225 +0.99154 -0.596409 0.287101 -0.0281632 -0.75469 -0.655478 +0.977786 -0.59481 0.285389 -0.0494802 -0.790064 -0.611024 +0.964319 -0.593114 0.28368 -0.0276321 -0.820406 -0.571114 +0.95018 -0.591783 0.281989 -0.0113067 -0.845177 -0.534369 +0.934395 -0.591278 0.280327 -0.0144195 -0.866408 -0.499131 +0.919545 -0.590377 0.278664 0.00710413 -0.885723 -0.464161 +0.903133 -0.59028 0.277026 0.0295988 -0.906943 -0.420211 +0.884399 -0.591355 0.275439 0.0567871 -0.91526 -0.398844 +0.864152 -0.593239 0.273881 0.0521908 -0.920972 -0.38612 +0.838721 -0.597742 0.272409 0.0332367 -0.887255 -0.460079 +0.826534 -0.595792 0.270771 -0.0459498 -0.836128 -0.546607 +0.825096 -0.588564 0.268979 -0.108777 -0.815131 -0.568973 +0.83728 -0.574546 0.266975 -0.0465345 -0.843866 -0.534534 +0.523302 -0.488252 0.21649 0.267849 -0.961538 -0.0608465 +0.497937 -0.494843 0.215503 0.156435 -0.987684 -0.00320786 +0.480339 -0.497093 0.214291 0.0658202 -0.997829 -0.00249713 +0.465528 -0.497808 0.213001 -0.0246424 -0.999609 0.0132137 +0.453691 -0.496867 0.211622 -0.0663405 -0.997791 -0.00377504 +0.443898 -0.494782 0.210182 -0.109026 -0.993809 -0.0214018 +0.433934 -0.492823 0.208764 -0.136471 -0.9896 -0.0454781 +0.423106 -0.49139 0.207368 -0.159223 -0.98432 -0.0759142 +0.412951 -0.489609 0.205966 -0.171273 -0.979674 -0.104438 +0.403008 -0.487726 0.20456 -0.173707 -0.976196 -0.129882 +0.39297 -0.485933 0.203165 -0.167764 -0.970959 -0.170569 +0.383818 -0.483637 0.20175 -0.17368 -0.965978 -0.191633 +0.374671 -0.481374 0.200334 -0.177872 -0.963452 -0.200303 +0.365408 -0.479197 0.198927 -0.174523 -0.962502 -0.207684 +0.356269 -0.476981 0.197522 -0.17625 -0.96146 -0.211028 +0.346287 -0.475292 0.196158 -0.19296 -0.956839 -0.21732 +0.335738 -0.473981 0.194824 -0.22681 -0.947721 -0.224467 +0.326267 -0.472043 0.193454 -0.267585 -0.935854 -0.229299 +0.317691 -0.469587 0.192052 -0.310375 -0.921063 -0.23518 +0.310142 -0.466534 0.190618 -0.348697 -0.904429 -0.245806 +0.303885 -0.462715 0.189136 -0.379018 -0.888173 -0.259798 +0.297945 -0.458704 0.187638 -0.411935 -0.868091 -0.276999 +0.292894 -0.454165 0.186104 -0.422945 -0.859999 -0.285518 +0.28782 -0.449645 0.18458 -0.434411 -0.849754 -0.298673 +0.282563 -0.445246 0.183059 -0.443443 -0.842404 -0.306126 +0.275804 -0.441791 0.18161 -0.443033 -0.836975 -0.321242 +0.268208 -0.43888 0.180197 -0.43721 -0.832385 -0.340563 +0.259472 -0.436693 0.178843 -0.433839 -0.829689 -0.351285 +0.252623 -0.433354 0.177405 -0.440493 -0.820049 -0.365358 +0.246035 -0.429865 0.175962 -0.458536 -0.802919 -0.380876 +0.239937 -0.426071 0.174501 -0.480519 -0.783771 -0.393451 +0.234509 -0.421869 0.173012 -0.50411 -0.760296 -0.409663 +0.229373 -0.417491 0.171508 -0.524011 -0.736662 -0.427482 +0.224752 -0.412784 0.16998 -0.540218 -0.717169 -0.440266 +0.220568 -0.407812 0.168437 -0.547087 -0.702139 -0.45574 +0.216689 -0.402638 0.166875 -0.547496 -0.694446 -0.466898 +0.214023 -0.396685 0.165257 -0.549107 -0.683766 -0.48057 +0.210908 -0.391012 0.163661 -0.548565 -0.673311 -0.49571 +0.207223 -0.385722 0.16209 -0.551916 -0.665731 -0.502186 +0.201991 -0.381434 0.160606 -0.56231 -0.657771 -0.501144 +0.195986 -0.377679 0.159153 -0.578557 -0.649271 -0.49368 +0.190214 -0.37377 0.157701 -0.602599 -0.633325 -0.485567 +0.185276 -0.369325 0.156199 -0.623154 -0.617837 -0.479538 +0.18076 -0.364615 0.154681 -0.646202 -0.592556 -0.480937 +0.176804 -0.359521 0.153131 -0.665958 -0.562908 -0.489526 +0.173621 -0.353924 0.151547 -0.690044 -0.531884 -0.490855 +0.171148 -0.347838 0.149914 -0.70377 -0.497231 -0.507415 +0.170133 -0.340762 0.148203 -0.722264 -0.453508 -0.522173 +0.169497 -0.333427 0.146465 -0.733379 -0.416321 -0.537431 +0.168515 -0.326305 0.144747 -0.739706 -0.377961 -0.556758 +0.166526 -0.319866 0.143082 -0.743603 -0.34856 -0.570579 +0.164014 -0.313775 0.141452 -0.745003 -0.326157 -0.581888 +0.161015 -0.308016 0.13984 -0.754581 -0.307494 -0.579701 +0.158645 -0.301825 0.138198 -0.76721 -0.285751 -0.574226 +0.156332 -0.29558 0.13655 -0.779224 -0.259269 -0.570606 +0.154815 -0.288785 0.134852 -0.795187 -0.242898 -0.555589 +0.153514 -0.281823 0.133135 -0.817128 -0.215996 -0.534461 +0.152496 -0.274657 0.131403 -0.84899 -0.177663 -0.497647 +0.152973 -0.266422 0.12957 -0.870689 -0.156935 -0.466126 +0.154572 -0.257386 0.127666 -0.894493 -0.136534 -0.425726 +0.156929 -0.247778 0.125712 -0.916477 -0.133057 -0.377315 +0.157785 -0.239208 0.123844 -0.933951 -0.132796 -0.331816 +0.156841 -0.231903 0.122085 -0.950528 -0.129878 -0.282187 +0.154989 -0.225244 0.120382 -0.962535 -0.142376 -0.230771 +0.153431 -0.218352 0.118658 -0.970921 -0.151446 -0.185406 +0.152704 -0.210856 0.116874 -0.97674 -0.170349 -0.13023 +0.152343 -0.203085 0.115068 -0.978699 -0.191472 -0.074079 +0.15204 -0.195252 0.11326 -0.974188 -0.225051 -0.0176139 +0.150536 -0.188278 0.11152 -0.969433 -0.244112 0.0246875 +0.148491 -0.181691 0.109817 -0.959965 -0.272061 0.0666885 +0.145908 -0.1755 0.108148 -0.946459 -0.303082 0.111156 +0.142848 -0.16964 0.106515 -0.932211 -0.332041 0.143983 +0.139691 -0.163856 0.104883 -0.915975 -0.362325 0.17237 +0.136588 -0.15803 0.103254 -0.902597 -0.387482 0.187557 +0.133337 -0.152322 0.101631 -0.892235 -0.406855 0.195924 +0.130093 -0.146597 0.100013 -0.883751 -0.424888 0.196102 +0.126974 -0.140774 0.0983743 -0.875559 -0.443289 0.19207 +0.123623 -0.135134 0.0967591 -0.865647 -0.464702 0.186303 +0.120185 -0.129555 0.0951501 -0.848651 -0.497491 0.179702 +0.116741 -0.123981 0.0935405 -0.828927 -0.533715 0.167418 +0.113098 -0.118558 0.0919498 -0.802435 -0.578525 0.146306 +0.109574 -0.11304 0.0903465 -0.774903 -0.618039 0.132497 +0.105117 -0.108242 0.0888135 -0.72534 -0.678033 0.118973 +0.100674 -0.103435 0.087286 -0.654204 -0.750778 0.0913776 +0.0957456 -0.0990089 0.0857895 -0.589666 -0.804895 0.0666137 +0.0897882 -0.0953862 0.0843801 -0.509888 -0.859818 0.0270039 +0.0832349 -0.092236 0.0830207 -0.401565 -0.914846 -0.0424749 +0.0755222 -0.0900114 0.0817576 -0.282902 -0.954584 -0.0934795 +0.067246 -0.0882414 0.0805414 -0.183159 -0.971441 -0.15086 +0.0572955 -0.0878124 0.0794663 -0.126 -0.969231 -0.211463 +0.0468068 -0.0878477 0.0784422 -0.0845815 -0.957414 -0.276052 +0.0361218 -0.088069 0.0774458 -0.0877358 -0.939352 -0.331546 +0.0264508 -0.0875316 0.0763704 -0.135198 -0.916026 -0.377647 +0.0176384 -0.0863444 0.0752344 -0.189273 -0.891101 -0.412451 +0.00996384 -0.084268 0.0740097 -0.251031 -0.855475 -0.452931 +0.00301828 -0.0816482 0.0727299 -0.326783 -0.812715 -0.482398 +-0.00280538 -0.0781407 0.0713607 -0.378324 -0.779981 -0.498501 +-0.00888601 -0.0748522 0.0700095 -0.446378 -0.720379 -0.530849 +-0.0140118 -0.0708089 0.0685919 -0.501302 -0.672977 -0.543874 +-0.0185341 -0.0662904 0.0671179 -0.554056 -0.621531 -0.553823 +-0.021666 -0.0606467 0.0655217 -0.57061 -0.59357 -0.567522 +-0.0238223 -0.0541967 0.0638385 -0.609817 -0.532987 -0.586557 +-0.0252118 -0.0471196 0.0620862 -0.646455 -0.45726 -0.610746 +-0.0146069 -0.0301752 0.0592678 -0.648205 -0.340479 -0.681106 +0.994838 -0.588752 0.277828 -0.0125955 -0.776019 -0.630585 +0.978152 -0.588555 0.276174 -0.0258019 -0.810725 -0.584859 +0.962339 -0.58799 0.27452 -0.0103779 -0.839584 -0.543131 +0.945651 -0.587891 0.272879 -0.00104384 -0.857803 -0.513978 +0.929761 -0.587459 0.271248 0.0261732 -0.88078 -0.472802 +0.914095 -0.586971 0.269625 0.0362446 -0.901758 -0.430722 +0.896012 -0.587715 0.268042 0.0546171 -0.91321 -0.403814 +0.87279 -0.591021 0.266557 0.0438768 -0.912308 -0.407149 +0.853872 -0.592296 0.265024 0.0480733 -0.899157 -0.434979 +0.844398 -0.588974 0.263347 0.0030497 -0.888905 -0.458082 +0.846832 -0.579797 0.261478 -0.0483248 -0.83897 -0.542028 +0.540484 -0.480472 0.209137 0.339598 -0.934879 -0.103315 +0.505013 -0.492743 0.208519 0.212021 -0.975683 -0.0556063 +0.483843 -0.497012 0.207452 0.083473 -0.996251 -0.0227742 +0.467584 -0.498538 0.206228 -0.00662744 -0.999699 -0.0236283 +0.455277 -0.49786 0.204884 -0.0709696 -0.99706 -0.0289151 +0.445431 -0.495801 0.203461 -0.109666 -0.992631 -0.0515607 +0.435673 -0.493714 0.202047 -0.143288 -0.987165 -0.0705314 +0.425676 -0.491801 0.200636 -0.167924 -0.981208 -0.0950573 +0.415457 -0.490045 0.19925 -0.178308 -0.976442 -0.121522 +0.405596 -0.488107 0.197855 -0.182548 -0.972113 -0.147221 +0.396009 -0.486038 0.196452 -0.183773 -0.969015 -0.165045 +0.387143 -0.483568 0.195028 -0.185353 -0.965334 -0.183782 +0.378138 -0.481206 0.193618 -0.180971 -0.963009 -0.199659 +0.368893 -0.479015 0.192226 -0.180269 -0.960885 -0.210251 +0.359963 -0.476659 0.190823 -0.181322 -0.95736 -0.224913 +0.350599 -0.474592 0.189448 -0.189054 -0.953409 -0.235095 +0.340151 -0.473199 0.188119 -0.212849 -0.949317 -0.231285 +0.330428 -0.471411 0.18677 -0.257812 -0.937391 -0.234164 +0.321499 -0.469158 0.185391 -0.301127 -0.922684 -0.240787 +0.313563 -0.466328 0.183974 -0.341202 -0.90642 -0.248966 +0.306566 -0.462947 0.182528 -0.382879 -0.886718 -0.259105 +0.300073 -0.459279 0.18106 -0.409775 -0.869434 -0.275988 +0.29475 -0.454902 0.179541 -0.426373 -0.858406 -0.285215 +0.289667 -0.450379 0.178014 -0.440202 -0.845119 -0.303307 +0.284645 -0.445829 0.176488 -0.448428 -0.835413 -0.317805 +0.279301 -0.441489 0.174982 -0.449268 -0.828596 -0.334049 +0.272947 -0.437787 0.173519 -0.448607 -0.826748 -0.339472 +0.264939 -0.43514 0.172138 -0.447869 -0.823995 -0.347056 +0.256532 -0.43277 0.170779 -0.446711 -0.816162 -0.36651 +0.249487 -0.429554 0.169367 -0.458419 -0.802414 -0.382079 +0.243466 -0.425703 0.167899 -0.478683 -0.779052 -0.404896 +0.237755 -0.421674 0.166425 -0.500514 -0.753667 -0.425997 +0.232253 -0.417523 0.164949 -0.519854 -0.731168 -0.441754 +0.227077 -0.413169 0.163446 -0.537086 -0.711104 -0.45373 +0.222584 -0.408383 0.16192 -0.54925 -0.692556 -0.467645 +0.218462 -0.403363 0.160373 -0.551098 -0.682732 -0.479759 +0.216066 -0.397231 0.158735 -0.543512 -0.676211 -0.497328 +0.21377 -0.391028 0.157098 -0.540908 -0.66662 -0.512871 +0.210853 -0.385228 0.155484 -0.538065 -0.661013 -0.523018 +0.205714 -0.380878 0.153993 -0.548232 -0.655807 -0.518999 +0.200213 -0.376771 0.15252 -0.563757 -0.649176 -0.510635 +0.193995 -0.373158 0.151096 -0.581941 -0.635701 -0.50718 +0.188894 -0.368811 0.149603 -0.597516 -0.617688 -0.511311 +0.184307 -0.364132 0.148093 -0.624885 -0.592906 -0.507919 +0.180603 -0.358869 0.146526 -0.640082 -0.569111 -0.516147 +0.177622 -0.353124 0.144927 -0.663102 -0.527287 -0.531287 +0.175051 -0.347097 0.143297 -0.686303 -0.486583 -0.540579 +0.174298 -0.339842 0.14156 -0.695579 -0.44085 -0.567293 +0.173882 -0.332345 0.139806 -0.698945 -0.402878 -0.590902 +0.173312 -0.324942 0.138058 -0.698863 -0.362426 -0.616634 +0.170988 -0.318722 0.136415 -0.706127 -0.336432 -0.623056 +0.168027 -0.312924 0.134797 -0.72027 -0.319094 -0.615947 +0.164526 -0.307503 0.133219 -0.727057 -0.309396 -0.612913 +0.161715 -0.301603 0.131598 -0.736206 -0.301014 -0.606127 +0.159291 -0.295438 0.12995 -0.756389 -0.285943 -0.588314 +0.158001 -0.28848 0.128235 -0.780582 -0.278113 -0.559774 +0.157169 -0.281186 0.126481 -0.803946 -0.260814 -0.534458 +0.157268 -0.27323 0.124673 -0.83736 -0.223997 -0.498652 +0.158494 -0.264467 0.122783 -0.867236 -0.190898 -0.459846 +0.158862 -0.256282 0.120946 -0.890063 -0.178637 -0.419378 +0.159042 -0.248211 0.119117 -0.911066 -0.175861 -0.372871 +0.158639 -0.240536 0.117321 -0.931334 -0.170165 -0.321963 +0.157282 -0.233524 0.115587 -0.948128 -0.167365 -0.270266 +0.156013 -0.226443 0.113837 -0.959775 -0.178006 -0.217133 +0.154702 -0.219379 0.112094 -0.966952 -0.192769 -0.166863 +0.153921 -0.211923 0.110315 -0.970202 -0.210916 -0.119259 +0.153247 -0.204379 0.108526 -0.972221 -0.224656 -0.0656894 +0.15233 -0.196991 0.106743 -0.968103 -0.249463 -0.0233682 +0.150268 -0.190422 0.105042 -0.961203 -0.27546 0.0145383 +0.14794 -0.184052 0.103355 -0.951118 -0.303791 0.0555594 +0.145293 -0.1779 0.101689 -0.93963 -0.331657 0.0842499 +0.142355 -0.171966 0.10005 -0.926669 -0.359479 0.10982 +0.139296 -0.166112 0.0984189 -0.915177 -0.382705 0.126449 +0.136013 -0.160423 0.0967973 -0.904608 -0.403649 0.136937 +0.13271 -0.154746 0.0951775 -0.897451 -0.416618 0.144956 +0.129451 -0.14904 0.0935551 -0.891113 -0.431656 0.139968 +0.126419 -0.143155 0.0919174 -0.883814 -0.449348 0.130228 +0.123188 -0.137424 0.0902913 -0.874523 -0.470591 0.117275 +0.120061 -0.131616 0.0886566 -0.859729 -0.498084 0.113038 +0.116756 -0.125937 0.0870434 -0.841969 -0.530566 0.0979093 +0.113405 -0.120297 0.0854274 -0.817985 -0.570491 0.0737681 +0.110232 -0.114515 0.0837944 -0.787451 -0.614309 0.0504466 +0.10622 -0.109371 0.0822278 -0.735869 -0.676635 0.0257626 +0.101881 -0.104491 0.0806928 -0.680167 -0.732768 0.0205987 +0.0971125 -0.099933 0.0791871 -0.611075 -0.791512 -0.00993545 +0.091576 -0.0959854 0.0777468 -0.535589 -0.843218 -0.0461527 +0.0853334 -0.0925914 0.076374 -0.445311 -0.891471 -0.0835352 +0.0780408 -0.0900277 0.0750767 -0.352529 -0.927163 -0.126865 +0.0702078 -0.0879087 0.0738353 -0.251019 -0.951832 -0.176086 +0.0616106 -0.086407 0.0726617 -0.184848 -0.955827 -0.228534 +0.0516 -0.086052 0.0716142 -0.123722 -0.94751 -0.294819 +0.041774 -0.0855779 0.0705549 -0.116893 -0.932578 -0.341519 +0.0323323 -0.0848358 0.0694753 -0.140023 -0.907246 -0.396611 +0.0241196 -0.0831533 0.068294 -0.185933 -0.876053 -0.444927 +0.0164889 -0.0810327 0.0670698 -0.237465 -0.840509 -0.486987 +0.00880605 -0.0789858 0.0658572 -0.303676 -0.793569 -0.527287 +0.00258227 -0.0757779 0.0645291 -0.338433 -0.771456 -0.538812 +-0.00295971 -0.0720398 0.0631377 -0.416287 -0.710038 -0.567937 +-0.00759188 -0.0675875 0.0616697 -0.462248 -0.667628 -0.583609 +-0.0120926 -0.06303 0.0601881 -0.494547 -0.628412 -0.600437 +-0.0162739 -0.0582188 0.0586836 -0.542367 -0.575438 -0.612135 +-0.0185543 -0.0518697 0.0570128 -0.569568 -0.527824 -0.630076 +-0.0194491 -0.0443728 0.0552077 -0.606888 -0.463707 -0.645496 +0.979581 -0.581781 0.266923 0.00730567 -0.82026 -0.571946 +0.961039 -0.582527 0.265338 0.0118937 -0.845241 -0.534255 +0.941803 -0.583677 0.26377 0.0222697 -0.868649 -0.49493 +0.924377 -0.584015 0.26219 0.0230706 -0.891842 -0.451759 +0.907947 -0.583915 0.260604 0.0468341 -0.904533 -0.423827 +0.886239 -0.58645 0.259122 0.057667 -0.908817 -0.413193 +0.87175 -0.585525 0.257533 0.0522611 -0.896628 -0.43969 +0.86484 -0.580905 0.255814 0.0378538 -0.894446 -0.445573 +0.516727 -0.488022 0.201353 0.277067 -0.953593 -0.117884 +0.490596 -0.495077 0.200492 0.152703 -0.984622 -0.084871 +0.471296 -0.498334 0.199401 0.0277476 -0.998192 -0.0533318 +0.457451 -0.498521 0.198129 -0.0517116 -0.996463 -0.0662521 +0.447362 -0.49659 0.196722 -0.114933 -0.99074 -0.0722905 +0.437809 -0.494385 0.195307 -0.1483 -0.983998 -0.0987732 +0.428573 -0.492022 0.19389 -0.168505 -0.978884 -0.115728 +0.418453 -0.490196 0.192504 -0.18715 -0.972516 -0.138524 +0.408554 -0.488268 0.191124 -0.193671 -0.967438 -0.162959 +0.399462 -0.485906 0.189711 -0.193553 -0.964489 -0.179726 +0.39044 -0.483515 0.188309 -0.191856 -0.960999 -0.199182 +0.381532 -0.481095 0.186901 -0.189273 -0.957711 -0.216715 +0.372824 -0.478566 0.185492 -0.188749 -0.954822 -0.229542 +0.363958 -0.476168 0.184101 -0.186976 -0.951666 -0.243667 +0.354628 -0.474069 0.182731 -0.187794 -0.9492 -0.252494 +0.344661 -0.472374 0.181389 -0.20125 -0.944554 -0.259454 +0.334914 -0.470576 0.180052 -0.231487 -0.935324 -0.267551 +0.325598 -0.468556 0.1787 -0.274779 -0.922181 -0.272175 +0.317341 -0.465911 0.177305 -0.318976 -0.906613 -0.27624 +0.310001 -0.462735 0.175877 -0.364938 -0.886415 -0.28476 +0.303226 -0.459226 0.17443 -0.402669 -0.86737 -0.29245 +0.297166 -0.455295 0.172947 -0.427218 -0.853274 -0.299014 +0.291778 -0.450955 0.171437 -0.435607 -0.843852 -0.313309 +0.286378 -0.44664 0.169932 -0.448371 -0.833516 -0.322823 +0.28146 -0.442025 0.168407 -0.450612 -0.826824 -0.33662 +0.276225 -0.437619 0.166895 -0.451551 -0.820413 -0.350747 +0.270617 -0.433456 0.165407 -0.451295 -0.813131 -0.367632 +0.263352 -0.430347 0.164001 -0.451269 -0.803452 -0.388359 +0.255051 -0.427917 0.162652 -0.459805 -0.789845 -0.405863 +0.247699 -0.424894 0.161258 -0.476279 -0.770642 -0.423404 +0.241902 -0.420915 0.159788 -0.49723 -0.743513 -0.447161 +0.236184 -0.416887 0.15832 -0.517994 -0.718827 -0.463649 +0.230663 -0.412749 0.156846 -0.531286 -0.695886 -0.483197 +0.225975 -0.40808 0.155329 -0.539351 -0.680169 -0.496458 +0.221529 -0.403267 0.153793 -0.540069 -0.66862 -0.51115 +0.219332 -0.396995 0.152148 -0.536211 -0.662558 -0.522968 +0.217818 -0.390278 0.150462 -0.526452 -0.65007 -0.547958 +0.215613 -0.383995 0.148806 -0.517419 -0.645543 -0.56174 +0.21012 -0.379874 0.147337 -0.52389 -0.645995 -0.555185 +0.204444 -0.375874 0.145873 -0.532974 -0.638332 -0.555402 +0.198447 -0.3721 0.144441 -0.545908 -0.627988 -0.554632 +0.193149 -0.367878 0.142965 -0.568265 -0.608998 -0.553351 +0.188369 -0.363318 0.141459 -0.588006 -0.594383 -0.548596 +0.184535 -0.358132 0.139906 -0.610621 -0.554611 -0.565288 +0.181711 -0.352268 0.138284 -0.63732 -0.515105 -0.573142 +0.179484 -0.346006 0.13664 -0.652477 -0.46824 -0.59584 +0.178984 -0.338572 0.134883 -0.662835 -0.424902 -0.61653 +0.178545 -0.331083 0.13312 -0.659803 -0.379157 -0.648769 +0.17759 -0.323934 0.131382 -0.667583 -0.349934 -0.657175 +0.175198 -0.317749 0.129733 -0.676187 -0.334694 -0.656317 +0.172242 -0.311945 0.128121 -0.689314 -0.329886 -0.644997 +0.168912 -0.306394 0.126528 -0.70195 -0.331633 -0.630306 +0.16621 -0.300415 0.124891 -0.72097 -0.331739 -0.608402 +0.163643 -0.294333 0.123251 -0.742341 -0.324384 -0.586265 +0.162744 -0.287089 0.121503 -0.764304 -0.313831 -0.563339 +0.162864 -0.279125 0.119686 -0.790457 -0.301839 -0.532985 +0.163302 -0.270925 0.117842 -0.824517 -0.268503 -0.498075 +0.163276 -0.263025 0.116021 -0.85812 -0.23887 -0.454502 +0.162421 -0.255693 0.114256 -0.880147 -0.226762 -0.417038 +0.161049 -0.248718 0.112522 -0.901404 -0.222116 -0.371668 +0.159555 -0.241817 0.110793 -0.922745 -0.216147 -0.319097 +0.158239 -0.234774 0.109048 -0.937505 -0.214217 -0.274218 +0.157089 -0.227612 0.107297 -0.951547 -0.220909 -0.21391 +0.156169 -0.220262 0.105515 -0.959604 -0.23283 -0.157961 +0.155267 -0.212897 0.103739 -0.963294 -0.242969 -0.114152 +0.154199 -0.205636 0.101973 -0.961802 -0.260607 -0.0837887 +0.152671 -0.198696 0.100232 -0.957493 -0.28542 -0.0417479 +0.150322 -0.192337 0.0985453 -0.950244 -0.311344 -0.00998442 +0.147753 -0.186138 0.0968772 -0.941367 -0.336577 0.023345 +0.144875 -0.18016 0.0952239 -0.931746 -0.360334 0.0448284 +0.141899 -0.17425 0.0935863 -0.920965 -0.383914 0.0665831 +0.138826 -0.168415 0.0919504 -0.912076 -0.40256 0.0778637 +0.135897 -0.162468 0.0903081 -0.905774 -0.415835 0.0815677 +0.132722 -0.156696 0.0886771 -0.902111 -0.423765 0.0813611 +0.129544 -0.150934 0.087049 -0.897379 -0.434639 0.0761677 +0.126349 -0.145175 0.0854201 -0.889978 -0.450919 0.0679112 +0.123212 -0.139378 0.0837938 -0.880923 -0.470603 0.0500898 +0.12024 -0.133449 0.082144 -0.866255 -0.498694 0.03009 +0.117147 -0.127609 0.0805123 -0.848963 -0.528313 0.0120831 +0.114135 -0.121713 0.078868 -0.821355 -0.570347 -0.00890806 +0.111118 -0.11581 0.0772276 -0.791367 -0.610691 -0.0281748 +0.107265 -0.110551 0.0756481 -0.756007 -0.652651 -0.0500131 +0.103141 -0.105499 0.074093 -0.699327 -0.711162 -0.0720407 +0.0987154 -0.10068 0.0725648 -0.63751 -0.766141 -0.0812989 +0.0935481 -0.096439 0.0710979 -0.548666 -0.828232 -0.114012 +0.0878877 -0.0925912 0.0696777 -0.46844 -0.872395 -0.13961 +0.0813489 -0.0894351 0.0683326 -0.40115 -0.900357 -0.168633 +0.0737786 -0.0870954 0.0670714 -0.297532 -0.93044 -0.213912 +0.0655215 -0.0853254 0.0658814 -0.247426 -0.937077 -0.246314 +0.0564848 -0.0841887 0.0647611 -0.192901 -0.933248 -0.303047 +0.046886 -0.0835224 0.0636929 -0.154784 -0.919036 -0.362514 +0.0381535 -0.0822023 0.0625571 -0.171002 -0.893782 -0.414622 +0.0301307 -0.0803498 0.0613692 -0.196099 -0.864788 -0.462262 +0.023131 -0.0777151 0.0600976 -0.243841 -0.822358 -0.514073 +0.0163593 -0.0749148 0.0588151 -0.288253 -0.78414 -0.549578 +0.010775 -0.0711762 0.0574198 -0.331964 -0.746253 -0.57698 +0.00545819 -0.0672401 0.0560102 -0.39464 -0.694098 -0.60207 +0.00031058 -0.0631758 0.0545863 -0.435003 -0.656868 -0.615871 +-0.0049158 -0.0591856 0.0531707 -0.460408 -0.626111 -0.629293 +-0.01002 -0.0551041 0.0517471 -0.496026 -0.586485 -0.640307 +-0.0123566 -0.0487794 0.0500783 -0.532605 -0.522728 -0.665649 +-0.0130938 -0.0411482 0.0482459 -0.573194 -0.464785 -0.674851 +0.971491 -0.57141 0.255936 0.045119 -0.837054 -0.545258 +0.944096 -0.576498 0.25455 0.038772 -0.857189 -0.51354 +0.926699 -0.576828 0.253001 0.0585584 -0.867902 -0.493273 +0.917617 -0.57316 0.251303 0.0524232 -0.88644 -0.459867 +0.901574 -0.572923 0.249742 0.0599151 -0.886545 -0.458747 +0.530154 -0.482347 0.19408 0.294135 -0.943575 -0.152157 +0.500441 -0.491401 0.193387 0.217116 -0.965662 -0.14269 +0.478468 -0.496144 0.192428 0.0869526 -0.988467 -0.123994 +0.461621 -0.498038 0.191286 -0.0383189 -0.993903 -0.10339 +0.45013 -0.496908 0.189948 -0.0977761 -0.988373 -0.11645 +0.440583 -0.494686 0.188545 -0.145696 -0.980731 -0.130158 +0.431952 -0.491964 0.187107 -0.169327 -0.974187 -0.149297 +0.422808 -0.489561 0.185697 -0.190947 -0.966438 -0.171866 +0.412656 -0.487767 0.184332 -0.198691 -0.961918 -0.187711 +0.403416 -0.485482 0.182941 -0.202578 -0.957449 -0.205557 +0.394066 -0.483278 0.18156 -0.202585 -0.952872 -0.225824 +0.385097 -0.480872 0.180165 -0.194636 -0.951198 -0.23946 +0.376975 -0.477997 0.178736 -0.191599 -0.948022 -0.254058 +0.368518 -0.475339 0.177337 -0.189299 -0.944923 -0.266998 +0.359293 -0.473164 0.175973 -0.1909 -0.94069 -0.280464 +0.348744 -0.471809 0.174667 -0.196751 -0.937495 -0.287042 +0.339523 -0.469683 0.173315 -0.212244 -0.92928 -0.302312 +0.330278 -0.467605 0.171972 -0.248105 -0.917686 -0.310316 +0.321655 -0.46517 0.170603 -0.290427 -0.902167 -0.318979 +0.313884 -0.462244 0.169201 -0.338747 -0.882083 -0.327386 +0.306731 -0.458955 0.167771 -0.386911 -0.862728 -0.325579 +0.300076 -0.45538 0.166326 -0.411977 -0.845771 -0.339035 +0.29407 -0.451422 0.164849 -0.432238 -0.833492 -0.344184 +0.288351 -0.447292 0.163359 -0.440076 -0.823232 -0.358641 +0.283382 -0.442714 0.161838 -0.446215 -0.812864 -0.374361 +0.2785 -0.438085 0.160314 -0.448635 -0.803724 -0.390839 +0.273675 -0.433422 0.158786 -0.450035 -0.793747 -0.409191 +0.268774 -0.428821 0.157267 -0.450577 -0.782062 -0.430535 +0.26249 -0.425101 0.15582 -0.456434 -0.767888 -0.449463 +0.255501 -0.421832 0.154411 -0.466771 -0.747295 -0.472944 +0.249018 -0.418264 0.152982 -0.484923 -0.723243 -0.491701 +0.242754 -0.414576 0.151538 -0.505934 -0.698891 -0.505551 +0.236786 -0.410706 0.150086 -0.519271 -0.675608 -0.523364 +0.232252 -0.405925 0.148565 -0.526151 -0.657009 -0.539912 +0.228191 -0.400844 0.147008 -0.525246 -0.646647 -0.553141 +0.22702 -0.393894 0.145297 -0.518279 -0.633176 -0.574871 +0.224941 -0.387527 0.143632 -0.503178 -0.626582 -0.595152 +0.221461 -0.382067 0.142048 -0.496057 -0.626923 -0.600745 +0.216163 -0.377802 0.140563 -0.494066 -0.628795 -0.60043 +0.20982 -0.374229 0.139146 -0.495806 -0.624151 -0.603831 +0.203637 -0.370557 0.137722 -0.508839 -0.616025 -0.601331 +0.198152 -0.366449 0.136256 -0.527388 -0.60279 -0.598754 +0.193159 -0.362015 0.134767 -0.547333 -0.582736 -0.600703 +0.189511 -0.356699 0.133201 -0.570928 -0.540718 -0.617791 +0.186814 -0.35074 0.131577 -0.595567 -0.494133 -0.633351 +0.184884 -0.344266 0.129901 -0.614682 -0.445236 -0.651101 +0.184292 -0.33689 0.128143 -0.617116 -0.404567 -0.674904 +0.18368 -0.329508 0.126381 -0.627079 -0.364991 -0.688152 +0.182605 -0.322423 0.124647 -0.640599 -0.355728 -0.680508 +0.180366 -0.316127 0.122985 -0.653864 -0.353797 -0.668797 +0.177747 -0.31008 0.121339 -0.671897 -0.362312 -0.645977 +0.174896 -0.304187 0.119717 -0.686485 -0.369601 -0.626205 +0.172645 -0.297884 0.118045 -0.70506 -0.371849 -0.603835 +0.171209 -0.291008 0.116328 -0.726172 -0.373624 -0.57713 +0.171078 -0.283224 0.114515 -0.749424 -0.363552 -0.553348 +0.170928 -0.275425 0.112705 -0.78051 -0.342158 -0.523195 +0.169324 -0.268635 0.110986 -0.815761 -0.310682 -0.487864 +0.167299 -0.262125 0.109292 -0.835934 -0.29686 -0.461616 +0.165206 -0.255664 0.107606 -0.862859 -0.276272 -0.423261 +0.162847 -0.249373 0.105934 -0.885355 -0.265897 -0.381373 +0.160851 -0.242827 0.104236 -0.905522 -0.260776 -0.334704 +0.159334 -0.235931 0.102507 -0.922317 -0.261651 -0.284377 +0.158248 -0.228714 0.10074 -0.93599 -0.265402 -0.231264 +0.157424 -0.221307 0.0989544 -0.945107 -0.273632 -0.1786 +0.156407 -0.214014 0.0971772 -0.948528 -0.284627 -0.138858 +0.155118 -0.206915 0.0954131 -0.949345 -0.297171 -0.102138 +0.153063 -0.200354 0.0937051 -0.944934 -0.319846 -0.0692647 +0.150282 -0.194317 0.0920565 -0.939131 -0.341021 -0.0416785 +0.147604 -0.188202 0.0903899 -0.932526 -0.36076 -0.015696 +0.144721 -0.182227 0.0887452 -0.923867 -0.382649 0.00707853 +0.141836 -0.176253 0.0870932 -0.915981 -0.400962 0.0144709 +0.139033 -0.170221 0.0854423 -0.909429 -0.415331 0.0209471 +0.13614 -0.164245 0.0837895 -0.905037 -0.424637 0.0243367 +0.133045 -0.158417 0.0821521 -0.902877 -0.429708 0.0128208 +0.129958 -0.152588 0.0805243 -0.898712 -0.438527 -0.00344373 +0.126757 -0.146832 0.0788943 -0.892049 -0.451332 -0.0234045 +0.123736 -0.140951 0.0772526 -0.882052 -0.468961 -0.0453894 +0.120864 -0.134952 0.0756031 -0.867476 -0.494542 -0.0539812 +0.118042 -0.128906 0.0739399 -0.849834 -0.521899 -0.0735089 +0.115106 -0.122946 0.0722935 -0.825149 -0.556887 -0.0948975 +0.112035 -0.117085 0.0706526 -0.795961 -0.596249 -0.104567 +0.108386 -0.111668 0.0690612 -0.76181 -0.635424 -0.126032 +0.104405 -0.106503 0.0674926 -0.706973 -0.693105 -0.140698 +0.100286 -0.101447 0.0659444 -0.641021 -0.751502 -0.156001 +0.0953908 -0.096997 0.0644604 -0.571344 -0.800673 -0.180246 +0.090147 -0.0928195 0.0630015 -0.499296 -0.84343 -0.198323 +0.08429 -0.089131 0.0616013 -0.425955 -0.878535 -0.216195 +0.0771105 -0.0864748 0.0603151 -0.351825 -0.902909 -0.246933 +0.0689797 -0.0845891 0.0591254 -0.268017 -0.920056 -0.285771 +0.0607992 -0.0827698 0.0579381 -0.236612 -0.917789 -0.318869 +0.052098 -0.0813844 0.0568059 -0.207606 -0.909679 -0.359702 +0.0434462 -0.0799953 0.0556694 -0.205543 -0.883133 -0.421699 +0.0361893 -0.0775148 0.0544182 -0.226311 -0.850338 -0.47509 +0.0293036 -0.0747733 0.0531466 -0.249334 -0.815024 -0.523039 +0.0234167 -0.0712491 0.0517822 -0.286761 -0.780121 -0.55604 +0.0179882 -0.0673633 0.0503748 -0.317476 -0.74798 -0.582868 +0.0127381 -0.0633609 0.0489556 -0.379252 -0.684967 -0.622084 +0.00723822 -0.059558 0.047569 -0.409026 -0.646691 -0.643809 +0.00203046 -0.0555391 0.0461499 -0.441189 -0.619255 -0.64952 +-0.00309663 -0.0514513 0.0447301 -0.477736 -0.581419 -0.658575 +-0.00714405 -0.0465083 0.0432069 -0.511265 -0.537363 -0.670707 +-0.00447938 -0.036082 0.0410507 -0.529857 -0.503208 -0.682667 +0.551139 -0.472403 0.186461 0.265058 -0.957745 -0.111667 +0.514942 -0.485077 0.186066 0.259702 -0.947642 -0.185821 +0.487042 -0.493167 0.185374 0.155412 -0.972841 -0.171545 +0.467779 -0.496419 0.184347 0.00511402 -0.98743 -0.157982 +0.454086 -0.496535 0.183119 -0.0775401 -0.98476 -0.155678 +0.443989 -0.494627 0.181747 -0.12992 -0.975759 -0.176114 +0.435297 -0.491922 0.180316 -0.167226 -0.968217 -0.185993 +0.426711 -0.489186 0.178895 -0.190844 -0.961042 -0.199946 +0.417979 -0.486558 0.177476 -0.202098 -0.955194 -0.216247 +0.407852 -0.484778 0.176132 -0.211196 -0.949543 -0.231875 +0.398622 -0.482491 0.174757 -0.210954 -0.945339 -0.248663 +0.38937 -0.480244 0.173382 -0.203919 -0.943198 -0.262293 +0.381052 -0.477467 0.171975 -0.198962 -0.940241 -0.276334 +0.372758 -0.4747 0.170572 -0.196018 -0.936188 -0.291771 +0.36423 -0.472102 0.16918 -0.196914 -0.930543 -0.308732 +0.354459 -0.470262 0.167854 -0.197103 -0.925686 -0.322886 +0.344139 -0.468787 0.166564 -0.20683 -0.917512 -0.3397 +0.335126 -0.466552 0.165212 -0.223568 -0.906395 -0.358425 +0.326393 -0.464179 0.163862 -0.264182 -0.892878 -0.364662 +0.318211 -0.461481 0.162486 -0.308945 -0.875886 -0.370645 +0.310624 -0.458452 0.161085 -0.356228 -0.857311 -0.371646 +0.30351 -0.455153 0.159664 -0.390371 -0.837573 -0.382208 +0.297229 -0.45135 0.158207 -0.413866 -0.824253 -0.386424 +0.291231 -0.447389 0.15673 -0.432357 -0.81031 -0.395557 +0.286123 -0.442884 0.155222 -0.439015 -0.799822 -0.409331 +0.281385 -0.43816 0.153689 -0.442585 -0.786655 -0.430457 +0.276876 -0.433304 0.152152 -0.448504 -0.774304 -0.446428 +0.272116 -0.428602 0.150621 -0.446257 -0.761976 -0.469306 +0.267292 -0.423954 0.149098 -0.450055 -0.745312 -0.491897 +0.261867 -0.419687 0.147608 -0.454505 -0.725823 -0.516342 +0.256649 -0.415305 0.146112 -0.468509 -0.699969 -0.539021 +0.25143 -0.410919 0.144622 -0.483982 -0.671279 -0.56138 +0.245878 -0.406762 0.143147 -0.500421 -0.644045 -0.578606 +0.241089 -0.402128 0.14163 -0.51021 -0.626227 -0.589514 +0.237162 -0.396948 0.14007 -0.510733 -0.617239 -0.598471 +0.234467 -0.390963 0.138432 -0.501195 -0.610183 -0.613579 +0.231646 -0.385063 0.136803 -0.491833 -0.605594 -0.625587 +0.228812 -0.379169 0.135183 -0.484994 -0.605208 -0.631271 +0.224053 -0.374526 0.133666 -0.475143 -0.607524 -0.636516 +0.217891 -0.370814 0.132241 -0.473495 -0.604897 -0.640236 +0.210562 -0.367886 0.130886 -0.475142 -0.593008 -0.650063 +0.204791 -0.363946 0.129443 -0.490264 -0.578825 -0.651616 +0.199559 -0.359657 0.127966 -0.505552 -0.55843 -0.657703 +0.195819 -0.35438 0.1264 -0.527024 -0.520926 -0.671477 +0.192814 -0.348626 0.12479 -0.548857 -0.478839 -0.68518 +0.190273 -0.342548 0.123143 -0.57505 -0.42693 -0.69789 +0.190384 -0.33468 0.121333 -0.58496 -0.395567 -0.70806 +0.189029 -0.327792 0.119612 -0.607847 -0.384219 -0.694908 +0.188988 -0.319998 0.117797 -0.627869 -0.382445 -0.677876 +0.187449 -0.313212 0.116083 -0.637968 -0.39101 -0.663407 +0.185979 -0.306367 0.114363 -0.649086 -0.407264 -0.642513 +0.184667 -0.299401 0.112628 -0.668041 -0.422449 -0.612584 +0.1838 -0.292121 0.110867 -0.688314 -0.427964 -0.585722 +0.181817 -0.285596 0.109168 -0.708391 -0.421511 -0.566136 +0.179569 -0.279256 0.107494 -0.738711 -0.402808 -0.540418 +0.176266 -0.273638 0.105887 -0.76322 -0.388286 -0.51646 +0.173111 -0.267913 0.10427 -0.797723 -0.357342 -0.485742 +0.170229 -0.261999 0.102632 -0.82055 -0.338032 -0.460901 +0.16738 -0.256053 0.100997 -0.847102 -0.32401 -0.421231 +0.164567 -0.25009 0.0993539 -0.869235 -0.313545 -0.382256 +0.162386 -0.243675 0.097662 -0.886934 -0.305867 -0.346109 +0.1606 -0.236961 0.0959432 -0.904111 -0.302727 -0.301561 +0.159892 -0.229483 0.0941509 -0.91552 -0.309988 -0.256378 +0.159079 -0.222061 0.0923537 -0.923281 -0.315016 -0.219814 +0.157815 -0.214946 0.0905876 -0.928467 -0.323722 -0.182079 +0.156164 -0.208108 0.0888533 -0.930722 -0.334923 -0.146911 +0.153708 -0.201833 0.0871695 -0.928707 -0.353211 -0.112904 +0.150768 -0.195909 0.0855311 -0.92535 -0.368372 -0.0896045 +0.147705 -0.190079 0.083897 -0.920833 -0.384071 -0.0674993 +0.14476 -0.18415 0.0822498 -0.914425 -0.402127 -0.0460377 +0.142018 -0.178074 0.0805871 -0.908434 -0.415662 -0.0444173 +0.139403 -0.171903 0.0789201 -0.905866 -0.421031 -0.0462713 +0.136562 -0.165895 0.0772644 -0.902696 -0.426554 -0.0564904 +0.133716 -0.159881 0.0756067 -0.899795 -0.432029 -0.0609948 +0.130714 -0.153987 0.0739699 -0.896333 -0.43679 -0.0761772 +0.127665 -0.14812 0.0723293 -0.889248 -0.446513 -0.0993265 +0.124842 -0.142085 0.0706685 -0.875742 -0.467115 -0.121984 +0.122079 -0.136004 0.0690019 -0.861248 -0.490662 -0.132302 +0.119292 -0.129928 0.0673426 -0.84243 -0.51708 -0.151461 +0.116369 -0.123961 0.0656888 -0.820812 -0.545265 -0.170165 +0.113353 -0.11806 0.064042 -0.78765 -0.587585 -0.185339 +0.110106 -0.112331 0.0624142 -0.747556 -0.632612 -0.202393 +0.106249 -0.107065 0.0608404 -0.708517 -0.673735 -0.209965 +0.102156 -0.101993 0.0592908 -0.651642 -0.726177 -0.219156 +0.0973859 -0.0974322 0.0577927 -0.577171 -0.780432 -0.240415 +0.0922029 -0.0932081 0.0563352 -0.514724 -0.822161 -0.243129 +0.0864855 -0.089399 0.0549282 -0.439001 -0.858097 -0.266361 +0.0794175 -0.0866643 0.0536418 -0.385946 -0.882194 -0.26978 +0.0718686 -0.0843146 0.0524033 -0.314964 -0.898728 -0.305103 +0.063582 -0.0825629 0.0512379 -0.264196 -0.90312 -0.338492 +0.0554477 -0.0807317 0.0500598 -0.24616 -0.890996 -0.381488 +0.0476697 -0.0786302 0.0488583 -0.236539 -0.869316 -0.433981 +0.0409663 -0.0757095 0.0475616 -0.246653 -0.839913 -0.483434 +0.0345315 -0.0725905 0.046251 -0.266962 -0.808731 -0.524105 +0.0289714 -0.0687914 0.0448585 -0.305706 -0.769527 -0.56069 +0.0236063 -0.0648469 0.0434514 -0.330707 -0.728545 -0.599878 +0.0182032 -0.0609438 0.0420496 -0.375602 -0.691485 -0.617068 +0.0126134 -0.0571951 0.0406676 -0.420352 -0.645569 -0.637608 +0.00753407 -0.0530537 0.0392387 -0.431475 -0.629062 -0.646615 +0.00295567 -0.0485162 0.0377621 -0.465832 -0.587372 -0.661813 +-0.000992773 -0.043476 0.0362338 -0.493841 -0.547698 -0.675388 +0.00613382 -0.0293986 0.0336241 -0.519634 -0.511185 -0.684596 +0.574767 -0.460982 0.178657 0.214612 -0.958679 0.186755 +0.528697 -0.479201 0.178719 0.230343 -0.959879 -0.159923 +0.499517 -0.487973 0.178119 0.216208 -0.95548 -0.200779 +0.476747 -0.493203 0.177272 0.0863192 -0.977389 -0.193029 +0.461157 -0.494382 0.176137 -0.0284797 -0.977448 -0.209246 +0.448577 -0.493884 0.174881 -0.115743 -0.971738 -0.20574 +0.438921 -0.49173 0.173507 -0.160056 -0.963468 -0.214741 +0.431005 -0.488598 0.17206 -0.18458 -0.955757 -0.229038 +0.423461 -0.485264 0.1706 -0.201821 -0.950193 -0.237494 +0.414576 -0.482733 0.169207 -0.214642 -0.944191 -0.249867 +0.404312 -0.481041 0.167887 -0.217956 -0.940054 -0.262289 +0.39454 -0.479086 0.166549 -0.216113 -0.936014 -0.277802 +0.385567 -0.476687 0.165172 -0.209753 -0.933033 -0.292324 +0.377224 -0.473939 0.163776 -0.207224 -0.928971 -0.306712 +0.369084 -0.471092 0.162384 -0.21049 -0.922609 -0.323246 +0.360372 -0.468612 0.161011 -0.211339 -0.915087 -0.343442 +0.350692 -0.46673 0.159699 -0.210959 -0.905227 -0.368864 +0.340884 -0.464961 0.1584 -0.222379 -0.894307 -0.388285 +0.3322 -0.462538 0.157052 -0.239551 -0.880196 -0.409723 +0.323508 -0.460147 0.155708 -0.279116 -0.862713 -0.421688 +0.315075 -0.457617 0.154355 -0.321209 -0.846237 -0.425099 +0.307717 -0.454455 0.152953 -0.364469 -0.826279 -0.429448 +0.301459 -0.45063 0.151493 -0.396345 -0.811197 -0.429967 +0.295116 -0.446871 0.150047 -0.411073 -0.797127 -0.442277 +0.290213 -0.442227 0.148526 -0.426035 -0.78368 -0.45204 +0.285352 -0.437576 0.146998 -0.440073 -0.767686 -0.465826 +0.280684 -0.432807 0.145468 -0.451088 -0.753091 -0.478931 +0.27584 -0.428154 0.143949 -0.454003 -0.739164 -0.497514 +0.270937 -0.423536 0.142425 -0.455477 -0.723688 -0.518476 +0.266232 -0.418808 0.140901 -0.459258 -0.702626 -0.543505 +0.261831 -0.413895 0.13936 -0.470519 -0.678195 -0.564502 +0.256938 -0.409296 0.13785 -0.48128 -0.653457 -0.584263 +0.252587 -0.404364 0.136302 -0.493836 -0.629522 -0.599858 +0.248483 -0.399272 0.134747 -0.504383 -0.610861 -0.610285 +0.243847 -0.394527 0.133225 -0.508032 -0.599703 -0.618273 +0.240187 -0.389151 0.131643 -0.50351 -0.595502 -0.625984 +0.237325 -0.383267 0.130015 -0.510495 -0.593304 -0.622404 +0.234897 -0.377097 0.128357 -0.504643 -0.595643 -0.624936 +0.231281 -0.371702 0.126775 -0.496968 -0.597855 -0.628962 +0.227318 -0.366525 0.125213 -0.492073 -0.597584 -0.633055 +0.219955 -0.363597 0.123863 -0.481327 -0.585618 -0.652209 +0.2136 -0.360017 0.12246 -0.486385 -0.573293 -0.659368 +0.208378 -0.355704 0.120979 -0.497043 -0.546784 -0.673777 +0.204815 -0.350295 0.119397 -0.518316 -0.508742 -0.687408 +0.201649 -0.344612 0.117788 -0.54145 -0.474898 -0.693761 +0.198606 -0.338852 0.11618 -0.564999 -0.441049 -0.697318 +0.197808 -0.331588 0.114413 -0.589712 -0.4223 -0.688405 +0.197796 -0.323769 0.112595 -0.617565 -0.420511 -0.664669 +0.198892 -0.315187 0.110699 -0.63769 -0.433639 -0.636638 +0.198658 -0.307497 0.108882 -0.654184 -0.448371 -0.609103 +0.196846 -0.300857 0.107178 -0.665605 -0.459334 -0.588204 +0.193877 -0.295004 0.105548 -0.676638 -0.465028 -0.570885 +0.189992 -0.289779 0.103981 -0.68332 -0.461312 -0.56592 +0.186361 -0.284378 0.102396 -0.703065 -0.454146 -0.54722 +0.182564 -0.279092 0.100823 -0.726125 -0.437762 -0.530196 +0.1791 -0.273588 0.099229 -0.748966 -0.425562 -0.507884 +0.175634 -0.268078 0.0976326 -0.782015 -0.395005 -0.482103 +0.172388 -0.262408 0.0960195 -0.810476 -0.373332 -0.451389 +0.16938 -0.256578 0.0943899 -0.830186 -0.355428 -0.429493 +0.166675 -0.250532 0.0927376 -0.851957 -0.34433 -0.394468 +0.164318 -0.244233 0.0910564 -0.869038 -0.341814 -0.357684 +0.162368 -0.237644 0.0893445 -0.883463 -0.340629 -0.321658 +0.16176 -0.230082 0.0875336 -0.895 -0.345045 -0.2827 +0.160767 -0.222788 0.0857427 -0.899164 -0.353452 -0.258026 +0.159549 -0.215646 0.0839745 -0.902003 -0.365362 -0.230004 +0.157212 -0.209292 0.0822827 -0.905864 -0.374209 -0.198437 +0.154471 -0.203233 0.0806236 -0.907661 -0.384491 -0.168276 +0.151249 -0.197514 0.0790019 -0.907851 -0.393735 -0.144143 +0.148161 -0.191698 0.0773668 -0.903515 -0.408601 -0.129243 +0.145184 -0.185788 0.0757296 -0.900495 -0.419537 -0.114439 +0.142474 -0.179693 0.0740658 -0.899541 -0.423247 -0.108105 +0.139873 -0.173514 0.0723913 -0.895487 -0.430771 -0.111986 +0.137284 -0.167313 0.0707113 -0.893202 -0.432274 -0.12381 +0.134643 -0.161159 0.06904 -0.891206 -0.432159 -0.137812 +0.131833 -0.155115 0.0673783 -0.885531 -0.435092 -0.16288 +0.129002 -0.149084 0.0657177 -0.877634 -0.446806 -0.173561 +0.126408 -0.142874 0.0640443 -0.872347 -0.45568 -0.177111 +0.123802 -0.136673 0.0623647 -0.853555 -0.481509 -0.198983 +0.121163 -0.130492 0.060686 -0.833614 -0.50318 -0.22781 +0.118467 -0.124346 0.0590101 -0.807658 -0.537705 -0.241998 +0.115491 -0.118411 0.0573591 -0.778862 -0.574256 -0.252201 +0.112219 -0.112698 0.0557342 -0.740928 -0.616726 -0.265847 +0.108573 -0.107271 0.0541411 -0.697096 -0.663307 -0.27218 +0.10453 -0.102149 0.0525841 -0.646147 -0.709321 -0.281706 +0.0998687 -0.0975052 0.051084 -0.585292 -0.759589 -0.283653 +0.0948462 -0.0931389 0.0496164 -0.524843 -0.797174 -0.298417 +0.0894064 -0.0891196 0.0481838 -0.457037 -0.834563 -0.307608 +0.0832498 -0.0856598 0.0468255 -0.391714 -0.859103 -0.329398 +0.0760187 -0.083047 0.0455622 -0.345047 -0.875347 -0.338693 +0.0676146 -0.0813824 0.044414 -0.290815 -0.884082 -0.365822 +0.0595863 -0.0794479 0.0432369 -0.275668 -0.869113 -0.410671 +0.0517356 -0.0773972 0.0420486 -0.272534 -0.85196 -0.44709 +0.0452224 -0.0743085 0.040738 -0.278379 -0.828186 -0.486431 +0.0391248 -0.0709185 0.039393 -0.288545 -0.793412 -0.535948 +0.0341111 -0.0666659 0.0379532 -0.317772 -0.7587 -0.568679 +0.0287831 -0.0626815 0.0365465 -0.34281 -0.715812 -0.608354 +0.0233786 -0.0587609 0.035141 -0.368048 -0.688496 -0.624911 +0.0180074 -0.0548367 0.033744 -0.407308 -0.650584 -0.640969 +0.0128739 -0.0507199 0.0323165 -0.419065 -0.633046 -0.650875 +0.00866867 -0.0458675 0.030809 -0.456011 -0.594181 -0.662574 +0.00500981 -0.0405771 0.0292468 -0.481941 -0.561467 -0.672674 +0.0183197 -0.0214451 0.026003 -0.508523 -0.511933 -0.692337 +0.626533 -0.441731 0.171425 0.348866 -0.826114 0.442527 +0.577436 -0.461434 0.171656 0.197302 -0.956911 0.21306 +0.543717 -0.47262 0.171267 0.228043 -0.973007 -0.0354454 +0.517395 -0.479723 0.170586 0.22528 -0.961173 -0.159362 +0.489192 -0.488005 0.170005 0.170427 -0.960413 -0.220367 +0.469742 -0.491366 0.169066 0.00409324 -0.97275 -0.231826 +0.454768 -0.492221 0.167927 -0.0830868 -0.967635 -0.238285 +0.443914 -0.490752 0.166622 -0.136226 -0.961247 -0.239682 +0.435435 -0.48793 0.165204 -0.177741 -0.952115 -0.248774 +0.427741 -0.484669 0.163756 -0.19989 -0.946519 -0.253274 +0.420657 -0.481072 0.162291 -0.215495 -0.940634 -0.262243 +0.412184 -0.478316 0.160891 -0.225521 -0.936217 -0.269516 +0.401437 -0.47692 0.159603 -0.224486 -0.93378 -0.278678 +0.391248 -0.475221 0.158304 -0.22212 -0.929715 -0.293761 +0.382423 -0.472746 0.156937 -0.220612 -0.925045 -0.309228 +0.374121 -0.469978 0.155557 -0.225489 -0.918168 -0.325767 +0.366095 -0.46707 0.15416 -0.23079 -0.909372 -0.346092 +0.357619 -0.464452 0.152792 -0.232105 -0.899408 -0.370395 +0.34877 -0.462091 0.151457 -0.237048 -0.886914 -0.396473 +0.340087 -0.459642 0.150109 -0.24082 -0.873578 -0.422928 +0.331644 -0.45708 0.148756 -0.261982 -0.858393 -0.441054 +0.322534 -0.454945 0.147452 -0.289035 -0.841443 -0.456545 +0.314509 -0.452167 0.146086 -0.327008 -0.823841 -0.462984 +0.308122 -0.448408 0.144638 -0.359682 -0.807874 -0.466872 +0.301641 -0.444725 0.143198 -0.395564 -0.789332 -0.46956 +0.296001 -0.440525 0.141713 -0.412726 -0.776122 -0.476752 +0.290603 -0.436195 0.140227 -0.434034 -0.759632 -0.484329 +0.285036 -0.431967 0.138744 -0.453612 -0.742861 -0.492335 +0.280688 -0.426998 0.137195 -0.471188 -0.724565 -0.502979 +0.276087 -0.422179 0.13566 -0.475203 -0.710603 -0.518872 +0.271423 -0.417417 0.134131 -0.487772 -0.693868 -0.529742 +0.26715 -0.41241 0.132581 -0.499266 -0.672035 -0.546902 +0.262979 -0.40734 0.131026 -0.513664 -0.652184 -0.557499 +0.259233 -0.402008 0.129445 -0.526216 -0.633714 -0.567014 +0.255284 -0.396796 0.127877 -0.539349 -0.617357 -0.572689 +0.251779 -0.391309 0.126283 -0.55089 -0.606419 -0.573391 +0.24771 -0.386188 0.124723 -0.556367 -0.595685 -0.579324 +0.244098 -0.380774 0.123137 -0.553333 -0.593687 -0.584258 +0.240325 -0.375457 0.121558 -0.547446 -0.596797 -0.586632 +0.237725 -0.369381 0.119908 -0.542718 -0.597693 -0.590103 +0.234967 -0.363409 0.118268 -0.541381 -0.597766 -0.591257 +0.230312 -0.358675 0.116747 -0.537534 -0.590207 -0.602257 +0.224457 -0.354742 0.115305 -0.542843 -0.571718 -0.615193 +0.217865 -0.351312 0.113924 -0.540929 -0.550326 -0.636034 +0.213887 -0.346153 0.112364 -0.556222 -0.524676 -0.644463 +0.211416 -0.339999 0.110707 -0.574929 -0.498839 -0.64855 +0.209881 -0.333206 0.108977 -0.60811 -0.477447 -0.634228 +0.208457 -0.326334 0.107246 -0.627771 -0.471782 -0.619133 +0.208203 -0.318655 0.105431 -0.65118 -0.4699 -0.595951 +0.207151 -0.311509 0.10367 -0.669044 -0.474303 -0.572204 +0.204507 -0.305434 0.102015 -0.679141 -0.475609 -0.559075 +0.201164 -0.299823 0.100406 -0.687192 -0.482253 -0.543325 +0.196708 -0.294978 0.0988778 -0.689597 -0.477555 -0.544425 +0.192473 -0.289992 0.0973359 -0.689765 -0.482592 -0.539749 +0.188282 -0.284977 0.0957908 -0.701882 -0.474072 -0.531617 +0.184819 -0.279457 0.0941922 -0.718963 -0.465295 -0.516327 +0.18138 -0.27392 0.0925936 -0.73853 -0.449796 -0.502253 +0.178074 -0.268296 0.090985 -0.763632 -0.429547 -0.482031 +0.175102 -0.262437 0.0893511 -0.789582 -0.411368 -0.455344 +0.172167 -0.256553 0.0877161 -0.809715 -0.392453 -0.436283 +0.169619 -0.250388 0.0860503 -0.829673 -0.383416 -0.405754 +0.167304 -0.244055 0.0843649 -0.845348 -0.378081 -0.377418 +0.165302 -0.237497 0.0826561 -0.857289 -0.374924 -0.352829 +0.164242 -0.230253 0.0808699 -0.864427 -0.378872 -0.330488 +0.162682 -0.223363 0.079116 -0.870585 -0.388162 -0.302346 +0.161291 -0.216344 0.0773528 -0.875583 -0.394095 -0.279367 +0.158701 -0.210169 0.0756805 -0.880375 -0.401522 -0.252429 +0.15584 -0.204189 0.0740287 -0.884052 -0.41041 -0.223641 +0.152599 -0.198482 0.0724078 -0.887459 -0.417454 -0.19532 +0.149337 -0.192788 0.0707877 -0.888927 -0.420604 -0.181387 +0.146333 -0.186906 0.0691463 -0.88896 -0.422013 -0.177919 +0.143542 -0.180867 0.0674876 -0.885633 -0.427199 -0.182086 +0.141226 -0.174475 0.0657879 -0.881803 -0.430831 -0.191856 +0.138986 -0.16802 0.0640813 -0.88048 -0.426853 -0.206284 +0.136559 -0.161693 0.0623882 -0.87893 -0.423325 -0.219726 +0.133855 -0.155578 0.0607184 -0.875002 -0.421072 -0.238893 +0.130957 -0.149596 0.0590633 -0.864803 -0.432735 -0.254671 +0.128561 -0.143234 0.0573649 -0.849769 -0.448348 -0.277266 +0.126146 -0.136883 0.0556675 -0.83097 -0.469323 -0.298705 +0.123733 -0.130523 0.0539678 -0.807054 -0.498422 -0.316604 +0.121216 -0.124236 0.0522679 -0.778035 -0.53033 -0.336767 +0.118452 -0.11814 0.0505972 -0.746431 -0.570436 -0.342701 +0.115291 -0.112334 0.0489596 -0.710318 -0.607386 -0.355711 +0.111762 -0.10681 0.0473549 -0.674587 -0.643213 -0.362229 +0.107817 -0.101604 0.0457878 -0.630487 -0.68594 -0.363281 +0.103239 -0.0968909 0.0442864 -0.577883 -0.733803 -0.357193 +0.0981833 -0.0925434 0.0428203 -0.525129 -0.771601 -0.358985 +0.0928493 -0.0884345 0.041384 -0.470527 -0.80693 -0.357027 +0.087201 -0.084565 0.0399755 -0.413203 -0.834586 -0.364324 +0.0810349 -0.0811186 0.0386204 -0.371078 -0.851334 -0.370854 +0.0735465 -0.0787204 0.0373907 -0.336808 -0.856102 -0.391983 +0.0656791 -0.0766414 0.0362104 -0.312902 -0.849344 -0.425097 +0.0576664 -0.0747034 0.0350413 -0.300102 -0.836252 -0.458938 +0.0508198 -0.0718657 0.0337678 -0.306953 -0.806656 -0.505063 +0.0451942 -0.0680755 0.0323798 -0.320578 -0.777211 -0.541454 +0.0404529 -0.0635899 0.0309165 -0.343286 -0.743849 -0.573449 +0.0355895 -0.0592219 0.0294627 -0.369122 -0.709344 -0.600483 +0.0298398 -0.0555596 0.028094 -0.382822 -0.678063 -0.627439 +0.0245022 -0.0515886 0.0266905 -0.399212 -0.648001 -0.648633 +0.0197771 -0.0471282 0.0252271 -0.408613 -0.630061 -0.660347 +0.0153996 -0.0423984 0.023731 -0.450017 -0.589083 -0.671167 +0.0136518 -0.0355348 0.0219726 -0.472065 -0.558823 -0.681816 +0.610498 -0.452731 0.165166 0.271646 -0.877201 0.395891 +0.578692 -0.462687 0.164724 0.183701 -0.953884 0.237404 +0.552779 -0.46943 0.164034 0.204552 -0.977721 0.0471453 +0.530277 -0.474322 0.163211 0.186389 -0.980354 -0.0645528 +0.504537 -0.481158 0.16256 0.191096 -0.969881 -0.151044 +0.481081 -0.486779 0.161828 0.104892 -0.969963 -0.219476 +0.463019 -0.489382 0.16086 -0.0474161 -0.968632 -0.243936 +0.449808 -0.489253 0.159672 -0.116807 -0.96171 -0.247936 +0.440152 -0.487094 0.15832 -0.170474 -0.951558 -0.255884 +0.432214 -0.483967 0.156896 -0.199882 -0.944957 -0.259045 +0.425459 -0.480173 0.155415 -0.21044 -0.941643 -0.262728 +0.41787 -0.47688 0.153976 -0.227781 -0.936292 -0.267349 +0.409104 -0.474295 0.152604 -0.234421 -0.933206 -0.272351 +0.398866 -0.472615 0.151312 -0.233551 -0.931445 -0.279044 +0.38866 -0.470933 0.150022 -0.237864 -0.924941 -0.29649 +0.379798 -0.468492 0.148676 -0.240277 -0.918915 -0.312832 +0.37166 -0.465632 0.147296 -0.249458 -0.9096 -0.332264 +0.363939 -0.462557 0.145896 -0.264269 -0.898511 -0.350489 +0.356215 -0.459491 0.144499 -0.270556 -0.887399 -0.373261 +0.349014 -0.456135 0.143087 -0.269909 -0.876395 -0.398851 +0.341506 -0.452973 0.141685 -0.27561 -0.863719 -0.421935 +0.33392 -0.449885 0.140294 -0.287111 -0.850482 -0.440737 +0.325494 -0.447336 0.138961 -0.301638 -0.83571 -0.458914 +0.31757 -0.444491 0.137604 -0.326215 -0.818999 -0.472044 +0.311167 -0.440732 0.136163 -0.359447 -0.803418 -0.474675 +0.305269 -0.436671 0.134688 -0.394587 -0.787878 -0.472812 +0.298809 -0.432981 0.133256 -0.427799 -0.767628 -0.477217 +0.292799 -0.429011 0.1318 -0.458056 -0.750432 -0.476485 +0.287257 -0.424767 0.130322 -0.485655 -0.729814 -0.481158 +0.282143 -0.420265 0.128822 -0.500631 -0.7125 -0.491644 +0.27766 -0.415367 0.127279 -0.520221 -0.697862 -0.492299 +0.273803 -0.410084 0.1257 -0.533516 -0.682053 -0.500165 +0.269913 -0.404821 0.124124 -0.555734 -0.662409 -0.502369 +0.265981 -0.399591 0.122553 -0.571605 -0.651869 -0.498332 +0.262421 -0.39412 0.120957 -0.589423 -0.63307 -0.5018 +0.258902 -0.388623 0.11936 -0.601417 -0.618672 -0.505513 +0.254554 -0.383669 0.117823 -0.610313 -0.607629 -0.508238 +0.250352 -0.378618 0.116269 -0.608586 -0.604532 -0.51397 +0.245991 -0.373673 0.114725 -0.601683 -0.602408 -0.524482 +0.243216 -0.367702 0.113083 -0.600991 -0.603512 -0.524007 +0.239787 -0.362152 0.111481 -0.600899 -0.597577 -0.530871 +0.237128 -0.356095 0.10983 -0.600655 -0.591008 -0.538445 +0.233875 -0.350429 0.108218 -0.60645 -0.578352 -0.545643 +0.229326 -0.345624 0.106689 -0.62145 -0.56115 -0.546728 +0.224381 -0.341079 0.105195 -0.613188 -0.539865 -0.57667 +0.220512 -0.335837 0.103624 -0.635964 -0.524135 -0.566421 +0.217518 -0.33 0.101995 -0.654188 -0.510219 -0.558313 +0.216888 -0.322575 0.100198 -0.680597 -0.508483 -0.527479 +0.215395 -0.315722 0.0984575 -0.692632 -0.497808 -0.521966 +0.21302 -0.309451 0.0967817 -0.702766 -0.497263 -0.508772 +0.208588 -0.304575 0.095247 -0.706507 -0.495539 -0.505261 +0.204159 -0.299704 0.093714 -0.71144 -0.493939 -0.499876 +0.198926 -0.295384 0.0922467 -0.699303 -0.493921 -0.516736 +0.194334 -0.290639 0.0907291 -0.696553 -0.488103 -0.525898 +0.190221 -0.28556 0.0891835 -0.70667 -0.485878 -0.514336 +0.18685 -0.279973 0.0875788 -0.715457 -0.483087 -0.504726 +0.183858 -0.274127 0.0859388 -0.729214 -0.473417 -0.494088 +0.180953 -0.268219 0.0843002 -0.748137 -0.456934 -0.481147 +0.178548 -0.261957 0.0826243 -0.769164 -0.438232 -0.465123 +0.175899 -0.255859 0.0809644 -0.789944 -0.419248 -0.44746 +0.17393 -0.249285 0.0792459 -0.804089 -0.408728 -0.43172 +0.171685 -0.242892 0.0775534 -0.820774 -0.397444 -0.41033 +0.169388 -0.236532 0.0758559 -0.829734 -0.402979 -0.386199 +0.167561 -0.229827 0.0741279 -0.834932 -0.40616 -0.371381 +0.165254 -0.223467 0.0724289 -0.839765 -0.414294 -0.350934 +0.163182 -0.216925 0.070718 -0.845587 -0.421537 -0.327552 +0.160496 -0.210825 0.0690538 -0.851525 -0.427986 -0.302878 +0.157694 -0.204795 0.0673883 -0.857978 -0.433115 -0.276202 +0.154526 -0.199036 0.0657616 -0.863438 -0.436197 -0.253395 +0.151299 -0.193312 0.0641374 -0.870338 -0.43222 -0.236005 +0.148208 -0.187491 0.0625019 -0.870662 -0.430358 -0.238201 +0.14544 -0.18143 0.0608401 -0.869858 -0.427739 -0.245738 +0.143287 -0.174915 0.0591198 -0.868793 -0.42397 -0.25583 +0.14129 -0.168279 0.0573926 -0.864647 -0.414125 -0.284405 +0.139377 -0.161577 0.0556493 -0.858175 -0.407514 -0.312201 +0.136879 -0.155294 0.0539597 -0.848988 -0.412713 -0.329979 +0.134032 -0.149264 0.0522985 -0.835677 -0.418219 -0.356002 +0.13178 -0.142792 0.0505793 -0.817077 -0.435033 -0.378325 +0.129618 -0.136246 0.0488576 -0.799661 -0.457866 -0.388461 +0.12733 -0.129786 0.0471453 -0.774181 -0.484698 -0.407078 +0.124775 -0.123529 0.0454495 -0.743281 -0.521484 -0.419031 +0.122065 -0.117374 0.0437708 -0.709723 -0.55791 -0.430151 +0.118961 -0.111517 0.0421259 -0.671323 -0.596818 -0.43947 +0.115528 -0.105918 0.0405136 -0.636203 -0.640518 -0.430097 +0.111921 -0.10044 0.0389124 -0.610788 -0.672222 -0.418397 +0.10738 -0.0956897 0.0373974 -0.561912 -0.725002 -0.398281 +0.102075 -0.0915258 0.0359592 -0.517559 -0.763679 -0.385911 +0.0965603 -0.0875387 0.034543 -0.471845 -0.800251 -0.370082 +0.0901085 -0.0842898 0.0332158 -0.430032 -0.82527 -0.366063 +0.0839308 -0.0808403 0.0318667 -0.397542 -0.84062 -0.367857 +0.077924 -0.0772788 0.0305063 -0.373977 -0.845163 -0.381893 +0.071663 -0.0739231 0.0291703 -0.35722 -0.84397 -0.400137 +0.0652924 -0.0706771 0.027852 -0.358029 -0.832517 -0.422766 +0.0578462 -0.0682921 0.0266374 -0.369573 -0.80775 -0.459301 +0.051917 -0.0647271 0.0252827 -0.387711 -0.782844 -0.486658 +0.0467133 -0.0605965 0.0238604 -0.40536 -0.753655 -0.517385 +0.0418291 -0.0562237 0.0224046 -0.431124 -0.713506 -0.552306 +0.036207 -0.0524393 0.0210266 -0.444972 -0.688868 -0.572244 +0.0305027 -0.0487478 0.019662 -0.443872 -0.673226 -0.591392 +0.0247527 -0.0451006 0.0183046 -0.447908 -0.6477 -0.616331 +0.0216315 -0.0393306 0.016679 -0.460021 -0.634291 -0.621336 +0.0213519 -0.031267 0.0147654 -0.474152 -0.615999 -0.629069 +0.603701 -0.458529 0.15855 0.233557 -0.893392 0.383801 +0.578075 -0.465 0.15787 0.164317 -0.951083 0.261616 +0.556292 -0.469391 0.157025 0.162072 -0.975926 0.145953 +0.538538 -0.47157 0.156017 0.180599 -0.980501 0.0774835 +0.519546 -0.474519 0.155076 0.178316 -0.983087 -0.041777 +0.493276 -0.481713 0.154509 0.143849 -0.979957 -0.137815 +0.473334 -0.485363 0.153655 0.0322548 -0.978401 -0.204187 +0.456565 -0.487257 0.152659 -0.0933737 -0.965897 -0.241507 +0.445349 -0.48599 0.1514 -0.142937 -0.958415 -0.247007 +0.436743 -0.483247 0.150014 -0.184265 -0.950311 -0.25091 +0.429569 -0.479677 0.148555 -0.210949 -0.944525 -0.251744 +0.421988 -0.476368 0.14712 -0.228291 -0.939698 -0.254662 +0.413853 -0.47341 0.145726 -0.237436 -0.936717 -0.257267 +0.404865 -0.470966 0.144376 -0.242268 -0.934563 -0.260572 +0.395334 -0.468881 0.143068 -0.251383 -0.929332 -0.270461 +0.385839 -0.466795 0.141756 -0.261587 -0.922492 -0.283872 +0.377528 -0.464028 0.14039 -0.275238 -0.912321 -0.303174 +0.369312 -0.461228 0.139025 -0.290239 -0.900783 -0.323036 +0.362219 -0.457774 0.137601 -0.3014 -0.890616 -0.340534 +0.355474 -0.454124 0.136161 -0.306472 -0.880875 -0.360742 +0.349096 -0.450262 0.134705 -0.312952 -0.869365 -0.382447 +0.342258 -0.446703 0.13328 -0.318656 -0.857648 -0.403607 +0.335403 -0.443163 0.131856 -0.325341 -0.847722 -0.418953 +0.327629 -0.440201 0.130492 -0.330823 -0.836529 -0.436778 +0.3201 -0.437119 0.129116 -0.350253 -0.823567 -0.446162 +0.313596 -0.433411 0.127685 -0.374511 -0.810857 -0.449726 +0.307501 -0.429464 0.126233 -0.403695 -0.795525 -0.451854 +0.301108 -0.425721 0.124805 -0.449407 -0.769018 -0.454584 +0.295282 -0.421633 0.123338 -0.482575 -0.749533 -0.453126 +0.289808 -0.417339 0.121854 -0.514339 -0.729916 -0.4502 +0.284676 -0.412839 0.120352 -0.537614 -0.71693 -0.443828 +0.280013 -0.408048 0.118826 -0.559958 -0.701182 -0.441352 +0.275676 -0.403053 0.11728 -0.582652 -0.683328 -0.439977 +0.27193 -0.397693 0.115694 -0.608029 -0.665931 -0.432246 +0.268348 -0.392227 0.114099 -0.628475 -0.651748 -0.424554 +0.264747 -0.386771 0.112503 -0.646257 -0.633651 -0.425251 +0.260205 -0.381916 0.110972 -0.656693 -0.619748 -0.429731 +0.255971 -0.376876 0.109417 -0.656884 -0.610715 -0.442189 +0.251842 -0.371773 0.107864 -0.652018 -0.607772 -0.453307 +0.248119 -0.366408 0.10628 -0.651889 -0.604239 -0.458189 +0.244365 -0.361062 0.104697 -0.652309 -0.60195 -0.460598 +0.241005 -0.355453 0.103087 -0.657905 -0.592487 -0.464888 +0.238078 -0.349566 0.101451 -0.657493 -0.581808 -0.478752 +0.234736 -0.343955 0.0998443 -0.663398 -0.567529 -0.487662 +0.23083 -0.33871 0.0982692 -0.655995 -0.555202 -0.511294 +0.227107 -0.333344 0.0966847 -0.678311 -0.54645 -0.491209 +0.223632 -0.327823 0.0950854 -0.694124 -0.533547 -0.483239 +0.220476 -0.322081 0.0934634 -0.708991 -0.521251 -0.475006 +0.217954 -0.315918 0.0917918 -0.720508 -0.515773 -0.463517 +0.215211 -0.309886 0.0901388 -0.72298 -0.50631 -0.470055 +0.211004 -0.304857 0.088589 -0.721453 -0.501162 -0.477851 +0.206346 -0.300131 0.0870779 -0.715491 -0.499308 -0.488636 +0.201148 -0.295782 0.0856057 -0.712181 -0.494326 -0.498437 +0.196658 -0.290955 0.0840866 -0.714458 -0.495093 -0.4944 +0.192831 -0.28568 0.0825133 -0.712199 -0.49545 -0.497295 +0.189764 -0.279884 0.0808856 -0.714773 -0.490688 -0.498324 +0.187074 -0.273823 0.0792237 -0.721044 -0.482459 -0.497322 +0.184669 -0.26756 0.0775462 -0.734872 -0.469207 -0.489703 +0.182707 -0.260982 0.0758283 -0.749901 -0.452934 -0.482181 +0.18097 -0.254234 0.0740909 -0.762474 -0.441033 -0.473419 +0.179106 -0.247571 0.0723609 -0.772393 -0.431826 -0.465763 +0.176764 -0.241238 0.0706664 -0.782449 -0.427729 -0.452571 +0.174229 -0.235038 0.0689924 -0.790844 -0.429207 -0.436288 +0.171682 -0.228847 0.067312 -0.799165 -0.432478 -0.417489 +0.168462 -0.223119 0.0656879 -0.807944 -0.436301 -0.396066 +0.165564 -0.217165 0.064032 -0.816108 -0.4441 -0.369787 +0.162677 -0.211202 0.0623813 -0.821774 -0.448736 -0.351173 +0.159827 -0.205208 0.0607277 -0.828023 -0.451362 -0.332641 +0.156832 -0.199313 0.0590768 -0.832246 -0.448703 -0.325625 +0.153788 -0.193453 0.0574363 -0.836864 -0.444974 -0.318835 +0.150745 -0.187593 0.0557971 -0.837247 -0.44087 -0.323497 +0.147979 -0.181523 0.0541332 -0.839106 -0.429801 -0.333425 +0.146063 -0.174832 0.0523926 -0.836403 -0.415449 -0.357538 +0.144297 -0.168025 0.0506314 -0.831533 -0.407127 -0.37789 +0.142663 -0.161103 0.0488612 -0.821112 -0.400493 -0.406671 +0.140194 -0.154794 0.0471691 -0.809832 -0.39736 -0.4316 +0.137693 -0.148506 0.0454698 -0.800611 -0.402767 -0.443622 +0.135675 -0.141851 0.0437288 -0.787241 -0.418342 -0.453036 +0.13357 -0.135254 0.0419926 -0.761752 -0.440214 -0.475336 +0.131738 -0.128443 0.0402319 -0.732735 -0.469858 -0.492275 +0.129251 -0.12212 0.0385334 -0.705662 -0.505158 -0.496848 +0.126534 -0.115972 0.0368484 -0.675784 -0.550608 -0.49005 +0.123162 -0.11031 0.0352261 -0.639653 -0.594698 -0.487012 +0.119756 -0.104669 0.0336046 -0.616995 -0.632283 -0.468546 +0.116062 -0.0992517 0.0320102 -0.580977 -0.689392 -0.432672 +0.111645 -0.0943983 0.03049 -0.540263 -0.734273 -0.411049 +0.10684 -0.0898391 0.0290037 -0.512497 -0.769367 -0.381344 +0.100983 -0.0861022 0.0276167 -0.47884 -0.805435 -0.349268 +0.0938331 -0.0833887 0.0263682 -0.449488 -0.832226 -0.324593 +0.0873568 -0.0801605 0.025051 -0.42694 -0.846209 -0.318833 +0.0811633 -0.0767288 0.0237038 -0.416771 -0.852297 -0.316058 +0.0754704 -0.072926 0.022323 -0.412653 -0.851447 -0.323662 +0.0687276 -0.0699525 0.0210418 -0.417646 -0.83831 -0.350441 +0.0633332 -0.0659458 0.0196323 -0.439913 -0.818455 -0.369608 +0.0579636 -0.0619209 0.0182282 -0.465001 -0.789187 -0.401195 +0.0527381 -0.0577864 0.0168035 -0.476375 -0.761761 -0.439078 +0.0481171 -0.0531929 0.0153266 -0.494277 -0.733378 -0.466743 +0.0431033 -0.0489125 0.0138868 -0.503587 -0.722834 -0.473193 +0.0384757 -0.0443252 0.0124025 -0.503034 -0.711163 -0.491126 +0.0338351 -0.0397696 0.0109332 -0.501131 -0.697747 -0.511876 +0.0294627 -0.0349914 0.00943413 -0.506101 -0.67548 -0.536272 +0.0316443 -0.0249092 0.00724549 -0.522766 -0.687168 -0.504495 +0.660298 -0.436816 0.150809 0.386845 -0.796931 0.463952 +0.601025 -0.461998 0.151752 0.204777 -0.900565 0.38347 +0.577946 -0.467027 0.150994 0.152775 -0.948375 0.277936 +0.558021 -0.470359 0.1501 0.148059 -0.966233 0.210892 +0.541575 -0.471796 0.149051 0.159647 -0.979699 0.121261 +0.525384 -0.473129 0.147999 0.144801 -0.988389 0.0460629 +0.501832 -0.478744 0.147337 0.126154 -0.990645 -0.0520559 +0.482745 -0.48188 0.146464 0.068502 -0.986982 -0.145517 +0.465295 -0.484134 0.145522 -0.0421678 -0.97976 -0.195684 +0.451479 -0.484358 0.144409 -0.132616 -0.96607 -0.221638 +0.441169 -0.482576 0.143118 -0.189669 -0.954503 -0.230109 +0.433145 -0.479497 0.141713 -0.210452 -0.949399 -0.233138 +0.425596 -0.476168 0.140284 -0.227553 -0.9453 -0.233727 +0.417567 -0.473134 0.13889 -0.24082 -0.941628 -0.235252 +0.408803 -0.470552 0.137535 -0.25036 -0.938968 -0.235926 +0.399986 -0.468027 0.136197 -0.258776 -0.936051 -0.238421 +0.390996 -0.465622 0.134871 -0.271019 -0.929023 -0.251924 +0.382242 -0.463112 0.133534 -0.289442 -0.918354 -0.269909 +0.374134 -0.460229 0.132167 -0.308297 -0.907225 -0.286175 +0.36655 -0.457056 0.13078 -0.324375 -0.897199 -0.299691 +0.359969 -0.453297 0.129337 -0.341634 -0.886797 -0.311254 +0.353643 -0.449404 0.127879 -0.342574 -0.879798 -0.329545 +0.347366 -0.44549 0.126426 -0.358353 -0.869752 -0.339285 +0.341014 -0.441627 0.124974 -0.35985 -0.862386 -0.35609 +0.333989 -0.438197 0.123568 -0.364968 -0.856165 -0.365759 +0.326179 -0.435263 0.122216 -0.371654 -0.844112 -0.38646 +0.318784 -0.432095 0.120847 -0.385166 -0.833136 -0.396902 +0.31216 -0.428468 0.119424 -0.405852 -0.819818 -0.403958 +0.305595 -0.42482 0.118009 -0.447314 -0.797566 -0.404719 +0.300171 -0.420478 0.116526 -0.484903 -0.777136 -0.40116 +0.29478 -0.416118 0.115034 -0.514439 -0.760766 -0.395711 +0.289469 -0.411714 0.113547 -0.546613 -0.741031 -0.389985 +0.284712 -0.406972 0.112024 -0.5767 -0.720242 -0.385578 +0.280035 -0.402189 0.110497 -0.602443 -0.700059 -0.383381 +0.27572 -0.397171 0.108948 -0.629173 -0.676917 -0.382002 +0.271793 -0.39192 0.107379 -0.645378 -0.663611 -0.378297 +0.267927 -0.386624 0.105797 -0.665929 -0.645495 -0.373999 +0.263512 -0.381692 0.104259 -0.680457 -0.626281 -0.380462 +0.259376 -0.376576 0.102695 -0.689656 -0.611737 -0.387495 +0.255485 -0.371311 0.101127 -0.691875 -0.605971 -0.392567 +0.251823 -0.3659 0.099537 -0.693168 -0.599992 -0.399411 +0.24813 -0.360501 0.0979468 -0.691548 -0.595303 -0.409116 +0.244053 -0.355365 0.096392 -0.690049 -0.58941 -0.420035 +0.240031 -0.350189 0.0948245 -0.687413 -0.584433 -0.431166 +0.236598 -0.344634 0.0932202 -0.686713 -0.577942 -0.440917 +0.232633 -0.339422 0.0916571 -0.69704 -0.564383 -0.442276 +0.22881 -0.334126 0.0900794 -0.706803 -0.550627 -0.444118 +0.225297 -0.328626 0.0884823 -0.703504 -0.538954 -0.463263 +0.221987 -0.32298 0.0868692 -0.7113 -0.530144 -0.461518 +0.219081 -0.317071 0.0852295 -0.723529 -0.518971 -0.455163 +0.216377 -0.311016 0.0835665 -0.727798 -0.506783 -0.462042 +0.213388 -0.305158 0.0819323 -0.732686 -0.502775 -0.458682 +0.209029 -0.300229 0.0803926 -0.728738 -0.492553 -0.475743 +0.203905 -0.295825 0.0789223 -0.725736 -0.489897 -0.483021 +0.19998 -0.290607 0.0773538 -0.717685 -0.489836 -0.494964 +0.196248 -0.285256 0.0757786 -0.71303 -0.491621 -0.499898 +0.193567 -0.279179 0.0741139 -0.713719 -0.490646 -0.499872 +0.191176 -0.27291 0.0724294 -0.714848 -0.483697 -0.505005 +0.189682 -0.266 0.0706666 -0.718098 -0.47516 -0.508486 +0.18815 -0.259111 0.0689156 -0.725572 -0.462734 -0.509336 +0.186374 -0.25239 0.0671716 -0.735395 -0.449608 -0.506998 +0.184287 -0.245868 0.0654562 -0.741405 -0.444855 -0.502417 +0.181523 -0.239825 0.0637905 -0.74879 -0.446475 -0.489872 +0.178636 -0.233863 0.0621414 -0.756672 -0.447503 -0.476642 +0.175673 -0.227947 0.0604873 -0.762532 -0.452349 -0.462523 +0.172207 -0.222394 0.0588819 -0.769785 -0.458381 -0.444204 +0.168621 -0.216921 0.0572841 -0.776488 -0.463464 -0.426928 +0.165436 -0.211164 0.0556557 -0.784514 -0.463274 -0.412208 +0.162453 -0.205259 0.0540106 -0.788141 -0.464111 -0.404271 +0.159565 -0.199291 0.0523521 -0.79734 -0.461908 -0.388446 +0.156651 -0.193326 0.0506997 -0.802927 -0.448381 -0.392764 +0.153852 -0.187287 0.0490323 -0.814003 -0.43381 -0.386276 +0.151163 -0.181155 0.0473539 -0.812757 -0.416262 -0.407619 +0.148999 -0.174638 0.045631 -0.80757 -0.401931 -0.431603 +0.14731 -0.167768 0.0438692 -0.803748 -0.390856 -0.448576 +0.146042 -0.160576 0.0420613 -0.785912 -0.38109 -0.486943 +0.144246 -0.153762 0.0402955 -0.771839 -0.377816 -0.511388 +0.142498 -0.1469 0.0385303 -0.750529 -0.381244 -0.539777 +0.140333 -0.140352 0.0367931 -0.729699 -0.399048 -0.555249 +0.138496 -0.133544 0.0350316 -0.707013 -0.423051 -0.566711 +0.136617 -0.126755 0.0332642 -0.678351 -0.457041 -0.575285 +0.134663 -0.120018 0.0315099 -0.648083 -0.503272 -0.571584 +0.131904 -0.113885 0.0298238 -0.628198 -0.549865 -0.550468 +0.12814 -0.10851 0.0282406 -0.604946 -0.614407 -0.506502 +0.124212 -0.103259 0.0266637 -0.581188 -0.665121 -0.468868 +0.120134 -0.098124 0.0251085 -0.553457 -0.710114 -0.43523 +0.115952 -0.0930793 0.0235578 -0.522815 -0.760934 -0.384245 +0.111012 -0.0886162 0.0220903 -0.511842 -0.787894 -0.342404 +0.106003 -0.0842141 0.020622 -0.477697 -0.822707 -0.308157 +0.0998897 -0.0806785 0.0192743 -0.458928 -0.846171 -0.270892 +0.0932556 -0.0775523 0.0179751 -0.452466 -0.855347 -0.252303 +0.0864907 -0.0745559 0.0166949 -0.457951 -0.856352 -0.23863 +0.0815611 -0.0701397 0.0152309 -0.46888 -0.851968 -0.23303 +0.0759598 -0.0662556 0.0138394 -0.479071 -0.841507 -0.249718 +0.0713309 -0.0616231 0.0123513 -0.501977 -0.823482 -0.264383 +0.0660591 -0.0574972 0.0109323 -0.538624 -0.786595 -0.301914 +0.06031 -0.0537623 0.00956282 -0.551511 -0.770504 -0.319625 +0.0555868 -0.0492202 0.00808884 -0.561839 -0.760404 -0.325767 +0.0506944 -0.0448328 0.00664274 -0.580684 -0.74067 -0.337956 +0.0459471 -0.0403224 0.00517354 -0.571955 -0.739643 -0.354677 +0.0416368 -0.0354736 0.00366444 -0.576093 -0.731461 -0.364804 +0.0375902 -0.0304158 0.0021223 -0.567032 -0.735689 -0.370456 +0.0416446 -0.0187991 -0.000280961 -0.584181 -0.745998 -0.319716 +0.631245 -0.455042 0.145229 0.31978 -0.837847 0.442442 +0.598458 -0.465405 0.144965 0.181755 -0.908806 0.37555 +0.576689 -0.469696 0.144184 0.127344 -0.937991 0.322423 +0.558309 -0.472152 0.143238 0.112893 -0.965858 0.233185 +0.542765 -0.473064 0.14217 0.113865 -0.973791 0.196896 +0.526244 -0.474582 0.141157 0.121357 -0.986752 0.10768 +0.509963 -0.476025 0.140146 0.0904027 -0.994427 0.0542446 +0.489433 -0.479966 0.139378 0.0578443 -0.997091 -0.0496563 +0.471976 -0.482208 0.138465 -0.0379226 -0.989329 -0.140679 +0.458166 -0.482395 0.137368 -0.117831 -0.975592 -0.185305 +0.446732 -0.481262 0.136142 -0.169174 -0.964558 -0.202509 +0.436961 -0.479186 0.13484 -0.207193 -0.955927 -0.208028 +0.428911 -0.476137 0.133454 -0.232149 -0.949451 -0.211304 +0.420831 -0.473123 0.132069 -0.242673 -0.947814 -0.206788 +0.412329 -0.470373 0.130705 -0.25188 -0.94471 -0.209955 +0.403872 -0.467627 0.129356 -0.264114 -0.941122 -0.211033 +0.395031 -0.465132 0.12803 -0.276851 -0.935731 -0.218543 +0.386286 -0.462594 0.126702 -0.30266 -0.925318 -0.228443 +0.377849 -0.459906 0.125366 -0.323392 -0.914097 -0.24463 +0.369976 -0.456897 0.123999 -0.34218 -0.903185 -0.259171 +0.363281 -0.453199 0.12256 -0.359958 -0.894046 -0.26667 +0.356988 -0.449273 0.121105 -0.375699 -0.887188 -0.267861 +0.350771 -0.445311 0.119656 -0.381367 -0.87975 -0.283902 +0.344406 -0.441456 0.118211 -0.390767 -0.874747 -0.286563 +0.337738 -0.4378 0.116793 -0.398162 -0.866712 -0.300465 +0.330567 -0.434463 0.115404 -0.399556 -0.861592 -0.313074 +0.322832 -0.431491 0.114058 -0.406669 -0.854953 -0.321988 +0.31568 -0.428185 0.112678 -0.426399 -0.841303 -0.332256 +0.308948 -0.424627 0.111277 -0.454439 -0.826817 -0.331451 +0.30341 -0.420344 0.109798 -0.489087 -0.807286 -0.330279 +0.297981 -0.416005 0.108315 -0.520444 -0.787826 -0.329348 +0.292756 -0.411541 0.106822 -0.554873 -0.763995 -0.329284 +0.287714 -0.406969 0.10532 -0.591452 -0.738727 -0.323215 +0.282785 -0.402336 0.103813 -0.620461 -0.715956 -0.320056 +0.278153 -0.397526 0.102285 -0.650043 -0.690741 -0.316736 +0.273739 -0.392577 0.100743 -0.669856 -0.671657 -0.316497 +0.269327 -0.387632 0.09921 -0.687476 -0.653931 -0.315833 +0.265172 -0.382529 0.0976471 -0.705402 -0.631468 -0.321957 +0.261223 -0.377288 0.0960789 -0.716183 -0.61426 -0.331313 +0.257413 -0.371969 0.0944973 -0.72034 -0.602799 -0.343138 +0.253512 -0.366701 0.0929266 -0.723609 -0.594717 -0.350287 +0.249727 -0.361366 0.0913432 -0.717402 -0.590751 -0.369253 +0.245881 -0.356074 0.0897722 -0.716107 -0.582924 -0.383915 +0.241958 -0.350829 0.0881975 -0.710788 -0.575457 -0.404511 +0.238038 -0.345591 0.0866328 -0.699334 -0.567621 -0.434439 +0.233916 -0.340482 0.0850788 -0.691745 -0.560748 -0.455029 +0.230106 -0.335179 0.0835012 -0.698091 -0.553069 -0.454735 +0.22643 -0.329775 0.0819197 -0.706054 -0.539569 -0.458642 +0.22313 -0.324132 0.0802995 -0.715731 -0.524798 -0.460777 +0.220076 -0.318313 0.0786686 -0.722843 -0.512973 -0.462986 +0.217521 -0.312169 0.0769984 -0.729315 -0.503414 -0.46333 +0.215755 -0.305475 0.0752626 -0.727981 -0.488902 -0.480645 +0.212079 -0.300073 0.073673 -0.722468 -0.480613 -0.497042 +0.207987 -0.294955 0.0721215 -0.720465 -0.479843 -0.500681 +0.204375 -0.289514 0.0705288 -0.725623 -0.480516 -0.49252 +0.201042 -0.28389 0.0689182 -0.718936 -0.481901 -0.500901 +0.199037 -0.27734 0.0671948 -0.706314 -0.478856 -0.521363 +0.197476 -0.270478 0.0654381 -0.698815 -0.476234 -0.533723 +0.19578 -0.263698 0.0636887 -0.695509 -0.47122 -0.542422 +0.193595 -0.257246 0.0619793 -0.695863 -0.462242 -0.549643 +0.191108 -0.251012 0.060287 -0.698819 -0.459291 -0.548365 +0.188492 -0.244852 0.0586154 -0.709408 -0.455572 -0.537768 +0.185454 -0.23899 0.056968 -0.71528 -0.456904 -0.528785 +0.182544 -0.233043 0.0553132 -0.721127 -0.462184 -0.516105 +0.179535 -0.227155 0.0536695 -0.727808 -0.465921 -0.503202 +0.176007 -0.22163 0.0520644 -0.730396 -0.469315 -0.496249 +0.172642 -0.215998 0.0504491 -0.735176 -0.471783 -0.486764 +0.169072 -0.210508 0.0488487 -0.750048 -0.472528 -0.462759 +0.165858 -0.204758 0.0472196 -0.754042 -0.464416 -0.464477 +0.163141 -0.198652 0.0455448 -0.75836 -0.456314 -0.465476 +0.160303 -0.192637 0.0438785 -0.758295 -0.441956 -0.479234 +0.157582 -0.186525 0.0422005 -0.755485 -0.424494 -0.499047 +0.155034 -0.180292 0.0405108 -0.750755 -0.409725 -0.518163 +0.153056 -0.17363 0.0387636 -0.744695 -0.388576 -0.542622 +0.151491 -0.16666 0.036982 -0.73753 -0.367312 -0.566685 +0.150504 -0.159249 0.0351415 -0.725703 -0.351929 -0.591186 +0.149463 -0.151863 0.033301 -0.712991 -0.349776 -0.607702 +0.148145 -0.144675 0.0314901 -0.693518 -0.360184 -0.623939 +0.146126 -0.138005 0.0297367 -0.670707 -0.383891 -0.63465 +0.14436 -0.131129 0.0279594 -0.648123 -0.415121 -0.638446 +0.142628 -0.124218 0.0261757 -0.619721 -0.463434 -0.633384 +0.140107 -0.1179 0.0244685 -0.596812 -0.520528 -0.610628 +0.137354 -0.111747 0.0227777 -0.576639 -0.591849 -0.563209 +0.134218 -0.105884 0.0211218 -0.550274 -0.654661 -0.518284 +0.129494 -0.101223 0.0196272 -0.533386 -0.707132 -0.464182 +0.124958 -0.0964224 0.0181098 -0.517316 -0.753072 -0.406529 +0.120561 -0.0915308 0.0165829 -0.495047 -0.801446 -0.335579 +0.115569 -0.0870989 0.015118 -0.480387 -0.831518 -0.27894 +0.110421 -0.0827872 0.0136668 -0.463338 -0.854646 -0.234303 +0.105125 -0.0786071 0.0122338 -0.459346 -0.868692 -0.185409 +0.0997003 -0.0745372 0.0108216 -0.467623 -0.870482 -0.153598 +0.0940987 -0.0706102 0.00942001 -0.481439 -0.865644 -0.137401 +0.0888442 -0.0664275 0.0079976 -0.493138 -0.858284 -0.142 +0.0812329 -0.0641007 0.00681324 -0.516013 -0.845887 -0.134944 +0.0764378 -0.0595844 0.0053453 -0.549992 -0.821121 -0.152542 +0.0723234 -0.0545333 0.00379914 -0.600874 -0.787789 -0.135422 +0.0687958 -0.0490252 0.00219878 -0.627381 -0.762892 -0.156169 +0.0639917 -0.0445232 0.000734286 -0.632186 -0.752682 -0.183876 +0.0587271 -0.0404089 -0.000681348 -0.640151 -0.742768 -0.196225 +0.0523393 -0.037191 -0.00197209 -0.640261 -0.73595 -0.220099 +0.0476206 -0.0326557 -0.00343717 -0.636641 -0.744114 -0.202441 +0.04411 -0.0271453 -0.00503655 -0.621065 -0.753791 -0.21466 +0.0442398 -0.0186973 -0.00703559 -0.622068 -0.758335 -0.194835 +0.622071 -0.462145 0.138737 0.275581 -0.855035 0.439286 +0.595818 -0.468853 0.138196 0.157085 -0.919174 0.361172 +0.575823 -0.472138 0.137355 0.109973 -0.941 0.320039 +0.558904 -0.473768 0.136362 0.0846405 -0.953221 0.290181 +0.542457 -0.475182 0.135362 0.102919 -0.969787 0.221181 +0.52536 -0.477029 0.134412 0.0753608 -0.981793 0.174368 +0.511187 -0.477259 0.133308 0.084953 -0.99136 0.0999445 +0.492906 -0.479901 0.132454 0.0141192 -0.999838 0.011146 +0.477152 -0.481148 0.131469 -0.0440787 -0.995985 -0.0779254 +0.463915 -0.480997 0.13035 -0.0827092 -0.989818 -0.115841 +0.451898 -0.48018 0.12918 -0.166202 -0.972035 -0.165906 +0.441126 -0.478668 0.127941 -0.209032 -0.961296 -0.179491 +0.431996 -0.47624 0.12662 -0.231655 -0.955479 -0.182753 +0.423458 -0.47349 0.125269 -0.242487 -0.952556 -0.183951 +0.415078 -0.470662 0.123915 -0.255317 -0.949087 -0.184522 +0.406968 -0.4677 0.122545 -0.269142 -0.945942 -0.180992 +0.398564 -0.464937 0.121203 -0.285289 -0.940493 -0.184619 +0.389793 -0.462411 0.119892 -0.307434 -0.930492 -0.199174 +0.381201 -0.459806 0.118571 -0.327872 -0.921365 -0.208775 +0.373156 -0.456889 0.117218 -0.354626 -0.910001 -0.214806 +0.366254 -0.453312 0.115804 -0.372592 -0.901157 -0.221567 +0.360014 -0.449345 0.114351 -0.394976 -0.892439 -0.218056 +0.353831 -0.445352 0.112899 -0.399026 -0.889096 -0.224247 +0.347111 -0.44171 0.111479 -0.408626 -0.884026 -0.226986 +0.340205 -0.438186 0.110077 -0.412924 -0.878429 -0.240533 +0.333341 -0.434654 0.108678 -0.419014 -0.873751 -0.246959 +0.326164 -0.431336 0.107301 -0.433416 -0.866122 -0.248967 +0.319073 -0.427985 0.105924 -0.445679 -0.857187 -0.258071 +0.311991 -0.424634 0.104549 -0.46542 -0.845441 -0.26194 +0.305984 -0.420638 0.103109 -0.499321 -0.82668 -0.259382 +0.300274 -0.416466 0.101649 -0.532378 -0.806185 -0.258148 +0.295085 -0.411972 0.100159 -0.568922 -0.781816 -0.255136 +0.289977 -0.407437 0.098661 -0.603284 -0.756298 -0.253107 +0.284925 -0.402879 0.0971604 -0.634412 -0.730747 -0.252056 +0.279949 -0.398283 0.0956581 -0.663577 -0.703574 -0.254261 +0.275239 -0.393518 0.0941406 -0.689916 -0.676016 -0.25888 +0.270588 -0.388718 0.0926207 -0.710492 -0.65087 -0.267527 +0.266412 -0.383624 0.0910668 -0.724966 -0.631129 -0.275864 +0.262629 -0.378277 0.0894881 -0.732809 -0.610064 -0.301353 +0.258897 -0.372909 0.0879022 -0.736072 -0.599456 -0.314405 +0.255224 -0.367498 0.0863106 -0.740357 -0.585785 -0.32974 +0.251368 -0.362203 0.084738 -0.739083 -0.577045 -0.347526 +0.247558 -0.356884 0.0831555 -0.734446 -0.572622 -0.364273 +0.243686 -0.351605 0.0815864 -0.726222 -0.567503 -0.387999 +0.239624 -0.346453 0.0800277 -0.720504 -0.561524 -0.406899 +0.235475 -0.341359 0.0784768 -0.716521 -0.551956 -0.426548 +0.231871 -0.335916 0.0768837 -0.715561 -0.545415 -0.436459 +0.228269 -0.330458 0.075296 -0.714595 -0.533986 -0.4519 +0.224975 -0.324812 0.0736754 -0.720197 -0.520796 -0.458355 +0.221961 -0.318969 0.0720425 -0.72568 -0.513941 -0.457444 +0.219192 -0.312954 0.0703828 -0.729798 -0.496119 -0.470383 +0.217658 -0.306105 0.0686247 -0.724275 -0.475927 -0.49892 +0.215182 -0.299887 0.0669442 -0.72056 -0.468294 -0.511364 +0.212997 -0.293463 0.0652339 -0.713935 -0.468118 -0.520733 +0.209926 -0.287647 0.0635937 -0.705673 -0.468528 -0.531516 +0.207317 -0.281502 0.0619185 -0.696949 -0.468673 -0.542778 +0.206384 -0.274207 0.0601024 -0.675679 -0.472111 -0.566188 +0.204424 -0.267603 0.0583698 -0.667069 -0.468371 -0.579351 +0.202133 -0.261224 0.0566616 -0.661569 -0.461948 -0.590704 +0.198884 -0.255506 0.0550367 -0.6621 -0.460394 -0.591323 +0.19525 -0.250054 0.0534395 -0.667216 -0.463539 -0.583056 +0.192099 -0.244268 0.0518079 -0.67971 -0.465317 -0.566988 +0.189082 -0.238377 0.0501556 -0.687779 -0.466018 -0.556585 +0.186107 -0.232458 0.0485082 -0.693441 -0.473072 -0.543454 +0.183281 -0.226435 0.0468419 -0.69617 -0.474135 -0.53902 +0.180263 -0.220544 0.0451894 -0.6974 -0.472303 -0.53904 +0.176889 -0.214909 0.0435727 -0.699124 -0.471561 -0.537454 +0.173186 -0.209507 0.041981 -0.699241 -0.467017 -0.541257 +0.169947 -0.203774 0.0403535 -0.703324 -0.452683 -0.548101 +0.167286 -0.197617 0.0386709 -0.703799 -0.438996 -0.558526 +0.16464 -0.191452 0.0369877 -0.701972 -0.425515 -0.571115 +0.162204 -0.185128 0.0352779 -0.706372 -0.403297 -0.581712 +0.15973 -0.178824 0.0335788 -0.712617 -0.382252 -0.58827 +0.158167 -0.171845 0.0317869 -0.703818 -0.358275 -0.613416 +0.157175 -0.16444 0.0299387 -0.687456 -0.340017 -0.641711 +0.157095 -0.156357 0.0280069 -0.666042 -0.334025 -0.666945 +0.156347 -0.148744 0.0261322 -0.641198 -0.329145 -0.693202 +0.154812 -0.141708 0.0243294 -0.619331 -0.345091 -0.705225 +0.152759 -0.135041 0.0225749 -0.603018 -0.375472 -0.70384 +0.151353 -0.127883 0.0207551 -0.580029 -0.422096 -0.696709 +0.14991 -0.120738 0.0189357 -0.561055 -0.497234 -0.661797 +0.147573 -0.114259 0.0171986 -0.53876 -0.581382 -0.609699 +0.144293 -0.108491 0.0155592 -0.525047 -0.639637 -0.561417 +0.140799 -0.102878 0.0139369 -0.502016 -0.706548 -0.498769 +0.136355 -0.0979947 0.0124158 -0.48798 -0.766042 -0.418398 +0.131497 -0.0934221 0.01093 -0.471842 -0.816905 -0.331712 +0.12654 -0.0889432 0.00945673 -0.455453 -0.848876 -0.268276 +0.120655 -0.0851764 0.00807405 -0.453689 -0.867897 -0.202291 +0.114798 -0.0814082 0.00670278 -0.452535 -0.880225 -0.142882 +0.10908 -0.0775367 0.00531943 -0.455275 -0.885996 -0.0879616 +0.102914 -0.074032 0.00398158 -0.462998 -0.885187 -0.0455619 +0.0962572 -0.0709254 0.00269229 -0.483944 -0.874944 -0.0165135 +0.0903642 -0.0672302 0.00133348 -0.504622 -0.86332 0.00600877 +0.0834925 -0.0643188 7.9744e-05 -0.549704 -0.835359 0.000755191 +0.0776901 -0.0605847 -0.00127958 -0.58753 -0.8091 -0.012911 +0.0723246 -0.0565224 -0.00268428 -0.636303 -0.770961 -0.0271831 +0.0674857 -0.0520492 -0.00414514 -0.678132 -0.733527 -0.0455593 +0.0629888 -0.0473108 -0.00563688 -0.683042 -0.727382 -0.0660997 +0.0585754 -0.0425232 -0.00714137 -0.683136 -0.728857 -0.0457426 +0.0542894 -0.0376246 -0.00865992 -0.683251 -0.727037 -0.0677229 +0.0505989 -0.0322559 -0.0102354 -0.715882 -0.697466 -0.0324795 +0.0471648 -0.0266824 -0.0118426 -0.687001 -0.724138 -0.0604491 +0.0458732 -0.0193807 -0.013693 -0.694194 -0.718025 -0.0503495 +0.61652 -0.467217 0.132094 0.207679 -0.883359 0.420174 +0.59255 -0.472647 0.131476 0.139122 -0.918843 0.369289 +0.574744 -0.474706 0.130544 0.0833276 -0.936875 0.339594 +0.559341 -0.475471 0.129501 0.0729032 -0.952527 0.295601 +0.541868 -0.477466 0.128583 0.0516856 -0.961276 0.270703 +0.524829 -0.479272 0.127652 0.0624567 -0.976557 0.206005 +0.510891 -0.479363 0.12656 0.0488475 -0.986379 0.157075 +0.494978 -0.48064 0.12559 0.00381183 -0.998251 0.0589918 +0.480326 -0.481241 0.12457 -0.0487779 -0.99849 -0.0252968 +0.467737 -0.480704 0.123435 -0.0936654 -0.992925 -0.0729908 +0.456771 -0.479262 0.122212 -0.169622 -0.977794 -0.123077 +0.445541 -0.478013 0.121016 -0.205846 -0.967965 -0.143784 +0.435286 -0.47623 0.119769 -0.228617 -0.96061 -0.157997 +0.42621 -0.473782 0.118457 -0.246459 -0.955468 -0.162294 +0.417814 -0.470962 0.117111 -0.259357 -0.952792 -0.157868 +0.409649 -0.468021 0.115756 -0.270604 -0.949444 -0.159157 +0.401285 -0.465223 0.114418 -0.287269 -0.944158 -0.161381 +0.392442 -0.462738 0.113118 -0.310706 -0.935066 -0.170629 +0.383911 -0.460085 0.111798 -0.331741 -0.926839 -0.175835 +0.375896 -0.457147 0.110458 -0.359448 -0.915529 -0.180569 +0.36877 -0.453694 0.109061 -0.380136 -0.905906 -0.18664 +0.362533 -0.449715 0.107614 -0.400068 -0.897665 -0.184781 +0.356343 -0.445726 0.106161 -0.415934 -0.891889 -0.177577 +0.349929 -0.441888 0.104731 -0.42033 -0.889773 -0.177842 +0.342964 -0.438398 0.10334 -0.431317 -0.884003 -0.180294 +0.335763 -0.435067 0.101966 -0.438773 -0.879948 -0.182129 +0.328808 -0.431605 0.100583 -0.44859 -0.87398 -0.186892 +0.321892 -0.428136 0.0992018 -0.462149 -0.866674 -0.187873 +0.314923 -0.424708 0.0978252 -0.480198 -0.855701 -0.192835 +0.308247 -0.421122 0.0964302 -0.512616 -0.836921 -0.191803 +0.302113 -0.41721 0.0950072 -0.541437 -0.816531 -0.200309 +0.296676 -0.412873 0.0935329 -0.573543 -0.792253 -0.208286 +0.291928 -0.408105 0.0920122 -0.610131 -0.764718 -0.207236 +0.287021 -0.403448 0.0905094 -0.636747 -0.737738 -0.224269 +0.281628 -0.39911 0.0890387 -0.667206 -0.707785 -0.232116 +0.276657 -0.39451 0.0875439 -0.695504 -0.676302 -0.242671 +0.271802 -0.389841 0.0860357 -0.719378 -0.645953 -0.255426 +0.26756 -0.384785 0.0844919 -0.733641 -0.623664 -0.269841 +0.264086 -0.379245 0.0828888 -0.742857 -0.604729 -0.287171 +0.260633 -0.373684 0.0812824 -0.750898 -0.588145 -0.3004 +0.257498 -0.367924 0.0796501 -0.753082 -0.57302 -0.323288 +0.253787 -0.362533 0.0780671 -0.750716 -0.560056 -0.350376 +0.250546 -0.356829 0.0764393 -0.747122 -0.551064 -0.371667 +0.246061 -0.351954 0.0749159 -0.738703 -0.548834 -0.391281 +0.241973 -0.346816 0.0733596 -0.72858 -0.538594 -0.423187 +0.238098 -0.341533 0.0717879 -0.719289 -0.533479 -0.444998 +0.234377 -0.336159 0.0702006 -0.713044 -0.530431 -0.458488 +0.231011 -0.330553 0.0685911 -0.708173 -0.520529 -0.477014 +0.227668 -0.324925 0.0669803 -0.703442 -0.507075 -0.498041 +0.224707 -0.319044 0.0653342 -0.701426 -0.49401 -0.513766 +0.222 -0.312983 0.0636704 -0.701205 -0.477268 -0.529648 +0.220452 -0.306141 0.0619114 -0.696139 -0.462149 -0.549372 +0.218771 -0.299372 0.0601583 -0.690925 -0.455177 -0.561638 +0.218596 -0.29158 0.0582778 -0.677803 -0.454864 -0.577653 +0.216576 -0.285022 0.0565516 -0.661958 -0.45597 -0.594898 +0.214436 -0.278548 0.0548249 -0.648328 -0.456927 -0.609007 +0.212146 -0.272169 0.0531169 -0.64102 -0.45604 -0.617351 +0.209764 -0.265845 0.0514129 -0.636233 -0.455029 -0.623022 +0.206777 -0.259934 0.0497659 -0.634242 -0.457911 -0.622941 +0.202861 -0.25467 0.0481872 -0.642977 -0.459795 -0.612511 +0.199225 -0.249216 0.0465968 -0.64346 -0.463514 -0.609192 +0.195686 -0.24369 0.0449912 -0.642809 -0.467287 -0.606993 +0.192828 -0.237686 0.0433263 -0.649136 -0.47155 -0.59688 +0.190104 -0.231583 0.0416507 -0.654769 -0.473367 -0.589239 +0.18741 -0.225458 0.0399647 -0.653814 -0.469085 -0.593707 +0.184513 -0.219476 0.0383024 -0.656064 -0.462642 -0.596273 +0.181772 -0.213377 0.0366252 -0.648274 -0.455856 -0.609866 +0.178606 -0.207576 0.0349815 -0.648654 -0.448179 -0.615129 +0.175444 -0.20177 0.0333439 -0.649842 -0.432013 -0.625356 +0.172188 -0.196039 0.0317156 -0.659218 -0.414131 -0.627637 +0.170024 -0.189509 0.0299745 -0.653919 -0.39107 -0.647655 +0.167828 -0.182997 0.0282432 -0.648058 -0.369602 -0.665895 +0.165781 -0.176368 0.0264975 -0.641763 -0.35383 -0.680401 +0.16504 -0.16878 0.0246212 -0.629383 -0.331163 -0.703 +0.164813 -0.160805 0.0226938 -0.604146 -0.3159 -0.731584 +0.164858 -0.152608 0.0207378 -0.592043 -0.311714 -0.743182 +0.163866 -0.145161 0.0188732 -0.579725 -0.325813 -0.746837 +0.162984 -0.13762 0.0170017 -0.566548 -0.340781 -0.750261 +0.161888 -0.130218 0.0151464 -0.552907 -0.398419 -0.731817 +0.160378 -0.123124 0.0133242 -0.52987 -0.477471 -0.700899 +0.157734 -0.116863 0.011619 -0.511185 -0.57261 -0.640944 +0.155113 -0.110582 0.00990287 -0.48928 -0.634159 -0.598707 +0.151677 -0.104906 0.00827202 -0.469304 -0.708403 -0.527182 +0.147542 -0.0997635 0.00670915 -0.445407 -0.787795 -0.425432 +0.142664 -0.0951835 0.00522772 -0.440837 -0.828099 -0.34629 +0.137537 -0.0908053 0.00377058 -0.435732 -0.861911 -0.259323 +0.131145 -0.0874071 0.00244573 -0.4242 -0.89226 -0.154686 +0.124806 -0.0839788 0.00111714 -0.433109 -0.896303 -0.0951731 +0.116508 -0.0820737 1.54592e-06 -0.425935 -0.904471 -0.0226738 +0.110742 -0.078242 -0.00137823 -0.422497 -0.906288 0.0118846 +0.103326 -0.0756989 -0.00257947 -0.442744 -0.894589 0.0607408 +0.0961673 -0.0729827 -0.00379902 -0.471861 -0.878314 0.0768904 +0.0891678 -0.0701556 -0.00503804 -0.511312 -0.85448 0.0917846 +0.0821725 -0.0673428 -0.00627244 -0.559132 -0.822283 0.105945 +0.0764338 -0.0635684 -0.00762811 -0.603294 -0.791341 0.0990777 +0.0710267 -0.0595399 -0.0090277 -0.656172 -0.742478 0.134774 +0.065828 -0.055359 -0.0104456 -0.698177 -0.706321 0.116874 +0.0610752 -0.0508239 -0.0119054 -0.717857 -0.689281 0.0978346 +0.0566687 -0.046032 -0.0134098 -0.715588 -0.693504 0.0835845 +0.0527017 -0.040889 -0.0149569 -0.729195 -0.680422 0.0728065 +0.0494397 -0.0351775 -0.016581 -0.732119 -0.678401 0.0614306 +0.0465893 -0.0291444 -0.0182521 -0.736247 -0.674883 0.0497273 +0.046971 -0.0204885 -0.0202923 -0.788775 -0.604497 0.111441 +0.663878 -0.450884 0.12448 0.365613 -0.809412 0.459544 +0.6114 -0.472034 0.125447 0.182287 -0.896672 0.403427 +0.590373 -0.475825 0.12471 0.11478 -0.923398 0.366284 +0.57243 -0.477961 0.123814 0.0687296 -0.938498 0.338376 +0.559469 -0.477349 0.122652 0.0521964 -0.945447 0.321571 +0.541933 -0.479366 0.121765 0.0396211 -0.957815 0.284646 +0.52465 -0.48131 0.120875 0.0441084 -0.970577 0.236717 +0.510721 -0.481401 0.1198 0.0154282 -0.979471 0.200997 +0.496135 -0.481906 0.118784 -0.0308079 -0.992562 0.117792 +0.482351 -0.482004 0.117724 -0.073285 -0.996877 0.0294263 +0.470372 -0.481105 0.116567 -0.114292 -0.993049 -0.0281168 +0.460365 -0.4791 0.115306 -0.182314 -0.97946 -0.0861452 +0.449322 -0.477735 0.114108 -0.192351 -0.975812 -0.103896 +0.439172 -0.475875 0.112868 -0.232418 -0.964377 -0.126332 +0.429582 -0.473716 0.1116 -0.251275 -0.958317 -0.135978 +0.420676 -0.471189 0.110293 -0.25787 -0.956008 -0.139835 +0.412587 -0.4682 0.108942 -0.268482 -0.953089 -0.139786 +0.404355 -0.465311 0.107602 -0.286184 -0.947542 -0.142352 +0.395727 -0.462687 0.106296 -0.310573 -0.939014 -0.147637 +0.386955 -0.460175 0.105003 -0.335185 -0.929867 -0.151652 +0.378684 -0.45738 0.103681 -0.359175 -0.920223 -0.155517 +0.371533 -0.453929 0.102299 -0.380751 -0.911128 -0.157721 +0.364972 -0.450144 0.100875 -0.401777 -0.901792 -0.15921 +0.358575 -0.446277 0.0994408 -0.41547 -0.895078 -0.161933 +0.352792 -0.442043 0.0979743 -0.42382 -0.891727 -0.158745 +0.345673 -0.438643 0.0965987 -0.433314 -0.887088 -0.159107 +0.338211 -0.435465 0.0952527 -0.440502 -0.883167 -0.161169 +0.331594 -0.43179 0.0938494 -0.45216 -0.877234 -0.161288 +0.325072 -0.428067 0.0924444 -0.46608 -0.871155 -0.154458 +0.318261 -0.424534 0.0910581 -0.482971 -0.859633 -0.16665 +0.311056 -0.42127 0.0897143 -0.511942 -0.842384 -0.168239 +0.30447 -0.417629 0.0883223 -0.537322 -0.824767 -0.176202 +0.298507 -0.413621 0.0868925 -0.572344 -0.799277 -0.183245 +0.293826 -0.408814 0.0853673 -0.607313 -0.77219 -0.186803 +0.288854 -0.404196 0.0838688 -0.641589 -0.741363 -0.19683 +0.283417 -0.399873 0.0824051 -0.675745 -0.706988 -0.208659 +0.278203 -0.395426 0.080932 -0.702725 -0.676091 -0.221535 +0.273323 -0.390772 0.0794253 -0.727843 -0.641279 -0.242913 +0.269075 -0.38572 0.0778831 -0.744989 -0.614262 -0.260145 +0.265696 -0.380105 0.0762692 -0.753597 -0.593157 -0.283296 +0.262858 -0.37415 0.0746184 -0.76135 -0.571269 -0.306591 +0.260543 -0.367848 0.0729177 -0.762934 -0.551743 -0.336914 +0.257892 -0.361762 0.0712531 -0.761254 -0.533445 -0.368689 +0.256244 -0.355018 0.0694997 -0.755636 -0.518153 -0.400667 +0.253361 -0.349073 0.0678466 -0.746848 -0.508814 -0.428168 +0.247214 -0.345268 0.0664569 -0.733822 -0.509431 -0.449428 +0.241875 -0.34095 0.0649954 -0.724778 -0.50814 -0.465285 +0.238064 -0.335628 0.0634192 -0.713948 -0.497833 -0.492385 +0.234451 -0.33017 0.0618229 -0.70302 -0.490786 -0.514678 +0.231585 -0.324223 0.060171 -0.689536 -0.481553 -0.540968 +0.228872 -0.318166 0.058508 -0.678928 -0.470409 -0.563713 +0.226632 -0.311785 0.0567941 -0.671227 -0.458102 -0.58275 +0.225083 -0.304928 0.0550324 -0.665438 -0.444846 -0.59942 +0.224106 -0.297678 0.0532144 -0.661971 -0.437487 -0.608605 +0.223304 -0.290309 0.0513764 -0.651315 -0.441216 -0.617347 +0.222547 -0.282882 0.0495364 -0.637822 -0.436864 -0.634298 +0.220739 -0.276164 0.0477836 -0.630032 -0.440859 -0.6393 +0.217562 -0.270378 0.0461413 -0.622014 -0.445104 -0.64419 +0.214354 -0.264611 0.0445013 -0.61944 -0.450698 -0.64278 +0.210724 -0.259136 0.0429066 -0.618956 -0.453733 -0.641109 +0.206934 -0.253779 0.0413174 -0.616576 -0.457723 -0.640565 +0.203491 -0.248177 0.0397023 -0.618726 -0.46102 -0.636112 +0.200461 -0.242283 0.038056 -0.615222 -0.46188 -0.638882 +0.197572 -0.236301 0.0363859 -0.610556 -0.459436 -0.64509 +0.194771 -0.230245 0.0347149 -0.613928 -0.458919 -0.642251 +0.192421 -0.223859 0.0329984 -0.612577 -0.456105 -0.645536 +0.189999 -0.217526 0.0312892 -0.608668 -0.442019 -0.658895 +0.187309 -0.21138 0.0295978 -0.600847 -0.428359 -0.674901 +0.185259 -0.204773 0.0278497 -0.592816 -0.412226 -0.691838 +0.182351 -0.198774 0.0261821 -0.590229 -0.395755 -0.703569 +0.179464 -0.192753 0.0245108 -0.57998 -0.378703 -0.721252 +0.177037 -0.186399 0.0227956 -0.576152 -0.359874 -0.733852 +0.17595 -0.179069 0.0209491 -0.573388 -0.342688 -0.744173 +0.175358 -0.171366 0.0190513 -0.565298 -0.318876 -0.760761 +0.174731 -0.163676 0.0171541 -0.556956 -0.309564 -0.770696 +0.174056 -0.155996 0.0152622 -0.55578 -0.301504 -0.774729 +0.173058 -0.148554 0.0133902 -0.550646 -0.308333 -0.775706 +0.172947 -0.140436 0.0114305 -0.539624 -0.327062 -0.775781 +0.172081 -0.132862 0.00954722 -0.541743 -0.38252 -0.748461 +0.170788 -0.125587 0.00770307 -0.531377 -0.456045 -0.713907 +0.168726 -0.118876 0.00592956 -0.509175 -0.546759 -0.664677 +0.166218 -0.112491 0.00419958 -0.491529 -0.62652 -0.604875 +0.163323 -0.1064 0.00250414 -0.444311 -0.731227 -0.517587 +0.159084 -0.101317 0.000953691 -0.414634 -0.776987 -0.473678 +0.153922 -0.0969259 -0.000509612 -0.394414 -0.839361 -0.374046 +0.1477 -0.0933567 -0.00185186 -0.376003 -0.893403 -0.245871 +0.140592 -0.0904786 -0.00309683 -0.366815 -0.919877 -0.138832 +0.133202 -0.0878319 -0.00431302 -0.380779 -0.922509 -0.0631225 +0.125428 -0.0854995 -0.00548323 -0.378079 -0.925686 0.0127464 +0.117199 -0.0835343 -0.00659788 -0.380234 -0.9217 0.0767613 +0.109445 -0.0812333 -0.00775902 -0.40765 -0.904435 0.125777 +0.101443 -0.0791482 -0.00889054 -0.445732 -0.880627 0.160691 +0.0941666 -0.0765283 -0.0100903 -0.479942 -0.858347 0.181377 +0.0870567 -0.0737898 -0.0113033 -0.521047 -0.828566 0.204912 +0.080056 -0.0709863 -0.0125287 -0.555494 -0.803495 0.214059 +0.0741789 -0.0673313 -0.013868 -0.598144 -0.771592 0.216493 +0.0687473 -0.0633205 -0.0152509 -0.655132 -0.724043 0.21579 +0.0639322 -0.0588407 -0.0167107 -0.700679 -0.68514 0.19908 +0.0597235 -0.053895 -0.0182269 -0.723061 -0.666222 0.182571 +0.0556734 -0.0488189 -0.0197653 -0.738039 -0.649763 0.181955 +0.0517892 -0.04361 -0.0213203 -0.75607 -0.630636 0.175093 +0.0484072 -0.0380061 -0.02293 -0.739138 -0.655429 0.155208 +0.0453852 -0.0321092 -0.0245842 -0.766952 -0.617198 0.175644 +0.045662 -0.023545 -0.0266212 -0.818863 -0.54017 0.194116 +0.643175 -0.464343 0.118643 0.312182 -0.839949 0.443881 +0.607739 -0.476039 0.11874 0.155645 -0.903017 0.400421 +0.587795 -0.479226 0.117974 0.0823924 -0.923389 0.374922 +0.571368 -0.480511 0.117023 0.0453279 -0.937475 0.345091 +0.558013 -0.480123 0.115903 0.036356 -0.945599 0.323299 +0.541575 -0.481519 0.114975 0.0256731 -0.953621 0.299916 +0.523716 -0.483775 0.114147 0.0195673 -0.963733 0.266153 +0.510001 -0.483737 0.113084 -0.0142722 -0.977526 0.210334 +0.497114 -0.483274 0.11198 -0.0487806 -0.987877 0.147383 +0.48361 -0.483206 0.110927 -0.106905 -0.990865 0.082204 +0.472467 -0.481819 0.109732 -0.160096 -0.986861 0.0218438 +0.463347 -0.479299 0.108421 -0.197792 -0.979832 -0.0284452 +0.453117 -0.477441 0.10719 -0.217299 -0.973958 -0.0647162 +0.442574 -0.475806 0.105983 -0.241758 -0.965854 -0.0931636 +0.432882 -0.473695 0.104733 -0.257282 -0.960163 -0.109061 +0.423817 -0.471253 0.103445 -0.264281 -0.957395 -0.11641 +0.415926 -0.468141 0.102091 -0.269087 -0.95577 -0.118732 +0.407729 -0.465222 0.100756 -0.286219 -0.950244 -0.12295 +0.398772 -0.462782 0.0994788 -0.306129 -0.943501 -0.126856 +0.3901 -0.4602 0.098186 -0.330299 -0.934384 -0.133532 +0.381815 -0.457409 0.0968797 -0.354753 -0.924934 -0.136557 +0.374288 -0.454183 0.0955239 -0.377806 -0.9155 -0.13829 +0.36734 -0.450617 0.0941328 -0.399398 -0.906124 -0.139365 +0.360606 -0.44695 0.0927304 -0.418081 -0.897577 -0.139875 +0.354675 -0.442805 0.0912708 -0.424147 -0.894727 -0.139868 +0.347718 -0.439296 0.0898921 -0.434017 -0.889905 -0.140355 +0.340569 -0.435921 0.0885286 -0.441519 -0.886292 -0.139815 +0.334033 -0.432187 0.0871267 -0.450697 -0.881586 -0.140281 +0.327349 -0.428559 0.0857378 -0.465323 -0.873634 -0.142266 +0.320672 -0.424944 0.0843515 -0.484144 -0.862905 -0.144917 +0.314232 -0.421196 0.0829549 -0.505963 -0.849474 -0.149656 +0.308039 -0.417298 0.0815382 -0.537028 -0.82924 -0.154802 +0.301857 -0.413421 0.0801282 -0.568928 -0.806059 -0.163067 +0.296543 -0.408999 0.0786519 -0.604094 -0.778114 -0.17208 +0.291102 -0.404669 0.0771942 -0.643292 -0.742804 -0.185522 +0.285552 -0.400425 0.0757379 -0.678664 -0.706335 -0.201264 +0.28036 -0.395954 0.0742617 -0.709351 -0.66902 -0.221891 +0.275402 -0.391343 0.0727741 -0.737652 -0.62927 -0.244721 +0.270893 -0.386457 0.0712455 -0.753151 -0.602251 -0.264684 +0.267625 -0.380767 0.0696264 -0.764373 -0.573423 -0.294822 +0.265079 -0.37462 0.0679482 -0.766582 -0.554801 -0.32334 +0.263446 -0.367875 0.0661972 -0.767122 -0.53244 -0.357814 +0.262134 -0.360914 0.0644161 -0.765855 -0.509224 -0.39263 +0.260846 -0.35392 0.0626296 -0.760452 -0.49036 -0.425749 +0.258229 -0.347789 0.0609498 -0.753464 -0.474135 -0.455509 +0.255235 -0.341911 0.0593024 -0.741649 -0.473703 -0.474933 +0.250197 -0.337373 0.0578243 -0.731838 -0.468744 -0.494665 +0.244889 -0.333017 0.0563631 -0.721978 -0.461975 -0.515098 +0.240814 -0.327855 0.054802 -0.714427 -0.456726 -0.53009 +0.237965 -0.32188 0.0531459 -0.704518 -0.448651 -0.549881 +0.235766 -0.315466 0.0514289 -0.694841 -0.444154 -0.565618 +0.233227 -0.309272 0.0497408 -0.688584 -0.438431 -0.577609 +0.232655 -0.301747 0.0478783 -0.688582 -0.426453 -0.586509 +0.232167 -0.294153 0.0460164 -0.677563 -0.421807 -0.602485 +0.230922 -0.287057 0.0442095 -0.676688 -0.425241 -0.601053 +0.229633 -0.279976 0.0424041 -0.669519 -0.427613 -0.607366 +0.226814 -0.273934 0.0407268 -0.660124 -0.432002 -0.6145 +0.222874 -0.268665 0.0391514 -0.653447 -0.438793 -0.616822 +0.21914 -0.263253 0.0375633 -0.645391 -0.445455 -0.620516 +0.215543 -0.257745 0.0359554 -0.630694 -0.450161 -0.632124 +0.212295 -0.251999 0.034325 -0.61723 -0.451688 -0.64421 +0.20943 -0.245985 0.03265 -0.609244 -0.451281 -0.652049 +0.206631 -0.239919 0.0309756 -0.602577 -0.453454 -0.656719 +0.203502 -0.23408 0.0293257 -0.589247 -0.444157 -0.674917 +0.200752 -0.227978 0.0276402 -0.582638 -0.435436 -0.686242 +0.19793 -0.221919 0.0259664 -0.576881 -0.424045 -0.698136 +0.195815 -0.215351 0.0242211 -0.566827 -0.405274 -0.717259 +0.194531 -0.208192 0.022396 -0.558905 -0.391419 -0.731038 +0.193843 -0.200592 0.0205065 -0.549668 -0.371617 -0.748176 +0.191756 -0.193982 0.0187543 -0.540246 -0.3548 -0.763055 +0.190893 -0.186487 0.0168809 -0.530433 -0.343021 -0.775227 +0.190115 -0.178912 0.0149977 -0.537164 -0.329175 -0.776595 +0.18907 -0.171526 0.0131332 -0.546524 -0.317133 -0.775073 +0.188207 -0.163986 0.0112499 -0.553473 -0.315158 -0.770936 +0.186594 -0.156982 0.00943972 -0.563945 -0.322002 -0.760448 +0.184268 -0.15049 0.00769376 -0.577539 -0.328252 -0.747463 +0.182631 -0.143492 0.00587462 -0.596229 -0.340843 -0.726868 +0.181973 -0.135752 0.00396441 -0.60708 -0.389345 -0.692722 +0.180686 -0.128475 0.00211058 -0.598515 -0.462432 -0.65417 +0.178973 -0.121497 0.000290855 -0.585657 -0.535336 -0.608623 +0.176484 -0.115085 -0.00144422 -0.554481 -0.609655 -0.566456 +0.173588 -0.108976 -0.00313532 -0.511351 -0.69715 -0.502498 +0.170585 -0.102939 -0.00482085 -0.460349 -0.786902 -0.410933 +0.16606 -0.098055 -0.00634965 -0.415377 -0.836249 -0.357982 +0.158785 -0.0952505 -0.00758409 -0.352907 -0.90527 -0.236522 +0.150586 -0.0931622 -0.00871965 -0.30998 -0.938903 -0.149584 +0.141062 -0.0921141 -0.00970659 -0.313735 -0.948109 -0.0515894 +0.132716 -0.0901892 -0.0108084 -0.331348 -0.942055 0.0523683 +0.124142 -0.0884796 -0.0118805 -0.349405 -0.927653 0.131825 +0.115582 -0.0867689 -0.0129514 -0.370336 -0.9129 0.171651 +0.107194 -0.0849625 -0.0140294 -0.394389 -0.893141 0.216236 +0.099123 -0.0829345 -0.0151386 -0.421426 -0.869523 0.257547 +0.0917461 -0.0803981 -0.0163209 -0.469964 -0.834523 0.28759 +0.0845426 -0.0777384 -0.0175143 -0.512607 -0.799978 0.311882 +0.0785078 -0.0741847 -0.0188371 -0.549643 -0.769812 0.324475 +0.0726712 -0.0704942 -0.0201736 -0.595853 -0.732116 0.330099 +0.0672893 -0.066461 -0.0215564 -0.657172 -0.68373 0.317234 +0.0624499 -0.0620034 -0.0230068 -0.703924 -0.641621 0.304653 +0.0579546 -0.0572788 -0.0244873 -0.731798 -0.610552 0.302816 +0.0537842 -0.0523107 -0.0260122 -0.739168 -0.608858 0.287965 +0.0504148 -0.0466983 -0.0276236 -0.760646 -0.584563 0.282317 +0.0473482 -0.0408465 -0.0292717 -0.782892 -0.563047 0.264684 +0.044546 -0.0347747 -0.0309457 -0.806534 -0.536079 0.249242 +0.0448498 -0.0261964 -0.0329914 -0.820194 -0.514866 0.249391 +0.635994 -0.470306 0.112093 0.271422 -0.862668 0.426774 +0.604868 -0.479602 0.112002 0.128232 -0.908547 0.397618 +0.58579 -0.482305 0.111216 0.0652906 -0.925745 0.372471 +0.570186 -0.483127 0.110238 0.0347885 -0.935076 0.352741 +0.5575 -0.482359 0.109095 0.0234893 -0.944341 0.328131 +0.541424 -0.483548 0.108177 0.0143715 -0.951469 0.30741 +0.524614 -0.485202 0.107308 0.0112048 -0.96262 0.270622 +0.510525 -0.485375 0.106292 -0.0432754 -0.971767 0.231941 +0.497528 -0.484962 0.105213 -0.0858332 -0.978915 0.185365 +0.484781 -0.484453 0.104126 -0.150447 -0.981026 0.12229 +0.474261 -0.482707 0.102909 -0.18955 -0.979956 0.0612898 +0.465886 -0.479745 0.101564 -0.208961 -0.977736 0.0192379 +0.456776 -0.477241 0.100273 -0.233347 -0.972199 -0.0194837 +0.446558 -0.4754 0.0990555 -0.259708 -0.964434 -0.0491955 +0.43666 -0.4734 0.0978277 -0.273533 -0.959242 -0.0709671 +0.427402 -0.47106 0.0965628 -0.270139 -0.958991 -0.0857926 +0.419469 -0.467964 0.0952165 -0.271427 -0.957768 -0.0949142 +0.411292 -0.465021 0.0938846 -0.284545 -0.953117 -0.102964 +0.402264 -0.462621 0.0926264 -0.306292 -0.945691 -0.108873 +0.393567 -0.46004 0.0913475 -0.327881 -0.93764 -0.115435 +0.385021 -0.457387 0.0900583 -0.352625 -0.927963 -0.120585 +0.377189 -0.454341 0.0887319 -0.372695 -0.919592 -0.124299 +0.369742 -0.451072 0.087382 -0.395462 -0.909619 -0.127299 +0.362524 -0.447685 0.0860159 -0.41469 -0.900642 -0.129903 +0.356174 -0.443796 0.084595 -0.42732 -0.894521 -0.131265 +0.349409 -0.440164 0.0832047 -0.434168 -0.891205 -0.131357 +0.342595 -0.436584 0.0818306 -0.44158 -0.887279 -0.133212 +0.335838 -0.432981 0.0804473 -0.450877 -0.882071 -0.136609 +0.329227 -0.429299 0.07906 -0.464083 -0.874312 -0.142149 +0.322773 -0.42554 0.0776608 -0.482841 -0.863123 -0.147934 +0.316536 -0.421661 0.0762512 -0.503342 -0.849935 -0.155748 +0.310297 -0.41779 0.0748449 -0.529019 -0.832624 -0.163935 +0.304188 -0.413859 0.0734362 -0.562166 -0.808689 -0.173179 +0.298626 -0.409592 0.0719823 -0.597844 -0.780027 -0.184773 +0.293074 -0.405329 0.0705292 -0.638503 -0.742771 -0.201512 +0.287761 -0.400921 0.0690642 -0.677576 -0.701773 -0.220011 +0.282635 -0.396412 0.0675849 -0.709944 -0.662707 -0.238323 +0.27781 -0.391703 0.066087 -0.735492 -0.623996 -0.263973 +0.273435 -0.386728 0.0645501 -0.755201 -0.587718 -0.290275 +0.26997 -0.381166 0.0629417 -0.770972 -0.548777 -0.32318 +0.267122 -0.375209 0.0612812 -0.773995 -0.527738 -0.349893 +0.265781 -0.368272 0.0595043 -0.773841 -0.5016 -0.386741 +0.264866 -0.361049 0.0576898 -0.772526 -0.482358 -0.41296 +0.263803 -0.353904 0.0558808 -0.770393 -0.465731 -0.435419 +0.262794 -0.346719 0.0540591 -0.770913 -0.45083 -0.449942 +0.261045 -0.340011 0.0523064 -0.771473 -0.432333 -0.466816 +0.258388 -0.333888 0.0506238 -0.766237 -0.431411 -0.4762 +0.255053 -0.328204 0.0489987 -0.757926 -0.436241 -0.485018 +0.251816 -0.322464 0.0473623 -0.755459 -0.430835 -0.493623 +0.249723 -0.31596 0.0456339 -0.754833 -0.422322 -0.501869 +0.247055 -0.309834 0.043951 -0.753838 -0.414836 -0.50955 +0.244087 -0.303899 0.0422849 -0.74814 -0.418285 -0.515095 +0.243491 -0.296373 0.0404199 -0.750624 -0.408958 -0.518959 +0.242038 -0.289401 0.0386238 -0.751394 -0.408838 -0.517938 +0.238899 -0.283574 0.0369761 -0.748863 -0.414563 -0.517051 +0.236224 -0.277421 0.0352843 -0.744884 -0.418462 -0.519652 +0.232855 -0.271739 0.0336586 -0.725102 -0.423488 -0.543033 +0.228719 -0.266594 0.0321029 -0.715367 -0.433555 -0.547977 +0.225478 -0.26083 0.0304611 -0.691622 -0.437035 -0.57503 +0.222684 -0.254747 0.0287755 -0.679359 -0.436196 -0.590088 +0.219841 -0.248708 0.0271051 -0.669879 -0.432941 -0.603179 +0.217151 -0.242545 0.0254102 -0.655328 -0.434385 -0.617945 +0.214583 -0.23631 0.0237017 -0.644615 -0.42998 -0.632132 +0.212114 -0.229988 0.0219898 -0.635248 -0.416381 -0.650452 +0.209639 -0.223672 0.0202716 -0.622808 -0.402956 -0.670624 +0.207295 -0.217251 0.018541 -0.615164 -0.385335 -0.687816 +0.206183 -0.209956 0.0166916 -0.607071 -0.370462 -0.703011 +0.20523 -0.202543 0.014822 -0.611066 -0.355858 -0.707082 +0.204598 -0.194875 0.0129212 -0.616181 -0.342013 -0.70947 +0.20333 -0.187657 0.0110778 -0.612586 -0.337047 -0.71494 +0.202331 -0.180226 0.00920743 -0.620804 -0.334442 -0.70905 +0.201071 -0.172977 0.00735599 -0.637619 -0.34136 -0.690592 +0.199524 -0.165925 0.00553295 -0.646968 -0.34288 -0.681077 +0.19739 -0.159285 0.00376117 -0.650953 -0.351341 -0.672921 +0.195567 -0.152415 0.00196406 -0.665985 -0.360151 -0.653265 +0.193705 -0.145569 0.000169395 -0.67558 -0.381994 -0.630612 +0.191976 -0.138609 -0.00164853 -0.685592 -0.410508 -0.601203 +0.190666 -0.131339 -0.00350908 -0.68909 -0.456559 -0.562771 +0.189081 -0.124251 -0.0053437 -0.681515 -0.513317 -0.521579 +0.187767 -0.116956 -0.00720278 -0.652281 -0.595106 -0.469446 +0.184565 -0.111057 -0.00887366 -0.607871 -0.676928 -0.415047 +0.180787 -0.105589 -0.0104884 -0.543956 -0.761045 -0.353445 +0.176404 -0.100573 -0.0120259 -0.475678 -0.83132 -0.287471 +0.170649 -0.0966007 -0.0134218 -0.407641 -0.889299 -0.207309 +0.160805 -0.0957232 -0.014374 -0.322347 -0.936863 -0.135584 +0.150743 -0.0950371 -0.015301 -0.265558 -0.963419 -0.0360946 +0.140099 -0.0948433 -0.0161505 -0.25942 -0.964216 0.0546836 +0.131013 -0.0934869 -0.0171624 -0.283836 -0.948263 0.142254 +0.122187 -0.091959 -0.0181997 -0.326899 -0.922906 0.203426 +0.11352 -0.0903439 -0.0192423 -0.33814 -0.903605 0.262984 +0.105288 -0.0884153 -0.0203266 -0.364904 -0.885095 0.288884 +0.0972188 -0.0863919 -0.0214271 -0.393955 -0.859964 0.324443 +0.0897558 -0.0839291 -0.0225834 -0.441248 -0.827107 0.348128 +0.0831756 -0.0807847 -0.0238429 -0.497435 -0.787502 0.363867 +0.0768266 -0.0774843 -0.025119 -0.535985 -0.757282 0.373157 +0.0714417 -0.0734461 -0.0265032 -0.587662 -0.715181 0.37838 +0.066349 -0.0691789 -0.0279161 -0.646945 -0.666763 0.369986 +0.0610904 -0.0650577 -0.0293162 -0.695405 -0.621318 0.361077 +0.0567593 -0.0602174 -0.03081 -0.728628 -0.589702 0.348358 +0.0528739 -0.055017 -0.0323627 -0.746389 -0.571409 0.341167 +0.0495966 -0.0493412 -0.0339807 -0.771639 -0.537389 0.340274 +0.0466074 -0.0434265 -0.0356439 -0.795624 -0.504934 0.334699 +0.0436242 -0.0375074 -0.0372998 -0.816001 -0.481306 0.320133 +0.0444114 -0.0285475 -0.0394066 -0.840439 -0.438795 0.317998 +0.628491 -0.476433 0.105593 0.241322 -0.876877 0.415756 +0.601939 -0.483196 0.10528 0.11544 -0.913606 0.389871 +0.584494 -0.484983 0.104426 0.0553871 -0.926226 0.372878 +0.568784 -0.485861 0.103483 0.0186151 -0.937859 0.346516 +0.556582 -0.484824 0.10233 0.0133481 -0.943591 0.330847 +0.54114 -0.485646 0.101389 0.00410378 -0.951258 0.308373 +0.524819 -0.487027 0.100518 -0.011579 -0.960339 0.278596 +0.510421 -0.487361 0.0995338 -0.0550206 -0.970663 0.234064 +0.497633 -0.486837 0.0984626 -0.114816 -0.975812 0.186041 +0.486028 -0.485664 0.0973233 -0.180716 -0.973323 0.141365 +0.476252 -0.483486 0.0960728 -0.221921 -0.970589 0.0933287 +0.468169 -0.48035 0.0947117 -0.23855 -0.969596 0.054588 +0.46036 -0.477081 0.0933437 -0.262513 -0.964606 0.0249782 +0.450568 -0.47498 0.0921107 -0.278238 -0.960476 -0.0084363 +0.440581 -0.473023 0.0908933 -0.283785 -0.958409 -0.0303173 +0.430919 -0.470905 0.0896683 -0.285535 -0.957133 -0.0486478 +0.422664 -0.467989 0.0883498 -0.286403 -0.956184 -0.0607246 +0.414565 -0.464996 0.0870291 -0.29384 -0.953106 -0.072453 +0.406134 -0.462228 0.0857303 -0.309656 -0.947144 -0.0838688 +0.397283 -0.459729 0.0844718 -0.331691 -0.938669 -0.0942476 +0.388496 -0.457216 0.08321 -0.351924 -0.930355 -0.1029 +0.380109 -0.454491 0.0819323 -0.373475 -0.920732 -0.113011 +0.37239 -0.451383 0.0806037 -0.393313 -0.911674 -0.118982 +0.364939 -0.448133 0.0792636 -0.41283 -0.902224 -0.12476 +0.358022 -0.444573 0.0778846 -0.425215 -0.895931 -0.128463 +0.351187 -0.440986 0.0765143 -0.43497 -0.890662 -0.132382 +0.344447 -0.437354 0.075134 -0.441644 -0.886626 -0.137282 +0.337873 -0.433631 0.0737407 -0.451438 -0.880427 -0.145095 +0.33132 -0.429912 0.0723569 -0.464066 -0.872374 -0.153649 +0.324703 -0.426248 0.0709798 -0.482146 -0.861066 -0.16156 +0.31779 -0.42278 0.0696228 -0.501927 -0.848153 -0.169428 +0.311464 -0.41897 0.0682303 -0.527528 -0.828358 -0.188516 +0.305528 -0.414916 0.0668076 -0.555938 -0.80606 -0.202984 +0.300011 -0.410621 0.0653583 -0.590896 -0.777864 -0.213936 +0.294759 -0.406168 0.0638888 -0.62886 -0.740682 -0.236487 +0.289781 -0.401543 0.0623958 -0.667668 -0.698323 -0.258004 +0.285129 -0.396725 0.0608789 -0.703431 -0.656273 -0.272933 +0.280744 -0.391735 0.059346 -0.732246 -0.613451 -0.295793 +0.276709 -0.386541 0.0577799 -0.755256 -0.570319 -0.322995 +0.272945 -0.381165 0.0561976 -0.769397 -0.534845 -0.349243 +0.269673 -0.375468 0.0545746 -0.77854 -0.50543 -0.372039 +0.267683 -0.368946 0.0528449 -0.784121 -0.47899 -0.394619 +0.266341 -0.361996 0.0510554 -0.786027 -0.46509 -0.407253 +0.265713 -0.354577 0.0492062 -0.7907 -0.449087 -0.416068 +0.265379 -0.346948 0.047325 -0.803707 -0.427175 -0.414218 +0.264866 -0.339416 0.0454591 -0.812918 -0.415086 -0.408495 +0.264687 -0.33165 0.0435607 -0.815457 -0.410445 -0.408124 +0.262391 -0.325279 0.0418388 -0.808962 -0.409368 -0.421899 +0.260963 -0.318319 0.0400469 -0.810009 -0.406676 -0.422494 +0.258727 -0.311887 0.0383153 -0.813608 -0.402637 -0.419434 +0.255703 -0.305974 0.0366573 -0.816151 -0.400374 -0.416652 +0.252879 -0.299925 0.0349781 -0.811292 -0.399006 -0.427316 +0.250584 -0.293528 0.0332558 -0.815882 -0.403948 -0.413718 +0.248024 -0.287289 0.0315474 -0.81523 -0.404813 -0.414158 +0.245509 -0.281022 0.0298366 -0.814019 -0.39709 -0.423903 +0.242323 -0.275205 0.0281938 -0.818099 -0.408356 -0.404919 +0.238871 -0.269574 0.0265711 -0.801196 -0.41631 -0.429852 +0.235109 -0.264148 0.0249695 -0.783707 -0.419013 -0.458512 +0.233497 -0.257246 0.0231754 -0.785464 -0.410854 -0.462866 +0.231473 -0.250626 0.0214182 -0.771153 -0.408795 -0.488068 +0.229226 -0.244148 0.0196741 -0.76267 -0.396134 -0.511285 +0.226548 -0.237962 0.0179749 -0.747791 -0.389192 -0.537903 +0.224116 -0.231602 0.0162502 -0.734875 -0.373726 -0.56594 +0.222109 -0.224937 0.0144841 -0.731595 -0.357063 -0.580753 +0.220243 -0.218172 0.0127003 -0.723667 -0.348273 -0.595829 +0.218636 -0.211208 0.0108918 -0.724197 -0.338531 -0.60078 +0.21683 -0.204381 0.00909885 -0.720592 -0.326272 -0.611795 +0.215616 -0.197123 0.00724192 -0.730497 -0.32941 -0.598218 +0.213998 -0.190141 0.00542905 -0.750306 -0.33247 -0.571405 +0.212807 -0.182845 0.00356557 -0.75502 -0.338009 -0.561868 +0.21133 -0.175733 0.00173516 -0.754342 -0.351248 -0.55461 +0.209511 -0.168872 -6.84811e-05 -0.764203 -0.356538 -0.537471 +0.206956 -0.162527 -0.00180018 -0.781302 -0.371529 -0.501532 +0.204785 -0.155899 -0.00357219 -0.763714 -0.389294 -0.514967 +0.203535 -0.148594 -0.00543579 -0.77823 -0.404068 -0.480715 +0.201992 -0.141492 -0.00727782 -0.778609 -0.417436 -0.468525 +0.200869 -0.134076 -0.00916305 -0.784314 -0.44957 -0.427478 +0.198263 -0.127736 -0.0108986 -0.778481 -0.494612 -0.386426 +0.196174 -0.121009 -0.0126872 -0.745867 -0.568547 -0.347041 +0.193756 -0.114513 -0.0144429 -0.716473 -0.632829 -0.293589 +0.190788 -0.108432 -0.0161429 -0.662401 -0.700638 -0.265204 +0.186646 -0.103221 -0.0177136 -0.594037 -0.773609 -0.220565 +0.180474 -0.0995313 -0.0190639 -0.49847 -0.856465 -0.134153 +0.173157 -0.0967131 -0.0202901 -0.387907 -0.917357 -0.0893585 +0.161239 -0.0973872 -0.0210044 -0.30403 -0.951962 -0.0365226 +0.149304 -0.09813 -0.0217023 -0.222209 -0.973669 0.0509228 +0.138796 -0.097826 -0.0225579 -0.218602 -0.965044 0.144581 +0.129531 -0.0966082 -0.0235372 -0.24618 -0.942917 0.224284 +0.120152 -0.0955068 -0.0244931 -0.286032 -0.917423 0.276625 +0.111994 -0.0935079 -0.0255798 -0.32392 -0.891037 0.318009 +0.103803 -0.0915455 -0.0266609 -0.335315 -0.874662 0.350046 +0.0961612 -0.0891957 -0.0277999 -0.373692 -0.848841 0.37393 +0.0892481 -0.0863 -0.0290154 -0.42014 -0.81621 0.39659 +0.082623 -0.0831958 -0.0302547 -0.474104 -0.779519 0.409361 +0.0764306 -0.0797755 -0.0315434 -0.518984 -0.742681 0.42318 +0.0709397 -0.0758244 -0.0329099 -0.578602 -0.695469 0.426081 +0.0657778 -0.0716169 -0.0343146 -0.634911 -0.648824 0.419423 +0.0606957 -0.0673532 -0.0357248 -0.692297 -0.596612 0.405929 +0.0563587 -0.0625151 -0.0372177 -0.727119 -0.562193 0.394002 +0.0522653 -0.0574815 -0.0387436 -0.750808 -0.537198 0.384327 +0.0482906 -0.0523694 -0.040285 -0.776468 -0.506708 0.374628 +0.0450849 -0.0466343 -0.0419096 -0.80126 -0.478628 0.359024 +0.0424564 -0.040444 -0.0436123 -0.82835 -0.443945 0.341687 +0.0417891 -0.0326619 -0.0455493 -0.847821 -0.409969 0.33634 +0.667616 -0.464827 0.0981739 0.364668 -0.833422 0.415242 +0.623018 -0.481423 0.0990015 0.21098 -0.893317 0.39683 +0.599657 -0.486416 0.0985301 0.0958203 -0.920092 0.379805 +0.582795 -0.487883 0.0976676 0.0416719 -0.930425 0.364108 +0.567812 -0.488354 0.0967025 0.00778729 -0.937927 0.34675 +0.554955 -0.487678 0.0956062 0.00171628 -0.944682 0.327985 +0.540418 -0.487997 0.0946293 -0.00858899 -0.95213 0.305572 +0.524396 -0.489199 0.0937659 -0.0295476 -0.960066 0.27821 +0.510432 -0.489285 0.0927794 -0.0738298 -0.968936 0.236042 +0.49779 -0.488669 0.0917159 -0.143968 -0.96954 0.198156 +0.487047 -0.487005 0.0905298 -0.205202 -0.966425 0.15465 +0.477771 -0.484535 0.0892561 -0.230581 -0.965535 0.120731 +0.469628 -0.481429 0.087912 -0.25874 -0.961581 0.0917381 +0.462302 -0.47788 0.086515 -0.282416 -0.957543 0.057916 +0.45413 -0.474827 0.0851802 -0.291005 -0.956127 0.0337163 +0.444877 -0.472435 0.083927 -0.295319 -0.955343 0.0104731 +0.434417 -0.470772 0.0827677 -0.297753 -0.954575 -0.0114619 +0.425741 -0.468096 0.0814842 -0.297821 -0.954222 -0.0276535 +0.417288 -0.465305 0.080194 -0.303093 -0.951954 -0.0437958 +0.408684 -0.462629 0.0789182 -0.317391 -0.946414 -0.0597075 +0.400305 -0.459844 0.0776344 -0.33581 -0.938989 -0.074392 +0.391999 -0.457033 0.0763456 -0.356186 -0.930324 -0.0873525 +0.38353 -0.454345 0.0750777 -0.375555 -0.921568 -0.0983441 +0.375858 -0.451198 0.0737578 -0.396378 -0.911685 -0.108248 +0.368336 -0.447979 0.0724286 -0.41112 -0.903906 -0.118049 +0.360996 -0.444676 0.0710941 -0.425768 -0.896109 -0.125343 +0.353677 -0.441371 0.069755 -0.437126 -0.88957 -0.132611 +0.346406 -0.438053 0.0684242 -0.445175 -0.884218 -0.141349 +0.339693 -0.434419 0.0670534 -0.452681 -0.879139 -0.148985 +0.333174 -0.430671 0.065665 -0.463234 -0.871271 -0.162184 +0.326773 -0.426868 0.0642756 -0.480012 -0.859455 -0.175862 +0.319814 -0.423425 0.0629283 -0.500363 -0.844761 -0.189779 +0.313338 -0.4197 0.0615588 -0.529 -0.822431 -0.209206 +0.307159 -0.4158 0.0601588 -0.554824 -0.800313 -0.227309 +0.301697 -0.411463 0.0587045 -0.585598 -0.771328 -0.249256 +0.296702 -0.406838 0.0572174 -0.617947 -0.735496 -0.277828 +0.292019 -0.402029 0.0556998 -0.651089 -0.698979 -0.295821 +0.288127 -0.396719 0.054128 -0.691316 -0.649653 -0.316281 +0.284404 -0.39131 0.052541 -0.72395 -0.603041 -0.335021 +0.281101 -0.385634 0.0509134 -0.747958 -0.566757 -0.345465 +0.277432 -0.380184 0.0493203 -0.771552 -0.529166 -0.353117 +0.273933 -0.374634 0.0477131 -0.790802 -0.491827 -0.364333 +0.271103 -0.368649 0.0460473 -0.800824 -0.468295 -0.373339 +0.269507 -0.361861 0.044273 -0.814708 -0.451776 -0.363523 +0.267941 -0.355034 0.0425012 -0.823609 -0.443702 -0.353265 +0.267081 -0.347746 0.0406617 -0.835972 -0.431514 -0.339037 +0.26724 -0.339782 0.0387235 -0.844619 -0.42261 -0.328664 +0.268001 -0.3314 0.0367339 -0.855125 -0.415505 -0.310026 +0.266648 -0.324388 0.0349308 -0.874829 -0.406307 -0.263796 +0.264918 -0.317628 0.0331516 -0.885257 -0.392837 -0.248994 +0.263081 -0.310922 0.0313835 -0.889862 -0.393941 -0.23012 +0.260318 -0.30483 0.0296989 -0.891006 -0.392932 -0.227403 +0.257696 -0.298634 0.0280028 -0.896914 -0.393382 -0.201984 +0.255487 -0.292159 0.0262636 -0.89901 -0.38845 -0.202209 +0.2529 -0.285936 0.0245565 -0.891361 -0.383008 -0.242446 +0.250062 -0.27988 0.0228736 -0.892354 -0.368528 -0.260557 +0.247353 -0.27373 0.0211732 -0.884003 -0.364796 -0.292341 +0.244391 -0.267746 0.0195036 -0.87661 -0.362197 -0.316812 +0.241929 -0.261421 0.0177845 -0.870119 -0.349862 -0.347118 +0.239696 -0.254936 0.01604 -0.861905 -0.349116 -0.367747 +0.237571 -0.248369 0.0142788 -0.851505 -0.346684 -0.393384 +0.235777 -0.241562 0.0124916 -0.840231 -0.339661 -0.422662 +0.233793 -0.234878 0.0107142 -0.82636 -0.342141 -0.447291 +0.232035 -0.22803 0.00892021 -0.825016 -0.330098 -0.458676 +0.229831 -0.221491 0.00716645 -0.827089 -0.325524 -0.458213 +0.227844 -0.21479 0.00538583 -0.822236 -0.324535 -0.46755 +0.226162 -0.207863 0.00358065 -0.815544 -0.323439 -0.479871 +0.22449 -0.200923 0.00176467 -0.831207 -0.317503 -0.456384 +0.22258 -0.194142 -2.78151e-05 -0.841584 -0.327598 -0.429437 +0.221227 -0.18696 -0.00187884 -0.856957 -0.33602 -0.390788 +0.220043 -0.179634 -0.00374964 -0.862507 -0.344615 -0.37057 +0.218193 -0.172794 -0.00555836 -0.868547 -0.356452 -0.344339 +0.2164 -0.165889 -0.00736775 -0.864308 -0.373678 -0.336656 +0.21371 -0.159626 -0.00909333 -0.854657 -0.393492 -0.338712 +0.211929 -0.152698 -0.0109086 -0.856669 -0.410708 -0.312149 +0.210037 -0.145847 -0.0127157 -0.862274 -0.419054 -0.284391 +0.208275 -0.138892 -0.0145433 -0.867986 -0.425881 -0.255392 +0.205907 -0.132374 -0.016299 -0.854502 -0.462373 -0.236722 +0.202948 -0.126278 -0.0180019 -0.844583 -0.499671 -0.192372 +0.200034 -0.120157 -0.0197072 -0.808109 -0.565392 -0.165203 +0.197036 -0.114085 -0.0214079 -0.77693 -0.616929 -0.125614 +0.193678 -0.108277 -0.023063 -0.699308 -0.70818 -0.0972095 +0.189511 -0.103082 -0.0246317 -0.633938 -0.772896 -0.0274628 +0.183313 -0.0994083 -0.0259819 -0.520184 -0.853289 -0.0361582 +0.174812 -0.0974723 -0.0270606 -0.398474 -0.917141 0.00847181 +0.160851 -0.0996857 -0.0275356 -0.26862 -0.961453 0.0587553 +0.148126 -0.101015 -0.0281294 -0.186867 -0.971843 0.14354 +0.137705 -0.100637 -0.0289775 -0.180603 -0.959114 0.217907 +0.128075 -0.099701 -0.0299011 -0.208827 -0.937825 0.277269 +0.119115 -0.0982874 -0.0308921 -0.247613 -0.912235 0.326371 +0.110675 -0.0965064 -0.0319383 -0.289436 -0.885616 0.363197 +0.103047 -0.0941187 -0.0330688 -0.311767 -0.864311 0.394675 +0.0958106 -0.0914469 -0.0342457 -0.348953 -0.842558 0.41028 +0.0891407 -0.0883695 -0.0354824 -0.395088 -0.813955 0.425892 +0.0824511 -0.08532 -0.036706 -0.452463 -0.77963 0.43296 +0.0760275 -0.082069 -0.0379606 -0.511432 -0.739015 0.438515 +0.0702059 -0.0783743 -0.0392894 -0.569664 -0.697463 0.434774 +0.06454 -0.0745689 -0.0406223 -0.630271 -0.651419 0.422389 +0.0589604 -0.0707028 -0.0419676 -0.689273 -0.597091 0.410347 +0.0543874 -0.0660561 -0.04343 -0.728952 -0.553658 0.402608 +0.0501577 -0.0611477 -0.0449384 -0.766653 -0.512263 0.387079 +0.0466228 -0.055684 -0.0465217 -0.784637 -0.487996 0.382367 +0.0433315 -0.0500286 -0.0481431 -0.816624 -0.445966 0.366387 +0.0407035 -0.0438384 -0.0498471 -0.845093 -0.408494 0.344893 +0.0410039 -0.0352852 -0.0519094 -0.867642 -0.367916 0.334418 +0.653916 -0.474355 0.0920523 0.337974 -0.853559 0.396498 +0.619364 -0.48541 0.092314 0.186832 -0.902957 0.386993 +0.597801 -0.489407 0.091764 0.0869761 -0.924624 0.370818 +0.581102 -0.490776 0.0909168 0.0239246 -0.933568 0.357601 +0.567064 -0.490721 0.0899139 -0.0060749 -0.939067 0.343683 +0.5541 -0.490102 0.088844 -0.0113501 -0.945579 0.325194 +0.539055 -0.490701 0.0879262 -0.0211258 -0.953438 0.300849 +0.523973 -0.491372 0.0870227 -0.0468017 -0.961397 0.27116 +0.510616 -0.491117 0.0860097 -0.0905431 -0.968002 0.23404 +0.498416 -0.49024 0.0849322 -0.166146 -0.965093 0.202469 +0.487868 -0.488462 0.0837539 -0.221391 -0.959544 0.17396 +0.478695 -0.485927 0.0824827 -0.255468 -0.956562 0.140441 +0.47043 -0.482893 0.0811523 -0.28081 -0.953159 0.112402 +0.463001 -0.479393 0.0797722 -0.303567 -0.948525 0.0902755 +0.455892 -0.47572 0.0783738 -0.305562 -0.949834 0.0667024 +0.447763 -0.472667 0.0770425 -0.313062 -0.948651 0.045328 +0.437798 -0.470713 0.0758587 -0.316072 -0.948415 0.0246806 +0.428906 -0.468145 0.074606 -0.316022 -0.948733 0.00594914 +0.420077 -0.465576 0.0733493 -0.319961 -0.947335 -0.0134767 +0.411208 -0.463045 0.0721049 -0.327164 -0.944337 -0.0345615 +0.402864 -0.460228 0.0708262 -0.342076 -0.938163 -0.0532671 +0.394732 -0.457311 0.0695345 -0.364007 -0.928633 -0.0716999 +0.386718 -0.45434 0.0682428 -0.379454 -0.92126 -0.0854183 +0.379007 -0.451215 0.0669251 -0.398253 -0.911934 -0.0988558 +0.371564 -0.447937 0.0655961 -0.415832 -0.902773 -0.109931 +0.364397 -0.444514 0.0642499 -0.43036 -0.894646 -0.119997 +0.357058 -0.441218 0.0629259 -0.443254 -0.886704 -0.131466 +0.349912 -0.437815 0.0615859 -0.451868 -0.880429 -0.143737 +0.343137 -0.434208 0.0602241 -0.46011 -0.873612 -0.158436 +0.336351 -0.430616 0.0588639 -0.466572 -0.867473 -0.172629 +0.329326 -0.427191 0.0575307 -0.480073 -0.85595 -0.192043 +0.322229 -0.423828 0.056205 -0.503921 -0.837131 -0.21278 +0.315716 -0.420117 0.0548343 -0.529204 -0.814962 -0.23618 +0.309551 -0.416207 0.0534402 -0.558256 -0.787188 -0.262081 +0.304103 -0.411852 0.0519838 -0.581907 -0.759978 -0.289515 +0.299095 -0.407233 0.0505047 -0.607273 -0.729171 -0.315482 +0.294392 -0.402433 0.0489959 -0.637856 -0.692663 -0.336686 +0.291334 -0.396595 0.0473444 -0.67334 -0.649478 -0.35326 +0.288363 -0.390694 0.0456933 -0.712935 -0.605749 -0.353258 +0.285371 -0.384806 0.0440367 -0.74119 -0.571988 -0.35138 +0.282516 -0.378837 0.0423727 -0.768737 -0.540602 -0.341752 +0.279688 -0.372836 0.0407041 -0.803836 -0.501671 -0.319646 +0.276354 -0.367168 0.0390833 -0.825772 -0.474477 -0.304916 +0.273933 -0.360899 0.037373 -0.842301 -0.456532 -0.286545 +0.27192 -0.354368 0.0356302 -0.856455 -0.446453 -0.25916 +0.269896 -0.347832 0.0338922 -0.864892 -0.441685 -0.238488 +0.269708 -0.340085 0.0319818 -0.880402 -0.429297 -0.201485 +0.269925 -0.332055 0.0300271 -0.897171 -0.409416 -0.165722 +0.268147 -0.325331 0.028259 -0.912684 -0.38739 -0.130142 +0.266085 -0.318779 0.0265072 -0.926389 -0.375059 -0.0337063 +0.263883 -0.312319 0.0247634 -0.932564 -0.360929 -0.00752428 +0.261485 -0.305983 0.0230462 -0.936429 -0.350854 -0.00170879 +0.258819 -0.299816 0.0213466 -0.929909 -0.367086 -0.022774 +0.255726 -0.293937 0.0196894 -0.927637 -0.368956 -0.0579614 +0.253339 -0.287577 0.0179605 -0.936016 -0.347389 -0.0565233 +0.251126 -0.281096 0.0162193 -0.937052 -0.340253 -0.0784932 +0.2491 -0.274488 0.0144569 -0.934907 -0.332664 -0.123625 +0.24753 -0.267557 0.0126446 -0.931372 -0.327491 -0.159047 +0.245366 -0.261013 0.0108926 -0.935263 -0.308942 -0.172736 +0.243216 -0.254461 0.00913273 -0.931743 -0.303892 -0.198757 +0.24158 -0.247552 0.0073275 -0.933715 -0.300088 -0.195253 +0.239522 -0.24092 0.00555621 -0.929807 -0.294005 -0.221407 +0.238022 -0.233904 0.00373073 -0.922405 -0.29734 -0.246495 +0.236342 -0.226995 0.00192206 -0.915428 -0.295884 -0.272842 +0.234253 -0.220355 0.000146268 -0.908918 -0.295247 -0.294444 +0.232349 -0.213587 -0.00164169 -0.912465 -0.293172 -0.285409 +0.230542 -0.206745 -0.00344684 -0.912374 -0.292252 -0.28664 +0.229049 -0.199666 -0.00528686 -0.917638 -0.307549 -0.251704 +0.227341 -0.192739 -0.00710271 -0.911626 -0.32511 -0.251479 +0.225739 -0.185714 -0.00893237 -0.912799 -0.335862 -0.232367 +0.223751 -0.178965 -0.0107322 -0.910629 -0.344512 -0.228183 +0.221898 -0.172106 -0.0125376 -0.914823 -0.360418 -0.182204 +0.220021 -0.165265 -0.0143476 -0.911925 -0.368635 -0.180283 +0.21756 -0.15883 -0.016101 -0.912374 -0.378059 -0.15699 +0.214959 -0.152496 -0.0178354 -0.912586 -0.390729 -0.120489 +0.212462 -0.146073 -0.0195801 -0.911334 -0.398922 -0.10165 +0.209704 -0.139842 -0.0213051 -0.906438 -0.417472 -0.0639358 +0.206923 -0.133621 -0.0230207 -0.887365 -0.456947 -0.0615057 +0.203862 -0.127605 -0.0247137 -0.871113 -0.487248 -0.0612511 +0.200855 -0.121548 -0.0264126 -0.832729 -0.551868 -0.0447621 +0.197695 -0.115598 -0.028091 -0.798758 -0.601653 0.000882814 +0.194036 -0.110021 -0.0297123 -0.712154 -0.701641 0.0231403 +0.189675 -0.10496 -0.0312671 -0.645583 -0.762866 0.0354535 +0.183647 -0.101155 -0.0326234 -0.516144 -0.851 0.0969406 +0.175776 -0.0987477 -0.0337655 -0.401499 -0.909088 0.111169 +0.160903 -0.101636 -0.0341172 -0.254806 -0.955374 0.149447 +0.147846 -0.103216 -0.0346511 -0.153346 -0.965892 0.20866 +0.136958 -0.103198 -0.0354257 -0.123114 -0.955485 0.268128 +0.128104 -0.101667 -0.0364275 -0.158258 -0.933114 0.322884 +0.119474 -0.0999952 -0.0374487 -0.212396 -0.905983 0.366175 +0.111639 -0.0977452 -0.0385499 -0.259535 -0.886379 0.383372 +0.104046 -0.0953282 -0.0396832 -0.297257 -0.865993 0.402114 +0.0964995 -0.0928974 -0.0408095 -0.337265 -0.847066 0.410773 +0.0893479 -0.0901899 -0.0419775 -0.382629 -0.826516 0.412877 +0.0818772 -0.0877417 -0.0431094 -0.448898 -0.790517 0.41662 +0.0744763 -0.08526 -0.044241 -0.511906 -0.753099 0.413275 +0.068151 -0.0819669 -0.0454972 -0.574047 -0.711204 0.405781 +0.061905 -0.0786168 -0.0467591 -0.637815 -0.661533 0.39442 +0.0564302 -0.0746769 -0.0481067 -0.692543 -0.612034 0.381839 +0.0519174 -0.069998 -0.0495777 -0.735832 -0.566037 0.37169 +0.0480026 -0.0648385 -0.0511166 -0.770383 -0.525216 0.361466 +0.0447496 -0.0591569 -0.0527333 -0.794944 -0.491491 0.35567 +0.0416928 -0.0533183 -0.0543853 -0.825638 -0.445185 0.346603 +0.0391308 -0.0470799 -0.0560928 -0.857219 -0.394138 0.331408 +0.0392355 -0.0386945 -0.0581334 -0.882052 -0.346589 0.319158 +0.6474 -0.479912 0.0855082 0.303253 -0.875629 0.375913 +0.617422 -0.488449 0.0855286 0.176442 -0.908422 0.378996 +0.596341 -0.492176 0.0849799 0.0758222 -0.930103 0.35939 +0.57928 -0.493744 0.0841873 0.0157851 -0.936118 0.351331 +0.566378 -0.493051 0.0831212 -0.0130719 -0.941987 0.335398 +0.553649 -0.492304 0.0820578 -0.023891 -0.946578 0.321589 +0.538845 -0.49276 0.0811443 -0.0335539 -0.955133 0.29427 +0.523618 -0.493509 0.0802774 -0.0616794 -0.961659 0.26722 +0.510645 -0.493028 0.0792617 -0.103777 -0.966982 0.232762 +0.498899 -0.491895 0.0781649 -0.182728 -0.962573 0.200165 +0.488742 -0.48989 0.0769687 -0.236728 -0.955352 0.176818 +0.479273 -0.487518 0.0757313 -0.275947 -0.949251 0.150915 +0.470789 -0.484604 0.0744249 -0.301574 -0.944646 0.129218 +0.463093 -0.48126 0.0730745 -0.321732 -0.940888 0.105916 +0.455785 -0.477706 0.071692 -0.322972 -0.942285 0.0882566 +0.448045 -0.474422 0.0703504 -0.331657 -0.940554 0.0732255 +0.439717 -0.4715 0.0690562 -0.331651 -0.942058 0.0503574 +0.431075 -0.46879 0.067792 -0.333617 -0.942178 0.0316369 +0.422369 -0.466134 0.0665335 -0.33568 -0.941928 0.00949818 +0.413643 -0.463518 0.0652829 -0.343617 -0.939042 -0.0113406 +0.405402 -0.460636 0.0640063 -0.355127 -0.934283 -0.0316329 +0.397388 -0.457638 0.062714 -0.373915 -0.925901 -0.0538126 +0.389499 -0.454581 0.0614198 -0.388923 -0.918448 -0.0720652 +0.382276 -0.451154 0.060076 -0.405087 -0.910015 -0.088194 +0.375144 -0.44769 0.0587314 -0.42187 -0.900709 -0.103674 +0.367809 -0.444355 0.0573983 -0.436645 -0.89201 -0.11688 +0.360732 -0.440892 0.0560584 -0.45082 -0.882838 -0.131759 +0.353653 -0.437439 0.0547213 -0.458948 -0.876375 -0.146066 +0.346865 -0.433828 0.0533654 -0.466877 -0.869084 -0.16346 +0.339894 -0.430347 0.0520227 -0.476656 -0.860212 -0.181204 +0.333298 -0.426647 0.0506631 -0.488456 -0.848513 -0.203558 +0.326212 -0.423267 0.0493344 -0.504244 -0.832308 -0.23022 +0.319727 -0.419529 0.0479674 -0.532058 -0.806272 -0.258536 +0.313126 -0.415877 0.0466116 -0.560065 -0.776619 -0.288429 +0.307221 -0.4118 0.0452015 -0.581951 -0.749266 -0.316124 +0.302071 -0.407267 0.0437302 -0.605318 -0.717975 -0.343661 +0.29716 -0.40259 0.0422461 -0.630517 -0.686195 -0.362746 +0.294551 -0.396457 0.0405586 -0.658915 -0.658319 -0.363933 +0.29223 -0.390146 0.0388395 -0.689895 -0.631519 -0.353876 +0.289706 -0.383953 0.0371451 -0.727613 -0.59964 -0.333183 +0.287289 -0.377689 0.035436 -0.771527 -0.560866 -0.300292 +0.284593 -0.37159 0.0337559 -0.801058 -0.534636 -0.269202 +0.281357 -0.365848 0.0321187 -0.835243 -0.499128 -0.230741 +0.279098 -0.359465 0.030389 -0.859436 -0.471933 -0.196598 +0.27658 -0.353254 0.0286908 -0.87189 -0.46402 -0.156501 +0.273419 -0.347449 0.0270451 -0.88235 -0.457442 -0.110477 +0.271597 -0.34077 0.0252772 -0.897057 -0.437244 -0.0640828 +0.270476 -0.333616 0.0234364 -0.914406 -0.404687 0.0095613 +0.268201 -0.327225 0.0217111 -0.917603 -0.394164 0.0513787 +0.265317 -0.321222 0.0200371 -0.926554 -0.366475 0.0848173 +0.262429 -0.315212 0.0183608 -0.932736 -0.347161 0.097388 +0.259631 -0.30915 0.0166724 -0.934614 -0.331272 0.129445 +0.25684 -0.303082 0.0149907 -0.937661 -0.322208 0.130283 +0.254087 -0.296978 0.0132964 -0.942201 -0.306255 0.135884 +0.251943 -0.290465 0.0115462 -0.948648 -0.291817 0.122115 +0.249863 -0.283899 0.00978912 -0.956621 -0.280735 0.0778765 +0.248429 -0.276886 0.00796986 -0.961299 -0.267293 0.0667817 +0.246759 -0.270022 0.00616454 -0.966166 -0.255141 0.037781 +0.245671 -0.262753 0.00430137 -0.971008 -0.238887 0.00881068 +0.244725 -0.255383 0.00242612 -0.970856 -0.237541 -0.0318462 +0.243025 -0.248514 0.000616775 -0.968148 -0.240528 -0.0695573 +0.241182 -0.241728 -0.00117856 -0.968368 -0.238094 -0.0746547 +0.239779 -0.234637 -0.00301425 -0.969109 -0.239089 -0.0605384 +0.238287 -0.227601 -0.00485122 -0.970389 -0.238992 -0.0350529 +0.236339 -0.220861 -0.00664428 -0.968447 -0.2451 -0.0451216 +0.234443 -0.214092 -0.00844013 -0.966711 -0.250684 -0.0512626 +0.232552 -0.2073 -0.0102412 -0.965008 -0.256776 -0.0531535 +0.231065 -0.200217 -0.0120811 -0.961843 -0.27149 -0.0339265 +0.22934 -0.193294 -0.0139062 -0.958321 -0.284432 -0.0268129 +0.227495 -0.18645 -0.0157154 -0.954134 -0.299046 -0.0141365 +0.225281 -0.179851 -0.0174914 -0.944615 -0.324805 -0.0469519 +0.222992 -0.173305 -0.019255 -0.941798 -0.332121 -0.0520745 +0.220758 -0.16672 -0.0210313 -0.937751 -0.345876 -0.0314962 +0.218076 -0.160442 -0.0227582 -0.931324 -0.363475 -0.0228715 +0.215096 -0.154386 -0.0244547 -0.925114 -0.379689 0.00108667 +0.21216 -0.148284 -0.0261571 -0.920562 -0.390256 0.0162951 +0.209388 -0.142062 -0.0278802 -0.914484 -0.402718 0.0392083 +0.206251 -0.136107 -0.0295576 -0.901521 -0.429282 0.0545677 +0.203051 -0.130198 -0.0312305 -0.884539 -0.459176 0.0821561 +0.200035 -0.124155 -0.0329262 -0.84372 -0.524092 0.116036 +0.196786 -0.118265 -0.0345981 -0.805125 -0.575745 0.142457 +0.193289 -0.112577 -0.0362387 -0.724734 -0.669714 0.162003 +0.189198 -0.107318 -0.0378169 -0.664382 -0.733101 0.145469 +0.18374 -0.103089 -0.039237 -0.530545 -0.831159 0.166424 +0.176344 -0.100327 -0.0404247 -0.413236 -0.890587 0.189979 +0.16114 -0.103456 -0.0407114 -0.243828 -0.944883 0.218508 +0.147866 -0.105196 -0.0412046 -0.13084 -0.955612 0.263987 +0.136901 -0.105226 -0.0419518 -0.0919239 -0.947004 0.307789 +0.128624 -0.103264 -0.0430109 -0.134525 -0.929066 0.344586 +0.120456 -0.101236 -0.0440738 -0.183054 -0.912341 0.366234 +0.112672 -0.0989367 -0.0451738 -0.243208 -0.892954 0.37879 +0.104454 -0.0969993 -0.0462205 -0.283182 -0.876143 0.390106 +0.0960648 -0.0952141 -0.0472388 -0.334591 -0.857469 0.390894 +0.0878572 -0.0933203 -0.048274 -0.382804 -0.839598 0.385405 +0.0797929 -0.091345 -0.0493247 -0.450158 -0.806206 0.383914 +0.0724277 -0.0888374 -0.0504435 -0.515874 -0.770098 0.375264 +0.0659174 -0.0856879 -0.0516753 -0.588157 -0.720395 0.367562 +0.0597707 -0.0822665 -0.0529362 -0.641799 -0.676133 0.361854 +0.0543281 -0.0783082 -0.0542848 -0.693586 -0.627031 0.354642 +0.049874 -0.0735819 -0.0557551 -0.738162 -0.578684 0.346759 +0.0459972 -0.0684106 -0.0573007 -0.771459 -0.541747 0.33371 +0.0430804 -0.0624703 -0.058963 -0.797626 -0.505903 0.328414 +0.0401982 -0.0565004 -0.0606304 -0.829379 -0.457016 0.321352 +0.037881 -0.0500658 -0.0623706 -0.864805 -0.400826 0.302407 +0.0375908 -0.0420059 -0.0643706 -0.891911 -0.344899 0.29247 +0.64197 -0.484869 0.0789124 0.273979 -0.88607 0.37392 +0.615498 -0.491476 0.0787488 0.164463 -0.915353 0.367534 +0.594514 -0.495141 0.0782349 0.0661003 -0.933932 0.351287 +0.578276 -0.496247 0.0774072 0.00472488 -0.939719 0.341914 +0.565716 -0.49537 0.0763435 -0.0167559 -0.944205 0.328934 +0.553109 -0.494548 0.0752816 -0.0338634 -0.947976 0.316537 +0.538555 -0.494865 0.0743743 -0.0453952 -0.955598 0.291155 +0.524016 -0.495218 0.073475 -0.0771143 -0.962937 0.258473 +0.511304 -0.494583 0.0724638 -0.120112 -0.966022 0.228856 +0.499716 -0.493358 0.0713741 -0.186369 -0.962419 0.197532 +0.489561 -0.49134 0.0701907 -0.245787 -0.953681 0.173445 +0.479941 -0.489056 0.0689685 -0.277768 -0.948444 0.152637 +0.471057 -0.486367 0.0677102 -0.31255 -0.940489 0.133396 +0.463079 -0.483182 0.0663786 -0.332553 -0.936039 0.115067 +0.455772 -0.479632 0.0650139 -0.339583 -0.934942 0.102809 +0.448248 -0.476219 0.0636609 -0.344516 -0.934657 0.0878894 +0.440421 -0.473004 0.0623362 -0.347957 -0.934841 0.0707098 +0.431856 -0.470246 0.0610751 -0.350876 -0.935076 0.0502046 +0.423434 -0.467418 0.0598096 -0.353834 -0.934859 0.0289883 +0.414902 -0.464683 0.0585568 -0.363316 -0.931654 0.00498943 +0.406918 -0.461645 0.057265 -0.376391 -0.926303 -0.0171018 +0.399072 -0.458545 0.0559654 -0.389868 -0.920066 -0.038522 +0.391293 -0.455422 0.054666 -0.401568 -0.913825 -0.0605498 +0.384304 -0.451844 0.053314 -0.414842 -0.906377 -0.079927 +0.377572 -0.448132 0.0519398 -0.429659 -0.897635 -0.0982133 +0.37065 -0.444549 0.0505871 -0.44359 -0.888866 -0.114661 +0.363349 -0.441207 0.0492705 -0.458498 -0.878778 -0.132403 +0.35617 -0.437811 0.0479454 -0.464895 -0.872675 -0.149373 +0.349438 -0.434159 0.0465844 -0.477697 -0.861701 -0.171108 +0.343228 -0.430204 0.0451914 -0.48659 -0.852518 -0.190897 +0.337412 -0.426012 0.0437633 -0.498192 -0.839595 -0.216527 +0.331261 -0.422041 0.0423643 -0.513235 -0.822946 -0.243621 +0.325393 -0.417908 0.0409461 -0.540595 -0.79504 -0.27508 +0.318924 -0.414166 0.0395882 -0.564525 -0.766986 -0.305032 +0.311413 -0.411078 0.0383195 -0.589584 -0.737661 -0.329009 +0.305423 -0.407062 0.0369176 -0.609564 -0.710261 -0.352081 +0.300252 -0.402538 0.035454 -0.630967 -0.693428 -0.347907 +0.297243 -0.396663 0.0337977 -0.652374 -0.67471 -0.345217 +0.295205 -0.390163 0.032061 -0.679614 -0.652042 -0.336103 +0.294294 -0.382936 0.0302144 -0.715892 -0.628453 -0.304215 +0.292124 -0.3765 0.0284795 -0.758435 -0.59933 -0.256088 +0.28929 -0.370494 0.0268009 -0.792349 -0.570597 -0.215876 +0.285972 -0.364792 0.0251735 -0.823807 -0.542931 -0.162994 +0.28215 -0.359408 0.0235822 -0.852567 -0.510827 -0.110379 +0.279291 -0.353406 0.0219121 -0.867935 -0.495677 -0.0315257 +0.275696 -0.347887 0.0203024 -0.879591 -0.474905 0.028034 +0.271944 -0.342461 0.0187082 -0.88771 -0.451428 0.0904578 +0.269662 -0.336083 0.0169842 -0.899623 -0.419131 0.122509 +0.266028 -0.330576 0.0153824 -0.906565 -0.392494 0.155201 +0.262937 -0.324724 0.0137242 -0.910884 -0.366883 0.188912 +0.259646 -0.318998 0.0120864 -0.91395 -0.349319 0.206575 +0.256933 -0.312884 0.0103946 -0.919 -0.324816 0.223458 +0.254262 -0.306739 0.00869705 -0.92248 -0.308192 0.232484 +0.251876 -0.300396 0.00697318 -0.93255 -0.281371 0.226233 +0.249871 -0.293794 0.00520627 -0.939468 -0.264122 0.218264 +0.24802 -0.287082 0.00342791 -0.953427 -0.235493 0.188468 +0.246227 -0.280321 0.00163444 -0.962252 -0.226051 0.151564 +0.244574 -0.273457 -0.000169185 -0.972121 -0.197818 0.125892 +0.243318 -0.266316 -0.00201849 -0.976894 -0.193647 0.0904343 +0.242417 -0.258918 -0.00390285 -0.97898 -0.18418 0.0876172 +0.241796 -0.251313 -0.00581884 -0.976889 -0.183378 0.10982 +0.239957 -0.244537 -0.00761915 -0.978782 -0.184356 0.0894305 +0.239469 -0.236817 -0.0095574 -0.977468 -0.198203 0.0725968 +0.238252 -0.229583 -0.0114253 -0.977151 -0.202408 0.0648591 +0.23683 -0.222489 -0.0132702 -0.975919 -0.210653 0.0566355 +0.234695 -0.215879 -0.0150502 -0.974794 -0.216848 0.0524612 +0.232644 -0.2092 -0.0168314 -0.971536 -0.227587 0.0657465 +0.230599 -0.202519 -0.0186208 -0.968904 -0.237879 0.0681026 +0.229009 -0.195501 -0.0204621 -0.964668 -0.252739 0.0744184 +0.227005 -0.188769 -0.0222587 -0.960274 -0.267808 0.0784459 +0.224732 -0.182224 -0.0240282 -0.956483 -0.282379 0.0735057 +0.222281 -0.175802 -0.0257774 -0.949715 -0.300476 0.0880682 +0.219838 -0.169365 -0.0275298 -0.941838 -0.318716 0.106589 +0.21714 -0.163106 -0.0292546 -0.933007 -0.334813 0.131899 +0.21408 -0.157105 -0.0309434 -0.926569 -0.348389 0.141753 +0.210831 -0.151243 -0.0326111 -0.921734 -0.365206 0.1305 +0.20803 -0.145047 -0.0343306 -0.911193 -0.380789 0.15725 +0.205088 -0.13895 -0.0360317 -0.896489 -0.413381 0.159444 +0.202391 -0.132676 -0.0377687 -0.879481 -0.440134 0.181098 +0.198865 -0.127013 -0.0394043 -0.836224 -0.511584 0.197511 +0.195341 -0.121339 -0.0410434 -0.813731 -0.54448 0.20343 +0.19196 -0.115564 -0.0426948 -0.724859 -0.651225 0.224691 +0.187927 -0.11027 -0.0442751 -0.669881 -0.701093 0.244394 +0.182922 -0.105701 -0.0457409 -0.552414 -0.792304 0.259026 +0.176701 -0.102059 -0.0470627 -0.422353 -0.866548 0.265921 +0.162094 -0.104741 -0.0473917 -0.236849 -0.928414 0.286274 +0.148776 -0.106499 -0.0478601 -0.128279 -0.943618 0.305172 +0.137088 -0.107075 -0.0485065 -0.0685357 -0.946123 0.316472 +0.128784 -0.105126 -0.0495486 -0.113721 -0.934306 0.33785 +0.120774 -0.102977 -0.0506256 -0.166222 -0.920263 0.354244 +0.112494 -0.101055 -0.0516592 -0.224841 -0.903897 0.363893 +0.103734 -0.09953 -0.0526268 -0.282694 -0.886464 0.366423 +0.0945325 -0.0983784 -0.0535302 -0.336535 -0.870147 0.359985 +0.0859329 -0.0967842 -0.0545085 -0.391057 -0.848653 0.356179 +0.0780379 -0.0946782 -0.0555652 -0.449803 -0.821133 0.35131 +0.0709455 -0.0919651 -0.056715 -0.513759 -0.786771 0.342116 +0.0644311 -0.0888229 -0.0579298 -0.586465 -0.739203 0.331117 +0.0584383 -0.0852923 -0.0592052 -0.64192 -0.692733 0.328725 +0.0529944 -0.0813437 -0.0605507 -0.696575 -0.640388 0.323554 +0.0485404 -0.0766174 -0.062021 -0.736105 -0.598713 0.315742 +0.0444889 -0.0715811 -0.0635351 -0.771362 -0.556901 0.307998 +0.0412534 -0.0658988 -0.0651573 -0.799064 -0.521639 0.298978 +0.0388315 -0.0595693 -0.0668828 -0.832865 -0.471759 0.289447 +0.0366553 -0.0530346 -0.068641 -0.869032 -0.414249 0.270519 +0.0376457 -0.0439522 -0.0708209 -0.900881 -0.345082 0.263308 +0.6386 -0.488685 0.0722031 0.262512 -0.893688 0.363884 +0.613306 -0.49464 0.0720001 0.124313 -0.92726 0.353179 +0.593071 -0.497894 0.0714655 0.0582649 -0.9396 0.337281 +0.577804 -0.498459 0.0705981 -0.00354196 -0.943691 0.330811 +0.565114 -0.497646 0.0695536 -0.0230207 -0.947172 0.3199 +0.552357 -0.496907 0.0685282 -0.0469606 -0.950993 0.30563 +0.538276 -0.496954 0.0676075 -0.058188 -0.957527 0.282416 +0.524138 -0.497079 0.0667003 -0.093048 -0.964356 0.247711 +0.511597 -0.496348 0.065689 -0.13325 -0.966915 0.217533 +0.50011 -0.495058 0.0646099 -0.20131 -0.962067 0.184124 +0.490082 -0.49297 0.0634283 -0.256152 -0.952676 0.163689 +0.480539 -0.490636 0.0622172 -0.288123 -0.946033 0.14835 +0.471615 -0.487968 0.0609684 -0.321177 -0.938003 0.130371 +0.463572 -0.484819 0.0596551 -0.341245 -0.932844 0.115571 +0.456039 -0.481392 0.0583063 -0.347802 -0.931581 0.105801 +0.448281 -0.478117 0.0569802 -0.354678 -0.930398 0.09254 +0.440476 -0.474895 0.05567 -0.360056 -0.929777 0.0766428 +0.431874 -0.472147 0.0544159 -0.364581 -0.929467 0.0563327 +0.423566 -0.469256 0.0531551 -0.36908 -0.928713 0.035685 +0.41557 -0.4662 0.0518662 -0.380613 -0.924661 0.0117002 +0.4078 -0.463035 0.0505652 -0.39352 -0.919228 -0.0128131 +0.400057 -0.459868 0.0492748 -0.402891 -0.914636 -0.033503 +0.392568 -0.45657 0.0479595 -0.414403 -0.908304 -0.0570489 +0.385826 -0.452844 0.0465888 -0.427101 -0.900882 -0.0774455 +0.379314 -0.448991 0.0452008 -0.439178 -0.893118 -0.0972726 +0.37303 -0.445016 0.0438046 -0.450406 -0.88537 -0.115134 +0.366429 -0.441244 0.0424275 -0.46329 -0.876019 -0.133995 +0.359466 -0.437707 0.0410957 -0.476693 -0.865637 -0.153092 +0.351926 -0.434541 0.0398086 -0.489075 -0.853842 -0.178217 +0.345899 -0.430466 0.0384041 -0.499142 -0.842774 -0.201471 +0.340197 -0.4262 0.0369682 -0.512492 -0.827359 -0.229844 +0.335385 -0.421395 0.0354569 -0.525395 -0.810839 -0.25788 +0.330864 -0.416416 0.0339284 -0.549099 -0.785866 -0.284437 +0.326182 -0.41155 0.0324135 -0.573774 -0.759123 -0.30744 +0.318643 -0.408471 0.0311452 -0.599288 -0.73329 -0.321156 +0.310156 -0.405996 0.0299724 -0.616439 -0.716053 -0.327526 +0.304077 -0.402037 0.0285908 -0.633083 -0.70348 -0.322992 +0.300309 -0.396629 0.0269992 -0.65002 -0.694008 -0.30956 +0.298235 -0.390144 0.0252616 -0.678283 -0.680091 -0.278225 +0.297851 -0.382579 0.0233618 -0.699613 -0.676051 -0.23129 +0.295295 -0.37639 0.0216578 -0.734036 -0.655605 -0.177126 +0.292513 -0.370337 0.019972 -0.767329 -0.626262 -0.137852 +0.288309 -0.365197 0.0184204 -0.80886 -0.586092 -0.0473374 +0.284114 -0.360059 0.0168694 -0.832754 -0.553068 0.0252351 +0.279517 -0.355185 0.0153602 -0.846805 -0.523287 0.0953536 +0.275651 -0.349834 0.013781 -0.855119 -0.48897 0.17228 +0.27203 -0.344331 0.0121735 -0.860142 -0.456738 0.227039 +0.268323 -0.338877 0.0105766 -0.869508 -0.419296 0.26105 +0.264477 -0.333524 0.00899921 -0.873461 -0.382424 0.301364 +0.260573 -0.328212 0.00742589 -0.872821 -0.358236 0.331435 +0.256884 -0.322756 0.00583109 -0.878371 -0.324255 0.351172 +0.254062 -0.316727 0.00414825 -0.888325 -0.291428 0.354891 +0.251389 -0.310591 0.00245427 -0.894883 -0.264927 0.359166 +0.248769 -0.304415 0.000747352 -0.903786 -0.241074 0.353631 +0.246913 -0.297726 -0.0010341 -0.918764 -0.208391 0.335328 +0.245082 -0.291002 -0.00282065 -0.93232 -0.184703 0.310908 +0.243238 -0.284287 -0.00460062 -0.947487 -0.160299 0.276717 +0.241902 -0.27722 -0.00643936 -0.957393 -0.148332 0.247785 +0.240517 -0.270172 -0.00827704 -0.965709 -0.141735 0.217525 +0.239569 -0.262815 -0.0101648 -0.971144 -0.150336 0.185143 +0.238812 -0.255319 -0.0120745 -0.973255 -0.150636 0.173452 +0.237777 -0.247995 -0.0139547 -0.975216 -0.157815 0.155076 +0.237291 -0.240278 -0.0159009 -0.973182 -0.162277 0.163045 +0.236099 -0.23304 -0.0177745 -0.973026 -0.171655 0.154127 +0.2345 -0.226077 -0.0196041 -0.970618 -0.177086 0.162918 +0.232622 -0.219294 -0.021401 -0.969973 -0.194093 0.146563 +0.230611 -0.212596 -0.0231992 -0.96726 -0.201124 0.154784 +0.228972 -0.20564 -0.0250311 -0.964628 -0.212293 0.156287 +0.227373 -0.198636 -0.0268714 -0.960514 -0.227606 0.160025 +0.225507 -0.191814 -0.0286851 -0.95648 -0.242116 0.162863 +0.223336 -0.185201 -0.0304685 -0.952791 -0.260625 0.155767 +0.220944 -0.178734 -0.0322235 -0.945064 -0.281535 0.166108 +0.218203 -0.17252 -0.0339495 -0.938517 -0.298708 0.173088 +0.215357 -0.166375 -0.0356534 -0.928391 -0.31761 0.192913 +0.212307 -0.160377 -0.0373409 -0.920119 -0.336464 0.200433 +0.209279 -0.154357 -0.0390331 -0.910257 -0.349169 0.222516 +0.206395 -0.148227 -0.040744 -0.898934 -0.365252 0.241885 +0.203363 -0.142201 -0.042437 -0.884846 -0.385672 0.261352 +0.200147 -0.136321 -0.0441048 -0.870522 -0.406965 0.276714 +0.196981 -0.130393 -0.0457867 -0.832739 -0.466617 0.298017 +0.19355 -0.124655 -0.0474323 -0.791798 -0.52897 0.305362 +0.189903 -0.119082 -0.0490594 -0.73432 -0.599661 0.318089 +0.186657 -0.11321 -0.0507281 -0.686123 -0.655097 0.316359 +0.182008 -0.108384 -0.0522303 -0.556427 -0.765307 0.323567 +0.176255 -0.104393 -0.0535981 -0.436641 -0.841584 0.317933 +0.163103 -0.105972 -0.0540789 -0.244646 -0.915572 0.31918 +0.149942 -0.107609 -0.0545463 -0.141225 -0.939161 0.313104 +0.136851 -0.109244 -0.0550085 -0.0666267 -0.948232 0.310514 +0.128194 -0.107553 -0.0559979 -0.103456 -0.939811 0.32566 +0.120262 -0.105345 -0.0570661 -0.150315 -0.930318 0.334536 +0.111578 -0.103739 -0.0580467 -0.230329 -0.911459 0.340872 +0.10241 -0.102529 -0.0589464 -0.287577 -0.897441 0.334513 +0.0932609 -0.101335 -0.0598482 -0.338781 -0.88157 0.328728 +0.084975 -0.0995012 -0.0608529 -0.388381 -0.863391 0.322054 +0.0774063 -0.0971465 -0.0619395 -0.452909 -0.83348 0.31652 +0.0700998 -0.0946017 -0.0630548 -0.512539 -0.800014 0.311899 +0.0637878 -0.0913007 -0.0642867 -0.582561 -0.755566 0.299572 +0.057859 -0.0877155 -0.0655682 -0.632634 -0.716502 0.293939 +0.0524331 -0.083753 -0.0669085 -0.695173 -0.659489 0.286023 +0.0478588 -0.0791322 -0.0683571 -0.737091 -0.613067 0.28433 +0.0437955 -0.074104 -0.0698698 -0.776898 -0.565467 0.276904 +0.040474 -0.0685 -0.0714824 -0.803222 -0.534914 0.262107 +0.0374859 -0.0626155 -0.0731307 -0.836929 -0.486129 0.251452 +0.0352388 -0.0561529 -0.0748867 -0.871413 -0.431863 0.232667 +0.035291 -0.0478316 -0.0769406 -0.90474 -0.36314 0.222656 +0.705004 -0.462394 0.0625336 0.477183 -0.844999 0.241399 +0.636219 -0.491964 0.0654333 0.242825 -0.907239 0.343442 +0.610926 -0.497914 0.0652772 0.110235 -0.934026 0.339771 +0.591787 -0.500559 0.0646967 0.0473979 -0.944787 0.324243 +0.576901 -0.500908 0.0638209 -0.00556588 -0.947572 0.319495 +0.564646 -0.499849 0.062767 -0.0338644 -0.951714 0.305113 +0.551813 -0.499159 0.061762 -0.0566356 -0.954313 0.293393 +0.538206 -0.498936 0.0608279 -0.0726684 -0.959471 0.272281 +0.524938 -0.498563 0.0598741 -0.102603 -0.964595 0.24296 +0.512002 -0.498052 0.0589179 -0.144039 -0.967512 0.207787 +0.500632 -0.496688 0.0578395 -0.211732 -0.962665 0.168658 +0.49072 -0.49453 0.0566596 -0.254838 -0.955463 0.148824 +0.481484 -0.492018 0.0554426 -0.294467 -0.945912 0.136158 +0.47274 -0.48924 0.0541841 -0.329043 -0.93645 0.121623 +0.464404 -0.486261 0.0529071 -0.34934 -0.930827 0.107346 +0.456458 -0.483069 0.0516001 -0.357437 -0.929072 0.0952082 +0.448552 -0.479882 0.0502893 -0.364733 -0.927458 0.0824223 +0.440606 -0.476732 0.0489921 -0.370912 -0.926205 0.0675977 +0.432097 -0.473933 0.0477492 -0.376188 -0.925111 0.0515066 +0.423886 -0.470985 0.0464828 -0.38505 -0.922431 0.0292881 +0.416258 -0.467705 0.045176 -0.393232 -0.919401 0.00847308 +0.408773 -0.464369 0.04386 -0.405098 -0.914204 -0.0112694 +0.401328 -0.461024 0.0425461 -0.417005 -0.908243 -0.034684 +0.394223 -0.457487 0.0412097 -0.42902 -0.90133 -0.05957 +0.387669 -0.453648 0.0398294 -0.437894 -0.89544 -0.080236 +0.38137 -0.449665 0.0384301 -0.447279 -0.888556 -0.102042 +0.374946 -0.445765 0.037047 -0.457331 -0.880762 -0.122914 +0.368568 -0.441854 0.0356656 -0.468973 -0.871753 -0.141813 +0.362069 -0.438034 0.0342943 -0.484822 -0.859433 -0.162251 +0.354739 -0.434732 0.0330002 -0.502028 -0.844557 -0.18626 +0.348129 -0.431004 0.0316407 -0.521584 -0.825378 -0.216109 +0.342034 -0.426976 0.0302497 -0.527795 -0.814549 -0.240713 +0.337403 -0.422063 0.0287274 -0.538263 -0.798635 -0.269176 +0.333321 -0.416805 0.0271595 -0.55605 -0.778647 -0.290722 +0.329599 -0.411326 0.0255554 -0.576802 -0.759039 -0.301926 +0.326015 -0.405768 0.0239377 -0.595044 -0.741604 -0.309754 +0.319377 -0.402124 0.0226031 -0.617261 -0.726245 -0.302586 +0.310394 -0.399965 0.0214837 -0.631645 -0.721313 -0.284135 +0.304671 -0.395778 0.0200724 -0.64692 -0.721237 -0.247612 +0.301759 -0.389818 0.018405 -0.663874 -0.72122 -0.197777 +0.300792 -0.382616 0.0165527 -0.680443 -0.719272 -0.14016 +0.297351 -0.376988 0.0149321 -0.703085 -0.703506 -0.103696 +0.293601 -0.371552 0.0133351 -0.736738 -0.675171 -0.036873 +0.2886 -0.366927 0.0118635 -0.779913 -0.623756 0.0516248 +0.283308 -0.362492 0.0104176 -0.794318 -0.590903 0.141043 +0.278359 -0.357854 0.0089392 -0.803361 -0.554677 0.216669 +0.274036 -0.352809 0.0074063 -0.811309 -0.51389 0.278735 +0.269959 -0.347601 0.00585035 -0.821652 -0.472771 0.318396 +0.266006 -0.34232 0.00427957 -0.831017 -0.431687 0.350794 +0.261645 -0.337314 0.00275321 -0.831592 -0.399269 0.386056 +0.257682 -0.332047 0.00118503 -0.8425 -0.360699 0.400112 +0.254008 -0.326591 -0.000409297 -0.848584 -0.324147 0.41813 +0.250887 -0.320762 -0.00205543 -0.858807 -0.287467 0.424045 +0.248104 -0.31471 -0.0037407 -0.869049 -0.254926 0.423987 +0.245686 -0.308414 -0.00546528 -0.883439 -0.220503 0.413419 +0.24392 -0.301669 -0.0072512 -0.90087 -0.181014 0.394546 +0.242245 -0.294857 -0.00905344 -0.916203 -0.152529 0.370549 +0.240599 -0.288019 -0.010866 -0.932635 -0.12455 0.338646 +0.23911 -0.28106 -0.0126927 -0.943684 -0.109902 0.312064 +0.237897 -0.273904 -0.0145499 -0.946822 -0.0970248 0.306779 +0.236972 -0.26654 -0.0164368 -0.949838 -0.0956688 0.297749 +0.236385 -0.258936 -0.0183648 -0.953999 -0.107406 0.279912 +0.235505 -0.251514 -0.0202691 -0.956414 -0.11441 0.268667 +0.234593 -0.244102 -0.0221742 -0.957143 -0.124871 0.261314 +0.233392 -0.236878 -0.0240454 -0.956828 -0.133476 0.258192 +0.231914 -0.229837 -0.0258904 -0.956761 -0.138652 0.255704 +0.230121 -0.223008 -0.0277062 -0.95602 -0.149499 0.252338 +0.228291 -0.216201 -0.0295132 -0.952295 -0.162669 0.258215 +0.226453 -0.209381 -0.0313312 -0.950345 -0.174682 0.257545 +0.224817 -0.202417 -0.0331728 -0.947285 -0.189623 0.258253 +0.223064 -0.19552 -0.0349939 -0.943007 -0.207587 0.260085 +0.221019 -0.188824 -0.0367941 -0.937913 -0.227146 0.262155 +0.218867 -0.1822 -0.0385785 -0.933448 -0.247594 0.259563 +0.216347 -0.175828 -0.0403295 -0.92423 -0.270709 0.269285 +0.213498 -0.169695 -0.042039 -0.913222 -0.292211 0.283969 +0.210487 -0.163674 -0.0437284 -0.900975 -0.31492 0.298444 +0.20743 -0.157681 -0.0454171 -0.890984 -0.328858 0.313048 +0.204578 -0.15154 -0.0471281 -0.879787 -0.345352 0.326661 +0.201578 -0.145496 -0.0488229 -0.868075 -0.362141 0.339556 +0.198515 -0.139507 -0.0505097 -0.854737 -0.389525 0.343067 +0.194948 -0.133876 -0.0521422 -0.829949 -0.432296 0.352568 +0.191535 -0.128138 -0.0537952 -0.782312 -0.501543 0.36938 +0.188258 -0.122302 -0.0554571 -0.746521 -0.553499 0.369249 +0.184739 -0.116634 -0.0570948 -0.707223 -0.607985 0.36082 +0.180366 -0.11161 -0.0586264 -0.575033 -0.729197 0.370956 +0.175383 -0.107043 -0.0600844 -0.443861 -0.82104 0.359002 +0.163608 -0.107592 -0.0607044 -0.272984 -0.903795 0.329602 +0.150472 -0.109198 -0.0611544 -0.153766 -0.939475 0.306176 +0.136461 -0.111519 -0.0614831 -0.0739539 -0.95117 0.299679 +0.127649 -0.10995 -0.0624426 -0.0909989 -0.948308 0.304025 +0.118887 -0.108379 -0.0634051 -0.151846 -0.938316 0.310657 +0.109913 -0.106993 -0.0643287 -0.223448 -0.92433 0.309333 +0.100723 -0.105802 -0.0652186 -0.298263 -0.904294 0.305438 +0.091743 -0.10448 -0.0661277 -0.344116 -0.889679 0.300096 +0.0840912 -0.102162 -0.0671975 -0.388605 -0.873555 0.293068 +0.0768843 -0.0995211 -0.0683244 -0.453234 -0.845175 0.283304 +0.0699255 -0.0967069 -0.0694724 -0.512919 -0.813776 0.273284 +0.0636636 -0.093369 -0.0707094 -0.571945 -0.777514 0.26144 +0.0579451 -0.0896216 -0.072009 -0.630018 -0.733665 0.254584 +0.0527039 -0.0855135 -0.0733662 -0.684505 -0.685128 0.249107 +0.0481801 -0.0808454 -0.0748218 -0.734796 -0.635108 0.238145 +0.0440595 -0.0758689 -0.0763276 -0.77441 -0.587521 0.23475 +0.0407787 -0.0702282 -0.0779383 -0.802018 -0.557504 0.214375 +0.0378058 -0.0643407 -0.0796006 -0.838007 -0.505987 0.204259 +0.0350658 -0.05827 -0.0812858 -0.867619 -0.456947 0.196055 +0.0348639 -0.0501552 -0.0833137 -0.910059 -0.376741 0.172797 +0.686615 -0.47441 0.0568145 0.395046 -0.845441 0.359401 +0.633916 -0.495192 0.0586749 0.233634 -0.913012 0.334403 +0.60934 -0.500739 0.0585039 0.0986848 -0.939739 0.327343 +0.590798 -0.503055 0.0579084 0.0438543 -0.948757 0.312949 +0.576105 -0.503299 0.0570493 -0.0126198 -0.952634 0.303858 +0.563843 -0.50224 0.0560095 -0.0371101 -0.955882 0.2914 +0.550283 -0.50195 0.0550798 -0.066113 -0.959504 0.273829 +0.537713 -0.501142 0.0540786 -0.088409 -0.962683 0.255786 +0.52624 -0.499767 0.0530125 -0.116857 -0.966014 0.230569 +0.513299 -0.499246 0.0520684 -0.160174 -0.967704 0.194663 +0.501433 -0.498155 0.0510493 -0.219406 -0.963084 0.155987 +0.491396 -0.496067 0.04989 -0.259588 -0.956533 0.132893 +0.482377 -0.493431 0.0486625 -0.29831 -0.947326 0.116558 +0.473711 -0.490605 0.0474079 -0.333436 -0.9373 0.101442 +0.465393 -0.487614 0.0461372 -0.354253 -0.930918 0.0888715 +0.457655 -0.484296 0.04482 -0.362035 -0.928981 0.0769716 +0.449519 -0.48124 0.0435426 -0.371344 -0.926342 0.0632112 +0.441152 -0.478328 0.0422941 -0.379234 -0.923928 0.050393 +0.432897 -0.475378 0.0410304 -0.387677 -0.921238 0.0320744 +0.425081 -0.472192 0.0397438 -0.394796 -0.918639 0.0155125 +0.417664 -0.468794 0.0384283 -0.404673 -0.914443 -0.0057349 +0.41066 -0.46516 0.0370794 -0.415117 -0.909435 -0.0246162 +0.403688 -0.461532 0.0357339 -0.428323 -0.902301 -0.0489095 +0.396783 -0.457874 0.0343864 -0.440831 -0.894764 -0.0711742 +0.389913 -0.454212 0.033035 -0.447283 -0.889714 -0.0913627 +0.383212 -0.450467 0.0316793 -0.456897 -0.882026 -0.115217 +0.376482 -0.446746 0.0303255 -0.465579 -0.874604 -0.135299 +0.36959 -0.443148 0.0289942 -0.478467 -0.864303 -0.155084 +0.362976 -0.439386 0.0276335 -0.493727 -0.851894 -0.174672 +0.357012 -0.435256 0.0262222 -0.516783 -0.832598 -0.199295 +0.350617 -0.431387 0.0248573 -0.538306 -0.811238 -0.2283 +0.344418 -0.42742 0.0234782 -0.546328 -0.798398 -0.253153 +0.338712 -0.423162 0.0220523 -0.556185 -0.784124 -0.275335 +0.33465 -0.417893 0.0204821 -0.562974 -0.775537 -0.285665 +0.331262 -0.412209 0.0188453 -0.57819 -0.7629 -0.289275 +0.328779 -0.405952 0.0171317 -0.591134 -0.758663 -0.273848 +0.325549 -0.400165 0.0154768 -0.602984 -0.758704 -0.246535 +0.321222 -0.39507 0.0139337 -0.61988 -0.751998 -0.224164 +0.31109 -0.393642 0.0129419 -0.625176 -0.764112 -0.159019 +0.306201 -0.388916 0.01145 -0.634878 -0.765588 -0.103943 +0.303115 -0.383059 0.00979107 -0.653688 -0.754095 -0.063503 +0.298875 -0.377931 0.008246 -0.666467 -0.745522 0.00439858 +0.293393 -0.373606 0.0068254 -0.704591 -0.704702 0.0833557 +0.287088 -0.369813 0.00547672 -0.728725 -0.661389 0.177548 +0.281429 -0.36563 0.0040732 -0.750119 -0.615692 0.241341 +0.27616 -0.361188 0.00263476 -0.753022 -0.586385 0.298518 +0.271747 -0.356213 0.00111104 -0.769053 -0.534419 0.350649 +0.267363 -0.351211 -0.000408652 -0.783642 -0.484569 0.388712 +0.263074 -0.346163 -0.00193973 -0.792492 -0.434474 0.428006 +0.259057 -0.340938 -0.00350258 -0.803235 -0.384727 0.454752 +0.255107 -0.335662 -0.00506362 -0.803588 -0.3476 0.483137 +0.251231 -0.33035 -0.00663398 -0.811731 -0.308321 0.496015 +0.248027 -0.324591 -0.00827965 -0.82297 -0.267684 0.501064 +0.245149 -0.318611 -0.00994916 -0.836364 -0.229011 0.498045 +0.242598 -0.312403 -0.0116651 -0.853824 -0.188285 0.485318 +0.241267 -0.305387 -0.0134979 -0.873113 -0.142407 0.466256 +0.239717 -0.29849 -0.0153166 -0.889188 -0.107795 0.444663 +0.238101 -0.291645 -0.0171296 -0.908094 -0.0805823 0.410941 +0.236922 -0.284486 -0.0189909 -0.920736 -0.0679285 0.384229 +0.235619 -0.277401 -0.0208386 -0.931971 -0.0634195 0.356943 +0.234567 -0.270134 -0.0227221 -0.937705 -0.068289 0.340655 +0.233873 -0.26261 -0.0246409 -0.941637 -0.0785388 0.327339 +0.233275 -0.255005 -0.026579 -0.943482 -0.0912276 0.318621 +0.231935 -0.2479 -0.0284338 -0.943737 -0.0995626 0.315354 +0.230457 -0.240877 -0.0302837 -0.941256 -0.108767 0.319699 +0.22894 -0.233874 -0.032123 -0.940656 -0.11838 0.318044 +0.227214 -0.227008 -0.0339499 -0.940036 -0.129202 0.315658 +0.225667 -0.219999 -0.0357944 -0.939288 -0.139637 0.313431 +0.224065 -0.213032 -0.037633 -0.937974 -0.151698 0.311755 +0.222274 -0.206177 -0.0394557 -0.935578 -0.166446 0.311429 +0.220713 -0.199161 -0.0413099 -0.931577 -0.184445 0.313278 +0.218934 -0.19228 -0.0431364 -0.926759 -0.204998 0.31479 +0.216755 -0.185684 -0.0449259 -0.91958 -0.228483 0.319636 +0.214454 -0.179163 -0.0466917 -0.910943 -0.253681 0.325311 +0.211577 -0.173055 -0.0483983 -0.898683 -0.274102 0.342398 +0.208599 -0.167018 -0.0500965 -0.886678 -0.298354 0.353253 +0.205572 -0.161014 -0.0517833 -0.876037 -0.316588 0.363774 +0.202658 -0.15492 -0.0534897 -0.865946 -0.332372 0.373721 +0.199507 -0.149001 -0.0551689 -0.855087 -0.348493 0.3839 +0.196314 -0.143104 -0.0568382 -0.837675 -0.373988 0.398037 +0.192838 -0.137419 -0.0584757 -0.823329 -0.403542 0.399102 +0.189384 -0.131715 -0.0601236 -0.785212 -0.464532 0.409453 +0.185981 -0.125977 -0.0617668 -0.757533 -0.518941 0.396034 +0.183137 -0.119824 -0.0634801 -0.68337 -0.610037 0.401076 +0.179201 -0.114473 -0.065066 -0.609326 -0.687233 0.395517 +0.17465 -0.109589 -0.0665735 -0.481944 -0.79176 0.375298 +0.163823 -0.109417 -0.0673009 -0.310486 -0.894006 0.323034 +0.150825 -0.110927 -0.0677447 -0.175025 -0.93846 0.297759 +0.136524 -0.113456 -0.0680134 -0.0787727 -0.95639 0.281274 +0.126392 -0.112891 -0.0688012 -0.0845141 -0.957417 0.276066 +0.116913 -0.11186 -0.0696552 -0.160775 -0.94576 0.282294 +0.108181 -0.110293 -0.0705992 -0.233819 -0.929884 0.283983 +0.0992807 -0.108883 -0.0715062 -0.302192 -0.911917 0.27765 +0.0911432 -0.106912 -0.0725154 -0.342593 -0.898757 0.273618 +0.0836542 -0.104471 -0.0735978 -0.393725 -0.880058 0.265478 +0.0766105 -0.101706 -0.0747328 -0.453929 -0.855137 0.25038 +0.0700764 -0.0985587 -0.0759265 -0.511276 -0.827538 0.231905 +0.0641042 -0.0950053 -0.0771962 -0.574372 -0.789131 0.217646 +0.0584209 -0.0912267 -0.0784926 -0.630611 -0.748656 0.20456 +0.0537055 -0.086706 -0.079923 -0.679122 -0.707196 0.196641 +0.049173 -0.0820385 -0.0813705 -0.724977 -0.662919 0.186945 +0.0450944 -0.0770289 -0.0828812 -0.768779 -0.614873 0.175814 +0.0418969 -0.0713239 -0.0845063 -0.799692 -0.579818 0.155897 +0.0385306 -0.0657436 -0.0861095 -0.837335 -0.526899 0.145764 +0.0353684 -0.0600113 -0.0877447 -0.86976 -0.474303 0.136209 +0.0349535 -0.0520671 -0.0897528 -0.914906 -0.386225 0.117369 +0.677045 -0.481619 0.0505155 0.367993 -0.86573 0.339256 +0.631623 -0.498411 0.0519221 0.223347 -0.92124 0.318488 +0.608418 -0.503203 0.0516896 0.0927725 -0.945822 0.311152 +0.59068 -0.505067 0.0510693 0.0353123 -0.954777 0.29522 +0.576204 -0.505187 0.0502008 -0.0201491 -0.958762 0.283494 +0.562821 -0.504753 0.0492679 -0.0465424 -0.961561 0.27062 +0.5494 -0.504384 0.0483478 -0.0765417 -0.963975 0.254746 +0.53743 -0.503239 0.0473221 -0.100449 -0.966 0.238232 +0.526485 -0.501556 0.0462317 -0.133202 -0.968099 0.212237 +0.51489 -0.500273 0.0451917 -0.172009 -0.968291 0.181184 +0.503163 -0.499104 0.0441814 -0.223404 -0.963985 0.14431 +0.492489 -0.497372 0.0430878 -0.269599 -0.956013 0.115575 +0.483569 -0.494667 0.0418614 -0.302091 -0.9484 0.0963276 +0.474937 -0.491826 0.0406137 -0.335645 -0.938521 0.0807642 +0.466498 -0.488895 0.0393618 -0.358764 -0.931251 0.0637182 +0.458869 -0.48551 0.0380455 -0.367372 -0.928697 0.0506239 +0.451063 -0.482257 0.0367443 -0.375168 -0.92611 0.039635 +0.443038 -0.479149 0.0354726 -0.383515 -0.923205 0.0246898 +0.434693 -0.476241 0.0342272 -0.394381 -0.918899 0.00937764 +0.426935 -0.473017 0.0329452 -0.404795 -0.914334 -0.0116247 +0.419734 -0.469481 0.0316158 -0.412766 -0.910444 -0.026782 +0.412898 -0.465745 0.0302576 -0.425016 -0.90384 -0.0493779 +0.406064 -0.462027 0.028903 -0.437918 -0.896058 -0.0728711 +0.399249 -0.458313 0.0275524 -0.446744 -0.889791 -0.0932363 +0.392198 -0.454756 0.0262312 -0.454991 -0.883033 -0.115057 +0.385167 -0.451196 0.0249038 -0.463042 -0.876078 -0.134464 +0.378286 -0.447571 0.0235759 -0.469834 -0.86921 -0.154054 +0.371629 -0.443825 0.0222238 -0.482468 -0.859246 -0.170063 +0.365283 -0.439893 0.0208467 -0.4992 -0.845508 -0.189519 +0.359046 -0.435922 0.0194638 -0.524533 -0.824913 -0.210674 +0.353166 -0.431739 0.0180556 -0.549884 -0.802346 -0.232099 +0.347328 -0.427539 0.0166474 -0.563948 -0.784925 -0.256628 +0.34116 -0.423552 0.015267 -0.567405 -0.779093 -0.266583 +0.336657 -0.418556 0.0137366 -0.567165 -0.778214 -0.269644 +0.332697 -0.413226 0.012154 -0.573897 -0.775504 -0.26313 +0.330465 -0.406813 0.0104122 -0.584662 -0.777422 -0.231921 +0.328052 -0.400514 0.00868685 -0.595774 -0.777272 -0.202241 +0.325336 -0.394397 0.00698603 -0.596538 -0.785853 -0.16303 +0.317807 -0.39132 0.0057497 -0.608224 -0.789434 -0.082811 +0.311045 -0.38776 0.0044472 -0.604986 -0.795565 -0.0327064 +0.304363 -0.384174 0.00312944 -0.609038 -0.792022 0.0421218 +0.297964 -0.380426 0.00179974 -0.624368 -0.769417 0.134773 +0.292034 -0.376394 0.000422054 -0.646187 -0.73467 0.206648 +0.285199 -0.372948 -0.000860987 -0.675354 -0.681584 0.281676 +0.279316 -0.368903 -0.00223777 -0.695621 -0.642505 0.321402 +0.273896 -0.364575 -0.00365441 -0.707015 -0.604239 0.367457 +0.269108 -0.359838 -0.00513309 -0.723205 -0.55344 0.413131 +0.264529 -0.35498 -0.00663755 -0.738776 -0.501229 0.450532 +0.260034 -0.350071 -0.00814632 -0.749207 -0.448148 0.487702 +0.255584 -0.345134 -0.00965722 -0.761731 -0.403748 0.506709 +0.251728 -0.339812 -0.0112288 -0.77236 -0.363919 0.520599 +0.248282 -0.33422 -0.0128408 -0.787955 -0.31754 0.527537 +0.245014 -0.328513 -0.0144654 -0.803424 -0.27138 0.529963 +0.242055 -0.322591 -0.0161358 -0.823509 -0.226841 0.519978 +0.2394 -0.316471 -0.0178319 -0.843588 -0.180377 0.505789 +0.238194 -0.309372 -0.0196817 -0.864122 -0.133949 0.485129 +0.236979 -0.302272 -0.0215411 -0.88099 -0.0918674 0.464132 +0.235601 -0.295266 -0.0233774 -0.89498 -0.0613501 0.441868 +0.234387 -0.28814 -0.0252425 -0.905128 -0.0396392 0.423286 +0.233489 -0.280791 -0.0271391 -0.912444 -0.0331866 0.407852 +0.232661 -0.273382 -0.0290436 -0.917905 -0.0366518 0.395104 +0.231817 -0.265966 -0.0309505 -0.920341 -0.0443647 0.388593 +0.23112 -0.258439 -0.0328788 -0.921498 -0.0552462 0.384434 +0.229771 -0.251339 -0.034741 -0.921548 -0.0678904 0.382282 +0.228144 -0.244432 -0.0365768 -0.920618 -0.0789012 0.38241 +0.226378 -0.237614 -0.0383871 -0.922027 -0.0903018 0.376447 +0.224455 -0.230889 -0.040192 -0.921426 -0.100787 0.375254 +0.222836 -0.223952 -0.0420331 -0.918941 -0.108423 0.3792 +0.221421 -0.216856 -0.0438942 -0.920371 -0.123024 0.371189 +0.219945 -0.209792 -0.0457597 -0.919225 -0.137436 0.368966 +0.218429 -0.202749 -0.0476166 -0.914995 -0.152915 0.373366 +0.217044 -0.195603 -0.0494928 -0.911014 -0.176366 0.372756 +0.21507 -0.188865 -0.0512967 -0.905382 -0.200786 0.374123 +0.21271 -0.182391 -0.053065 -0.896405 -0.23004 0.378865 +0.210039 -0.176147 -0.0548011 -0.885452 -0.260349 0.384959 +0.207105 -0.170079 -0.0564952 -0.875264 -0.284014 0.391471 +0.204099 -0.164066 -0.0581897 -0.86405 -0.307489 0.398584 +0.201088 -0.158045 -0.0598798 -0.855253 -0.323126 0.405132 +0.197805 -0.152231 -0.0615462 -0.847805 -0.337507 0.40904 +0.194388 -0.146501 -0.0631889 -0.836361 -0.359742 0.413627 +0.191135 -0.14066 -0.0648503 -0.827576 -0.3817 0.411611 +0.187801 -0.134875 -0.0665071 -0.794604 -0.444372 0.413689 +0.184436 -0.129116 -0.068159 -0.777647 -0.483281 0.402125 +0.181222 -0.12324 -0.0698253 -0.699261 -0.586552 0.408646 +0.178177 -0.117234 -0.071523 -0.643495 -0.658322 0.390545 +0.173949 -0.112114 -0.0730637 -0.537028 -0.758001 0.370184 +0.165295 -0.11031 -0.0740484 -0.379472 -0.86909 0.317309 +0.151528 -0.112379 -0.0743765 -0.194418 -0.932602 0.304067 +0.136998 -0.115091 -0.0745983 -0.095212 -0.957773 0.271308 +0.125799 -0.115323 -0.0752266 -0.0798394 -0.965444 0.248085 +0.115475 -0.114934 -0.0759593 -0.174954 -0.951596 0.252703 +0.106872 -0.11327 -0.0769071 -0.236245 -0.937053 0.257142 +0.0984832 -0.11147 -0.0778744 -0.298064 -0.921468 0.24911 +0.091129 -0.108904 -0.0789749 -0.343714 -0.906245 0.246137 +0.0838955 -0.106258 -0.0800834 -0.400372 -0.886258 0.232914 +0.0774276 -0.103046 -0.0812868 -0.460529 -0.862317 0.210532 +0.0713581 -0.0995476 -0.0825372 -0.510474 -0.837982 0.192879 +0.0658931 -0.0955783 -0.0838668 -0.56784 -0.803595 0.178307 +0.0605326 -0.0915491 -0.085208 -0.626342 -0.762806 0.160696 +0.0552996 -0.0874247 -0.08656 -0.675696 -0.723047 0.143663 +0.050388 -0.0830611 -0.0879553 -0.7197 -0.681182 0.134248 +0.0458675 -0.0783968 -0.0894018 -0.761517 -0.637433 0.117344 +0.0422317 -0.073029 -0.0909718 -0.803337 -0.586746 0.101873 +0.0388072 -0.0675007 -0.0925676 -0.834442 -0.54276 0.0954883 +0.0355561 -0.0618374 -0.0941887 -0.87103 -0.484454 0.0813088 +0.0352085 -0.0538454 -0.0962088 -0.911594 -0.404909 0.0710399 +0.669412 -0.487757 0.0440992 0.356013 -0.87548 0.326791 +0.630418 -0.501034 0.0450974 0.20711 -0.931533 0.298922 +0.607412 -0.505715 0.0448887 0.0810958 -0.953508 0.290255 +0.591277 -0.506691 0.044164 0.0305721 -0.961756 0.2722 +0.576452 -0.507001 0.0433552 -0.0204337 -0.964584 0.262989 +0.562684 -0.506772 0.0424676 -0.0549803 -0.966915 0.249105 +0.549461 -0.50628 0.0415524 -0.0843056 -0.968693 0.233512 +0.537179 -0.505316 0.0405719 -0.109099 -0.969546 0.219273 +0.526643 -0.503404 0.0394561 -0.144626 -0.970321 0.193814 +0.515505 -0.501856 0.0383954 -0.193008 -0.967919 0.160883 +0.504536 -0.50025 0.0373353 -0.237521 -0.96294 0.127799 +0.493964 -0.498454 0.0362442 -0.277029 -0.955603 0.1004 +0.485738 -0.495352 0.0349711 -0.310471 -0.947514 0.0763381 +0.477121 -0.492489 0.0337355 -0.341591 -0.938153 0.0564385 +0.468198 -0.489835 0.032529 -0.365014 -0.93027 0.0369037 +0.460595 -0.486433 0.0312191 -0.372407 -0.92774 0.0247785 +0.452988 -0.483057 0.0299143 -0.38008 -0.924879 0.0117024 +0.445353 -0.479718 0.0286156 -0.387728 -0.921768 -0.00363194 +0.437084 -0.47676 0.0273735 -0.397925 -0.917249 -0.017646 +0.429359 -0.473506 0.0260937 -0.410333 -0.911231 -0.0358812 +0.422197 -0.469945 0.0247634 -0.421704 -0.904987 -0.0562603 +0.415296 -0.466246 0.0234231 -0.434229 -0.897287 -0.0795008 +0.408444 -0.462526 0.0220753 -0.445005 -0.889764 -0.101447 +0.401643 -0.458803 0.0207302 -0.454769 -0.881818 -0.124829 +0.394676 -0.455185 0.019403 -0.461695 -0.874833 -0.146651 +0.387867 -0.451492 0.0180638 -0.467648 -0.868158 -0.166153 +0.38125 -0.447693 0.016711 -0.474766 -0.860965 -0.182584 +0.374665 -0.443892 0.0153605 -0.485241 -0.851712 -0.19781 +0.368024 -0.440143 0.0140153 -0.500681 -0.837635 -0.218372 +0.361531 -0.436315 0.0126595 -0.524207 -0.819404 -0.231913 +0.35563 -0.432142 0.011259 -0.551401 -0.795444 -0.251449 +0.349827 -0.427912 0.00984563 -0.567814 -0.779643 -0.264095 +0.344084 -0.423664 0.00843475 -0.56912 -0.780418 -0.25894 +0.339122 -0.418946 0.00694492 -0.565317 -0.784808 -0.253959 +0.334787 -0.413838 0.00540408 -0.566651 -0.790403 -0.232747 +0.332292 -0.407589 0.0036839 -0.568893 -0.801324 -0.185049 +0.329553 -0.401493 0.00198433 -0.576163 -0.804758 -0.142835 +0.326701 -0.395459 0.000290724 -0.570451 -0.817646 -0.0777237 +0.319767 -0.391992 -0.0009977 -0.575675 -0.817675 -0.00265784 +0.312478 -0.388771 -0.00224677 -0.568936 -0.819351 0.0705307 +0.304401 -0.386065 -0.00340548 -0.567699 -0.808098 0.15715 +0.297225 -0.382812 -0.00465735 -0.578024 -0.781811 0.233794 +0.289795 -0.379732 -0.00587719 -0.599243 -0.744505 0.294314 +0.283175 -0.37616 -0.00717833 -0.628787 -0.699302 0.340009 +0.277235 -0.372155 -0.00854173 -0.651414 -0.650854 0.389936 +0.27166 -0.367933 -0.00993222 -0.656655 -0.616469 0.434476 +0.266685 -0.363324 -0.0113913 -0.679459 -0.566019 0.466861 +0.261741 -0.358707 -0.012856 -0.697011 -0.51268 0.501332 +0.256891 -0.354041 -0.014316 -0.71801 -0.467051 0.516068 +0.252419 -0.349125 -0.0158237 -0.740253 -0.42138 0.523896 +0.248553 -0.343817 -0.0173924 -0.755292 -0.379318 0.534462 +0.245131 -0.33822 -0.0190056 -0.775211 -0.33108 0.537991 +0.241941 -0.332468 -0.0206404 -0.796454 -0.279747 0.536098 +0.238957 -0.326578 -0.0223047 -0.819632 -0.231316 0.524114 +0.236167 -0.320555 -0.0239829 -0.841783 -0.180915 0.508599 +0.234652 -0.313674 -0.0258025 -0.861538 -0.133357 0.489865 +0.233549 -0.306509 -0.0276741 -0.879246 -0.0854684 0.468638 +0.232546 -0.299266 -0.029556 -0.893369 -0.0527014 0.446222 +0.231837 -0.291807 -0.0314766 -0.902695 -0.0280407 0.429366 +0.230851 -0.284519 -0.0333664 -0.909185 -0.0201988 0.415902 +0.230362 -0.276887 -0.0353157 -0.912942 -0.0208443 0.407555 +0.229725 -0.269344 -0.037251 -0.914699 -0.0297517 0.403037 +0.228742 -0.262019 -0.0391492 -0.915037 -0.0411066 0.401268 +0.227532 -0.254839 -0.0410256 -0.914393 -0.0541481 0.40119 +0.226064 -0.24783 -0.0428788 -0.91338 -0.0675007 0.401473 +0.224378 -0.240958 -0.0447119 -0.912374 -0.0762715 0.402189 +0.222185 -0.234428 -0.0464853 -0.911475 -0.0849805 0.402483 +0.220322 -0.227668 -0.0482917 -0.911195 -0.0938964 0.401133 +0.218719 -0.220713 -0.0501443 -0.910962 -0.105115 0.39887 +0.217298 -0.213625 -0.0520113 -0.910636 -0.117901 0.396032 +0.21605 -0.206399 -0.0539023 -0.909383 -0.136258 0.393006 +0.214905 -0.199094 -0.0558026 -0.906171 -0.15966 0.391616 +0.213146 -0.192205 -0.0576452 -0.901092 -0.186156 0.391637 +0.211192 -0.185458 -0.0594571 -0.891914 -0.218596 0.39586 +0.208703 -0.179079 -0.0612158 -0.882111 -0.249492 0.399543 +0.2057 -0.173069 -0.0629015 -0.872042 -0.274872 0.404956 +0.202626 -0.167106 -0.064592 -0.861168 -0.300151 0.410245 +0.199492 -0.161186 -0.0662686 -0.852541 -0.318222 0.41462 +0.196248 -0.155346 -0.0679294 -0.846697 -0.331254 0.416384 +0.192911 -0.149572 -0.069583 -0.838664 -0.34968 0.41757 +0.189335 -0.14397 -0.071202 -0.831042 -0.371487 0.413964 +0.185909 -0.138257 -0.0728495 -0.808403 -0.424581 0.407696 +0.182595 -0.13246 -0.0745064 -0.77855 -0.473533 0.411858 +0.179575 -0.126453 -0.076194 -0.725237 -0.559742 0.400899 +0.176416 -0.120538 -0.0778719 -0.693374 -0.612357 0.379804 +0.173203 -0.114664 -0.0795447 -0.556294 -0.748367 0.361227 +0.165459 -0.112182 -0.0806298 -0.465147 -0.827765 0.313757 +0.154833 -0.111892 -0.0813443 -0.250144 -0.927674 0.277218 +0.137846 -0.116434 -0.0812273 -0.127786 -0.961202 0.244465 +0.125355 -0.117641 -0.0816732 -0.0825457 -0.97248 0.217878 +0.114844 -0.117392 -0.0823672 -0.168134 -0.958893 0.228598 +0.106368 -0.115633 -0.0833176 -0.246283 -0.942775 0.224769 +0.0984529 -0.113464 -0.0843369 -0.302985 -0.927439 0.219216 +0.0912618 -0.110772 -0.085444 -0.351606 -0.912425 0.20942 +0.0848045 -0.107536 -0.0866515 -0.403345 -0.895176 0.18967 +0.0788523 -0.103924 -0.0879184 -0.461347 -0.87146 0.166487 +0.0730544 -0.100204 -0.0892026 -0.508157 -0.848628 0.146994 +0.0671276 -0.096592 -0.0904666 -0.563173 -0.815953 0.130612 +0.0614306 -0.0928196 -0.091755 -0.62675 -0.7717 0.108003 +0.055779 -0.089021 -0.0930541 -0.67511 -0.732089 0.0909658 +0.0504539 -0.0849764 -0.0943888 -0.71469 -0.695077 0.0780107 +0.0454215 -0.0807175 -0.0957626 -0.762962 -0.643213 0.0645381 +0.041608 -0.075507 -0.0973038 -0.796018 -0.601959 0.0632536 +0.038289 -0.0698901 -0.0989109 -0.824565 -0.563249 0.0533302 +0.0354085 -0.063938 -0.100581 -0.86624 -0.498959 0.0258416 +0.0349245 -0.0560565 -0.102595 -0.907387 -0.420258 0.00562115 +0.66547 -0.49188 0.0374333 0.331173 -0.893215 0.304126 +0.628411 -0.504096 0.038342 0.200938 -0.937692 0.283477 +0.607161 -0.507801 0.0380385 0.0679369 -0.961278 0.267079 +0.59167 -0.508425 0.0372817 0.0209186 -0.969537 0.244053 +0.576209 -0.509081 0.0365438 -0.0255132 -0.970697 0.23895 +0.562469 -0.508828 0.0356763 -0.0608409 -0.972302 0.225671 +0.549435 -0.508236 0.0347636 -0.0881109 -0.973082 0.212953 +0.537424 -0.507107 0.0337759 -0.118212 -0.97354 0.195573 +0.527149 -0.505044 0.0326561 -0.156923 -0.971843 0.175782 +0.516486 -0.503229 0.0315682 -0.206424 -0.968292 0.140719 +0.505907 -0.501405 0.0304922 -0.247053 -0.962542 0.111711 +0.495553 -0.499476 0.0293959 -0.288846 -0.953809 0.082567 +0.488056 -0.495958 0.0280692 -0.320953 -0.945368 0.0571824 +0.479788 -0.492887 0.026807 -0.351719 -0.935426 0.0356834 +0.470583 -0.490377 0.0256397 -0.36607 -0.930431 0.0170779 +0.462771 -0.487097 0.0243555 -0.376067 -0.926588 0.00326284 +0.45487 -0.483886 0.0230795 -0.388805 -0.921198 -0.015034 +0.447001 -0.480673 0.0218039 -0.394472 -0.918405 -0.0304186 +0.439411 -0.477321 0.020515 -0.403149 -0.913943 -0.0466903 +0.432061 -0.473842 0.0192092 -0.4169 -0.906658 -0.0645691 +0.424798 -0.47033 0.0178961 -0.428522 -0.899545 -0.0847909 +0.417924 -0.466605 0.0165527 -0.442068 -0.890472 -0.107869 +0.41102 -0.462915 0.0152135 -0.454694 -0.880702 -0.132735 +0.404078 -0.459264 0.0138892 -0.463379 -0.872783 -0.153395 +0.397341 -0.455502 0.0125417 -0.469656 -0.865265 -0.175328 +0.390634 -0.451744 0.0112052 -0.473551 -0.858393 -0.197262 +0.384003 -0.447951 0.00985908 -0.477709 -0.851891 -0.214654 +0.377428 -0.444136 0.00850621 -0.484775 -0.842699 -0.234205 +0.371016 -0.44024 0.00714764 -0.495541 -0.831222 -0.252013 +0.364739 -0.436273 0.00577779 -0.520783 -0.811642 -0.264624 +0.358729 -0.432154 0.00438848 -0.545454 -0.791635 -0.275311 +0.353024 -0.427867 0.00297081 -0.55904 -0.783661 -0.270834 +0.347682 -0.423363 0.0015211 -0.560501 -0.786134 -0.260447 +0.342284 -0.4189 8.12875e-05 -0.557223 -0.795603 -0.23774 +0.337607 -0.413996 -0.00143402 -0.540529 -0.81773 -0.197856 +0.334508 -0.408122 -0.00309699 -0.54397 -0.823401 -0.161575 +0.330828 -0.402609 -0.00470504 -0.535947 -0.840242 -0.0821925 +0.327707 -0.39674 -0.00636941 -0.540725 -0.840871 -0.0235128 +0.319838 -0.393869 -0.00755636 -0.520511 -0.851479 0.063664 +0.311516 -0.391299 -0.00868966 -0.514515 -0.84336 0.154982 +0.302847 -0.388966 -0.00978326 -0.519585 -0.819804 0.240733 +0.294991 -0.386147 -0.0109569 -0.530611 -0.794115 0.29637 +0.287729 -0.382967 -0.0121846 -0.555972 -0.749563 0.359237 +0.281502 -0.379141 -0.0135176 -0.59391 -0.698825 0.398641 +0.275502 -0.37518 -0.0148697 -0.616014 -0.648876 0.44664 +0.269662 -0.371133 -0.016234 -0.619893 -0.618705 0.482635 +0.26418 -0.366863 -0.0176274 -0.648846 -0.573963 0.499564 +0.259201 -0.362274 -0.0190818 -0.673624 -0.529079 0.516048 +0.254463 -0.357533 -0.0205565 -0.701345 -0.482415 0.524776 +0.249821 -0.352743 -0.0220355 -0.725095 -0.441941 0.528135 +0.24576 -0.347576 -0.02358 -0.749091 -0.395383 0.531539 +0.241993 -0.342208 -0.0251542 -0.769905 -0.348603 0.53453 +0.23878 -0.336478 -0.0267864 -0.7968 -0.29653 0.526478 +0.235746 -0.330634 -0.0284377 -0.820959 -0.241922 0.517204 +0.232873 -0.324681 -0.0301152 -0.844836 -0.188214 0.500828 +0.231185 -0.317919 -0.0319142 -0.864999 -0.142441 0.481131 +0.229884 -0.310896 -0.0337625 -0.882609 -0.0929051 0.460837 +0.228939 -0.303631 -0.03566 -0.896017 -0.0500001 0.441195 +0.228507 -0.29599 -0.0376048 -0.905043 -0.0245161 0.424613 +0.228029 -0.288379 -0.039557 -0.911375 -0.013539 0.411353 +0.22756 -0.280737 -0.0415151 -0.914677 -0.0138747 0.403946 +0.226993 -0.27315 -0.0434602 -0.915789 -0.0229991 0.401 +0.226332 -0.265614 -0.0454025 -0.915347 -0.0349491 0.401147 +0.224852 -0.258629 -0.0472519 -0.91394 -0.0482349 0.40297 +0.223474 -0.251568 -0.0491156 -0.911996 -0.061682 0.405535 +0.222006 -0.244561 -0.0509761 -0.910531 -0.0701383 0.407447 +0.220046 -0.237874 -0.052773 -0.909396 -0.0783353 0.408488 +0.218113 -0.231175 -0.0545788 -0.909201 -0.0860974 0.407357 +0.21636 -0.224337 -0.0564108 -0.909527 -0.0938506 0.404909 +0.214897 -0.217281 -0.0582734 -0.909649 -0.106243 0.401562 +0.213669 -0.210045 -0.0601732 -0.908698 -0.122441 0.399091 +0.212685 -0.20263 -0.0621 -0.90595 -0.146013 0.39741 +0.211051 -0.19567 -0.0639569 -0.901182 -0.173525 0.39719 +0.209101 -0.188929 -0.0657736 -0.891733 -0.208834 0.4015 +0.207028 -0.182261 -0.0675776 -0.882022 -0.239937 0.405546 +0.203977 -0.17629 -0.0692596 -0.871056 -0.269988 0.410326 +0.200679 -0.170493 -0.0709157 -0.860928 -0.294157 0.415058 +0.197527 -0.16459 -0.0725898 -0.852442 -0.314207 0.417871 +0.194256 -0.158777 -0.0742548 -0.848013 -0.325692 0.41809 +0.190915 -0.153012 -0.0758995 -0.843945 -0.339849 0.41504 +0.187489 -0.147307 -0.0775436 -0.834506 -0.364892 0.41286 +0.184163 -0.141525 -0.0791985 -0.823602 -0.401357 0.40074 +0.180919 -0.135686 -0.0808586 -0.794148 -0.453348 0.404728 +0.177743 -0.129799 -0.0825316 -0.767875 -0.515166 0.380753 +0.174947 -0.123627 -0.0842533 -0.706737 -0.600894 0.37343 +0.172 -0.117552 -0.085958 -0.614745 -0.707897 0.347808 +0.165343 -0.114261 -0.087181 -0.520671 -0.80657 0.279906 +0.155999 -0.113004 -0.0880458 -0.305585 -0.919616 0.246829 +0.139762 -0.116967 -0.0879961 -0.153595 -0.962541 0.223438 +0.126244 -0.118947 -0.088291 -0.0962781 -0.97771 0.186585 +0.114834 -0.119378 -0.0888441 -0.152509 -0.970977 0.184246 +0.106619 -0.117411 -0.0898279 -0.242276 -0.952412 0.184969 +0.0991121 -0.114938 -0.0908886 -0.293621 -0.938783 0.180204 +0.0926496 -0.111677 -0.0920874 -0.347487 -0.923754 0.161037 +0.086743 -0.108011 -0.0933627 -0.405069 -0.903537 0.139792 +0.0813676 -0.103954 -0.0947042 -0.448785 -0.884873 0.124871 +0.0751987 -0.10051 -0.0959346 -0.50697 -0.856548 0.0964802 +0.0681103 -0.097798 -0.0970298 -0.568275 -0.819058 0.0787999 +0.0614262 -0.0947954 -0.0981806 -0.624449 -0.77907 0.0557987 +0.05514 -0.0914887 -0.0993812 -0.672662 -0.73903 0.0368934 +0.0498545 -0.0874216 -0.100718 -0.718412 -0.695451 0.0152252 +0.0448763 -0.0831211 -0.102097 -0.749706 -0.661695 0.0100678 +0.0409371 -0.078009 -0.103618 -0.795598 -0.605821 -0.00210978 +0.0378049 -0.0722498 -0.105258 -0.822647 -0.56823 -0.0191713 +0.0352697 -0.0660247 -0.106977 -0.853756 -0.519575 -0.0338129 +0.0355129 -0.05757 -0.109099 -0.909657 -0.407586 -0.0799859 +0.661796 -0.495848 0.0307567 0.325591 -0.902073 0.283296 +0.626978 -0.506839 0.0315554 0.198163 -0.945333 0.258993 +0.607138 -0.50977 0.0311667 0.063962 -0.968922 0.238962 +0.59239 -0.509972 0.0303792 0.0206058 -0.975181 0.22045 +0.576875 -0.510655 0.0296643 -0.0303876 -0.976983 0.211148 +0.563309 -0.510304 0.0287991 -0.0621458 -0.977311 0.202492 +0.549809 -0.509963 0.0279476 -0.0947833 -0.976625 0.19293 +0.537905 -0.508776 0.0269647 -0.124387 -0.9771 0.172639 +0.52756 -0.506743 0.0258609 -0.174849 -0.973304 0.148686 +0.517478 -0.504606 0.024741 -0.217032 -0.968587 0.1214 +0.507151 -0.502629 0.0236523 -0.2585 -0.961641 0.0917872 +0.496854 -0.50066 0.0225695 -0.296361 -0.9528 0.0659074 +0.489641 -0.496973 0.0212188 -0.332073 -0.942509 0.0374842 +0.482094 -0.493489 0.0199109 -0.353141 -0.935361 0.0197654 +0.473759 -0.49048 0.0186727 -0.370715 -0.928746 0.00136287 +0.465341 -0.48754 0.0174445 -0.384709 -0.922891 -0.0164946 +0.457235 -0.484438 0.0161982 -0.396171 -0.917461 -0.0362389 +0.449394 -0.481198 0.0149282 -0.403881 -0.913193 -0.0544001 +0.441796 -0.477847 0.0136463 -0.411855 -0.908509 -0.0706185 +0.434482 -0.474339 0.0123364 -0.424441 -0.901032 -0.0893887 +0.427431 -0.470698 0.0110125 -0.438484 -0.892074 -0.109255 +0.420701 -0.466887 0.00966245 -0.453599 -0.881335 -0.132277 +0.413934 -0.463105 0.00832216 -0.466033 -0.870749 -0.156882 +0.407052 -0.459407 0.00699149 -0.472252 -0.86279 -0.180481 +0.400451 -0.455563 0.0056366 -0.479236 -0.853935 -0.202805 +0.393917 -0.451684 0.0042881 -0.483976 -0.845582 -0.225296 +0.387516 -0.447747 0.00292148 -0.48525 -0.839114 -0.245806 +0.381379 -0.443662 0.00153606 -0.487309 -0.831243 -0.267517 +0.374994 -0.439738 0.000181745 -0.49291 -0.820661 -0.289059 +0.368287 -0.436023 -0.00114428 -0.507773 -0.807406 -0.300436 +0.362078 -0.432024 -0.00251617 -0.529782 -0.795596 -0.29387 +0.356662 -0.427546 -0.00396046 -0.544551 -0.790007 -0.281696 +0.351792 -0.422745 -0.00545286 -0.548088 -0.796318 -0.255885 +0.346724 -0.41807 -0.00692715 -0.535707 -0.816537 -0.21514 +0.34164 -0.413411 -0.00839205 -0.515828 -0.840108 -0.167752 +0.337418 -0.408227 -0.00994753 -0.504972 -0.856129 -0.109755 +0.332973 -0.403185 -0.0114825 -0.488798 -0.872016 -0.0258046 +0.327982 -0.398489 -0.0129549 -0.473742 -0.880042 0.0331087 +0.319242 -0.396156 -0.0140466 -0.463213 -0.876537 0.130841 +0.309605 -0.39441 -0.015036 -0.466395 -0.852039 0.237708 +0.300622 -0.392288 -0.0160847 -0.470428 -0.825154 0.312762 +0.292915 -0.389378 -0.0172662 -0.485739 -0.793087 0.36752 +0.28615 -0.385885 -0.0185382 -0.509148 -0.754555 0.414025 +0.27993 -0.382054 -0.0198638 -0.544639 -0.708998 0.447986 +0.273622 -0.378297 -0.0211723 -0.585259 -0.659559 0.471651 +0.267359 -0.374525 -0.0224881 -0.602524 -0.631625 0.487868 +0.261913 -0.370243 -0.0238808 -0.6316 -0.591397 0.50133 +0.257018 -0.365603 -0.025339 -0.661522 -0.550103 0.509681 +0.252389 -0.360806 -0.0268181 -0.692558 -0.505333 0.514784 +0.248181 -0.35573 -0.0283396 -0.720752 -0.460291 0.518313 +0.243949 -0.350674 -0.0298662 -0.749462 -0.413567 0.516982 +0.239688 -0.34564 -0.0313826 -0.771661 -0.374036 0.51443 +0.235908 -0.340297 -0.0329526 -0.800936 -0.319799 0.506192 +0.232712 -0.334565 -0.034583 -0.827963 -0.259691 0.497029 +0.229889 -0.32859 -0.0362612 -0.852946 -0.205059 0.480036 +0.228074 -0.321923 -0.0380494 -0.873431 -0.152427 0.462476 +0.226762 -0.314926 -0.039901 -0.890532 -0.104931 0.442652 +0.225852 -0.307632 -0.0418008 -0.903488 -0.0578215 0.424695 +0.224986 -0.30031 -0.0437048 -0.912205 -0.0249363 0.408975 +0.224684 -0.292579 -0.0456834 -0.917207 -0.0104247 0.398275 +0.224471 -0.284779 -0.0476716 -0.919755 -0.0110137 0.392337 +0.223983 -0.277149 -0.0496271 -0.91984 -0.0196868 0.3918 +0.223316 -0.269633 -0.0515735 -0.918648 -0.0325501 0.393734 +0.222183 -0.26242 -0.0534675 -0.916417 -0.046244 0.397544 +0.220689 -0.255444 -0.0553146 -0.913793 -0.0586289 0.401924 +0.219106 -0.248522 -0.0571642 -0.911678 -0.0700053 0.404898 +0.21727 -0.241765 -0.0589758 -0.910619 -0.0755995 0.406272 +0.215692 -0.234824 -0.0608311 -0.910466 -0.0818384 0.405406 +0.214111 -0.227865 -0.0626809 -0.911024 -0.0875416 0.402952 +0.212631 -0.220839 -0.0645469 -0.911208 -0.0976868 0.400193 +0.211341 -0.213659 -0.0664392 -0.910295 -0.112399 0.39841 +0.210393 -0.206232 -0.0683742 -0.907494 -0.135111 0.397742 +0.208974 -0.199117 -0.0702546 -0.902684 -0.162875 0.398288 +0.207153 -0.192285 -0.0720898 -0.893388 -0.198895 0.402863 +0.204923 -0.185736 -0.0738795 -0.883466 -0.231073 0.407545 +0.201983 -0.179701 -0.0755734 -0.87225 -0.262454 0.412671 +0.198823 -0.173812 -0.0772458 -0.862343 -0.287512 0.416776 +0.195474 -0.168063 -0.0788958 -0.854495 -0.308754 0.417744 +0.192221 -0.162237 -0.0805531 -0.851456 -0.319901 0.415555 +0.189013 -0.156386 -0.0822205 -0.85073 -0.328694 0.410145 +0.185898 -0.150454 -0.0839005 -0.844969 -0.349918 0.404457 +0.182204 -0.14495 -0.0855074 -0.840797 -0.373633 0.391738 +0.178521 -0.139448 -0.0871123 -0.814981 -0.43194 0.386309 +0.175671 -0.133316 -0.0888294 -0.805312 -0.472154 0.35853 +0.173166 -0.126938 -0.0905889 -0.735976 -0.575812 0.356061 +0.170728 -0.120496 -0.0923565 -0.664534 -0.679336 0.311281 +0.165972 -0.115782 -0.0938274 -0.587656 -0.760934 0.27503 +0.157064 -0.114195 -0.094737 -0.384499 -0.899132 0.209103 +0.141909 -0.117339 -0.0948046 -0.176516 -0.967675 0.180132 +0.128206 -0.119437 -0.0950498 -0.106988 -0.98205 0.155347 +0.115895 -0.120544 -0.0954722 -0.138161 -0.980639 0.138776 +0.107773 -0.11851 -0.0964542 -0.244676 -0.960003 0.136121 +0.100752 -0.115663 -0.0975753 -0.293508 -0.947522 0.126708 +0.0948119 -0.111998 -0.0988451 -0.347731 -0.930888 0.111951 +0.0893934 -0.107948 -0.100182 -0.398999 -0.911812 0.0969587 +0.0833116 -0.104424 -0.101415 -0.452598 -0.888654 0.0738214 +0.0760636 -0.101814 -0.102494 -0.513495 -0.856744 0.0481009 +0.0687758 -0.0992522 -0.103556 -0.571047 -0.820691 0.019324 +0.0615415 -0.0966757 -0.104624 -0.621223 -0.783633 0.00160813 +0.0552862 -0.0933487 -0.10582 -0.669446 -0.742497 -0.0232961 +0.0501188 -0.0891859 -0.107175 -0.707154 -0.706001 -0.0386702 +0.0453326 -0.0847358 -0.108572 -0.745887 -0.663235 -0.0613974 +0.0413804 -0.0796306 -0.110094 -0.788558 -0.61092 -0.0703653 +0.0382089 -0.0739098 -0.11172 -0.809364 -0.582702 -0.0733939 +0.0358507 -0.06754 -0.113471 -0.856935 -0.502131 -0.116309 +0.0371868 -0.0582179 -0.115754 -0.896867 -0.416766 -0.148104 +0.660017 -0.498792 0.0239467 0.310897 -0.915621 0.254918 +0.627499 -0.508513 0.0246098 0.18795 -0.953198 0.236832 +0.607117 -0.511738 0.0242952 0.0577796 -0.975681 0.211443 +0.592916 -0.511637 0.0234844 0.0155666 -0.980053 0.198126 +0.578229 -0.51185 0.0227191 -0.0312781 -0.98261 0.183029 +0.564556 -0.511556 0.0218881 -0.0651687 -0.982464 0.174697 +0.551166 -0.511146 0.0210396 -0.0988949 -0.981388 0.16462 +0.538908 -0.510145 0.0201059 -0.131475 -0.980387 0.146824 +0.528361 -0.508227 0.0190355 -0.183562 -0.975592 0.120531 +0.518118 -0.506172 0.0179436 -0.227462 -0.968591 0.100471 +0.508066 -0.504039 0.0168434 -0.265966 -0.961144 0.0739285 +0.497885 -0.501998 0.0157611 -0.306344 -0.950832 0.0455529 +0.490915 -0.498172 0.0144 -0.337384 -0.941109 0.0220893 +0.484093 -0.494269 0.0130274 -0.360839 -0.932627 0.00184157 +0.477293 -0.490376 0.0116591 -0.377333 -0.925983 -0.0133164 +0.468374 -0.487709 0.0104884 -0.392515 -0.919135 -0.0335438 +0.460164 -0.48466 0.00925313 -0.405077 -0.912801 -0.0520324 +0.452652 -0.481232 0.00795989 -0.409394 -0.909867 -0.0673692 +0.44491 -0.477948 0.00669681 -0.420428 -0.903168 -0.0867781 +0.437503 -0.474491 0.00540611 -0.433525 -0.894914 -0.105762 +0.430468 -0.470831 0.00408695 -0.449608 -0.884267 -0.126194 +0.42366 -0.467053 0.00275296 -0.465254 -0.872547 -0.149002 +0.416979 -0.463221 0.00140052 -0.4762 -0.862446 -0.171527 +0.410482 -0.459285 4.17458e-05 -0.485824 -0.851626 -0.196752 +0.40385 -0.455448 -0.00130656 -0.493308 -0.841414 -0.220618 +0.397524 -0.451447 -0.00267325 -0.494424 -0.833787 -0.245655 +0.391627 -0.447193 -0.00408484 -0.496285 -0.825041 -0.2702 +0.385789 -0.442919 -0.0054949 -0.498235 -0.81631 -0.292234 +0.379981 -0.438638 -0.00690409 -0.499583 -0.807314 -0.314103 +0.373944 -0.434499 -0.00829261 -0.500003 -0.802415 -0.325773 +0.367 -0.43093 -0.00958362 -0.503695 -0.803053 -0.318433 +0.360385 -0.427177 -0.0109026 -0.520355 -0.802603 -0.291648 +0.355568 -0.422334 -0.0124007 -0.518115 -0.817428 -0.251731 +0.351628 -0.41696 -0.013992 -0.503933 -0.83974 -0.202208 +0.347123 -0.411934 -0.0155201 -0.484417 -0.861442 -0.152512 +0.34145 -0.407642 -0.0169286 -0.458912 -0.885423 -0.0736658 +0.335433 -0.403567 -0.0182925 -0.441295 -0.897233 0.0152837 +0.327774 -0.400532 -0.0194902 -0.423301 -0.897784 0.12166 +0.317692 -0.399038 -0.0204301 -0.415176 -0.882406 0.221337 +0.307625 -0.397569 -0.0213613 -0.41709 -0.858696 0.297788 +0.29874 -0.395388 -0.0224155 -0.426868 -0.831443 0.35565 +0.291451 -0.392208 -0.023622 -0.449021 -0.797179 0.403593 +0.284981 -0.388531 -0.0249185 -0.476585 -0.764798 0.433533 +0.278499 -0.384879 -0.0262098 -0.523422 -0.72244 0.451786 +0.271826 -0.381362 -0.0274703 -0.564384 -0.681489 0.465879 +0.265349 -0.377733 -0.0287577 -0.593984 -0.650548 0.473257 +0.259614 -0.373637 -0.0301169 -0.626002 -0.617635 0.476078 +0.25474 -0.368992 -0.0315673 -0.657539 -0.578777 0.48235 +0.250249 -0.364103 -0.0330627 -0.689621 -0.535948 0.487014 +0.245933 -0.359109 -0.034567 -0.722603 -0.486434 0.491148 +0.24175 -0.35403 -0.0360944 -0.752863 -0.440134 0.489365 +0.23773 -0.348845 -0.0376334 -0.779274 -0.398142 0.483959 +0.233486 -0.343811 -0.039149 -0.811403 -0.341931 0.474036 +0.229898 -0.338345 -0.0407366 -0.840493 -0.28704 0.459543 +0.226865 -0.332519 -0.0423918 -0.869357 -0.225829 0.439568 +0.224774 -0.326052 -0.0441498 -0.888963 -0.173761 0.423734 +0.223456 -0.319058 -0.046002 -0.906288 -0.121289 0.404885 +0.222738 -0.31166 -0.047924 -0.917612 -0.0704378 0.391187 +0.222099 -0.304189 -0.0498575 -0.927108 -0.0351531 0.373141 +0.221447 -0.296711 -0.0518013 -0.931162 -0.0191599 0.364102 +0.221287 -0.288881 -0.0537978 -0.928874 -0.014333 0.370117 +0.2209 -0.281201 -0.0557732 -0.928009 -0.0239196 0.37179 +0.22016 -0.27374 -0.0577123 -0.925631 -0.0365386 0.37666 +0.21921 -0.266409 -0.0596252 -0.922039 -0.0502497 0.383823 +0.21777 -0.259404 -0.0614904 -0.918574 -0.0631475 0.390173 +0.216142 -0.252526 -0.063327 -0.915784 -0.0717642 0.395209 +0.2147 -0.245503 -0.0651951 -0.914301 -0.0769144 0.397664 +0.213006 -0.238648 -0.0670327 -0.913478 -0.0803506 0.398875 +0.211612 -0.231573 -0.0689092 -0.913989 -0.0841658 0.396912 +0.210374 -0.224379 -0.0708075 -0.914241 -0.0907564 0.394875 +0.208984 -0.217284 -0.0726889 -0.913113 -0.105078 0.393934 +0.207883 -0.209968 -0.0746118 -0.91032 -0.124461 0.394747 +0.206627 -0.202759 -0.0765156 -0.905154 -0.152348 0.396843 +0.204966 -0.195814 -0.0783698 -0.895866 -0.188575 0.402323 +0.202792 -0.189241 -0.0801611 -0.885675 -0.222963 0.407268 +0.199759 -0.183271 -0.0818485 -0.874617 -0.255517 0.412014 +0.196542 -0.177434 -0.0835146 -0.865537 -0.280456 0.414959 +0.193342 -0.171578 -0.0851824 -0.859109 -0.299248 0.41519 +0.190118 -0.165744 -0.0868391 -0.856038 -0.313631 0.410896 +0.18691 -0.159892 -0.0885072 -0.856943 -0.320787 0.403415 +0.183741 -0.154019 -0.0901777 -0.855765 -0.335061 0.394208 +0.180366 -0.148284 -0.0918252 -0.849558 -0.362266 0.383422 +0.176824 -0.142679 -0.0934411 -0.836117 -0.409463 0.365035 +0.174169 -0.136418 -0.0951871 -0.805735 -0.47512 0.353628 +0.171814 -0.129926 -0.0969666 -0.784403 -0.53239 0.318232 +0.169385 -0.123487 -0.0987417 -0.720038 -0.635572 0.278556 +0.165412 -0.1182 -0.100307 -0.628792 -0.736877 0.24826 +0.158255 -0.115292 -0.101439 -0.43877 -0.878574 0.188657 +0.14517 -0.116867 -0.101766 -0.237449 -0.959701 0.150314 +0.130143 -0.119957 -0.10182 -0.145561 -0.982967 0.112204 +0.117597 -0.121228 -0.102186 -0.126168 -0.988145 0.0874781 +0.109324 -0.119307 -0.10314 -0.217595 -0.973126 0.0753683 +0.102228 -0.11651 -0.10424 -0.281569 -0.956708 0.073679 +0.0963568 -0.112786 -0.105517 -0.334064 -0.940323 0.0647621 +0.0906697 -0.108943 -0.106807 -0.402788 -0.914467 0.0389083 +0.0839238 -0.105923 -0.10795 -0.455822 -0.89 0.0112907 +0.0763036 -0.103597 -0.108964 -0.513565 -0.857809 -0.0203363 +0.0686695 -0.101306 -0.109971 -0.564068 -0.825087 -0.032573 +0.0621903 -0.0981457 -0.11114 -0.614303 -0.787347 -0.0521251 +0.0562588 -0.0945666 -0.112373 -0.661553 -0.745281 -0.083099 +0.0514842 -0.0900931 -0.113782 -0.70267 -0.706347 -0.0856019 +0.0469423 -0.0854372 -0.115212 -0.737051 -0.66816 -0.101586 +0.0431505 -0.0802046 -0.116757 -0.781386 -0.61141 -0.124958 +0.0400093 -0.0744596 -0.118393 -0.805115 -0.576765 -0.138315 +0.0376724 -0.0680683 -0.120149 -0.842632 -0.516406 -0.152627 +0.03963 -0.0582464 -0.122538 -0.880042 -0.411682 -0.236735 +0.659985 -0.500782 0.0169945 0.313735 -0.919276 0.237706 +0.627186 -0.510642 0.0177416 0.164102 -0.963876 0.209798 +0.607953 -0.513234 0.0173582 0.0473194 -0.982231 0.181621 +0.59295 -0.513566 0.0166317 0.00906119 -0.985609 0.168804 +0.579715 -0.512974 0.0157695 -0.0249819 -0.986915 0.159295 +0.566223 -0.512568 0.0149363 -0.0629148 -0.98697 0.148094 +0.55307 -0.512023 0.0140847 -0.100108 -0.98577 0.135041 +0.540436 -0.51123 0.0132059 -0.137308 -0.983766 0.115542 +0.529601 -0.509461 0.0121669 -0.18849 -0.977212 0.0976118 +0.519369 -0.507396 0.0110891 -0.23086 -0.969821 0.0784249 +0.509394 -0.505213 0.00999264 -0.275407 -0.959944 0.0515751 +0.499566 -0.50297 0.00888629 -0.314498 -0.948951 0.0241657 +0.492359 -0.499274 0.0075576 -0.345991 -0.938233 0.00315035 +0.485612 -0.495334 0.00618284 -0.366072 -0.93049 -0.0134745 +0.479383 -0.491101 0.00477051 -0.385452 -0.922318 -0.0275211 +0.471245 -0.48798 0.00353251 -0.401874 -0.914603 -0.0447236 +0.463346 -0.484743 0.00228144 -0.413024 -0.908728 -0.0602079 +0.455588 -0.481448 0.00102097 -0.419563 -0.904595 -0.075338 +0.448169 -0.477971 -0.000266295 -0.429123 -0.898222 -0.0951421 +0.440695 -0.474544 -0.00154759 -0.442798 -0.889266 -0.114624 +0.433213 -0.471139 -0.00282368 -0.460683 -0.877111 -0.135823 +0.426412 -0.467354 -0.00415265 -0.477993 -0.86386 -0.158965 +0.419809 -0.463464 -0.00550192 -0.490236 -0.85244 -0.181703 +0.413283 -0.459537 -0.00686085 -0.500494 -0.840733 -0.206576 +0.407071 -0.45545 -0.00823825 -0.509392 -0.828559 -0.232402 +0.401076 -0.451234 -0.00963277 -0.511256 -0.819696 -0.258295 +0.395152 -0.446993 -0.0110364 -0.512129 -0.810028 -0.285621 +0.389572 -0.44255 -0.0124711 -0.511981 -0.801296 -0.309517 +0.384189 -0.43801 -0.0139263 -0.508702 -0.795065 -0.330294 +0.378961 -0.433375 -0.0153888 -0.499156 -0.798857 -0.335667 +0.373987 -0.428592 -0.01688 -0.488233 -0.808507 -0.328554 +0.367301 -0.424869 -0.0181908 -0.481617 -0.820538 -0.307835 +0.360452 -0.421252 -0.0194833 -0.476607 -0.842698 -0.250411 +0.355859 -0.416269 -0.0210038 -0.472159 -0.858026 -0.202136 +0.351816 -0.410946 -0.0225826 -0.443913 -0.886551 -0.130264 +0.344448 -0.407691 -0.0238073 -0.415589 -0.908576 -0.0421516 +0.336952 -0.404534 -0.025019 -0.381155 -0.9221 0.0667344 +0.326809 -0.403055 -0.0259442 -0.369061 -0.912478 0.176583 +0.316363 -0.40179 -0.026831 -0.363311 -0.888626 0.279909 +0.306222 -0.400369 -0.0277414 -0.365963 -0.867496 0.336929 +0.297454 -0.398104 -0.0287894 -0.391788 -0.832924 0.39082 +0.290616 -0.394651 -0.0300433 -0.419877 -0.804501 0.4201 +0.283631 -0.391301 -0.0312774 -0.462427 -0.77692 0.427267 +0.277128 -0.387657 -0.0325533 -0.509906 -0.740115 0.438435 +0.270337 -0.384219 -0.0337996 -0.560806 -0.702252 0.438563 +0.263843 -0.380605 -0.0350766 -0.590859 -0.675673 0.440855 +0.257577 -0.376857 -0.0363705 -0.625093 -0.643581 0.441659 +0.252588 -0.372294 -0.0378035 -0.656197 -0.609175 0.445323 +0.248029 -0.367453 -0.0392864 -0.689862 -0.568115 0.448705 +0.243513 -0.362595 -0.0407696 -0.726923 -0.520904 0.447482 +0.239169 -0.357628 -0.0422706 -0.762326 -0.470809 0.444069 +0.234834 -0.352662 -0.0437704 -0.793348 -0.429359 0.431566 +0.230804 -0.347503 -0.0453112 -0.826274 -0.37382 0.421344 +0.227173 -0.34207 -0.0468881 -0.856815 -0.315095 0.408145 +0.223908 -0.336397 -0.0485118 -0.883304 -0.256716 0.392264 +0.221754 -0.329986 -0.0502711 -0.904406 -0.199563 0.377126 +0.22024 -0.323134 -0.052098 -0.922802 -0.142992 0.357756 +0.219438 -0.315804 -0.0540131 -0.935367 -0.0938796 0.34099 +0.219004 -0.308205 -0.0559736 -0.941503 -0.0552882 0.332438 +0.218498 -0.300632 -0.0579336 -0.944444 -0.0319198 0.32712 +0.218278 -0.292866 -0.0599294 -0.944002 -0.027666 0.328776 +0.218034 -0.285087 -0.0619296 -0.941455 -0.0348248 0.335335 +0.217579 -0.277441 -0.0639031 -0.934314 -0.0424845 0.353912 +0.216418 -0.270272 -0.0657969 -0.929866 -0.0565887 0.363517 +0.215027 -0.263248 -0.0676693 -0.925507 -0.0690969 0.372377 +0.213419 -0.256359 -0.0695134 -0.922339 -0.0759647 0.378843 +0.211758 -0.2495 -0.0713491 -0.920161 -0.0816974 0.382923 +0.210433 -0.242394 -0.0732347 -0.919233 -0.0842349 0.384596 +0.209021 -0.235348 -0.075114 -0.919205 -0.0858586 0.384304 +0.207909 -0.228072 -0.0770275 -0.919006 -0.0899346 0.38385 +0.206742 -0.220821 -0.0789416 -0.917257 -0.101136 0.385241 +0.205501 -0.213624 -0.0808497 -0.914208 -0.118992 0.38738 +0.204273 -0.20639 -0.082756 -0.90873 -0.145601 0.391168 +0.202724 -0.199381 -0.0846314 -0.89887 -0.181755 0.398744 +0.200564 -0.192802 -0.08643 -0.888916 -0.21685 0.403489 +0.197715 -0.186714 -0.0881368 -0.878568 -0.248725 0.407741 +0.194614 -0.18079 -0.0898127 -0.870236 -0.273586 0.409682 +0.191352 -0.174998 -0.0914713 -0.864771 -0.292343 0.4083 +0.188258 -0.16907 -0.093147 -0.862481 -0.306519 0.402706 +0.185102 -0.163189 -0.0948241 -0.864839 -0.312558 0.392888 +0.181654 -0.157522 -0.0964549 -0.869167 -0.317316 0.379287 +0.17848 -0.151652 -0.0981247 -0.864429 -0.345594 0.36514 +0.175269 -0.145811 -0.0997905 -0.858189 -0.384869 0.339686 +0.172741 -0.139456 -0.101547 -0.838662 -0.437885 0.323886 +0.170481 -0.132901 -0.10334 -0.827726 -0.493516 0.267039 +0.168294 -0.126295 -0.105148 -0.773155 -0.584803 0.245433 +0.165275 -0.120289 -0.106843 -0.679555 -0.701553 0.214542 +0.158828 -0.116851 -0.108065 -0.487074 -0.861263 0.144866 +0.148768 -0.116151 -0.108793 -0.303287 -0.948119 0.0953254 +0.133792 -0.119193 -0.108823 -0.169954 -0.983432 0.0630666 +0.120244 -0.121207 -0.109043 -0.120201 -0.992434 0.025073 +0.110532 -0.120367 -0.109779 -0.198231 -0.98001 0.0169053 +0.103444 -0.117556 -0.110883 -0.262602 -0.964838 0.0114059 +0.0971191 -0.114181 -0.112079 -0.336582 -0.941558 -0.0135453 +0.0906227 -0.110953 -0.113259 -0.389651 -0.920132 -0.0391039 +0.0837576 -0.108027 -0.114376 -0.454308 -0.889174 -0.0545426 +0.0763203 -0.105564 -0.115404 -0.511843 -0.856057 -0.0720048 +0.0696213 -0.102549 -0.116537 -0.560259 -0.823811 -0.0862908 +0.0634827 -0.0991079 -0.117748 -0.612879 -0.782707 -0.108403 +0.0580622 -0.0951237 -0.119054 -0.654855 -0.745524 -0.123933 +0.0536557 -0.0903566 -0.120514 -0.693914 -0.703458 -0.153727 +0.049506 -0.0854023 -0.122001 -0.728388 -0.660727 -0.181363 +0.0459364 -0.0799845 -0.123577 -0.76047 -0.617558 -0.200773 +0.0427963 -0.0742279 -0.125209 -0.790755 -0.570373 -0.222219 +0.0399284 -0.0682534 -0.126891 -0.826476 -0.509456 -0.239572 +0.0429077 -0.05762 -0.129448 -0.867534 -0.377283 -0.324102 +0.660696 -0.502367 0.00998099 0.316662 -0.921244 0.225913 +0.627953 -0.512187 0.010778 0.161703 -0.970775 0.177341 +0.609679 -0.514247 0.0103421 0.046096 -0.987207 0.152637 +0.594521 -0.514656 0.00965068 0.0126651 -0.989374 0.144843 +0.581857 -0.513738 0.00875593 -0.0245348 -0.99067 0.134061 +0.568516 -0.513247 0.00793095 -0.0623581 -0.990789 0.120203 +0.555198 -0.512778 0.00710562 -0.099453 -0.989542 0.104479 +0.542507 -0.512005 0.00624213 -0.13708 -0.986589 0.0886086 +0.531296 -0.510444 0.00525674 -0.193619 -0.978807 0.0666896 +0.520976 -0.508419 0.00419761 -0.238212 -0.969984 0.048879 +0.511182 -0.506127 0.003098 -0.281104 -0.959281 0.0275694 +0.501653 -0.503721 0.00198055 -0.318347 -0.947952 0.00649716 +0.493569 -0.500513 0.000734914 -0.355506 -0.934558 -0.0147971 +0.48641 -0.496796 -0.00059328 -0.374403 -0.926794 -0.029581 +0.48011 -0.492606 -0.00200199 -0.391832 -0.919114 -0.0411978 +0.47292 -0.488939 -0.00331403 -0.408433 -0.911118 -0.0552026 +0.46572 -0.485298 -0.00462778 -0.420559 -0.904699 -0.0681915 +0.458041 -0.481944 -0.00588664 -0.426985 -0.900554 -0.0817659 +0.450675 -0.478435 -0.00717703 -0.437534 -0.893636 -0.0998987 +0.443246 -0.47497 -0.00845543 -0.452361 -0.883835 -0.119186 +0.435751 -0.471568 -0.0097166 -0.470179 -0.871128 -0.141662 +0.429276 -0.467584 -0.0110788 -0.488879 -0.856443 -0.165848 +0.423317 -0.463312 -0.0124832 -0.499625 -0.845281 -0.189406 +0.417746 -0.458811 -0.0139306 -0.514984 -0.830493 -0.212308 +0.41204 -0.454407 -0.0153593 -0.528024 -0.815428 -0.237211 +0.405829 -0.450316 -0.0167292 -0.534833 -0.802549 -0.26433 +0.399278 -0.446437 -0.0180713 -0.535831 -0.791686 -0.293462 +0.392949 -0.442443 -0.0194223 -0.52748 -0.786493 -0.321237 +0.387558 -0.437888 -0.0208737 -0.520053 -0.785361 -0.335788 +0.382495 -0.433147 -0.0223543 -0.505999 -0.793642 -0.337785 +0.378037 -0.428042 -0.0238976 -0.482727 -0.81482 -0.321004 +0.37365 -0.422903 -0.0254423 -0.466725 -0.832694 -0.297974 +0.368089 -0.418491 -0.0268687 -0.444766 -0.85534 -0.265665 +0.3611 -0.414962 -0.0281383 -0.413305 -0.891059 -0.187599 +0.355987 -0.410284 -0.0296003 -0.392921 -0.91249 -0.113916 +0.347199 -0.407903 -0.0306772 -0.339356 -0.940631 0.00702851 +0.337668 -0.406007 -0.0316598 -0.310874 -0.94217 0.125196 +0.326416 -0.405213 -0.0324543 -0.312 -0.924546 0.218796 +0.315237 -0.404409 -0.0332441 -0.305877 -0.897685 0.317179 +0.304846 -0.403142 -0.0341193 -0.340714 -0.867705 0.361944 +0.296265 -0.400764 -0.0351756 -0.370286 -0.837844 0.401133 +0.288715 -0.397762 -0.0363415 -0.418675 -0.813659 0.403325 +0.281746 -0.394409 -0.0375673 -0.460072 -0.790226 0.404818 +0.275121 -0.390853 -0.0388264 -0.50864 -0.760079 0.404436 +0.268283 -0.387439 -0.0400556 -0.559065 -0.72507 0.402145 +0.261844 -0.383799 -0.0413246 -0.591443 -0.698235 0.403316 +0.255849 -0.379873 -0.0426523 -0.624369 -0.669784 0.401934 +0.25078 -0.375367 -0.0440718 -0.660247 -0.634651 0.401611 +0.245885 -0.370757 -0.045507 -0.693528 -0.600056 0.398691 +0.241076 -0.366097 -0.0469549 -0.732451 -0.553576 0.396318 +0.236522 -0.361277 -0.0484242 -0.77239 -0.5028 0.388078 +0.232161 -0.356327 -0.0499231 -0.802874 -0.460358 0.378767 +0.228529 -0.350906 -0.0515051 -0.837578 -0.405034 0.36662 +0.224922 -0.345469 -0.0530876 -0.868658 -0.344942 0.355596 +0.22158 -0.339859 -0.054697 -0.897596 -0.283989 0.337152 +0.21958 -0.333355 -0.056471 -0.921205 -0.228992 0.314551 +0.217806 -0.326685 -0.0582725 -0.940226 -0.166642 0.296992 +0.216654 -0.319587 -0.0601466 -0.952097 -0.115575 0.283117 +0.216288 -0.311959 -0.0621239 -0.957985 -0.0797909 0.275495 +0.215851 -0.304357 -0.0640935 -0.960701 -0.0575211 0.271559 +0.215558 -0.296642 -0.0660832 -0.959529 -0.0524059 0.276691 +0.215297 -0.288894 -0.0680866 -0.956164 -0.056478 0.287336 +0.214869 -0.281234 -0.0700675 -0.949792 -0.0677927 0.30545 +0.213995 -0.273872 -0.0720046 -0.943469 -0.0788245 0.32195 +0.212715 -0.266781 -0.0738823 -0.938198 -0.0900605 0.334173 +0.211205 -0.259838 -0.0757466 -0.934403 -0.0946454 0.343412 +0.209455 -0.253048 -0.0775728 -0.928903 -0.0934595 0.358337 +0.207927 -0.246089 -0.0794354 -0.927715 -0.0940078 0.361256 +0.206615 -0.238976 -0.0813293 -0.927214 -0.0934623 0.362685 +0.205434 -0.231759 -0.0832361 -0.926281 -0.0942203 0.364864 +0.204409 -0.224426 -0.0851713 -0.924058 -0.103951 0.367846 +0.203243 -0.217176 -0.0870924 -0.920311 -0.119587 0.372462 +0.201944 -0.210014 -0.0889963 -0.914328 -0.142825 0.378956 +0.200422 -0.20299 -0.0908728 -0.904055 -0.178781 0.388231 +0.198386 -0.196329 -0.0926872 -0.894136 -0.212839 0.393977 +0.195855 -0.190009 -0.0944344 -0.884602 -0.243574 0.397685 +0.193006 -0.183923 -0.0961486 -0.877198 -0.267817 0.398496 +0.189771 -0.178113 -0.097802 -0.872587 -0.286846 0.395363 +0.18641 -0.172387 -0.0994463 -0.871058 -0.300665 0.388404 +0.183142 -0.166598 -0.101105 -0.874583 -0.304961 0.376967 +0.179933 -0.160756 -0.102771 -0.882193 -0.304013 0.359598 +0.176821 -0.154847 -0.104443 -0.883593 -0.323703 0.338347 +0.173863 -0.148825 -0.106145 -0.877596 -0.363441 0.312628 +0.171571 -0.142305 -0.107933 -0.871513 -0.401425 0.281645 +0.169315 -0.135757 -0.109726 -0.836351 -0.489011 0.24776 +0.167151 -0.129131 -0.111544 -0.810916 -0.552388 0.193086 +0.164648 -0.122742 -0.113305 -0.721105 -0.672904 0.164951 +0.16013 -0.117869 -0.114792 -0.577773 -0.809189 0.106737 +0.153056 -0.114919 -0.115917 -0.387375 -0.92074 0.0466735 +0.137911 -0.11807 -0.115905 -0.204376 -0.978893 -0.00090298 +0.123782 -0.120505 -0.116024 -0.143545 -0.989065 -0.0338503 +0.11243 -0.120894 -0.11652 -0.170495 -0.984226 -0.0472368 +0.104552 -0.118681 -0.117499 -0.264602 -0.963184 -0.0475891 +0.0974626 -0.115893 -0.118589 -0.331672 -0.941486 -0.0600147 +0.0907132 -0.112854 -0.119722 -0.390976 -0.916723 -0.0822067 +0.083915 -0.109877 -0.120839 -0.45908 -0.880843 -0.115596 +0.0770401 -0.106979 -0.121943 -0.507003 -0.851277 -0.135193 +0.070879 -0.103543 -0.123148 -0.548827 -0.819002 -0.16741 +0.0651885 -0.099751 -0.124416 -0.595075 -0.783335 -0.179643 +0.0604246 -0.0952509 -0.125822 -0.642863 -0.736818 -0.209348 +0.0564042 -0.0901769 -0.127327 -0.681617 -0.689879 -0.243858 +0.0525339 -0.0849885 -0.128861 -0.712249 -0.652267 -0.259326 +0.0489396 -0.0795876 -0.130435 -0.737576 -0.614376 -0.280222 +0.0457265 -0.0738861 -0.132068 -0.779377 -0.539526 -0.318562 +0.0429644 -0.0678219 -0.133761 -0.810132 -0.464711 -0.357392 +0.0459464 -0.0571824 -0.136336 -0.835632 -0.365724 -0.409837 +0.66429 -0.5024 0.00270828 0.306905 -0.929862 0.202898 +0.630322 -0.512866 0.00367149 0.165237 -0.974585 0.151263 +0.611601 -0.515146 0.00329996 0.0511151 -0.990014 0.13138 +0.596317 -0.515623 0.00264483 0.0085833 -0.993016 0.117679 +0.583799 -0.514624 0.00175161 -0.0226825 -0.99382 0.108664 +0.570677 -0.513998 0.0009227 -0.0609945 -0.993534 0.0957658 +0.557422 -0.513486 0.000116193 -0.099186 -0.991895 0.0794187 +0.544775 -0.512681 -0.000733993 -0.138382 -0.988565 0.0599171 +0.533712 -0.511031 -0.00172657 -0.189487 -0.981102 0.0391736 +0.523192 -0.50911 -0.00274901 -0.234922 -0.971794 0.0207357 +0.513159 -0.506948 -0.00382469 -0.283722 -0.958905 0.00166521 +0.503846 -0.504402 -0.00494775 -0.322217 -0.946529 -0.0161725 +0.495628 -0.501262 -0.00617234 -0.358271 -0.932994 -0.034113 +0.488247 -0.497674 -0.00747562 -0.377703 -0.924862 -0.0444139 +0.481455 -0.493762 -0.00882466 -0.395981 -0.91664 -0.0545052 +0.47452 -0.489946 -0.010164 -0.412318 -0.908602 -0.0666055 +0.467532 -0.486177 -0.0114884 -0.425387 -0.901882 -0.0751938 +0.460353 -0.482527 -0.0127887 -0.432665 -0.897304 -0.087444 +0.452891 -0.479063 -0.0140605 -0.44614 -0.88893 -0.103747 +0.445402 -0.475629 -0.0153211 -0.460423 -0.879236 -0.122296 +0.437998 -0.472173 -0.0165878 -0.4805 -0.864839 -0.145508 +0.431688 -0.468082 -0.0179671 -0.501004 -0.848384 -0.170999 +0.425867 -0.463719 -0.0193804 -0.513075 -0.83588 -0.195086 +0.420471 -0.459113 -0.020844 -0.530379 -0.818398 -0.22119 +0.415345 -0.454358 -0.0223267 -0.543094 -0.803523 -0.243721 +0.410484 -0.449456 -0.0238357 -0.553996 -0.787251 -0.270786 +0.405301 -0.444752 -0.0253103 -0.5585 -0.774143 -0.297959 +0.398885 -0.440789 -0.0266529 -0.551698 -0.769809 -0.320974 +0.391337 -0.437529 -0.0278789 -0.532729 -0.779193 -0.33024 +0.385578 -0.433198 -0.029288 -0.507657 -0.797696 -0.325524 +0.381383 -0.427927 -0.0308534 -0.488222 -0.81603 -0.309413 +0.377089 -0.422726 -0.0324128 -0.458988 -0.842545 -0.28187 +0.37306 -0.417365 -0.0339922 -0.418028 -0.875159 -0.243617 +0.367233 -0.413108 -0.0353822 -0.382318 -0.907241 -0.175348 +0.359326 -0.410144 -0.0365477 -0.344376 -0.935403 -0.0801665 +0.347687 -0.409523 -0.0373047 -0.281885 -0.958132 0.0502544 +0.336333 -0.40875 -0.0380794 -0.259961 -0.95109 0.16688 +0.324627 -0.408235 -0.038811 -0.251408 -0.927573 0.276411 +0.313183 -0.407599 -0.0395535 -0.281382 -0.900613 0.331241 +0.302845 -0.406306 -0.0404146 -0.307787 -0.876266 0.370712 +0.293969 -0.404124 -0.0414283 -0.363974 -0.85038 0.379971 +0.286762 -0.4009 -0.0426223 -0.423614 -0.825384 0.373224 +0.279598 -0.397677 -0.0438203 -0.466496 -0.804674 0.367263 +0.272958 -0.394139 -0.0450684 -0.511506 -0.778865 0.36295 +0.266531 -0.390472 -0.046336 -0.557512 -0.748861 0.358315 +0.260647 -0.386469 -0.047663 -0.5916 -0.723101 0.356561 +0.254898 -0.382395 -0.0490033 -0.627255 -0.695265 0.350938 +0.249479 -0.378112 -0.0503858 -0.661899 -0.663834 0.348161 +0.244403 -0.373623 -0.0517942 -0.699331 -0.625591 0.345791 +0.23942 -0.369082 -0.0532142 -0.739557 -0.582777 0.336789 +0.234785 -0.364319 -0.054677 -0.776566 -0.536954 0.329584 +0.230408 -0.359386 -0.0561657 -0.809654 -0.48872 0.324984 +0.226454 -0.354189 -0.0577081 -0.845634 -0.437522 0.30574 +0.223072 -0.348601 -0.0593146 -0.880315 -0.372772 0.293407 +0.219974 -0.342839 -0.0609522 -0.909004 -0.316224 0.271502 +0.217991 -0.33632 -0.0627367 -0.936693 -0.248493 0.246691 +0.216437 -0.329521 -0.0645628 -0.953732 -0.196869 0.22724 +0.215151 -0.32252 -0.0664285 -0.965162 -0.148051 0.215741 +0.214609 -0.315007 -0.0683866 -0.972345 -0.104521 0.208856 +0.214087 -0.307471 -0.0703473 -0.97396 -0.0841465 0.210528 +0.213612 -0.299892 -0.0723225 -0.972488 -0.0750124 0.220544 +0.213169 -0.292268 -0.0743043 -0.96848 -0.0811904 0.235487 +0.212731 -0.284633 -0.0762885 -0.963048 -0.0893892 0.254063 +0.211958 -0.277204 -0.0782396 -0.956424 -0.100138 0.274274 +0.210611 -0.270164 -0.0801202 -0.950655 -0.110381 0.28995 +0.209069 -0.263255 -0.0819714 -0.945271 -0.113812 0.305794 +0.207334 -0.256463 -0.0838134 -0.942481 -0.114237 0.314133 +0.20574 -0.249568 -0.0856659 -0.940833 -0.112801 0.319545 +0.204338 -0.242524 -0.0875439 -0.939861 -0.110533 0.323179 +0.203061 -0.235384 -0.0894487 -0.938489 -0.110657 0.3271 +0.20203 -0.228055 -0.0913836 -0.935223 -0.115644 0.33464 +0.201057 -0.220675 -0.0933328 -0.92834 -0.125461 0.34992 +0.19967 -0.213584 -0.0952288 -0.921877 -0.146617 0.358676 +0.198061 -0.206638 -0.0970955 -0.913483 -0.175549 0.367056 +0.196242 -0.199824 -0.09894 -0.902227 -0.212225 0.37543 +0.193748 -0.193494 -0.100697 -0.893505 -0.241798 0.378393 +0.190986 -0.187346 -0.102416 -0.887275 -0.264197 0.37808 +0.187845 -0.181473 -0.104083 -0.884874 -0.284423 0.36892 +0.184413 -0.175804 -0.105714 -0.885183 -0.299543 0.355985 +0.181075 -0.170073 -0.107357 -0.889714 -0.30259 0.341829 +0.178216 -0.163982 -0.109072 -0.897331 -0.299531 0.324158 +0.175432 -0.157841 -0.110794 -0.907254 -0.300249 0.294519 +0.172713 -0.15165 -0.112521 -0.904887 -0.329989 0.268864 +0.170375 -0.14517 -0.114312 -0.905572 -0.3593 0.225487 +0.16821 -0.138558 -0.116119 -0.877843 -0.438752 0.192065 +0.166169 -0.131841 -0.117947 -0.843135 -0.514424 0.156501 +0.164577 -0.124793 -0.119843 -0.806281 -0.581598 0.107964 +0.160803 -0.11936 -0.121433 -0.671181 -0.739513 0.0513497 +0.155863 -0.114804 -0.122859 -0.482077 -0.876068 -0.0103317 +0.14227 -0.116769 -0.12304 -0.284842 -0.956486 -0.0632459 +0.12817 -0.119173 -0.123148 -0.181969 -0.979332 -0.0882921 +0.115631 -0.120451 -0.123456 -0.13004 -0.984734 -0.115715 +0.106174 -0.11942 -0.1242 -0.221421 -0.967494 -0.122181 +0.0979668 -0.117477 -0.125122 -0.328713 -0.933166 -0.14543 +0.091474 -0.114248 -0.126277 -0.387597 -0.907549 -0.161628 +0.0851177 -0.110926 -0.127458 -0.445264 -0.873393 -0.197297 +0.0789116 -0.107504 -0.128655 -0.489234 -0.845166 -0.21528 +0.0731782 -0.103727 -0.129917 -0.534004 -0.813004 -0.232085 +0.0683076 -0.0992997 -0.131308 -0.574047 -0.777496 -0.256851 +0.0638697 -0.0945382 -0.132754 -0.632314 -0.719132 -0.288149 +0.0598297 -0.0894756 -0.134264 -0.660801 -0.686011 -0.304521 +0.0560137 -0.0842306 -0.135807 -0.695399 -0.631327 -0.343285 +0.0519833 -0.0791692 -0.137308 -0.723036 -0.580906 -0.373853 +0.0488844 -0.0733661 -0.138964 -0.75008 -0.530758 -0.394558 +0.046617 -0.0669006 -0.140737 -0.779316 -0.447228 -0.438925 +0.0528905 -0.0536472 -0.14383 -0.781441 -0.280261 -0.557498 +0.669213 -0.501715 -0.00469128 0.297806 -0.936749 0.18389 +0.634279 -0.51268 -0.00358207 0.17996 -0.975645 0.125424 +0.614307 -0.515628 -0.00381472 0.0526972 -0.993625 0.0996799 +0.59816 -0.516565 -0.00437097 0.0152432 -0.995515 0.0933716 +0.585841 -0.515444 -0.00526619 -0.0234497 -0.996688 0.0778701 +0.572794 -0.514767 -0.00608456 -0.0612593 -0.995843 0.0674133 +0.559248 -0.514412 -0.0068476 -0.100508 -0.993836 0.0467812 +0.546499 -0.513656 -0.00767492 -0.142366 -0.989313 0.0315351 +0.535717 -0.511843 -0.00867247 -0.192255 -0.98128 0.0113875 +0.525449 -0.509771 -0.00971547 -0.230317 -0.973078 -0.008697 +0.515704 -0.507442 -0.0107952 -0.280138 -0.959677 -0.0233006 +0.506329 -0.504922 -0.0119102 -0.323161 -0.945493 -0.0401458 +0.497974 -0.501862 -0.0131137 -0.355797 -0.93306 -0.0529913 +0.490434 -0.498345 -0.0143906 -0.377692 -0.923914 -0.0610836 +0.483519 -0.494506 -0.0157264 -0.397316 -0.914926 -0.0710564 +0.476848 -0.490531 -0.0170791 -0.412949 -0.907398 -0.0781218 +0.469831 -0.486768 -0.0183975 -0.426053 -0.900483 -0.087241 +0.462555 -0.483175 -0.0196836 -0.435919 -0.894731 -0.097125 +0.454909 -0.479817 -0.0209333 -0.451597 -0.885274 -0.111137 +0.447531 -0.476316 -0.022199 -0.46832 -0.874272 -0.127772 +0.440394 -0.472692 -0.0234877 -0.48924 -0.859327 -0.149001 +0.433929 -0.468689 -0.0248368 -0.511336 -0.841724 -0.173314 +0.427746 -0.46453 -0.0262196 -0.527477 -0.826431 -0.196928 +0.42207 -0.46009 -0.0276471 -0.544666 -0.807746 -0.225578 +0.41721 -0.455175 -0.0291498 -0.55766 -0.791221 -0.250971 +0.412591 -0.450123 -0.0306889 -0.569184 -0.773831 -0.277877 +0.408323 -0.44486 -0.0322511 -0.575471 -0.760001 -0.302046 +0.403301 -0.440061 -0.0337422 -0.568634 -0.758708 -0.317834 +0.398411 -0.435182 -0.0352396 -0.550603 -0.770156 -0.322021 +0.389998 -0.432445 -0.0363664 -0.517694 -0.797505 -0.309806 +0.385122 -0.427575 -0.037861 -0.479065 -0.833097 -0.27649 +0.38028 -0.422705 -0.0393604 -0.439509 -0.864647 -0.243352 +0.376275 -0.417313 -0.0409459 -0.390921 -0.897855 -0.202583 +0.370061 -0.413291 -0.0422926 -0.340829 -0.930729 -0.132589 +0.360929 -0.411079 -0.0433133 -0.282916 -0.958848 -0.0238403 +0.347745 -0.411396 -0.0438881 -0.232252 -0.968266 0.0923073 +0.334194 -0.411994 -0.0443994 -0.189295 -0.956373 0.222526 +0.322611 -0.411405 -0.0451284 -0.220321 -0.930348 0.293111 +0.31157 -0.41052 -0.0459016 -0.256944 -0.906512 0.334986 +0.301736 -0.408907 -0.046799 -0.29716 -0.887809 0.351416 +0.293011 -0.406626 -0.0478239 -0.368992 -0.861978 0.347622 +0.285636 -0.403516 -0.0489905 -0.425513 -0.840113 0.336381 +0.278588 -0.400222 -0.0501865 -0.468639 -0.820835 0.326508 +0.272079 -0.396594 -0.0514442 -0.514271 -0.796739 0.317381 +0.266111 -0.392639 -0.0527603 -0.556824 -0.770738 0.309695 +0.260196 -0.388654 -0.0540785 -0.591634 -0.747355 0.302374 +0.254418 -0.384605 -0.0554082 -0.629896 -0.717954 0.296266 +0.248857 -0.380419 -0.0567655 -0.663701 -0.688959 0.291271 +0.243565 -0.376068 -0.0581531 -0.701164 -0.65467 0.282447 +0.238419 -0.371637 -0.059546 -0.743118 -0.610178 0.274697 +0.233705 -0.366919 -0.0609974 -0.782715 -0.562169 0.267063 +0.229141 -0.362124 -0.0624632 -0.81879 -0.51247 0.258762 +0.225436 -0.356761 -0.0640296 -0.855305 -0.456704 0.244696 +0.222173 -0.351104 -0.06565 -0.889139 -0.398293 0.225377 +0.219061 -0.345351 -0.0672865 -0.920127 -0.335755 0.201583 +0.21712 -0.338813 -0.0690712 -0.944916 -0.273957 0.179111 +0.215615 -0.331978 -0.0709094 -0.963057 -0.211316 0.166933 +0.214514 -0.324863 -0.0728012 -0.974347 -0.164464 0.153619 +0.213963 -0.317365 -0.0747639 -0.980776 -0.128261 0.14706 +0.213525 -0.309775 -0.0767462 -0.982964 -0.107446 0.149116 +0.212823 -0.302348 -0.0786972 -0.981762 -0.100319 0.161493 +0.212062 -0.294954 -0.080639 -0.978237 -0.104675 0.179156 +0.211336 -0.287516 -0.0825942 -0.973119 -0.11462 0.199757 +0.21022 -0.280334 -0.0845042 -0.967295 -0.126421 0.219911 +0.208729 -0.273407 -0.0863698 -0.961581 -0.135925 0.238507 +0.207007 -0.266619 -0.0882012 -0.95723 -0.139424 0.253519 +0.205188 -0.259893 -0.090028 -0.954218 -0.138563 0.265078 +0.203453 -0.2531 -0.0918693 -0.952467 -0.134979 0.273109 +0.201961 -0.246128 -0.0937386 -0.951203 -0.130943 0.279404 +0.20073 -0.238962 -0.0956523 -0.94963 -0.12948 0.285371 +0.199683 -0.231662 -0.0975906 -0.945557 -0.132567 0.297232 +0.198868 -0.224181 -0.0995567 -0.940596 -0.144209 0.30738 +0.197628 -0.216987 -0.101479 -0.933808 -0.163526 0.318218 +0.196047 -0.210026 -0.103354 -0.924577 -0.187341 0.331755 +0.194048 -0.203352 -0.105168 -0.914662 -0.214688 0.342496 +0.191385 -0.197147 -0.1069 -0.908188 -0.242463 0.341181 +0.188627 -0.191008 -0.108627 -0.903602 -0.265737 0.335986 +0.185869 -0.184867 -0.110346 -0.900209 -0.286353 0.328063 +0.182645 -0.17906 -0.112004 -0.90193 -0.297369 0.313199 +0.179395 -0.17327 -0.113662 -0.906773 -0.302809 0.293376 +0.176721 -0.167053 -0.115399 -0.916894 -0.295577 0.268213 +0.174172 -0.160748 -0.117153 -0.924827 -0.290944 0.245047 +0.171692 -0.154382 -0.118914 -0.926827 -0.310144 0.211667 +0.169208 -0.148011 -0.120677 -0.917366 -0.355249 0.17955 +0.167113 -0.141354 -0.122504 -0.911572 -0.391548 0.1254 +0.165384 -0.134412 -0.12438 -0.875221 -0.475334 0.0896953 +0.164222 -0.127042 -0.126337 -0.840554 -0.539952 0.0438189 +0.162334 -0.120202 -0.128195 -0.757157 -0.653184 0.00809125 +0.158356 -0.114925 -0.129758 -0.583247 -0.810145 -0.059064 +0.147159 -0.115076 -0.130273 -0.363623 -0.923186 -0.124528 +0.132567 -0.117829 -0.130282 -0.221037 -0.95818 -0.181753 +0.119879 -0.119208 -0.130556 -0.151249 -0.970052 -0.190063 +0.109455 -0.118904 -0.131146 -0.18808 -0.96225 -0.196731 +0.100803 -0.117286 -0.131994 -0.295905 -0.92874 -0.223343 +0.0939979 -0.114283 -0.1331 -0.363016 -0.901637 -0.235096 +0.0877717 -0.110856 -0.134293 -0.429763 -0.865583 -0.257045 +0.0817033 -0.107326 -0.135504 -0.477099 -0.830161 -0.28846 +0.0764105 -0.103204 -0.13683 -0.512827 -0.800982 -0.308931 +0.0716681 -0.0986647 -0.138235 -0.551165 -0.759668 -0.34514 +0.067634 -0.0935829 -0.139751 -0.601432 -0.702534 -0.380428 +0.0637139 -0.0884145 -0.141277 -0.624165 -0.652756 -0.429336 +0.0602591 -0.0828796 -0.142877 -0.649482 -0.608122 -0.456465 +0.056421 -0.0776558 -0.144416 -0.677541 -0.561223 -0.475358 +0.0530903 -0.0720211 -0.146029 -0.703915 -0.499617 -0.504862 +0.0519965 -0.0646194 -0.147994 -0.722817 -0.40935 -0.556747 +0.0581314 -0.0514593 -0.151084 -0.729536 -0.277963 -0.624911 +0.670639 -0.502926 -0.0117815 0.266082 -0.951941 0.151695 +0.637964 -0.512641 -0.0108322 0.182445 -0.977998 0.101169 +0.617498 -0.515844 -0.0109794 0.0558071 -0.996221 0.0665501 +0.600497 -0.517233 -0.0114356 0.0169332 -0.998128 0.0587823 +0.587726 -0.516355 -0.0122761 -0.0221813 -0.998381 0.0523953 +0.575367 -0.515296 -0.0131382 -0.0595982 -0.997452 0.0392356 +0.561403 -0.515154 -0.013843 -0.100744 -0.994666 0.0221445 +0.548357 -0.51456 -0.0146258 -0.144006 -0.989565 0.00503781 +0.538059 -0.512468 -0.0156614 -0.19418 -0.980789 -0.0186505 +0.527893 -0.510332 -0.0167032 -0.229267 -0.972723 -0.0353293 +0.518213 -0.507962 -0.0177787 -0.277725 -0.959341 -0.0503452 +0.509249 -0.505205 -0.018919 -0.318402 -0.945839 -0.0633287 +0.501135 -0.501991 -0.0201391 -0.349035 -0.934131 -0.0746568 +0.493454 -0.498558 -0.0213999 -0.372075 -0.924487 -0.0829692 +0.486153 -0.494926 -0.0226904 -0.393978 -0.914399 -0.0930438 +0.479368 -0.491008 -0.024032 -0.410424 -0.906574 -0.0983717 +0.472265 -0.487293 -0.0253313 -0.42375 -0.899762 -0.104234 +0.464919 -0.48373 -0.0266094 -0.438732 -0.891663 -0.111597 +0.457448 -0.480265 -0.0278606 -0.455385 -0.881909 -0.121913 +0.450157 -0.476705 -0.0291335 -0.476261 -0.86868 -0.136278 +0.443045 -0.473064 -0.0304168 -0.498698 -0.852756 -0.155275 +0.436244 -0.469248 -0.0317274 -0.522561 -0.833866 -0.177759 +0.429924 -0.465167 -0.0330894 -0.541362 -0.816337 -0.201298 +0.424131 -0.460794 -0.034503 -0.560109 -0.796143 -0.228989 +0.418962 -0.456055 -0.0359776 -0.572677 -0.778804 -0.25594 +0.414231 -0.451064 -0.0374952 -0.584819 -0.760271 -0.282797 +0.409841 -0.445876 -0.0390518 -0.58955 -0.749533 -0.301051 +0.405746 -0.440511 -0.0406314 -0.578561 -0.754454 -0.309949 +0.401281 -0.435376 -0.0421822 -0.557261 -0.770058 -0.310597 +0.396341 -0.430533 -0.0436683 -0.531868 -0.795083 -0.29148 +0.389308 -0.426959 -0.0449373 -0.471136 -0.846841 -0.246762 +0.38359 -0.422606 -0.0463306 -0.440777 -0.869437 -0.22315 +0.378814 -0.417687 -0.0478356 -0.372445 -0.913483 -0.16381 +0.371903 -0.414081 -0.0491 -0.313466 -0.946294 -0.0791536 +0.360896 -0.413019 -0.0499047 -0.224458 -0.974078 0.0281357 +0.346527 -0.414069 -0.0503217 -0.170811 -0.971364 0.165158 +0.33272 -0.414823 -0.0507875 -0.138456 -0.958568 0.248956 +0.321117 -0.414246 -0.0514925 -0.18962 -0.935569 0.29792 +0.310581 -0.413043 -0.0523101 -0.238754 -0.916082 0.322168 +0.30091 -0.411333 -0.0532159 -0.306924 -0.895991 0.320935 +0.292327 -0.408964 -0.0542396 -0.37494 -0.874348 0.308116 +0.285377 -0.405584 -0.0554474 -0.426757 -0.854259 0.296852 +0.278727 -0.40203 -0.0566839 -0.473312 -0.834917 0.280873 +0.272237 -0.39839 -0.0579434 -0.522508 -0.810832 0.263702 +0.266162 -0.394505 -0.0592371 -0.56057 -0.788843 0.25197 +0.260205 -0.390551 -0.0605444 -0.59123 -0.767583 0.247519 +0.254222 -0.38663 -0.0618473 -0.629884 -0.739947 0.236063 +0.248408 -0.38261 -0.0631717 -0.666124 -0.71015 0.227961 +0.243016 -0.378323 -0.0645376 -0.703752 -0.675901 0.218842 +0.237937 -0.373845 -0.0659431 -0.740908 -0.637338 0.211794 +0.233338 -0.369067 -0.0673992 -0.78269 -0.587646 0.205113 +0.228927 -0.364161 -0.0688767 -0.819241 -0.53876 0.196425 +0.225315 -0.358745 -0.0704548 -0.861747 -0.477228 0.172179 +0.221944 -0.353161 -0.072061 -0.89455 -0.419214 0.155046 +0.218971 -0.347317 -0.0737209 -0.92694 -0.353226 0.126542 +0.216944 -0.34084 -0.0754915 -0.94903 -0.294695 0.111783 +0.215378 -0.334051 -0.0773247 -0.966553 -0.238856 0.0933906 +0.214358 -0.326881 -0.079237 -0.97747 -0.19375 0.0837445 +0.214101 -0.319186 -0.0812429 -0.984881 -0.156608 0.0740437 +0.213634 -0.311621 -0.0832215 -0.986796 -0.140515 0.0805482 +0.212547 -0.304458 -0.0851308 -0.986199 -0.13581 0.0946942 +0.211612 -0.297186 -0.0870581 -0.983502 -0.140126 0.114411 +0.210577 -0.289964 -0.0889776 -0.979844 -0.150136 0.131772 +0.208958 -0.283129 -0.0908258 -0.97483 -0.160607 0.154635 +0.207224 -0.27637 -0.0926594 -0.969752 -0.169088 0.176041 +0.205308 -0.269727 -0.0944747 -0.96595 -0.171285 0.193911 +0.203299 -0.263138 -0.0962773 -0.963677 -0.167569 0.207957 +0.201508 -0.256395 -0.0981046 -0.962414 -0.161241 0.218539 +0.199759 -0.24961 -0.0999461 -0.96137 -0.155351 0.22723 +0.198532 -0.24245 -0.101859 -0.959932 -0.152047 0.235398 +0.197498 -0.235144 -0.103804 -0.956733 -0.156196 0.245487 +0.196714 -0.227655 -0.105778 -0.952339 -0.1651 0.256502 +0.195655 -0.220338 -0.107728 -0.946251 -0.180446 0.268418 +0.194139 -0.213341 -0.109613 -0.938565 -0.202457 0.279476 +0.191839 -0.206897 -0.111392 -0.931319 -0.223293 0.287725 +0.18935 -0.200572 -0.113145 -0.923328 -0.246618 0.294356 +0.186595 -0.19444 -0.11487 -0.919136 -0.270717 0.286184 +0.183695 -0.1884 -0.11657 -0.916663 -0.289603 0.275426 +0.180862 -0.18232 -0.118281 -0.918161 -0.296713 0.262566 +0.177929 -0.1763 -0.119979 -0.923857 -0.299418 0.238405 +0.175669 -0.169791 -0.121778 -0.933002 -0.29263 0.209459 +0.173214 -0.163422 -0.123546 -0.942633 -0.282228 0.178296 +0.170842 -0.156976 -0.125325 -0.946797 -0.28456 0.150341 +0.168424 -0.150568 -0.127099 -0.938183 -0.326892 0.113818 +0.166336 -0.143907 -0.128925 -0.932114 -0.355101 0.0711909 +0.164652 -0.136939 -0.130811 -0.88828 -0.457946 0.0352791 +0.164098 -0.129121 -0.132865 -0.859973 -0.510256 0.00920066 +0.16363 -0.121225 -0.134928 -0.839358 -0.541398 -0.0486322 +0.161084 -0.114868 -0.136702 -0.69334 -0.71022 -0.121936 +0.151869 -0.113526 -0.137488 -0.457089 -0.874794 -0.160645 +0.138739 -0.11516 -0.137697 -0.276439 -0.928269 -0.248793 +0.12441 -0.117751 -0.137711 -0.1859 -0.945149 -0.268579 +0.113868 -0.117529 -0.13827 -0.157122 -0.947697 -0.27782 +0.104658 -0.116321 -0.139024 -0.261246 -0.91339 -0.312201 +0.0979579 -0.113232 -0.14015 -0.324707 -0.889267 -0.322133 +0.0916085 -0.10989 -0.141317 -0.393709 -0.851628 -0.346012 +0.0858751 -0.106086 -0.142578 -0.448768 -0.808865 -0.379927 +0.0810267 -0.101608 -0.143971 -0.484676 -0.771616 -0.411945 +0.0760935 -0.0972057 -0.145346 -0.518524 -0.732699 -0.440778 +0.0720551 -0.0921154 -0.146856 -0.567062 -0.674836 -0.472269 +0.0685125 -0.0866393 -0.148443 -0.593121 -0.622691 -0.510356 +0.0654546 -0.0807876 -0.150106 -0.61565 -0.569381 -0.544776 +0.0617652 -0.0754328 -0.151669 -0.646595 -0.490148 -0.584525 +0.0576621 -0.0703974 -0.153172 -0.666267 -0.445415 -0.598075 +0.0571068 -0.0625626 -0.155229 -0.675921 -0.378372 -0.632428 +0.0697598 -0.0442169 -0.159376 -0.648443 -0.265414 -0.713498 +0.673578 -0.503317 -0.0190219 0.259258 -0.957906 0.123292 +0.641925 -0.51246 -0.0181146 0.187238 -0.978574 0.0856501 +0.619725 -0.516595 -0.018068 0.0634281 -0.997257 0.038165 +0.603737 -0.517416 -0.0185962 0.0232083 -0.999328 0.0284169 +0.589978 -0.517071 -0.0193231 -0.0193423 -0.999567 0.0222337 +0.577978 -0.515805 -0.020209 -0.0551603 -0.99838 0.0139679 +0.563994 -0.515669 -0.0208913 -0.0975567 -0.995231 -0.000320161 +0.55136 -0.514825 -0.0216956 -0.145228 -0.98924 -0.0176905 +0.541218 -0.512639 -0.0227305 -0.185578 -0.981742 -0.0417416 +0.531412 -0.510297 -0.0237962 -0.228257 -0.971764 -0.0597686 +0.521993 -0.507762 -0.0248952 -0.268678 -0.960311 -0.0749435 +0.512667 -0.505207 -0.0259899 -0.310443 -0.946585 -0.0872047 +0.504159 -0.502212 -0.0271613 -0.341017 -0.934989 -0.0974925 +0.496378 -0.49882 -0.0284081 -0.366992 -0.924049 -0.107011 +0.488931 -0.495263 -0.0296781 -0.387726 -0.914554 -0.115157 +0.481806 -0.491542 -0.0309729 -0.405935 -0.90577 -0.121641 +0.474568 -0.487896 -0.03226 -0.419613 -0.898779 -0.126969 +0.467235 -0.484323 -0.0335242 -0.434972 -0.890519 -0.133332 +0.460164 -0.480615 -0.0348186 -0.453995 -0.879783 -0.140961 +0.452974 -0.476989 -0.0360894 -0.474907 -0.866894 -0.151525 +0.445781 -0.473387 -0.0373635 -0.501206 -0.84934 -0.165572 +0.438995 -0.469554 -0.0386776 -0.528586 -0.828591 -0.184485 +0.43277 -0.465414 -0.0400371 -0.55316 -0.806783 -0.207644 +0.426956 -0.461044 -0.0414437 -0.574956 -0.784004 -0.234015 +0.421623 -0.456399 -0.0429029 -0.588933 -0.765256 -0.259886 +0.416727 -0.451497 -0.0443995 -0.6 -0.747208 -0.285796 +0.411834 -0.446602 -0.0459008 -0.599623 -0.740448 -0.303626 +0.408014 -0.441078 -0.0475171 -0.587446 -0.748385 -0.307939 +0.403797 -0.435784 -0.0490831 -0.566504 -0.769628 -0.294525 +0.399984 -0.430257 -0.0506978 -0.526619 -0.808393 -0.263008 +0.395445 -0.425161 -0.0522296 -0.493582 -0.837797 -0.233393 +0.388339 -0.421643 -0.0534758 -0.416248 -0.888815 -0.191697 +0.381879 -0.417737 -0.0547939 -0.354713 -0.927555 -0.117561 +0.373271 -0.415168 -0.055859 -0.262488 -0.964603 -0.0253219 +0.361005 -0.414874 -0.0565028 -0.192935 -0.977023 0.0905655 +0.346275 -0.41614 -0.056863 -0.121932 -0.973831 0.191799 +0.33228 -0.417005 -0.0572814 -0.11868 -0.959713 0.254688 +0.320275 -0.416677 -0.0579242 -0.158865 -0.943327 0.291369 +0.309968 -0.41533 -0.0587556 -0.240516 -0.925861 0.291433 +0.300702 -0.413357 -0.0596944 -0.310739 -0.90807 0.280803 +0.292505 -0.410753 -0.0607545 -0.383858 -0.88569 0.261161 +0.285358 -0.407496 -0.0619277 -0.437887 -0.864815 0.245668 +0.278581 -0.404022 -0.0631492 -0.480683 -0.84626 0.229755 +0.272273 -0.400273 -0.0644167 -0.525237 -0.824243 0.211547 +0.2662 -0.396379 -0.0657135 -0.558856 -0.804676 0.200443 +0.260194 -0.392461 -0.0670087 -0.596608 -0.780685 0.185985 +0.254256 -0.38851 -0.0683064 -0.629215 -0.756902 0.176606 +0.24846 -0.384476 -0.0696243 -0.663071 -0.72904 0.169825 +0.242948 -0.380268 -0.0709751 -0.701226 -0.695333 0.157462 +0.237996 -0.375707 -0.0723885 -0.738093 -0.658291 0.14789 +0.233578 -0.370806 -0.0738736 -0.780895 -0.610673 0.131462 +0.229342 -0.365797 -0.0753665 -0.817882 -0.562462 0.121268 +0.225732 -0.36037 -0.0769482 -0.862719 -0.49542 0.101366 +0.222493 -0.354699 -0.0785687 -0.896277 -0.436485 0.0785478 +0.219573 -0.348824 -0.0802317 -0.927535 -0.368922 0.0597904 +0.217401 -0.342444 -0.0819927 -0.950266 -0.308685 0.0413249 +0.215815 -0.335665 -0.0838261 -0.965897 -0.257815 0.0239469 +0.214728 -0.328545 -0.0857324 -0.976581 -0.214706 0.0137772 +0.214817 -0.320622 -0.0877826 -0.982948 -0.183235 0.0154823 +0.214519 -0.312945 -0.0897963 -0.985568 -0.168534 0.0159086 +0.21345 -0.305769 -0.0917075 -0.985495 -0.167847 0.0250772 +0.21213 -0.298761 -0.0935934 -0.983519 -0.174817 0.0461511 +0.210493 -0.291955 -0.0954364 -0.980097 -0.185933 0.0695652 +0.208585 -0.285314 -0.0972512 -0.975456 -0.200432 0.0911802 +0.206543 -0.278771 -0.0990455 -0.971859 -0.204195 0.117448 +0.204375 -0.272312 -0.100832 -0.968642 -0.205534 0.139594 +0.202213 -0.265829 -0.102617 -0.967604 -0.199343 0.154935 +0.200173 -0.25926 -0.104417 -0.968612 -0.189106 0.161335 +0.198362 -0.252531 -0.106251 -0.967387 -0.179421 0.178799 +0.196986 -0.245476 -0.108145 -0.966033 -0.175293 0.189877 +0.195928 -0.238201 -0.110085 -0.962922 -0.178048 0.202685 +0.195012 -0.2308 -0.112051 -0.960878 -0.190329 0.201214 +0.193975 -0.223491 -0.114005 -0.956268 -0.202831 0.210739 +0.192579 -0.216404 -0.115907 -0.949782 -0.216789 0.225647 +0.190491 -0.209813 -0.117719 -0.943234 -0.237741 0.231928 +0.187557 -0.203817 -0.11941 -0.937983 -0.256768 0.232934 +0.184742 -0.197729 -0.121131 -0.934817 -0.272879 0.227275 +0.181996 -0.19159 -0.122847 -0.933713 -0.286531 0.214663 +0.179228 -0.185465 -0.124571 -0.934495 -0.295304 0.198783 +0.176587 -0.17924 -0.126314 -0.938536 -0.297616 0.174853 +0.174746 -0.172434 -0.128169 -0.947028 -0.288855 0.14036 +0.172472 -0.165932 -0.129959 -0.954922 -0.272189 0.118481 +0.170136 -0.15947 -0.131753 -0.960641 -0.264342 0.0853996 +0.167701 -0.153079 -0.133526 -0.951691 -0.302095 0.0549858 +0.165742 -0.146326 -0.13537 -0.936521 -0.34995 0.021552 +0.164438 -0.139086 -0.137317 -0.923844 -0.382183 -0.0211591 +0.164389 -0.130895 -0.139442 -0.882563 -0.466329 -0.0601619 +0.164586 -0.122501 -0.141617 -0.842507 -0.529586 -0.0985851 +0.162887 -0.11551 -0.143518 -0.771335 -0.614221 -0.166664 +0.156259 -0.112221 -0.144675 -0.586379 -0.780315 -0.217411 +0.145453 -0.112083 -0.145213 -0.361003 -0.886416 -0.28973 +0.130284 -0.115288 -0.145083 -0.235827 -0.910266 -0.340299 +0.119541 -0.115199 -0.145605 -0.160805 -0.917876 -0.362833 +0.109671 -0.114485 -0.146248 -0.23045 -0.891766 -0.389419 +0.102543 -0.111704 -0.147301 -0.298274 -0.857203 -0.419807 +0.0966183 -0.108019 -0.148536 -0.36779 -0.810186 -0.456431 +0.0910863 -0.104051 -0.149824 -0.405999 -0.779095 -0.47768 +0.0862857 -0.0995199 -0.151224 -0.454688 -0.733684 -0.504943 +0.0819759 -0.0946231 -0.152698 -0.48572 -0.691489 -0.534714 +0.0784111 -0.0891536 -0.154285 -0.533891 -0.619337 -0.575659 +0.0746938 -0.0837955 -0.155845 -0.554026 -0.57303 -0.603898 +0.0715511 -0.0779925 -0.157503 -0.577874 -0.514551 -0.633482 +0.067963 -0.0725449 -0.159087 -0.599669 -0.463304 -0.652492 +0.0645157 -0.0669807 -0.160694 -0.619632 -0.414612 -0.666449 +0.0628452 -0.0600046 -0.16258 -0.637153 -0.360778 -0.681083 +0.0824096 -0.0361827 -0.16787 -0.614968 -0.225234 -0.755701 +0.674493 -0.504806 -0.026071 0.254397 -0.961197 0.106686 +0.644322 -0.513131 -0.0252524 0.181324 -0.981507 0.0613823 +0.624614 -0.515897 -0.025418 0.0688651 -0.997562 0.0114214 +0.606754 -0.517724 -0.0257402 0.0249692 -0.999688 -0.000657286 +0.592875 -0.517428 -0.0264425 -0.00970095 -0.999946 -0.00364302 +0.580615 -0.516299 -0.0272804 -0.0504942 -0.998637 -0.0132534 +0.567128 -0.515876 -0.0280004 -0.0943359 -0.995206 -0.02583 +0.554558 -0.514991 -0.0287946 -0.141577 -0.989023 -0.0423309 +0.544288 -0.512868 -0.0298099 -0.181451 -0.981472 -0.0615727 +0.534558 -0.510477 -0.0308654 -0.223953 -0.971428 -0.0785749 +0.525056 -0.507978 -0.0319459 -0.267368 -0.958753 -0.0964769 +0.516171 -0.505161 -0.0330792 -0.305481 -0.945712 -0.11095 +0.507988 -0.501975 -0.0342743 -0.330848 -0.935893 -0.121013 +0.49972 -0.498854 -0.0354605 -0.360524 -0.923733 -0.129385 +0.491351 -0.49581 -0.0366315 -0.384668 -0.9129 -0.13655 +0.484073 -0.492169 -0.0379067 -0.401348 -0.904551 -0.143909 +0.476753 -0.488561 -0.0391767 -0.415566 -0.896961 -0.150889 +0.469549 -0.484912 -0.0404545 -0.429481 -0.889342 -0.156906 +0.462452 -0.481205 -0.0417354 -0.449333 -0.878173 -0.16405 +0.455458 -0.477468 -0.0430311 -0.471377 -0.864749 -0.173251 +0.448563 -0.473686 -0.0443201 -0.498464 -0.847028 -0.184604 +0.442048 -0.469691 -0.0456546 -0.527675 -0.82569 -0.199488 +0.435997 -0.465441 -0.0470402 -0.559454 -0.799599 -0.218297 +0.430268 -0.461012 -0.0484534 -0.587656 -0.771872 -0.242641 +0.425374 -0.456098 -0.0499519 -0.603225 -0.751659 -0.266702 +0.420434 -0.451214 -0.0514474 -0.614379 -0.733733 -0.29013 +0.415913 -0.446089 -0.0529852 -0.609381 -0.732226 -0.304138 +0.411072 -0.441164 -0.05449 -0.588215 -0.749702 -0.303233 +0.406373 -0.436164 -0.0560068 -0.567391 -0.771804 -0.28703 +0.402645 -0.430576 -0.0576296 -0.519147 -0.816423 -0.252865 +0.398984 -0.42495 -0.0592619 -0.486201 -0.842323 -0.232598 +0.394923 -0.419567 -0.0608503 -0.434347 -0.88179 -0.183823 +0.385643 -0.41737 -0.0618342 -0.328537 -0.938664 -0.104761 +0.374072 -0.416598 -0.0625585 -0.216543 -0.976108 0.0180159 +0.360919 -0.416845 -0.0630845 -0.119367 -0.982336 0.144112 +0.345949 -0.418251 -0.063386 -0.0864624 -0.974474 0.207183 +0.33173 -0.419252 -0.0637614 -0.0942301 -0.960467 0.261964 +0.319494 -0.419064 -0.0643618 -0.155488 -0.951421 0.265747 +0.309649 -0.41743 -0.0652263 -0.249864 -0.934242 0.254485 +0.300591 -0.415336 -0.0661821 -0.31764 -0.918446 0.235717 +0.29258 -0.412601 -0.0672563 -0.38971 -0.895291 0.215829 +0.285503 -0.409301 -0.0684332 -0.445124 -0.873776 0.195909 +0.27881 -0.405775 -0.0696512 -0.488464 -0.854238 0.177994 +0.272588 -0.401967 -0.0709258 -0.53271 -0.830197 0.1643 +0.266639 -0.397997 -0.0722279 -0.563736 -0.812907 0.146234 +0.260713 -0.394023 -0.0735299 -0.593475 -0.793702 0.133508 +0.254847 -0.39003 -0.0748382 -0.628851 -0.769022 0.114694 +0.249098 -0.385958 -0.0761548 -0.661686 -0.743388 0.0977121 +0.243625 -0.381727 -0.0775058 -0.697 -0.712374 0.0819444 +0.238711 -0.377141 -0.0789227 -0.734031 -0.676122 0.0636991 +0.234258 -0.372268 -0.0803954 -0.77315 -0.632556 0.0459413 +0.230162 -0.367159 -0.0819068 -0.81215 -0.58287 0.0259725 +0.226618 -0.361693 -0.0834914 -0.85211 -0.522875 0.022569 +0.22348 -0.355957 -0.0851351 -0.891098 -0.453781 -0.00510712 +0.220575 -0.350065 -0.0868008 -0.920658 -0.389967 -0.0177629 +0.218409 -0.34368 -0.0885628 -0.945216 -0.324712 -0.0336082 +0.216825 -0.336903 -0.0904021 -0.960012 -0.275772 -0.0482165 +0.21567 -0.329831 -0.0922959 -0.970126 -0.236529 -0.0539486 +0.215544 -0.322046 -0.0943345 -0.977647 -0.204946 -0.0469212 +0.215151 -0.314434 -0.0963401 -0.98048 -0.193145 -0.0368064 +0.214177 -0.307197 -0.0982719 -0.980328 -0.19569 -0.025757 +0.21257 -0.300383 -0.100123 -0.978183 -0.207031 -0.0171776 +0.210578 -0.29382 -0.101926 -0.975572 -0.219448 0.0100017 +0.208487 -0.287314 -0.103717 -0.972299 -0.231506 0.0322641 +0.206305 -0.28087 -0.105494 -0.970873 -0.235098 0.0461924 +0.204139 -0.274399 -0.107276 -0.968467 -0.24076 0.0640992 +0.201845 -0.268022 -0.109046 -0.96924 -0.233546 0.0776548 +0.199789 -0.261471 -0.110845 -0.970525 -0.224028 0.0888495 +0.197872 -0.254814 -0.112671 -0.971125 -0.218245 0.096366 +0.196301 -0.2479 -0.114542 -0.971124 -0.213461 0.106545 +0.195095 -0.240733 -0.116469 -0.968739 -0.214909 0.123933 +0.194297 -0.233264 -0.118448 -0.96549 -0.217924 0.142607 +0.193194 -0.225992 -0.120399 -0.96312 -0.227189 0.144173 +0.19165 -0.219022 -0.122289 -0.957778 -0.239581 0.15894 +0.189351 -0.212578 -0.124069 -0.952964 -0.252876 0.16707 +0.186363 -0.206625 -0.125756 -0.949185 -0.265691 0.168688 +0.183362 -0.200679 -0.127442 -0.946805 -0.278361 0.161479 +0.180681 -0.194504 -0.129178 -0.945391 -0.288355 0.151943 +0.177994 -0.188321 -0.130908 -0.94615 -0.293157 0.137327 +0.175893 -0.18171 -0.132724 -0.950147 -0.292421 0.108223 +0.17403 -0.174929 -0.134582 -0.956088 -0.281121 0.0828614 +0.171819 -0.168383 -0.136386 -0.961966 -0.268017 0.0528026 +0.16963 -0.161816 -0.1382 -0.965657 -0.258428 0.0268703 +0.167019 -0.155555 -0.139949 -0.964001 -0.26589 -0.00146738 +0.165305 -0.148626 -0.141835 -0.94466 -0.326935 -0.0270575 +0.164586 -0.140959 -0.143868 -0.926721 -0.367311 -0.0791877 +0.165139 -0.132322 -0.146092 -0.92067 -0.378472 -0.095533 +0.165664 -0.123687 -0.148325 -0.878973 -0.45419 -0.145317 +0.16528 -0.115715 -0.150423 -0.815162 -0.542555 -0.202846 +0.161641 -0.110169 -0.152033 -0.682359 -0.677032 -0.275705 +0.151545 -0.109489 -0.152659 -0.491007 -0.809631 -0.321576 +0.137958 -0.111472 -0.152757 -0.316303 -0.862997 -0.393941 +0.1265 -0.111899 -0.153159 -0.208235 -0.878176 -0.430636 +0.116849 -0.110995 -0.153829 -0.180434 -0.869374 -0.460037 +0.109379 -0.108461 -0.154822 -0.25266 -0.829937 -0.497361 +0.103094 -0.105037 -0.155997 -0.334262 -0.779805 -0.529315 +0.0977553 -0.100896 -0.157316 -0.371564 -0.747461 -0.550676 +0.0933993 -0.0960078 -0.158784 -0.41567 -0.698836 -0.582107 +0.0894798 -0.0907968 -0.160319 -0.455296 -0.628372 -0.630759 +0.0858792 -0.0853299 -0.16191 -0.4911 -0.581196 -0.648871 +0.0821972 -0.0799275 -0.163483 -0.520094 -0.525081 -0.67364 +0.0784646 -0.0745741 -0.165051 -0.54702 -0.475528 -0.688943 +0.0742207 -0.0696114 -0.166534 -0.561929 -0.447313 -0.695807 +0.0716346 -0.0633623 -0.168278 -0.576973 -0.406598 -0.708366 +0.070991 -0.0555577 -0.170344 -0.590386 -0.346702 -0.728863 +0.679432 -0.504124 -0.0335226 0.255263 -0.962564 0.0911736 +0.649334 -0.512392 -0.0326561 0.180935 -0.982474 0.0448194 +0.629506 -0.515202 -0.0327844 0.115003 -0.993349 0.00579419 +0.610935 -0.517395 -0.0330136 0.0311057 -0.999316 -0.0200414 +0.596623 -0.517329 -0.0336472 -0.00150952 -0.999592 -0.0285268 +0.584053 -0.516355 -0.0344526 -0.0429991 -0.998271 -0.0400704 +0.5705 -0.515955 -0.0351427 -0.0873967 -0.994778 -0.052712 +0.557499 -0.5153 -0.035874 -0.14034 -0.98777 -0.0679466 +0.547001 -0.513296 -0.0368515 -0.178174 -0.980532 -0.0825436 +0.538196 -0.510379 -0.0380002 -0.216319 -0.971609 -0.0958263 +0.528986 -0.507706 -0.0390975 -0.264042 -0.957613 -0.11516 +0.519397 -0.505282 -0.0401464 -0.30072 -0.944826 -0.129898 +0.511565 -0.501877 -0.0413766 -0.325314 -0.935191 -0.139963 +0.503119 -0.498852 -0.0425417 -0.352555 -0.923573 -0.150726 +0.494212 -0.496113 -0.0436428 -0.378384 -0.912212 -0.157154 +0.486554 -0.492674 -0.0448728 -0.396267 -0.903307 -0.16435 +0.479377 -0.48898 -0.046151 -0.411762 -0.895021 -0.171435 +0.472381 -0.485206 -0.047439 -0.424749 -0.88791 -0.176647 +0.465472 -0.481391 -0.0487447 -0.443671 -0.876861 -0.185127 +0.458448 -0.477658 -0.0500247 -0.465928 -0.863068 -0.195001 +0.451489 -0.473903 -0.0513052 -0.49285 -0.845269 -0.206444 +0.445484 -0.469599 -0.0526913 -0.522495 -0.823339 -0.221616 +0.439763 -0.465154 -0.0541077 -0.556911 -0.79569 -0.238181 +0.43414 -0.460652 -0.055528 -0.58842 -0.767279 -0.255041 +0.428988 -0.455882 -0.0570009 -0.612144 -0.740357 -0.277764 +0.424315 -0.450839 -0.0585254 -0.626179 -0.721473 -0.295595 +0.419963 -0.445601 -0.0600831 -0.617111 -0.725977 -0.303532 +0.415475 -0.440458 -0.0616219 -0.594891 -0.744172 -0.303832 +0.411144 -0.435224 -0.0631835 -0.569601 -0.770118 -0.287181 +0.406055 -0.430442 -0.0646535 -0.514399 -0.818709 -0.255166 +0.401742 -0.425206 -0.0662139 -0.454261 -0.863891 -0.21758 +0.397683 -0.419813 -0.0678041 -0.391764 -0.905554 -0.162771 +0.387217 -0.418335 -0.0686413 -0.285505 -0.957246 -0.0465528 +0.374261 -0.418411 -0.0691828 -0.177846 -0.980661 0.0817146 +0.360467 -0.419038 -0.0696152 -0.0875741 -0.983111 0.160699 +0.345538 -0.420423 -0.0699027 -0.0522839 -0.971993 0.229125 +0.331802 -0.421116 -0.0703141 -0.086734 -0.967394 0.237966 +0.319183 -0.421164 -0.0708472 -0.161397 -0.961105 0.224121 +0.309764 -0.41926 -0.0717529 -0.25674 -0.94468 0.204117 +0.301062 -0.416937 -0.0727375 -0.323138 -0.92805 0.185226 +0.293115 -0.414162 -0.073807 -0.396265 -0.902341 0.169576 +0.286582 -0.410525 -0.0750454 -0.442408 -0.885028 0.144923 +0.279989 -0.40693 -0.076272 -0.495676 -0.860042 0.120966 +0.273648 -0.403188 -0.0775246 -0.535099 -0.838202 0.10529 +0.267712 -0.399211 -0.0788277 -0.563126 -0.822135 0.0835657 +0.261779 -0.395238 -0.0801216 -0.596855 -0.799663 0.0655895 +0.255834 -0.391289 -0.081412 -0.630065 -0.775471 0.040787 +0.250132 -0.387192 -0.0827375 -0.656534 -0.753683 0.0304105 +0.244684 -0.382943 -0.0840838 -0.687931 -0.725699 0.0106419 +0.23983 -0.378312 -0.0855043 -0.725927 -0.687689 -0.0106517 +0.235306 -0.373481 -0.0869663 -0.762556 -0.646047 -0.0336656 +0.231103 -0.368442 -0.088464 -0.800434 -0.597482 -0.0481824 +0.227646 -0.362918 -0.0900623 -0.840791 -0.536922 -0.0691719 +0.224534 -0.357166 -0.091706 -0.877047 -0.472679 -0.0858126 +0.221662 -0.351254 -0.0933742 -0.909364 -0.404732 -0.0961695 +0.219531 -0.34484 -0.0951462 -0.932854 -0.343892 -0.107347 +0.218187 -0.337909 -0.0970242 -0.948074 -0.293548 -0.12241 +0.217283 -0.330657 -0.0989604 -0.957217 -0.258491 -0.130071 +0.21686 -0.32308 -0.100962 -0.965441 -0.230538 -0.121555 +0.215975 -0.315801 -0.102904 -0.968997 -0.223435 -0.105461 +0.21484 -0.308678 -0.104823 -0.97041 -0.224847 -0.0880211 +0.212913 -0.302076 -0.106629 -0.969795 -0.23394 -0.0690556 +0.210934 -0.295507 -0.10844 -0.966913 -0.248789 -0.0564323 +0.208677 -0.289117 -0.110211 -0.962757 -0.265704 -0.0500003 +0.206454 -0.282697 -0.111986 -0.962043 -0.271131 -0.0309975 +0.204397 -0.276157 -0.11379 -0.96228 -0.271475 -0.0178794 +0.202164 -0.269735 -0.115566 -0.964529 -0.263735 -0.0112792 +0.200196 -0.263126 -0.117386 -0.965055 -0.26167 -0.014048 +0.198223 -0.256508 -0.1192 -0.966956 -0.254943 0.000595975 +0.196827 -0.249479 -0.121105 -0.967476 -0.25239 0.0170556 +0.195541 -0.242366 -0.12302 -0.967005 -0.251498 0.0406271 +0.194346 -0.235174 -0.124954 -0.965536 -0.252006 0.0650671 +0.192939 -0.228126 -0.126864 -0.962703 -0.259598 0.0762216 +0.191043 -0.221403 -0.128704 -0.959171 -0.268822 0.0878895 +0.188587 -0.21508 -0.130469 -0.956026 -0.27635 0.0981971 +0.185591 -0.20914 -0.132155 -0.95349 -0.283902 0.101275 +0.182683 -0.203129 -0.133849 -0.951237 -0.291143 0.101901 +0.180201 -0.196805 -0.135616 -0.951539 -0.293214 0.0927346 +0.178284 -0.190078 -0.137459 -0.953608 -0.292477 0.0713381 +0.176 -0.183602 -0.139252 -0.957474 -0.284198 0.0497685 +0.173812 -0.177053 -0.141062 -0.960798 -0.276491 0.0205106 +0.171554 -0.170545 -0.142868 -0.964467 -0.264093 -0.00763319 +0.169503 -0.163888 -0.144699 -0.966047 -0.256628 -0.0299452 +0.167317 -0.157312 -0.146515 -0.96556 -0.254853 -0.0523852 +0.165887 -0.150183 -0.148446 -0.949962 -0.301373 -0.0821305 +0.165574 -0.142211 -0.150544 -0.938048 -0.329614 -0.106867 +0.166634 -0.133196 -0.152857 -0.923023 -0.355075 -0.148164 +0.167057 -0.12464 -0.155081 -0.897785 -0.397044 -0.190621 +0.166564 -0.116749 -0.157169 -0.822947 -0.509311 -0.251717 +0.164457 -0.110058 -0.159012 -0.716555 -0.626808 -0.306042 +0.156948 -0.107417 -0.160027 -0.57293 -0.731811 -0.369058 +0.145038 -0.108113 -0.160361 -0.385059 -0.821872 -0.419831 +0.13508 -0.107385 -0.160986 -0.307766 -0.821654 -0.479755 +0.125186 -0.106644 -0.161607 -0.232006 -0.8234 -0.517868 +0.117 -0.10463 -0.16249 -0.222199 -0.79742 -0.561025 +0.110466 -0.101376 -0.163623 -0.297545 -0.745872 -0.595938 +0.104844 -0.0974333 -0.164898 -0.351686 -0.698398 -0.623344 +0.100444 -0.0925624 -0.166365 -0.391483 -0.652957 -0.648374 +0.0965147 -0.0873317 -0.167906 -0.43116 -0.601918 -0.672158 +0.09318 -0.0816495 -0.169539 -0.46594 -0.537984 -0.702476 +0.0896461 -0.076117 -0.171138 -0.489832 -0.502485 -0.712443 +0.0856651 -0.070934 -0.172672 -0.516521 -0.457163 -0.724023 +0.0819233 -0.0655659 -0.174236 -0.533914 -0.425683 -0.730568 +0.0797293 -0.0589774 -0.176055 -0.550737 -0.391051 -0.737407 +0.0829332 -0.0481293 -0.17876 -0.570458 -0.345199 -0.745263 +0.681643 -0.504916 -0.040711 0.255559 -0.963844 0.0754687 +0.652195 -0.512814 -0.039865 0.175255 -0.984034 0.0310277 +0.634007 -0.514723 -0.040126 0.125038 -0.99214 -0.00508722 +0.617366 -0.515855 -0.0405241 0.0378447 -0.998431 -0.0412661 +0.600907 -0.516938 -0.0409259 0.00171443 -0.998524 -0.0543088 +0.588217 -0.516012 -0.0417007 -0.0375945 -0.996962 -0.0682172 +0.575254 -0.515288 -0.0424365 -0.0808876 -0.993602 -0.0788192 +0.561161 -0.515216 -0.0430436 -0.13359 -0.986674 -0.0928963 +0.550131 -0.513496 -0.043956 -0.171293 -0.979684 -0.10431 +0.541578 -0.510426 -0.0451185 -0.212602 -0.970534 -0.113425 +0.532568 -0.507632 -0.0462248 -0.258519 -0.957378 -0.128825 +0.522574 -0.505426 -0.0472286 -0.299721 -0.943093 -0.144029 +0.51522 -0.501748 -0.0485024 -0.320742 -0.934489 -0.154454 +0.507124 -0.498514 -0.0496861 -0.34506 -0.923951 -0.165077 +0.498207 -0.495759 -0.0507823 -0.371033 -0.912176 -0.173984 +0.48987 -0.49271 -0.0519356 -0.391172 -0.902129 -0.182068 +0.482389 -0.489183 -0.0531712 -0.408212 -0.893457 -0.187348 +0.475234 -0.485484 -0.0544483 -0.422466 -0.885124 -0.195138 +0.468079 -0.481809 -0.055712 -0.439486 -0.874569 -0.204897 +0.461173 -0.477997 -0.0570011 -0.461476 -0.860328 -0.216511 +0.454468 -0.474092 -0.0583089 -0.488369 -0.842007 -0.229177 +0.448312 -0.469874 -0.0596717 -0.516314 -0.820546 -0.245204 +0.442831 -0.465272 -0.0611123 -0.550243 -0.792504 -0.263004 +0.437747 -0.460452 -0.0625903 -0.581586 -0.76387 -0.279752 +0.432812 -0.455545 -0.0640827 -0.6119 -0.732867 -0.297468 +0.42818 -0.450469 -0.0656107 -0.628952 -0.714658 -0.306077 +0.423521 -0.44541 -0.0671387 -0.61773 -0.723841 -0.307353 +0.419474 -0.43999 -0.0687253 -0.613832 -0.723992 -0.314719 +0.4151 -0.434773 -0.0702804 -0.558093 -0.77816 -0.288099 +0.410824 -0.429499 -0.0718471 -0.527614 -0.808916 -0.25938 +0.405434 -0.424902 -0.0732851 -0.446855 -0.867925 -0.21686 +0.398806 -0.421064 -0.0745702 -0.349921 -0.928261 -0.126047 +0.389828 -0.418668 -0.0755742 -0.231797 -0.972491 -0.0230579 +0.373745 -0.420646 -0.0757247 -0.129297 -0.985547 0.10945 +0.359913 -0.421296 -0.076132 -0.0614263 -0.982568 0.17547 +0.345404 -0.422412 -0.0764448 -0.0343455 -0.974809 0.220379 +0.331907 -0.42296 -0.0768617 -0.0906044 -0.974039 0.207459 +0.320021 -0.422548 -0.077467 -0.16789 -0.968515 0.183831 +0.310629 -0.420626 -0.0783663 -0.261174 -0.951932 0.160046 +0.302116 -0.41818 -0.079364 -0.325648 -0.935267 0.138671 +0.294174 -0.415399 -0.0804267 -0.40118 -0.909101 0.112215 +0.287327 -0.411952 -0.0816175 -0.446049 -0.890602 0.0887135 +0.280833 -0.40829 -0.0828494 -0.493941 -0.866457 0.0726373 +0.274392 -0.404614 -0.0840886 -0.539938 -0.840521 0.0446206 +0.268633 -0.400521 -0.085403 -0.56808 -0.8227 0.0211945 +0.262917 -0.396413 -0.0867247 -0.595808 -0.803127 -0.000241466 +0.257298 -0.392247 -0.0880524 -0.624012 -0.780981 -0.0260382 +0.251583 -0.388155 -0.0893703 -0.652417 -0.756453 -0.0461667 +0.24628 -0.383812 -0.090733 -0.681749 -0.72797 -0.0726525 +0.241103 -0.379387 -0.0921114 -0.718103 -0.689788 -0.0923162 +0.236451 -0.374637 -0.0935501 -0.750548 -0.651634 -0.109768 +0.232204 -0.369625 -0.0950446 -0.7826 -0.60776 -0.134779 +0.22838 -0.364341 -0.0965967 -0.821336 -0.550117 -0.150929 +0.225411 -0.358487 -0.098259 -0.855233 -0.490654 -0.166847 +0.222945 -0.352305 -0.0999854 -0.885908 -0.423972 -0.188189 +0.220832 -0.34589 -0.101757 -0.910021 -0.363749 -0.198868 +0.219817 -0.338732 -0.103681 -0.929042 -0.314672 -0.194585 +0.21892 -0.331477 -0.105626 -0.940442 -0.279653 -0.193296 +0.218259 -0.324061 -0.107602 -0.947879 -0.260874 -0.182948 +0.21696 -0.31706 -0.1095 -0.953358 -0.252396 -0.165538 +0.215553 -0.310111 -0.11138 -0.955863 -0.255044 -0.145871 +0.213591 -0.303542 -0.113191 -0.954713 -0.26511 -0.135054 +0.211419 -0.297102 -0.114972 -0.953232 -0.277787 -0.119089 +0.209083 -0.290769 -0.116738 -0.952079 -0.28865 -0.101131 +0.206999 -0.284261 -0.118536 -0.951744 -0.292233 -0.0937259 +0.205009 -0.277672 -0.120345 -0.95245 -0.291274 -0.0894355 +0.203044 -0.271069 -0.122163 -0.953046 -0.288011 -0.0935618 +0.200937 -0.264549 -0.123966 -0.952327 -0.288886 -0.0980686 +0.198771 -0.258063 -0.12576 -0.953503 -0.28854 -0.0870371 +0.197385 -0.251036 -0.127663 -0.954639 -0.290206 -0.0666655 +0.196016 -0.243975 -0.129582 -0.955291 -0.292795 -0.0410952 +0.194508 -0.23701 -0.131473 -0.955328 -0.295092 -0.0164092 +0.192779 -0.230184 -0.133338 -0.954903 -0.296896 0.00359606 +0.190653 -0.223633 -0.135151 -0.954025 -0.299105 0.019303 +0.18812 -0.217371 -0.136901 -0.953561 -0.299406 0.0328192 +0.185232 -0.211351 -0.138603 -0.954178 -0.296653 0.0392831 +0.182631 -0.205121 -0.140352 -0.953704 -0.298018 0.040413 +0.180417 -0.198613 -0.142154 -0.953907 -0.29835 0.0323897 +0.178826 -0.191654 -0.144044 -0.956595 -0.291101 0.0136287 +0.176748 -0.185026 -0.145878 -0.959377 -0.281922 -0.010755 +0.174642 -0.17842 -0.147702 -0.961852 -0.27089 -0.0381952 +0.172462 -0.171856 -0.149514 -0.963741 -0.260307 -0.0586913 +0.170495 -0.165134 -0.151361 -0.964922 -0.251928 -0.0738893 +0.168821 -0.158182 -0.153257 -0.965169 -0.244616 -0.0928005 +0.168088 -0.150536 -0.155301 -0.958801 -0.256067 -0.123008 +0.167907 -0.142463 -0.157427 -0.941255 -0.301432 -0.152243 +0.168182 -0.13404 -0.159633 -0.923735 -0.336885 -0.182272 +0.167368 -0.126406 -0.161674 -0.901248 -0.365294 -0.233053 +0.166699 -0.118644 -0.16374 -0.861574 -0.417706 -0.288464 +0.16658 -0.110458 -0.165895 -0.803564 -0.508196 -0.309872 +0.162649 -0.105126 -0.16746 -0.653061 -0.643878 -0.398664 +0.153934 -0.103401 -0.168276 -0.527155 -0.728254 -0.437898 +0.142349 -0.103877 -0.168639 -0.386389 -0.778952 -0.4939 +0.133094 -0.102621 -0.169355 -0.292292 -0.775476 -0.559645 +0.125177 -0.10038 -0.170275 -0.252353 -0.771441 -0.584122 +0.11856 -0.0971642 -0.171398 -0.286338 -0.72654 -0.62462 +0.112617 -0.0934487 -0.172617 -0.331816 -0.676204 -0.65776 +0.108067 -0.0886768 -0.174068 -0.383198 -0.621593 -0.683215 +0.104243 -0.083347 -0.175623 -0.41556 -0.576005 -0.703936 +0.100815 -0.0777129 -0.177252 -0.448398 -0.524693 -0.723628 +0.0980151 -0.0715905 -0.178977 -0.474728 -0.493839 -0.728531 +0.0951534 -0.0655113 -0.180691 -0.494275 -0.4656 -0.734104 +0.0920227 -0.0596418 -0.182363 -0.520485 -0.4269 -0.739494 +0.0891356 -0.0535792 -0.184076 -0.538686 -0.375092 -0.754403 +0.0925107 -0.042567 -0.186834 -0.556191 -0.329119 -0.763107 +0.691354 -0.501688 -0.0486734 0.306012 -0.951029 0.0436193 +0.6578 -0.511761 -0.0473602 0.18051 -0.983435 0.0165376 +0.63894 -0.514013 -0.0475308 0.12191 -0.992372 -0.0183504 +0.622518 -0.515009 -0.0479255 0.0429476 -0.997363 -0.0585202 +0.605533 -0.51637 -0.0482548 0.00811411 -0.997073 -0.0760403 +0.592586 -0.515571 -0.048984 -0.0310375 -0.995143 -0.0934254 +0.580596 -0.514286 -0.0498027 -0.0686669 -0.991731 -0.108417 +0.565753 -0.514617 -0.0503198 -0.119267 -0.985903 -0.117356 +0.553486 -0.513571 -0.0510853 -0.163544 -0.978092 -0.128802 +0.544779 -0.510582 -0.0522258 -0.202232 -0.970056 -0.134514 +0.535911 -0.507703 -0.0533407 -0.251517 -0.956829 -0.145663 +0.526074 -0.505392 -0.0543462 -0.2925 -0.943002 -0.15872 +0.518579 -0.501786 -0.0556011 -0.321172 -0.932018 -0.167906 +0.510924 -0.498291 -0.0568285 -0.344041 -0.92202 -0.177527 +0.502823 -0.495076 -0.0580073 -0.36527 -0.91198 -0.186736 +0.493853 -0.492366 -0.0590831 -0.387444 -0.900939 -0.19544 +0.486033 -0.489018 -0.060275 -0.404818 -0.891653 -0.202676 +0.479027 -0.485229 -0.0615598 -0.420079 -0.882469 -0.211618 +0.472003 -0.481467 -0.0628325 -0.436033 -0.871802 -0.223241 +0.464869 -0.477786 -0.0640878 -0.457604 -0.857863 -0.233817 +0.457715 -0.474128 -0.065348 -0.484288 -0.839074 -0.247832 +0.451151 -0.470138 -0.066663 -0.512787 -0.816235 -0.2661 +0.445245 -0.465781 -0.0680443 -0.542723 -0.790407 -0.284092 +0.439962 -0.461067 -0.0695 -0.576685 -0.758334 -0.303917 +0.435522 -0.455873 -0.071054 -0.605146 -0.728171 -0.321816 +0.431068 -0.450684 -0.0726004 -0.621566 -0.71146 -0.327841 +0.427213 -0.445144 -0.0742158 -0.619449 -0.712799 -0.328938 +0.423025 -0.439802 -0.0757983 -0.609148 -0.724202 -0.323219 +0.419254 -0.434212 -0.0774156 -0.561854 -0.765887 -0.312631 +0.415411 -0.428666 -0.079038 -0.512895 -0.812124 -0.278198 +0.409926 -0.424114 -0.080458 -0.449761 -0.863668 -0.227583 +0.402034 -0.421039 -0.0815853 -0.313354 -0.940414 -0.132032 +0.390189 -0.420377 -0.0822392 -0.192923 -0.981215 0.000362256 +0.373796 -0.422538 -0.0823277 -0.0831416 -0.988254 0.128234 +0.359726 -0.423331 -0.0826839 -0.029434 -0.983543 0.178267 +0.345812 -0.424076 -0.083053 -0.0299658 -0.978746 0.202884 +0.332505 -0.424499 -0.0834738 -0.100812 -0.978742 0.178609 +0.320546 -0.424125 -0.0840546 -0.177709 -0.973005 0.147246 +0.311329 -0.422088 -0.0849651 -0.269805 -0.955814 0.116731 +0.302768 -0.419676 -0.0859431 -0.332913 -0.938758 0.088906 +0.295202 -0.416657 -0.0870439 -0.399948 -0.914236 0.0649363 +0.287974 -0.413438 -0.0881837 -0.451241 -0.891715 0.0350479 +0.281733 -0.409625 -0.0894373 -0.499288 -0.866369 0.0108458 +0.275446 -0.405852 -0.090693 -0.54282 -0.839674 -0.0171626 +0.269891 -0.401618 -0.0920286 -0.566704 -0.822942 -0.0401794 +0.264653 -0.397196 -0.0934051 -0.597257 -0.798978 -0.0701423 +0.259252 -0.392893 -0.0947603 -0.622745 -0.776889 -0.0929194 +0.253503 -0.388817 -0.0960613 -0.649047 -0.751242 -0.119893 +0.247976 -0.384614 -0.0973962 -0.674956 -0.72361 -0.144306 +0.242507 -0.380375 -0.0987334 -0.704795 -0.689915 -0.165173 +0.237577 -0.375807 -0.100139 -0.736024 -0.652813 -0.179174 +0.233285 -0.37082 -0.101624 -0.770392 -0.606918 -0.195315 +0.229415 -0.365561 -0.103167 -0.803864 -0.552123 -0.22128 +0.226465 -0.359696 -0.10483 -0.833922 -0.496291 -0.241395 +0.224087 -0.353456 -0.106578 -0.860478 -0.439632 -0.25749 +0.22231 -0.346811 -0.108396 -0.885286 -0.383421 -0.26317 +0.221689 -0.339389 -0.110378 -0.904956 -0.338831 -0.257391 +0.220978 -0.332021 -0.112356 -0.918581 -0.307274 -0.248579 +0.220233 -0.324654 -0.114329 -0.929544 -0.285495 -0.233325 +0.218649 -0.317836 -0.116186 -0.934293 -0.280827 -0.219621 +0.21674 -0.311237 -0.118006 -0.938052 -0.280387 -0.20357 +0.214607 -0.304775 -0.119797 -0.93919 -0.287064 -0.188457 +0.212334 -0.298403 -0.121567 -0.938255 -0.298373 -0.175076 +0.210058 -0.292027 -0.123344 -0.937675 -0.307141 -0.162578 +0.207923 -0.285548 -0.125132 -0.935884 -0.310786 -0.165923 +0.205911 -0.278982 -0.126946 -0.93652 -0.309198 -0.165307 +0.203948 -0.272381 -0.128771 -0.937387 -0.307328 -0.163879 +0.201859 -0.26585 -0.130575 -0.937886 -0.308986 -0.157788 +0.199875 -0.259242 -0.132396 -0.937944 -0.315964 -0.142925 +0.198201 -0.252409 -0.134264 -0.939053 -0.321956 -0.120519 +0.196528 -0.24556 -0.136136 -0.940205 -0.327703 -0.0928857 +0.194813 -0.238743 -0.138006 -0.940567 -0.331907 -0.0719098 +0.1928 -0.232119 -0.139833 -0.942314 -0.33025 -0.0545935 +0.190355 -0.225799 -0.141604 -0.946389 -0.3214 -0.0324005 +0.187797 -0.219552 -0.143354 -0.94648 -0.322005 -0.0221699 +0.185084 -0.213413 -0.145083 -0.948467 -0.316603 -0.0131383 +0.183314 -0.206594 -0.146949 -0.951417 -0.30744 -0.0169524 +0.181756 -0.199618 -0.148849 -0.954334 -0.297591 -0.0261845 +0.181114 -0.191961 -0.150895 -0.959037 -0.280462 -0.0398757 +0.17943 -0.18505 -0.152784 -0.960837 -0.26962 -0.064003 +0.177542 -0.178285 -0.154648 -0.962121 -0.25942 -0.0838084 +0.17534 -0.171728 -0.156469 -0.961806 -0.25276 -0.105084 +0.173531 -0.16489 -0.158343 -0.961587 -0.24546 -0.122881 +0.172227 -0.157664 -0.160301 -0.963086 -0.230586 -0.13891 +0.171462 -0.150036 -0.162344 -0.958997 -0.235154 -0.158202 +0.170512 -0.142525 -0.164361 -0.948288 -0.256877 -0.186451 +0.16913 -0.135318 -0.166314 -0.933796 -0.284174 -0.217419 +0.16767 -0.128167 -0.168263 -0.89284 -0.358074 -0.273166 +0.167327 -0.120164 -0.170386 -0.858318 -0.403474 -0.317017 +0.16832 -0.111154 -0.172727 -0.806035 -0.455629 -0.377767 +0.166899 -0.103928 -0.174689 -0.721266 -0.529277 -0.446813 +0.161678 -0.0995613 -0.17605 -0.581032 -0.646548 -0.494346 +0.150485 -0.0997089 -0.176463 -0.442058 -0.723036 -0.530853 +0.140716 -0.0988259 -0.177083 -0.369952 -0.737313 -0.565248 +0.132524 -0.0967692 -0.17796 -0.298477 -0.744129 -0.597648 +0.126345 -0.0932011 -0.179151 -0.289218 -0.712974 -0.638767 +0.120898 -0.0890848 -0.180451 -0.331369 -0.665003 -0.669302 +0.115871 -0.0846572 -0.181825 -0.38199 -0.611757 -0.692703 +0.112538 -0.0789317 -0.183466 -0.418552 -0.562918 -0.712698 +0.109432 -0.0730314 -0.185152 -0.437161 -0.539437 -0.719652 +0.106315 -0.067128 -0.186832 -0.470183 -0.48743 -0.735758 +0.103383 -0.0610923 -0.188542 -0.504634 -0.445017 -0.739801 +0.100309 -0.0551574 -0.190233 -0.518658 -0.418238 -0.745701 +0.0971853 -0.0492567 -0.191913 -0.541998 -0.388317 -0.745285 +0.104281 -0.0352975 -0.195306 -0.568539 -0.350126 -0.744428 +0.702036 -0.497945 -0.0567621 0.333695 -0.941872 0.0390787 +0.664203 -0.510282 -0.0549602 0.181814 -0.983329 0.00304061 +0.644485 -0.512975 -0.0550118 0.125668 -0.991762 -0.0248656 +0.627492 -0.514264 -0.0553273 0.0421122 -0.996601 -0.070809 +0.610526 -0.515598 -0.0556379 0.00863404 -0.995514 -0.094222 +0.596746 -0.515238 -0.0562603 -0.0257949 -0.993181 -0.113703 +0.585175 -0.513715 -0.0571132 -0.0610753 -0.989696 -0.129511 +0.571245 -0.513528 -0.0577008 -0.103014 -0.985221 -0.136857 +0.557532 -0.513265 -0.0583038 -0.1488 -0.977505 -0.149475 +0.548209 -0.510607 -0.0593682 -0.192704 -0.968747 -0.156196 +0.539398 -0.507692 -0.0604862 -0.239509 -0.956978 -0.163794 +0.529975 -0.505133 -0.0615199 -0.283793 -0.943168 -0.172906 +0.521442 -0.502108 -0.0626536 -0.317069 -0.930656 -0.182615 +0.513697 -0.498656 -0.0638719 -0.3431 -0.919987 -0.189491 +0.506683 -0.494809 -0.0651554 -0.363325 -0.910219 -0.198744 +0.499042 -0.491337 -0.0663761 -0.383956 -0.899206 -0.209784 +0.491442 -0.487859 -0.0675867 -0.402069 -0.889058 -0.218902 +0.483901 -0.484363 -0.0688039 -0.416892 -0.879727 -0.228652 +0.476784 -0.480638 -0.0700681 -0.434005 -0.867864 -0.241769 +0.469226 -0.477186 -0.0712769 -0.455697 -0.853309 -0.253388 +0.461558 -0.473814 -0.0724604 -0.480954 -0.83465 -0.268407 +0.454819 -0.469927 -0.0737526 -0.5082 -0.812337 -0.286078 +0.448521 -0.46579 -0.0750943 -0.539899 -0.785053 -0.303648 +0.442822 -0.461321 -0.0764983 -0.571197 -0.754187 -0.323938 +0.438025 -0.456322 -0.0780011 -0.602758 -0.72186 -0.340003 +0.433971 -0.450893 -0.0795995 -0.613348 -0.70805 -0.349957 +0.430241 -0.445271 -0.0812288 -0.614991 -0.704713 -0.353786 +0.426394 -0.439718 -0.0828455 -0.597663 -0.726676 -0.338735 +0.422951 -0.43393 -0.084512 -0.590206 -0.73507 -0.333662 +0.419543 -0.428114 -0.0861901 -0.503699 -0.8096 -0.301387 +0.414223 -0.423456 -0.0876277 -0.431752 -0.866412 -0.250844 +0.404146 -0.421687 -0.0884811 -0.271522 -0.954712 -0.121661 +0.390441 -0.422151 -0.0888902 -0.139936 -0.989828 0.0256986 +0.374091 -0.42428 -0.0889593 -0.062666 -0.988728 0.135981 +0.359509 -0.425374 -0.0892364 -0.00740847 -0.983517 0.180667 +0.346482 -0.425577 -0.0896846 -0.0355647 -0.984282 0.172989 +0.333692 -0.425676 -0.0901583 -0.113322 -0.984006 0.13745 +0.322594 -0.424759 -0.0908271 -0.179914 -0.976789 0.116259 +0.31226 -0.423414 -0.0915823 -0.267222 -0.961066 0.0703163 +0.303825 -0.42091 -0.0925779 -0.334202 -0.941364 0.0463069 +0.296025 -0.41804 -0.0936334 -0.408656 -0.912619 0.0112495 +0.288739 -0.414856 -0.0947644 -0.458182 -0.88865 -0.0192324 +0.282546 -0.411005 -0.0960212 -0.50398 -0.86279 -0.0399634 +0.277074 -0.406718 -0.0973703 -0.543393 -0.836354 -0.0723518 +0.271996 -0.402181 -0.098766 -0.567992 -0.816429 -0.104067 +0.266864 -0.397684 -0.10015 -0.595268 -0.792161 -0.134675 +0.261516 -0.393341 -0.101509 -0.619903 -0.768686 -0.157624 +0.256026 -0.389097 -0.102843 -0.643728 -0.742649 -0.184628 +0.250236 -0.385054 -0.10414 -0.669113 -0.71361 -0.20748 +0.244615 -0.380913 -0.105453 -0.69392 -0.684861 -0.222352 +0.239965 -0.376152 -0.106894 -0.724642 -0.645252 -0.241962 +0.235568 -0.371226 -0.108367 -0.75126 -0.604467 -0.265008 +0.231402 -0.366157 -0.109868 -0.784087 -0.553741 -0.280319 +0.228412 -0.360318 -0.111529 -0.813399 -0.499217 -0.298608 +0.225986 -0.354115 -0.113272 -0.837107 -0.451019 -0.309568 +0.224144 -0.347508 -0.115088 -0.861326 -0.404183 -0.307822 +0.223679 -0.339979 -0.117096 -0.881025 -0.362862 -0.303524 +0.223203 -0.332449 -0.119114 -0.896839 -0.332301 -0.291984 +0.222546 -0.325024 -0.1211 -0.910078 -0.307811 -0.277508 +0.22081 -0.318305 -0.122948 -0.915763 -0.300977 -0.266069 +0.218743 -0.311808 -0.12475 -0.92097 -0.299888 -0.248761 +0.21639 -0.305492 -0.126513 -0.92272 -0.305058 -0.235642 +0.214059 -0.299156 -0.128277 -0.922054 -0.314462 -0.225676 +0.211802 -0.292767 -0.130055 -0.921879 -0.320263 -0.218106 +0.209594 -0.286342 -0.131838 -0.921633 -0.321418 -0.217448 +0.207391 -0.279897 -0.133633 -0.921885 -0.319815 -0.218741 +0.205194 -0.273448 -0.135427 -0.921518 -0.32153 -0.217767 +0.203033 -0.266971 -0.137226 -0.920693 -0.32921 -0.20963 +0.201117 -0.260315 -0.13906 -0.91916 -0.344273 -0.191368 +0.19935 -0.253548 -0.140921 -0.917171 -0.358297 -0.174416 +0.197965 -0.246505 -0.142837 -0.918522 -0.367187 -0.146601 +0.196097 -0.239787 -0.144688 -0.921632 -0.369382 -0.118965 +0.193956 -0.233255 -0.146498 -0.925914 -0.366442 -0.0916628 +0.191179 -0.22717 -0.148212 -0.934151 -0.34988 -0.0703257 +0.188453 -0.221038 -0.149941 -0.93761 -0.341004 -0.0678418 +0.185801 -0.214857 -0.151683 -0.941754 -0.330326 -0.0631185 +0.184464 -0.207736 -0.153621 -0.948838 -0.311219 -0.0533622 +0.18365 -0.200216 -0.155643 -0.954162 -0.29184 -0.066373 +0.183955 -0.191888 -0.157832 -0.959071 -0.268706 -0.0893342 +0.182818 -0.184573 -0.159812 -0.959835 -0.256806 -0.112994 +0.181267 -0.177551 -0.16173 -0.959045 -0.249773 -0.133595 +0.179244 -0.170866 -0.16358 -0.956934 -0.248329 -0.150366 +0.177399 -0.164043 -0.165462 -0.955047 -0.244336 -0.167886 +0.175775 -0.157045 -0.167372 -0.95598 -0.231521 -0.180276 +0.173752 -0.150334 -0.169229 -0.955811 -0.222298 -0.192377 +0.171774 -0.143579 -0.171091 -0.950975 -0.225464 -0.211691 +0.169593 -0.136969 -0.172929 -0.932112 -0.269183 -0.242296 +0.168002 -0.129911 -0.174858 -0.916672 -0.289581 -0.27542 +0.167961 -0.121692 -0.177031 -0.869227 -0.363386 -0.335254 +0.169412 -0.112338 -0.179449 -0.816599 -0.415613 -0.40054 +0.170236 -0.103429 -0.181782 -0.748235 -0.489237 -0.448099 +0.166812 -0.0976859 -0.183428 -0.628138 -0.577475 -0.521504 +0.158076 -0.0959694 -0.184227 -0.533829 -0.64788 -0.543395 +0.148713 -0.0947519 -0.184906 -0.410712 -0.706189 -0.576726 +0.140272 -0.0928621 -0.185735 -0.367812 -0.700505 -0.611562 +0.133932 -0.0894059 -0.186898 -0.332356 -0.685138 -0.648172 +0.128663 -0.0851344 -0.188233 -0.341874 -0.657051 -0.671868 +0.124153 -0.0802829 -0.189691 -0.374755 -0.620419 -0.68894 +0.120638 -0.0746821 -0.191313 -0.423842 -0.567599 -0.705825 +0.117073 -0.0691088 -0.192924 -0.448602 -0.525103 -0.723205 +0.113586 -0.0634818 -0.19455 -0.46329 -0.502865 -0.729719 +0.110566 -0.0574882 -0.196249 -0.50566 -0.457299 -0.731564 +0.106955 -0.0519594 -0.197855 -0.519291 -0.433362 -0.736569 +0.105094 -0.0450504 -0.19975 -0.54092 -0.405645 -0.736789 +0.120201 -0.024768 -0.204535 -0.564803 -0.386991 -0.728859 +0.725526 -0.487347 -0.0662404 0.394409 -0.918878 0.010258 +0.669362 -0.509485 -0.0624508 0.194159 -0.980827 -0.0168096 +0.649715 -0.512119 -0.0624789 0.130829 -0.990809 -0.0344045 +0.633538 -0.51295 -0.0628598 0.0520264 -0.995548 -0.0786031 +0.615194 -0.515012 -0.0629982 0.00818221 -0.99453 -0.104139 +0.601303 -0.514702 -0.0635952 -0.0262809 -0.990942 -0.131697 +0.589433 -0.513324 -0.0644015 -0.05826 -0.986985 -0.14989 +0.576833 -0.512396 -0.0651144 -0.0918447 -0.982896 -0.159625 +0.562603 -0.512397 -0.0656468 -0.133879 -0.975683 -0.173551 +0.551939 -0.510478 -0.0665567 -0.177762 -0.967631 -0.179144 +0.542969 -0.507634 -0.0676412 -0.219496 -0.957941 -0.184853 +0.534162 -0.504722 -0.0687431 -0.27389 -0.942933 -0.189375 +0.524641 -0.502245 -0.0697581 -0.310828 -0.93045 -0.194032 +0.516354 -0.499089 -0.0709018 -0.337411 -0.919354 -0.202346 +0.50925 -0.495284 -0.0721746 -0.36313 -0.907203 -0.212414 +0.502414 -0.491351 -0.0734783 -0.381546 -0.896662 -0.224546 +0.495489 -0.487475 -0.0747609 -0.4004 -0.885479 -0.235812 +0.48821 -0.483817 -0.0760081 -0.416249 -0.874938 -0.247432 +0.481411 -0.479901 -0.0772953 -0.428347 -0.865273 -0.26043 +0.474437 -0.476107 -0.0785637 -0.447647 -0.851365 -0.273482 +0.46663 -0.472808 -0.0797352 -0.472699 -0.832557 -0.288799 +0.458822 -0.469524 -0.0808958 -0.501316 -0.809781 -0.304858 +0.452174 -0.465583 -0.0821924 -0.532911 -0.782183 -0.322795 +0.446138 -0.461299 -0.0835525 -0.566355 -0.750813 -0.339884 +0.440896 -0.456553 -0.0850118 -0.597042 -0.720031 -0.353691 +0.436456 -0.451345 -0.0865541 -0.609573 -0.703725 -0.364955 +0.432965 -0.445577 -0.0882199 -0.608222 -0.700746 -0.372857 +0.430241 -0.439351 -0.0899713 -0.580571 -0.731465 -0.357625 +0.427408 -0.43319 -0.0917165 -0.574829 -0.739234 -0.350864 +0.423759 -0.427513 -0.0933604 -0.555039 -0.762821 -0.331715 +0.419004 -0.422509 -0.0948668 -0.415501 -0.866159 -0.277718 +0.406247 -0.422345 -0.0953842 -0.235762 -0.965491 -0.110661 +0.391091 -0.423684 -0.0955935 -0.112565 -0.993031 0.0349394 +0.37493 -0.425685 -0.0956602 -0.0155139 -0.99132 0.130559 +0.359944 -0.427026 -0.0958621 0.00196294 -0.986318 0.164849 +0.347449 -0.426897 -0.0963626 -0.0490788 -0.989049 0.13919 +0.335822 -0.426269 -0.0969638 -0.117528 -0.987662 0.103507 +0.32505 -0.425151 -0.0976593 -0.18756 -0.979618 0.0719093 +0.314868 -0.423695 -0.0984256 -0.263272 -0.964239 0.0305241 +0.305769 -0.421601 -0.0993228 -0.339117 -0.940705 -0.0085344 +0.297615 -0.418945 -0.100329 -0.408114 -0.91235 -0.0325812 +0.290326 -0.415757 -0.101445 -0.461589 -0.884483 -0.068032 +0.28445 -0.411705 -0.102744 -0.507393 -0.856216 -0.0972049 +0.278941 -0.407427 -0.104079 -0.549564 -0.824589 -0.134286 +0.273929 -0.402854 -0.105486 -0.573333 -0.801716 -0.168943 +0.269201 -0.398095 -0.106925 -0.594191 -0.780943 -0.19252 +0.264325 -0.39344 -0.108338 -0.616134 -0.756023 -0.220929 +0.259366 -0.388851 -0.109745 -0.636379 -0.730438 -0.247956 +0.254242 -0.384366 -0.111125 -0.65681 -0.703205 -0.272219 +0.248338 -0.380397 -0.112399 -0.681361 -0.676022 -0.280611 +0.242875 -0.376154 -0.11373 -0.708942 -0.6387 -0.299103 +0.238603 -0.371145 -0.115218 -0.733827 -0.599982 -0.318622 +0.234751 -0.365868 -0.116763 -0.762688 -0.55585 -0.330662 +0.231577 -0.360145 -0.118406 -0.792329 -0.507061 -0.339268 +0.22906 -0.353993 -0.120129 -0.816661 -0.462529 -0.345157 +0.227214 -0.347383 -0.121953 -0.840728 -0.420284 -0.341376 +0.227137 -0.339595 -0.124027 -0.861706 -0.382087 -0.333875 +0.226137 -0.332406 -0.125973 -0.878044 -0.352749 -0.323431 +0.225517 -0.324954 -0.127978 -0.890252 -0.334819 -0.308787 +0.223574 -0.318373 -0.129797 -0.899299 -0.321167 -0.296838 +0.221409 -0.311932 -0.131586 -0.903569 -0.320777 -0.284019 +0.218985 -0.305659 -0.133345 -0.906383 -0.322012 -0.273459 +0.217197 -0.298957 -0.135194 -0.906918 -0.326424 -0.266359 +0.214956 -0.292549 -0.136975 -0.908204 -0.328146 -0.259781 +0.212637 -0.286191 -0.138753 -0.908455 -0.327075 -0.260254 +0.210134 -0.279947 -0.140502 -0.908188 -0.327773 -0.260305 +0.20765 -0.273692 -0.142255 -0.906021 -0.335598 -0.257877 +0.205275 -0.267358 -0.144031 -0.903104 -0.352194 -0.245691 +0.203279 -0.260759 -0.145859 -0.899958 -0.370146 -0.230361 +0.201858 -0.253746 -0.147771 -0.897751 -0.388754 -0.207154 +0.20132 -0.246101 -0.14982 -0.8982 -0.401298 -0.179433 +0.199911 -0.239065 -0.151745 -0.903203 -0.402022 -0.150339 +0.197443 -0.232749 -0.153509 -0.909882 -0.395455 -0.125427 +0.193722 -0.227328 -0.155091 -0.919762 -0.378708 -0.103047 +0.189628 -0.222166 -0.156615 -0.928571 -0.358706 -0.0953293 +0.187412 -0.21567 -0.158423 -0.936264 -0.340132 -0.0878655 +0.186167 -0.20847 -0.160377 -0.94439 -0.31624 -0.0901151 +0.185377 -0.200946 -0.162407 -0.952568 -0.285791 -0.104587 +0.184936 -0.193142 -0.1645 -0.956154 -0.264703 -0.125298 +0.184121 -0.185606 -0.166528 -0.956464 -0.248986 -0.152257 +0.18296 -0.178299 -0.168515 -0.954985 -0.242116 -0.171415 +0.181776 -0.170996 -0.170497 -0.951632 -0.241154 -0.190372 +0.179661 -0.164366 -0.172342 -0.949256 -0.238862 -0.204597 +0.177349 -0.157874 -0.17415 -0.949419 -0.230439 -0.213309 +0.174728 -0.151595 -0.175911 -0.950768 -0.2154 -0.222809 +0.172335 -0.145145 -0.177717 -0.948798 -0.209524 -0.236393 +0.17005 -0.138612 -0.179539 -0.939878 -0.221332 -0.260081 +0.168602 -0.131455 -0.181494 -0.913643 -0.273293 -0.300943 +0.169673 -0.122402 -0.183854 -0.884453 -0.293796 -0.362531 +0.172077 -0.112342 -0.186439 -0.841493 -0.347584 -0.413612 +0.174625 -0.102129 -0.189054 -0.787645 -0.389202 -0.477637 +0.172108 -0.0957064 -0.190855 -0.684107 -0.509474 -0.521952 +0.164711 -0.092958 -0.191862 -0.567607 -0.592466 -0.571672 +0.156011 -0.0912246 -0.192647 -0.478664 -0.64536 -0.595308 +0.147891 -0.0890672 -0.193518 -0.41052 -0.673515 -0.614696 +0.141122 -0.0859171 -0.194609 -0.373432 -0.659094 -0.652798 +0.136233 -0.0813284 -0.196008 -0.363921 -0.651588 -0.665578 +0.132169 -0.0761255 -0.197546 -0.385573 -0.619773 -0.683532 +0.128357 -0.0707285 -0.199116 -0.437237 -0.55764 -0.705595 +0.124956 -0.0650101 -0.200762 -0.4619 -0.53239 -0.709372 +0.121175 -0.0595889 -0.202342 -0.477628 -0.507905 -0.71687 +0.117951 -0.053742 -0.204018 -0.497771 -0.47752 -0.724017 +0.114707 -0.0479039 -0.205687 -0.515008 -0.457815 -0.724688 +0.112562 -0.0411969 -0.207552 -0.533544 -0.438618 -0.72315 +0.675628 -0.508089 -0.0700758 0.201297 -0.978965 -0.0333041 +0.654581 -0.511462 -0.0699239 0.130787 -0.990198 -0.0490428 +0.639484 -0.51169 -0.0704027 0.0642404 -0.994477 -0.0830146 +0.621553 -0.513504 -0.0705621 0.0089029 -0.993954 -0.109444 +0.606153 -0.514001 -0.0709745 -0.0295448 -0.989806 -0.139327 +0.59438 -0.512561 -0.0717782 -0.0590425 -0.984698 -0.163965 +0.582646 -0.511143 -0.0725758 -0.079052 -0.980381 -0.18057 +0.568241 -0.511231 -0.073071 -0.118491 -0.972675 -0.199658 +0.556426 -0.509927 -0.0738404 -0.154158 -0.965892 -0.208061 +0.546865 -0.507398 -0.0748488 -0.199969 -0.957206 -0.209212 +0.538109 -0.504455 -0.0759516 -0.24819 -0.944611 -0.214742 +0.528771 -0.501859 -0.076972 -0.290706 -0.933037 -0.211974 +0.520086 -0.498916 -0.0780697 -0.33334 -0.917851 -0.21549 +0.512168 -0.495566 -0.0792405 -0.357161 -0.905517 -0.229077 +0.504978 -0.49182 -0.0805007 -0.381209 -0.893057 -0.239021 +0.497954 -0.488002 -0.0817705 -0.401307 -0.880579 -0.252062 +0.491196 -0.484037 -0.0830653 -0.416672 -0.869106 -0.266533 +0.484592 -0.480008 -0.0843789 -0.429073 -0.85852 -0.280786 +0.477965 -0.475999 -0.0856802 -0.44668 -0.844088 -0.296639 +0.471023 -0.472183 -0.0869431 -0.468157 -0.826866 -0.311643 +0.463612 -0.468667 -0.0881454 -0.493769 -0.805762 -0.327019 +0.456602 -0.464927 -0.0893966 -0.521936 -0.78009 -0.345029 +0.450152 -0.460873 -0.0907003 -0.556784 -0.748174 -0.360872 +0.444487 -0.456374 -0.0921084 -0.587984 -0.718684 -0.371173 +0.439933 -0.451223 -0.0936405 -0.603348 -0.700527 -0.381095 +0.436131 -0.445629 -0.0952698 -0.621158 -0.678132 -0.392808 +0.433363 -0.439429 -0.0970191 -0.565732 -0.734867 -0.374055 +0.430682 -0.433171 -0.0987815 -0.556742 -0.745964 -0.365483 +0.42774 -0.427065 -0.100516 -0.536004 -0.769471 -0.347293 +0.422977 -0.422047 -0.102027 -0.419012 -0.853169 -0.310696 +0.409781 -0.422143 -0.102468 -0.276276 -0.949544 -0.148454 +0.391219 -0.425529 -0.102231 -0.0542604 -0.997624 0.0424666 +0.375001 -0.427566 -0.102264 0.0156332 -0.991677 0.127805 +0.360334 -0.428706 -0.102484 -0.00348243 -0.990675 0.136214 +0.349407 -0.427605 -0.103164 -0.0573878 -0.99274 0.105712 +0.339271 -0.426052 -0.103942 -0.124964 -0.989675 0.0702039 +0.329179 -0.424498 -0.104716 -0.172643 -0.984128 0.0410702 +0.319313 -0.422838 -0.105511 -0.263695 -0.964525 -0.0125687 +0.309358 -0.421263 -0.106286 -0.334436 -0.941209 -0.0477544 +0.301077 -0.418673 -0.107273 -0.400059 -0.912986 -0.0800648 +0.29314 -0.415895 -0.108296 -0.46423 -0.877753 -0.118489 +0.286949 -0.412033 -0.109548 -0.511027 -0.84594 -0.15244 +0.281189 -0.407908 -0.110846 -0.556216 -0.809335 -0.188683 +0.276089 -0.403377 -0.112242 -0.576587 -0.787863 -0.216378 +0.271684 -0.398411 -0.113717 -0.597559 -0.763121 -0.24611 +0.267259 -0.393469 -0.115197 -0.614624 -0.738003 -0.278548 +0.262966 -0.38844 -0.116692 -0.629948 -0.71471 -0.303901 +0.259208 -0.383073 -0.118257 -0.645291 -0.691325 -0.325069 +0.254257 -0.378469 -0.119658 -0.663566 -0.666066 -0.340641 +0.250198 -0.373303 -0.12118 -0.688687 -0.63314 -0.353334 +0.24604 -0.368205 -0.122686 -0.715447 -0.596671 -0.363483 +0.241473 -0.363376 -0.124136 -0.742383 -0.559068 -0.369206 +0.237311 -0.358287 -0.125641 -0.769657 -0.518177 -0.372989 +0.234805 -0.352114 -0.127375 -0.795594 -0.478168 -0.372003 +0.23285 -0.345569 -0.129194 -0.81986 -0.44035 -0.365955 +0.231712 -0.33847 -0.131124 -0.841944 -0.404823 -0.35672 +0.229649 -0.33198 -0.132933 -0.859066 -0.376993 -0.34624 +0.227911 -0.325272 -0.134778 -0.872523 -0.354517 -0.336187 +0.22564 -0.318904 -0.13656 -0.883878 -0.343165 -0.317801 +0.223406 -0.31251 -0.138338 -0.889738 -0.338707 -0.306014 +0.221379 -0.305963 -0.140156 -0.892913 -0.338319 -0.297064 +0.220425 -0.298691 -0.142132 -0.895626 -0.334581 -0.293101 +0.218837 -0.291836 -0.144015 -0.8968 -0.331462 -0.293057 +0.217628 -0.284711 -0.145958 -0.894095 -0.331845 -0.300788 +0.215706 -0.278062 -0.147798 -0.893023 -0.33712 -0.298092 +0.213332 -0.271726 -0.149574 -0.890807 -0.348765 -0.291249 +0.21052 -0.265671 -0.151284 -0.887714 -0.369698 -0.274385 +0.20941 -0.258446 -0.153251 -0.880645 -0.394971 -0.261656 +0.208459 -0.251092 -0.155245 -0.876058 -0.421036 -0.235056 +0.206468 -0.24446 -0.157088 -0.876938 -0.43468 -0.205021 +0.202667 -0.239082 -0.158652 -0.882447 -0.435134 -0.178735 +0.199267 -0.233422 -0.160284 -0.890627 -0.426323 -0.158215 +0.195012 -0.228369 -0.161782 -0.904155 -0.405843 -0.1334 +0.19111 -0.223071 -0.163337 -0.917418 -0.378412 -0.123077 +0.188423 -0.216902 -0.165079 -0.928925 -0.350726 -0.1187 +0.186436 -0.210237 -0.166921 -0.938479 -0.321979 -0.124843 +0.185419 -0.202874 -0.168924 -0.946898 -0.290223 -0.138406 +0.184885 -0.19515 -0.170999 -0.952962 -0.257605 -0.159698 +0.184454 -0.187332 -0.173097 -0.953505 -0.24052 -0.1816 +0.183777 -0.179677 -0.175162 -0.951281 -0.234463 -0.200227 +0.182705 -0.1723 -0.177166 -0.947074 -0.235401 -0.21826 +0.180655 -0.165615 -0.179026 -0.944723 -0.234821 -0.228818 +0.178343 -0.159124 -0.180834 -0.943803 -0.229164 -0.238159 +0.175721 -0.152849 -0.182602 -0.945296 -0.213506 -0.246638 +0.173622 -0.146184 -0.184454 -0.948358 -0.191758 -0.252676 +0.171804 -0.139304 -0.186355 -0.942805 -0.192209 -0.272352 +0.171405 -0.131366 -0.188485 -0.926982 -0.213505 -0.308416 +0.17282 -0.122056 -0.190913 -0.899552 -0.237002 -0.366929 +0.175188 -0.11201 -0.193505 -0.855973 -0.284998 -0.431377 +0.178815 -0.100994 -0.196312 -0.792391 -0.340054 -0.506438 +0.177166 -0.0939136 -0.198259 -0.725584 -0.42833 -0.538575 +0.171682 -0.0897068 -0.199577 -0.617626 -0.540281 -0.571522 +0.163134 -0.0878297 -0.200381 -0.537648 -0.588986 -0.603348 +0.155352 -0.0854059 -0.201308 -0.458851 -0.633705 -0.622796 +0.148883 -0.0819948 -0.202448 -0.417626 -0.633926 -0.650942 +0.144115 -0.0773 -0.203868 -0.39115 -0.63789 -0.6634 +0.139911 -0.0721867 -0.205383 -0.399167 -0.615474 -0.6796 +0.136005 -0.0668381 -0.206949 -0.444147 -0.564671 -0.695615 +0.133007 -0.0607979 -0.208666 -0.469095 -0.53941 -0.699276 +0.129529 -0.0551241 -0.210302 -0.487469 -0.513753 -0.705998 +0.125731 -0.0496955 -0.211885 -0.508877 -0.481219 -0.713774 +0.121338 -0.0447322 -0.213365 -0.523597 -0.460582 -0.716736 +0.121598 -0.0361294 -0.215646 -0.542746 -0.44322 -0.71343 +0.68548 -0.504778 -0.0781142 0.252267 -0.966664 -0.0438624 +0.659501 -0.51078 -0.0773933 0.143646 -0.986994 -0.0721875 +0.643814 -0.51131 -0.0777837 0.0644591 -0.993322 -0.0956983 +0.62705 -0.512477 -0.0780453 0.0126356 -0.99326 -0.115226 +0.611075 -0.513272 -0.0783839 -0.0322496 -0.989137 -0.143418 +0.599554 -0.511681 -0.0792012 -0.0644979 -0.983138 -0.171113 +0.587836 -0.51023 -0.0799883 -0.0851778 -0.976861 -0.196188 +0.574915 -0.509481 -0.0806324 -0.111602 -0.969409 -0.218615 +0.562309 -0.508598 -0.0812958 -0.14108 -0.962206 -0.232929 +0.55091 -0.50709 -0.0820898 -0.180299 -0.954635 -0.236994 +0.541563 -0.504461 -0.0831117 -0.232599 -0.94346 -0.236181 +0.532825 -0.501521 -0.0841974 -0.274259 -0.932002 -0.236971 +0.524457 -0.498389 -0.0853185 -0.314887 -0.918166 -0.240453 +0.51618 -0.495231 -0.0864448 -0.34739 -0.903666 -0.25042 +0.508441 -0.491786 -0.0876367 -0.376996 -0.889195 -0.259244 +0.501166 -0.488103 -0.0888661 -0.398575 -0.875601 -0.27288 +0.494368 -0.484159 -0.0901535 -0.417262 -0.861888 -0.288169 +0.487729 -0.480132 -0.0914611 -0.430274 -0.84985 -0.304338 +0.481238 -0.476041 -0.0927702 -0.445008 -0.835729 -0.321757 +0.474778 -0.471944 -0.0940937 -0.463606 -0.819746 -0.336286 +0.468263 -0.467886 -0.0953965 -0.485979 -0.799781 -0.352385 +0.461665 -0.463895 -0.096693 -0.512689 -0.7744 -0.370748 +0.454867 -0.460037 -0.097959 -0.543168 -0.745678 -0.385921 +0.449215 -0.455517 -0.0993557 -0.575482 -0.714395 -0.39807 +0.444508 -0.450448 -0.100874 -0.592855 -0.694549 -0.407583 +0.440433 -0.445011 -0.102468 -0.611905 -0.675415 -0.411567 +0.437027 -0.439184 -0.104141 -0.554864 -0.733758 -0.39208 +0.434453 -0.432856 -0.105925 -0.528241 -0.756652 -0.38528 +0.431921 -0.426496 -0.107714 -0.512259 -0.780773 -0.357752 +0.427086 -0.421517 -0.109207 -0.480659 -0.808928 -0.338533 +0.419662 -0.41811 -0.110377 -0.246328 -0.948215 -0.200533 +0.393575 -0.426026 -0.10915 -0.0159329 -0.999318 0.0333399 +0.375873 -0.428951 -0.108966 0.0369835 -0.992444 0.116997 +0.361691 -0.429786 -0.109229 -0.00768367 -0.99436 0.105782 +0.351143 -0.428453 -0.109946 -0.0757197 -0.994645 0.07035 +0.341015 -0.426882 -0.110712 -0.12989 -0.990702 0.0404873 +0.331428 -0.425013 -0.111537 -0.190757 -0.981627 -0.00469231 +0.321944 -0.423111 -0.11237 -0.267797 -0.962029 -0.0527711 +0.312562 -0.421173 -0.113209 -0.342291 -0.935045 -0.0923516 +0.304068 -0.418711 -0.114162 -0.396408 -0.909021 -0.128624 +0.296037 -0.41598 -0.115167 -0.463645 -0.871215 -0.1613 +0.289596 -0.412258 -0.116378 -0.515565 -0.834243 -0.195524 +0.28383 -0.408138 -0.117675 -0.560391 -0.794748 -0.233106 +0.278709 -0.403617 -0.119064 -0.577783 -0.774701 -0.256918 +0.274487 -0.398528 -0.120567 -0.601407 -0.745836 -0.286422 +0.270348 -0.393392 -0.12208 -0.61943 -0.719982 -0.312942 +0.266294 -0.388206 -0.123607 -0.632613 -0.69794 -0.335683 +0.262354 -0.382944 -0.125148 -0.642635 -0.679651 -0.353689 +0.25887 -0.377393 -0.126755 -0.658188 -0.656147 -0.369136 +0.255717 -0.371631 -0.128405 -0.676428 -0.627419 -0.385734 +0.251848 -0.366328 -0.129957 -0.699479 -0.598237 -0.390951 +0.248277 -0.360837 -0.131551 -0.723461 -0.566722 -0.394247 +0.244935 -0.355194 -0.133174 -0.754494 -0.527614 -0.390336 +0.241754 -0.349446 -0.134815 -0.781371 -0.490847 -0.385395 +0.238724 -0.343596 -0.136483 -0.804076 -0.459705 -0.377005 +0.236247 -0.337381 -0.138232 -0.82651 -0.424342 -0.369885 +0.233759 -0.331165 -0.139982 -0.844583 -0.396792 -0.359495 +0.231083 -0.325072 -0.141699 -0.859259 -0.375137 -0.347772 +0.227929 -0.319294 -0.143353 -0.870087 -0.361458 -0.335106 +0.225405 -0.313089 -0.145104 -0.87711 -0.353962 -0.324638 +0.223392 -0.306535 -0.146923 -0.882937 -0.348815 -0.314248 +0.222628 -0.299127 -0.14893 -0.886607 -0.340731 -0.312781 +0.22235 -0.291374 -0.151013 -0.888668 -0.335515 -0.312569 +0.222586 -0.283264 -0.153173 -0.889975 -0.334814 -0.309589 +0.221096 -0.276313 -0.155084 -0.887726 -0.343589 -0.306412 +0.219334 -0.269536 -0.156956 -0.881659 -0.36367 -0.300703 +0.217191 -0.263016 -0.158778 -0.875752 -0.388261 -0.2869 +0.214875 -0.256603 -0.160567 -0.8683 -0.417175 -0.26837 +0.212433 -0.250276 -0.162348 -0.862166 -0.442769 -0.246221 +0.20842 -0.245039 -0.163881 -0.860263 -0.457441 -0.225159 +0.20462 -0.239663 -0.165453 -0.863772 -0.463584 -0.197455 +0.200134 -0.234765 -0.166919 -0.874343 -0.451221 -0.178667 +0.195731 -0.229815 -0.16839 -0.888543 -0.430351 -0.159028 +0.19166 -0.22463 -0.169918 -0.90257 -0.403907 -0.149081 +0.188889 -0.218527 -0.171644 -0.919328 -0.364834 -0.147421 +0.187162 -0.211679 -0.173536 -0.931737 -0.328876 -0.153971 +0.185967 -0.204445 -0.175511 -0.942628 -0.287554 -0.16961 +0.184838 -0.197147 -0.177502 -0.948561 -0.25437 -0.188487 +0.184977 -0.188923 -0.179697 -0.950335 -0.232176 -0.207263 +0.184468 -0.181154 -0.181796 -0.947253 -0.2263 -0.226935 +0.183481 -0.173714 -0.183816 -0.94382 -0.229169 -0.238088 +0.181546 -0.166944 -0.185693 -0.941767 -0.230203 -0.245113 +0.179686 -0.160124 -0.187583 -0.94082 -0.228342 -0.250436 +0.177586 -0.153459 -0.189435 -0.943306 -0.214476 -0.253328 +0.176122 -0.146322 -0.191396 -0.945669 -0.186401 -0.266392 +0.174921 -0.138991 -0.193401 -0.942032 -0.17533 -0.286069 +0.174751 -0.13087 -0.195576 -0.931564 -0.166436 -0.323245 +0.175702 -0.12191 -0.19794 -0.901666 -0.205466 -0.380502 +0.177798 -0.11207 -0.200502 -0.868669 -0.221734 -0.443 +0.18346 -0.0995229 -0.203662 -0.810522 -0.261438 -0.524123 +0.182695 -0.0917688 -0.205767 -0.741526 -0.371361 -0.558776 +0.178672 -0.0864464 -0.207329 -0.654676 -0.464789 -0.596129 +0.170546 -0.0842356 -0.208198 -0.567677 -0.545739 -0.616371 +0.162909 -0.0816714 -0.209144 -0.498345 -0.592763 -0.632682 +0.155954 -0.0786187 -0.210199 -0.438638 -0.623889 -0.646809 +0.150757 -0.0742334 -0.211546 -0.415818 -0.624234 -0.661385 +0.146946 -0.0687958 -0.213132 -0.410579 -0.615844 -0.67243 +0.143472 -0.0631011 -0.214772 -0.447008 -0.571072 -0.688521 +0.140586 -0.056955 -0.216519 -0.47903 -0.541412 -0.690944 +0.137009 -0.051338 -0.218141 -0.491268 -0.522682 -0.696749 +0.132949 -0.046096 -0.219682 -0.513964 -0.491582 -0.702985 +0.1294 -0.0404553 -0.221315 -0.530914 -0.457205 -0.713508 +0.129256 -0.0321576 -0.223537 -0.547708 -0.43515 -0.714605 +0.702698 -0.497529 -0.0870057 0.333208 -0.941233 -0.0552618 +0.665617 -0.509456 -0.085014 0.168014 -0.982739 -0.0774474 +0.648949 -0.510503 -0.0852788 0.0840961 -0.990641 -0.107502 +0.632469 -0.511496 -0.085548 0.0217892 -0.992103 -0.123532 +0.61632 -0.512365 -0.085838 -0.0390424 -0.987773 -0.150936 +0.604318 -0.511026 -0.0865926 -0.0789502 -0.980245 -0.181348 +0.593889 -0.508854 -0.0875183 -0.0977627 -0.973237 -0.207978 +0.582534 -0.50723 -0.0883202 -0.112833 -0.966315 -0.231313 +0.569662 -0.506473 -0.0889463 -0.132481 -0.958366 -0.252951 +0.557053 -0.505612 -0.0895818 -0.158589 -0.950769 -0.266251 +0.545895 -0.503976 -0.0903851 -0.202353 -0.941012 -0.271201 +0.536844 -0.501199 -0.0914304 -0.25347 -0.929446 -0.26811 +0.528049 -0.498305 -0.0924941 -0.296273 -0.916574 -0.268542 +0.519884 -0.495071 -0.0936283 -0.338012 -0.900748 -0.272768 +0.512164 -0.491611 -0.0948065 -0.368324 -0.885675 -0.282696 +0.504717 -0.488009 -0.0960174 -0.39487 -0.869955 -0.295392 +0.497629 -0.484225 -0.0972696 -0.416397 -0.854323 -0.311041 +0.491224 -0.48006 -0.0985958 -0.433388 -0.83893 -0.329199 +0.485035 -0.475786 -0.0999447 -0.444117 -0.826488 -0.345944 +0.478843 -0.471519 -0.10129 -0.457242 -0.811535 -0.36379 +0.47247 -0.467377 -0.10261 -0.480129 -0.791013 -0.379176 +0.466004 -0.463298 -0.103914 -0.502527 -0.766674 -0.399598 +0.459812 -0.459076 -0.10525 -0.533504 -0.740908 -0.407959 +0.453956 -0.454666 -0.106623 -0.562188 -0.712146 -0.420467 +0.449154 -0.449644 -0.108131 -0.581171 -0.691866 -0.428442 +0.445016 -0.444235 -0.109716 -0.593953 -0.677634 -0.433629 +0.441427 -0.438498 -0.111376 -0.544968 -0.731472 -0.409829 +0.43821 -0.432545 -0.113077 -0.518483 -0.75618 -0.399207 +0.435494 -0.42629 -0.114842 -0.492066 -0.787719 -0.370634 +0.431774 -0.420638 -0.116485 -0.448131 -0.824486 -0.345548 +0.426371 -0.41599 -0.117905 -0.265562 -0.934169 -0.23834 +0.396003 -0.426481 -0.116084 0.00763284 -0.999806 0.0182235 +0.377479 -0.429894 -0.115768 0.044377 -0.995 0.0894735 +0.363527 -0.430581 -0.116038 -0.0247799 -0.997387 0.0678789 +0.352223 -0.429701 -0.116646 -0.0779986 -0.996225 0.0381283 +0.342039 -0.428168 -0.117392 -0.144511 -0.989493 0.00479125 +0.332432 -0.426308 -0.118203 -0.209578 -0.97662 -0.0478585 +0.322901 -0.424429 -0.119018 -0.274299 -0.957879 -0.0850311 +0.313897 -0.422241 -0.119898 -0.348901 -0.928095 -0.13003 +0.305784 -0.419538 -0.120888 -0.401381 -0.901957 -0.159275 +0.298433 -0.416373 -0.12198 -0.462501 -0.864044 -0.1988 +0.292275 -0.412479 -0.123221 -0.517254 -0.822491 -0.236554 +0.286744 -0.408194 -0.124552 -0.566278 -0.778683 -0.270152 +0.281736 -0.403597 -0.125948 -0.579706 -0.762007 -0.288593 +0.277613 -0.398443 -0.127473 -0.608067 -0.72917 -0.313953 +0.273542 -0.393257 -0.128992 -0.626884 -0.703004 -0.335861 +0.269453 -0.388085 -0.130518 -0.63836 -0.683036 -0.354905 +0.265525 -0.382816 -0.13206 -0.643562 -0.66914 -0.371591 +0.261747 -0.377444 -0.133629 -0.655516 -0.648195 -0.387481 +0.258414 -0.371794 -0.135253 -0.668914 -0.626369 -0.400272 +0.254879 -0.366272 -0.136849 -0.68678 -0.601724 -0.407753 +0.251171 -0.360858 -0.138422 -0.709088 -0.575365 -0.407614 +0.247934 -0.355144 -0.140059 -0.735088 -0.543331 -0.405508 +0.24523 -0.349079 -0.14178 -0.765884 -0.506673 -0.395859 +0.242277 -0.343168 -0.143461 -0.788498 -0.476693 -0.388631 +0.239375 -0.337227 -0.145154 -0.811336 -0.446072 -0.37783 +0.236321 -0.331381 -0.146822 -0.831362 -0.419892 -0.364045 +0.233154 -0.325611 -0.148476 -0.849388 -0.394628 -0.35044 +0.230167 -0.319716 -0.150149 -0.862511 -0.378796 -0.335543 +0.227585 -0.313546 -0.15189 -0.872482 -0.366865 -0.322777 +0.225608 -0.306967 -0.153727 -0.87822 -0.358557 -0.316491 +0.224918 -0.299506 -0.155748 -0.884265 -0.345603 -0.31406 +0.224232 -0.292037 -0.157779 -0.887533 -0.337115 -0.314067 +0.22368 -0.284455 -0.159831 -0.888254 -0.335891 -0.313339 +0.222256 -0.277456 -0.161755 -0.884915 -0.347567 -0.310038 +0.220616 -0.270593 -0.163651 -0.878963 -0.370449 -0.300317 +0.218952 -0.263745 -0.165546 -0.871129 -0.398283 -0.287237 +0.216778 -0.257234 -0.167361 -0.860401 -0.431095 -0.271784 +0.214001 -0.251134 -0.169088 -0.852624 -0.457356 -0.252702 +0.209933 -0.24594 -0.170617 -0.846536 -0.478188 -0.233909 +0.205562 -0.240955 -0.1721 -0.845477 -0.489327 -0.213846 +0.20098 -0.236117 -0.173545 -0.858071 -0.473339 -0.199161 +0.196559 -0.231179 -0.175016 -0.872886 -0.45058 -0.187207 +0.193216 -0.225485 -0.176651 -0.888528 -0.423695 -0.176071 +0.1905 -0.219341 -0.178389 -0.908548 -0.379078 -0.175617 +0.188845 -0.212436 -0.180297 -0.924909 -0.332983 -0.183484 +0.187759 -0.205123 -0.182296 -0.936521 -0.284775 -0.204533 +0.187291 -0.197348 -0.184401 -0.944681 -0.246429 -0.216447 +0.18648 -0.189806 -0.186452 -0.944984 -0.227619 -0.234935 +0.185578 -0.182318 -0.18849 -0.942519 -0.222878 -0.248964 +0.184714 -0.174793 -0.190543 -0.939835 -0.225722 -0.256436 +0.183366 -0.167597 -0.192513 -0.938751 -0.22898 -0.257519 +0.181855 -0.160513 -0.194465 -0.93824 -0.228435 -0.259852 +0.180193 -0.153528 -0.1964 -0.940357 -0.210107 -0.26755 +0.178908 -0.146264 -0.198389 -0.944722 -0.178682 -0.274909 +0.177834 -0.138824 -0.200423 -0.946044 -0.137325 -0.2935 +0.177411 -0.130894 -0.202561 -0.93513 -0.125372 -0.331381 +0.178011 -0.122186 -0.204883 -0.911268 -0.135806 -0.388777 +0.180417 -0.112118 -0.207508 -0.881604 -0.15431 -0.446052 +0.186611 -0.0991732 -0.210776 -0.813433 -0.210971 -0.54205 +0.187758 -0.0899749 -0.21321 -0.752954 -0.322269 -0.573762 +0.184831 -0.0838193 -0.214963 -0.67209 -0.424391 -0.606784 +0.177554 -0.0809487 -0.215964 -0.591821 -0.513037 -0.621725 +0.170309 -0.0780715 -0.216979 -0.539354 -0.540685 -0.645567 +0.163684 -0.074738 -0.218085 -0.477842 -0.591701 -0.649275 +0.158147 -0.0706024 -0.219381 -0.440244 -0.615375 -0.653834 +0.154501 -0.0650162 -0.220995 -0.430217 -0.605212 -0.669801 +0.151019 -0.0593083 -0.222639 -0.43939 -0.590606 -0.676847 +0.147705 -0.0534727 -0.22432 -0.477244 -0.542681 -0.691183 +0.144515 -0.0475362 -0.226014 -0.490611 -0.524616 -0.695759 +0.140482 -0.0422526 -0.227561 -0.51254 -0.494052 -0.702295 +0.135787 -0.0374913 -0.228999 -0.537771 -0.466725 -0.702118 +0.137371 -0.0278255 -0.231541 -0.550122 -0.448956 -0.704134 +0.672328 -0.507826 -0.0927162 0.180971 -0.979248 -0.0912446 +0.654367 -0.50954 -0.0928168 0.0896629 -0.989589 -0.112581 +0.638016 -0.510452 -0.0930754 0.0363497 -0.990128 -0.135383 +0.621496 -0.511506 -0.0933106 -0.0394462 -0.986099 -0.161412 +0.608998 -0.510423 -0.0939875 -0.0839341 -0.97841 -0.188866 +0.59868 -0.508184 -0.0949104 -0.103956 -0.971826 -0.211539 +0.589168 -0.505519 -0.0959229 -0.124879 -0.963508 -0.236766 +0.577373 -0.504155 -0.0966578 -0.137705 -0.954279 -0.265309 +0.564517 -0.503408 -0.0972569 -0.151662 -0.94627 -0.285609 +0.552287 -0.502358 -0.0979253 -0.17772 -0.937975 -0.297692 +0.541824 -0.500356 -0.0987913 -0.21919 -0.927161 -0.303859 +0.53287 -0.497535 -0.0998295 -0.268863 -0.914899 -0.301122 +0.524176 -0.494589 -0.100889 -0.316172 -0.897929 -0.306201 +0.516343 -0.491175 -0.102051 -0.355083 -0.881463 -0.311354 +0.508469 -0.487811 -0.103205 -0.387627 -0.863944 -0.321476 +0.501264 -0.484082 -0.104431 -0.412526 -0.846465 -0.336632 +0.49498 -0.479837 -0.105773 -0.431223 -0.829468 -0.355009 +0.489018 -0.475428 -0.107141 -0.444447 -0.813336 -0.375436 +0.483446 -0.470793 -0.108566 -0.456646 -0.797903 -0.393478 +0.477311 -0.466504 -0.109912 -0.470817 -0.779932 -0.412357 +0.471172 -0.462224 -0.111257 -0.493925 -0.756054 -0.429443 +0.465038 -0.457951 -0.1126 -0.518323 -0.731262 -0.443393 +0.459145 -0.453554 -0.113967 -0.541583 -0.706607 -0.455405 +0.453727 -0.44888 -0.115393 -0.563271 -0.68859 -0.456694 +0.448814 -0.443921 -0.116881 -0.574204 -0.680644 -0.454989 +0.445427 -0.438067 -0.118566 -0.522198 -0.739052 -0.425572 +0.442376 -0.431998 -0.120294 -0.48942 -0.766175 -0.416465 +0.439619 -0.42576 -0.122059 -0.456893 -0.79929 -0.390366 +0.436156 -0.41994 -0.123733 -0.42904 -0.834019 -0.346898 +0.431567 -0.414804 -0.125265 -0.229261 -0.943957 -0.237457 +0.399203 -0.426471 -0.123123 0.0331157 -0.999435 -0.00577866 +0.379908 -0.430336 -0.122684 0.0511403 -0.996584 0.0648705 +0.365754 -0.43114 -0.122904 -0.0372504 -0.998905 0.0283702 +0.354085 -0.430468 -0.12345 -0.0881807 -0.996104 0.00158124 +0.343553 -0.429143 -0.124133 -0.164437 -0.985754 -0.0353615 +0.333821 -0.427353 -0.124923 -0.22592 -0.970621 -0.0828016 +0.324539 -0.425317 -0.125761 -0.287764 -0.950007 -0.121155 +0.315829 -0.422946 -0.126664 -0.357044 -0.920024 -0.161478 +0.308067 -0.42002 -0.127699 -0.411439 -0.88938 -0.199301 +0.301541 -0.41633 -0.128893 -0.464995 -0.854428 -0.231804 +0.296067 -0.411994 -0.130231 -0.519751 -0.811131 -0.268191 +0.291102 -0.407353 -0.131633 -0.551849 -0.781388 -0.291367 +0.286827 -0.40228 -0.133138 -0.583576 -0.748564 -0.314786 +0.282715 -0.3971 -0.13466 -0.609835 -0.716733 -0.338222 +0.278238 -0.39216 -0.136127 -0.627741 -0.692533 -0.355442 +0.273625 -0.387315 -0.137576 -0.639074 -0.672095 -0.373999 +0.269136 -0.382397 -0.13904 -0.644097 -0.658848 -0.388665 +0.265332 -0.377042 -0.140606 -0.65334 -0.642358 -0.400654 +0.261287 -0.371839 -0.142128 -0.664873 -0.625328 -0.408545 +0.257382 -0.366551 -0.143681 -0.681247 -0.605946 -0.410772 +0.253506 -0.361251 -0.145224 -0.701341 -0.582372 -0.411052 +0.249986 -0.35571 -0.146825 -0.7241 -0.553861 -0.410997 +0.246838 -0.349931 -0.148486 -0.752455 -0.521971 -0.401695 +0.244257 -0.343777 -0.150222 -0.774712 -0.495751 -0.392498 +0.241517 -0.337723 -0.151936 -0.798027 -0.466406 -0.381603 +0.238457 -0.331882 -0.153603 -0.821141 -0.440282 -0.363151 +0.235251 -0.326135 -0.155253 -0.839785 -0.418113 -0.346327 +0.23273 -0.319921 -0.157008 -0.856511 -0.397215 -0.329559 +0.230474 -0.313534 -0.158793 -0.869433 -0.380932 -0.314604 +0.228819 -0.306734 -0.160683 -0.878299 -0.364968 -0.308852 +0.227803 -0.299488 -0.16266 -0.886711 -0.346497 -0.306081 +0.226425 -0.292476 -0.164598 -0.890017 -0.336808 -0.307294 +0.22494 -0.285533 -0.166516 -0.891306 -0.33334 -0.307343 +0.223248 -0.278716 -0.168398 -0.887324 -0.349819 -0.300474 +0.221542 -0.271901 -0.170289 -0.87977 -0.373769 -0.29377 +0.22008 -0.264911 -0.172222 -0.870046 -0.404777 -0.28138 +0.217846 -0.258444 -0.174032 -0.858008 -0.437299 -0.269429 +0.215149 -0.252289 -0.175772 -0.845365 -0.469564 -0.254692 +0.211075 -0.247096 -0.177293 -0.836573 -0.491775 -0.241462 +0.206548 -0.242219 -0.178751 -0.83349 -0.501458 -0.232021 +0.202034 -0.237334 -0.180209 -0.844564 -0.489014 -0.218123 +0.198031 -0.2321 -0.181742 -0.857188 -0.470717 -0.208939 +0.194889 -0.226257 -0.183418 -0.874613 -0.438498 -0.206815 +0.192344 -0.219989 -0.185185 -0.896453 -0.392497 -0.205713 +0.190411 -0.21328 -0.187048 -0.914789 -0.339498 -0.218867 +0.18927 -0.206008 -0.189042 -0.928789 -0.287252 -0.234173 +0.188728 -0.198286 -0.191142 -0.935698 -0.246636 -0.252266 +0.188395 -0.190402 -0.193277 -0.938576 -0.226334 -0.260476 +0.188 -0.182544 -0.195403 -0.932895 -0.222916 -0.282869 +0.187077 -0.175052 -0.197452 -0.935076 -0.223449 -0.275145 +0.185443 -0.168068 -0.199383 -0.935649 -0.226379 -0.270769 +0.183882 -0.161016 -0.201332 -0.933393 -0.227386 -0.27762 +0.182287 -0.153982 -0.20328 -0.937212 -0.20546 -0.281816 +0.181017 -0.146701 -0.20528 -0.942353 -0.16683 -0.290066 +0.18015 -0.13911 -0.207355 -0.944006 -0.121979 -0.306553 +0.179963 -0.131004 -0.209543 -0.934058 -0.0960428 -0.343965 +0.180611 -0.122259 -0.211876 -0.915587 -0.08511 -0.39301 +0.183622 -0.111724 -0.214619 -0.883685 -0.101749 -0.456889 +0.189001 -0.0993964 -0.217777 -0.832716 -0.158382 -0.530566 +0.191344 -0.0892999 -0.220423 -0.771058 -0.25935 -0.581557 +0.19052 -0.0815494 -0.222539 -0.679392 -0.387112 -0.623355 +0.184209 -0.077937 -0.223706 -0.617804 -0.461785 -0.636453 +0.177134 -0.074905 -0.224741 -0.563142 -0.509921 -0.650271 +0.170386 -0.071658 -0.225822 -0.504373 -0.560861 -0.656539 +0.165548 -0.0669631 -0.227241 -0.463349 -0.596414 -0.655437 +0.161818 -0.0614269 -0.228851 -0.445062 -0.594849 -0.669384 +0.158486 -0.0555908 -0.230527 -0.449138 -0.582122 -0.677798 +0.155129 -0.0497697 -0.232201 -0.467076 -0.557107 -0.68664 +0.150858 -0.0446488 -0.233708 -0.496659 -0.527803 -0.689024 +0.14631 -0.0397503 -0.235172 -0.519919 -0.47707 -0.708582 +0.142603 -0.0342087 -0.23678 -0.536628 -0.45341 -0.711653 +0.146924 -0.0223869 -0.239831 -0.563632 -0.417382 -0.712821 +0.682739 -0.504206 -0.100878 0.178437 -0.973815 -0.140878 +0.660255 -0.508336 -0.100423 0.118369 -0.982768 -0.141978 +0.643725 -0.509329 -0.100649 0.0497527 -0.987568 -0.149117 +0.626343 -0.510834 -0.100753 -0.0247133 -0.98409 -0.17595 +0.613502 -0.509921 -0.101382 -0.0793434 -0.976952 -0.198168 +0.603036 -0.507745 -0.102273 -0.119894 -0.966935 -0.225085 +0.593911 -0.50486 -0.103325 -0.137502 -0.960025 -0.243817 +0.584383 -0.502225 -0.104316 -0.153018 -0.948708 -0.276658 +0.572234 -0.501072 -0.104987 -0.16206 -0.940385 -0.299022 +0.560137 -0.499922 -0.105659 -0.170601 -0.931433 -0.321451 +0.548719 -0.498437 -0.106395 -0.196336 -0.922606 -0.33204 +0.538607 -0.496244 -0.10729 -0.231402 -0.912072 -0.338493 +0.529842 -0.493327 -0.108334 -0.283666 -0.895742 -0.342318 +0.521648 -0.490114 -0.10945 -0.326129 -0.879334 -0.347004 +0.513596 -0.486833 -0.110569 -0.372794 -0.857969 -0.353433 +0.50583 -0.483413 -0.111728 -0.401437 -0.838547 -0.368357 +0.498988 -0.479481 -0.112992 -0.43136 -0.817774 -0.381018 +0.493212 -0.474946 -0.114386 -0.442172 -0.80127 -0.403053 +0.48813 -0.470026 -0.115872 -0.454405 -0.783965 -0.422984 +0.48262 -0.465362 -0.117291 -0.467086 -0.763498 -0.445985 +0.476822 -0.460875 -0.118677 -0.48558 -0.741079 -0.463697 +0.470915 -0.456452 -0.120051 -0.504653 -0.719017 -0.477849 +0.464854 -0.452142 -0.121395 -0.522295 -0.699458 -0.487819 +0.458695 -0.447887 -0.12272 -0.537978 -0.689242 -0.48531 +0.453126 -0.443309 -0.124124 -0.552024 -0.681991 -0.479748 +0.449318 -0.437692 -0.12576 -0.492516 -0.746734 -0.447009 +0.446294 -0.431609 -0.127488 -0.464543 -0.775999 -0.426646 +0.443685 -0.425268 -0.12928 -0.442927 -0.803701 -0.397343 +0.439804 -0.4197 -0.130902 -0.388721 -0.847236 -0.36206 +0.435165 -0.414584 -0.132425 -0.205 -0.946612 -0.2488 +0.404164 -0.425401 -0.130414 0.0473264 -0.998564 -0.0251034 +0.383555 -0.430045 -0.129771 0.0707081 -0.996875 0.0352629 +0.368833 -0.431174 -0.129897 -0.0363333 -0.999338 -0.00263901 +0.357115 -0.430534 -0.130416 -0.0904456 -0.995568 -0.0257894 +0.346428 -0.429286 -0.131072 -0.173992 -0.982039 -0.0730024 +0.336682 -0.427501 -0.131845 -0.224527 -0.968479 -0.107878 +0.32756 -0.425351 -0.132695 -0.295028 -0.943206 -0.15271 +0.319246 -0.422731 -0.133645 -0.348269 -0.919175 -0.183921 +0.31212 -0.419388 -0.134759 -0.414995 -0.880866 -0.227716 +0.305601 -0.415695 -0.135954 -0.466462 -0.844647 -0.262652 +0.300582 -0.411067 -0.13735 -0.512689 -0.805741 -0.296534 +0.296536 -0.405833 -0.138886 -0.543522 -0.777626 -0.316043 +0.292741 -0.400435 -0.140454 -0.580737 -0.738575 -0.342419 +0.289028 -0.395 -0.142039 -0.604936 -0.705843 -0.368564 +0.28476 -0.389912 -0.143537 -0.623595 -0.683641 -0.379167 +0.279603 -0.3854 -0.144912 -0.636559 -0.665287 -0.390114 +0.273466 -0.381524 -0.146139 -0.642612 -0.651532 -0.403181 +0.268886 -0.37666 -0.14759 -0.650007 -0.639006 -0.411294 +0.264384 -0.37175 -0.149053 -0.659307 -0.626008 -0.416448 +0.260313 -0.366564 -0.150573 -0.672639 -0.610389 -0.418311 +0.256154 -0.361437 -0.152079 -0.691074 -0.590357 -0.417008 +0.252344 -0.356085 -0.153646 -0.715703 -0.562904 -0.413411 +0.248963 -0.350455 -0.155262 -0.740728 -0.535854 -0.405196 +0.245938 -0.344586 -0.156941 -0.760419 -0.514317 -0.396537 +0.243204 -0.33853 -0.15866 -0.785643 -0.488152 -0.380097 +0.240574 -0.332397 -0.160396 -0.811128 -0.462141 -0.358467 +0.237672 -0.326439 -0.162093 -0.831294 -0.440147 -0.339443 +0.235552 -0.319958 -0.163905 -0.850038 -0.41784 -0.320696 +0.233706 -0.313293 -0.165765 -0.86657 -0.395098 -0.304884 +0.232378 -0.306258 -0.167704 -0.879881 -0.369541 -0.298746 +0.230612 -0.299521 -0.169574 -0.889438 -0.349078 -0.295033 +0.228551 -0.292963 -0.171406 -0.89521 -0.334563 -0.294392 +0.226361 -0.286498 -0.17322 -0.895677 -0.331819 -0.296072 +0.224943 -0.279492 -0.17516 -0.891635 -0.34986 -0.287379 +0.223518 -0.272488 -0.177094 -0.883595 -0.374823 -0.280653 +0.222334 -0.265303 -0.179072 -0.871646 -0.406705 -0.273541 +0.219799 -0.259038 -0.180838 -0.857393 -0.440581 -0.266016 +0.216608 -0.253231 -0.182502 -0.842511 -0.473122 -0.25755 +0.212349 -0.248155 -0.184006 -0.830908 -0.495929 -0.25228 +0.20816 -0.243037 -0.185511 -0.824157 -0.511854 -0.242428 +0.204006 -0.2379 -0.18702 -0.830471 -0.504504 -0.236208 +0.20005 -0.232631 -0.188564 -0.842456 -0.483421 -0.237851 +0.19657 -0.227026 -0.190184 -0.861843 -0.446476 -0.240594 +0.193537 -0.221101 -0.191877 -0.882978 -0.403961 -0.239092 +0.191454 -0.214505 -0.193718 -0.903962 -0.342293 -0.256297 +0.190092 -0.20738 -0.195682 -0.919494 -0.285405 -0.270326 +0.189565 -0.199652 -0.197789 -0.927998 -0.244435 -0.281196 +0.189873 -0.191303 -0.200038 -0.927552 -0.228779 -0.29548 +0.190212 -0.182918 -0.202291 -0.926396 -0.225382 -0.301652 +0.189816 -0.175046 -0.204436 -0.922685 -0.234544 -0.306008 +0.188027 -0.168171 -0.206349 -0.926622 -0.231081 -0.296602 +0.186175 -0.161322 -0.208253 -0.927589 -0.231701 -0.293074 +0.184198 -0.154571 -0.210137 -0.933259 -0.205079 -0.294906 +0.18317 -0.147107 -0.212181 -0.93946 -0.157897 -0.30411 +0.182618 -0.139284 -0.214314 -0.941937 -0.105918 -0.318646 +0.182654 -0.131008 -0.216553 -0.937305 -0.052901 -0.344471 +0.183791 -0.121897 -0.218983 -0.917812 -0.0401671 -0.394976 +0.187498 -0.110843 -0.221861 -0.882978 -0.0485076 -0.466902 +0.192057 -0.0991225 -0.224889 -0.8492 -0.0950469 -0.519446 +0.195736 -0.0880255 -0.227782 -0.780186 -0.224696 -0.5838 +0.195863 -0.0795541 -0.230075 -0.713624 -0.32998 -0.617944 +0.190978 -0.0748388 -0.231487 -0.649024 -0.40547 -0.64371 +0.184192 -0.0715894 -0.232572 -0.569803 -0.500584 -0.651722 +0.17808 -0.0678257 -0.233771 -0.527818 -0.527612 -0.665608 +0.173379 -0.0630064 -0.235206 -0.479545 -0.577576 -0.660638 +0.169072 -0.0578969 -0.236713 -0.459897 -0.58255 -0.670171 +0.165398 -0.0522959 -0.238342 -0.459635 -0.575368 -0.676526 +0.162072 -0.0464393 -0.240021 -0.475567 -0.545182 -0.690372 +0.158456 -0.0408022 -0.241652 -0.491842 -0.518234 -0.69966 +0.153429 -0.036257 -0.24303 -0.506612 -0.494556 -0.706229 +0.149992 -0.0304816 -0.244693 -0.518953 -0.473781 -0.711492 +0.158752 -0.0151773 -0.248572 -0.541687 -0.441814 -0.715106 +0.668812 -0.505699 -0.108373 0.141442 -0.975353 -0.169354 +0.649637 -0.508093 -0.108259 0.0723545 -0.981615 -0.17663 +0.63327 -0.509034 -0.108459 -0.00322666 -0.982304 -0.187267 +0.618837 -0.508965 -0.108885 -0.0805472 -0.972364 -0.219137 +0.607157 -0.50744 -0.109623 -0.129778 -0.961482 -0.242302 +0.597786 -0.504686 -0.110637 -0.14189 -0.955625 -0.258162 +0.588964 -0.501647 -0.111706 -0.168485 -0.942943 -0.28718 +0.579874 -0.498789 -0.112734 -0.167902 -0.935657 -0.310413 +0.567645 -0.497693 -0.113375 -0.171683 -0.926128 -0.335877 +0.555749 -0.49645 -0.114051 -0.185792 -0.916922 -0.353181 +0.544989 -0.494611 -0.11485 -0.214892 -0.906323 -0.363869 +0.535848 -0.491884 -0.115844 -0.248351 -0.890908 -0.380269 +0.527837 -0.488553 -0.116971 -0.296111 -0.871564 -0.390761 +0.519816 -0.485235 -0.118097 -0.344945 -0.852212 -0.39338 +0.511352 -0.482202 -0.119158 -0.388322 -0.827574 -0.405374 +0.503915 -0.478596 -0.120344 -0.415162 -0.808958 -0.416207 +0.497563 -0.474387 -0.121667 -0.436928 -0.787041 -0.435501 +0.492339 -0.469539 -0.123127 -0.4491 -0.766161 -0.459681 +0.487698 -0.464362 -0.124664 -0.458439 -0.744701 -0.48503 +0.482887 -0.45928 -0.126171 -0.471325 -0.723932 -0.503761 +0.476992 -0.45485 -0.127545 -0.487371 -0.706123 -0.513674 +0.471598 -0.450127 -0.128975 -0.501465 -0.693904 -0.51675 +0.465858 -0.44562 -0.13036 -0.509987 -0.692349 -0.510457 +0.459584 -0.441434 -0.131672 -0.52649 -0.689916 -0.496816 +0.454315 -0.436672 -0.133107 -0.470683 -0.756632 -0.453835 +0.450322 -0.431152 -0.13472 -0.443022 -0.783796 -0.435197 +0.447253 -0.425086 -0.136449 -0.419176 -0.81387 -0.402378 +0.443009 -0.419721 -0.138026 -0.376716 -0.848 -0.372804 +0.437821 -0.414929 -0.139467 -0.176919 -0.952192 -0.24906 +0.407526 -0.425297 -0.137507 0.0589331 -0.997531 -0.0381887 +0.38773 -0.429434 -0.13694 0.0885338 -0.995993 0.0127056 +0.373397 -0.430316 -0.137104 -0.0342963 -0.998848 -0.033598 +0.361049 -0.430045 -0.137524 -0.0869545 -0.994624 -0.0562478 +0.350315 -0.428819 -0.138154 -0.17947 -0.977604 -0.109916 +0.340748 -0.426908 -0.138941 -0.228453 -0.963426 -0.140078 +0.331661 -0.424728 -0.139788 -0.29438 -0.940212 -0.171299 +0.323454 -0.422026 -0.140748 -0.348929 -0.914121 -0.206478 +0.316219 -0.418745 -0.141841 -0.413165 -0.875313 -0.251243 +0.30978 -0.414983 -0.143044 -0.468809 -0.833837 -0.291438 +0.304408 -0.41057 -0.144391 -0.508548 -0.798384 -0.322432 +0.299504 -0.405867 -0.145802 -0.543471 -0.766123 -0.343069 +0.295015 -0.400907 -0.147275 -0.578015 -0.729361 -0.365969 +0.291114 -0.39558 -0.148828 -0.603686 -0.69609 -0.388618 +0.287051 -0.390364 -0.150363 -0.621255 -0.673156 -0.401126 +0.282744 -0.385297 -0.151852 -0.629439 -0.660019 -0.410099 +0.277664 -0.38074 -0.15323 -0.63856 -0.646835 -0.416948 +0.272675 -0.376131 -0.154628 -0.646066 -0.636746 -0.420897 +0.267909 -0.37138 -0.156045 -0.654284 -0.626833 -0.423076 +0.263588 -0.366349 -0.157536 -0.666185 -0.614126 -0.42314 +0.259154 -0.361391 -0.159003 -0.681611 -0.598668 -0.420716 +0.255042 -0.356237 -0.160518 -0.697135 -0.579509 -0.422104 +0.251475 -0.350722 -0.162108 -0.724577 -0.555185 -0.408359 +0.248185 -0.345025 -0.163748 -0.751078 -0.532069 -0.390877 +0.245267 -0.339085 -0.165443 -0.774053 -0.509354 -0.376031 +0.242745 -0.332871 -0.167196 -0.79851 -0.489132 -0.350904 +0.240384 -0.326559 -0.16898 -0.820129 -0.467596 -0.329762 +0.239056 -0.319541 -0.170917 -0.840932 -0.441118 -0.313445 +0.237571 -0.312626 -0.172835 -0.86049 -0.411433 -0.300468 +0.236067 -0.305712 -0.174754 -0.878644 -0.378673 -0.290846 +0.233072 -0.299791 -0.176443 -0.891159 -0.353113 -0.284866 +0.230265 -0.293744 -0.178166 -0.898712 -0.334808 -0.283231 +0.227655 -0.287557 -0.179914 -0.90088 -0.329825 -0.28219 +0.22656 -0.280331 -0.181908 -0.896092 -0.346325 -0.27763 +0.225499 -0.273075 -0.183907 -0.888152 -0.370112 -0.2724 +0.224736 -0.265595 -0.185954 -0.873851 -0.403781 -0.270828 +0.222066 -0.259426 -0.187703 -0.857991 -0.438725 -0.267155 +0.218657 -0.253754 -0.189339 -0.841164 -0.471686 -0.264492 +0.214476 -0.248632 -0.190847 -0.827655 -0.495995 -0.262631 +0.210365 -0.243453 -0.192368 -0.816796 -0.516492 -0.257063 +0.206277 -0.238269 -0.193889 -0.8196 -0.509069 -0.262878 +0.202133 -0.233123 -0.195397 -0.831627 -0.488857 -0.263468 +0.198486 -0.227632 -0.196989 -0.847928 -0.452875 -0.27554 +0.195307 -0.221801 -0.198658 -0.869565 -0.403305 -0.284962 +0.193103 -0.215285 -0.200492 -0.886181 -0.345095 -0.30918 +0.191795 -0.208129 -0.202465 -0.898978 -0.290959 -0.327387 +0.191114 -0.200511 -0.204554 -0.90695 -0.251382 -0.338007 +0.191165 -0.192347 -0.206767 -0.909667 -0.238752 -0.339858 +0.191675 -0.18384 -0.209064 -0.908034 -0.239679 -0.343552 +0.192372 -0.175173 -0.21139 -0.909356 -0.246845 -0.334869 +0.190688 -0.168211 -0.213329 -0.914097 -0.249565 -0.3196 +0.188789 -0.1614 -0.215229 -0.917761 -0.244248 -0.313142 +0.186795 -0.154651 -0.217114 -0.92728 -0.208758 -0.310763 +0.185767 -0.147189 -0.219166 -0.933236 -0.167759 -0.317688 +0.185562 -0.139097 -0.221368 -0.938398 -0.0976147 -0.331483 +0.186215 -0.130364 -0.223721 -0.934549 -0.020324 -0.355256 +0.188268 -0.120572 -0.226323 -0.916184 0.0200532 -0.400257 +0.191332 -0.109996 -0.2291 -0.887135 0.00599718 -0.461471 +0.194461 -0.0993416 -0.231906 -0.854524 -0.0589511 -0.516057 +0.199631 -0.0871204 -0.235076 -0.802317 -0.165234 -0.573571 +0.20132 -0.0774729 -0.237651 -0.73854 -0.272998 -0.616467 +0.198434 -0.0712413 -0.239418 -0.662959 -0.409366 -0.626822 +0.191588 -0.0680051 -0.240489 -0.601521 -0.45822 -0.654375 +0.185251 -0.064405 -0.241639 -0.55015 -0.501841 -0.667451 +0.180658 -0.0594789 -0.243106 -0.508411 -0.546999 -0.665065 +0.176442 -0.0542842 -0.244632 -0.475677 -0.569484 -0.670387 +0.172738 -0.0486901 -0.246253 -0.476203 -0.552305 -0.684245 +0.169336 -0.0428704 -0.247931 -0.48443 -0.542994 -0.68592 +0.16561 -0.0372982 -0.249549 -0.497664 -0.521406 -0.693156 +0.160006 -0.0331806 -0.250825 -0.511524 -0.498027 -0.700224 +0.157108 -0.0269729 -0.252587 -0.525222 -0.477202 -0.704572 +0.172375 -0.00658492 -0.257694 -0.560665 -0.425609 -0.710291 +0.679462 -0.501941 -0.1166 0.18215 -0.960501 -0.210378 +0.657736 -0.505687 -0.11615 0.102494 -0.970155 -0.219766 +0.640325 -0.507168 -0.116208 0.0229191 -0.976132 -0.215973 +0.624546 -0.507815 -0.116456 -0.063476 -0.968615 -0.240331 +0.611667 -0.506938 -0.117033 -0.118082 -0.957738 -0.262288 +0.601991 -0.504333 -0.118 -0.145833 -0.949344 -0.278354 +0.593518 -0.501098 -0.119107 -0.17118 -0.935405 -0.30938 +0.585215 -0.49778 -0.120228 -0.182039 -0.927062 -0.327749 +0.575837 -0.495086 -0.12121 -0.180879 -0.918588 -0.351396 +0.564284 -0.493636 -0.121912 -0.188992 -0.909058 -0.371346 +0.552133 -0.49255 -0.122528 -0.204192 -0.898809 -0.387881 +0.541881 -0.490432 -0.123378 -0.230857 -0.883727 -0.407103 +0.533705 -0.487176 -0.12448 -0.270319 -0.864728 -0.423289 +0.526082 -0.483627 -0.125648 -0.315656 -0.841557 -0.438342 +0.518471 -0.480084 -0.126811 -0.356637 -0.81747 -0.452277 +0.510166 -0.476964 -0.127884 -0.397726 -0.789673 -0.467153 +0.502949 -0.473229 -0.129091 -0.420337 -0.768493 -0.482428 +0.496919 -0.468838 -0.130444 -0.438512 -0.744782 -0.502998 +0.492459 -0.463549 -0.132006 -0.450472 -0.724467 -0.521751 +0.488315 -0.458075 -0.133608 -0.45836 -0.706795 -0.53884 +0.483796 -0.452823 -0.135152 -0.465316 -0.699334 -0.542599 +0.478869 -0.447811 -0.136645 -0.474075 -0.693959 -0.541917 +0.473888 -0.44284 -0.138134 -0.482293 -0.704309 -0.520905 +0.46885 -0.437909 -0.13961 -0.494925 -0.710486 -0.500261 +0.462392 -0.433826 -0.140891 -0.468113 -0.753004 -0.462447 +0.455943 -0.429756 -0.142169 -0.434754 -0.794396 -0.424177 +0.45131 -0.424609 -0.143699 -0.402921 -0.830051 -0.385578 +0.446452 -0.419605 -0.145183 -0.300216 -0.902884 -0.307689 +0.438455 -0.416484 -0.146245 -0.154226 -0.961141 -0.22896 +0.410724 -0.425299 -0.144581 0.0790745 -0.99513 -0.0588459 +0.391032 -0.429359 -0.144 0.107244 -0.994201 -0.0081472 +0.376738 -0.430201 -0.144146 -0.0284754 -0.997401 -0.0661932 +0.364261 -0.429994 -0.144539 -0.0852621 -0.992598 -0.0864939 +0.353671 -0.428672 -0.145178 -0.182226 -0.973459 -0.138462 +0.343994 -0.426822 -0.145939 -0.230217 -0.959223 -0.163988 +0.335126 -0.424494 -0.146807 -0.296883 -0.933534 -0.200936 +0.327376 -0.421499 -0.147826 -0.352089 -0.905419 -0.23717 +0.320225 -0.418158 -0.148925 -0.409268 -0.869929 -0.275178 +0.313459 -0.414594 -0.150074 -0.470169 -0.82272 -0.31949 +0.307623 -0.410458 -0.151358 -0.507682 -0.787959 -0.348399 +0.302322 -0.406 -0.152709 -0.541929 -0.75532 -0.368521 +0.297399 -0.401309 -0.154119 -0.572069 -0.722087 -0.38901 +0.293224 -0.396157 -0.155633 -0.596904 -0.691437 -0.406963 +0.289176 -0.390923 -0.157161 -0.615062 -0.666319 -0.421565 +0.285194 -0.385651 -0.158702 -0.624692 -0.653757 -0.427042 +0.280728 -0.380685 -0.160173 -0.631609 -0.64497 -0.430214 +0.27616 -0.375795 -0.161621 -0.639378 -0.636243 -0.43173 +0.271796 -0.370779 -0.163105 -0.648038 -0.627124 -0.43216 +0.26717 -0.365941 -0.164546 -0.657184 -0.61729 -0.432508 +0.262564 -0.361089 -0.165989 -0.669668 -0.604578 -0.431315 +0.258254 -0.356049 -0.167472 -0.68658 -0.5903 -0.424445 +0.254557 -0.350623 -0.169053 -0.706219 -0.575157 -0.412856 +0.25122 -0.34495 -0.170683 -0.733095 -0.555093 -0.392994 +0.24812 -0.339116 -0.172353 -0.758001 -0.534926 -0.373216 +0.245879 -0.332724 -0.174155 -0.783103 -0.513626 -0.350624 +0.243874 -0.32616 -0.175989 -0.804891 -0.491242 -0.332916 +0.242831 -0.318948 -0.177985 -0.825561 -0.467115 -0.316626 +0.240918 -0.312315 -0.179844 -0.849736 -0.43288 -0.300939 +0.23824 -0.306177 -0.181586 -0.872604 -0.392046 -0.29131 +0.234654 -0.300657 -0.183178 -0.888925 -0.359239 -0.284183 +0.231487 -0.294846 -0.18485 -0.89902 -0.336889 -0.279768 +0.228722 -0.288767 -0.186578 -0.902399 -0.331967 -0.274728 +0.22797 -0.281308 -0.188627 -0.898945 -0.341969 -0.273779 +0.227342 -0.27375 -0.190697 -0.889481 -0.366175 -0.273387 +0.22688 -0.266073 -0.192801 -0.875169 -0.399305 -0.273197 +0.224303 -0.259824 -0.194568 -0.857432 -0.432686 -0.278554 +0.221103 -0.254016 -0.196241 -0.839658 -0.463523 -0.283055 +0.217121 -0.248744 -0.197781 -0.822906 -0.49438 -0.280027 +0.21286 -0.243667 -0.199276 -0.810638 -0.510341 -0.287087 +0.208626 -0.238574 -0.200773 -0.80931 -0.513001 -0.286094 +0.204396 -0.233489 -0.202267 -0.819574 -0.483327 -0.307722 +0.201057 -0.227769 -0.203917 -0.832927 -0.450811 -0.32094 +0.198182 -0.221729 -0.205639 -0.847789 -0.395046 -0.353826 +0.196549 -0.214805 -0.207563 -0.861483 -0.339477 -0.377629 +0.195444 -0.207489 -0.209579 -0.872378 -0.2931 -0.391216 +0.194555 -0.20001 -0.211646 -0.877197 -0.267533 -0.398687 +0.194429 -0.191975 -0.213836 -0.883648 -0.261088 -0.388587 +0.194672 -0.18365 -0.216091 -0.889204 -0.261495 -0.375416 +0.194579 -0.175557 -0.218301 -0.893768 -0.268609 -0.359205 +0.192555 -0.168843 -0.220181 -0.9007 -0.271493 -0.339163 +0.190597 -0.162067 -0.222078 -0.907946 -0.255685 -0.332052 +0.18861 -0.155316 -0.223971 -0.921358 -0.213632 -0.324748 +0.187663 -0.147784 -0.226048 -0.928267 -0.179533 -0.325713 +0.187752 -0.139481 -0.228303 -0.935902 -0.0886516 -0.340923 +0.188727 -0.13051 -0.230715 -0.932067 -0.00322433 -0.362274 +0.191415 -0.120243 -0.233439 -0.915188 0.0592336 -0.398651 +0.19444 -0.109695 -0.23623 -0.890296 0.0424715 -0.453398 +0.198101 -0.0986418 -0.239144 -0.858213 -0.0130748 -0.513128 +0.204782 -0.0852879 -0.242606 -0.821436 -0.109335 -0.559722 +0.206261 -0.0757882 -0.24515 -0.765414 -0.228435 -0.60163 +0.205116 -0.0682364 -0.24724 -0.693741 -0.351157 -0.62882 +0.198817 -0.0645695 -0.248403 -0.634972 -0.421346 -0.647516 +0.192886 -0.0606402 -0.249632 -0.571028 -0.494183 -0.655524 +0.188095 -0.0558457 -0.251063 -0.534649 -0.522068 -0.664527 +0.183885 -0.0506209 -0.252595 -0.508377 -0.541179 -0.669836 +0.18017 -0.0450252 -0.254217 -0.491314 -0.553499 -0.672496 +0.177037 -0.0389818 -0.255948 -0.496094 -0.542022 -0.678309 +0.172488 -0.0340215 -0.257418 -0.504931 -0.523664 -0.686165 +0.167183 -0.0296605 -0.258745 -0.518464 -0.501505 -0.692596 +0.16562 -0.0223908 -0.260762 -0.533418 -0.477574 -0.698133 +0.667408 -0.502438 -0.124268 0.121363 -0.957113 -0.263072 +0.649144 -0.504354 -0.1242 0.0633392 -0.965643 -0.25204 +0.631828 -0.505818 -0.124239 -0.0276135 -0.963509 -0.266249 +0.617252 -0.505843 -0.124593 -0.114094 -0.951698 -0.285052 +0.606256 -0.503949 -0.125388 -0.143299 -0.944033 -0.297102 +0.597242 -0.500997 -0.126416 -0.177478 -0.929166 -0.324276 +0.588714 -0.4978 -0.127504 -0.188552 -0.917774 -0.349485 +0.580234 -0.494599 -0.128588 -0.193719 -0.910925 -0.364266 +0.571234 -0.491709 -0.129601 -0.198117 -0.900728 -0.386575 +0.561241 -0.489394 -0.130488 -0.208881 -0.88739 -0.410986 +0.549955 -0.487845 -0.131188 -0.221717 -0.872343 -0.435732 +0.540107 -0.485505 -0.132079 -0.246454 -0.857152 -0.452274 +0.531901 -0.482272 -0.133162 -0.286506 -0.831886 -0.475268 +0.524527 -0.478583 -0.134354 -0.333639 -0.803132 -0.493625 +0.517585 -0.474662 -0.135602 -0.373608 -0.775168 -0.509443 +0.509707 -0.471301 -0.136717 -0.402046 -0.7488 -0.526933 +0.502609 -0.4675 -0.137927 -0.430575 -0.727477 -0.534213 +0.497671 -0.462469 -0.139426 -0.442838 -0.703491 -0.555874 +0.493423 -0.457055 -0.141015 -0.449009 -0.695157 -0.561382 +0.489947 -0.451185 -0.142703 -0.448783 -0.695724 -0.560859 +0.485929 -0.445627 -0.144321 -0.448772 -0.707378 -0.546096 +0.481603 -0.440258 -0.145898 -0.445885 -0.726927 -0.522268 +0.476963 -0.43508 -0.147428 -0.449717 -0.749477 -0.485839 +0.470909 -0.430735 -0.148764 -0.441702 -0.783731 -0.436654 +0.463851 -0.427 -0.149964 -0.418086 -0.822482 -0.385655 +0.457042 -0.423136 -0.151186 -0.365293 -0.865475 -0.342806 +0.451226 -0.418689 -0.152549 -0.267945 -0.922371 -0.278281 +0.440404 -0.417262 -0.153204 -0.153013 -0.96527 -0.211762 +0.414336 -0.425057 -0.151729 0.099436 -0.991706 -0.0814399 +0.395157 -0.428784 -0.151187 0.126471 -0.991406 -0.0334624 +0.380494 -0.429843 -0.151262 -0.0279973 -0.995241 -0.0933434 +0.368051 -0.429602 -0.151645 -0.081243 -0.989716 -0.117752 +0.357273 -0.428377 -0.152248 -0.184584 -0.967787 -0.171228 +0.347558 -0.426537 -0.152993 -0.228639 -0.954441 -0.191749 +0.338594 -0.424267 -0.153832 -0.300294 -0.924171 -0.236076 +0.330777 -0.421304 -0.154842 -0.347694 -0.898451 -0.268134 +0.323732 -0.417891 -0.155948 -0.413071 -0.855947 -0.31101 +0.317189 -0.414171 -0.157129 -0.468747 -0.812173 -0.347351 +0.311279 -0.410075 -0.158396 -0.503765 -0.780414 -0.370372 +0.305893 -0.405666 -0.159735 -0.539937 -0.744431 -0.392801 +0.300872 -0.401031 -0.161125 -0.570123 -0.709444 -0.414308 +0.296715 -0.39585 -0.162643 -0.591525 -0.68312 -0.428307 +0.292794 -0.390535 -0.164196 -0.604952 -0.665204 -0.437649 +0.288993 -0.38514 -0.165763 -0.615865 -0.650878 -0.443924 +0.284575 -0.380137 -0.16724 -0.623246 -0.643874 -0.443837 +0.280243 -0.375085 -0.168729 -0.629992 -0.637162 -0.443999 +0.276332 -0.369773 -0.170279 -0.638386 -0.62926 -0.443279 +0.271551 -0.365013 -0.171692 -0.648806 -0.621867 -0.438559 +0.267019 -0.360111 -0.173148 -0.660206 -0.612553 -0.434635 +0.262632 -0.355114 -0.174621 -0.675942 -0.600969 -0.426544 +0.2588 -0.349757 -0.176183 -0.691613 -0.592321 -0.413314 +0.255214 -0.344237 -0.177776 -0.712179 -0.577694 -0.398839 +0.252208 -0.338341 -0.179467 -0.735469 -0.560535 -0.380641 +0.250191 -0.331787 -0.181309 -0.762827 -0.537815 -0.358959 +0.24811 -0.325268 -0.183141 -0.779875 -0.524544 -0.341539 +0.246138 -0.31867 -0.18499 -0.805603 -0.494427 -0.326412 +0.242868 -0.312933 -0.186637 -0.833986 -0.455172 -0.311909 +0.23923 -0.307446 -0.188227 -0.859311 -0.414491 -0.299638 +0.23574 -0.301855 -0.189844 -0.878205 -0.376354 -0.295151 +0.232584 -0.296045 -0.191513 -0.891177 -0.35035 -0.288197 +0.229847 -0.28994 -0.193245 -0.896823 -0.338384 -0.284966 +0.229574 -0.282156 -0.195382 -0.895654 -0.341655 -0.284738 +0.229562 -0.274176 -0.197556 -0.885127 -0.364602 -0.289165 +0.229622 -0.26613 -0.199755 -0.869234 -0.393499 -0.299319 +0.226948 -0.259955 -0.201506 -0.852437 -0.423057 -0.307209 +0.223751 -0.254136 -0.203181 -0.834645 -0.454404 -0.311263 +0.219993 -0.248697 -0.204755 -0.816589 -0.484752 -0.313364 +0.215655 -0.243667 -0.206238 -0.802667 -0.505772 -0.316103 +0.211308 -0.238649 -0.207721 -0.80076 -0.500137 -0.329618 +0.207127 -0.233527 -0.209228 -0.8084 -0.480426 -0.34012 +0.204016 -0.227647 -0.210909 -0.822355 -0.434639 -0.367183 +0.201489 -0.221354 -0.212689 -0.833638 -0.38453 -0.396464 +0.200072 -0.214266 -0.214664 -0.8461 -0.326996 -0.420939 +0.199291 -0.206716 -0.216746 -0.852682 -0.296294 -0.430282 +0.199558 -0.198402 -0.219005 -0.859528 -0.279514 -0.427883 +0.199316 -0.190438 -0.221188 -0.865524 -0.282411 -0.413659 +0.19895 -0.182548 -0.223359 -0.871054 -0.287605 -0.398182 +0.196958 -0.175814 -0.225241 -0.878179 -0.292782 -0.37826 +0.194432 -0.169463 -0.227042 -0.882889 -0.301417 -0.360077 +0.192138 -0.162932 -0.22888 -0.896621 -0.269983 -0.350971 +0.190058 -0.156244 -0.230759 -0.911413 -0.2224 -0.346214 +0.188922 -0.14885 -0.232813 -0.920785 -0.176514 -0.347847 +0.189373 -0.140278 -0.235138 -0.929784 -0.0861758 -0.357877 +0.190859 -0.130929 -0.237654 -0.92385 0.0117231 -0.382575 +0.194501 -0.119962 -0.240566 -0.908552 0.0907365 -0.407799 +0.198265 -0.108863 -0.243505 -0.886014 0.0867653 -0.455468 +0.202796 -0.0971577 -0.246587 -0.861821 0.0274556 -0.50647 +0.209248 -0.083967 -0.250031 -0.828666 -0.0980769 -0.551085 +0.211468 -0.0739045 -0.252718 -0.77508 -0.199735 -0.599464 +0.211364 -0.0655626 -0.255001 -0.719659 -0.31156 -0.620502 +0.206107 -0.061091 -0.25636 -0.653471 -0.400632 -0.642238 +0.200457 -0.0569271 -0.257634 -0.598104 -0.471523 -0.648026 +0.195615 -0.0521533 -0.259056 -0.563579 -0.502669 -0.655518 +0.191645 -0.0467298 -0.260637 -0.535092 -0.525749 -0.661262 +0.187972 -0.0410856 -0.262276 -0.511043 -0.550379 -0.660242 +0.184558 -0.0352298 -0.263962 -0.511322 -0.539898 -0.668625 +0.180086 -0.0301979 -0.265443 -0.516734 -0.524035 -0.677032 +0.175192 -0.025497 -0.266853 -0.529679 -0.50262 -0.683237 +0.174415 -0.017597 -0.269032 -0.554649 -0.468288 -0.687802 +0.679523 -0.497878 -0.132724 0.197761 -0.921281 -0.334861 +0.657369 -0.501871 -0.132153 0.100639 -0.950016 -0.295538 +0.641111 -0.502737 -0.132298 0.0319064 -0.949128 -0.31327 +0.624736 -0.503714 -0.132413 -0.068473 -0.947067 -0.31365 +0.611766 -0.502889 -0.13294 -0.135351 -0.936714 -0.322875 +0.601827 -0.50043 -0.133849 -0.172988 -0.92173 -0.347115 +0.59295 -0.497412 -0.134879 -0.201465 -0.905892 -0.372521 +0.584558 -0.49415 -0.135971 -0.204335 -0.897538 -0.390737 +0.576443 -0.490761 -0.13709 -0.211691 -0.88604 -0.412455 +0.566827 -0.488224 -0.138012 -0.216736 -0.872976 -0.436967 +0.557403 -0.48561 -0.13895 -0.227673 -0.856924 -0.462436 +0.547909 -0.483053 -0.139874 -0.242248 -0.840965 -0.483832 +0.538936 -0.480238 -0.140858 -0.265461 -0.820627 -0.506065 +0.53062 -0.477068 -0.141921 -0.309015 -0.791811 -0.526825 +0.52392 -0.472996 -0.143199 -0.34998 -0.760012 -0.547628 +0.517463 -0.468799 -0.144498 -0.383704 -0.736016 -0.557722 +0.509902 -0.465251 -0.145644 -0.41047 -0.71185 -0.569897 +0.504313 -0.460585 -0.147052 -0.430261 -0.694664 -0.576471 +0.500074 -0.455141 -0.148648 -0.435868 -0.696151 -0.570432 +0.496555 -0.449287 -0.150337 -0.432194 -0.710736 -0.555033 +0.492926 -0.443486 -0.152006 -0.429148 -0.729832 -0.532146 +0.488892 -0.437931 -0.153624 -0.430472 -0.760232 -0.486561 +0.484368 -0.432668 -0.15518 -0.417326 -0.791132 -0.447158 +0.478089 -0.428445 -0.156478 -0.405255 -0.827141 -0.389367 +0.470837 -0.424811 -0.157647 -0.386223 -0.855732 -0.34432 +0.463138 -0.421451 -0.158745 -0.348681 -0.891434 -0.289429 +0.455817 -0.417891 -0.159895 -0.270308 -0.929789 -0.249855 +0.445429 -0.416191 -0.160606 -0.129556 -0.976914 -0.169871 +0.420911 -0.423027 -0.15931 0.100497 -0.988989 -0.10864 +0.399007 -0.428381 -0.158353 0.135267 -0.988869 -0.0619886 +0.384898 -0.42909 -0.158491 -0.0167415 -0.992469 -0.12135 +0.372341 -0.428906 -0.15883 -0.0844001 -0.984598 -0.153112 +0.361598 -0.427649 -0.15943 -0.186933 -0.96257 -0.196257 +0.351773 -0.42586 -0.160149 -0.229342 -0.946987 -0.224988 +0.34274 -0.423621 -0.160973 -0.299516 -0.914657 -0.271465 +0.334778 -0.420738 -0.161953 -0.342951 -0.889508 -0.301928 +0.327543 -0.417432 -0.163029 -0.412891 -0.844041 -0.342225 +0.320941 -0.413744 -0.164191 -0.469024 -0.800053 -0.374077 +0.315238 -0.40951 -0.165487 -0.505036 -0.768016 -0.393817 +0.310215 -0.404858 -0.166882 -0.534667 -0.738245 -0.411251 +0.305214 -0.4002 -0.168276 -0.564964 -0.704323 -0.429819 +0.301432 -0.394777 -0.169848 -0.586823 -0.679756 -0.439968 +0.297798 -0.389269 -0.171443 -0.600459 -0.661282 -0.449618 +0.294301 -0.383666 -0.173063 -0.608039 -0.651824 -0.453229 +0.290399 -0.378322 -0.17462 -0.61478 -0.643244 -0.456381 +0.286612 -0.37291 -0.17619 -0.619339 -0.637583 -0.458157 +0.282654 -0.367607 -0.177735 -0.623906 -0.632364 -0.459193 +0.277982 -0.362777 -0.17917 -0.634413 -0.625715 -0.453874 +0.273016 -0.358132 -0.180559 -0.644614 -0.621931 -0.444605 +0.268168 -0.353421 -0.181967 -0.657147 -0.61601 -0.434386 +0.26427 -0.348101 -0.183518 -0.670455 -0.609377 -0.423261 +0.260807 -0.342494 -0.185136 -0.68746 -0.599962 -0.409198 +0.257957 -0.336481 -0.186849 -0.706778 -0.588917 -0.391974 +0.255339 -0.330308 -0.188601 -0.728595 -0.573416 -0.374624 +0.251855 -0.324714 -0.190218 -0.760085 -0.54594 -0.352449 +0.247932 -0.319408 -0.191769 -0.787805 -0.515264 -0.33744 +0.24439 -0.313847 -0.193375 -0.813534 -0.480066 -0.328173 +0.240523 -0.308507 -0.194929 -0.841852 -0.434002 -0.320825 +0.237135 -0.302849 -0.196559 -0.864352 -0.393364 -0.313309 +0.234308 -0.296813 -0.198275 -0.878993 -0.364046 -0.307967 +0.231949 -0.290449 -0.20008 -0.889175 -0.346321 -0.299049 +0.231852 -0.282547 -0.202244 -0.885568 -0.344046 -0.312092 +0.232017 -0.274442 -0.204464 -0.876177 -0.360135 -0.320338 +0.232349 -0.266205 -0.206715 -0.863958 -0.383036 -0.326896 +0.229724 -0.259995 -0.208477 -0.847301 -0.411993 -0.335175 +0.226467 -0.254209 -0.210141 -0.827444 -0.444087 -0.343692 +0.222597 -0.248847 -0.2117 -0.809472 -0.473494 -0.347217 +0.21855 -0.243612 -0.213229 -0.79777 -0.487157 -0.355304 +0.214664 -0.238267 -0.214785 -0.793573 -0.485947 -0.366195 +0.210867 -0.232855 -0.216364 -0.802443 -0.4575 -0.383119 +0.207815 -0.226924 -0.21806 -0.814292 -0.415397 -0.405431 +0.205378 -0.220562 -0.219856 -0.82784 -0.362264 -0.428305 +0.203936 -0.213489 -0.22183 -0.836565 -0.324842 -0.441176 +0.204393 -0.205055 -0.224132 -0.84512 -0.294369 -0.446229 +0.204455 -0.196883 -0.226376 -0.849751 -0.29384 -0.437698 +0.205816 -0.187763 -0.228842 -0.851794 -0.306863 -0.424596 +0.204023 -0.180884 -0.230771 -0.857574 -0.316265 -0.405639 +0.200335 -0.175356 -0.232367 -0.865608 -0.31656 -0.38796 +0.196998 -0.169583 -0.234029 -0.86772 -0.322263 -0.378432 +0.194234 -0.163392 -0.23579 -0.883532 -0.288969 -0.368603 +0.192061 -0.156767 -0.237655 -0.898032 -0.24065 -0.368275 +0.19104 -0.14929 -0.239733 -0.911505 -0.17197 -0.373611 +0.191542 -0.140684 -0.242077 -0.919756 -0.0766261 -0.384939 +0.193305 -0.131129 -0.244657 -0.914883 0.0179635 -0.403321 +0.198515 -0.118994 -0.247863 -0.896905 0.112076 -0.427784 +0.202419 -0.107793 -0.250845 -0.880124 0.11025 -0.461766 +0.206586 -0.0963451 -0.253884 -0.862481 0.0642267 -0.501997 +0.213784 -0.0826026 -0.257484 -0.84309 -0.0456273 -0.535833 +0.216812 -0.0719313 -0.260333 -0.795988 -0.15314 -0.585621 +0.21695 -0.0633939 -0.262672 -0.743984 -0.269129 -0.611602 +0.212563 -0.0582544 -0.264186 -0.662657 -0.40513 -0.629886 +0.207265 -0.0538018 -0.265527 -0.630148 -0.44443 -0.636707 +0.202165 -0.0492116 -0.266907 -0.582485 -0.494773 -0.644911 +0.198448 -0.0435822 -0.268538 -0.562563 -0.510219 -0.650538 +0.194712 -0.0379643 -0.270167 -0.542942 -0.534941 -0.647344 +0.190978 -0.032336 -0.271799 -0.532553 -0.534244 -0.656484 +0.186927 -0.0269668 -0.273359 -0.535021 -0.520956 -0.665101 +0.184029 -0.020703 -0.27515 -0.548101 -0.500782 -0.669928 +0.182772 -0.0131572 -0.277242 -0.581578 -0.466011 -0.666783 +0.670496 -0.496745 -0.140751 0.160041 -0.91984 -0.358163 +0.64958 -0.500103 -0.140287 0.0527158 -0.930211 -0.363223 +0.635798 -0.499651 -0.140714 -0.00215287 -0.930997 -0.36502 +0.620666 -0.499978 -0.140955 -0.10353 -0.926413 -0.361998 +0.607986 -0.499005 -0.141498 -0.172252 -0.907317 -0.383544 +0.59884 -0.496125 -0.142489 -0.203847 -0.891377 -0.404839 +0.590454 -0.492839 -0.143577 -0.212937 -0.882921 -0.418461 +0.582633 -0.489269 -0.144727 -0.221122 -0.870952 -0.438806 +0.574223 -0.48605 -0.145803 -0.226237 -0.858532 -0.460153 +0.564649 -0.483492 -0.146711 -0.23504 -0.841456 -0.486526 +0.555421 -0.480779 -0.147662 -0.243806 -0.828583 -0.503992 +0.546233 -0.47806 -0.148613 -0.264106 -0.805654 -0.530256 +0.538178 -0.474726 -0.149705 -0.289633 -0.780113 -0.554561 +0.53121 -0.470791 -0.150943 -0.330386 -0.746701 -0.577307 +0.524543 -0.466697 -0.152214 -0.356546 -0.722953 -0.591789 +0.51823 -0.462417 -0.153528 -0.385046 -0.70872 -0.591149 +0.512388 -0.457873 -0.154909 -0.402042 -0.702545 -0.587192 +0.508124 -0.452432 -0.156498 -0.411268 -0.7147 -0.56574 +0.504874 -0.446396 -0.158227 -0.409405 -0.730958 -0.545974 +0.501778 -0.440272 -0.15998 -0.400662 -0.769891 -0.496727 +0.497148 -0.435052 -0.161519 -0.389932 -0.801424 -0.453512 +0.491368 -0.430506 -0.162894 -0.385752 -0.831233 -0.400308 +0.483381 -0.42727 -0.163959 -0.372858 -0.865969 -0.333279 +0.476198 -0.423586 -0.165133 -0.36584 -0.886802 -0.282391 +0.468049 -0.420486 -0.166165 -0.314342 -0.919367 -0.236545 +0.460056 -0.417311 -0.167207 -0.267082 -0.942069 -0.202915 +0.449682 -0.41559 -0.167914 -0.16491 -0.974913 -0.1495 +0.426704 -0.42148 -0.166795 0.0830253 -0.990643 -0.108318 +0.40253 -0.42818 -0.165484 0.13247 -0.986554 -0.0957302 +0.387913 -0.429184 -0.165528 -0.0115724 -0.989066 -0.147022 +0.376656 -0.428193 -0.166041 -0.0720709 -0.982705 -0.170578 +0.366216 -0.42674 -0.166675 -0.179736 -0.957152 -0.227061 +0.356456 -0.424912 -0.167391 -0.229381 -0.939639 -0.253898 +0.347268 -0.422751 -0.168187 -0.300991 -0.904977 -0.300702 +0.339228 -0.419899 -0.169143 -0.341584 -0.879991 -0.330056 +0.332258 -0.416416 -0.170259 -0.404403 -0.837801 -0.366808 +0.325588 -0.412763 -0.171406 -0.456249 -0.797609 -0.394533 +0.319718 -0.408616 -0.172679 -0.492876 -0.766595 -0.41159 +0.314954 -0.403795 -0.174105 -0.528405 -0.732596 -0.429059 +0.310274 -0.398926 -0.175552 -0.559695 -0.70036 -0.442987 +0.306175 -0.393695 -0.177076 -0.582741 -0.676281 -0.45062 +0.302521 -0.388182 -0.178674 -0.596585 -0.660056 -0.456522 +0.298859 -0.382683 -0.180269 -0.605487 -0.649117 -0.46047 +0.295849 -0.376753 -0.181962 -0.611431 -0.641596 -0.463149 +0.292938 -0.370768 -0.183672 -0.615101 -0.637542 -0.463887 +0.289703 -0.364987 -0.185334 -0.617652 -0.634375 -0.464838 +0.285408 -0.359895 -0.186828 -0.618803 -0.634654 -0.462923 +0.281035 -0.354849 -0.188312 -0.622407 -0.63567 -0.456656 +0.276337 -0.350023 -0.189741 -0.635155 -0.630474 -0.446185 +0.271304 -0.345426 -0.191116 -0.647383 -0.627199 -0.433032 +0.26678 -0.340493 -0.192578 -0.662095 -0.622785 -0.416857 +0.262683 -0.335295 -0.194095 -0.680576 -0.613885 -0.399954 +0.258696 -0.330017 -0.195636 -0.702972 -0.59765 -0.385546 +0.254439 -0.324928 -0.197127 -0.737163 -0.567315 -0.367077 +0.250094 -0.319899 -0.198604 -0.770608 -0.534392 -0.347261 +0.246011 -0.314694 -0.200128 -0.800333 -0.492206 -0.342346 +0.242146 -0.309353 -0.201682 -0.827572 -0.447684 -0.338682 +0.238676 -0.30375 -0.203299 -0.849889 -0.40884 -0.332477 +0.236162 -0.297492 -0.20507 -0.865215 -0.373637 -0.334364 +0.234199 -0.290866 -0.206941 -0.873859 -0.353617 -0.333658 +0.234118 -0.282949 -0.209122 -0.871696 -0.345215 -0.347811 +0.234617 -0.27461 -0.211405 -0.863063 -0.35212 -0.362123 +0.235197 -0.266207 -0.213703 -0.847669 -0.375943 -0.374332 +0.232516 -0.260019 -0.215457 -0.832037 -0.407946 -0.375893 +0.229334 -0.254182 -0.217135 -0.813933 -0.439493 -0.379947 +0.225689 -0.248655 -0.218735 -0.798233 -0.466528 -0.381021 +0.222123 -0.243083 -0.220346 -0.787345 -0.479945 -0.386964 +0.218659 -0.237434 -0.221974 -0.786998 -0.468863 -0.401001 +0.215455 -0.231603 -0.223654 -0.79628 -0.43573 -0.419617 +0.212878 -0.22533 -0.225434 -0.809527 -0.391394 -0.43758 +0.211051 -0.218523 -0.227349 -0.821141 -0.348411 -0.452036 +0.210896 -0.210528 -0.229548 -0.831245 -0.313841 -0.458839 +0.213318 -0.200681 -0.232205 -0.833778 -0.301731 -0.462355 +0.213987 -0.192058 -0.234563 -0.831822 -0.318062 -0.454874 +0.212258 -0.185125 -0.236506 -0.833252 -0.334236 -0.440429 +0.208515 -0.179638 -0.238098 -0.840064 -0.339961 -0.422751 +0.204194 -0.174563 -0.239592 -0.844239 -0.333666 -0.419438 +0.200029 -0.169367 -0.241106 -0.847199 -0.335483 -0.41195 +0.196679 -0.163603 -0.242766 -0.86171 -0.298717 -0.410152 +0.194325 -0.157102 -0.244611 -0.875391 -0.256601 -0.409692 +0.193211 -0.149688 -0.246675 -0.892294 -0.180166 -0.413947 +0.193846 -0.140983 -0.249055 -0.903159 -0.0776809 -0.42222 +0.196015 -0.131126 -0.251714 -0.900615 0.0158057 -0.43433 +0.202226 -0.118264 -0.255117 -0.885511 0.12711 -0.446892 +0.205808 -0.107288 -0.25806 -0.875263 0.141641 -0.462443 +0.210238 -0.0956516 -0.261165 -0.86724 0.0764817 -0.491981 +0.217143 -0.0821254 -0.264733 -0.837319 -0.0130967 -0.546558 +0.220598 -0.0711293 -0.267684 -0.81007 -0.11163 -0.575608 +0.221792 -0.0617851 -0.270224 -0.74649 -0.251545 -0.616019 +0.218113 -0.0561014 -0.271873 -0.68349 -0.375162 -0.626177 +0.213162 -0.0513798 -0.273277 -0.659167 -0.423595 -0.621343 +0.208246 -0.0466301 -0.274693 -0.600499 -0.491906 -0.630421 +0.204599 -0.0409267 -0.276341 -0.585218 -0.506066 -0.633575 +0.200915 -0.0352509 -0.27798 -0.567256 -0.525419 -0.634158 +0.197233 -0.0295777 -0.279625 -0.547425 -0.539165 -0.640021 +0.193486 -0.0239554 -0.281248 -0.553437 -0.525575 -0.646125 +0.190025 -0.018112 -0.282937 -0.574208 -0.496993 -0.650603 +0.192041 -0.00802136 -0.285664 -0.607309 -0.449122 -0.655337 +0.663568 -0.494484 -0.149017 0.111851 -0.920196 -0.375139 +0.643724 -0.4973 -0.148647 0.0362925 -0.921263 -0.387242 +0.630279 -0.496678 -0.14909 -0.0503539 -0.915802 -0.398461 +0.618185 -0.495364 -0.1497 -0.132392 -0.899647 -0.416061 +0.607566 -0.493272 -0.150491 -0.19625 -0.881144 -0.430201 +0.598223 -0.490504 -0.151451 -0.212948 -0.870819 -0.443088 +0.590071 -0.487097 -0.152554 -0.235067 -0.858041 -0.456631 +0.582142 -0.483579 -0.153687 -0.242013 -0.84536 -0.476232 +0.574054 -0.480177 -0.154791 -0.248083 -0.830641 -0.498488 +0.564996 -0.477337 -0.155757 -0.256206 -0.812806 -0.52317 +0.555251 -0.474918 -0.156624 -0.269549 -0.794584 -0.544041 +0.546794 -0.471791 -0.157658 -0.289799 -0.769658 -0.568896 +0.539792 -0.467856 -0.158891 -0.319146 -0.745247 -0.585451 +0.533247 -0.463674 -0.16018 -0.343292 -0.730717 -0.590086 +0.527464 -0.459069 -0.161569 -0.363735 -0.721988 -0.588584 +0.52224 -0.454147 -0.163028 -0.378596 -0.731174 -0.567495 +0.517294 -0.449075 -0.16453 -0.386088 -0.742221 -0.547764 +0.513187 -0.443528 -0.166146 -0.388859 -0.772925 -0.501372 +0.509023 -0.438005 -0.167759 -0.367196 -0.815996 -0.446451 +0.503645 -0.433207 -0.169189 -0.366933 -0.844604 -0.389881 +0.497725 -0.428722 -0.170546 -0.356204 -0.872797 -0.333682 +0.488719 -0.426082 -0.171462 -0.345731 -0.90217 -0.257993 +0.479623 -0.423508 -0.172353 -0.337897 -0.914047 -0.224374 +0.470236 -0.421137 -0.173201 -0.300035 -0.935838 -0.1849 +0.462439 -0.417848 -0.174269 -0.247532 -0.957309 -0.149293 +0.452967 -0.415569 -0.175094 -0.166785 -0.978317 -0.122796 +0.439295 -0.415852 -0.175293 -0.0259543 -0.994269 -0.103713 +0.40912 -0.426133 -0.173068 0.141925 -0.982532 -0.120371 +0.392291 -0.428459 -0.172768 0.00409854 -0.984653 -0.174479 +0.380338 -0.427875 -0.17317 -0.0730947 -0.974918 -0.210223 +0.370089 -0.4263 -0.173817 -0.178235 -0.950467 -0.25465 +0.360859 -0.424126 -0.174604 -0.220214 -0.933355 -0.283472 +0.352228 -0.421607 -0.175481 -0.301271 -0.895781 -0.326824 +0.344279 -0.418701 -0.176441 -0.337941 -0.872094 -0.353905 +0.337338 -0.41518 -0.177555 -0.397648 -0.830995 -0.389005 +0.331051 -0.411272 -0.178757 -0.447077 -0.791747 -0.416245 +0.325434 -0.40696 -0.180063 -0.477197 -0.765033 -0.432444 +0.320487 -0.402245 -0.181466 -0.514565 -0.730379 -0.449188 +0.315938 -0.397273 -0.182931 -0.547883 -0.699655 -0.458594 +0.311378 -0.392327 -0.184393 -0.576115 -0.675878 -0.459653 +0.306818 -0.387377 -0.185846 -0.594136 -0.658199 -0.462362 +0.302816 -0.382074 -0.187394 -0.599912 -0.649402 -0.467315 +0.299144 -0.376573 -0.188991 -0.606817 -0.640624 -0.470503 +0.295742 -0.370896 -0.190627 -0.611367 -0.636633 -0.470032 +0.292727 -0.364971 -0.19232 -0.612998 -0.636447 -0.468158 +0.289189 -0.359375 -0.193941 -0.613492 -0.638909 -0.464136 +0.284955 -0.354237 -0.19544 -0.616207 -0.640498 -0.458315 +0.280383 -0.349314 -0.196897 -0.622336 -0.64118 -0.448984 +0.275586 -0.344554 -0.198305 -0.628843 -0.641922 -0.43874 +0.270626 -0.339906 -0.199693 -0.640973 -0.63876 -0.425604 +0.265534 -0.335342 -0.201057 -0.658472 -0.630868 -0.410389 +0.260897 -0.330498 -0.202486 -0.681225 -0.615091 -0.396983 +0.256255 -0.325646 -0.203916 -0.710071 -0.592069 -0.381122 +0.25193 -0.320607 -0.2054 -0.744264 -0.554053 -0.372958 +0.248061 -0.315261 -0.206956 -0.77778 -0.511033 -0.365929 +0.244317 -0.309832 -0.208525 -0.807876 -0.45966 -0.36885 +0.241005 -0.304112 -0.210172 -0.832067 -0.416458 -0.366371 +0.238599 -0.297786 -0.211973 -0.845622 -0.379642 -0.375226 +0.237091 -0.290836 -0.213917 -0.853231 -0.35673 -0.380448 +0.237447 -0.282626 -0.216175 -0.850296 -0.34318 -0.399028 +0.237968 -0.274269 -0.218476 -0.839493 -0.345867 -0.419079 +0.238286 -0.266037 -0.220742 -0.823142 -0.372472 -0.428606 +0.235652 -0.259814 -0.222508 -0.807562 -0.406037 -0.427759 +0.232441 -0.253988 -0.224186 -0.797114 -0.437376 -0.416305 +0.228835 -0.248436 -0.225788 -0.785192 -0.45988 -0.41471 +0.225326 -0.242815 -0.227414 -0.781109 -0.465358 -0.416306 +0.222314 -0.236837 -0.229125 -0.783382 -0.454626 -0.423826 +0.219786 -0.230529 -0.230917 -0.794442 -0.419466 -0.439219 +0.218047 -0.223662 -0.232846 -0.807671 -0.369354 -0.459614 +0.217738 -0.215778 -0.235032 -0.818305 -0.335759 -0.466519 +0.220083 -0.205993 -0.237683 -0.823069 -0.311099 -0.475159 +0.219926 -0.197969 -0.239904 -0.821049 -0.313208 -0.477263 +0.218424 -0.190872 -0.241889 -0.818919 -0.322377 -0.47481 +0.215671 -0.184669 -0.243661 -0.817364 -0.336831 -0.467397 +0.211326 -0.179598 -0.245147 -0.819277 -0.346668 -0.456736 +0.206762 -0.174685 -0.246592 -0.822097 -0.343071 -0.454379 +0.202321 -0.169703 -0.248059 -0.824547 -0.349194 -0.44518 +0.198929 -0.163954 -0.249719 -0.843111 -0.303922 -0.443616 +0.196383 -0.157588 -0.251526 -0.853295 -0.278946 -0.440542 +0.195106 -0.150296 -0.253567 -0.873225 -0.18828 -0.449477 +0.19603 -0.141374 -0.256011 -0.884035 -0.0851973 -0.459591 +0.199303 -0.130714 -0.258884 -0.885453 -0.0025942 -0.464722 +0.205398 -0.117927 -0.262289 -0.874905 0.127903 -0.4671 +0.208962 -0.106965 -0.265245 -0.867287 0.151286 -0.474265 +0.213402 -0.0953174 -0.268367 -0.863985 0.093059 -0.494845 +0.219666 -0.0822709 -0.271841 -0.84977 0.010371 -0.527051 +0.224556 -0.0701926 -0.275072 -0.814404 -0.0801204 -0.574741 +0.226802 -0.0600615 -0.277828 -0.762512 -0.228914 -0.605125 +0.224244 -0.0535163 -0.279685 -0.697516 -0.353648 -0.623222 +0.218912 -0.0490648 -0.281021 -0.668834 -0.406301 -0.62256 +0.214604 -0.0438532 -0.282544 -0.62426 -0.477609 -0.618216 +0.211197 -0.0379531 -0.284249 -0.610737 -0.490187 -0.621865 +0.207757 -0.0320695 -0.285938 -0.583158 -0.525767 -0.619271 +0.203851 -0.0265496 -0.287544 -0.576242 -0.519293 -0.631095 +0.199223 -0.0215898 -0.289007 -0.582391 -0.50458 -0.637354 +0.195134 -0.0162173 -0.290571 -0.59552 -0.478868 -0.645013 +0.200408 -0.00358866 -0.29395 -0.633705 -0.441485 -0.635223 +0.696102 -0.47882 -0.16024 0.204932 -0.898288 -0.388695 +0.668005 -0.48605 -0.158767 0.126858 -0.913307 -0.387011 +0.639761 -0.493465 -0.157241 0.000954731 -0.910883 -0.412667 +0.626903 -0.492545 -0.157742 -0.0892281 -0.896333 -0.43431 +0.616837 -0.49012 -0.158599 -0.151956 -0.879648 -0.450701 +0.60737 -0.487406 -0.159534 -0.20092 -0.866667 -0.45664 +0.598537 -0.484355 -0.160544 -0.23339 -0.851389 -0.469754 +0.590514 -0.480873 -0.161662 -0.25157 -0.837903 -0.484388 +0.582509 -0.477404 -0.162775 -0.265163 -0.826831 -0.496024 +0.574012 -0.474227 -0.163808 -0.277648 -0.809964 -0.516594 +0.564872 -0.471439 -0.164754 -0.284241 -0.792443 -0.539668 +0.556699 -0.468128 -0.165829 -0.2955 -0.776192 -0.556962 +0.549328 -0.46438 -0.167005 -0.321064 -0.764942 -0.558373 +0.543015 -0.460044 -0.168323 -0.341773 -0.755257 -0.559265 +0.538734 -0.454563 -0.169923 -0.353177 -0.757867 -0.548547 +0.533674 -0.44952 -0.171412 -0.364029 -0.766145 -0.529628 +0.527981 -0.444855 -0.172816 -0.356269 -0.788481 -0.501367 +0.522254 -0.440224 -0.174206 -0.353892 -0.820395 -0.449125 +0.515841 -0.435997 -0.175493 -0.340797 -0.855139 -0.390635 +0.508869 -0.432111 -0.176704 -0.330725 -0.887445 -0.321035 +0.501559 -0.428435 -0.177857 -0.324857 -0.908438 -0.263078 +0.491457 -0.426424 -0.178607 -0.311782 -0.926465 -0.210848 +0.481581 -0.424306 -0.179377 -0.315781 -0.933558 -0.169567 +0.471578 -0.422297 -0.180124 -0.291269 -0.947169 -0.134298 +0.464104 -0.418802 -0.181234 -0.254644 -0.960836 -0.109331 +0.455403 -0.416065 -0.182153 -0.185083 -0.978304 -0.0930905 +0.44412 -0.414904 -0.182692 -0.0634294 -0.993304 -0.0965612 +0.418149 -0.422626 -0.181039 0.121069 -0.984999 -0.122958 +0.397729 -0.427094 -0.180187 0.0398598 -0.977749 -0.205953 +0.384621 -0.427199 -0.180408 -0.0634021 -0.967888 -0.24326 +0.374141 -0.425751 -0.181005 -0.167418 -0.942873 -0.288033 +0.365414 -0.423258 -0.18186 -0.217392 -0.923969 -0.314678 +0.357155 -0.420496 -0.182776 -0.298792 -0.886704 -0.352815 +0.349396 -0.417454 -0.183767 -0.336034 -0.861852 -0.37986 +0.342724 -0.413766 -0.184912 -0.393064 -0.822176 -0.411738 +0.336591 -0.40975 -0.186141 -0.43745 -0.785766 -0.437276 +0.331071 -0.405366 -0.187462 -0.463973 -0.761868 -0.451981 +0.326176 -0.400592 -0.188874 -0.499756 -0.732113 -0.462877 +0.32153 -0.395677 -0.190319 -0.53011 -0.707784 -0.466931 +0.316875 -0.390777 -0.191771 -0.55836 -0.683941 -0.469532 +0.312113 -0.385946 -0.1932 -0.580543 -0.664833 -0.470073 +0.307383 -0.381094 -0.19463 -0.59602 -0.65038 -0.470919 +0.302836 -0.376139 -0.196092 -0.60583 -0.642444 -0.469293 +0.299032 -0.37071 -0.19766 -0.609508 -0.639676 -0.46831 +0.295108 -0.365363 -0.199219 -0.611696 -0.63964 -0.465498 +0.291685 -0.359692 -0.200857 -0.612706 -0.641295 -0.461878 +0.288159 -0.354086 -0.202472 -0.610967 -0.645199 -0.458734 +0.284093 -0.348836 -0.204007 -0.612349 -0.647539 -0.453565 +0.279037 -0.34423 -0.20537 -0.614058 -0.649529 -0.44838 +0.273815 -0.339742 -0.206713 -0.621544 -0.649292 -0.438297 +0.268457 -0.335347 -0.20803 -0.635531 -0.641935 -0.428975 +0.26342 -0.330759 -0.209396 -0.660022 -0.628881 -0.41095 +0.258616 -0.326019 -0.210799 -0.683515 -0.609087 -0.402271 +0.254255 -0.320991 -0.212277 -0.713427 -0.577831 -0.396401 +0.250427 -0.315612 -0.213844 -0.753838 -0.523867 -0.396602 +0.246927 -0.310018 -0.215454 -0.788218 -0.469217 -0.398181 +0.24397 -0.304059 -0.217163 -0.81453 -0.415816 -0.404523 +0.242121 -0.297344 -0.219059 -0.825907 -0.382652 -0.414072 +0.240894 -0.290208 -0.221052 -0.831947 -0.348872 -0.431455 +0.241378 -0.281891 -0.223348 -0.832397 -0.335967 -0.440727 +0.241704 -0.273674 -0.225617 -0.824751 -0.342492 -0.449982 +0.241588 -0.26573 -0.227824 -0.795992 -0.370126 -0.478959 +0.238889 -0.259546 -0.229586 -0.784485 -0.414002 -0.461723 +0.235458 -0.253863 -0.231228 -0.77573 -0.443289 -0.449152 +0.231667 -0.248428 -0.232803 -0.768688 -0.465429 -0.438743 +0.228174 -0.242788 -0.234432 -0.77082 -0.464048 -0.436457 +0.225293 -0.236724 -0.236159 -0.776059 -0.448026 -0.443854 +0.222905 -0.230313 -0.237986 -0.792192 -0.407055 -0.454684 +0.221877 -0.222936 -0.240049 -0.808951 -0.362873 -0.462516 +0.221092 -0.215386 -0.242153 -0.818153 -0.328893 -0.471652 +0.220859 -0.207422 -0.24436 -0.823221 -0.315068 -0.472272 +0.221774 -0.198629 -0.246781 -0.818301 -0.313565 -0.481728 +0.221127 -0.19093 -0.248924 -0.810629 -0.321499 -0.489407 +0.218325 -0.184747 -0.250687 -0.803286 -0.33287 -0.493894 +0.213571 -0.179971 -0.252102 -0.806196 -0.346633 -0.479471 +0.208761 -0.175234 -0.253506 -0.808942 -0.352512 -0.470477 +0.204235 -0.1703 -0.254953 -0.810034 -0.350481 -0.470114 +0.200972 -0.16446 -0.256639 -0.821632 -0.320856 -0.471141 +0.198544 -0.158011 -0.25847 -0.833722 -0.282821 -0.474259 +0.197391 -0.150622 -0.260538 -0.854986 -0.187153 -0.483708 +0.199038 -0.141167 -0.26312 -0.866056 -0.0866681 -0.492377 +0.203124 -0.129906 -0.266161 -0.866242 -0.001649 -0.499621 +0.208696 -0.117502 -0.269493 -0.86288 0.120205 -0.490908 +0.211857 -0.106836 -0.272392 -0.861803 0.160903 -0.481046 +0.216495 -0.0950381 -0.275572 -0.861214 0.123569 -0.492991 +0.222568 -0.0821312 -0.27903 -0.836028 0.0329848 -0.547696 +0.229252 -0.0687211 -0.282622 -0.799657 -0.0896503 -0.593728 +0.23124 -0.0587727 -0.285334 -0.759463 -0.226591 -0.609813 +0.22938 -0.0516987 -0.28733 -0.692407 -0.358021 -0.626412 +0.224558 -0.046843 -0.28877 -0.669534 -0.406703 -0.621544 +0.220313 -0.0415605 -0.290312 -0.635005 -0.46447 -0.617282 +0.21693 -0.0356268 -0.292014 -0.626658 -0.486799 -0.608545 +0.213394 -0.0298175 -0.293694 -0.598253 -0.509077 -0.618817 +0.209409 -0.0243414 -0.295282 -0.588736 -0.52009 -0.618786 +0.20476 -0.0193772 -0.296747 -0.592668 -0.508447 -0.624681 +0.202127 -0.0128698 -0.298603 -0.603552 -0.485262 -0.63265 +0.208643 0.000724193 -0.302243 -0.636589 -0.438855 -0.634163 +0.68381 -0.479442 -0.167838 0.164835 -0.913103 -0.372924 +0.662229 -0.483173 -0.167175 0.0921604 -0.914337 -0.394329 +0.638291 -0.488272 -0.166171 -0.0306509 -0.904019 -0.426393 +0.624771 -0.487725 -0.166556 -0.124131 -0.88291 -0.452837 +0.615187 -0.485048 -0.16747 -0.175187 -0.86812 -0.464412 +0.606926 -0.481666 -0.168554 -0.224852 -0.852327 -0.472208 +0.599718 -0.477711 -0.169779 -0.250928 -0.838073 -0.484427 +0.59177 -0.47419 -0.170891 -0.26842 -0.826105 -0.495481 +0.582668 -0.471335 -0.171842 -0.289682 -0.813967 -0.503529 +0.573405 -0.46859 -0.172765 -0.296053 -0.799787 -0.522203 +0.565872 -0.464899 -0.173926 -0.312646 -0.790823 -0.526168 +0.559121 -0.460782 -0.175186 -0.322201 -0.788862 -0.52334 +0.552979 -0.45632 -0.176528 -0.336401 -0.78476 -0.520563 +0.548139 -0.451135 -0.178053 -0.344927 -0.790422 -0.50622 +0.542472 -0.446427 -0.179464 -0.349414 -0.813973 -0.464068 +0.536599 -0.441844 -0.180833 -0.350434 -0.83574 -0.422771 +0.530615 -0.437337 -0.182194 -0.338242 -0.861572 -0.378534 +0.521137 -0.434876 -0.183039 -0.316754 -0.888887 -0.330978 +0.512594 -0.431893 -0.184016 -0.303333 -0.912903 -0.27313 +0.503468 -0.429273 -0.184906 -0.291466 -0.934001 -0.206621 +0.493593 -0.427126 -0.185675 -0.299634 -0.941078 -0.156821 +0.483331 -0.425226 -0.186374 -0.301594 -0.946441 -0.11529 +0.473086 -0.423353 -0.187072 -0.284898 -0.955525 -0.0762029 +0.465049 -0.420188 -0.188093 -0.250225 -0.965138 -0.0767952 +0.456636 -0.417276 -0.18905 -0.208451 -0.975156 -0.0749673 +0.447505 -0.414817 -0.189888 -0.11945 -0.988581 -0.091878 +0.428708 -0.418204 -0.189274 0.0435693 -0.990933 -0.127104 +0.407101 -0.423357 -0.188219 0.085941 -0.970539 -0.225096 +0.390422 -0.425606 -0.187878 -0.0469171 -0.960921 -0.272821 +0.378929 -0.424749 -0.188319 -0.161092 -0.933227 -0.321147 +0.370129 -0.422294 -0.189149 -0.213226 -0.914487 -0.343875 +0.361879 -0.419517 -0.190067 -0.277466 -0.882316 -0.380172 +0.354141 -0.416451 -0.191054 -0.328186 -0.853371 -0.405034 +0.34775 -0.412574 -0.192242 -0.381286 -0.81502 -0.436307 +0.341833 -0.408408 -0.193501 -0.421352 -0.787577 -0.44965 +0.336601 -0.403831 -0.194867 -0.451731 -0.763356 -0.461765 +0.331713 -0.399053 -0.196279 -0.484758 -0.738349 -0.468882 +0.327072 -0.394117 -0.197728 -0.515429 -0.715637 -0.471378 +0.321977 -0.389475 -0.199104 -0.543829 -0.69418 -0.471557 +0.317146 -0.384675 -0.200524 -0.573979 -0.671384 -0.46882 +0.312292 -0.379895 -0.201933 -0.592885 -0.656188 -0.466803 +0.307277 -0.375227 -0.203323 -0.60403 -0.648364 -0.463436 +0.302485 -0.370418 -0.204741 -0.610476 -0.64382 -0.461319 +0.298282 -0.365249 -0.206253 -0.613077 -0.642739 -0.459373 +0.294825 -0.359595 -0.207881 -0.613307 -0.645485 -0.455197 +0.291504 -0.353847 -0.209536 -0.61024 -0.647537 -0.456404 +0.287869 -0.348306 -0.211138 -0.606617 -0.651776 -0.455196 +0.282835 -0.34368 -0.212511 -0.605525 -0.65618 -0.450299 +0.277347 -0.339361 -0.213808 -0.613232 -0.653213 -0.444138 +0.271908 -0.33501 -0.215107 -0.619149 -0.650424 -0.440006 +0.266707 -0.330524 -0.216447 -0.637863 -0.632227 -0.439795 +0.261841 -0.325812 -0.217842 -0.654326 -0.619106 -0.434242 +0.257332 -0.320875 -0.219289 -0.68352 -0.580575 -0.44242 +0.253699 -0.315366 -0.220883 -0.715595 -0.533434 -0.450968 +0.250289 -0.309705 -0.222517 -0.749643 -0.47648 -0.459353 +0.247485 -0.303634 -0.224254 -0.770242 -0.418434 -0.481289 +0.245976 -0.296685 -0.226205 -0.780298 -0.379984 -0.496738 +0.245145 -0.289275 -0.228282 -0.786007 -0.350729 -0.509099 +0.245793 -0.280848 -0.230611 -0.783828 -0.336831 -0.521689 +0.245713 -0.272894 -0.232825 -0.781352 -0.35252 -0.514994 +0.245059 -0.26531 -0.234941 -0.763754 -0.395559 -0.510112 +0.24208 -0.259315 -0.236661 -0.752749 -0.432201 -0.49656 +0.238503 -0.253724 -0.238278 -0.751675 -0.458036 -0.474538 +0.234691 -0.248301 -0.239853 -0.751879 -0.474797 -0.457434 +0.231201 -0.242652 -0.241484 -0.757457 -0.467273 -0.455978 +0.22834 -0.23656 -0.243224 -0.773015 -0.44301 -0.454084 +0.225857 -0.23021 -0.245029 -0.789198 -0.403202 -0.463244 +0.224117 -0.223333 -0.246976 -0.804146 -0.363719 -0.470167 +0.222685 -0.216232 -0.248971 -0.817016 -0.329311 -0.47333 +0.222019 -0.208573 -0.251114 -0.820468 -0.312013 -0.479042 +0.223469 -0.199403 -0.253631 -0.814922 -0.302211 -0.49454 +0.223208 -0.191426 -0.255858 -0.802691 -0.308478 -0.51042 +0.220826 -0.184951 -0.257699 -0.79461 -0.327302 -0.511341 +0.215815 -0.180346 -0.259066 -0.790188 -0.343311 -0.507682 +0.211118 -0.175519 -0.260489 -0.789566 -0.349151 -0.504659 +0.206757 -0.170464 -0.261965 -0.784726 -0.35861 -0.505573 +0.203796 -0.164399 -0.263707 -0.795546 -0.324068 -0.511944 +0.201828 -0.157606 -0.265624 -0.805897 -0.290846 -0.515693 +0.201224 -0.149819 -0.267799 -0.829489 -0.196615 -0.522772 +0.206718 -0.137548 -0.271113 -0.837378 -0.072859 -0.541746 +0.209595 -0.127151 -0.273952 -0.841398 0.024406 -0.539864 +0.212399 -0.11678 -0.276792 -0.847286 0.0985666 -0.52191 +0.216043 -0.105752 -0.279787 -0.850651 0.151181 -0.503525 +0.220548 -0.0940537 -0.282964 -0.853 0.1238 -0.507016 +0.225967 -0.0816329 -0.28632 -0.829765 0.0434002 -0.556422 +0.23371 -0.0674223 -0.290135 -0.777858 -0.0981553 -0.620728 +0.23688 -0.056585 -0.29309 -0.73891 -0.25896 -0.622053 +0.234385 -0.0499709 -0.294974 -0.673737 -0.370591 -0.639329 +0.229901 -0.0448603 -0.296474 -0.654046 -0.426625 -0.624672 +0.225935 -0.0393573 -0.298073 -0.631136 -0.468297 -0.618357 +0.222359 -0.0335536 -0.299748 -0.630683 -0.475779 -0.613084 +0.218801 -0.0277393 -0.301423 -0.612732 -0.503005 -0.609546 +0.214841 -0.0222323 -0.303023 -0.606665 -0.511885 -0.60822 +0.211121 -0.0165525 -0.304665 -0.61145 -0.499827 -0.613436 +0.208204 -0.0102416 -0.306468 -0.622405 -0.475398 -0.621779 +0.221841 0.00886479 -0.311547 -0.66111 -0.397836 -0.636128 +0.702364 -0.471353 -0.177344 0.204097 -0.932565 -0.297772 +0.672701 -0.479444 -0.17556 0.134826 -0.910243 -0.391507 +0.656247 -0.480412 -0.175544 0.0636586 -0.912288 -0.404572 +0.637284 -0.482813 -0.175177 -0.0716187 -0.89682 -0.436562 +0.623173 -0.482611 -0.175456 -0.146344 -0.87882 -0.454158 +0.613366 -0.480058 -0.176322 -0.210861 -0.857773 -0.468789 +0.604998 -0.476743 -0.177377 -0.246811 -0.842543 -0.478755 +0.598181 -0.472577 -0.178646 -0.268055 -0.831879 -0.485925 +0.591574 -0.468309 -0.179945 -0.285121 -0.825323 -0.487392 +0.583417 -0.464921 -0.181013 -0.308384 -0.813534 -0.493014 +0.573769 -0.462396 -0.181873 -0.318044 -0.807494 -0.496791 +0.56678 -0.458396 -0.183096 -0.327829 -0.804922 -0.494601 +0.560473 -0.454013 -0.184419 -0.332936 -0.807191 -0.48744 +0.55472 -0.449336 -0.185813 -0.333531 -0.818016 -0.468625 +0.548504 -0.444925 -0.187143 -0.334869 -0.835273 -0.4361 +0.542242 -0.440558 -0.188455 -0.332434 -0.853216 -0.401885 +0.535366 -0.436554 -0.189686 -0.317301 -0.885245 -0.34009 +0.526148 -0.433923 -0.190563 -0.297276 -0.909118 -0.291775 +0.515214 -0.432323 -0.191182 -0.277934 -0.931291 -0.235482 +0.504479 -0.430642 -0.191817 -0.268747 -0.948937 -0.165216 +0.494801 -0.428371 -0.192606 -0.277535 -0.954031 -0.113138 +0.484828 -0.426294 -0.193344 -0.277896 -0.957339 -0.0792225 +0.474647 -0.42438 -0.194038 -0.282355 -0.957023 -0.066193 +0.465717 -0.421744 -0.194914 -0.270584 -0.960508 -0.0648935 +0.457696 -0.418593 -0.195915 -0.22802 -0.970754 -0.0751348 +0.449932 -0.415312 -0.196955 -0.169786 -0.980175 -0.102141 +0.437509 -0.414849 -0.197278 -0.0642069 -0.991159 -0.116108 +0.416357 -0.419703 -0.19626 0.0650503 -0.967673 -0.243679 +0.399934 -0.421765 -0.195947 0.0177255 -0.95194 -0.305774 +0.38573 -0.42254 -0.195953 -0.12809 -0.92849 -0.348571 +0.375268 -0.421075 -0.19653 -0.196172 -0.905925 -0.375256 +0.367072 -0.418254 -0.197445 -0.277485 -0.867939 -0.411929 +0.359712 -0.414942 -0.19848 -0.317057 -0.843875 -0.432841 +0.353441 -0.410969 -0.199687 -0.364052 -0.81554 -0.449846 +0.347426 -0.406858 -0.200928 -0.405515 -0.787758 -0.463677 +0.342049 -0.402363 -0.202269 -0.442353 -0.763057 -0.47124 +0.337101 -0.397602 -0.203674 -0.469737 -0.745581 -0.472711 +0.331907 -0.393002 -0.205042 -0.498917 -0.726434 -0.472625 +0.327084 -0.388186 -0.206456 -0.527842 -0.706586 -0.471296 +0.322216 -0.383398 -0.207869 -0.555915 -0.686167 -0.469185 +0.317127 -0.378752 -0.209245 -0.585914 -0.664883 -0.463289 +0.311484 -0.374469 -0.21053 -0.605206 -0.651858 -0.456953 +0.306635 -0.369695 -0.211938 -0.611989 -0.644822 -0.457903 +0.30231 -0.364585 -0.213432 -0.612437 -0.64595 -0.45571 +0.298798 -0.358957 -0.215059 -0.610461 -0.64375 -0.461438 +0.295502 -0.353193 -0.216714 -0.607811 -0.642978 -0.465988 +0.292167 -0.347452 -0.218367 -0.598624 -0.645645 -0.474124 +0.287425 -0.342624 -0.219786 -0.593219 -0.650913 -0.473715 +0.281941 -0.338284 -0.221086 -0.587682 -0.644749 -0.488802 +0.275648 -0.334494 -0.222246 -0.595591 -0.644416 -0.479583 +0.270612 -0.329878 -0.22361 -0.619203 -0.631933 -0.466101 +0.265792 -0.325137 -0.225007 -0.630374 -0.615485 -0.473081 +0.261139 -0.320283 -0.226431 -0.655509 -0.575691 -0.488761 +0.25771 -0.314631 -0.228065 -0.685458 -0.528793 -0.500526 +0.254539 -0.308798 -0.22974 -0.710312 -0.467795 -0.525953 +0.252118 -0.302463 -0.231544 -0.734176 -0.411104 -0.540353 +0.25108 -0.295188 -0.233592 -0.747673 -0.370298 -0.551239 +0.250899 -0.287327 -0.235786 -0.73195 -0.346692 -0.586562 +0.251828 -0.278699 -0.238174 -0.729777 -0.352353 -0.585896 +0.251476 -0.270919 -0.240348 -0.722355 -0.390073 -0.571005 +0.249655 -0.264122 -0.242278 -0.721451 -0.424722 -0.546918 +0.246306 -0.258373 -0.243934 -0.720307 -0.461061 -0.518249 +0.242539 -0.252907 -0.245515 -0.717904 -0.482447 -0.501855 +0.238727 -0.247468 -0.247094 -0.72476 -0.489657 -0.484724 +0.235137 -0.241884 -0.24871 -0.740718 -0.473856 -0.476232 +0.231771 -0.236135 -0.250361 -0.760185 -0.446486 -0.471984 +0.228661 -0.230214 -0.25206 -0.782767 -0.40461 -0.472829 +0.226447 -0.223669 -0.253925 -0.801978 -0.362603 -0.474712 +0.22489 -0.216643 -0.255907 -0.807916 -0.331561 -0.487177 +0.224224 -0.208985 -0.258057 -0.814348 -0.304663 -0.493982 +0.225841 -0.199698 -0.260616 -0.810974 -0.293968 -0.505871 +0.225642 -0.191677 -0.262857 -0.792902 -0.297652 -0.531706 +0.223727 -0.184858 -0.264792 -0.780879 -0.316202 -0.538744 +0.219339 -0.179801 -0.266271 -0.774745 -0.332415 -0.537841 +0.215432 -0.174407 -0.267832 -0.768597 -0.344248 -0.539214 +0.21227 -0.168474 -0.269538 -0.760256 -0.35247 -0.545689 +0.210811 -0.161306 -0.271559 -0.767252 -0.318777 -0.556514 +0.212612 -0.151771 -0.274192 -0.780262 -0.247562 -0.574375 +0.214476 -0.142156 -0.276845 -0.788216 -0.161561 -0.593813 +0.215068 -0.133442 -0.279262 -0.800924 -0.0729995 -0.5943 +0.215536 -0.124801 -0.281665 -0.816316 0.0100068 -0.577519 +0.2168 -0.115557 -0.284223 -0.827682 0.0698989 -0.556828 +0.219922 -0.104914 -0.287145 -0.829674 0.144364 -0.53926 +0.224306 -0.0932949 -0.290312 -0.8264 0.132377 -0.547303 +0.230025 -0.0806466 -0.293751 -0.816723 0.0471505 -0.575101 +0.240447 -0.0644354 -0.298105 -0.739679 -0.135755 -0.659126 +0.242467 -0.0544432 -0.300864 -0.704144 -0.289789 -0.648232 +0.239615 -0.0480941 -0.302678 -0.663958 -0.399889 -0.631862 +0.235138 -0.0429508 -0.304178 -0.643117 -0.442685 -0.624844 +0.231233 -0.0373888 -0.305793 -0.636612 -0.462326 -0.617237 +0.227659 -0.0315743 -0.30747 -0.628733 -0.485431 -0.607497 +0.224407 -0.0255255 -0.309212 -0.618853 -0.497089 -0.608215 +0.220777 -0.019751 -0.310875 -0.617866 -0.499546 -0.607203 +0.216656 -0.0143549 -0.312449 -0.624377 -0.484388 -0.612798 +0.213221 -0.00843695 -0.314153 -0.633396 -0.460466 -0.621917 +0.681134 -0.476836 -0.183694 0.13709 -0.924387 -0.355972 +0.662635 -0.478901 -0.183379 0.0836247 -0.91043 -0.405124 +0.647558 -0.479148 -0.183525 -0.0355228 -0.902701 -0.4288 +0.632848 -0.479243 -0.183704 -0.112243 -0.889638 -0.44266 +0.621553 -0.477501 -0.184357 -0.178376 -0.87041 -0.458877 +0.612102 -0.474764 -0.185256 -0.229525 -0.853583 -0.467671 +0.604146 -0.471218 -0.186359 -0.25918 -0.841223 -0.474521 +0.596804 -0.467345 -0.187554 -0.281873 -0.832317 -0.477282 +0.589769 -0.463312 -0.188781 -0.299484 -0.82709 -0.475639 +0.581492 -0.460002 -0.189826 -0.314141 -0.82288 -0.473483 +0.572811 -0.45694 -0.190803 -0.330874 -0.816758 -0.472683 +0.56605 -0.452808 -0.192059 -0.327699 -0.824794 -0.460791 +0.559542 -0.448539 -0.193343 -0.320292 -0.837949 -0.441878 +0.552992 -0.444319 -0.194617 -0.313024 -0.858954 -0.405231 +0.54639 -0.440128 -0.195882 -0.316899 -0.870484 -0.376608 +0.539389 -0.436193 -0.197082 -0.297021 -0.901426 -0.314979 +0.52897 -0.434253 -0.197774 -0.275141 -0.926184 -0.257838 +0.517703 -0.43284 -0.198332 -0.253449 -0.947157 -0.196613 +0.505346 -0.432097 -0.198714 -0.235876 -0.962998 -0.130381 +0.495872 -0.429696 -0.199522 -0.243874 -0.965331 -0.0930792 +0.486309 -0.427381 -0.20031 -0.269262 -0.960605 -0.0688353 +0.476402 -0.425295 -0.201029 -0.287 -0.956127 -0.0587689 +0.467296 -0.422759 -0.201874 -0.285966 -0.956319 -0.0606498 +0.45961 -0.419403 -0.202915 -0.247711 -0.965131 -0.0846311 +0.452385 -0.415793 -0.20403 -0.2179 -0.97115 -0.0968881 +0.442697 -0.413675 -0.20476 -0.134029 -0.980044 -0.146805 +0.425803 -0.415933 -0.204373 -0.00955276 -0.971172 -0.238192 +0.407402 -0.419169 -0.203728 0.0244795 -0.944979 -0.326215 +0.393332 -0.419843 -0.203739 -0.0904753 -0.916382 -0.389948 +0.382176 -0.418783 -0.204196 -0.17015 -0.894512 -0.413398 +0.372696 -0.416733 -0.204907 -0.252927 -0.861134 -0.440996 +0.364978 -0.413625 -0.205887 -0.29906 -0.83698 -0.458289 +0.359155 -0.409366 -0.20716 -0.349878 -0.808371 -0.473417 +0.353257 -0.405169 -0.208416 -0.388615 -0.789474 -0.475089 +0.347758 -0.400733 -0.209734 -0.422436 -0.769058 -0.479688 +0.342543 -0.396128 -0.211103 -0.456193 -0.75162 -0.476399 +0.337472 -0.391439 -0.212488 -0.476202 -0.738415 -0.477467 +0.332124 -0.386933 -0.213823 -0.510043 -0.716851 -0.475376 +0.326687 -0.382496 -0.215141 -0.540285 -0.696578 -0.472092 +0.32142 -0.377961 -0.216484 -0.567124 -0.678904 -0.466326 +0.315792 -0.373659 -0.217765 -0.591349 -0.65813 -0.466019 +0.311025 -0.368819 -0.219188 -0.607279 -0.643719 -0.465659 +0.306829 -0.363618 -0.220707 -0.609939 -0.633877 -0.475579 +0.30352 -0.357845 -0.222365 -0.607792 -0.636416 -0.474938 +0.300201 -0.352088 -0.22403 -0.60203 -0.630118 -0.490419 +0.297112 -0.346173 -0.225725 -0.590752 -0.625552 -0.509607 +0.292311 -0.341378 -0.227133 -0.577021 -0.623539 -0.527491 +0.287077 -0.336869 -0.228474 -0.563422 -0.621549 -0.544272 +0.280876 -0.332997 -0.229644 -0.572731 -0.618914 -0.537517 +0.275305 -0.328731 -0.23092 -0.57709 -0.607638 -0.545659 +0.270577 -0.323912 -0.232334 -0.58345 -0.587566 -0.560673 +0.266147 -0.318902 -0.233799 -0.602424 -0.556386 -0.572293 +0.262764 -0.313198 -0.235439 -0.625648 -0.504398 -0.595104 +0.259904 -0.307152 -0.237177 -0.647318 -0.451243 -0.614296 +0.258462 -0.300152 -0.239149 -0.666625 -0.400096 -0.628916 +0.258106 -0.292412 -0.241322 -0.671761 -0.36649 -0.643756 +0.258842 -0.283915 -0.243691 -0.676048 -0.352377 -0.647139 +0.259034 -0.275772 -0.245964 -0.675666 -0.385249 -0.628536 +0.257821 -0.268558 -0.248005 -0.667314 -0.428926 -0.608864 +0.255407 -0.26216 -0.249823 -0.667781 -0.467657 -0.579108 +0.251795 -0.256572 -0.251442 -0.67468 -0.492828 -0.549482 +0.248089 -0.251046 -0.25304 -0.68258 -0.509196 -0.524216 +0.244192 -0.245656 -0.254607 -0.690892 -0.511449 -0.51097 +0.24007 -0.240428 -0.256126 -0.713609 -0.489406 -0.501243 +0.236178 -0.235044 -0.257691 -0.738107 -0.456704 -0.496608 +0.232584 -0.229442 -0.259304 -0.767714 -0.408965 -0.493319 +0.23004 -0.22312 -0.261109 -0.789491 -0.36497 -0.493458 +0.228715 -0.215927 -0.263139 -0.796682 -0.335426 -0.50278 +0.228284 -0.208104 -0.265339 -0.805848 -0.294133 -0.513901 +0.229898 -0.198814 -0.267915 -0.793103 -0.278145 -0.54187 +0.229242 -0.1911 -0.270085 -0.778912 -0.286417 -0.557907 +0.229222 -0.182927 -0.272368 -0.756581 -0.304541 -0.578654 +0.227109 -0.176231 -0.274275 -0.746153 -0.325762 -0.580634 +0.225767 -0.16898 -0.276322 -0.732606 -0.330543 -0.595006 +0.223721 -0.16222 -0.278245 -0.726724 -0.319907 -0.60789 +0.221684 -0.155444 -0.280165 -0.722304 -0.302865 -0.621732 +0.219875 -0.148496 -0.282134 -0.732056 -0.242438 -0.636647 +0.218868 -0.140959 -0.284257 -0.751544 -0.165853 -0.638494 +0.218641 -0.13284 -0.286538 -0.771237 -0.0920203 -0.629862 +0.219352 -0.124018 -0.288992 -0.795727 -0.0147416 -0.605477 +0.221119 -0.114388 -0.291666 -0.805766 0.052719 -0.589883 +0.224208 -0.103765 -0.294593 -0.808353 0.132455 -0.573603 +0.228729 -0.0920385 -0.297806 -0.814151 0.129171 -0.566104 +0.236119 -0.0781466 -0.301586 -0.785216 0.0352757 -0.618218 +0.24997 -0.0593782 -0.306643 -0.691844 -0.210864 -0.690571 +0.248965 -0.0516294 -0.308829 -0.664972 -0.347222 -0.661249 +0.245229 -0.0459238 -0.310472 -0.642876 -0.420616 -0.640151 +0.240658 -0.0408458 -0.311964 -0.618015 -0.480607 -0.622154 +0.236743 -0.0352792 -0.313575 -0.629614 -0.476011 -0.614003 +0.233373 -0.0292965 -0.315295 -0.624276 -0.492732 -0.606215 +0.230148 -0.0232048 -0.317044 -0.622458 -0.499105 -0.602861 +0.225889 -0.0178971 -0.318594 -0.626977 -0.490575 -0.605174 +0.221664 -0.012576 -0.320143 -0.634593 -0.472073 -0.611916 +0.221643 -0.00401527 -0.322539 -0.647093 -0.436367 -0.625185 +0.670627 -0.476524 -0.191459 0.115227 -0.905411 -0.408603 +0.65424 -0.477467 -0.191404 0.00224707 -0.897666 -0.44067 +0.641045 -0.47671 -0.19178 -0.0889793 -0.889019 -0.449143 +0.629434 -0.475112 -0.19238 -0.144455 -0.873545 -0.464814 +0.61954 -0.472603 -0.193212 -0.205723 -0.857378 -0.471787 +0.611017 -0.469352 -0.194226 -0.245576 -0.844269 -0.476343 +0.603164 -0.465755 -0.195339 -0.265639 -0.838727 -0.475368 +0.595093 -0.46229 -0.196418 -0.28713 -0.831822 -0.475005 +0.587227 -0.458742 -0.197513 -0.305777 -0.828901 -0.468425 +0.57851 -0.455679 -0.198477 -0.326492 -0.826618 -0.458374 +0.570471 -0.452265 -0.199542 -0.325195 -0.837442 -0.439249 +0.563188 -0.448431 -0.200714 -0.31509 -0.854902 -0.412143 +0.556349 -0.444358 -0.201941 -0.298313 -0.875281 -0.380649 +0.549402 -0.440366 -0.20315 -0.297975 -0.886952 -0.352885 +0.542044 -0.436625 -0.204292 -0.272212 -0.914541 -0.299193 +0.531076 -0.434995 -0.204889 -0.257407 -0.937943 -0.232395 +0.519293 -0.433877 -0.205356 -0.221168 -0.959397 -0.17505 +0.506654 -0.43329 -0.205679 -0.209138 -0.97105 -0.115437 +0.4974 -0.430759 -0.206507 -0.22788 -0.969682 -0.0882499 +0.487865 -0.428415 -0.207291 -0.255167 -0.964739 -0.0645729 +0.478423 -0.426051 -0.208071 -0.27817 -0.958155 -0.0675434 +0.469433 -0.423446 -0.208921 -0.287851 -0.953958 -0.0843021 +0.4618 -0.420048 -0.209968 -0.27171 -0.956132 -0.109482 +0.454812 -0.416291 -0.211111 -0.23909 -0.960635 -0.141488 +0.447223 -0.412904 -0.21216 -0.189498 -0.964508 -0.183897 +0.435368 -0.412113 -0.212533 -0.113243 -0.965646 -0.233895 +0.415062 -0.41647 -0.211571 -0.00447771 -0.93571 -0.352744 +0.401398 -0.416872 -0.211632 -0.0528961 -0.904249 -0.423716 +0.38965 -0.416154 -0.211978 -0.131775 -0.885604 -0.445355 +0.379515 -0.414487 -0.212579 -0.220527 -0.851297 -0.47609 +0.371148 -0.411758 -0.213451 -0.27665 -0.830492 -0.483476 +0.365013 -0.407678 -0.214671 -0.320527 -0.810095 -0.490926 +0.359804 -0.403041 -0.216039 -0.359902 -0.791676 -0.49368 +0.354127 -0.398699 -0.217334 -0.393536 -0.778291 -0.48928 +0.348411 -0.394398 -0.218616 -0.424375 -0.762542 -0.488301 +0.342824 -0.390018 -0.219911 -0.461908 -0.744383 -0.48222 +0.337135 -0.385717 -0.22119 -0.488148 -0.726958 -0.482954 +0.33115 -0.38161 -0.22242 -0.513936 -0.710592 -0.480551 +0.325251 -0.377456 -0.223667 -0.545157 -0.685609 -0.482437 +0.31973 -0.373084 -0.224963 -0.572398 -0.66001 -0.486569 +0.315199 -0.368082 -0.226426 -0.595013 -0.639219 -0.487196 +0.311114 -0.362799 -0.227962 -0.601428 -0.626725 -0.49548 +0.307865 -0.356984 -0.229633 -0.601173 -0.610546 -0.515581 +0.304857 -0.351014 -0.231349 -0.59049 -0.599305 -0.540515 +0.301862 -0.345034 -0.233059 -0.576275 -0.588328 -0.567255 +0.29825 -0.339448 -0.234677 -0.563778 -0.579287 -0.588711 +0.292998 -0.334937 -0.236013 -0.546748 -0.580264 -0.603624 +0.287314 -0.330716 -0.237266 -0.538618 -0.58024 -0.61091 +0.281648 -0.326495 -0.238523 -0.535408 -0.570074 -0.623182 +0.276657 -0.321834 -0.239893 -0.543815 -0.560935 -0.624194 +0.272552 -0.316596 -0.24142 -0.550719 -0.526472 -0.647717 +0.26977 -0.310488 -0.243172 -0.574696 -0.482061 -0.661319 +0.268171 -0.303581 -0.24513 -0.59828 -0.437579 -0.671256 +0.267396 -0.296117 -0.247237 -0.624009 -0.392304 -0.675804 +0.267357 -0.288143 -0.249475 -0.631937 -0.378237 -0.676457 +0.26699 -0.280369 -0.251665 -0.645392 -0.391006 -0.656189 +0.266259 -0.272833 -0.253785 -0.644103 -0.423534 -0.636986 +0.264382 -0.266062 -0.255712 -0.64338 -0.455311 -0.61543 +0.262116 -0.259546 -0.257567 -0.638994 -0.49537 -0.58847 +0.258348 -0.254049 -0.259164 -0.638955 -0.527539 -0.559857 +0.253725 -0.249141 -0.260597 -0.642921 -0.533772 -0.549309 +0.249425 -0.244015 -0.262093 -0.656093 -0.533098 -0.534181 +0.244707 -0.239182 -0.263511 -0.679801 -0.504651 -0.532163 +0.240539 -0.23398 -0.265019 -0.712826 -0.464967 -0.525057 +0.236794 -0.228477 -0.266615 -0.743845 -0.418995 -0.520709 +0.23409 -0.222255 -0.268394 -0.769527 -0.368308 -0.521706 +0.232828 -0.215019 -0.270446 -0.788958 -0.318697 -0.525334 +0.232573 -0.207053 -0.272685 -0.788193 -0.282176 -0.546925 +0.233903 -0.197961 -0.275217 -0.777902 -0.266987 -0.568847 +0.235102 -0.18893 -0.27774 -0.756839 -0.274585 -0.593127 +0.237248 -0.1792 -0.280442 -0.728804 -0.291882 -0.619394 +0.235577 -0.172174 -0.282434 -0.712681 -0.309271 -0.629632 +0.232836 -0.165909 -0.284234 -0.698298 -0.32081 -0.639891 +0.229012 -0.160405 -0.285821 -0.695278 -0.30633 -0.650193 +0.225776 -0.154493 -0.28753 -0.695131 -0.295173 -0.65549 +0.223472 -0.147889 -0.289408 -0.704664 -0.241868 -0.667046 +0.221804 -0.140827 -0.291416 -0.727051 -0.181672 -0.662112 +0.221874 -0.132487 -0.293753 -0.746706 -0.117232 -0.654742 +0.223926 -0.122677 -0.296482 -0.772938 -0.0370851 -0.633397 +0.227376 -0.111809 -0.299489 -0.778329 0.0461586 -0.626157 +0.230489 -0.101151 -0.302437 -0.764713 0.130597 -0.630999 +0.23571 -0.0889025 -0.305811 -0.762842 0.124712 -0.634445 +0.251212 -0.0689739 -0.31121 -0.696622 -0.0780139 -0.713184 +0.259641 -0.0542203 -0.315246 -0.635586 -0.347552 -0.689376 +0.255134 -0.0490706 -0.31675 -0.632479 -0.410075 -0.657122 +0.250423 -0.0440792 -0.318211 -0.628124 -0.454234 -0.631768 +0.245975 -0.0388965 -0.319725 -0.609005 -0.500838 -0.61504 +0.242334 -0.0331034 -0.321395 -0.61783 -0.488361 -0.616272 +0.239148 -0.0269737 -0.323157 -0.621388 -0.493895 -0.608231 +0.23581 -0.020957 -0.324891 -0.622042 -0.497846 -0.604328 +0.232114 -0.0152036 -0.326548 -0.633166 -0.481141 -0.606304 +0.228902 -0.00908915 -0.328308 -0.641554 -0.459604 -0.614143 +0.22769 -0.00143519 -0.330476 -0.653038 -0.420968 -0.629545 +0.663855 -0.474185 -0.199723 0.0612575 -0.896296 -0.439205 +0.64882 -0.474411 -0.199823 -0.0220012 -0.887021 -0.461206 +0.636596 -0.473135 -0.200325 -0.10519 -0.873781 -0.474808 +0.626628 -0.470647 -0.201136 -0.180606 -0.854404 -0.487212 +0.617641 -0.467645 -0.202078 -0.21596 -0.842745 -0.493094 +0.609476 -0.464199 -0.203145 -0.244464 -0.838384 -0.487186 +0.601742 -0.460538 -0.204263 -0.267683 -0.833962 -0.482549 +0.593563 -0.457141 -0.205312 -0.284221 -0.833281 -0.474197 +0.585418 -0.453741 -0.206359 -0.303683 -0.835523 -0.457907 +0.576412 -0.450851 -0.207269 -0.304588 -0.84563 -0.438334 +0.568127 -0.447584 -0.208282 -0.298794 -0.862368 -0.408712 +0.560299 -0.44407 -0.209366 -0.274931 -0.883619 -0.378988 +0.552975 -0.440283 -0.210515 -0.255793 -0.906164 -0.336806 +0.545613 -0.436534 -0.211651 -0.248053 -0.922267 -0.296471 +0.534542 -0.434952 -0.212223 -0.21598 -0.948712 -0.23087 +0.522922 -0.433724 -0.212692 -0.194998 -0.965636 -0.171829 +0.510599 -0.432946 -0.213056 -0.18779 -0.974067 -0.12621 +0.500297 -0.431021 -0.21371 -0.197431 -0.975128 -0.100732 +0.490047 -0.429092 -0.214368 -0.241168 -0.965491 -0.0983175 +0.480417 -0.426823 -0.215112 -0.278937 -0.95363 -0.113072 +0.471735 -0.424028 -0.215996 -0.299007 -0.943878 -0.140325 +0.464253 -0.420545 -0.217064 -0.302118 -0.938914 -0.164823 +0.457465 -0.416652 -0.218236 -0.264818 -0.943609 -0.198679 +0.450714 -0.412764 -0.219405 -0.237664 -0.94541 -0.222968 +0.442344 -0.409857 -0.220318 -0.191183 -0.947939 -0.25468 +0.427915 -0.410635 -0.220258 -0.104839 -0.94151 -0.320265 +0.409611 -0.413824 -0.219569 -0.0457681 -0.906871 -0.418917 +0.39924 -0.412243 -0.220126 -0.0885273 -0.884028 -0.458976 +0.388549 -0.410891 -0.220633 -0.170005 -0.853678 -0.492273 +0.37896 -0.408887 -0.221304 -0.24201 -0.831245 -0.500464 +0.371845 -0.405395 -0.222366 -0.29196 -0.812268 -0.504958 +0.365965 -0.401158 -0.223623 -0.322018 -0.799093 -0.507696 +0.360715 -0.396535 -0.224985 -0.360744 -0.785426 -0.502962 +0.354765 -0.392357 -0.226226 -0.392522 -0.770976 -0.501522 +0.348493 -0.388398 -0.227416 -0.427757 -0.754605 -0.497591 +0.341996 -0.384592 -0.228557 -0.465961 -0.733452 -0.494902 +0.335917 -0.380531 -0.22977 -0.500414 -0.710444 -0.494829 +0.329731 -0.376555 -0.230961 -0.529479 -0.6847 -0.500837 +0.323981 -0.372312 -0.232216 -0.556251 -0.659212 -0.505989 +0.319352 -0.367368 -0.233666 -0.576157 -0.630358 -0.52028 +0.315282 -0.362068 -0.235206 -0.589215 -0.599306 -0.541903 +0.312637 -0.355855 -0.236985 -0.59049 -0.578012 -0.563226 +0.309993 -0.349644 -0.238765 -0.583452 -0.56371 -0.58465 +0.307278 -0.343462 -0.240536 -0.572747 -0.54683 -0.610688 +0.304006 -0.337652 -0.242207 -0.561312 -0.540792 -0.626478 +0.300265 -0.332139 -0.243806 -0.543766 -0.546212 -0.637159 +0.29599 -0.326981 -0.245305 -0.530505 -0.547779 -0.646918 +0.291129 -0.322201 -0.2467 -0.524343 -0.544442 -0.654711 +0.286512 -0.317275 -0.248145 -0.527131 -0.530383 -0.66395 +0.28444 -0.310675 -0.250027 -0.534739 -0.500441 -0.680892 +0.284005 -0.302974 -0.252198 -0.557529 -0.471874 -0.683005 +0.282799 -0.295774 -0.254243 -0.584139 -0.438973 -0.682705 +0.280703 -0.289162 -0.256129 -0.60983 -0.413466 -0.676131 +0.278709 -0.282475 -0.258032 -0.625369 -0.412311 -0.662504 +0.276465 -0.275938 -0.259898 -0.629308 -0.427713 -0.64887 +0.273951 -0.269592 -0.261713 -0.631998 -0.450549 -0.630543 +0.271695 -0.263054 -0.26358 -0.628608 -0.485012 -0.607961 +0.268632 -0.257067 -0.265306 -0.618536 -0.516143 -0.592461 +0.264813 -0.251588 -0.266887 -0.61436 -0.545752 -0.56984 +0.259223 -0.247331 -0.268154 -0.619175 -0.54285 -0.567395 +0.254075 -0.242775 -0.269491 -0.624945 -0.539577 -0.564182 +0.248803 -0.238318 -0.270808 -0.644629 -0.516783 -0.563373 +0.244497 -0.233194 -0.272295 -0.674295 -0.482155 -0.559334 +0.240766 -0.227683 -0.273892 -0.708314 -0.428886 -0.560667 +0.237999 -0.221491 -0.275669 -0.738686 -0.364032 -0.567296 +0.236888 -0.214143 -0.277749 -0.75692 -0.309227 -0.57572 +0.236772 -0.206073 -0.280025 -0.757056 -0.274474 -0.592901 +0.238802 -0.196483 -0.282703 -0.747922 -0.255384 -0.612692 +0.24179 -0.186172 -0.285574 -0.712295 -0.255238 -0.653827 +0.243531 -0.17673 -0.288213 -0.696599 -0.281801 -0.659803 +0.241751 -0.169758 -0.290195 -0.677695 -0.30081 -0.671001 +0.238238 -0.16403 -0.291854 -0.67197 -0.308552 -0.673241 +0.234369 -0.158553 -0.293438 -0.676979 -0.300832 -0.671714 +0.230419 -0.153133 -0.295009 -0.677926 -0.28752 -0.676572 +0.227726 -0.146814 -0.296819 -0.690696 -0.247665 -0.679413 +0.226282 -0.139572 -0.298871 -0.711731 -0.194423 -0.67501 +0.22796 -0.130057 -0.301534 -0.735987 -0.140781 -0.662197 +0.231583 -0.119087 -0.304588 -0.741785 -0.042462 -0.669292 +0.234352 -0.108708 -0.307479 -0.731973 0.0570531 -0.67894 +0.238939 -0.0969461 -0.310741 -0.712061 0.129536 -0.690065 +0.252162 -0.0787703 -0.315716 -0.666967 0.0060392 -0.745062 +0.266556 -0.0596405 -0.320942 -0.613221 -0.330583 -0.717408 +0.265035 -0.0522577 -0.323034 -0.610603 -0.430856 -0.664475 +0.260127 -0.0473881 -0.324461 -0.61672 -0.4409 -0.652123 +0.255317 -0.0424635 -0.325908 -0.612528 -0.464494 -0.639574 +0.251159 -0.0370511 -0.327474 -0.60426 -0.505962 -0.615526 +0.247634 -0.0311602 -0.329178 -0.599921 -0.517502 -0.610154 +0.24502 -0.0245824 -0.331057 -0.61336 -0.506586 -0.605939 +0.242116 -0.0182224 -0.332878 -0.618971 -0.497204 -0.608 +0.238801 -0.0121691 -0.334626 -0.634164 -0.472608 -0.611946 +0.235531 -0.00607843 -0.336378 -0.64498 -0.437368 -0.626666 +0.239808 0.00581111 -0.339675 -0.647541 -0.382591 -0.659027 +0.687826 -0.463044 -0.210157 0.224411 -0.839418 -0.494994 +0.660904 -0.469748 -0.208523 0.0295833 -0.874848 -0.483492 +0.645923 -0.469974 -0.20861 -0.0613656 -0.870163 -0.488927 +0.634443 -0.468299 -0.209193 -0.136347 -0.850443 -0.508091 +0.62503 -0.465506 -0.210072 -0.186304 -0.838641 -0.511833 +0.616412 -0.462299 -0.211061 -0.216064 -0.835097 -0.505895 +0.60856 -0.458687 -0.212155 -0.239973 -0.829527 -0.50428 +0.60126 -0.454781 -0.21333 -0.259079 -0.832059 -0.490468 +0.593743 -0.451011 -0.21447 -0.269889 -0.834089 -0.481099 +0.584782 -0.448079 -0.215386 -0.276703 -0.84598 -0.455799 +0.575674 -0.445254 -0.216275 -0.270446 -0.862368 -0.427996 +0.56667 -0.442393 -0.217163 -0.251145 -0.888771 -0.383422 +0.558428 -0.439124 -0.218172 -0.233913 -0.909709 -0.343094 +0.550456 -0.435716 -0.219213 -0.211793 -0.926975 -0.309618 +0.539007 -0.434336 -0.21971 -0.18312 -0.948166 -0.259709 +0.527715 -0.432909 -0.220227 -0.162545 -0.966181 -0.200186 +0.515773 -0.431889 -0.220629 -0.161918 -0.973991 -0.158507 +0.504179 -0.430701 -0.221071 -0.172176 -0.974762 -0.142113 +0.492959 -0.429334 -0.221567 -0.228263 -0.960749 -0.157671 +0.482661 -0.427455 -0.222202 -0.277537 -0.945352 -0.171127 +0.474086 -0.424588 -0.223093 -0.300658 -0.933956 -0.193217 +0.466966 -0.420877 -0.224214 -0.306974 -0.928147 -0.210505 +0.460527 -0.416775 -0.225435 -0.297099 -0.923984 -0.240803 +0.45435 -0.412529 -0.22669 -0.272341 -0.928381 -0.252861 +0.447034 -0.408983 -0.227766 -0.224191 -0.928827 -0.294992 +0.436824 -0.407204 -0.228364 -0.157977 -0.92806 -0.337266 +0.421734 -0.408413 -0.228169 -0.0865891 -0.911864 -0.401258 +0.408754 -0.408387 -0.228307 -0.0820801 -0.888955 -0.450581 +0.399085 -0.406382 -0.228962 -0.134942 -0.862594 -0.487569 +0.389783 -0.404185 -0.229675 -0.189121 -0.842492 -0.504423 +0.380434 -0.402041 -0.230372 -0.257947 -0.818227 -0.513778 +0.373093 -0.398685 -0.231392 -0.291044 -0.802349 -0.521086 +0.367184 -0.394455 -0.232642 -0.322461 -0.794438 -0.514673 +0.360802 -0.390531 -0.233809 -0.366055 -0.77636 -0.513098 +0.35428 -0.386714 -0.234955 -0.394108 -0.76057 -0.51596 +0.346821 -0.383493 -0.235938 -0.436922 -0.738979 -0.512844 +0.34008 -0.379836 -0.237036 -0.477813 -0.71119 -0.51566 +0.334036 -0.375761 -0.238247 -0.50565 -0.689214 -0.518943 +0.328695 -0.371249 -0.239575 -0.539647 -0.650605 -0.534317 +0.324275 -0.366157 -0.241057 -0.559811 -0.613625 -0.556844 +0.320566 -0.360625 -0.242656 -0.579003 -0.576157 -0.576889 +0.318192 -0.354223 -0.244487 -0.583672 -0.547116 -0.599993 +0.316092 -0.347648 -0.246365 -0.579362 -0.530611 -0.618703 +0.314416 -0.340786 -0.248319 -0.5748 -0.510774 -0.639309 +0.31275 -0.333913 -0.250282 -0.558672 -0.510442 -0.65371 +0.310502 -0.327414 -0.25214 -0.549347 -0.517514 -0.656048 +0.308873 -0.320501 -0.25411 -0.539244 -0.523693 -0.659517 +0.305397 -0.31479 -0.255753 -0.538276 -0.524731 -0.659483 +0.301523 -0.309335 -0.257333 -0.53678 -0.522671 -0.662332 +0.297076 -0.304268 -0.258812 -0.55099 -0.508271 -0.661868 +0.293573 -0.298583 -0.260452 -0.574849 -0.479413 -0.663109 +0.290641 -0.292509 -0.262194 -0.595817 -0.459344 -0.65879 +0.287921 -0.286291 -0.263981 -0.615328 -0.446663 -0.649511 +0.285551 -0.279837 -0.265825 -0.625492 -0.447013 -0.639482 +0.282779 -0.273648 -0.267602 -0.63155 -0.453757 -0.628688 +0.280013 -0.267455 -0.269381 -0.631877 -0.469466 -0.616712 +0.277121 -0.261344 -0.271135 -0.622343 -0.492771 -0.608167 +0.273477 -0.255731 -0.272755 -0.612837 -0.515973 -0.598499 +0.269334 -0.250472 -0.274284 -0.601339 -0.533337 -0.594931 +0.26383 -0.246137 -0.27556 -0.595259 -0.546503 -0.589068 +0.258536 -0.241674 -0.276873 -0.599155 -0.536338 -0.594438 +0.253327 -0.237162 -0.278197 -0.616883 -0.519022 -0.59167 +0.249272 -0.23186 -0.279734 -0.638214 -0.476799 -0.604438 +0.245806 -0.226147 -0.281386 -0.675601 -0.422029 -0.60453 +0.24321 -0.219829 -0.283194 -0.700217 -0.355712 -0.619003 +0.242567 -0.212139 -0.285372 -0.719934 -0.294835 -0.628305 +0.243249 -0.203503 -0.28781 -0.718963 -0.252722 -0.647476 +0.245905 -0.193455 -0.290625 -0.692714 -0.243062 -0.67902 +0.248704 -0.183266 -0.293478 -0.677902 -0.253102 -0.69021 +0.249865 -0.174219 -0.296023 -0.658675 -0.285255 -0.69626 +0.247659 -0.167545 -0.297933 -0.658648 -0.307055 -0.68695 +0.244096 -0.161834 -0.299577 -0.661057 -0.306495 -0.684883 +0.240409 -0.156211 -0.301203 -0.665878 -0.299028 -0.683513 +0.236669 -0.150629 -0.302817 -0.677554 -0.291949 -0.675045 +0.23481 -0.143688 -0.304798 -0.692061 -0.248105 -0.677861 +0.235413 -0.134951 -0.307257 -0.701099 -0.194923 -0.685906 +0.237778 -0.124919 -0.310073 -0.704535 -0.109183 -0.70122 +0.240479 -0.114601 -0.312964 -0.680426 -0.0100131 -0.73275 +0.244198 -0.103501 -0.316063 -0.66021 0.0930983 -0.745291 +0.251616 -0.0896463 -0.31991 -0.645791 0.0859049 -0.758666 +0.277756 -0.0619112 -0.327495 -0.597889 -0.397275 -0.696206 +0.275209 -0.0552718 -0.329398 -0.589906 -0.434975 -0.6803 +0.270612 -0.0501624 -0.330884 -0.598826 -0.445411 -0.665595 +0.265072 -0.0457584 -0.332189 -0.604799 -0.459281 -0.650599 +0.260402 -0.0407172 -0.333658 -0.591294 -0.513287 -0.622022 +0.256679 -0.0349633 -0.335318 -0.593784 -0.506828 -0.624936 +0.253552 -0.028758 -0.3371 -0.596168 -0.517118 -0.614146 +0.251108 -0.0220419 -0.339026 -0.597299 -0.504776 -0.623247 +0.248106 -0.0157384 -0.340836 -0.616834 -0.477163 -0.625965 +0.244682 -0.00975277 -0.342555 -0.62505 -0.451109 -0.637036 +0.240836 -0.00408778 -0.344198 -0.640376 -0.41414 -0.646844 +0.662808 -0.462641 -0.21805 0.0174801 -0.844144 -0.535833 +0.647593 -0.463002 -0.218071 -0.0650773 -0.835936 -0.544957 +0.636129 -0.461322 -0.218639 -0.133402 -0.829466 -0.542395 +0.625993 -0.458933 -0.219402 -0.1693 -0.82595 -0.537721 +0.616846 -0.456027 -0.220299 -0.2018 -0.824192 -0.529137 +0.608734 -0.452552 -0.221352 -0.223034 -0.827647 -0.51503 +0.601701 -0.448492 -0.222554 -0.234483 -0.831962 -0.502851 +0.594344 -0.444636 -0.223707 -0.239212 -0.837401 -0.491466 +0.583789 -0.442613 -0.224367 -0.245823 -0.855058 -0.456561 +0.575129 -0.439538 -0.225314 -0.228135 -0.876749 -0.423398 +0.565929 -0.436788 -0.226163 -0.21607 -0.897794 -0.383769 +0.557109 -0.433855 -0.227068 -0.187348 -0.916433 -0.353626 +0.544508 -0.433124 -0.227384 -0.155511 -0.944806 -0.288375 +0.532831 -0.431905 -0.227824 -0.140326 -0.960368 -0.24084 +0.521199 -0.430683 -0.228262 -0.135858 -0.967282 -0.214265 +0.509232 -0.429707 -0.228632 -0.148543 -0.968427 -0.200215 +0.497306 -0.428739 -0.229006 -0.214301 -0.951762 -0.219603 +0.486204 -0.427317 -0.229496 -0.267274 -0.934477 -0.235199 +0.477162 -0.424724 -0.230311 -0.307631 -0.917369 -0.252584 +0.46998 -0.421039 -0.231416 -0.319536 -0.907614 -0.272277 +0.46396 -0.416686 -0.232697 -0.310367 -0.904535 -0.292389 +0.458181 -0.412194 -0.234012 -0.31333 -0.897889 -0.309225 +0.451966 -0.407971 -0.235265 -0.256568 -0.906517 -0.335263 +0.44363 -0.405048 -0.236163 -0.200009 -0.907959 -0.368252 +0.433238 -0.403388 -0.236716 -0.151984 -0.901832 -0.404477 +0.419866 -0.403571 -0.236772 -0.108405 -0.893866 -0.435033 +0.408997 -0.40227 -0.237229 -0.106721 -0.87908 -0.464574 +0.400255 -0.399704 -0.238024 -0.158826 -0.85697 -0.490282 +0.391223 -0.397342 -0.238769 -0.2062 -0.833462 -0.512666 +0.381918 -0.395168 -0.239462 -0.251134 -0.815597 -0.521282 +0.374364 -0.39194 -0.240439 -0.295266 -0.799506 -0.523077 +0.367004 -0.38861 -0.241445 -0.330912 -0.782956 -0.526761 +0.359933 -0.385114 -0.242495 -0.365827 -0.765383 -0.52949 +0.352361 -0.381956 -0.24345 -0.414603 -0.73538 -0.536024 +0.345323 -0.378475 -0.244495 -0.452725 -0.703938 -0.547277 +0.338933 -0.374595 -0.245644 -0.480852 -0.681021 -0.552261 +0.333847 -0.369911 -0.247013 -0.519325 -0.637699 -0.568895 +0.329623 -0.364691 -0.248531 -0.546583 -0.593432 -0.590834 +0.326279 -0.358905 -0.250195 -0.566897 -0.551657 -0.611803 +0.324175 -0.352325 -0.252084 -0.57726 -0.519502 -0.629991 +0.322707 -0.34533 -0.254081 -0.574762 -0.504617 -0.644213 +0.321663 -0.338048 -0.256153 -0.559364 -0.496642 -0.663672 +0.321177 -0.330396 -0.258326 -0.556972 -0.500428 -0.662839 +0.318976 -0.323846 -0.260198 -0.550033 -0.51355 -0.658583 +0.31542 -0.318176 -0.26184 -0.545374 -0.525125 -0.653307 +0.310824 -0.313183 -0.263291 -0.542082 -0.53256 -0.650022 +0.305915 -0.308398 -0.264691 -0.549428 -0.532264 -0.644069 +0.301202 -0.303499 -0.266116 -0.568898 -0.517616 -0.639085 +0.29697 -0.298281 -0.267627 -0.581178 -0.499449 -0.642482 +0.293724 -0.292414 -0.269318 -0.602336 -0.477441 -0.639722 +0.291108 -0.28612 -0.271128 -0.620643 -0.461903 -0.6336 +0.288908 -0.279552 -0.273006 -0.632642 -0.458557 -0.624092 +0.28686 -0.272865 -0.274921 -0.634317 -0.461971 -0.619859 +0.284751 -0.266219 -0.276824 -0.631357 -0.473169 -0.61441 +0.281741 -0.260174 -0.278558 -0.617033 -0.491558 -0.614527 +0.278848 -0.254047 -0.280325 -0.601329 -0.511812 -0.613556 +0.274953 -0.248603 -0.281897 -0.585104 -0.526595 -0.616726 +0.270004 -0.243882 -0.283277 -0.581928 -0.534999 -0.612484 +0.264702 -0.239405 -0.284586 -0.5874 -0.535051 -0.607192 +0.259288 -0.235018 -0.285875 -0.595869 -0.50374 -0.625449 +0.255159 -0.22975 -0.287404 -0.613184 -0.468083 -0.636322 +0.251836 -0.223929 -0.289082 -0.635106 -0.407826 -0.655989 +0.249823 -0.217195 -0.291006 -0.6497 -0.338654 -0.680591 +0.249733 -0.209097 -0.293308 -0.663668 -0.283029 -0.692416 +0.250214 -0.200593 -0.29571 -0.675922 -0.243847 -0.695462 +0.254225 -0.189579 -0.298802 -0.660128 -0.24213 -0.711058 +0.256389 -0.179824 -0.301555 -0.652363 -0.26641 -0.709542 +0.25586 -0.171961 -0.303787 -0.636885 -0.294446 -0.712517 +0.254076 -0.164968 -0.305781 -0.631285 -0.317132 -0.707747 +0.251439 -0.158584 -0.307616 -0.645116 -0.319739 -0.693969 +0.249809 -0.151469 -0.309648 -0.646309 -0.297902 -0.702523 +0.248752 -0.143935 -0.311797 -0.646713 -0.260506 -0.716867 +0.246464 -0.137275 -0.313703 -0.655599 -0.218292 -0.722868 +0.246062 -0.129243 -0.31598 -0.655878 -0.149287 -0.739959 +0.248089 -0.119424 -0.318752 -0.632736 -0.0586265 -0.772146 +0.252465 -0.10787 -0.321991 -0.603021 0.0384757 -0.796798 +0.267629 -0.0883637 -0.3274 -0.558251 0.0267447 -0.82924 +0.284032 -0.0678415 -0.333082 -0.571141 -0.246325 -0.783022 +0.28593 -0.0579279 -0.335881 -0.565431 -0.446827 -0.693279 +0.281731 -0.0525064 -0.337451 -0.563776 -0.461521 -0.684949 +0.275852 -0.0483261 -0.338687 -0.570761 -0.475431 -0.669477 +0.270349 -0.0438801 -0.33999 -0.573018 -0.486022 -0.659874 +0.265581 -0.0388947 -0.341441 -0.57652 -0.527397 -0.624081 +0.262361 -0.0327532 -0.343216 -0.584156 -0.513522 -0.628535 +0.259519 -0.0263226 -0.345057 -0.584477 -0.513139 -0.62855 +0.257039 -0.019622 -0.346982 -0.598208 -0.498302 -0.627569 +0.253988 -0.013338 -0.348784 -0.605891 -0.477697 -0.636161 +0.250367 -0.00749163 -0.350472 -0.613928 -0.440087 -0.655298 +0.251067 0.0016584 -0.353066 -0.614738 -0.41191 -0.672629 +0.669753 -0.452728 -0.228356 0.0179841 -0.812129 -0.583202 +0.651266 -0.454897 -0.227859 -0.0481839 -0.815838 -0.576271 +0.639033 -0.453645 -0.228296 -0.116916 -0.813154 -0.570186 +0.628848 -0.45129 -0.229039 -0.156556 -0.817764 -0.553853 +0.619044 -0.448738 -0.229826 -0.177704 -0.820442 -0.543413 +0.609329 -0.446171 -0.230624 -0.195181 -0.827979 -0.525696 +0.60166 -0.442465 -0.231722 -0.209331 -0.832849 -0.512389 +0.593643 -0.438986 -0.232769 -0.215331 -0.839202 -0.499371 +0.58249 -0.437308 -0.233316 -0.207079 -0.860015 -0.466362 +0.574316 -0.433962 -0.234328 -0.189518 -0.881661 -0.432153 +0.565574 -0.430954 -0.235236 -0.165429 -0.900182 -0.402873 +0.552035 -0.430748 -0.235389 -0.127696 -0.92732 -0.351811 +0.539002 -0.430291 -0.235602 -0.114498 -0.947597 -0.298246 +0.527047 -0.429245 -0.23598 -0.107797 -0.955947 -0.273033 +0.514865 -0.428376 -0.236305 -0.137714 -0.95259 -0.271312 +0.502968 -0.427371 -0.236669 -0.191634 -0.939809 -0.282907 +0.49178 -0.425994 -0.237135 -0.254935 -0.91884 -0.301235 +0.481686 -0.423999 -0.23777 -0.300657 -0.898679 -0.319348 +0.474643 -0.420223 -0.238891 -0.314646 -0.887758 -0.335982 +0.468653 -0.415834 -0.240179 -0.322338 -0.877405 -0.35533 +0.463502 -0.410958 -0.241599 -0.310419 -0.869654 -0.38385 +0.457017 -0.406896 -0.2428 -0.291192 -0.871384 -0.394839 +0.449839 -0.403258 -0.243885 -0.233 -0.879236 -0.415519 +0.440267 -0.401081 -0.244563 -0.191836 -0.883355 -0.42765 +0.429472 -0.399683 -0.245037 -0.147511 -0.886472 -0.438645 +0.417763 -0.398864 -0.24534 -0.126975 -0.878081 -0.461358 +0.408465 -0.396617 -0.246042 -0.141073 -0.86324 -0.484681 +0.399768 -0.394025 -0.24684 -0.183245 -0.841569 -0.508118 +0.391282 -0.391328 -0.24766 -0.230754 -0.819169 -0.525087 +0.382085 -0.389098 -0.248356 -0.272299 -0.801423 -0.532519 +0.37391 -0.386249 -0.249222 -0.303097 -0.782788 -0.543485 +0.366208 -0.383136 -0.250153 -0.343019 -0.762997 -0.547881 +0.35841 -0.380097 -0.251069 -0.385808 -0.730582 -0.563385 +0.351456 -0.376551 -0.25213 -0.419086 -0.708978 -0.567201 +0.345306 -0.372516 -0.253318 -0.461387 -0.667264 -0.584706 +0.340151 -0.367862 -0.254678 -0.494683 -0.620126 -0.60888 +0.336233 -0.362423 -0.256251 -0.526608 -0.571968 -0.628917 +0.333119 -0.356481 -0.257962 -0.547784 -0.530961 -0.646539 +0.331219 -0.34976 -0.259888 -0.562054 -0.499822 -0.658994 +0.330358 -0.342357 -0.261996 -0.557162 -0.491949 -0.668996 +0.329715 -0.334797 -0.264152 -0.556132 -0.487993 -0.672741 +0.328372 -0.327688 -0.266182 -0.543521 -0.502837 -0.672116 +0.324366 -0.322292 -0.267744 -0.5398 -0.520639 -0.661476 +0.320103 -0.317066 -0.269259 -0.536237 -0.534444 -0.653316 +0.314748 -0.312561 -0.270579 -0.54287 -0.540266 -0.642965 +0.309618 -0.307918 -0.271934 -0.553679 -0.533919 -0.639039 +0.304766 -0.303098 -0.273337 -0.556793 -0.523512 -0.644916 +0.300709 -0.297763 -0.274882 -0.584194 -0.50864 -0.632457 +0.297415 -0.291915 -0.276565 -0.603698 -0.49182 -0.627425 +0.294611 -0.285745 -0.278341 -0.630601 -0.474375 -0.614256 +0.292435 -0.279147 -0.280231 -0.638603 -0.465779 -0.612565 +0.290544 -0.272355 -0.28218 -0.637652 -0.463182 -0.615519 +0.288875 -0.265407 -0.284169 -0.621315 -0.467341 -0.628936 +0.28725 -0.258416 -0.286163 -0.599827 -0.481931 -0.63871 +0.284437 -0.252218 -0.287947 -0.581808 -0.494298 -0.645888 +0.282006 -0.245768 -0.289802 -0.568863 -0.509068 -0.645946 +0.277062 -0.241025 -0.29118 -0.553569 -0.511105 -0.657521 +0.272089 -0.236308 -0.292554 -0.555456 -0.502502 -0.662542 +0.266728 -0.231863 -0.293852 -0.563739 -0.483989 -0.669293 +0.262834 -0.226421 -0.295432 -0.574283 -0.432043 -0.695369 +0.259891 -0.220312 -0.297189 -0.594485 -0.377664 -0.7099 +0.258945 -0.212816 -0.299328 -0.599173 -0.312587 -0.737077 +0.260636 -0.203453 -0.301976 -0.616044 -0.266502 -0.741261 +0.262856 -0.193706 -0.304739 -0.608342 -0.253471 -0.752112 +0.265271 -0.183786 -0.307546 -0.576442 -0.268616 -0.771725 +0.263531 -0.176777 -0.309548 -0.582901 -0.282648 -0.761798 +0.261924 -0.169659 -0.311586 -0.598721 -0.302606 -0.741594 +0.259161 -0.163356 -0.313398 -0.604667 -0.326087 -0.726667 +0.257334 -0.156381 -0.315392 -0.601131 -0.328936 -0.728315 +0.255464 -0.149422 -0.317385 -0.611658 -0.288827 -0.736515 +0.253747 -0.14235 -0.319407 -0.609017 -0.263455 -0.748126 +0.253093 -0.134501 -0.321648 -0.617623 -0.19792 -0.761164 +0.255756 -0.124237 -0.324552 -0.57644 -0.0935961 -0.811762 +0.263754 -0.110054 -0.328534 -0.520307 0.0243926 -0.853631 +0.28139 -0.088788 -0.334467 -0.520696 -0.0178802 -0.853556 +0.293237 -0.0716511 -0.339269 -0.583661 -0.243227 -0.774713 +0.295438 -0.061515 -0.342138 -0.535437 -0.374097 -0.757205 +0.292064 -0.0554677 -0.343882 -0.53762 -0.436851 -0.721198 +0.286642 -0.0509242 -0.345209 -0.542656 -0.468411 -0.697221 +0.280652 -0.0468221 -0.346414 -0.543235 -0.486728 -0.684099 +0.27565 -0.0419885 -0.347825 -0.54842 -0.543613 -0.635392 +0.271376 -0.0366262 -0.34938 -0.555741 -0.526822 -0.643126 +0.268498 -0.0302098 -0.351221 -0.566366 -0.50861 -0.648496 +0.265693 -0.0237382 -0.353084 -0.569838 -0.501335 -0.651115 +0.263063 -0.0171362 -0.354976 -0.581798 -0.478247 -0.657868 +0.260204 -0.0106945 -0.356828 -0.58973 -0.441065 -0.676521 +0.259072 -0.00294069 -0.359042 -0.595929 -0.403416 -0.694351 +0.676339 -0.44298 -0.238664 0.0190808 -0.810566 -0.585336 +0.656469 -0.445926 -0.237923 -0.0342999 -0.809432 -0.586211 +0.642594 -0.44559 -0.23809 -0.0768443 -0.810102 -0.581231 +0.632116 -0.443389 -0.238769 -0.10216 -0.821557 -0.5609 +0.621186 -0.441471 -0.239368 -0.153932 -0.825995 -0.542253 +0.609821 -0.439835 -0.239894 -0.171315 -0.835388 -0.522282 +0.601433 -0.436539 -0.240875 -0.193195 -0.835215 -0.514872 +0.590721 -0.43459 -0.241486 -0.18749 -0.845076 -0.500694 +0.580509 -0.43239 -0.242172 -0.16578 -0.86814 -0.467814 +0.572788 -0.428788 -0.243236 -0.141918 -0.881658 -0.450043 +0.559904 -0.428184 -0.243477 -0.105383 -0.904798 -0.412596 +0.546516 -0.427907 -0.243618 -0.0866323 -0.927601 -0.363389 +0.533371 -0.427536 -0.24379 -0.0936901 -0.943826 -0.316882 +0.521239 -0.426619 -0.244114 -0.114504 -0.937727 -0.32796 +0.509233 -0.425663 -0.244452 -0.168142 -0.923205 -0.345574 +0.497511 -0.424579 -0.244819 -0.234504 -0.899253 -0.36926 +0.488246 -0.422081 -0.245576 -0.285257 -0.878421 -0.383412 +0.480824 -0.418521 -0.246635 -0.304755 -0.864937 -0.398757 +0.474602 -0.414256 -0.247882 -0.31675 -0.850024 -0.420868 +0.469403 -0.409388 -0.249296 -0.323028 -0.83391 -0.447491 +0.463832 -0.40476 -0.250648 -0.290248 -0.83374 -0.469719 +0.456261 -0.401343 -0.251663 -0.253281 -0.844531 -0.471823 +0.447338 -0.398757 -0.252441 -0.215388 -0.866426 -0.45046 +0.436889 -0.397131 -0.25296 -0.16631 -0.870902 -0.462462 +0.425533 -0.396083 -0.253317 -0.141706 -0.868753 -0.474539 +0.414885 -0.394636 -0.253781 -0.144192 -0.859491 -0.490393 +0.406292 -0.391966 -0.254589 -0.172088 -0.839586 -0.515248 +0.39792 -0.389184 -0.255426 -0.210083 -0.817687 -0.53596 +0.389108 -0.386689 -0.25618 -0.250818 -0.80747 -0.533932 +0.380694 -0.383982 -0.256997 -0.281992 -0.785178 -0.55134 +0.37278 -0.380982 -0.257897 -0.322127 -0.759084 -0.56571 +0.365037 -0.37789 -0.258812 -0.365076 -0.72221 -0.58748 +0.358378 -0.374145 -0.259916 -0.394031 -0.691327 -0.605646 +0.352294 -0.370048 -0.261119 -0.4327 -0.644384 -0.630508 +0.347523 -0.365129 -0.262547 -0.470082 -0.594697 -0.652195 +0.344287 -0.359249 -0.264239 -0.498496 -0.548886 -0.670989 +0.341842 -0.352859 -0.266081 -0.511185 -0.507679 -0.693507 +0.340262 -0.345911 -0.268069 -0.52026 -0.486278 -0.702042 +0.339194 -0.338621 -0.270155 -0.520447 -0.486653 -0.701645 +0.337701 -0.331601 -0.272168 -0.523874 -0.493037 -0.6946 +0.334867 -0.32544 -0.273945 -0.520979 -0.512374 -0.682682 +0.329995 -0.320586 -0.275349 -0.519411 -0.533136 -0.667817 +0.324941 -0.315866 -0.276724 -0.522613 -0.547051 -0.65392 +0.319432 -0.311455 -0.278012 -0.534033 -0.548364 -0.643511 +0.314332 -0.306775 -0.279373 -0.548863 -0.543916 -0.634749 +0.309341 -0.302044 -0.280752 -0.56321 -0.534346 -0.630293 +0.305252 -0.296711 -0.282293 -0.584664 -0.517559 -0.62474 +0.301993 -0.290834 -0.283987 -0.602976 -0.492525 -0.627566 +0.299313 -0.284569 -0.28579 -0.613712 -0.47509 -0.630592 +0.297293 -0.277866 -0.287714 -0.620573 -0.457833 -0.636615 +0.295521 -0.27098 -0.289689 -0.619732 -0.451172 -0.642165 +0.293904 -0.263986 -0.291692 -0.610112 -0.454116 -0.649264 +0.29236 -0.256927 -0.293718 -0.590533 -0.464227 -0.660124 +0.290492 -0.250086 -0.295677 -0.569552 -0.47549 -0.670462 +0.28819 -0.243527 -0.297561 -0.550079 -0.482431 -0.68167 +0.284035 -0.238233 -0.299098 -0.533605 -0.471608 -0.702034 +0.279372 -0.233287 -0.30053 -0.528882 -0.464938 -0.710013 +0.274401 -0.22856 -0.301905 -0.527014 -0.433572 -0.730939 +0.271146 -0.222648 -0.303607 -0.532335 -0.386906 -0.752943 +0.269384 -0.215706 -0.305603 -0.533126 -0.337003 -0.77602 +0.268846 -0.2079 -0.30783 -0.538245 -0.298333 -0.788218 +0.270842 -0.198317 -0.310559 -0.525652 -0.270503 -0.806547 +0.275173 -0.187067 -0.313747 -0.521756 -0.273255 -0.808147 +0.274534 -0.179269 -0.315975 -0.523426 -0.292983 -0.800117 +0.270937 -0.173547 -0.317632 -0.545568 -0.307343 -0.779676 +0.267447 -0.167742 -0.319306 -0.550015 -0.332221 -0.766233 +0.264087 -0.161859 -0.321002 -0.566754 -0.318399 -0.759876 +0.261437 -0.155456 -0.322843 -0.563427 -0.299847 -0.769833 +0.260077 -0.148131 -0.324939 -0.569494 -0.266762 -0.777505 +0.25971 -0.140076 -0.327241 -0.571542 -0.250573 -0.78138 +0.263747 -0.128835 -0.330429 -0.529654 -0.117551 -0.840029 +0.277875 -0.110247 -0.335662 -0.481299 0.0238038 -0.876233 +0.292805 -0.0909817 -0.341089 -0.534086 -0.0366082 -0.844638 +0.302896 -0.0751534 -0.345556 -0.552052 -0.158649 -0.818578 +0.307818 -0.0630439 -0.348993 -0.501468 -0.270718 -0.821731 +0.303532 -0.0576355 -0.350553 -0.495952 -0.41261 -0.764058 +0.297981 -0.0531719 -0.351856 -0.506908 -0.434569 -0.744442 +0.291686 -0.0492613 -0.353005 -0.50143 -0.472981 -0.724471 +0.285678 -0.0451541 -0.354212 -0.506151 -0.495857 -0.705646 +0.281332 -0.0398229 -0.355752 -0.512893 -0.526263 -0.678224 +0.277526 -0.0340911 -0.357407 -0.518714 -0.51682 -0.681052 +0.275026 -0.0273854 -0.359335 -0.531064 -0.510315 -0.676424 +0.272363 -0.0207881 -0.36123 -0.55481 -0.481714 -0.678334 +0.270165 -0.0138405 -0.363226 -0.571682 -0.451025 -0.685387 +0.269029 -0.0060829 -0.365449 -0.581161 -0.404905 -0.705906 +0.272905 0.0055063 -0.368735 -0.558318 -0.330823 -0.760813 +0.673609 -0.43839 -0.247558 0.0161033 -0.816118 -0.577661 +0.657139 -0.439457 -0.247309 -0.0291364 -0.81742 -0.575307 +0.643085 -0.43923 -0.247428 -0.0596985 -0.826065 -0.560405 +0.631979 -0.437383 -0.247995 -0.0800712 -0.831649 -0.549499 +0.620777 -0.435627 -0.248543 -0.133549 -0.838092 -0.528929 +0.608866 -0.434307 -0.248957 -0.165468 -0.836814 -0.521885 +0.599501 -0.431576 -0.249777 -0.175237 -0.839239 -0.514753 +0.588947 -0.429549 -0.250392 -0.155045 -0.851634 -0.50068 +0.579286 -0.427039 -0.251148 -0.135942 -0.857555 -0.496105 +0.569942 -0.42437 -0.251945 -0.104618 -0.877108 -0.468762 +0.555178 -0.424867 -0.251847 -0.0679058 -0.900529 -0.42946 +0.540929 -0.425114 -0.251834 -0.0625965 -0.914208 -0.400382 +0.527996 -0.42464 -0.25201 -0.0886372 -0.918958 -0.384267 +0.51594 -0.423701 -0.252326 -0.139163 -0.902671 -0.40721 +0.504641 -0.422345 -0.25275 -0.207018 -0.880833 -0.425768 +0.494958 -0.420083 -0.253435 -0.252313 -0.864423 -0.43487 +0.488147 -0.416136 -0.25459 -0.291455 -0.836972 -0.463177 +0.481802 -0.41193 -0.255811 -0.313104 -0.817954 -0.482614 +0.476948 -0.406848 -0.257284 -0.320593 -0.804075 -0.500683 +0.471324 -0.402234 -0.25863 -0.317223 -0.790871 -0.523348 +0.464864 -0.398129 -0.259831 -0.287879 -0.802962 -0.521899 +0.455598 -0.395728 -0.26055 -0.229442 -0.820328 -0.523851 +0.444462 -0.394489 -0.260938 -0.173069 -0.839754 -0.514647 +0.43344 -0.393222 -0.261348 -0.145846 -0.845773 -0.513225 +0.42175 -0.392392 -0.26162 -0.142669 -0.855263 -0.49817 +0.412201 -0.39029 -0.262256 -0.161951 -0.835485 -0.525107 +0.403708 -0.387567 -0.263066 -0.198937 -0.809431 -0.552491 +0.395532 -0.384673 -0.263928 -0.231087 -0.787247 -0.571702 +0.387642 -0.381613 -0.264834 -0.257249 -0.764492 -0.59108 +0.380064 -0.378383 -0.265781 -0.287958 -0.740518 -0.607218 +0.372425 -0.375213 -0.266713 -0.332617 -0.714201 -0.61586 +0.365936 -0.371345 -0.267846 -0.370127 -0.665576 -0.648085 +0.360276 -0.36696 -0.269126 -0.405704 -0.62306 -0.668731 +0.355734 -0.361884 -0.270592 -0.438797 -0.566191 -0.697772 +0.3523 -0.35611 -0.272262 -0.467574 -0.528536 -0.708538 +0.350226 -0.349464 -0.27417 -0.487893 -0.493996 -0.719673 +0.348961 -0.342297 -0.276229 -0.495482 -0.486596 -0.719529 +0.348246 -0.334764 -0.278385 -0.500801 -0.494687 -0.71027 +0.345336 -0.328639 -0.280153 -0.502338 -0.512297 -0.696569 +0.341432 -0.323147 -0.281736 -0.499395 -0.533581 -0.682568 +0.335862 -0.318737 -0.283022 -0.505075 -0.550965 -0.664332 +0.330261 -0.314361 -0.284294 -0.50993 -0.56282 -0.650542 +0.324695 -0.309973 -0.285576 -0.519531 -0.55799 -0.647099 +0.320043 -0.304988 -0.287015 -0.532969 -0.554836 -0.638829 +0.315392 -0.300018 -0.288457 -0.547265 -0.542465 -0.637364 +0.311365 -0.294631 -0.290012 -0.564487 -0.516087 -0.644211 +0.308449 -0.28851 -0.291779 -0.581865 -0.490118 -0.649013 +0.306091 -0.282018 -0.293645 -0.591578 -0.465125 -0.658555 +0.304081 -0.275294 -0.295582 -0.592847 -0.447727 -0.669383 +0.302266 -0.268421 -0.297549 -0.591914 -0.432983 -0.679826 +0.300279 -0.261659 -0.299493 -0.577611 -0.43056 -0.693531 +0.298752 -0.254584 -0.30153 -0.556728 -0.434294 -0.708127 +0.296682 -0.24786 -0.303464 -0.536667 -0.446884 -0.71574 +0.294667 -0.241096 -0.305409 -0.522308 -0.436217 -0.732742 +0.291182 -0.235325 -0.307075 -0.510551 -0.428489 -0.745478 +0.287103 -0.229967 -0.308619 -0.504095 -0.405661 -0.762449 +0.282959 -0.224648 -0.310161 -0.505206 -0.376976 -0.77631 +0.279682 -0.218742 -0.311864 -0.503803 -0.34501 -0.791929 +0.27914 -0.210931 -0.3141 -0.492574 -0.301464 -0.816388 +0.285411 -0.198375 -0.317678 -0.483669 -0.271873 -0.831955 +0.289974 -0.186957 -0.320931 -0.454224 -0.271915 -0.848377 +0.286047 -0.181446 -0.322522 -0.468821 -0.286556 -0.83552 +0.281973 -0.176036 -0.324086 -0.480056 -0.307193 -0.821693 +0.277697 -0.170776 -0.32561 -0.477562 -0.316956 -0.819436 +0.273079 -0.165761 -0.327061 -0.482901 -0.310414 -0.818811 +0.269749 -0.159842 -0.328771 -0.497248 -0.321541 -0.805827 +0.2688 -0.152215 -0.330956 -0.501939 -0.276859 -0.819394 +0.271474 -0.141985 -0.333875 -0.49317 -0.221883 -0.841161 +0.282885 -0.125452 -0.338574 -0.482058 -0.0903229 -0.871471 +0.296886 -0.106973 -0.343815 -0.528373 0.0161535 -0.848859 +0.303391 -0.0938261 -0.347556 -0.545057 -0.00326836 -0.838393 +0.313834 -0.0777705 -0.352122 -0.521094 -0.0979103 -0.847865 +0.321542 -0.0636334 -0.356142 -0.44595 -0.289638 -0.8469 +0.318596 -0.0572225 -0.357987 -0.431081 -0.365327 -0.825049 +0.31184 -0.0536095 -0.359052 -0.434246 -0.431564 -0.790685 +0.304507 -0.0504334 -0.359983 -0.43163 -0.465515 -0.772653 +0.297949 -0.0466961 -0.361073 -0.445142 -0.521488 -0.727941 +0.291796 -0.0426874 -0.362249 -0.461452 -0.530064 -0.711403 +0.287927 -0.036982 -0.363894 -0.470383 -0.514795 -0.716746 +0.284907 -0.0306503 -0.365719 -0.485208 -0.51366 -0.707622 +0.282973 -0.0235011 -0.367771 -0.496097 -0.494496 -0.713696 +0.281673 -0.0158635 -0.369966 -0.509927 -0.44298 -0.737389 +0.2822 -0.00683515 -0.372548 -0.511663 -0.398117 -0.761383 +0.672627 -0.432813 -0.256745 0.00352414 -0.819595 -0.572932 +0.655474 -0.434288 -0.256353 -0.0225296 -0.825036 -0.564632 +0.643287 -0.433021 -0.256741 -0.045506 -0.832202 -0.552603 +0.63079 -0.431966 -0.25707 -0.0779954 -0.83465 -0.545231 +0.617684 -0.431301 -0.257291 -0.130375 -0.833921 -0.536264 +0.606955 -0.429319 -0.257878 -0.168404 -0.831883 -0.528784 +0.597449 -0.426672 -0.258652 -0.161063 -0.839747 -0.518541 +0.587308 -0.424413 -0.259323 -0.142751 -0.850466 -0.506291 +0.579957 -0.42058 -0.260439 -0.117239 -0.850487 -0.512765 +0.570086 -0.418227 -0.261139 -0.0810152 -0.859764 -0.504226 +0.550717 -0.421407 -0.260259 -0.0502716 -0.891502 -0.45022 +0.537206 -0.421244 -0.260337 -0.0432687 -0.893573 -0.446829 +0.524373 -0.420733 -0.260505 -0.102978 -0.882241 -0.459397 +0.512777 -0.419536 -0.260879 -0.169552 -0.865107 -0.472062 +0.503008 -0.417293 -0.261535 -0.221097 -0.842591 -0.491078 +0.495815 -0.413556 -0.262631 -0.271763 -0.819499 -0.504548 +0.489716 -0.409189 -0.263891 -0.30721 -0.793702 -0.525035 +0.4845 -0.404307 -0.26531 -0.326648 -0.775688 -0.540009 +0.479006 -0.39959 -0.266675 -0.328211 -0.760546 -0.560222 +0.473092 -0.395136 -0.267964 -0.317957 -0.752672 -0.576532 +0.466349 -0.391201 -0.269111 -0.268626 -0.762389 -0.588731 +0.454044 -0.390643 -0.269297 -0.206464 -0.797678 -0.566642 +0.442181 -0.389858 -0.269544 -0.1473 -0.817693 -0.556492 +0.430457 -0.389027 -0.269806 -0.1233 -0.831563 -0.541574 +0.420151 -0.387371 -0.270302 -0.143954 -0.819128 -0.555255 +0.410405 -0.385394 -0.270888 -0.182608 -0.795573 -0.577684 +0.401862 -0.382705 -0.27168 -0.217229 -0.772949 -0.596124 +0.394446 -0.379338 -0.272661 -0.249717 -0.732336 -0.633502 +0.387521 -0.375693 -0.273727 -0.270845 -0.707097 -0.653191 +0.381256 -0.371642 -0.274897 -0.294051 -0.664142 -0.687351 +0.375085 -0.367547 -0.276085 -0.327295 -0.616695 -0.715937 +0.370095 -0.36273 -0.277484 -0.357688 -0.575449 -0.735472 +0.366095 -0.357286 -0.279058 -0.386365 -0.538503 -0.748824 +0.362749 -0.351428 -0.280747 -0.410558 -0.512472 -0.754198 +0.361333 -0.344346 -0.282784 -0.429071 -0.507977 -0.746899 +0.359736 -0.337372 -0.284795 -0.441892 -0.507795 -0.739512 +0.357789 -0.330603 -0.286744 -0.456281 -0.527253 -0.716807 +0.353543 -0.325317 -0.288272 -0.468752 -0.541242 -0.69809 +0.348776 -0.32036 -0.289699 -0.472904 -0.557392 -0.682404 +0.343422 -0.315799 -0.291023 -0.478487 -0.567324 -0.67022 +0.337929 -0.311326 -0.292317 -0.483799 -0.570663 -0.663538 +0.332678 -0.306715 -0.293653 -0.498291 -0.564134 -0.658377 +0.328128 -0.301653 -0.295115 -0.508368 -0.556036 -0.65756 +0.323578 -0.29659 -0.29658 -0.522619 -0.533984 -0.664628 +0.320064 -0.290846 -0.298242 -0.53819 -0.500098 -0.67842 +0.31725 -0.284647 -0.300026 -0.54921 -0.467478 -0.6927 +0.315318 -0.277846 -0.301988 -0.551332 -0.438018 -0.710053 +0.313136 -0.271212 -0.303896 -0.554392 -0.417157 -0.720161 +0.31132 -0.264328 -0.305882 -0.543504 -0.403911 -0.73584 +0.309293 -0.257572 -0.307827 -0.532045 -0.401698 -0.745362 +0.307077 -0.250939 -0.309736 -0.518211 -0.403965 -0.753837 +0.305391 -0.243936 -0.311747 -0.509182 -0.406523 -0.758599 +0.304028 -0.236709 -0.313829 -0.495637 -0.386344 -0.777871 +0.302989 -0.229253 -0.315974 -0.480514 -0.351399 -0.803509 +0.300658 -0.222663 -0.317874 -0.468883 -0.321223 -0.822779 +0.301926 -0.213593 -0.320478 -0.462015 -0.284729 -0.839924 +0.304451 -0.203638 -0.323331 -0.450305 -0.258303 -0.854696 +0.305878 -0.19441 -0.325979 -0.439364 -0.25917 -0.860111 +0.3072 -0.185227 -0.32862 -0.442458 -0.277758 -0.852691 +0.306738 -0.177273 -0.330907 -0.440124 -0.303686 -0.845024 +0.303038 -0.171556 -0.332556 -0.437229 -0.324401 -0.838806 +0.297851 -0.166892 -0.333906 -0.436604 -0.319536 -0.840996 +0.291571 -0.163004 -0.335039 -0.444963 -0.326538 -0.833895 +0.287905 -0.157285 -0.336686 -0.460907 -0.31434 -0.829912 +0.290483 -0.147132 -0.339604 -0.454001 -0.265045 -0.850667 +0.297904 -0.133492 -0.343503 -0.485794 -0.175984 -0.856174 +0.301805 -0.122321 -0.34671 -0.526603 -0.079839 -0.846354 +0.305891 -0.110976 -0.349959 -0.574784 -0.0382129 -0.817413 +0.310607 -0.0991358 -0.353352 -0.568056 0.0132364 -0.822884 +0.319048 -0.0845597 -0.357525 -0.504179 -0.0297695 -0.863086 +0.337037 -0.0630055 -0.363689 -0.384278 -0.270082 -0.882829 +0.334856 -0.0560167 -0.365701 -0.379563 -0.340322 -0.860298 +0.328438 -0.0521044 -0.366837 -0.359797 -0.419837 -0.833236 +0.321482 -0.0486105 -0.367855 -0.338399 -0.461855 -0.819864 +0.313811 -0.0456593 -0.368715 -0.361207 -0.50791 -0.782021 +0.307142 -0.0419859 -0.369787 -0.386844 -0.504486 -0.77191 +0.301881 -0.0372863 -0.371145 -0.397823 -0.518666 -0.756785 +0.2986 -0.0311199 -0.372923 -0.417813 -0.519398 -0.745425 +0.297165 -0.0235769 -0.375092 -0.42535 -0.476961 -0.769146 +0.296667 -0.0153228 -0.377468 -0.423119 -0.435665 -0.794461 +0.296297 -0.00696168 -0.379872 -0.432329 -0.364399 -0.824805 +0.675044 -0.425331 -0.266484 0.00966489 -0.821617 -0.569959 +0.655515 -0.428147 -0.26568 0.00206723 -0.816958 -0.576695 +0.642435 -0.427393 -0.265905 -0.033276 -0.823741 -0.56599 +0.629323 -0.426701 -0.266109 -0.0762504 -0.822238 -0.564013 +0.616112 -0.426104 -0.266285 -0.127191 -0.822495 -0.55437 +0.605258 -0.424208 -0.266833 -0.156065 -0.821674 -0.548177 +0.595124 -0.421927 -0.267501 -0.144178 -0.822628 -0.549998 +0.588071 -0.417904 -0.268664 -0.129983 -0.828006 -0.545446 +0.581636 -0.413536 -0.269925 -0.0947294 -0.827974 -0.552708 +0.571207 -0.411497 -0.270515 -0.0832961 -0.831738 -0.548884 +0.54807 -0.416896 -0.268971 -0.0300608 -0.871946 -0.48868 +0.535276 -0.416333 -0.269141 -0.055864 -0.870632 -0.488753 +0.522603 -0.415736 -0.269316 -0.132753 -0.852372 -0.505805 +0.511704 -0.414134 -0.269783 -0.196118 -0.832117 -0.518769 +0.503265 -0.411113 -0.270658 -0.250491 -0.804679 -0.538281 +0.496569 -0.407081 -0.271825 -0.297106 -0.780053 -0.550679 +0.491448 -0.402123 -0.273252 -0.315635 -0.761815 -0.565696 +0.486186 -0.397266 -0.274661 -0.332171 -0.74529 -0.578107 +0.480665 -0.392563 -0.276019 -0.351245 -0.727866 -0.58893 +0.474786 -0.388079 -0.27731 -0.319501 -0.729696 -0.604535 +0.467932 -0.384205 -0.27843 -0.291776 -0.731583 -0.616161 +0.45666 -0.383029 -0.278778 -0.219259 -0.741697 -0.633885 +0.440919 -0.384604 -0.27833 -0.132332 -0.758273 -0.638366 +0.430018 -0.383283 -0.278717 -0.105072 -0.75666 -0.645311 +0.421112 -0.380764 -0.279447 -0.13069 -0.739715 -0.660107 +0.411561 -0.378672 -0.28005 -0.173401 -0.723147 -0.668573 +0.402909 -0.37605 -0.280812 -0.228249 -0.691097 -0.685776 +0.395818 -0.372479 -0.281843 -0.241872 -0.654728 -0.716122 +0.389871 -0.368214 -0.283074 -0.267167 -0.616099 -0.740975 +0.385014 -0.363285 -0.284503 -0.301695 -0.582561 -0.754721 +0.382021 -0.357182 -0.286265 -0.323579 -0.55082 -0.769346 +0.37932 -0.350895 -0.288075 -0.351152 -0.531588 -0.770784 +0.378768 -0.343239 -0.290284 -0.354808 -0.532186 -0.768694 +0.377881 -0.335782 -0.292431 -0.38062 -0.548546 -0.744464 +0.372718 -0.331045 -0.293803 -0.394935 -0.559751 -0.728496 +0.368995 -0.32539 -0.295433 -0.401069 -0.580394 -0.708723 +0.36333 -0.320983 -0.29671 -0.416582 -0.588192 -0.693174 +0.357632 -0.316606 -0.297968 -0.438718 -0.58423 -0.682791 +0.35232 -0.311997 -0.299301 -0.455905 -0.577261 -0.677437 +0.347602 -0.307006 -0.300748 -0.459368 -0.573325 -0.678439 +0.343222 -0.301803 -0.302245 -0.473985 -0.550426 -0.687292 +0.339259 -0.296321 -0.303831 -0.484949 -0.527297 -0.697698 +0.335965 -0.290415 -0.305535 -0.490776 -0.498863 -0.714337 +0.333392 -0.284021 -0.307374 -0.494898 -0.456384 -0.739452 +0.331037 -0.277479 -0.309267 -0.494549 -0.423074 -0.75923 +0.329509 -0.270387 -0.311308 -0.492247 -0.401848 -0.772148 +0.326806 -0.264068 -0.313134 -0.500682 -0.389942 -0.772829 +0.323639 -0.258057 -0.314867 -0.497001 -0.381545 -0.779367 +0.320009 -0.252351 -0.316514 -0.504248 -0.376724 -0.777055 +0.316735 -0.246409 -0.318233 -0.498181 -0.373883 -0.782322 +0.314328 -0.239869 -0.320114 -0.48823 -0.362877 -0.793695 +0.312658 -0.232835 -0.322147 -0.477434 -0.335406 -0.812132 +0.3115 -0.225441 -0.32428 -0.459402 -0.309735 -0.832475 +0.311449 -0.21727 -0.326635 -0.450955 -0.276942 -0.848495 +0.311799 -0.208813 -0.329076 -0.444925 -0.255128 -0.858459 +0.313477 -0.19942 -0.33178 -0.445628 -0.251639 -0.859124 +0.316164 -0.189299 -0.334696 -0.457786 -0.279119 -0.844112 +0.317398 -0.180161 -0.337334 -0.456398 -0.312255 -0.833185 +0.317138 -0.172033 -0.339674 -0.460133 -0.324078 -0.82659 +0.314894 -0.165285 -0.341622 -0.467193 -0.328635 -0.820812 +0.312741 -0.158457 -0.343594 -0.465808 -0.316887 -0.8262 +0.311027 -0.151321 -0.345646 -0.475515 -0.290833 -0.830243 +0.309945 -0.143723 -0.347843 -0.488251 -0.253309 -0.835133 +0.310178 -0.135179 -0.350306 -0.558618 -0.204903 -0.803716 +0.310588 -0.126494 -0.352811 -0.554505 -0.151033 -0.818361 +0.311621 -0.117342 -0.355447 -0.59232 -0.0824791 -0.80147 +0.314656 -0.106729 -0.358508 -0.584991 -0.00657495 -0.811012 +0.321738 -0.0931712 -0.36241 -0.516331 0.0176877 -0.856206 +0.348162 -0.0656014 -0.370352 -0.381513 -0.225916 -0.896331 +0.350463 -0.0553435 -0.373303 -0.36481 -0.334628 -0.868873 +0.347938 -0.0485689 -0.375258 -0.336819 -0.397832 -0.853395 +0.341092 -0.0449518 -0.376302 -0.326882 -0.445316 -0.833572 +0.334279 -0.0413145 -0.377355 -0.295592 -0.519377 -0.801794 +0.326737 -0.0382296 -0.378251 -0.305072 -0.51146 -0.803331 +0.321602 -0.0333932 -0.379652 -0.305141 -0.50805 -0.805466 +0.317999 -0.0274329 -0.381365 -0.307097 -0.506777 -0.805524 +0.315581 -0.020589 -0.383342 -0.309667 -0.48868 -0.815658 +0.313582 -0.0134206 -0.385411 -0.334466 -0.41496 -0.846134 +0.658666 -0.420252 -0.275529 0.0212875 -0.809056 -0.587348 +0.643834 -0.420493 -0.275443 -0.0268113 -0.815109 -0.578687 +0.627147 -0.42183 -0.275034 -0.0936184 -0.807771 -0.582015 +0.614897 -0.420702 -0.275349 -0.116262 -0.80394 -0.583235 +0.604334 -0.418642 -0.275933 -0.151626 -0.812962 -0.562231 +0.596248 -0.41519 -0.276924 -0.141922 -0.800765 -0.581924 +0.589698 -0.410879 -0.278166 -0.112425 -0.803853 -0.584108 +0.583688 -0.406258 -0.279493 -0.1055 -0.802462 -0.587304 +0.566565 -0.408117 -0.27894 -0.034419 -0.819399 -0.572189 +0.548153 -0.410785 -0.278148 -0.0164585 -0.839753 -0.542722 +0.53523 -0.410308 -0.278269 -0.0555149 -0.836548 -0.545074 +0.522563 -0.409719 -0.278427 -0.150298 -0.818842 -0.553993 +0.511517 -0.408212 -0.278846 -0.219482 -0.799809 -0.558689 +0.504217 -0.404515 -0.279909 -0.266893 -0.773935 -0.574277 +0.497974 -0.400213 -0.281145 -0.30932 -0.753784 -0.579768 +0.492469 -0.395476 -0.282509 -0.337885 -0.736799 -0.585629 +0.487348 -0.39052 -0.283944 -0.352821 -0.723605 -0.593222 +0.482364 -0.385483 -0.285393 -0.362006 -0.713606 -0.599765 +0.47714 -0.380601 -0.286798 -0.350111 -0.710649 -0.610247 +0.471865 -0.375767 -0.288195 -0.328669 -0.708173 -0.624875 +0.466114 -0.371218 -0.289498 -0.299672 -0.700186 -0.648024 +0.457361 -0.368516 -0.290273 -0.2471 -0.698747 -0.671338 +0.433024 -0.375415 -0.288253 -0.124908 -0.68416 -0.718556 +0.425292 -0.372165 -0.289181 -0.128093 -0.661364 -0.739047 +0.419343 -0.36784 -0.290426 -0.152502 -0.634315 -0.757883 +0.414834 -0.362626 -0.291928 -0.18287 -0.604583 -0.775267 +0.410431 -0.357361 -0.29345 -0.219201 -0.579511 -0.784932 +0.407002 -0.351482 -0.295144 -0.25142 -0.570066 -0.782185 +0.404106 -0.345265 -0.29694 -0.275235 -0.557866 -0.782963 +0.399903 -0.339877 -0.298495 -0.279541 -0.56947 -0.773021 +0.395709 -0.334476 -0.300051 -0.302036 -0.588711 -0.749796 +0.389825 -0.330157 -0.301298 -0.321503 -0.601263 -0.731518 +0.383263 -0.326281 -0.302408 -0.351675 -0.609359 -0.710638 +0.376435 -0.322592 -0.303467 -0.366938 -0.605049 -0.706592 +0.369722 -0.318846 -0.304543 -0.39318 -0.607775 -0.689941 +0.363623 -0.314707 -0.305735 -0.418901 -0.601902 -0.67988 +0.358268 -0.310114 -0.307061 -0.436126 -0.588509 -0.680774 +0.353183 -0.305345 -0.308434 -0.455021 -0.555525 -0.69595 +0.34915 -0.299902 -0.310002 -0.465932 -0.537981 -0.702483 +0.345559 -0.294176 -0.31166 -0.477549 -0.500718 -0.721962 +0.342304 -0.288223 -0.313378 -0.485554 -0.465166 -0.740175 +0.340172 -0.281528 -0.315311 -0.486865 -0.425786 -0.762673 +0.338534 -0.2745 -0.317338 -0.480377 -0.388105 -0.78652 +0.337537 -0.267041 -0.319496 -0.474945 -0.372531 -0.797276 +0.336036 -0.259893 -0.321562 -0.465428 -0.359526 -0.808777 +0.334017 -0.253094 -0.323532 -0.459206 -0.358254 -0.812885 +0.331876 -0.24637 -0.325472 -0.450115 -0.346253 -0.823108 +0.328975 -0.240146 -0.327269 -0.445639 -0.339339 -0.828405 +0.325334 -0.234423 -0.328922 -0.445487 -0.321699 -0.835494 +0.322368 -0.228237 -0.330709 -0.444516 -0.302661 -0.843091 +0.320886 -0.221035 -0.332788 -0.446244 -0.276911 -0.850991 +0.322795 -0.211515 -0.335547 -0.455621 -0.252303 -0.853671 +0.32424 -0.202276 -0.338221 -0.456401 -0.26067 -0.850736 +0.326993 -0.192121 -0.341161 -0.458034 -0.283648 -0.842466 +0.328007 -0.183127 -0.343762 -0.466015 -0.316953 -0.826058 +0.327537 -0.175148 -0.346071 -0.47034 -0.340941 -0.813965 +0.325945 -0.167925 -0.348156 -0.481231 -0.346503 -0.805203 +0.323573 -0.161242 -0.350091 -0.495161 -0.343775 -0.797894 +0.321311 -0.154477 -0.352044 -0.518043 -0.328914 -0.789587 +0.319051 -0.147702 -0.353998 -0.534154 -0.289578 -0.794245 +0.317137 -0.140672 -0.356028 -0.548943 -0.245828 -0.798893 +0.316358 -0.132837 -0.3583 -0.564008 -0.185598 -0.804642 +0.317142 -0.123871 -0.360891 -0.579492 -0.129502 -0.804623 +0.31927 -0.11392 -0.36377 -0.58448 -0.0605747 -0.809145 +0.32357 -0.102396 -0.367112 -0.552956 0.0416504 -0.832168 +0.35975 -0.0679056 -0.377128 -0.421271 -0.174431 -0.890002 +0.366746 -0.0542691 -0.381079 -0.402102 -0.250885 -0.880552 +0.364971 -0.0469233 -0.383201 -0.390995 -0.263547 -0.881853 +0.361866 -0.0405391 -0.385047 -0.352994 -0.315273 -0.880909 +0.358059 -0.0346643 -0.386743 -0.332409 -0.422473 -0.843221 +0.352638 -0.0299629 -0.388099 -0.304097 -0.451223 -0.839001 +0.345958 -0.0261974 -0.389178 -0.28025 -0.4609 -0.84204 +0.339552 -0.0222508 -0.390313 -0.267485 -0.467929 -0.842315 +0.435071 0.0570504 -0.413355 -0.837292 0.0983071 -0.537847 +0.651676 -0.409911 -0.286084 0.0255048 -0.734493 -0.678138 +0.629104 -0.414602 -0.284662 -0.0726779 -0.762736 -0.642614 +0.614579 -0.414778 -0.284573 -0.103999 -0.767943 -0.632019 +0.606413 -0.411352 -0.285549 -0.109264 -0.77155 -0.626715 +0.60031 -0.40675 -0.286864 -0.119985 -0.767552 -0.629657 +0.59364 -0.402487 -0.288082 -0.0887938 -0.772365 -0.628942 +0.585524 -0.399084 -0.28905 -0.0805997 -0.782212 -0.617776 +0.566586 -0.402009 -0.288152 -0.0279906 -0.793849 -0.607471 +0.549155 -0.404129 -0.287495 -0.00479522 -0.802441 -0.596712 +0.536963 -0.40322 -0.287721 -0.0509084 -0.797089 -0.601712 +0.523639 -0.403026 -0.287743 -0.151063 -0.784 -0.602099 +0.513244 -0.401139 -0.288264 -0.232557 -0.772726 -0.590604 +0.505558 -0.397676 -0.289253 -0.275206 -0.752507 -0.598327 +0.498811 -0.39366 -0.290397 -0.324264 -0.740013 -0.589265 +0.493286 -0.388932 -0.291759 -0.346437 -0.725737 -0.594381 +0.488157 -0.383978 -0.293179 -0.374571 -0.710351 -0.595901 +0.483382 -0.378807 -0.294674 -0.379033 -0.70449 -0.600023 +0.478496 -0.373714 -0.296135 -0.371888 -0.70025 -0.609384 +0.473699 -0.368581 -0.297614 -0.373695 -0.697018 -0.61198 +0.469207 -0.363257 -0.299149 -0.358257 -0.695584 -0.622749 +0.464329 -0.358176 -0.300607 -0.3311 -0.691268 -0.642279 +0.458602 -0.353623 -0.301917 -0.314127 -0.684679 -0.657677 +0.452279 -0.349449 -0.303106 -0.294967 -0.6788 -0.672479 +0.443942 -0.346533 -0.303932 -0.28261 -0.666874 -0.6895 +0.433628 -0.344878 -0.304384 -0.270719 -0.65415 -0.706258 +0.424211 -0.342687 -0.304998 -0.244237 -0.622029 -0.743927 +0.419075 -0.337847 -0.306391 -0.254717 -0.632169 -0.731766 +0.412075 -0.334179 -0.307436 -0.270158 -0.647383 -0.712678 +0.404753 -0.330734 -0.308413 -0.278146 -0.646215 -0.710662 +0.397807 -0.327067 -0.30946 -0.294149 -0.653855 -0.697102 +0.390638 -0.323554 -0.310463 -0.319434 -0.647031 -0.692325 +0.383353 -0.320141 -0.311435 -0.339234 -0.63776 -0.691508 +0.375992 -0.316787 -0.312385 -0.373527 -0.632828 -0.678239 +0.369627 -0.312817 -0.313522 -0.396575 -0.607207 -0.688498 +0.363869 -0.308458 -0.314774 -0.422379 -0.580701 -0.695977 +0.358788 -0.30368 -0.316148 -0.445207 -0.551437 -0.705485 +0.355416 -0.297793 -0.317847 -0.463509 -0.511103 -0.723832 +0.352333 -0.291716 -0.319603 -0.475775 -0.467573 -0.744993 +0.350038 -0.285115 -0.321512 -0.483505 -0.428302 -0.7634 +0.34984 -0.277134 -0.323829 -0.484207 -0.39187 -0.782293 +0.349602 -0.269159 -0.326139 -0.47897 -0.355465 -0.802641 +0.348433 -0.26179 -0.328276 -0.471087 -0.343295 -0.812543 +0.345584 -0.255521 -0.330086 -0.459138 -0.334064 -0.82316 +0.343563 -0.248705 -0.332061 -0.447105 -0.326286 -0.832847 +0.342614 -0.241152 -0.334251 -0.441871 -0.323596 -0.836682 +0.342399 -0.233097 -0.336586 -0.427797 -0.310054 -0.849032 +0.342463 -0.224842 -0.33899 -0.419621 -0.285926 -0.86149 +0.342665 -0.216463 -0.341417 -0.413123 -0.265504 -0.871113 +0.34279 -0.20813 -0.343833 -0.423234 -0.2674 -0.865663 +0.342284 -0.200206 -0.346133 -0.433455 -0.283038 -0.855574 +0.342383 -0.191846 -0.348558 -0.43226 -0.314699 -0.845055 +0.342346 -0.18357 -0.35096 -0.435453 -0.344954 -0.831498 +0.341282 -0.175973 -0.353162 -0.449643 -0.369128 -0.813368 +0.337757 -0.170082 -0.354869 -0.465668 -0.368663 -0.804513 +0.333629 -0.164601 -0.356447 -0.477018 -0.359506 -0.802003 +0.33007 -0.158727 -0.358143 -0.4839 -0.338518 -0.806998 +0.326905 -0.152588 -0.359913 -0.506431 -0.312065 -0.803831 +0.324699 -0.145759 -0.36189 -0.520195 -0.291648 -0.802707 +0.323121 -0.138488 -0.363994 -0.541796 -0.231582 -0.807978 +0.322658 -0.130406 -0.366342 -0.569773 -0.173608 -0.803255 +0.324986 -0.120337 -0.36927 -0.554546 -0.094456 -0.826776 +0.358995 -0.0876446 -0.378843 -0.406574 0.0158774 -0.91348 +0.378193 -0.0653557 -0.385367 -0.457585 -0.115805 -0.881593 +0.379798 -0.0555876 -0.388203 -0.432766 -0.146071 -0.889594 +0.379057 -0.047487 -0.390557 -0.408199 -0.219006 -0.886235 +0.378106 -0.0395132 -0.392869 -0.403192 -0.290888 -0.867652 +0.378303 -0.0306991 -0.395423 -0.398451 -0.322965 -0.858447 +0.431404 0.0166758 -0.409318 -0.87759 -0.129891 -0.461481 +0.432617 0.0264058 -0.412142 -0.88285 -0.0706917 -0.464304 +0.43398 0.0362802 -0.415009 -0.861506 0.00920072 -0.507665 +0.437378 0.0476761 -0.418322 -0.858978 0.0524061 -0.509325 +0.446317 0.0631967 -0.422852 -0.812258 0.152391 -0.563041 +0.645947 -0.398853 -0.296856 0.0512264 -0.660618 -0.748972 +0.621911 -0.404457 -0.295119 -0.0773446 -0.728065 -0.681131 +0.614699 -0.40046 -0.296254 -0.0760883 -0.717495 -0.692396 +0.607277 -0.396608 -0.297349 -0.0789069 -0.721668 -0.687727 +0.598605 -0.393492 -0.29822 -0.0561659 -0.733535 -0.677328 +0.585247 -0.393126 -0.29827 -0.0486686 -0.765434 -0.64167 +0.570979 -0.393344 -0.298147 -0.0311778 -0.77176 -0.63515 +0.551847 -0.396466 -0.297157 -0.00205151 -0.781899 -0.623402 +0.539579 -0.395606 -0.297357 -0.0447147 -0.768029 -0.638852 +0.526185 -0.395453 -0.297344 -0.122567 -0.760059 -0.638191 +0.514403 -0.394394 -0.297608 -0.23195 -0.749127 -0.620491 +0.506422 -0.391094 -0.298531 -0.275659 -0.738883 -0.614869 +0.499633 -0.387109 -0.299664 -0.323695 -0.727378 -0.605097 +0.493917 -0.38249 -0.300987 -0.362936 -0.713369 -0.599486 +0.488166 -0.377898 -0.302301 -0.384518 -0.70528 -0.59559 +0.48278 -0.373098 -0.303677 -0.399186 -0.698472 -0.59396 +0.477854 -0.368027 -0.305129 -0.41219 -0.703076 -0.579468 +0.473181 -0.362806 -0.306634 -0.384229 -0.697172 -0.605244 +0.468158 -0.357808 -0.308069 -0.37849 -0.696033 -0.610151 +0.462957 -0.352918 -0.309465 -0.362303 -0.695021 -0.621035 +0.4571 -0.348455 -0.310743 -0.325377 -0.684494 -0.652379 +0.450857 -0.344228 -0.311952 -0.30407 -0.681689 -0.665464 +0.443646 -0.340617 -0.312972 -0.295536 -0.680108 -0.670904 +0.436974 -0.336693 -0.314087 -0.289833 -0.677333 -0.676179 +0.429798 -0.333095 -0.315101 -0.284319 -0.682243 -0.673578 +0.421432 -0.330263 -0.315895 -0.280111 -0.688848 -0.668601 +0.413703 -0.327056 -0.316797 -0.279652 -0.691887 -0.665648 +0.405884 -0.323919 -0.317675 -0.289908 -0.672447 -0.681006 +0.398244 -0.320688 -0.318583 -0.30452 -0.664489 -0.68244 +0.390812 -0.317347 -0.319528 -0.32822 -0.651784 -0.683702 +0.383601 -0.313881 -0.320507 -0.355296 -0.636727 -0.684356 +0.377067 -0.309996 -0.321608 -0.387305 -0.60851 -0.692611 +0.371305 -0.305628 -0.322854 -0.409194 -0.567958 -0.714132 +0.366424 -0.300702 -0.324269 -0.434773 -0.53717 -0.722786 +0.364015 -0.294175 -0.326164 -0.460653 -0.482661 -0.744875 +0.363331 -0.286507 -0.328395 -0.472152 -0.431952 -0.768433 +0.363939 -0.277985 -0.330876 -0.483282 -0.37569 -0.790757 +0.365765 -0.268634 -0.333602 -0.476847 -0.328986 -0.8151 +0.366523 -0.25997 -0.336133 -0.45944 -0.301837 -0.835349 +0.366497 -0.251809 -0.338509 -0.442424 -0.282911 -0.851012 +0.364025 -0.245249 -0.340407 -0.442511 -0.279143 -0.85221 +0.359983 -0.239736 -0.341993 -0.425516 -0.279791 -0.860612 +0.357027 -0.233495 -0.3438 -0.416173 -0.274887 -0.86674 +0.356174 -0.225839 -0.346028 -0.408619 -0.271533 -0.871378 +0.357225 -0.216879 -0.348641 -0.381237 -0.255869 -0.888363 +0.35802 -0.208074 -0.351209 -0.37574 -0.273289 -0.885514 +0.358971 -0.199138 -0.353817 -0.386916 -0.3046 -0.870354 +0.363393 -0.187813 -0.357131 -0.345061 -0.323838 -0.880945 +0.36007 -0.181748 -0.358883 -0.354379 -0.350546 -0.86691 +0.355013 -0.176877 -0.360277 -0.367825 -0.372316 -0.852107 +0.3496 -0.172264 -0.361603 -0.390983 -0.380894 -0.837886 +0.344612 -0.167364 -0.363007 -0.415817 -0.376921 -0.827665 +0.340202 -0.162067 -0.364527 -0.467605 -0.37028 -0.802645 +0.336733 -0.15611 -0.36625 -0.477216 -0.358696 -0.802249 +0.334031 -0.149623 -0.36813 -0.514584 -0.321949 -0.794704 +0.33258 -0.142256 -0.370268 -0.541178 -0.298559 -0.786123 +0.333324 -0.133326 -0.37287 -0.520847 -0.215131 -0.826098 +0.34262 -0.118328 -0.377275 -0.437579 -0.0539559 -0.89756 +0.38072 -0.0828171 -0.387772 -0.469402 -0.0422717 -0.881972 +0.387161 -0.0696442 -0.391633 -0.464481 -0.0628727 -0.883348 +0.39314 -0.0567523 -0.395415 -0.458697 -0.0865297 -0.88437 +0.394135 -0.0473859 -0.398144 -0.440141 -0.145822 -0.886009 +0.395694 -0.037589 -0.401006 -0.446118 -0.212918 -0.869278 +0.437839 0.00155369 -0.412581 -0.872132 -0.251093 -0.419927 +0.437092 0.009838 -0.414986 -0.88079 -0.176085 -0.439551 +0.436695 0.0183855 -0.417475 -0.888759 -0.126853 -0.440472 +0.437102 0.0275446 -0.420145 -0.872355 -0.0384367 -0.487359 +0.438543 0.0374762 -0.423043 -0.865946 0.00822562 -0.500071 +0.443311 0.0498845 -0.426673 -0.851422 0.063449 -0.520628 +0.674567 -0.368013 -0.313605 0.156559 -0.579651 -0.799684 +0.628943 -0.386094 -0.308061 -0.0307549 -0.666851 -0.744556 +0.618272 -0.384086 -0.308587 -0.0100108 -0.685139 -0.728343 +0.607083 -0.382414 -0.309012 -0.0164235 -0.71017 -0.703839 +0.586466 -0.386286 -0.307763 -0.0266502 -0.747042 -0.664243 +0.571845 -0.386717 -0.307552 -0.0113997 -0.74975 -0.661623 +0.55997 -0.385579 -0.30782 0.00544041 -0.758518 -0.65163 +0.546892 -0.38519 -0.307857 -0.030975 -0.743561 -0.66795 +0.530894 -0.386581 -0.307359 -0.0947338 -0.733755 -0.672777 +0.51761 -0.386405 -0.307341 -0.188829 -0.730235 -0.656583 +0.508571 -0.383737 -0.308063 -0.259903 -0.72547 -0.637294 +0.501467 -0.379929 -0.309136 -0.302657 -0.718499 -0.626226 +0.494604 -0.375994 -0.310247 -0.37215 -0.703885 -0.605022 +0.488308 -0.371735 -0.311453 -0.369719 -0.696553 -0.614916 +0.482276 -0.367319 -0.312712 -0.391988 -0.697351 -0.60004 +0.477326 -0.362263 -0.314163 -0.378219 -0.685216 -0.62244 +0.472331 -0.357238 -0.315603 -0.379331 -0.684807 -0.622212 +0.467144 -0.352332 -0.317001 -0.374894 -0.690248 -0.61888 +0.46124 -0.347877 -0.318273 -0.36932 -0.700528 -0.610626 +0.455357 -0.343427 -0.319541 -0.347841 -0.701986 -0.621469 +0.449238 -0.339126 -0.320757 -0.336334 -0.701991 -0.627766 +0.44336 -0.334689 -0.322023 -0.31127 -0.690555 -0.652876 +0.436351 -0.330974 -0.323072 -0.294972 -0.682286 -0.668938 +0.429265 -0.327323 -0.324097 -0.281284 -0.683535 -0.673543 +0.42243 -0.323523 -0.325168 -0.277953 -0.676526 -0.68195 +0.415042 -0.320095 -0.326122 -0.280566 -0.677211 -0.680197 +0.40758 -0.316736 -0.327066 -0.286347 -0.660249 -0.694319 +0.399059 -0.314064 -0.327798 -0.312118 -0.65013 -0.692759 +0.391758 -0.310637 -0.328752 -0.332935 -0.62429 -0.706695 +0.385379 -0.306628 -0.329891 -0.359586 -0.59525 -0.718593 +0.380272 -0.301821 -0.331268 -0.383433 -0.550685 -0.741435 +0.376277 -0.296298 -0.332859 -0.405594 -0.509702 -0.758748 +0.374025 -0.289638 -0.334786 -0.428615 -0.443805 -0.786974 +0.373103 -0.282116 -0.336982 -0.430907 -0.388752 -0.814366 +0.373171 -0.273919 -0.339372 -0.437304 -0.342673 -0.83147 +0.37326 -0.265705 -0.34178 -0.437547 -0.303733 -0.846345 +0.374137 -0.256947 -0.344337 -0.431929 -0.28353 -0.856183 +0.374678 -0.24839 -0.346838 -0.423569 -0.272449 -0.863923 +0.375165 -0.239847 -0.349341 -0.413565 -0.258775 -0.872926 +0.375012 -0.231709 -0.351713 -0.402439 -0.238415 -0.883857 +0.375614 -0.223051 -0.354249 -0.389542 -0.227392 -0.892497 +0.376688 -0.214056 -0.356882 -0.336138 -0.225467 -0.914426 +0.382525 -0.201824 -0.360493 -0.315417 -0.26334 -0.911682 +0.390069 -0.188392 -0.364456 -0.270118 -0.333252 -0.903316 +0.385145 -0.183381 -0.365895 -0.285517 -0.375046 -0.881941 +0.37927 -0.179017 -0.367135 -0.289215 -0.377664 -0.879616 +0.372827 -0.175052 -0.368254 -0.294199 -0.405966 -0.865239 +0.365827 -0.171482 -0.369262 -0.322664 -0.40176 -0.857017 +0.360162 -0.167015 -0.37053 -0.336734 -0.400226 -0.852308 +0.35488 -0.162281 -0.371881 -0.345626 -0.391173 -0.852952 +0.3519 -0.155972 -0.373713 -0.350808 -0.355566 -0.866319 +0.352456 -0.147195 -0.37628 -0.366089 -0.340592 -0.866013 +0.35965 -0.133743 -0.380249 -0.343929 -0.213261 -0.914457 +0.374503 -0.114877 -0.385846 -0.344954 -0.0923754 -0.934063 +0.381896 -0.10116 -0.38989 -0.419916 -0.0260338 -0.90719 +0.390489 -0.0865417 -0.394208 -0.464636 -0.0304485 -0.884979 +0.400335 -0.0709777 -0.398813 -0.468039 -0.0542695 -0.882041 +0.404091 -0.0596804 -0.402135 -0.472692 -0.073017 -0.878198 +0.40805 -0.0481945 -0.405512 -0.472782 -0.0905764 -0.876512 +0.445632 -0.0125653 -0.416137 -0.851305 -0.389835 -0.351152 +0.444264 -0.00474789 -0.418411 -0.860971 -0.312278 -0.401511 +0.442073 0.00248489 -0.420512 -0.873905 -0.244064 -0.420383 +0.440896 0.0104622 -0.422837 -0.884375 -0.197582 -0.422899 +0.440454 0.0189823 -0.425326 -0.881505 -0.108541 -0.459532 +0.441353 0.0285043 -0.428105 -0.874896 -0.0398267 -0.482672 +0.443805 0.0391844 -0.431242 -0.867363 0.00868997 -0.497599 +0.460351 0.060253 -0.437493 -0.720973 0.203364 -0.662452 +0.62851 -0.371959 -0.319763 0.0655756 -0.656888 -0.751132 +0.613778 -0.372337 -0.319552 0.0178709 -0.698582 -0.715307 +0.589802 -0.37819 -0.317658 0.00164339 -0.72808 -0.685491 +0.572873 -0.379986 -0.317015 0.00584364 -0.741067 -0.671405 +0.563431 -0.377409 -0.317697 -0.00299649 -0.727213 -0.686408 +0.554394 -0.37463 -0.318446 -0.0314302 -0.718665 -0.694646 +0.542805 -0.373393 -0.318726 -0.0491559 -0.709199 -0.703294 +0.523696 -0.376676 -0.317627 -0.135763 -0.70511 -0.695981 +0.512882 -0.375066 -0.31802 -0.201653 -0.700728 -0.684337 +0.504474 -0.372031 -0.318849 -0.264628 -0.690716 -0.672966 +0.497324 -0.368264 -0.319901 -0.3078 -0.682811 -0.662594 +0.490576 -0.36427 -0.321023 -0.330278 -0.680324 -0.654276 +0.483924 -0.360221 -0.322166 -0.35906 -0.679301 -0.640021 +0.477814 -0.355863 -0.323393 -0.358163 -0.679331 -0.640493 +0.472383 -0.351103 -0.324749 -0.364476 -0.683778 -0.632145 +0.466448 -0.346656 -0.326013 -0.358492 -0.686116 -0.633031 +0.460602 -0.342167 -0.327288 -0.349585 -0.684564 -0.639657 +0.454997 -0.33754 -0.328605 -0.339268 -0.685504 -0.644191 +0.450031 -0.332515 -0.330034 -0.323874 -0.687912 -0.649526 +0.444368 -0.327937 -0.331335 -0.311646 -0.685741 -0.657751 +0.436688 -0.32464 -0.332247 -0.298022 -0.684355 -0.665463 +0.429925 -0.320781 -0.333331 -0.288925 -0.67081 -0.683036 +0.42365 -0.316628 -0.334503 -0.283789 -0.651771 -0.703321 +0.417949 -0.312132 -0.335782 -0.286054 -0.636627 -0.716157 +0.411633 -0.308026 -0.336938 -0.290785 -0.616086 -0.73204 +0.405483 -0.303828 -0.338126 -0.304449 -0.581958 -0.75408 +0.3986 -0.30012 -0.339162 -0.329102 -0.550699 -0.767088 +0.394615 -0.294556 -0.340762 -0.346221 -0.487527 -0.80153 +0.392768 -0.287609 -0.342783 -0.367126 -0.441252 -0.818851 +0.389065 -0.281859 -0.34444 -0.384889 -0.386314 -0.838226 +0.386855 -0.275137 -0.346392 -0.39614 -0.340819 -0.852594 +0.384875 -0.26826 -0.3484 -0.401452 -0.303723 -0.864054 +0.383767 -0.260793 -0.350577 -0.405452 -0.280377 -0.870056 +0.384711 -0.251975 -0.353167 -0.408164 -0.271684 -0.871544 +0.385411 -0.243289 -0.355722 -0.401921 -0.2547 -0.879539 +0.387046 -0.23396 -0.358463 -0.397444 -0.231741 -0.887882 +0.39089 -0.223133 -0.361665 -0.340417 -0.191975 -0.920468 +0.418619 -0.196302 -0.369731 -0.275053 -0.337292 -0.900323 +0.414592 -0.190627 -0.371362 -0.27443 -0.362506 -0.890661 +0.410643 -0.184908 -0.37301 -0.265043 -0.411062 -0.872228 +0.405505 -0.179992 -0.374415 -0.274773 -0.411387 -0.869058 +0.400635 -0.174896 -0.375875 -0.280779 -0.450493 -0.847479 +0.396109 -0.169574 -0.377406 -0.284346 -0.432909 -0.855417 +0.391925 -0.16403 -0.378996 -0.285472 -0.427766 -0.857625 +0.388197 -0.158168 -0.380688 -0.294439 -0.373012 -0.879868 +0.385442 -0.151637 -0.382583 -0.295683 -0.36221 -0.883954 +0.383669 -0.144421 -0.384683 -0.303727 -0.287469 -0.908356 +0.383211 -0.136292 -0.387065 -0.312669 -0.263586 -0.912558 +0.383958 -0.127297 -0.389705 -0.347129 -0.159907 -0.924084 +0.38808 -0.115934 -0.393063 -0.385576 -0.117129 -0.915211 +0.398356 -0.100209 -0.397746 -0.44065 -0.0649479 -0.895327 +0.40371 -0.0878842 -0.401397 -0.447948 -0.0431915 -0.893016 +0.409308 -0.0753378 -0.405117 -0.4615 -0.0480788 -0.885837 +0.418459 -0.0602241 -0.40961 -0.469043 -0.0513595 -0.88168 +0.455611 -0.0251329 -0.420163 -0.808113 -0.502429 -0.307441 +0.452353 -0.0186762 -0.422031 -0.819736 -0.457269 -0.344874 +0.449995 -0.011572 -0.424095 -0.84222 -0.39985 -0.361645 +0.447485 -0.00456548 -0.426134 -0.859919 -0.334305 -0.38572 +0.445084 0.0025227 -0.428189 -0.874212 -0.261139 -0.409341 +0.444336 0.0108077 -0.430618 -0.879508 -0.22176 -0.421059 +0.444205 0.0195646 -0.433179 -0.866625 -0.105308 -0.48772 +0.446323 0.0299841 -0.436247 -0.834837 -0.00346141 -0.550486 +0.453502 0.0441286 -0.440448 -0.79353 0.0957086 -0.600957 +0.624473 -0.359894 -0.330861 0.048032 -0.685891 -0.726117 +0.606629 -0.362138 -0.33004 0.0552953 -0.699742 -0.712253 +0.577115 -0.371342 -0.327081 0.0098038 -0.719251 -0.694682 +0.565765 -0.369888 -0.327406 -0.00705657 -0.706823 -0.707355 +0.556985 -0.366952 -0.328191 -0.0360692 -0.697618 -0.715561 +0.547954 -0.364183 -0.328927 -0.0607546 -0.684817 -0.726179 +0.537158 -0.362498 -0.329329 -0.0838622 -0.664425 -0.742635 +0.5211 -0.364016 -0.328736 -0.135228 -0.661256 -0.737872 +0.510154 -0.362504 -0.329086 -0.192142 -0.662125 -0.724343 +0.503229 -0.358583 -0.330184 -0.233363 -0.65751 -0.716395 +0.496111 -0.354795 -0.331228 -0.275237 -0.652227 -0.70629 +0.488706 -0.351197 -0.332224 -0.307565 -0.654456 -0.690717 +0.48225 -0.347034 -0.333391 -0.349678 -0.665701 -0.659218 +0.475987 -0.342771 -0.334588 -0.345478 -0.666273 -0.660852 +0.469816 -0.338455 -0.335804 -0.34374 -0.670264 -0.657715 +0.464251 -0.333779 -0.337129 -0.337003 -0.678451 -0.65279 +0.460102 -0.328233 -0.338723 -0.330748 -0.674504 -0.660038 +0.455384 -0.323042 -0.340209 -0.328486 -0.668487 -0.667249 +0.448333 -0.319319 -0.341241 -0.321246 -0.656062 -0.682923 +0.440123 -0.316347 -0.342046 -0.308443 -0.645862 -0.698374 +0.433173 -0.3126 -0.34309 -0.301587 -0.622608 -0.722083 +0.427547 -0.308025 -0.34438 -0.292653 -0.605473 -0.740106 +0.423433 -0.302494 -0.345976 -0.28272 -0.55751 -0.780547 +0.420115 -0.296467 -0.347718 -0.284938 -0.529044 -0.799326 +0.416058 -0.290902 -0.349317 -0.299708 -0.483594 -0.822382 +0.412784 -0.284843 -0.351071 -0.314315 -0.437631 -0.842429 +0.410791 -0.277946 -0.353077 -0.324689 -0.384656 -0.864069 +0.409459 -0.270616 -0.355226 -0.344113 -0.340138 -0.875153 +0.408796 -0.26284 -0.357504 -0.344683 -0.288632 -0.893245 +0.408459 -0.254836 -0.359854 -0.349011 -0.264716 -0.898954 +0.4089 -0.246307 -0.362367 -0.309079 -0.223832 -0.924322 +0.412333 -0.235785 -0.365488 -0.279113 -0.155649 -0.947561 +0.440682 -0.208764 -0.373684 -0.335436 -0.269277 -0.902758 +0.44124 -0.200023 -0.376258 -0.3229 -0.31319 -0.893112 +0.438656 -0.193353 -0.378193 -0.331998 -0.36448 -0.870018 +0.433168 -0.188616 -0.37954 -0.32476 -0.407234 -0.853635 +0.427186 -0.18422 -0.380781 -0.310445 -0.447111 -0.838878 +0.42176 -0.179466 -0.382134 -0.304165 -0.464627 -0.831629 +0.416479 -0.17462 -0.383511 -0.297355 -0.454585 -0.839604 +0.411197 -0.169774 -0.384889 -0.295002 -0.448735 -0.843572 +0.406813 -0.164335 -0.386449 -0.299368 -0.412583 -0.860322 +0.402553 -0.15881 -0.388034 -0.297037 -0.391204 -0.87105 +0.398752 -0.152973 -0.38972 -0.302319 -0.352961 -0.88545 +0.396453 -0.146107 -0.391715 -0.318197 -0.30506 -0.897602 +0.396339 -0.137723 -0.394179 -0.339889 -0.276295 -0.898965 +0.407341 -0.121619 -0.39901 -0.401568 -0.171448 -0.899638 +0.409606 -0.111525 -0.401997 -0.400479 -0.133533 -0.906523 +0.412451 -0.100982 -0.405121 -0.411792 -0.0918641 -0.906636 +0.416069 -0.0898779 -0.408426 -0.436225 -0.0767553 -0.896559 +0.433463 -0.0690424 -0.414701 -0.442805 -0.0314606 -0.896066 +0.468146 -0.0359132 -0.424744 -0.742622 -0.610026 -0.27637 +0.463812 -0.0302117 -0.426384 -0.773709 -0.5504 -0.313747 +0.459764 -0.0243042 -0.428086 -0.796546 -0.497882 -0.342968 +0.45605 -0.0181653 -0.429858 -0.8132 -0.460143 -0.356334 +0.452942 -0.01159 -0.431763 -0.837569 -0.39989 -0.372245 +0.450289 -0.00468006 -0.43377 -0.854888 -0.345802 -0.386767 +0.448108 0.00256465 -0.435881 -0.848929 -0.248358 -0.466519 +0.447489 0.0109551 -0.438347 -0.854551 -0.199606 -0.47948 +0.448187 0.0203153 -0.441099 -0.837984 -0.0705422 -0.541117 +0.452574 0.032388 -0.444693 -0.818808 0.0241623 -0.573559 +0.599054 -0.352189 -0.340454 0.0613895 -0.675189 -0.735087 +0.575231 -0.358112 -0.33846 -0.00689255 -0.685338 -0.728192 +0.561649 -0.35802 -0.338348 -0.0412633 -0.672785 -0.738687 +0.550934 -0.356252 -0.338762 -0.0633338 -0.660907 -0.74779 +0.541446 -0.353781 -0.339392 -0.0959663 -0.64101 -0.76151 +0.531319 -0.351723 -0.339898 -0.113819 -0.621972 -0.774723 +0.52196 -0.349222 -0.34054 -0.138424 -0.59546 -0.791371 +0.515048 -0.345264 -0.341629 -0.158666 -0.589877 -0.791752 +0.508656 -0.341005 -0.34282 -0.184301 -0.570945 -0.800035 +0.503229 -0.336166 -0.344194 -0.200764 -0.545207 -0.813907 +0.495096 -0.333003 -0.345043 -0.219435 -0.538373 -0.813635 +0.486325 -0.330251 -0.345761 -0.214721 -0.540916 -0.813206 +0.477898 -0.327316 -0.346546 -0.225309 -0.572167 -0.788582 +0.472007 -0.322823 -0.347809 -0.233483 -0.595087 -0.768998 +0.468277 -0.316987 -0.349489 -0.205459 -0.546884 -0.811607 +0.465135 -0.310786 -0.351287 -0.182835 -0.504532 -0.843812 +0.458631 -0.30669 -0.352427 -0.209676 -0.505856 -0.836748 +0.451102 -0.303262 -0.353363 -0.225296 -0.506685 -0.832173 +0.442835 -0.300327 -0.35414 -0.238099 -0.506921 -0.828456 +0.436462 -0.296199 -0.355292 -0.249159 -0.500825 -0.828912 +0.43218 -0.290755 -0.35686 -0.244749 -0.463541 -0.851604 +0.429504 -0.284281 -0.358742 -0.247713 -0.410941 -0.877364 +0.427179 -0.277574 -0.360694 -0.253307 -0.363657 -0.896432 +0.425861 -0.270211 -0.362849 -0.263595 -0.334977 -0.904603 +0.426286 -0.261712 -0.365364 -0.264224 -0.279573 -0.923052 +0.447531 -0.239641 -0.372089 -0.288666 -0.176632 -0.940996 +0.450165 -0.229604 -0.375083 -0.325383 -0.178301 -0.928619 +0.451676 -0.220275 -0.377849 -0.356574 -0.220758 -0.907811 +0.45537 -0.209492 -0.381063 -0.367951 -0.264505 -0.891432 +0.461469 -0.197074 -0.384787 -0.357204 -0.308556 -0.881589 +0.457698 -0.191155 -0.386498 -0.345152 -0.356733 -0.868108 +0.452574 -0.186135 -0.387925 -0.330958 -0.384665 -0.861685 +0.446942 -0.181464 -0.389246 -0.322489 -0.413684 -0.851391 +0.441459 -0.176704 -0.390591 -0.315013 -0.429248 -0.846472 +0.43616 -0.171826 -0.391976 -0.30675 -0.437004 -0.845537 +0.430639 -0.167109 -0.393314 -0.303983 -0.443063 -0.84338 +0.426291 -0.161599 -0.394895 -0.311977 -0.420486 -0.851975 +0.424401 -0.154425 -0.396987 -0.321942 -0.389761 -0.862809 +0.426419 -0.144575 -0.399916 -0.337754 -0.33747 -0.878656 +0.427239 -0.135513 -0.402596 -0.346388 -0.283705 -0.894163 +0.426027 -0.127837 -0.404846 -0.355892 -0.241815 -0.9027 +0.425288 -0.119811 -0.407205 -0.366984 -0.195424 -0.909469 +0.425188 -0.11133 -0.409708 -0.385351 -0.163045 -0.908252 +0.426746 -0.101682 -0.412576 -0.401217 -0.128773 -0.906887 +0.4333 -0.0885269 -0.416516 -0.416802 -0.0825551 -0.90524 +0.481097 -0.0464496 -0.429422 -0.681815 -0.684797 -0.257259 +0.476329 -0.0410337 -0.430972 -0.710618 -0.642618 -0.286467 +0.471664 -0.0355529 -0.432544 -0.73647 -0.595562 -0.320809 +0.467269 -0.0298828 -0.434167 -0.757907 -0.564701 -0.326636 +0.462969 -0.0241516 -0.435811 -0.783877 -0.509782 -0.354486 +0.458846 -0.0182945 -0.4375 -0.803341 -0.467578 -0.368799 +0.455614 -0.011807 -0.43938 -0.822722 -0.392754 -0.410941 +0.453257 -0.00468891 -0.441455 -0.833938 -0.317927 -0.451078 +0.451492 0.00286708 -0.443663 -0.844631 -0.266168 -0.464493 +0.451317 0.0115831 -0.446235 -0.832322 -0.165052 -0.529149 +0.454802 0.0229728 -0.449633 -0.818227 -0.0285449 -0.574187 +0.593113 -0.341272 -0.351165 0.0477125 -0.641038 -0.766025 +0.574695 -0.344039 -0.350134 -0.0225258 -0.658851 -0.751937 +0.561236 -0.343897 -0.350016 -0.0815698 -0.632335 -0.770389 +0.550301 -0.342276 -0.350367 -0.113687 -0.61659 -0.779033 +0.54135 -0.339489 -0.351086 -0.138559 -0.594627 -0.791973 +0.533294 -0.336179 -0.351971 -0.15788 -0.565257 -0.809665 +0.527538 -0.331491 -0.353291 -0.1846 -0.540142 -0.821079 +0.523157 -0.325974 -0.354869 -0.206338 -0.514411 -0.832351 +0.520181 -0.319584 -0.35672 -0.233193 -0.48486 -0.84293 +0.517076 -0.313288 -0.358553 -0.240662 -0.462115 -0.853542 +0.513549 -0.307236 -0.360296 -0.247576 -0.445596 -0.86032 +0.51126 -0.300417 -0.362287 -0.251805 -0.43309 -0.865464 +0.508007 -0.294194 -0.364091 -0.253235 -0.430767 -0.866206 +0.504246 -0.288294 -0.365797 -0.283466 -0.459321 -0.841826 +0.499781 -0.282824 -0.367363 -0.264613 -0.450907 -0.852445 +0.492313 -0.279265 -0.368325 -0.234204 -0.433424 -0.870226 +0.483344 -0.276665 -0.368986 -0.190745 -0.415179 -0.889518 +0.476868 -0.272512 -0.370144 -0.195074 -0.394003 -0.898168 +0.469932 -0.268659 -0.371196 -0.180498 -0.3596 -0.915483 +0.465202 -0.263417 -0.372695 -0.194649 -0.332873 -0.922664 +0.46212 -0.257113 -0.37452 -0.206779 -0.310897 -0.927678 +0.462378 -0.248659 -0.377029 -0.256001 -0.254357 -0.932612 +0.46222 -0.240447 -0.379458 -0.31234 -0.23127 -0.921389 +0.462541 -0.231906 -0.381984 -0.377945 -0.230774 -0.896606 +0.46312 -0.223186 -0.384574 -0.382704 -0.228666 -0.895126 +0.474429 -0.207414 -0.389379 -0.385957 -0.25566 -0.886384 +0.474237 -0.19913 -0.391827 -0.371072 -0.295828 -0.880223 +0.471723 -0.192361 -0.393796 -0.350942 -0.350087 -0.868493 +0.466725 -0.187229 -0.395261 -0.341361 -0.364986 -0.866174 +0.463545 -0.180896 -0.397093 -0.327932 -0.404616 -0.853666 +0.459817 -0.174933 -0.39881 -0.320488 -0.431494 -0.843267 +0.456688 -0.168556 -0.400664 -0.31536 -0.423909 -0.849029 +0.454227 -0.161743 -0.402653 -0.314915 -0.423119 -0.849587 +0.451004 -0.155428 -0.404485 -0.315761 -0.409658 -0.855847 +0.447687 -0.149173 -0.406296 -0.317565 -0.386268 -0.865997 +0.444444 -0.142867 -0.40812 -0.340674 -0.356125 -0.870125 +0.441455 -0.136385 -0.410001 -0.350486 -0.325556 -0.878164 +0.439208 -0.129391 -0.412044 -0.357768 -0.28116 -0.890478 +0.437976 -0.121696 -0.414309 -0.39379 -0.26422 -0.880407 +0.439094 -0.112376 -0.417084 -0.386622 -0.19914 -0.900481 +0.500501 -0.0613176 -0.432918 -0.60266 -0.769863 -0.210027 +0.494801 -0.05652 -0.434267 -0.629297 -0.741809 -0.231746 +0.488893 -0.0518866 -0.435573 -0.65283 -0.713369 -0.254791 +0.483972 -0.0465649 -0.437084 -0.672348 -0.682827 -0.285824 +0.479139 -0.0411859 -0.438623 -0.697843 -0.641684 -0.318211 +0.474342 -0.0357955 -0.440161 -0.726224 -0.594166 -0.345786 +0.469895 -0.0301541 -0.441774 -0.747984 -0.559743 -0.356665 +0.465624 -0.0243987 -0.443429 -0.770414 -0.521639 -0.366542 +0.461508 -0.018539 -0.445118 -0.792451 -0.456912 -0.404048 +0.458218 -0.0120845 -0.446988 -0.806212 -0.367517 -0.463631 +0.45626 -0.00467202 -0.449158 -0.817388 -0.327724 -0.473786 +0.455881 0.00388692 -0.451681 -0.822184 -0.217766 -0.52592 +0.457835 0.0141527 -0.454742 -0.811787 -0.130719 -0.569135 +0.480984 0.0397949 -0.462606 -0.625684 0.232709 -0.744558 +0.576205 -0.328691 -0.362234 -0.0194296 -0.598952 -0.80055 +0.561754 -0.329161 -0.361897 -0.122564 -0.58356 -0.802767 +0.550199 -0.32793 -0.362113 -0.147224 -0.559499 -0.81565 +0.540827 -0.325404 -0.362738 -0.19538 -0.536943 -0.820682 +0.53355 -0.321626 -0.363764 -0.224443 -0.509826 -0.830483 +0.529377 -0.315957 -0.36539 -0.260083 -0.489648 -0.832228 +0.525383 -0.310178 -0.367048 -0.283543 -0.466368 -0.837916 +0.522572 -0.303672 -0.368943 -0.287305 -0.459682 -0.840326 +0.519444 -0.297355 -0.370782 -0.328978 -0.478248 -0.814281 +0.516869 -0.290698 -0.372722 -0.34428 -0.471459 -0.81191 +0.513903 -0.28427 -0.374589 -0.311978 -0.45931 -0.831688 +0.510111 -0.27836 -0.376291 -0.296959 -0.462362 -0.835486 +0.504548 -0.273571 -0.377641 -0.282894 -0.462685 -0.840175 +0.498835 -0.268883 -0.378958 -0.273077 -0.454407 -0.847906 +0.492798 -0.264411 -0.380199 -0.263177 -0.448399 -0.854211 +0.488242 -0.259009 -0.381742 -0.252045 -0.407098 -0.877921 +0.483977 -0.253419 -0.38335 -0.274193 -0.360744 -0.891451 +0.4807 -0.247201 -0.385148 -0.283411 -0.322663 -0.903088 +0.478832 -0.240078 -0.387243 -0.292766 -0.27945 -0.914437 +0.480016 -0.230966 -0.389957 -0.320536 -0.246532 -0.914592 +0.491399 -0.215203 -0.394791 -0.293168 -0.242259 -0.924859 +0.493389 -0.205493 -0.397704 -0.292536 -0.268628 -0.917747 +0.490687 -0.198822 -0.399643 -0.294841 -0.302354 -0.906449 +0.488151 -0.192044 -0.401623 -0.308794 -0.352003 -0.883595 +0.486207 -0.18487 -0.403727 -0.330435 -0.409026 -0.850594 +0.489019 -0.174535 -0.406831 -0.341937 -0.419168 -0.841057 +0.485216 -0.168565 -0.408556 -0.337709 -0.42954 -0.837524 +0.479338 -0.163979 -0.40984 -0.329953 -0.422676 -0.844083 +0.473482 -0.159388 -0.411124 -0.316938 -0.426522 -0.847131 +0.468017 -0.154543 -0.412486 -0.308819 -0.415384 -0.855621 +0.463347 -0.149171 -0.414017 -0.310348 -0.398439 -0.863095 +0.460014 -0.142901 -0.415833 -0.316673 -0.367875 -0.874292 +0.458022 -0.135723 -0.417943 -0.327117 -0.339199 -0.882009 +0.459946 -0.125865 -0.420897 -0.354872 -0.312403 -0.881176 +0.523868 -0.0735879 -0.437265 -0.497118 -0.85334 -0.15712 +0.516946 -0.0695853 -0.438366 -0.528061 -0.830336 -0.178024 +0.510047 -0.0655924 -0.439456 -0.56349 -0.796929 -0.217678 +0.503487 -0.0613749 -0.440622 -0.597298 -0.764373 -0.242841 +0.497236 -0.0569558 -0.441846 -0.625219 -0.732279 -0.269941 +0.491494 -0.0521934 -0.44319 -0.649246 -0.698458 -0.301061 +0.486622 -0.0468352 -0.444713 -0.662164 -0.676114 -0.323127 +0.481747 -0.0414878 -0.446233 -0.688247 -0.637023 -0.347159 +0.47707 -0.0360031 -0.447799 -0.712449 -0.594691 -0.372503 +0.472562 -0.0304056 -0.449399 -0.735589 -0.562679 -0.37723 +0.468444 -0.0245289 -0.451092 -0.753409 -0.494671 -0.433219 +0.46482 -0.0183064 -0.452891 -0.776808 -0.422599 -0.466882 +0.461689 -0.0117361 -0.454797 -0.788273 -0.363734 -0.496309 +0.460689 -0.00363304 -0.457191 -0.79576 -0.287273 -0.533143 +0.461338 0.00567431 -0.459959 -0.797589 -0.187172 -0.573427 +0.476636 0.0255724 -0.46607 -0.673061 0.108113 -0.731643 +0.564328 -0.304837 -0.376707 -0.145315 -0.54054 -0.828674 +0.546376 -0.307551 -0.37563 -0.258721 -0.507553 -0.821861 +0.538364 -0.30421 -0.376503 -0.276003 -0.490107 -0.826811 +0.533946 -0.298662 -0.378091 -0.319176 -0.477411 -0.818661 +0.532699 -0.291157 -0.380312 -0.323307 -0.459252 -0.827382 +0.573539 -0.240591 -0.395978 -0.00824323 -0.278731 -0.960334 +0.569073 -0.234962 -0.397589 -0.0142488 -0.285219 -0.958356 +0.561712 -0.231163 -0.398612 -0.0143712 -0.285494 -0.958273 +0.518372 -0.250213 -0.392285 -0.147683 -0.353589 -0.923669 +0.514226 -0.244488 -0.39393 -0.173946 -0.340915 -0.923861 +0.524338 -0.229654 -0.398497 -0.115897 -0.252934 -0.960517 +0.527731 -0.219063 -0.40171 -0.0928755 -0.219003 -0.971294 +0.523366 -0.213426 -0.403321 -0.124615 -0.229678 -0.965255 +0.520462 -0.206853 -0.405231 -0.125273 -0.23393 -0.96415 +0.671986 -0.100071 -0.439292 0.127771 -0.991234 -0.0336429 +0.653943 -0.10298 -0.438154 0.0828903 -0.995787 -0.0392395 +0.63936 -0.10369 -0.437727 -0.0136796 -0.999361 -0.0330464 +0.625875 -0.103736 -0.437512 -0.0563128 -0.997457 -0.0436949 +0.614102 -0.102707 -0.437646 -0.130242 -0.989868 -0.0565807 +0.602601 -0.101534 -0.437826 -0.203142 -0.977009 -0.0647284 +0.593025 -0.0991094 -0.438406 -0.233412 -0.970184 -0.0652969 +0.583622 -0.0966143 -0.439003 -0.279542 -0.956898 -0.0787589 +0.574598 -0.09388 -0.439685 -0.313182 -0.944765 -0.0966253 +0.565988 -0.0909028 -0.440441 -0.346141 -0.932144 -0.106275 +0.558195 -0.0873892 -0.441373 -0.365907 -0.923528 -0.114922 +0.550121 -0.0840926 -0.442233 -0.388981 -0.911366 -0.134559 +0.542049 -0.0808119 -0.44309 -0.422967 -0.894012 -0.147795 +0.534036 -0.077514 -0.443953 -0.455722 -0.871936 -0.179014 +0.526531 -0.0738971 -0.444923 -0.487199 -0.845924 -0.216913 +0.519031 -0.070284 -0.445884 -0.519424 -0.822751 -0.230826 +0.511986 -0.066381 -0.446942 -0.553182 -0.787785 -0.270893 +0.505732 -0.0619469 -0.448169 -0.587628 -0.751605 -0.299639 +0.499817 -0.0572867 -0.449467 -0.62268 -0.720752 -0.304609 +0.494247 -0.0523979 -0.45084 -0.636987 -0.698922 -0.3252 +0.489459 -0.0469774 -0.452386 -0.656154 -0.663024 -0.360361 +0.484833 -0.0414473 -0.453965 -0.678216 -0.631975 -0.375009 +0.480038 -0.0360445 -0.4555 -0.701275 -0.598696 -0.387012 +0.475389 -0.0305358 -0.457076 -0.724678 -0.53146 -0.438628 +0.471616 -0.0244125 -0.458842 -0.737262 -0.483971 -0.4714 +0.468193 -0.018043 -0.460689 -0.760107 -0.416963 -0.498377 +0.46606 -0.0107479 -0.462824 -0.775357 -0.377035 -0.506622 +0.466103 -0.00188883 -0.465464 -0.781414 -0.254837 -0.569606 +0.477411 0.0150781 -0.470686 -0.693482 -0.015714 -0.720303 +0.675393 -0.100014 -0.447273 0.154773 -0.985955 -0.0627582 +0.655439 -0.104155 -0.445715 0.0701371 -0.992684 -0.0982877 +0.640017 -0.105407 -0.445081 -0.0148042 -0.994962 -0.0991624 +0.627016 -0.105132 -0.444951 -0.0575471 -0.992302 -0.109669 +0.61502 -0.104243 -0.445025 -0.123202 -0.985148 -0.119599 +0.60455 -0.102379 -0.445407 -0.190379 -0.973551 -0.126306 +0.594886 -0.10001 -0.445951 -0.230871 -0.965195 -0.122878 +0.585058 -0.0977848 -0.446453 -0.270479 -0.952017 -0.143197 +0.576141 -0.0949805 -0.44715 -0.304984 -0.939093 -0.158401 +0.567742 -0.091856 -0.447944 -0.33492 -0.927636 -0.165292 +0.559954 -0.0883374 -0.44887 -0.359295 -0.918077 -0.16746 +0.551954 -0.0849873 -0.449735 -0.38417 -0.90197 -0.197138 +0.543805 -0.0817546 -0.450564 -0.416928 -0.882009 -0.219615 +0.535597 -0.0785836 -0.451384 -0.447356 -0.865403 -0.225728 +0.528323 -0.0747927 -0.452397 -0.481391 -0.839055 -0.253474 +0.521317 -0.0708396 -0.453463 -0.515687 -0.808535 -0.283443 +0.514605 -0.0667035 -0.454585 -0.549098 -0.776563 -0.308938 +0.508652 -0.0620547 -0.455875 -0.580586 -0.745204 -0.32801 +0.503141 -0.0571179 -0.457263 -0.594443 -0.718953 -0.360202 +0.497954 -0.0519522 -0.458721 -0.619469 -0.684403 -0.384516 +0.492964 -0.0466601 -0.460216 -0.63974 -0.661313 -0.39166 +0.488003 -0.0413599 -0.461717 -0.661497 -0.63228 -0.403292 +0.483371 -0.0358324 -0.463296 -0.68673 -0.559045 -0.464619 +0.479184 -0.0299852 -0.464973 -0.706466 -0.510461 -0.490242 +0.476 -0.0234472 -0.466878 -0.722371 -0.472461 -0.504937 +0.473344 -0.0165183 -0.468903 -0.736661 -0.397522 -0.54709 +0.473277 -0.00773858 -0.471519 -0.729121 -0.30998 -0.610161 +0.48591 0.0101369 -0.477069 -0.639068 -0.0478128 -0.767663 +0.686451 -0.0950153 -0.456891 0.202673 -0.974512 -0.0961861 +0.66004 -0.103316 -0.453927 0.0837597 -0.987948 -0.130176 +0.643267 -0.105434 -0.452993 0.0230349 -0.992934 -0.116416 +0.629256 -0.105807 -0.452625 -0.0395857 -0.988452 -0.146273 +0.617818 -0.104537 -0.452798 -0.115553 -0.981199 -0.154587 +0.606737 -0.103067 -0.453041 -0.182573 -0.966825 -0.178656 +0.596713 -0.100942 -0.453499 -0.213942 -0.960521 -0.177846 +0.587236 -0.0984732 -0.454066 -0.259382 -0.946731 -0.190848 +0.578386 -0.0956184 -0.454767 -0.297195 -0.932408 -0.205651 +0.569895 -0.0925439 -0.455536 -0.323933 -0.920686 -0.217729 +0.561818 -0.0892097 -0.45639 -0.344862 -0.91224 -0.221106 +0.553715 -0.0859243 -0.457227 -0.381394 -0.896715 -0.224591 +0.545752 -0.08256 -0.458093 -0.411437 -0.872693 -0.262917 +0.538052 -0.0790405 -0.459011 -0.441354 -0.850824 -0.28514 +0.530713 -0.0752907 -0.460004 -0.47366 -0.824737 -0.308959 +0.523737 -0.0713102 -0.461066 -0.504132 -0.798741 -0.328429 +0.517252 -0.0670137 -0.462244 -0.531933 -0.766613 -0.359655 +0.511753 -0.0620398 -0.463632 -0.560728 -0.737697 -0.376014 +0.506618 -0.0568295 -0.465104 -0.589847 -0.713486 -0.378178 +0.501529 -0.0515915 -0.466579 -0.612221 -0.687207 -0.391064 +0.496497 -0.0463312 -0.46807 -0.631644 -0.644324 -0.431129 +0.491807 -0.0408271 -0.469633 -0.652187 -0.597419 -0.46663 +0.487799 -0.0348534 -0.471347 -0.669848 -0.55607 -0.492027 +0.484238 -0.0285614 -0.473172 -0.690123 -0.495631 -0.527334 +0.482426 -0.0210297 -0.475396 -0.691501 -0.394596 -0.605079 +0.482182 -0.0123785 -0.477982 -0.690087 -0.322034 -0.648132 +0.494569 0.00527967 -0.483503 -0.57611 -0.041436 -0.816322 +0.66536 -0.102012 -0.462316 0.100277 -0.985353 -0.137934 +0.647724 -0.104674 -0.461168 0.0390875 -0.985549 -0.164816 +0.633451 -0.105208 -0.460731 -0.0395006 -0.980938 -0.190268 +0.620923 -0.104641 -0.46066 -0.1042 -0.972591 -0.207872 +0.610023 -0.103037 -0.460925 -0.150489 -0.962869 -0.224137 +0.599862 -0.100986 -0.461347 -0.20429 -0.955549 -0.212586 +0.589919 -0.0988186 -0.4618 -0.248057 -0.939615 -0.235781 +0.581285 -0.0958141 -0.46254 -0.284284 -0.928548 -0.238706 +0.572909 -0.0926536 -0.463326 -0.313416 -0.913864 -0.258119 +0.564575 -0.0894891 -0.464116 -0.336669 -0.897493 -0.28489 +0.556705 -0.0860359 -0.464995 -0.368105 -0.878978 -0.303143 +0.548776 -0.082642 -0.465865 -0.398582 -0.855499 -0.330537 +0.540832 -0.0792828 -0.46672 -0.427802 -0.834624 -0.346971 +0.533428 -0.0755672 -0.467689 -0.463195 -0.819924 -0.336415 +0.526629 -0.0714613 -0.468796 -0.491931 -0.778509 -0.389781 +0.520452 -0.0669358 -0.47003 -0.520006 -0.749187 -0.410261 +0.515395 -0.0616626 -0.471518 -0.538824 -0.729278 -0.42169 +0.510413 -0.0563412 -0.473026 -0.560212 -0.675197 -0.479867 +0.505462 -0.0509985 -0.474529 -0.579367 -0.652518 -0.488421 +0.500853 -0.0454235 -0.476117 -0.612862 -0.629538 -0.477582 +0.497062 -0.0392854 -0.477889 -0.629268 -0.578486 -0.519014 +0.494018 -0.0326188 -0.479833 -0.634748 -0.48027 -0.605341 +0.492167 -0.0251105 -0.482054 -0.643645 -0.423571 -0.637423 +0.494536 -0.0146195 -0.485258 -0.618481 -0.29502 -0.728317 +0.513008 0.00732505 -0.492216 -0.459203 0.0423833 -0.887321 +0.655013 -0.102073 -0.469979 0.0663047 -0.974565 -0.214077 +0.639416 -0.103447 -0.469239 -0.0166985 -0.978441 -0.205853 +0.626464 -0.103148 -0.469057 -0.0885556 -0.971478 -0.219973 +0.614783 -0.102048 -0.469143 -0.129014 -0.957095 -0.259473 +0.604351 -0.10016 -0.469487 -0.167515 -0.94369 -0.285288 +0.594426 -0.0979629 -0.469946 -0.226227 -0.935073 -0.272874 +0.585369 -0.0952265 -0.470576 -0.278531 -0.921519 -0.270598 +0.576757 -0.092214 -0.471302 -0.308046 -0.905808 -0.290895 +0.568246 -0.0891617 -0.472042 -0.336761 -0.882935 -0.327138 +0.560339 -0.0857192 -0.472915 -0.364974 -0.862145 -0.351426 +0.552549 -0.0822218 -0.473812 -0.390873 -0.839261 -0.377968 +0.544872 -0.0786647 -0.47472 -0.415682 -0.81687 -0.399916 +0.53785 -0.0746817 -0.475772 -0.442775 -0.792027 -0.420291 +0.531339 -0.0703713 -0.47694 -0.466448 -0.759105 -0.454076 +0.525309 -0.065738 -0.478209 -0.489711 -0.733693 -0.471038 +0.520201 -0.0604829 -0.479682 -0.513862 -0.703373 -0.491134 +0.515243 -0.0551302 -0.481195 -0.542987 -0.659615 -0.519688 +0.511143 -0.0491916 -0.4829 -0.557676 -0.620648 -0.551175 +0.507508 -0.0429238 -0.484712 -0.568537 -0.583771 -0.579636 +0.505485 -0.0355382 -0.486897 -0.56222 -0.470156 -0.68034 +0.505266 -0.0268706 -0.489508 -0.539553 -0.35683 -0.762598 +0.512601 -0.0128813 -0.493885 -0.4883 -0.216128 -0.84549 +0.649096 -0.0992754 -0.478577 0.049482 -0.96941 -0.240409 +0.633439 -0.100708 -0.477789 -0.0536624 -0.95776 -0.282516 +0.621174 -0.0999765 -0.477739 -0.102841 -0.949595 -0.296134 +0.609921 -0.0986139 -0.477895 -0.159491 -0.932943 -0.32277 +0.600036 -0.096381 -0.478342 -0.208672 -0.910675 -0.356549 +0.590801 -0.0937428 -0.478934 -0.239554 -0.901385 -0.360721 +0.582003 -0.0908399 -0.479612 -0.273257 -0.877937 -0.393139 +0.573353 -0.0878641 -0.480317 -0.3067 -0.864484 -0.398249 +0.565544 -0.084348 -0.481205 -0.343803 -0.839226 -0.421308 +0.55802 -0.0806539 -0.482155 -0.370148 -0.811921 -0.451415 +0.550558 -0.0769431 -0.483112 -0.403898 -0.799931 -0.44382 +0.544343 -0.0723957 -0.484347 -0.42915 -0.762006 -0.484953 +0.539008 -0.0672609 -0.48578 -0.440281 -0.729812 -0.523 +0.533445 -0.0622973 -0.487157 -0.463394 -0.663365 -0.587549 +0.529633 -0.0561281 -0.488937 -0.478853 -0.622624 -0.618903 +0.524859 -0.050628 -0.490492 -0.489282 -0.569836 -0.66022 +0.521745 -0.0439746 -0.492432 -0.483581 -0.500424 -0.718142 +0.521783 -0.0351381 -0.495106 -0.489194 -0.398784 -0.775668 +0.528337 -0.0217295 -0.499317 -0.447722 -0.238439 -0.861796 +0.541605 -0.00357747 -0.505107 -0.405412 -0.0936268 -0.909327 +0.645679 -0.0948412 -0.487722 -0.00867043 -0.934525 -0.355796 +0.629321 -0.0967661 -0.48675 -0.0739242 -0.912388 -0.402599 +0.617621 -0.095676 -0.486795 -0.130351 -0.904439 -0.406201 +0.607044 -0.0938789 -0.487086 -0.180411 -0.882054 -0.435241 +0.597839 -0.091203 -0.487676 -0.215611 -0.872697 -0.438079 +0.589011 -0.0883069 -0.488339 -0.255492 -0.853426 -0.454301 +0.580231 -0.085392 -0.489009 -0.288867 -0.823109 -0.488926 +0.572032 -0.0821169 -0.489807 -0.318389 -0.794325 -0.517375 +0.56507 -0.0780305 -0.490884 -0.342109 -0.771005 -0.537135 +0.558441 -0.07374 -0.492026 -0.371034 -0.719338 -0.587271 +0.553218 -0.0684996 -0.493491 -0.385859 -0.697631 -0.603677 +0.548959 -0.0626068 -0.495176 -0.397444 -0.612863 -0.682962 +0.545933 -0.05588 -0.497141 -0.41182 -0.586652 -0.697313 +0.54347 -0.0487511 -0.499243 -0.417681 -0.482494 -0.769897 +0.541963 -0.0409715 -0.501574 -0.428506 -0.417944 -0.801065 +0.542114 -0.0320218 -0.504289 -0.410551 -0.340616 -0.845831 +0.545679 -0.0206845 -0.507816 -0.407626 -0.207889 -0.88917 +0.631496 -0.088674 -0.49712 -0.0759725 -0.865757 -0.494663 +0.617948 -0.0888024 -0.496736 -0.133925 -0.843306 -0.52048 +0.607618 -0.0868466 -0.497064 -0.165679 -0.818276 -0.550432 +0.598565 -0.0840726 -0.497672 -0.222959 -0.801906 -0.554289 +0.589524 -0.0813196 -0.498283 -0.259302 -0.785069 -0.562521 +0.58159 -0.0778416 -0.499133 -0.303055 -0.749252 -0.588879 +0.574859 -0.0735735 -0.500263 -0.324288 -0.695409 -0.641282 +0.569245 -0.0685699 -0.501644 -0.335422 -0.649647 -0.682241 +0.564493 -0.0629797 -0.503226 -0.357858 -0.602921 -0.713038 +0.561109 -0.0564712 -0.505118 -0.362589 -0.531409 -0.765595 +0.558583 -0.0493695 -0.507212 -0.38095 -0.483152 -0.788316 +0.557085 -0.0415521 -0.509559 -0.373193 -0.379503 -0.846585 +0.557776 -0.032218 -0.512416 -0.368989 -0.306329 -0.877503 +0.615918 -0.0746629 -0.50884 -0.144485 -0.728624 -0.669501 +0.605469 -0.0727959 -0.509127 -0.200719 -0.714383 -0.670351 +0.598097 -0.0689024 -0.510117 -0.216602 -0.67028 -0.709795 +0.592075 -0.0641239 -0.511414 -0.262103 -0.611514 -0.746562 +0.587516 -0.0583588 -0.513049 -0.283876 -0.578859 -0.764419 +0.589199 -0.048363 -0.516151 -0.276394 -0.499271 -0.82118 diff --git a/data/stand.py b/data/stand.py new file mode 100644 index 0000000000000000000000000000000000000000..1c01b096e5fb766c5e9542189b5b3f8538ba5e74 --- /dev/null +++ b/data/stand.py @@ -0,0 +1,88 @@ +import json +import numpy as np + +# 데이터를 담은 딕셔너리 생성 + +data_to_save = { + 'bottle2_100_standing': ['100_1', '100_2', '100_3','100_4','100_5', '100_6', '100_7', '100_8','100_9','100_10','100_11','100_12'], + 'bottle2_100_lying' : ['100_13', '100_14', '100_15','100_16','100_17', '100_18', '100_19', '100_20'], + 'bottle2_75_staning' : ['75_2','75_3','75_4','75_5','75_6','75_7','75_8','75_9','75_10','75_11','75_12'], + 'bottle2_75_lying' : ['75_1','75_13','75_14','75_15','75_16','75_17','75_18','75_19','75_20'], + 'bottle2_50_standing' : ['50_1','50_2','50_3','50_4','50_5','50_6','50_7','50_8','50_9','50_10','50_11','50_12'], + 'bottle2_50_lying' : ['50_13','50_14','50_15','50_16','50_17','50_18','50_19','50_20'], + 'bottle2_25_standing' : ['25_1','25_2','25_3','25_4','25_5','25_6','25_7','25_8','25_9','25_10','25_11'], + 'bottle2_25_lying' : ['25_12','25_13','25_14','25_15','25_16','25_17','25_18','25_19','25_20','25_21','25_22','25_23'], + 'bottle2_0_standing' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10', '0_11', '0_12', '0_13'], + 'bottle2_0_lying' : ['0_14', '0_15', '0_16', '0_17', '0_18', '0_19'], + + + 'glasses_100_standing' : ['100_3', '100_4', '100_5', '100_6', '100_7', '100_8', '100_9', '100_10', '100_11', '100_12', '100_13'], + 'glasses_100_lying' : ['100_14', '100_15', '100_16', '100_17', '100_18', '100_19', '100_20', '100_21', '100_1', '100_2'], + 'glasses_75_lying' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17', '75_18', '75_19', '75_20'], + 'glasses_50_lying' : ['50_13', '50_14', '50_15', '50_16', '50_17', '50_18', '50_19', '50_20', '50_21'], + 'glasses_25_lying' : ['25_13', '25_14', '25_15', '25_16', '25_17', '25_18', '25_19', '25_20', '25_21'], + + 'glasses_0_lying' : ['0_11', '0_12', '0_13', '0_14', '0_15', '0_16', '0_17', '0_18', '0_19'], + 'glasses_75_standing' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11'], + 'glasses_50_standing' : ['50_1', '50_2', '50_3', '50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11', '50_12'], + 'glasses_25_standing' : ['25_1', '25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8', '25_9', '25_10', '25_11', '25_12'], + 'glasses_0_standing' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10', '0_11', '0_12', '0_13'], + + 'lightbulb_100_standing' : ['100_2', '100_3', '100_4', '100_5', '100_6', '100_7'], + 'lightbulb_75_standing' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17'], + 'lightbulb_50_standing' : ['50_13', '50_14', '50_15', '50_16', '50_17', '50_18', '50_19', '50_1', '50_2', '50_3'], + 'lightbulb_25_standing' : ['25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8'], + 'lightbulb_0_standing' : ['0_13', '0_14', '0_15', '0_16'], + + 'lightbulb_100_lying' : ['100_8', '100_9', '100_10', '100_11', '100_12', '100_13', '100_14', '100_15', '100_16', '100_17', '100_18', '100_19', '100_20'], + 'lightbulb_75_lying' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11', '75_18', '75_19', '75_20'], + 'lightbulb_50_lying' : ['50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11', '50_12', '50_20', '50_21'], + 'lightbulb_25_lying' : ['25_9', '25_10', '25_11', '25_12', '25_13', '25_14', '25_15', '25_16', '25_17', '25_18', '25_19', '25_20', '25_21'], + 'lightbulb_0_lying' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10', '0_11', '0_12'], + + 'lighter_100_lying' : ['100_13', '100_14', '100_15', '100_16', '100_17', '100_18', '100_19', '100_20', '100_21'], + 'lighter_75_lying' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17', '75_18', '75_19', '75_20', '75_21'], + 'lighter_50_lying' : ['50_1', '50_2', '50_3', '50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11'], + 'lighter_25_lying' : ['25_12', '25_13', '25_14', '25_15', '25_16', '25_17', '25_18', '25_19', '25_20', '25_21'], + 'lighter_0_lying' : ['0_13', '0_14', '0_15', '0_16', '0_17', '0_18', '0_19'], + + 'lighter_100_standing' : ['100_1', '100_2', '100_3', '100_4', '100_5', '100_6', '100_7', '100_8', '100_9', '100_10', '100_11', '100_12'], + 'lighter_75_standing' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11'], + 'lighter_50_standing' : ['50_12', '50_13', '50_14', '50_15', '50_16', '50_17', '50_18', '50_19', '50_20', '50_21'], + 'lighter_25_standing' : ['25_1', '25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8', '25_9', '25_10', '25_11'], + 'lighter_0_standing' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10', '0_11', '0_12'], + + 'magnifying_glass_100_standing' : ['100_12', '100_13', '100_14', '100_15', '100_16', '100_17'], + 'magnifying_glass_75_standing' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17', '75_18', '75_19', '75_20'], + 'magnifying_glass_50_standing' : ['50_14', '50_15', '50_16', '50_17', '50_18', '50_19'], + 'magnifying_glass_25_standing' : ['25_13', '25_14', '25_15', '25_16', '25_17'], + 'magnifying_glass_0_standing' : ['0_3', '0_4', '0_5', '0_6', '0_8', '0_15'], + + 'magnifying_glass_100_lying' : ['100_1', '100_2', '100_3', '100_4', '100_5', '100_6', '100_7', '100_8', '100_9', '100_10', '100_11', '100_18', '100_19', '100_20', '100_21'], + 'magnifying_glass_75_lying' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11'], + 'magnifying_glass_50_lying' : ['50_1', '50_2', '50_3', '50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11', '50_12', '50_13', '50_20', '50_21'], + 'magnifying_glass_25_lying' : ['25_1', '25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8', '25_9', '25_10', '25_11', '25_12', '25_18', '25_19', '25_20', '25_21'], + 'magnifying_glass_0_lying' : ['0_10', '0_11', '0_12', '0_13', '0_14', '0_1', '0_2', '0_7', '0_16', '0_17', '0_18', '0_19'], + + 'spray_100_standing' : ['100_1', '100_2', '100_3', '100_4', '100_5', '100_6', '100_7', '100_8', '100_9', '100_10', '100_11'], + 'spray_75_standing' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11'], + 'spray_50_standing' : ['50_1', '50_2', '50_3', '50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11'], + 'spray_25_standing' : ['25_1', '25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8', '25_9', '25_10', '25_11'], + 'spray_0_standing' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10'], + + 'spray_100_lying' : ['100_12', '100_13', '100_14', '100_15', '100_16', '100_17', '100_18', '100_19', '100_20'], + 'spray_75_lying' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17', '75_18', '75_19', '75_20', '75_21'], + 'spray_50_lying' : ['50_12', '50_13', '50_14', '50_15', '50_16', '50_17', '50_18', '50_19', '50_20'], + 'spray_25_lying' : ['25_12', '25_13', '25_14', '25_15', '25_16', '25_17', '25_18', '25_19', '25_20'], + 'spray_0_lying' : ['0_11', '0_12', '0_13', '0_14', '0_15', '0_16', '0_17', '0_18', '0_19'] +} + + +# JSON 파일로 저장하기 +# 'w'는 쓰기 모드를 의미합니다. +# indent=4 옵션은 JSON 파일을 예쁘게 정렬해줘서 가독성을 높입니다. +with open('data.json', 'w', encoding='utf-8') as f: + json.dump(data_to_save, f, ensure_ascii=False, indent=4) + +print("data.json 파일이 성공적으로 저장되었습니다.") + diff --git a/data/stand2.py b/data/stand2.py new file mode 100644 index 0000000000000000000000000000000000000000..7e47086d37fd2321d54347a53148c0c109b803db --- /dev/null +++ b/data/stand2.py @@ -0,0 +1,108 @@ +import json +import numpy as np + +# 데이터를 담은 딕셔너리 생성 + +bottle2 = { + '100_standing': ['100_1', '100_2', '100_3','100_4','100_5', '100_6', '100_7', '100_8','100_9','100_10','100_11','100_12'], + '100_lying' : ['100_13', '100_14', '100_15','100_16','100_17', '100_18', '100_19', '100_20'], + '75_staning' : ['75_2','75_3','75_4','75_5','75_6','75_7','75_8','75_9','75_10','75_11','75_12'], + '75_lying' : ['75_1','75_13','75_14','75_15','75_16','75_17','75_18','75_19','75_20'], + '50_standing' : ['50_1','50_2','50_3','50_4','50_5','50_6','50_7','50_8','50_9','50_10','50_11','50_12'], + '50_lying' : ['50_13','50_14','50_15','50_16','50_17','50_18','50_19','50_20'], + '25_standing' : ['25_1','25_2','25_3','25_4','25_5','25_6','25_7','25_8','25_9','25_10','25_11'], + '25_lying' : ['25_12','25_13','25_14','25_15','25_16','25_17','25_18','25_19','25_20','25_21','25_22','25_23'], + '0_standing' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10', '0_11', '0_12', '0_13'], + '0_lying' : ['0_14', '0_15', '0_16', '0_17', '0_18', '0_19'], +} + +glasses = { + + '100_standing' : ['100_3', '100_4', '100_5', '100_6', '100_7', '100_8', '100_9', '100_10', '100_11', '100_12', '100_13'], + '100_lying' : ['100_14', '100_15', '100_16', '100_17', '100_18', '100_19', '100_20', '100_21', '100_1', '100_2'], + '75_lying' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17', '75_18', '75_19', '75_20'], + '50_lying' : ['50_13', '50_14', '50_15', '50_16', '50_17', '50_18', '50_19', '50_20', '50_21'], + '25_lying' : ['25_13', '25_14', '25_15', '25_16', '25_17', '25_18', '25_19', '25_20', '25_21'], + + '0_lying' : ['0_11', '0_12', '0_13', '0_14', '0_15', '0_16', '0_17', '0_18', '0_19'], + '75_standing' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11'], + '50_standing' : ['50_1', '50_2', '50_3', '50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11', '50_12'], + '25_standing' : ['25_1', '25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8', '25_9', '25_10', '25_11', '25_12'], + '0_standing' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10', '0_11', '0_12', '0_13'], + +} + + +lightbulb = { + '100_standing' : ['100_2', '100_3', '100_4', '100_5', '100_6', '100_7'], + '75_standing' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17'], + '50_standing' : ['50_13', '50_14', '50_15', '50_16', '50_17', '50_18', '50_19', '50_1', '50_2', '50_3'], + '25_standing' : ['25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8'], + '0_standing' : ['0_13', '0_14', '0_15', '0_16'], + + '100_lying' : ['100_8', '100_9', '100_10', '100_11', '100_12', '100_13', '100_14', '100_15', '100_16', '100_17', '100_18', '100_19', '100_20'], + '75_lying' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11', '75_18', '75_19', '75_20'], + '50_lying' : ['50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11', '50_12', '50_20', '50_21'], + '25_lying' : ['25_9', '25_10', '25_11', '25_12', '25_13', '25_14', '25_15', '25_16', '25_17', '25_18', '25_19', '25_20', '25_21'], + '0_lying' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10', '0_11', '0_12'], +} + +lighter = { + '100_lying' : ['100_13', '100_14', '100_15', '100_16', '100_17', '100_18', '100_19', '100_20', '100_21'], + '75_lying' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17', '75_18', '75_19', '75_20', '75_21'], + '50_lying' : ['50_1', '50_2', '50_3', '50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11'], + '25_lying' : ['25_12', '25_13', '25_14', '25_15', '25_16', '25_17', '25_18', '25_19', '25_20', '25_21'], + '0_lying' : ['0_13', '0_14', '0_15', '0_16', '0_17', '0_18', '0_19'], + + '100_standing' : ['100_1', '100_2', '100_3', '100_4', '100_5', '100_6', '100_7', '100_8', '100_9', '100_10', '100_11', '100_12'], + '75_standing' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11'], + '50_standing' : ['50_12', '50_13', '50_14', '50_15', '50_16', '50_17', '50_18', '50_19', '50_20', '50_21'], + '25_standing' : ['25_1', '25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8', '25_9', '25_10', '25_11'], + '0_standing' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10', '0_11', '0_12'], +} + +magnifying_glass = { + '100_standing' : ['100_12', '100_13', '100_14', '100_15', '100_16', '100_17'], + '75_standing' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17', '75_18', '75_19', '75_20'], + '50_standing' : ['50_14', '50_15', '50_16', '50_17', '50_18', '50_19'], + '25_standing' : ['25_13', '25_14', '25_15', '25_16', '25_17'], + '0_standing' : ['0_3', '0_4', '0_5', '0_6', '0_8', '0_15'], + + '100_lying' : ['100_1', '100_2', '100_3', '100_4', '100_5', '100_6', '100_7', '100_8', '100_9', '100_10', '100_11', '100_18', '100_19', '100_20', '100_21'], + '75_lying' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11'], + '50_lying' : ['50_1', '50_2', '50_3', '50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11', '50_12', '50_13', '50_20', '50_21'], + '25_lying' : ['25_1', '25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8', '25_9', '25_10', '25_11', '25_12', '25_18', '25_19', '25_20', '25_21'], + '0_lying' : ['0_10', '0_11', '0_12', '0_13', '0_14', '0_1', '0_2', '0_7', '0_16', '0_17', '0_18', '0_19'], +} + +spray = { + '100_standing' : ['100_1', '100_2', '100_3', '100_4', '100_5', '100_6', '100_7', '100_8', '100_9', '100_10', '100_11'], + '75_standing' : ['75_1', '75_2', '75_3', '75_4', '75_5', '75_6', '75_7', '75_8', '75_9', '75_10', '75_11'], + '50_standing' : ['50_1', '50_2', '50_3', '50_4', '50_5', '50_6', '50_7', '50_8', '50_9', '50_10', '50_11'], + '25_standing' : ['25_1', '25_2', '25_3', '25_4', '25_5', '25_6', '25_7', '25_8', '25_9', '25_10', '25_11'], + '0_standing' : ['0_1', '0_2', '0_3', '0_4', '0_5', '0_6', '0_7', '0_8', '0_9', '0_10'], + + '100_lying' : ['100_12', '100_13', '100_14', '100_15', '100_16', '100_17', '100_18', '100_19', '100_20'], + '75_lying' : ['75_12', '75_13', '75_14', '75_15', '75_16', '75_17', '75_18', '75_19', '75_20', '75_21'], + '50_lying' : ['50_12', '50_13', '50_14', '50_15', '50_16', '50_17', '50_18', '50_19', '50_20'], + '25_lying' : ['25_12', '25_13', '25_14', '25_15', '25_16', '25_17', '25_18', '25_19', '25_20'], + '0_lying' : ['0_11', '0_12', '0_13', '0_14', '0_15', '0_16', '0_17', '0_18', '0_19'] +} + +all_data = { + "bottle2": bottle2, + "glasses": glasses, + "lightbulb": lightbulb, + "lighter": lighter, + "magnifying_glass": magnifying_glass, + "spray": spray +} + +# JSON 파일로 저장하기 +# 'w'는 쓰기 모드를 의미합니다. +# indent=4 옵션은 JSON 파일을 예쁘게 정렬해줘서 가독성을 높입니다. +with open('object_data.json', 'w', encoding='utf-8') as f: + json.dump(all_data, f, ensure_ascii=False, indent=4) + +print("data.json 파일이 성공적으로 저장되었습니다.") + diff --git a/data/string_gen.py b/data/string_gen.py new file mode 100644 index 0000000000000000000000000000000000000000..e9c89ce444b29f95a0d68011004f7dfc40f4c615 --- /dev/null +++ b/data/string_gen.py @@ -0,0 +1,25 @@ +import json + +def gen(type, fill_rate, start, end, status, plus): + fill_rate = fill_rate + plus = plus + type = type + start = start + end = end + status = status + + data =[] + + for i in range(start, end+1): + x = f'{fill_rate}_{i}' + data.append(x) + print(f"'{type}_{fill_rate}_{status}'", end=' : ') + + data.extend(plus) + print(data) + return data + + + +gen('spray', 0,11,19,'lying',[]) + diff --git a/data/target.ply b/data/target.ply new file mode 100644 index 0000000000000000000000000000000000000000..7cd5e7fd70a63d37b48db5540fcc447664cbfc9b --- /dev/null +++ b/data/target.ply @@ -0,0 +1,15456 @@ +ply +format ascii 1.0 +element vertex 15446 +property float x +property float y +property float z +property float nx +property float ny +property float nz +end_header +-0.456652 -0.233053 0.185265 -0.894837 -0.001889 -0.446389 +-0.455458 -0.225504 0.177535 -0.866451 0.037343 -0.497864 +-0.454385 -0.218000 0.170529 -0.837604 0.103826 -0.536321 +-0.454091 -0.210632 0.168625 -0.797835 0.111688 -0.592440 +-0.453947 -0.203295 0.167673 -0.791463 0.130756 -0.597067 +-0.454015 -0.195980 0.168096 -0.792245 0.168694 -0.586421 +-0.454620 -0.188726 0.172079 -0.799092 0.193725 -0.569142 +-0.455972 -0.181532 0.180860 -0.826755 0.229182 -0.513761 +-0.444955 -0.283387 0.156678 -0.900210 -0.290012 -0.324831 +-0.442521 -0.275483 0.140674 -0.879706 -0.201920 -0.430517 +-0.441207 -0.267904 0.132029 -0.877204 -0.101535 -0.469259 +-0.440481 -0.260476 0.127261 -0.852723 -0.004834 -0.522341 +-0.440678 -0.253267 0.128537 -0.854606 0.078310 -0.513338 +-0.441222 -0.246126 0.132104 -0.847105 0.143446 -0.511700 +-0.442128 -0.239038 0.138082 -0.856059 0.176689 -0.485741 +-0.443685 -0.232048 0.148351 -0.827902 0.215367 -0.517876 +-0.444327 -0.224869 0.152537 -0.816362 0.207235 -0.539080 +-0.444720 -0.217637 0.155144 -0.808659 0.197667 -0.554075 +-0.444471 -0.210300 0.153512 -0.802412 0.199477 -0.562445 +-0.444350 -0.202985 0.152726 -0.777953 0.200247 -0.595559 +-0.444396 -0.195700 0.153021 -0.771447 0.210310 -0.600533 +-0.444501 -0.188416 0.153678 -0.742821 0.250437 -0.620885 +-0.445023 -0.181169 0.157155 -0.723257 0.269940 -0.635634 +-0.445899 -0.173945 0.162913 -0.708540 0.334868 -0.621155 +-0.447358 -0.166744 0.172472 -0.703002 0.404683 -0.584825 +-0.436204 -0.297579 0.147059 -0.813048 -0.391352 -0.431041 +-0.433673 -0.289599 0.130170 -0.774754 -0.342550 -0.531428 +-0.432282 -0.281982 0.120928 -0.745162 -0.262310 -0.613129 +-0.431444 -0.274531 0.115374 -0.735070 -0.189898 -0.650854 +-0.430892 -0.267171 0.111702 -0.728198 -0.108948 -0.676653 +-0.430658 -0.259894 0.110137 -0.720027 -0.020692 -0.693638 +-0.430680 -0.252677 0.110281 -0.737468 0.066927 -0.672058 +-0.431096 -0.245536 0.113047 -0.761896 0.136867 -0.633073 +-0.431527 -0.238395 0.115933 -0.782062 0.184383 -0.595300 +-0.432388 -0.231322 0.121669 -0.786204 0.219422 -0.577700 +-0.434315 -0.224408 0.134462 -0.792452 0.243420 -0.559255 +-0.435841 -0.217388 0.144626 -0.805153 0.231441 -0.546044 +-0.435955 -0.210118 0.145404 -0.799783 0.229420 -0.554720 +-0.436008 -0.202849 0.145714 -0.774592 0.238412 -0.585805 +-0.436038 -0.195564 0.145940 -0.763938 0.251272 -0.594358 +-0.436023 -0.188280 0.145850 -0.744601 0.278847 -0.606477 +-0.436348 -0.181033 0.148011 -0.736898 0.295983 -0.607762 +-0.436960 -0.173801 0.152046 -0.710457 0.343208 -0.614376 +-0.437829 -0.166570 0.157827 -0.682346 0.386229 -0.620670 +-0.438977 -0.159346 0.165520 -0.657827 0.457437 -0.598343 +-0.441879 -0.152190 0.184811 -0.681013 0.562746 -0.468548 +-0.428867 -0.312133 0.146666 -0.765923 -0.465699 -0.443267 +-0.426532 -0.304145 0.130963 -0.703283 -0.433301 -0.563599 +-0.425005 -0.296453 0.120686 -0.678389 -0.384100 -0.626303 +-0.423932 -0.288919 0.113477 -0.658647 -0.304188 -0.688225 +-0.423146 -0.281483 0.108195 -0.617716 -0.255902 -0.743600 +-0.422602 -0.274123 0.104530 -0.608121 -0.186479 -0.771631 +-0.422308 -0.266838 0.102543 -0.614066 -0.122607 -0.779673 +-0.422141 -0.259592 0.101387 -0.629229 -0.056110 -0.775192 +-0.422134 -0.252383 0.101371 -0.655636 0.007638 -0.755039 +-0.422451 -0.245242 0.103488 -0.697926 0.073108 -0.712428 +-0.422950 -0.238131 0.106827 -0.724641 0.129589 -0.676833 +-0.423653 -0.231043 0.111588 -0.767329 0.194131 -0.611163 +-0.424733 -0.224008 0.118842 -0.775147 0.230752 -0.588134 +-0.426411 -0.217040 0.130170 -0.771093 0.257986 -0.582116 +-0.427711 -0.209975 0.138882 -0.781320 0.250587 -0.571616 +-0.427899 -0.202736 0.140198 -0.763179 0.267056 -0.588421 +-0.428005 -0.195474 0.140908 -0.753591 0.277400 -0.595944 +-0.428058 -0.188204 0.141248 -0.753867 0.289327 -0.589893 +-0.428239 -0.180950 0.142487 -0.735235 0.323025 -0.595890 +-0.428527 -0.173696 0.144414 -0.725794 0.353750 -0.589987 +-0.429176 -0.166464 0.148759 -0.686312 0.404706 -0.604309 +-0.430098 -0.159240 0.154993 -0.670261 0.463633 -0.579478 +-0.431202 -0.152001 0.162414 -0.641472 0.503145 -0.579102 +-0.433597 -0.144792 0.178555 -0.620583 0.590501 -0.515931 +-0.422753 -0.327102 0.154653 -0.753047 -0.526392 -0.394756 +-0.419920 -0.318873 0.135376 -0.681853 -0.493983 -0.539497 +-0.418174 -0.311060 0.123490 -0.645301 -0.457669 -0.611658 +-0.417025 -0.303465 0.115623 -0.584364 -0.422185 -0.693022 +-0.416088 -0.295961 0.109238 -0.552665 -0.368532 -0.747493 +-0.415378 -0.288541 0.104402 -0.556659 -0.312216 -0.769839 +-0.414819 -0.281181 0.100631 -0.529457 -0.244338 -0.812388 +-0.414426 -0.273873 0.097948 -0.541613 -0.185787 -0.819841 +-0.414169 -0.266612 0.096165 -0.541195 -0.126861 -0.831273 +-0.414056 -0.259387 0.095417 -0.556059 -0.089118 -0.826351 +-0.414078 -0.252201 0.095568 -0.573931 -0.040246 -0.817914 +-0.414366 -0.245060 0.097548 -0.627943 0.009446 -0.778202 +-0.414766 -0.237942 0.100238 -0.669149 0.065385 -0.740246 +-0.415461 -0.230869 0.104999 -0.715438 0.132394 -0.686018 +-0.416149 -0.223773 0.109654 -0.760339 0.177881 -0.624694 +-0.417207 -0.216723 0.116870 -0.784559 0.216993 -0.580845 +-0.418695 -0.209718 0.127034 -0.788928 0.240280 -0.565560 +-0.419610 -0.202592 0.133230 -0.787494 0.256260 -0.560520 +-0.419995 -0.195376 0.135867 -0.777202 0.272072 -0.567392 +-0.420282 -0.188144 0.137840 -0.763304 0.303601 -0.570257 +-0.420524 -0.180905 0.139502 -0.739067 0.341727 -0.580519 +-0.420811 -0.173658 0.141421 -0.726980 0.370714 -0.577989 +-0.421144 -0.166404 0.143719 -0.699920 0.417023 -0.579831 +-0.421809 -0.159172 0.148253 -0.663446 0.473500 -0.579343 +-0.422685 -0.151933 0.154230 -0.637512 0.528908 -0.560209 +-0.424091 -0.144701 0.163781 -0.582443 0.560770 -0.588470 +-0.427786 -0.137507 0.188960 -0.560623 0.680807 -0.471385 +-0.417426 -0.342419 0.168248 -0.727907 -0.580229 -0.365357 +-0.413678 -0.333767 0.142411 -0.645329 -0.555178 -0.524716 +-0.411887 -0.325878 0.130064 -0.595844 -0.518870 -0.612980 +-0.410482 -0.318155 0.120407 -0.537633 -0.492130 -0.684660 +-0.409446 -0.310583 0.113266 -0.501786 -0.451220 -0.737977 +-0.408607 -0.303102 0.107462 -0.471891 -0.410775 -0.780117 +-0.407912 -0.295682 0.102656 -0.443458 -0.359121 -0.821205 +-0.407345 -0.288307 0.098757 -0.433187 -0.305205 -0.848056 +-0.406900 -0.280984 0.095666 -0.436532 -0.257753 -0.861976 +-0.406567 -0.273707 0.093384 -0.448420 -0.200599 -0.871022 +-0.406348 -0.266460 0.091911 -0.452771 -0.159585 -0.877229 +-0.406250 -0.259244 0.091208 -0.500316 -0.109592 -0.858879 +-0.406257 -0.252058 0.091238 -0.512888 -0.092168 -0.853494 +-0.406537 -0.244932 0.093203 -0.554731 -0.044242 -0.830853 +-0.406847 -0.237798 0.095334 -0.612694 0.000206 -0.790320 +-0.407323 -0.230695 0.098629 -0.653513 0.048788 -0.755341 +-0.407565 -0.223531 0.100245 -0.699736 0.101082 -0.707214 +-0.407784 -0.216368 0.101795 -0.745977 0.143728 -0.650277 +-0.407784 -0.209159 0.101795 -0.763111 0.173930 -0.622422 +-0.408214 -0.202010 0.104780 -0.783325 0.202887 -0.587571 +-0.408675 -0.194862 0.107953 -0.794114 0.243687 -0.556777 +-0.409257 -0.187706 0.111921 -0.793818 0.276087 -0.541876 +-0.410043 -0.180565 0.117361 -0.785463 0.321026 -0.529140 +-0.412612 -0.173567 0.135067 -0.746064 0.389671 -0.539949 +-0.413406 -0.166373 0.140553 -0.714875 0.434239 -0.548079 +-0.413995 -0.159134 0.144595 -0.668606 0.514098 -0.537279 +-0.414811 -0.151902 0.150233 -0.636535 0.547223 -0.543480 +-0.415915 -0.144663 0.157842 -0.610930 0.577812 -0.541200 +-0.417638 -0.137416 0.169736 -0.569766 0.625717 -0.532771 +-0.413043 -0.358228 0.188771 -0.741858 -0.610228 -0.277973 +-0.408388 -0.349084 0.156285 -0.666150 -0.592919 -0.452428 +-0.405804 -0.340825 0.138263 -0.590699 -0.572110 -0.569003 +-0.404232 -0.332989 0.127276 -0.529602 -0.536620 -0.656933 +-0.403099 -0.325341 0.119394 -0.502094 -0.505024 -0.702034 +-0.402154 -0.317792 0.112774 -0.452094 -0.465343 -0.760964 +-0.401338 -0.310304 0.107092 -0.419989 -0.432303 -0.797949 +-0.400620 -0.302861 0.102067 -0.380197 -0.380441 -0.843039 +-0.400016 -0.295470 0.097880 -0.370879 -0.346160 -0.861755 +-0.399562 -0.288140 0.094722 -0.356989 -0.300235 -0.884544 +-0.399192 -0.280848 0.092137 -0.351784 -0.259037 -0.899526 +-0.398920 -0.273586 0.090233 -0.362244 -0.227485 -0.903897 +-0.398731 -0.266347 0.088888 -0.395165 -0.187346 -0.899303 +-0.398618 -0.259138 0.088133 -0.414797 -0.160871 -0.895580 +-0.398610 -0.251952 0.088057 -0.455939 -0.124093 -0.881318 +-0.398739 -0.244796 0.088971 -0.485648 -0.098862 -0.868546 +-0.398776 -0.237624 0.089243 -0.523883 -0.060252 -0.849656 +-0.398776 -0.230438 0.089220 -0.577229 -0.016417 -0.816417 +-0.398618 -0.223222 0.088125 -0.597485 0.001903 -0.801878 +-0.398504 -0.216020 0.087324 -0.631581 0.044946 -0.774006 +-0.398489 -0.208834 0.087195 -0.660636 0.078224 -0.746619 +-0.398595 -0.201670 0.087959 -0.678803 0.118092 -0.724763 +-0.398822 -0.194514 0.089523 -0.708287 0.166963 -0.685896 +-0.399154 -0.187373 0.091828 -0.734477 0.232806 -0.637452 +-0.399698 -0.180240 0.095674 -0.751087 0.303999 -0.586049 +-0.400605 -0.173129 0.102007 -0.746216 0.384900 -0.543151 +-0.402426 -0.166071 0.114686 -0.728877 0.464045 -0.503389 +-0.405796 -0.159074 0.138195 -0.675857 0.537726 -0.504052 +-0.407111 -0.151880 0.147399 -0.640889 0.570925 -0.513133 +-0.407920 -0.144625 0.152998 -0.586560 0.598578 -0.545575 +-0.409220 -0.137379 0.162089 -0.565484 0.651296 -0.506006 +-0.412628 -0.130139 0.185885 -0.504677 0.753714 -0.420970 +-0.404542 -0.365112 0.180670 -0.708065 -0.627930 -0.323029 +-0.400257 -0.356059 0.150444 -0.610978 -0.608110 -0.506861 +-0.398293 -0.348004 0.136540 -0.554962 -0.582711 -0.593688 +-0.396933 -0.340220 0.126966 -0.498895 -0.544212 -0.674491 +-0.395920 -0.332603 0.119795 -0.448732 -0.515791 -0.729794 +-0.394990 -0.325039 0.113251 -0.420417 -0.489310 -0.764085 +-0.394174 -0.317536 0.107462 -0.352445 -0.446099 -0.822665 +-0.393532 -0.310107 0.102906 -0.336661 -0.414941 -0.845272 +-0.392928 -0.302709 0.098659 -0.309441 -0.376730 -0.873110 +-0.392414 -0.295349 0.095024 -0.295845 -0.344346 -0.891011 +-0.392021 -0.288042 0.092281 -0.287494 -0.302893 -0.908627 +-0.391703 -0.280765 0.090006 -0.292512 -0.271972 -0.916770 +-0.391492 -0.273518 0.088518 -0.306935 -0.244468 -0.919797 +-0.391303 -0.266287 0.087195 -0.323710 -0.220544 -0.920093 +-0.391167 -0.259078 0.086228 -0.359145 -0.187700 -0.914212 +-0.391076 -0.251876 0.085609 -0.392293 -0.168704 -0.904237 +-0.390925 -0.244660 0.084498 -0.427983 -0.137562 -0.893256 +-0.390706 -0.237443 0.082986 -0.458108 -0.120302 -0.880718 +-0.390472 -0.230219 0.081317 -0.486842 -0.090624 -0.868776 +-0.390343 -0.223025 0.080402 -0.511658 -0.051532 -0.857643 +-0.390184 -0.215831 0.079283 -0.535102 -0.015943 -0.844637 +-0.390207 -0.208668 0.079442 -0.566447 0.032520 -0.823456 +-0.390177 -0.201489 0.079208 -0.585877 0.086971 -0.805720 +-0.390396 -0.194355 0.080787 -0.595598 0.155757 -0.788037 +-0.390902 -0.187245 0.084354 -0.617330 0.230590 -0.752152 +-0.391182 -0.180096 0.086327 -0.606757 0.313070 -0.730639 +-0.391734 -0.172970 0.090226 -0.616664 0.390696 -0.683434 +-0.392542 -0.165852 0.095923 -0.641333 0.469944 -0.606502 +-0.393812 -0.158741 0.104923 -0.658012 0.557060 -0.506661 +-0.396094 -0.151661 0.121011 -0.628725 0.624589 -0.463241 +-0.399759 -0.144588 0.146915 -0.579938 0.663004 -0.473390 +-0.400560 -0.137333 0.152552 -0.545649 0.698930 -0.462347 +-0.402630 -0.130079 0.167205 -0.511121 0.740735 -0.435966 +-0.395890 -0.371898 0.171346 -0.654041 -0.654975 -0.378468 +-0.392746 -0.363253 0.148880 -0.587172 -0.616595 -0.524442 +-0.390978 -0.355250 0.136207 -0.525722 -0.597272 -0.605708 +-0.389769 -0.347505 0.127585 -0.475893 -0.567957 -0.671529 +-0.388809 -0.339888 0.120694 -0.409862 -0.529325 -0.742851 +-0.387933 -0.332331 0.114452 -0.371445 -0.501592 -0.781303 +-0.387177 -0.324828 0.109011 -0.330975 -0.457534 -0.825299 +-0.386482 -0.317369 0.104084 -0.299915 -0.430553 -0.851279 +-0.385930 -0.309979 0.100109 -0.263159 -0.393696 -0.880767 +-0.385416 -0.302611 0.096452 -0.229537 -0.368143 -0.900990 +-0.384978 -0.295274 0.093309 -0.215597 -0.337156 -0.916430 +-0.384683 -0.287997 0.091178 -0.214986 -0.316381 -0.923950 +-0.384411 -0.280735 0.089236 -0.217419 -0.289678 -0.932103 +-0.384207 -0.273496 0.087785 -0.233964 -0.262255 -0.936207 +-0.383943 -0.266241 0.085933 -0.260323 -0.244187 -0.934133 +-0.383731 -0.259010 0.084415 -0.281894 -0.235673 -0.930051 +-0.383512 -0.251786 0.082850 -0.314861 -0.213076 -0.924911 +-0.383164 -0.244531 0.080349 -0.344630 -0.195074 -0.918246 +-0.382855 -0.237300 0.078105 -0.372175 -0.171536 -0.912174 +-0.382620 -0.230091 0.076473 -0.401069 -0.145875 -0.904359 +-0.382363 -0.222882 0.074614 -0.437748 -0.094462 -0.894122 +-0.382220 -0.215695 0.073563 -0.462650 -0.050593 -0.885096 +-0.382069 -0.208509 0.072513 -0.472016 0.010174 -0.881531 +-0.382152 -0.201368 0.073110 -0.490745 0.072946 -0.868245 +-0.382242 -0.194219 0.073775 -0.504085 0.144860 -0.851418 +-0.382530 -0.187101 0.075785 -0.517315 0.230161 -0.824264 +-0.383021 -0.179990 0.079306 -0.515380 0.299765 -0.802823 +-0.383633 -0.172880 0.083674 -0.530240 0.404680 -0.745036 +-0.384336 -0.165761 0.088729 -0.539104 0.465901 -0.701643 +-0.385137 -0.158635 0.094450 -0.553839 0.573006 -0.604091 +-0.386452 -0.151517 0.103858 -0.572067 0.636210 -0.517664 +-0.389066 -0.144429 0.122553 -0.566132 0.694268 -0.444394 +-0.391620 -0.137273 0.140810 -0.516447 0.763276 -0.388191 +-0.393237 -0.130034 0.152356 -0.496209 0.759011 -0.421520 +-0.393963 -0.389036 0.210413 -0.693066 -0.671382 -0.262497 +-0.388001 -0.378971 0.167242 -0.620190 -0.668545 -0.410381 +-0.385424 -0.370530 0.148631 -0.548111 -0.632137 -0.547702 +-0.383867 -0.362580 0.137333 -0.488772 -0.609903 -0.623795 +-0.382688 -0.354827 0.128779 -0.420257 -0.582464 -0.695787 +-0.381759 -0.347203 0.122054 -0.381228 -0.534345 -0.754414 +-0.380928 -0.339639 0.116062 -0.351228 -0.510812 -0.784672 +-0.380225 -0.332150 0.110953 -0.311627 -0.479008 -0.820634 +-0.379530 -0.324677 0.105958 -0.262531 -0.442909 -0.857268 +-0.378933 -0.317256 0.101629 -0.213852 -0.412500 -0.885501 +-0.378457 -0.309888 0.098183 -0.186887 -0.383594 -0.904394 +-0.378033 -0.302551 0.095115 -0.175778 -0.354677 -0.918317 +-0.377739 -0.295259 0.092953 -0.163818 -0.333672 -0.928346 +-0.377444 -0.287982 0.090830 -0.156836 -0.313842 -0.936432 +-0.377187 -0.280720 0.088971 -0.162666 -0.302492 -0.939169 +-0.376915 -0.273465 0.087021 -0.175962 -0.290365 -0.940598 +-0.376590 -0.266196 0.084641 -0.197809 -0.275677 -0.940677 +-0.376265 -0.258942 0.082291 -0.216603 -0.266731 -0.939116 +-0.375918 -0.251687 0.079783 -0.240192 -0.255699 -0.936443 +-0.375517 -0.244425 0.076896 -0.268896 -0.236453 -0.933694 +-0.375177 -0.237194 0.074432 -0.303216 -0.206265 -0.930330 +-0.374905 -0.229977 0.072467 -0.317458 -0.177332 -0.931544 +-0.374663 -0.222776 0.070714 -0.332592 -0.137496 -0.932994 +-0.374505 -0.215597 0.069543 -0.366504 -0.076157 -0.927294 +-0.374421 -0.208433 0.068924 -0.376076 -0.017546 -0.926423 +-0.374414 -0.201285 0.068870 -0.388146 0.069230 -0.918994 +-0.374474 -0.194144 0.069362 -0.387704 0.146155 -0.910123 +-0.374625 -0.187010 0.070412 -0.393848 0.229042 -0.890181 +-0.375003 -0.179900 0.073163 -0.399702 0.302503 -0.865292 +-0.375630 -0.172804 0.077720 -0.421082 0.391438 -0.818209 +-0.376454 -0.165708 0.083674 -0.433276 0.487268 -0.758183 +-0.377157 -0.158582 0.088752 -0.425105 0.580979 -0.694081 +-0.378222 -0.151457 0.096452 -0.450242 0.657701 -0.603914 +-0.379756 -0.144331 0.107583 -0.458356 0.732211 -0.503762 +-0.383066 -0.137228 0.131522 -0.479949 0.783914 -0.393862 +-0.384645 -0.130011 0.142948 -0.449938 0.813367 -0.368768 +-0.388348 -0.122764 0.169797 -0.434992 0.810587 -0.392086 +-0.385802 -0.396064 0.204791 -0.672994 -0.690838 -0.264237 +-0.380656 -0.386278 0.167091 -0.590501 -0.689308 -0.419718 +-0.378389 -0.377928 0.150452 -0.485642 -0.651913 -0.582376 +-0.376870 -0.369971 0.139298 -0.449974 -0.624782 -0.638099 +-0.375691 -0.362187 0.130653 -0.410271 -0.589665 -0.695682 +-0.374701 -0.354525 0.123437 -0.353798 -0.541682 -0.762501 +-0.373915 -0.346961 0.117664 -0.316688 -0.511974 -0.798493 +-0.373212 -0.339457 0.112533 -0.270002 -0.486288 -0.831038 +-0.372585 -0.331991 0.107908 -0.211822 -0.445257 -0.869987 +-0.371981 -0.324556 0.103495 -0.191060 -0.421802 -0.886329 +-0.371497 -0.317173 0.099921 -0.156741 -0.389228 -0.907708 +-0.371074 -0.309820 0.096808 -0.131217 -0.365348 -0.921576 +-0.370741 -0.302521 0.094405 -0.112940 -0.345803 -0.931485 +-0.370447 -0.295228 0.092205 -0.090513 -0.325826 -0.941087 +-0.370175 -0.287959 0.090264 -0.094967 -0.320770 -0.942384 +-0.369910 -0.280697 0.088291 -0.094685 -0.309534 -0.946162 +-0.369608 -0.273428 0.086100 -0.102324 -0.306708 -0.946288 +-0.369268 -0.266158 0.083606 -0.121193 -0.304311 -0.944832 +-0.368860 -0.258881 0.080583 -0.150597 -0.295998 -0.943242 +-0.368421 -0.251604 0.077372 -0.168744 -0.289401 -0.942217 +-0.367953 -0.244335 0.073971 -0.181674 -0.271681 -0.945084 +-0.367575 -0.237096 0.071168 -0.219830 -0.241501 -0.945173 +-0.367258 -0.229879 0.068856 -0.239314 -0.204619 -0.949136 +-0.366971 -0.222678 0.066717 -0.238212 -0.158869 -0.958131 +-0.366842 -0.215506 0.065803 -0.250858 -0.086233 -0.964175 +-0.366850 -0.208365 0.065878 -0.258267 -0.018161 -0.965903 +-0.366865 -0.201224 0.065984 -0.267085 0.061314 -0.961720 +-0.366948 -0.194091 0.066559 -0.269071 0.142154 -0.952572 +-0.367084 -0.186958 0.067571 -0.292300 0.220416 -0.930579 +-0.367379 -0.179847 0.069755 -0.298012 0.305531 -0.904345 +-0.367870 -0.172744 0.073321 -0.293690 0.399871 -0.868245 +-0.368497 -0.165640 0.077924 -0.292042 0.484844 -0.824401 +-0.369245 -0.158530 0.083432 -0.298918 0.592503 -0.748056 +-0.370212 -0.151411 0.090543 -0.314955 0.667947 -0.674278 +-0.371739 -0.144293 0.101727 -0.324452 0.753667 -0.571591 +-0.373545 -0.137152 0.114973 -0.356440 0.815654 -0.455697 +-0.376386 -0.129988 0.135792 -0.376271 0.856271 -0.353865 +-0.378419 -0.122742 0.150663 -0.375155 0.868058 -0.325167 +-0.377928 -0.403205 0.201186 -0.615236 -0.730713 -0.295877 +-0.373673 -0.393759 0.169562 -0.552424 -0.717889 -0.423632 +-0.371474 -0.385401 0.153240 -0.463852 -0.676809 -0.571638 +-0.369955 -0.377406 0.141996 -0.422223 -0.637834 -0.644123 +-0.368754 -0.369593 0.133079 -0.391399 -0.601004 -0.696851 +-0.367734 -0.361885 0.125462 -0.327848 -0.563743 -0.758096 +-0.366963 -0.354314 0.119772 -0.284941 -0.523135 -0.803205 +-0.366275 -0.346795 0.114626 -0.243236 -0.495616 -0.833787 +-0.365610 -0.339306 0.109729 -0.191575 -0.451477 -0.871474 +-0.365059 -0.331870 0.105611 -0.157503 -0.422807 -0.892427 +-0.364583 -0.324488 0.102105 -0.119992 -0.388584 -0.913567 +-0.364152 -0.317120 0.098863 -0.092395 -0.365744 -0.926118 +-0.363789 -0.309798 0.096180 -0.061597 -0.345508 -0.936392 +-0.363487 -0.302498 0.093966 -0.043718 -0.333010 -0.941909 +-0.363207 -0.295213 0.091880 -0.029591 -0.324324 -0.945483 +-0.362935 -0.287944 0.089825 -0.024775 -0.319555 -0.947244 +-0.362626 -0.280667 0.087528 -0.026202 -0.318972 -0.947402 +-0.362316 -0.273397 0.085231 -0.039690 -0.322165 -0.945851 +-0.361968 -0.266128 0.082646 -0.052892 -0.327095 -0.943510 +-0.361537 -0.258843 0.079488 -0.070471 -0.327545 -0.942204 +-0.361031 -0.251551 0.075694 -0.091345 -0.320807 -0.942730 +-0.360570 -0.244289 0.072286 -0.112894 -0.299941 -0.947254 +-0.360215 -0.237050 0.069634 -0.130959 -0.266193 -0.954982 +-0.359860 -0.229834 0.067004 -0.144875 -0.223618 -0.963850 +-0.359558 -0.222625 0.064737 -0.165790 -0.163766 -0.972468 +-0.359376 -0.215453 0.063400 -0.161741 -0.102453 -0.981501 +-0.359308 -0.208297 0.062894 -0.174597 -0.028852 -0.984217 +-0.359331 -0.201164 0.063075 -0.189252 0.062604 -0.979931 +-0.359414 -0.194038 0.063717 -0.194799 0.131614 -0.971973 +-0.359580 -0.186912 0.064956 -0.202121 0.219531 -0.954439 +-0.359875 -0.179809 0.067133 -0.192925 0.311105 -0.930588 +-0.360283 -0.172698 0.070133 -0.213650 0.413606 -0.885033 +-0.360789 -0.165587 0.073896 -0.210702 0.483637 -0.849529 +-0.361515 -0.158484 0.079299 -0.198224 0.586537 -0.785291 +-0.362452 -0.151374 0.086259 -0.215553 0.674609 -0.706002 +-0.363736 -0.144255 0.095772 -0.242664 0.750019 -0.615293 +-0.365467 -0.137122 0.108649 -0.253345 0.815451 -0.520439 +-0.368165 -0.129966 0.128666 -0.279720 0.883411 -0.375953 +-0.370318 -0.122734 0.144671 -0.308543 0.894321 -0.324023 +-0.371165 -0.410905 0.205819 -0.557738 -0.772180 -0.304413 +-0.366925 -0.401376 0.173922 -0.524902 -0.743122 -0.415028 +-0.364613 -0.392905 0.156512 -0.435701 -0.706297 -0.557951 +-0.363102 -0.384887 0.145162 -0.395961 -0.658677 -0.639812 +-0.361855 -0.377021 0.135799 -0.369760 -0.624718 -0.687754 +-0.360820 -0.369291 0.127993 -0.316414 -0.581255 -0.749683 +-0.359996 -0.361674 0.121797 -0.259355 -0.532831 -0.805497 +-0.359316 -0.354140 0.116651 -0.218041 -0.502439 -0.836668 +-0.358673 -0.346644 0.111860 -0.173662 -0.463951 -0.868672 +-0.358129 -0.339200 0.107765 -0.138508 -0.426992 -0.893584 +-0.357646 -0.331795 0.104122 -0.085031 -0.388228 -0.917632 +-0.357215 -0.324427 0.100895 -0.058534 -0.369434 -0.927411 +-0.356875 -0.317097 0.098304 -0.023034 -0.341107 -0.939742 +-0.356542 -0.309775 0.095825 0.001524 -0.326877 -0.945066 +-0.356248 -0.302483 0.093588 0.019865 -0.318290 -0.947785 +-0.356021 -0.295221 0.091911 0.031754 -0.315522 -0.948387 +-0.355779 -0.287951 0.090052 0.036218 -0.319699 -0.946827 +-0.355454 -0.280667 0.087634 0.033598 -0.327338 -0.944310 +-0.355114 -0.273390 0.085087 0.024324 -0.335616 -0.941685 +-0.354744 -0.266113 0.082314 0.012402 -0.344386 -0.938746 +-0.354291 -0.258821 0.078868 -0.007565 -0.346353 -0.938074 +-0.353784 -0.251529 0.075060 -0.021363 -0.340149 -0.940129 +-0.353369 -0.244274 0.071969 -0.039548 -0.323124 -0.945530 +-0.352968 -0.237035 0.068954 -0.055931 -0.287806 -0.956054 +-0.352606 -0.229811 0.066181 -0.049196 -0.238507 -0.969894 +-0.352318 -0.222610 0.064027 -0.052806 -0.175319 -0.983094 +-0.352107 -0.215431 0.062455 -0.056295 -0.109336 -0.992409 +-0.352077 -0.208282 0.062221 -0.063844 -0.042261 -0.997065 +-0.352077 -0.201149 0.062206 -0.077632 0.049004 -0.995777 +-0.352099 -0.194008 0.062402 -0.085603 0.136999 -0.986866 +-0.352250 -0.186890 0.063536 -0.077901 0.213695 -0.973790 +-0.352515 -0.179779 0.065531 -0.075873 0.307060 -0.948661 +-0.352915 -0.172676 0.068530 -0.092127 0.400767 -0.911536 +-0.353429 -0.165572 0.072415 -0.095905 0.491067 -0.865826 +-0.354117 -0.158469 0.077576 -0.115114 0.588492 -0.800266 +-0.354925 -0.151351 0.083652 -0.101502 0.657094 -0.746944 +-0.356134 -0.144240 0.092734 -0.135771 0.751162 -0.646005 +-0.357706 -0.137099 0.104568 -0.154971 0.826499 -0.541187 +-0.359754 -0.129935 0.119961 -0.170736 0.886348 -0.430392 +-0.362686 -0.122726 0.142049 -0.214207 0.919227 -0.330358 +-0.366887 -0.115434 0.173612 -0.273689 0.914590 -0.297691 +-0.365180 -0.419043 0.216481 -0.551195 -0.790344 -0.267472 +-0.360427 -0.409144 0.180278 -0.500247 -0.771359 -0.393394 +-0.357940 -0.400530 0.161303 -0.435336 -0.734171 -0.521033 +-0.356316 -0.392414 0.148955 -0.382486 -0.683893 -0.621284 +-0.355046 -0.384510 0.139268 -0.336256 -0.645680 -0.685586 +-0.353981 -0.376734 0.131137 -0.300372 -0.603128 -0.738927 +-0.353112 -0.369079 0.124518 -0.234469 -0.546908 -0.803689 +-0.352409 -0.361515 0.119137 -0.201350 -0.510111 -0.836209 +-0.351782 -0.354011 0.114399 -0.153008 -0.473528 -0.867387 +-0.351185 -0.346530 0.109835 -0.109476 -0.432017 -0.895196 +-0.350747 -0.339132 0.106487 -0.064218 -0.393564 -0.917051 +-0.350339 -0.331757 0.103412 -0.025048 -0.367605 -0.929645 +-0.349983 -0.324412 0.100691 0.014836 -0.336265 -0.941650 +-0.349658 -0.317090 0.098183 0.039371 -0.319284 -0.946841 +-0.349356 -0.309782 0.095893 0.066708 -0.305702 -0.949787 +-0.349099 -0.302498 0.093913 0.089232 -0.299098 -0.950041 +-0.348888 -0.295236 0.092319 0.086962 -0.310176 -0.946693 +-0.348661 -0.287974 0.090573 0.089444 -0.321480 -0.942683 +-0.348389 -0.280705 0.088525 0.088278 -0.334279 -0.938331 +-0.348019 -0.273413 0.085692 0.079807 -0.348359 -0.933958 +-0.347603 -0.266120 0.082510 0.070645 -0.360276 -0.930167 +-0.347135 -0.258828 0.078959 0.061451 -0.363556 -0.929543 +-0.346674 -0.251544 0.075468 0.050195 -0.354274 -0.933793 +-0.346250 -0.244282 0.072218 0.033899 -0.331464 -0.942859 +-0.345850 -0.237043 0.069150 0.023791 -0.298084 -0.954243 +-0.345472 -0.229811 0.066286 0.019869 -0.250257 -0.967975 +-0.345223 -0.222617 0.064382 0.022253 -0.186155 -0.982268 +-0.345019 -0.215438 0.062833 0.007989 -0.113408 -0.993516 +-0.344958 -0.208290 0.062349 -0.000867 -0.043618 -0.999048 +-0.344868 -0.201134 0.061692 0.007141 0.042483 -0.999072 +-0.344875 -0.194000 0.061730 0.010409 0.133090 -0.991049 +-0.345019 -0.186882 0.062848 0.014024 0.210549 -0.977483 +-0.345306 -0.179771 0.065047 0.002573 0.310947 -0.950424 +-0.345676 -0.172668 0.067858 -0.015842 0.397469 -0.917479 +-0.346198 -0.165565 0.071833 -0.014268 0.481137 -0.876530 +-0.346832 -0.158462 0.076662 -0.038649 0.581835 -0.812388 +-0.347641 -0.151351 0.082805 -0.028050 0.664131 -0.747090 +-0.348782 -0.144233 0.091495 -0.045655 0.740530 -0.670471 +-0.350293 -0.137099 0.103049 -0.070345 0.829135 -0.554605 +-0.352182 -0.129928 0.117444 -0.086045 0.888995 -0.449761 +-0.355160 -0.122726 0.140144 -0.144876 0.928389 -0.342205 +-0.358016 -0.115442 0.161877 -0.184595 0.905974 -0.380966 +-0.362905 -0.429320 0.256116 -0.536726 -0.823714 -0.182812 +-0.354230 -0.417116 0.189149 -0.466744 -0.799466 -0.378159 +-0.351502 -0.408305 0.168074 -0.428833 -0.764997 -0.480502 +-0.349621 -0.400008 0.153512 -0.363089 -0.704885 -0.609347 +-0.348291 -0.392044 0.143273 -0.328354 -0.665826 -0.669970 +-0.347218 -0.384230 0.134938 -0.276530 -0.619181 -0.734947 +-0.346288 -0.376522 0.127774 -0.210477 -0.557451 -0.803086 +-0.345517 -0.368913 0.121805 -0.173793 -0.520326 -0.836096 +-0.344868 -0.361379 0.116787 -0.134209 -0.481195 -0.866279 +-0.344331 -0.353913 0.112654 -0.079490 -0.435139 -0.896847 +-0.343847 -0.346477 0.108905 -0.036286 -0.397440 -0.916910 +-0.343439 -0.339094 0.105807 0.008246 -0.360060 -0.932893 +-0.343099 -0.331749 0.103170 0.045425 -0.330730 -0.942632 +-0.342812 -0.324427 0.100926 0.069056 -0.311755 -0.947650 +-0.342517 -0.317112 0.098674 0.094134 -0.294268 -0.951076 +-0.342253 -0.309813 0.096641 0.118979 -0.283227 -0.951644 +-0.342057 -0.302551 0.095107 0.130339 -0.291205 -0.947740 +-0.341860 -0.295289 0.093558 0.138195 -0.303522 -0.942750 +-0.341633 -0.288027 0.091843 0.137182 -0.322015 -0.936743 +-0.341376 -0.280758 0.089863 0.141385 -0.337433 -0.930671 +-0.341006 -0.273458 0.086961 0.130431 -0.354689 -0.925842 +-0.340583 -0.266166 0.083712 0.125661 -0.365836 -0.922157 +-0.340122 -0.258866 0.080137 0.121962 -0.368491 -0.921596 +-0.339638 -0.251574 0.076450 0.117091 -0.361892 -0.924837 +-0.339223 -0.244312 0.073223 0.113155 -0.343064 -0.932472 +-0.338822 -0.237065 0.070110 0.111726 -0.299934 -0.947395 +-0.338429 -0.229834 0.067110 0.103308 -0.254366 -0.961574 +-0.338150 -0.222632 0.064896 0.100039 -0.190925 -0.976494 +-0.337968 -0.215453 0.063513 0.101146 -0.116217 -0.988060 +-0.337863 -0.208297 0.062697 0.102400 -0.044906 -0.993729 +-0.337795 -0.201149 0.062183 0.102244 0.042773 -0.993839 +-0.337764 -0.194000 0.061956 0.102952 0.142812 -0.984381 +-0.337916 -0.186882 0.063098 0.097350 0.202412 -0.974450 +-0.338195 -0.179779 0.065296 0.089787 0.305196 -0.948047 +-0.338618 -0.172676 0.068561 0.091236 0.398817 -0.912480 +-0.339177 -0.165580 0.072861 0.076815 0.486496 -0.870300 +-0.339805 -0.158469 0.077720 0.070893 0.583448 -0.809051 +-0.340530 -0.151351 0.083289 0.049544 0.661183 -0.748587 +-0.341656 -0.144233 0.092017 0.039948 0.753475 -0.656262 +-0.343099 -0.137099 0.103140 0.014108 0.827478 -0.561321 +-0.344973 -0.129928 0.117603 -0.017451 0.890115 -0.455403 +-0.347512 -0.122719 0.137250 -0.058574 0.924574 -0.376474 +-0.350520 -0.115442 0.160487 -0.133153 0.874319 -0.466729 +-0.348419 -0.425353 0.201254 -0.457073 -0.823804 -0.335309 +-0.345321 -0.416262 0.177005 -0.417116 -0.794325 -0.441658 +-0.343062 -0.407701 0.159285 -0.356616 -0.744289 -0.564676 +-0.341565 -0.399608 0.147573 -0.317562 -0.690588 -0.649801 +-0.340455 -0.391756 0.138913 -0.275988 -0.642894 -0.714505 +-0.339525 -0.384026 0.131628 -0.202496 -0.583773 -0.786259 +-0.338694 -0.376356 0.125092 -0.154810 -0.533914 -0.831246 +-0.338021 -0.368799 0.119863 -0.120394 -0.498980 -0.858210 +-0.337447 -0.361296 0.115367 -0.063243 -0.447847 -0.891871 +-0.336978 -0.353853 0.111656 -0.018942 -0.408219 -0.912687 +-0.336555 -0.346447 0.108354 0.025524 -0.364360 -0.930908 +-0.336230 -0.339094 0.105807 0.071652 -0.325823 -0.942712 +-0.335951 -0.331772 0.103661 0.099236 -0.305143 -0.947122 +-0.335686 -0.324457 0.101553 0.128881 -0.280319 -0.951215 +-0.335482 -0.317173 0.099959 0.156406 -0.267208 -0.950861 +-0.335293 -0.309903 0.098500 0.175365 -0.270267 -0.946680 +-0.335112 -0.302641 0.097087 0.184791 -0.280885 -0.941783 +-0.334893 -0.295364 0.095341 0.193862 -0.297003 -0.934990 +-0.334643 -0.288087 0.093422 0.195075 -0.317526 -0.927967 +-0.334379 -0.280818 0.091314 0.192767 -0.340266 -0.920359 +-0.333994 -0.273511 0.088314 0.187126 -0.360730 -0.913706 +-0.333570 -0.266211 0.084981 0.186461 -0.374353 -0.908346 +-0.333109 -0.258911 0.081377 0.182223 -0.375263 -0.908830 +-0.332618 -0.251612 0.077568 0.172474 -0.363482 -0.915496 +-0.332195 -0.244342 0.074228 0.166456 -0.343090 -0.924436 +-0.331832 -0.237103 0.071387 0.164211 -0.300417 -0.939566 +-0.331462 -0.229871 0.068478 0.180181 -0.252792 -0.950595 +-0.331175 -0.222662 0.066264 0.189210 -0.189294 -0.963518 +-0.330956 -0.215476 0.064518 0.191350 -0.119578 -0.974211 +-0.330812 -0.208312 0.063422 0.201854 -0.041930 -0.978518 +-0.330744 -0.201156 0.062848 0.200707 0.048542 -0.978448 +-0.330759 -0.194023 0.062992 0.196427 0.132837 -0.971479 +-0.330918 -0.186905 0.064246 0.199240 0.203385 -0.958613 +-0.331258 -0.179801 0.066921 0.196296 0.305258 -0.931818 +-0.331689 -0.172698 0.070269 0.176356 0.400790 -0.899036 +-0.332210 -0.165595 0.074342 0.178441 0.482026 -0.857794 +-0.332853 -0.158484 0.079367 0.155654 0.594175 -0.789131 +-0.333578 -0.151366 0.085034 0.163894 0.660281 -0.732917 +-0.334704 -0.144248 0.093853 0.120712 0.760333 -0.638218 +-0.335989 -0.137099 0.103910 0.105477 0.814199 -0.570924 +-0.337893 -0.129935 0.118835 0.061338 0.885414 -0.460737 +-0.340326 -0.122719 0.137885 -0.003622 0.910731 -0.412985 +-0.343122 -0.115442 0.159762 -0.123906 0.840115 -0.528067 +-0.355885 -0.040594 0.259713 -0.939092 -0.256822 -0.228360 +-0.353339 -0.033506 0.239733 -0.955422 -0.187595 -0.227983 +-0.351359 -0.026387 0.224280 -0.941253 -0.197528 -0.273908 +-0.350414 -0.019141 0.216874 -0.939689 -0.193916 -0.281746 +-0.350293 -0.011758 0.215937 -0.943654 -0.176377 -0.280016 +-0.350293 -0.004352 0.215907 -0.950594 -0.149154 -0.272259 +-0.350293 0.003053 0.215884 -0.952165 -0.136679 -0.273313 +-0.347815 0.009877 0.196479 -0.952983 -0.101208 -0.285624 +-0.346507 0.016927 0.186285 -0.939788 -0.068870 -0.334748 +-0.345933 0.024128 0.181789 -0.937334 -0.026935 -0.347390 +-0.345714 0.031413 0.180043 -0.932721 0.014902 -0.360291 +-0.345714 0.038758 0.180088 -0.926805 0.057413 -0.371128 +-0.345910 0.046156 0.181608 -0.912179 0.112028 -0.394182 +-0.346356 0.053644 0.185099 -0.911854 0.136309 -0.387224 +-0.347051 0.061224 0.190547 -0.911229 0.197500 -0.361461 +-0.348155 0.068962 0.199184 -0.906830 0.225604 -0.356036 +-0.349462 0.076805 0.209416 -0.904031 0.309046 -0.295329 +-0.343613 -0.434240 0.221635 -0.467355 -0.842055 -0.269299 +-0.339344 -0.424378 0.187796 -0.414662 -0.817781 -0.399112 +-0.336827 -0.415613 0.167786 -0.363658 -0.775170 -0.516589 +-0.335036 -0.407308 0.153580 -0.305703 -0.712702 -0.631350 +-0.333774 -0.399343 0.143553 -0.262443 -0.665549 -0.698691 +-0.332807 -0.391560 0.135928 -0.191360 -0.606259 -0.771901 +-0.331999 -0.383890 0.129497 -0.149974 -0.557207 -0.816718 +-0.331220 -0.376250 0.123323 -0.097295 -0.507778 -0.855976 +-0.330623 -0.368724 0.118586 -0.042390 -0.456320 -0.888805 +-0.330125 -0.361250 0.114641 0.004115 -0.412270 -0.911053 +-0.329701 -0.353837 0.111271 0.050876 -0.369116 -0.927990 +-0.329361 -0.346462 0.108543 0.100092 -0.325994 -0.940058 +-0.329097 -0.339132 0.106427 0.123355 -0.304239 -0.944575 +-0.328863 -0.331817 0.104568 0.163055 -0.268999 -0.949238 +-0.328651 -0.324525 0.102928 0.189418 -0.253394 -0.948637 +-0.328477 -0.317248 0.101508 0.211859 -0.249052 -0.945034 +-0.328319 -0.309986 0.100291 0.230864 -0.251353 -0.939960 +-0.328190 -0.302732 0.099256 0.244062 -0.264988 -0.932853 +-0.327994 -0.295463 0.097707 0.249498 -0.287111 -0.924834 +-0.327767 -0.288193 0.095893 0.250262 -0.313885 -0.915885 +-0.327503 -0.280909 0.093785 0.246849 -0.340028 -0.907440 +-0.327079 -0.273594 0.090445 0.242819 -0.363870 -0.899243 +-0.326618 -0.266272 0.086803 0.237747 -0.374646 -0.896168 +-0.326135 -0.258964 0.082964 0.234670 -0.377449 -0.895803 +-0.325674 -0.251672 0.079283 0.231132 -0.369942 -0.899845 +-0.325258 -0.244403 0.076012 0.234565 -0.341055 -0.910308 +-0.324880 -0.237148 0.073019 0.236927 -0.298973 -0.924381 +-0.324555 -0.229924 0.070390 0.241814 -0.246229 -0.938561 +-0.324306 -0.222723 0.068432 0.248915 -0.185221 -0.950649 +-0.324094 -0.215529 0.066740 0.262339 -0.112870 -0.958352 +-0.323936 -0.208358 0.065493 0.267187 -0.033365 -0.963067 +-0.323883 -0.201202 0.065077 0.273450 0.050913 -0.960538 +-0.323921 -0.194068 0.065349 0.273624 0.133311 -0.952554 +-0.324094 -0.186942 0.066755 0.270489 0.203196 -0.941035 +-0.324427 -0.179839 0.069400 0.270321 0.304683 -0.913288 +-0.324850 -0.172736 0.072747 0.263929 0.400853 -0.877302 +-0.325379 -0.165625 0.076934 0.249068 0.493308 -0.833434 +-0.326014 -0.158515 0.081966 0.252209 0.585263 -0.770622 +-0.326717 -0.151389 0.087573 0.225646 0.659306 -0.717217 +-0.327903 -0.144263 0.096951 0.187747 0.755165 -0.628074 +-0.329188 -0.137114 0.107145 0.160350 0.811222 -0.562323 +-0.330895 -0.129943 0.120739 0.120404 0.879110 -0.461160 +-0.333185 -0.122726 0.138913 0.012282 0.883532 -0.468210 +-0.335860 -0.115442 0.160139 -0.082771 0.792667 -0.604010 +-0.339208 -0.108082 0.186693 -0.329145 0.713610 -0.618405 +-0.349817 -0.070397 0.270874 -0.938206 -0.269661 -0.216915 +-0.346930 -0.063188 0.247977 -0.950897 -0.219717 -0.217990 +-0.344898 -0.055956 0.231889 -0.943571 -0.211007 -0.255245 +-0.342858 -0.048785 0.215665 -0.928261 -0.210123 -0.306887 +-0.341376 -0.041584 0.203922 -0.924609 -0.214175 -0.315003 +-0.340447 -0.034345 0.196539 -0.917533 -0.224038 -0.328544 +-0.339563 -0.027128 0.189512 -0.912327 -0.234269 -0.335823 +-0.338384 -0.019979 0.180187 -0.904232 -0.223981 -0.363590 +-0.337175 -0.012876 0.170552 -0.895541 -0.195986 -0.399496 +-0.336397 -0.005713 0.164386 -0.869532 -0.151683 -0.470006 +-0.335807 0.001474 0.159693 -0.852365 -0.113868 -0.510400 +-0.335520 0.008713 0.157464 -0.849779 -0.094598 -0.518581 +-0.335437 0.015990 0.156784 -0.855933 -0.053366 -0.514325 +-0.335324 0.023267 0.155862 -0.865130 -0.021584 -0.501083 +-0.335293 0.030559 0.155613 -0.865409 0.010578 -0.500954 +-0.335550 0.037934 0.157653 -0.867742 0.046119 -0.494871 +-0.335898 0.045340 0.160404 -0.868432 0.087622 -0.488005 +-0.336336 0.052791 0.163895 -0.875910 0.123278 -0.466459 +-0.336933 0.060302 0.168640 -0.882748 0.163255 -0.440573 +-0.337591 0.067858 0.173877 -0.881596 0.211633 -0.421900 +-0.338460 0.075498 0.180784 -0.881631 0.265423 -0.390228 +-0.339487 0.083229 0.188907 -0.878622 0.295043 -0.375463 +-0.340757 0.091080 0.199018 -0.886076 0.342123 -0.312763 +-0.343492 0.099551 0.220690 -0.885103 0.381348 -0.266771 +-0.333623 -0.432706 0.200968 -0.397804 -0.844723 -0.358042 +-0.330843 -0.423706 0.178547 -0.375881 -0.814343 -0.442220 +-0.328674 -0.415136 0.161122 -0.315100 -0.754916 -0.575165 +-0.327208 -0.407013 0.149311 -0.262004 -0.691781 -0.672899 +-0.326105 -0.399132 0.140454 -0.186702 -0.624550 -0.758340 +-0.325205 -0.391386 0.133192 -0.139257 -0.572308 -0.808128 +-0.324503 -0.383762 0.127563 -0.084915 -0.517111 -0.851696 +-0.323838 -0.376182 0.122175 -0.024556 -0.465615 -0.884647 +-0.323324 -0.368686 0.118072 0.021555 -0.423457 -0.905660 +-0.322908 -0.361258 0.114739 0.071297 -0.376888 -0.923511 +-0.322545 -0.353860 0.111800 0.120398 -0.326863 -0.937371 +-0.322319 -0.346538 0.109978 0.148656 -0.297192 -0.943175 +-0.322069 -0.339208 0.107969 0.187299 -0.264507 -0.946021 +-0.321858 -0.331908 0.106291 0.221589 -0.239310 -0.945320 +-0.321691 -0.324624 0.104938 0.242240 -0.228282 -0.942978 +-0.321555 -0.317362 0.103835 0.267486 -0.224752 -0.936983 +-0.321419 -0.310100 0.102747 0.285501 -0.230126 -0.930339 +-0.321276 -0.302838 0.101553 0.296289 -0.250754 -0.921594 +-0.321095 -0.295568 0.100117 0.300222 -0.279135 -0.912113 +-0.320868 -0.288291 0.098319 0.298154 -0.310990 -0.902435 +-0.320588 -0.280999 0.096044 0.293869 -0.337458 -0.894295 +-0.320188 -0.273685 0.092810 0.289128 -0.362202 -0.886123 +-0.319727 -0.266362 0.089138 0.286039 -0.374467 -0.882018 +-0.319228 -0.259032 0.085110 0.284820 -0.376223 -0.881665 +-0.318752 -0.251733 0.081286 0.284764 -0.367256 -0.885456 +-0.318351 -0.244463 0.078044 0.291276 -0.339383 -0.894415 +-0.318004 -0.237216 0.075248 0.299909 -0.295766 -0.906960 +-0.317694 -0.229985 0.072755 0.308227 -0.244272 -0.919417 +-0.317467 -0.222783 0.070918 0.321502 -0.176591 -0.930297 +-0.317301 -0.215597 0.069566 0.327715 -0.103172 -0.939126 +-0.317150 -0.208418 0.068372 0.337050 -0.031092 -0.940973 +-0.317097 -0.201262 0.067971 0.341342 0.051789 -0.938511 +-0.317135 -0.194121 0.068244 0.345804 0.134469 -0.928622 +-0.317301 -0.186995 0.069581 0.348167 0.198875 -0.916094 +-0.317634 -0.179885 0.072279 0.338637 0.305125 -0.890070 +-0.318042 -0.172774 0.075536 0.338514 0.405226 -0.849235 +-0.318563 -0.165663 0.079767 0.331827 0.482791 -0.810434 +-0.319213 -0.158545 0.084959 0.310747 0.588749 -0.746198 +-0.319953 -0.151411 0.090906 0.289701 0.651170 -0.701464 +-0.320996 -0.144278 0.099346 0.259832 0.740571 -0.619711 +-0.322273 -0.137129 0.109616 0.221587 0.798488 -0.559747 +-0.323943 -0.129951 0.123029 0.160370 0.864423 -0.476503 +-0.325991 -0.122726 0.139540 0.004361 0.849459 -0.527636 +-0.328553 -0.115442 0.160124 -0.115125 0.742562 -0.659809 +-0.330926 -0.108097 0.179227 -0.302478 0.686886 -0.660829 +-0.331984 -0.100722 0.187721 -0.506899 0.396519 -0.765393 +-0.334984 -0.093226 0.211894 -0.892197 0.011048 -0.451511 +-0.336185 -0.085760 0.221537 -0.935928 -0.024844 -0.351315 +-0.335286 -0.078415 0.214343 -0.923100 -0.048519 -0.381486 +-0.334152 -0.071107 0.205207 -0.903133 -0.096699 -0.418331 +-0.333283 -0.063808 0.198194 -0.885848 -0.130752 -0.445171 +-0.332611 -0.056516 0.192791 -0.882554 -0.218256 -0.416487 +-0.331946 -0.049231 0.187464 -0.881795 -0.235864 -0.408419 +-0.330737 -0.042052 0.177701 -0.851897 -0.294466 -0.433083 +-0.329467 -0.034911 0.167477 -0.822769 -0.295877 -0.485292 +-0.328545 -0.027748 0.160094 -0.808183 -0.274492 -0.521051 +-0.327767 -0.020584 0.153799 -0.795807 -0.245099 -0.553730 +-0.327170 -0.013405 0.148986 -0.783423 -0.202978 -0.587408 +-0.326762 -0.006204 0.145752 -0.800584 -0.166965 -0.575489 +-0.326520 0.001020 0.143764 -0.802244 -0.131725 -0.582283 +-0.326475 0.008290 0.143409 -0.813756 -0.114996 -0.569717 +-0.326482 0.015574 0.143500 -0.817011 -0.088242 -0.569830 +-0.326505 0.022859 0.143659 -0.838812 -0.046114 -0.542465 +-0.326535 0.030143 0.143931 -0.847307 -0.016861 -0.530836 +-0.326588 0.037443 0.144316 -0.851841 0.011633 -0.523671 +-0.326702 0.044758 0.145245 -0.856102 0.050914 -0.514293 +-0.326936 0.052118 0.147127 -0.862625 0.089179 -0.497921 +-0.327306 0.059524 0.150127 -0.867669 0.141626 -0.476543 +-0.327865 0.067012 0.154593 -0.868281 0.186719 -0.459590 +-0.328462 0.074531 0.159384 -0.867729 0.232688 -0.439207 +-0.329105 0.082080 0.164567 -0.864234 0.261762 -0.429629 +-0.329996 0.089750 0.171746 -0.863956 0.303945 -0.401493 +-0.331258 0.097586 0.181880 -0.864676 0.331736 -0.377210 +-0.333223 0.105762 0.197711 -0.871535 0.376300 -0.314365 +-0.338475 0.115420 0.239967 -0.874753 0.430565 -0.222308 +-0.328228 -0.441313 0.217116 -0.373199 -0.876351 -0.304518 +-0.324865 -0.431874 0.189693 -0.368080 -0.838591 -0.401600 +-0.322440 -0.423078 0.169865 -0.322541 -0.791569 -0.519024 +-0.320664 -0.414736 0.155424 -0.270756 -0.728738 -0.628993 +-0.319417 -0.406734 0.145192 -0.203057 -0.657323 -0.725737 +-0.318495 -0.398950 0.137696 -0.148863 -0.600605 -0.785566 +-0.317732 -0.391273 0.131447 -0.079653 -0.532749 -0.842516 +-0.317112 -0.383694 0.126429 -0.020031 -0.480852 -0.876573 +-0.316515 -0.376137 0.121533 0.038549 -0.424555 -0.904581 +-0.316100 -0.368694 0.118147 0.080443 -0.386949 -0.918586 +-0.315767 -0.361303 0.115442 0.129901 -0.339079 -0.931746 +-0.315450 -0.353928 0.112873 0.169176 -0.299307 -0.939039 +-0.315261 -0.346613 0.111301 0.210951 -0.260646 -0.942106 +-0.315117 -0.339329 0.110152 0.241631 -0.234172 -0.941689 +-0.314966 -0.332044 0.108875 0.271359 -0.211322 -0.938993 +-0.314807 -0.324760 0.107598 0.299542 -0.200268 -0.932828 +-0.314694 -0.317498 0.106699 0.320970 -0.200399 -0.925645 +-0.314588 -0.310243 0.105815 0.333660 -0.212597 -0.918408 +-0.314460 -0.302982 0.104757 0.338556 -0.241449 -0.909441 +-0.314256 -0.295697 0.103125 0.340136 -0.273928 -0.899595 +-0.314022 -0.288412 0.101213 0.337020 -0.305208 -0.890655 +-0.313727 -0.281105 0.098772 0.331813 -0.336521 -0.881280 +-0.313349 -0.273790 0.095681 0.326537 -0.359908 -0.873979 +-0.312896 -0.266460 0.091986 0.322695 -0.373527 -0.869681 +-0.312367 -0.259123 0.087671 0.322521 -0.375474 -0.868907 +-0.311875 -0.251808 0.083644 0.326571 -0.363179 -0.872613 +-0.311483 -0.244539 0.080447 0.335834 -0.331682 -0.881591 +-0.311188 -0.237300 0.078052 0.345175 -0.290564 -0.892428 +-0.310901 -0.230068 0.075724 0.359928 -0.232611 -0.903517 +-0.310682 -0.222859 0.073919 0.375469 -0.167779 -0.911523 +-0.310508 -0.215665 0.072513 0.386877 -0.090986 -0.917632 +-0.310387 -0.208486 0.071508 0.395548 -0.022883 -0.918160 +-0.310349 -0.201330 0.071213 0.400353 0.062676 -0.914215 +-0.310394 -0.194182 0.071583 0.406264 0.140562 -0.902880 +-0.310606 -0.187056 0.073337 0.412239 0.208310 -0.886942 +-0.310916 -0.179937 0.075823 0.409038 0.307861 -0.859017 +-0.311278 -0.172819 0.078830 0.399536 0.402092 -0.823828 +-0.311792 -0.165693 0.082971 0.390285 0.474235 -0.789163 +-0.312427 -0.158575 0.088208 0.366579 0.573484 -0.732622 +-0.313175 -0.151442 0.094299 0.342116 0.643065 -0.685145 +-0.314195 -0.144301 0.102596 0.312593 0.721733 -0.617566 +-0.315420 -0.137144 0.112624 0.262572 0.783958 -0.562553 +-0.317014 -0.129958 0.125606 0.140482 0.833124 -0.534948 +-0.318964 -0.122726 0.141489 0.010075 0.792665 -0.609574 +-0.321299 -0.115442 0.160555 -0.127596 0.719022 -0.683174 +-0.323082 -0.108104 0.175124 -0.300035 0.595001 -0.745622 +-0.323588 -0.100752 0.179273 -0.526468 0.434510 -0.730775 +-0.323951 -0.093392 0.182220 -0.637358 0.269885 -0.721759 +-0.324283 -0.086032 0.184910 -0.723676 0.118350 -0.679917 +-0.324117 -0.078694 0.183565 -0.790871 -0.008519 -0.611924 +-0.323890 -0.071364 0.181698 -0.833555 -0.125902 -0.537899 +-0.323543 -0.064049 0.178910 -0.826211 -0.218562 -0.519237 +-0.322878 -0.056788 0.173476 -0.825222 -0.264001 -0.499312 +-0.321873 -0.049594 0.165263 -0.803544 -0.308691 -0.508947 +-0.320830 -0.042423 0.156754 -0.794975 -0.311525 -0.520545 +-0.319999 -0.035251 0.149983 -0.780294 -0.285507 -0.556441 +-0.319372 -0.028073 0.144830 -0.770313 -0.252392 -0.585590 +-0.318835 -0.020894 0.140484 -0.758342 -0.224659 -0.611919 +-0.318419 -0.013700 0.137107 -0.755872 -0.201775 -0.622851 +-0.318193 -0.006483 0.135255 -0.759814 -0.181568 -0.624273 +-0.318117 0.000763 0.134621 -0.765583 -0.165199 -0.621765 +-0.318193 0.008048 0.135240 -0.774306 -0.138094 -0.617560 +-0.318283 0.015333 0.135973 -0.795918 -0.111489 -0.595050 +-0.318268 0.022594 0.135860 -0.810391 -0.077155 -0.580787 +-0.318253 0.029856 0.135716 -0.820524 -0.055292 -0.568931 +-0.318079 0.037073 0.134326 -0.830766 -0.013260 -0.556464 +-0.317815 0.044252 0.132142 -0.840154 0.027070 -0.541673 +-0.317603 0.051438 0.130397 -0.844674 0.056199 -0.532322 +-0.317838 0.058783 0.132354 -0.847549 0.103829 -0.520462 +-0.318306 0.066204 0.136177 -0.851981 0.164134 -0.497180 +-0.318948 0.073707 0.141376 -0.853807 0.203040 -0.479363 +-0.319538 0.081211 0.146190 -0.849717 0.256974 -0.460375 +-0.320157 0.088745 0.151275 -0.847437 0.293783 -0.442201 +-0.320966 0.096369 0.157850 -0.845741 0.329618 -0.419613 +-0.321911 0.104077 0.165565 -0.843382 0.351170 -0.406677 +-0.323324 0.112019 0.177081 -0.847639 0.379504 -0.370791 +-0.326354 0.120740 0.201836 -0.862042 0.409260 -0.298983 +-0.319152 -0.440262 0.203288 -0.337398 -0.874934 -0.347352 +-0.316530 -0.431270 0.181585 -0.334823 -0.826807 -0.451978 +-0.314286 -0.422587 0.163033 -0.283954 -0.767687 -0.574480 +-0.312828 -0.414419 0.150928 -0.215707 -0.685169 -0.695711 +-0.311785 -0.406537 0.142313 -0.152100 -0.620579 -0.769251 +-0.311014 -0.398829 0.135928 -0.080962 -0.543467 -0.835517 +-0.310304 -0.391182 0.130079 -0.021741 -0.479898 -0.877055 +-0.309790 -0.383656 0.125817 0.032201 -0.440729 -0.897063 +-0.309321 -0.376167 0.121956 0.086523 -0.391879 -0.915939 +-0.308989 -0.368754 0.119182 0.150765 -0.331295 -0.931404 +-0.308694 -0.361371 0.116711 0.182197 -0.298004 -0.937015 +-0.308430 -0.354019 0.114543 0.223822 -0.256988 -0.940139 +-0.308286 -0.346727 0.113364 0.258946 -0.226635 -0.938927 +-0.308173 -0.339450 0.112450 0.290338 -0.202007 -0.935359 +-0.308082 -0.332188 0.111664 0.324569 -0.180777 -0.928426 +-0.307954 -0.324911 0.110636 0.348347 -0.173547 -0.921160 +-0.307878 -0.317656 0.109956 0.360164 -0.182581 -0.914847 +-0.307787 -0.310402 0.109246 0.371596 -0.200872 -0.906403 +-0.307659 -0.303133 0.108157 0.374847 -0.231147 -0.897809 +-0.307478 -0.295848 0.106699 0.372042 -0.263527 -0.890022 +-0.307236 -0.288556 0.104666 0.366927 -0.299895 -0.880584 +-0.306896 -0.281226 0.101848 0.359342 -0.337006 -0.870230 +-0.306510 -0.273904 0.098644 0.349852 -0.359728 -0.864986 +-0.306064 -0.266566 0.094971 0.346208 -0.372314 -0.861117 +-0.305543 -0.259229 0.090679 0.346989 -0.372701 -0.860635 +-0.305059 -0.251906 0.086651 0.354592 -0.357961 -0.863787 +-0.304666 -0.244629 0.083387 0.366403 -0.322843 -0.872652 +-0.304364 -0.237383 0.080909 0.378326 -0.278689 -0.882724 +-0.304130 -0.230159 0.078966 0.394392 -0.222289 -0.891652 +-0.303941 -0.222950 0.077417 0.412402 -0.156788 -0.897409 +-0.303797 -0.215756 0.076223 0.427757 -0.082223 -0.900146 +-0.303707 -0.208577 0.075437 0.436965 -0.013368 -0.899379 +-0.303677 -0.201413 0.075218 0.443362 0.069462 -0.893647 +-0.303722 -0.194257 0.075611 0.449084 0.151757 -0.880508 +-0.303956 -0.187124 0.077500 0.457293 0.229605 -0.859165 +-0.304258 -0.179998 0.080009 0.455276 0.305419 -0.836327 +-0.304621 -0.172872 0.083039 0.446621 0.401373 -0.799644 +-0.305143 -0.165746 0.087354 0.433534 0.469497 -0.769169 +-0.305800 -0.158620 0.092795 0.407903 0.573108 -0.710748 +-0.306556 -0.151479 0.099029 0.387942 0.625327 -0.677102 +-0.307515 -0.144331 0.106979 0.345013 0.711807 -0.611798 +-0.308619 -0.137160 0.116092 0.279339 0.766882 -0.577807 +-0.310122 -0.129966 0.128537 0.134574 0.769887 -0.623830 +-0.312004 -0.122734 0.144112 -0.043225 0.749071 -0.661078 +-0.314067 -0.115442 0.161205 -0.185370 0.623752 -0.759323 +-0.315465 -0.108112 0.172781 -0.376722 0.472545 -0.796732 +-0.315737 -0.100767 0.175011 -0.508570 0.372002 -0.776512 +-0.315805 -0.093430 0.175615 -0.692789 0.168313 -0.701224 +-0.315744 -0.086100 0.175109 -0.750589 0.014257 -0.660616 +-0.315563 -0.078785 0.173605 -0.752641 -0.130769 -0.645314 +-0.315193 -0.071485 0.170537 -0.773993 -0.185961 -0.605271 +-0.314505 -0.064231 0.164832 -0.770771 -0.262791 -0.580390 +-0.313598 -0.057022 0.157305 -0.767523 -0.312893 -0.559470 +-0.312737 -0.049828 0.150217 -0.758851 -0.315251 -0.569878 +-0.312064 -0.042642 0.144610 -0.751180 -0.301785 -0.587073 +-0.311505 -0.035448 0.140016 -0.745555 -0.273256 -0.607848 +-0.310969 -0.028269 0.135573 -0.739921 -0.246619 -0.625856 +-0.310614 -0.021075 0.132626 -0.735106 -0.223532 -0.640042 +-0.310311 -0.013874 0.130117 -0.740975 -0.213390 -0.636727 +-0.310183 -0.006642 0.129067 -0.746501 -0.197663 -0.635347 +-0.310115 0.000590 0.128492 -0.752667 -0.181356 -0.632932 +-0.310160 0.007859 0.128877 -0.767756 -0.166878 -0.618629 +-0.310047 0.015083 0.127941 -0.781948 -0.143135 -0.606687 +-0.309563 0.022201 0.123928 -0.791829 -0.116067 -0.599613 +-0.308928 0.029259 0.118691 -0.792909 -0.080564 -0.603991 +-0.308452 0.036355 0.114747 -0.791511 -0.042862 -0.609650 +-0.308271 0.043526 0.113220 -0.800381 0.009537 -0.599416 +-0.308211 0.050728 0.112760 -0.787033 0.056695 -0.614300 +-0.308399 0.058020 0.114331 -0.789566 0.103947 -0.604798 +-0.308694 0.065357 0.116727 -0.790169 0.149152 -0.594463 +-0.309140 0.072755 0.120459 -0.792326 0.204432 -0.574828 +-0.309797 0.080251 0.125855 -0.802037 0.246604 -0.543988 +-0.310598 0.087831 0.132520 -0.804153 0.291536 -0.518020 +-0.311399 0.095425 0.139109 -0.808273 0.339472 -0.481096 +-0.312200 0.103042 0.145752 -0.803988 0.365963 -0.468694 +-0.313311 0.110818 0.154940 -0.816506 0.386373 -0.428992 +-0.314467 0.118654 0.164530 -0.817860 0.407014 -0.406749 +-0.315654 0.126535 0.174376 -0.818483 0.423708 -0.388017 +-0.318321 0.135180 0.196404 -0.838411 0.434327 -0.329283 +-0.314989 -0.449746 0.230348 -0.330727 -0.901253 -0.279932 +-0.310697 -0.439582 0.194302 -0.325775 -0.865606 -0.380259 +-0.308135 -0.430620 0.172812 -0.304782 -0.802911 -0.512291 +-0.306359 -0.422209 0.157850 -0.231776 -0.723195 -0.650591 +-0.305112 -0.414169 0.147429 -0.176321 -0.643253 -0.745075 +-0.304258 -0.406394 0.140220 -0.108220 -0.575792 -0.810403 +-0.303609 -0.398754 0.134772 -0.056407 -0.511189 -0.857616 +-0.303042 -0.391175 0.130034 0.024308 -0.440823 -0.897265 +-0.302581 -0.383678 0.126165 0.072757 -0.395294 -0.915669 +-0.302226 -0.376243 0.123157 0.136439 -0.338162 -0.931145 +-0.301908 -0.368837 0.120482 0.176558 -0.297692 -0.938193 +-0.301666 -0.361477 0.118472 0.227998 -0.256159 -0.939361 +-0.301462 -0.354147 0.116734 0.262940 -0.223282 -0.938620 +-0.301387 -0.346878 0.116107 0.303490 -0.191561 -0.933380 +-0.301281 -0.339601 0.115253 0.338645 -0.168384 -0.925725 +-0.301213 -0.332339 0.114641 0.368028 -0.151641 -0.917366 +-0.301138 -0.325077 0.114029 0.383916 -0.157071 -0.909911 +-0.301047 -0.317815 0.113281 0.392923 -0.169529 -0.903809 +-0.300986 -0.310561 0.112767 0.396495 -0.193332 -0.897449 +-0.300896 -0.303299 0.111974 0.394109 -0.222215 -0.891795 +-0.300707 -0.296007 0.110372 0.388050 -0.262038 -0.883602 +-0.300473 -0.288707 0.108415 0.378168 -0.300071 -0.875755 +-0.300117 -0.281370 0.105475 0.367147 -0.340172 -0.865728 +-0.299709 -0.274032 0.102007 0.359133 -0.362630 -0.859955 +-0.299264 -0.266687 0.098251 0.354631 -0.373942 -0.856974 +-0.298750 -0.259335 0.093943 0.355436 -0.371653 -0.857636 +-0.298289 -0.252020 0.090090 0.362354 -0.351285 -0.863307 +-0.297888 -0.244728 0.086757 0.374210 -0.316164 -0.871784 +-0.297578 -0.237473 0.084120 0.391147 -0.268197 -0.880383 +-0.297405 -0.230257 0.082639 0.408506 -0.209209 -0.888456 +-0.297238 -0.223048 0.081294 0.426453 -0.144338 -0.892919 +-0.297110 -0.215854 0.080175 0.446993 -0.068452 -0.891914 +-0.297019 -0.208668 0.079457 0.457265 0.000206 -0.889330 +-0.297004 -0.201496 0.079291 0.470093 0.080363 -0.878951 +-0.297057 -0.194333 0.079729 0.477586 0.160037 -0.863886 +-0.297314 -0.187199 0.081891 0.482252 0.239251 -0.842729 +-0.297624 -0.180066 0.084498 0.482651 0.308486 -0.819686 +-0.297986 -0.172932 0.087535 0.473401 0.399406 -0.785090 +-0.298515 -0.165799 0.091971 0.463866 0.466410 -0.753187 +-0.299173 -0.158666 0.097502 0.435660 0.561988 -0.703115 +-0.299921 -0.151517 0.103828 0.408678 0.626270 -0.663904 +-0.300828 -0.144361 0.111437 0.361909 0.686168 -0.631027 +-0.301863 -0.137175 0.120089 0.246700 0.727125 -0.640646 +-0.303321 -0.129973 0.132354 0.106579 0.730779 -0.674243 +-0.305105 -0.122734 0.147338 -0.056520 0.717133 -0.694641 +-0.307205 -0.115442 0.164998 -0.285690 0.550782 -0.784233 +-0.307840 -0.108112 0.170280 -0.380675 0.407685 -0.829988 +-0.307961 -0.100782 0.171301 -0.570554 0.181095 -0.801045 +-0.307946 -0.093460 0.171225 -0.649037 0.090847 -0.755313 +-0.307674 -0.086145 0.168897 -0.720990 -0.061252 -0.690233 +-0.307198 -0.078860 0.164915 -0.718034 -0.131267 -0.683518 +-0.306495 -0.071606 0.159013 -0.729747 -0.256097 -0.633943 +-0.305702 -0.064390 0.152356 -0.737013 -0.323223 -0.593581 +-0.304833 -0.057196 0.145064 -0.734710 -0.331656 -0.591781 +-0.304153 -0.050002 0.139366 -0.725830 -0.321493 -0.608122 +-0.303601 -0.042815 0.134726 -0.720565 -0.293241 -0.628328 +-0.303178 -0.035622 0.131167 -0.714749 -0.266689 -0.646537 +-0.302868 -0.028420 0.128560 -0.711433 -0.242372 -0.659636 +-0.302649 -0.021204 0.126739 -0.714877 -0.232174 -0.659581 +-0.302490 -0.013995 0.125356 -0.723012 -0.220449 -0.654719 +-0.302362 -0.006770 0.124276 -0.731612 -0.215847 -0.646648 +-0.302135 0.000423 0.122379 -0.741718 -0.206268 -0.638207 +-0.301666 0.007549 0.118464 -0.745345 -0.198080 -0.636572 +-0.300956 0.014592 0.112472 -0.754699 -0.165427 -0.634873 +-0.300427 0.021673 0.108067 -0.756247 -0.133707 -0.640479 +-0.299989 0.028761 0.104379 -0.750000 -0.082214 -0.656308 +-0.299747 0.035894 0.102324 -0.748057 -0.036690 -0.662620 +-0.299656 0.043073 0.101561 -0.734925 0.011298 -0.678054 +-0.299664 0.050282 0.101667 -0.726843 0.062635 -0.683942 +-0.299830 0.057551 0.103064 -0.716477 0.107218 -0.689322 +-0.300065 0.064843 0.104984 -0.717077 0.161717 -0.677973 +-0.300359 0.072166 0.107477 -0.713467 0.225200 -0.663513 +-0.300752 0.079541 0.110810 -0.710207 0.259145 -0.654561 +-0.301364 0.087014 0.115911 -0.726411 0.292561 -0.621881 +-0.302105 0.094563 0.122152 -0.747474 0.334170 -0.574120 +-0.302974 0.102188 0.129452 -0.761234 0.360502 -0.539037 +-0.303918 0.109873 0.137394 -0.771387 0.393523 -0.500102 +-0.304916 0.117611 0.145766 -0.778559 0.409684 -0.475400 +-0.306110 0.125462 0.155756 -0.790139 0.433238 -0.433572 +-0.307205 0.133314 0.164953 -0.790921 0.449334 -0.415382 +-0.308399 0.141241 0.174996 -0.792345 0.469650 -0.389383 +-0.311430 0.150172 0.200454 -0.805932 0.492343 -0.328743 +-0.305399 -0.448318 0.211947 -0.310111 -0.894511 -0.321997 +-0.302460 -0.439015 0.186874 -0.296640 -0.859119 -0.417036 +-0.300042 -0.430144 0.166290 -0.262025 -0.776309 -0.573313 +-0.298515 -0.421885 0.153300 -0.193297 -0.690054 -0.697468 +-0.297563 -0.414011 0.145147 -0.133342 -0.589878 -0.796407 +-0.296808 -0.406288 0.138732 -0.077010 -0.523622 -0.848463 +-0.296264 -0.398701 0.134061 -0.014139 -0.450415 -0.892707 +-0.295840 -0.391205 0.130465 0.036251 -0.408517 -0.912031 +-0.295455 -0.383739 0.127215 0.104151 -0.349013 -0.931312 +-0.295191 -0.376349 0.124933 0.150541 -0.303966 -0.940714 +-0.294949 -0.368973 0.122847 0.209660 -0.255076 -0.943917 +-0.294737 -0.361628 0.121071 0.255587 -0.218039 -0.941878 +-0.294578 -0.354314 0.119734 0.302298 -0.182279 -0.935623 +-0.294503 -0.347036 0.119069 0.342905 -0.153795 -0.926695 +-0.294458 -0.339782 0.118669 0.377434 -0.133748 -0.916327 +-0.294382 -0.332513 0.118049 0.395389 -0.132190 -0.908952 +-0.294314 -0.325251 0.117460 0.407021 -0.141551 -0.902384 +-0.294269 -0.317996 0.117082 0.415181 -0.160911 -0.895395 +-0.294201 -0.310735 0.116507 0.413335 -0.191502 -0.890214 +-0.294125 -0.303473 0.115827 0.402372 -0.226864 -0.886921 +-0.293966 -0.296188 0.114475 0.390639 -0.266105 -0.881243 +-0.293709 -0.288866 0.112344 0.377665 -0.305678 -0.874031 +-0.293316 -0.281513 0.108966 0.362954 -0.344873 -0.865637 +-0.292901 -0.274161 0.105452 0.351596 -0.367050 -0.861194 +-0.292463 -0.266808 0.101681 0.345232 -0.376741 -0.859582 +-0.291979 -0.259463 0.097563 0.346371 -0.371437 -0.861430 +-0.291533 -0.252141 0.093770 0.351639 -0.343762 -0.870734 +-0.291148 -0.244849 0.090490 0.364179 -0.307906 -0.878958 +-0.290845 -0.237579 0.087891 0.383312 -0.255076 -0.887698 +-0.290679 -0.230363 0.086493 0.396101 -0.191513 -0.898013 +-0.290543 -0.223154 0.085321 0.417709 -0.127866 -0.899539 +-0.290430 -0.215952 0.084339 0.438653 -0.055785 -0.896923 +-0.290377 -0.208766 0.083924 0.455430 0.024136 -0.889944 +-0.290392 -0.201587 0.084067 0.477244 0.091026 -0.874044 +-0.290528 -0.194439 0.085223 0.485796 0.182560 -0.854795 +-0.290793 -0.187298 0.087422 0.488443 0.256311 -0.834103 +-0.291072 -0.180149 0.089863 0.491293 0.321176 -0.809616 +-0.291367 -0.173000 0.092341 0.479319 0.407140 -0.777490 +-0.291888 -0.165860 0.096792 0.468157 0.479408 -0.742292 +-0.292523 -0.158711 0.102218 0.438963 0.565946 -0.697866 +-0.293248 -0.151555 0.108407 0.402582 0.632977 -0.661262 +-0.294133 -0.144391 0.115911 0.329182 0.647532 -0.687271 +-0.295160 -0.137197 0.124684 0.210313 0.673148 -0.708972 +-0.296543 -0.129988 0.136434 0.041372 0.646030 -0.762190 +-0.298054 -0.122734 0.149318 -0.149828 0.614488 -0.774568 +-0.299324 -0.115442 0.160170 -0.339151 0.466531 -0.816900 +-0.300019 -0.108120 0.166064 -0.437940 0.302224 -0.846681 +-0.300049 -0.100805 0.166336 -0.563267 0.100966 -0.820083 +-0.299800 -0.093498 0.164212 -0.625555 -0.029322 -0.779629 +-0.299316 -0.086213 0.160109 -0.676857 -0.153649 -0.719900 +-0.298508 -0.078966 0.153180 -0.694154 -0.236566 -0.679843 +-0.297639 -0.071750 0.145834 -0.708503 -0.315534 -0.631238 +-0.296770 -0.064563 0.138384 -0.704730 -0.351489 -0.616288 +-0.296165 -0.057362 0.133276 -0.703848 -0.334315 -0.626762 +-0.295644 -0.050176 0.128802 -0.699775 -0.308182 -0.644468 +-0.295342 -0.042967 0.126203 -0.696590 -0.282309 -0.659594 +-0.295123 -0.035758 0.124336 -0.696295 -0.264877 -0.667093 +-0.294919 -0.028541 0.122629 -0.696669 -0.252583 -0.671457 +-0.294745 -0.021332 0.121147 -0.699979 -0.243796 -0.671262 +-0.294495 -0.014146 0.118986 -0.707245 -0.242703 -0.664002 +-0.294125 -0.006997 0.115858 -0.711450 -0.241014 -0.660114 +-0.293536 0.000098 0.110817 -0.716546 -0.231630 -0.657959 +-0.292863 0.007149 0.105097 -0.718103 -0.212551 -0.662684 +-0.292379 0.014229 0.101001 -0.724398 -0.174555 -0.666917 +-0.291926 0.021310 0.097132 -0.713295 -0.125400 -0.689554 +-0.291548 0.028390 0.093898 -0.705962 -0.069837 -0.704798 +-0.291412 0.035539 0.092712 -0.689721 -0.012830 -0.723962 +-0.291442 0.042740 0.092999 -0.671517 0.039193 -0.739952 +-0.291533 0.049964 0.093770 -0.658292 0.086115 -0.747820 +-0.291798 0.057257 0.096037 -0.660117 0.128444 -0.740100 +-0.292024 0.064534 0.097948 -0.640114 0.180927 -0.746672 +-0.292221 0.071811 0.099603 -0.654413 0.210531 -0.726237 +-0.292447 0.079110 0.101583 -0.648626 0.250495 -0.718705 +-0.292795 0.086455 0.104538 -0.661968 0.279918 -0.695302 +-0.293301 0.093891 0.108868 -0.676435 0.315689 -0.665414 +-0.294072 0.101448 0.115412 -0.700260 0.347997 -0.623325 +-0.294903 0.109065 0.122470 -0.726449 0.381556 -0.571565 +-0.295924 0.116795 0.131160 -0.737484 0.414707 -0.533044 +-0.297080 0.124616 0.141036 -0.751330 0.434013 -0.497128 +-0.298122 0.132422 0.149945 -0.755972 0.457023 -0.468654 +-0.299211 0.140273 0.159194 -0.756647 0.479854 -0.444100 +-0.300246 0.148140 0.168021 -0.761554 0.501116 -0.410997 +-0.301954 0.156399 0.182552 -0.767458 0.522101 -0.372047 +-0.296906 -0.447577 0.202434 -0.287518 -0.890946 -0.351495 +-0.294042 -0.438328 0.177716 -0.264842 -0.832113 -0.487285 +-0.292047 -0.429706 0.160449 -0.222639 -0.719220 -0.658145 +-0.290808 -0.421628 0.149741 -0.159751 -0.618227 -0.769594 +-0.290075 -0.413890 0.143371 -0.100200 -0.534987 -0.838897 +-0.289508 -0.406273 0.138482 -0.057066 -0.486182 -0.871992 +-0.289055 -0.398739 0.134575 -0.001770 -0.413955 -0.910296 +-0.288677 -0.391258 0.131258 0.056273 -0.358452 -0.931851 +-0.288427 -0.383860 0.129104 0.111286 -0.304581 -0.945963 +-0.288193 -0.376485 0.127079 0.169796 -0.256520 -0.951508 +-0.288019 -0.369147 0.125621 0.219719 -0.211499 -0.952361 +-0.287845 -0.361810 0.124087 0.275142 -0.171821 -0.945925 +-0.287725 -0.354502 0.123021 0.332171 -0.132948 -0.933803 +-0.287664 -0.347225 0.122492 0.369540 -0.113694 -0.922233 +-0.287611 -0.339963 0.122092 0.393551 -0.109561 -0.912751 +-0.287581 -0.332702 0.121782 0.413476 -0.114280 -0.903315 +-0.287513 -0.325440 0.121245 0.419575 -0.133834 -0.897800 +-0.287468 -0.318178 0.120799 0.418823 -0.163214 -0.893280 +-0.287437 -0.310923 0.120550 0.409453 -0.196072 -0.891013 +-0.287362 -0.303654 0.119923 0.391675 -0.236292 -0.889245 +-0.287158 -0.296339 0.118132 0.373580 -0.279219 -0.884576 +-0.286916 -0.289017 0.116047 0.352982 -0.319114 -0.879529 +-0.286493 -0.281642 0.112389 0.334456 -0.355709 -0.872703 +-0.286062 -0.274282 0.108664 0.322196 -0.374585 -0.869411 +-0.285631 -0.266929 0.104908 0.315057 -0.379737 -0.869793 +-0.285170 -0.259576 0.100979 0.315447 -0.371402 -0.873243 +-0.284747 -0.252254 0.097276 0.325249 -0.339973 -0.882401 +-0.284385 -0.244954 0.094125 0.337839 -0.300364 -0.891990 +-0.284113 -0.237700 0.091820 0.352570 -0.241556 -0.904071 +-0.283924 -0.230461 0.090180 0.371763 -0.175472 -0.911593 +-0.283810 -0.223252 0.089152 0.393825 -0.106897 -0.912948 +-0.283727 -0.216050 0.088473 0.413215 -0.035398 -0.909945 +-0.283727 -0.208864 0.088495 0.433247 0.043541 -0.900223 +-0.283803 -0.201693 0.089138 0.442837 0.110722 -0.889739 +-0.283886 -0.194522 0.089840 0.459228 0.199195 -0.865697 +-0.284173 -0.187381 0.092311 0.459882 0.272720 -0.845064 +-0.284460 -0.180225 0.094820 0.461061 0.340243 -0.819547 +-0.284793 -0.173069 0.097654 0.459683 0.422335 -0.781233 +-0.285291 -0.165920 0.101991 0.444159 0.506112 -0.739306 +-0.285888 -0.158764 0.107160 0.419694 0.559173 -0.714971 +-0.286584 -0.151600 0.113167 0.372544 0.595035 -0.712140 +-0.287483 -0.144421 0.120951 0.285066 0.599599 -0.747809 +-0.288458 -0.137220 0.129361 0.152657 0.614776 -0.773787 +-0.289712 -0.129996 0.140212 0.015272 0.596437 -0.802514 +-0.290883 -0.122742 0.150339 -0.150438 0.568115 -0.809082 +-0.291639 -0.115442 0.156883 -0.364869 0.373205 -0.852988 +-0.291941 -0.108135 0.159512 -0.509170 0.174449 -0.842801 +-0.291707 -0.100835 0.157479 -0.581678 0.015659 -0.813268 +-0.291208 -0.093558 0.153202 -0.635300 -0.125732 -0.761962 +-0.290468 -0.086311 0.146772 -0.665031 -0.193747 -0.721246 +-0.289750 -0.079080 0.140538 -0.673696 -0.291250 -0.679196 +-0.288934 -0.071886 0.133495 -0.681545 -0.365458 -0.633985 +-0.288178 -0.064707 0.126958 -0.677912 -0.354399 -0.644078 +-0.287521 -0.057536 0.121306 -0.672877 -0.323851 -0.665100 +-0.287158 -0.050342 0.118124 -0.671255 -0.300303 -0.677668 +-0.286924 -0.043148 0.116099 -0.668078 -0.277012 -0.690606 +-0.286863 -0.035924 0.115593 -0.671300 -0.267836 -0.691101 +-0.286750 -0.028715 0.114603 -0.673757 -0.259097 -0.692041 +-0.286553 -0.021529 0.112888 -0.675865 -0.260364 -0.689505 +-0.286047 -0.014410 0.108513 -0.674791 -0.265807 -0.688479 +-0.285473 -0.007322 0.103548 -0.679605 -0.264636 -0.684182 +-0.284778 -0.000279 0.097570 -0.675334 -0.255784 -0.691736 +-0.284226 0.006778 0.092757 -0.673586 -0.220253 -0.705528 +-0.283878 0.013874 0.089757 -0.669879 -0.172888 -0.722060 +-0.283644 0.020992 0.087747 -0.660580 -0.111685 -0.742402 +-0.283440 0.028111 0.085971 -0.644744 -0.046144 -0.763005 +-0.283349 0.035267 0.085185 -0.619815 0.019105 -0.784515 +-0.283410 0.042461 0.085707 -0.613340 0.055066 -0.787897 +-0.283599 0.049708 0.087362 -0.592835 0.104931 -0.798459 +-0.283946 0.057015 0.090339 -0.589685 0.137934 -0.795767 +-0.284211 0.064299 0.092629 -0.586146 0.170752 -0.792008 +-0.284437 0.071584 0.094639 -0.589959 0.215478 -0.778151 +-0.284589 0.078838 0.095938 -0.592015 0.243232 -0.768346 +-0.284815 0.086130 0.097858 -0.615983 0.272855 -0.738996 +-0.285133 0.093475 0.100646 -0.625841 0.283926 -0.726436 +-0.285662 0.100919 0.105187 -0.651123 0.316004 -0.690058 +-0.286327 0.108437 0.110923 -0.665950 0.352867 -0.657264 +-0.287188 0.116077 0.118389 -0.690908 0.389666 -0.608939 +-0.288178 0.123807 0.126936 -0.712905 0.424715 -0.558018 +-0.289236 0.131598 0.136087 -0.723255 0.452898 -0.521331 +-0.290279 0.139419 0.145139 -0.726867 0.487624 -0.483619 +-0.291291 0.147248 0.153882 -0.728521 0.511359 -0.455818 +-0.292425 0.155175 0.163668 -0.727260 0.535990 -0.428728 +-0.293981 0.163389 0.177187 -0.726433 0.562606 -0.394676 +-0.293755 -0.457907 0.239597 -0.241893 -0.941493 -0.234688 +-0.288631 -0.446972 0.194612 -0.274443 -0.886674 -0.372144 +-0.285949 -0.437821 0.171028 -0.247345 -0.812183 -0.528374 +-0.284249 -0.429388 0.156157 -0.204077 -0.692676 -0.691775 +-0.283319 -0.421499 0.147973 -0.146998 -0.589212 -0.794494 +-0.282737 -0.413852 0.142887 -0.091801 -0.511784 -0.854196 +-0.282238 -0.406273 0.138467 -0.043301 -0.428723 -0.902398 +-0.281876 -0.398784 0.135278 0.006774 -0.372959 -0.927823 +-0.281604 -0.391363 0.132936 0.057278 -0.312869 -0.948068 +-0.281362 -0.383973 0.130789 0.126224 -0.245023 -0.961266 +-0.281196 -0.376621 0.129301 0.169682 -0.210010 -0.962862 +-0.281067 -0.369298 0.128220 0.228880 -0.162810 -0.959743 +-0.280961 -0.361991 0.127268 0.285591 -0.112102 -0.951773 +-0.280833 -0.354676 0.126127 0.340570 -0.090935 -0.935811 +-0.280788 -0.347407 0.125726 0.372754 -0.081768 -0.924320 +-0.280773 -0.340152 0.125613 0.396321 -0.084539 -0.914212 +-0.280765 -0.332898 0.125508 0.407969 -0.103231 -0.907141 +-0.280727 -0.325636 0.125220 0.410381 -0.133486 -0.902091 +-0.280689 -0.318374 0.124895 0.405643 -0.168210 -0.898420 +-0.280667 -0.311112 0.124646 0.387362 -0.211356 -0.897373 +-0.280568 -0.303828 0.123800 0.366893 -0.253310 -0.895111 +-0.280334 -0.296498 0.121737 0.341297 -0.298214 -0.891395 +-0.280024 -0.289145 0.119039 0.317215 -0.336456 -0.886663 +-0.279616 -0.281763 0.115427 0.294324 -0.369820 -0.881253 +-0.279216 -0.274402 0.111951 0.281254 -0.384987 -0.879023 +-0.278785 -0.267042 0.108188 0.273501 -0.385332 -0.881315 +-0.278347 -0.259690 0.104334 0.273381 -0.375019 -0.885790 +-0.277954 -0.252367 0.100835 0.281736 -0.337541 -0.898159 +-0.277591 -0.245068 0.097639 0.295391 -0.290984 -0.909985 +-0.277319 -0.237798 0.095296 0.312078 -0.231496 -0.921421 +-0.277130 -0.230559 0.093603 0.331458 -0.170304 -0.927972 +-0.277009 -0.223335 0.092591 0.351614 -0.087795 -0.932019 +-0.276972 -0.216134 0.092213 0.370856 -0.024201 -0.928375 +-0.277017 -0.208955 0.092644 0.391943 0.066813 -0.917560 +-0.277100 -0.201776 0.093347 0.403501 0.134226 -0.905080 +-0.277251 -0.194612 0.094661 0.413493 0.218411 -0.883923 +-0.277531 -0.187456 0.097125 0.417023 0.298589 -0.858450 +-0.277833 -0.180300 0.099762 0.419031 0.358303 -0.834285 +-0.278158 -0.173137 0.102641 0.419435 0.440263 -0.793878 +-0.278649 -0.165980 0.106941 0.402501 0.511577 -0.759132 +-0.279231 -0.158809 0.112087 0.372403 0.545826 -0.750593 +-0.279881 -0.151638 0.117784 0.300951 0.560057 -0.771858 +-0.280712 -0.144444 0.125092 0.232230 0.570798 -0.787565 +-0.281687 -0.137243 0.133608 0.087107 0.524852 -0.846725 +-0.282851 -0.130011 0.143877 -0.074840 0.499307 -0.863187 +-0.283606 -0.122742 0.150475 -0.236265 0.402806 -0.884266 +-0.283841 -0.115449 0.152537 -0.430113 0.206199 -0.878911 +-0.283765 -0.108150 0.151895 -0.525961 -0.000727 -0.850509 +-0.283312 -0.100873 0.147928 -0.579130 -0.076965 -0.811594 +-0.282737 -0.093618 0.142887 -0.625870 -0.219542 -0.748390 +-0.282050 -0.086387 0.136827 -0.646699 -0.289581 -0.705636 +-0.281294 -0.079178 0.130177 -0.650113 -0.369966 -0.663685 +-0.280591 -0.071984 0.123996 -0.652517 -0.382370 -0.654229 +-0.279934 -0.064813 0.118246 -0.651029 -0.355239 -0.670795 +-0.279412 -0.057641 0.113666 -0.651733 -0.322129 -0.686642 +-0.279125 -0.050455 0.111104 -0.651223 -0.296535 -0.698553 +-0.278997 -0.043254 0.109994 -0.651145 -0.280821 -0.705089 +-0.278989 -0.036037 0.109918 -0.652576 -0.269491 -0.708180 +-0.278785 -0.028851 0.108165 -0.650522 -0.271817 -0.709181 +-0.278370 -0.021717 0.104492 -0.650524 -0.273962 -0.708353 +-0.277614 -0.014667 0.097866 -0.646545 -0.281296 -0.709121 +-0.276972 -0.007617 0.092221 -0.639242 -0.277723 -0.717105 +-0.276412 -0.000567 0.087294 -0.623817 -0.255903 -0.738489 +-0.276065 0.006522 0.084271 -0.619225 -0.216603 -0.754747 +-0.275853 0.013640 0.082435 -0.620329 -0.160590 -0.767726 +-0.275702 0.020773 0.081097 -0.608768 -0.086859 -0.788579 +-0.275619 0.027914 0.080372 -0.597576 -0.023895 -0.801456 +-0.275589 0.035078 0.080069 -0.587713 0.021941 -0.808772 +-0.275642 0.042264 0.080561 -0.576407 0.070685 -0.814100 +-0.275778 0.049481 0.081762 -0.571135 0.109901 -0.813466 +-0.276140 0.056788 0.084921 -0.574787 0.141103 -0.806046 +-0.276458 0.064088 0.087694 -0.572283 0.173176 -0.801562 +-0.276768 0.071395 0.090460 -0.577238 0.198175 -0.792163 +-0.276941 0.078649 0.091941 -0.588633 0.229264 -0.775209 +-0.277153 0.085934 0.093838 -0.596417 0.248810 -0.763138 +-0.277387 0.093234 0.095878 -0.607938 0.267326 -0.747629 +-0.277810 0.100624 0.099611 -0.630475 0.296558 -0.717325 +-0.278286 0.108052 0.103805 -0.653324 0.313659 -0.689047 +-0.278898 0.115563 0.109170 -0.675947 0.357246 -0.644570 +-0.279609 0.123143 0.115397 -0.690434 0.395667 -0.605598 +-0.280402 0.130790 0.122379 -0.703330 0.431583 -0.564856 +-0.281324 0.138520 0.130434 -0.708943 0.470784 -0.525131 +-0.282443 0.146394 0.140243 -0.710383 0.501142 -0.494179 +-0.283516 0.154276 0.149719 -0.706426 0.531858 -0.466999 +-0.284664 0.162233 0.159799 -0.702944 0.558238 -0.440726 +-0.286463 0.170613 0.175562 -0.692389 0.603948 -0.394771 +-0.278989 0.426109 0.109948 -0.921036 -0.182782 -0.343925 +-0.278128 0.432336 0.102407 -0.915958 -0.144340 -0.374415 +-0.284211 -0.456426 0.220909 -0.229332 -0.933740 -0.274840 +-0.280448 -0.446413 0.187343 -0.248999 -0.866718 -0.432203 +-0.277984 -0.437391 0.165391 -0.217291 -0.774909 -0.593548 +-0.276684 -0.429214 0.153762 -0.192973 -0.630442 -0.751867 +-0.275899 -0.421408 0.146779 -0.135847 -0.553854 -0.821457 +-0.275362 -0.413784 0.141973 -0.085925 -0.478839 -0.873688 +-0.274939 -0.406250 0.138232 -0.043167 -0.383320 -0.922606 +-0.274659 -0.398814 0.135701 0.017056 -0.327168 -0.944812 +-0.274485 -0.391447 0.134205 0.066068 -0.253102 -0.965181 +-0.274334 -0.384102 0.132830 0.131353 -0.196247 -0.971717 +-0.274191 -0.376757 0.131568 0.170056 -0.155442 -0.973098 +-0.274108 -0.369457 0.130835 0.233903 -0.097921 -0.967316 +-0.274032 -0.362165 0.130155 0.286159 -0.063664 -0.956065 +-0.273964 -0.354865 0.129505 0.330476 -0.046562 -0.942665 +-0.273941 -0.347603 0.129346 0.358961 -0.045924 -0.932222 +-0.273956 -0.340356 0.129437 0.377614 -0.062162 -0.923874 +-0.273949 -0.333095 0.129384 0.389149 -0.090535 -0.916715 +-0.273934 -0.325840 0.129263 0.388246 -0.134629 -0.911669 +-0.273904 -0.318571 0.129013 0.373486 -0.184198 -0.909164 +-0.273881 -0.311309 0.128787 0.352606 -0.230792 -0.906865 +-0.273707 -0.303987 0.127238 0.322961 -0.280812 -0.903792 +-0.273420 -0.296619 0.124684 0.301414 -0.321633 -0.897609 +-0.273050 -0.289244 0.121404 0.271897 -0.363209 -0.891152 +-0.272679 -0.281868 0.118049 0.248073 -0.384586 -0.889131 +-0.272309 -0.274508 0.114732 0.234667 -0.398362 -0.886701 +-0.271909 -0.267156 0.111210 0.226799 -0.391867 -0.891629 +-0.271470 -0.259796 0.107258 0.221471 -0.377613 -0.899088 +-0.271062 -0.252458 0.103654 0.230766 -0.337051 -0.912767 +-0.270730 -0.245158 0.100677 0.242381 -0.286811 -0.926818 +-0.270473 -0.237889 0.098372 0.258649 -0.224191 -0.939595 +-0.270307 -0.230650 0.096928 0.275581 -0.155444 -0.948627 +-0.270186 -0.223418 0.095833 0.296732 -0.080174 -0.951589 +-0.270171 -0.216217 0.095674 0.315074 0.005187 -0.949053 +-0.270246 -0.209038 0.096362 0.334347 0.090676 -0.938078 +-0.270375 -0.201867 0.097488 0.349193 0.161101 -0.923098 +-0.270526 -0.194688 0.098848 0.357369 0.242440 -0.901948 +-0.270798 -0.187532 0.101258 0.359093 0.317078 -0.877789 +-0.271100 -0.180361 0.104001 0.362767 0.381049 -0.850412 +-0.271478 -0.173197 0.107349 0.359021 0.473827 -0.804109 +-0.271977 -0.166033 0.111815 0.330841 0.518487 -0.788489 +-0.272498 -0.158855 0.116424 0.295791 0.531080 -0.794016 +-0.273118 -0.151668 0.121948 0.224776 0.531793 -0.816500 +-0.273979 -0.144474 0.129679 0.138488 0.510660 -0.848556 +-0.274848 -0.137258 0.137432 0.026254 0.481036 -0.876308 +-0.275619 -0.130011 0.144293 -0.106744 0.422889 -0.899872 +-0.276035 -0.122734 0.148011 -0.284074 0.239834 -0.928322 +-0.276019 -0.115449 0.147830 -0.404808 0.091579 -0.909804 +-0.275634 -0.108172 0.144399 -0.524957 -0.078621 -0.847490 +-0.275113 -0.100911 0.139736 -0.557351 -0.203409 -0.804975 +-0.274508 -0.093664 0.134356 -0.586554 -0.281301 -0.759489 +-0.273805 -0.086447 0.128099 -0.602229 -0.374315 -0.705130 +-0.273103 -0.079253 0.121835 -0.619873 -0.407759 -0.670440 +-0.272475 -0.072075 0.116243 -0.623366 -0.387992 -0.678879 +-0.271946 -0.064896 0.111566 -0.626391 -0.355510 -0.693720 +-0.271523 -0.057732 0.107749 -0.627409 -0.321303 -0.709312 +-0.271289 -0.050546 0.105656 -0.627365 -0.299703 -0.718743 +-0.271093 -0.043360 0.103941 -0.627215 -0.285468 -0.724644 +-0.270957 -0.036173 0.102679 -0.627941 -0.280403 -0.725992 +-0.270639 -0.029025 0.099853 -0.628753 -0.278310 -0.726094 +-0.270201 -0.021914 0.095931 -0.622494 -0.281904 -0.730090 +-0.269581 -0.014856 0.090414 -0.616906 -0.283370 -0.734254 +-0.268999 -0.007806 0.085246 -0.597872 -0.277216 -0.752130 +-0.268516 -0.000748 0.080961 -0.577168 -0.245061 -0.778988 +-0.268191 0.006340 0.078029 -0.563318 -0.208673 -0.799455 +-0.268055 0.013466 0.076805 -0.560256 -0.150502 -0.814532 +-0.268032 0.020622 0.076594 -0.558672 -0.085834 -0.824935 +-0.268055 0.027793 0.076805 -0.560097 -0.028528 -0.827936 +-0.268032 0.034949 0.076616 -0.551765 0.031032 -0.833422 +-0.268123 0.042143 0.077432 -0.560723 0.066670 -0.825315 +-0.268183 0.049330 0.077946 -0.556706 0.102144 -0.824406 +-0.268501 0.056614 0.080795 -0.561189 0.136588 -0.816340 +-0.268841 0.063921 0.083833 -0.572420 0.158550 -0.804486 +-0.269196 0.071236 0.086991 -0.571594 0.186931 -0.798960 +-0.269407 0.078506 0.088865 -0.586723 0.203766 -0.783732 +-0.269627 0.085790 0.090830 -0.599457 0.224990 -0.768135 +-0.269838 0.093067 0.092712 -0.615464 0.249691 -0.747569 +-0.270208 0.100435 0.096044 -0.628802 0.268742 -0.729648 +-0.270632 0.107833 0.099785 -0.646394 0.299477 -0.701775 +-0.271032 0.115238 0.103366 -0.659377 0.331810 -0.674629 +-0.271440 0.122659 0.107009 -0.672352 0.364881 -0.644053 +-0.271916 0.130125 0.111233 -0.681090 0.401998 -0.611976 +-0.272453 0.137644 0.116077 -0.685765 0.443282 -0.577259 +-0.273359 0.145382 0.124117 -0.687698 0.485566 -0.539720 +-0.274546 0.153308 0.134741 -0.687194 0.528756 -0.498178 +-0.275815 0.161326 0.146046 -0.681925 0.565118 -0.464349 +-0.277206 0.169449 0.158424 -0.672909 0.600581 -0.431852 +-0.279284 0.178049 0.176975 -0.678918 0.621962 -0.390172 +-0.269778 0.402223 0.092175 -0.849913 -0.340271 -0.402323 +-0.269090 0.408638 0.086077 -0.834448 -0.280252 -0.474506 +-0.268108 0.414691 0.077281 -0.816666 -0.185493 -0.546488 +-0.267390 0.421024 0.070918 -0.812475 -0.103741 -0.573691 +-0.267216 0.427968 0.069347 -0.783729 0.024840 -0.620606 +-0.267511 0.435472 0.071961 -0.801084 0.100365 -0.590077 +-0.275778 -0.455693 0.211645 -0.212619 -0.933229 -0.289615 +-0.272377 -0.445907 0.180860 -0.237312 -0.846794 -0.476050 +-0.270208 -0.437073 0.161190 -0.204743 -0.747094 -0.632401 +-0.269128 -0.429041 0.151449 -0.166028 -0.629265 -0.759250 +-0.268425 -0.421288 0.145086 -0.122576 -0.509456 -0.851722 +-0.267979 -0.413716 0.141014 -0.078575 -0.440837 -0.894141 +-0.267639 -0.406235 0.137968 -0.025084 -0.347183 -0.937462 +-0.267435 -0.398837 0.136071 0.024278 -0.269097 -0.962807 +-0.267314 -0.391507 0.135029 0.086793 -0.199216 -0.976104 +-0.267239 -0.384192 0.134288 0.129607 -0.144920 -0.980918 +-0.267148 -0.376877 0.133495 0.180305 -0.091912 -0.979307 +-0.267095 -0.369593 0.133049 0.236119 -0.046834 -0.970595 +-0.267072 -0.362316 0.132792 0.284273 -0.014510 -0.958633 +-0.267072 -0.355054 0.132784 0.317125 -0.012702 -0.948299 +-0.267110 -0.347815 0.133162 0.338801 -0.021892 -0.940603 +-0.267148 -0.340568 0.133480 0.355454 -0.047294 -0.933497 +-0.267163 -0.333314 0.133631 0.357351 -0.088897 -0.929730 +-0.267186 -0.326067 0.133835 0.350084 -0.136689 -0.926692 +-0.267125 -0.318775 0.133314 0.332676 -0.197211 -0.922190 +-0.267050 -0.311483 0.132580 0.308732 -0.252399 -0.917049 +-0.266755 -0.304107 0.129958 0.276869 -0.306070 -0.910860 +-0.266415 -0.296717 0.126860 0.249584 -0.344140 -0.905138 +-0.265977 -0.289304 0.122908 0.215954 -0.385155 -0.897228 +-0.265644 -0.281936 0.119848 0.193039 -0.402655 -0.894765 +-0.265282 -0.274576 0.116591 0.176614 -0.404825 -0.897175 +-0.264904 -0.267224 0.113160 0.168875 -0.399200 -0.901177 +-0.264435 -0.259848 0.108913 0.168473 -0.380521 -0.909297 +-0.264057 -0.252519 0.105520 0.174738 -0.334887 -0.925914 +-0.263717 -0.245211 0.102452 0.184610 -0.278480 -0.942533 +-0.263491 -0.237942 0.100397 0.198552 -0.213049 -0.956654 +-0.263339 -0.230703 0.099029 0.214070 -0.144691 -0.966043 +-0.263249 -0.223479 0.098175 0.236558 -0.073861 -0.968806 +-0.263234 -0.216277 0.098016 0.253946 0.023033 -0.966944 +-0.263324 -0.209091 0.098870 0.268503 0.111081 -0.956853 +-0.263468 -0.201920 0.100193 0.281760 0.174971 -0.943396 +-0.263664 -0.194748 0.101969 0.290043 0.267735 -0.918800 +-0.263959 -0.187585 0.104591 0.296098 0.332354 -0.895470 +-0.264307 -0.180421 0.107772 0.292237 0.408618 -0.864655 +-0.264715 -0.173257 0.111475 0.284044 0.480609 -0.829659 +-0.265176 -0.166079 0.115608 0.259886 0.506194 -0.822331 +-0.265735 -0.158900 0.120694 0.208112 0.511088 -0.833953 +-0.266392 -0.151706 0.126656 0.148550 0.479389 -0.864939 +-0.267080 -0.144497 0.132852 0.049229 0.460324 -0.886385 +-0.267760 -0.137265 0.139041 -0.046926 0.402551 -0.914194 +-0.268191 -0.130011 0.142971 -0.175585 0.276017 -0.944978 +-0.268327 -0.122734 0.144202 -0.273853 0.155581 -0.949105 +-0.268062 -0.115449 0.141784 -0.402166 -0.052270 -0.914073 +-0.267601 -0.108188 0.137590 -0.455107 -0.192287 -0.869427 +-0.267057 -0.100933 0.132709 -0.513137 -0.288156 -0.808491 +-0.266370 -0.093709 0.126460 -0.550103 -0.364006 -0.751589 +-0.265705 -0.086508 0.120452 -0.575274 -0.432478 -0.694278 +-0.265070 -0.079314 0.114686 -0.588736 -0.425388 -0.687339 +-0.264526 -0.072143 0.109729 -0.595175 -0.394608 -0.700037 +-0.264035 -0.064979 0.105301 -0.598233 -0.357443 -0.717183 +-0.263619 -0.057815 0.101553 -0.600594 -0.325845 -0.730145 +-0.263317 -0.050652 0.098772 -0.594990 -0.302495 -0.744637 +-0.263120 -0.043488 0.097042 -0.595873 -0.288442 -0.749490 +-0.262992 -0.036309 0.095833 -0.593981 -0.286601 -0.751696 +-0.262720 -0.029168 0.093377 -0.588993 -0.288785 -0.754779 +-0.262327 -0.022057 0.089832 -0.583336 -0.291287 -0.758203 +-0.261730 -0.015000 0.084400 -0.564752 -0.283278 -0.775118 +-0.261171 -0.007957 0.079344 -0.545258 -0.266263 -0.794857 +-0.260732 -0.000899 0.075407 -0.527430 -0.233232 -0.816958 +-0.260400 0.006166 0.072399 -0.516012 -0.197261 -0.833558 +-0.260249 0.013285 0.071032 -0.506922 -0.143247 -0.850006 +-0.260249 0.020433 0.071002 -0.517572 -0.092730 -0.850600 +-0.260377 0.027627 0.072195 -0.527927 -0.024421 -0.848939 +-0.260536 0.034836 0.073586 -0.541832 0.016343 -0.840328 +-0.260710 0.042060 0.075203 -0.543676 0.064549 -0.836810 +-0.260725 0.049224 0.075354 -0.554552 0.092463 -0.826996 +-0.260997 0.056486 0.077765 -0.565134 0.125485 -0.815400 +-0.261299 0.063778 0.080553 -0.567057 0.148629 -0.810158 +-0.261654 0.071093 0.083772 -0.580314 0.169009 -0.796663 +-0.261881 0.078362 0.085767 -0.593288 0.188363 -0.782643 +-0.262047 0.085616 0.087279 -0.607306 0.207616 -0.766861 +-0.262274 0.092901 0.089379 -0.617221 0.223992 -0.754232 +-0.262516 0.100201 0.091556 -0.631345 0.254963 -0.732392 +-0.262750 0.107508 0.093664 -0.638466 0.278134 -0.717637 +-0.263067 0.114860 0.096573 -0.644851 0.313557 -0.697029 +-0.263370 0.122213 0.099309 -0.652072 0.352797 -0.671071 +-0.263732 0.129611 0.102596 -0.659316 0.383353 -0.646795 +-0.264125 0.137032 0.106094 -0.660969 0.427804 -0.616525 +-0.264730 0.144596 0.111603 -0.661907 0.470554 -0.583488 +-0.265652 0.152356 0.119946 -0.665568 0.516006 -0.539218 +-0.266906 0.160351 0.131334 -0.666320 0.550079 -0.503418 +-0.268349 0.168497 0.144399 -0.663011 0.586167 -0.465644 +-0.269891 0.176749 0.158356 -0.653144 0.623013 -0.430416 +-0.272037 0.185447 0.177807 -0.645560 0.660355 -0.383645 +-0.263188 0.381306 0.097601 -0.769827 -0.553403 -0.317981 +-0.261987 0.387185 0.086749 -0.785695 -0.486663 -0.381894 +-0.261284 0.393578 0.080387 -0.764047 -0.409689 -0.498384 +-0.260196 0.399517 0.070564 -0.739883 -0.346700 -0.576518 +-0.259304 0.405638 0.062425 -0.683914 -0.269945 -0.677784 +-0.258889 0.412296 0.058685 -0.662741 -0.205196 -0.720187 +-0.258790 0.419316 0.057831 -0.683497 -0.117485 -0.720437 +-0.258851 0.426517 0.058321 -0.691557 -0.024600 -0.721902 +-0.259100 0.433953 0.060604 -0.696054 0.043124 -0.716693 +-0.259682 0.441797 0.065848 -0.746315 0.168599 -0.643886 +-0.267390 -0.454967 0.202532 -0.193632 -0.932507 -0.304858 +-0.264360 -0.445431 0.174670 -0.219661 -0.831168 -0.510793 +-0.262538 -0.436824 0.157887 -0.179301 -0.713033 -0.677816 +-0.261617 -0.428890 0.149417 -0.122092 -0.588162 -0.799474 +-0.260967 -0.421167 0.143432 -0.097126 -0.460539 -0.882310 +-0.260596 -0.413648 0.140031 -0.047683 -0.375471 -0.925607 +-0.260309 -0.406197 0.137401 0.012195 -0.290251 -0.956873 +-0.260151 -0.398829 0.135905 0.049688 -0.214142 -0.975538 +-0.260052 -0.391499 0.134999 0.101075 -0.153954 -0.982895 +-0.260015 -0.384215 0.134689 0.136889 -0.092164 -0.986290 +-0.259999 -0.376945 0.134530 0.192677 -0.032684 -0.980718 +-0.259992 -0.369676 0.134469 0.237960 0.003886 -0.971267 +-0.260052 -0.362444 0.134999 0.271980 0.016979 -0.962153 +-0.260151 -0.355235 0.135943 0.296645 0.017179 -0.954833 +-0.260234 -0.348011 0.136721 0.316118 -0.001794 -0.948718 +-0.260332 -0.340787 0.137590 0.322578 -0.040897 -0.945659 +-0.260392 -0.333548 0.138142 0.321004 -0.088516 -0.942932 +-0.260377 -0.326271 0.138036 0.305492 -0.152296 -0.939936 +-0.260279 -0.318956 0.137092 0.290513 -0.209480 -0.933659 +-0.260113 -0.311619 0.135565 0.264239 -0.269037 -0.926173 +-0.259690 -0.304183 0.131704 0.232367 -0.325786 -0.916444 +-0.259259 -0.296755 0.127691 0.195303 -0.376198 -0.905722 +-0.258828 -0.289334 0.123747 0.160498 -0.402829 -0.901093 +-0.258503 -0.281974 0.120747 0.136748 -0.411858 -0.900929 +-0.258141 -0.274606 0.117399 0.121763 -0.412457 -0.902803 +-0.257748 -0.267246 0.113810 0.120215 -0.404096 -0.906783 +-0.257256 -0.259864 0.109306 0.120844 -0.379619 -0.917217 +-0.256901 -0.252534 0.106019 0.129006 -0.322010 -0.937906 +-0.256606 -0.245242 0.103314 0.138518 -0.268753 -0.953197 +-0.256387 -0.237972 0.101303 0.151711 -0.202239 -0.967514 +-0.256236 -0.230725 0.099928 0.161558 -0.142255 -0.976557 +-0.256146 -0.223501 0.099105 0.176207 -0.061638 -0.982421 +-0.256130 -0.216300 0.098946 0.190304 0.036825 -0.981034 +-0.256251 -0.209121 0.100064 0.201183 0.129197 -0.970996 +-0.256425 -0.201950 0.101651 0.210428 0.193570 -0.958254 +-0.256667 -0.194786 0.103880 0.219053 0.279073 -0.934951 +-0.256992 -0.187622 0.106895 0.225427 0.344504 -0.911317 +-0.257362 -0.180459 0.110273 0.217838 0.419957 -0.881012 +-0.257785 -0.173288 0.114187 0.208447 0.479317 -0.852529 +-0.258329 -0.166116 0.119160 0.174902 0.494937 -0.851144 +-0.258904 -0.158938 0.124450 0.122823 0.475810 -0.870930 +-0.259478 -0.151736 0.129777 0.046775 0.429168 -0.902013 +-0.260052 -0.144512 0.134999 -0.008855 0.400377 -0.916308 +-0.260589 -0.137273 0.139933 -0.103487 0.307889 -0.945777 +-0.260717 -0.130003 0.141157 -0.220473 0.169245 -0.960598 +-0.260627 -0.122726 0.140288 -0.295629 0.009117 -0.955260 +-0.260309 -0.115457 0.137356 -0.391142 -0.140698 -0.909512 +-0.259727 -0.108195 0.132014 -0.434426 -0.285436 -0.854284 +-0.259070 -0.100963 0.125984 -0.475145 -0.362147 -0.801927 +-0.258450 -0.093747 0.120293 -0.530496 -0.432409 -0.729107 +-0.257770 -0.086553 0.114051 -0.552161 -0.459334 -0.695795 +-0.257196 -0.079374 0.108709 -0.560704 -0.435129 -0.704467 +-0.256622 -0.072211 0.103472 -0.562238 -0.399890 -0.723862 +-0.256138 -0.065055 0.098991 -0.560091 -0.360394 -0.745931 +-0.255753 -0.057906 0.095440 -0.556314 -0.325957 -0.764374 +-0.255465 -0.050750 0.092833 -0.555904 -0.305831 -0.772941 +-0.255269 -0.043594 0.090996 -0.551462 -0.296556 -0.779708 +-0.255246 -0.036407 0.090777 -0.554864 -0.293104 -0.778599 +-0.254997 -0.029266 0.088495 -0.543839 -0.294708 -0.785739 +-0.254612 -0.022163 0.084981 -0.536196 -0.293805 -0.791311 +-0.254007 -0.015128 0.079367 -0.524817 -0.279144 -0.804143 +-0.253471 -0.008085 0.074485 -0.507870 -0.252307 -0.823656 +-0.253040 -0.001035 0.070533 -0.492992 -0.220772 -0.841557 +-0.252753 0.006038 0.067858 -0.488135 -0.187953 -0.852290 +-0.252602 0.013141 0.066460 -0.487261 -0.150060 -0.860267 +-0.252556 0.020275 0.066082 -0.491568 -0.104283 -0.864573 +-0.252647 0.027446 0.066906 -0.507907 -0.046844 -0.860137 +-0.253047 0.034723 0.070548 -0.521752 -0.000547 -0.853097 +-0.253289 0.041962 0.072800 -0.535370 0.040627 -0.843640 +-0.253365 0.049148 0.073465 -0.550489 0.078322 -0.831161 +-0.253486 0.056357 0.074606 -0.560743 0.107332 -0.821004 +-0.253720 0.063604 0.076745 -0.577308 0.126710 -0.806635 +-0.253984 0.070881 0.079208 -0.591243 0.146666 -0.793045 +-0.254120 0.078105 0.080425 -0.600014 0.162004 -0.783414 +-0.254241 0.085337 0.081581 -0.610646 0.186103 -0.769726 +-0.254400 0.092584 0.083039 -0.617687 0.210393 -0.757758 +-0.254468 0.099785 0.083629 -0.619737 0.237716 -0.747942 +-0.254627 0.107039 0.085110 -0.625269 0.266931 -0.733340 +-0.254770 0.114294 0.086455 -0.624732 0.291826 -0.724256 +-0.255035 0.121616 0.088850 -0.624541 0.332942 -0.706469 +-0.255397 0.128999 0.092198 -0.627611 0.365605 -0.687341 +-0.255821 0.136427 0.096097 -0.624418 0.415124 -0.661645 +-0.256410 0.143961 0.101485 -0.630160 0.460066 -0.625489 +-0.257143 0.151601 0.108263 -0.633029 0.497122 -0.593417 +-0.258390 0.159580 0.119727 -0.639701 0.544617 -0.542380 +-0.259690 0.167636 0.131719 -0.643634 0.585825 -0.492488 +-0.261027 0.175752 0.144006 -0.640797 0.618795 -0.454392 +-0.262523 0.184011 0.157789 -0.629603 0.654926 -0.417938 +-0.264987 0.192973 0.180406 -0.627549 0.686637 -0.367031 +-0.254959 0.372994 0.088178 -0.624766 -0.642067 -0.444316 +-0.254204 0.379341 0.081226 -0.620539 -0.604315 -0.499734 +-0.253297 0.385500 0.072898 -0.616201 -0.526639 -0.585617 +-0.252277 0.391492 0.063506 -0.616865 -0.425115 -0.662386 +-0.251680 0.397946 0.057981 -0.604970 -0.354860 -0.712801 +-0.251234 0.404558 0.053871 -0.605377 -0.262074 -0.751556 +-0.250947 0.411344 0.051256 -0.586019 -0.195979 -0.786241 +-0.250848 0.418341 0.050319 -0.590610 -0.144740 -0.793871 +-0.250901 0.425520 0.050803 -0.587926 -0.062947 -0.806462 +-0.251105 0.432895 0.052699 -0.579179 0.011690 -0.815116 +-0.251604 0.440633 0.057271 -0.597471 0.115914 -0.793469 +-0.259697 -0.454741 0.199623 -0.175468 -0.932858 -0.314622 +-0.256455 -0.445015 0.169343 -0.192475 -0.792403 -0.578835 +-0.254891 -0.436582 0.154706 -0.133523 -0.659982 -0.739321 +-0.254090 -0.428723 0.147180 -0.104103 -0.558146 -0.823186 +-0.253508 -0.421046 0.141754 -0.049885 -0.414711 -0.908585 +-0.253176 -0.413550 0.138656 -0.003188 -0.329643 -0.944100 +-0.252949 -0.406137 0.136547 0.028381 -0.259023 -0.965454 +-0.252775 -0.398761 0.134877 0.074174 -0.161678 -0.984052 +-0.252707 -0.391454 0.134281 0.111768 -0.114058 -0.987167 +-0.252715 -0.384192 0.134326 0.159281 -0.051636 -0.985882 +-0.252745 -0.376953 0.134636 0.203901 0.012699 -0.978909 +-0.252828 -0.369736 0.135407 0.240261 0.042512 -0.969777 +-0.252934 -0.362527 0.136404 0.261791 0.043433 -0.964147 +-0.253093 -0.355341 0.137908 0.279911 0.031684 -0.959503 +-0.253289 -0.348178 0.139706 0.287810 0.007945 -0.957655 +-0.253463 -0.340991 0.141353 0.291130 -0.038080 -0.955925 +-0.253569 -0.333767 0.142313 0.280742 -0.097814 -0.954786 +-0.253516 -0.326467 0.141860 0.266759 -0.165561 -0.949436 +-0.253342 -0.319107 0.140243 0.248517 -0.220827 -0.943120 +-0.253025 -0.311694 0.137250 0.213109 -0.290732 -0.932770 +-0.252541 -0.304228 0.132701 0.176517 -0.357119 -0.917228 +-0.252042 -0.296762 0.128024 0.138884 -0.401319 -0.905348 +-0.251581 -0.289334 0.123739 0.117298 -0.419789 -0.900010 +-0.251234 -0.281967 0.120497 0.097167 -0.425561 -0.899698 +-0.250879 -0.274599 0.117157 0.082859 -0.422367 -0.902630 +-0.250493 -0.267239 0.113538 0.080134 -0.404021 -0.911233 +-0.249995 -0.259848 0.108898 0.091021 -0.368968 -0.924974 +-0.249639 -0.252526 0.105603 0.100529 -0.313702 -0.944185 +-0.249397 -0.245242 0.103351 0.110267 -0.259441 -0.959443 +-0.249201 -0.237980 0.101485 0.121872 -0.191872 -0.973824 +-0.249057 -0.230733 0.100155 0.126881 -0.125922 -0.983893 +-0.248952 -0.223501 0.099158 0.133041 -0.050537 -0.989821 +-0.248944 -0.216300 0.099090 0.135310 0.047968 -0.989641 +-0.249080 -0.209129 0.100374 0.144136 0.138000 -0.979888 +-0.249254 -0.201957 0.101991 0.149569 0.215251 -0.965037 +-0.249511 -0.194794 0.104364 0.155382 0.288050 -0.944925 +-0.249851 -0.187638 0.107575 0.160955 0.347962 -0.923588 +-0.250251 -0.180474 0.111301 0.152615 0.428853 -0.890390 +-0.250750 -0.173318 0.115986 0.131217 0.469531 -0.873111 +-0.251355 -0.166147 0.121593 0.094669 0.461618 -0.882013 +-0.251959 -0.158968 0.127313 0.049361 0.448432 -0.892453 +-0.252511 -0.151759 0.132429 -0.003903 0.424587 -0.905378 +-0.252934 -0.144520 0.136411 -0.098121 0.315605 -0.943804 +-0.253251 -0.137265 0.139381 -0.166044 0.207681 -0.964001 +-0.253176 -0.129996 0.138618 -0.236705 0.075856 -0.968616 +-0.252919 -0.122719 0.136268 -0.322838 -0.070478 -0.943827 +-0.252450 -0.115457 0.131885 -0.408861 -0.231400 -0.882772 +-0.251891 -0.108210 0.126618 -0.449612 -0.329901 -0.830069 +-0.251256 -0.100979 0.120724 -0.486267 -0.432355 -0.759351 +-0.250584 -0.093777 0.114437 -0.517718 -0.475538 -0.711218 +-0.249972 -0.086591 0.108671 -0.531040 -0.470587 -0.704659 +-0.249292 -0.079427 0.102346 -0.531643 -0.436209 -0.726001 +-0.248717 -0.072279 0.096981 -0.526870 -0.400361 -0.749746 +-0.248234 -0.065138 0.092440 -0.524429 -0.355260 -0.773799 +-0.247826 -0.058004 0.088639 -0.522260 -0.326405 -0.787848 +-0.247561 -0.050856 0.086190 -0.520655 -0.308750 -0.795985 +-0.247418 -0.043700 0.084808 -0.518607 -0.301602 -0.800052 +-0.247410 -0.036528 0.084717 -0.531357 -0.292368 -0.795098 +-0.247244 -0.029380 0.083160 -0.525902 -0.290098 -0.799544 +-0.246995 -0.022262 0.080863 -0.517378 -0.286503 -0.806372 +-0.246450 -0.015219 0.075747 -0.502583 -0.267095 -0.822235 +-0.245899 -0.008191 0.070646 -0.487926 -0.242634 -0.838485 +-0.245453 -0.001156 0.066415 -0.477638 -0.213191 -0.852298 +-0.245181 0.005917 0.063921 -0.477427 -0.188608 -0.858190 +-0.245000 0.013005 0.062221 -0.477192 -0.154235 -0.865158 +-0.244932 0.020123 0.061548 -0.484575 -0.110310 -0.867767 +-0.245000 0.027280 0.062236 -0.498002 -0.070357 -0.864317 +-0.245272 0.034511 0.064752 -0.515548 -0.025034 -0.856495 +-0.245589 0.041766 0.067707 -0.533726 0.013949 -0.845542 +-0.245763 0.048982 0.069324 -0.553034 0.050956 -0.831599 +-0.245778 0.056138 0.069475 -0.570521 0.076865 -0.817678 +-0.245785 0.063294 0.069528 -0.584191 0.100257 -0.805400 +-0.245944 0.070511 0.071062 -0.592780 0.125084 -0.795591 +-0.245952 0.077667 0.071145 -0.598896 0.146879 -0.787242 +-0.245967 0.084831 0.071243 -0.605045 0.167879 -0.778291 +-0.246005 0.092002 0.071614 -0.607154 0.185384 -0.772656 +-0.246118 0.099211 0.072664 -0.607998 0.214070 -0.764534 +-0.246262 0.106442 0.074017 -0.610489 0.246517 -0.752684 +-0.246450 0.113697 0.075785 -0.609276 0.282259 -0.741022 +-0.246927 0.121117 0.080221 -0.605724 0.319326 -0.728786 +-0.247259 0.128470 0.083296 -0.609055 0.359934 -0.706753 +-0.247622 0.135853 0.086704 -0.600559 0.402753 -0.690737 +-0.248204 0.143372 0.092130 -0.595989 0.455431 -0.661347 +-0.248853 0.150958 0.098236 -0.590947 0.493472 -0.638175 +-0.249790 0.158734 0.106971 -0.594736 0.538378 -0.597024 +-0.251204 0.166850 0.120180 -0.609281 0.577560 -0.543324 +-0.252518 0.174951 0.132520 -0.614390 0.617313 -0.491376 +-0.253758 0.183036 0.144067 -0.614937 0.650771 -0.445365 +-0.255292 0.191371 0.158462 -0.612216 0.676456 -0.409388 +-0.258639 0.201013 0.189723 -0.599737 0.753577 -0.269141 +-0.247984 0.366034 0.090112 -0.559891 -0.713225 -0.421701 +-0.246647 0.371739 0.077584 -0.548948 -0.655675 -0.518407 +-0.245778 0.377928 0.069475 -0.546276 -0.586737 -0.597764 +-0.244962 0.384155 0.061850 -0.546005 -0.517801 -0.658605 +-0.244357 0.390593 0.056191 -0.541583 -0.434984 -0.719359 +-0.243859 0.397137 0.051559 -0.541728 -0.358657 -0.760195 +-0.243503 0.403840 0.048234 -0.541969 -0.262530 -0.798341 +-0.243254 0.410648 0.045853 -0.526601 -0.201481 -0.825892 +-0.243118 0.417593 0.044621 -0.514551 -0.127604 -0.847912 +-0.243209 0.424809 0.045438 -0.517805 -0.073138 -0.852367 +-0.243360 0.432109 0.046858 -0.501317 0.003548 -0.865257 +-0.243723 0.439688 0.050266 -0.521088 0.079610 -0.849782 +-0.256327 -0.465191 0.237670 -0.145037 -0.961970 -0.231469 +-0.251521 -0.454136 0.192036 -0.157279 -0.924796 -0.346434 +-0.248597 -0.444615 0.164205 -0.150709 -0.760337 -0.631802 +-0.247319 -0.436386 0.152129 -0.087342 -0.619949 -0.779766 +-0.246594 -0.428580 0.145177 -0.040781 -0.505204 -0.862036 +-0.246073 -0.420940 0.140228 -0.001944 -0.355597 -0.934637 +-0.245748 -0.413444 0.137137 0.036324 -0.272112 -0.961580 +-0.245506 -0.406016 0.134825 0.067865 -0.209168 -0.975522 +-0.245362 -0.398663 0.133472 0.110443 -0.122507 -0.986303 +-0.245317 -0.391371 0.133041 0.143121 -0.075062 -0.986855 +-0.245340 -0.384132 0.133291 0.180756 -0.012405 -0.983450 +-0.245445 -0.376930 0.134281 0.214697 0.040817 -0.975828 +-0.245574 -0.369736 0.135520 0.239218 0.065738 -0.968738 +-0.245740 -0.362565 0.137122 0.249475 0.060657 -0.966480 +-0.245959 -0.355417 0.139192 0.259121 0.046631 -0.964718 +-0.246246 -0.348298 0.141935 0.263091 0.005795 -0.964754 +-0.246518 -0.341157 0.144467 0.256575 -0.047882 -0.965338 +-0.246677 -0.333956 0.146016 0.246228 -0.110061 -0.962943 +-0.246564 -0.326619 0.144913 0.229818 -0.178305 -0.956761 +-0.246277 -0.319206 0.142215 0.197731 -0.250651 -0.947669 +-0.245831 -0.311732 0.137953 0.165599 -0.314262 -0.934781 +-0.245264 -0.304221 0.132565 0.127022 -0.385726 -0.913828 +-0.244735 -0.296740 0.127502 0.102156 -0.421621 -0.900999 +-0.244259 -0.289304 0.123014 0.077395 -0.435607 -0.896804 +-0.243904 -0.281929 0.119636 0.058727 -0.437706 -0.897198 +-0.243541 -0.274561 0.116198 0.053891 -0.416990 -0.907312 +-0.243156 -0.267201 0.112533 0.056831 -0.397273 -0.915939 +-0.242657 -0.259811 0.107817 0.069928 -0.359664 -0.930458 +-0.242377 -0.252503 0.105097 0.080454 -0.306667 -0.948410 +-0.242151 -0.245226 0.102981 0.084015 -0.251762 -0.964136 +-0.241962 -0.237965 0.101160 0.099350 -0.184943 -0.977714 +-0.241773 -0.230718 0.099414 0.107453 -0.124331 -0.986405 +-0.241690 -0.223494 0.098568 0.113952 -0.032648 -0.992950 +-0.241697 -0.216292 0.098666 0.116523 0.054565 -0.991688 +-0.241864 -0.209129 0.100276 0.108659 0.144579 -0.983509 +-0.242060 -0.201957 0.102075 0.104801 0.219931 -0.969870 +-0.242279 -0.194786 0.104175 0.109012 0.272172 -0.956054 +-0.242582 -0.187630 0.107069 0.107610 0.352348 -0.929662 +-0.242990 -0.180466 0.110916 0.098177 0.430679 -0.897149 +-0.243564 -0.173318 0.116379 0.069980 0.447282 -0.891651 +-0.244206 -0.166162 0.122530 0.035987 0.431651 -0.901323 +-0.244879 -0.158983 0.128863 -0.034970 0.403696 -0.914225 +-0.245400 -0.151766 0.133850 -0.083943 0.366117 -0.926775 +-0.245733 -0.144527 0.137001 -0.133642 0.266874 -0.954420 +-0.245853 -0.137265 0.138165 -0.225671 0.128623 -0.965675 +-0.245642 -0.129988 0.136147 -0.278911 -0.005328 -0.960302 +-0.245249 -0.122719 0.132391 -0.359281 -0.173889 -0.916886 +-0.244697 -0.115457 0.127147 -0.406531 -0.294921 -0.864728 +-0.244070 -0.108218 0.121207 -0.459151 -0.406558 -0.789867 +-0.243405 -0.101001 0.114883 -0.483865 -0.478031 -0.733049 +-0.242710 -0.093815 0.108301 -0.495991 -0.499162 -0.710514 +-0.242060 -0.086636 0.102082 -0.499082 -0.474979 -0.724785 +-0.241403 -0.079488 0.095901 -0.496709 -0.433457 -0.751928 +-0.240896 -0.072347 0.091034 -0.494796 -0.388302 -0.777431 +-0.240435 -0.065213 0.086636 -0.496409 -0.354688 -0.792322 +-0.240027 -0.058087 0.082798 -0.494376 -0.328322 -0.804858 +-0.239778 -0.050946 0.080417 -0.499124 -0.312083 -0.808381 +-0.239566 -0.043813 0.078430 -0.502880 -0.301864 -0.809932 +-0.239559 -0.036649 0.078362 -0.505848 -0.294068 -0.810951 +-0.239574 -0.029478 0.078452 -0.502245 -0.289968 -0.814658 +-0.239377 -0.022360 0.076594 -0.496194 -0.278938 -0.822183 +-0.238894 -0.015309 0.072007 -0.492918 -0.260598 -0.830133 +-0.238425 -0.008267 0.067586 -0.485177 -0.237285 -0.841605 +-0.238010 -0.001232 0.063596 -0.479635 -0.206796 -0.852752 +-0.237745 0.005834 0.061125 -0.478959 -0.181972 -0.858769 +-0.237556 0.012914 0.059311 -0.481224 -0.152348 -0.863258 +-0.237458 0.020018 0.058382 -0.489167 -0.123130 -0.863455 +-0.237503 0.027159 0.058775 -0.500799 -0.086327 -0.861248 +-0.237632 0.034337 0.059992 -0.513852 -0.053591 -0.856203 +-0.237768 0.041524 0.061322 -0.535699 -0.018730 -0.844201 +-0.237813 0.048680 0.061782 -0.553065 0.017370 -0.832957 +-0.237760 0.055791 0.061223 -0.565471 0.043198 -0.823636 +-0.237677 0.062894 0.060430 -0.578108 0.074820 -0.812523 +-0.237587 0.069989 0.059561 -0.589803 0.100950 -0.801213 +-0.237564 0.077115 0.059342 -0.591882 0.125796 -0.796147 +-0.237564 0.084249 0.059387 -0.595627 0.155637 -0.788039 +-0.237602 0.091397 0.059735 -0.595283 0.180812 -0.782908 +-0.237821 0.098644 0.061843 -0.595991 0.207647 -0.775679 +-0.238138 0.105944 0.064828 -0.597432 0.240132 -0.765122 +-0.238440 0.113251 0.067699 -0.595298 0.273589 -0.755493 +-0.238909 0.120656 0.072188 -0.593565 0.310471 -0.742488 +-0.239415 0.128092 0.076972 -0.589840 0.357570 -0.724039 +-0.239801 0.135482 0.080644 -0.579528 0.407899 -0.705525 +-0.240330 0.142971 0.085692 -0.568253 0.450886 -0.688324 +-0.240911 0.150497 0.091163 -0.560641 0.495078 -0.663761 +-0.241592 0.158122 0.097669 -0.556528 0.529038 -0.640621 +-0.242627 0.165988 0.107500 -0.564777 0.571217 -0.595599 +-0.243949 0.174082 0.120029 -0.579189 0.609115 -0.541774 +-0.245340 0.182265 0.133291 -0.593783 0.638183 -0.490044 +-0.246624 0.190419 0.145502 -0.595923 0.675500 -0.434253 +-0.248226 0.198844 0.160752 -0.595272 0.697865 -0.398291 +-0.241554 0.359672 0.097314 -0.517149 -0.763049 -0.387702 +-0.239778 0.364901 0.080409 -0.473557 -0.720695 -0.506303 +-0.238765 0.370931 0.070760 -0.482661 -0.671303 -0.562486 +-0.237889 0.377097 0.062500 -0.488796 -0.579323 -0.652276 +-0.237224 0.383460 0.056168 -0.476596 -0.515679 -0.711991 +-0.236702 0.389973 0.051158 -0.470058 -0.438456 -0.766030 +-0.236257 0.396563 0.046964 -0.459577 -0.367934 -0.808340 +-0.235939 0.403296 0.043964 -0.462662 -0.260526 -0.847390 +-0.235713 0.410127 0.041796 -0.457182 -0.194884 -0.867759 +-0.235546 0.417018 0.040216 -0.453524 -0.134854 -0.880983 +-0.235584 0.424167 0.040579 -0.452284 -0.064932 -0.889507 +-0.235773 0.431512 0.042370 -0.460795 -0.018968 -0.887304 +-0.236022 0.438940 0.044750 -0.460980 0.080688 -0.883735 +-0.238267 0.448975 0.066075 -0.540083 0.282850 -0.792658 +-0.247599 -0.464186 0.225247 -0.124944 -0.964106 -0.234282 +-0.243602 -0.453705 0.186625 -0.132735 -0.915402 -0.380027 +-0.240957 -0.444373 0.161107 -0.085110 -0.732501 -0.675425 +-0.239793 -0.436212 0.149862 -0.033330 -0.589340 -0.807197 +-0.239136 -0.428451 0.143477 0.024083 -0.478557 -0.877726 +-0.238660 -0.420842 0.138913 0.041459 -0.329441 -0.943265 +-0.238342 -0.413353 0.135837 0.084512 -0.242035 -0.966580 +-0.238131 -0.405948 0.133820 0.116658 -0.171418 -0.978267 +-0.238032 -0.398625 0.132860 0.152256 -0.083332 -0.984822 +-0.238032 -0.391363 0.132868 0.176513 -0.040928 -0.983447 +-0.238078 -0.384132 0.133306 0.201948 0.020135 -0.979189 +-0.238161 -0.376915 0.134107 0.223750 0.063483 -0.972577 +-0.238320 -0.369744 0.135580 0.240050 0.080193 -0.967442 +-0.238508 -0.362588 0.137447 0.239880 0.067599 -0.968446 +-0.238765 -0.355455 0.139895 0.238264 0.051054 -0.969858 +-0.239113 -0.348366 0.143250 0.240393 0.005548 -0.970660 +-0.239415 -0.341248 0.146197 0.227248 -0.062034 -0.971859 +-0.239544 -0.334024 0.147437 0.209085 -0.131775 -0.968978 +-0.239347 -0.326649 0.145548 0.187286 -0.205203 -0.960633 +-0.238985 -0.319198 0.142071 0.158025 -0.264838 -0.951256 +-0.238486 -0.311694 0.137228 0.120636 -0.341101 -0.932254 +-0.237919 -0.304183 0.131749 0.093505 -0.408349 -0.908024 +-0.237398 -0.296710 0.126694 0.066896 -0.441249 -0.894888 +-0.236937 -0.289274 0.122258 0.049283 -0.451416 -0.890952 +-0.236574 -0.281899 0.118744 0.041734 -0.437872 -0.898068 +-0.236226 -0.274531 0.115351 0.041712 -0.416501 -0.908178 +-0.235849 -0.267171 0.111739 0.048196 -0.390980 -0.919137 +-0.235395 -0.259796 0.107379 0.058518 -0.350752 -0.934638 +-0.235116 -0.252496 0.104644 0.067463 -0.299275 -0.951779 +-0.234866 -0.245211 0.102271 0.077258 -0.241496 -0.967322 +-0.234655 -0.237942 0.100185 0.085594 -0.177987 -0.980303 +-0.234496 -0.230695 0.098666 0.092841 -0.109210 -0.989673 +-0.234428 -0.223479 0.098039 0.097369 -0.026439 -0.994897 +-0.234451 -0.216277 0.098213 0.096309 0.060615 -0.993504 +-0.234617 -0.209113 0.099845 0.099216 0.140749 -0.985061 +-0.234813 -0.201950 0.101757 0.102152 0.208715 -0.972627 +-0.235048 -0.194786 0.103971 0.098361 0.285515 -0.953313 +-0.235327 -0.187622 0.106684 0.086108 0.354782 -0.930975 +-0.235667 -0.180459 0.110009 0.070270 0.405981 -0.911176 +-0.236189 -0.173303 0.115004 0.035010 0.422154 -0.905848 +-0.236808 -0.166139 0.121019 -0.007990 0.391937 -0.919957 +-0.237443 -0.158960 0.127162 -0.076094 0.363509 -0.928478 +-0.238040 -0.151759 0.132883 -0.140550 0.285361 -0.948058 +-0.238357 -0.144520 0.135981 -0.195791 0.159010 -0.967668 +-0.238380 -0.137250 0.136207 -0.245374 0.078093 -0.966278 +-0.238055 -0.129981 0.133087 -0.312606 -0.089543 -0.945653 +-0.237541 -0.122711 0.128077 -0.386674 -0.262555 -0.884052 +-0.236906 -0.115457 0.121925 -0.416909 -0.358399 -0.835307 +-0.236249 -0.108233 0.115631 -0.448573 -0.461227 -0.765540 +-0.235539 -0.101031 0.108769 -0.470645 -0.507933 -0.721455 +-0.234866 -0.093845 0.102211 -0.471102 -0.504804 -0.723351 +-0.234163 -0.086689 0.095485 -0.467199 -0.470722 -0.748429 +-0.233634 -0.079541 0.090377 -0.466676 -0.429674 -0.773042 +-0.233234 -0.072392 0.086493 -0.470305 -0.392457 -0.790437 +-0.232849 -0.065259 0.082722 -0.471785 -0.358895 -0.805365 +-0.232418 -0.058148 0.078581 -0.478208 -0.331508 -0.813277 +-0.232093 -0.051029 0.075460 -0.487400 -0.316734 -0.813708 +-0.231866 -0.043904 0.073261 -0.494222 -0.303413 -0.814669 +-0.231730 -0.036778 0.071969 -0.494843 -0.294916 -0.817407 +-0.231745 -0.029614 0.072105 -0.493163 -0.289818 -0.820241 +-0.231692 -0.022473 0.071599 -0.492784 -0.273057 -0.826198 +-0.231405 -0.015385 0.068795 -0.493471 -0.251707 -0.832544 +-0.231058 -0.008327 0.065425 -0.491031 -0.229184 -0.840454 +-0.230695 -0.001284 0.061926 -0.488030 -0.202226 -0.849077 +-0.230468 0.005789 0.059735 -0.486249 -0.174556 -0.856208 +-0.230279 0.012869 0.057936 -0.489385 -0.154787 -0.858221 +-0.230136 0.019950 0.056523 -0.488268 -0.130352 -0.862903 +-0.230083 0.027060 0.055994 -0.499098 -0.104209 -0.860257 +-0.230113 0.034201 0.056327 -0.512468 -0.075367 -0.855392 +-0.230075 0.041312 0.055926 -0.527757 -0.044895 -0.848208 +-0.229909 0.048378 0.054309 -0.541948 -0.016900 -0.840242 +-0.229796 0.055458 0.053213 -0.555923 0.018488 -0.831028 +-0.229735 0.062554 0.052669 -0.566126 0.053274 -0.822596 +-0.229735 0.069680 0.052677 -0.572781 0.084654 -0.815325 +-0.229743 0.076798 0.052730 -0.576291 0.115826 -0.808995 +-0.229849 0.083977 0.053788 -0.575814 0.150430 -0.803622 +-0.229871 0.091110 0.053939 -0.573375 0.182144 -0.798790 +-0.230060 0.098327 0.055828 -0.571589 0.212934 -0.792430 +-0.230370 0.105619 0.058821 -0.570170 0.242892 -0.784800 +-0.230816 0.112994 0.063105 -0.571394 0.277309 -0.772404 +-0.231254 0.120377 0.067367 -0.572893 0.311475 -0.758140 +-0.231708 0.127782 0.071712 -0.565889 0.356929 -0.743217 +-0.232169 0.135210 0.076170 -0.560954 0.412098 -0.717987 +-0.232697 0.142691 0.081263 -0.551199 0.458493 -0.697111 +-0.233242 0.150203 0.086531 -0.539289 0.493417 -0.682427 +-0.233808 0.157744 0.092017 -0.536468 0.533697 -0.653735 +-0.234700 0.165520 0.100609 -0.533704 0.563034 -0.630993 +-0.235637 0.173356 0.109654 -0.542638 0.602884 -0.584872 +-0.236725 0.181328 0.120195 -0.560638 0.628018 -0.539703 +-0.238116 0.189550 0.133623 -0.574707 0.663502 -0.479038 +-0.239483 0.197802 0.146892 -0.579195 0.695596 -0.425063 +-0.241561 0.206628 0.166902 -0.565171 0.744854 -0.354647 +-0.236355 0.354654 0.116643 -0.476959 -0.830791 -0.286874 +-0.233355 0.358561 0.087626 -0.415436 -0.780931 -0.466432 +-0.232048 0.364266 0.074969 -0.411037 -0.723736 -0.554306 +-0.231126 0.370379 0.066105 -0.397803 -0.672416 -0.624187 +-0.230317 0.376583 0.058269 -0.402807 -0.596993 -0.693791 +-0.229660 0.382946 0.051921 -0.392427 -0.518117 -0.759971 +-0.229138 0.389445 0.046858 -0.388461 -0.444386 -0.807229 +-0.228821 0.396177 0.043843 -0.387029 -0.377238 -0.841368 +-0.228564 0.402963 0.041312 -0.382997 -0.286747 -0.878117 +-0.228292 0.409734 0.038735 -0.386632 -0.215862 -0.896616 +-0.228133 0.416626 0.037163 -0.384059 -0.135188 -0.913358 +-0.228118 0.423706 0.037050 -0.395175 -0.080071 -0.915109 +-0.228239 0.430960 0.038229 -0.396849 -0.026055 -0.917514 +-0.228473 0.438351 0.040443 -0.421397 0.056180 -0.905134 +-0.230249 0.447819 0.057649 -0.458333 0.224104 -0.860063 +-0.239627 -0.463748 0.219851 -0.098995 -0.963786 -0.247623 +-0.235690 -0.453275 0.181154 -0.095947 -0.906773 -0.410557 +-0.233393 -0.444184 0.158613 -0.024868 -0.686809 -0.726412 +-0.232388 -0.436129 0.148706 0.036859 -0.554215 -0.831557 +-0.231730 -0.428361 0.142260 0.084355 -0.432655 -0.897604 +-0.231292 -0.420774 0.137961 0.115281 -0.306533 -0.944853 +-0.231065 -0.413346 0.135724 0.149536 -0.193824 -0.969573 +-0.230922 -0.405978 0.134281 0.161674 -0.144460 -0.976214 +-0.230839 -0.398663 0.133472 0.189868 -0.062897 -0.979793 +-0.230869 -0.391424 0.133804 0.201250 -0.023455 -0.979259 +-0.230944 -0.384207 0.134568 0.220236 0.043828 -0.974462 +-0.231058 -0.377013 0.135648 0.233270 0.079497 -0.969157 +-0.231201 -0.369835 0.137039 0.235624 0.083757 -0.968228 +-0.231398 -0.362679 0.138950 0.232582 0.072459 -0.969874 +-0.231677 -0.355560 0.141701 0.222651 0.047068 -0.973761 +-0.232040 -0.348480 0.145276 0.219408 -0.012212 -0.975557 +-0.232350 -0.341361 0.148343 0.202544 -0.083202 -0.975732 +-0.232357 -0.334077 0.148434 0.179015 -0.144611 -0.973160 +-0.232101 -0.326664 0.145888 0.148378 -0.230736 -0.961636 +-0.231677 -0.319183 0.141769 0.120575 -0.294679 -0.947959 +-0.231088 -0.311634 0.135928 0.095878 -0.368012 -0.924865 +-0.230536 -0.304130 0.130548 0.066273 -0.429785 -0.900496 +-0.230060 -0.296672 0.125810 0.048337 -0.455371 -0.888989 +-0.229637 -0.289251 0.121684 0.038836 -0.455981 -0.889142 +-0.229289 -0.281876 0.118253 0.036573 -0.439524 -0.897486 +-0.228934 -0.274508 0.114807 0.042022 -0.411898 -0.910260 +-0.228572 -0.267156 0.111248 0.049984 -0.383866 -0.922035 +-0.228171 -0.259796 0.107251 0.060691 -0.341619 -0.937877 +-0.227876 -0.252481 0.104387 0.070484 -0.290059 -0.954410 +-0.227627 -0.245196 0.101901 0.081211 -0.232165 -0.969280 +-0.227400 -0.237927 0.099709 0.087292 -0.170421 -0.981497 +-0.227257 -0.230680 0.098258 0.095170 -0.103891 -0.990025 +-0.227174 -0.223463 0.097510 0.098373 -0.027378 -0.994773 +-0.227226 -0.216277 0.098032 0.098436 0.054075 -0.993673 +-0.227385 -0.209106 0.099573 0.092653 0.140231 -0.985774 +-0.227551 -0.201942 0.101221 0.091534 0.212133 -0.972944 +-0.227733 -0.194763 0.102974 0.086300 0.283673 -0.955030 +-0.228012 -0.187607 0.105739 0.072644 0.346345 -0.935290 +-0.228360 -0.180444 0.109102 0.046586 0.387282 -0.920784 +-0.228798 -0.173280 0.113409 0.013424 0.383879 -0.923286 +-0.229425 -0.166124 0.119591 -0.035584 0.349191 -0.936376 +-0.230053 -0.158945 0.125764 -0.089922 0.328010 -0.940385 +-0.230566 -0.151744 0.130797 -0.154163 0.240002 -0.958453 +-0.230831 -0.144505 0.133396 -0.213022 0.122834 -0.969295 +-0.230808 -0.137243 0.133170 -0.272524 -0.008419 -0.962112 +-0.230423 -0.129966 0.129422 -0.364692 -0.173970 -0.914732 +-0.229811 -0.122704 0.123392 -0.388142 -0.325180 -0.862325 +-0.229131 -0.115465 0.116742 -0.430191 -0.411043 -0.803728 +-0.228398 -0.108248 0.109510 -0.447557 -0.500507 -0.741070 +-0.227718 -0.101054 0.102785 -0.450308 -0.520146 -0.725721 +-0.227075 -0.093875 0.096543 -0.442580 -0.500459 -0.744085 +-0.226433 -0.086727 0.090233 -0.439001 -0.468776 -0.766503 +-0.226025 -0.079578 0.086153 -0.438520 -0.432171 -0.787990 +-0.225632 -0.072437 0.082352 -0.444490 -0.396987 -0.803013 +-0.225269 -0.065311 0.078793 -0.453258 -0.364299 -0.813538 +-0.224914 -0.058193 0.075286 -0.466466 -0.341023 -0.816157 +-0.224665 -0.051067 0.072853 -0.477126 -0.323659 -0.817065 +-0.224468 -0.043949 0.070873 -0.486361 -0.310323 -0.816794 +-0.224363 -0.036816 0.069830 -0.490308 -0.301353 -0.817792 +-0.224219 -0.029697 0.068440 -0.495482 -0.286411 -0.820040 +-0.224045 -0.022586 0.066709 -0.498568 -0.266738 -0.824792 +-0.223818 -0.015491 0.064473 -0.497163 -0.243299 -0.832847 +-0.223614 -0.008403 0.062523 -0.491777 -0.223117 -0.841650 +-0.223373 -0.001330 0.060120 -0.488258 -0.201794 -0.849048 +-0.223199 0.005751 0.058405 -0.483422 -0.181116 -0.856446 +-0.223025 0.012831 0.056705 -0.484133 -0.158879 -0.860449 +-0.222874 0.019904 0.055186 -0.486767 -0.137066 -0.862711 +-0.222693 0.026977 0.053463 -0.488801 -0.119341 -0.864194 +-0.222541 0.034043 0.051944 -0.500642 -0.090984 -0.860860 +-0.222315 0.041078 0.049722 -0.505706 -0.069153 -0.859930 +-0.222126 0.048121 0.047848 -0.516471 -0.037217 -0.855496 +-0.221990 0.055178 0.046533 -0.526977 -0.001732 -0.849878 +-0.221952 0.062274 0.046163 -0.533409 0.034577 -0.845151 +-0.222058 0.069430 0.047168 -0.538871 0.073472 -0.839178 +-0.222239 0.076624 0.048974 -0.543899 0.112433 -0.831585 +-0.222413 0.083826 0.050727 -0.543602 0.151729 -0.825515 +-0.222451 0.090959 0.051075 -0.539985 0.185419 -0.820997 +-0.222662 0.098183 0.053108 -0.535646 0.219175 -0.815503 +-0.222949 0.105460 0.055926 -0.532830 0.247840 -0.809115 +-0.223365 0.112820 0.060015 -0.536538 0.281208 -0.795644 +-0.223803 0.120203 0.064322 -0.546888 0.317687 -0.774589 +-0.224226 0.127586 0.068478 -0.544522 0.356820 -0.759062 +-0.224619 0.134976 0.072354 -0.537952 0.414248 -0.734170 +-0.225126 0.142442 0.077342 -0.529004 0.461791 -0.711972 +-0.225662 0.149953 0.082631 -0.519404 0.504955 -0.689377 +-0.226229 0.157487 0.088155 -0.507923 0.533238 -0.676514 +-0.226879 0.165112 0.094609 -0.508529 0.565534 -0.649284 +-0.227755 0.172903 0.103162 -0.513432 0.595635 -0.617744 +-0.228556 0.180678 0.111090 -0.525298 0.615233 -0.587836 +-0.229561 0.188620 0.120943 -0.542542 0.648314 -0.534170 +-0.230952 0.196887 0.134643 -0.556884 0.680258 -0.476580 +-0.232509 0.205321 0.149877 -0.557778 0.719681 -0.413452 +-0.235501 0.214917 0.179295 -0.536170 0.799759 -0.270015 +-0.227287 0.352614 0.098560 -0.379045 -0.847581 -0.371392 +-0.225488 0.357790 0.080886 -0.369872 -0.775702 -0.511353 +-0.224483 0.363805 0.071017 -0.374083 -0.730194 -0.571733 +-0.223630 0.369971 0.062636 -0.354367 -0.671655 -0.650618 +-0.222829 0.376168 0.054800 -0.351435 -0.594126 -0.723538 +-0.222232 0.382583 0.048929 -0.346345 -0.513395 -0.785157 +-0.221756 0.389112 0.044198 -0.338432 -0.445495 -0.828854 +-0.221499 0.395913 0.041728 -0.343500 -0.354256 -0.869776 +-0.221204 0.402646 0.038841 -0.347376 -0.289427 -0.891943 +-0.220977 0.409454 0.036551 -0.342274 -0.222389 -0.912903 +-0.220856 0.416391 0.035365 -0.353617 -0.150147 -0.923261 +-0.220773 0.423374 0.034548 -0.356627 -0.099737 -0.928908 +-0.220826 0.430537 0.035100 -0.368136 -0.045834 -0.928641 +-0.221023 0.437897 0.037057 -0.365715 0.031965 -0.930178 +-0.222594 0.447101 0.052450 -0.415912 0.199982 -0.887144 +-0.231964 -0.463552 0.217373 -0.077010 -0.965513 -0.248704 +-0.228012 -0.453010 0.177822 -0.034819 -0.885091 -0.464114 +-0.226002 -0.444116 0.157721 0.058780 -0.630461 -0.773992 +-0.225012 -0.436061 0.147822 0.104706 -0.514975 -0.850786 +-0.224408 -0.428330 0.141822 0.152103 -0.390020 -0.908157 +-0.224075 -0.420812 0.138474 0.175823 -0.298077 -0.938209 +-0.223917 -0.413429 0.136857 0.191818 -0.187869 -0.963281 +-0.223834 -0.406106 0.136064 0.213633 -0.121078 -0.969382 +-0.223841 -0.398844 0.136117 0.224974 -0.075362 -0.971446 +-0.223939 -0.391643 0.137114 0.234736 -0.004197 -0.972050 +-0.224053 -0.384442 0.138240 0.241983 0.051129 -0.968933 +-0.224166 -0.377248 0.139381 0.241993 0.074324 -0.967427 +-0.224295 -0.370046 0.140658 0.237981 0.078786 -0.968069 +-0.224468 -0.362875 0.142419 0.228231 0.075472 -0.970677 +-0.224748 -0.355757 0.145185 0.219466 0.035649 -0.974969 +-0.225028 -0.348631 0.147973 0.205194 -0.030468 -0.978247 +-0.225209 -0.341437 0.149779 0.185048 -0.093438 -0.978277 +-0.225111 -0.334100 0.148842 0.159768 -0.162393 -0.973706 +-0.224793 -0.326649 0.145630 0.132314 -0.248158 -0.959641 +-0.224310 -0.319138 0.140810 0.104473 -0.322210 -0.940886 +-0.223750 -0.311604 0.135210 0.072828 -0.404554 -0.911609 +-0.223221 -0.304100 0.129943 0.054698 -0.440551 -0.896059 +-0.222761 -0.296649 0.125311 0.043557 -0.463457 -0.885048 +-0.222360 -0.289236 0.121291 0.040842 -0.457027 -0.888515 +-0.222012 -0.281861 0.117860 0.044527 -0.435286 -0.899190 +-0.221680 -0.274501 0.114527 0.054147 -0.407562 -0.911571 +-0.221347 -0.267148 0.111210 0.066451 -0.375854 -0.924293 +-0.221000 -0.259811 0.107749 0.075662 -0.336728 -0.938557 +-0.220713 -0.252496 0.104848 0.085523 -0.282860 -0.955341 +-0.220456 -0.245211 0.102316 0.093746 -0.231001 -0.968427 +-0.220244 -0.237942 0.100193 0.103291 -0.164649 -0.980929 +-0.220101 -0.230695 0.098734 0.110997 -0.099787 -0.988798 +-0.220025 -0.223479 0.097986 0.114298 -0.026731 -0.993087 +-0.220040 -0.216277 0.098107 0.113433 0.051386 -0.992216 +-0.220199 -0.209113 0.099755 0.105514 0.134107 -0.985333 +-0.220380 -0.201942 0.101523 0.100234 0.204710 -0.973677 +-0.220554 -0.194771 0.103268 0.089103 0.271681 -0.958254 +-0.220803 -0.187607 0.105732 0.070644 0.323577 -0.943561 +-0.221091 -0.180436 0.108611 0.038670 0.354614 -0.934213 +-0.221453 -0.173265 0.112291 -0.003383 0.344587 -0.938748 +-0.222012 -0.166101 0.117868 -0.062000 0.293671 -0.953894 +-0.222572 -0.158923 0.123429 -0.124697 0.257771 -0.958126 +-0.222995 -0.151714 0.127653 -0.171614 0.182376 -0.968136 +-0.223199 -0.144474 0.129739 -0.258329 0.035442 -0.965407 +-0.223161 -0.137220 0.129331 -0.320865 -0.071470 -0.944425 +-0.222715 -0.129951 0.124895 -0.383305 -0.244047 -0.890796 +-0.222080 -0.122696 0.118532 -0.418195 -0.369974 -0.829598 +-0.221355 -0.115465 0.111316 -0.438421 -0.463041 -0.770312 +-0.220630 -0.108256 0.104001 -0.437681 -0.515352 -0.736782 +-0.219987 -0.101069 0.097608 -0.434470 -0.517678 -0.737052 +-0.219353 -0.093906 0.091238 -0.427648 -0.492035 -0.758300 +-0.218892 -0.086750 0.086621 -0.422598 -0.462450 -0.779456 +-0.218521 -0.079609 0.082926 -0.424011 -0.432765 -0.795568 +-0.218166 -0.072468 0.079389 -0.427782 -0.407285 -0.806921 +-0.217849 -0.065342 0.076223 -0.441999 -0.383622 -0.810846 +-0.217546 -0.058223 0.073239 -0.455395 -0.356687 -0.815714 +-0.217320 -0.051097 0.070941 -0.468246 -0.339213 -0.815892 +-0.217138 -0.043979 0.069158 -0.479919 -0.320793 -0.816560 +-0.216965 -0.036861 0.067352 -0.487682 -0.307965 -0.816899 +-0.216738 -0.029765 0.065160 -0.493386 -0.286798 -0.821168 +-0.216428 -0.022692 0.062032 -0.495050 -0.261522 -0.828572 +-0.216179 -0.015619 0.059501 -0.490518 -0.234335 -0.839333 +-0.215997 -0.008531 0.057709 -0.484868 -0.212342 -0.848418 +-0.215892 -0.001428 0.056667 -0.476651 -0.195626 -0.857050 +-0.215831 0.005683 0.056047 -0.474255 -0.179436 -0.861908 +-0.215695 0.012771 0.054717 -0.472137 -0.160083 -0.866868 +-0.215529 0.019836 0.053032 -0.469794 -0.143067 -0.871106 +-0.215189 0.026841 0.049670 -0.470420 -0.124700 -0.873588 +-0.214909 0.033854 0.046851 -0.472092 -0.103085 -0.875501 +-0.214584 0.040844 0.043617 -0.478302 -0.079814 -0.874561 +-0.214395 0.047871 0.041697 -0.478375 -0.052512 -0.876584 +-0.214297 0.054929 0.040692 -0.478981 -0.016282 -0.877674 +-0.214290 0.062032 0.040654 -0.483345 0.024530 -0.875086 +-0.214441 0.069196 0.042143 -0.490479 0.074604 -0.868254 +-0.214728 0.076435 0.044992 -0.489931 0.114139 -0.864257 +-0.215007 0.083682 0.047788 -0.499067 0.155395 -0.852517 +-0.215159 0.090876 0.049314 -0.499303 0.194004 -0.844428 +-0.215355 0.098092 0.051317 -0.499185 0.223547 -0.837163 +-0.215597 0.105339 0.053689 -0.497999 0.254824 -0.828892 +-0.215929 0.112654 0.057037 -0.502204 0.284105 -0.816747 +-0.216269 0.119976 0.060468 -0.505291 0.323174 -0.800150 +-0.216700 0.127367 0.064767 -0.511106 0.365572 -0.777900 +-0.217040 0.134719 0.068138 -0.512771 0.410927 -0.753793 +-0.217426 0.142110 0.071961 -0.504475 0.460964 -0.730080 +-0.218045 0.149666 0.078211 -0.498317 0.507069 -0.703250 +-0.218635 0.157215 0.084052 -0.496046 0.536375 -0.682818 +-0.219277 0.164832 0.090513 -0.489014 0.557913 -0.670521 +-0.219934 0.172480 0.097049 -0.493965 0.585957 -0.642380 +-0.220720 0.180240 0.104946 -0.505588 0.611797 -0.608346 +-0.221415 0.187955 0.111860 -0.506349 0.630664 -0.588110 +-0.222458 0.195965 0.122319 -0.527229 0.664656 -0.529397 +-0.223962 0.204361 0.137364 -0.537799 0.710817 -0.453333 +-0.225995 0.213217 0.157631 -0.527735 0.769309 -0.360082 +-0.232395 0.225648 0.221673 -0.510222 0.842527 -0.172689 +-0.219330 0.351767 0.091049 -0.320133 -0.838082 -0.441738 +-0.217939 0.357352 0.077115 -0.310811 -0.781502 -0.540973 +-0.217010 0.363435 0.067805 -0.299061 -0.718030 -0.628487 +-0.216141 0.369556 0.059145 -0.301816 -0.670352 -0.677890 +-0.215378 0.375775 0.051513 -0.297280 -0.584545 -0.754939 +-0.214894 0.382311 0.046685 -0.299587 -0.516924 -0.801896 +-0.214516 0.388953 0.042899 -0.302104 -0.450158 -0.840292 +-0.214184 0.395641 0.039596 -0.302279 -0.355370 -0.884500 +-0.213897 0.402374 0.036679 -0.305082 -0.291398 -0.906649 +-0.213730 0.409258 0.035048 -0.313800 -0.231890 -0.920737 +-0.213625 0.416218 0.034020 -0.313821 -0.165456 -0.934955 +-0.213519 0.423162 0.032939 -0.325108 -0.106916 -0.939614 +-0.213473 0.430190 0.032493 -0.328920 -0.062961 -0.942257 +-0.213632 0.437489 0.034072 -0.327443 0.007745 -0.944839 +-0.214819 0.446210 0.045959 -0.363656 0.129574 -0.922478 +-0.224325 -0.463355 0.214970 -0.050893 -0.966784 -0.250475 +-0.220546 -0.452904 0.176529 0.018468 -0.871388 -0.490246 +-0.218612 -0.444048 0.156867 0.120349 -0.610526 -0.782799 +-0.217698 -0.436038 0.147573 0.180761 -0.464198 -0.867090 +-0.217259 -0.428421 0.143084 0.212311 -0.371356 -0.903891 +-0.216995 -0.420948 0.140394 0.231613 -0.285987 -0.929821 +-0.216934 -0.413633 0.139797 0.242529 -0.167955 -0.955495 +-0.216950 -0.406371 0.139940 0.253920 -0.119276 -0.959843 +-0.217055 -0.399169 0.141059 0.264472 -0.067302 -0.962042 +-0.217184 -0.391983 0.142366 0.272168 0.002296 -0.962247 +-0.217312 -0.384789 0.143636 0.268633 0.043163 -0.962275 +-0.217410 -0.377565 0.144626 0.264026 0.065028 -0.962321 +-0.217531 -0.370364 0.145834 0.251473 0.074396 -0.965001 +-0.217682 -0.363170 0.147414 0.234522 0.057796 -0.970391 +-0.217796 -0.355946 0.148555 0.219046 0.014536 -0.975606 +-0.217879 -0.348706 0.149401 0.198637 -0.045710 -0.979007 +-0.217849 -0.341407 0.149129 0.173023 -0.118508 -0.977762 +-0.217781 -0.334077 0.148442 0.148012 -0.184956 -0.971537 +-0.217471 -0.326634 0.145230 0.124906 -0.268838 -0.955052 +-0.217025 -0.319138 0.140749 0.094787 -0.344590 -0.933956 +-0.216451 -0.311588 0.134908 0.070168 -0.417235 -0.906086 +-0.215937 -0.304092 0.129626 0.053782 -0.450030 -0.891393 +-0.215499 -0.296642 0.125182 0.051938 -0.464275 -0.884167 +-0.215143 -0.289244 0.121540 0.058727 -0.453541 -0.889298 +-0.214803 -0.281868 0.118110 0.068033 -0.428136 -0.901150 +-0.214494 -0.274516 0.114989 0.077969 -0.399612 -0.913363 +-0.214206 -0.267186 0.112049 0.090468 -0.369554 -0.924795 +-0.213897 -0.259848 0.108898 0.101638 -0.328692 -0.938952 +-0.213632 -0.252541 0.106178 0.109845 -0.279333 -0.953891 +-0.213390 -0.245257 0.103752 0.121117 -0.223050 -0.967253 +-0.213194 -0.237987 0.101757 0.131224 -0.158408 -0.978615 +-0.213035 -0.230733 0.100147 0.135674 -0.098151 -0.985880 +-0.212960 -0.223509 0.099331 0.139519 -0.031092 -0.989731 +-0.212975 -0.216307 0.099490 0.137677 0.052590 -0.989080 +-0.213126 -0.209144 0.101077 0.131363 0.126324 -0.983253 +-0.213300 -0.201972 0.102815 0.122648 0.193053 -0.973493 +-0.213466 -0.194794 0.104485 0.105413 0.258045 -0.960365 +-0.213640 -0.187615 0.106291 0.075780 0.299714 -0.951015 +-0.213889 -0.180436 0.108792 0.036890 0.311923 -0.949391 +-0.214244 -0.173265 0.112404 -0.013829 0.292637 -0.956124 +-0.214698 -0.166094 0.117074 -0.084750 0.253662 -0.963573 +-0.215159 -0.158907 0.121699 -0.150608 0.196194 -0.968930 +-0.215499 -0.151698 0.125228 -0.213208 0.084130 -0.973378 +-0.215627 -0.144459 0.126520 -0.285001 -0.038431 -0.957757 +-0.215499 -0.137205 0.125220 -0.344934 -0.158468 -0.925153 +-0.215030 -0.129935 0.120407 -0.389393 -0.317916 -0.864467 +-0.214350 -0.122689 0.113538 -0.425126 -0.404245 -0.809848 +-0.213609 -0.115465 0.105966 -0.426111 -0.494574 -0.757513 +-0.212884 -0.108271 0.098614 -0.432073 -0.516530 -0.739263 +-0.212242 -0.101092 0.092077 -0.427794 -0.507208 -0.748152 +-0.211788 -0.093928 0.087422 -0.423862 -0.481542 -0.767110 +-0.211411 -0.086772 0.083598 -0.421468 -0.456457 -0.783589 +-0.211116 -0.079624 0.080614 -0.413728 -0.435074 -0.799713 +-0.210836 -0.072490 0.077757 -0.421053 -0.417927 -0.805016 +-0.210572 -0.065357 0.075082 -0.432725 -0.392580 -0.811560 +-0.210254 -0.058238 0.071863 -0.447276 -0.372861 -0.812969 +-0.209929 -0.051143 0.068546 -0.462915 -0.351129 -0.813891 +-0.209665 -0.044040 0.065871 -0.473830 -0.334059 -0.814794 +-0.209287 -0.036967 0.061972 -0.482373 -0.309509 -0.819463 +-0.208879 -0.029916 0.057876 -0.485183 -0.285186 -0.826599 +-0.208516 -0.022874 0.054181 -0.482238 -0.250003 -0.839610 +-0.208282 -0.015808 0.051793 -0.472359 -0.220642 -0.853343 +-0.208146 -0.008720 0.050410 -0.466626 -0.198819 -0.861819 +-0.208086 -0.001624 0.049783 -0.459359 -0.180854 -0.869644 +-0.208154 0.005517 0.050455 -0.452454 -0.169021 -0.875624 +-0.208108 0.012620 0.049972 -0.448675 -0.157727 -0.879667 +-0.207972 0.019693 0.048619 -0.442386 -0.144031 -0.885183 +-0.207640 0.026683 0.045234 -0.440134 -0.126274 -0.889009 +-0.207292 0.033665 0.041660 -0.439419 -0.107616 -0.891812 +-0.206982 0.040647 0.038531 -0.437252 -0.088606 -0.894964 +-0.206809 0.047675 0.036770 -0.433727 -0.060933 -0.898981 +-0.206741 0.054740 0.036090 -0.430439 -0.022032 -0.902351 +-0.206763 0.061843 0.036317 -0.434574 0.022713 -0.900350 +-0.206869 0.068984 0.037375 -0.426696 0.074347 -0.901334 +-0.207194 0.076231 0.040692 -0.446479 0.118587 -0.886901 +-0.207557 0.083516 0.044357 -0.448265 0.161375 -0.879214 +-0.207866 0.090785 0.047561 -0.447691 0.203771 -0.870661 +-0.208033 0.097987 0.049246 -0.444041 0.232228 -0.865389 +-0.208176 0.105180 0.050689 -0.449152 0.254312 -0.856498 +-0.208350 0.112397 0.052443 -0.453656 0.282811 -0.845112 +-0.208569 0.119644 0.054656 -0.460864 0.311555 -0.830986 +-0.208940 0.126996 0.058480 -0.474450 0.349499 -0.807928 +-0.209242 0.134311 0.061533 -0.479963 0.392739 -0.784469 +-0.209589 0.141671 0.065062 -0.489293 0.449468 -0.747376 +-0.210096 0.149145 0.070208 -0.488022 0.492878 -0.720351 +-0.210874 0.156830 0.078150 -0.490355 0.527411 -0.693822 +-0.211592 0.164485 0.085420 -0.487364 0.556313 -0.673046 +-0.212264 0.172139 0.092273 -0.481171 0.579898 -0.657414 +-0.212945 0.179832 0.099203 -0.485062 0.603075 -0.633258 +-0.213572 0.187494 0.105558 -0.494160 0.622887 -0.606479 +-0.214214 0.195202 0.112094 -0.500885 0.644271 -0.577953 +-0.215536 0.203454 0.125560 -0.518574 0.687406 -0.508481 +-0.217237 0.212061 0.142850 -0.507649 0.747859 -0.427784 +-0.219866 0.221484 0.169615 -0.496786 0.815350 -0.297334 +-0.213738 0.346379 0.107243 -0.310927 -0.884877 -0.346868 +-0.211501 0.351027 0.084543 -0.296803 -0.825765 -0.479604 +-0.210511 0.357049 0.074440 -0.296501 -0.773493 -0.560175 +-0.209506 0.363019 0.064246 -0.282453 -0.716462 -0.637889 +-0.208705 0.369193 0.056040 -0.271334 -0.664781 -0.696021 +-0.208116 0.375601 0.050047 -0.272087 -0.582124 -0.766225 +-0.207655 0.382152 0.045423 -0.272544 -0.525733 -0.805807 +-0.207262 0.388772 0.041425 -0.281010 -0.442352 -0.851680 +-0.206884 0.395384 0.037511 -0.274347 -0.357659 -0.892644 +-0.206703 0.402245 0.035667 -0.287086 -0.300759 -0.909464 +-0.206567 0.409160 0.034284 -0.293493 -0.232550 -0.927244 +-0.206438 0.416089 0.033045 -0.296222 -0.178764 -0.938241 +-0.206280 0.422958 0.031428 -0.297090 -0.135429 -0.945197 +-0.206151 0.429872 0.030128 -0.298400 -0.093161 -0.949883 +-0.206280 0.437134 0.031428 -0.312726 -0.009035 -0.949801 +-0.207081 0.445333 0.039574 -0.331858 0.080487 -0.939889 +-0.216715 -0.463181 0.212809 -0.023676 -0.969066 -0.245665 +-0.213186 -0.452889 0.176295 0.104214 -0.842869 -0.527931 +-0.211290 -0.444033 0.156693 0.198895 -0.548871 -0.811900 +-0.210481 -0.436099 0.148291 0.237891 -0.422374 -0.874647 +-0.210096 -0.428512 0.144323 0.263364 -0.342672 -0.901784 +-0.210013 -0.421167 0.143424 0.282258 -0.266714 -0.921517 +-0.210043 -0.413912 0.143711 0.293928 -0.170825 -0.940439 +-0.210133 -0.406696 0.144648 0.302075 -0.107148 -0.947244 +-0.210285 -0.399525 0.146250 0.317015 -0.051063 -0.947045 +-0.210383 -0.392300 0.147240 0.315003 -0.001082 -0.949090 +-0.210436 -0.385054 0.147852 0.310509 0.030734 -0.950073 +-0.210489 -0.377799 0.148328 0.298467 0.050126 -0.953103 +-0.210572 -0.370568 0.149243 0.274148 0.057783 -0.959950 +-0.210662 -0.363328 0.150180 0.251825 0.034972 -0.967141 +-0.210678 -0.356051 0.150346 0.224346 -0.013157 -0.974421 +-0.210587 -0.348706 0.149371 0.196868 -0.073788 -0.977649 +-0.210504 -0.341369 0.148525 0.170735 -0.148727 -0.974028 +-0.210443 -0.334047 0.147875 0.146325 -0.211319 -0.966402 +-0.210164 -0.326619 0.145011 0.123295 -0.293441 -0.947993 +-0.209771 -0.319145 0.140908 0.097989 -0.377185 -0.920940 +-0.209227 -0.311604 0.135278 0.078188 -0.426279 -0.901206 +-0.208758 -0.304123 0.130427 0.069503 -0.453433 -0.888576 +-0.208327 -0.296679 0.125968 0.074325 -0.458534 -0.885563 +-0.207942 -0.289266 0.121986 0.083338 -0.445668 -0.891311 +-0.207625 -0.281891 0.118737 0.095790 -0.419138 -0.902855 +-0.207338 -0.274546 0.115707 0.107563 -0.391849 -0.913720 +-0.207065 -0.267216 0.112948 0.120983 -0.360075 -0.925046 +-0.206846 -0.259909 0.110674 0.129806 -0.324802 -0.936832 +-0.206620 -0.252609 0.108278 0.141665 -0.270457 -0.952252 +-0.206393 -0.245317 0.105936 0.153143 -0.214601 -0.964621 +-0.206189 -0.238048 0.103865 0.162517 -0.151982 -0.974931 +-0.206015 -0.230786 0.102007 0.165757 -0.093889 -0.981687 +-0.205909 -0.223554 0.100949 0.171827 -0.030948 -0.984641 +-0.205924 -0.216345 0.101077 0.168946 0.045091 -0.984593 +-0.206083 -0.209181 0.102709 0.163354 0.116608 -0.979652 +-0.206249 -0.202003 0.104417 0.150372 0.181625 -0.971803 +-0.206385 -0.194816 0.105853 0.125785 0.235684 -0.963655 +-0.206544 -0.187638 0.107515 0.094834 0.264643 -0.959672 +-0.206771 -0.180451 0.109880 0.052197 0.265625 -0.962662 +-0.207118 -0.173280 0.113462 -0.015957 0.231705 -0.972655 +-0.207489 -0.166101 0.117316 -0.074533 0.210814 -0.974681 +-0.207836 -0.158900 0.120898 -0.170746 0.109785 -0.979180 +-0.208048 -0.151676 0.123059 -0.234030 0.008470 -0.972193 +-0.208078 -0.144437 0.123399 -0.300420 -0.095172 -0.949047 +-0.207897 -0.137182 0.121480 -0.352613 -0.249973 -0.901763 +-0.207360 -0.129928 0.115979 -0.401565 -0.352126 -0.845431 +-0.206673 -0.122681 0.108815 -0.415206 -0.437279 -0.797741 +-0.205970 -0.115472 0.101530 -0.426676 -0.504915 -0.750339 +-0.205161 -0.108278 0.093218 -0.430144 -0.518710 -0.738861 +-0.204662 -0.101107 0.088042 -0.431193 -0.497986 -0.752384 +-0.204270 -0.093951 0.083938 -0.427311 -0.473021 -0.770491 +-0.203967 -0.086795 0.080848 -0.422648 -0.451119 -0.786041 +-0.203718 -0.079646 0.078203 -0.427161 -0.434603 -0.792877 +-0.203431 -0.072513 0.075294 -0.434507 -0.413123 -0.800333 +-0.203151 -0.065387 0.072347 -0.440855 -0.397600 -0.804712 +-0.202804 -0.058284 0.068750 -0.448072 -0.384038 -0.807308 +-0.202312 -0.051218 0.063694 -0.458832 -0.366925 -0.809221 +-0.201746 -0.044183 0.057823 -0.473150 -0.341356 -0.812161 +-0.201262 -0.037148 0.052828 -0.479542 -0.306391 -0.822292 +-0.200877 -0.030113 0.048816 -0.476976 -0.268154 -0.837011 +-0.200559 -0.023070 0.045529 -0.472627 -0.236055 -0.849059 +-0.200317 -0.016027 0.042997 -0.459091 -0.203200 -0.864838 +-0.200151 -0.008962 0.041327 -0.449716 -0.182198 -0.874391 +-0.200045 -0.001889 0.040216 -0.437192 -0.164222 -0.884248 +-0.200219 0.005260 0.042022 -0.426150 -0.156324 -0.891044 +-0.200385 0.012423 0.043722 -0.418502 -0.147450 -0.896166 +-0.200355 0.019511 0.043390 -0.410462 -0.137153 -0.901504 +-0.200091 0.026524 0.040692 -0.403762 -0.125551 -0.906208 +-0.199796 0.033514 0.037609 -0.401513 -0.107210 -0.909557 +-0.199509 0.040496 0.034684 -0.392177 -0.083833 -0.916062 +-0.199328 0.047509 0.032750 -0.381599 -0.057405 -0.922544 +-0.199237 0.054559 0.031821 -0.375252 -0.018759 -0.926733 +-0.199244 0.061647 0.031927 -0.371099 0.028468 -0.928157 +-0.199396 0.068803 0.033483 -0.367333 0.077433 -0.926861 +-0.199690 0.076035 0.036551 -0.381236 0.125041 -0.915982 +-0.200053 0.083312 0.040261 -0.386052 0.165590 -0.907493 +-0.200401 0.090596 0.043866 -0.386843 0.204325 -0.899224 +-0.200521 0.097767 0.045158 -0.387499 0.229345 -0.892886 +-0.200559 0.104901 0.045513 -0.394712 0.245433 -0.885418 +-0.200597 0.112027 0.045914 -0.403010 0.260633 -0.877299 +-0.200726 0.119213 0.047228 -0.417942 0.280872 -0.863965 +-0.200960 0.126475 0.049662 -0.445350 0.301774 -0.842968 +-0.201330 0.133820 0.053485 -0.463566 0.354555 -0.812033 +-0.201670 0.141165 0.057014 -0.482967 0.409724 -0.773867 +-0.202093 0.148586 0.061450 -0.490577 0.459790 -0.740221 +-0.202781 0.156188 0.068508 -0.504265 0.503632 -0.701478 +-0.203793 0.164046 0.078989 -0.507155 0.536858 -0.674224 +-0.204542 0.171762 0.086749 -0.501779 0.566624 -0.653571 +-0.205237 0.179454 0.093943 -0.497458 0.589554 -0.636366 +-0.205826 0.187094 0.100102 -0.497095 0.610246 -0.616844 +-0.206355 0.194711 0.105558 -0.488002 0.627767 -0.606435 +-0.207254 0.202638 0.114883 -0.499992 0.663903 -0.556093 +-0.208781 0.211101 0.130646 -0.499827 0.725373 -0.473294 +-0.210723 0.219973 0.150761 -0.490935 0.787639 -0.372301 +-0.214977 0.230869 0.194869 -0.451788 0.866602 -0.211870 +-0.205554 0.345269 0.097238 -0.305629 -0.848030 -0.432939 +-0.204141 0.350815 0.082646 -0.295350 -0.811948 -0.503497 +-0.203083 0.356732 0.071659 -0.278143 -0.755886 -0.592683 +-0.202139 0.362747 0.061896 -0.266876 -0.707773 -0.654091 +-0.201436 0.369019 0.054611 -0.263470 -0.656125 -0.707166 +-0.200922 0.375510 0.049276 -0.265249 -0.579233 -0.770799 +-0.200423 0.381994 0.044085 -0.260224 -0.521001 -0.812922 +-0.200045 0.388621 0.040216 -0.259454 -0.441211 -0.859078 +-0.199721 0.395301 0.036831 -0.263386 -0.364627 -0.893126 +-0.199547 0.402170 0.035078 -0.264935 -0.305314 -0.914654 +-0.199388 0.409046 0.033423 -0.273451 -0.244828 -0.930206 +-0.199222 0.415915 0.031700 -0.281310 -0.178766 -0.942819 +-0.199071 0.422784 0.030075 -0.281186 -0.142136 -0.949069 +-0.198935 0.429683 0.028692 -0.286970 -0.100233 -0.952681 +-0.198867 0.436673 0.028035 -0.286944 -0.042471 -0.957005 +-0.199721 0.444963 0.036838 -0.316771 0.057796 -0.946740 +-0.208924 -0.462849 0.208706 0.012366 -0.968893 -0.247172 +-0.205592 -0.452670 0.173537 0.163602 -0.800300 -0.576849 +-0.204020 -0.444056 0.156996 0.241206 -0.534358 -0.810112 +-0.203393 -0.436250 0.150369 0.288258 -0.407864 -0.866346 +-0.203098 -0.428731 0.147293 0.308626 -0.310237 -0.899168 +-0.203091 -0.421446 0.147233 0.326552 -0.256516 -0.909705 +-0.203159 -0.414207 0.147950 0.342254 -0.191943 -0.919794 +-0.203280 -0.407006 0.149182 0.354918 -0.092971 -0.930263 +-0.203310 -0.399744 0.149537 0.365506 -0.054406 -0.929218 +-0.203257 -0.392414 0.148925 0.362982 -0.007632 -0.931765 +-0.203234 -0.385107 0.148713 0.352915 0.016942 -0.935502 +-0.203280 -0.377852 0.149167 0.327795 0.031783 -0.944214 +-0.203378 -0.370621 0.150195 0.298654 0.030631 -0.953870 +-0.203461 -0.363381 0.151094 0.272167 0.002067 -0.962248 +-0.203499 -0.356112 0.151487 0.239539 -0.039290 -0.970092 +-0.203378 -0.348752 0.150240 0.207815 -0.099284 -0.973116 +-0.203242 -0.341384 0.148759 0.174451 -0.173752 -0.969214 +-0.203159 -0.334054 0.147935 0.146721 -0.246987 -0.957847 +-0.202887 -0.326619 0.145034 0.125363 -0.322845 -0.938113 +-0.202479 -0.319138 0.140779 0.111357 -0.389882 -0.914107 +-0.202018 -0.311634 0.135860 0.097074 -0.432902 -0.896199 +-0.201602 -0.304175 0.131500 0.096347 -0.451932 -0.886834 +-0.201194 -0.296725 0.127155 0.104170 -0.452154 -0.885836 +-0.200801 -0.289312 0.123074 0.113860 -0.437064 -0.892194 +-0.200506 -0.281944 0.119931 0.124496 -0.412396 -0.902458 +-0.200219 -0.274591 0.116938 0.137705 -0.382676 -0.913562 +-0.199970 -0.267261 0.114248 0.148519 -0.351915 -0.924174 +-0.199781 -0.259962 0.112268 0.161812 -0.314552 -0.935347 +-0.199584 -0.252677 0.110228 0.175270 -0.261854 -0.949059 +-0.199388 -0.245385 0.108150 0.184460 -0.208625 -0.960443 +-0.199184 -0.238108 0.105966 0.193228 -0.148042 -0.969921 +-0.199003 -0.230839 0.104054 0.199617 -0.088264 -0.975891 +-0.198874 -0.223599 0.102747 0.201538 -0.027749 -0.979088 +-0.198844 -0.216383 0.102422 0.201329 0.040549 -0.978684 +-0.199003 -0.209212 0.104122 0.193605 0.109891 -0.974906 +-0.199191 -0.202040 0.106049 0.178412 0.163281 -0.970314 +-0.199343 -0.194854 0.107689 0.146773 0.207525 -0.967156 +-0.199524 -0.187668 0.109548 0.105144 0.217488 -0.970383 +-0.199743 -0.180482 0.111890 0.064264 0.199037 -0.977883 +-0.200030 -0.173303 0.114921 -0.013463 0.184525 -0.982735 +-0.200363 -0.166109 0.118419 -0.080144 0.140854 -0.986781 +-0.200620 -0.158900 0.121117 -0.151088 0.055122 -0.986982 +-0.200657 -0.151668 0.121495 -0.237294 -0.072906 -0.968698 +-0.200537 -0.144414 0.120240 -0.299357 -0.187005 -0.935636 +-0.200204 -0.137160 0.116727 -0.362201 -0.313413 -0.877828 +-0.199690 -0.129913 0.111346 -0.393417 -0.404286 -0.825697 +-0.199025 -0.122681 0.104304 -0.407486 -0.486918 -0.772571 +-0.198307 -0.115472 0.096747 -0.427350 -0.516522 -0.742009 +-0.197642 -0.108286 0.089772 -0.440402 -0.513694 -0.736318 +-0.197136 -0.101122 0.084384 -0.445226 -0.490174 -0.749335 +-0.196751 -0.093966 0.080372 -0.442214 -0.463383 -0.767934 +-0.196486 -0.086818 0.077584 -0.442590 -0.446482 -0.777668 +-0.196237 -0.079677 0.074946 -0.446981 -0.426712 -0.786209 +-0.195927 -0.072551 0.071629 -0.453070 -0.411045 -0.791056 +-0.195511 -0.065455 0.067307 -0.459556 -0.395667 -0.795145 +-0.195020 -0.058382 0.062108 -0.459832 -0.383745 -0.800809 +-0.194438 -0.051339 0.055987 -0.471368 -0.363375 -0.803599 +-0.193947 -0.044304 0.050788 -0.473882 -0.334443 -0.814607 +-0.193585 -0.037261 0.046911 -0.470849 -0.296311 -0.830964 +-0.193275 -0.030219 0.043639 -0.464827 -0.257405 -0.847159 +-0.192988 -0.023183 0.040647 -0.457126 -0.219044 -0.862007 +-0.192731 -0.016148 0.037904 -0.441686 -0.184014 -0.878096 +-0.192579 -0.009090 0.036385 -0.426224 -0.159510 -0.890444 +-0.192519 -0.002017 0.035674 -0.407635 -0.142012 -0.902035 +-0.192693 0.005131 0.037579 -0.400252 -0.141717 -0.905381 +-0.192852 0.012280 0.039249 -0.390814 -0.136830 -0.910243 +-0.192889 0.019390 0.039649 -0.379727 -0.128559 -0.916122 +-0.192632 0.026395 0.036929 -0.369414 -0.118654 -0.921659 +-0.192375 0.033385 0.034178 -0.356372 -0.099936 -0.928984 +-0.192134 0.040375 0.031632 -0.341328 -0.078405 -0.936668 +-0.191960 0.047388 0.029803 -0.331445 -0.048274 -0.942239 +-0.191892 0.054446 0.029100 -0.325318 -0.013900 -0.945503 +-0.191907 0.061526 0.029214 -0.318871 0.034542 -0.947168 +-0.192043 0.068675 0.030695 -0.322821 0.074394 -0.943532 +-0.192292 0.075884 0.033287 -0.325659 0.122927 -0.937462 +-0.192595 0.083130 0.036536 -0.337679 0.165545 -0.926589 +-0.192867 0.090370 0.039385 -0.348346 0.198890 -0.916023 +-0.192988 0.097533 0.040684 -0.354979 0.216045 -0.909568 +-0.193033 0.104667 0.041160 -0.368093 0.226146 -0.901868 +-0.193025 0.111762 0.041062 -0.388121 0.236462 -0.890757 +-0.193116 0.118918 0.042030 -0.407027 0.244372 -0.880120 +-0.193267 0.126112 0.043571 -0.433095 0.261662 -0.862532 +-0.193577 0.133419 0.046881 -0.462351 0.306587 -0.832007 +-0.193932 0.140765 0.050629 -0.476910 0.360258 -0.801730 +-0.194363 0.148178 0.055140 -0.503171 0.412287 -0.759499 +-0.194930 0.155704 0.061148 -0.525189 0.463917 -0.713413 +-0.195920 0.163540 0.071538 -0.521124 0.515925 -0.679891 +-0.196857 0.171391 0.081475 -0.511227 0.551417 -0.659231 +-0.197529 0.179069 0.088541 -0.505549 0.581521 -0.637380 +-0.198179 0.186754 0.095432 -0.514581 0.587387 -0.624647 +-0.198632 0.194311 0.100193 -0.517734 0.613834 -0.595953 +-0.199199 0.201965 0.106140 -0.520092 0.631519 -0.575054 +-0.200499 0.210263 0.119885 -0.509663 0.677650 -0.530126 +-0.202214 0.218945 0.137923 -0.488207 0.759337 -0.430188 +-0.205048 0.228663 0.167840 -0.456011 0.843989 -0.282378 +-0.212355 0.242416 0.244879 -0.452348 0.872123 -0.186503 +-0.197831 0.344657 0.091760 -0.305591 -0.837849 -0.452353 +-0.196841 0.350664 0.081286 -0.304676 -0.786746 -0.536846 +-0.195761 0.356520 0.069860 -0.279789 -0.735725 -0.616788 +-0.194899 0.362619 0.060830 -0.275059 -0.690129 -0.669376 +-0.194234 0.368928 0.053795 -0.267470 -0.646146 -0.714811 +-0.193645 0.375299 0.047554 -0.258989 -0.576480 -0.774981 +-0.193131 0.381759 0.042196 -0.254619 -0.510058 -0.821590 +-0.192799 0.388424 0.038644 -0.256661 -0.438974 -0.861061 +-0.192549 0.395195 0.036007 -0.257302 -0.374712 -0.890723 +-0.192360 0.402034 0.034004 -0.257242 -0.299446 -0.918781 +-0.192179 0.408888 0.032161 -0.257254 -0.251189 -0.933126 +-0.191998 0.415719 0.030203 -0.265785 -0.192910 -0.944534 +-0.191801 0.422527 0.028148 -0.265523 -0.153844 -0.951751 +-0.191665 0.429411 0.026674 -0.266693 -0.120893 -0.956169 +-0.191605 0.436401 0.026032 -0.277945 -0.051890 -0.959194 +-0.192338 0.444547 0.033816 -0.291368 0.011997 -0.956536 +-0.201670 -0.462970 0.210224 0.028040 -0.968849 -0.246060 +-0.198451 -0.452836 0.175630 0.216066 -0.786273 -0.578870 +-0.196902 -0.444207 0.158953 0.313135 -0.483390 -0.817484 +-0.196312 -0.436423 0.152628 0.326987 -0.394187 -0.858892 +-0.196154 -0.429003 0.150935 0.357470 -0.308825 -0.881386 +-0.196154 -0.421711 0.150965 0.372911 -0.247051 -0.894373 +-0.196229 -0.414472 0.151721 0.392891 -0.177881 -0.902217 +-0.196290 -0.407225 0.152394 0.401379 -0.107241 -0.909612 +-0.196154 -0.399834 0.150928 0.401871 -0.055639 -0.914005 +-0.196078 -0.392489 0.150157 0.398999 -0.013579 -0.916851 +-0.195995 -0.385144 0.149265 0.385275 0.000003 -0.922802 +-0.195995 -0.377860 0.149265 0.357667 0.005588 -0.933832 +-0.196116 -0.370643 0.150535 0.328681 -0.004212 -0.944432 +-0.196267 -0.363449 0.152167 0.296933 -0.032662 -0.954340 +-0.196328 -0.356195 0.152832 0.261259 -0.071274 -0.962634 +-0.196176 -0.348805 0.151207 0.226410 -0.125570 -0.965904 +-0.196003 -0.341414 0.149326 0.192531 -0.194695 -0.961783 +-0.195942 -0.334092 0.148683 0.163613 -0.266221 -0.949925 +-0.195663 -0.326656 0.145698 0.150603 -0.334710 -0.930209 +-0.195292 -0.319183 0.141716 0.136770 -0.400761 -0.905917 +-0.194854 -0.311687 0.136941 0.125756 -0.437162 -0.890547 +-0.194484 -0.304243 0.133004 0.128383 -0.449842 -0.883833 +-0.194091 -0.296800 0.128779 0.134544 -0.446449 -0.884636 +-0.193698 -0.289372 0.124563 0.142493 -0.430753 -0.891150 +-0.193388 -0.281997 0.121230 0.150213 -0.405309 -0.901754 +-0.193108 -0.274637 0.118230 0.163913 -0.374440 -0.912649 +-0.192859 -0.267307 0.115571 0.177611 -0.341899 -0.922800 +-0.192685 -0.260015 0.113719 0.191777 -0.303966 -0.933181 +-0.192519 -0.252730 0.111875 0.204086 -0.254757 -0.945224 +-0.192330 -0.245446 0.109895 0.214772 -0.202019 -0.955543 +-0.192119 -0.238153 0.107591 0.222257 -0.141768 -0.964626 +-0.191967 -0.230892 0.105958 0.228337 -0.084532 -0.969905 +-0.191846 -0.223645 0.104696 0.228740 -0.030050 -0.973024 +-0.191778 -0.216413 0.103903 0.229673 0.036021 -0.972601 +-0.191907 -0.209234 0.105362 0.221004 0.096973 -0.970440 +-0.192096 -0.202063 0.107387 0.199147 0.141266 -0.969734 +-0.192300 -0.194892 0.109548 0.163950 0.168000 -0.972058 +-0.192511 -0.187706 0.111784 0.120477 0.175177 -0.977138 +-0.192738 -0.180519 0.114263 0.057885 0.166089 -0.984410 +-0.192980 -0.173325 0.116840 0.007824 0.136547 -0.990603 +-0.193237 -0.166124 0.119621 -0.072320 0.057823 -0.995704 +-0.193380 -0.158900 0.121177 -0.148703 -0.025283 -0.988559 +-0.193267 -0.151653 0.119900 -0.228374 -0.128164 -0.965101 +-0.193018 -0.144399 0.117233 -0.305141 -0.261998 -0.915558 +-0.192564 -0.137137 0.112404 -0.354746 -0.368666 -0.859209 +-0.192013 -0.129898 0.106457 -0.392968 -0.452848 -0.800315 +-0.191287 -0.122674 0.098659 -0.419064 -0.511011 -0.750502 +-0.190713 -0.115472 0.092470 -0.437270 -0.527565 -0.728333 +-0.190184 -0.108293 0.086825 -0.449505 -0.511500 -0.732334 +-0.189776 -0.101130 0.082397 -0.454774 -0.485505 -0.746636 +-0.189428 -0.093981 0.078694 -0.459517 -0.463087 -0.757888 +-0.189141 -0.086833 0.075649 -0.465527 -0.440299 -0.767738 +-0.188801 -0.079707 0.071999 -0.472646 -0.421394 -0.773973 +-0.188446 -0.072588 0.068130 -0.475339 -0.403817 -0.781655 +-0.187970 -0.065508 0.063022 -0.476580 -0.387703 -0.789024 +-0.187350 -0.058465 0.056387 -0.474830 -0.373952 -0.796678 +-0.186852 -0.051422 0.051022 -0.471562 -0.354730 -0.807339 +-0.186436 -0.044380 0.046556 -0.467654 -0.315367 -0.825738 +-0.186081 -0.037344 0.042770 -0.460110 -0.280503 -0.842388 +-0.185839 -0.030294 0.040110 -0.448162 -0.241609 -0.860683 +-0.185620 -0.023251 0.037805 -0.432296 -0.199665 -0.879349 +-0.185431 -0.016201 0.035780 -0.415167 -0.166488 -0.894382 +-0.185348 -0.009136 0.034896 -0.392329 -0.137225 -0.909532 +-0.185333 -0.002048 0.034684 -0.380589 -0.130643 -0.915470 +-0.185469 0.005086 0.036173 -0.369452 -0.123171 -0.921051 +-0.185567 0.012212 0.037186 -0.360615 -0.122114 -0.924687 +-0.185544 0.019300 0.036997 -0.347412 -0.119785 -0.930030 +-0.185340 0.026320 0.034760 -0.333179 -0.111559 -0.936241 +-0.185091 0.033310 0.032078 -0.318071 -0.092827 -0.943511 +-0.184849 0.040300 0.029531 -0.302022 -0.069510 -0.950763 +-0.184706 0.047320 0.027967 -0.291058 -0.041609 -0.955800 +-0.184638 0.054370 0.027272 -0.280714 -0.005825 -0.959774 +-0.184638 0.061443 0.027219 -0.277961 0.034073 -0.959988 +-0.184698 0.068554 0.027914 -0.282664 0.073260 -0.956417 +-0.184902 0.075732 0.030060 -0.288209 0.115136 -0.950621 +-0.185197 0.082972 0.033279 -0.301354 0.154763 -0.940869 +-0.185431 0.090188 0.035780 -0.316502 0.184465 -0.930483 +-0.185552 0.097344 0.037065 -0.333759 0.199809 -0.921239 +-0.185620 0.104478 0.037791 -0.350773 0.202062 -0.914401 +-0.185658 0.111596 0.038191 -0.376273 0.210792 -0.902211 +-0.185733 0.118737 0.038977 -0.411953 0.221872 -0.883780 +-0.185862 0.125923 0.040397 -0.443829 0.226872 -0.866917 +-0.186111 0.133185 0.043057 -0.473357 0.256484 -0.842703 +-0.186466 0.140530 0.046866 -0.489408 0.297437 -0.819763 +-0.186874 0.147928 0.051279 -0.528088 0.356812 -0.770590 +-0.187396 0.155417 0.056841 -0.555560 0.411790 -0.722345 +-0.188136 0.163087 0.064858 -0.549251 0.474936 -0.687575 +-0.189239 0.171051 0.076662 -0.548770 0.529900 -0.646574 +-0.190003 0.178804 0.084898 -0.544741 0.559297 -0.624855 +-0.190607 0.186452 0.091322 -0.539207 0.576554 -0.613874 +-0.191061 0.194008 0.096203 -0.539980 0.594217 -0.596094 +-0.191499 0.201565 0.100926 -0.537517 0.609404 -0.582840 +-0.192338 0.209484 0.109963 -0.518197 0.659066 -0.545072 +-0.193864 0.218016 0.126369 -0.499502 0.735888 -0.457129 +-0.195950 0.227099 0.148767 -0.458036 0.816960 -0.350398 +-0.201285 0.239174 0.206038 -0.440551 0.875530 -0.198400 +-0.190396 0.344362 0.089107 -0.349213 -0.782192 -0.515972 +-0.189466 0.350415 0.079079 -0.331165 -0.757116 -0.563121 +-0.188386 0.356248 0.067495 -0.319024 -0.707330 -0.630799 +-0.187637 0.362468 0.059501 -0.291423 -0.672870 -0.679940 +-0.186950 0.368724 0.052110 -0.279112 -0.627880 -0.726542 +-0.186376 0.375102 0.045899 -0.266632 -0.561970 -0.783005 +-0.185892 0.381578 0.040707 -0.258431 -0.497842 -0.827869 +-0.185544 0.388228 0.036997 -0.258433 -0.431500 -0.864303 +-0.185295 0.394976 0.034262 -0.254165 -0.368064 -0.894387 +-0.185083 0.401777 0.031987 -0.252479 -0.302471 -0.919111 +-0.184894 0.408608 0.029977 -0.255274 -0.244470 -0.935452 +-0.184660 0.415356 0.027446 -0.257833 -0.197563 -0.945775 +-0.184479 0.422180 0.025519 -0.254345 -0.164751 -0.952977 +-0.184350 0.429079 0.024173 -0.263652 -0.120778 -0.957027 +-0.184320 0.436099 0.023818 -0.262719 -0.072497 -0.962145 +-0.185182 0.444441 0.033045 -0.285767 0.001813 -0.958297 +-0.194658 -0.463310 0.214373 0.082766 -0.959131 -0.270586 +-0.191287 -0.452988 0.177527 0.267539 -0.763946 -0.587205 +-0.189814 -0.444396 0.161333 0.346258 -0.468262 -0.812918 +-0.189307 -0.436665 0.155832 0.387195 -0.362403 -0.847788 +-0.189209 -0.429282 0.154706 0.394548 -0.303251 -0.867393 +-0.189224 -0.421998 0.154887 0.418180 -0.241335 -0.875718 +-0.189277 -0.414744 0.155499 0.428427 -0.180770 -0.885309 +-0.189262 -0.407429 0.155333 0.434390 -0.114132 -0.893465 +-0.189073 -0.399993 0.153270 0.429494 -0.057268 -0.901252 +-0.188937 -0.392603 0.151797 0.414558 -0.024273 -0.909699 +-0.188847 -0.385243 0.150747 0.404799 -0.019701 -0.914194 +-0.188839 -0.377943 0.150663 0.382714 -0.026279 -0.923493 +-0.188952 -0.370726 0.151910 0.356542 -0.036026 -0.933585 +-0.189081 -0.363517 0.153323 0.321532 -0.064563 -0.944695 +-0.189156 -0.356271 0.154192 0.297349 -0.104441 -0.949039 +-0.189013 -0.348880 0.152598 0.261351 -0.152583 -0.953108 +-0.188801 -0.341467 0.150263 0.230815 -0.217492 -0.948378 +-0.188710 -0.334122 0.149273 0.202853 -0.288056 -0.935881 +-0.188484 -0.326709 0.146772 0.187692 -0.347124 -0.918845 +-0.188129 -0.319236 0.142925 0.170436 -0.410303 -0.895881 +-0.187690 -0.311740 0.138119 0.164418 -0.438281 -0.883672 +-0.187313 -0.304281 0.133978 0.162001 -0.450762 -0.877821 +-0.186972 -0.296861 0.130261 0.163175 -0.444287 -0.880899 +-0.186632 -0.289455 0.126528 0.169655 -0.426617 -0.888378 +-0.186308 -0.282065 0.122953 0.178543 -0.398207 -0.899752 +-0.186013 -0.274697 0.119727 0.189167 -0.364450 -0.911807 +-0.185748 -0.267352 0.116885 0.202213 -0.331390 -0.921569 +-0.185575 -0.260060 0.114981 0.217203 -0.293487 -0.930961 +-0.185393 -0.252760 0.112994 0.229847 -0.245503 -0.941753 +-0.185219 -0.245476 0.111112 0.241368 -0.194599 -0.950722 +-0.185076 -0.238206 0.109495 0.248924 -0.136487 -0.958858 +-0.184947 -0.230952 0.108082 0.252187 -0.083377 -0.964080 +-0.184849 -0.223705 0.107009 0.254511 -0.029386 -0.966623 +-0.184789 -0.216474 0.106359 0.252209 0.033089 -0.967107 +-0.184872 -0.209280 0.107251 0.244223 0.082476 -0.966205 +-0.185008 -0.202093 0.108724 0.217742 0.110803 -0.969696 +-0.185219 -0.194915 0.111036 0.184450 0.126628 -0.974651 +-0.185431 -0.187736 0.113402 0.129727 0.120363 -0.984217 +-0.185658 -0.180542 0.115850 0.061088 0.102473 -0.992858 +-0.185907 -0.173348 0.118578 -0.000313 0.062036 -0.998074 +-0.186088 -0.166139 0.120618 -0.068020 -0.011184 -0.997621 +-0.186149 -0.158907 0.121268 -0.154082 -0.099503 -0.983035 +-0.185831 -0.151638 0.117777 -0.233709 -0.214892 -0.948262 +-0.185393 -0.144369 0.112971 -0.304749 -0.329785 -0.893515 +-0.184864 -0.137114 0.107152 -0.365056 -0.434256 -0.823502 +-0.184214 -0.129875 0.100041 -0.398216 -0.497760 -0.770493 +-0.183663 -0.122666 0.094019 -0.431009 -0.529003 -0.731018 +-0.183134 -0.115472 0.088223 -0.449740 -0.534218 -0.715783 +-0.182695 -0.108301 0.083455 -0.463348 -0.510294 -0.724506 +-0.182393 -0.101137 0.080153 -0.472811 -0.484767 -0.735833 +-0.182076 -0.093989 0.076707 -0.481104 -0.461999 -0.745047 +-0.181766 -0.086855 0.073231 -0.484847 -0.437911 -0.757072 +-0.181373 -0.079729 0.068976 -0.490124 -0.416045 -0.765954 +-0.180980 -0.072626 0.064639 -0.491448 -0.392929 -0.777230 +-0.180512 -0.065553 0.059546 -0.488102 -0.377145 -0.787095 +-0.179998 -0.058495 0.053894 -0.480246 -0.360979 -0.799411 +-0.179552 -0.051453 0.049072 -0.468377 -0.340072 -0.815459 +-0.179151 -0.044417 0.044659 -0.452781 -0.304433 -0.838039 +-0.178857 -0.037367 0.041463 -0.436944 -0.266422 -0.859127 +-0.178622 -0.030324 0.038871 -0.419621 -0.223295 -0.879806 +-0.178426 -0.023274 0.036702 -0.400805 -0.183117 -0.897677 +-0.178260 -0.016224 0.034904 -0.384144 -0.148515 -0.911250 +-0.178161 -0.009158 0.033861 -0.368879 -0.129585 -0.920400 +-0.178154 -0.002078 0.033732 -0.349879 -0.117056 -0.929453 +-0.178252 0.005048 0.034798 -0.346131 -0.114250 -0.931204 +-0.178267 0.012144 0.034964 -0.334847 -0.111957 -0.935598 +-0.178275 0.019239 0.035100 -0.321759 -0.108764 -0.940554 +-0.178139 0.026275 0.033596 -0.309800 -0.101118 -0.945410 +-0.177912 0.033272 0.031103 -0.295744 -0.086374 -0.951354 +-0.177663 0.040254 0.028382 -0.288782 -0.065269 -0.955167 +-0.177534 0.047274 0.026962 -0.279030 -0.037869 -0.959535 +-0.177481 0.054325 0.026350 -0.275215 -0.008107 -0.961348 +-0.177474 0.061398 0.026274 -0.277119 0.030094 -0.960364 +-0.177497 0.068486 0.026546 -0.278117 0.067751 -0.958155 +-0.177602 0.075619 0.027725 -0.285824 0.101939 -0.952845 +-0.177806 0.082805 0.029954 -0.297147 0.134446 -0.945319 +-0.178093 0.090052 0.033090 -0.314986 0.163710 -0.934870 +-0.178252 0.097231 0.034843 -0.336463 0.175274 -0.925241 +-0.178343 0.104372 0.035773 -0.356734 0.182736 -0.916160 +-0.178403 0.111498 0.036430 -0.384889 0.183968 -0.904442 +-0.178517 0.118669 0.037715 -0.409205 0.185861 -0.893312 +-0.178653 0.125855 0.039203 -0.438796 0.193538 -0.877497 +-0.178857 0.133087 0.041425 -0.468534 0.209415 -0.858266 +-0.179151 0.140394 0.044675 -0.507974 0.257644 -0.821938 +-0.179476 0.147732 0.048196 -0.534791 0.305861 -0.787685 +-0.179907 0.155152 0.052911 -0.569311 0.377525 -0.730315 +-0.180527 0.162739 0.059675 -0.584959 0.427421 -0.689300 +-0.181539 0.170643 0.070775 -0.591567 0.489996 -0.640275 +-0.182446 0.178510 0.080750 -0.580246 0.531390 -0.617203 +-0.183013 0.186127 0.086878 -0.575865 0.555493 -0.599839 +-0.183564 0.193766 0.092976 -0.556346 0.585375 -0.589759 +-0.183972 0.201300 0.097465 -0.552891 0.598230 -0.580028 +-0.184562 0.209001 0.103842 -0.543507 0.628813 -0.556053 +-0.185794 0.217290 0.117346 -0.511786 0.696230 -0.503328 +-0.187539 0.226094 0.136457 -0.460866 0.795286 -0.393857 +-0.190449 0.236023 0.168338 -0.425186 0.865833 -0.263725 +-0.197529 0.249957 0.245823 -0.450490 0.868208 -0.208022 +-0.186217 0.340780 0.121986 -0.347470 -0.888908 -0.298507 +-0.183058 0.344173 0.087430 -0.395057 -0.744091 -0.538756 +-0.181872 0.349893 0.074470 -0.384367 -0.711288 -0.588499 +-0.181078 0.356044 0.065712 -0.347912 -0.671584 -0.654165 +-0.180323 0.362233 0.057506 -0.317794 -0.645973 -0.694065 +-0.179620 0.368452 0.049798 -0.297679 -0.607265 -0.736625 +-0.179076 0.374853 0.043828 -0.282559 -0.542847 -0.790872 +-0.178592 0.381321 0.038569 -0.270981 -0.475676 -0.836840 +-0.178237 0.387933 0.034662 -0.262923 -0.427973 -0.864702 +-0.177965 0.394659 0.031707 -0.257347 -0.351248 -0.900221 +-0.177746 0.401437 0.029282 -0.253797 -0.295439 -0.921034 +-0.177557 0.408245 0.027204 -0.251506 -0.244780 -0.936391 +-0.177353 0.415039 0.024982 -0.247000 -0.193797 -0.949439 +-0.177179 0.421855 0.023040 -0.252583 -0.165650 -0.953290 +-0.177051 0.428746 0.021695 -0.252379 -0.122556 -0.959836 +-0.177051 0.435812 0.021665 -0.253465 -0.088226 -0.963313 +-0.177882 0.444124 0.030778 -0.271098 -0.025235 -0.962221 +-0.187449 -0.463484 0.216572 0.127137 -0.954713 -0.268997 +-0.184282 -0.453275 0.181192 0.311507 -0.751714 -0.581282 +-0.182824 -0.444668 0.164900 0.405885 -0.433937 -0.804336 +-0.182363 -0.436968 0.159830 0.435680 -0.325990 -0.838995 +-0.182265 -0.429577 0.158696 0.443332 -0.281721 -0.850935 +-0.182287 -0.422293 0.158945 0.458627 -0.221578 -0.860561 +-0.182303 -0.414993 0.159112 0.471820 -0.173707 -0.864414 +-0.182280 -0.407671 0.158855 0.468932 -0.118476 -0.875252 +-0.182008 -0.400159 0.155802 0.455499 -0.060760 -0.888161 +-0.181842 -0.392746 0.154011 0.443792 -0.039064 -0.895278 +-0.181728 -0.385364 0.152711 0.425623 -0.044395 -0.903811 +-0.181690 -0.378041 0.152310 0.396854 -0.054594 -0.916257 +-0.181789 -0.370817 0.153406 0.385407 -0.070054 -0.920084 +-0.181940 -0.363616 0.155084 0.360855 -0.096806 -0.927584 +-0.182023 -0.356369 0.155998 0.335282 -0.133808 -0.932567 +-0.181879 -0.348979 0.154366 0.303978 -0.171164 -0.937177 +-0.181660 -0.341558 0.151970 0.270888 -0.236118 -0.933203 +-0.181570 -0.334205 0.150928 0.242407 -0.300472 -0.922472 +-0.181320 -0.326777 0.148170 0.228969 -0.355877 -0.906049 +-0.180988 -0.319311 0.144437 0.212336 -0.412445 -0.885890 +-0.180542 -0.311800 0.139442 0.204746 -0.437253 -0.875722 +-0.180172 -0.304342 0.135308 0.196931 -0.448656 -0.871737 +-0.179847 -0.296921 0.131681 0.197687 -0.441719 -0.875102 +-0.179544 -0.289531 0.128371 0.202819 -0.425084 -0.882138 +-0.179204 -0.282125 0.124555 0.209709 -0.393017 -0.895299 +-0.178902 -0.274750 0.121215 0.217561 -0.357184 -0.908343 +-0.178638 -0.267405 0.118246 0.227621 -0.321672 -0.919084 +-0.178456 -0.260098 0.116175 0.241799 -0.278371 -0.929539 +-0.178298 -0.252806 0.114407 0.254208 -0.236504 -0.937787 +-0.178146 -0.245529 0.112729 0.264992 -0.187401 -0.945865 +-0.178033 -0.238267 0.111444 0.273058 -0.131897 -0.952913 +-0.177935 -0.231012 0.110372 0.275975 -0.080930 -0.957752 +-0.177859 -0.223766 0.109518 0.278236 -0.025060 -0.960186 +-0.177814 -0.216542 0.109064 0.274183 0.029689 -0.961219 +-0.177867 -0.209333 0.109661 0.257046 0.065205 -0.964197 +-0.177980 -0.202139 0.110931 0.231451 0.075762 -0.969892 +-0.178161 -0.194952 0.112926 0.193534 0.081625 -0.977692 +-0.178373 -0.187766 0.115283 0.140854 0.071790 -0.987424 +-0.178600 -0.180572 0.117838 0.092408 0.052303 -0.994347 +-0.178774 -0.173363 0.119727 0.001074 -0.013368 -0.999910 +-0.178758 -0.166124 0.119576 -0.075450 -0.086585 -0.993383 +-0.178698 -0.158877 0.118865 -0.144662 -0.165167 -0.975599 +-0.178298 -0.151608 0.114414 -0.238392 -0.291935 -0.926252 +-0.177769 -0.144338 0.108520 -0.310195 -0.393363 -0.865473 +-0.177172 -0.137092 0.101885 -0.365688 -0.493466 -0.789154 +-0.176544 -0.129860 0.094896 -0.411580 -0.536147 -0.736986 +-0.175947 -0.122658 0.088246 -0.444011 -0.555101 -0.703361 +-0.175426 -0.115480 0.082359 -0.462757 -0.536937 -0.705376 +-0.174935 -0.108316 0.076934 -0.475977 -0.511106 -0.715693 +-0.174587 -0.101167 0.073035 -0.491622 -0.477902 -0.727955 +-0.174202 -0.094034 0.068697 -0.495551 -0.451679 -0.741900 +-0.173869 -0.086908 0.065039 -0.499152 -0.423843 -0.755781 +-0.173552 -0.079797 0.061488 -0.500752 -0.404728 -0.765142 +-0.173189 -0.072709 0.057475 -0.492802 -0.381894 -0.781858 +-0.172879 -0.065621 0.053984 -0.482275 -0.363055 -0.797247 +-0.172509 -0.058556 0.049820 -0.467967 -0.346729 -0.812887 +-0.172214 -0.051490 0.046549 -0.450585 -0.320237 -0.833319 +-0.171874 -0.044448 0.042755 -0.424578 -0.285989 -0.859037 +-0.171633 -0.037397 0.040065 -0.401933 -0.244123 -0.882527 +-0.171421 -0.030347 0.037737 -0.382303 -0.207089 -0.900532 +-0.171240 -0.023297 0.035690 -0.373133 -0.172652 -0.911572 +-0.171081 -0.016246 0.033936 -0.358803 -0.140128 -0.922835 +-0.170968 -0.009196 0.032622 -0.345249 -0.116765 -0.931219 +-0.170915 -0.002123 0.032040 -0.341731 -0.108773 -0.933482 +-0.170953 0.004980 0.032448 -0.333803 -0.101222 -0.937192 +-0.170975 0.012076 0.032758 -0.323772 -0.100083 -0.940827 +-0.171051 0.019186 0.033574 -0.304345 -0.097978 -0.947510 +-0.170975 0.026244 0.032697 -0.293098 -0.092572 -0.951590 +-0.170786 0.033257 0.030611 -0.294282 -0.082316 -0.952167 +-0.170544 0.040239 0.027929 -0.287493 -0.060607 -0.955863 +-0.170401 0.047252 0.026357 -0.285085 -0.032063 -0.957966 +-0.170348 0.054302 0.025730 -0.295307 -0.003620 -0.955396 +-0.170348 0.061382 0.025775 -0.289182 0.030898 -0.956775 +-0.170371 0.068463 0.026002 -0.294431 0.064105 -0.953520 +-0.170469 0.075596 0.027128 -0.297355 0.096466 -0.949881 +-0.170650 0.082768 0.029085 -0.307639 0.120755 -0.943809 +-0.170900 0.089992 0.031896 -0.321593 0.140211 -0.936439 +-0.171051 0.097163 0.033619 -0.346833 0.149160 -0.925990 +-0.171179 0.104327 0.034994 -0.376677 0.153204 -0.913588 +-0.171270 0.111483 0.036060 -0.397708 0.156579 -0.904053 +-0.171383 0.118646 0.037329 -0.425114 0.158337 -0.891183 +-0.171519 0.125833 0.038841 -0.450757 0.161708 -0.877877 +-0.171693 0.133049 0.040760 -0.483679 0.184354 -0.855610 +-0.171912 0.140296 0.043163 -0.507699 0.215436 -0.834164 +-0.172056 0.147505 0.044795 -0.545318 0.271836 -0.792927 +-0.172335 0.154820 0.047894 -0.573734 0.323443 -0.752472 +-0.172706 0.162218 0.052027 -0.605936 0.357656 -0.710580 +-0.173363 0.169850 0.059417 -0.635335 0.413397 -0.652267 +-0.174096 0.177573 0.067586 -0.648026 0.465383 -0.602893 +-0.174791 0.185280 0.075324 -0.641082 0.492412 -0.588680 +-0.175441 0.192988 0.082586 -0.645905 0.512523 -0.565797 +-0.176212 0.200824 0.091200 -0.653338 0.517413 -0.552660 +-0.176839 0.208555 0.098138 -0.670312 0.532924 -0.516405 +-0.177708 0.216534 0.107863 -0.670029 0.574906 -0.469620 +-0.179416 0.225308 0.126883 -0.482695 0.760924 -0.433590 +-0.181690 0.234678 0.152258 -0.440559 0.835679 -0.327944 +-0.186753 0.246799 0.208804 -0.414458 0.887922 -0.199549 +-0.176348 0.337561 0.092651 -0.497992 -0.652043 -0.571703 +-0.175403 0.343584 0.082132 -0.448643 -0.673547 -0.587412 +-0.174413 0.349515 0.071115 -0.408021 -0.651450 -0.639634 +-0.173665 0.355712 0.062780 -0.374778 -0.644090 -0.666851 +-0.172970 0.361946 0.055012 -0.353660 -0.609480 -0.709548 +-0.172320 0.368210 0.047757 -0.331857 -0.578923 -0.744794 +-0.171761 0.374573 0.041486 -0.299824 -0.518627 -0.800707 +-0.171225 0.380943 0.035478 -0.285701 -0.465730 -0.837538 +-0.170869 0.387548 0.031519 -0.273884 -0.408336 -0.870775 +-0.170620 0.394288 0.028753 -0.263624 -0.346466 -0.900258 +-0.170431 0.401104 0.026682 -0.253230 -0.285696 -0.924258 +-0.170257 0.407936 0.024763 -0.250723 -0.240133 -0.937803 +-0.170106 0.414782 0.023010 -0.251817 -0.190717 -0.948797 +-0.169985 0.421673 0.021687 -0.248429 -0.169474 -0.953709 +-0.169895 0.428610 0.020690 -0.248880 -0.136111 -0.958923 +-0.169834 0.435593 0.020040 -0.249694 -0.099555 -0.963194 +-0.170597 0.443814 0.028518 -0.263192 -0.047076 -0.963594 +-0.180512 -0.463914 0.221824 0.158976 -0.952568 -0.259502 +-0.177270 -0.453577 0.184940 0.346628 -0.742590 -0.573070 +-0.175887 -0.445008 0.169245 0.458693 -0.410351 -0.788171 +-0.175411 -0.437270 0.163827 0.466632 -0.330167 -0.820515 +-0.175298 -0.429864 0.162573 0.494759 -0.264462 -0.827812 +-0.175350 -0.422595 0.163139 0.495369 -0.226023 -0.838763 +-0.175358 -0.415288 0.163237 0.504740 -0.179053 -0.844498 +-0.175366 -0.407980 0.163358 0.503989 -0.123516 -0.854833 +-0.175063 -0.400431 0.159844 0.491420 -0.071478 -0.867985 +-0.174837 -0.392958 0.157291 0.476856 -0.056690 -0.877152 +-0.174701 -0.385560 0.155719 0.457472 -0.064457 -0.886885 +-0.174670 -0.378238 0.155424 0.437636 -0.076699 -0.895875 +-0.174761 -0.370998 0.156421 0.414825 -0.096237 -0.904798 +-0.174874 -0.363774 0.157736 0.389561 -0.120428 -0.913093 +-0.174912 -0.356490 0.158114 0.382923 -0.158897 -0.910012 +-0.174761 -0.349092 0.156421 0.350889 -0.198845 -0.915062 +-0.174549 -0.341664 0.154026 0.321983 -0.252030 -0.912583 +-0.174466 -0.334319 0.153089 0.294975 -0.308665 -0.904276 +-0.174202 -0.326868 0.150051 0.275950 -0.372695 -0.885974 +-0.173862 -0.319394 0.146212 0.263701 -0.418784 -0.868955 +-0.173424 -0.311883 0.141217 0.247360 -0.440592 -0.862955 +-0.173061 -0.304425 0.137069 0.238923 -0.447281 -0.861891 +-0.172721 -0.296989 0.133253 0.237854 -0.441187 -0.865321 +-0.172426 -0.289591 0.129860 0.238495 -0.421169 -0.875064 +-0.172101 -0.282186 0.126165 0.242772 -0.390661 -0.887945 +-0.171806 -0.274811 0.122863 0.246746 -0.353030 -0.902489 +-0.171557 -0.267466 0.119968 0.255173 -0.314489 -0.914321 +-0.171368 -0.260158 0.117822 0.266429 -0.269103 -0.925526 +-0.171194 -0.252859 0.115903 0.276005 -0.230984 -0.932989 +-0.171066 -0.245582 0.114354 0.286110 -0.182883 -0.940582 +-0.170990 -0.238327 0.113500 0.292220 -0.130377 -0.947423 +-0.170884 -0.231065 0.112352 0.297620 -0.078482 -0.951453 +-0.170816 -0.223819 0.111543 0.300047 -0.027255 -0.953535 +-0.170794 -0.216595 0.111263 0.291277 0.017346 -0.956481 +-0.170816 -0.209378 0.111596 0.271229 0.036906 -0.961807 +-0.170892 -0.202169 0.112427 0.246824 0.040872 -0.968198 +-0.171073 -0.194983 0.114475 0.204297 0.039509 -0.978111 +-0.171285 -0.187796 0.116885 0.139521 0.007292 -0.990192 +-0.171489 -0.180595 0.119190 0.088639 -0.032072 -0.995547 +-0.171595 -0.173371 0.120391 0.012448 -0.080616 -0.996667 +-0.171519 -0.166124 0.119583 -0.080947 -0.160548 -0.983703 +-0.171262 -0.158855 0.116643 -0.167324 -0.251281 -0.953342 +-0.170771 -0.151578 0.111052 -0.253404 -0.367664 -0.894768 +-0.170197 -0.144316 0.104546 -0.324378 -0.483537 -0.813001 +-0.169585 -0.137069 0.097548 -0.379567 -0.536815 -0.753497 +-0.168882 -0.129845 0.089598 -0.424054 -0.574818 -0.699830 +-0.168262 -0.122651 0.082465 -0.450071 -0.569807 -0.687573 +-0.167650 -0.115480 0.075528 -0.466775 -0.544089 -0.697200 +-0.167061 -0.108331 0.068833 -0.479151 -0.511681 -0.713160 +-0.166645 -0.101205 0.064095 -0.485917 -0.475972 -0.733032 +-0.166222 -0.094087 0.059297 -0.491089 -0.438051 -0.752956 +-0.165874 -0.086984 0.055344 -0.487965 -0.414249 -0.768302 +-0.165550 -0.079888 0.051634 -0.481973 -0.389615 -0.784795 +-0.165202 -0.072815 0.047682 -0.468012 -0.364477 -0.805060 +-0.164968 -0.065735 0.044999 -0.455935 -0.341605 -0.821845 +-0.164764 -0.058662 0.042695 -0.435748 -0.315235 -0.843060 +-0.164582 -0.051589 0.040639 -0.415687 -0.288945 -0.862389 +-0.164408 -0.044523 0.038690 -0.399631 -0.261829 -0.878488 +-0.164220 -0.037465 0.036468 -0.377507 -0.226277 -0.897935 +-0.164038 -0.030415 0.034458 -0.369126 -0.194837 -0.908727 +-0.163887 -0.023365 0.032750 -0.359991 -0.158231 -0.919440 +-0.163789 -0.016307 0.031571 -0.353565 -0.130661 -0.926239 +-0.163744 -0.009234 0.031125 -0.343623 -0.110658 -0.932565 +-0.163668 -0.002176 0.030196 -0.331999 -0.100531 -0.937907 +-0.163623 0.004897 0.029743 -0.326367 -0.091956 -0.940760 +-0.163676 0.011993 0.030309 -0.316130 -0.089211 -0.944512 +-0.163736 0.019103 0.030974 -0.308939 -0.088074 -0.946995 +-0.163713 0.026176 0.030755 -0.303114 -0.084765 -0.949177 +-0.163668 0.033242 0.030203 -0.299807 -0.076977 -0.950889 +-0.163456 0.040232 0.027846 -0.297752 -0.059540 -0.952785 +-0.163283 0.047229 0.025821 -0.302703 -0.036486 -0.952386 +-0.163207 0.054272 0.024989 -0.304881 -0.005285 -0.952376 +-0.163169 0.061330 0.024589 -0.307925 0.026850 -0.951032 +-0.163275 0.068455 0.025723 -0.316371 0.061861 -0.946617 +-0.163411 0.075604 0.027287 -0.325776 0.087650 -0.941375 +-0.163555 0.082760 0.028919 -0.340706 0.106729 -0.934092 +-0.163774 0.089969 0.031428 -0.355661 0.116845 -0.927282 +-0.163963 0.097163 0.033559 -0.371589 0.127747 -0.919567 +-0.164121 0.104349 0.035365 -0.393391 0.129082 -0.910265 +-0.164220 0.111505 0.036476 -0.417201 0.130425 -0.899407 +-0.164310 0.118661 0.037579 -0.437249 0.129292 -0.889998 +-0.164393 0.125810 0.038455 -0.466851 0.142770 -0.872735 +-0.164469 0.132959 0.039347 -0.480650 0.147601 -0.864402 +-0.164477 0.140069 0.039468 -0.511162 0.180598 -0.840296 +-0.164575 0.147233 0.040518 -0.537529 0.212993 -0.815902 +-0.164658 0.154397 0.041516 -0.566226 0.248573 -0.785875 +-0.164801 0.161613 0.043148 -0.594736 0.284888 -0.751750 +-0.165036 0.168905 0.045831 -0.622910 0.313657 -0.716660 +-0.165466 0.176364 0.050697 -0.659161 0.362062 -0.659104 +-0.166056 0.183973 0.057438 -0.696688 0.384612 -0.605557 +-0.166607 0.191567 0.063657 -0.717867 0.393485 -0.574314 +-0.167303 0.199321 0.071583 -0.732402 0.430863 -0.527204 +-0.168338 0.207391 0.083326 -0.721428 0.462738 -0.515184 +-0.169638 0.215756 0.098145 -0.718452 0.491977 -0.491717 +-0.170862 0.224099 0.112110 -0.745292 0.537132 -0.395006 +-0.173106 0.233454 0.137613 -0.451482 0.820204 -0.351325 +-0.176990 0.244494 0.181819 -0.403494 0.883565 -0.237710 +-0.169577 0.330896 0.097472 -0.584695 -0.551250 -0.595194 +-0.168565 0.336828 0.085949 -0.542747 -0.597843 -0.589924 +-0.167613 0.342805 0.075128 -0.508818 -0.609612 -0.607846 +-0.166804 0.348926 0.065946 -0.463838 -0.589996 -0.660878 +-0.166154 0.355221 0.058495 -0.416367 -0.604639 -0.679007 +-0.165557 0.361561 0.051702 -0.384948 -0.576998 -0.720339 +-0.164953 0.367870 0.044856 -0.348017 -0.532706 -0.771433 +-0.164295 0.374082 0.037405 -0.317030 -0.481963 -0.816826 +-0.163819 0.380513 0.031942 -0.298129 -0.436267 -0.848993 +-0.163539 0.387215 0.028806 -0.284727 -0.391929 -0.874827 +-0.163328 0.393986 0.026342 -0.266956 -0.324510 -0.907429 +-0.163222 0.400915 0.025171 -0.257548 -0.274466 -0.926465 +-0.163094 0.407799 0.023682 -0.252998 -0.233154 -0.938952 +-0.162905 0.414585 0.021536 -0.249764 -0.193608 -0.948754 +-0.162716 0.421379 0.019435 -0.246564 -0.169539 -0.954181 +-0.162595 0.428248 0.017992 -0.244496 -0.138976 -0.959639 +-0.162618 0.435343 0.018249 -0.249311 -0.096419 -0.963612 +-0.163245 0.443391 0.025383 -0.253929 -0.060320 -0.965340 +-0.173748 -0.464526 0.229464 0.185274 -0.949042 -0.254936 +-0.170272 -0.453902 0.189088 0.409646 -0.724808 -0.553935 +-0.168988 -0.445386 0.174164 0.493493 -0.487839 -0.720053 +-0.168482 -0.437617 0.168338 0.524004 -0.317196 -0.790447 +-0.168323 -0.430151 0.166434 0.523919 -0.267686 -0.808612 +-0.168345 -0.422852 0.166736 0.537432 -0.224143 -0.812974 +-0.168376 -0.415560 0.167076 0.541203 -0.177304 -0.821987 +-0.168406 -0.408260 0.167416 0.542426 -0.136702 -0.828907 +-0.168232 -0.400802 0.165368 0.531062 -0.080782 -0.843473 +-0.167975 -0.393298 0.162429 0.516069 -0.069781 -0.853700 +-0.167824 -0.385870 0.160661 0.502864 -0.078834 -0.860763 +-0.167764 -0.378517 0.159980 0.485151 -0.093617 -0.869404 +-0.167824 -0.371248 0.160630 0.476073 -0.114942 -0.871862 +-0.167862 -0.363971 0.161084 0.457613 -0.141589 -0.877806 +-0.167809 -0.356626 0.160479 0.428980 -0.178683 -0.885465 +-0.167673 -0.349228 0.158908 0.404363 -0.225259 -0.886425 +-0.167484 -0.341807 0.156709 0.383536 -0.273102 -0.882222 +-0.167401 -0.334455 0.155719 0.362476 -0.326446 -0.872951 +-0.167121 -0.326996 0.152492 0.332239 -0.379149 -0.863634 +-0.166766 -0.319500 0.148366 0.307791 -0.422773 -0.852366 +-0.166328 -0.311981 0.143326 0.289430 -0.441878 -0.849102 +-0.165973 -0.304515 0.139154 0.282229 -0.449502 -0.847523 +-0.165618 -0.297072 0.135104 0.274526 -0.439393 -0.855318 +-0.165293 -0.289652 0.131318 0.271649 -0.418845 -0.866473 +-0.164998 -0.282254 0.127880 0.275654 -0.388303 -0.879338 +-0.164711 -0.274879 0.124525 0.278292 -0.350053 -0.894436 +-0.164461 -0.267526 0.121601 0.286230 -0.307062 -0.907626 +-0.164265 -0.260211 0.119402 0.294327 -0.262251 -0.919019 +-0.164121 -0.252911 0.117664 0.300699 -0.222453 -0.927413 +-0.164000 -0.245642 0.116311 0.312336 -0.177357 -0.933269 +-0.163970 -0.238395 0.115979 0.318817 -0.128272 -0.939096 +-0.163887 -0.231141 0.114989 0.323311 -0.075194 -0.943301 +-0.163812 -0.223887 0.114135 0.320792 -0.028132 -0.946732 +-0.163774 -0.216647 0.113704 0.306280 -0.000616 -0.951941 +-0.163781 -0.209423 0.113764 0.281420 0.005981 -0.959566 +-0.163834 -0.202207 0.114391 0.250333 0.004376 -0.968150 +-0.163970 -0.195005 0.115986 0.200729 -0.020043 -0.979442 +-0.164182 -0.187819 0.118359 0.148376 -0.044404 -0.987934 +-0.164378 -0.180618 0.120649 0.093103 -0.090028 -0.991578 +-0.164356 -0.173371 0.120452 -0.005880 -0.154693 -0.987945 +-0.164136 -0.166109 0.117906 -0.092002 -0.234393 -0.967779 +-0.163736 -0.158824 0.113220 -0.195663 -0.354398 -0.914395 +-0.163215 -0.151547 0.107160 -0.273149 -0.442718 -0.854044 +-0.162648 -0.144285 0.100623 -0.344128 -0.529015 -0.775706 +-0.162036 -0.137054 0.093505 -0.394799 -0.577353 -0.714701 +-0.161273 -0.129830 0.084641 -0.428370 -0.596758 -0.678512 +-0.160585 -0.122643 0.076684 -0.445041 -0.578801 -0.683321 +-0.159943 -0.115480 0.069226 -0.458281 -0.548003 -0.699765 +-0.159406 -0.108346 0.062999 -0.464962 -0.511658 -0.722507 +-0.158953 -0.101228 0.057755 -0.463136 -0.474513 -0.748560 +-0.158552 -0.094125 0.053077 -0.462541 -0.434413 -0.772878 +-0.158129 -0.087037 0.048128 -0.456175 -0.400104 -0.794872 +-0.157781 -0.079956 0.044123 -0.443034 -0.374933 -0.814338 +-0.157502 -0.072883 0.040911 -0.428756 -0.346355 -0.834390 +-0.157328 -0.065810 0.038894 -0.415746 -0.317479 -0.852269 +-0.157192 -0.058737 0.037246 -0.404939 -0.296283 -0.865009 +-0.157041 -0.051672 0.035501 -0.392323 -0.270576 -0.879131 +-0.156867 -0.044614 0.033476 -0.381139 -0.241373 -0.892453 +-0.156731 -0.037556 0.031927 -0.366503 -0.207616 -0.906957 +-0.156633 -0.030491 0.030778 -0.370720 -0.185492 -0.910033 +-0.156550 -0.023433 0.029848 -0.359524 -0.154479 -0.920260 +-0.156535 -0.016352 0.029667 -0.353781 -0.128255 -0.926493 +-0.156497 -0.009287 0.029183 -0.355108 -0.105767 -0.928823 +-0.156467 -0.002214 0.028874 -0.359506 -0.095364 -0.928257 +-0.156414 0.004852 0.028262 -0.366250 -0.086031 -0.926531 +-0.156406 0.011925 0.028126 -0.366099 -0.081835 -0.926971 +-0.156383 0.018998 0.027906 -0.359789 -0.080497 -0.929555 +-0.156467 0.026116 0.028896 -0.342325 -0.079677 -0.936197 +-0.156489 0.033204 0.029100 -0.341099 -0.074578 -0.937064 +-0.156361 0.040224 0.027596 -0.342082 -0.053335 -0.938155 +-0.156232 0.047244 0.026161 -0.353635 -0.028007 -0.934964 +-0.156111 0.054257 0.024695 -0.361492 -0.007029 -0.932349 +-0.156051 0.061299 0.024037 -0.368801 0.022357 -0.929239 +-0.156134 0.068418 0.024982 -0.377690 0.052428 -0.924446 +-0.156232 0.075544 0.026100 -0.384730 0.071089 -0.920287 +-0.156429 0.082730 0.028390 -0.386684 0.086210 -0.918174 +-0.156671 0.089954 0.031216 -0.393974 0.098506 -0.913828 +-0.156844 0.097148 0.033204 -0.406497 0.104554 -0.907650 +-0.156943 0.104296 0.034360 -0.422457 0.111484 -0.899501 +-0.156988 0.111415 0.034889 -0.440914 0.109523 -0.890842 +-0.156958 0.118488 0.034548 -0.452729 0.107635 -0.885128 +-0.156905 0.125538 0.033936 -0.470379 0.112485 -0.875266 +-0.156852 0.132596 0.033332 -0.483572 0.124382 -0.866422 +-0.156822 0.139661 0.032984 -0.500406 0.141339 -0.854176 +-0.156807 0.146734 0.032826 -0.525054 0.172477 -0.833409 +-0.156844 0.153853 0.033226 -0.547486 0.196534 -0.813409 +-0.156935 0.161009 0.034284 -0.570810 0.217225 -0.791826 +-0.157063 0.168203 0.035780 -0.602064 0.241122 -0.761170 +-0.157305 0.175495 0.038569 -0.640544 0.255084 -0.724317 +-0.157751 0.182976 0.043753 -0.679145 0.279499 -0.678707 +-0.158348 0.190600 0.050674 -0.726973 0.307315 -0.614058 +-0.158953 0.198255 0.057740 -0.766914 0.324175 -0.553853 +-0.159595 0.205970 0.065130 -0.795963 0.339295 -0.501320 +-0.160540 0.213995 0.076163 -0.804695 0.340574 -0.486287 +-0.161711 0.222262 0.089712 -0.814297 0.370229 -0.447047 +-0.163290 0.230990 0.108074 -0.814506 0.443960 -0.373468 +-0.167038 0.241917 0.151563 -0.427967 0.852622 -0.299801 +-0.172146 0.254370 0.210859 -0.407962 0.890468 -0.201578 +-0.162164 0.323430 0.095001 -0.673600 -0.432319 -0.599469 +-0.160993 0.329166 0.081422 -0.631665 -0.459039 -0.624726 +-0.160351 0.335513 0.073941 -0.575740 -0.473370 -0.666666 +-0.159754 0.341906 0.067049 -0.527171 -0.516984 -0.674402 +-0.159210 0.348329 0.060672 -0.498668 -0.538391 -0.679312 +-0.158665 0.354745 0.054354 -0.459013 -0.548829 -0.698637 +-0.158069 0.361062 0.047455 -0.396062 -0.532819 -0.747823 +-0.157404 0.367266 0.039725 -0.355710 -0.479226 -0.802379 +-0.156920 0.373689 0.034110 -0.327797 -0.445891 -0.832905 +-0.156527 0.380225 0.029546 -0.310086 -0.411314 -0.857128 +-0.156285 0.386966 0.026773 -0.293583 -0.374501 -0.879521 +-0.156111 0.393790 0.024763 -0.272077 -0.311309 -0.910528 +-0.155998 0.400689 0.023418 -0.258323 -0.261792 -0.929911 +-0.155854 0.407550 0.021778 -0.254462 -0.227476 -0.939949 +-0.155681 0.414351 0.019745 -0.248286 -0.196439 -0.948560 +-0.155522 0.421175 0.017879 -0.242752 -0.169210 -0.955217 +-0.155416 0.428066 0.016655 -0.238155 -0.139823 -0.961110 +-0.155461 0.435200 0.017199 -0.239541 -0.100083 -0.965714 +-0.155938 0.443021 0.022738 -0.244780 -0.065309 -0.967377 +-0.167038 -0.465222 0.237965 0.208544 -0.944614 -0.253403 +-0.163381 -0.454340 0.194620 0.436210 -0.725692 -0.532064 +-0.162126 -0.445816 0.179741 0.520906 -0.518680 -0.677959 +-0.161613 -0.438018 0.173658 0.562074 -0.299814 -0.770833 +-0.161386 -0.430484 0.170937 0.566825 -0.258479 -0.782239 +-0.161371 -0.423146 0.170824 0.575130 -0.210627 -0.790482 +-0.161378 -0.415832 0.170930 0.582289 -0.179521 -0.792913 +-0.161408 -0.408524 0.171278 0.580417 -0.143382 -0.801597 +-0.161371 -0.401164 0.170787 0.577338 -0.095099 -0.810948 +-0.161212 -0.393721 0.168928 0.568952 -0.083366 -0.818135 +-0.161068 -0.386285 0.167182 0.557286 -0.088186 -0.825624 +-0.160970 -0.378895 0.166026 0.545534 -0.102901 -0.831747 +-0.160940 -0.371558 0.165739 0.535708 -0.124466 -0.835180 +-0.160895 -0.364213 0.165210 0.519314 -0.155621 -0.840295 +-0.160804 -0.356830 0.164130 0.496837 -0.192222 -0.846288 +-0.160668 -0.349424 0.162474 0.466784 -0.244048 -0.850031 +-0.160487 -0.341996 0.160290 0.442844 -0.288990 -0.848748 +-0.160358 -0.334613 0.158847 0.422667 -0.337464 -0.841112 +-0.160101 -0.327155 0.155741 0.388199 -0.384236 -0.837654 +-0.159723 -0.319644 0.151298 0.358234 -0.429024 -0.829221 +-0.159278 -0.312102 0.145978 0.337974 -0.447734 -0.827833 +-0.158892 -0.304614 0.141437 0.323510 -0.454308 -0.830028 +-0.158529 -0.297155 0.137182 0.313911 -0.442510 -0.840027 +-0.158174 -0.289712 0.132951 0.310216 -0.421595 -0.852070 +-0.157887 -0.282322 0.129520 0.309687 -0.385636 -0.869125 +-0.157653 -0.274962 0.126754 0.313561 -0.347534 -0.883685 +-0.157419 -0.267609 0.123981 0.318422 -0.304145 -0.897833 +-0.157207 -0.260279 0.121457 0.323252 -0.258649 -0.910279 +-0.157033 -0.252972 0.119424 0.330974 -0.214151 -0.919019 +-0.156920 -0.245695 0.118049 0.340556 -0.169419 -0.924834 +-0.156905 -0.238456 0.117951 0.348625 -0.124943 -0.928897 +-0.156890 -0.231217 0.117716 0.350165 -0.076437 -0.933564 +-0.156814 -0.223955 0.116840 0.342330 -0.041777 -0.938651 +-0.156731 -0.216700 0.115880 0.322062 -0.025796 -0.946367 +-0.156716 -0.209469 0.115707 0.293879 -0.022763 -0.955571 +-0.156731 -0.202237 0.115888 0.246676 -0.033358 -0.968524 +-0.156852 -0.195036 0.117316 0.199531 -0.064094 -0.977793 +-0.157056 -0.187842 0.119659 0.129442 -0.118389 -0.984494 +-0.157169 -0.180625 0.121026 0.064530 -0.161506 -0.984760 +-0.157086 -0.173371 0.120029 -0.009958 -0.223093 -0.974746 +-0.156640 -0.166071 0.114769 -0.129823 -0.343737 -0.930049 +-0.156172 -0.158787 0.109193 -0.225713 -0.440094 -0.869121 +-0.155605 -0.151510 0.102558 -0.300795 -0.523835 -0.796944 +-0.155053 -0.144255 0.095999 -0.359670 -0.575531 -0.734440 +-0.154419 -0.137024 0.088488 -0.402891 -0.613432 -0.679249 +-0.153655 -0.129815 0.079419 -0.420636 -0.608533 -0.672870 +-0.152983 -0.122636 0.071440 -0.433001 -0.582417 -0.687969 +-0.152371 -0.115487 0.064223 -0.429147 -0.555008 -0.712601 +-0.151842 -0.108354 0.057936 -0.429486 -0.513710 -0.742727 +-0.151396 -0.101243 0.052685 -0.432406 -0.470531 -0.769172 +-0.150965 -0.094155 0.047599 -0.425572 -0.429112 -0.796712 +-0.150550 -0.087074 0.042649 -0.413946 -0.391293 -0.821912 +-0.150255 -0.080001 0.039121 -0.404091 -0.366168 -0.838231 +-0.150043 -0.072936 0.036642 -0.398135 -0.336427 -0.853408 +-0.149907 -0.065856 0.035025 -0.393932 -0.310821 -0.864990 +-0.149726 -0.058798 0.032932 -0.388154 -0.283976 -0.876752 +-0.149613 -0.051732 0.031503 -0.387287 -0.258182 -0.885071 +-0.149507 -0.044667 0.030302 -0.381797 -0.229216 -0.895372 +-0.149409 -0.037609 0.029115 -0.380700 -0.207957 -0.901011 +-0.149333 -0.030544 0.028269 -0.382477 -0.185533 -0.905146 +-0.149280 -0.023486 0.027582 -0.383641 -0.155423 -0.910309 +-0.149242 -0.016413 0.027173 -0.398891 -0.130510 -0.907664 +-0.149227 -0.009340 0.027000 -0.399408 -0.106798 -0.910531 +-0.149227 -0.002267 0.027022 -0.399187 -0.089365 -0.912504 +-0.149182 0.004799 0.026433 -0.382546 -0.083184 -0.920184 +-0.149121 0.011849 0.025738 -0.385536 -0.078523 -0.919346 +-0.149053 0.018899 0.024959 -0.406075 -0.078722 -0.910443 +-0.149144 0.026010 0.026040 -0.406149 -0.077015 -0.910556 +-0.149152 0.033091 0.026055 -0.405330 -0.071408 -0.911377 +-0.149182 0.040179 0.026425 -0.399565 -0.056667 -0.914952 +-0.149121 0.047229 0.025715 -0.405015 -0.033920 -0.913681 +-0.149031 0.054257 0.024612 -0.403742 -0.013915 -0.914767 +-0.148940 0.061284 0.023569 -0.419994 0.013505 -0.907426 +-0.148955 0.068365 0.023781 -0.428272 0.038820 -0.902815 +-0.149061 0.075491 0.024967 -0.441580 0.062019 -0.895076 +-0.149227 0.082662 0.026939 -0.444797 0.073798 -0.892586 +-0.149386 0.089841 0.028889 -0.448076 0.081647 -0.890259 +-0.149477 0.096974 0.029939 -0.452870 0.087474 -0.887275 +-0.149484 0.104062 0.030022 -0.458121 0.091559 -0.884162 +-0.149333 0.111044 0.028262 -0.468659 0.091111 -0.878668 +-0.149137 0.117989 0.025949 -0.474203 0.093627 -0.875423 +-0.149001 0.124971 0.024302 -0.479341 0.090825 -0.872916 +-0.149008 0.132044 0.024377 -0.487853 0.091104 -0.868159 +-0.149069 0.139162 0.025125 -0.496484 0.100208 -0.862242 +-0.149121 0.146281 0.025768 -0.521114 0.119215 -0.845120 +-0.149220 0.153429 0.026924 -0.539731 0.142822 -0.829634 +-0.149310 0.160578 0.027952 -0.566283 0.176552 -0.805080 +-0.149424 0.167757 0.029312 -0.582301 0.182153 -0.792304 +-0.149575 0.174966 0.031118 -0.617423 0.202535 -0.760111 +-0.149839 0.182273 0.034194 -0.647489 0.198837 -0.735678 +-0.150293 0.189769 0.039596 -0.694636 0.217265 -0.685767 +-0.150739 0.197273 0.044863 -0.732113 0.219755 -0.644762 +-0.151215 0.204822 0.050553 -0.773820 0.226994 -0.591334 +-0.151698 0.212401 0.056282 -0.814530 0.226348 -0.534141 +-0.152084 0.219897 0.060778 -0.849802 0.216881 -0.480415 +-0.152514 0.227461 0.065878 -0.871660 0.206747 -0.444370 +-0.153006 0.235101 0.071704 -0.892563 0.203448 -0.402419 +-0.153247 0.242506 0.074568 -0.902862 0.177468 -0.391594 +-0.153716 0.250161 0.080168 -0.914953 0.144992 -0.376614 +-0.154011 0.257642 0.083598 -0.929786 0.094225 -0.355836 +-0.154366 0.265207 0.087838 -0.933309 0.058170 -0.354332 +-0.154880 0.272967 0.093928 -0.946507 0.023630 -0.321817 +-0.154963 0.280244 0.094873 -0.947871 -0.018108 -0.318138 +-0.154948 0.287423 0.094707 -0.919928 -0.049101 -0.389002 +-0.154592 0.294209 0.090513 -0.884417 -0.099076 -0.456060 +-0.154018 0.300707 0.083742 -0.846612 -0.114548 -0.519737 +-0.153587 0.307357 0.078596 -0.802886 -0.182832 -0.567403 +-0.153323 0.314203 0.075505 -0.742779 -0.242992 -0.623886 +-0.153111 0.321095 0.073004 -0.706807 -0.287798 -0.646217 +-0.152802 0.327858 0.069302 -0.662338 -0.350686 -0.662063 +-0.152401 0.334493 0.064601 -0.606874 -0.401137 -0.686143 +-0.152053 0.341173 0.060490 -0.561823 -0.443185 -0.698529 +-0.151661 0.347777 0.055798 -0.529817 -0.474510 -0.702946 +-0.151071 0.354110 0.048830 -0.458863 -0.478637 -0.748566 +-0.150519 0.360457 0.042272 -0.410444 -0.477942 -0.776599 +-0.150081 0.366956 0.037110 -0.375338 -0.452181 -0.809107 +-0.149703 0.373508 0.032576 -0.343712 -0.422694 -0.838565 +-0.149378 0.380120 0.028730 -0.317099 -0.389352 -0.864785 +-0.149099 0.386800 0.025458 -0.313426 -0.354164 -0.881097 +-0.148902 0.393586 0.023145 -0.306886 -0.305598 -0.901349 +-0.148744 0.400417 0.021242 -0.290975 -0.256151 -0.921803 +-0.148630 0.407308 0.019896 -0.272343 -0.232338 -0.933728 +-0.148494 0.414170 0.018325 -0.269302 -0.204916 -0.941003 +-0.148404 0.421084 0.017191 -0.264671 -0.173794 -0.948549 +-0.148321 0.428021 0.016284 -0.266237 -0.134138 -0.954528 +-0.148290 0.435018 0.015853 -0.229630 -0.098885 -0.968242 +-0.148842 0.442983 0.022435 -0.232296 -0.068127 -0.970256 +-0.156603 -0.454907 0.201731 0.463952 -0.723133 -0.511691 +-0.155356 -0.446360 0.186670 0.540932 -0.563429 -0.624452 +-0.154751 -0.438449 0.179393 0.605029 -0.310613 -0.733116 +-0.154464 -0.430854 0.175887 0.600643 -0.254491 -0.757933 +-0.154419 -0.423471 0.175283 0.611663 -0.216363 -0.760956 +-0.154426 -0.416149 0.175434 0.612575 -0.174414 -0.770929 +-0.154532 -0.408902 0.176733 0.621033 -0.144972 -0.770260 +-0.154562 -0.401588 0.177043 0.622809 -0.109460 -0.774679 +-0.154509 -0.394212 0.176431 0.621806 -0.091841 -0.777768 +-0.154373 -0.386769 0.174784 0.612717 -0.092806 -0.784835 +-0.154237 -0.379333 0.173152 0.604703 -0.109126 -0.788939 +-0.154124 -0.371920 0.171799 0.587944 -0.135824 -0.797417 +-0.153980 -0.364492 0.170061 0.569740 -0.167358 -0.804604 +-0.153807 -0.357049 0.167908 0.548386 -0.210983 -0.809171 +-0.153678 -0.349643 0.166381 0.525834 -0.259904 -0.809906 +-0.153542 -0.342238 0.164771 0.497966 -0.307181 -0.810968 +-0.153383 -0.334817 0.162807 0.469777 -0.349076 -0.810836 +-0.153089 -0.327329 0.159225 0.440041 -0.391500 -0.808141 +-0.152734 -0.319818 0.154910 0.408027 -0.432254 -0.804158 +-0.152280 -0.312261 0.149477 0.383915 -0.452539 -0.804871 +-0.151872 -0.304757 0.144527 0.365359 -0.457508 -0.810678 +-0.151487 -0.297276 0.139888 0.354868 -0.447332 -0.820952 +-0.151109 -0.289810 0.135323 0.347217 -0.422246 -0.837346 +-0.150814 -0.282405 0.131749 0.346928 -0.386189 -0.854692 +-0.150603 -0.275052 0.129142 0.349156 -0.343293 -0.871918 +-0.150414 -0.267715 0.126883 0.354144 -0.299797 -0.885835 +-0.150187 -0.260370 0.124185 0.359073 -0.257245 -0.897157 +-0.150006 -0.253055 0.121971 0.365362 -0.209669 -0.906945 +-0.149870 -0.245763 0.120316 0.369648 -0.165932 -0.914236 +-0.149839 -0.238516 0.119953 0.376169 -0.120476 -0.918685 +-0.149832 -0.231269 0.119893 0.377998 -0.083101 -0.922069 +-0.149854 -0.224038 0.120120 0.361453 -0.064040 -0.930188 +-0.149756 -0.216776 0.118910 0.338288 -0.052784 -0.939561 +-0.149681 -0.209514 0.118049 0.291713 -0.070172 -0.953928 +-0.149688 -0.202282 0.118117 0.242715 -0.090570 -0.965861 +-0.149764 -0.195066 0.119054 0.176551 -0.140477 -0.974216 +-0.149907 -0.187857 0.120815 0.124808 -0.184009 -0.974969 +-0.149975 -0.180633 0.121593 0.047760 -0.245376 -0.968251 +-0.149764 -0.173356 0.119084 -0.057985 -0.345578 -0.936597 +-0.149326 -0.166056 0.113764 -0.160948 -0.431345 -0.887715 +-0.148729 -0.158756 0.106518 -0.266495 -0.517799 -0.812936 +-0.148109 -0.151479 0.099052 -0.335028 -0.569937 -0.750285 +-0.147489 -0.144233 0.091518 -0.378847 -0.622230 -0.685058 +-0.146847 -0.137001 0.083757 -0.401461 -0.634204 -0.660768 +-0.146114 -0.129799 0.074961 -0.406615 -0.613281 -0.677164 +-0.145457 -0.122628 0.066981 -0.405650 -0.580702 -0.705856 +-0.144875 -0.115487 0.059909 -0.394265 -0.549367 -0.736717 +-0.144361 -0.108369 0.053727 -0.389264 -0.507753 -0.768544 +-0.143907 -0.101266 0.048272 -0.385552 -0.469100 -0.794540 +-0.143484 -0.094178 0.043148 -0.376164 -0.427434 -0.822071 +-0.143122 -0.087105 0.038750 -0.367055 -0.388776 -0.845059 +-0.142933 -0.080032 0.036438 -0.373766 -0.365615 -0.852423 +-0.142751 -0.072959 0.034262 -0.374714 -0.336554 -0.863898 +-0.142623 -0.065886 0.032690 -0.381331 -0.310039 -0.870898 +-0.142472 -0.058828 0.030884 -0.384910 -0.281687 -0.878918 +-0.142336 -0.051770 0.029206 -0.399277 -0.256297 -0.880278 +-0.142207 -0.044712 0.027718 -0.409427 -0.237937 -0.880770 +-0.142132 -0.037654 0.026773 -0.406611 -0.212076 -0.888646 +-0.142071 -0.030596 0.026040 -0.422392 -0.189396 -0.886405 +-0.142049 -0.023523 0.025730 -0.436691 -0.162415 -0.884829 +-0.142011 -0.016458 0.025284 -0.452675 -0.138431 -0.880865 +-0.141996 -0.009393 0.025080 -0.448024 -0.113712 -0.886761 +-0.141996 -0.002320 0.025073 -0.461671 -0.099957 -0.881401 +-0.141913 0.004723 0.024083 -0.471793 -0.086693 -0.877437 +-0.141845 0.011773 0.023282 -0.475744 -0.078174 -0.876103 +-0.141769 0.018816 0.022330 -0.478218 -0.072382 -0.875253 +-0.141761 0.025882 0.022322 -0.477378 -0.072289 -0.875720 +-0.141739 0.032939 0.021974 -0.477271 -0.064541 -0.876383 +-0.141822 0.040043 0.022972 -0.463600 -0.055647 -0.884295 +-0.141845 0.047131 0.023319 -0.454868 -0.038171 -0.889741 +-0.141814 0.054189 0.022964 -0.458365 -0.014811 -0.888640 +-0.141724 0.061201 0.021801 -0.469842 0.008391 -0.882710 +-0.141739 0.068282 0.022020 -0.476994 0.026923 -0.878494 +-0.141746 0.075355 0.022133 -0.487159 0.044255 -0.872191 +-0.141935 0.082533 0.024347 -0.491996 0.062789 -0.868330 +-0.142064 0.089689 0.025919 -0.491677 0.070028 -0.867958 +-0.142064 0.096762 0.025896 -0.492340 0.082997 -0.866437 +-0.141890 0.103722 0.023849 -0.498126 0.085043 -0.862924 +-0.141610 0.110606 0.020448 -0.493224 0.089842 -0.865251 +-0.141406 0.117536 0.018015 -0.498222 0.087022 -0.862671 +-0.141338 0.124540 0.017123 -0.497766 0.083917 -0.863242 +-0.141406 0.131651 0.017962 -0.498679 0.082308 -0.862870 +-0.141482 0.138777 0.018937 -0.504905 0.086108 -0.858869 +-0.141603 0.145933 0.020403 -0.519219 0.099594 -0.848819 +-0.141739 0.153104 0.021974 -0.526770 0.117167 -0.841894 +-0.141890 0.160306 0.023871 -0.543811 0.134318 -0.828389 +-0.142033 0.167492 0.025587 -0.567880 0.155584 -0.808274 +-0.142147 0.174663 0.026901 -0.582656 0.158648 -0.797084 +-0.142283 0.181865 0.028572 -0.615360 0.164837 -0.770818 +-0.142509 0.189149 0.031299 -0.640240 0.164110 -0.750440 +-0.142766 0.196472 0.034420 -0.671810 0.168729 -0.721250 +-0.143061 0.203847 0.038025 -0.696373 0.163210 -0.698876 +-0.143242 0.211116 0.040224 -0.729048 0.163126 -0.664740 +-0.143310 0.218280 0.040972 -0.739220 0.152186 -0.656043 +-0.143386 0.225459 0.041946 -0.762304 0.152259 -0.629055 +-0.143507 0.232683 0.043344 -0.782091 0.149108 -0.605063 +-0.143719 0.240013 0.045899 -0.797246 0.148830 -0.585020 +-0.143991 0.247418 0.049254 -0.804774 0.137752 -0.577375 +-0.144179 0.254741 0.051521 -0.814866 0.146419 -0.560851 +-0.144316 0.262010 0.053145 -0.821658 0.140801 -0.552316 +-0.144414 0.269249 0.054362 -0.815990 0.121975 -0.565051 +-0.144497 0.276466 0.055367 -0.814339 0.099897 -0.571727 +-0.144625 0.283743 0.056878 -0.808787 0.066568 -0.584323 +-0.144776 0.291058 0.058767 -0.794152 0.018558 -0.607436 +-0.144912 0.298357 0.060430 -0.795518 -0.016325 -0.605710 +-0.145041 0.305642 0.061904 -0.772885 -0.083455 -0.629034 +-0.145041 0.312783 0.061896 -0.734814 -0.100403 -0.670796 +-0.144950 0.319803 0.060830 -0.689973 -0.183499 -0.700190 +-0.144761 0.326695 0.058541 -0.657668 -0.249973 -0.710624 +-0.144535 0.333526 0.055805 -0.621731 -0.311980 -0.718414 +-0.144278 0.340312 0.052707 -0.562583 -0.361909 -0.743318 +-0.143900 0.346916 0.048173 -0.507536 -0.388079 -0.769287 +-0.143567 0.353573 0.044161 -0.465439 -0.429363 -0.773960 +-0.143205 0.360163 0.039725 -0.420416 -0.425434 -0.801409 +-0.142834 0.366737 0.035259 -0.392741 -0.413017 -0.821688 +-0.142502 0.373341 0.031216 -0.372152 -0.402999 -0.836119 +-0.142215 0.380006 0.027770 -0.341141 -0.374883 -0.862024 +-0.141905 0.386618 0.024007 -0.332377 -0.348624 -0.876348 +-0.141656 0.393321 0.021022 -0.304480 -0.291857 -0.906703 +-0.141520 0.400175 0.019330 -0.296609 -0.256418 -0.919931 +-0.141414 0.407082 0.018113 -0.288132 -0.225914 -0.930560 +-0.141323 0.413988 0.016949 -0.285255 -0.195669 -0.938266 +-0.141248 0.420933 0.016035 -0.257093 -0.171504 -0.951046 +-0.141180 0.427885 0.015287 -0.263838 -0.132609 -0.955408 +-0.141127 0.434852 0.014614 -0.263101 -0.097222 -0.959857 +-0.141512 0.442545 0.019239 -0.217584 -0.075176 -0.973142 +-0.149885 -0.455557 0.209952 0.492411 -0.726135 -0.479855 +-0.148608 -0.446942 0.194182 0.570037 -0.569542 -0.592182 +-0.147973 -0.438978 0.186300 0.636264 -0.317287 -0.703205 +-0.147663 -0.431338 0.182446 0.636236 -0.258417 -0.726928 +-0.147550 -0.423895 0.181101 0.641620 -0.219734 -0.734875 +-0.147550 -0.416542 0.181048 0.646979 -0.175990 -0.741921 +-0.147640 -0.409280 0.182197 0.651827 -0.147853 -0.743815 +-0.147731 -0.402011 0.183338 0.659981 -0.107965 -0.743484 +-0.147754 -0.394681 0.183610 0.666457 -0.092037 -0.739840 +-0.147648 -0.387245 0.182280 0.662667 -0.098611 -0.742394 +-0.147482 -0.379772 0.180255 0.647937 -0.118421 -0.752432 +-0.147255 -0.372260 0.177436 0.628155 -0.147046 -0.764067 +-0.147074 -0.364794 0.175147 0.610979 -0.185508 -0.769605 +-0.146915 -0.357344 0.173204 0.587227 -0.230946 -0.775776 +-0.146794 -0.349938 0.171769 0.561419 -0.277789 -0.779514 +-0.146658 -0.342518 0.170046 0.534607 -0.320377 -0.782020 +-0.146499 -0.335089 0.168066 0.510041 -0.359685 -0.781335 +-0.146167 -0.327563 0.163963 0.479885 -0.404364 -0.778588 +-0.145766 -0.320014 0.159021 0.451988 -0.440446 -0.775702 +-0.145321 -0.312457 0.153588 0.425302 -0.458667 -0.780219 +-0.144875 -0.304908 0.148064 0.405112 -0.457955 -0.791304 +-0.144504 -0.297427 0.143447 0.394391 -0.452782 -0.799653 +-0.144127 -0.289954 0.138777 0.389762 -0.426274 -0.816319 +-0.143794 -0.282526 0.134651 0.383553 -0.387546 -0.838269 +-0.143567 -0.275158 0.131938 0.384489 -0.345565 -0.856010 +-0.143409 -0.267821 0.129898 0.391785 -0.295517 -0.871306 +-0.143197 -0.260476 0.127298 0.398296 -0.253686 -0.881478 +-0.143016 -0.253153 0.125099 0.401578 -0.205154 -0.892551 +-0.142872 -0.245854 0.123316 0.403209 -0.160240 -0.900969 +-0.142819 -0.238592 0.122613 0.407447 -0.123183 -0.904883 +-0.142842 -0.231360 0.122969 0.396789 -0.100231 -0.912421 +-0.142895 -0.224128 0.123596 0.379213 -0.085272 -0.921372 +-0.142880 -0.216882 0.123414 0.342858 -0.091594 -0.934911 +-0.142797 -0.209612 0.122371 0.296255 -0.112915 -0.948411 +-0.142759 -0.202358 0.121933 0.237217 -0.155253 -0.958971 +-0.142766 -0.195119 0.122009 0.180804 -0.196529 -0.963684 +-0.142834 -0.187895 0.122885 0.098677 -0.254713 -0.961969 +-0.142698 -0.180625 0.121139 0.010109 -0.341527 -0.939818 +-0.142389 -0.173333 0.117369 -0.109250 -0.432099 -0.895184 +-0.141950 -0.166033 0.111883 -0.204849 -0.507819 -0.836754 +-0.141300 -0.158734 0.103896 -0.289483 -0.561916 -0.774888 +-0.140613 -0.151449 0.095394 -0.355570 -0.609410 -0.708653 +-0.140016 -0.144210 0.088027 -0.383948 -0.643336 -0.662346 +-0.139321 -0.136986 0.079473 -0.388524 -0.635564 -0.667163 +-0.138610 -0.129792 0.070684 -0.383738 -0.609527 -0.693702 +-0.137983 -0.122628 0.062931 -0.371174 -0.579961 -0.725173 +-0.137424 -0.115487 0.056040 -0.355520 -0.541577 -0.761774 +-0.136933 -0.108376 0.049956 -0.347614 -0.502726 -0.791474 +-0.136525 -0.101273 0.044961 -0.336289 -0.466925 -0.817858 +-0.136185 -0.094193 0.040700 -0.335747 -0.425967 -0.840135 +-0.135905 -0.087120 0.037291 -0.339525 -0.396029 -0.853161 +-0.135754 -0.080039 0.035372 -0.351283 -0.372528 -0.858966 +-0.135610 -0.072966 0.033581 -0.365504 -0.346294 -0.863995 +-0.135452 -0.065901 0.031700 -0.380117 -0.320983 -0.867456 +-0.135308 -0.058843 0.029879 -0.399312 -0.292832 -0.868792 +-0.135180 -0.051785 0.028292 -0.412506 -0.266047 -0.871239 +-0.135059 -0.044735 0.026810 -0.427722 -0.246100 -0.869764 +-0.134945 -0.037685 0.025367 -0.447098 -0.224076 -0.865964 +-0.134824 -0.030634 0.023947 -0.466988 -0.205717 -0.860002 +-0.134726 -0.023591 0.022715 -0.489266 -0.180982 -0.853150 +-0.134673 -0.016541 0.022027 -0.503335 -0.154948 -0.850085 +-0.134635 -0.009483 0.021589 -0.518308 -0.133417 -0.844723 +-0.134628 -0.002418 0.021491 -0.531167 -0.106818 -0.840506 +-0.134515 0.004610 0.020100 -0.548858 -0.093072 -0.830718 +-0.134416 0.011637 0.018884 -0.550865 -0.077397 -0.830998 +-0.134356 0.018673 0.018151 -0.546946 -0.064480 -0.834681 +-0.134326 0.025723 0.017765 -0.538502 -0.062294 -0.840319 +-0.134295 0.032766 0.017365 -0.534198 -0.057119 -0.843427 +-0.134212 0.039793 0.016375 -0.534211 -0.041733 -0.844320 +-0.134129 0.046806 0.015362 -0.526400 -0.034244 -0.849547 +-0.134099 0.053849 0.015000 -0.515595 -0.014380 -0.856712 +-0.133963 0.060831 0.013277 -0.513523 0.005706 -0.858057 +-0.133895 0.067851 0.012453 -0.508134 0.018768 -0.861074 +-0.133872 0.074886 0.012158 -0.507217 0.035225 -0.861098 +-0.133903 0.081952 0.012483 -0.506341 0.051454 -0.860797 +-0.134107 0.089138 0.015083 -0.507708 0.068785 -0.858779 +-0.134250 0.096286 0.016806 -0.507908 0.083664 -0.857339 +-0.134227 0.103329 0.016564 -0.503476 0.091848 -0.859114 +-0.134016 0.110243 0.013950 -0.505033 0.091402 -0.858247 +-0.133895 0.117211 0.012393 -0.506400 0.092573 -0.857315 +-0.133872 0.124253 0.012204 -0.507994 0.087600 -0.856895 +-0.133955 0.131364 0.013216 -0.505809 0.084726 -0.858475 +-0.134069 0.138505 0.014592 -0.504328 0.083032 -0.859511 +-0.134243 0.145699 0.016692 -0.504576 0.088366 -0.858833 +-0.134401 0.152885 0.018710 -0.510659 0.103148 -0.853573 +-0.134560 0.160079 0.020630 -0.522943 0.119918 -0.843890 +-0.134696 0.167265 0.022314 -0.538415 0.132934 -0.832129 +-0.134787 0.174422 0.023478 -0.549766 0.136219 -0.824137 +-0.134877 0.181570 0.024559 -0.571738 0.139626 -0.808468 +-0.134968 0.188726 0.025685 -0.595933 0.143576 -0.790095 +-0.135051 0.195875 0.026682 -0.606110 0.134731 -0.783886 +-0.135172 0.203076 0.028239 -0.624125 0.134734 -0.769620 +-0.135300 0.210285 0.029818 -0.638264 0.129012 -0.758930 +-0.135384 0.217441 0.030778 -0.653049 0.135479 -0.745099 +-0.135414 0.224560 0.031179 -0.668766 0.139474 -0.730274 +-0.135444 0.231678 0.031549 -0.672895 0.143984 -0.725590 +-0.135542 0.238872 0.032826 -0.666259 0.150595 -0.730356 +-0.135716 0.246149 0.034919 -0.681604 0.155490 -0.715010 +-0.135950 0.253501 0.037828 -0.704398 0.154411 -0.692806 +-0.136124 0.260793 0.039997 -0.714193 0.154494 -0.682686 +-0.136253 0.268040 0.041538 -0.700912 0.140348 -0.699304 +-0.136351 0.275264 0.042793 -0.694199 0.141937 -0.705649 +-0.136517 0.282564 0.044803 -0.697379 0.126476 -0.705455 +-0.136668 0.289864 0.046715 -0.685072 0.098323 -0.721810 +-0.136789 0.297118 0.048143 -0.666858 0.063765 -0.742452 +-0.136880 0.304350 0.049269 -0.650838 0.019237 -0.758973 +-0.136933 0.311536 0.049987 -0.641397 -0.047969 -0.765708 +-0.136970 0.318707 0.050448 -0.645102 -0.109477 -0.756213 +-0.136887 0.325712 0.049420 -0.594149 -0.168100 -0.786594 +-0.136751 0.332642 0.047727 -0.570741 -0.241357 -0.784858 +-0.136585 0.339526 0.045649 -0.535801 -0.293135 -0.791827 +-0.136328 0.346274 0.042483 -0.495271 -0.344512 -0.797508 +-0.136086 0.353037 0.039521 -0.463069 -0.380795 -0.800351 +-0.135829 0.359762 0.036287 -0.429041 -0.388493 -0.815473 +-0.135421 0.366268 0.031322 -0.412942 -0.389362 -0.823332 +-0.135081 0.372843 0.027090 -0.377172 -0.376566 -0.846132 +-0.134772 0.379455 0.023221 -0.357271 -0.362588 -0.860748 +-0.134613 0.386286 0.021294 -0.333785 -0.330601 -0.882774 +-0.134469 0.393132 0.019549 -0.305571 -0.285624 -0.908320 +-0.134356 0.400024 0.018159 -0.293159 -0.253003 -0.921980 +-0.134258 0.406930 0.016942 -0.289364 -0.228254 -0.929607 +-0.134182 0.413860 0.015967 -0.285774 -0.189311 -0.939412 +-0.134076 0.420751 0.014682 -0.285388 -0.163211 -0.944413 +-0.134008 0.427696 0.013874 -0.258190 -0.134224 -0.956725 +-0.133963 0.434678 0.013307 -0.259436 -0.103820 -0.960164 +-0.134303 0.442303 0.017486 -0.207329 -0.075554 -0.975349 +-0.143242 -0.456305 0.219436 0.487703 -0.730774 -0.477614 +-0.141943 -0.447622 0.202962 0.576146 -0.581246 -0.574638 +-0.141293 -0.439620 0.194801 0.662444 -0.334285 -0.670390 +-0.140907 -0.431889 0.189920 0.661711 -0.275088 -0.697471 +-0.140741 -0.424378 0.187804 0.664866 -0.209304 -0.717039 +-0.140666 -0.416950 0.186837 0.671915 -0.181709 -0.717992 +-0.140703 -0.409635 0.187404 0.678786 -0.135225 -0.721778 +-0.140771 -0.402336 0.188235 0.684178 -0.105025 -0.721713 +-0.140839 -0.395036 0.189036 0.687872 -0.094778 -0.719617 +-0.140771 -0.387623 0.188227 0.683072 -0.104647 -0.722815 +-0.140666 -0.380187 0.186912 0.673484 -0.126097 -0.728367 +-0.140431 -0.372653 0.183897 0.655792 -0.159017 -0.738005 +-0.140258 -0.365180 0.181751 0.638070 -0.201744 -0.743079 +-0.140129 -0.357744 0.180156 0.616415 -0.248324 -0.747240 +-0.140031 -0.350331 0.178865 0.592598 -0.295304 -0.749416 +-0.139872 -0.342880 0.176885 0.570463 -0.328293 -0.752858 +-0.139676 -0.335414 0.174353 0.544484 -0.376860 -0.749342 +-0.139290 -0.327843 0.169540 0.517350 -0.417453 -0.747049 +-0.138860 -0.320256 0.164084 0.490552 -0.448442 -0.747167 +-0.138368 -0.312654 0.157940 0.463593 -0.465632 -0.753836 +-0.137930 -0.305105 0.152356 0.442150 -0.467037 -0.765754 +-0.137545 -0.297601 0.147520 0.430121 -0.455957 -0.779166 +-0.137182 -0.290128 0.142918 0.427060 -0.429907 -0.795487 +-0.136857 -0.282684 0.138777 0.427132 -0.389740 -0.815880 +-0.136578 -0.275279 0.135293 0.426922 -0.350124 -0.833757 +-0.136404 -0.267942 0.133132 0.429694 -0.296100 -0.853046 +-0.136222 -0.260597 0.130820 0.434033 -0.245297 -0.866859 +-0.136064 -0.253274 0.128809 0.438025 -0.204465 -0.875402 +-0.135920 -0.245967 0.127026 0.437308 -0.161519 -0.884688 +-0.135829 -0.238682 0.125893 0.429155 -0.135126 -0.893066 +-0.135845 -0.231443 0.126066 0.412847 -0.118270 -0.903089 +-0.135882 -0.224204 0.126475 0.381352 -0.122014 -0.916342 +-0.135935 -0.216972 0.127230 0.350729 -0.130041 -0.927404 +-0.135996 -0.209733 0.127910 0.292072 -0.162776 -0.942442 +-0.135913 -0.202464 0.126890 0.242477 -0.195176 -0.950322 +-0.135822 -0.195194 0.125772 0.160614 -0.265379 -0.950672 +-0.135618 -0.187902 0.123165 0.057363 -0.352448 -0.934072 +-0.135429 -0.180618 0.120777 -0.039507 -0.428223 -0.902809 +-0.134968 -0.173303 0.115004 -0.144053 -0.506312 -0.850233 +-0.134424 -0.165988 0.108142 -0.254128 -0.563794 -0.785847 +-0.133736 -0.158688 0.099475 -0.328758 -0.603073 -0.726789 +-0.133071 -0.151411 0.091064 -0.376740 -0.641713 -0.668036 +-0.132414 -0.144172 0.082699 -0.384926 -0.646299 -0.658885 +-0.131779 -0.136963 0.074765 -0.377672 -0.625237 -0.682966 +-0.131099 -0.129777 0.066150 -0.362881 -0.597404 -0.715141 +-0.130510 -0.122621 0.058707 -0.348003 -0.566057 -0.747310 +-0.130026 -0.115487 0.052594 -0.329604 -0.531452 -0.780333 +-0.129618 -0.108376 0.047440 -0.318134 -0.496770 -0.807472 +-0.129293 -0.101281 0.043337 -0.309564 -0.461789 -0.831216 +-0.129006 -0.094200 0.039725 -0.317926 -0.431153 -0.844411 +-0.128764 -0.087120 0.036702 -0.330018 -0.406062 -0.852174 +-0.128605 -0.080047 0.034692 -0.343726 -0.375777 -0.860607 +-0.128454 -0.072974 0.032773 -0.364369 -0.355456 -0.860747 +-0.128318 -0.065908 0.031042 -0.379867 -0.332891 -0.863067 +-0.128137 -0.058858 0.028753 -0.407434 -0.307510 -0.859904 +-0.127971 -0.051808 0.026644 -0.424016 -0.285067 -0.859620 +-0.127812 -0.044773 0.024635 -0.459057 -0.262812 -0.848644 +-0.127638 -0.037737 0.022511 -0.488751 -0.244994 -0.837317 +-0.127472 -0.030717 0.020334 -0.513708 -0.225265 -0.827865 +-0.127306 -0.023697 0.018279 -0.535209 -0.206792 -0.819017 +-0.127185 -0.016670 0.016753 -0.561862 -0.175056 -0.808496 +-0.127071 -0.009650 0.015279 -0.587483 -0.151076 -0.795009 +-0.126905 -0.002652 0.013194 -0.599406 -0.115133 -0.792122 +-0.126762 0.004345 0.011410 -0.613739 -0.087226 -0.784676 +-0.126663 0.011358 0.010141 -0.613659 -0.062430 -0.787100 +-0.126595 0.018378 0.009272 -0.610047 -0.047665 -0.790931 +-0.126512 0.025390 0.008297 -0.605840 -0.032961 -0.794903 +-0.126444 0.032403 0.007375 -0.594713 -0.023885 -0.803583 +-0.126376 0.039415 0.006566 -0.582295 -0.010251 -0.812913 +-0.126301 0.046420 0.005637 -0.564217 0.005876 -0.825606 +-0.126187 0.053395 0.004179 -0.543823 0.019810 -0.838966 +-0.126104 0.060385 0.003121 -0.532554 0.033325 -0.845740 +-0.126097 0.067420 0.002977 -0.513090 0.039382 -0.857431 +-0.126081 0.074448 0.002803 -0.510364 0.052152 -0.858376 +-0.126097 0.081491 0.003023 -0.504205 0.057617 -0.861660 +-0.126180 0.088579 0.004058 -0.498299 0.073395 -0.863893 +-0.126353 0.095735 0.006234 -0.498068 0.086865 -0.862776 +-0.126641 0.102974 0.009884 -0.495705 0.094311 -0.863355 +-0.126633 0.110009 0.009793 -0.496314 0.098154 -0.862577 +-0.126610 0.117044 0.009536 -0.494698 0.095363 -0.863817 +-0.126595 0.124080 0.009347 -0.488195 0.090207 -0.868060 +-0.126709 0.131213 0.010707 -0.483299 0.087491 -0.871072 +-0.126837 0.138361 0.012370 -0.480899 0.088712 -0.872277 +-0.126973 0.145525 0.014055 -0.478545 0.092990 -0.873125 +-0.127117 0.152704 0.015891 -0.483689 0.101569 -0.869327 +-0.127215 0.159845 0.017176 -0.484382 0.106585 -0.868339 +-0.127351 0.167024 0.018816 -0.504075 0.119003 -0.855422 +-0.127419 0.174150 0.019738 -0.515103 0.120075 -0.848676 +-0.127479 0.181268 0.020478 -0.520741 0.112379 -0.846286 +-0.127532 0.188386 0.021143 -0.539416 0.116276 -0.833973 +-0.127525 0.195444 0.021045 -0.541803 0.113976 -0.832742 +-0.127525 0.202509 0.021007 -0.559501 0.116842 -0.820553 +-0.127570 0.209628 0.021620 -0.563699 0.118553 -0.817428 +-0.127638 0.216761 0.022473 -0.581190 0.127207 -0.803764 +-0.127714 0.223910 0.023387 -0.577332 0.136422 -0.805032 +-0.127774 0.231051 0.024181 -0.581559 0.143931 -0.800671 +-0.127857 0.238207 0.025209 -0.584187 0.152092 -0.797241 +-0.128001 0.245446 0.027030 -0.578762 0.167457 -0.798118 +-0.128220 0.252776 0.029811 -0.573294 0.180988 -0.799110 +-0.128439 0.260113 0.032576 -0.540051 0.200068 -0.817507 +-0.128590 0.267383 0.034511 -0.536023 0.195976 -0.821141 +-0.128658 0.274554 0.035350 -0.533524 0.187361 -0.824772 +-0.128794 0.281808 0.037065 -0.531489 0.166226 -0.830595 +-0.128930 0.289078 0.038811 -0.552565 0.136294 -0.822251 +-0.129066 0.296347 0.040526 -0.576855 0.102769 -0.810356 +-0.129187 0.303609 0.042052 -0.574791 0.050527 -0.816739 +-0.129270 0.310818 0.043095 -0.575484 -0.011630 -0.817731 +-0.129293 0.317959 0.043390 -0.576426 -0.064521 -0.814598 +-0.129270 0.325025 0.043035 -0.552358 -0.136058 -0.822428 +-0.129187 0.332014 0.042014 -0.538738 -0.202441 -0.817789 +-0.129059 0.338944 0.040420 -0.509668 -0.250246 -0.823174 +-0.128855 0.345752 0.037836 -0.484373 -0.303375 -0.820577 +-0.128598 0.352470 0.034579 -0.451115 -0.336770 -0.826487 +-0.128265 0.359075 0.030407 -0.451927 -0.364436 -0.814216 +-0.127955 0.365694 0.026440 -0.427948 -0.368350 -0.825336 +-0.127683 0.372359 0.023017 -0.414440 -0.368022 -0.832346 +-0.127540 0.379213 0.021264 -0.386033 -0.347206 -0.854650 +-0.127449 0.386135 0.020093 -0.371705 -0.328558 -0.868266 +-0.127374 0.393079 0.019126 -0.307490 -0.280288 -0.909334 +-0.127238 0.399933 0.017448 -0.299024 -0.253184 -0.920045 +-0.127132 0.406817 0.016103 -0.294164 -0.222055 -0.929602 +-0.127056 0.413754 0.015136 -0.285882 -0.193228 -0.938581 +-0.126950 0.420638 0.013806 -0.284122 -0.164501 -0.944571 +-0.126678 0.427235 0.010390 -0.309697 -0.127452 -0.942255 +-0.126626 0.434180 0.009665 -0.278289 -0.102946 -0.954965 +-0.126882 0.441683 0.012944 -0.278744 -0.073731 -0.957531 +-0.152537 -0.481166 0.434927 -0.120305 -0.878543 -0.462266 +-0.136819 -0.457317 0.232154 0.488592 -0.714248 -0.501127 +-0.135263 -0.448325 0.212030 0.595912 -0.580242 -0.555165 +-0.134643 -0.440323 0.204103 0.676943 -0.350772 -0.647076 +-0.134227 -0.432539 0.198655 0.686443 -0.285547 -0.668775 +-0.133955 -0.424907 0.195172 0.688428 -0.222182 -0.690436 +-0.133819 -0.417419 0.193411 0.693149 -0.177297 -0.698649 +-0.133827 -0.410058 0.193502 0.696390 -0.135916 -0.704676 +-0.133880 -0.402744 0.194220 0.700347 -0.107459 -0.705668 +-0.133971 -0.395452 0.195391 0.699354 -0.097542 -0.708088 +-0.133925 -0.388046 0.194801 0.692631 -0.109395 -0.712948 +-0.133819 -0.380588 0.193426 0.683097 -0.136260 -0.717504 +-0.133638 -0.373084 0.191137 0.670147 -0.172392 -0.721931 +-0.133532 -0.365641 0.189693 0.656725 -0.216285 -0.722450 +-0.133419 -0.358205 0.188288 0.636096 -0.264456 -0.724875 +-0.133283 -0.350747 0.186466 0.615205 -0.298397 -0.729714 +-0.133094 -0.343266 0.184041 0.592169 -0.344919 -0.728263 +-0.132814 -0.335732 0.180482 0.566859 -0.389230 -0.726065 +-0.132414 -0.328130 0.175252 0.536836 -0.428010 -0.727059 +-0.131960 -0.320513 0.169449 0.513567 -0.457637 -0.725821 +-0.131439 -0.312881 0.162761 0.493233 -0.477167 -0.727346 +-0.130978 -0.305301 0.156807 0.475848 -0.476974 -0.738962 +-0.130600 -0.297790 0.151933 0.461080 -0.463711 -0.756557 +-0.130253 -0.290309 0.147414 0.458127 -0.433456 -0.776038 +-0.129935 -0.282866 0.143288 0.458925 -0.392481 -0.797086 +-0.129641 -0.275445 0.139555 0.461744 -0.346489 -0.816540 +-0.129429 -0.268070 0.136797 0.465137 -0.294019 -0.834985 +-0.129255 -0.260725 0.134537 0.464728 -0.247214 -0.850243 +-0.129127 -0.253410 0.132860 0.468032 -0.205481 -0.859491 +-0.128998 -0.246095 0.131266 0.458049 -0.173367 -0.871857 +-0.128892 -0.238803 0.129845 0.444026 -0.150443 -0.883294 +-0.128870 -0.231534 0.129550 0.417687 -0.150488 -0.896042 +-0.128870 -0.224280 0.129527 0.374311 -0.172195 -0.911175 +-0.128968 -0.217055 0.130804 0.334141 -0.199051 -0.921265 +-0.129029 -0.209816 0.131598 0.299582 -0.214295 -0.929693 +-0.129051 -0.202562 0.131878 0.257543 -0.227311 -0.939149 +-0.128877 -0.195262 0.129671 0.147029 -0.335005 -0.930674 +-0.128636 -0.187955 0.126596 0.030413 -0.415203 -0.909220 +-0.128122 -0.180602 0.119900 -0.103905 -0.509676 -0.854069 +-0.127570 -0.173273 0.112782 -0.217825 -0.569055 -0.792924 +-0.126822 -0.165935 0.103178 -0.307141 -0.602025 -0.737042 +-0.126081 -0.158628 0.093633 -0.372967 -0.632576 -0.678781 +-0.125432 -0.151366 0.085261 -0.386833 -0.651018 -0.653097 +-0.124842 -0.144142 0.077576 -0.379277 -0.635718 -0.672318 +-0.124253 -0.136940 0.070012 -0.366668 -0.613087 -0.699770 +-0.123671 -0.129762 0.062546 -0.346341 -0.579862 -0.737434 +-0.123149 -0.122613 0.055730 -0.330509 -0.550835 -0.766384 +-0.122719 -0.115495 0.050236 -0.319441 -0.521443 -0.791236 +-0.122394 -0.108384 0.046027 -0.316270 -0.492414 -0.810864 +-0.122129 -0.101288 0.042596 -0.317061 -0.467045 -0.825434 +-0.121895 -0.094200 0.039596 -0.323938 -0.441091 -0.836960 +-0.121676 -0.087120 0.036763 -0.338594 -0.419426 -0.842280 +-0.121487 -0.080047 0.034307 -0.350666 -0.398010 -0.847715 +-0.121313 -0.072981 0.032032 -0.369756 -0.374918 -0.850127 +-0.121102 -0.065931 0.029372 -0.388705 -0.360609 -0.847862 +-0.120822 -0.058903 0.025738 -0.426394 -0.337675 -0.839144 +-0.120588 -0.051876 0.022753 -0.451875 -0.311280 -0.836011 +-0.120376 -0.044856 0.019994 -0.493619 -0.292663 -0.818956 +-0.120149 -0.037843 0.017047 -0.532761 -0.274274 -0.800587 +-0.119923 -0.030846 0.014131 -0.571601 -0.256923 -0.779271 +-0.119681 -0.023864 0.010980 -0.602027 -0.227581 -0.765356 +-0.119447 -0.016889 0.007980 -0.628521 -0.190910 -0.753999 +-0.119190 -0.009929 0.004670 -0.658350 -0.146558 -0.738306 +-0.118918 -0.002992 0.001141 -0.667065 -0.104522 -0.737631 +-0.118752 0.003983 -0.000930 -0.667898 -0.074690 -0.740496 +-0.118714 0.010995 -0.001451 -0.665825 -0.046277 -0.744671 +-0.118744 0.018030 -0.001050 -0.657203 -0.021009 -0.753421 +-0.118835 0.025103 0.000068 -0.644278 -0.004639 -0.764778 +-0.118804 0.032116 -0.000295 -0.624152 0.021203 -0.781015 +-0.118850 0.039174 0.000302 -0.607409 0.034491 -0.793640 +-0.118744 0.046148 -0.001081 -0.590893 0.041747 -0.805669 +-0.118676 0.053138 -0.001935 -0.575055 0.052890 -0.816403 +-0.118555 0.060098 -0.003507 -0.555603 0.059646 -0.829306 +-0.118532 0.067110 -0.003801 -0.538343 0.067647 -0.840006 +-0.118548 0.074146 -0.003567 -0.519402 0.071881 -0.851501 +-0.118600 0.081196 -0.002947 -0.500998 0.076864 -0.862028 +-0.118676 0.088276 -0.001980 -0.486997 0.084687 -0.869288 +-0.118789 0.095380 -0.000529 -0.480687 0.094133 -0.871825 +-0.119008 0.102558 0.002312 -0.481584 0.101347 -0.870520 +-0.119190 0.109730 0.004655 -0.476638 0.107560 -0.872495 +-0.119326 0.116871 0.006461 -0.468972 0.104337 -0.877028 +-0.119364 0.123936 0.006944 -0.460643 0.103038 -0.881585 +-0.119507 0.131092 0.008743 -0.450991 0.100466 -0.886856 +-0.119651 0.138256 0.010617 -0.441364 0.094395 -0.892349 +-0.119749 0.145389 0.011924 -0.439145 0.093057 -0.893584 +-0.119832 0.152507 0.013005 -0.439077 0.098436 -0.893040 +-0.119877 0.159603 0.013541 -0.442689 0.101884 -0.890868 +-0.119945 0.166714 0.014410 -0.451468 0.104166 -0.886186 +-0.119983 0.173809 0.014909 -0.463323 0.104652 -0.879988 +-0.120044 0.180920 0.015710 -0.469814 0.103742 -0.876648 +-0.120097 0.188023 0.016352 -0.489054 0.105846 -0.865808 +-0.120081 0.195074 0.016231 -0.486541 0.100639 -0.867842 +-0.120089 0.202139 0.016261 -0.491803 0.102516 -0.864651 +-0.120074 0.209182 0.016103 -0.502449 0.111168 -0.857430 +-0.120112 0.216285 0.016602 -0.504189 0.123755 -0.854680 +-0.120180 0.223419 0.017486 -0.503350 0.132594 -0.853849 +-0.120240 0.230544 0.018279 -0.465247 0.153685 -0.871737 +-0.120331 0.237701 0.019390 -0.467473 0.168512 -0.867798 +-0.120444 0.244894 0.020856 -0.468718 0.183214 -0.864139 +-0.120610 0.252156 0.023002 -0.483655 0.197065 -0.852785 +-0.120875 0.259547 0.026463 -0.488854 0.208098 -0.847182 +-0.121056 0.266839 0.028738 -0.490453 0.203279 -0.847428 +-0.121139 0.274025 0.029841 -0.490064 0.196487 -0.849253 +-0.121283 0.281279 0.031639 -0.490872 0.175186 -0.853437 +-0.121427 0.288556 0.033536 -0.491230 0.144290 -0.858996 +-0.121578 0.295841 0.035486 -0.487028 0.110887 -0.866319 +-0.121668 0.303058 0.036695 -0.510495 0.067690 -0.857212 +-0.121752 0.310259 0.037730 -0.512733 0.010186 -0.858488 +-0.121789 0.317407 0.038221 -0.513937 -0.046801 -0.856550 +-0.121789 0.324503 0.038183 -0.511256 -0.113995 -0.851835 +-0.121759 0.331561 0.037828 -0.497359 -0.170013 -0.850723 +-0.121653 0.338498 0.036453 -0.487748 -0.225608 -0.843328 +-0.121457 0.345306 0.033929 -0.469514 -0.274769 -0.839082 +-0.121230 0.352062 0.030982 -0.461174 -0.326969 -0.824870 +-0.120943 0.358719 0.027347 -0.444989 -0.342827 -0.827318 +-0.120709 0.365437 0.024279 -0.429174 -0.354536 -0.830731 +-0.120505 0.372193 0.021634 -0.454925 -0.374369 -0.808016 +-0.120422 0.379137 0.020607 -0.446086 -0.362013 -0.818507 +-0.120301 0.385999 0.018997 -0.431890 -0.332306 -0.838477 +-0.120059 0.392671 0.015861 -0.426918 -0.298393 -0.853641 +-0.120074 0.399759 0.016088 -0.305360 -0.253209 -0.917954 +-0.117595 0.402714 -0.015846 -0.853651 -0.315049 -0.414758 +-0.113946 0.403575 -0.062939 -0.900034 -0.305652 -0.310670 +-0.113598 0.409900 -0.067465 -0.878918 -0.266119 -0.395833 +-0.113553 0.416739 -0.068055 -0.889742 -0.193555 -0.413396 +-0.113605 0.423744 -0.067367 -0.889405 -0.183945 -0.418476 +-0.113893 0.431157 -0.063695 -0.917290 -0.105984 -0.383857 +-0.146635 -0.491005 0.459788 -0.093167 -0.861102 -0.499823 +-0.144300 -0.480682 0.428988 -0.107494 -0.881594 -0.459605 +-0.129981 -0.457937 0.239967 0.479974 -0.695873 -0.534215 +-0.128613 -0.449096 0.221960 0.601342 -0.557593 -0.572257 +-0.127910 -0.440973 0.212695 0.682014 -0.396095 -0.614789 +-0.127510 -0.433182 0.207330 0.692798 -0.290671 -0.659956 +-0.127207 -0.425504 0.203370 0.700233 -0.240460 -0.672200 +-0.127026 -0.417955 0.200990 0.704875 -0.185508 -0.684645 +-0.127018 -0.410565 0.200892 0.708326 -0.134363 -0.692980 +-0.127056 -0.403220 0.201360 0.706408 -0.117848 -0.697925 +-0.127139 -0.395913 0.202502 0.701569 -0.107710 -0.704414 +-0.127124 -0.388522 0.202328 0.694445 -0.120844 -0.709326 +-0.127071 -0.381094 0.201542 0.684609 -0.150739 -0.713154 +-0.126950 -0.373621 0.200023 0.675226 -0.183649 -0.714383 +-0.126837 -0.366155 0.198474 0.660431 -0.229614 -0.714919 +-0.126694 -0.358674 0.196577 0.642826 -0.275272 -0.714843 +-0.126482 -0.351147 0.193811 0.626284 -0.311899 -0.714485 +-0.126210 -0.343591 0.190230 0.606815 -0.356346 -0.710488 +-0.125877 -0.336004 0.185839 0.577366 -0.400647 -0.711429 +-0.125500 -0.328409 0.180882 0.556542 -0.435645 -0.707442 +-0.125046 -0.320777 0.174882 0.534504 -0.465074 -0.705700 +-0.124532 -0.313122 0.168044 0.514867 -0.483188 -0.708125 +-0.124041 -0.305521 0.161643 0.500080 -0.486867 -0.716157 +-0.123671 -0.297994 0.156678 0.489241 -0.469926 -0.734719 +-0.123331 -0.290513 0.152265 0.488851 -0.438017 -0.754431 +-0.123006 -0.283047 0.147882 0.488199 -0.393610 -0.778931 +-0.122696 -0.275604 0.143855 0.494722 -0.348054 -0.796310 +-0.122469 -0.268214 0.140840 0.492590 -0.305019 -0.815057 +-0.122326 -0.260876 0.138988 0.490591 -0.252268 -0.834075 +-0.122167 -0.253539 0.136865 0.487856 -0.214311 -0.846208 +-0.122069 -0.246231 0.135557 0.474541 -0.190124 -0.859456 +-0.121963 -0.238924 0.134182 0.443911 -0.189463 -0.875812 +-0.121895 -0.231640 0.133314 0.410787 -0.200810 -0.889342 +-0.121888 -0.224378 0.133192 0.370675 -0.221950 -0.901853 +-0.121993 -0.217146 0.134553 0.329014 -0.234372 -0.914778 +-0.122046 -0.209899 0.135301 0.306270 -0.243405 -0.920300 +-0.122001 -0.202622 0.134696 0.202668 -0.331439 -0.921452 +-0.121789 -0.195308 0.131908 0.116040 -0.395051 -0.911301 +-0.121328 -0.187947 0.125840 -0.050455 -0.519847 -0.852768 +-0.120701 -0.180572 0.117490 -0.178560 -0.579954 -0.794840 +-0.119900 -0.173197 0.106993 -0.290104 -0.618856 -0.729971 +-0.119114 -0.165852 0.096535 -0.366495 -0.638830 -0.676445 +-0.118464 -0.158575 0.088042 -0.390016 -0.653693 -0.648516 +-0.117845 -0.151321 0.079790 -0.383276 -0.640502 -0.665475 +-0.117338 -0.144112 0.073103 -0.370269 -0.621802 -0.690118 +-0.116840 -0.136925 0.066528 -0.354516 -0.597058 -0.719611 +-0.116318 -0.129754 0.059667 -0.338279 -0.568033 -0.750270 +-0.115857 -0.122613 0.053591 -0.326461 -0.542780 -0.773830 +-0.115495 -0.115495 0.048823 -0.321849 -0.513732 -0.795294 +-0.115215 -0.108384 0.045135 -0.321555 -0.492226 -0.808898 +-0.114996 -0.101288 0.042196 -0.328953 -0.469739 -0.819228 +-0.114777 -0.094200 0.039347 -0.334094 -0.449057 -0.828691 +-0.114558 -0.087120 0.036453 -0.342545 -0.429112 -0.835778 +-0.114316 -0.080054 0.033211 -0.357941 -0.405170 -0.841258 +-0.114074 -0.073004 0.030015 -0.390743 -0.394862 -0.831507 +-0.113734 -0.065976 0.025609 -0.423778 -0.383701 -0.820479 +-0.113386 -0.058971 0.020984 -0.457650 -0.359045 -0.813414 +-0.113069 -0.051966 0.016745 -0.502369 -0.352998 -0.789315 +-0.112744 -0.044984 0.012514 -0.555327 -0.338710 -0.759531 +-0.112449 -0.038009 0.008652 -0.591525 -0.315026 -0.742197 +-0.112177 -0.031035 0.005070 -0.627741 -0.285092 -0.724337 +-0.111988 -0.024060 0.002516 -0.655437 -0.242558 -0.715240 +-0.111679 -0.017123 -0.001557 -0.672715 -0.198976 -0.712645 +-0.111391 -0.010194 -0.005350 -0.688149 -0.143920 -0.711152 +-0.111150 -0.003264 -0.008547 -0.697914 -0.089620 -0.710552 +-0.110998 0.003688 -0.010564 -0.689607 -0.049950 -0.722459 +-0.110946 0.010685 -0.011191 -0.673711 -0.015122 -0.738841 +-0.111044 0.017736 -0.009884 -0.660360 0.012095 -0.750852 +-0.111286 0.024861 -0.006771 -0.643678 0.033296 -0.764572 +-0.111414 0.031942 -0.005041 -0.628546 0.044666 -0.776488 +-0.111588 0.039053 -0.002705 -0.610823 0.058973 -0.789568 +-0.111626 0.046103 -0.002207 -0.594083 0.069271 -0.801416 +-0.111505 0.053063 -0.003854 -0.575572 0.077801 -0.814041 +-0.111339 0.059992 -0.006008 -0.554424 0.084583 -0.827925 +-0.111286 0.066974 -0.006740 -0.535639 0.094231 -0.839173 +-0.111255 0.073979 -0.007134 -0.511212 0.098091 -0.853839 +-0.111293 0.081014 -0.006665 -0.484270 0.098673 -0.869337 +-0.111376 0.088095 -0.005569 -0.462035 0.100480 -0.881151 +-0.111490 0.095191 -0.004028 -0.450992 0.104887 -0.886344 +-0.111633 0.102317 -0.002169 -0.450250 0.111524 -0.885910 +-0.111883 0.109526 0.001133 -0.438686 0.116243 -0.891090 +-0.112094 0.116727 0.003982 -0.429567 0.116667 -0.895467 +-0.112192 0.123838 0.005184 -0.418011 0.116244 -0.900974 +-0.112291 0.130956 0.006506 -0.408042 0.111048 -0.906184 +-0.112389 0.138074 0.007776 -0.407668 0.106071 -0.906949 +-0.112487 0.145208 0.009159 -0.407081 0.103086 -0.907556 +-0.112517 0.152281 0.009513 -0.402956 0.099735 -0.909769 +-0.112480 0.159293 0.008985 -0.406038 0.095840 -0.908817 +-0.112480 0.166336 0.009015 -0.407566 0.094191 -0.908305 +-0.112540 0.173439 0.009801 -0.416573 0.095615 -0.904060 +-0.112585 0.180535 0.010413 -0.419463 0.092176 -0.903080 +-0.112653 0.187646 0.011305 -0.423442 0.093907 -0.901043 +-0.112699 0.194749 0.011909 -0.433773 0.097178 -0.895766 +-0.112706 0.201807 0.012030 -0.428267 0.103826 -0.897668 +-0.112684 0.208834 0.011713 -0.423083 0.114326 -0.898849 +-0.112706 0.215907 0.012053 -0.413851 0.128412 -0.901242 +-0.112789 0.223048 0.013080 -0.413216 0.141993 -0.899495 +-0.112850 0.230174 0.013919 -0.410873 0.157815 -0.897930 +-0.112941 0.237330 0.015060 -0.411979 0.173693 -0.894485 +-0.113031 0.244494 0.016337 -0.412213 0.189044 -0.891259 +-0.113182 0.251733 0.018332 -0.412580 0.202917 -0.888033 +-0.113394 0.259055 0.021113 -0.418389 0.213873 -0.882728 +-0.113605 0.266385 0.023879 -0.424141 0.211789 -0.880483 +-0.113764 0.273647 0.025934 -0.431051 0.199786 -0.879932 +-0.113885 0.280886 0.027619 -0.436691 0.176609 -0.882106 +-0.114006 0.288126 0.029183 -0.450843 0.147333 -0.880360 +-0.114165 0.295410 0.031254 -0.452787 0.109949 -0.884814 +-0.114270 0.302649 0.032690 -0.453246 0.066325 -0.888915 +-0.114354 0.309843 0.033732 -0.448174 0.009818 -0.893892 +-0.114369 0.316946 0.033906 -0.446797 -0.046837 -0.893409 +-0.114369 0.324050 0.033982 -0.459002 -0.093012 -0.883553 +-0.114354 0.331108 0.033732 -0.450724 -0.148842 -0.880167 +-0.114255 0.338060 0.032478 -0.460932 -0.207961 -0.862725 +-0.114127 0.344944 0.030717 -0.454915 -0.259046 -0.852026 +-0.113961 0.351790 0.028594 -0.470131 -0.318932 -0.822958 +-0.113726 0.358500 0.025451 -0.466669 -0.339998 -0.816469 +-0.113537 0.365286 0.023025 -0.484798 -0.369411 -0.792784 +-0.113356 0.372064 0.020592 -0.497565 -0.381932 -0.778818 +-0.113235 0.378941 0.018997 -0.502099 -0.370102 -0.781614 +-0.111210 0.382712 -0.007685 -0.765807 -0.418156 -0.488554 +-0.108527 0.385288 -0.043133 -0.870713 -0.455598 -0.185172 +-0.106729 0.389233 -0.066876 -0.858246 -0.409986 -0.308747 +-0.106208 0.395271 -0.073730 -0.843483 -0.336315 -0.418842 +-0.105988 0.401792 -0.076624 -0.844444 -0.302247 -0.442224 +-0.105777 0.408313 -0.079488 -0.843213 -0.262915 -0.468901 +-0.105535 0.414789 -0.082594 -0.843653 -0.230140 -0.485062 +-0.105399 0.421432 -0.084430 -0.834268 -0.120555 -0.538018 +-0.105452 0.428414 -0.083697 -0.844187 -0.068043 -0.531712 +-0.105701 0.435759 -0.080402 -0.855139 -0.019847 -0.518018 +-0.137688 -0.489750 0.444638 -0.094646 -0.862092 -0.497834 +-0.136562 -0.480720 0.429411 -0.107494 -0.881594 -0.459605 +-0.123512 -0.458980 0.253146 0.422184 -0.659597 -0.621846 +-0.121888 -0.449806 0.231202 0.576341 -0.525670 -0.625701 +-0.121177 -0.441653 0.221620 0.672970 -0.404698 -0.619137 +-0.120709 -0.433771 0.215370 0.693237 -0.331520 -0.639935 +-0.120414 -0.426078 0.211305 0.699175 -0.247155 -0.670871 +-0.120187 -0.418469 0.208305 0.707455 -0.187288 -0.681492 +-0.120149 -0.411041 0.207814 0.707978 -0.127757 -0.694583 +-0.120165 -0.403666 0.207965 0.704850 -0.126216 -0.698037 +-0.120263 -0.396358 0.209302 0.697926 -0.121913 -0.705717 +-0.120323 -0.389021 0.210134 0.690137 -0.134381 -0.711093 +-0.120331 -0.381631 0.210224 0.682342 -0.160470 -0.713203 +-0.120233 -0.374157 0.208849 0.671701 -0.198790 -0.713653 +-0.120021 -0.366593 0.206031 0.660095 -0.236002 -0.713147 +-0.119787 -0.359029 0.202857 0.643535 -0.279327 -0.712628 +-0.119500 -0.351434 0.198957 0.630796 -0.321118 -0.706385 +-0.119197 -0.343840 0.194884 0.612096 -0.366326 -0.700816 +-0.118880 -0.336253 0.190600 0.592655 -0.408322 -0.694286 +-0.118540 -0.328666 0.186058 0.566787 -0.444291 -0.693799 +-0.118155 -0.321057 0.180806 0.546379 -0.473943 -0.690542 +-0.117633 -0.313387 0.173734 0.527412 -0.491023 -0.693350 +-0.117134 -0.305755 0.167016 0.517611 -0.492884 -0.699388 +-0.116726 -0.298206 0.161537 0.512725 -0.474939 -0.715224 +-0.116432 -0.290725 0.157525 0.513334 -0.442139 -0.735528 +-0.116107 -0.283251 0.153218 0.516091 -0.399662 -0.757575 +-0.115782 -0.275793 0.148827 0.519389 -0.350100 -0.779529 +-0.115525 -0.268380 0.145343 0.516263 -0.313321 -0.797059 +-0.115396 -0.261035 0.143545 0.511706 -0.265282 -0.817180 +-0.115268 -0.253697 0.141837 0.499530 -0.233200 -0.834319 +-0.115124 -0.246360 0.139880 0.475565 -0.227145 -0.849849 +-0.115041 -0.239060 0.138822 0.441700 -0.228074 -0.867688 +-0.114981 -0.231768 0.137998 0.395055 -0.248090 -0.884524 +-0.114973 -0.224491 0.137847 0.369045 -0.254712 -0.893827 +-0.115026 -0.217237 0.138535 0.336019 -0.262950 -0.904405 +-0.114958 -0.209952 0.137621 0.237490 -0.341281 -0.909465 +-0.114837 -0.202645 0.136019 0.164789 -0.402578 -0.900431 +-0.114474 -0.195292 0.131122 0.014957 -0.519127 -0.854566 +-0.113840 -0.187887 0.122553 -0.135719 -0.589071 -0.796602 +-0.112956 -0.180466 0.110576 -0.278372 -0.628998 -0.725858 +-0.112155 -0.173099 0.099845 -0.353799 -0.650878 -0.671702 +-0.111444 -0.165784 0.090226 -0.392463 -0.657061 -0.643617 +-0.110832 -0.158515 0.081913 -0.389643 -0.643608 -0.658747 +-0.110303 -0.151283 0.074750 -0.374586 -0.625519 -0.684406 +-0.109835 -0.144081 0.068448 -0.360738 -0.603197 -0.711352 +-0.109381 -0.136903 0.062387 -0.347093 -0.578609 -0.738064 +-0.108966 -0.129747 0.056765 -0.337162 -0.558420 -0.757951 +-0.108580 -0.122613 0.051543 -0.328453 -0.530208 -0.781663 +-0.108271 -0.115495 0.047319 -0.334964 -0.510796 -0.791762 +-0.108021 -0.108384 0.043987 -0.339695 -0.491374 -0.801972 +-0.107810 -0.101288 0.041108 -0.343763 -0.472776 -0.811363 +-0.107590 -0.094208 0.038131 -0.354322 -0.451762 -0.818759 +-0.107364 -0.087135 0.035055 -0.383100 -0.434956 -0.814891 +-0.107046 -0.080077 0.030770 -0.403428 -0.421923 -0.811928 +-0.106699 -0.073049 0.026070 -0.442365 -0.414884 -0.795100 +-0.106283 -0.066044 0.020539 -0.484035 -0.409092 -0.773534 +-0.105890 -0.059055 0.015204 -0.518905 -0.407016 -0.751715 +-0.105482 -0.052080 0.009717 -0.560977 -0.393091 -0.728549 +-0.105051 -0.045135 0.003854 -0.615780 -0.366231 -0.697632 +-0.104757 -0.038176 -0.000121 -0.641868 -0.338316 -0.688148 +-0.104530 -0.031216 -0.003136 -0.657570 -0.298628 -0.691681 +-0.104326 -0.024256 -0.005985 -0.674031 -0.256383 -0.692784 +-0.104046 -0.017327 -0.009755 -0.687637 -0.194129 -0.699621 +-0.103774 -0.010405 -0.013375 -0.690648 -0.135540 -0.710377 +-0.103570 -0.003476 -0.016179 -0.685762 -0.075846 -0.723863 +-0.103457 0.003484 -0.017630 -0.676275 -0.026075 -0.736187 +-0.103412 0.010459 -0.018265 -0.664114 0.009681 -0.747568 +-0.103427 0.017464 -0.018113 -0.647178 0.041118 -0.761229 +-0.103653 0.024574 -0.015015 -0.632130 0.063153 -0.772284 +-0.104001 0.031753 -0.010285 -0.615621 0.072210 -0.784727 +-0.104266 0.038902 -0.006718 -0.603444 0.079331 -0.793449 +-0.104341 0.045959 -0.005698 -0.585509 0.086092 -0.806081 +-0.104394 0.053010 -0.005063 -0.569644 0.090847 -0.816855 +-0.104266 0.059954 -0.006748 -0.538022 0.103874 -0.836506 +-0.104175 0.066921 -0.008002 -0.511862 0.108110 -0.852238 +-0.104137 0.073911 -0.008486 -0.482736 0.113002 -0.868445 +-0.104175 0.080954 -0.007995 -0.448707 0.107752 -0.887159 +-0.104235 0.088012 -0.007186 -0.442708 0.113304 -0.889478 +-0.104303 0.095077 -0.006242 -0.418125 0.116439 -0.900896 +-0.104454 0.102203 -0.004224 -0.402384 0.120692 -0.907480 +-0.104628 0.109367 -0.001814 -0.390454 0.126713 -0.911861 +-0.104802 0.116523 0.000446 -0.389235 0.128078 -0.912191 +-0.104968 0.123694 0.002781 -0.393340 0.121506 -0.911329 +-0.105051 0.130790 0.003861 -0.390706 0.117376 -0.913001 +-0.105104 0.137878 0.004572 -0.382323 0.112903 -0.917105 +-0.105142 0.144951 0.005101 -0.379269 0.106817 -0.919100 +-0.105119 0.151971 0.004821 -0.377581 0.102711 -0.920262 +-0.105089 0.158976 0.004375 -0.374075 0.097200 -0.922291 +-0.105097 0.166019 0.004451 -0.376016 0.093483 -0.921885 +-0.105127 0.173092 0.004912 -0.368768 0.090110 -0.925143 +-0.105187 0.180195 0.005743 -0.370033 0.091374 -0.924514 +-0.105271 0.187313 0.006801 -0.366072 0.092548 -0.925973 +-0.105323 0.194409 0.007504 -0.367443 0.098511 -0.924814 +-0.105391 0.201527 0.008448 -0.367886 0.108973 -0.923463 +-0.105399 0.208585 0.008607 -0.363982 0.119373 -0.923725 +-0.105429 0.215658 0.008962 -0.363502 0.134308 -0.921861 +-0.105452 0.222723 0.009227 -0.346747 0.150107 -0.925870 +-0.105543 0.229879 0.010503 -0.337503 0.168381 -0.926142 +-0.105633 0.237036 0.011675 -0.343507 0.180950 -0.921553 +-0.105724 0.244199 0.012967 -0.334936 0.194478 -0.921952 +-0.105883 0.251438 0.015045 -0.338575 0.206788 -0.917936 +-0.106072 0.258738 0.017667 -0.341745 0.216493 -0.914517 +-0.106283 0.266060 0.020471 -0.358499 0.216966 -0.907967 +-0.106457 0.273360 0.022859 -0.366119 0.204221 -0.907882 +-0.106585 0.280592 0.024559 -0.371515 0.183059 -0.910201 +-0.106691 0.287808 0.026010 -0.376718 0.151833 -0.913800 +-0.106820 0.295063 0.027770 -0.387820 0.110486 -0.915089 +-0.106948 0.302317 0.029455 -0.406229 0.066700 -0.911334 +-0.107046 0.309541 0.030831 -0.419710 0.011288 -0.907588 +-0.107031 0.316599 0.030589 -0.415021 -0.026334 -0.909431 +-0.107009 0.323642 0.030257 -0.412897 -0.081074 -0.907162 +-0.106948 0.330639 0.029440 -0.420147 -0.139851 -0.896615 +-0.106880 0.337621 0.028549 -0.450038 -0.206113 -0.868898 +-0.106752 0.344513 0.026856 -0.473764 -0.270630 -0.838037 +-0.106608 0.351359 0.024876 -0.479977 -0.316253 -0.818295 +-0.106449 0.358183 0.022707 -0.512543 -0.367476 -0.776055 +-0.106276 0.364984 0.020425 -0.552492 -0.402499 -0.729895 +-0.105890 0.371414 0.015174 -0.592171 -0.423788 -0.685373 +-0.102890 0.373545 -0.025315 -0.774253 -0.607180 -0.178507 +-0.100397 0.376379 -0.058972 -0.804850 -0.536571 -0.253589 +-0.099376 0.381578 -0.072785 -0.809555 -0.470535 -0.351024 +-0.099021 0.387873 -0.077614 -0.818172 -0.389351 -0.423085 +-0.098621 0.394077 -0.083002 -0.818275 -0.334912 -0.467184 +-0.097873 0.399646 -0.093082 -0.792543 -0.281815 -0.540792 +-0.097329 0.405540 -0.100488 -0.782080 -0.211592 -0.586157 +-0.097064 0.411925 -0.103986 -0.767154 -0.139904 -0.626020 +-0.096981 0.418628 -0.105120 -0.759823 -0.078042 -0.645429 +-0.096996 0.425505 -0.104916 -0.756901 -0.016452 -0.653322 +-0.097200 0.432729 -0.102173 -0.765618 0.040894 -0.641994 +-0.098167 0.441426 -0.089092 -0.813422 0.101547 -0.572741 +-0.130910 -0.498743 0.458753 -0.091212 -0.857524 -0.506293 +-0.129792 -0.489645 0.443323 -0.094646 -0.862092 -0.497834 +-0.128983 -0.480939 0.432094 -0.100372 -0.861060 -0.498499 +-0.116417 -0.459388 0.258322 0.405254 -0.617513 -0.674127 +-0.115132 -0.450539 0.240587 0.542400 -0.516179 -0.662844 +-0.114391 -0.442318 0.230393 0.618519 -0.400252 -0.676190 +-0.113893 -0.434376 0.223441 0.670288 -0.351972 -0.653322 +-0.113575 -0.426638 0.219088 0.688463 -0.277489 -0.670089 +-0.113356 -0.419013 0.216066 0.697001 -0.210678 -0.685423 +-0.113281 -0.411540 0.215008 0.700328 -0.144120 -0.699121 +-0.113243 -0.404104 0.214501 0.691790 -0.137169 -0.708950 +-0.113356 -0.396804 0.216043 0.689219 -0.131654 -0.712492 +-0.113439 -0.389467 0.217154 0.684360 -0.142737 -0.715036 +-0.113492 -0.382107 0.217887 0.676268 -0.167584 -0.717340 +-0.113326 -0.374558 0.215567 0.667666 -0.202630 -0.716354 +-0.113077 -0.366948 0.212113 0.659344 -0.242157 -0.711777 +-0.112774 -0.359316 0.207950 0.645360 -0.292102 -0.705823 +-0.112449 -0.351684 0.203476 0.629265 -0.335984 -0.700815 +-0.112140 -0.344074 0.199245 0.613794 -0.373750 -0.695391 +-0.111875 -0.336510 0.195587 0.596342 -0.413857 -0.687822 +-0.111565 -0.328923 0.191273 0.575534 -0.449587 -0.683105 +-0.111203 -0.321321 0.186262 0.557796 -0.477059 -0.679175 +-0.110742 -0.313674 0.179892 0.541718 -0.497923 -0.677211 +-0.110243 -0.306019 0.172925 0.533637 -0.496915 -0.684329 +-0.109789 -0.298425 0.166714 0.533337 -0.478508 -0.697554 +-0.109472 -0.290921 0.162293 0.535486 -0.446524 -0.716848 +-0.109177 -0.283455 0.158280 0.537635 -0.405196 -0.739435 +-0.108890 -0.275997 0.154245 0.538772 -0.355242 -0.763890 +-0.108626 -0.268569 0.150565 0.536599 -0.324205 -0.779072 +-0.108475 -0.261209 0.148532 0.524895 -0.293741 -0.798875 +-0.108331 -0.253849 0.146515 0.506602 -0.257961 -0.822685 +-0.108187 -0.246511 0.144573 0.473047 -0.261465 -0.841346 +-0.108127 -0.239204 0.143704 0.443434 -0.270695 -0.854453 +-0.108082 -0.231904 0.143091 0.409797 -0.272575 -0.870499 +-0.108044 -0.224612 0.142547 0.384122 -0.280731 -0.879568 +-0.107930 -0.217297 0.140961 0.283479 -0.368247 -0.885457 +-0.107779 -0.209975 0.138913 0.164815 -0.432988 -0.886204 +-0.107500 -0.202630 0.135067 0.025365 -0.521517 -0.852864 +-0.106993 -0.195232 0.127986 -0.089863 -0.587789 -0.804008 +-0.106011 -0.187751 0.114490 -0.260928 -0.646621 -0.716797 +-0.105240 -0.180361 0.103774 -0.354170 -0.657174 -0.665347 +-0.104432 -0.173000 0.092644 -0.401031 -0.660350 -0.634911 +-0.103812 -0.165708 0.084074 -0.401801 -0.642330 -0.652662 +-0.103230 -0.158454 0.076034 -0.386739 -0.626209 -0.676975 +-0.102792 -0.151237 0.069898 -0.369071 -0.604311 -0.706112 +-0.102361 -0.144051 0.063951 -0.360376 -0.590228 -0.722330 +-0.101976 -0.136888 0.058624 -0.352143 -0.574107 -0.739186 +-0.101613 -0.129739 0.053614 -0.345013 -0.549475 -0.760949 +-0.101281 -0.122606 0.048997 -0.355385 -0.529478 -0.770295 +-0.100986 -0.115495 0.044992 -0.361914 -0.511148 -0.779581 +-0.100752 -0.108392 0.041720 -0.367358 -0.492435 -0.789022 +-0.100548 -0.101304 0.038901 -0.384808 -0.476118 -0.790718 +-0.100306 -0.094223 0.035599 -0.399798 -0.458085 -0.793927 +-0.100011 -0.087158 0.031519 -0.427731 -0.446909 -0.785696 +-0.099656 -0.080122 0.026524 -0.468123 -0.438933 -0.766941 +-0.099233 -0.073102 0.020675 -0.500953 -0.428029 -0.752222 +-0.098772 -0.066120 0.014335 -0.539482 -0.429052 -0.724482 +-0.098356 -0.059145 0.008599 -0.571276 -0.427054 -0.700906 +-0.097986 -0.052178 0.003514 -0.605113 -0.414149 -0.679940 +-0.097646 -0.045226 -0.001277 -0.628111 -0.387840 -0.674579 +-0.097298 -0.038297 -0.006038 -0.646372 -0.344460 -0.680846 +-0.096981 -0.031367 -0.010459 -0.659784 -0.302878 -0.687713 +-0.096618 -0.024468 -0.015446 -0.654344 -0.252733 -0.712713 +-0.096346 -0.017561 -0.019164 -0.653370 -0.197324 -0.730870 +-0.096188 -0.010624 -0.021453 -0.651429 -0.133104 -0.746943 +-0.096112 -0.003657 -0.022436 -0.653087 -0.076594 -0.753400 +-0.096089 0.003325 -0.022791 -0.653973 -0.021202 -0.756221 +-0.096082 0.010315 -0.022821 -0.642957 0.024377 -0.765514 +-0.096059 0.017297 -0.023191 -0.628945 0.061860 -0.774985 +-0.096097 0.024302 -0.022617 -0.610593 0.095605 -0.786152 +-0.096293 0.031398 -0.019957 -0.585749 0.108979 -0.803133 +-0.096724 0.038622 -0.013988 -0.570532 0.115737 -0.813079 +-0.097057 0.045808 -0.009408 -0.558054 0.114897 -0.821811 +-0.097125 0.052866 -0.008441 -0.531859 0.120594 -0.838203 +-0.097140 0.059894 -0.008192 -0.505000 0.126158 -0.853850 +-0.097140 0.066906 -0.008244 -0.474259 0.129443 -0.870818 +-0.097109 0.073904 -0.008705 -0.446345 0.134699 -0.884665 +-0.097155 0.080946 -0.008056 -0.423784 0.130156 -0.896363 +-0.097193 0.087997 -0.007489 -0.387035 0.127408 -0.913220 +-0.097245 0.095047 -0.006816 -0.360334 0.125897 -0.924289 +-0.097381 0.102173 -0.004851 -0.350142 0.127038 -0.928042 +-0.097502 0.109284 -0.003189 -0.358511 0.130639 -0.924339 +-0.097616 0.116402 -0.001602 -0.361230 0.128559 -0.923572 +-0.097759 0.123551 0.000348 -0.361553 0.124972 -0.923938 +-0.097812 0.130624 0.001043 -0.358443 0.119901 -0.925820 +-0.097812 0.137659 0.001088 -0.357915 0.112126 -0.926998 +-0.097797 0.144671 0.000869 -0.353972 0.104847 -0.929360 +-0.097782 0.151691 0.000635 -0.352545 0.101963 -0.930223 +-0.097774 0.158719 0.000559 -0.348823 0.097363 -0.932117 +-0.097820 0.165792 0.001164 -0.346538 0.094668 -0.933247 +-0.097858 0.172865 0.001700 -0.344708 0.093201 -0.934071 +-0.097895 0.179930 0.002199 -0.338558 0.095605 -0.936076 +-0.097978 0.187049 0.003340 -0.330350 0.100802 -0.938461 +-0.098062 0.194175 0.004496 -0.316885 0.108763 -0.942207 +-0.098130 0.201285 0.005410 -0.307120 0.120141 -0.944057 +-0.098182 0.208388 0.006143 -0.295984 0.131136 -0.946148 +-0.098213 0.215461 0.006552 -0.285776 0.145551 -0.947178 +-0.098235 0.222534 0.006914 -0.277397 0.158266 -0.947630 +-0.098318 0.229675 0.008108 -0.275206 0.173455 -0.945608 +-0.098402 0.236816 0.009189 -0.273636 0.188309 -0.943220 +-0.098507 0.243995 0.010655 -0.272631 0.201586 -0.940763 +-0.098659 0.251234 0.012748 -0.274840 0.210873 -0.938081 +-0.098847 0.258534 0.015423 -0.279035 0.219047 -0.934964 +-0.099067 0.265871 0.018423 -0.283970 0.215593 -0.934281 +-0.099225 0.273141 0.020584 -0.296631 0.204410 -0.932859 +-0.099339 0.280357 0.022156 -0.302271 0.182230 -0.935641 +-0.099437 0.287566 0.023576 -0.311958 0.152082 -0.937845 +-0.099565 0.294813 0.025299 -0.326522 0.115470 -0.938110 +-0.099664 0.302030 0.026720 -0.339206 0.071903 -0.937960 +-0.099724 0.309193 0.027536 -0.348666 0.025422 -0.936902 +-0.099747 0.316304 0.027846 -0.360391 -0.018620 -0.932616 +-0.099701 0.323317 0.027204 -0.386422 -0.088087 -0.918106 +-0.099626 0.330276 0.026161 -0.433981 -0.179001 -0.882960 +-0.099550 0.337236 0.025065 -0.453389 -0.225567 -0.862298 +-0.099429 0.344128 0.023478 -0.477112 -0.290492 -0.829445 +-0.099286 0.350966 0.021453 -0.500262 -0.333409 -0.799109 +-0.099074 0.357699 0.018551 -0.560671 -0.403971 -0.722811 +-0.097019 0.361394 -0.009892 -0.709983 -0.602247 -0.364996 +-0.095583 0.366027 -0.029750 -0.757613 -0.637144 -0.141668 +-0.093067 0.368770 -0.064609 -0.765554 -0.581159 -0.276010 +-0.092190 0.374195 -0.076707 -0.769728 -0.517054 -0.374398 +-0.091812 0.380437 -0.081936 -0.774464 -0.459393 -0.434928 +-0.091450 0.386686 -0.086977 -0.782189 -0.391687 -0.484522 +-0.090535 0.391946 -0.099573 -0.754377 -0.311260 -0.577955 +-0.090052 0.397931 -0.106254 -0.727652 -0.265514 -0.632475 +-0.089795 0.404308 -0.109813 -0.718208 -0.192899 -0.668555 +-0.089704 0.410981 -0.111097 -0.711718 -0.123081 -0.691598 +-0.089666 0.417752 -0.111596 -0.700910 -0.055763 -0.711067 +-0.089666 0.424590 -0.111573 -0.696770 -0.012171 -0.717192 +-0.089734 0.431557 -0.110629 -0.687447 0.057049 -0.723991 +-0.090248 0.439401 -0.103488 -0.720550 0.145942 -0.677871 +-0.124102 -0.507818 0.473209 -0.108652 -0.858913 -0.500464 +-0.122953 -0.498592 0.456925 -0.091212 -0.857524 -0.506293 +-0.122061 -0.489720 0.444260 -0.091644 -0.857332 -0.506540 +-0.110840 -0.469053 0.285337 -0.017480 -0.693401 -0.720340 +-0.109034 -0.459501 0.259750 0.284380 -0.583928 -0.760365 +-0.108210 -0.451113 0.247992 0.449673 -0.511372 -0.732320 +-0.107553 -0.442952 0.238766 0.543208 -0.412848 -0.731082 +-0.107039 -0.434965 0.231421 0.602136 -0.345146 -0.719935 +-0.106699 -0.427189 0.226653 0.633438 -0.293603 -0.715929 +-0.106502 -0.419565 0.223864 0.668112 -0.203082 -0.715810 +-0.106381 -0.412031 0.222103 0.682286 -0.164428 -0.712354 +-0.106313 -0.404550 0.221151 0.677744 -0.154325 -0.718921 +-0.106389 -0.397205 0.222224 0.675245 -0.136566 -0.724841 +-0.106472 -0.389860 0.223358 0.672726 -0.144702 -0.725604 +-0.106533 -0.382500 0.224287 0.668502 -0.170590 -0.723881 +-0.106291 -0.374875 0.220826 0.663555 -0.205696 -0.719294 +-0.106011 -0.367228 0.216867 0.658162 -0.248370 -0.710729 +-0.105716 -0.359588 0.212741 0.645668 -0.295976 -0.703925 +-0.105414 -0.351948 0.208380 0.627866 -0.342165 -0.699076 +-0.105127 -0.344346 0.204345 0.614914 -0.380568 -0.690688 +-0.104893 -0.336790 0.201005 0.602027 -0.412920 -0.683418 +-0.104598 -0.329203 0.196804 0.585816 -0.449068 -0.674653 +-0.104258 -0.321601 0.192005 0.572501 -0.479892 -0.664791 +-0.103857 -0.313969 0.186315 0.560435 -0.497281 -0.662287 +-0.103366 -0.306306 0.179371 0.553606 -0.500179 -0.665839 +-0.102898 -0.298682 0.172774 0.551331 -0.482243 -0.680791 +-0.102520 -0.291133 0.167371 0.554972 -0.451955 -0.698386 +-0.102218 -0.283644 0.163109 0.556053 -0.409903 -0.723038 +-0.101946 -0.276186 0.159262 0.555996 -0.365311 -0.746603 +-0.101711 -0.268765 0.156006 0.544093 -0.335504 -0.769025 +-0.101560 -0.261382 0.153776 0.534216 -0.316039 -0.784049 +-0.101424 -0.254030 0.151933 0.506063 -0.299039 -0.808997 +-0.101266 -0.246662 0.149598 0.480628 -0.287847 -0.828336 +-0.101167 -0.239332 0.148268 0.452421 -0.295006 -0.841598 +-0.101107 -0.232025 0.147444 0.403578 -0.313294 -0.859634 +-0.101046 -0.224718 0.146515 0.314551 -0.381648 -0.869139 +-0.100903 -0.217380 0.144512 0.214358 -0.458815 -0.862287 +-0.100646 -0.210020 0.140840 0.119816 -0.502934 -0.855980 +-0.100117 -0.202592 0.133314 -0.073507 -0.606118 -0.791971 +-0.099180 -0.195081 0.120044 -0.235068 -0.667354 -0.706670 +-0.098296 -0.187638 0.107553 -0.360521 -0.675707 -0.642996 +-0.097442 -0.180232 0.095500 -0.416854 -0.667856 -0.616605 +-0.096800 -0.172917 0.086387 -0.414981 -0.647118 -0.639554 +-0.096271 -0.165648 0.078861 -0.399511 -0.625594 -0.670092 +-0.095764 -0.158409 0.071727 -0.383176 -0.606133 -0.696978 +-0.095349 -0.151207 0.065773 -0.371242 -0.592836 -0.714650 +-0.094956 -0.144028 0.060219 -0.362455 -0.578575 -0.730669 +-0.094601 -0.136865 0.055170 -0.360820 -0.563318 -0.743291 +-0.094268 -0.129724 0.050470 -0.370194 -0.547674 -0.750340 +-0.093958 -0.122606 0.046125 -0.378048 -0.527289 -0.760951 +-0.093656 -0.115495 0.041864 -0.397655 -0.511327 -0.761850 +-0.093376 -0.108399 0.037896 -0.415232 -0.493222 -0.764404 +-0.093112 -0.101319 0.034110 -0.433479 -0.480146 -0.762598 +-0.092825 -0.094253 0.029992 -0.461164 -0.464872 -0.755792 +-0.092470 -0.087203 0.025035 -0.489657 -0.455697 -0.743355 +-0.092077 -0.080183 0.019398 -0.520885 -0.451255 -0.724602 +-0.091623 -0.073185 0.012997 -0.555114 -0.450581 -0.699160 +-0.091238 -0.066203 0.007610 -0.585795 -0.449742 -0.674223 +-0.090853 -0.059236 0.002093 -0.611126 -0.435657 -0.660854 +-0.090429 -0.052299 -0.003899 -0.622721 -0.423062 -0.658208 +-0.089991 -0.045385 -0.010133 -0.630691 -0.385193 -0.673688 +-0.089538 -0.038501 -0.016541 -0.630077 -0.337196 -0.699502 +-0.089198 -0.031601 -0.021340 -0.627120 -0.291029 -0.722511 +-0.088941 -0.024687 -0.024967 -0.618031 -0.235453 -0.750066 +-0.088782 -0.017758 -0.027196 -0.611555 -0.184265 -0.769445 +-0.088729 -0.010791 -0.028005 -0.612831 -0.133419 -0.778870 +-0.088759 -0.003801 -0.027604 -0.618394 -0.084637 -0.781297 +-0.088790 0.003197 -0.027083 -0.621598 -0.024847 -0.782942 +-0.088805 0.010187 -0.026902 -0.626239 0.020729 -0.779356 +-0.088858 0.017191 -0.026214 -0.615489 0.077880 -0.784288 +-0.088880 0.024196 -0.025821 -0.597034 0.116898 -0.793653 +-0.088963 0.031217 -0.024710 -0.574088 0.131168 -0.808219 +-0.089115 0.038289 -0.022579 -0.550926 0.140179 -0.822697 +-0.089432 0.045468 -0.018015 -0.523314 0.146073 -0.839527 +-0.089772 0.052670 -0.013179 -0.500935 0.146350 -0.853022 +-0.089991 0.059811 -0.010073 -0.491506 0.142259 -0.859177 +-0.090036 0.066853 -0.009446 -0.457358 0.145653 -0.877274 +-0.090082 0.073896 -0.008804 -0.430284 0.141872 -0.891475 +-0.090142 0.080954 -0.007965 -0.399855 0.145089 -0.905022 +-0.090172 0.087989 -0.007542 -0.377145 0.139255 -0.915625 +-0.090203 0.095032 -0.007118 -0.358544 0.137150 -0.923383 +-0.090331 0.102150 -0.005320 -0.344224 0.130771 -0.929736 +-0.090422 0.109246 -0.003983 -0.335110 0.131668 -0.932934 +-0.090513 0.116342 -0.002743 -0.332425 0.129417 -0.934208 +-0.090581 0.123422 -0.001738 -0.337844 0.122289 -0.933224 +-0.090588 0.130457 -0.001678 -0.337448 0.114934 -0.934301 +-0.090543 0.137447 -0.002267 -0.334729 0.109273 -0.935957 +-0.090535 0.144460 -0.002418 -0.331068 0.102017 -0.938076 +-0.090543 0.151502 -0.002252 -0.330225 0.096044 -0.939003 +-0.090581 0.158560 -0.001776 -0.329989 0.093724 -0.939321 +-0.090626 0.165633 -0.001149 -0.328351 0.093858 -0.939881 +-0.090656 0.172691 -0.000703 -0.315893 0.095958 -0.943930 +-0.090679 0.179749 -0.000340 -0.305185 0.102612 -0.946749 +-0.090739 0.186837 0.000491 -0.292908 0.110392 -0.949746 +-0.090800 0.193940 0.001383 -0.279881 0.119282 -0.952596 +-0.090898 0.201081 0.002788 -0.267808 0.130687 -0.954568 +-0.091004 0.208237 0.004247 -0.257213 0.141368 -0.955958 +-0.091079 0.215356 0.005274 -0.247226 0.151593 -0.957026 +-0.091117 0.222444 0.005826 -0.230270 0.166113 -0.958844 +-0.091162 0.229539 0.006491 -0.224715 0.178847 -0.957871 +-0.091253 0.236695 0.007798 -0.230173 0.189363 -0.954548 +-0.091374 0.243889 0.009513 -0.231762 0.198916 -0.952218 +-0.091502 0.251106 0.011350 -0.228781 0.209542 -0.950659 +-0.091684 0.258390 0.013927 -0.234076 0.215811 -0.947963 +-0.091888 0.265713 0.016768 -0.250654 0.210475 -0.944920 +-0.092024 0.272952 0.018642 -0.256019 0.203932 -0.944916 +-0.092130 0.280169 0.020198 -0.265127 0.177917 -0.947657 +-0.092220 0.287362 0.021506 -0.277666 0.147055 -0.949356 +-0.092341 0.294602 0.023229 -0.289675 0.111618 -0.950594 +-0.092439 0.301811 0.024544 -0.311324 0.065862 -0.948019 +-0.092508 0.308989 0.025549 -0.326164 0.020205 -0.945097 +-0.092523 0.316078 0.025715 -0.346908 -0.025806 -0.937544 +-0.092492 0.323113 0.025307 -0.377988 -0.098742 -0.920530 +-0.092424 0.330087 0.024400 -0.410480 -0.179166 -0.894095 +-0.092326 0.337002 0.022995 -0.435022 -0.233480 -0.869622 +-0.092175 0.343833 0.020856 -0.460701 -0.281381 -0.841771 +-0.091933 0.350505 0.017433 -0.594770 -0.459278 -0.659782 +-0.089530 0.353604 -0.016602 -0.696118 -0.657552 -0.288175 +-0.088427 0.358750 -0.032305 -0.709136 -0.688438 -0.152249 +-0.085903 0.361432 -0.068055 -0.720149 -0.634327 -0.281095 +-0.085057 0.366888 -0.080032 -0.715653 -0.594888 -0.365990 +-0.084717 0.373190 -0.084800 -0.727379 -0.518563 -0.449458 +-0.084414 0.379538 -0.089115 -0.723599 -0.467501 -0.507786 +-0.083568 0.384895 -0.101115 -0.702776 -0.396760 -0.590498 +-0.082918 0.390563 -0.110319 -0.678583 -0.311197 -0.665344 +-0.082631 0.396873 -0.114407 -0.660332 -0.240804 -0.711319 +-0.082510 0.403485 -0.116077 -0.660169 -0.176562 -0.730071 +-0.082457 0.410202 -0.116901 -0.647738 -0.121637 -0.752091 +-0.082412 0.416950 -0.117498 -0.617076 -0.029871 -0.786337 +-0.082397 0.423744 -0.117724 -0.607990 0.017285 -0.793756 +-0.082450 0.430681 -0.116954 -0.585959 0.095342 -0.804712 +-0.082896 0.438396 -0.110614 -0.612412 0.145356 -0.777061 +-0.117406 -0.517135 0.489932 -0.097141 -0.859772 -0.501354 +-0.116077 -0.507591 0.470617 -0.108652 -0.858913 -0.500464 +-0.115177 -0.498652 0.457612 -0.091212 -0.857524 -0.506293 +-0.114482 -0.489992 0.447532 -0.091212 -0.857524 -0.506293 +-0.102762 -0.468403 0.277266 -0.020946 -0.627031 -0.778713 +-0.101749 -0.459720 0.262546 0.225842 -0.565642 -0.793123 +-0.101152 -0.451567 0.253879 0.343363 -0.483323 -0.805295 +-0.100608 -0.443496 0.246005 0.449804 -0.434467 -0.780330 +-0.100170 -0.435570 0.239574 0.522788 -0.355515 -0.774792 +-0.099792 -0.427726 0.234119 0.565527 -0.278007 -0.776461 +-0.099573 -0.420063 0.230930 0.602543 -0.242821 -0.760249 +-0.099467 -0.412529 0.229373 0.637162 -0.163252 -0.753242 +-0.099429 -0.405071 0.228889 0.641388 -0.152507 -0.751906 +-0.099497 -0.397703 0.229796 0.652594 -0.142166 -0.744251 +-0.099535 -0.390306 0.230370 0.658075 -0.142432 -0.739358 +-0.099543 -0.382885 0.230499 0.659883 -0.166625 -0.732659 +-0.099240 -0.375192 0.226146 0.661979 -0.203216 -0.721448 +-0.098931 -0.367507 0.221642 0.658545 -0.250695 -0.709557 +-0.098666 -0.359875 0.217736 0.648128 -0.295853 -0.701713 +-0.098402 -0.352258 0.213920 0.633061 -0.340730 -0.695080 +-0.098160 -0.344671 0.210436 0.623127 -0.382259 -0.682342 +-0.097926 -0.337100 0.207058 0.614231 -0.409829 -0.674359 +-0.097638 -0.329505 0.202880 0.601243 -0.443341 -0.664797 +-0.097321 -0.321896 0.198202 0.591190 -0.470397 -0.655149 +-0.096936 -0.314264 0.192595 0.580490 -0.492755 -0.648247 +-0.096482 -0.306609 0.186073 0.573870 -0.495347 -0.652154 +-0.096006 -0.298954 0.179152 0.571328 -0.483493 -0.663188 +-0.095598 -0.291375 0.173204 0.571340 -0.455481 -0.682721 +-0.095251 -0.283841 0.168187 0.571885 -0.417573 -0.706103 +-0.094948 -0.276352 0.163781 0.568095 -0.376502 -0.731788 +-0.094790 -0.268962 0.161500 0.551831 -0.357746 -0.753326 +-0.094631 -0.261571 0.159164 0.527472 -0.353600 -0.772490 +-0.094465 -0.254189 0.156769 0.510026 -0.329206 -0.794668 +-0.094336 -0.246828 0.154918 0.476336 -0.330583 -0.814751 +-0.094223 -0.239476 0.153263 0.419124 -0.358429 -0.834185 +-0.094079 -0.232123 0.151177 0.365700 -0.386636 -0.846626 +-0.093943 -0.224786 0.149159 0.269389 -0.459502 -0.846338 +-0.093709 -0.217411 0.145766 0.189706 -0.521639 -0.831808 +-0.093150 -0.209952 0.137605 -0.060833 -0.618237 -0.783634 +-0.092364 -0.202449 0.126256 -0.216276 -0.669009 -0.711092 +-0.091419 -0.194945 0.112502 -0.351707 -0.688917 -0.633794 +-0.090520 -0.187494 0.099414 -0.424206 -0.682124 -0.595614 +-0.089795 -0.180134 0.088911 -0.425830 -0.652792 -0.626523 +-0.089288 -0.172849 0.081520 -0.410256 -0.628393 -0.660917 +-0.088820 -0.165603 0.074712 -0.394332 -0.611844 -0.685674 +-0.088389 -0.158378 0.068493 -0.382385 -0.595722 -0.706326 +-0.087996 -0.151185 0.062727 -0.375734 -0.583321 -0.720112 +-0.087626 -0.144006 0.057385 -0.376997 -0.574776 -0.726296 +-0.087278 -0.136857 0.052405 -0.385656 -0.562116 -0.731638 +-0.086953 -0.129716 0.047599 -0.397005 -0.549062 -0.735471 +-0.086606 -0.122598 0.042566 -0.417170 -0.531169 -0.737447 +-0.086220 -0.115495 0.036974 -0.442206 -0.509373 -0.738236 +-0.085895 -0.108414 0.032274 -0.468593 -0.496353 -0.730790 +-0.085593 -0.101341 0.027914 -0.485515 -0.486182 -0.726569 +-0.085298 -0.094291 0.023561 -0.513035 -0.476832 -0.713741 +-0.084936 -0.087256 0.018363 -0.540263 -0.474090 -0.695237 +-0.084513 -0.080251 0.012181 -0.565502 -0.470911 -0.677090 +-0.084052 -0.073269 0.005463 -0.594354 -0.465241 -0.655968 +-0.083628 -0.066309 -0.000673 -0.609379 -0.457200 -0.647785 +-0.083205 -0.059364 -0.006846 -0.617029 -0.439257 -0.652938 +-0.082767 -0.052450 -0.013202 -0.618530 -0.410952 -0.669730 +-0.082306 -0.045558 -0.019874 -0.612417 -0.366957 -0.700206 +-0.081958 -0.038659 -0.024899 -0.610590 -0.323809 -0.722722 +-0.081694 -0.031753 -0.028768 -0.603639 -0.267518 -0.751036 +-0.081490 -0.024846 -0.031693 -0.592649 -0.216335 -0.775865 +-0.081346 -0.017916 -0.033838 -0.590637 -0.172291 -0.788330 +-0.081286 -0.010972 -0.034677 -0.588202 -0.127301 -0.798632 +-0.081392 -0.003959 -0.033189 -0.589126 -0.088296 -0.803203 +-0.081475 0.003053 -0.031927 -0.592474 -0.035634 -0.804801 +-0.081550 0.010058 -0.030884 -0.599344 0.016073 -0.800330 +-0.081626 0.017078 -0.029720 -0.589539 0.082396 -0.803526 +-0.081649 0.024068 -0.029426 -0.591531 0.126994 -0.796219 +-0.081694 0.031073 -0.028760 -0.571772 0.156931 -0.805263 +-0.081807 0.038116 -0.027090 -0.543593 0.171220 -0.821700 +-0.081913 0.045158 -0.025587 -0.518160 0.175767 -0.837028 +-0.082253 0.052352 -0.020600 -0.496769 0.164528 -0.852145 +-0.082759 0.059675 -0.013232 -0.459377 0.165835 -0.872624 +-0.082896 0.066770 -0.011267 -0.439461 0.155796 -0.884648 +-0.083016 0.073858 -0.009589 -0.396284 0.151670 -0.905514 +-0.083092 0.080931 -0.008441 -0.358638 0.151524 -0.921097 +-0.083115 0.087967 -0.008086 -0.330432 0.148282 -0.932109 +-0.083137 0.095002 -0.007761 -0.306542 0.142481 -0.941133 +-0.083266 0.102113 -0.005940 -0.292457 0.133224 -0.946953 +-0.083326 0.109185 -0.005018 -0.302459 0.131703 -0.944019 +-0.083356 0.116228 -0.004655 -0.311189 0.127799 -0.941716 +-0.083394 0.123286 -0.004013 -0.318316 0.121252 -0.940198 +-0.083387 0.130306 -0.004171 -0.317673 0.113761 -0.941351 +-0.083349 0.137288 -0.004746 -0.317156 0.105993 -0.942432 +-0.083379 0.144346 -0.004239 -0.315320 0.098483 -0.943861 +-0.083417 0.151404 -0.003741 -0.310122 0.090088 -0.946419 +-0.083447 0.158462 -0.003257 -0.308622 0.090670 -0.946853 +-0.083492 0.165527 -0.002645 -0.301515 0.095484 -0.948668 +-0.083523 0.172585 -0.002192 -0.292163 0.101883 -0.950926 +-0.083568 0.179658 -0.001549 -0.278460 0.111004 -0.954012 +-0.083606 0.186724 -0.001013 -0.258406 0.123153 -0.958154 +-0.083666 0.193827 -0.000098 -0.245217 0.133289 -0.960262 +-0.083765 0.200960 0.001284 -0.231834 0.140885 -0.962499 +-0.083901 0.208154 0.003241 -0.223450 0.148667 -0.963311 +-0.083984 0.215295 0.004504 -0.213295 0.157694 -0.964177 +-0.084052 0.222414 0.005463 -0.206256 0.168246 -0.963925 +-0.084105 0.229517 0.006249 -0.200382 0.178570 -0.963307 +-0.084195 0.236673 0.007526 -0.194502 0.189894 -0.962346 +-0.084309 0.243867 0.009219 -0.193621 0.200541 -0.960361 +-0.084422 0.251061 0.010881 -0.195453 0.208746 -0.958240 +-0.084566 0.258307 0.013005 -0.200064 0.213360 -0.956270 +-0.084709 0.265554 0.015060 -0.207389 0.208947 -0.955683 +-0.084853 0.272801 0.017085 -0.218226 0.199121 -0.955368 +-0.084981 0.280048 0.018952 -0.230878 0.170722 -0.957888 +-0.085087 0.287272 0.020553 -0.241342 0.142611 -0.959904 +-0.085200 0.294496 0.022141 -0.266981 0.099689 -0.958532 +-0.085283 0.301690 0.023395 -0.278510 0.062214 -0.958416 +-0.085314 0.308808 0.023849 -0.303570 0.007133 -0.952782 +-0.085321 0.315896 0.023962 -0.330460 -0.033771 -0.943215 +-0.085291 0.322916 0.023486 -0.374712 -0.125011 -0.918675 +-0.085230 0.329891 0.022587 -0.398578 -0.194591 -0.896253 +-0.085102 0.336752 0.020720 -0.435102 -0.258076 -0.862602 +-0.084822 0.343364 0.016730 -0.571362 -0.429518 -0.699328 +-0.082404 0.346395 -0.018423 -0.648069 -0.706193 -0.285128 +-0.081535 0.351918 -0.031058 -0.661696 -0.733570 -0.155029 +-0.078936 0.354427 -0.068833 -0.662437 -0.699218 -0.268833 +-0.078006 0.359724 -0.082314 -0.657796 -0.640227 -0.396753 +-0.077651 0.365989 -0.087445 -0.661760 -0.600594 -0.448733 +-0.077402 0.372419 -0.091065 -0.675867 -0.522486 -0.519820 +-0.076593 0.377822 -0.102823 -0.656328 -0.458353 -0.599288 +-0.075883 0.383361 -0.113153 -0.621915 -0.375467 -0.687202 +-0.075573 0.389611 -0.117717 -0.599744 -0.302550 -0.740790 +-0.075422 0.396155 -0.119878 -0.593026 -0.234391 -0.770312 +-0.075346 0.402827 -0.121011 -0.572411 -0.154209 -0.805335 +-0.075294 0.409553 -0.121767 -0.543934 -0.079581 -0.835346 +-0.075263 0.416316 -0.122160 -0.545146 -0.029005 -0.837839 +-0.075233 0.423071 -0.122651 -0.520945 0.032217 -0.852982 +-0.075271 0.429963 -0.122085 -0.505277 0.081781 -0.859073 +-0.075558 0.437368 -0.117936 -0.531629 0.152075 -0.833213 +-0.110794 -0.526717 0.508899 -0.055869 -0.873083 -0.484360 +-0.109208 -0.516720 0.485149 -0.036605 -0.855174 -0.517047 +-0.108248 -0.507614 0.470897 -0.091751 -0.859474 -0.502878 +-0.107522 -0.498864 0.460121 -0.090775 -0.856875 -0.507470 +-0.095931 -0.476745 0.287347 -0.181794 -0.634732 -0.751043 +-0.094926 -0.468010 0.272415 -0.042915 -0.569071 -0.821167 +-0.094314 -0.459781 0.263264 0.106197 -0.544027 -0.832320 +-0.093921 -0.451839 0.257392 0.256129 -0.462844 -0.848630 +-0.093535 -0.443927 0.251650 0.328345 -0.409294 -0.851274 +-0.093120 -0.436008 0.245491 0.436658 -0.324902 -0.838909 +-0.092795 -0.428202 0.240662 0.501672 -0.270355 -0.821726 +-0.092613 -0.420562 0.237950 0.549226 -0.207082 -0.809609 +-0.092508 -0.413013 0.236423 0.584209 -0.143155 -0.798878 +-0.092477 -0.405540 0.235902 0.596242 -0.143507 -0.789874 +-0.092523 -0.398142 0.236566 0.612816 -0.120484 -0.780987 +-0.092538 -0.390721 0.236824 0.627693 -0.120157 -0.769132 +-0.092500 -0.383248 0.236294 0.644099 -0.142073 -0.751632 +-0.092235 -0.375570 0.232335 0.659129 -0.189244 -0.727829 +-0.091941 -0.367878 0.227892 0.655312 -0.238326 -0.716775 +-0.091706 -0.360253 0.224431 0.645708 -0.291015 -0.705954 +-0.091487 -0.352651 0.221129 0.637470 -0.338314 -0.692225 +-0.091261 -0.345057 0.217789 0.628857 -0.376973 -0.680022 +-0.091026 -0.337470 0.214297 0.628239 -0.399894 -0.667383 +-0.090739 -0.329860 0.210036 0.628350 -0.428954 -0.648979 +-0.090407 -0.322221 0.205025 0.619051 -0.456225 -0.639245 +-0.089991 -0.314558 0.198935 0.607494 -0.481855 -0.631480 +-0.089568 -0.306896 0.192580 0.599455 -0.490640 -0.632397 +-0.089107 -0.299241 0.185711 0.594379 -0.482813 -0.643121 +-0.088676 -0.291624 0.179341 0.591158 -0.458838 -0.663326 +-0.088321 -0.284075 0.174021 0.586133 -0.428615 -0.687559 +-0.087996 -0.276556 0.169109 0.574616 -0.398240 -0.714997 +-0.087837 -0.269151 0.166819 0.551149 -0.390819 -0.737221 +-0.087732 -0.261775 0.165195 0.523392 -0.380711 -0.762312 +-0.087581 -0.254385 0.163018 0.498944 -0.378684 -0.779521 +-0.087407 -0.246995 0.160343 0.457386 -0.393040 -0.797695 +-0.087195 -0.239597 0.157245 0.415860 -0.393044 -0.820108 +-0.086999 -0.232214 0.154298 0.311447 -0.451112 -0.836360 +-0.086825 -0.224846 0.151653 0.200329 -0.563126 -0.801722 +-0.086409 -0.217403 0.145494 0.043009 -0.612359 -0.789409 +-0.085518 -0.209831 0.132172 -0.198220 -0.698537 -0.687572 +-0.084550 -0.202275 0.117830 -0.330379 -0.707971 -0.624201 +-0.083568 -0.194771 0.103193 -0.422598 -0.701449 -0.573917 +-0.082888 -0.187388 0.093044 -0.432992 -0.673078 -0.599570 +-0.082314 -0.180066 0.084490 -0.413529 -0.638696 -0.648892 +-0.081875 -0.172804 0.077976 -0.402789 -0.620416 -0.672937 +-0.081482 -0.165572 0.072105 -0.389556 -0.603099 -0.696074 +-0.081105 -0.158356 0.066445 -0.387081 -0.590313 -0.708307 +-0.080727 -0.151169 0.060853 -0.389638 -0.582134 -0.713654 +-0.080372 -0.143998 0.055496 -0.396798 -0.574330 -0.716028 +-0.079971 -0.136842 0.049586 -0.409956 -0.564610 -0.716346 +-0.079571 -0.129709 0.043662 -0.431614 -0.551972 -0.713468 +-0.079155 -0.122590 0.037443 -0.457217 -0.532458 -0.712349 +-0.078732 -0.115502 0.031095 -0.484731 -0.517590 -0.705080 +-0.078346 -0.108429 0.025420 -0.510172 -0.505608 -0.695762 +-0.078029 -0.101372 0.020607 -0.537051 -0.494876 -0.683136 +-0.077697 -0.094336 0.015702 -0.555202 -0.492024 -0.670569 +-0.077387 -0.087309 0.011093 -0.572797 -0.486881 -0.659432 +-0.076896 -0.080326 0.003816 -0.597880 -0.481278 -0.641023 +-0.076412 -0.073367 -0.003461 -0.605734 -0.469878 -0.642106 +-0.075996 -0.066422 -0.009605 -0.610963 -0.456012 -0.647130 +-0.075588 -0.059493 -0.015756 -0.608848 -0.430197 -0.666509 +-0.075210 -0.052579 -0.021393 -0.605424 -0.395419 -0.690729 +-0.074878 -0.045672 -0.026342 -0.602918 -0.354268 -0.714832 +-0.074644 -0.038758 -0.029826 -0.599009 -0.304831 -0.740450 +-0.074402 -0.031858 -0.033415 -0.595168 -0.259793 -0.760449 +-0.074168 -0.024959 -0.036876 -0.589245 -0.208544 -0.780577 +-0.073994 -0.018060 -0.039483 -0.583661 -0.157132 -0.796649 +-0.073896 -0.011138 -0.040987 -0.576543 -0.126337 -0.807241 +-0.073918 -0.004163 -0.040549 -0.562982 -0.084936 -0.822093 +-0.074175 0.002910 -0.036755 -0.565899 -0.042469 -0.823380 +-0.074341 0.009952 -0.034292 -0.562890 0.014438 -0.826406 +-0.074409 0.016957 -0.033242 -0.565040 0.074014 -0.821737 +-0.074440 0.023947 -0.032781 -0.564588 0.135512 -0.814172 +-0.074493 0.030952 -0.032010 -0.557725 0.176285 -0.811090 +-0.074576 0.037972 -0.030808 -0.553236 0.198775 -0.808961 +-0.074598 0.044962 -0.030461 -0.539468 0.202105 -0.817391 +-0.074712 0.052012 -0.028738 -0.501318 0.196330 -0.842695 +-0.068674 0.055058 -0.118775 -0.892967 -0.299421 -0.336091 +-0.067971 0.061405 -0.129263 -0.848642 -0.232645 -0.475062 +-0.067488 0.067874 -0.136367 -0.853239 -0.158576 -0.496826 +-0.067314 0.074538 -0.139034 -0.839456 -0.116530 -0.530786 +-0.067208 0.081249 -0.140636 -0.823427 -0.046458 -0.565517 +-0.067178 0.088019 -0.141022 -0.834254 0.027739 -0.550682 +-0.067261 0.094866 -0.139842 -0.828094 0.093122 -0.552801 +-0.067412 0.101780 -0.137598 -0.842986 0.165373 -0.511885 +-0.067677 0.108800 -0.133624 -0.838971 0.231852 -0.492313 +-0.068455 0.116289 -0.122062 -0.835987 0.298639 -0.460370 +-0.076200 0.130155 -0.006590 -0.299391 0.107598 -0.948044 +-0.076178 0.137152 -0.006914 -0.299204 0.097773 -0.949167 +-0.076268 0.144256 -0.005630 -0.294109 0.089388 -0.951583 +-0.076329 0.151336 -0.004693 -0.289030 0.084821 -0.953555 +-0.076382 0.158417 -0.003899 -0.279762 0.089224 -0.955914 +-0.076412 0.165475 -0.003401 -0.270780 0.098068 -0.957633 +-0.076450 0.172540 -0.002857 -0.259551 0.109163 -0.959540 +-0.076503 0.179621 -0.002048 -0.245002 0.120002 -0.962067 +-0.076540 0.186686 -0.001534 -0.226577 0.130962 -0.965149 +-0.076608 0.193797 -0.000514 -0.209136 0.140406 -0.967754 +-0.076692 0.200923 0.000756 -0.194829 0.147298 -0.969714 +-0.076797 0.208079 0.002297 -0.184714 0.155999 -0.970332 +-0.076903 0.215242 0.003914 -0.175972 0.163815 -0.970669 +-0.077016 0.222421 0.005576 -0.170402 0.172969 -0.970075 +-0.077092 0.229554 0.006710 -0.165606 0.181466 -0.969353 +-0.077183 0.236718 0.008086 -0.164669 0.192631 -0.967356 +-0.077273 0.243874 0.009355 -0.168135 0.200364 -0.965187 +-0.077379 0.251068 0.010919 -0.170936 0.206484 -0.963403 +-0.077477 0.258254 0.012430 -0.175693 0.207167 -0.962400 +-0.077568 0.265433 0.013745 -0.182989 0.204176 -0.961679 +-0.077719 0.272703 0.016065 -0.193599 0.189997 -0.962508 +-0.077855 0.279965 0.018105 -0.211221 0.158821 -0.964449 +-0.077969 0.287189 0.019783 -0.224329 0.132452 -0.965470 +-0.078052 0.294375 0.020977 -0.239797 0.091523 -0.966499 +-0.078097 0.301516 0.021642 -0.273297 0.042355 -0.960997 +-0.078142 0.308649 0.022337 -0.295001 -0.009044 -0.955454 +-0.078142 0.315722 0.022345 -0.323298 -0.070290 -0.943683 +-0.078082 0.322697 0.021468 -0.373514 -0.166037 -0.912644 +-0.077999 0.329626 0.020184 -0.405894 -0.238377 -0.882285 +-0.077749 0.336269 0.016428 -0.513204 -0.402753 -0.757900 +-0.075626 0.339760 -0.015166 -0.578837 -0.723411 -0.376330 +-0.074591 0.344989 -0.030619 -0.593191 -0.787976 -0.164978 +-0.072059 0.347581 -0.068319 -0.608286 -0.743622 -0.277515 +-0.070994 0.352621 -0.084143 -0.589746 -0.700238 -0.402325 +-0.070578 0.358757 -0.090370 -0.598150 -0.653736 -0.463515 +-0.070208 0.364961 -0.095886 -0.601278 -0.603617 -0.523556 +-0.069528 0.370576 -0.106004 -0.586710 -0.508815 -0.629983 +-0.068901 0.376251 -0.115359 -0.561026 -0.419187 -0.713815 +-0.068591 0.382492 -0.120014 -0.542032 -0.362039 -0.758373 +-0.068394 0.388946 -0.122908 -0.526600 -0.290102 -0.799083 +-0.068273 0.395528 -0.124699 -0.505612 -0.209459 -0.836949 +-0.068228 0.402253 -0.125387 -0.480818 -0.128101 -0.867412 +-0.068198 0.409009 -0.125795 -0.465822 -0.082338 -0.881039 +-0.068213 0.415847 -0.125606 -0.436955 -0.017605 -0.899311 +-0.068183 0.422603 -0.126067 -0.448470 0.025243 -0.893441 +-0.068175 0.429396 -0.126158 -0.431699 0.084172 -0.898082 +-0.068425 0.436726 -0.122508 -0.438434 0.134624 -0.888624 +-0.069490 0.445809 -0.106601 -0.521546 0.267998 -0.810041 +-0.102399 -0.526052 0.501501 -0.044437 -0.867001 -0.496321 +-0.101296 -0.516667 0.484604 -0.027306 -0.855638 -0.516854 +-0.100495 -0.507743 0.472310 -0.093998 -0.861279 -0.499363 +-0.088699 -0.484657 0.291896 -0.306863 -0.617572 -0.724182 +-0.087792 -0.475975 0.278007 -0.187880 -0.549726 -0.813943 +-0.087150 -0.467670 0.268244 -0.088918 -0.527909 -0.844633 +-0.086825 -0.459781 0.263234 0.058814 -0.472435 -0.879401 +-0.086545 -0.451967 0.259025 0.145225 -0.425261 -0.893344 +-0.086251 -0.444139 0.254431 0.240289 -0.378564 -0.893840 +-0.085948 -0.436333 0.249889 0.340946 -0.300722 -0.890687 +-0.085684 -0.428565 0.245748 0.408502 -0.229511 -0.883431 +-0.085525 -0.420940 0.243352 0.482203 -0.160342 -0.861261 +-0.085442 -0.413406 0.242143 0.524915 -0.120264 -0.842616 +-0.085442 -0.405948 0.242060 0.552318 -0.111234 -0.826179 +-0.085465 -0.398527 0.242506 0.581710 -0.090880 -0.808303 +-0.085472 -0.391084 0.242567 0.602431 -0.087731 -0.793335 +-0.085419 -0.383588 0.241788 0.625492 -0.111432 -0.772232 +-0.085223 -0.375948 0.238698 0.646267 -0.155369 -0.747127 +-0.084966 -0.368278 0.234859 0.658195 -0.215701 -0.721285 +-0.084754 -0.360653 0.231534 0.663155 -0.264107 -0.700338 +-0.084543 -0.353052 0.228383 0.663925 -0.318722 -0.676476 +-0.084331 -0.345450 0.225133 0.660978 -0.357707 -0.659662 +-0.084082 -0.337833 0.221302 0.655935 -0.388406 -0.647217 +-0.083795 -0.330200 0.216935 0.654494 -0.412895 -0.633369 +-0.083477 -0.322561 0.212068 0.652399 -0.439587 -0.617364 +-0.083069 -0.314868 0.205759 0.639078 -0.467221 -0.610970 +-0.082646 -0.307198 0.199381 0.628409 -0.486020 -0.607361 +-0.082231 -0.299551 0.192980 0.617209 -0.486846 -0.618089 +-0.081785 -0.291904 0.186119 0.607952 -0.469259 -0.640461 +-0.081392 -0.284317 0.180179 0.600429 -0.446736 -0.663258 +-0.081052 -0.276775 0.175003 0.578676 -0.425756 -0.695605 +-0.080870 -0.269340 0.172132 0.546879 -0.430963 -0.717770 +-0.080749 -0.261949 0.170348 0.526573 -0.419263 -0.739554 +-0.080674 -0.254589 0.169124 0.495935 -0.418198 -0.761025 +-0.080447 -0.247161 0.165754 0.416069 -0.462311 -0.783042 +-0.080213 -0.239740 0.162142 0.365847 -0.487433 -0.792821 +-0.079873 -0.232282 0.156973 0.254572 -0.550144 -0.795321 +-0.079525 -0.224846 0.151585 0.104997 -0.636174 -0.764368 +-0.078770 -0.217275 0.140008 -0.127177 -0.721452 -0.680686 +-0.077538 -0.209590 0.121245 -0.302444 -0.744635 -0.595018 +-0.076593 -0.202048 0.106714 -0.408505 -0.729303 -0.548855 +-0.075853 -0.194627 0.095447 -0.416936 -0.695903 -0.584708 +-0.075309 -0.187290 0.087158 -0.404633 -0.657139 -0.635956 +-0.074901 -0.180013 0.080923 -0.397484 -0.633302 -0.664030 +-0.074553 -0.172774 0.075551 -0.389528 -0.609749 -0.690271 +-0.074221 -0.165550 0.070442 -0.392762 -0.600462 -0.696551 +-0.073880 -0.158348 0.065228 -0.391389 -0.591624 -0.704837 +-0.073465 -0.151154 0.058949 -0.399999 -0.586078 -0.704637 +-0.073064 -0.143976 0.052798 -0.416114 -0.576754 -0.702996 +-0.072611 -0.136819 0.045831 -0.434422 -0.568087 -0.698967 +-0.072158 -0.129694 0.038901 -0.459169 -0.551099 -0.696745 +-0.071681 -0.122583 0.031594 -0.489103 -0.540959 -0.684209 +-0.071183 -0.115502 0.024067 -0.519427 -0.531261 -0.669297 +-0.070797 -0.108444 0.018075 -0.548204 -0.521358 -0.653955 +-0.070435 -0.101402 0.012559 -0.571144 -0.508716 -0.644207 +-0.070049 -0.094382 0.006725 -0.587706 -0.500274 -0.635868 +-0.069664 -0.087384 0.000786 -0.599089 -0.492060 -0.631639 +-0.069210 -0.080417 -0.006159 -0.605570 -0.477254 -0.636800 +-0.068787 -0.073465 -0.012574 -0.610434 -0.462697 -0.642870 +-0.068478 -0.066520 -0.017380 -0.608449 -0.441267 -0.659601 +-0.068183 -0.059584 -0.021831 -0.604333 -0.414269 -0.680560 +-0.067896 -0.052662 -0.026312 -0.603211 -0.380807 -0.700802 +-0.067646 -0.045740 -0.030121 -0.603566 -0.340056 -0.721159 +-0.067480 -0.038810 -0.032652 -0.598651 -0.290930 -0.746308 +-0.067253 -0.031911 -0.036068 -0.595436 -0.242509 -0.765928 +-0.067004 -0.025035 -0.039922 -0.595300 -0.205422 -0.776801 +-0.066792 -0.018151 -0.043080 -0.597809 -0.164063 -0.784671 +-0.066649 -0.011252 -0.045287 -0.605424 -0.142591 -0.783026 +-0.066581 -0.004330 -0.046330 -0.621278 -0.139964 -0.770989 +-0.066823 0.002728 -0.042725 -0.622365 -0.099990 -0.776314 +-0.067049 0.009794 -0.039257 -0.582575 -0.031365 -0.812171 +-0.067163 0.016821 -0.037466 -0.586159 0.014381 -0.810068 +-0.067178 0.023788 -0.037277 -0.597065 0.076609 -0.798527 +-0.067155 0.030748 -0.037556 -0.609854 0.129087 -0.781930 +-0.062334 0.034874 -0.111309 -0.850909 -0.440437 -0.286302 +-0.061518 0.041206 -0.123807 -0.832957 -0.382549 -0.399800 +-0.060830 0.047577 -0.134304 -0.793572 -0.319217 -0.518020 +-0.060369 0.054068 -0.141331 -0.778343 -0.267954 -0.567788 +-0.060067 0.060642 -0.146001 -0.771837 -0.218072 -0.597254 +-0.059840 0.067254 -0.149515 -0.765786 -0.173248 -0.619319 +-0.059659 0.073896 -0.152228 -0.744305 -0.106645 -0.659270 +-0.059568 0.080591 -0.153664 -0.762344 -0.038683 -0.646015 +-0.059538 0.087332 -0.154079 -0.749652 0.025174 -0.661353 +-0.059621 0.094163 -0.152779 -0.752387 0.093009 -0.652122 +-0.059780 0.101062 -0.150429 -0.753057 0.151976 -0.640163 +-0.059999 0.108029 -0.147082 -0.760380 0.209677 -0.614701 +-0.060354 0.115125 -0.141588 -0.767744 0.269138 -0.581493 +-0.060868 0.122387 -0.133790 -0.786546 0.309308 -0.534484 +-0.061669 0.129959 -0.121472 -0.800469 0.343348 -0.491285 +-0.069142 0.144157 -0.007141 -0.265915 0.083846 -0.960343 +-0.069218 0.151245 -0.006060 -0.255758 0.081576 -0.963293 +-0.069294 0.158341 -0.004927 -0.243836 0.088628 -0.965758 +-0.069324 0.165399 -0.004413 -0.233177 0.101403 -0.967133 +-0.069377 0.172487 -0.003589 -0.220993 0.116483 -0.968294 +-0.069445 0.179583 -0.002585 -0.203623 0.130511 -0.970312 +-0.069498 0.186671 -0.001746 -0.186652 0.141179 -0.972229 +-0.069573 0.193789 -0.000612 -0.171331 0.148634 -0.973937 +-0.069656 0.200915 0.000650 -0.160655 0.155333 -0.974711 +-0.069755 0.208071 0.002221 -0.152342 0.160970 -0.975131 +-0.069860 0.215235 0.003793 -0.149580 0.166225 -0.974677 +-0.069951 0.222391 0.005214 -0.145149 0.173654 -0.974051 +-0.070049 0.229554 0.006650 -0.146433 0.183250 -0.972099 +-0.070140 0.236718 0.008070 -0.149844 0.192370 -0.969815 +-0.070238 0.243889 0.009513 -0.152074 0.199292 -0.968068 +-0.070336 0.251076 0.011033 -0.153911 0.202933 -0.967021 +-0.070397 0.258217 0.012022 -0.162051 0.201995 -0.965887 +-0.070457 0.265358 0.012960 -0.172428 0.195246 -0.965478 +-0.070593 0.272604 0.015015 -0.190904 0.173941 -0.966074 +-0.070722 0.279851 0.016987 -0.212923 0.145526 -0.966171 +-0.070835 0.287083 0.018657 -0.237159 0.119007 -0.964154 +-0.070896 0.294239 0.019602 -0.260377 0.065717 -0.963268 +-0.070956 0.301395 0.020493 -0.267740 0.040007 -0.962660 +-0.070986 0.308513 0.021015 -0.286551 -0.014707 -0.957952 +-0.070964 0.315541 0.020660 -0.333915 -0.113260 -0.935774 +-0.070858 0.322440 0.019095 -0.387524 -0.214858 -0.896471 +-0.070714 0.329264 0.016889 -0.462566 -0.362273 -0.809191 +-0.069226 0.333783 -0.005947 -0.541364 -0.667394 -0.511380 +-0.067654 0.338090 -0.029939 -0.562367 -0.808125 -0.175150 +-0.065598 0.341468 -0.061352 -0.557161 -0.792889 -0.246777 +-0.064200 0.345896 -0.082737 -0.521084 -0.765500 -0.377466 +-0.063558 0.351616 -0.092629 -0.521230 -0.711940 -0.470595 +-0.063007 0.357473 -0.101077 -0.513366 -0.653458 -0.556280 +-0.062402 0.363208 -0.110311 -0.511899 -0.564097 -0.647884 +-0.061934 0.369170 -0.117407 -0.493453 -0.491230 -0.717773 +-0.061677 0.375503 -0.121389 -0.485935 -0.416039 -0.768621 +-0.061465 0.381911 -0.124601 -0.475399 -0.350276 -0.807033 +-0.061337 0.388477 -0.126558 -0.463675 -0.275663 -0.842031 +-0.061238 0.395082 -0.128115 -0.432518 -0.166159 -0.886182 +-0.061185 0.401792 -0.128878 -0.430811 -0.116079 -0.894946 +-0.061178 0.408578 -0.129059 -0.404341 -0.050799 -0.913197 +-0.061200 0.415439 -0.128636 -0.402280 -0.014255 -0.915406 +-0.061185 0.422217 -0.128840 -0.391463 0.036108 -0.919485 +-0.061140 0.428920 -0.129619 -0.377834 0.075857 -0.922761 +-0.061321 0.436114 -0.126860 -0.378291 0.124028 -0.917340 +-0.062115 0.444668 -0.114633 -0.420659 0.206801 -0.883334 +-0.095598 -0.535521 0.518669 -0.073076 -0.884173 -0.461409 +-0.094404 -0.525916 0.499952 -0.038292 -0.867322 -0.496272 +-0.093490 -0.516750 0.485526 -0.027306 -0.855638 -0.516854 +-0.081437 -0.492569 0.296264 -0.391059 -0.607296 -0.691566 +-0.080515 -0.483803 0.281755 -0.278956 -0.544001 -0.791357 +-0.079911 -0.475499 0.272242 -0.173585 -0.508819 -0.843191 +-0.079548 -0.467534 0.266582 -0.082213 -0.468701 -0.879523 +-0.079276 -0.459705 0.262312 0.002595 -0.435217 -0.900322 +-0.079057 -0.451952 0.258851 0.092552 -0.383255 -0.918994 +-0.078853 -0.444229 0.255625 0.170028 -0.333950 -0.927129 +-0.078649 -0.436514 0.252375 0.260716 -0.255883 -0.930887 +-0.078467 -0.428844 0.249587 0.336512 -0.191459 -0.922011 +-0.078339 -0.421242 0.247592 0.403768 -0.145331 -0.903244 +-0.078271 -0.413708 0.246541 0.454751 -0.098588 -0.885145 +-0.078271 -0.406250 0.246541 0.500241 -0.071718 -0.862911 +-0.078324 -0.398844 0.247350 0.539753 -0.036883 -0.841015 +-0.078346 -0.391409 0.247705 0.572284 -0.037266 -0.819209 +-0.078316 -0.383920 0.247244 0.611784 -0.067107 -0.788173 +-0.078173 -0.376326 0.244954 0.644029 -0.109871 -0.757070 +-0.078006 -0.368716 0.242279 0.669070 -0.167742 -0.724022 +-0.077840 -0.361114 0.239665 0.687222 -0.223358 -0.691258 +-0.077644 -0.353505 0.236665 0.700984 -0.274511 -0.658228 +-0.077425 -0.345880 0.233181 0.702836 -0.318364 -0.636134 +-0.077160 -0.338233 0.229040 0.701164 -0.359775 -0.615574 +-0.076880 -0.330586 0.224680 0.693470 -0.390270 -0.605631 +-0.076578 -0.322938 0.219859 0.683500 -0.418265 -0.598232 +-0.076185 -0.315246 0.213753 0.670755 -0.452219 -0.587865 +-0.075770 -0.307553 0.207232 0.660736 -0.475004 -0.581204 +-0.075369 -0.299891 0.200884 0.648761 -0.488498 -0.583506 +-0.074923 -0.292221 0.193925 0.630109 -0.478371 -0.611656 +-0.074523 -0.284611 0.187638 0.610591 -0.470936 -0.636708 +-0.074168 -0.277040 0.181970 0.579219 -0.462293 -0.671410 +-0.073896 -0.269544 0.177799 0.538203 -0.468702 -0.700468 +-0.073744 -0.262123 0.175381 0.511392 -0.470103 -0.719362 +-0.073676 -0.254755 0.174330 0.470085 -0.479308 -0.741137 +-0.073525 -0.247350 0.171973 0.429274 -0.471652 -0.770239 +-0.073253 -0.239899 0.167673 0.352941 -0.538951 -0.764830 +-0.072777 -0.232373 0.160132 0.166476 -0.645233 -0.745627 +-0.072127 -0.224801 0.149923 -0.017836 -0.704116 -0.709861 +-0.070812 -0.217018 0.129331 -0.237912 -0.786128 -0.570439 +-0.069528 -0.209317 0.109110 -0.376309 -0.763393 -0.524997 +-0.068765 -0.201859 0.097148 -0.394342 -0.722457 -0.567935 +-0.068243 -0.194507 0.088888 -0.381567 -0.690138 -0.614911 +-0.067790 -0.187199 0.081853 -0.379863 -0.652176 -0.656026 +-0.067465 -0.179953 0.076699 -0.379683 -0.629635 -0.677791 +-0.067163 -0.172721 0.071946 -0.383489 -0.612840 -0.690914 +-0.066875 -0.165519 0.067480 -0.389821 -0.599850 -0.698727 +-0.066543 -0.158318 0.062183 -0.393821 -0.594049 -0.701435 +-0.066090 -0.151117 0.055072 -0.410932 -0.588943 -0.695903 +-0.065636 -0.143945 0.047992 -0.433369 -0.583638 -0.686701 +-0.065183 -0.136797 0.040820 -0.455253 -0.576446 -0.678568 +-0.064677 -0.129671 0.032909 -0.484177 -0.562926 -0.669841 +-0.064132 -0.122575 0.024370 -0.518744 -0.554287 -0.650899 +-0.063687 -0.115502 0.017395 -0.545707 -0.540773 -0.640132 +-0.063286 -0.108460 0.011017 -0.563431 -0.529956 -0.633792 +-0.062886 -0.101432 0.004723 -0.582478 -0.517118 -0.627142 +-0.062462 -0.094435 -0.001859 -0.597068 -0.502278 -0.625481 +-0.062115 -0.087445 -0.007390 -0.605295 -0.491100 -0.626449 +-0.061760 -0.080478 -0.012914 -0.610674 -0.474770 -0.633775 +-0.061450 -0.073525 -0.017811 -0.612812 -0.457718 -0.644170 +-0.061163 -0.066581 -0.022315 -0.612218 -0.431242 -0.662736 +-0.060898 -0.059644 -0.026478 -0.609818 -0.401192 -0.683496 +-0.060649 -0.052722 -0.030408 -0.605281 -0.368347 -0.705660 +-0.060452 -0.045800 -0.033431 -0.600812 -0.323487 -0.731013 +-0.060354 -0.038856 -0.034957 -0.604015 -0.287471 -0.743321 +-0.060188 -0.031942 -0.037609 -0.601583 -0.243995 -0.760634 +-0.059984 -0.025050 -0.040844 -0.603220 -0.209953 -0.769445 +-0.059765 -0.018173 -0.044236 -0.612114 -0.184735 -0.768889 +-0.059546 -0.011312 -0.047720 -0.612909 -0.149683 -0.775846 +-0.059349 -0.004451 -0.050743 -0.626700 -0.147221 -0.765227 +-0.059447 0.002539 -0.049201 -0.633940 -0.119553 -0.764086 +-0.059599 0.009559 -0.046866 -0.636027 -0.078306 -0.767683 +-0.059591 0.016504 -0.046965 -0.647454 -0.045240 -0.760760 +-0.057044 0.022043 -0.087052 -0.819720 -0.532374 -0.211275 +-0.054649 0.027544 -0.124654 -0.816699 -0.450208 -0.360992 +-0.054037 0.033990 -0.134251 -0.793866 -0.392768 -0.464230 +-0.053576 0.040488 -0.141520 -0.762660 -0.337166 -0.551968 +-0.053191 0.047025 -0.147535 -0.751296 -0.293950 -0.590888 +-0.052881 0.053584 -0.152462 -0.734261 -0.246951 -0.632358 +-0.052616 0.060158 -0.156625 -0.721277 -0.193587 -0.665044 +-0.052374 0.066748 -0.160344 -0.700270 -0.144767 -0.699045 +-0.052208 0.073367 -0.163011 -0.696415 -0.086514 -0.712405 +-0.052133 0.080062 -0.164129 -0.678911 -0.030675 -0.733579 +-0.052065 0.086750 -0.165210 -0.683971 0.023681 -0.729125 +-0.052125 0.093543 -0.164311 -0.691219 0.074285 -0.718817 +-0.052269 0.100420 -0.161998 -0.704383 0.137843 -0.696307 +-0.052510 0.107387 -0.158235 -0.714421 0.188957 -0.673720 +-0.052873 0.114483 -0.152492 -0.728329 0.235171 -0.643609 +-0.053251 0.121609 -0.146606 -0.732494 0.268296 -0.625676 +-0.053750 0.128878 -0.138747 -0.760878 0.302030 -0.574319 +-0.054286 0.136215 -0.130291 -0.779824 0.315457 -0.540705 +-0.054830 0.143576 -0.121820 -0.806081 0.313188 -0.502142 +-0.062138 0.158198 -0.007043 -0.197038 0.089865 -0.976269 +-0.062190 0.165278 -0.006166 -0.187256 0.106036 -0.976571 +-0.062274 0.172396 -0.004829 -0.176471 0.121908 -0.976728 +-0.062349 0.179507 -0.003643 -0.163876 0.136869 -0.976940 +-0.062432 0.186625 -0.002335 -0.155432 0.146818 -0.976875 +-0.062515 0.193751 -0.001066 -0.144833 0.153831 -0.977425 +-0.062591 0.200870 0.000121 -0.142759 0.159858 -0.976763 +-0.062689 0.208026 0.001632 -0.140134 0.165058 -0.976278 +-0.062780 0.215182 0.003113 -0.133741 0.170315 -0.976272 +-0.062886 0.222346 0.004715 -0.131251 0.175847 -0.975629 +-0.062984 0.229517 0.006264 -0.130435 0.183010 -0.974420 +-0.063075 0.236688 0.007746 -0.132296 0.190314 -0.972768 +-0.063173 0.243874 0.009309 -0.141766 0.194127 -0.970679 +-0.063218 0.250985 0.010005 -0.151127 0.194942 -0.969102 +-0.063279 0.258118 0.010919 -0.163351 0.192729 -0.967560 +-0.063347 0.265275 0.012060 -0.176930 0.184283 -0.966817 +-0.063475 0.272506 0.013972 -0.205198 0.154409 -0.966463 +-0.063588 0.279745 0.015831 -0.223153 0.129958 -0.966082 +-0.063687 0.286947 0.017312 -0.232934 0.111685 -0.966058 +-0.063755 0.294118 0.018438 -0.257812 0.061342 -0.964246 +-0.063808 0.301259 0.019194 -0.294653 0.015695 -0.955475 +-0.063838 0.308377 0.019708 -0.348324 -0.088144 -0.933221 +-0.063800 0.315375 0.019095 -0.369893 -0.136658 -0.918969 +-0.063709 0.322289 0.017667 -0.424381 -0.273743 -0.863114 +-0.063180 0.328448 0.009415 -0.512986 -0.497288 -0.699679 +-0.060913 0.331531 -0.026176 -0.539792 -0.803035 -0.252505 +-0.059198 0.335468 -0.053153 -0.502385 -0.837474 -0.215049 +-0.057777 0.339843 -0.075475 -0.494535 -0.807623 -0.321218 +-0.056810 0.344974 -0.090672 -0.472413 -0.763686 -0.440011 +-0.056183 0.350679 -0.100533 -0.450112 -0.715444 -0.534359 +-0.055586 0.356422 -0.109873 -0.435966 -0.646434 -0.626144 +-0.055117 0.362362 -0.117233 -0.434509 -0.556756 -0.707973 +-0.054830 0.368626 -0.121805 -0.428054 -0.489978 -0.759402 +-0.054604 0.374996 -0.125410 -0.423472 -0.407543 -0.809061 +-0.054445 0.381495 -0.127888 -0.405983 -0.335550 -0.850049 +-0.054339 0.388092 -0.129543 -0.387473 -0.248073 -0.887876 +-0.054264 0.394742 -0.130729 -0.376157 -0.166357 -0.911500 +-0.054241 0.401505 -0.131032 -0.360930 -0.100531 -0.927159 +-0.054218 0.408268 -0.131372 -0.366546 -0.057056 -0.928649 +-0.054233 0.415099 -0.131122 -0.352948 0.010602 -0.935583 +-0.054241 0.421915 -0.131069 -0.351544 0.038821 -0.935366 +-0.054211 0.428648 -0.131538 -0.339217 0.085247 -0.936838 +-0.054294 0.435646 -0.130193 -0.341839 0.126248 -0.931240 +-0.054966 0.443958 -0.119621 -0.366688 0.181518 -0.912464 +-0.088812 -0.545170 0.537146 -0.065321 -0.888121 -0.454943 +-0.087505 -0.535279 0.516032 -0.073076 -0.884173 -0.461409 +-0.086538 -0.525962 0.500473 -0.049361 -0.873269 -0.484731 +-0.074153 -0.500473 0.300374 -0.437268 -0.624439 -0.647204 +-0.073147 -0.491534 0.284203 -0.343568 -0.534288 -0.772332 +-0.072573 -0.483221 0.274848 -0.249842 -0.482492 -0.839512 +-0.072165 -0.475174 0.268327 -0.164411 -0.449046 -0.878252 +-0.071908 -0.467337 0.264118 -0.107496 -0.432407 -0.895248 +-0.071712 -0.459600 0.261012 -0.030668 -0.384584 -0.922580 +-0.071538 -0.451899 0.258156 0.035545 -0.342069 -0.939002 +-0.071372 -0.444214 0.255443 0.144030 -0.261692 -0.954344 +-0.071236 -0.436582 0.253305 0.198061 -0.219573 -0.955280 +-0.071145 -0.429003 0.251778 0.270749 -0.136448 -0.952931 +-0.071069 -0.421461 0.250675 0.334227 -0.089788 -0.938206 +-0.071032 -0.413950 0.250055 0.389843 -0.046409 -0.919711 +-0.071047 -0.406499 0.250252 0.451485 -0.012733 -0.892188 +-0.071122 -0.399117 0.251506 0.493032 0.025733 -0.869631 +-0.071205 -0.391734 0.252783 0.545508 0.017834 -0.837916 +-0.071236 -0.384298 0.253267 0.591441 -0.001149 -0.806348 +-0.071115 -0.376711 0.251310 0.633173 -0.053264 -0.772175 +-0.070979 -0.369117 0.249171 0.663880 -0.107501 -0.740073 +-0.070843 -0.361530 0.247010 0.692948 -0.171846 -0.700208 +-0.070669 -0.353913 0.244131 0.702540 -0.236302 -0.671266 +-0.070465 -0.346288 0.240806 0.718491 -0.295147 -0.629808 +-0.070208 -0.338626 0.236740 0.721195 -0.333428 -0.607209 +-0.069951 -0.330979 0.232509 0.728424 -0.366885 -0.578614 +-0.069679 -0.323331 0.228111 0.724541 -0.395465 -0.564489 +-0.069339 -0.315654 0.222662 0.704614 -0.435690 -0.560084 +-0.068938 -0.307954 0.216224 0.685424 -0.466377 -0.559183 +-0.068530 -0.300261 0.209582 0.672715 -0.488136 -0.556038 +-0.068107 -0.292591 0.202826 0.647585 -0.499607 -0.575349 +-0.067677 -0.284929 0.195822 0.624182 -0.491276 -0.607490 +-0.067314 -0.277342 0.189995 0.585890 -0.496021 -0.640856 +-0.066959 -0.269778 0.184207 0.543780 -0.506804 -0.668920 +-0.066724 -0.262297 0.180398 0.487466 -0.520269 -0.701212 +-0.066596 -0.254884 0.178373 0.456275 -0.547217 -0.701689 +-0.066520 -0.247509 0.177195 0.398194 -0.531553 -0.747592 +-0.066173 -0.240012 0.171580 0.276273 -0.624076 -0.730891 +-0.065485 -0.232380 0.160396 0.106920 -0.705167 -0.700933 +-0.064284 -0.224574 0.140991 -0.143768 -0.801569 -0.580360 +-0.062682 -0.216685 0.115208 -0.324898 -0.808753 -0.490266 +-0.061782 -0.209136 0.100616 -0.348982 -0.762949 -0.544170 +-0.061170 -0.201731 0.090800 -0.346279 -0.716506 -0.605565 +-0.060717 -0.194401 0.083462 -0.342790 -0.681202 -0.646884 +-0.060347 -0.187124 0.077470 -0.354042 -0.654050 -0.668486 +-0.059999 -0.179877 0.071840 -0.361658 -0.636072 -0.681627 +-0.059750 -0.172668 0.067820 -0.377523 -0.620472 -0.687379 +-0.059447 -0.165467 0.062976 -0.390082 -0.604488 -0.694572 +-0.059085 -0.158265 0.057105 -0.406584 -0.599569 -0.689352 +-0.058639 -0.151079 0.049851 -0.426939 -0.598568 -0.677819 +-0.058163 -0.143908 0.042120 -0.450748 -0.596513 -0.664077 +-0.057694 -0.136767 0.034639 -0.475522 -0.590207 -0.652330 +-0.057173 -0.129656 0.026130 -0.509553 -0.578365 -0.637064 +-0.056682 -0.122568 0.018287 -0.533437 -0.564276 -0.630109 +-0.056236 -0.115510 0.011063 -0.557888 -0.551624 -0.620058 +-0.055828 -0.108475 0.004405 -0.575119 -0.537607 -0.616618 +-0.055427 -0.101462 -0.001965 -0.592573 -0.523447 -0.612258 +-0.055080 -0.094465 -0.007632 -0.604784 -0.503319 -0.617175 +-0.054747 -0.087490 -0.013028 -0.612523 -0.488517 -0.621422 +-0.054430 -0.080523 -0.018068 -0.616083 -0.473843 -0.629217 +-0.054082 -0.073586 -0.023675 -0.617653 -0.448865 -0.645775 +-0.053742 -0.066664 -0.029252 -0.618409 -0.411947 -0.669231 +-0.053500 -0.059742 -0.033159 -0.612486 -0.378498 -0.693974 +-0.053251 -0.052835 -0.037216 -0.605123 -0.344631 -0.717673 +-0.053107 -0.045906 -0.039506 -0.602924 -0.312729 -0.733950 +-0.053032 -0.038969 -0.040647 -0.604419 -0.279237 -0.746126 +-0.053009 -0.032017 -0.041010 -0.602351 -0.254671 -0.756516 +-0.052979 -0.025073 -0.041576 -0.602911 -0.220084 -0.766851 +-0.052775 -0.018189 -0.044849 -0.611129 -0.192049 -0.767879 +-0.052556 -0.011335 -0.048370 -0.625033 -0.184877 -0.758389 +-0.052322 -0.004488 -0.052163 -0.634512 -0.174222 -0.753021 +-0.052246 0.002411 -0.053357 -0.644924 -0.146469 -0.750079 +-0.051883 0.009166 -0.059251 -0.670530 -0.141085 -0.728343 +-0.048067 0.014033 -0.120936 -0.788942 -0.539724 -0.293715 +-0.047304 0.020426 -0.133238 -0.780962 -0.472648 -0.408292 +-0.046820 0.026939 -0.140984 -0.749880 -0.409887 -0.519300 +-0.046435 0.033484 -0.147218 -0.740613 -0.360303 -0.567164 +-0.046095 0.040043 -0.152681 -0.728094 -0.318623 -0.606926 +-0.045846 0.046640 -0.156716 -0.720294 -0.270585 -0.638718 +-0.045589 0.053214 -0.160865 -0.694645 -0.217707 -0.685618 +-0.045362 0.059803 -0.164575 -0.672608 -0.179991 -0.717775 +-0.045173 0.066408 -0.167560 -0.662483 -0.128529 -0.737968 +-0.045052 0.073050 -0.169563 -0.652444 -0.080101 -0.753592 +-0.044969 0.079715 -0.170968 -0.656046 -0.036807 -0.753823 +-0.044931 0.086417 -0.171482 -0.651757 0.015404 -0.758272 +-0.044954 0.093173 -0.171134 -0.663131 0.066195 -0.745570 +-0.045045 0.099989 -0.169668 -0.662527 0.101576 -0.742119 +-0.045203 0.106873 -0.167137 -0.670478 0.154568 -0.725650 +-0.045528 0.113923 -0.161893 -0.700885 0.201702 -0.684162 +-0.045861 0.121004 -0.156467 -0.712663 0.243419 -0.657919 +-0.046201 0.128107 -0.150996 -0.723250 0.268105 -0.636419 +-0.046541 0.135233 -0.145525 -0.741464 0.286168 -0.606909 +-0.046979 0.142472 -0.138490 -0.762252 0.288294 -0.579532 +-0.047311 0.149636 -0.133026 -0.782036 0.279380 -0.557105 +-0.047742 0.156921 -0.126135 -0.801381 0.268918 -0.534295 +-0.055125 0.172245 -0.006930 -0.148253 0.125336 -0.980975 +-0.055223 0.179379 -0.005343 -0.146240 0.141966 -0.979010 +-0.055314 0.186520 -0.003779 -0.138919 0.152273 -0.978527 +-0.055405 0.193653 -0.002365 -0.131919 0.157982 -0.978590 +-0.055510 0.200809 -0.000710 -0.129584 0.164312 -0.977860 +-0.055601 0.207950 0.000740 -0.124633 0.169488 -0.977620 +-0.055684 0.215099 0.002169 -0.120652 0.174197 -0.977292 +-0.055790 0.222278 0.003877 -0.116996 0.177769 -0.977093 +-0.055881 0.229441 0.005358 -0.116506 0.182788 -0.976225 +-0.055964 0.236597 0.006642 -0.127302 0.185078 -0.974444 +-0.056032 0.243738 0.007768 -0.138445 0.187618 -0.972436 +-0.056107 0.250894 0.009000 -0.150649 0.187429 -0.970657 +-0.056183 0.258043 0.010179 -0.164128 0.183643 -0.969194 +-0.056251 0.265199 0.011320 -0.179914 0.172809 -0.968384 +-0.056357 0.272416 0.013020 -0.207355 0.147284 -0.967115 +-0.056455 0.279624 0.014630 -0.228030 0.122707 -0.965891 +-0.056538 0.286811 0.015975 -0.279982 0.071110 -0.957368 +-0.056599 0.293974 0.016949 -0.292316 0.035216 -0.955673 +-0.056636 0.301085 0.017516 -0.325552 -0.018581 -0.945341 +-0.056674 0.308211 0.018075 -0.363849 -0.114560 -0.924386 +-0.056629 0.315201 0.017455 -0.388646 -0.170697 -0.905437 +-0.056334 0.321753 0.012695 -0.481509 -0.367897 -0.795488 +-0.054558 0.325659 -0.016013 -0.559766 -0.722032 -0.406611 +-0.053289 0.330382 -0.036529 -0.493509 -0.849119 -0.188272 +-0.051528 0.334138 -0.064934 -0.449526 -0.848689 -0.278663 +-0.050508 0.339155 -0.081468 -0.451059 -0.802858 -0.389827 +-0.049639 0.344415 -0.095501 -0.435099 -0.754561 -0.491251 +-0.049019 0.350090 -0.105520 -0.407837 -0.704734 -0.580533 +-0.048490 0.355923 -0.114014 -0.384747 -0.641050 -0.664096 +-0.048060 0.361901 -0.121034 -0.373396 -0.549661 -0.747294 +-0.047810 0.368226 -0.125069 -0.362654 -0.488319 -0.793742 +-0.047584 0.374588 -0.128651 -0.350326 -0.393754 -0.849841 +-0.047485 0.381193 -0.130283 -0.350739 -0.333472 -0.875088 +-0.047395 0.387805 -0.131772 -0.333382 -0.237472 -0.912394 +-0.047349 0.394507 -0.132505 -0.326810 -0.163876 -0.930774 +-0.047327 0.401271 -0.132792 -0.328625 -0.105117 -0.938592 +-0.047319 0.408056 -0.132921 -0.318878 -0.046961 -0.946632 +-0.047319 0.414850 -0.132966 -0.315442 -0.001606 -0.948943 +-0.047296 0.421605 -0.133329 -0.306207 0.043913 -0.950952 +-0.047304 0.428414 -0.133230 -0.305484 0.077592 -0.949031 +-0.047387 0.435404 -0.131893 -0.301381 0.114985 -0.946545 +-0.047878 0.443346 -0.123906 -0.315470 0.176492 -0.932378 +-0.082231 -0.555304 0.560102 -0.035889 -0.895912 -0.442780 +-0.080659 -0.544876 0.533979 -0.065321 -0.888121 -0.454943 +-0.079593 -0.535301 0.516274 -0.067414 -0.884697 -0.461267 +-0.078777 -0.526158 0.502665 -0.048842 -0.873254 -0.484812 +-0.065810 -0.499325 0.287256 -0.368915 -0.535718 -0.759544 +-0.065183 -0.490899 0.276859 -0.286157 -0.469873 -0.835065 +-0.064775 -0.482806 0.269997 -0.222756 -0.436668 -0.871608 +-0.064503 -0.474939 0.265546 -0.183116 -0.405800 -0.895430 +-0.064299 -0.467179 0.262183 -0.101267 -0.360455 -0.927263 +-0.064140 -0.459486 0.259531 -0.033075 -0.323171 -0.945762 +-0.063996 -0.451824 0.257151 0.024008 -0.275060 -0.961127 +-0.063868 -0.444177 0.254937 0.094923 -0.220660 -0.970721 +-0.063755 -0.436575 0.253146 0.173737 -0.147947 -0.973615 +-0.063724 -0.429071 0.252670 0.227084 -0.088197 -0.969873 +-0.063717 -0.421590 0.252481 0.288723 -0.033770 -0.956817 +-0.063709 -0.414109 0.252383 0.329168 0.030041 -0.943793 +-0.063770 -0.406711 0.253342 0.402910 0.069452 -0.912601 +-0.063891 -0.399366 0.255330 0.453256 0.076039 -0.888131 +-0.064004 -0.392021 0.257302 0.509467 0.098483 -0.854836 +-0.064102 -0.384646 0.258904 0.574185 0.070262 -0.815705 +-0.064072 -0.377134 0.258360 0.626801 0.042739 -0.778007 +-0.063989 -0.369578 0.257045 0.677241 -0.011768 -0.735667 +-0.063883 -0.361999 0.255247 0.712989 -0.082329 -0.696325 +-0.063724 -0.354381 0.252632 0.740235 -0.150973 -0.655179 +-0.063528 -0.346742 0.249398 0.766262 -0.230558 -0.599738 +-0.063309 -0.339087 0.245665 0.772344 -0.288875 -0.565717 +-0.063075 -0.331440 0.241811 0.766057 -0.343820 -0.543088 +-0.062833 -0.323792 0.237730 0.758406 -0.372946 -0.534539 +-0.062538 -0.316130 0.232864 0.742183 -0.414462 -0.526674 +-0.062175 -0.308430 0.226894 0.724658 -0.455381 -0.517203 +-0.061745 -0.300699 0.219723 0.696234 -0.486560 -0.527747 +-0.061291 -0.292977 0.212204 0.666511 -0.513243 -0.540689 +-0.060868 -0.285299 0.205199 0.634659 -0.525055 -0.567032 +-0.060483 -0.277674 0.198769 0.591403 -0.529558 -0.608120 +-0.060105 -0.270073 0.192459 0.549759 -0.543321 -0.634482 +-0.059765 -0.262516 0.186867 0.503026 -0.564711 -0.654268 +-0.059523 -0.255027 0.182764 0.441639 -0.577096 -0.686961 +-0.059342 -0.247592 0.179824 0.341432 -0.652082 -0.676915 +-0.058903 -0.240043 0.172555 0.203633 -0.707206 -0.677047 +-0.057649 -0.232138 0.151623 -0.090130 -0.807377 -0.583112 +-0.056168 -0.224219 0.127049 -0.262235 -0.831327 -0.490029 +-0.054989 -0.216504 0.107485 -0.304814 -0.809166 -0.502333 +-0.054286 -0.209023 0.095750 -0.298284 -0.770762 -0.562985 +-0.053757 -0.201655 0.087059 -0.306276 -0.723785 -0.618328 +-0.053327 -0.194333 0.079835 -0.322346 -0.690317 -0.647731 +-0.052934 -0.187056 0.073337 -0.335326 -0.662325 -0.669986 +-0.052586 -0.179809 0.067511 -0.359319 -0.646776 -0.672734 +-0.052314 -0.172608 0.063044 -0.380921 -0.630370 -0.676412 +-0.051981 -0.165399 0.057506 -0.399697 -0.616203 -0.678628 +-0.051596 -0.158205 0.051067 -0.421239 -0.611208 -0.670062 +-0.051105 -0.151018 0.042929 -0.445786 -0.607858 -0.657102 +-0.050636 -0.143862 0.035198 -0.470564 -0.609237 -0.638279 +-0.050183 -0.136736 0.027664 -0.495815 -0.603560 -0.624406 +-0.049714 -0.129633 0.019798 -0.520283 -0.589748 -0.617660 +-0.049269 -0.122560 0.012438 -0.547245 -0.574032 -0.609106 +-0.048838 -0.115510 0.005290 -0.566656 -0.558880 -0.605437 +-0.048422 -0.108482 -0.001700 -0.588163 -0.542817 -0.599512 +-0.048052 -0.101485 -0.007784 -0.602230 -0.522342 -0.603720 +-0.047727 -0.094495 -0.013254 -0.613611 -0.500771 -0.610499 +-0.047395 -0.087528 -0.018733 -0.617746 -0.487287 -0.617205 +-0.047017 -0.080583 -0.024959 -0.622643 -0.459228 -0.633582 +-0.046722 -0.073654 -0.029871 -0.622299 -0.429479 -0.654439 +-0.046306 -0.066762 -0.036755 -0.620592 -0.388761 -0.680978 +-0.046034 -0.059856 -0.041289 -0.612745 -0.346287 -0.710372 +-0.045770 -0.052972 -0.045763 -0.603900 -0.319233 -0.730339 +-0.045521 -0.046095 -0.049889 -0.597887 -0.290915 -0.746926 +-0.045498 -0.039158 -0.050184 -0.601165 -0.275891 -0.749990 +-0.045521 -0.032206 -0.049912 -0.606338 -0.261605 -0.750945 +-0.045649 -0.025209 -0.047750 -0.606367 -0.237553 -0.758872 +-0.045664 -0.018257 -0.047456 -0.610022 -0.205067 -0.765389 +-0.045536 -0.011365 -0.049617 -0.627589 -0.200621 -0.752252 +-0.045226 -0.004564 -0.054717 -0.637806 -0.185793 -0.747451 +-0.043314 0.001421 -0.086508 -0.723849 -0.617767 -0.307258 +-0.040866 0.007013 -0.127223 -0.750899 -0.576579 -0.322036 +-0.040208 0.013459 -0.138173 -0.727717 -0.514748 -0.453279 +-0.039725 0.019972 -0.146167 -0.723440 -0.435722 -0.535520 +-0.039271 0.026471 -0.153686 -0.708448 -0.375191 -0.597774 +-0.039029 0.033083 -0.157752 -0.695106 -0.339345 -0.633776 +-0.038833 0.039710 -0.160910 -0.689344 -0.295267 -0.661530 +-0.038652 0.046330 -0.164031 -0.668602 -0.237568 -0.704651 +-0.038478 0.052949 -0.166902 -0.657262 -0.207601 -0.724505 +-0.038342 0.059592 -0.169086 -0.644295 -0.163003 -0.747204 +-0.038206 0.066226 -0.171376 -0.630686 -0.125580 -0.765810 +-0.038138 0.072906 -0.172472 -0.636981 -0.082514 -0.766451 +-0.038077 0.079586 -0.173507 -0.631638 -0.035489 -0.774451 +-0.038047 0.086281 -0.174074 -0.641015 0.009403 -0.767471 +-0.038024 0.092992 -0.174414 -0.639462 0.046000 -0.767445 +-0.038070 0.099762 -0.173704 -0.652335 0.101289 -0.751133 +-0.038168 0.106586 -0.172041 -0.660885 0.137778 -0.737732 +-0.038387 0.113538 -0.168392 -0.673102 0.180524 -0.717179 +-0.038606 0.120498 -0.164764 -0.691842 0.220386 -0.687594 +-0.038909 0.127563 -0.159701 -0.707824 0.247928 -0.661451 +-0.039090 0.134508 -0.156716 -0.714326 0.264066 -0.648079 +-0.039271 0.141467 -0.153671 -0.721370 0.270164 -0.637681 +-0.039498 0.148487 -0.149931 -0.734820 0.272161 -0.621263 +-0.039717 0.155515 -0.146220 -0.742785 0.261496 -0.616353 +-0.039944 0.162558 -0.142487 -0.752394 0.255468 -0.607157 +-0.040239 0.169699 -0.137606 -0.760890 0.250437 -0.598605 +-0.040541 0.176870 -0.132558 -0.767864 0.242666 -0.592873 +-0.040964 0.184207 -0.125568 -0.808991 0.244326 -0.534639 +-0.048332 0.200620 -0.003136 -0.122637 0.168835 -0.977985 +-0.048430 0.207776 -0.001504 -0.119850 0.174060 -0.977414 +-0.048543 0.214955 0.000416 -0.116337 0.177037 -0.977304 +-0.048664 0.222149 0.002350 -0.113830 0.179552 -0.977141 +-0.048755 0.229313 0.003869 -0.114155 0.182036 -0.976643 +-0.048823 0.236454 0.005017 -0.125540 0.182725 -0.975116 +-0.048868 0.243557 0.005750 -0.138718 0.183876 -0.973112 +-0.048959 0.250736 0.007292 -0.152737 0.182812 -0.971211 +-0.049057 0.257929 0.008879 -0.171686 0.175549 -0.969385 +-0.049133 0.265093 0.010133 -0.198199 0.157562 -0.967415 +-0.049231 0.272295 0.011750 -0.214877 0.141404 -0.966350 +-0.049322 0.279496 0.013269 -0.254551 0.106209 -0.961209 +-0.049405 0.286690 0.014728 -0.293895 0.060637 -0.953912 +-0.049450 0.293816 0.015408 -0.328779 -0.002249 -0.944404 +-0.049465 0.300904 0.015740 -0.345998 -0.037250 -0.937496 +-0.049488 0.307992 0.016020 -0.416734 -0.143321 -0.897659 +-0.049374 0.314853 0.014168 -0.466893 -0.255848 -0.846494 +-0.048732 0.320755 0.003483 -0.558147 -0.491844 -0.668252 +-0.046994 0.324632 -0.025375 -0.536492 -0.786027 -0.307144 +-0.045619 0.329082 -0.048211 -0.436747 -0.873737 -0.214092 +-0.044304 0.333563 -0.070020 -0.443936 -0.845250 -0.297444 +-0.043337 0.338626 -0.086092 -0.409089 -0.807711 -0.424557 +-0.042611 0.344097 -0.098183 -0.405314 -0.742328 -0.533545 +-0.042014 0.349787 -0.108112 -0.373001 -0.682158 -0.628912 +-0.041493 0.355583 -0.116810 -0.335746 -0.629219 -0.700969 +-0.041070 0.361568 -0.123762 -0.317513 -0.548205 -0.773729 +-0.040835 0.367901 -0.127684 -0.303781 -0.483790 -0.820771 +-0.040654 0.374339 -0.130661 -0.299508 -0.385373 -0.872802 +-0.040563 0.380943 -0.132226 -0.298344 -0.313588 -0.901473 +-0.040480 0.387578 -0.133540 -0.290102 -0.229356 -0.929105 +-0.040450 0.394296 -0.134130 -0.288024 -0.160863 -0.944016 +-0.040443 0.401082 -0.134258 -0.284235 -0.105843 -0.952895 +-0.040427 0.407852 -0.134440 -0.278910 -0.052579 -0.958877 +-0.040412 0.414616 -0.134689 -0.277308 0.000450 -0.960781 +-0.040382 0.421348 -0.135165 -0.276891 0.037263 -0.960179 +-0.040359 0.428089 -0.135581 -0.275464 0.078464 -0.958104 +-0.040473 0.435139 -0.133760 -0.273051 0.113221 -0.955314 +-0.040851 0.442847 -0.127404 -0.278115 0.160657 -0.947017 +-0.073722 -0.554488 0.551450 -0.033444 -0.893328 -0.448159 +-0.072687 -0.544845 0.533669 -0.060796 -0.888698 -0.454445 +-0.071818 -0.535536 0.518798 -0.061826 -0.884376 -0.462662 +-0.058420 -0.507062 0.289599 -0.391098 -0.525402 -0.755642 +-0.057792 -0.498584 0.278868 -0.306230 -0.466383 -0.829885 +-0.057377 -0.490461 0.271788 -0.252783 -0.423666 -0.869832 +-0.057090 -0.482549 0.266921 -0.205303 -0.400142 -0.893161 +-0.056878 -0.474750 0.263219 -0.160280 -0.371630 -0.914440 +-0.056712 -0.467028 0.260340 -0.113586 -0.331409 -0.936625 +-0.056576 -0.459365 0.258035 -0.036278 -0.273425 -0.961209 +-0.056455 -0.451726 0.255942 0.025243 -0.220557 -0.975047 +-0.056357 -0.444131 0.254309 0.074544 -0.168381 -0.982899 +-0.056296 -0.436582 0.253297 0.142232 -0.097727 -0.984997 +-0.056289 -0.429101 0.253146 0.186576 -0.035019 -0.981816 +-0.056304 -0.421650 0.253380 0.244528 0.020562 -0.969424 +-0.056349 -0.414237 0.254158 0.313563 0.092130 -0.945087 +-0.056455 -0.406892 0.256025 0.360086 0.131520 -0.923602 +-0.056606 -0.399585 0.258632 0.420908 0.162190 -0.892486 +-0.056765 -0.392278 0.261315 0.467628 0.172578 -0.866915 +-0.056916 -0.384948 0.263831 0.538394 0.165147 -0.826352 +-0.056991 -0.377542 0.265153 0.595042 0.140079 -0.791393 +-0.057022 -0.370084 0.265743 0.672493 0.090999 -0.734487 +-0.056961 -0.362535 0.264617 0.721966 0.004814 -0.691912 +-0.056878 -0.354971 0.263249 0.756020 -0.073726 -0.650384 +-0.056757 -0.347369 0.261141 0.802684 -0.136463 -0.580582 +-0.056531 -0.339691 0.257340 0.816457 -0.213597 -0.536446 +-0.056319 -0.332029 0.253667 0.810177 -0.287835 -0.510650 +-0.056122 -0.324404 0.250327 0.811884 -0.333470 -0.479210 +-0.055805 -0.316682 0.244902 0.785618 -0.388643 -0.481415 +-0.055450 -0.308959 0.238751 0.761683 -0.441986 -0.473801 +-0.055019 -0.301198 0.231436 0.731188 -0.487048 -0.477649 +-0.054498 -0.293400 0.222466 0.693932 -0.518945 -0.499153 +-0.054067 -0.285692 0.215196 0.662441 -0.542018 -0.517096 +-0.053636 -0.278015 0.207731 0.611838 -0.563747 -0.554837 +-0.053251 -0.270382 0.201179 0.548489 -0.579371 -0.602900 +-0.052858 -0.262773 0.194416 0.481612 -0.609796 -0.629443 +-0.052442 -0.255178 0.187411 0.388501 -0.683770 -0.617677 +-0.052004 -0.247592 0.179892 0.262058 -0.724503 -0.637512 +-0.051203 -0.239854 0.166200 0.048759 -0.809987 -0.584417 +-0.049767 -0.231866 0.141557 -0.180017 -0.855804 -0.484967 +-0.048407 -0.223992 0.118314 -0.256141 -0.852825 -0.455061 +-0.047553 -0.216413 0.103774 -0.246505 -0.813406 -0.526883 +-0.046956 -0.208977 0.093528 -0.248820 -0.768017 -0.590118 +-0.046450 -0.201610 0.084830 -0.269598 -0.733678 -0.623726 +-0.046004 -0.194287 0.077176 -0.295893 -0.701464 -0.648379 +-0.045573 -0.187003 0.069914 -0.325294 -0.680110 -0.656988 +-0.045188 -0.179749 0.063302 -0.360752 -0.655277 -0.663679 +-0.044856 -0.172532 0.057513 -0.392922 -0.643790 -0.656617 +-0.044508 -0.165331 0.051604 -0.419368 -0.629611 -0.654003 +-0.044047 -0.158129 0.043677 -0.443011 -0.623360 -0.644332 +-0.043579 -0.150958 0.035660 -0.466053 -0.622446 -0.628774 +-0.043155 -0.143817 0.028450 -0.485936 -0.619735 -0.616275 +-0.042762 -0.136706 0.021823 -0.508055 -0.613472 -0.604593 +-0.042317 -0.129618 0.014154 -0.533160 -0.602013 -0.594408 +-0.041909 -0.122553 0.007133 -0.559919 -0.583113 -0.588617 +-0.041463 -0.115510 -0.000491 -0.583265 -0.561842 -0.586630 +-0.041040 -0.108497 -0.007723 -0.602418 -0.541505 -0.586400 +-0.040692 -0.101508 -0.013708 -0.613882 -0.517432 -0.596165 +-0.040314 -0.094533 -0.020078 -0.622866 -0.493818 -0.606780 +-0.039982 -0.087581 -0.025851 -0.622602 -0.478606 -0.619114 +-0.039657 -0.080644 -0.031360 -0.625454 -0.444608 -0.641195 +-0.039301 -0.073737 -0.037473 -0.623317 -0.404418 -0.669270 +-0.038931 -0.066845 -0.043783 -0.618293 -0.365682 -0.695694 +-0.038667 -0.059961 -0.048362 -0.608923 -0.328050 -0.722216 +-0.038410 -0.053085 -0.052700 -0.600517 -0.299289 -0.741488 +-0.038183 -0.046208 -0.056592 -0.594604 -0.283450 -0.752397 +-0.038062 -0.039317 -0.058655 -0.595878 -0.286550 -0.750212 +-0.038032 -0.032402 -0.059138 -0.596810 -0.269762 -0.755676 +-0.038123 -0.025435 -0.057566 -0.601372 -0.242788 -0.761187 +-0.038213 -0.018468 -0.056017 -0.609094 -0.220324 -0.761881 +-0.038236 -0.011524 -0.055616 -0.629034 -0.232545 -0.741781 +-0.036762 -0.005297 -0.080825 -0.698574 -0.593521 -0.399659 +-0.033899 0.000129 -0.129860 -0.699355 -0.634113 -0.329853 +-0.033158 0.006529 -0.142585 -0.696346 -0.551735 -0.459011 +-0.032637 0.013013 -0.151525 -0.689820 -0.472747 -0.548324 +-0.032191 0.019519 -0.159119 -0.683334 -0.407123 -0.606057 +-0.031956 0.026123 -0.163155 -0.675103 -0.367263 -0.639807 +-0.031783 0.032758 -0.166094 -0.663942 -0.315537 -0.677952 +-0.031662 0.039415 -0.168195 -0.646691 -0.259445 -0.717272 +-0.031548 0.046080 -0.170039 -0.635074 -0.227118 -0.738308 +-0.031450 0.052738 -0.171807 -0.621006 -0.190695 -0.760254 +-0.031405 0.059440 -0.172540 -0.623323 -0.162137 -0.764970 +-0.031322 0.066098 -0.174014 -0.613845 -0.114701 -0.781049 +-0.031299 0.072808 -0.174368 -0.618432 -0.089619 -0.780712 +-0.031276 0.079518 -0.174784 -0.621647 -0.043155 -0.782108 +-0.031231 0.086206 -0.175517 -0.623554 0.000975 -0.781780 +-0.031201 0.092909 -0.176069 -0.628659 0.038563 -0.776724 +-0.031231 0.099657 -0.175548 -0.638054 0.082386 -0.765572 +-0.031276 0.106435 -0.174762 -0.645002 0.124524 -0.753967 +-0.031405 0.113289 -0.172540 -0.657038 0.164146 -0.735770 +-0.031496 0.120120 -0.170961 -0.669551 0.202022 -0.714765 +-0.031752 0.127132 -0.166585 -0.675080 0.227695 -0.701728 +-0.031896 0.134032 -0.164129 -0.691349 0.249304 -0.678148 +-0.032024 0.140916 -0.161991 -0.703785 0.256076 -0.662655 +-0.032123 0.147785 -0.160222 -0.708318 0.263815 -0.654742 +-0.032236 0.154676 -0.158319 -0.713807 0.259731 -0.650399 +-0.032357 0.161583 -0.156225 -0.719997 0.257849 -0.644297 +-0.032546 0.168573 -0.153066 -0.727028 0.251558 -0.638865 +-0.032773 0.175638 -0.149084 -0.730545 0.250195 -0.635379 +-0.033022 0.182726 -0.144921 -0.730892 0.242947 -0.637788 +-0.033264 0.189837 -0.140689 -0.726082 0.240193 -0.644292 +-0.033543 0.197001 -0.135989 -0.733636 0.229585 -0.639585 +-0.033982 0.204414 -0.128402 -0.772709 0.237455 -0.588673 +-0.041493 0.221953 0.000015 -0.124764 0.179750 -0.975768 +-0.041599 0.229146 0.001904 -0.134008 0.176268 -0.975178 +-0.041682 0.236303 0.003302 -0.143996 0.175630 -0.973868 +-0.041720 0.243398 0.003952 -0.156087 0.175605 -0.972008 +-0.041810 0.250577 0.005524 -0.172170 0.173296 -0.969704 +-0.041916 0.257786 0.007315 -0.194355 0.164133 -0.967102 +-0.042014 0.264980 0.008969 -0.213683 0.150834 -0.965188 +-0.042105 0.272181 0.010541 -0.265964 0.114518 -0.957157 +-0.042173 0.279337 0.011660 -0.298474 0.088108 -0.950342 +-0.042279 0.286569 0.013511 -0.319070 0.044674 -0.946678 +-0.042317 0.293687 0.014123 -0.358210 -0.004633 -0.933630 +-0.042324 0.300753 0.014236 -0.441884 -0.108852 -0.890443 +-0.042271 0.307720 0.013405 -0.486247 -0.198558 -0.850963 +-0.042007 0.314294 0.008879 -0.537894 -0.335070 -0.773562 +-0.041077 0.319614 -0.007118 -0.609958 -0.591800 -0.526996 +-0.039664 0.323982 -0.031299 -0.516610 -0.819059 -0.249515 +-0.038296 0.328365 -0.054664 -0.430274 -0.872976 -0.229732 +-0.037125 0.333035 -0.074667 -0.394816 -0.852132 -0.343498 +-0.036370 0.338453 -0.087619 -0.413256 -0.784017 -0.463182 +-0.035606 0.343818 -0.100616 -0.397141 -0.709508 -0.582131 +-0.035024 0.349493 -0.110598 -0.347998 -0.661037 -0.664776 +-0.034533 0.355319 -0.119032 -0.319376 -0.600170 -0.733345 +-0.034178 0.361410 -0.125062 -0.276486 -0.537032 -0.796964 +-0.033944 0.367734 -0.129044 -0.267757 -0.482310 -0.834076 +-0.033763 0.374150 -0.132142 -0.256114 -0.382155 -0.887898 +-0.033657 0.380724 -0.133948 -0.258279 -0.311335 -0.914529 +-0.033581 0.387351 -0.135316 -0.254985 -0.228715 -0.939506 +-0.033543 0.394054 -0.135989 -0.255063 -0.159224 -0.953725 +-0.033536 0.400840 -0.136087 -0.252536 -0.099541 -0.962454 +-0.033543 0.407648 -0.135959 -0.251906 -0.053012 -0.966299 +-0.033513 0.414381 -0.136419 -0.249984 -0.010972 -0.968188 +-0.033498 0.421137 -0.136722 -0.247367 0.027919 -0.968519 +-0.033490 0.427900 -0.136918 -0.253885 0.072168 -0.964538 +-0.033589 0.434935 -0.135233 -0.252853 0.104863 -0.961805 +-0.033944 0.442598 -0.129150 -0.257533 0.150058 -0.954547 +-0.067012 -0.564636 0.573840 -0.040183 -0.903698 -0.426282 +-0.065697 -0.554420 0.550732 -0.035889 -0.895912 -0.442780 +-0.064820 -0.544989 0.535241 -0.019510 -0.886711 -0.461913 +-0.051029 -0.514823 0.292153 -0.406724 -0.517024 -0.753168 +-0.050387 -0.506277 0.280848 -0.317425 -0.449163 -0.835161 +-0.049964 -0.498100 0.273382 -0.265425 -0.416032 -0.869751 +-0.049654 -0.490128 0.267889 -0.221317 -0.381999 -0.897271 +-0.049420 -0.482277 0.263687 -0.185859 -0.360515 -0.914049 +-0.049261 -0.474562 0.260982 -0.138352 -0.326710 -0.934943 +-0.049140 -0.466907 0.258791 -0.080031 -0.278238 -0.957172 +-0.049042 -0.459290 0.257052 -0.038242 -0.232805 -0.971771 +-0.048936 -0.451665 0.255149 0.007694 -0.174404 -0.984644 +-0.048868 -0.444108 0.254037 0.052229 -0.117269 -0.991726 +-0.048845 -0.436605 0.253577 0.101770 -0.048714 -0.993614 +-0.048868 -0.429162 0.254007 0.153572 0.020844 -0.987918 +-0.048913 -0.421756 0.254846 0.205523 0.085103 -0.974945 +-0.048989 -0.414373 0.256153 0.267606 0.136054 -0.953874 +-0.049102 -0.407036 0.258171 0.326204 0.185874 -0.926845 +-0.049269 -0.399744 0.261043 0.379939 0.230794 -0.895757 +-0.049442 -0.392459 0.264148 0.439605 0.250259 -0.862623 +-0.049646 -0.385197 0.267775 0.501206 0.256857 -0.826328 +-0.049858 -0.377928 0.271508 0.584560 0.232079 -0.777450 +-0.050062 -0.370636 0.275083 0.664509 0.225710 -0.712379 +-0.050153 -0.363215 0.276662 0.757296 0.140185 -0.637849 +-0.050160 -0.355711 0.276836 0.793875 0.076285 -0.603277 +-0.050062 -0.348109 0.275007 0.835624 -0.027242 -0.548626 +-0.049873 -0.340432 0.271780 0.855496 -0.123260 -0.502926 +-0.049707 -0.332785 0.268743 0.860450 -0.222914 -0.458187 +-0.049518 -0.325130 0.265539 0.846471 -0.292958 -0.444593 +-0.049178 -0.317362 0.259486 0.831642 -0.354873 -0.427126 +-0.048808 -0.309586 0.252896 0.804912 -0.416529 -0.422635 +-0.048332 -0.301757 0.244539 0.788993 -0.443192 -0.425524 +-0.047788 -0.293914 0.234919 0.723237 -0.523857 -0.450002 +-0.047243 -0.286093 0.225322 0.684429 -0.559276 -0.467725 +-0.046790 -0.278377 0.217411 0.609490 -0.607669 -0.509176 +-0.046374 -0.270707 0.210111 0.543415 -0.650608 -0.530481 +-0.045929 -0.263045 0.202207 0.471962 -0.662639 -0.581517 +-0.045317 -0.255307 0.191371 0.320476 -0.738472 -0.593258 +-0.044674 -0.247599 0.180104 0.163261 -0.801136 -0.575784 +-0.043329 -0.239567 0.156346 -0.070143 -0.863850 -0.498842 +-0.041916 -0.231587 0.131447 -0.203888 -0.886054 -0.416339 +-0.040994 -0.223917 0.115231 -0.209297 -0.853291 -0.477587 +-0.040261 -0.216375 0.102241 -0.193851 -0.819583 -0.539172 +-0.039694 -0.208947 0.092311 -0.206194 -0.780538 -0.590122 +-0.039181 -0.201572 0.083243 -0.230125 -0.746014 -0.624904 +-0.038712 -0.194242 0.074916 -0.286703 -0.719266 -0.632818 +-0.038266 -0.186950 0.067140 -0.332928 -0.689684 -0.643036 +-0.037858 -0.179696 0.059969 -0.365924 -0.675233 -0.640437 +-0.037473 -0.172472 0.053138 -0.401735 -0.656585 -0.638361 +-0.037050 -0.165263 0.045604 -0.438435 -0.638479 -0.632549 +-0.036551 -0.158061 0.036869 -0.468022 -0.626631 -0.623128 +-0.036105 -0.150905 0.029070 -0.487863 -0.632043 -0.602089 +-0.035742 -0.143779 0.022594 -0.507393 -0.630425 -0.587466 +-0.035380 -0.136683 0.016216 -0.528271 -0.620496 -0.579582 +-0.034941 -0.129603 0.008433 -0.552913 -0.606565 -0.571284 +-0.034465 -0.122545 0.000166 -0.581848 -0.582765 -0.567308 +-0.034035 -0.115517 -0.007489 -0.605912 -0.557818 -0.567194 +-0.033596 -0.108513 -0.015264 -0.619980 -0.532349 -0.576394 +-0.033150 -0.101545 -0.023063 -0.626774 -0.505177 -0.593254 +-0.032818 -0.094586 -0.028980 -0.626710 -0.484909 -0.609998 +-0.032485 -0.087649 -0.034866 -0.621267 -0.453170 -0.639268 +-0.032062 -0.080742 -0.042310 -0.616433 -0.417181 -0.667810 +-0.031775 -0.073843 -0.047304 -0.610765 -0.378218 -0.695642 +-0.031480 -0.066959 -0.052579 -0.607542 -0.340252 -0.717719 +-0.031291 -0.060067 -0.055821 -0.603697 -0.310505 -0.734259 +-0.031095 -0.053191 -0.059365 -0.598133 -0.287857 -0.747914 +-0.030951 -0.046307 -0.061904 -0.591457 -0.274380 -0.758218 +-0.030808 -0.039430 -0.064382 -0.599966 -0.295090 -0.743615 +-0.030725 -0.032546 -0.065863 -0.602575 -0.285847 -0.745114 +-0.030725 -0.025624 -0.065780 -0.606192 -0.272753 -0.747086 +-0.030642 -0.018748 -0.067307 -0.618664 -0.264868 -0.739662 +-0.030385 -0.011954 -0.071833 -0.653178 -0.329474 -0.681766 +-0.027105 -0.006672 -0.129626 -0.660432 -0.690243 -0.295625 +-0.026319 -0.000279 -0.143455 -0.649453 -0.615237 -0.446871 +-0.025685 0.006144 -0.154736 -0.657754 -0.502018 -0.561549 +-0.025208 0.012627 -0.163079 -0.656211 -0.454455 -0.602377 +-0.024967 0.019232 -0.167334 -0.645852 -0.382005 -0.661020 +-0.024763 0.025836 -0.170998 -0.641584 -0.345054 -0.685061 +-0.024604 0.032463 -0.173726 -0.631073 -0.287902 -0.720319 +-0.024521 0.039136 -0.175200 -0.630058 -0.247047 -0.736203 +-0.024460 0.045816 -0.176250 -0.611009 -0.206455 -0.764228 +-0.024407 0.052503 -0.177202 -0.606899 -0.182747 -0.773484 +-0.024370 0.059191 -0.177928 -0.595918 -0.143812 -0.790063 +-0.024355 0.065909 -0.178117 -0.594014 -0.117992 -0.795755 +-0.024385 0.072649 -0.177656 -0.595407 -0.085744 -0.798836 +-0.024355 0.079352 -0.178139 -0.594165 -0.050342 -0.802766 +-0.024339 0.086055 -0.178434 -0.604880 -0.013499 -0.796202 +-0.024362 0.092795 -0.178079 -0.619352 0.033161 -0.784413 +-0.024362 0.099521 -0.178011 -0.623690 0.067442 -0.778757 +-0.024385 0.106269 -0.177580 -0.631194 0.105502 -0.768416 +-0.024445 0.113054 -0.176507 -0.642441 0.145670 -0.752363 +-0.024521 0.119855 -0.175283 -0.653412 0.184773 -0.734106 +-0.024611 0.126687 -0.173666 -0.660358 0.212341 -0.720305 +-0.024695 0.133510 -0.172177 -0.675204 0.228783 -0.701254 +-0.024823 0.140394 -0.169933 -0.680667 0.239910 -0.692197 +-0.024974 0.147309 -0.167280 -0.694201 0.248600 -0.675487 +-0.025133 0.154245 -0.164469 -0.700281 0.253662 -0.667280 +-0.025224 0.161107 -0.162815 -0.707607 0.255607 -0.658754 +-0.025314 0.167976 -0.161182 -0.705675 0.256516 -0.660472 +-0.025412 0.174852 -0.159565 -0.709840 0.247674 -0.659383 +-0.025526 0.181759 -0.157563 -0.714792 0.239928 -0.656892 +-0.025700 0.188764 -0.154427 -0.715018 0.230735 -0.659933 +-0.025911 0.195822 -0.150679 -0.718855 0.214875 -0.661117 +-0.026198 0.203001 -0.145684 -0.722590 0.207477 -0.659407 +-0.026576 0.210346 -0.138966 -0.749937 0.204734 -0.629030 +-0.027067 0.217872 -0.130291 -0.774313 0.217080 -0.594403 +-0.034480 0.236046 0.000310 -0.170482 0.173101 -0.970037 +-0.034548 0.243187 0.001617 -0.182410 0.171259 -0.968193 +-0.034639 0.250365 0.003173 -0.197797 0.167237 -0.965872 +-0.034737 0.257559 0.004866 -0.223547 0.157542 -0.961877 +-0.034851 0.264783 0.006824 -0.241424 0.143781 -0.959709 +-0.034919 0.271939 0.008025 -0.295564 0.103032 -0.949751 +-0.034972 0.279080 0.009060 -0.333047 0.074399 -0.939970 +-0.035070 0.286297 0.010753 -0.355326 0.028335 -0.934313 +-0.035115 0.293423 0.011524 -0.444785 -0.048015 -0.894349 +-0.035145 0.300534 0.012075 -0.493209 -0.143371 -0.858015 +-0.035040 0.307380 0.010156 -0.537802 -0.234185 -0.809893 +-0.034624 0.313659 0.002887 -0.616678 -0.377195 -0.690965 +-0.033528 0.318609 -0.016421 -0.629808 -0.666589 -0.398749 +-0.031949 0.322561 -0.044304 -0.412744 -0.882816 -0.224229 +-0.031125 0.327896 -0.058813 -0.396512 -0.881202 -0.257413 +-0.030090 0.332770 -0.077032 -0.424587 -0.830179 -0.361288 +-0.029304 0.338075 -0.090921 -0.407123 -0.772984 -0.486566 +-0.028616 0.343546 -0.102959 -0.389579 -0.668032 -0.634004 +-0.028080 0.349274 -0.112458 -0.365221 -0.589173 -0.720756 +-0.027619 0.355122 -0.120664 -0.308294 -0.555450 -0.772289 +-0.027294 0.361258 -0.126301 -0.263846 -0.511721 -0.817635 +-0.027067 0.367576 -0.130314 -0.232971 -0.460116 -0.856749 +-0.026894 0.373991 -0.133412 -0.233726 -0.381160 -0.894477 +-0.026788 0.380550 -0.135309 -0.227338 -0.312116 -0.922443 +-0.026705 0.387162 -0.136775 -0.228637 -0.229268 -0.946130 +-0.026659 0.393858 -0.137507 -0.230061 -0.159057 -0.960090 +-0.026644 0.400621 -0.137734 -0.229256 -0.101412 -0.968069 +-0.026644 0.407414 -0.137749 -0.230116 -0.059834 -0.971322 +-0.026644 0.414200 -0.137749 -0.230606 -0.019039 -0.972861 +-0.026652 0.421008 -0.137651 -0.234807 0.024913 -0.971723 +-0.026659 0.427817 -0.137523 -0.233208 0.055876 -0.970820 +-0.026697 0.434708 -0.136805 -0.232997 0.082191 -0.968998 +-0.026999 0.442258 -0.131545 -0.246154 0.137966 -0.959361 +-0.058873 -0.564432 0.571770 -0.040183 -0.903698 -0.426282 +-0.057860 -0.554677 0.553460 -0.022668 -0.896578 -0.442305 +-0.043669 -0.522652 0.295297 -0.433856 -0.513209 -0.740530 +-0.042966 -0.513939 0.282473 -0.325160 -0.428080 -0.843219 +-0.042528 -0.505710 0.274523 -0.252197 -0.375495 -0.891852 +-0.042241 -0.497753 0.269393 -0.227384 -0.371437 -0.900184 +-0.042007 -0.489879 0.265055 -0.194352 -0.352458 -0.915424 +-0.041818 -0.482111 0.261685 -0.135803 -0.310781 -0.940730 +-0.041727 -0.474478 0.259939 -0.108006 -0.281700 -0.953404 +-0.041644 -0.466884 0.258511 -0.078583 -0.247517 -0.965692 +-0.041568 -0.459297 0.257166 -0.025868 -0.187604 -0.981904 +-0.041455 -0.451658 0.255050 0.001132 -0.142140 -0.989846 +-0.041410 -0.444124 0.254196 0.051966 -0.065581 -0.996493 +-0.041395 -0.436635 0.253977 0.087461 -0.009579 -0.996122 +-0.041455 -0.429245 0.255118 0.128463 0.061136 -0.989828 +-0.041523 -0.421854 0.256274 0.173546 0.136900 -0.975264 +-0.041599 -0.414472 0.257634 0.229333 0.202157 -0.952123 +-0.041712 -0.407142 0.259788 0.293678 0.263661 -0.918823 +-0.041886 -0.399865 0.262947 0.340826 0.272323 -0.899821 +-0.042090 -0.392618 0.266657 0.418542 0.330471 -0.845939 +-0.042377 -0.385447 0.271878 0.492827 0.327951 -0.805959 +-0.042710 -0.378306 0.277803 0.559793 0.360808 -0.745956 +-0.043057 -0.371165 0.284219 0.635845 0.319781 -0.702454 +-0.043223 -0.363812 0.287234 0.711079 0.269489 -0.649417 +-0.043427 -0.356490 0.290951 0.797252 0.161196 -0.581726 +-0.043427 -0.348956 0.290883 0.854808 0.075361 -0.513443 +-0.043276 -0.341286 0.288239 0.882255 -0.047279 -0.468391 +-0.043095 -0.333586 0.284929 0.894851 -0.147306 -0.421358 +-0.042898 -0.325886 0.281294 0.888690 -0.244399 -0.387941 +-0.042596 -0.318117 0.275846 0.879529 -0.310991 -0.360157 +-0.042264 -0.310342 0.269740 0.852540 -0.369739 -0.369416 +-0.041810 -0.302490 0.261541 0.829560 -0.421002 -0.366862 +-0.041085 -0.294458 0.248287 0.758761 -0.522233 -0.389300 +-0.040503 -0.286584 0.237723 0.728542 -0.538839 -0.422940 +-0.039944 -0.278755 0.227552 0.638132 -0.637776 -0.431311 +-0.039430 -0.270994 0.218212 0.556793 -0.668821 -0.492607 +-0.038916 -0.263272 0.208834 0.428554 -0.730196 -0.532123 +-0.038183 -0.255443 0.195512 0.301561 -0.793811 -0.528134 +-0.037080 -0.247456 0.175456 0.057801 -0.869170 -0.491124 +-0.035531 -0.239310 0.147316 -0.148746 -0.890125 -0.430758 +-0.034420 -0.231473 0.127185 -0.171365 -0.889889 -0.422766 +-0.033664 -0.223864 0.113326 -0.151419 -0.851227 -0.502478 +-0.032969 -0.216338 0.100759 -0.148380 -0.824148 -0.546592 +-0.032463 -0.208932 0.091548 -0.162261 -0.791028 -0.589870 +-0.031934 -0.201549 0.081860 -0.206335 -0.767113 -0.607424 +-0.031473 -0.194219 0.073473 -0.258287 -0.735569 -0.626280 +-0.031019 -0.186920 0.065289 -0.325056 -0.709780 -0.624941 +-0.030551 -0.179650 0.056780 -0.376219 -0.686656 -0.622064 +-0.030105 -0.172411 0.048680 -0.418599 -0.663719 -0.619880 +-0.029629 -0.165195 0.039959 -0.460633 -0.645983 -0.608706 +-0.029138 -0.158008 0.031057 -0.491511 -0.633936 -0.597111 +-0.028707 -0.150860 0.023282 -0.507155 -0.634429 -0.583347 +-0.028352 -0.143741 0.016791 -0.534057 -0.632064 -0.561496 +-0.027944 -0.136646 0.009347 -0.557177 -0.622572 -0.549507 +-0.027475 -0.129580 0.000839 -0.586978 -0.598361 -0.545363 +-0.027022 -0.122538 -0.007338 -0.611590 -0.571146 -0.547494 +-0.026493 -0.115517 -0.017078 -0.626547 -0.546270 -0.555903 +-0.025957 -0.108543 -0.026788 -0.631730 -0.515013 -0.579378 +-0.025662 -0.101576 -0.032191 -0.629805 -0.487552 -0.604680 +-0.025329 -0.094639 -0.038183 -0.624123 -0.456985 -0.633746 +-0.024974 -0.087717 -0.044667 -0.612310 -0.428849 -0.664202 +-0.024710 -0.080810 -0.049466 -0.600665 -0.395268 -0.694956 +-0.024460 -0.073911 -0.053992 -0.592734 -0.365929 -0.717469 +-0.024226 -0.067034 -0.058299 -0.588839 -0.335146 -0.735490 +-0.024022 -0.060158 -0.062002 -0.587546 -0.307030 -0.748680 +-0.023871 -0.053274 -0.064745 -0.584841 -0.278333 -0.761900 +-0.023780 -0.046390 -0.066423 -0.594459 -0.288025 -0.750773 +-0.023674 -0.039506 -0.068319 -0.600545 -0.305090 -0.739098 +-0.023576 -0.032629 -0.070035 -0.605074 -0.298734 -0.738000 +-0.023516 -0.025753 -0.071206 -0.617036 -0.299711 -0.727626 +-0.023304 -0.018937 -0.075060 -0.653425 -0.364942 -0.663214 +-0.020576 -0.013345 -0.124661 -0.602356 -0.757348 -0.252174 +-0.019549 -0.007058 -0.143281 -0.609190 -0.667675 -0.427898 +-0.018876 -0.000642 -0.155598 -0.622912 -0.578026 -0.527130 +-0.018445 0.005872 -0.163389 -0.626778 -0.499145 -0.598334 +-0.018128 0.012423 -0.169208 -0.630202 -0.435533 -0.642772 +-0.017879 0.019005 -0.173726 -0.624843 -0.365255 -0.690044 +-0.017659 0.025594 -0.177603 -0.617703 -0.323841 -0.716638 +-0.017531 0.032222 -0.180013 -0.614014 -0.269201 -0.741969 +-0.017463 0.038894 -0.181177 -0.602695 -0.219095 -0.767305 +-0.017418 0.045574 -0.182069 -0.593578 -0.198217 -0.779984 +-0.017365 0.052247 -0.182968 -0.584878 -0.162942 -0.794586 +-0.017327 0.058934 -0.183686 -0.577931 -0.138107 -0.804315 +-0.017297 0.065622 -0.184215 -0.575289 -0.111132 -0.810366 +-0.017289 0.072317 -0.184434 -0.573595 -0.085867 -0.814626 +-0.017282 0.079020 -0.184577 -0.578920 -0.058433 -0.813288 +-0.017244 0.085707 -0.185152 -0.583165 -0.030217 -0.811792 +-0.017251 0.092417 -0.185053 -0.592766 0.008626 -0.805328 +-0.017312 0.099188 -0.183973 -0.604991 0.049161 -0.794713 +-0.017387 0.105974 -0.182673 -0.619763 0.088148 -0.779823 +-0.017425 0.112737 -0.181865 -0.627391 0.125181 -0.768576 +-0.017478 0.119508 -0.180980 -0.640294 0.164098 -0.750397 +-0.017508 0.126263 -0.180376 -0.651756 0.192584 -0.733571 +-0.017561 0.133034 -0.179507 -0.662714 0.212968 -0.717951 +-0.017614 0.139820 -0.178517 -0.673357 0.225746 -0.704009 +-0.017758 0.146727 -0.175865 -0.681318 0.235755 -0.692983 +-0.018015 0.153769 -0.171240 -0.686068 0.248288 -0.683859 +-0.018211 0.160767 -0.167583 -0.696397 0.249481 -0.672897 +-0.018302 0.167628 -0.165928 -0.703132 0.249853 -0.665716 +-0.018392 0.174490 -0.164356 -0.708502 0.247868 -0.660747 +-0.018438 0.181306 -0.163457 -0.702068 0.246033 -0.668258 +-0.018513 0.188152 -0.162165 -0.710167 0.226116 -0.666734 +-0.018596 0.195028 -0.160578 -0.719631 0.203745 -0.663792 +-0.018763 0.202018 -0.157661 -0.731531 0.185078 -0.656208 +-0.018997 0.209137 -0.153384 -0.744017 0.179729 -0.643534 +-0.019178 0.216187 -0.150059 -0.765936 0.177049 -0.618058 +-0.019428 0.223351 -0.145510 -0.779404 0.195600 -0.595206 +-0.019737 0.230635 -0.139850 -0.799486 0.208689 -0.563269 +-0.020017 0.237874 -0.134840 -0.812288 0.219808 -0.540252 +-0.020176 0.244940 -0.131923 -0.823221 0.240497 -0.514265 +-0.020350 0.252043 -0.128704 -0.825527 0.255958 -0.502981 +-0.020803 0.259637 -0.120520 -0.817488 0.267069 -0.510282 +-0.027498 0.278317 0.001216 -0.479757 0.040934 -0.876446 +-0.027574 0.285496 0.002690 -0.489274 0.017601 -0.871952 +-0.027642 0.292652 0.003884 -0.588527 -0.103853 -0.801780 +-0.027611 0.299627 0.003264 -0.597512 -0.157366 -0.786267 +-0.027407 0.306284 -0.000348 -0.667192 -0.357671 -0.653396 +-0.026644 0.311831 -0.014335 -0.701890 -0.568567 -0.429048 +-0.025753 0.317098 -0.030468 -0.602467 -0.747313 -0.280281 +-0.024506 0.321594 -0.053108 -0.398693 -0.886907 -0.233322 +-0.023795 0.327087 -0.066090 -0.424870 -0.857948 -0.288808 +-0.022821 0.331999 -0.083840 -0.463388 -0.762811 -0.450990 +-0.022322 0.337848 -0.092908 -0.447239 -0.702681 -0.553368 +-0.021710 0.343417 -0.104039 -0.383172 -0.649818 -0.656441 +-0.021188 0.349153 -0.113447 -0.341953 -0.560964 -0.753915 +-0.020727 0.354986 -0.121805 -0.305819 -0.517625 -0.799086 +-0.020440 0.361168 -0.127042 -0.256655 -0.474956 -0.841751 +-0.020221 0.367477 -0.131092 -0.230163 -0.437052 -0.869488 +-0.020047 0.373885 -0.134311 -0.207857 -0.383504 -0.899844 +-0.019926 0.380407 -0.136449 -0.208318 -0.310406 -0.927498 +-0.019836 0.386989 -0.138134 -0.209497 -0.227718 -0.950923 +-0.019790 0.393669 -0.138958 -0.213018 -0.160078 -0.963846 +-0.019775 0.400432 -0.139200 -0.215684 -0.106865 -0.970598 +-0.019775 0.407225 -0.139147 -0.216646 -0.066274 -0.973998 +-0.019805 0.414079 -0.138664 -0.220019 -0.021100 -0.975267 +-0.019821 0.420910 -0.138361 -0.221539 0.013975 -0.975051 +-0.019828 0.427734 -0.138157 -0.226890 0.049284 -0.972673 +-0.019843 0.434557 -0.137901 -0.228635 0.077704 -0.970406 +-0.020108 0.442023 -0.133193 -0.228274 0.110179 -0.967343 +-0.052117 -0.574785 0.595490 -0.075156 -0.929196 -0.361865 +-0.050878 -0.564478 0.572238 -0.032872 -0.903280 -0.427790 +-0.036445 -0.530768 0.301349 -0.463191 -0.529702 -0.710542 +-0.035531 -0.521617 0.284128 -0.325641 -0.410970 -0.851505 +-0.035108 -0.513372 0.276231 -0.246837 -0.344689 -0.905683 +-0.034820 -0.505370 0.270715 -0.208076 -0.334417 -0.919168 +-0.034601 -0.497511 0.266619 -0.175871 -0.332081 -0.926710 +-0.034420 -0.489728 0.263264 -0.149417 -0.318907 -0.935934 +-0.034291 -0.482043 0.260921 -0.123574 -0.295691 -0.947257 +-0.034291 -0.474546 0.260785 -0.092744 -0.261920 -0.960623 +-0.034231 -0.466975 0.259675 -0.051201 -0.209586 -0.976449 +-0.034148 -0.459373 0.258110 -0.030350 -0.168204 -0.985285 +-0.033997 -0.451673 0.255254 0.009396 -0.097453 -0.995196 +-0.033959 -0.444146 0.254589 0.039583 -0.035435 -0.998588 +-0.033982 -0.436711 0.255012 0.078022 0.043303 -0.996011 +-0.034035 -0.429313 0.256055 0.111882 0.106671 -0.987980 +-0.034110 -0.421937 0.257423 0.162489 0.193393 -0.967572 +-0.034201 -0.414585 0.259222 0.207898 0.264591 -0.941685 +-0.034329 -0.407263 0.261594 0.259138 0.320148 -0.911237 +-0.034518 -0.400008 0.265146 0.334493 0.372847 -0.865506 +-0.034760 -0.392807 0.269627 0.378237 0.376165 -0.845835 +-0.035123 -0.385734 0.276465 0.437430 0.414000 -0.798285 +-0.035553 -0.378706 0.284506 0.520073 0.438380 -0.733040 +-0.036045 -0.371724 0.293740 0.589570 0.425480 -0.686567 +-0.036483 -0.364651 0.301984 0.692243 0.372753 -0.617943 +-0.036951 -0.357578 0.310773 0.794057 0.247512 -0.555168 +-0.037148 -0.350210 0.314551 0.835071 0.167637 -0.523979 +-0.037110 -0.342593 0.313742 0.907798 0.008819 -0.419315 +-0.036914 -0.334840 0.310153 0.915012 -0.070066 -0.397296 +-0.036460 -0.326860 0.301531 0.921366 -0.198873 -0.333968 +-0.036037 -0.318941 0.293596 0.898472 -0.280770 -0.337515 +-0.035735 -0.311150 0.287906 0.882513 -0.352432 -0.311388 +-0.035251 -0.303231 0.278823 0.853250 -0.415233 -0.315509 +-0.034616 -0.295228 0.266974 0.810176 -0.483597 -0.331283 +-0.033883 -0.287196 0.253199 0.767643 -0.536290 -0.350880 +-0.033166 -0.279216 0.239703 0.694179 -0.609876 -0.382319 +-0.032516 -0.271334 0.227529 0.585455 -0.703384 -0.403104 +-0.031783 -0.263438 0.213753 0.406298 -0.780826 -0.474587 +-0.030853 -0.255473 0.196366 0.237586 -0.843787 -0.481224 +-0.029433 -0.247274 0.169570 -0.013103 -0.907673 -0.419474 +-0.027997 -0.239174 0.142608 -0.144264 -0.910939 -0.386495 +-0.027105 -0.231436 0.125984 -0.126129 -0.888467 -0.441269 +-0.026349 -0.223826 0.111671 -0.114302 -0.855415 -0.505174 +-0.025715 -0.216322 0.099868 -0.106232 -0.828797 -0.549372 +-0.025231 -0.208917 0.090770 -0.128196 -0.809474 -0.572990 +-0.024747 -0.201542 0.081619 -0.179883 -0.780895 -0.598202 +-0.024234 -0.194189 0.071969 -0.257849 -0.768740 -0.585279 +-0.023712 -0.186867 0.062153 -0.332895 -0.727807 -0.599565 +-0.023236 -0.179597 0.053266 -0.387267 -0.701802 -0.597911 +-0.022737 -0.172343 0.043896 -0.429521 -0.689327 -0.583387 +-0.022208 -0.165127 0.034020 -0.482374 -0.654273 -0.582444 +-0.021763 -0.157948 0.025594 -0.523295 -0.637910 -0.565007 +-0.021339 -0.150814 0.017645 -0.547128 -0.634443 -0.546015 +-0.020947 -0.143704 0.010239 -0.573730 -0.628440 -0.525259 +-0.020523 -0.136615 0.002380 -0.594974 -0.614529 -0.518035 +-0.019994 -0.129550 -0.007572 -0.620330 -0.584892 -0.522581 +-0.019367 -0.122515 -0.019398 -0.636204 -0.547418 -0.543671 +-0.018861 -0.115525 -0.028859 -0.638966 -0.520488 -0.566405 +-0.018559 -0.108558 -0.034504 -0.633218 -0.488540 -0.600303 +-0.018241 -0.101606 -0.040473 -0.625993 -0.461746 -0.628429 +-0.017931 -0.094684 -0.046254 -0.611082 -0.432405 -0.663028 +-0.017667 -0.087770 -0.051257 -0.592824 -0.408035 -0.694311 +-0.017410 -0.080870 -0.056078 -0.577751 -0.375975 -0.724463 +-0.017198 -0.073979 -0.060143 -0.566789 -0.352643 -0.744576 +-0.017002 -0.067102 -0.063770 -0.560700 -0.333910 -0.757707 +-0.016813 -0.060226 -0.067261 -0.555989 -0.309333 -0.771485 +-0.016685 -0.053357 -0.069740 -0.573204 -0.319035 -0.754754 +-0.016594 -0.046473 -0.071402 -0.577079 -0.315577 -0.753253 +-0.016571 -0.039574 -0.071818 -0.588835 -0.314589 -0.744519 +-0.016481 -0.032705 -0.073533 -0.597668 -0.311127 -0.738913 +-0.016307 -0.025881 -0.076881 -0.619426 -0.366523 -0.694243 +-0.014607 -0.019768 -0.108747 -0.556514 -0.763205 -0.328344 +-0.012891 -0.013775 -0.140976 -0.578428 -0.717130 -0.388775 +-0.012188 -0.007360 -0.154147 -0.585682 -0.653309 -0.479753 +-0.011780 -0.000823 -0.161772 -0.601333 -0.562052 -0.567887 +-0.011433 0.005713 -0.168399 -0.609895 -0.492304 -0.621019 +-0.011032 0.012204 -0.175835 -0.602550 -0.420963 -0.678030 +-0.010783 0.018771 -0.180482 -0.605023 -0.353703 -0.713331 +-0.010647 0.025390 -0.183089 -0.599475 -0.303232 -0.740729 +-0.010579 0.032055 -0.184358 -0.593923 -0.251906 -0.764067 +-0.010549 0.038743 -0.185008 -0.586802 -0.209717 -0.782101 +-0.010503 0.045415 -0.185862 -0.576917 -0.180217 -0.796673 +-0.010435 0.052065 -0.187109 -0.574194 -0.154413 -0.804026 +-0.010382 0.058730 -0.188137 -0.563799 -0.126743 -0.816129 +-0.010329 0.065387 -0.189074 -0.557749 -0.103798 -0.823494 +-0.010261 0.072030 -0.190290 -0.556627 -0.086790 -0.826216 +-0.010216 0.078687 -0.191212 -0.560640 -0.066159 -0.825413 +-0.010171 0.085344 -0.192013 -0.561077 -0.044951 -0.826542 +-0.010141 0.092009 -0.192557 -0.569435 -0.013242 -0.821929 +-0.010141 0.098704 -0.192663 -0.579046 0.020697 -0.815032 +-0.010178 0.105445 -0.191953 -0.598404 0.055124 -0.799296 +-0.010254 0.112223 -0.190517 -0.612709 0.089958 -0.785172 +-0.010322 0.119009 -0.189202 -0.630178 0.122394 -0.766743 +-0.010352 0.125750 -0.188568 -0.643429 0.152761 -0.750109 +-0.010428 0.132535 -0.187237 -0.662183 0.176698 -0.728211 +-0.010503 0.139344 -0.185741 -0.671354 0.203883 -0.712542 +-0.010647 0.146228 -0.183127 -0.680870 0.221989 -0.697952 +-0.010828 0.153188 -0.179666 -0.680168 0.238548 -0.693157 +-0.011108 0.160276 -0.174474 -0.687195 0.246526 -0.683365 +-0.011410 0.167424 -0.168709 -0.688628 0.251085 -0.680256 +-0.011508 0.174293 -0.166970 -0.691358 0.244895 -0.679743 +-0.011569 0.181132 -0.165762 -0.704966 0.234738 -0.669270 +-0.011599 0.187918 -0.165217 -0.714386 0.216859 -0.665300 +-0.011659 0.194749 -0.164107 -0.723260 0.189437 -0.664085 +-0.011773 0.201678 -0.161908 -0.730149 0.167929 -0.662331 +-0.011931 0.208661 -0.159044 -0.745978 0.155517 -0.647558 +-0.012060 0.215628 -0.156565 -0.758076 0.158688 -0.632565 +-0.012136 0.222512 -0.155137 -0.780856 0.169606 -0.601247 +-0.012196 0.229373 -0.154049 -0.792597 0.178765 -0.582951 +-0.012181 0.236114 -0.154283 -0.807733 0.186382 -0.559311 +-0.012294 0.243066 -0.152235 -0.815706 0.208831 -0.539456 +-0.012559 0.250305 -0.147240 -0.816138 0.241099 -0.525157 +-0.012801 0.257521 -0.142639 -0.814235 0.265780 -0.516122 +-0.013050 0.264761 -0.137969 -0.807723 0.280962 -0.518308 +-0.013261 0.271947 -0.133948 -0.794856 0.297935 -0.528620 +-0.013473 0.279133 -0.130102 -0.797415 0.304432 -0.521010 +-0.013760 0.286501 -0.124669 -0.796567 0.312272 -0.517656 +-0.014153 0.294080 -0.117324 -0.797738 0.299786 -0.523203 +-0.014569 0.301743 -0.109457 -0.786131 0.224303 -0.575922 +-0.015264 0.309987 -0.096422 -0.824381 0.046067 -0.564158 +-0.015967 0.318307 -0.083160 -0.628536 -0.647948 -0.430240 +-0.016042 0.325342 -0.081785 -0.570034 -0.681046 -0.459605 +-0.015634 0.331357 -0.089523 -0.528930 -0.675724 -0.513449 +-0.015272 0.337448 -0.096339 -0.443191 -0.654921 -0.612095 +-0.014780 0.343243 -0.105551 -0.427610 -0.542170 -0.723327 +-0.014312 0.349054 -0.114331 -0.356554 -0.516810 -0.778316 +-0.013889 0.354934 -0.122281 -0.315624 -0.477904 -0.819750 +-0.013602 0.361107 -0.127556 -0.277871 -0.439250 -0.854311 +-0.013375 0.367387 -0.131832 -0.229795 -0.414034 -0.880778 +-0.013201 0.373772 -0.135188 -0.208678 -0.366835 -0.906579 +-0.013065 0.380256 -0.137674 -0.198522 -0.310055 -0.929761 +-0.012959 0.386792 -0.139616 -0.197571 -0.228315 -0.953330 +-0.012921 0.393487 -0.140349 -0.204665 -0.160681 -0.965553 +-0.012921 0.400281 -0.140326 -0.208348 -0.116082 -0.971142 +-0.012937 0.407089 -0.140145 -0.209141 -0.072108 -0.975223 +-0.012944 0.413913 -0.139926 -0.212173 -0.029886 -0.976775 +-0.012974 0.420774 -0.139359 -0.213662 0.004390 -0.976898 +-0.013005 0.427628 -0.138906 -0.219910 0.036277 -0.974845 +-0.013027 0.434497 -0.138361 -0.220442 0.060949 -0.973494 +-0.013201 0.441736 -0.135173 -0.219971 0.089055 -0.971433 +-0.043964 -0.574618 0.593737 -0.006950 -0.926264 -0.376812 +-0.042951 -0.564659 0.574074 -0.033385 -0.903647 -0.426974 +-0.028065 -0.529234 0.285156 -0.328343 -0.405391 -0.853141 +-0.027687 -0.521035 0.277871 -0.232136 -0.308344 -0.922517 +-0.027362 -0.512949 0.271644 -0.187123 -0.297702 -0.936140 +-0.027181 -0.505128 0.268047 -0.171303 -0.300706 -0.938207 +-0.027030 -0.497382 0.265161 -0.155726 -0.314273 -0.936473 +-0.026916 -0.489697 0.262894 -0.129953 -0.301238 -0.944652 +-0.026863 -0.482126 0.261949 -0.101737 -0.276041 -0.955746 +-0.026886 -0.474683 0.262418 -0.063150 -0.231672 -0.970742 +-0.026841 -0.467118 0.261405 -0.045737 -0.195767 -0.979583 +-0.026712 -0.459441 0.258972 -0.013326 -0.137290 -0.990441 +-0.026523 -0.451680 0.255353 0.013051 -0.069652 -0.997486 +-0.026501 -0.444177 0.254929 0.041580 0.001557 -0.999134 +-0.026538 -0.436748 0.255564 0.075308 0.085370 -0.993499 +-0.026599 -0.429366 0.256803 0.110095 0.153634 -0.981975 +-0.026682 -0.422005 0.258450 0.155149 0.243364 -0.957446 +-0.026788 -0.414668 0.260430 0.195274 0.306996 -0.931462 +-0.026939 -0.407383 0.263385 0.248247 0.386953 -0.888055 +-0.027150 -0.400159 0.267451 0.298356 0.425191 -0.854515 +-0.027415 -0.392996 0.272619 0.367733 0.442747 -0.817770 +-0.027861 -0.386028 0.281234 0.425104 0.492432 -0.759472 +-0.028473 -0.379220 0.293090 0.509982 0.514921 -0.689039 +-0.029569 -0.312329 0.314377 0.907340 -0.321137 -0.271303 +-0.028934 -0.304228 0.302097 0.889783 -0.346873 -0.296589 +-0.028254 -0.296135 0.288957 0.848421 -0.451269 -0.276655 +-0.027453 -0.287989 0.273352 0.803680 -0.515407 -0.297412 +-0.026599 -0.279858 0.256720 0.750359 -0.577558 -0.321540 +-0.025669 -0.271735 0.238682 0.633450 -0.693319 -0.343583 +-0.024627 -0.263604 0.218559 0.343048 -0.817830 -0.462031 +-0.023455 -0.255451 0.195746 0.147897 -0.886082 -0.439300 +-0.021906 -0.247161 0.165731 -0.034371 -0.933508 -0.356905 +-0.020561 -0.239083 0.139638 -0.098036 -0.915018 -0.391318 +-0.019813 -0.231413 0.125084 -0.077663 -0.887504 -0.454207 +-0.019088 -0.223811 0.111021 -0.062164 -0.849468 -0.523965 +-0.018513 -0.216315 0.099785 -0.081460 -0.835634 -0.543213 +-0.018045 -0.208917 0.090694 -0.121538 -0.820733 -0.558235 +-0.017576 -0.201542 0.081604 -0.169336 -0.803954 -0.570073 +-0.016979 -0.194151 0.070012 -0.244299 -0.783485 -0.571375 +-0.016405 -0.186814 0.058979 -0.323281 -0.753265 -0.572783 +-0.015868 -0.179522 0.048581 -0.410909 -0.708250 -0.574052 +-0.015340 -0.172275 0.038297 -0.470230 -0.688795 -0.551765 +-0.014856 -0.165066 0.028919 -0.520360 -0.655537 -0.547263 +-0.014425 -0.157902 0.020508 -0.552754 -0.641975 -0.531348 +-0.013979 -0.150761 0.011894 -0.584663 -0.634017 -0.506153 +-0.013564 -0.143658 0.003786 -0.606856 -0.619544 -0.497887 +-0.012974 -0.136570 -0.007632 -0.630673 -0.591250 -0.502668 +-0.012211 -0.129505 -0.022474 -0.644388 -0.550770 -0.530487 +-0.011795 -0.122507 -0.030476 -0.644918 -0.526931 -0.553556 +-0.011493 -0.115525 -0.036370 -0.634578 -0.491276 -0.596623 +-0.011199 -0.108573 -0.042151 -0.626049 -0.463473 -0.627101 +-0.010896 -0.101636 -0.047939 -0.612076 -0.437758 -0.658582 +-0.010632 -0.094722 -0.053123 -0.591821 -0.408816 -0.694707 +-0.010405 -0.087815 -0.057446 -0.570598 -0.379974 -0.728037 +-0.010231 -0.080916 -0.060838 -0.560783 -0.362775 -0.744256 +-0.010088 -0.074017 -0.063732 -0.549640 -0.341815 -0.762272 +-0.009921 -0.067140 -0.066899 -0.538478 -0.326535 -0.776799 +-0.009778 -0.060264 -0.069725 -0.536930 -0.320452 -0.780395 +-0.009627 -0.053402 -0.072543 -0.541745 -0.335989 -0.770469 +-0.009498 -0.046541 -0.075166 -0.548727 -0.330176 -0.768038 +-0.009438 -0.039664 -0.076284 -0.556958 -0.325777 -0.763981 +-0.009400 -0.032780 -0.077032 -0.570264 -0.332553 -0.751137 +-0.008962 -0.026078 -0.085503 -0.575764 -0.556322 -0.599167 +-0.006657 -0.020304 -0.130306 -0.526832 -0.805227 -0.272135 +-0.005652 -0.014010 -0.149795 -0.555162 -0.711658 -0.430509 +-0.005176 -0.007496 -0.159014 -0.563151 -0.632568 -0.531712 +-0.004791 -0.000967 -0.166434 -0.578273 -0.560140 -0.593163 +-0.004277 0.005464 -0.176386 -0.579063 -0.474160 -0.663219 +-0.003959 0.011977 -0.182651 -0.584147 -0.412727 -0.698877 +-0.003846 0.018620 -0.184835 -0.585510 -0.348268 -0.732044 +-0.003755 0.025262 -0.186633 -0.580470 -0.295334 -0.758836 +-0.003733 0.031957 -0.186973 -0.580715 -0.244411 -0.776552 +-0.003710 0.038645 -0.187411 -0.574588 -0.207166 -0.791790 +-0.003680 0.045325 -0.187955 -0.567402 -0.176367 -0.804332 +-0.003597 0.051959 -0.189640 -0.561847 -0.145943 -0.814266 +-0.003491 0.058571 -0.191643 -0.554800 -0.121791 -0.823021 +-0.003370 0.065153 -0.194023 -0.551331 -0.101487 -0.828091 +-0.003294 0.071780 -0.195482 -0.548397 -0.086419 -0.831740 +-0.003234 0.078407 -0.196706 -0.550399 -0.069291 -0.832021 +-0.003166 0.085027 -0.198006 -0.552317 -0.054649 -0.831841 +-0.003121 0.091669 -0.198935 -0.562110 -0.030627 -0.826495 +-0.003083 0.098319 -0.199577 -0.573667 -0.006511 -0.819063 +-0.003090 0.105007 -0.199449 -0.590191 0.019962 -0.807017 +-0.003121 0.111724 -0.198920 -0.605517 0.043643 -0.794635 +-0.003181 0.118488 -0.197650 -0.621884 0.071400 -0.779847 +-0.003264 0.125273 -0.196102 -0.652675 0.109390 -0.749699 +-0.003370 0.132105 -0.194016 -0.668059 0.141652 -0.730501 +-0.003483 0.138936 -0.191877 -0.679087 0.177419 -0.712294 +-0.003634 0.145843 -0.188854 -0.684425 0.201767 -0.700609 +-0.003778 0.152734 -0.186142 -0.689630 0.224676 -0.688426 +-0.003982 0.159724 -0.182174 -0.693218 0.236549 -0.680804 +-0.004201 0.166752 -0.177875 -0.692732 0.243949 -0.678683 +-0.004526 0.173946 -0.171656 -0.695155 0.239954 -0.677629 +-0.004723 0.180973 -0.167749 -0.705917 0.223323 -0.672167 +-0.004798 0.187827 -0.166298 -0.712666 0.205139 -0.670839 +-0.004866 0.194673 -0.165067 -0.721180 0.185643 -0.667410 +-0.004942 0.201542 -0.163547 -0.728655 0.165128 -0.664677 +-0.005032 0.208441 -0.161712 -0.744000 0.146050 -0.652023 +-0.005040 0.215197 -0.161681 -0.753752 0.137945 -0.642517 +-0.005017 0.221907 -0.162120 -0.771199 0.142549 -0.620429 +-0.004949 0.228549 -0.163321 -0.782793 0.147819 -0.604471 +-0.004889 0.235184 -0.164537 -0.794947 0.163755 -0.584161 +-0.004874 0.241910 -0.164809 -0.803124 0.191114 -0.564329 +-0.005115 0.249088 -0.160177 -0.809753 0.222713 -0.542862 +-0.005508 0.256577 -0.152500 -0.807797 0.261285 -0.528388 +-0.005871 0.264020 -0.145510 -0.798472 0.287141 -0.529143 +-0.006060 0.271169 -0.141807 -0.790851 0.303051 -0.531709 +-0.006181 0.278181 -0.139525 -0.783913 0.309048 -0.538489 +-0.006272 0.285163 -0.137689 -0.784341 0.319391 -0.531788 +-0.006400 0.292214 -0.135180 -0.780594 0.328254 -0.531905 +-0.006574 0.299355 -0.131931 -0.778175 0.327351 -0.535990 +-0.006816 0.306670 -0.127216 -0.763605 0.232963 -0.602192 +-0.007299 0.314513 -0.117747 -0.721085 0.151725 -0.676030 +-0.008040 0.322931 -0.103442 -0.741749 -0.066052 -0.667417 +-0.008372 0.330511 -0.096989 -0.627732 -0.425784 -0.651660 +-0.008183 0.336956 -0.100639 -0.529398 -0.460761 -0.712346 +-0.007843 0.343047 -0.107243 -0.445901 -0.470676 -0.761338 +-0.007428 0.348941 -0.115246 -0.377727 -0.468569 -0.798602 +-0.007005 0.354782 -0.123505 -0.333366 -0.403983 -0.851860 +-0.006748 0.360986 -0.128523 -0.283523 -0.394497 -0.874063 +-0.006513 0.367251 -0.132966 -0.242810 -0.373051 -0.895475 +-0.006324 0.373576 -0.136752 -0.223371 -0.337806 -0.914326 +-0.006204 0.380082 -0.139019 -0.201825 -0.289951 -0.935519 +-0.006128 0.386686 -0.140477 -0.194642 -0.227727 -0.954073 +-0.006068 0.393321 -0.141633 -0.200355 -0.159037 -0.966729 +-0.006060 0.400084 -0.141792 -0.205187 -0.123107 -0.970950 +-0.006075 0.406900 -0.141573 -0.207803 -0.079835 -0.974907 +-0.006090 0.413724 -0.141271 -0.210159 -0.038591 -0.976905 +-0.006105 0.420563 -0.140908 -0.216458 0.000858 -0.976291 +-0.006128 0.427409 -0.140470 -0.218350 0.024492 -0.975563 +-0.006136 0.434217 -0.140304 -0.208030 0.069334 -0.975662 +-0.006324 0.441525 -0.136691 -0.203783 0.101916 -0.973697 +-0.037715 -0.586309 0.630084 -0.042563 -0.948392 -0.314230 +-0.035992 -0.574792 0.595528 -0.006950 -0.926264 -0.376812 +-0.020554 -0.536798 0.285534 -0.329079 -0.388343 -0.860754 +-0.020191 -0.528584 0.278256 -0.240875 -0.298920 -0.923377 +-0.019949 -0.520619 0.273390 -0.186993 -0.276845 -0.942545 +-0.019730 -0.512707 0.268947 -0.165118 -0.265283 -0.949927 +-0.019586 -0.504954 0.266083 -0.152646 -0.287436 -0.945558 +-0.019488 -0.497284 0.264088 -0.122106 -0.286797 -0.950178 +-0.019428 -0.489690 0.262841 -0.102276 -0.273598 -0.956391 +-0.019450 -0.482239 0.263272 -0.071960 -0.248109 -0.966056 +-0.019488 -0.474826 0.264163 -0.058511 -0.221704 -0.973357 +-0.019413 -0.467209 0.262569 -0.028657 -0.169655 -0.985087 +-0.019148 -0.459305 0.257234 -0.007158 -0.111716 -0.993714 +-0.019035 -0.451650 0.254997 0.014689 -0.047873 -0.998745 +-0.019035 -0.444177 0.254990 0.044890 0.037584 -0.998285 +-0.019080 -0.436779 0.255897 0.065469 0.110675 -0.991698 +-0.019148 -0.429403 0.257279 0.110520 0.198936 -0.973761 +-0.019239 -0.422058 0.259131 0.146480 0.272029 -0.951075 +-0.019360 -0.414744 0.261556 0.197420 0.365205 -0.909753 +-0.019541 -0.407504 0.265198 0.233541 0.429756 -0.872220 +-0.019805 -0.400356 0.270473 0.287773 0.479923 -0.828770 +-0.020085 -0.393215 0.276095 0.329706 0.505519 -0.797336 +-0.020523 -0.386255 0.284921 0.391773 0.552174 -0.735947 +-0.021604 -0.380036 0.306646 0.502880 0.610527 -0.611857 +-0.022518 -0.297616 0.325009 0.904644 -0.374618 -0.203177 +-0.021423 -0.289153 0.302883 0.842859 -0.480854 -0.241594 +-0.020274 -0.280727 0.279904 0.796958 -0.553137 -0.242688 +-0.019329 -0.272528 0.260869 0.731809 -0.619874 -0.283217 +-0.017516 -0.263801 0.224423 0.336057 -0.874631 -0.349408 +-0.016103 -0.255458 0.196048 0.108414 -0.919955 -0.376735 +-0.014266 -0.246957 0.159164 -0.061783 -0.942027 -0.329800 +-0.013292 -0.239083 0.139691 -0.060839 -0.909051 -0.412219 +-0.012559 -0.231413 0.124910 -0.040086 -0.887273 -0.459500 +-0.011871 -0.223811 0.111158 -0.057031 -0.856777 -0.512524 +-0.011335 -0.216330 0.100367 -0.063287 -0.841555 -0.536451 +-0.010836 -0.208909 0.090354 -0.100005 -0.829344 -0.549715 +-0.010329 -0.201512 0.080198 -0.177109 -0.824104 -0.538038 +-0.009702 -0.194106 0.067586 -0.243646 -0.802457 -0.544701 +-0.008962 -0.186708 0.052760 -0.384439 -0.757760 -0.527263 +-0.008433 -0.179424 0.042143 -0.453681 -0.712231 -0.535631 +-0.007942 -0.172192 0.032289 -0.520203 -0.673682 -0.524920 +-0.007526 -0.165006 0.023795 -0.549617 -0.655589 -0.517806 +-0.007141 -0.157857 0.016201 -0.585783 -0.644592 -0.491283 +-0.006589 -0.150709 0.005017 -0.613434 -0.626481 -0.480854 +-0.005833 -0.143568 -0.010133 -0.643941 -0.593847 -0.482376 +-0.005100 -0.136487 -0.024793 -0.651317 -0.557124 -0.515169 +-0.004715 -0.129475 -0.032637 -0.646766 -0.530541 -0.547924 +-0.004413 -0.122492 -0.038629 -0.636650 -0.495937 -0.590528 +-0.004133 -0.115533 -0.044214 -0.623100 -0.465718 -0.628373 +-0.003853 -0.108588 -0.049836 -0.614050 -0.442906 -0.653282 +-0.003612 -0.101666 -0.054778 -0.596889 -0.412390 -0.688228 +-0.003408 -0.094752 -0.058889 -0.582045 -0.384874 -0.716307 +-0.003241 -0.087845 -0.062138 -0.567310 -0.362020 -0.739663 +-0.003098 -0.080954 -0.065123 -0.551905 -0.337853 -0.762402 +-0.002969 -0.074062 -0.067707 -0.539589 -0.328585 -0.775162 +-0.002848 -0.067178 -0.070050 -0.532142 -0.320795 -0.783527 +-0.002765 -0.060294 -0.071705 -0.525857 -0.325743 -0.785726 +-0.002637 -0.053425 -0.074335 -0.530588 -0.339927 -0.776483 +-0.002524 -0.046571 -0.076669 -0.532813 -0.334287 -0.777408 +-0.002372 -0.039725 -0.079647 -0.527865 -0.345899 -0.775702 +-0.002267 -0.032879 -0.081793 -0.568154 -0.473445 -0.673091 +-0.000846 -0.026644 -0.110213 -0.528196 -0.774740 -0.347546 +0.000809 -0.020629 -0.143500 -0.509468 -0.777224 -0.369277 +0.001391 -0.014153 -0.155228 -0.531439 -0.703449 -0.471945 +0.001822 -0.007640 -0.163873 -0.544754 -0.635399 -0.547276 +0.002426 -0.001247 -0.175918 -0.553680 -0.539970 -0.633933 +0.002781 0.005244 -0.183187 -0.562819 -0.465613 -0.682964 +0.002978 0.011834 -0.187071 -0.563679 -0.391898 -0.727105 +0.003083 0.018461 -0.189225 -0.561136 -0.337145 -0.755949 +0.003144 0.025118 -0.190404 -0.564407 -0.287213 -0.773921 +0.003189 0.031791 -0.191288 -0.561988 -0.234127 -0.793318 +0.003235 0.038448 -0.192195 -0.556250 -0.198609 -0.806933 +0.003280 0.045113 -0.193132 -0.552577 -0.164399 -0.817087 +0.003355 0.051740 -0.194643 -0.549473 -0.139891 -0.823717 +0.003446 0.058352 -0.196449 -0.545438 -0.116748 -0.829980 +0.003544 0.064949 -0.198436 -0.544268 -0.099555 -0.832983 +0.003635 0.071539 -0.200341 -0.544937 -0.085082 -0.834149 +0.003703 0.078158 -0.201618 -0.548161 -0.071478 -0.833313 +0.003779 0.084763 -0.203099 -0.549469 -0.063720 -0.833081 +0.003832 0.091382 -0.204202 -0.559144 -0.047060 -0.827734 +0.003869 0.098017 -0.204943 -0.573629 -0.028084 -0.818634 +0.003877 0.104682 -0.205109 -0.586031 -0.014242 -0.810163 +0.003854 0.111384 -0.204739 -0.604547 0.007731 -0.796532 +0.003816 0.118110 -0.203908 -0.621816 0.029221 -0.782618 +0.003726 0.124896 -0.202132 -0.646180 0.063330 -0.760553 +0.003605 0.131734 -0.199713 -0.668829 0.098195 -0.736903 +0.003461 0.138611 -0.196819 -0.685501 0.140353 -0.714415 +0.003325 0.145495 -0.193978 -0.691558 0.181578 -0.699126 +0.003235 0.152311 -0.192179 -0.695770 0.210340 -0.686776 +0.003121 0.159172 -0.189882 -0.699006 0.232140 -0.676389 +0.003008 0.166041 -0.187623 -0.700181 0.239198 -0.672704 +0.002834 0.173009 -0.184177 -0.700171 0.239637 -0.672558 +0.002623 0.180036 -0.179976 -0.700361 0.225901 -0.677099 +0.002381 0.187139 -0.175102 -0.706998 0.197164 -0.679176 +0.002169 0.194212 -0.170787 -0.716406 0.170393 -0.676557 +0.002063 0.201119 -0.168709 -0.728675 0.146787 -0.668944 +0.002086 0.207822 -0.169109 -0.737342 0.124154 -0.664012 +0.002154 0.214434 -0.170567 -0.749456 0.107224 -0.653313 +0.002290 0.220932 -0.173280 -0.746891 0.094987 -0.658127 +0.002426 0.227431 -0.175956 -0.756290 0.108695 -0.645144 +0.002486 0.234043 -0.177195 -0.761339 0.124162 -0.636354 +0.002396 0.240927 -0.175412 -0.773416 0.165535 -0.611903 +0.002275 0.247894 -0.172918 -0.779256 0.216028 -0.588296 +0.002086 0.254975 -0.169192 -0.777375 0.254382 -0.575306 +0.001708 0.262463 -0.161538 -0.775644 0.291828 -0.559655 +0.001096 0.270428 -0.149273 -0.782306 0.306107 -0.542490 +0.000884 0.277622 -0.145064 -0.773624 0.322182 -0.545622 +0.000771 0.284650 -0.142714 -0.766301 0.325284 -0.554051 +0.000665 0.291639 -0.140666 -0.771892 0.333914 -0.541003 +0.000537 0.298705 -0.138097 -0.767046 0.340613 -0.543712 +0.000371 0.305861 -0.134712 -0.748366 0.302769 -0.590152 +0.000106 0.313244 -0.129384 -0.723204 0.228190 -0.651848 +-0.000332 0.321020 -0.120641 -0.707617 0.135921 -0.693400 +-0.000891 0.329120 -0.109344 -0.689118 -0.058342 -0.722297 +-0.001058 0.336337 -0.106057 -0.590109 -0.295542 -0.751283 +-0.000846 0.342684 -0.110334 -0.495972 -0.339788 -0.799097 +-0.000521 0.348760 -0.116803 -0.409773 -0.386652 -0.826188 +-0.000143 0.354669 -0.124435 -0.349750 -0.352335 -0.868064 +0.000114 0.360873 -0.129520 -0.306663 -0.337738 -0.889883 +0.000340 0.367115 -0.134069 -0.272247 -0.323548 -0.906200 +0.000522 0.373447 -0.137780 -0.226982 -0.312592 -0.922370 +0.000635 0.379961 -0.139978 -0.210826 -0.270783 -0.939270 +0.000726 0.386513 -0.141830 -0.197731 -0.224818 -0.954128 +0.000779 0.393155 -0.142903 -0.199344 -0.172449 -0.964636 +0.000794 0.399903 -0.143152 -0.205255 -0.126861 -0.970452 +0.000786 0.406696 -0.143107 -0.209621 -0.088535 -0.973766 +0.000786 0.413482 -0.143077 -0.213814 -0.046704 -0.975757 +0.000771 0.420313 -0.142729 -0.210070 0.004282 -0.977677 +0.000756 0.427144 -0.142381 -0.212896 0.033432 -0.976503 +0.000764 0.433908 -0.142540 -0.205666 0.071944 -0.975974 +0.000529 0.441343 -0.137961 -0.205108 0.111137 -0.972409 +-0.031231 -0.597908 0.664248 -0.245062 -0.918844 -0.309306 +-0.029433 -0.585976 0.626752 -0.042563 -0.948392 -0.314230 +-0.013073 -0.544407 0.286402 -0.346105 -0.399460 -0.848907 +-0.012649 -0.536027 0.277538 -0.242609 -0.285355 -0.927208 +-0.012438 -0.528100 0.273186 -0.182257 -0.242745 -0.952815 +-0.012264 -0.520264 0.269619 -0.146054 -0.236170 -0.960672 +-0.012120 -0.512496 0.266650 -0.131143 -0.245683 -0.960438 +-0.012030 -0.504826 0.264677 -0.123821 -0.272865 -0.954051 +-0.011999 -0.497292 0.264156 -0.107588 -0.272958 -0.955991 +-0.011999 -0.489803 0.264140 -0.078478 -0.256088 -0.963463 +-0.012045 -0.482390 0.265070 -0.066830 -0.242014 -0.967969 +-0.012030 -0.474879 0.264760 -0.041482 -0.200567 -0.978801 +-0.011848 -0.467088 0.261020 -0.026169 -0.153533 -0.987797 +-0.011561 -0.459123 0.254990 -0.006119 -0.087885 -0.996112 +-0.011523 -0.451582 0.254105 0.016680 -0.017043 -0.999716 +-0.011561 -0.444184 0.255005 0.040606 0.059811 -0.997383 +-0.011622 -0.436801 0.256297 0.067956 0.147554 -0.986717 +-0.011720 -0.429471 0.258194 0.113336 0.225999 -0.967512 +-0.011826 -0.422149 0.260445 0.148508 0.316958 -0.936741 +-0.011954 -0.414849 0.263098 0.182329 0.396844 -0.899595 +-0.012143 -0.407625 0.266997 0.234062 0.477400 -0.846938 +-0.012385 -0.400469 0.272151 0.287525 0.526366 -0.800167 +-0.012695 -0.393374 0.278581 0.329513 0.569544 -0.753021 +-0.013277 -0.386618 0.290725 0.399688 0.631223 -0.664685 +-0.013307 -0.273624 0.291261 0.807396 -0.544700 -0.226745 +-0.010662 -0.264209 0.236249 0.324474 -0.890703 -0.318379 +-0.008682 -0.255428 0.194998 0.097826 -0.942970 -0.318178 +-0.006967 -0.246964 0.159308 -0.025860 -0.948574 -0.315498 +-0.006030 -0.239090 0.139918 -0.019734 -0.909589 -0.415040 +-0.005327 -0.231421 0.125318 -0.031388 -0.887609 -0.459526 +-0.004692 -0.223834 0.112125 -0.037365 -0.857723 -0.512753 +-0.004163 -0.216345 0.101017 -0.059808 -0.855624 -0.514131 +-0.003619 -0.208894 0.089712 -0.101304 -0.847577 -0.520914 +-0.003037 -0.201459 0.077546 -0.198635 -0.836541 -0.510631 +-0.002229 -0.193978 0.060747 -0.319273 -0.812296 -0.488098 +-0.001382 -0.186549 0.043118 -0.475096 -0.731657 -0.488838 +-0.000922 -0.179295 0.033566 -0.513193 -0.708138 -0.484947 +-0.000566 -0.172109 0.026153 -0.563131 -0.672195 -0.480663 +-0.000113 -0.164922 0.016821 -0.603204 -0.647164 -0.466179 +0.000537 -0.157729 0.003257 -0.637656 -0.619756 -0.457491 +0.001285 -0.150565 -0.012333 -0.652153 -0.595426 -0.469217 +0.001965 -0.143462 -0.026486 -0.653184 -0.562015 -0.507434 +0.002350 -0.136442 -0.034518 -0.646258 -0.533970 -0.545185 +0.002638 -0.129452 -0.040504 -0.636946 -0.504546 -0.582866 +0.002902 -0.122485 -0.046020 -0.624366 -0.476552 -0.618923 +0.003159 -0.115533 -0.051234 -0.614180 -0.447523 -0.650005 +0.003393 -0.108603 -0.056168 -0.603742 -0.413806 -0.681366 +0.003597 -0.101689 -0.060377 -0.593349 -0.386865 -0.705885 +0.003786 -0.094782 -0.064292 -0.582322 -0.361541 -0.728141 +0.003930 -0.087883 -0.067352 -0.567172 -0.334833 -0.752465 +0.004073 -0.080999 -0.070322 -0.553684 -0.320784 -0.768461 +0.004194 -0.074115 -0.072838 -0.540308 -0.312699 -0.781208 +0.004300 -0.067238 -0.075007 -0.535046 -0.312940 -0.784725 +0.004361 -0.060362 -0.076306 -0.532362 -0.323197 -0.782390 +0.004413 -0.053478 -0.077342 -0.528991 -0.339075 -0.777944 +0.004481 -0.046609 -0.078876 -0.524114 -0.340916 -0.780436 +0.004648 -0.039778 -0.082276 -0.549847 -0.406927 -0.729437 +0.004995 -0.033045 -0.089523 -0.552657 -0.537485 -0.636930 +0.006983 -0.027120 -0.130843 -0.483804 -0.829200 -0.279931 +0.007942 -0.020811 -0.150830 -0.499532 -0.770851 -0.395292 +0.008403 -0.014289 -0.160472 -0.511266 -0.690524 -0.511647 +0.009076 -0.007934 -0.174414 -0.529308 -0.598903 -0.600956 +0.009469 -0.001451 -0.182658 -0.535633 -0.526223 -0.660444 +0.009711 0.005108 -0.187646 -0.539590 -0.450603 -0.711196 +0.009892 0.011690 -0.191325 -0.547911 -0.382402 -0.744018 +0.010005 0.018302 -0.193759 -0.545375 -0.330351 -0.770347 +0.010134 0.024899 -0.196358 -0.540300 -0.268132 -0.797609 +0.010240 0.031511 -0.198572 -0.536672 -0.215841 -0.815718 +0.010308 0.038138 -0.199978 -0.531912 -0.188303 -0.825598 +0.010345 0.044781 -0.200870 -0.530583 -0.156043 -0.833146 +0.010383 0.051438 -0.201587 -0.530883 -0.132673 -0.836995 +0.010428 0.058073 -0.202577 -0.531313 -0.115227 -0.839303 +0.010489 0.064700 -0.203749 -0.530746 -0.103001 -0.841249 +0.010534 0.071327 -0.204784 -0.533931 -0.091871 -0.840522 +0.010580 0.077954 -0.205721 -0.538801 -0.079343 -0.838689 +0.010648 0.084559 -0.207081 -0.544506 -0.070255 -0.835809 +0.010693 0.091178 -0.208003 -0.552373 -0.060902 -0.831370 +0.010731 0.097805 -0.208781 -0.564344 -0.050555 -0.823990 +0.010746 0.104455 -0.209136 -0.581350 -0.037188 -0.812803 +0.010731 0.111135 -0.208880 -0.596770 -0.026216 -0.801984 +0.010693 0.117853 -0.208063 -0.616311 -0.007105 -0.787471 +0.010610 0.124631 -0.206401 -0.636984 0.016699 -0.770696 +0.010534 0.131409 -0.204754 -0.660555 0.060220 -0.748358 +0.010391 0.138286 -0.201724 -0.680739 0.112620 -0.723817 +0.010323 0.145057 -0.200409 -0.694688 0.153126 -0.702824 +0.010285 0.151790 -0.199645 -0.702157 0.192315 -0.685559 +0.010300 0.158454 -0.199925 -0.702685 0.217946 -0.677299 +0.010232 0.165248 -0.198497 -0.707510 0.233845 -0.666893 +0.010066 0.172192 -0.194983 -0.706652 0.234459 -0.667587 +0.009816 0.179280 -0.189837 -0.706546 0.222093 -0.671913 +0.009597 0.186338 -0.185318 -0.710155 0.196063 -0.676194 +0.009439 0.193321 -0.181940 -0.713425 0.165085 -0.681008 +0.009355 0.200182 -0.180187 -0.718655 0.131173 -0.682883 +0.009355 0.206892 -0.180232 -0.721683 0.099984 -0.684965 +0.009439 0.213459 -0.182031 -0.722787 0.084772 -0.685851 +0.009529 0.220011 -0.183867 -0.729204 0.084053 -0.679114 +0.009582 0.226630 -0.184971 -0.728607 0.091592 -0.678780 +0.009627 0.233257 -0.185900 -0.725023 0.112059 -0.679547 +0.009605 0.240005 -0.185454 -0.727329 0.146334 -0.670507 +0.009514 0.246897 -0.183482 -0.729261 0.209454 -0.651389 +0.009325 0.253977 -0.179636 -0.729122 0.260139 -0.633016 +0.008993 0.261383 -0.172646 -0.733866 0.304740 -0.607103 +0.008736 0.268630 -0.167394 -0.742899 0.322337 -0.586686 +0.008313 0.276262 -0.158553 -0.748562 0.334180 -0.572694 +0.007912 0.283886 -0.150127 -0.756577 0.335433 -0.561317 +0.007708 0.291095 -0.145918 -0.753434 0.335600 -0.565429 +0.007587 0.298131 -0.143477 -0.746566 0.349431 -0.566160 +0.007474 0.305166 -0.141127 -0.744565 0.350644 -0.568043 +0.007300 0.312360 -0.137417 -0.729345 0.286108 -0.621449 +0.007043 0.319750 -0.132067 -0.690558 0.226269 -0.686973 +0.006650 0.327465 -0.123974 -0.679785 0.109656 -0.725168 +0.006189 0.335385 -0.114324 -0.630524 -0.037440 -0.775266 +0.006151 0.342314 -0.113500 -0.533574 -0.225242 -0.815209 +0.006416 0.348503 -0.118994 -0.444725 -0.294758 -0.845776 +0.006696 0.354624 -0.124828 -0.386343 -0.272702 -0.881120 +0.006960 0.360767 -0.130374 -0.315024 -0.302738 -0.899505 +0.007194 0.366956 -0.135331 -0.271092 -0.288173 -0.918404 +0.007368 0.373311 -0.138898 -0.247802 -0.279283 -0.927683 +0.007489 0.379780 -0.141407 -0.223672 -0.246047 -0.943097 +0.007580 0.386316 -0.143334 -0.206282 -0.219112 -0.953644 +0.007625 0.392989 -0.144187 -0.204630 -0.173915 -0.963265 +0.007640 0.399721 -0.144543 -0.209466 -0.134577 -0.968511 +0.007648 0.406492 -0.144633 -0.216173 -0.093296 -0.971887 +0.007655 0.413248 -0.144830 -0.218247 -0.055453 -0.974317 +0.007640 0.420064 -0.144558 -0.212280 0.006209 -0.977189 +0.007633 0.426865 -0.144361 -0.214615 0.037242 -0.975988 +0.007633 0.433643 -0.144384 -0.209194 0.072476 -0.975185 +0.007474 0.440905 -0.141044 -0.205940 0.108384 -0.972544 +-0.024438 -0.609182 0.694164 -0.247221 -0.901047 -0.356366 +-0.022798 -0.597349 0.658784 -0.245062 -0.918844 -0.309306 +-0.005697 -0.552251 0.289614 -0.348752 -0.397571 -0.848711 +-0.005183 -0.543644 0.278664 -0.239909 -0.284222 -0.928257 +-0.004919 -0.535574 0.272899 -0.174628 -0.209781 -0.962028 +-0.004768 -0.527760 0.269635 -0.126912 -0.195674 -0.972422 +-0.004647 -0.520030 0.267057 -0.112249 -0.206807 -0.971921 +-0.004564 -0.512375 0.265289 -0.105736 -0.232848 -0.966748 +-0.004541 -0.504833 0.264783 -0.075709 -0.237542 -0.968422 +-0.004564 -0.497382 0.265168 -0.079110 -0.257343 -0.963076 +-0.004602 -0.489962 0.266015 -0.068040 -0.254991 -0.964547 +-0.004647 -0.482556 0.266997 -0.047789 -0.225762 -0.973010 +-0.004503 -0.474811 0.263929 -0.037358 -0.189743 -0.981123 +-0.004284 -0.466929 0.259131 -0.023710 -0.134360 -0.990649 +-0.004035 -0.459033 0.253818 -0.015697 -0.067008 -0.997629 +-0.004050 -0.451590 0.254158 0.011816 0.012378 -0.999854 +-0.004103 -0.444199 0.255231 0.033574 0.094048 -0.995001 +-0.004178 -0.436854 0.256970 0.071052 0.180052 -0.981088 +-0.004292 -0.429547 0.259282 0.112456 0.271686 -0.955793 +-0.004405 -0.422240 0.261745 0.150107 0.355570 -0.922517 +-0.004534 -0.414948 0.264518 0.194594 0.436698 -0.878310 +-0.004730 -0.407754 0.268879 0.236275 0.512873 -0.825309 +-0.005032 -0.400673 0.275257 0.273952 0.561934 -0.780500 +-0.005486 -0.393789 0.285118 0.327438 0.626279 -0.707502 +-0.006317 -0.387381 0.303110 0.422517 0.703890 -0.570980 +-0.004806 -0.265372 0.270375 0.713554 -0.663500 -0.224963 +-0.001337 -0.255443 0.195610 0.087443 -0.956999 -0.276597 +0.000227 -0.247040 0.161817 0.004419 -0.950828 -0.309688 +0.001255 -0.239083 0.139608 0.000208 -0.909025 -0.416742 +0.001920 -0.231421 0.125334 -0.014246 -0.889360 -0.456985 +0.002502 -0.223849 0.112714 -0.046380 -0.862881 -0.503275 +0.003000 -0.216368 0.101871 -0.064101 -0.858892 -0.508129 +0.003620 -0.208864 0.088541 -0.134582 -0.864512 -0.484260 +0.004277 -0.201391 0.074417 -0.223323 -0.853844 -0.470189 +0.005373 -0.193796 0.050780 -0.456638 -0.769830 -0.445918 +0.006159 -0.186391 0.033853 -0.526595 -0.726981 -0.440678 +0.006643 -0.179144 0.023259 -0.587606 -0.678024 -0.441591 +0.007187 -0.171912 0.011652 -0.626308 -0.653630 -0.424860 +0.007837 -0.164696 -0.002501 -0.647417 -0.625837 -0.434948 +0.008471 -0.157540 -0.016081 -0.654616 -0.593963 -0.467638 +0.008947 -0.150452 -0.026380 -0.652462 -0.571574 -0.497592 +0.009348 -0.143409 -0.035070 -0.640540 -0.541056 -0.544947 +0.009650 -0.136404 -0.041592 -0.634856 -0.520927 -0.570607 +0.009937 -0.129429 -0.047773 -0.623827 -0.484479 -0.613287 +0.010172 -0.122477 -0.052851 -0.616398 -0.461360 -0.638123 +0.010391 -0.115540 -0.057551 -0.608989 -0.423459 -0.670682 +0.010602 -0.108618 -0.062191 -0.606263 -0.394505 -0.690515 +0.010799 -0.101712 -0.066325 -0.596598 -0.359866 -0.717334 +0.010957 -0.094812 -0.069770 -0.585292 -0.332581 -0.739475 +0.011086 -0.087928 -0.072559 -0.571877 -0.313796 -0.757951 +0.011229 -0.081044 -0.075611 -0.557075 -0.298469 -0.774974 +0.011335 -0.074175 -0.077909 -0.549718 -0.301527 -0.779033 +0.011479 -0.067314 -0.081128 -0.540750 -0.311903 -0.781221 +0.011532 -0.060445 -0.082110 -0.533657 -0.313371 -0.785499 +0.011562 -0.053568 -0.082858 -0.529336 -0.339929 -0.777336 +0.011585 -0.046684 -0.083410 -0.550459 -0.413167 -0.725457 +0.011796 -0.039891 -0.087831 -0.553480 -0.481602 -0.679500 +0.012680 -0.033415 -0.107017 -0.523859 -0.734444 -0.431468 +0.014426 -0.027438 -0.144671 -0.464439 -0.823020 -0.327007 +0.015023 -0.020969 -0.157495 -0.487358 -0.745283 -0.455013 +0.015673 -0.014584 -0.171535 -0.492771 -0.670828 -0.554227 +0.016119 -0.008123 -0.181260 -0.510237 -0.579991 -0.635034 +0.016391 -0.001587 -0.187117 -0.518499 -0.525514 -0.674532 +0.016610 0.004972 -0.191794 -0.525703 -0.450483 -0.721596 +0.016799 0.011539 -0.195897 -0.526434 -0.377611 -0.761759 +0.016950 0.018113 -0.199154 -0.525623 -0.322521 -0.787211 +0.017078 0.024695 -0.201965 -0.520892 -0.260255 -0.812982 +0.017177 0.031300 -0.204013 -0.518621 -0.209484 -0.828945 +0.017229 0.037927 -0.205131 -0.517867 -0.184078 -0.835422 +0.017252 0.044577 -0.205736 -0.515687 -0.152928 -0.843018 +0.017275 0.051241 -0.206083 -0.517565 -0.132782 -0.845278 +0.017290 0.057891 -0.206492 -0.519092 -0.116674 -0.846717 +0.017335 0.064518 -0.207459 -0.519684 -0.106302 -0.847719 +0.017358 0.071168 -0.207897 -0.521757 -0.098194 -0.847424 +0.017388 0.077810 -0.208554 -0.522955 -0.090946 -0.847495 +0.017441 0.084415 -0.209748 -0.530640 -0.083133 -0.843511 +0.017501 0.091012 -0.211003 -0.540822 -0.077037 -0.837602 +0.017532 0.097639 -0.211683 -0.554646 -0.068003 -0.829303 +0.017547 0.104289 -0.211978 -0.564506 -0.064300 -0.822921 +0.017532 0.110969 -0.211668 -0.583770 -0.050387 -0.810354 +0.017501 0.117672 -0.211018 -0.603648 -0.030768 -0.796657 +0.017456 0.124397 -0.210088 -0.627650 -0.001287 -0.778495 +0.017479 0.131039 -0.210520 -0.641155 0.021792 -0.767102 +0.017418 0.137795 -0.209182 -0.661098 0.075224 -0.746519 +0.017471 0.144377 -0.210414 -0.670411 0.117096 -0.732692 +0.017494 0.151004 -0.210950 -0.677977 0.158624 -0.717765 +0.017494 0.157676 -0.210890 -0.678872 0.196236 -0.707548 +0.017411 0.164470 -0.209152 -0.689189 0.223293 -0.689317 +0.017290 0.171331 -0.206484 -0.696855 0.232997 -0.678311 +0.016988 0.178502 -0.200023 -0.704951 0.223281 -0.673193 +0.016708 0.185658 -0.193986 -0.711576 0.201063 -0.673226 +0.016504 0.192716 -0.189474 -0.715308 0.166985 -0.678565 +0.016466 0.199479 -0.188749 -0.714285 0.130848 -0.687514 +0.016489 0.206144 -0.189180 -0.714548 0.101657 -0.692161 +0.016542 0.212749 -0.190366 -0.711562 0.081996 -0.697823 +0.016595 0.219353 -0.191416 -0.710641 0.084894 -0.698414 +0.016648 0.225958 -0.192535 -0.708151 0.092205 -0.700014 +0.016700 0.232547 -0.193759 -0.694622 0.113073 -0.710433 +0.016693 0.239257 -0.193525 -0.687566 0.148837 -0.710704 +0.016648 0.246043 -0.192557 -0.675741 0.198641 -0.709871 +0.016549 0.252935 -0.190540 -0.668478 0.251588 -0.699886 +0.016345 0.260076 -0.186006 -0.681481 0.298202 -0.668326 +0.015937 0.267655 -0.177263 -0.692901 0.333270 -0.639390 +0.015627 0.275045 -0.170658 -0.709829 0.345672 -0.613721 +0.015393 0.282300 -0.165595 -0.715815 0.350529 -0.603935 +0.015091 0.289735 -0.158968 -0.727885 0.346258 -0.591852 +0.014917 0.296876 -0.155296 -0.728536 0.350685 -0.588435 +0.014804 0.303919 -0.152742 -0.726422 0.363088 -0.583504 +0.014713 0.310894 -0.150785 -0.722431 0.367611 -0.585623 +0.014547 0.318065 -0.147225 -0.706771 0.308284 -0.636739 +0.014290 0.325463 -0.141679 -0.667257 0.244329 -0.703613 +0.013957 0.333072 -0.134470 -0.604598 0.150350 -0.782212 +0.013398 0.341279 -0.122402 -0.555242 -0.040924 -0.830681 +0.013391 0.348117 -0.122258 -0.461058 -0.179665 -0.868991 +0.013519 0.354586 -0.125152 -0.415597 -0.218746 -0.882853 +0.013776 0.360729 -0.130646 -0.362771 -0.245457 -0.898971 +0.014018 0.366896 -0.135815 -0.313256 -0.236011 -0.919875 +0.014207 0.373175 -0.139978 -0.270691 -0.228317 -0.935199 +0.014343 0.379583 -0.142925 -0.237965 -0.231820 -0.943203 +0.014441 0.386105 -0.144981 -0.219326 -0.204083 -0.954068 +0.014471 0.392800 -0.145631 -0.213412 -0.168879 -0.962255 +0.014486 0.399533 -0.145956 -0.215022 -0.143901 -0.965949 +0.014494 0.406296 -0.146114 -0.222380 -0.101548 -0.969657 +0.014501 0.413059 -0.146213 -0.215579 -0.039689 -0.975679 +0.014501 0.419814 -0.146341 -0.217006 0.005472 -0.976155 +0.014494 0.426630 -0.146092 -0.220372 0.037363 -0.974700 +0.014479 0.433447 -0.145812 -0.216655 0.071401 -0.973634 +0.014343 0.440633 -0.142933 -0.214202 0.106440 -0.970973 +-0.017093 -0.619520 0.714151 -0.248458 -0.882398 -0.399553 +-0.015528 -0.607618 0.679043 -0.247221 -0.901047 -0.356366 +0.001595 -0.560336 0.294994 -0.384844 -0.455203 -0.802923 +0.002275 -0.551276 0.279806 -0.226981 -0.272766 -0.934922 +0.002547 -0.543153 0.273647 -0.159392 -0.199471 -0.966853 +0.002728 -0.535271 0.269733 -0.104373 -0.156723 -0.982112 +0.002834 -0.527533 0.267239 -0.059977 -0.139580 -0.988393 +0.002895 -0.519924 0.265947 -0.054713 -0.169389 -0.984029 +0.002932 -0.512345 0.265017 -0.059210 -0.205324 -0.976901 +0.002910 -0.504909 0.265622 -0.062817 -0.238620 -0.969079 +0.002849 -0.497526 0.266869 -0.066458 -0.252394 -0.965340 +0.002796 -0.490143 0.268063 -0.047512 -0.243267 -0.968795 +0.002789 -0.482670 0.268350 -0.044416 -0.221982 -0.974039 +0.003136 -0.474531 0.260536 -0.035866 -0.179461 -0.983111 +0.003424 -0.466521 0.254083 -0.037452 -0.111030 -0.993111 +0.003492 -0.458927 0.252481 -0.025594 -0.040962 -0.998833 +0.003424 -0.451582 0.254128 -0.002130 0.028207 -0.999600 +0.003348 -0.444237 0.255730 0.024174 0.120233 -0.992451 +0.003242 -0.436937 0.258088 0.064151 0.200079 -0.977677 +0.003151 -0.429615 0.260181 0.110339 0.313888 -0.943027 +0.003038 -0.422308 0.262720 0.142679 0.384999 -0.911821 +0.002895 -0.415046 0.265984 0.205206 0.483414 -0.851000 +0.002623 -0.407958 0.272007 0.254211 0.561632 -0.787367 +0.002275 -0.400968 0.279738 0.297473 0.618780 -0.727063 +0.001723 -0.394235 0.292123 0.356423 0.690045 -0.629921 +0.005970 -0.255488 0.196978 0.089277 -0.969790 -0.227019 +0.007549 -0.247032 0.161613 0.046375 -0.953457 -0.297942 +0.008524 -0.239083 0.139668 0.033158 -0.915575 -0.400778 +0.009167 -0.231421 0.125228 -0.020257 -0.895830 -0.443935 +0.009718 -0.223856 0.112858 -0.036011 -0.870820 -0.490281 +0.010202 -0.216368 0.101999 -0.069812 -0.864568 -0.497643 +0.010784 -0.208872 0.088956 -0.165651 -0.876822 -0.451379 +0.011842 -0.201209 0.065334 -0.351126 -0.841871 -0.409833 +0.013035 -0.193570 0.038561 -0.521480 -0.755774 -0.396061 +0.013776 -0.186187 0.021929 -0.596366 -0.700817 -0.391412 +0.014456 -0.178887 0.006710 -0.640268 -0.656313 -0.399136 +0.015046 -0.171671 -0.006567 -0.654074 -0.623843 -0.427792 +0.015529 -0.164522 -0.017373 -0.656930 -0.599989 -0.456570 +0.015967 -0.157426 -0.027249 -0.653116 -0.574526 -0.493315 +0.016315 -0.150376 -0.035018 -0.639232 -0.549937 -0.537542 +0.016670 -0.143356 -0.043028 -0.628987 -0.527389 -0.571171 +0.016950 -0.136374 -0.049269 -0.623686 -0.496396 -0.603828 +0.017184 -0.129406 -0.054468 -0.619343 -0.473803 -0.626039 +0.017411 -0.122470 -0.059576 -0.616015 -0.440503 -0.653056 +0.017622 -0.115540 -0.064246 -0.615476 -0.407781 -0.674466 +0.017758 -0.108626 -0.067413 -0.610262 -0.371406 -0.699741 +0.017872 -0.101727 -0.069936 -0.603059 -0.339074 -0.722045 +0.017993 -0.094827 -0.072566 -0.592087 -0.312578 -0.742784 +0.018106 -0.087943 -0.075113 -0.578807 -0.292073 -0.761365 +0.018227 -0.081067 -0.077916 -0.565964 -0.284557 -0.773765 +0.018386 -0.074213 -0.081400 -0.557558 -0.284616 -0.779823 +0.018559 -0.067367 -0.085254 -0.550619 -0.287147 -0.783814 +0.018642 -0.060513 -0.087196 -0.553516 -0.334732 -0.762611 +0.018733 -0.053667 -0.089130 -0.547343 -0.395533 -0.737542 +0.018794 -0.046813 -0.090520 -0.551353 -0.421606 -0.719901 +0.019035 -0.040050 -0.096075 -0.551709 -0.561048 -0.617124 +0.020577 -0.033914 -0.130503 -0.462731 -0.827115 -0.318998 +0.021597 -0.027634 -0.153406 -0.453596 -0.806729 -0.378734 +0.022255 -0.021234 -0.168142 -0.471283 -0.717420 -0.513031 +0.022731 -0.014773 -0.178782 -0.471431 -0.655397 -0.590091 +0.023040 -0.008252 -0.185719 -0.496253 -0.575528 -0.650001 +0.023282 -0.001708 -0.191243 -0.499033 -0.513874 -0.697781 +0.023516 0.004829 -0.196479 -0.505987 -0.434121 -0.745329 +0.023713 0.011373 -0.200802 -0.504655 -0.375563 -0.777352 +0.023849 0.017947 -0.203862 -0.506382 -0.308790 -0.805125 +0.023962 0.024529 -0.206499 -0.504435 -0.253614 -0.825364 +0.024045 0.031133 -0.208275 -0.507722 -0.207358 -0.836194 +0.024076 0.037776 -0.209030 -0.505923 -0.180169 -0.843552 +0.024091 0.044425 -0.209371 -0.507113 -0.153785 -0.848049 +0.024091 0.051098 -0.209363 -0.509812 -0.134426 -0.849718 +0.024106 0.057755 -0.209612 -0.510891 -0.119269 -0.851332 +0.024106 0.064413 -0.209703 -0.512818 -0.109330 -0.851507 +0.024121 0.071062 -0.210058 -0.514477 -0.101489 -0.851477 +0.024136 0.077712 -0.210406 -0.518285 -0.095879 -0.849816 +0.024181 0.084332 -0.211313 -0.522260 -0.093402 -0.847656 +0.024227 0.090944 -0.212333 -0.531953 -0.088324 -0.842155 +0.024280 0.097541 -0.213549 -0.542840 -0.082608 -0.835764 +0.024325 0.104145 -0.214517 -0.552174 -0.081110 -0.829774 +0.024310 0.110818 -0.214245 -0.569389 -0.069918 -0.819089 +0.024340 0.117437 -0.214895 -0.581417 -0.061862 -0.811251 +0.024363 0.124057 -0.215492 -0.598940 -0.038243 -0.799880 +0.024431 0.130624 -0.216912 -0.612415 -0.001559 -0.790534 +0.024506 0.137160 -0.218688 -0.620843 0.032152 -0.783276 +0.024552 0.143749 -0.219655 -0.633509 0.082466 -0.769328 +0.024574 0.150361 -0.220229 -0.639806 0.132902 -0.756958 +0.024582 0.156996 -0.220381 -0.648292 0.178865 -0.740085 +0.024484 0.163805 -0.218152 -0.652441 0.209090 -0.728424 +0.024333 0.170711 -0.214849 -0.659345 0.225554 -0.717209 +0.024061 0.177837 -0.208744 -0.674148 0.222622 -0.704247 +0.023781 0.184993 -0.202456 -0.692886 0.206968 -0.690705 +0.023554 0.192089 -0.197348 -0.705806 0.169714 -0.687776 +0.023501 0.198875 -0.196162 -0.705005 0.144453 -0.694336 +0.023494 0.205577 -0.195980 -0.702498 0.115869 -0.702190 +0.023532 0.212205 -0.196759 -0.695309 0.098177 -0.711973 +0.023585 0.218779 -0.198013 -0.685661 0.099049 -0.721151 +0.023645 0.225353 -0.199351 -0.675706 0.106621 -0.729420 +0.023698 0.231935 -0.200469 -0.660276 0.122129 -0.741026 +0.023668 0.238675 -0.199865 -0.651311 0.162517 -0.741204 +0.023607 0.245476 -0.198580 -0.634264 0.208400 -0.744499 +0.023494 0.252421 -0.195905 -0.628821 0.250596 -0.736061 +0.023365 0.259395 -0.193018 -0.631658 0.288968 -0.719378 +0.023192 0.266476 -0.189149 -0.634840 0.317713 -0.704298 +0.022836 0.273980 -0.181192 -0.665211 0.342346 -0.663546 +0.022519 0.281431 -0.174051 -0.686259 0.351069 -0.637024 +0.022330 0.288602 -0.169804 -0.695349 0.346746 -0.629489 +0.022149 0.295758 -0.165852 -0.705347 0.350542 -0.616121 +0.021990 0.302899 -0.162165 -0.707944 0.366105 -0.603972 +0.021869 0.309934 -0.159535 -0.707205 0.379247 -0.596685 +0.021733 0.317037 -0.156437 -0.690944 0.385630 -0.611463 +0.021559 0.324231 -0.152606 -0.660128 0.335405 -0.672111 +0.021325 0.331599 -0.147308 -0.619556 0.265022 -0.738860 +0.020849 0.339624 -0.136585 -0.563819 0.124436 -0.816470 +0.020433 0.347513 -0.127336 -0.504635 -0.032564 -0.862719 +0.020411 0.354382 -0.126853 -0.413698 -0.188392 -0.890709 +0.020630 0.360601 -0.131719 -0.353101 -0.198290 -0.914331 +0.020857 0.366767 -0.136873 -0.315367 -0.203376 -0.926921 +0.021053 0.373024 -0.141150 -0.283727 -0.195486 -0.938767 +0.021182 0.379440 -0.144105 -0.255482 -0.191620 -0.947634 +0.021280 0.385931 -0.146334 -0.231542 -0.188403 -0.954407 +0.021318 0.392611 -0.147089 -0.222213 -0.165671 -0.960820 +0.021333 0.399321 -0.147558 -0.223038 -0.147112 -0.963645 +0.021340 0.406084 -0.147664 -0.222495 -0.086693 -0.971072 +0.021333 0.412885 -0.147482 -0.220539 -0.041114 -0.974511 +0.021333 0.419648 -0.147558 -0.222495 0.002961 -0.974929 +0.021340 0.426404 -0.147702 -0.227406 0.036159 -0.973128 +0.021333 0.433205 -0.147520 -0.226012 0.070146 -0.971596 +0.021212 0.440376 -0.144724 -0.224395 0.101142 -0.969235 +-0.008183 -0.617933 0.699091 -0.245802 -0.891878 -0.379651 +-0.007201 -0.607331 0.676224 -0.247221 -0.901047 -0.356366 +0.009703 -0.559007 0.281929 -0.195515 -0.276586 -0.940890 +0.010013 -0.550747 0.274546 -0.123422 -0.174362 -0.976916 +0.010194 -0.542828 0.270352 -0.067770 -0.138972 -0.987975 +0.010323 -0.535052 0.267465 -0.047539 -0.122654 -0.991310 +0.010383 -0.527412 0.265916 -0.033372 -0.123022 -0.991843 +0.010376 -0.519939 0.266113 -0.040503 -0.171727 -0.984312 +0.010368 -0.512473 0.266415 -0.043039 -0.210940 -0.976551 +0.010300 -0.505120 0.267957 -0.059099 -0.244599 -0.967822 +0.010240 -0.497745 0.269309 -0.040245 -0.249373 -0.967571 +0.010240 -0.490257 0.269385 -0.040660 -0.246014 -0.968413 +0.010292 -0.482655 0.268161 -0.046995 -0.219672 -0.974441 +0.010791 -0.474184 0.256403 -0.054654 -0.163338 -0.985055 +0.011003 -0.466317 0.251529 -0.054891 -0.101855 -0.993284 +0.011003 -0.458851 0.251589 -0.036785 -0.017323 -0.999173 +0.010889 -0.451597 0.254241 -0.015667 0.070825 -0.997366 +0.010784 -0.444305 0.256675 0.021832 0.155338 -0.987620 +0.010685 -0.436998 0.258881 0.069381 0.259464 -0.963257 +0.010587 -0.429683 0.261179 0.115551 0.356754 -0.927025 +0.010459 -0.422414 0.264194 0.161790 0.434898 -0.885826 +0.010285 -0.415205 0.268304 0.212975 0.524866 -0.824110 +0.010020 -0.408124 0.274485 0.250925 0.572532 -0.780541 +0.009582 -0.401293 0.284694 0.297031 0.660717 -0.689366 +0.008585 -0.395248 0.308014 0.388838 0.801735 -0.453901 +0.013104 -0.255670 0.202554 0.113618 -0.971813 -0.206568 +0.014751 -0.247108 0.164091 0.074223 -0.954948 -0.287341 +0.015741 -0.239121 0.141021 0.032770 -0.917820 -0.395642 +0.016444 -0.231398 0.124593 -0.011509 -0.900497 -0.434711 +0.016942 -0.223856 0.112888 -0.061525 -0.876816 -0.476874 +0.017403 -0.216375 0.102143 -0.119461 -0.881232 -0.457339 +0.018046 -0.208834 0.087188 -0.203352 -0.892906 -0.401706 +0.019716 -0.200862 0.048196 -0.473286 -0.806651 -0.353998 +0.020781 -0.193282 0.023372 -0.594962 -0.728550 -0.339463 +0.021506 -0.185930 0.006544 -0.631164 -0.675805 -0.380683 +0.022119 -0.178668 -0.007784 -0.652723 -0.631282 -0.418851 +0.022632 -0.171489 -0.019836 -0.654996 -0.605994 -0.451388 +0.023010 -0.164394 -0.028572 -0.647988 -0.580393 -0.493210 +0.023350 -0.157336 -0.036438 -0.637426 -0.554127 -0.535379 +0.023668 -0.150308 -0.043904 -0.627053 -0.531705 -0.569293 +0.023932 -0.143311 -0.050153 -0.622780 -0.510061 -0.593281 +0.024159 -0.136343 -0.055307 -0.622761 -0.489979 -0.609991 +0.024416 -0.129391 -0.061382 -0.620752 -0.452961 -0.639917 +0.024627 -0.122454 -0.066264 -0.622739 -0.417943 -0.661453 +0.024794 -0.115540 -0.070163 -0.620735 -0.384475 -0.683277 +0.024930 -0.108641 -0.073277 -0.615166 -0.348506 -0.707188 +0.025028 -0.101749 -0.075710 -0.607149 -0.318924 -0.727776 +0.025126 -0.094858 -0.077984 -0.597926 -0.290252 -0.747153 +0.025202 -0.087974 -0.079617 -0.586559 -0.271186 -0.763156 +0.025315 -0.081112 -0.082352 -0.577691 -0.266664 -0.771469 +0.025391 -0.074243 -0.084128 -0.569490 -0.276643 -0.774048 +0.025519 -0.067397 -0.087158 -0.566447 -0.285572 -0.773037 +0.025678 -0.060566 -0.090732 -0.559068 -0.326343 -0.762197 +0.025829 -0.053750 -0.094352 -0.560198 -0.383514 -0.734231 +0.025935 -0.046926 -0.096891 -0.567235 -0.475978 -0.672078 +0.026479 -0.040314 -0.109563 -0.533005 -0.696306 -0.480691 +0.028043 -0.034246 -0.146024 -0.422603 -0.850178 -0.314014 +0.028791 -0.027869 -0.163517 -0.432020 -0.777215 -0.457487 +0.029305 -0.021415 -0.175426 -0.454998 -0.709578 -0.538029 +0.029637 -0.014894 -0.183195 -0.459913 -0.655584 -0.598907 +0.029955 -0.008388 -0.190645 -0.477607 -0.557324 -0.679177 +0.030219 -0.001866 -0.196676 -0.477367 -0.500481 -0.722246 +0.030423 0.004670 -0.201451 -0.485332 -0.426630 -0.763178 +0.030597 0.011214 -0.205547 -0.482944 -0.367535 -0.794785 +0.030718 0.017788 -0.208464 -0.489387 -0.312971 -0.813972 +0.030809 0.024378 -0.210588 -0.492098 -0.253038 -0.832953 +0.030869 0.030997 -0.211834 -0.495531 -0.209961 -0.842832 +0.030899 0.037625 -0.212681 -0.498825 -0.183823 -0.846984 +0.030922 0.044267 -0.213157 -0.502093 -0.158153 -0.850230 +0.030922 0.050932 -0.213141 -0.503069 -0.136003 -0.853478 +0.030922 0.057589 -0.213134 -0.505620 -0.121559 -0.854150 +0.030884 0.064292 -0.212295 -0.505357 -0.110472 -0.855810 +0.030869 0.070979 -0.211872 -0.507190 -0.101993 -0.855778 +0.030877 0.077629 -0.212068 -0.510083 -0.098682 -0.854446 +0.030914 0.084241 -0.213051 -0.514464 -0.097767 -0.851921 +0.030975 0.090838 -0.214335 -0.519577 -0.097930 -0.848793 +0.031035 0.097412 -0.215801 -0.528265 -0.098901 -0.843300 +0.031111 0.103971 -0.217472 -0.539653 -0.096684 -0.836318 +0.031164 0.110553 -0.218711 -0.549409 -0.091558 -0.830522 +0.031270 0.117052 -0.221197 -0.559050 -0.082468 -0.825022 +0.031368 0.123558 -0.223479 -0.565401 -0.065536 -0.822208 +0.031443 0.130087 -0.225232 -0.571035 -0.033216 -0.820253 +0.031496 0.136639 -0.226577 -0.570831 0.002270 -0.821064 +0.031519 0.143243 -0.227045 -0.580701 0.058460 -0.812015 +0.031519 0.149885 -0.227045 -0.587664 0.112171 -0.801292 +0.031489 0.156565 -0.226358 -0.590178 0.162655 -0.790717 +0.031406 0.163344 -0.224454 -0.598338 0.204288 -0.774763 +0.031285 0.170197 -0.221696 -0.604535 0.224165 -0.764387 +0.031058 0.177255 -0.216262 -0.630805 0.225581 -0.742427 +0.030809 0.184366 -0.210452 -0.644498 0.212097 -0.734600 +0.030537 0.191545 -0.204081 -0.659939 0.189417 -0.727050 +0.030484 0.198323 -0.202850 -0.657348 0.160867 -0.736217 +0.030469 0.205026 -0.202608 -0.656673 0.130837 -0.742740 +0.030491 0.211660 -0.203084 -0.653028 0.118991 -0.747928 +0.030544 0.218235 -0.204285 -0.648380 0.116512 -0.752348 +0.030567 0.224862 -0.204867 -0.633486 0.126110 -0.763408 +0.030589 0.231489 -0.205411 -0.629419 0.142548 -0.763880 +0.030574 0.238199 -0.205026 -0.619823 0.171547 -0.765762 +0.030529 0.244978 -0.203900 -0.606785 0.218392 -0.764276 +0.030416 0.251899 -0.201346 -0.601094 0.260221 -0.755626 +0.030265 0.258927 -0.197794 -0.598271 0.286306 -0.748399 +0.030106 0.265985 -0.194129 -0.601086 0.300975 -0.740344 +0.029932 0.273080 -0.190109 -0.617778 0.323152 -0.716884 +0.029675 0.280410 -0.184011 -0.642216 0.337855 -0.688050 +0.029365 0.287861 -0.176893 -0.668928 0.343161 -0.659375 +0.029244 0.294889 -0.174028 -0.683231 0.342794 -0.644738 +0.029108 0.301954 -0.170907 -0.692285 0.356209 -0.627580 +0.028950 0.309103 -0.167182 -0.695062 0.370961 -0.615855 +0.028768 0.316312 -0.162981 -0.682242 0.417944 -0.599890 +0.028587 0.323543 -0.158666 -0.660085 0.401135 -0.635121 +0.028375 0.330866 -0.153754 -0.620862 0.343521 -0.704644 +0.028013 0.338604 -0.145344 -0.573261 0.243314 -0.782413 +0.027612 0.346500 -0.135943 -0.517034 0.107423 -0.849198 +0.027393 0.353913 -0.130759 -0.450212 -0.054461 -0.891259 +0.027522 0.360344 -0.133828 -0.394154 -0.119517 -0.911240 +0.027710 0.366593 -0.138278 -0.334833 -0.134304 -0.932657 +0.027892 0.372858 -0.142480 -0.296827 -0.147104 -0.943533 +0.028020 0.379258 -0.145525 -0.270027 -0.161114 -0.949277 +0.028118 0.385757 -0.147709 -0.246806 -0.162988 -0.955260 +0.028156 0.392414 -0.148601 -0.234758 -0.159355 -0.958903 +0.028171 0.399125 -0.149054 -0.230251 -0.146970 -0.961969 +0.028179 0.405880 -0.149220 -0.228829 -0.086333 -0.969631 +0.028164 0.412696 -0.148842 -0.227568 -0.043672 -0.972782 +0.028171 0.419467 -0.148903 -0.230240 -0.000514 -0.973134 +0.028179 0.426200 -0.149167 -0.235859 0.033983 -0.971193 +0.028209 0.432880 -0.149847 -0.235728 0.068698 -0.969388 +0.028073 0.440089 -0.146749 -0.236269 0.098325 -0.966700 +-0.000612 -0.627923 0.715383 -0.237537 -0.878598 -0.414296 +0.000152 -0.617691 0.696756 -0.245802 -0.891878 -0.379651 +0.017033 -0.566986 0.286387 -0.204778 -0.284204 -0.936640 +0.017501 -0.558296 0.274992 -0.115971 -0.187935 -0.975311 +0.017698 -0.550332 0.270360 -0.053650 -0.111871 -0.992273 +0.017796 -0.542579 0.267828 -0.029867 -0.094238 -0.995102 +0.017864 -0.534924 0.266181 -0.011661 -0.095887 -0.995324 +0.017879 -0.527412 0.265916 -0.011464 -0.123912 -0.992227 +0.017834 -0.520007 0.266884 -0.006305 -0.158983 -0.987261 +0.017781 -0.512647 0.268335 -0.025176 -0.216483 -0.975962 +0.017698 -0.505340 0.270360 -0.020502 -0.234129 -0.971989 +0.017653 -0.497927 0.271410 -0.031003 -0.259753 -0.965177 +0.017668 -0.490385 0.270919 -0.029806 -0.250526 -0.967651 +0.017902 -0.482413 0.265282 -0.054636 -0.220604 -0.973832 +0.018393 -0.473934 0.253319 -0.071473 -0.156008 -0.985167 +0.018491 -0.466280 0.251030 -0.067004 -0.090753 -0.993617 +0.018454 -0.458882 0.251944 -0.055975 0.001646 -0.998431 +0.018333 -0.451635 0.254748 -0.026468 0.095843 -0.995044 +0.018234 -0.444350 0.257256 0.020337 0.183791 -0.982755 +0.018129 -0.437066 0.259803 0.070624 0.307429 -0.948947 +0.018008 -0.429789 0.262675 0.123561 0.397186 -0.909382 +0.017864 -0.422550 0.266166 0.183135 0.498331 -0.847424 +0.017683 -0.415363 0.270556 0.217172 0.561016 -0.798810 +0.017343 -0.408426 0.278952 0.264059 0.620925 -0.738054 +0.016716 -0.401912 0.294171 0.325438 0.718329 -0.614893 +0.003106 -0.415424 0.624938 0.681882 0.706503 -0.189449 +0.020071 -0.255995 0.212507 0.170740 -0.972458 -0.158662 +0.021960 -0.247184 0.166638 0.107823 -0.956829 -0.269912 +0.022904 -0.239204 0.143704 0.056100 -0.925838 -0.373734 +0.023668 -0.231413 0.125144 -0.025825 -0.911308 -0.410916 +0.024197 -0.223841 0.112374 -0.079217 -0.888332 -0.452318 +0.024695 -0.216330 0.100163 -0.162225 -0.894103 -0.417448 +0.026161 -0.208335 0.064480 -0.380989 -0.871728 -0.308118 +0.027673 -0.200446 0.027755 -0.585232 -0.745690 -0.318513 +0.028466 -0.193003 0.008403 -0.614005 -0.705056 -0.354816 +0.029146 -0.185680 -0.008018 -0.640593 -0.651267 -0.406806 +0.029652 -0.178479 -0.020403 -0.648059 -0.615795 -0.448125 +0.030038 -0.171361 -0.029667 -0.640506 -0.590694 -0.490748 +0.030340 -0.164295 -0.037133 -0.639417 -0.563456 -0.523127 +0.030642 -0.157253 -0.044425 -0.631093 -0.539797 -0.557083 +0.030877 -0.150255 -0.050093 -0.627200 -0.519333 -0.580443 +0.031118 -0.143273 -0.055980 -0.625354 -0.498471 -0.600382 +0.031383 -0.136306 -0.062327 -0.623980 -0.473805 -0.621416 +0.031655 -0.129361 -0.069060 -0.625632 -0.432733 -0.649097 +0.031859 -0.122447 -0.074055 -0.627347 -0.394750 -0.671274 +0.032048 -0.115548 -0.078551 -0.625747 -0.360002 -0.691982 +0.032214 -0.108664 -0.082541 -0.622004 -0.319030 -0.715074 +0.032320 -0.101787 -0.085254 -0.617388 -0.285211 -0.733135 +0.032426 -0.094918 -0.087853 -0.609922 -0.257520 -0.749453 +0.032516 -0.088049 -0.089931 -0.602070 -0.245254 -0.759843 +0.032547 -0.081188 -0.090664 -0.591049 -0.243234 -0.769090 +0.032577 -0.074319 -0.091480 -0.584903 -0.265279 -0.766496 +0.032600 -0.067458 -0.092055 -0.575629 -0.269003 -0.772198 +0.032668 -0.060604 -0.093611 -0.568460 -0.325570 -0.755551 +0.032788 -0.053788 -0.096558 -0.568374 -0.401140 -0.718357 +0.033000 -0.047009 -0.101705 -0.565915 -0.507695 -0.649605 +0.034088 -0.040677 -0.128258 -0.464752 -0.790651 -0.398593 +0.035259 -0.034465 -0.156573 -0.401593 -0.837759 -0.369978 +0.035849 -0.028035 -0.170907 -0.421479 -0.768692 -0.481111 +0.036212 -0.021521 -0.179809 -0.438822 -0.690481 -0.575040 +0.036567 -0.015030 -0.188378 -0.444533 -0.644673 -0.621922 +0.036877 -0.008539 -0.195928 -0.460054 -0.552492 -0.695056 +0.037096 -0.002002 -0.201255 -0.455516 -0.491972 -0.741936 +0.037277 0.004534 -0.205706 -0.463315 -0.417731 -0.781562 +0.037428 0.011086 -0.209401 -0.467657 -0.364287 -0.805352 +0.037542 0.017660 -0.212121 -0.471915 -0.307630 -0.826232 +0.037625 0.024249 -0.214185 -0.479803 -0.255721 -0.839283 +0.037662 0.030869 -0.215068 -0.484906 -0.220498 -0.846314 +0.037700 0.037496 -0.215968 -0.490569 -0.186862 -0.851132 +0.037730 0.044116 -0.216806 -0.495277 -0.159989 -0.853876 +0.037768 0.050735 -0.217592 -0.496791 -0.136934 -0.856999 +0.037798 0.057355 -0.218295 -0.497722 -0.121789 -0.858743 +0.037791 0.064020 -0.218129 -0.499884 -0.111309 -0.858910 +0.037776 0.070685 -0.217842 -0.502610 -0.107591 -0.857792 +0.037753 0.077365 -0.217260 -0.504028 -0.105402 -0.857232 +0.037761 0.084007 -0.217524 -0.507080 -0.105644 -0.855400 +0.037836 0.090566 -0.219270 -0.511325 -0.106297 -0.852788 +0.037882 0.097163 -0.220320 -0.514195 -0.112443 -0.850271 +0.037957 0.103699 -0.222202 -0.520215 -0.111306 -0.846751 +0.038048 0.110206 -0.224529 -0.525074 -0.108155 -0.844156 +0.038161 0.116689 -0.227136 -0.518871 -0.097232 -0.849305 +0.038252 0.123188 -0.229343 -0.517854 -0.078453 -0.851864 +0.038320 0.129709 -0.231066 -0.518340 -0.048602 -0.853793 +0.038373 0.136253 -0.232381 -0.520737 -0.007976 -0.853680 +0.038380 0.142865 -0.232585 -0.520525 0.040994 -0.852862 +0.038380 0.149500 -0.232562 -0.525245 0.101338 -0.844895 +0.038350 0.156180 -0.231754 -0.520042 0.147756 -0.841263 +0.038259 0.162966 -0.229615 -0.528402 0.197673 -0.825662 +0.038146 0.169820 -0.226759 -0.542686 0.223481 -0.809660 +0.037942 0.176832 -0.221847 -0.566564 0.225086 -0.792680 +0.037730 0.183882 -0.216670 -0.600022 0.220183 -0.769086 +0.037481 0.191016 -0.210656 -0.612687 0.195537 -0.765755 +0.037428 0.197787 -0.209408 -0.612731 0.171859 -0.771379 +0.037406 0.204504 -0.208804 -0.608099 0.153117 -0.778955 +0.037421 0.211147 -0.209159 -0.610348 0.138286 -0.779969 +0.037428 0.217796 -0.209333 -0.611989 0.130957 -0.779949 +0.037436 0.224446 -0.209582 -0.612103 0.130714 -0.779900 +0.037428 0.231134 -0.209363 -0.610880 0.150827 -0.777224 +0.037406 0.237844 -0.208842 -0.600067 0.185088 -0.778242 +0.037360 0.244630 -0.207663 -0.588870 0.220653 -0.777524 +0.037270 0.251499 -0.205585 -0.584848 0.257872 -0.769061 +0.037133 0.258496 -0.202230 -0.587474 0.276966 -0.760371 +0.036952 0.265607 -0.197892 -0.599910 0.292661 -0.744619 +0.036809 0.272657 -0.194341 -0.604745 0.306135 -0.735231 +0.036673 0.279685 -0.191069 -0.622410 0.318172 -0.715103 +0.036408 0.287068 -0.184525 -0.647185 0.324911 -0.689626 +0.036264 0.294141 -0.181124 -0.659639 0.329532 -0.675489 +0.036159 0.301138 -0.178479 -0.670078 0.346932 -0.656226 +0.036053 0.308136 -0.175971 -0.676140 0.360744 -0.642416 +0.035887 0.315307 -0.171958 -0.668094 0.412404 -0.619333 +0.035675 0.322637 -0.166721 -0.653693 0.451866 -0.607044 +0.035441 0.330027 -0.161031 -0.618774 0.420536 -0.663527 +0.035123 0.337682 -0.153270 -0.584991 0.338603 -0.736976 +0.034700 0.345646 -0.143129 -0.522169 0.216302 -0.824957 +0.034360 0.353422 -0.134848 -0.473732 0.017147 -0.880502 +0.034413 0.360072 -0.136057 -0.403646 -0.041227 -0.913986 +0.034564 0.366412 -0.139760 -0.361706 -0.071736 -0.929528 +0.034730 0.372699 -0.143787 -0.316421 -0.094982 -0.943852 +0.034859 0.379077 -0.146953 -0.290409 -0.119454 -0.949417 +0.034957 0.385545 -0.149333 -0.261951 -0.141836 -0.954601 +0.035010 0.392157 -0.150550 -0.246557 -0.146454 -0.957998 +0.035025 0.398875 -0.150943 -0.237477 -0.140107 -0.961236 +0.035025 0.405646 -0.150973 -0.235432 -0.085764 -0.968099 +0.035003 0.412492 -0.150361 -0.234333 -0.047472 -0.970997 +0.035003 0.419263 -0.150369 -0.237352 -0.004412 -0.971414 +0.035018 0.425973 -0.150807 -0.242766 0.031248 -0.969582 +0.035048 0.432638 -0.151540 -0.243149 0.066507 -0.967706 +0.034965 0.439696 -0.149523 -0.243611 0.096924 -0.965018 +0.007005 -0.637996 0.732030 -0.203798 -0.864275 -0.459887 +0.007746 -0.627681 0.713169 -0.237537 -0.878598 -0.414296 +0.024257 -0.575321 0.294095 -0.263429 -0.374103 -0.889186 +0.024930 -0.566027 0.277138 -0.106247 -0.184972 -0.976984 +0.025171 -0.557881 0.270843 -0.039663 -0.116674 -0.992378 +0.025315 -0.550022 0.267322 -0.018543 -0.071221 -0.997288 +0.025375 -0.542374 0.265750 0.009358 -0.061447 -0.998066 +0.025360 -0.534924 0.266113 0.024589 -0.075968 -0.996807 +0.025323 -0.527518 0.267020 0.019866 -0.111306 -0.993588 +0.025255 -0.520188 0.268803 0.009081 -0.175760 -0.984391 +0.025171 -0.512889 0.270942 0.014646 -0.204828 -0.978689 +0.025096 -0.505551 0.272793 -0.014359 -0.254373 -0.967000 +0.025096 -0.498055 0.272831 -0.019329 -0.275380 -0.961141 +0.025232 -0.490249 0.269332 -0.031959 -0.263796 -0.964049 +0.025746 -0.481657 0.256365 -0.081295 -0.216387 -0.972917 +0.026003 -0.473640 0.249806 -0.096423 -0.150764 -0.983856 +0.025980 -0.466227 0.250440 -0.081903 -0.065736 -0.994470 +0.025904 -0.458912 0.252254 -0.063766 0.030980 -0.997484 +0.025791 -0.451665 0.255141 -0.022818 0.119813 -0.992534 +0.025685 -0.444396 0.257823 0.034701 0.248970 -0.967889 +0.025579 -0.437119 0.260544 0.083014 0.358508 -0.929828 +0.025451 -0.429879 0.263838 0.143394 0.466659 -0.872736 +0.025300 -0.422655 0.267571 0.178959 0.511651 -0.840349 +0.025073 -0.415560 0.273435 0.217504 0.578076 -0.786460 +0.024605 -0.408857 0.285367 0.267085 0.665503 -0.696972 +0.023743 -0.402759 0.307213 0.367846 0.805198 -0.465129 +0.027030 -0.256357 0.223690 0.184194 -0.969518 -0.161580 +0.029078 -0.247342 0.171678 0.143661 -0.957886 -0.248628 +0.030038 -0.239310 0.147338 0.078194 -0.941614 -0.327488 +0.030877 -0.231443 0.126112 -0.028169 -0.919181 -0.392826 +0.031458 -0.223811 0.111271 -0.116889 -0.910644 -0.396315 +0.032343 -0.216058 0.088971 -0.275832 -0.900313 -0.336680 +0.034300 -0.207776 0.039302 -0.510746 -0.824251 -0.244436 +0.035395 -0.200114 0.011418 -0.597687 -0.731723 -0.327647 +0.036144 -0.192708 -0.007602 -0.625207 -0.681141 -0.381003 +0.036642 -0.185476 -0.020274 -0.635401 -0.637364 -0.435928 +0.036960 -0.178358 -0.028292 -0.633642 -0.609021 -0.477065 +0.037292 -0.171262 -0.036740 -0.635966 -0.577156 -0.512287 +0.037587 -0.164212 -0.044123 -0.634465 -0.548925 -0.544183 +0.037829 -0.157192 -0.050350 -0.631178 -0.526871 -0.569229 +0.038093 -0.150195 -0.057060 -0.628935 -0.509735 -0.587035 +0.038358 -0.143220 -0.063664 -0.628075 -0.485851 -0.607841 +0.038630 -0.136268 -0.070639 -0.628637 -0.451109 -0.633496 +0.038879 -0.129338 -0.076896 -0.631181 -0.416216 -0.654504 +0.039083 -0.122439 -0.082087 -0.632278 -0.374280 -0.678336 +0.039249 -0.115548 -0.086425 -0.633107 -0.339155 -0.695809 +0.039385 -0.108679 -0.089863 -0.628456 -0.293777 -0.720235 +0.039476 -0.101810 -0.092206 -0.619778 -0.257748 -0.741243 +0.039552 -0.094948 -0.093997 -0.615069 -0.238376 -0.751576 +0.039627 -0.088095 -0.095886 -0.607817 -0.234310 -0.758721 +0.039680 -0.081248 -0.097299 -0.601534 -0.236907 -0.762910 +0.039725 -0.074394 -0.098516 -0.593404 -0.249621 -0.765220 +0.039748 -0.067541 -0.098984 -0.584316 -0.287770 -0.758791 +0.039756 -0.060687 -0.099128 -0.584084 -0.322340 -0.744944 +0.039786 -0.053841 -0.099951 -0.577526 -0.402620 -0.710184 +0.040171 -0.047153 -0.109692 -0.535859 -0.601020 -0.592984 +0.041486 -0.040964 -0.143220 -0.392190 -0.843422 -0.367187 +0.042310 -0.034624 -0.164031 -0.384406 -0.826887 -0.410475 +0.042756 -0.028141 -0.175389 -0.405130 -0.770293 -0.492462 +0.043133 -0.021649 -0.185016 -0.425561 -0.688230 -0.587569 +0.043466 -0.015158 -0.193321 -0.426677 -0.625037 -0.653663 +0.043730 -0.008660 -0.200159 -0.438418 -0.536441 -0.721125 +0.043934 -0.002123 -0.205237 -0.442816 -0.485307 -0.753917 +0.044101 0.004413 -0.209469 -0.449538 -0.412277 -0.792429 +0.044229 0.010980 -0.212665 -0.449951 -0.363779 -0.815603 +0.044320 0.017562 -0.214970 -0.457735 -0.307081 -0.834374 +0.044388 0.024151 -0.216769 -0.461669 -0.260244 -0.848018 +0.044426 0.030771 -0.217721 -0.468808 -0.225650 -0.853991 +0.044463 0.037383 -0.218779 -0.477587 -0.193287 -0.857060 +0.044509 0.043987 -0.219889 -0.484323 -0.165521 -0.859089 +0.044562 0.050584 -0.221129 -0.488801 -0.141312 -0.860874 +0.044607 0.057173 -0.222398 -0.492384 -0.124819 -0.861382 +0.044645 0.063770 -0.223388 -0.495499 -0.114454 -0.861035 +0.044660 0.070397 -0.223653 -0.499335 -0.109334 -0.859483 +0.044690 0.077009 -0.224370 -0.500857 -0.108288 -0.858729 +0.044683 0.083652 -0.224288 -0.502238 -0.109762 -0.857735 +0.044690 0.090294 -0.224386 -0.502903 -0.112113 -0.857041 +0.044720 0.096883 -0.225217 -0.501769 -0.116304 -0.857147 +0.044803 0.103412 -0.227257 -0.495187 -0.113205 -0.861379 +0.044894 0.109911 -0.229570 -0.485374 -0.109917 -0.867370 +0.044985 0.116394 -0.232010 -0.480498 -0.097710 -0.871536 +0.045075 0.122886 -0.234149 -0.473677 -0.079109 -0.877138 +0.045136 0.129414 -0.235705 -0.462206 -0.050022 -0.885360 +0.045189 0.135943 -0.237020 -0.462379 -0.010205 -0.886624 +0.045189 0.142563 -0.237081 -0.461370 0.038144 -0.886387 +0.045181 0.149198 -0.236862 -0.459399 0.090096 -0.883649 +0.045143 0.155885 -0.235910 -0.464763 0.149188 -0.872776 +0.045060 0.162656 -0.233854 -0.468218 0.188026 -0.863376 +0.044955 0.169480 -0.231209 -0.479609 0.216264 -0.850415 +0.044788 0.176447 -0.226864 -0.512266 0.226487 -0.828424 +0.044599 0.183459 -0.222058 -0.535164 0.222370 -0.814955 +0.044388 0.190525 -0.216859 -0.560244 0.198909 -0.804091 +0.044335 0.197295 -0.215371 -0.577634 0.177266 -0.796816 +0.044305 0.204013 -0.214721 -0.586674 0.153763 -0.795091 +0.044312 0.210655 -0.214902 -0.587931 0.138716 -0.796929 +0.044320 0.217305 -0.214970 -0.586477 0.130924 -0.799315 +0.044305 0.223993 -0.214691 -0.589201 0.143252 -0.795186 +0.044252 0.230764 -0.213399 -0.589633 0.160955 -0.791471 +0.044214 0.237519 -0.212363 -0.578370 0.195338 -0.792043 +0.044138 0.244373 -0.210391 -0.573441 0.229105 -0.786560 +0.044055 0.251242 -0.208252 -0.574793 0.255868 -0.777268 +0.043934 0.258202 -0.205275 -0.580309 0.269901 -0.768371 +0.043798 0.265214 -0.201867 -0.586609 0.281433 -0.759398 +0.043647 0.272279 -0.198081 -0.596126 0.291454 -0.748123 +0.043519 0.279315 -0.194666 -0.613186 0.297364 -0.731832 +0.043413 0.286274 -0.192089 -0.633515 0.298169 -0.713971 +0.043330 0.293204 -0.189950 -0.648521 0.300620 -0.699319 +0.043217 0.300216 -0.187033 -0.657800 0.328780 -0.677645 +0.043096 0.307251 -0.184049 -0.664703 0.345318 -0.662515 +0.042914 0.314476 -0.179417 -0.654304 0.406240 -0.637852 +0.042725 0.321737 -0.174656 -0.634831 0.473579 -0.610501 +0.042499 0.329128 -0.168860 -0.606283 0.484360 -0.630727 +0.042234 0.336654 -0.162142 -0.573345 0.419369 -0.703850 +0.041796 0.344709 -0.151079 -0.506867 0.311815 -0.803652 +0.041358 0.352833 -0.139797 -0.452694 0.138087 -0.880909 +0.041305 0.359770 -0.138558 -0.407644 0.027784 -0.912718 +0.041411 0.366231 -0.141218 -0.359830 -0.018107 -0.932842 +0.041562 0.372533 -0.145087 -0.324930 -0.076769 -0.942617 +0.041690 0.378895 -0.148359 -0.292482 -0.090030 -0.952024 +0.041788 0.385356 -0.150837 -0.270758 -0.120018 -0.955137 +0.041856 0.391900 -0.152530 -0.255825 -0.129528 -0.958006 +0.041871 0.398618 -0.152908 -0.244907 -0.124278 -0.961549 +0.041871 0.405381 -0.152900 -0.242079 -0.084326 -0.966585 +0.041856 0.412205 -0.152500 -0.240558 -0.050114 -0.969340 +0.041849 0.418998 -0.152296 -0.242538 -0.008257 -0.970107 +0.041856 0.425739 -0.152492 -0.247928 0.027228 -0.968396 +0.041894 0.432351 -0.153565 -0.248676 0.062630 -0.966560 +0.041856 0.439265 -0.152538 -0.250020 0.094781 -0.963590 +0.040934 0.449398 -0.129165 -0.236147 0.193324 -0.952292 +0.015499 -0.637421 0.726748 -0.203798 -0.864275 -0.459887 +0.016066 -0.627537 0.711786 -0.237537 -0.878598 -0.414296 +0.032320 -0.573870 0.280274 -0.095455 -0.174094 -0.980092 +0.032615 -0.565535 0.272415 -0.023202 -0.105411 -0.994158 +0.032804 -0.557525 0.267397 -0.001095 -0.062734 -0.998030 +0.032856 -0.549893 0.266007 0.036789 -0.025134 -0.999007 +0.032849 -0.542427 0.266234 0.050364 -0.039233 -0.997960 +0.032819 -0.535007 0.266997 0.050616 -0.079579 -0.995543 +0.032736 -0.527715 0.269143 0.070239 -0.089147 -0.993539 +0.032645 -0.520445 0.271584 0.051657 -0.140821 -0.988687 +0.032554 -0.513168 0.273987 0.039114 -0.205255 -0.977927 +0.032516 -0.505748 0.274969 0.027892 -0.266340 -0.963475 +0.032615 -0.498017 0.272385 -0.017823 -0.297539 -0.954543 +0.032879 -0.489901 0.265327 -0.059762 -0.274846 -0.959629 +0.033438 -0.481158 0.250456 -0.106293 -0.212228 -0.971422 +0.033506 -0.473557 0.248786 -0.113153 -0.142854 -0.983254 +0.033446 -0.466219 0.250365 -0.090879 -0.028448 -0.995456 +0.033355 -0.458942 0.252692 -0.068563 0.082687 -0.994214 +0.033242 -0.451703 0.255670 -0.009079 0.158032 -0.987392 +0.033144 -0.444433 0.258368 0.043548 0.306424 -0.950899 +0.033038 -0.437164 0.261103 0.086036 0.398411 -0.913163 +0.032902 -0.429947 0.264790 0.151969 0.498221 -0.853628 +0.032728 -0.422784 0.269423 0.186890 0.548964 -0.814684 +0.032426 -0.415832 0.277395 0.228756 0.618427 -0.751810 +0.031851 -0.409348 0.292682 0.301410 0.718109 -0.627273 +0.018567 -0.424869 0.645386 0.688868 0.685796 -0.234828 +0.036060 -0.247622 0.180912 0.169687 -0.961634 -0.215560 +0.037118 -0.239461 0.152756 0.115265 -0.946382 -0.301788 +0.038139 -0.231436 0.125757 -0.021265 -0.927546 -0.373103 +0.038788 -0.223743 0.108619 -0.200037 -0.905510 -0.374215 +0.040708 -0.215310 0.057558 -0.438583 -0.872488 -0.215429 +0.042151 -0.207338 0.019284 -0.558770 -0.783945 -0.270567 +0.043065 -0.199781 -0.004950 -0.606440 -0.709570 -0.358806 +0.043625 -0.192481 -0.019783 -0.621135 -0.660534 -0.421766 +0.043934 -0.185340 -0.028118 -0.626645 -0.625297 -0.465103 +0.044252 -0.178237 -0.036453 -0.631810 -0.589169 -0.503682 +0.044478 -0.171187 -0.042552 -0.631378 -0.564140 -0.532080 +0.044788 -0.164137 -0.050652 -0.632444 -0.538270 -0.557028 +0.045060 -0.157117 -0.057952 -0.629627 -0.515052 -0.581628 +0.045325 -0.150134 -0.065040 -0.628452 -0.497156 -0.598234 +0.045597 -0.143167 -0.072219 -0.628465 -0.471455 -0.618677 +0.045831 -0.136230 -0.078408 -0.629535 -0.439038 -0.641039 +0.046043 -0.129323 -0.083962 -0.630725 -0.399877 -0.665045 +0.046232 -0.122424 -0.088964 -0.631466 -0.363554 -0.684894 +0.046368 -0.115555 -0.092689 -0.633168 -0.320696 -0.704452 +0.046481 -0.108686 -0.095735 -0.627405 -0.272443 -0.729478 +0.046549 -0.101832 -0.097480 -0.624789 -0.241232 -0.742594 +0.046602 -0.094979 -0.098803 -0.617621 -0.226005 -0.753303 +0.046640 -0.088125 -0.099808 -0.611169 -0.213811 -0.762074 +0.046693 -0.081279 -0.101311 -0.604759 -0.231567 -0.762000 +0.046730 -0.074440 -0.102369 -0.598736 -0.235332 -0.765594 +0.046798 -0.067609 -0.104032 -0.581688 -0.294415 -0.758261 +0.046866 -0.060777 -0.105853 -0.575138 -0.345186 -0.741662 +0.046897 -0.053946 -0.106684 -0.569566 -0.413879 -0.710140 +0.047373 -0.047327 -0.119356 -0.509155 -0.662487 -0.549429 +0.048635 -0.041153 -0.152855 -0.348205 -0.863701 -0.364380 +0.049254 -0.034737 -0.169374 -0.368221 -0.815781 -0.445998 +0.049685 -0.028261 -0.180776 -0.386930 -0.759067 -0.523548 +0.050033 -0.021770 -0.189966 -0.409123 -0.681209 -0.607101 +0.050320 -0.015272 -0.197545 -0.409697 -0.611520 -0.676899 +0.050562 -0.008765 -0.203976 -0.426107 -0.527187 -0.735192 +0.050743 -0.002237 -0.208894 -0.426042 -0.480494 -0.766559 +0.050902 0.004307 -0.212930 -0.434995 -0.406517 -0.803444 +0.051007 0.010874 -0.215809 -0.435690 -0.361933 -0.824123 +0.051091 0.017456 -0.217955 -0.440465 -0.306158 -0.843954 +0.051151 0.024045 -0.219731 -0.445545 -0.263719 -0.855536 +0.051196 0.030650 -0.220834 -0.452157 -0.239142 -0.859282 +0.051242 0.037247 -0.222028 -0.464014 -0.206074 -0.861524 +0.051287 0.043844 -0.223192 -0.474121 -0.174704 -0.862953 +0.051332 0.050433 -0.224529 -0.482930 -0.149672 -0.862773 +0.051393 0.057007 -0.226018 -0.489842 -0.131396 -0.861853 +0.051446 0.063574 -0.227514 -0.495109 -0.119250 -0.860608 +0.051506 0.070141 -0.228988 -0.498336 -0.112059 -0.859712 +0.051536 0.076730 -0.229819 -0.497515 -0.108260 -0.860673 +0.051536 0.083365 -0.229849 -0.495648 -0.107742 -0.861815 +0.051529 0.090007 -0.229592 -0.492193 -0.108148 -0.863742 +0.051529 0.096634 -0.229698 -0.484823 -0.107394 -0.867994 +0.051582 0.103186 -0.231066 -0.470462 -0.104970 -0.876155 +0.051672 0.109677 -0.233431 -0.459974 -0.097719 -0.882539 +0.051778 0.116130 -0.236302 -0.444497 -0.089191 -0.891329 +0.051846 0.122636 -0.238101 -0.425547 -0.070516 -0.902185 +0.051892 0.129173 -0.239393 -0.412782 -0.043357 -0.909797 +0.051937 0.135717 -0.240481 -0.405470 -0.006772 -0.914083 +0.051937 0.142321 -0.240595 -0.397122 0.040198 -0.916885 +0.051929 0.148963 -0.240269 -0.395042 0.091804 -0.914065 +0.051876 0.155666 -0.238978 -0.399242 0.140173 -0.906067 +0.051801 0.162437 -0.236839 -0.403611 0.179491 -0.897152 +0.051703 0.169245 -0.234361 -0.417770 0.200208 -0.886220 +0.051559 0.176167 -0.230506 -0.447375 0.211653 -0.868941 +0.051423 0.183081 -0.226909 -0.467804 0.211127 -0.858245 +0.051257 0.190071 -0.222481 -0.512438 0.196807 -0.835867 +0.051204 0.196834 -0.221046 -0.531838 0.169048 -0.829802 +0.051181 0.203530 -0.220487 -0.546094 0.151008 -0.824001 +0.051204 0.210134 -0.221015 -0.560463 0.133325 -0.817377 +0.051204 0.216769 -0.221144 -0.565010 0.128778 -0.814972 +0.051196 0.223441 -0.220872 -0.570050 0.125256 -0.812006 +0.051136 0.230235 -0.219277 -0.573818 0.154840 -0.804212 +0.051045 0.237111 -0.216784 -0.572142 0.192819 -0.797167 +0.050909 0.244101 -0.213293 -0.566468 0.223522 -0.793191 +0.050781 0.251098 -0.209726 -0.566322 0.246793 -0.786367 +0.050637 0.258134 -0.205978 -0.567207 0.263530 -0.780274 +0.050509 0.265131 -0.202668 -0.578584 0.273976 -0.768230 +0.050403 0.272113 -0.199691 -0.588972 0.277634 -0.758968 +0.050335 0.278982 -0.197923 -0.599486 0.280019 -0.749804 +0.050305 0.285745 -0.197159 -0.609567 0.277878 -0.742437 +0.050305 0.292441 -0.197159 -0.619166 0.283517 -0.732292 +0.050267 0.299226 -0.196200 -0.629098 0.309705 -0.712965 +0.050191 0.306133 -0.194235 -0.636708 0.329742 -0.697046 +0.050033 0.313312 -0.189935 -0.638687 0.382201 -0.667833 +0.049783 0.320763 -0.183240 -0.630804 0.451472 -0.631078 +0.049481 0.328395 -0.175260 -0.599938 0.524749 -0.603914 +0.049247 0.335838 -0.169147 -0.562295 0.502939 -0.656412 +0.048937 0.343546 -0.160888 -0.519247 0.425005 -0.741453 +0.048347 0.352183 -0.145170 -0.453285 0.241144 -0.858127 +0.048211 0.359399 -0.141603 -0.415377 0.096123 -0.904556 +0.048249 0.366049 -0.142699 -0.378210 0.026666 -0.925336 +0.048393 0.372374 -0.146334 -0.335686 -0.027920 -0.941560 +0.048514 0.378744 -0.149545 -0.308657 -0.070985 -0.948521 +0.048597 0.385213 -0.151941 -0.280051 -0.091662 -0.955599 +0.048680 0.391711 -0.153974 -0.264599 -0.104998 -0.958625 +0.048695 0.398422 -0.154374 -0.255241 -0.107784 -0.960851 +0.048695 0.405185 -0.154412 -0.249454 -0.079162 -0.965146 +0.048688 0.411963 -0.154306 -0.246515 -0.050815 -0.967806 +0.048680 0.418757 -0.154049 -0.247224 -0.012157 -0.968882 +0.048680 0.425520 -0.154064 -0.252459 0.022816 -0.967339 +0.048718 0.432147 -0.155046 -0.253371 0.058770 -0.965582 +0.048718 0.438910 -0.155046 -0.256251 0.091920 -0.962230 +0.048075 0.448129 -0.137976 -0.249289 0.174614 -0.952557 +0.023290 -0.647237 0.740546 -0.122041 -0.842939 -0.523984 +0.023826 -0.637316 0.725758 -0.203798 -0.864275 -0.459887 +0.039650 -0.581933 0.285397 -0.083978 -0.195403 -0.977121 +0.040081 -0.573145 0.273428 -0.003217 -0.118243 -0.992979 +0.040232 -0.565211 0.269204 0.039219 -0.038842 -0.998475 +0.040322 -0.557442 0.266597 0.077158 -0.010551 -0.996963 +0.040337 -0.549931 0.266347 0.097097 -0.002903 -0.995271 +0.040292 -0.542541 0.267443 0.106600 -0.011716 -0.994233 +0.040224 -0.535233 0.269377 0.111116 -0.045707 -0.992756 +0.040118 -0.528024 0.272392 0.100935 -0.075319 -0.992038 +0.040028 -0.520755 0.274916 0.089148 -0.133523 -0.987028 +0.039960 -0.513425 0.276783 0.073359 -0.208819 -0.975199 +0.040005 -0.505808 0.275627 0.027657 -0.305368 -0.951833 +0.040133 -0.497979 0.271954 -0.015524 -0.324121 -0.945888 +0.040511 -0.489569 0.261435 -0.083961 -0.286559 -0.954377 +0.040987 -0.480970 0.248227 -0.130975 -0.228452 -0.964705 +0.040980 -0.473519 0.248325 -0.127795 -0.111321 -0.985533 +0.040912 -0.466219 0.250297 -0.096069 0.008754 -0.995336 +0.040798 -0.459010 0.253523 -0.056791 0.154361 -0.986381 +0.040700 -0.451748 0.256184 0.002163 0.236987 -0.971510 +0.040602 -0.444479 0.258912 0.062727 0.367193 -0.928027 +0.040489 -0.437240 0.262131 0.107171 0.430382 -0.896262 +0.040330 -0.430061 0.266393 0.149540 0.510633 -0.846694 +0.040118 -0.422988 0.272302 0.189662 0.572516 -0.797655 +0.039763 -0.416172 0.282337 0.236796 0.666634 -0.706772 +0.038841 -0.410376 0.308007 0.340534 0.823998 -0.452841 +0.025950 -0.426267 0.666711 0.710147 0.655647 -0.256552 +0.042922 -0.248037 0.194340 0.213195 -0.960415 -0.179309 +0.044229 -0.239619 0.158008 0.141572 -0.954209 -0.263520 +0.045506 -0.231345 0.122417 -0.065573 -0.927661 -0.367621 +0.046594 -0.223327 0.092122 -0.329248 -0.890448 -0.314163 +0.048740 -0.214713 0.032539 -0.512334 -0.827952 -0.228056 +0.049829 -0.206960 0.002274 -0.579916 -0.749411 -0.319502 +0.050478 -0.199554 -0.015846 -0.608596 -0.688406 -0.394600 +0.051023 -0.192270 -0.030929 -0.618585 -0.640196 -0.455523 +0.051310 -0.185159 -0.039113 -0.621682 -0.606007 -0.496252 +0.051551 -0.178094 -0.045831 -0.626001 -0.575222 -0.526537 +0.051801 -0.171051 -0.052624 -0.626387 -0.547181 -0.555187 +0.052088 -0.164016 -0.060770 -0.626547 -0.524558 -0.576436 +0.052307 -0.157033 -0.066823 -0.623756 -0.508816 -0.593325 +0.052541 -0.150059 -0.073359 -0.621487 -0.486452 -0.614100 +0.052768 -0.143122 -0.079639 -0.618034 -0.461976 -0.636092 +0.052972 -0.136200 -0.085261 -0.619378 -0.429940 -0.656903 +0.053169 -0.129301 -0.090823 -0.621327 -0.392805 -0.677980 +0.053320 -0.122417 -0.095025 -0.624114 -0.353024 -0.697034 +0.053433 -0.115555 -0.098108 -0.623458 -0.309473 -0.718001 +0.053524 -0.108701 -0.100661 -0.621876 -0.263992 -0.737277 +0.053607 -0.101855 -0.102921 -0.620900 -0.227143 -0.750260 +0.053660 -0.095009 -0.104349 -0.614006 -0.215624 -0.759278 +0.053698 -0.088170 -0.105543 -0.607155 -0.202356 -0.768385 +0.053720 -0.081324 -0.106125 -0.602129 -0.224120 -0.766297 +0.053758 -0.074493 -0.107175 -0.594262 -0.247507 -0.765240 +0.053788 -0.067654 -0.108067 -0.585328 -0.253519 -0.770142 +0.053864 -0.060838 -0.110092 -0.568432 -0.343510 -0.747587 +0.054007 -0.054067 -0.114082 -0.538574 -0.490065 -0.685401 +0.054786 -0.047621 -0.135830 -0.414544 -0.775455 -0.476260 +0.055624 -0.041274 -0.159119 -0.325624 -0.865764 -0.380028 +0.056131 -0.034821 -0.173228 -0.351950 -0.811264 -0.466885 +0.056577 -0.028375 -0.185590 -0.369098 -0.751742 -0.546490 +0.056879 -0.021876 -0.194016 -0.385985 -0.670393 -0.633711 +0.057143 -0.015370 -0.201262 -0.395235 -0.610426 -0.686418 +0.057362 -0.008864 -0.207474 -0.404287 -0.525791 -0.748395 +0.057536 -0.002335 -0.212182 -0.411742 -0.474879 -0.777791 +0.057672 0.004209 -0.216104 -0.417453 -0.403526 -0.814186 +0.057778 0.010768 -0.219005 -0.418976 -0.363368 -0.832119 +0.057854 0.017343 -0.221061 -0.427260 -0.313659 -0.847978 +0.057914 0.023932 -0.222738 -0.433456 -0.270030 -0.859767 +0.057952 0.030536 -0.223758 -0.442960 -0.245802 -0.862188 +0.057997 0.037126 -0.225156 -0.454454 -0.217152 -0.863896 +0.058050 0.043700 -0.226683 -0.467083 -0.186584 -0.864303 +0.058103 0.050282 -0.228043 -0.478368 -0.161151 -0.863247 +0.058163 0.056833 -0.229781 -0.487331 -0.139683 -0.861973 +0.058239 0.063370 -0.231806 -0.493859 -0.122936 -0.860808 +0.058284 0.069937 -0.233197 -0.494104 -0.111961 -0.862164 +0.058315 0.076518 -0.233952 -0.492216 -0.105190 -0.864094 +0.058315 0.083145 -0.233922 -0.486969 -0.100907 -0.867571 +0.058307 0.089788 -0.233718 -0.473640 -0.096528 -0.875413 +0.058300 0.096415 -0.233597 -0.461354 -0.091782 -0.882456 +0.058352 0.102966 -0.234935 -0.443558 -0.088026 -0.891913 +0.058420 0.109473 -0.236892 -0.426726 -0.080954 -0.900750 +0.058504 0.115949 -0.239265 -0.407090 -0.072158 -0.910533 +0.058572 0.122447 -0.241161 -0.382078 -0.057523 -0.922338 +0.058624 0.128969 -0.242559 -0.362577 -0.034347 -0.931321 +0.058647 0.135535 -0.243179 -0.354903 0.002337 -0.934900 +0.058647 0.142140 -0.243262 -0.343387 0.040260 -0.938331 +0.058624 0.148797 -0.242658 -0.343638 0.092903 -0.934496 +0.058572 0.155515 -0.241086 -0.358122 0.137247 -0.923532 +0.058496 0.162278 -0.239061 -0.371326 0.165629 -0.913611 +0.058413 0.169064 -0.236756 -0.385479 0.189386 -0.903072 +0.058284 0.175963 -0.233181 -0.402332 0.194649 -0.894562 +0.058171 0.182847 -0.229849 -0.437196 0.190235 -0.879017 +0.058073 0.189701 -0.227106 -0.467734 0.177362 -0.865891 +0.058043 0.196396 -0.226396 -0.488350 0.155118 -0.858750 +0.058027 0.203069 -0.226041 -0.513422 0.133840 -0.847635 +0.058050 0.209666 -0.226532 -0.529641 0.112324 -0.840752 +0.058058 0.216285 -0.226721 -0.543206 0.109336 -0.832450 +0.058050 0.222927 -0.226675 -0.550819 0.124974 -0.825215 +0.058012 0.229675 -0.225444 -0.556722 0.150431 -0.816965 +0.057929 0.236529 -0.223124 -0.557851 0.184200 -0.809242 +0.057801 0.243504 -0.219617 -0.554799 0.220033 -0.802361 +0.057544 0.250841 -0.212401 -0.555329 0.250666 -0.792954 +0.057355 0.258020 -0.207164 -0.554672 0.269647 -0.787166 +0.057242 0.265002 -0.204006 -0.562498 0.275152 -0.779671 +0.057158 0.271909 -0.201761 -0.571336 0.273924 -0.773655 +0.057121 0.278687 -0.200809 -0.580524 0.267593 -0.769016 +0.057143 0.285307 -0.201361 -0.586725 0.270309 -0.763339 +0.057166 0.291919 -0.202026 -0.591559 0.271151 -0.759299 +0.057196 0.298508 -0.202910 -0.597482 0.293512 -0.746234 +0.057166 0.305294 -0.201920 -0.604786 0.308347 -0.734273 +0.057053 0.312322 -0.198807 -0.610244 0.366364 -0.702410 +0.056886 0.319538 -0.194129 -0.604958 0.429802 -0.670296 +0.056539 0.327344 -0.184426 -0.593655 0.515340 -0.618060 +0.056176 0.335233 -0.174338 -0.556609 0.543904 -0.627977 +0.055919 0.342798 -0.167243 -0.509681 0.471480 -0.719675 +0.055405 0.351261 -0.152893 -0.459813 0.316246 -0.829795 +0.055118 0.358999 -0.144905 -0.423871 0.165155 -0.890538 +0.055096 0.365838 -0.144422 -0.385189 0.059025 -0.920948 +0.055216 0.372200 -0.147777 -0.345723 0.004874 -0.938324 +0.055337 0.378555 -0.151041 -0.322309 -0.024297 -0.946323 +0.055436 0.384979 -0.153762 -0.292998 -0.067544 -0.953724 +0.055504 0.391470 -0.155810 -0.267874 -0.092902 -0.958964 +0.055519 0.398180 -0.156195 -0.259191 -0.095319 -0.961111 +0.055519 0.404951 -0.156157 -0.252048 -0.081894 -0.964243 +0.055504 0.411759 -0.155772 -0.252145 -0.050478 -0.966372 +0.055519 0.418462 -0.156218 -0.253154 -0.014697 -0.967314 +0.055534 0.425157 -0.156648 -0.256894 0.016088 -0.966305 +0.055572 0.431792 -0.157585 -0.259192 0.055396 -0.964236 +0.055504 0.438827 -0.155621 -0.261356 0.087793 -0.961242 +0.055088 0.447252 -0.144089 -0.263286 0.140839 -0.954382 +0.031685 -0.646973 0.738136 -0.122041 -0.842939 -0.523984 +0.046836 -0.590525 0.295251 -0.116190 -0.284067 -0.951738 +0.047494 -0.580928 0.276012 0.029758 -0.100390 -0.994503 +0.047705 -0.572767 0.269808 0.072354 -0.035584 -0.996744 +0.047773 -0.565082 0.267972 0.114289 0.024470 -0.993146 +0.047819 -0.557442 0.266597 0.137685 0.033522 -0.989909 +0.047773 -0.550075 0.267828 0.142601 0.021842 -0.989539 +0.047705 -0.542783 0.269838 0.138351 -0.005729 -0.990367 +0.047622 -0.535528 0.272415 0.125548 -0.056243 -0.990492 +0.047501 -0.528349 0.275785 0.129896 -0.063098 -0.989518 +0.047433 -0.521027 0.277810 0.123168 -0.141812 -0.982201 +0.047433 -0.513516 0.277826 0.085792 -0.245114 -0.965691 +0.047524 -0.505763 0.275121 0.021076 -0.350252 -0.936418 +0.047713 -0.497783 0.269763 -0.033323 -0.353103 -0.934991 +0.048143 -0.489199 0.257174 -0.100561 -0.306012 -0.946702 +0.048514 -0.480811 0.246322 -0.145374 -0.220891 -0.964403 +0.048468 -0.473466 0.247660 -0.131441 -0.098221 -0.986446 +0.048363 -0.466249 0.250667 -0.100148 0.047391 -0.993843 +0.048249 -0.459048 0.254000 -0.039273 0.180854 -0.982726 +0.048159 -0.451786 0.256720 0.008515 0.287606 -0.957711 +0.048053 -0.444539 0.259765 0.068040 0.413575 -0.907924 +0.047924 -0.437338 0.263445 0.121620 0.473772 -0.872209 +0.047766 -0.430182 0.268070 0.160664 0.548430 -0.820616 +0.047509 -0.423222 0.275634 0.202407 0.614892 -0.762194 +0.047002 -0.416731 0.290445 0.271612 0.713404 -0.645973 +0.034217 -0.434285 0.664225 0.707963 0.655189 -0.263658 +0.049617 -0.248650 0.214116 0.241816 -0.959068 -0.147355 +0.051310 -0.239808 0.164499 0.196547 -0.950538 -0.240516 +0.053093 -0.231065 0.112412 -0.255771 -0.915219 -0.311376 +0.054680 -0.222662 0.066105 -0.455140 -0.874114 -0.169621 +0.056539 -0.214214 0.011622 -0.548057 -0.791164 -0.271463 +0.057257 -0.206703 -0.009310 -0.585190 -0.733361 -0.346026 +0.057884 -0.199320 -0.027559 -0.603126 -0.677054 -0.421707 +0.058390 -0.192058 -0.042566 -0.612437 -0.618623 -0.492164 +0.058677 -0.184963 -0.050909 -0.612589 -0.587341 -0.528928 +0.058904 -0.177920 -0.057536 -0.614128 -0.557226 -0.558879 +0.059116 -0.170900 -0.063702 -0.615305 -0.535955 -0.578058 +0.059297 -0.163917 -0.068939 -0.611059 -0.520755 -0.596171 +0.059493 -0.156950 -0.074682 -0.608282 -0.501545 -0.615180 +0.059713 -0.149998 -0.081022 -0.604088 -0.480669 -0.635638 +0.059917 -0.143069 -0.087105 -0.601872 -0.452506 -0.658018 +0.060098 -0.136162 -0.092485 -0.599916 -0.420900 -0.680400 +0.060272 -0.129278 -0.097382 -0.603230 -0.390046 -0.695685 +0.060400 -0.122409 -0.101115 -0.605927 -0.345491 -0.716581 +0.060498 -0.115555 -0.104054 -0.606818 -0.302898 -0.734864 +0.060574 -0.108709 -0.106314 -0.607205 -0.259525 -0.750965 +0.060642 -0.101870 -0.108301 -0.604990 -0.226322 -0.763391 +0.060695 -0.095039 -0.109865 -0.599784 -0.199276 -0.774950 +0.060725 -0.088208 -0.110682 -0.598205 -0.201729 -0.775536 +0.060755 -0.081377 -0.111505 -0.593658 -0.208670 -0.777192 +0.060763 -0.074538 -0.111913 -0.585476 -0.238676 -0.774759 +0.060771 -0.067707 -0.112155 -0.582121 -0.278808 -0.763807 +0.060839 -0.060898 -0.114097 -0.563552 -0.350659 -0.747962 +0.061088 -0.054181 -0.121382 -0.524524 -0.553414 -0.646998 +0.061753 -0.047705 -0.140772 -0.392012 -0.785795 -0.478385 +0.062554 -0.041380 -0.164220 -0.303512 -0.872338 -0.383285 +0.063068 -0.034949 -0.179091 -0.329343 -0.810881 -0.483740 +0.063415 -0.028465 -0.189452 -0.345274 -0.747212 -0.567855 +0.063710 -0.021974 -0.198021 -0.366584 -0.669609 -0.645941 +0.063959 -0.015476 -0.205192 -0.375671 -0.607652 -0.699736 +0.064156 -0.008962 -0.211086 -0.384889 -0.538234 -0.749776 +0.064315 -0.002433 -0.215658 -0.391340 -0.468575 -0.792017 +0.064451 0.004096 -0.219587 -0.395948 -0.405601 -0.823840 +0.064549 0.010655 -0.222391 -0.402394 -0.365519 -0.839330 +0.064609 0.017229 -0.224302 -0.410388 -0.317551 -0.854835 +0.064662 0.023819 -0.225852 -0.418359 -0.283395 -0.862939 +0.064715 0.030400 -0.227333 -0.429099 -0.258093 -0.865599 +0.064760 0.036975 -0.228769 -0.442934 -0.229107 -0.866787 +0.064806 0.043556 -0.230060 -0.458478 -0.199311 -0.866068 +0.064866 0.050116 -0.231716 -0.469963 -0.174699 -0.865226 +0.064927 0.056660 -0.233575 -0.479133 -0.148924 -0.865016 +0.065010 0.063173 -0.236000 -0.483883 -0.128322 -0.865673 +0.065055 0.069732 -0.237292 -0.484690 -0.111374 -0.867567 +0.065078 0.076314 -0.238033 -0.479926 -0.098066 -0.871811 +0.065070 0.082949 -0.237761 -0.467825 -0.086547 -0.879573 +0.065063 0.089584 -0.237481 -0.453446 -0.078520 -0.887818 +0.065048 0.096226 -0.236982 -0.434693 -0.071384 -0.897745 +0.065085 0.102777 -0.238267 -0.414821 -0.065816 -0.907520 +0.065146 0.109299 -0.239869 -0.392870 -0.059306 -0.917680 +0.065206 0.115798 -0.241751 -0.373939 -0.048951 -0.926161 +0.065267 0.122304 -0.243421 -0.351546 -0.036609 -0.935455 +0.065312 0.128825 -0.244774 -0.335623 -0.017329 -0.941837 +0.065327 0.135407 -0.245219 -0.325036 0.011985 -0.945626 +0.065320 0.142026 -0.245008 -0.322733 0.050033 -0.945167 +0.065289 0.148691 -0.244116 -0.321790 0.088664 -0.942650 +0.065236 0.155417 -0.242529 -0.331928 0.123762 -0.935151 +0.065168 0.162172 -0.240527 -0.340952 0.155915 -0.927061 +0.065085 0.168966 -0.238086 -0.356330 0.172710 -0.918259 +0.064980 0.175820 -0.235041 -0.374203 0.176144 -0.910464 +0.064889 0.182636 -0.232539 -0.407005 0.169163 -0.897625 +0.064828 0.189421 -0.230567 -0.432294 0.148527 -0.889416 +0.064813 0.196094 -0.230129 -0.457498 0.126084 -0.880226 +0.064813 0.202713 -0.230219 -0.474550 0.104837 -0.873963 +0.064828 0.209318 -0.230582 -0.497808 0.093044 -0.862282 +0.064828 0.215938 -0.230733 -0.521676 0.094788 -0.847862 +0.064844 0.222534 -0.231050 -0.531062 0.106071 -0.840668 +0.064836 0.229177 -0.230930 -0.540553 0.136397 -0.830180 +0.064813 0.235879 -0.230144 -0.542946 0.176420 -0.821027 +0.064753 0.242680 -0.228391 -0.541533 0.213807 -0.813037 +0.064617 0.249693 -0.224416 -0.542854 0.241503 -0.804355 +0.064330 0.257144 -0.216126 -0.541614 0.262092 -0.798725 +0.064043 0.264632 -0.207754 -0.543965 0.270995 -0.794144 +0.063997 0.271448 -0.206325 -0.548347 0.262363 -0.794029 +0.063967 0.278204 -0.205464 -0.556926 0.260153 -0.788767 +0.064027 0.284703 -0.207210 -0.555099 0.259494 -0.790270 +0.064088 0.291186 -0.208932 -0.559487 0.253573 -0.789097 +0.064141 0.297677 -0.210625 -0.557166 0.268895 -0.785660 +0.064126 0.304403 -0.210028 -0.567544 0.281590 -0.773693 +0.064035 0.311355 -0.207459 -0.572703 0.339120 -0.746330 +0.063876 0.318541 -0.202925 -0.580977 0.390399 -0.714181 +0.063574 0.326241 -0.194008 -0.575213 0.489140 -0.655646 +0.063204 0.334198 -0.183202 -0.544360 0.590275 -0.596027 +0.062841 0.342178 -0.172487 -0.517497 0.534288 -0.668381 +0.062456 0.350241 -0.161386 -0.461428 0.403030 -0.790349 +0.062032 0.358500 -0.148963 -0.416881 0.228612 -0.879742 +0.061964 0.365535 -0.146862 -0.384837 0.100595 -0.917486 +0.062055 0.371966 -0.149605 -0.349685 0.057119 -0.935125 +0.062161 0.378344 -0.152726 -0.318943 -0.005825 -0.947756 +0.062259 0.384744 -0.155538 -0.303020 -0.040534 -0.952122 +0.062320 0.391266 -0.157389 -0.278416 -0.056806 -0.958779 +0.062335 0.397968 -0.157827 -0.267499 -0.075367 -0.960606 +0.062342 0.404709 -0.157925 -0.259842 -0.068977 -0.963184 +0.062335 0.411495 -0.157759 -0.252959 -0.059609 -0.965639 +0.062342 0.418212 -0.158001 -0.258814 -0.017500 -0.965769 +0.062365 0.424877 -0.158696 -0.261808 0.012719 -0.965036 +0.062395 0.431520 -0.159512 -0.264694 0.051979 -0.962931 +0.062365 0.438389 -0.158674 -0.267461 0.084120 -0.959890 +0.061987 0.446731 -0.147656 -0.271199 0.130935 -0.953576 +0.040005 -0.646943 0.737886 -0.122083 -0.842952 -0.523954 +0.054869 -0.588885 0.280153 0.032995 -0.090657 -0.995335 +0.055148 -0.580445 0.271501 0.078811 -0.036093 -0.996236 +0.055262 -0.572601 0.268214 0.124325 0.023846 -0.991955 +0.055284 -0.565029 0.267488 0.148278 0.058298 -0.987226 +0.055232 -0.557692 0.269022 0.166503 0.052808 -0.984626 +0.055179 -0.550354 0.270617 0.164336 0.019915 -0.986203 +0.055103 -0.543092 0.273042 0.157349 -0.006438 -0.987522 +0.055005 -0.535883 0.276111 0.151780 -0.045584 -0.987363 +0.054914 -0.528629 0.278785 0.158673 -0.071188 -0.984761 +0.054876 -0.521216 0.279866 0.145875 -0.117377 -0.982315 +0.054914 -0.513607 0.278778 0.083796 -0.298235 -0.950807 +0.055058 -0.505702 0.274433 0.002002 -0.385475 -0.922716 +0.055405 -0.497254 0.263687 -0.063919 -0.366268 -0.928311 +0.055836 -0.488624 0.250501 -0.133519 -0.329241 -0.934758 +0.056002 -0.480720 0.245280 -0.146751 -0.191065 -0.970545 +0.055934 -0.473428 0.247282 -0.131542 -0.038989 -0.990543 +0.055836 -0.466234 0.250508 -0.078916 0.116308 -0.990073 +0.055715 -0.459055 0.254075 -0.006546 0.249561 -0.968337 +0.055617 -0.451824 0.257188 0.029912 0.353819 -0.934836 +0.055504 -0.444600 0.260566 0.080592 0.433802 -0.897396 +0.055375 -0.437413 0.264549 0.121828 0.506217 -0.853758 +0.055209 -0.430310 0.269816 0.162620 0.567317 -0.807283 +0.054899 -0.423471 0.279231 0.210128 0.654643 -0.726147 +0.042332 -0.442605 0.666212 0.710994 0.653112 -0.260638 +0.041917 -0.435282 0.679126 0.710994 0.653112 -0.260638 +0.056357 -0.249269 0.234405 0.270933 -0.953109 -0.134829 +0.058375 -0.240027 0.172253 0.238123 -0.945112 -0.223744 +0.060839 -0.230627 0.096339 -0.407658 -0.877200 -0.253644 +0.062977 -0.221748 0.030475 -0.522660 -0.830387 -0.193093 +0.064065 -0.213867 -0.003083 -0.557179 -0.775750 -0.296249 +0.064745 -0.206386 -0.023909 -0.581341 -0.709767 -0.397835 +0.065274 -0.199063 -0.040269 -0.596076 -0.650636 -0.470496 +0.065637 -0.191892 -0.051468 -0.599275 -0.603925 -0.525494 +0.065901 -0.184811 -0.059554 -0.598660 -0.580297 -0.552143 +0.066113 -0.177784 -0.066060 -0.600237 -0.554505 -0.576402 +0.066279 -0.170802 -0.071236 -0.599724 -0.531481 -0.598213 +0.066453 -0.163834 -0.076458 -0.595405 -0.512515 -0.618726 +0.066657 -0.156875 -0.082888 -0.589924 -0.494732 -0.638146 +0.066854 -0.149938 -0.088737 -0.585290 -0.476472 -0.656057 +0.067012 -0.143023 -0.093793 -0.583173 -0.448510 -0.677309 +0.067186 -0.136132 -0.099098 -0.585231 -0.419483 -0.693930 +0.067337 -0.129263 -0.103798 -0.585611 -0.383415 -0.714179 +0.067473 -0.122402 -0.107939 -0.583730 -0.338485 -0.738030 +0.067579 -0.115563 -0.111112 -0.583264 -0.292126 -0.757935 +0.067670 -0.108732 -0.114014 -0.585623 -0.248686 -0.771493 +0.067723 -0.101900 -0.115669 -0.583162 -0.218013 -0.782555 +0.067760 -0.095077 -0.116659 -0.581262 -0.189700 -0.791296 +0.067760 -0.088253 -0.116840 -0.580881 -0.203306 -0.788190 +0.067775 -0.081422 -0.117180 -0.580416 -0.193421 -0.791015 +0.067768 -0.074598 -0.117052 -0.572248 -0.232117 -0.786546 +0.067768 -0.067767 -0.116931 -0.566321 -0.292960 -0.770360 +0.067828 -0.060966 -0.118798 -0.559201 -0.355752 -0.748822 +0.068093 -0.054271 -0.126913 -0.499091 -0.588693 -0.635884 +0.068758 -0.047825 -0.147376 -0.359444 -0.797596 -0.484397 +0.069453 -0.041470 -0.168913 -0.280298 -0.873469 -0.398101 +0.069914 -0.035032 -0.183006 -0.306777 -0.813501 -0.494069 +0.070246 -0.028549 -0.193215 -0.325119 -0.752623 -0.572587 +0.070541 -0.022080 -0.202464 -0.347638 -0.661527 -0.664477 +0.070768 -0.015589 -0.209408 -0.356348 -0.594942 -0.720459 +0.070949 -0.009075 -0.215016 -0.360574 -0.533988 -0.764750 +0.071093 -0.002546 -0.219338 -0.369443 -0.468262 -0.802647 +0.071206 0.003990 -0.222867 -0.375359 -0.414225 -0.829170 +0.071282 0.010557 -0.225277 -0.382577 -0.367775 -0.847571 +0.071350 0.017123 -0.227287 -0.391953 -0.325391 -0.860519 +0.071403 0.023705 -0.228950 -0.403257 -0.298748 -0.864947 +0.071448 0.030287 -0.230242 -0.414951 -0.272575 -0.868054 +0.071493 0.036854 -0.231799 -0.427596 -0.244399 -0.870305 +0.071554 0.043413 -0.233582 -0.443070 -0.216299 -0.870002 +0.071629 0.049934 -0.235857 -0.453603 -0.187676 -0.871219 +0.071697 0.056463 -0.238040 -0.463028 -0.159612 -0.871854 +0.071780 0.062962 -0.240459 -0.465238 -0.132866 -0.875157 +0.071818 0.069521 -0.241622 -0.463927 -0.108762 -0.879171 +0.071833 0.076103 -0.242280 -0.453985 -0.086836 -0.886768 +0.071826 0.082722 -0.241993 -0.441045 -0.068462 -0.894870 +0.071811 0.089365 -0.241479 -0.422405 -0.054144 -0.904789 +0.071788 0.096014 -0.240821 -0.404714 -0.046334 -0.913269 +0.071796 0.102619 -0.240950 -0.381652 -0.041559 -0.923371 +0.071833 0.109163 -0.242151 -0.360277 -0.037099 -0.932108 +0.071886 0.115669 -0.243844 -0.340677 -0.032889 -0.939605 +0.071932 0.122198 -0.245121 -0.324109 -0.019987 -0.945809 +0.071962 0.128742 -0.246088 -0.311742 -0.003897 -0.950159 +0.071977 0.135316 -0.246534 -0.305869 0.017839 -0.951907 +0.071954 0.141966 -0.245816 -0.309571 0.047281 -0.949700 +0.071916 0.148638 -0.244842 -0.312432 0.087838 -0.945870 +0.071871 0.155349 -0.243436 -0.314181 0.114893 -0.942385 +0.071811 0.162089 -0.241592 -0.323195 0.141892 -0.935634 +0.071750 0.168852 -0.239590 -0.339053 0.156256 -0.927700 +0.071667 0.175661 -0.237058 -0.360994 0.157429 -0.919184 +0.071599 0.182447 -0.234973 -0.380640 0.143312 -0.913551 +0.071546 0.189202 -0.233348 -0.411476 0.123546 -0.903008 +0.071539 0.195845 -0.233159 -0.439114 0.099708 -0.892881 +0.071546 0.202464 -0.233265 -0.461078 0.077677 -0.883953 +0.071554 0.209069 -0.233499 -0.474865 0.067187 -0.877490 +0.071569 0.215658 -0.233930 -0.493695 0.071312 -0.866706 +0.071592 0.222217 -0.234685 -0.505847 0.092690 -0.857629 +0.071592 0.228829 -0.234837 -0.516132 0.118506 -0.848271 +0.071592 0.235449 -0.234844 -0.520574 0.163456 -0.838024 +0.071561 0.242182 -0.233718 -0.522191 0.208317 -0.826995 +0.071471 0.249066 -0.231013 -0.519612 0.244339 -0.818720 +0.071320 0.256139 -0.226418 -0.517432 0.262236 -0.814553 +0.071010 0.263733 -0.216791 -0.525944 0.270896 -0.806225 +0.070881 0.270791 -0.212779 -0.527953 0.266656 -0.806325 +0.070859 0.277516 -0.212167 -0.528941 0.257610 -0.808615 +0.070942 0.283924 -0.214645 -0.520987 0.252795 -0.815271 +0.071010 0.290355 -0.216791 -0.518127 0.249910 -0.817979 +0.071055 0.296854 -0.218220 -0.521561 0.243837 -0.817629 +0.071032 0.303579 -0.217592 -0.528553 0.259655 -0.808214 +0.070972 0.310448 -0.215635 -0.532019 0.305547 -0.789682 +0.070836 0.317566 -0.211562 -0.542626 0.367639 -0.755248 +0.070571 0.325176 -0.203340 -0.543257 0.465203 -0.698898 +0.070194 0.333216 -0.191605 -0.524636 0.578531 -0.624547 +0.069801 0.341332 -0.179643 -0.504194 0.591642 -0.629085 +0.069468 0.349289 -0.169306 -0.474631 0.496091 -0.727062 +0.069075 0.357488 -0.157291 -0.436984 0.337525 -0.833740 +0.068849 0.365112 -0.150301 -0.383390 0.162751 -0.909134 +0.068894 0.371717 -0.151623 -0.357883 0.076307 -0.930643 +0.068977 0.378140 -0.154328 -0.330916 0.043293 -0.942666 +0.069068 0.384571 -0.156928 -0.302810 -0.016856 -0.952902 +0.069121 0.391092 -0.158764 -0.286866 -0.043479 -0.956984 +0.069151 0.397734 -0.159588 -0.273177 -0.053529 -0.960473 +0.069158 0.404452 -0.159868 -0.264453 -0.065561 -0.962168 +0.069158 0.411200 -0.159898 -0.259809 -0.054633 -0.964113 +0.069151 0.417986 -0.159678 -0.257249 -0.032352 -0.965803 +0.069173 0.424666 -0.160208 -0.267606 0.008454 -0.963491 +0.069204 0.431278 -0.161235 -0.269161 0.044295 -0.962076 +0.069196 0.438064 -0.160978 -0.272716 0.080206 -0.958746 +0.068886 0.446195 -0.151427 -0.276177 0.127692 -0.952586 +0.062237 -0.596941 0.285042 0.035189 -0.071011 -0.996855 +0.062599 -0.588137 0.273277 0.106809 -0.015270 -0.994162 +0.062728 -0.580173 0.268939 0.129847 0.023555 -0.991254 +0.062750 -0.572616 0.268395 0.163306 0.052828 -0.985160 +0.062705 -0.565271 0.269853 0.187041 0.065769 -0.980148 +0.062652 -0.557933 0.271395 0.190502 0.061708 -0.979746 +0.062592 -0.550649 0.273586 0.179978 0.016796 -0.983527 +0.062501 -0.543432 0.276473 0.193360 0.004636 -0.981117 +0.062403 -0.536216 0.279541 0.189392 -0.019427 -0.981709 +0.062350 -0.528878 0.281407 0.181852 -0.079447 -0.980111 +0.062373 -0.521299 0.280712 0.146644 -0.164549 -0.975407 +0.062425 -0.513614 0.278906 0.062996 -0.368079 -0.927658 +0.062614 -0.505544 0.272710 -0.017529 -0.426676 -0.904235 +0.063098 -0.496657 0.256977 -0.107138 -0.395197 -0.912327 +0.063430 -0.488254 0.246179 -0.158718 -0.332082 -0.929801 +0.063483 -0.480660 0.244546 -0.146539 -0.165198 -0.975313 +0.063393 -0.473436 0.247357 -0.105651 0.029857 -0.993955 +0.063294 -0.466249 0.250705 -0.063056 0.144130 -0.987548 +0.063181 -0.459071 0.254264 -0.007346 0.286487 -0.958056 +0.063083 -0.451846 0.257521 0.034731 0.402325 -0.914838 +0.062962 -0.444660 0.261337 0.092163 0.478907 -0.873015 +0.062818 -0.437527 0.266052 0.132983 0.544263 -0.828308 +0.062622 -0.430499 0.272460 0.172948 0.602192 -0.779394 +0.062123 -0.424144 0.288677 0.246724 0.707964 -0.661750 +0.050078 -0.443587 0.680494 0.724029 0.637108 -0.264340 +0.065040 -0.240655 0.193766 0.253107 -0.952972 -0.166679 +0.069166 -0.229630 0.059584 -0.477813 -0.867291 -0.139645 +0.070911 -0.221045 0.002788 -0.541543 -0.796620 -0.268565 +0.071644 -0.213443 -0.021030 -0.559249 -0.745115 -0.363380 +0.072158 -0.206076 -0.037768 -0.569399 -0.690125 -0.446668 +0.072536 -0.198859 -0.050093 -0.582666 -0.640056 -0.500828 +0.072831 -0.191741 -0.059659 -0.586029 -0.598704 -0.546007 +0.073042 -0.184698 -0.066574 -0.584913 -0.572620 -0.574441 +0.073224 -0.177693 -0.072362 -0.583545 -0.545833 -0.601284 +0.073413 -0.170703 -0.078408 -0.580650 -0.523026 -0.623931 +0.073594 -0.163736 -0.084513 -0.576163 -0.505114 -0.642570 +0.073775 -0.156799 -0.090339 -0.573487 -0.489667 -0.656764 +0.073942 -0.149877 -0.095667 -0.569432 -0.468602 -0.675396 +0.074093 -0.142978 -0.100677 -0.568500 -0.443619 -0.692828 +0.074221 -0.136109 -0.104802 -0.569054 -0.412265 -0.711488 +0.074357 -0.129240 -0.109359 -0.567082 -0.375011 -0.733338 +0.074478 -0.122394 -0.113221 -0.568038 -0.333068 -0.752595 +0.074584 -0.115563 -0.116674 -0.567764 -0.288553 -0.770961 +0.074682 -0.108739 -0.119901 -0.568473 -0.241698 -0.786397 +0.074758 -0.101931 -0.122205 -0.566144 -0.210235 -0.797046 +0.074796 -0.095115 -0.123558 -0.564021 -0.179625 -0.805987 +0.074811 -0.088306 -0.124004 -0.563044 -0.215778 -0.797760 +0.074765 -0.081475 -0.122583 -0.563651 -0.200247 -0.801373 +0.074735 -0.074644 -0.121465 -0.568146 -0.200777 -0.798059 +0.074728 -0.067820 -0.121276 -0.556868 -0.293720 -0.776934 +0.074750 -0.061012 -0.122145 -0.549763 -0.386451 -0.740552 +0.074916 -0.054279 -0.127548 -0.522940 -0.476569 -0.706693 +0.075634 -0.047878 -0.150663 -0.345726 -0.798082 -0.493497 +0.076330 -0.041554 -0.173364 -0.263026 -0.868876 -0.419372 +0.076745 -0.035108 -0.186814 -0.283479 -0.811346 -0.511230 +0.077108 -0.028677 -0.198761 -0.297715 -0.743510 -0.598798 +0.077357 -0.022186 -0.206794 -0.326740 -0.651694 -0.684497 +0.077561 -0.015695 -0.213413 -0.328484 -0.590051 -0.737522 +0.077712 -0.009166 -0.218356 -0.339390 -0.527605 -0.778747 +0.077833 -0.002637 -0.222421 -0.344582 -0.467683 -0.813963 +0.077939 0.003899 -0.225867 -0.353941 -0.417756 -0.836783 +0.078015 0.010459 -0.228134 -0.361706 -0.374061 -0.853960 +0.078075 0.017025 -0.230121 -0.373101 -0.335885 -0.864857 +0.078128 0.023592 -0.231920 -0.385904 -0.310900 -0.868573 +0.078173 0.030166 -0.233408 -0.398181 -0.286541 -0.871405 +0.078226 0.036725 -0.235124 -0.412059 -0.259155 -0.873525 +0.078287 0.043262 -0.237073 -0.424761 -0.230201 -0.875549 +0.078370 0.049768 -0.239665 -0.435087 -0.196834 -0.878610 +0.078445 0.056267 -0.242219 -0.440844 -0.165330 -0.882226 +0.078521 0.062765 -0.244683 -0.441774 -0.132713 -0.887256 +0.078559 0.069309 -0.245937 -0.437024 -0.100741 -0.893790 +0.078581 0.075876 -0.246663 -0.429094 -0.073369 -0.900275 +0.078551 0.082526 -0.245778 -0.414503 -0.049267 -0.908713 +0.078529 0.089176 -0.244985 -0.395344 -0.031407 -0.917996 +0.078506 0.095825 -0.244169 -0.376872 -0.023377 -0.925970 +0.078506 0.102437 -0.244086 -0.355687 -0.019531 -0.934401 +0.078506 0.109042 -0.244146 -0.341803 -0.021465 -0.939526 +0.078529 0.115609 -0.244804 -0.327148 -0.020133 -0.944759 +0.078551 0.122160 -0.245741 -0.315670 -0.015470 -0.948743 +0.078574 0.128719 -0.246481 -0.309317 -0.002003 -0.950957 +0.078566 0.135346 -0.246035 -0.305310 0.020072 -0.952042 +0.078544 0.142004 -0.245295 -0.304574 0.045499 -0.951401 +0.078513 0.148676 -0.244396 -0.306817 0.078817 -0.948499 +0.078476 0.155356 -0.243300 -0.312900 0.109386 -0.943466 +0.078438 0.162067 -0.241993 -0.321915 0.130525 -0.937728 +0.078400 0.168769 -0.240769 -0.338359 0.140208 -0.930513 +0.078340 0.175525 -0.238857 -0.353281 0.137931 -0.925293 +0.078294 0.182258 -0.237368 -0.375223 0.122846 -0.918758 +0.078256 0.188976 -0.236151 -0.396631 0.098829 -0.912643 +0.078241 0.195641 -0.235683 -0.421275 0.074668 -0.903854 +0.078249 0.202253 -0.235804 -0.441440 0.056021 -0.895540 +0.078264 0.208834 -0.236197 -0.456142 0.043681 -0.888835 +0.078294 0.215371 -0.237209 -0.465144 0.049932 -0.883826 +0.078324 0.221892 -0.238366 -0.475515 0.069592 -0.876951 +0.078347 0.228436 -0.239129 -0.485226 0.106716 -0.867852 +0.078355 0.235041 -0.239234 -0.491509 0.159989 -0.856051 +0.078324 0.241751 -0.238260 -0.490982 0.204169 -0.846907 +0.078234 0.248635 -0.235456 -0.493593 0.246983 -0.833886 +0.078120 0.255640 -0.231557 -0.493317 0.268716 -0.827303 +0.077924 0.262894 -0.225232 -0.498129 0.277826 -0.821389 +0.077796 0.269945 -0.221197 -0.497583 0.275415 -0.822531 +0.077728 0.276821 -0.218975 -0.493482 0.264710 -0.828495 +0.077788 0.283274 -0.220827 -0.493359 0.256928 -0.831015 +0.077818 0.289826 -0.221764 -0.490765 0.248583 -0.835079 +0.077826 0.296430 -0.222172 -0.487586 0.241515 -0.839006 +0.077811 0.303148 -0.221529 -0.495402 0.254429 -0.830567 +0.077765 0.309949 -0.220139 -0.493491 0.290746 -0.819715 +0.077667 0.316969 -0.216837 -0.498173 0.357415 -0.789986 +0.077471 0.324360 -0.210459 -0.509751 0.446587 -0.735332 +0.077153 0.332234 -0.200084 -0.501009 0.552226 -0.666361 +0.076707 0.340606 -0.185771 -0.486755 0.621091 -0.614260 +0.076413 0.348488 -0.176008 -0.470804 0.566927 -0.675972 +0.076088 0.356475 -0.165618 -0.437795 0.422481 -0.793628 +0.075748 0.364591 -0.154502 -0.390021 0.242791 -0.888221 +0.075733 0.371422 -0.153974 -0.368648 0.131333 -0.920245 +0.075793 0.377928 -0.155991 -0.327431 0.060882 -0.942912 +0.075876 0.384336 -0.158749 -0.315809 0.025242 -0.948487 +0.075937 0.390865 -0.160510 -0.301143 -0.037849 -0.952827 +0.075952 0.397523 -0.161182 -0.280453 -0.040213 -0.959025 +0.075974 0.404203 -0.161742 -0.271934 -0.050454 -0.960993 +0.075974 0.410935 -0.161855 -0.263533 -0.055238 -0.963068 +0.075967 0.417721 -0.161628 -0.263017 -0.031414 -0.964280 +0.075974 0.424439 -0.161832 -0.264891 -0.009693 -0.964229 +0.076012 0.431013 -0.163071 -0.266802 0.023085 -0.963475 +0.076027 0.437686 -0.163646 -0.279013 0.074782 -0.957371 +0.075725 0.445854 -0.153777 -0.282034 0.122304 -0.951577 +0.069400 -0.605857 0.297465 0.031954 -0.101959 -0.994275 +0.070042 -0.595875 0.275385 0.144354 0.012248 -0.989450 +0.070186 -0.587812 0.270277 0.172395 0.054472 -0.983521 +0.070216 -0.580225 0.269438 0.202214 0.084356 -0.975701 +0.070178 -0.572858 0.270647 0.223484 0.096230 -0.969946 +0.070133 -0.565528 0.272302 0.231816 0.082872 -0.969223 +0.070073 -0.558236 0.274342 0.224534 0.074576 -0.971608 +0.069990 -0.551004 0.277115 0.210501 0.026792 -0.977226 +0.069906 -0.543787 0.280108 0.201429 0.007309 -0.979476 +0.069823 -0.536533 0.282798 0.207415 -0.025264 -0.977927 +0.069808 -0.529075 0.283471 0.191839 -0.072780 -0.978724 +0.069861 -0.521382 0.281649 0.127038 -0.238713 -0.962745 +0.069959 -0.513554 0.278264 0.033889 -0.432651 -0.900924 +0.070178 -0.505355 0.270564 -0.041064 -0.451859 -0.891144 +0.070707 -0.496272 0.252519 -0.134394 -0.432519 -0.891552 +0.070942 -0.488095 0.244312 -0.150617 -0.318829 -0.935768 +0.070957 -0.480607 0.243882 -0.128705 -0.097843 -0.986844 +0.070859 -0.473428 0.247214 -0.082821 0.070093 -0.994096 +0.070745 -0.466272 0.250970 -0.029096 0.250982 -0.967554 +0.070639 -0.459093 0.254619 0.015782 0.345068 -0.938445 +0.070534 -0.451907 0.258262 0.055475 0.439707 -0.896426 +0.070413 -0.444758 0.262629 0.092287 0.513129 -0.853335 +0.070262 -0.437655 0.267775 0.137700 0.558068 -0.818290 +0.069997 -0.430824 0.276949 0.185258 0.652306 -0.734967 +0.058065 -0.452330 0.688058 0.724403 0.638592 -0.259691 +0.057695 -0.445000 0.701055 0.724403 0.638592 -0.259691 +0.075695 -0.237368 0.080606 -0.474564 -0.868600 -0.142562 +0.077395 -0.228594 0.021816 -0.519022 -0.836051 -0.177859 +0.078559 -0.220509 -0.018204 -0.541057 -0.773341 -0.330456 +0.079042 -0.213111 -0.034859 -0.543268 -0.730287 -0.414174 +0.079413 -0.205857 -0.047758 -0.557374 -0.681422 -0.474340 +0.079715 -0.198700 -0.058042 -0.565376 -0.628682 -0.533956 +0.079957 -0.191612 -0.066423 -0.566373 -0.598934 -0.566127 +0.080153 -0.184585 -0.073087 -0.563740 -0.568806 -0.598880 +0.080319 -0.177595 -0.078800 -0.566459 -0.544326 -0.618735 +0.080523 -0.170605 -0.086047 -0.563252 -0.518854 -0.643069 +0.080682 -0.163661 -0.091458 -0.561206 -0.502246 -0.657873 +0.080841 -0.156731 -0.096785 -0.558075 -0.482529 -0.675069 +0.080969 -0.149832 -0.101379 -0.556132 -0.464359 -0.689267 +0.081083 -0.142955 -0.105135 -0.555361 -0.439469 -0.706004 +0.081204 -0.136087 -0.109337 -0.552894 -0.405736 -0.727796 +0.081340 -0.129225 -0.114188 -0.552649 -0.368845 -0.747350 +0.081453 -0.122394 -0.118042 -0.552740 -0.329177 -0.765586 +0.081559 -0.115563 -0.121609 -0.551704 -0.284260 -0.784104 +0.081649 -0.108754 -0.124782 -0.552504 -0.238539 -0.798648 +0.081725 -0.101946 -0.127382 -0.550578 -0.203086 -0.809704 +0.081763 -0.095145 -0.128681 -0.548823 -0.176856 -0.817016 +0.081778 -0.088344 -0.129089 -0.543601 -0.220366 -0.809899 +0.081748 -0.081528 -0.128266 -0.543116 -0.209033 -0.813222 +0.081725 -0.074712 -0.127359 -0.551016 -0.212125 -0.807084 +0.081702 -0.067888 -0.126482 -0.533820 -0.343488 -0.772691 +0.081710 -0.061080 -0.126754 -0.531255 -0.400954 -0.746327 +0.081838 -0.054339 -0.131402 -0.493937 -0.500872 -0.710742 +0.082488 -0.047939 -0.153716 -0.335902 -0.796586 -0.502614 +0.083168 -0.041629 -0.177142 -0.244732 -0.866726 -0.434617 +0.083614 -0.035229 -0.192467 -0.262339 -0.803545 -0.534316 +0.083916 -0.028775 -0.202948 -0.275564 -0.736973 -0.617200 +0.084143 -0.022284 -0.210701 -0.294693 -0.649931 -0.700533 +0.084324 -0.015786 -0.216882 -0.304893 -0.588653 -0.748684 +0.084468 -0.009272 -0.221915 -0.310939 -0.533383 -0.786651 +0.084581 -0.002743 -0.225821 -0.321510 -0.469622 -0.822244 +0.084672 0.003801 -0.228957 -0.331294 -0.424721 -0.842530 +0.084725 0.010375 -0.230809 -0.342633 -0.385293 -0.856827 +0.084778 0.016935 -0.232690 -0.352767 -0.351021 -0.867375 +0.084831 0.023501 -0.234451 -0.366557 -0.322480 -0.872721 +0.084884 0.030053 -0.236257 -0.380051 -0.299358 -0.875183 +0.084944 0.036597 -0.238267 -0.393543 -0.273413 -0.877707 +0.085012 0.043118 -0.240564 -0.403621 -0.242973 -0.882074 +0.085088 0.049609 -0.243292 -0.414203 -0.205450 -0.886694 +0.085178 0.056078 -0.246466 -0.419055 -0.168872 -0.892118 +0.085239 0.062584 -0.248476 -0.416524 -0.132728 -0.899384 +0.085269 0.069136 -0.249496 -0.410802 -0.093652 -0.906902 +0.085284 0.075710 -0.250010 -0.399240 -0.057852 -0.915019 +0.085254 0.082360 -0.248960 -0.385794 -0.030166 -0.922092 +0.085224 0.089017 -0.247970 -0.373041 -0.015413 -0.927687 +0.085186 0.095682 -0.246723 -0.355220 -0.004322 -0.934773 +0.085171 0.102317 -0.246171 -0.340299 -0.003951 -0.940309 +0.085156 0.108951 -0.245696 -0.328166 -0.004768 -0.944608 +0.085163 0.115556 -0.245778 -0.318320 -0.006124 -0.947964 +0.085171 0.122137 -0.246103 -0.311221 -0.005251 -0.950323 +0.085148 0.128787 -0.245431 -0.308041 0.001165 -0.951372 +0.085133 0.135422 -0.244970 -0.306267 0.018846 -0.951759 +0.085118 0.142072 -0.244274 -0.301065 0.045587 -0.952513 +0.085103 0.148706 -0.243889 -0.303498 0.072103 -0.950100 +0.085080 0.155379 -0.242998 -0.309792 0.096820 -0.945862 +0.085065 0.162029 -0.242423 -0.322225 0.116604 -0.939454 +0.085042 0.168701 -0.241637 -0.335024 0.124214 -0.933986 +0.085012 0.175396 -0.240572 -0.354515 0.121518 -0.927121 +0.084974 0.182099 -0.239446 -0.372034 0.104886 -0.922274 +0.084937 0.188824 -0.238071 -0.390470 0.080903 -0.917054 +0.084929 0.195467 -0.237746 -0.406174 0.056515 -0.912046 +0.084937 0.202056 -0.238124 -0.416237 0.034160 -0.908614 +0.084974 0.208577 -0.239287 -0.429236 0.028050 -0.902757 +0.085020 0.215053 -0.240821 -0.433117 0.031673 -0.900781 +0.085073 0.221507 -0.242703 -0.442008 0.062216 -0.894851 +0.085095 0.228043 -0.243519 -0.442937 0.082372 -0.892761 +0.085103 0.234625 -0.243753 -0.449678 0.140237 -0.882113 +0.085080 0.241313 -0.242952 -0.451166 0.195468 -0.870770 +0.084997 0.248182 -0.240239 -0.455792 0.243543 -0.856119 +0.084891 0.255164 -0.236454 -0.458165 0.272039 -0.846215 +0.084717 0.262380 -0.230476 -0.464181 0.283645 -0.839096 +0.084604 0.269408 -0.226517 -0.467531 0.280975 -0.838134 +0.084528 0.276292 -0.224121 -0.468581 0.271409 -0.840695 +0.084536 0.282919 -0.224257 -0.464317 0.260850 -0.846385 +0.084528 0.289584 -0.224076 -0.464273 0.248454 -0.850130 +0.084521 0.296272 -0.223638 -0.461762 0.253630 -0.849969 +0.084476 0.303073 -0.222164 -0.460176 0.258793 -0.849273 +0.084423 0.309934 -0.220245 -0.465484 0.292547 -0.835309 +0.084340 0.316886 -0.217600 -0.464602 0.360666 -0.808743 +0.084219 0.324020 -0.213429 -0.471539 0.427915 -0.771064 +0.084037 0.331425 -0.207005 -0.468730 0.526675 -0.709159 +0.083607 0.339828 -0.192346 -0.459704 0.639240 -0.616477 +0.083297 0.347830 -0.181456 -0.450638 0.606573 -0.654977 +0.083002 0.355765 -0.171444 -0.442536 0.502455 -0.742766 +0.082662 0.363949 -0.159701 -0.399284 0.299368 -0.866574 +0.082571 0.371097 -0.156535 -0.369309 0.168651 -0.913875 +0.082602 0.377709 -0.157706 -0.353259 0.100845 -0.930074 +0.082677 0.384140 -0.160298 -0.323081 0.052204 -0.944930 +0.082738 0.390638 -0.162195 -0.302547 -0.012606 -0.953051 +0.082753 0.397296 -0.162935 -0.291835 -0.017248 -0.956313 +0.082768 0.403976 -0.163427 -0.280811 -0.032562 -0.959210 +0.082775 0.410709 -0.163563 -0.271877 -0.044027 -0.961325 +0.082775 0.417442 -0.163623 -0.265606 -0.038934 -0.963295 +0.082775 0.424182 -0.163706 -0.272865 -0.012769 -0.961968 +0.082828 0.430688 -0.165391 -0.273930 0.018170 -0.961578 +0.082813 0.437520 -0.164779 -0.276434 0.049798 -0.959742 +0.082556 0.445514 -0.156112 -0.288928 0.115915 -0.950307 +0.077433 -0.603847 0.279480 0.136932 0.029842 -0.990131 +0.077614 -0.595618 0.273027 0.166574 0.057280 -0.984364 +0.077667 -0.587911 0.271146 0.205805 0.095003 -0.973971 +0.077667 -0.580392 0.270979 0.227760 0.113630 -0.967065 +0.077614 -0.573107 0.273035 0.239877 0.111101 -0.964425 +0.077546 -0.565838 0.275325 0.237581 0.086722 -0.967489 +0.077478 -0.558614 0.278060 0.224619 0.065268 -0.972258 +0.077395 -0.551397 0.281015 0.219575 0.026712 -0.975230 +0.077319 -0.544135 0.283667 0.223219 0.010016 -0.974717 +0.077282 -0.536760 0.285186 0.211881 -0.030372 -0.976823 +0.077312 -0.529135 0.284113 0.172696 -0.137995 -0.975261 +0.077372 -0.521405 0.281883 0.110287 -0.307674 -0.945079 +0.077516 -0.513410 0.276685 0.009011 -0.493069 -0.869944 +0.077735 -0.505166 0.268478 -0.072784 -0.484140 -0.871958 +0.078256 -0.495992 0.249413 -0.159716 -0.441401 -0.882981 +0.078430 -0.487990 0.243126 -0.145096 -0.254254 -0.956192 +0.078423 -0.480562 0.243360 -0.131641 -0.068540 -0.988925 +0.078317 -0.473421 0.247138 -0.077878 0.081662 -0.993613 +0.078211 -0.466287 0.251143 -0.014811 0.306041 -0.951903 +0.078098 -0.459131 0.255103 0.020464 0.370320 -0.928679 +0.078000 -0.451960 0.258950 0.052326 0.469096 -0.881596 +0.077848 -0.444887 0.264330 0.098424 0.543426 -0.833667 +0.077675 -0.437874 0.270760 0.142312 0.591917 -0.793336 +0.077199 -0.431633 0.288118 0.225885 0.704862 -0.672418 +0.065841 -0.453494 0.704516 0.769072 0.566603 -0.295787 +0.084075 -0.236083 0.036219 -0.518858 -0.842830 -0.142913 +0.085345 -0.227718 -0.010481 -0.520416 -0.802926 -0.290650 +0.085896 -0.220184 -0.030703 -0.526277 -0.752604 -0.395751 +0.086266 -0.212884 -0.044297 -0.530354 -0.718184 -0.450484 +0.086591 -0.205675 -0.056025 -0.536062 -0.667642 -0.516616 +0.086833 -0.198557 -0.065108 -0.546230 -0.625247 -0.557403 +0.087030 -0.191507 -0.072211 -0.544651 -0.596318 -0.589712 +0.087196 -0.184494 -0.078377 -0.547921 -0.566032 -0.615947 +0.087377 -0.177504 -0.084823 -0.546743 -0.538031 -0.641556 +0.087551 -0.170529 -0.091314 -0.546724 -0.517439 -0.658293 +0.087710 -0.163593 -0.097019 -0.548569 -0.497550 -0.671950 +0.087838 -0.156686 -0.101825 -0.547441 -0.480354 -0.685251 +0.087936 -0.149794 -0.105520 -0.544368 -0.456875 -0.703511 +0.088035 -0.142925 -0.109080 -0.542752 -0.432946 -0.719707 +0.088141 -0.136064 -0.112964 -0.540366 -0.402223 -0.739067 +0.088254 -0.129218 -0.117127 -0.539649 -0.365507 -0.758408 +0.088390 -0.122386 -0.122031 -0.534903 -0.320106 -0.781928 +0.088488 -0.115570 -0.125546 -0.534639 -0.279146 -0.797645 +0.088571 -0.108762 -0.128825 -0.530613 -0.232890 -0.814992 +0.088632 -0.101961 -0.131039 -0.529843 -0.198392 -0.824564 +0.088669 -0.095168 -0.132407 -0.527432 -0.180207 -0.830266 +0.088692 -0.088367 -0.133057 -0.519887 -0.212160 -0.827469 +0.088685 -0.081566 -0.132966 -0.522258 -0.229910 -0.821211 +0.088669 -0.074765 -0.132369 -0.529705 -0.230948 -0.816134 +0.088632 -0.067941 -0.130895 -0.521573 -0.337572 -0.783586 +0.088647 -0.061148 -0.131440 -0.506552 -0.414417 -0.756085 +0.088730 -0.054392 -0.134628 -0.478378 -0.510299 -0.714667 +0.089410 -0.048037 -0.159422 -0.313567 -0.798773 -0.513456 +0.090030 -0.041727 -0.182303 -0.229293 -0.859434 -0.456945 +0.090415 -0.035312 -0.196419 -0.237120 -0.798562 -0.553238 +0.090680 -0.028843 -0.206091 -0.246939 -0.741210 -0.624202 +0.090876 -0.022352 -0.213300 -0.264176 -0.646770 -0.715472 +0.091042 -0.015846 -0.219307 -0.276223 -0.591951 -0.757162 +0.091186 -0.009340 -0.224431 -0.285894 -0.526498 -0.800665 +0.091292 -0.002818 -0.228481 -0.292836 -0.474478 -0.830131 +0.091390 0.003703 -0.231927 -0.305953 -0.423738 -0.852548 +0.091435 0.010277 -0.233635 -0.318111 -0.396803 -0.861018 +0.091473 0.016851 -0.235109 -0.331198 -0.365114 -0.870057 +0.091518 0.023418 -0.236756 -0.345867 -0.339786 -0.874598 +0.091571 0.029955 -0.238819 -0.358718 -0.315080 -0.878662 +0.091639 0.036476 -0.241191 -0.371076 -0.285936 -0.883483 +0.091722 0.042967 -0.244206 -0.382372 -0.250926 -0.889285 +0.091813 0.049428 -0.247517 -0.387371 -0.215386 -0.896411 +0.091889 0.055904 -0.250335 -0.391521 -0.174877 -0.903399 +0.091934 0.062425 -0.251862 -0.391411 -0.129395 -0.911073 +0.091957 0.068977 -0.252798 -0.382233 -0.080507 -0.920552 +0.091964 0.075544 -0.253207 -0.373928 -0.043860 -0.926420 +0.091934 0.082201 -0.252012 -0.361223 -0.013578 -0.932380 +0.091904 0.088866 -0.250758 -0.349913 0.002373 -0.936779 +0.091851 0.095561 -0.248975 -0.337416 0.011981 -0.941280 +0.091821 0.102226 -0.247819 -0.332803 0.009810 -0.942946 +0.091790 0.108891 -0.246693 -0.325339 0.005415 -0.945582 +0.091783 0.115518 -0.246353 -0.317522 0.000891 -0.948250 +0.091760 0.122175 -0.245537 -0.312610 0.000399 -0.949881 +0.091745 0.128802 -0.245128 -0.306857 0.003953 -0.951747 +0.091730 0.135460 -0.244418 -0.306721 0.017807 -0.951633 +0.091737 0.142042 -0.244706 -0.309790 0.040235 -0.949953 +0.091730 0.148669 -0.244448 -0.316364 0.067264 -0.946250 +0.091707 0.155318 -0.243814 -0.323284 0.088658 -0.942140 +0.091700 0.161968 -0.243330 -0.335341 0.108308 -0.935850 +0.091685 0.168611 -0.242824 -0.348223 0.114508 -0.930392 +0.091662 0.175283 -0.242045 -0.361372 0.108356 -0.926104 +0.091639 0.181956 -0.241275 -0.374856 0.090704 -0.922635 +0.091617 0.188643 -0.240337 -0.385944 0.067255 -0.920067 +0.091609 0.195270 -0.240149 -0.394362 0.043245 -0.917937 +0.091617 0.201860 -0.240473 -0.401921 0.025488 -0.915320 +0.091677 0.208298 -0.242521 -0.402867 0.016141 -0.915116 +0.091730 0.214736 -0.244501 -0.408477 0.027000 -0.912369 +0.091783 0.221174 -0.246428 -0.405518 0.047552 -0.912849 +0.091805 0.227711 -0.247176 -0.409967 0.077055 -0.908840 +0.091805 0.234308 -0.247222 -0.406560 0.127046 -0.904748 +0.091790 0.240965 -0.246632 -0.407665 0.190277 -0.893087 +0.091730 0.247781 -0.244411 -0.407453 0.241423 -0.880737 +0.091647 0.254688 -0.241358 -0.410893 0.278782 -0.868014 +0.091488 0.261874 -0.235562 -0.420457 0.286430 -0.860914 +0.091352 0.268992 -0.230597 -0.430235 0.287983 -0.855549 +0.091239 0.276050 -0.226517 -0.436670 0.276781 -0.855986 +0.091216 0.282768 -0.225678 -0.437341 0.262350 -0.860178 +0.091193 0.289493 -0.224877 -0.436377 0.249414 -0.864504 +0.091156 0.296287 -0.223524 -0.435381 0.252697 -0.864053 +0.091118 0.303095 -0.221998 -0.431141 0.272963 -0.860005 +0.091065 0.309934 -0.220252 -0.430508 0.302321 -0.850450 +0.090989 0.316901 -0.217449 -0.435778 0.364716 -0.822849 +0.090899 0.323959 -0.213950 -0.437547 0.436704 -0.786029 +0.090778 0.331115 -0.209673 -0.443323 0.516149 -0.732840 +0.090513 0.338936 -0.199940 -0.442820 0.624512 -0.643347 +0.090196 0.347022 -0.188197 -0.439160 0.632617 -0.637914 +0.089901 0.355039 -0.177406 -0.435564 0.544749 -0.716612 +0.089546 0.363359 -0.164469 -0.415855 0.362383 -0.834113 +0.089410 0.370742 -0.159406 -0.376091 0.206270 -0.903332 +0.089402 0.377543 -0.159059 -0.356060 0.129294 -0.925475 +0.089470 0.383974 -0.161575 -0.329929 0.083740 -0.940284 +0.089523 0.390442 -0.163721 -0.316876 0.023648 -0.948172 +0.089546 0.397092 -0.164469 -0.299081 -0.022209 -0.953969 +0.089561 0.403749 -0.165097 -0.287730 -0.022431 -0.957449 +0.089569 0.410475 -0.165263 -0.279951 -0.039227 -0.959212 +0.089569 0.417223 -0.165240 -0.275701 -0.035454 -0.960589 +0.089576 0.423910 -0.165663 -0.276821 -0.024279 -0.960615 +0.089614 0.430477 -0.166918 -0.277024 0.001680 -0.960862 +0.089614 0.437210 -0.166963 -0.278913 0.030849 -0.959821 +0.089395 0.445099 -0.158991 -0.285184 0.076004 -0.955455 +0.084732 -0.612318 0.287899 0.132969 0.042054 -0.990228 +0.085073 -0.603296 0.274584 0.170607 0.079994 -0.982087 +0.085141 -0.595520 0.272143 0.204463 0.112541 -0.972383 +0.085125 -0.588077 0.272664 0.229896 0.125894 -0.965038 +0.085095 -0.580686 0.273745 0.246317 0.134152 -0.959860 +0.085042 -0.573424 0.276027 0.248278 0.114473 -0.961901 +0.084974 -0.566185 0.278664 0.236975 0.083850 -0.967891 +0.084899 -0.558961 0.281491 0.228668 0.058730 -0.971731 +0.084823 -0.551745 0.284528 0.232410 0.025518 -0.972283 +0.084770 -0.544430 0.286606 0.226351 -0.008030 -0.974013 +0.084763 -0.536934 0.286984 0.183149 -0.081154 -0.979730 +0.084823 -0.529158 0.284362 0.138291 -0.212196 -0.967393 +0.084906 -0.521329 0.281083 0.066694 -0.372846 -0.925493 +0.085050 -0.513304 0.275483 -0.017837 -0.528327 -0.848854 +0.085284 -0.504984 0.266430 -0.093415 -0.503550 -0.858901 +0.085783 -0.495780 0.246927 -0.168169 -0.432716 -0.885706 +0.085919 -0.487869 0.241667 -0.137257 -0.143733 -0.980052 +0.085889 -0.480509 0.242786 -0.117428 -0.047121 -0.991963 +0.085790 -0.473383 0.246707 -0.059072 0.143682 -0.987859 +0.085677 -0.466280 0.251030 -0.010861 0.357641 -0.933796 +0.085571 -0.459139 0.255156 0.017940 0.374951 -0.926871 +0.085458 -0.452013 0.259644 0.054423 0.505862 -0.860896 +0.085307 -0.444977 0.265524 0.102984 0.571220 -0.814311 +0.084997 -0.438396 0.277750 0.160877 0.635180 -0.755424 +0.073934 -0.462184 0.710630 0.779074 0.560115 -0.281629 +0.090234 -0.244297 0.072709 -0.503328 -0.855609 -0.120809 +0.092017 -0.235116 0.002819 -0.513216 -0.822198 -0.246170 +0.092705 -0.227348 -0.024023 -0.506325 -0.790901 -0.343673 +0.093113 -0.219950 -0.039899 -0.509007 -0.750699 -0.421145 +0.093445 -0.212680 -0.053093 -0.507709 -0.711414 -0.485923 +0.093695 -0.205524 -0.062871 -0.518089 -0.668003 -0.534186 +0.093906 -0.198436 -0.070919 -0.524960 -0.619129 -0.584035 +0.094088 -0.191393 -0.078113 -0.529440 -0.592564 -0.607092 +0.094231 -0.184403 -0.083826 -0.532345 -0.562995 -0.632175 +0.094382 -0.177429 -0.089848 -0.535840 -0.538505 -0.650298 +0.094533 -0.170477 -0.095659 -0.536251 -0.517172 -0.667060 +0.094669 -0.163547 -0.100835 -0.536839 -0.498016 -0.681017 +0.094775 -0.156648 -0.105142 -0.537771 -0.476824 -0.695299 +0.094889 -0.149764 -0.109382 -0.533136 -0.450844 -0.715895 +0.094994 -0.142895 -0.113546 -0.529917 -0.427764 -0.732261 +0.095100 -0.136041 -0.117936 -0.525880 -0.391543 -0.755079 +0.095213 -0.129202 -0.122122 -0.521175 -0.355379 -0.775939 +0.095312 -0.122379 -0.126044 -0.516599 -0.315102 -0.796138 +0.095395 -0.115570 -0.129316 -0.511101 -0.271672 -0.815457 +0.095478 -0.108769 -0.132671 -0.507429 -0.230443 -0.830308 +0.095538 -0.101976 -0.134976 -0.503440 -0.197938 -0.841052 +0.095584 -0.095190 -0.136691 -0.498826 -0.180589 -0.847679 +0.095599 -0.088404 -0.137455 -0.492882 -0.224360 -0.840672 +0.095599 -0.081611 -0.137402 -0.489567 -0.233914 -0.840005 +0.095599 -0.074818 -0.137190 -0.500364 -0.245212 -0.830365 +0.095569 -0.068009 -0.136208 -0.495730 -0.352585 -0.793685 +0.095561 -0.061208 -0.135762 -0.480063 -0.430096 -0.764563 +0.095606 -0.054445 -0.137591 -0.449039 -0.523516 -0.724082 +0.096302 -0.048135 -0.164809 -0.300313 -0.801339 -0.517366 +0.096831 -0.041795 -0.185590 -0.212915 -0.854229 -0.474300 +0.097171 -0.035365 -0.198746 -0.211686 -0.802620 -0.557665 +0.097397 -0.028881 -0.207814 -0.220801 -0.741782 -0.633251 +0.097579 -0.022382 -0.214675 -0.237810 -0.661570 -0.711176 +0.097737 -0.015891 -0.221137 -0.249358 -0.594103 -0.764763 +0.097881 -0.009400 -0.226547 -0.257853 -0.529189 -0.808375 +0.097987 -0.002886 -0.230710 -0.265870 -0.483423 -0.834035 +0.098070 0.003642 -0.234066 -0.279850 -0.434398 -0.856144 +0.098123 0.010194 -0.236098 -0.294243 -0.410050 -0.863296 +0.098168 0.016761 -0.237761 -0.309347 -0.380011 -0.871720 +0.098198 0.023327 -0.239174 -0.324506 -0.351066 -0.878322 +0.098259 0.029864 -0.241313 -0.338250 -0.328917 -0.881703 +0.098327 0.036363 -0.243995 -0.348291 -0.296981 -0.889098 +0.098417 0.042823 -0.247585 -0.357634 -0.258537 -0.897361 +0.098501 0.049284 -0.250818 -0.362696 -0.220651 -0.905408 +0.098569 0.055753 -0.253622 -0.363403 -0.175201 -0.915010 +0.098606 0.062274 -0.255119 -0.360888 -0.121123 -0.924710 +0.098629 0.068826 -0.255813 -0.354579 -0.072489 -0.932212 +0.098629 0.075408 -0.255874 -0.347090 -0.032657 -0.937263 +0.098599 0.082057 -0.254695 -0.338219 -0.000368 -0.941067 +0.098561 0.088730 -0.253222 -0.331085 0.015630 -0.943471 +0.098508 0.095432 -0.251242 -0.326109 0.020724 -0.945105 +0.098463 0.102128 -0.249474 -0.324013 0.019857 -0.945844 +0.098417 0.108830 -0.247758 -0.316999 0.012777 -0.948340 +0.098395 0.115488 -0.246791 -0.315157 0.005055 -0.949026 +0.098395 0.122092 -0.246791 -0.313854 0.001811 -0.949469 +0.098402 0.128689 -0.246935 -0.313053 0.002052 -0.949733 +0.098433 0.135210 -0.248181 -0.317312 0.013948 -0.948219 +0.098448 0.141770 -0.248756 -0.322084 0.032279 -0.946161 +0.098455 0.148344 -0.249171 -0.329174 0.055248 -0.942652 +0.098433 0.155009 -0.248181 -0.336920 0.076899 -0.938388 +0.098395 0.161704 -0.246867 -0.347216 0.095506 -0.932909 +0.098365 0.168407 -0.245567 -0.357394 0.102135 -0.928352 +0.098342 0.175079 -0.244736 -0.366781 0.095117 -0.925432 +0.098327 0.181729 -0.244124 -0.373669 0.079885 -0.924116 +0.098312 0.188386 -0.243519 -0.379210 0.058882 -0.923435 +0.098312 0.194991 -0.243610 -0.382678 0.036484 -0.923161 +0.098334 0.201535 -0.244365 -0.383264 0.020142 -0.923419 +0.098380 0.207980 -0.246224 -0.385003 0.017122 -0.922756 +0.098425 0.214434 -0.247947 -0.378454 0.025667 -0.925264 +0.098463 0.220902 -0.249504 -0.375168 0.050303 -0.925591 +0.098478 0.227454 -0.249965 -0.372629 0.072868 -0.925115 +0.098478 0.234036 -0.250169 -0.365698 0.126315 -0.922122 +0.098455 0.240723 -0.249194 -0.368156 0.191981 -0.909728 +0.098402 0.247517 -0.247139 -0.363218 0.240928 -0.900015 +0.098334 0.254385 -0.244433 -0.363439 0.278545 -0.889002 +0.098206 0.261489 -0.239423 -0.369710 0.290655 -0.882516 +0.098070 0.268652 -0.233990 -0.382477 0.292424 -0.876470 +0.097926 0.275854 -0.228406 -0.400201 0.281615 -0.872085 +0.097889 0.282640 -0.226940 -0.399803 0.262349 -0.878254 +0.097851 0.289425 -0.225572 -0.398176 0.255406 -0.881036 +0.097836 0.296143 -0.224809 -0.398962 0.252672 -0.881468 +0.097798 0.302929 -0.223471 -0.395327 0.275993 -0.876096 +0.097768 0.309722 -0.222179 -0.391787 0.311695 -0.865650 +0.097677 0.316750 -0.218809 -0.398028 0.359237 -0.844110 +0.097586 0.323815 -0.215189 -0.407729 0.433849 -0.803450 +0.097503 0.330858 -0.211849 -0.410215 0.503065 -0.760690 +0.097352 0.338233 -0.205879 -0.414201 0.600260 -0.684197 +0.097088 0.346130 -0.195625 -0.423253 0.655097 -0.625863 +0.096815 0.354140 -0.184827 -0.425018 0.605230 -0.673094 +0.096430 0.362687 -0.169963 -0.426597 0.440737 -0.789788 +0.096249 0.370319 -0.162792 -0.396845 0.272781 -0.876415 +0.096203 0.377294 -0.160978 -0.369567 0.172430 -0.913065 +0.096264 0.383754 -0.163238 -0.349650 0.086408 -0.932887 +0.096309 0.390246 -0.165217 -0.323626 0.044520 -0.945137 +0.096339 0.396842 -0.166344 -0.312592 0.010490 -0.949830 +0.096362 0.403485 -0.167076 -0.297281 -0.012206 -0.954712 +0.096362 0.410218 -0.167182 -0.290141 -0.030706 -0.956491 +0.096355 0.416981 -0.166993 -0.284459 -0.035363 -0.958036 +0.096355 0.423729 -0.166970 -0.283560 -0.029958 -0.958486 +0.096385 0.430295 -0.168210 -0.289134 -0.002808 -0.957285 +0.096423 0.436855 -0.169434 -0.289973 0.022233 -0.956777 +0.096203 0.444797 -0.161092 -0.287212 0.055295 -0.956270 +0.092493 -0.611223 0.278264 0.210500 0.102344 -0.972222 +0.092622 -0.603122 0.273012 0.235884 0.137773 -0.961965 +0.092622 -0.595611 0.272944 0.232183 0.140992 -0.962399 +0.092576 -0.588303 0.274795 0.253694 0.152151 -0.955243 +0.092531 -0.581011 0.276753 0.255198 0.139169 -0.956821 +0.092470 -0.573765 0.279254 0.250975 0.117754 -0.960805 +0.092402 -0.566540 0.282073 0.250237 0.083512 -0.964576 +0.092327 -0.559339 0.285193 0.240063 0.047864 -0.969576 +0.092274 -0.552062 0.287657 0.243365 0.039945 -0.969112 +0.092244 -0.544634 0.288699 0.210532 -0.056336 -0.975962 +0.092266 -0.537017 0.287793 0.163587 -0.128201 -0.978163 +0.092342 -0.529203 0.284785 0.105648 -0.268278 -0.957531 +0.092440 -0.521276 0.280470 0.035884 -0.431057 -0.901611 +0.092599 -0.513146 0.273730 -0.052834 -0.565942 -0.822750 +0.092826 -0.504788 0.264269 -0.111688 -0.528919 -0.841291 +0.093302 -0.495554 0.244418 -0.160044 -0.374938 -0.913131 +0.093377 -0.487816 0.241071 -0.137708 -0.124696 -0.982592 +0.093347 -0.480471 0.242332 -0.090333 0.045180 -0.994886 +0.093256 -0.473353 0.246307 -0.055234 0.199752 -0.978288 +0.093143 -0.466280 0.251090 -0.019943 0.371065 -0.928393 +0.093030 -0.459191 0.255813 0.030200 0.426321 -0.904068 +0.092901 -0.452141 0.261261 0.067759 0.538706 -0.839764 +0.092720 -0.445219 0.268697 0.122880 0.614548 -0.779251 +0.092274 -0.439114 0.287445 0.197399 0.700835 -0.685466 +0.098720 -0.242582 0.016874 -0.500820 -0.844454 -0.189936 +0.099475 -0.234602 -0.014751 -0.492214 -0.813039 -0.310955 +0.099921 -0.227091 -0.033506 -0.490200 -0.782162 -0.384612 +0.100299 -0.219708 -0.049496 -0.487192 -0.741154 -0.461882 +0.100564 -0.212499 -0.060468 -0.493269 -0.703473 -0.511676 +0.100775 -0.205381 -0.069354 -0.502018 -0.660725 -0.558051 +0.100956 -0.198315 -0.076979 -0.514396 -0.613065 -0.599623 +0.101123 -0.191280 -0.084196 -0.515084 -0.589495 -0.622242 +0.101251 -0.184313 -0.089402 -0.522607 -0.559202 -0.643564 +0.101380 -0.177353 -0.094858 -0.528155 -0.535993 -0.658607 +0.101508 -0.170409 -0.100246 -0.527636 -0.516029 -0.674770 +0.101629 -0.163494 -0.105430 -0.526369 -0.493065 -0.692693 +0.101742 -0.156603 -0.110190 -0.523470 -0.469313 -0.711143 +0.101871 -0.149719 -0.115329 -0.519009 -0.440924 -0.732267 +0.101977 -0.142857 -0.119772 -0.513592 -0.413656 -0.751740 +0.102067 -0.136019 -0.123762 -0.504591 -0.378930 -0.775757 +0.102150 -0.129187 -0.127231 -0.498852 -0.342866 -0.795984 +0.102226 -0.122371 -0.130487 -0.492760 -0.304872 -0.815010 +0.102309 -0.115570 -0.133797 -0.489625 -0.264473 -0.830856 +0.102370 -0.108777 -0.136299 -0.484133 -0.229891 -0.844254 +0.102422 -0.101991 -0.138497 -0.474060 -0.197582 -0.858038 +0.102468 -0.095213 -0.140560 -0.471319 -0.178294 -0.863753 +0.102513 -0.088442 -0.142381 -0.461871 -0.224697 -0.858013 +0.102513 -0.081656 -0.142465 -0.462513 -0.246532 -0.851648 +0.102498 -0.074863 -0.141792 -0.471011 -0.257383 -0.843743 +0.102475 -0.068070 -0.140848 -0.467909 -0.362933 -0.805817 +0.102468 -0.061276 -0.140440 -0.451669 -0.458999 -0.765059 +0.102490 -0.054506 -0.141490 -0.441481 -0.542845 -0.714433 +0.103118 -0.048188 -0.167923 -0.285282 -0.790256 -0.542319 +0.103586 -0.041826 -0.187336 -0.205169 -0.841376 -0.499993 +0.103888 -0.035395 -0.200152 -0.185890 -0.808665 -0.558128 +0.104092 -0.028904 -0.208736 -0.195694 -0.744725 -0.638035 +0.104266 -0.022413 -0.215900 -0.206095 -0.672050 -0.711248 +0.104433 -0.015952 -0.223176 -0.218749 -0.604594 -0.765908 +0.104561 -0.009453 -0.228345 -0.231115 -0.532130 -0.814508 +0.104659 -0.002939 -0.232411 -0.242846 -0.498680 -0.832072 +0.104735 0.003582 -0.235781 -0.258174 -0.449081 -0.855379 +0.104795 0.010126 -0.238094 -0.273930 -0.424704 -0.862895 +0.104841 0.016678 -0.240119 -0.288412 -0.393871 -0.872745 +0.104878 0.023237 -0.241637 -0.303699 -0.363655 -0.880637 +0.104931 0.029751 -0.244108 -0.315979 -0.339371 -0.885994 +0.104999 0.036249 -0.246942 -0.324117 -0.307206 -0.894747 +0.105090 0.042703 -0.250524 -0.332147 -0.266336 -0.904844 +0.105158 0.049163 -0.253486 -0.336349 -0.222184 -0.915152 +0.105218 0.055639 -0.256101 -0.335228 -0.172123 -0.926280 +0.105249 0.062168 -0.257348 -0.330736 -0.117085 -0.936432 +0.105264 0.068720 -0.257960 -0.324729 -0.065518 -0.943535 +0.105264 0.075302 -0.258035 -0.320991 -0.024941 -0.946754 +0.105241 0.081944 -0.256879 -0.317472 0.004469 -0.948257 +0.105203 0.088616 -0.255375 -0.313091 0.023451 -0.949433 +0.105158 0.095312 -0.253358 -0.315194 0.028101 -0.948611 +0.105105 0.102029 -0.251257 -0.314054 0.025314 -0.949067 +0.105067 0.108725 -0.249534 -0.310450 0.017764 -0.950424 +0.105052 0.115359 -0.248915 -0.311220 0.006914 -0.950313 +0.105060 0.121926 -0.249466 -0.312787 0.000970 -0.949823 +0.105098 0.128440 -0.250811 -0.314961 -0.001379 -0.949103 +0.105135 0.134923 -0.252496 -0.321604 0.007692 -0.946843 +0.105166 0.141422 -0.253887 -0.327265 0.021226 -0.944694 +0.105188 0.147958 -0.254650 -0.333219 0.040596 -0.941975 +0.105173 0.154593 -0.254045 -0.340431 0.063401 -0.938129 +0.105143 0.161273 -0.252746 -0.349204 0.080424 -0.933589 +0.105098 0.167998 -0.251015 -0.358570 0.090715 -0.929085 +0.105052 0.174739 -0.249133 -0.366003 0.088208 -0.926424 +0.105014 0.181464 -0.247517 -0.371381 0.073893 -0.925536 +0.105007 0.188099 -0.247139 -0.374569 0.055755 -0.925521 +0.105007 0.194696 -0.247176 -0.376122 0.036688 -0.925844 +0.105014 0.201270 -0.247517 -0.368804 0.023470 -0.929211 +0.105045 0.207761 -0.248801 -0.361179 0.021515 -0.932248 +0.105075 0.214245 -0.250146 -0.349953 0.033268 -0.936176 +0.105113 0.220713 -0.251612 -0.343874 0.054550 -0.937430 +0.105135 0.227235 -0.252383 -0.335452 0.078368 -0.938792 +0.105135 0.233816 -0.252542 -0.327377 0.134465 -0.935277 +0.105105 0.240519 -0.251400 -0.323150 0.191840 -0.926699 +0.105060 0.247297 -0.249474 -0.320644 0.243495 -0.915367 +0.104999 0.254166 -0.246723 -0.322746 0.278791 -0.904495 +0.104886 0.261224 -0.242113 -0.325154 0.291891 -0.899486 +0.104765 0.268342 -0.237050 -0.337756 0.294892 -0.893845 +0.104629 0.275567 -0.231217 -0.352371 0.282760 -0.892122 +0.104576 0.282428 -0.228973 -0.360346 0.268196 -0.893433 +0.104546 0.289199 -0.227658 -0.365590 0.257927 -0.894325 +0.104546 0.295833 -0.227681 -0.361144 0.253217 -0.897472 +0.104546 0.302468 -0.227741 -0.357750 0.274972 -0.892415 +0.104523 0.309209 -0.226781 -0.358472 0.306403 -0.881825 +0.104463 0.316108 -0.224439 -0.359143 0.337704 -0.870041 +0.104365 0.323226 -0.220313 -0.366052 0.402669 -0.838966 +0.104259 0.330405 -0.215786 -0.372832 0.485286 -0.790882 +0.104123 0.337727 -0.210149 -0.389681 0.572758 -0.721177 +0.103956 0.345254 -0.202970 -0.402713 0.651785 -0.642649 +0.103707 0.353196 -0.192603 -0.415061 0.633720 -0.652781 +0.103314 0.361923 -0.176129 -0.435985 0.509036 -0.742159 +0.103095 0.369820 -0.166797 -0.404320 0.337419 -0.850103 +0.103012 0.377014 -0.163230 -0.378259 0.220183 -0.899133 +0.103050 0.383550 -0.164840 -0.357507 0.116761 -0.926583 +0.103095 0.390049 -0.166744 -0.338009 0.081884 -0.937574 +0.103118 0.396654 -0.167802 -0.322248 0.028458 -0.946227 +0.103133 0.403303 -0.168474 -0.307233 -0.012193 -0.951556 +0.103140 0.410021 -0.168641 -0.300986 -0.024481 -0.953314 +0.103133 0.416762 -0.168588 -0.297907 -0.033766 -0.953997 +0.103140 0.423479 -0.168754 -0.293749 -0.036072 -0.955202 +0.103163 0.430061 -0.169850 -0.298080 -0.011821 -0.954468 +0.103193 0.436651 -0.170885 -0.299216 0.012136 -0.954108 +0.103042 0.444305 -0.164515 -0.294842 0.039619 -0.954724 +0.099914 -0.619218 0.282458 0.206873 0.114188 -0.971681 +0.100080 -0.610852 0.275067 0.226930 0.134439 -0.964588 +0.100095 -0.603243 0.274123 0.248914 0.154628 -0.956103 +0.100072 -0.595883 0.275453 0.268644 0.173343 -0.947514 +0.100027 -0.588591 0.277418 0.275072 0.164367 -0.947269 +0.099974 -0.581344 0.279866 0.268883 0.146677 -0.951939 +0.099906 -0.574127 0.282768 0.257068 0.115448 -0.959473 +0.099838 -0.566926 0.285790 0.244423 0.073362 -0.966890 +0.099778 -0.559687 0.288654 0.247883 0.045700 -0.967711 +0.099740 -0.552319 0.290271 0.230455 0.005925 -0.973065 +0.099755 -0.544740 0.289811 0.186812 -0.099349 -0.977359 +0.099785 -0.537047 0.288171 0.130202 -0.186074 -0.973871 +0.099861 -0.529196 0.284755 0.060611 -0.310863 -0.948520 +0.099982 -0.521178 0.279450 -0.006447 -0.510268 -0.859991 +0.100140 -0.513002 0.272166 -0.073494 -0.583122 -0.809053 +0.100367 -0.504584 0.261987 -0.129277 -0.534915 -0.834957 +0.100813 -0.495335 0.241864 -0.139154 -0.345358 -0.928097 +0.100851 -0.487733 0.240126 -0.117786 -0.155562 -0.980779 +0.100805 -0.480441 0.241992 -0.061393 0.113961 -0.991587 +0.100715 -0.473345 0.246254 -0.041400 0.226321 -0.973173 +0.100609 -0.466280 0.251075 -0.013339 0.339695 -0.940441 +0.100496 -0.459214 0.256085 0.026084 0.466502 -0.884135 +0.100352 -0.452247 0.262645 0.069669 0.560516 -0.825208 +0.100118 -0.445567 0.273322 0.134366 0.655491 -0.743154 +0.104856 -0.251000 0.058601 -0.504295 -0.854570 -0.124082 +0.106269 -0.241902 -0.005275 -0.480105 -0.832226 -0.277305 +0.106715 -0.234292 -0.025421 -0.474176 -0.809201 -0.346916 +0.107092 -0.226834 -0.042763 -0.471511 -0.771289 -0.427540 +0.107432 -0.219496 -0.057899 -0.471058 -0.732152 -0.491993 +0.107629 -0.212348 -0.067042 -0.477881 -0.695755 -0.536242 +0.107803 -0.205260 -0.074735 -0.489779 -0.658037 -0.571930 +0.107969 -0.198202 -0.082322 -0.495770 -0.622088 -0.605985 +0.108143 -0.191167 -0.090234 -0.501389 -0.589024 -0.633766 +0.108271 -0.184192 -0.096143 -0.509560 -0.557906 -0.655049 +0.108400 -0.177247 -0.101682 -0.513619 -0.533034 -0.672362 +0.108521 -0.170318 -0.107281 -0.513868 -0.509963 -0.689838 +0.108642 -0.163411 -0.112646 -0.511486 -0.484728 -0.709522 +0.108740 -0.156527 -0.117309 -0.506110 -0.457367 -0.731210 +0.108838 -0.149666 -0.121571 -0.503288 -0.428470 -0.750410 +0.108921 -0.142819 -0.125485 -0.494503 -0.394922 -0.774276 +0.108997 -0.135988 -0.128878 -0.486646 -0.365258 -0.793576 +0.109057 -0.129172 -0.131727 -0.477550 -0.329765 -0.814371 +0.109125 -0.122371 -0.134591 -0.469394 -0.296418 -0.831749 +0.109178 -0.115570 -0.137198 -0.464609 -0.260013 -0.846482 +0.109231 -0.108785 -0.139555 -0.454859 -0.223996 -0.861933 +0.109284 -0.102006 -0.141996 -0.447953 -0.193528 -0.872860 +0.109337 -0.095236 -0.144105 -0.448406 -0.180431 -0.875430 +0.109375 -0.088465 -0.145978 -0.443901 -0.235538 -0.864565 +0.109390 -0.081694 -0.146628 -0.440424 -0.249375 -0.862461 +0.109390 -0.074916 -0.146780 -0.448301 -0.270253 -0.852050 +0.109367 -0.068130 -0.145601 -0.450085 -0.419407 -0.788366 +0.109367 -0.061352 -0.145706 -0.434537 -0.485275 -0.758740 +0.109397 -0.054596 -0.147104 -0.423864 -0.548940 -0.720419 +0.109911 -0.048234 -0.170295 -0.282087 -0.783952 -0.553034 +0.110327 -0.041856 -0.188960 -0.205996 -0.831573 -0.515803 +0.110591 -0.035410 -0.200915 -0.184651 -0.801410 -0.568899 +0.110788 -0.028934 -0.209809 -0.181302 -0.741873 -0.645565 +0.110954 -0.022458 -0.217608 -0.185102 -0.667755 -0.721000 +0.111113 -0.015990 -0.224605 -0.190904 -0.610902 -0.768345 +0.111218 -0.009483 -0.229426 -0.210009 -0.536636 -0.817263 +0.111309 -0.002970 -0.233401 -0.220717 -0.510232 -0.831232 +0.111385 0.003552 -0.236794 -0.237121 -0.463072 -0.854013 +0.111445 0.010081 -0.239529 -0.255671 -0.439519 -0.861078 +0.111498 0.016610 -0.242061 -0.272255 -0.407038 -0.871893 +0.111536 0.023154 -0.243912 -0.287476 -0.374707 -0.881449 +0.111604 0.029652 -0.246761 -0.295473 -0.348705 -0.889438 +0.111664 0.036136 -0.249738 -0.304177 -0.312591 -0.899869 +0.111747 0.042582 -0.253229 -0.307718 -0.271669 -0.911869 +0.111808 0.049050 -0.256055 -0.308929 -0.223083 -0.924552 +0.111861 0.055534 -0.258375 -0.304642 -0.166614 -0.937781 +0.111876 0.062070 -0.259373 -0.298124 -0.113043 -0.947810 +0.111891 0.068629 -0.259924 -0.293385 -0.059120 -0.954165 +0.111883 0.075226 -0.259592 -0.289986 -0.019315 -0.956836 +0.111861 0.081861 -0.258526 -0.292534 0.008683 -0.956216 +0.111830 0.088526 -0.256992 -0.294116 0.023486 -0.955481 +0.111785 0.095221 -0.255050 -0.296078 0.028821 -0.954729 +0.111747 0.101908 -0.253290 -0.299724 0.024691 -0.953706 +0.111717 0.108581 -0.251930 -0.302240 0.014764 -0.953118 +0.111725 0.115155 -0.252254 -0.305557 0.002156 -0.952171 +0.111747 0.121669 -0.253509 -0.310705 -0.005384 -0.950491 +0.111793 0.128145 -0.255337 -0.318481 -0.005715 -0.947912 +0.111830 0.134621 -0.257015 -0.323888 0.000722 -0.946095 +0.111853 0.141127 -0.258209 -0.327935 0.011557 -0.944630 +0.111868 0.147671 -0.258783 -0.336283 0.031020 -0.941250 +0.111861 0.154276 -0.258413 -0.343308 0.052321 -0.937764 +0.111838 0.160925 -0.257559 -0.349832 0.070882 -0.934127 +0.111808 0.167621 -0.256086 -0.356077 0.081405 -0.930904 +0.111770 0.174346 -0.254265 -0.359062 0.080336 -0.929850 +0.111717 0.181102 -0.252156 -0.360940 0.071532 -0.929841 +0.111687 0.187827 -0.250539 -0.360291 0.058277 -0.931018 +0.111672 0.194477 -0.249836 -0.357159 0.043156 -0.933046 +0.111672 0.201051 -0.250131 -0.349473 0.033681 -0.936341 +0.111694 0.207572 -0.251053 -0.337041 0.033879 -0.940880 +0.111717 0.214071 -0.252156 -0.321732 0.046656 -0.945681 +0.111747 0.220547 -0.253479 -0.310565 0.065037 -0.948324 +0.111762 0.227084 -0.254068 -0.294881 0.100250 -0.950261 +0.111762 0.233665 -0.254181 -0.283964 0.139183 -0.948680 +0.111747 0.240338 -0.253328 -0.278505 0.192397 -0.940967 +0.111710 0.247078 -0.251726 -0.275739 0.241056 -0.930516 +0.111657 0.253924 -0.249201 -0.277327 0.275195 -0.920520 +0.111558 0.260967 -0.244683 -0.288631 0.289249 -0.912703 +0.111445 0.268093 -0.239529 -0.307981 0.294690 -0.904602 +0.111324 0.275272 -0.234073 -0.316950 0.283812 -0.904983 +0.111264 0.282156 -0.231602 -0.325824 0.269185 -0.906299 +0.111241 0.288912 -0.230408 -0.336077 0.260884 -0.904982 +0.111249 0.295501 -0.230816 -0.341010 0.258725 -0.903755 +0.111249 0.302113 -0.230930 -0.335738 0.265956 -0.903630 +0.111256 0.308717 -0.231209 -0.329801 0.293293 -0.897335 +0.111226 0.315511 -0.229743 -0.330352 0.316148 -0.889336 +0.111158 0.322485 -0.226796 -0.336211 0.378659 -0.862310 +0.111060 0.329642 -0.222308 -0.345070 0.448670 -0.824392 +0.110901 0.337130 -0.215182 -0.358321 0.528624 -0.769521 +0.110750 0.344626 -0.208215 -0.372918 0.626286 -0.684616 +0.110561 0.352342 -0.199593 -0.393260 0.655579 -0.644641 +0.110221 0.360941 -0.184101 -0.408731 0.561984 -0.719106 +0.109919 0.369329 -0.170719 -0.409818 0.398546 -0.820494 +0.109820 0.376636 -0.166170 -0.389154 0.226799 -0.892817 +0.109835 0.383286 -0.166895 -0.375415 0.166144 -0.911844 +0.109873 0.389837 -0.168384 -0.352843 0.093799 -0.930969 +0.109904 0.396389 -0.169774 -0.337260 0.049804 -0.940093 +0.109911 0.403046 -0.170386 -0.327959 0.008058 -0.944658 +0.109919 0.409749 -0.170621 -0.314467 -0.010403 -0.949211 +0.109919 0.416482 -0.170628 -0.309491 -0.032701 -0.950340 +0.109926 0.423185 -0.170862 -0.308154 -0.033772 -0.950737 +0.109941 0.429804 -0.171686 -0.309323 -0.021079 -0.950723 +0.109941 0.436567 -0.171482 -0.309433 -0.000047 -0.950921 +0.109851 0.443882 -0.167439 -0.305321 0.024954 -0.951922 +0.107364 -0.627144 0.285919 0.205398 0.118112 -0.971525 +0.107523 -0.618696 0.277946 0.221371 0.136857 -0.965539 +0.107561 -0.610981 0.276141 0.250006 0.169254 -0.953336 +0.107569 -0.603454 0.276035 0.267771 0.178517 -0.946800 +0.107523 -0.596170 0.278052 0.276311 0.183300 -0.943426 +0.107478 -0.588923 0.280478 0.272521 0.166399 -0.947652 +0.107417 -0.581707 0.283304 0.262946 0.140765 -0.954486 +0.107349 -0.574528 0.286508 0.249722 0.101578 -0.962975 +0.107296 -0.567296 0.289403 0.250670 0.065718 -0.965839 +0.107251 -0.559974 0.291450 0.230263 0.033617 -0.972548 +0.107244 -0.552478 0.291836 0.206859 -0.040631 -0.977527 +0.107266 -0.544815 0.290551 0.147239 -0.164206 -0.975375 +0.107319 -0.537055 0.288223 0.090803 -0.264246 -0.960171 +0.107395 -0.529158 0.284355 0.025534 -0.372238 -0.927786 +0.107523 -0.521065 0.278226 -0.033700 -0.559151 -0.828381 +0.107682 -0.512813 0.270103 -0.097559 -0.594662 -0.798035 +0.107939 -0.504214 0.257823 -0.143855 -0.536689 -0.831427 +0.108302 -0.495138 0.239657 -0.133156 -0.321392 -0.937538 +0.108309 -0.487665 0.239370 -0.088210 -0.111014 -0.989896 +0.108264 -0.480418 0.241645 -0.052135 0.163565 -0.985154 +0.108173 -0.473337 0.246118 -0.043115 0.222626 -0.973950 +0.108067 -0.466295 0.251234 0.003608 0.374688 -0.927144 +0.107946 -0.459312 0.257332 0.036859 0.489948 -0.870972 +0.107780 -0.452459 0.265395 0.085891 0.601522 -0.794225 +0.107410 -0.446338 0.283471 0.169556 0.719380 -0.673605 +0.112919 -0.249519 0.013050 -0.474169 -0.856944 -0.202016 +0.113531 -0.241539 -0.016965 -0.459971 -0.827732 -0.321382 +0.113886 -0.234035 -0.034458 -0.455999 -0.800192 -0.389560 +0.114249 -0.226569 -0.052488 -0.458387 -0.759392 -0.461741 +0.114490 -0.219330 -0.064262 -0.453664 -0.727323 -0.514967 +0.114687 -0.212181 -0.073926 -0.462489 -0.686515 -0.561071 +0.114823 -0.205131 -0.080493 -0.471901 -0.653109 -0.592248 +0.114982 -0.198081 -0.088345 -0.479144 -0.618866 -0.622436 +0.115133 -0.191068 -0.095682 -0.486916 -0.588541 -0.645394 +0.115276 -0.184078 -0.102853 -0.490981 -0.558545 -0.668554 +0.115382 -0.177149 -0.108263 -0.495634 -0.531703 -0.686759 +0.115495 -0.170235 -0.113508 -0.495137 -0.506008 -0.706254 +0.115594 -0.163343 -0.118434 -0.494052 -0.476437 -0.727269 +0.115684 -0.156474 -0.122833 -0.491612 -0.446725 -0.747499 +0.115775 -0.149620 -0.127518 -0.485182 -0.412230 -0.771145 +0.115843 -0.142789 -0.130767 -0.477610 -0.379441 -0.792410 +0.115903 -0.135966 -0.133722 -0.468718 -0.349662 -0.811197 +0.115949 -0.129165 -0.135837 -0.455922 -0.317103 -0.831614 +0.115994 -0.122364 -0.138105 -0.446473 -0.282487 -0.849037 +0.116039 -0.115570 -0.140372 -0.436473 -0.250350 -0.864185 +0.116085 -0.108792 -0.142495 -0.428636 -0.218968 -0.876541 +0.116123 -0.102014 -0.144475 -0.423383 -0.195619 -0.884579 +0.116160 -0.095243 -0.146485 -0.422303 -0.183636 -0.887659 +0.116198 -0.088480 -0.148359 -0.426515 -0.239841 -0.872102 +0.116236 -0.081724 -0.150180 -0.425944 -0.260051 -0.866571 +0.116251 -0.074961 -0.150913 -0.434070 -0.350389 -0.829946 +0.116251 -0.068191 -0.150943 -0.439736 -0.435400 -0.785531 +0.116259 -0.061427 -0.151200 -0.418878 -0.503356 -0.755760 +0.116304 -0.054694 -0.153225 -0.394795 -0.564241 -0.725099 +0.116712 -0.048286 -0.173401 -0.277701 -0.782010 -0.557980 +0.117029 -0.041863 -0.189217 -0.219076 -0.827003 -0.517756 +0.117279 -0.035418 -0.201194 -0.189642 -0.794289 -0.577184 +0.117483 -0.028964 -0.211366 -0.178281 -0.727303 -0.662757 +0.117649 -0.022496 -0.219361 -0.169593 -0.668039 -0.724542 +0.117785 -0.016027 -0.226063 -0.177209 -0.612212 -0.770580 +0.117868 -0.009506 -0.230401 -0.191049 -0.551746 -0.811835 +0.117944 -0.002985 -0.234020 -0.205152 -0.524346 -0.826422 +0.118012 0.003537 -0.237398 -0.224644 -0.476792 -0.849826 +0.118080 0.010050 -0.240466 -0.240232 -0.453418 -0.858312 +0.118133 0.016564 -0.243368 -0.256634 -0.419700 -0.870627 +0.118186 0.023078 -0.245877 -0.271547 -0.382773 -0.883033 +0.118254 0.029562 -0.249013 -0.281418 -0.352820 -0.892369 +0.118314 0.036038 -0.252111 -0.284968 -0.317048 -0.904585 +0.118382 0.042491 -0.255489 -0.282644 -0.273669 -0.919357 +0.118435 0.048959 -0.258216 -0.282573 -0.221141 -0.933407 +0.118488 0.055435 -0.260514 -0.273884 -0.160755 -0.948233 +0.118503 0.061979 -0.261277 -0.267784 -0.105950 -0.957636 +0.118503 0.068546 -0.261587 -0.264074 -0.056178 -0.962865 +0.118495 0.075151 -0.261043 -0.265300 -0.019245 -0.963974 +0.118473 0.081793 -0.259872 -0.265909 0.008900 -0.963957 +0.118442 0.088450 -0.258420 -0.269615 0.022122 -0.962714 +0.118405 0.095123 -0.256728 -0.275826 0.026222 -0.960850 +0.118382 0.101788 -0.255375 -0.283033 0.019316 -0.958916 +0.118359 0.108437 -0.254393 -0.293451 0.007924 -0.955941 +0.118382 0.114966 -0.255391 -0.299369 -0.006312 -0.954117 +0.118412 0.121450 -0.257030 -0.311581 -0.011896 -0.950145 +0.118458 0.127903 -0.259086 -0.318601 -0.014157 -0.947783 +0.118480 0.134394 -0.260506 -0.322797 -0.007721 -0.946437 +0.118510 0.140893 -0.261677 -0.329030 0.004876 -0.944307 +0.118518 0.147437 -0.262169 -0.334750 0.023954 -0.942002 +0.118510 0.154034 -0.261859 -0.340698 0.046169 -0.939039 +0.118495 0.160676 -0.260997 -0.343913 0.066310 -0.936657 +0.118465 0.167349 -0.259736 -0.345022 0.080032 -0.935176 +0.118435 0.174044 -0.258239 -0.344065 0.083835 -0.935196 +0.118405 0.180762 -0.256479 -0.339450 0.077309 -0.937442 +0.118359 0.187517 -0.254393 -0.336597 0.067061 -0.939258 +0.118329 0.194212 -0.253078 -0.331337 0.056670 -0.941809 +0.118314 0.200885 -0.252149 -0.318983 0.050161 -0.946432 +0.118329 0.207421 -0.252821 -0.304810 0.052762 -0.950951 +0.118352 0.213920 -0.253841 -0.292785 0.061550 -0.954195 +0.118374 0.220419 -0.254960 -0.271536 0.082504 -0.958885 +0.118382 0.226963 -0.255443 -0.256732 0.118616 -0.959176 +0.118382 0.233544 -0.255489 -0.242858 0.152075 -0.958068 +0.118352 0.240277 -0.253939 -0.232688 0.195653 -0.952668 +0.118314 0.247033 -0.252194 -0.236782 0.238372 -0.941867 +0.118261 0.253872 -0.249685 -0.245033 0.266584 -0.932144 +0.118193 0.260824 -0.246149 -0.261774 0.278970 -0.923932 +0.118110 0.267829 -0.242151 -0.278239 0.283403 -0.917751 +0.118004 0.274985 -0.236846 -0.287428 0.275962 -0.917186 +0.117951 0.281876 -0.234293 -0.308768 0.264978 -0.913482 +0.117929 0.288602 -0.233317 -0.317939 0.255462 -0.913046 +0.117936 0.295184 -0.233725 -0.321305 0.257488 -0.911297 +0.117944 0.301773 -0.234088 -0.320143 0.271736 -0.907562 +0.117951 0.308370 -0.234323 -0.315618 0.291304 -0.903066 +0.117929 0.315125 -0.233136 -0.316096 0.314484 -0.895089 +0.117876 0.322025 -0.230801 -0.314319 0.363351 -0.877029 +0.117793 0.329143 -0.226577 -0.321476 0.425068 -0.846150 +0.117672 0.336495 -0.220547 -0.324182 0.486674 -0.811205 +0.117536 0.343939 -0.213927 -0.341833 0.602560 -0.721159 +0.117354 0.351677 -0.205101 -0.363182 0.655407 -0.662224 +0.117120 0.359792 -0.193411 -0.387762 0.611956 -0.689312 +0.116795 0.368490 -0.177376 -0.408949 0.451260 -0.793174 +0.116629 0.376228 -0.169389 -0.404465 0.297831 -0.864699 +0.116621 0.382999 -0.169162 -0.381388 0.188128 -0.905069 +0.116652 0.389581 -0.170349 -0.377336 0.121239 -0.918106 +0.116682 0.396094 -0.172011 -0.351802 0.066073 -0.933740 +0.116697 0.402722 -0.172782 -0.347222 0.028785 -0.937341 +0.116704 0.409439 -0.172903 -0.332508 0.005662 -0.943083 +0.116704 0.416149 -0.173076 -0.326828 -0.019159 -0.944890 +0.116712 0.422845 -0.173326 -0.323940 -0.031197 -0.945563 +0.116720 0.429517 -0.173696 -0.322673 -0.025540 -0.946166 +0.116712 0.436303 -0.173318 -0.321911 -0.007380 -0.946741 +0.116621 0.443663 -0.168973 -0.322662 0.020543 -0.946291 +0.115012 -0.626389 0.279466 0.262461 0.154666 -0.952467 +0.115050 -0.618620 0.277312 0.251366 0.174977 -0.951944 +0.115042 -0.611170 0.277803 0.272509 0.189236 -0.943360 +0.115019 -0.603787 0.278967 0.281885 0.194098 -0.939610 +0.114974 -0.596525 0.281256 0.278669 0.180637 -0.943246 +0.114929 -0.589293 0.283871 0.271548 0.164454 -0.948270 +0.114876 -0.582069 0.286660 0.270094 0.139087 -0.952735 +0.114815 -0.574868 0.289780 0.256538 0.101049 -0.961237 +0.114770 -0.567583 0.292183 0.239951 0.050741 -0.969458 +0.114755 -0.560163 0.293302 0.218030 0.000877 -0.975942 +0.114770 -0.552531 0.292350 0.166286 -0.107105 -0.980244 +0.114800 -0.544845 0.290868 0.110682 -0.188198 -0.975874 +0.114853 -0.537040 0.288012 0.070361 -0.314243 -0.946732 +0.114944 -0.529052 0.283206 -0.003703 -0.432396 -0.901676 +0.115072 -0.520884 0.276261 -0.065573 -0.603993 -0.794287 +0.115238 -0.512533 0.267027 -0.116228 -0.604637 -0.787975 +0.115526 -0.503677 0.251838 -0.135882 -0.530226 -0.836897 +0.115783 -0.494995 0.238010 -0.119614 -0.315312 -0.941420 +0.115767 -0.487619 0.238849 -0.084827 -0.060641 -0.994549 +0.115715 -0.480403 0.241524 -0.063819 0.175563 -0.982397 +0.115631 -0.473330 0.246080 -0.042259 0.267394 -0.962660 +0.115518 -0.466378 0.252277 -0.019885 0.366917 -0.930041 +0.115397 -0.459411 0.258586 0.052550 0.515951 -0.855005 +0.115208 -0.452723 0.268765 0.131709 0.679298 -0.721947 +0.120271 -0.248990 -0.003181 -0.442405 -0.845226 -0.299785 +0.120702 -0.241259 -0.026229 -0.443988 -0.825938 -0.347421 +0.121012 -0.233786 -0.042997 -0.438033 -0.792806 -0.423775 +0.121329 -0.226373 -0.059788 -0.437784 -0.754623 -0.488763 +0.121541 -0.219149 -0.071236 -0.439630 -0.721228 -0.535309 +0.121707 -0.212023 -0.080417 -0.443252 -0.683186 -0.580332 +0.121828 -0.204995 -0.086742 -0.454547 -0.649652 -0.609376 +0.121964 -0.197967 -0.094049 -0.455235 -0.621671 -0.637406 +0.122092 -0.190970 -0.100775 -0.463277 -0.592869 -0.658696 +0.122221 -0.184003 -0.107697 -0.468392 -0.563992 -0.680090 +0.122319 -0.177074 -0.113198 -0.471470 -0.533110 -0.702503 +0.122417 -0.170167 -0.118359 -0.473779 -0.503935 -0.722207 +0.122515 -0.163283 -0.123709 -0.474277 -0.469590 -0.744679 +0.122606 -0.156421 -0.128409 -0.471234 -0.436304 -0.766536 +0.122682 -0.149575 -0.132709 -0.463736 -0.397508 -0.791793 +0.122742 -0.142751 -0.136027 -0.457432 -0.368113 -0.809474 +0.122788 -0.135943 -0.138278 -0.446214 -0.331906 -0.831103 +0.122818 -0.129150 -0.139941 -0.429346 -0.294243 -0.853863 +0.122848 -0.122356 -0.141399 -0.420199 -0.270386 -0.866213 +0.122886 -0.115578 -0.143387 -0.410615 -0.241787 -0.879167 +0.122924 -0.108800 -0.145382 -0.401682 -0.214379 -0.890333 +0.122946 -0.102021 -0.146984 -0.399761 -0.196349 -0.895342 +0.122976 -0.095258 -0.148314 -0.407548 -0.190558 -0.893080 +0.122999 -0.088495 -0.149545 -0.405212 -0.241061 -0.881869 +0.123029 -0.081739 -0.151427 -0.409858 -0.266659 -0.872301 +0.123067 -0.074991 -0.153338 -0.429164 -0.366143 -0.825686 +0.123090 -0.068243 -0.154691 -0.430703 -0.440479 -0.787701 +0.123128 -0.061503 -0.156353 -0.418590 -0.512784 -0.749556 +0.123203 -0.054808 -0.160540 -0.385905 -0.640077 -0.664363 +0.123452 -0.048294 -0.173908 -0.305806 -0.759741 -0.573825 +0.123740 -0.041863 -0.189391 -0.230741 -0.812286 -0.535677 +0.123989 -0.035455 -0.202948 -0.200080 -0.786185 -0.584706 +0.124178 -0.029002 -0.213081 -0.182117 -0.715178 -0.674799 +0.124329 -0.022541 -0.221151 -0.171634 -0.661323 -0.730202 +0.124450 -0.016065 -0.227627 -0.175063 -0.610745 -0.772233 +0.124526 -0.009544 -0.231534 -0.182264 -0.560809 -0.807634 +0.124586 -0.003007 -0.234837 -0.195163 -0.536787 -0.820836 +0.124646 0.003514 -0.238010 -0.213518 -0.490941 -0.844622 +0.124707 0.010028 -0.241184 -0.229326 -0.466076 -0.854507 +0.124760 0.016534 -0.244290 -0.244311 -0.427594 -0.870331 +0.124820 0.023018 -0.247607 -0.254604 -0.390524 -0.884685 +0.124888 0.029479 -0.251128 -0.262417 -0.357774 -0.896178 +0.124949 0.035939 -0.254483 -0.261832 -0.314574 -0.912407 +0.125017 0.042393 -0.257801 -0.259929 -0.266773 -0.928046 +0.125062 0.048869 -0.260355 -0.250193 -0.211185 -0.944883 +0.125100 0.055360 -0.262289 -0.242356 -0.153809 -0.957918 +0.125107 0.061896 -0.263075 -0.235303 -0.098974 -0.966870 +0.125115 0.068463 -0.263234 -0.233505 -0.053778 -0.970867 +0.125107 0.075067 -0.262683 -0.236767 -0.019412 -0.971373 +0.125085 0.081702 -0.261511 -0.238189 0.006482 -0.971197 +0.125054 0.088367 -0.259940 -0.247210 0.016638 -0.968819 +0.125024 0.095032 -0.258436 -0.256484 0.016318 -0.966411 +0.125009 0.101667 -0.257514 -0.269214 0.007647 -0.963050 +0.125002 0.108271 -0.257181 -0.282372 -0.003813 -0.959297 +0.125032 0.114755 -0.258821 -0.296428 -0.015743 -0.954925 +0.125062 0.121231 -0.260582 -0.307007 -0.022050 -0.951452 +0.125100 0.127684 -0.262441 -0.310387 -0.026831 -0.950231 +0.125115 0.134198 -0.263446 -0.317930 -0.018792 -0.947928 +0.125130 0.140712 -0.264292 -0.324069 -0.003161 -0.946028 +0.125138 0.147256 -0.264678 -0.330203 0.017868 -0.943741 +0.125130 0.153860 -0.264232 -0.332124 0.044595 -0.942181 +0.125115 0.160495 -0.263408 -0.331555 0.065963 -0.941127 +0.125100 0.167152 -0.262365 -0.326751 0.081164 -0.941619 +0.125070 0.173825 -0.261027 -0.321902 0.089237 -0.942558 +0.125047 0.180527 -0.259516 -0.313847 0.084848 -0.945675 +0.125009 0.187245 -0.257740 -0.307581 0.077610 -0.948351 +0.124979 0.193963 -0.256146 -0.297626 0.069986 -0.952114 +0.124956 0.200666 -0.254763 -0.286341 0.067234 -0.955766 +0.124956 0.207240 -0.254884 -0.275019 0.067634 -0.959057 +0.124971 0.213754 -0.255761 -0.255718 0.082937 -0.963187 +0.124994 0.220237 -0.256962 -0.235656 0.105243 -0.966121 +0.125002 0.226789 -0.257370 -0.215103 0.134372 -0.967303 +0.125002 0.233393 -0.257128 -0.199797 0.166213 -0.965637 +0.124964 0.240149 -0.255292 -0.192517 0.199963 -0.960704 +0.124926 0.246957 -0.253040 -0.193809 0.229994 -0.953698 +0.124866 0.253841 -0.249987 -0.213797 0.254125 -0.943245 +0.124805 0.260771 -0.246655 -0.230005 0.265654 -0.936230 +0.124737 0.267761 -0.242839 -0.246874 0.268671 -0.931058 +0.124669 0.274728 -0.239340 -0.275597 0.263590 -0.924428 +0.124631 0.281551 -0.237383 -0.288728 0.251654 -0.923746 +0.124609 0.288315 -0.235993 -0.298751 0.248008 -0.921542 +0.124609 0.294911 -0.236219 -0.303608 0.253930 -0.918337 +0.124609 0.301539 -0.236197 -0.304659 0.266297 -0.914477 +0.124609 0.308188 -0.235970 -0.303075 0.292340 -0.907019 +0.124586 0.314914 -0.235025 -0.300495 0.319965 -0.898513 +0.124548 0.321768 -0.233015 -0.299759 0.363289 -0.882137 +0.124473 0.328871 -0.228905 -0.296413 0.421684 -0.856926 +0.124374 0.336155 -0.223403 -0.307309 0.489305 -0.816175 +0.124261 0.343500 -0.217600 -0.310589 0.571271 -0.759726 +0.124140 0.350959 -0.210973 -0.327965 0.642994 -0.692096 +0.123936 0.358954 -0.200167 -0.357083 0.630519 -0.689157 +0.123679 0.367379 -0.186255 -0.395507 0.524115 -0.754239 +0.123460 0.375601 -0.174368 -0.402612 0.351803 -0.845067 +0.123422 0.382591 -0.172306 -0.396043 0.234771 -0.887712 +0.123430 0.389240 -0.172933 -0.391441 0.158323 -0.906481 +0.123460 0.395754 -0.174595 -0.370418 0.093914 -0.924106 +0.123483 0.402374 -0.175426 -0.360785 0.050435 -0.931284 +0.123483 0.409092 -0.175487 -0.349568 0.014059 -0.936806 +0.123483 0.415802 -0.175608 -0.343367 -0.009889 -0.939149 +0.123483 0.422512 -0.175721 -0.340345 -0.025026 -0.939968 +0.123490 0.429215 -0.175888 -0.336290 -0.026029 -0.941399 +0.123483 0.435955 -0.175774 -0.334556 -0.011513 -0.942305 +0.123415 0.443232 -0.171966 -0.336986 0.011943 -0.941434 +0.122463 -0.634316 0.282934 0.257379 0.152159 -0.954256 +0.122546 -0.626230 0.278136 0.270865 0.174742 -0.946624 +0.122546 -0.618711 0.278060 0.284826 0.190088 -0.939543 +0.122531 -0.611336 0.279307 0.294734 0.205477 -0.933226 +0.122485 -0.604089 0.281672 0.292806 0.197952 -0.935457 +0.122440 -0.596857 0.284241 0.286531 0.182340 -0.940560 +0.122395 -0.589633 0.287022 0.273194 0.159404 -0.948660 +0.122342 -0.582440 0.290158 0.258006 0.120635 -0.958582 +0.122304 -0.575178 0.292682 0.250077 0.081843 -0.964761 +0.122274 -0.567802 0.294254 0.224486 0.028607 -0.974057 +0.122274 -0.560276 0.294397 0.193997 -0.043593 -0.980033 +0.122296 -0.552583 0.292894 0.137283 -0.153299 -0.978597 +0.122334 -0.544838 0.290815 0.078951 -0.252179 -0.964455 +0.122387 -0.536987 0.287483 0.033661 -0.371381 -0.927870 +0.122478 -0.528939 0.282012 -0.034051 -0.489327 -0.871436 +0.122606 -0.520717 0.274508 -0.089501 -0.637272 -0.765424 +0.122795 -0.512186 0.263234 -0.112113 -0.604089 -0.788991 +0.123067 -0.503277 0.247403 -0.122728 -0.476196 -0.870733 +0.123248 -0.494874 0.236642 -0.097232 -0.252929 -0.962587 +0.123218 -0.487597 0.238569 -0.081822 -0.064272 -0.994572 +0.123165 -0.480418 0.241683 -0.068915 0.079773 -0.994428 +0.123082 -0.473360 0.246435 -0.000935 0.347079 -0.937835 +0.122976 -0.466416 0.252768 0.020026 0.392910 -0.919359 +0.122833 -0.459630 0.261405 0.060548 0.554185 -0.830189 +0.122629 -0.453056 0.273118 0.141824 0.707965 -0.691861 +0.127034 -0.256554 0.012559 -0.424422 -0.882696 -0.201777 +0.127563 -0.248483 -0.018907 -0.434634 -0.838263 -0.329255 +0.127850 -0.240957 -0.035894 -0.419607 -0.819420 -0.390488 +0.128100 -0.233559 -0.050720 -0.422695 -0.787863 -0.447886 +0.128364 -0.226191 -0.066287 -0.418827 -0.747065 -0.516214 +0.128546 -0.218997 -0.077198 -0.416032 -0.717655 -0.558470 +0.128704 -0.211887 -0.086357 -0.421321 -0.683136 -0.596502 +0.128810 -0.204859 -0.092961 -0.425787 -0.652673 -0.626677 +0.128923 -0.197854 -0.099377 -0.431677 -0.626243 -0.649211 +0.129029 -0.190879 -0.105860 -0.436802 -0.597878 -0.672121 +0.129143 -0.183920 -0.112404 -0.439903 -0.568046 -0.695563 +0.129241 -0.176998 -0.118344 -0.443744 -0.535840 -0.718309 +0.129332 -0.170099 -0.123845 -0.445699 -0.503659 -0.740054 +0.129415 -0.163222 -0.128432 -0.447738 -0.466353 -0.762919 +0.129483 -0.156376 -0.132724 -0.444097 -0.425819 -0.788325 +0.129551 -0.149537 -0.136729 -0.440166 -0.390613 -0.808502 +0.129611 -0.142729 -0.140114 -0.432441 -0.351136 -0.830481 +0.129656 -0.135928 -0.142805 -0.417206 -0.309639 -0.854437 +0.129687 -0.129134 -0.144611 -0.402373 -0.275135 -0.873153 +0.129702 -0.122356 -0.145570 -0.395373 -0.253477 -0.882853 +0.129717 -0.115578 -0.146440 -0.382595 -0.230364 -0.894737 +0.129740 -0.108800 -0.147747 -0.376762 -0.209732 -0.902254 +0.129762 -0.102029 -0.149039 -0.380501 -0.208189 -0.901042 +0.129777 -0.095266 -0.150173 -0.387579 -0.200686 -0.899727 +0.129792 -0.088503 -0.151087 -0.395940 -0.254005 -0.882447 +0.129823 -0.081747 -0.152900 -0.407150 -0.282936 -0.868433 +0.129860 -0.075007 -0.155130 -0.421429 -0.378785 -0.823966 +0.129906 -0.068274 -0.157457 -0.425779 -0.455568 -0.781774 +0.129936 -0.061548 -0.159573 -0.419526 -0.555473 -0.717947 +0.130004 -0.054861 -0.163510 -0.390727 -0.635117 -0.666303 +0.130201 -0.048317 -0.175086 -0.332923 -0.747689 -0.574564 +0.130465 -0.041894 -0.190736 -0.264176 -0.794822 -0.546323 +0.130677 -0.035463 -0.203318 -0.216113 -0.768086 -0.602776 +0.130858 -0.029032 -0.214192 -0.201549 -0.698839 -0.686296 +0.131002 -0.022571 -0.222451 -0.183242 -0.650773 -0.736829 +0.131107 -0.016095 -0.228595 -0.178407 -0.615876 -0.767377 +0.131168 -0.009566 -0.232562 -0.181047 -0.572193 -0.799886 +0.131228 -0.003045 -0.235917 -0.192246 -0.542841 -0.817536 +0.131274 0.003491 -0.238826 -0.205753 -0.499841 -0.841323 +0.131334 0.009998 -0.242038 -0.218977 -0.477262 -0.851040 +0.131387 0.016489 -0.245499 -0.231754 -0.437046 -0.869069 +0.131455 0.022950 -0.249375 -0.239012 -0.395286 -0.886917 +0.131523 0.029403 -0.253222 -0.240892 -0.353364 -0.903938 +0.131576 0.035849 -0.256758 -0.238299 -0.311389 -0.919919 +0.131629 0.042317 -0.259682 -0.225385 -0.254919 -0.940329 +0.131667 0.048793 -0.262040 -0.216021 -0.199873 -0.955712 +0.131697 0.055299 -0.263612 -0.207799 -0.145692 -0.967261 +0.131712 0.061828 -0.264542 -0.199722 -0.092428 -0.975484 +0.131712 0.068395 -0.264572 -0.204449 -0.054872 -0.977338 +0.131704 0.074999 -0.264073 -0.207442 -0.021728 -0.978006 +0.131682 0.081627 -0.263000 -0.215186 -0.002032 -0.976571 +0.131659 0.088284 -0.261428 -0.225109 0.005408 -0.974319 +0.131636 0.094941 -0.260023 -0.240101 0.002169 -0.970746 +0.131629 0.101553 -0.259464 -0.256118 -0.007071 -0.966620 +0.131629 0.108112 -0.259879 -0.272603 -0.018990 -0.961939 +0.131659 0.114581 -0.261670 -0.288700 -0.030358 -0.956938 +0.131689 0.121057 -0.263340 -0.294201 -0.038616 -0.954963 +0.131719 0.127525 -0.264927 -0.302369 -0.034781 -0.952556 +0.131727 0.134047 -0.265652 -0.307707 -0.024575 -0.951164 +0.131742 0.140576 -0.266287 -0.309919 -0.007648 -0.950732 +0.131742 0.147127 -0.266544 -0.310521 0.017539 -0.950405 +0.131735 0.153732 -0.266038 -0.308332 0.045822 -0.950175 +0.131719 0.160359 -0.265259 -0.304594 0.070162 -0.949895 +0.131704 0.167016 -0.264179 -0.297379 0.088213 -0.950675 +0.131689 0.173673 -0.263083 -0.289354 0.096813 -0.952314 +0.131667 0.180338 -0.261927 -0.279463 0.094671 -0.955478 +0.131644 0.187026 -0.260484 -0.274407 0.087152 -0.957656 +0.131621 0.193721 -0.259056 -0.265918 0.081820 -0.960517 +0.131598 0.200416 -0.257756 -0.253628 0.082147 -0.963807 +0.131598 0.206998 -0.257725 -0.238748 0.089049 -0.966990 +0.131598 0.213572 -0.257899 -0.219483 0.103133 -0.970150 +0.131614 0.220086 -0.258640 -0.198246 0.126272 -0.971985 +0.131621 0.226638 -0.259040 -0.180924 0.150432 -0.971924 +0.131614 0.233250 -0.258685 -0.164203 0.174699 -0.970833 +0.131583 0.239998 -0.256947 -0.159110 0.204443 -0.965861 +0.131538 0.246821 -0.254469 -0.163739 0.224729 -0.960566 +0.131485 0.253728 -0.251181 -0.179019 0.238698 -0.954450 +0.131425 0.260680 -0.247615 -0.197947 0.250090 -0.947772 +0.131364 0.267625 -0.244161 -0.217602 0.251729 -0.943017 +0.131326 0.274478 -0.241759 -0.239809 0.247223 -0.938815 +0.131296 0.281287 -0.239945 -0.261341 0.239210 -0.935136 +0.131274 0.288058 -0.238471 -0.273778 0.241105 -0.931082 +0.131266 0.294700 -0.238222 -0.282110 0.252736 -0.925494 +0.131251 0.301410 -0.237345 -0.285402 0.263087 -0.921591 +0.131243 0.308113 -0.236642 -0.286177 0.294458 -0.911810 +0.131221 0.314868 -0.235426 -0.283964 0.329747 -0.900350 +0.131190 0.321700 -0.233635 -0.281516 0.370610 -0.885097 +0.131130 0.328720 -0.230204 -0.270703 0.422602 -0.864944 +0.131054 0.335883 -0.225708 -0.271618 0.482687 -0.832609 +0.130971 0.343123 -0.220721 -0.267395 0.550724 -0.790698 +0.130873 0.350498 -0.214743 -0.273609 0.626300 -0.729991 +0.130729 0.358198 -0.206303 -0.319827 0.635116 -0.703092 +0.130518 0.366420 -0.193963 -0.362713 0.568358 -0.738518 +0.130284 0.374891 -0.179953 -0.391828 0.400833 -0.828133 +0.130216 0.382145 -0.175797 -0.405465 0.263685 -0.875253 +0.130208 0.388893 -0.175585 -0.397397 0.184201 -0.898969 +0.130231 0.395452 -0.176893 -0.391104 0.108034 -0.913984 +0.130246 0.402072 -0.177686 -0.374163 0.067603 -0.924896 +0.130246 0.408782 -0.177777 -0.367154 0.022143 -0.929897 +0.130246 0.415507 -0.177709 -0.358223 -0.000227 -0.933636 +0.130246 0.422233 -0.177739 -0.354577 -0.020841 -0.934794 +0.130261 0.428845 -0.178495 -0.346176 -0.014260 -0.938061 +0.130269 0.435487 -0.179054 -0.343981 -0.002028 -0.938975 +0.130185 0.442915 -0.174164 -0.342332 0.023802 -0.939277 +0.129928 -0.642303 0.286818 0.267008 0.137019 -0.953904 +0.130012 -0.634104 0.281188 0.266086 0.174220 -0.948075 +0.130042 -0.626343 0.279133 0.284893 0.193480 -0.938830 +0.130027 -0.618953 0.280191 0.294100 0.202264 -0.934128 +0.129996 -0.611653 0.282073 0.294402 0.210168 -0.932286 +0.129959 -0.604414 0.284559 0.288858 0.194000 -0.937510 +0.129921 -0.597213 0.287476 0.279547 0.173743 -0.944281 +0.129868 -0.590011 0.290506 0.263969 0.145174 -0.953543 +0.129830 -0.582787 0.293392 0.256410 0.111292 -0.960139 +0.129800 -0.575442 0.295266 0.234920 0.056091 -0.970395 +0.129792 -0.567969 0.295878 0.199230 -0.003155 -0.979948 +0.129800 -0.560382 0.295455 0.153640 -0.105021 -0.982530 +0.129830 -0.552621 0.293256 0.105516 -0.201539 -0.973780 +0.129868 -0.544823 0.290627 0.057079 -0.316038 -0.947028 +0.129928 -0.536911 0.286697 0.002328 -0.420989 -0.907063 +0.130027 -0.528788 0.280433 -0.055624 -0.536151 -0.842288 +0.130148 -0.520528 0.272491 -0.110169 -0.665889 -0.737871 +0.130337 -0.511891 0.260053 -0.118956 -0.595398 -0.794576 +0.130571 -0.502997 0.244267 -0.113872 -0.454462 -0.883457 +0.130699 -0.494798 0.235781 -0.090589 -0.233777 -0.968061 +0.130661 -0.487566 0.238206 -0.066410 -0.048205 -0.996627 +0.130609 -0.480418 0.241652 -0.022279 0.144718 -0.989222 +0.130533 -0.473405 0.246934 0.009011 0.362888 -0.931789 +0.130435 -0.466468 0.253448 0.032283 0.415788 -0.908888 +0.130269 -0.459849 0.264133 0.082273 0.588414 -0.804363 +0.134402 -0.255828 -0.008645 -0.405952 -0.867693 -0.286900 +0.134712 -0.248151 -0.029070 -0.410274 -0.836005 -0.364378 +0.134961 -0.240670 -0.045211 -0.404246 -0.811206 -0.422528 +0.135158 -0.233347 -0.058178 -0.401178 -0.777737 -0.483923 +0.135354 -0.226055 -0.071372 -0.396876 -0.746467 -0.534113 +0.135520 -0.218877 -0.081997 -0.395072 -0.712973 -0.579300 +0.135656 -0.211766 -0.091405 -0.395969 -0.682089 -0.614788 +0.135762 -0.204746 -0.098100 -0.399700 -0.655902 -0.640337 +0.135860 -0.197748 -0.104636 -0.404312 -0.628453 -0.664514 +0.135966 -0.190774 -0.111482 -0.403348 -0.601072 -0.689944 +0.136057 -0.183837 -0.117573 -0.407342 -0.568570 -0.714703 +0.136140 -0.176922 -0.123021 -0.410334 -0.540214 -0.734708 +0.136216 -0.170038 -0.127888 -0.416275 -0.502445 -0.757802 +0.136276 -0.163184 -0.132029 -0.417449 -0.465126 -0.780637 +0.136336 -0.156338 -0.136163 -0.414688 -0.423395 -0.805463 +0.136397 -0.149515 -0.140130 -0.412106 -0.382758 -0.826840 +0.136450 -0.142706 -0.143583 -0.399593 -0.333996 -0.853681 +0.136495 -0.135905 -0.146424 -0.387159 -0.292557 -0.874367 +0.136525 -0.129127 -0.148555 -0.374008 -0.257375 -0.890997 +0.136541 -0.122349 -0.149485 -0.364001 -0.235315 -0.901183 +0.136548 -0.115578 -0.150059 -0.355778 -0.220082 -0.908288 +0.136556 -0.108807 -0.150679 -0.358981 -0.215664 -0.908087 +0.136563 -0.102044 -0.151283 -0.359603 -0.211503 -0.908819 +0.136578 -0.095281 -0.152084 -0.377055 -0.221435 -0.899331 +0.136586 -0.088518 -0.152779 -0.382781 -0.259838 -0.886546 +0.136616 -0.081762 -0.154518 -0.389730 -0.287378 -0.874942 +0.136654 -0.075029 -0.156890 -0.424580 -0.390744 -0.816731 +0.136699 -0.068311 -0.160026 -0.426271 -0.475206 -0.769722 +0.136752 -0.061601 -0.163510 -0.426256 -0.572863 -0.700096 +0.136828 -0.054936 -0.168384 -0.404417 -0.642288 -0.651087 +0.136994 -0.048400 -0.179696 -0.348215 -0.740544 -0.574753 +0.137198 -0.041931 -0.192723 -0.304620 -0.775012 -0.553681 +0.137372 -0.035478 -0.204255 -0.256450 -0.746804 -0.613609 +0.137523 -0.029040 -0.214471 -0.226287 -0.686987 -0.690538 +0.137644 -0.022571 -0.222255 -0.203107 -0.639597 -0.741393 +0.137750 -0.016103 -0.229109 -0.189936 -0.610949 -0.768548 +0.137810 -0.009589 -0.233325 -0.187302 -0.577386 -0.794697 +0.137863 -0.003068 -0.236778 -0.192872 -0.549620 -0.812846 +0.137908 0.003454 -0.240028 -0.200866 -0.505990 -0.838825 +0.137969 0.009945 -0.243602 -0.209972 -0.483458 -0.849812 +0.138022 0.016421 -0.247388 -0.215305 -0.437851 -0.872887 +0.138090 0.022866 -0.251612 -0.220690 -0.397089 -0.890852 +0.138143 0.029320 -0.255398 -0.217159 -0.349128 -0.911565 +0.138195 0.035773 -0.258768 -0.211065 -0.298848 -0.930667 +0.138233 0.042242 -0.261413 -0.194995 -0.240986 -0.950738 +0.138263 0.048733 -0.263469 -0.182765 -0.188515 -0.964914 +0.138286 0.055246 -0.264746 -0.172836 -0.136559 -0.975438 +0.138301 0.061783 -0.265524 -0.169874 -0.091048 -0.981251 +0.138294 0.068357 -0.265448 -0.174621 -0.057477 -0.982957 +0.138294 0.074947 -0.265032 -0.179100 -0.026832 -0.983465 +0.138271 0.081574 -0.263937 -0.191233 -0.015517 -0.981422 +0.138256 0.088223 -0.262622 -0.205354 -0.011866 -0.978616 +0.138241 0.094851 -0.261609 -0.225540 -0.015983 -0.974103 +0.138233 0.101440 -0.261481 -0.244060 -0.025032 -0.969437 +0.138248 0.107969 -0.262252 -0.259426 -0.037778 -0.965024 +0.138271 0.114452 -0.263839 -0.272483 -0.049461 -0.960888 +0.138294 0.120936 -0.265222 -0.282531 -0.049237 -0.957994 +0.138309 0.127442 -0.266272 -0.285405 -0.040536 -0.957549 +0.138316 0.133971 -0.266831 -0.283485 -0.027095 -0.958594 +0.138324 0.140515 -0.267247 -0.282791 -0.004917 -0.959169 +0.138324 0.147074 -0.267330 -0.278302 0.021558 -0.960252 +0.138324 0.153664 -0.267073 -0.271849 0.049653 -0.961058 +0.138309 0.160283 -0.266340 -0.265659 0.077002 -0.960987 +0.138301 0.166910 -0.265501 -0.258948 0.096201 -0.961088 +0.138279 0.173568 -0.264375 -0.251239 0.105214 -0.962190 +0.138263 0.180217 -0.263393 -0.246138 0.104545 -0.963580 +0.138248 0.186882 -0.262327 -0.238324 0.099653 -0.966060 +0.138233 0.193532 -0.261367 -0.230446 0.097134 -0.968225 +0.138218 0.200227 -0.260030 -0.218847 0.100218 -0.970599 +0.138211 0.206839 -0.259637 -0.202519 0.108818 -0.973214 +0.138203 0.213436 -0.259464 -0.183514 0.123677 -0.975206 +0.138218 0.219958 -0.260098 -0.167478 0.144546 -0.975222 +0.138218 0.226539 -0.260136 -0.149653 0.165989 -0.974706 +0.138218 0.233129 -0.259992 -0.134853 0.184779 -0.973484 +0.138180 0.239899 -0.257990 -0.132007 0.200830 -0.970691 +0.138143 0.246738 -0.255307 -0.136704 0.219746 -0.965932 +0.138097 0.253637 -0.252126 -0.147321 0.226926 -0.962705 +0.138044 0.260544 -0.248990 -0.165732 0.236704 -0.957342 +0.137999 0.267466 -0.245786 -0.185630 0.237745 -0.953425 +0.137976 0.274199 -0.244501 -0.205367 0.233753 -0.950360 +0.137954 0.280992 -0.242733 -0.224456 0.229209 -0.947145 +0.137938 0.287725 -0.241562 -0.239991 0.232793 -0.942450 +0.137908 0.294519 -0.239899 -0.251527 0.246515 -0.935930 +0.137886 0.301327 -0.238162 -0.256327 0.262062 -0.930387 +0.137863 0.308090 -0.236801 -0.253613 0.294350 -0.921433 +0.137848 0.314831 -0.235736 -0.249911 0.337065 -0.907707 +0.137825 0.321624 -0.234277 -0.242944 0.375601 -0.894372 +0.137780 0.328599 -0.231292 -0.237388 0.432615 -0.869765 +0.137727 0.335657 -0.227627 -0.228287 0.486643 -0.843246 +0.137659 0.342805 -0.223388 -0.228107 0.552838 -0.801460 +0.137576 0.350143 -0.217698 -0.225143 0.618280 -0.753021 +0.137470 0.357639 -0.210822 -0.257646 0.630075 -0.732546 +0.137319 0.365573 -0.200726 -0.310567 0.591321 -0.744236 +0.137085 0.374173 -0.185628 -0.375578 0.447483 -0.811604 +0.136986 0.381737 -0.178963 -0.396868 0.296163 -0.868782 +0.136971 0.388583 -0.178003 -0.398846 0.203172 -0.894228 +0.136994 0.395089 -0.179605 -0.400645 0.137194 -0.905903 +0.137009 0.401686 -0.180520 -0.387717 0.101887 -0.916130 +0.137009 0.408442 -0.180285 -0.379670 0.043139 -0.924116 +0.137001 0.415167 -0.180210 -0.371702 0.020837 -0.928118 +0.137009 0.421862 -0.180368 -0.364041 0.001915 -0.931381 +0.137024 0.428437 -0.181388 -0.353759 0.000293 -0.935337 +0.137039 0.435033 -0.182242 -0.351719 0.011928 -0.936030 +0.136979 0.442310 -0.178343 -0.348223 0.037025 -0.936680 +0.137493 -0.641940 0.283841 0.279697 0.161615 -0.946388 +0.137546 -0.633983 0.280138 0.291483 0.179967 -0.939494 +0.137538 -0.626555 0.280901 0.299387 0.207845 -0.931219 +0.137508 -0.619263 0.282881 0.301429 0.209383 -0.930215 +0.137478 -0.612008 0.285216 0.296986 0.198743 -0.933970 +0.137440 -0.604769 0.287725 0.287626 0.188736 -0.938962 +0.137402 -0.597568 0.290717 0.273254 0.162331 -0.948146 +0.137364 -0.590344 0.293551 0.259250 0.129680 -0.957065 +0.137334 -0.583044 0.295765 0.242076 0.088643 -0.966199 +0.137319 -0.575616 0.296899 0.212915 0.015903 -0.976941 +0.137319 -0.568082 0.296959 0.174049 -0.046061 -0.983659 +0.137326 -0.560450 0.296120 0.121070 -0.156289 -0.980263 +0.137364 -0.552651 0.293612 0.066511 -0.240092 -0.968469 +0.137410 -0.544785 0.290226 0.029472 -0.361105 -0.932059 +0.137470 -0.536798 0.285586 -0.028790 -0.448740 -0.893198 +0.137561 -0.528652 0.278990 -0.076946 -0.579972 -0.810994 +0.137674 -0.520355 0.270579 -0.110881 -0.664409 -0.739098 +0.137855 -0.511612 0.257000 -0.112601 -0.595223 -0.795632 +0.138044 -0.502869 0.242861 -0.095305 -0.435369 -0.895193 +0.138143 -0.494775 0.235516 -0.057062 -0.164824 -0.984671 +0.138112 -0.487559 0.238116 -0.023438 -0.011474 -0.999659 +0.138052 -0.480456 0.242159 -0.011458 0.125071 -0.992082 +0.137984 -0.473458 0.247629 0.013597 0.336013 -0.941759 +0.137863 -0.466710 0.256425 0.050530 0.457755 -0.887642 +0.137666 -0.460393 0.270949 0.118370 0.646893 -0.753338 +0.141566 -0.255451 -0.019693 -0.375762 -0.868420 -0.323496 +0.141823 -0.247833 -0.038796 -0.387650 -0.826969 -0.407246 +0.142019 -0.240436 -0.053063 -0.376281 -0.806743 -0.455608 +0.142163 -0.233174 -0.063990 -0.378195 -0.776723 -0.503656 +0.142321 -0.225942 -0.075475 -0.377063 -0.742431 -0.553732 +0.142465 -0.218771 -0.086191 -0.373704 -0.712689 -0.593649 +0.142586 -0.211668 -0.095379 -0.371712 -0.684173 -0.627486 +0.142684 -0.204640 -0.102861 -0.372050 -0.652886 -0.659786 +0.142775 -0.197650 -0.109699 -0.372311 -0.625494 -0.685669 +0.142865 -0.190690 -0.116017 -0.372577 -0.598945 -0.708838 +0.142941 -0.183761 -0.121661 -0.375478 -0.571542 -0.729628 +0.143001 -0.176869 -0.126558 -0.378194 -0.539400 -0.752341 +0.143062 -0.170001 -0.131001 -0.380984 -0.506343 -0.773607 +0.143115 -0.163147 -0.135044 -0.385317 -0.466399 -0.796243 +0.143168 -0.156316 -0.138754 -0.382851 -0.423122 -0.821214 +0.143221 -0.149492 -0.142457 -0.378421 -0.375578 -0.846014 +0.143266 -0.142683 -0.146182 -0.368882 -0.326652 -0.870186 +0.143311 -0.135890 -0.149394 -0.360906 -0.283492 -0.888470 +0.143341 -0.129112 -0.151767 -0.349051 -0.245021 -0.904504 +0.143357 -0.122341 -0.152991 -0.339705 -0.222530 -0.913827 +0.143364 -0.115578 -0.153490 -0.337979 -0.218652 -0.915402 +0.143364 -0.108815 -0.153354 -0.341235 -0.217530 -0.914461 +0.143364 -0.102052 -0.153588 -0.351098 -0.223115 -0.909368 +0.143372 -0.095288 -0.154011 -0.361727 -0.234032 -0.902431 +0.143387 -0.088533 -0.154858 -0.373521 -0.262257 -0.889777 +0.143402 -0.081785 -0.156459 -0.411645 -0.325027 -0.851414 +0.143440 -0.075052 -0.158953 -0.417935 -0.399990 -0.815683 +0.143493 -0.068342 -0.162973 -0.436214 -0.490342 -0.754508 +0.143553 -0.061662 -0.167379 -0.440529 -0.584842 -0.681098 +0.143651 -0.055042 -0.174814 -0.411400 -0.674060 -0.613508 +0.143795 -0.048498 -0.185424 -0.382717 -0.729152 -0.567331 +0.143938 -0.041999 -0.196351 -0.344644 -0.741895 -0.575162 +0.144067 -0.035508 -0.205759 -0.294695 -0.718179 -0.630376 +0.144188 -0.029047 -0.214940 -0.258602 -0.665504 -0.700164 +0.144294 -0.022579 -0.222489 -0.229223 -0.631485 -0.740732 +0.144384 -0.016118 -0.229434 -0.205846 -0.597315 -0.775140 +0.144445 -0.009612 -0.234051 -0.196556 -0.575393 -0.793907 +0.144498 -0.003106 -0.238108 -0.192670 -0.550197 -0.812503 +0.144551 0.003393 -0.241804 -0.194059 -0.513110 -0.836098 +0.144603 0.009869 -0.245816 -0.196582 -0.481935 -0.853870 +0.144656 0.016338 -0.249829 -0.201081 -0.438317 -0.876039 +0.144717 0.022783 -0.253909 -0.198832 -0.390542 -0.898856 +0.144762 0.029237 -0.257552 -0.193801 -0.342045 -0.919482 +0.144807 0.035690 -0.260771 -0.178242 -0.282112 -0.942679 +0.144830 0.042181 -0.262917 -0.164370 -0.227710 -0.959755 +0.144853 0.048680 -0.264602 -0.152681 -0.177694 -0.972169 +0.144868 0.055209 -0.265569 -0.146061 -0.131292 -0.980525 +0.144875 0.061745 -0.266242 -0.146287 -0.091803 -0.984973 +0.144875 0.068327 -0.266008 -0.147227 -0.059849 -0.987290 +0.144868 0.074924 -0.265441 -0.156409 -0.039578 -0.986899 +0.144853 0.081551 -0.264451 -0.171910 -0.032877 -0.984564 +0.144845 0.088171 -0.263506 -0.188667 -0.033112 -0.981483 +0.144838 0.094775 -0.263023 -0.208736 -0.039473 -0.977175 +0.144838 0.101342 -0.263204 -0.228812 -0.048745 -0.972250 +0.144853 0.107863 -0.264096 -0.243662 -0.057610 -0.968148 +0.144868 0.114369 -0.265168 -0.257979 -0.060651 -0.964245 +0.144875 0.120876 -0.266242 -0.266163 -0.055719 -0.962316 +0.144891 0.127397 -0.266914 -0.267541 -0.042154 -0.962624 +0.144891 0.133933 -0.267375 -0.264871 -0.022944 -0.964011 +0.144891 0.140500 -0.267405 -0.259007 0.001989 -0.965873 +0.144891 0.147074 -0.267352 -0.249534 0.029912 -0.967904 +0.144891 0.153648 -0.267239 -0.243235 0.058846 -0.968181 +0.144883 0.160253 -0.266710 -0.233638 0.084050 -0.968684 +0.144875 0.166865 -0.266189 -0.227594 0.101784 -0.968422 +0.144868 0.173485 -0.265546 -0.221918 0.110019 -0.968839 +0.144860 0.180119 -0.264678 -0.214367 0.113159 -0.970176 +0.144845 0.186761 -0.263816 -0.209795 0.112200 -0.971286 +0.144838 0.193404 -0.262932 -0.205296 0.109793 -0.972522 +0.144815 0.200091 -0.261587 -0.192605 0.113198 -0.974725 +0.144807 0.206734 -0.260869 -0.175308 0.123459 -0.976742 +0.144807 0.213323 -0.260725 -0.156990 0.139792 -0.977656 +0.144807 0.219905 -0.260733 -0.137503 0.160292 -0.977445 +0.144807 0.226479 -0.260756 -0.122747 0.179209 -0.976124 +0.144800 0.233083 -0.260499 -0.111898 0.192075 -0.974980 +0.144770 0.239869 -0.258322 -0.109723 0.204115 -0.972778 +0.144732 0.246746 -0.255224 -0.116105 0.210424 -0.970691 +0.144679 0.253720 -0.251287 -0.120571 0.219414 -0.968153 +0.144649 0.260552 -0.248899 -0.134780 0.223163 -0.965418 +0.144619 0.267330 -0.247123 -0.153604 0.223381 -0.962552 +0.144611 0.274017 -0.246254 -0.170794 0.219818 -0.960474 +0.144603 0.280660 -0.245937 -0.184569 0.217583 -0.958432 +0.144596 0.287317 -0.245401 -0.199441 0.220273 -0.954831 +0.144581 0.294080 -0.243965 -0.205884 0.231367 -0.950832 +0.144551 0.300911 -0.241925 -0.211496 0.257172 -0.942938 +0.144528 0.307735 -0.240035 -0.209057 0.298175 -0.931336 +0.144505 0.314559 -0.238154 -0.205498 0.341337 -0.917202 +0.144467 0.321443 -0.235826 -0.203510 0.384562 -0.900386 +0.144430 0.328433 -0.232668 -0.190161 0.439146 -0.878060 +0.144377 0.335490 -0.229025 -0.182297 0.502409 -0.845194 +0.144324 0.342601 -0.225088 -0.176023 0.554120 -0.813613 +0.144256 0.349886 -0.219784 -0.181330 0.610623 -0.770882 +0.144173 0.357284 -0.213731 -0.205284 0.619603 -0.757595 +0.144067 0.364923 -0.205872 -0.258598 0.585426 -0.768377 +0.143878 0.373379 -0.191877 -0.345545 0.464864 -0.815169 +0.143765 0.381162 -0.183421 -0.378363 0.327810 -0.865669 +0.143742 0.388137 -0.181434 -0.401023 0.221634 -0.888853 +0.143757 0.394719 -0.182432 -0.399881 0.154736 -0.903411 +0.143765 0.401308 -0.183391 -0.389093 0.112992 -0.914243 +0.143765 0.408041 -0.183195 -0.387787 0.062124 -0.919653 +0.143765 0.414767 -0.183157 -0.378172 0.030523 -0.925232 +0.143765 0.421469 -0.183225 -0.369521 0.023489 -0.928925 +0.143772 0.428059 -0.184064 -0.358681 0.020575 -0.933234 +0.143780 0.434761 -0.184147 -0.356298 0.032182 -0.933818 +0.143742 0.441850 -0.181540 -0.348409 0.055727 -0.935685 +0.144996 -0.649655 0.285397 0.274741 0.147627 -0.950118 +0.145034 -0.641789 0.282556 0.282611 0.169191 -0.944196 +0.145042 -0.634180 0.281815 0.295048 0.192640 -0.935862 +0.145019 -0.626880 0.283690 0.298813 0.199095 -0.933312 +0.144996 -0.619610 0.285881 0.294287 0.204712 -0.933535 +0.144966 -0.612364 0.288299 0.287750 0.191421 -0.938380 +0.144936 -0.605147 0.291087 0.274441 0.176331 -0.945298 +0.144898 -0.597946 0.294110 0.260561 0.145917 -0.954367 +0.144868 -0.590684 0.296709 0.249325 0.116158 -0.961428 +0.144853 -0.583278 0.297972 0.222708 0.055931 -0.973279 +0.144845 -0.575775 0.298364 0.188390 -0.012904 -0.982009 +0.144853 -0.568165 0.297760 0.144286 -0.093911 -0.985070 +0.144868 -0.560472 0.296385 0.090617 -0.208222 -0.973875 +0.144906 -0.552659 0.293626 0.043645 -0.297056 -0.953862 +0.144943 -0.544747 0.289856 0.002392 -0.412063 -0.911152 +0.145011 -0.536699 0.284566 -0.046151 -0.491671 -0.869557 +0.145087 -0.528546 0.277864 -0.086425 -0.619644 -0.780110 +0.145193 -0.520173 0.268675 -0.104101 -0.646112 -0.756110 +0.145351 -0.511445 0.255186 -0.086586 -0.580989 -0.809293 +0.145510 -0.502755 0.241547 -0.084324 -0.468096 -0.879645 +0.145578 -0.494806 0.235902 -0.033307 -0.147968 -0.988431 +0.145540 -0.487619 0.238803 -0.011352 -0.028944 -0.999517 +0.145495 -0.480516 0.242824 0.004822 0.137490 -0.990491 +0.145427 -0.473557 0.248823 0.041196 0.277424 -0.959864 +0.145306 -0.466914 0.258881 0.062989 0.458489 -0.886465 +0.148344 -0.263128 -0.000756 -0.359755 -0.897348 -0.255621 +0.148669 -0.255148 -0.028534 -0.359687 -0.864575 -0.350907 +0.148873 -0.247592 -0.046277 -0.361769 -0.828121 -0.428181 +0.149024 -0.240247 -0.059009 -0.355827 -0.803319 -0.477563 +0.149145 -0.233023 -0.069226 -0.362184 -0.769145 -0.526535 +0.149251 -0.225866 -0.078181 -0.355917 -0.744108 -0.565356 +0.149387 -0.218673 -0.089976 -0.354367 -0.707299 -0.611680 +0.149493 -0.211592 -0.098765 -0.353498 -0.681174 -0.641125 +0.149576 -0.204564 -0.106118 -0.351636 -0.651747 -0.671995 +0.149659 -0.197582 -0.112964 -0.347147 -0.627427 -0.697011 +0.149734 -0.190630 -0.119356 -0.348768 -0.599643 -0.720270 +0.149795 -0.183716 -0.124737 -0.348941 -0.572159 -0.742209 +0.149848 -0.176824 -0.129543 -0.351851 -0.543137 -0.762367 +0.149901 -0.169955 -0.134024 -0.348967 -0.508089 -0.787444 +0.149946 -0.163116 -0.138006 -0.348441 -0.464403 -0.814198 +0.149991 -0.156285 -0.141490 -0.349318 -0.420270 -0.837466 +0.150029 -0.149477 -0.144936 -0.347933 -0.369933 -0.861448 +0.150067 -0.142668 -0.148359 -0.339515 -0.320256 -0.884401 +0.150105 -0.135882 -0.151487 -0.330902 -0.272492 -0.903467 +0.150142 -0.129104 -0.154246 -0.324903 -0.238400 -0.915207 +0.150157 -0.122341 -0.155621 -0.321094 -0.218449 -0.921509 +0.150157 -0.115578 -0.156014 -0.325045 -0.219069 -0.919975 +0.150157 -0.108822 -0.155946 -0.329299 -0.228659 -0.916121 +0.150157 -0.102059 -0.155983 -0.335010 -0.236101 -0.912154 +0.150165 -0.095304 -0.156270 -0.365479 -0.261300 -0.893391 +0.150173 -0.088548 -0.156958 -0.382089 -0.299854 -0.874126 +0.150195 -0.081807 -0.158878 -0.403230 -0.339906 -0.849629 +0.150226 -0.075082 -0.161802 -0.440621 -0.443309 -0.780597 +0.150294 -0.068402 -0.167613 -0.454580 -0.528830 -0.716726 +0.150377 -0.061767 -0.174875 -0.469214 -0.606140 -0.642208 +0.150490 -0.055186 -0.184086 -0.449923 -0.674212 -0.585668 +0.150603 -0.048649 -0.193978 -0.417610 -0.705514 -0.572584 +0.150694 -0.042113 -0.201867 -0.375465 -0.702429 -0.604665 +0.150770 -0.035569 -0.208351 -0.329610 -0.673964 -0.661158 +0.150860 -0.029078 -0.216142 -0.287232 -0.635799 -0.716420 +0.150943 -0.022586 -0.222950 -0.242387 -0.607504 -0.756431 +0.151019 -0.016126 -0.229720 -0.222872 -0.585882 -0.779147 +0.151079 -0.009634 -0.234851 -0.205547 -0.567686 -0.797172 +0.151140 -0.003158 -0.239710 -0.193864 -0.545013 -0.815707 +0.151193 0.003318 -0.244199 -0.187907 -0.510054 -0.839366 +0.151238 0.009786 -0.248469 -0.185279 -0.473905 -0.860864 +0.151291 0.016239 -0.252662 -0.182956 -0.431720 -0.883258 +0.151336 0.022685 -0.256645 -0.178094 -0.383315 -0.906285 +0.151374 0.029138 -0.259962 -0.163009 -0.324602 -0.931698 +0.151404 0.035614 -0.262667 -0.150963 -0.267997 -0.951519 +0.151427 0.042113 -0.264405 -0.135763 -0.213311 -0.967505 +0.151442 0.048642 -0.265554 -0.125302 -0.166195 -0.978100 +0.151450 0.055171 -0.266317 -0.122538 -0.126887 -0.984319 +0.151450 0.061730 -0.266529 -0.122534 -0.094612 -0.987944 +0.151450 0.068312 -0.266378 -0.126176 -0.068473 -0.989642 +0.151442 0.074901 -0.265879 -0.139637 -0.057430 -0.988536 +0.151435 0.081521 -0.264980 -0.157061 -0.053025 -0.986164 +0.151419 0.088140 -0.264103 -0.176274 -0.055767 -0.982760 +0.151419 0.094737 -0.263748 -0.196361 -0.061112 -0.978625 +0.151427 0.101274 -0.264322 -0.216822 -0.067764 -0.973856 +0.151435 0.107788 -0.265358 -0.235927 -0.072914 -0.969031 +0.151450 0.114294 -0.266385 -0.247452 -0.069176 -0.966427 +0.151457 0.120823 -0.267035 -0.253519 -0.057034 -0.965648 +0.151465 0.127352 -0.267617 -0.251332 -0.039830 -0.967081 +0.151472 0.133896 -0.268033 -0.244920 -0.015063 -0.969426 +0.151465 0.140470 -0.267829 -0.233789 0.012532 -0.972207 +0.151465 0.147059 -0.267587 -0.221473 0.042378 -0.974245 +0.151457 0.153648 -0.267284 -0.210432 0.070279 -0.975079 +0.151450 0.160268 -0.266491 -0.200079 0.092860 -0.975369 +0.151450 0.166873 -0.266098 -0.195648 0.107519 -0.974762 +0.151442 0.173447 -0.265962 -0.191255 0.114323 -0.974860 +0.151442 0.180051 -0.265554 -0.184329 0.118931 -0.975643 +0.151435 0.186671 -0.264964 -0.178217 0.120191 -0.976623 +0.151427 0.193298 -0.264262 -0.172170 0.121790 -0.977509 +0.151412 0.199986 -0.262879 -0.161396 0.129416 -0.978367 +0.151397 0.206666 -0.261677 -0.145544 0.141094 -0.979239 +0.151382 0.213346 -0.260521 -0.128643 0.156578 -0.979252 +0.151374 0.219950 -0.260212 -0.113233 0.173223 -0.978352 +0.151374 0.226547 -0.260000 -0.104068 0.185261 -0.977163 +0.151374 0.233167 -0.259607 -0.096156 0.196840 -0.975709 +0.151344 0.239960 -0.257363 -0.089873 0.201699 -0.975316 +0.151306 0.246844 -0.254197 -0.092960 0.205106 -0.974315 +0.151268 0.253758 -0.250879 -0.101562 0.214996 -0.971320 +0.151246 0.260529 -0.249126 -0.108670 0.212879 -0.971017 +0.151238 0.267194 -0.248453 -0.122414 0.209926 -0.970024 +0.151238 0.273776 -0.248612 -0.136704 0.206977 -0.968748 +0.151246 0.280357 -0.248809 -0.146656 0.206879 -0.967312 +0.151246 0.286962 -0.248801 -0.157822 0.207971 -0.965319 +0.151238 0.293634 -0.248098 -0.159342 0.225125 -0.961212 +0.151215 0.300398 -0.246625 -0.161514 0.256307 -0.953006 +0.151193 0.307251 -0.244358 -0.161097 0.290402 -0.943247 +0.151155 0.314196 -0.241365 -0.151626 0.340010 -0.928118 +0.151117 0.321231 -0.237723 -0.144094 0.388166 -0.910255 +0.151072 0.328266 -0.234103 -0.134344 0.446693 -0.884544 +0.151027 0.335347 -0.230257 -0.122415 0.503353 -0.855366 +0.150981 0.342435 -0.226456 -0.124024 0.550913 -0.825296 +0.150921 0.349704 -0.221310 -0.131779 0.597148 -0.791232 +0.150853 0.357110 -0.215152 -0.166378 0.598275 -0.783827 +0.150770 0.364636 -0.208177 -0.220218 0.569918 -0.791642 +0.150626 0.372880 -0.195784 -0.301563 0.480284 -0.823643 +0.150513 0.380785 -0.186346 -0.353459 0.342103 -0.870651 +0.150498 0.387676 -0.184955 -0.388345 0.235139 -0.891009 +0.150505 0.394318 -0.185454 -0.395178 0.171391 -0.902474 +0.150513 0.400923 -0.186255 -0.394511 0.116581 -0.911466 +0.150513 0.407633 -0.186255 -0.390634 0.091824 -0.915955 +0.150513 0.414343 -0.186233 -0.383022 0.037471 -0.922979 +0.150513 0.421031 -0.186361 -0.372568 0.045674 -0.926880 +0.150520 0.427681 -0.186792 -0.363506 0.037238 -0.930847 +0.150513 0.434429 -0.186505 -0.360107 0.050752 -0.931529 +0.150505 0.441298 -0.185386 -0.350965 0.075958 -0.933303 +0.152470 -0.657892 0.291125 0.276985 0.147243 -0.949526 +0.152538 -0.649474 0.283879 0.280102 0.163866 -0.945881 +0.152538 -0.641918 0.283637 0.292771 0.184212 -0.938270 +0.152538 -0.634482 0.284332 0.299244 0.194959 -0.934047 +0.152515 -0.627175 0.286206 0.295709 0.197900 -0.934554 +0.152492 -0.619943 0.288715 0.290617 0.188713 -0.938045 +0.152462 -0.612719 0.291443 0.279409 0.181903 -0.942784 +0.152432 -0.605517 0.294405 0.263982 0.162384 -0.950760 +0.152409 -0.598271 0.297050 0.252076 0.129188 -0.959045 +0.152387 -0.590933 0.298999 0.231631 0.085573 -0.969033 +0.152379 -0.583460 0.299680 0.198108 0.011706 -0.980110 +0.152387 -0.575873 0.299309 0.161403 -0.042376 -0.985978 +0.152394 -0.568233 0.298478 0.109024 -0.151164 -0.982478 +0.152417 -0.560472 0.296332 0.064813 -0.247015 -0.966842 +0.152440 -0.552644 0.293490 0.016251 -0.346406 -0.937944 +0.152485 -0.544694 0.289365 -0.018597 -0.453350 -0.891139 +0.152538 -0.536631 0.283795 -0.062411 -0.531151 -0.844975 +0.152613 -0.528402 0.276383 -0.096141 -0.657709 -0.747111 +0.152712 -0.519999 0.266808 -0.085618 -0.631714 -0.770459 +0.152848 -0.511241 0.252957 -0.075728 -0.569541 -0.818467 +0.152969 -0.502665 0.240526 -0.058554 -0.460244 -0.885859 +0.153014 -0.494828 0.236113 -0.010760 -0.098952 -0.995034 +0.152984 -0.487627 0.238902 0.013232 0.042065 -0.999027 +0.152938 -0.480599 0.243798 0.013041 0.114247 -0.993367 +0.152870 -0.473685 0.250350 0.033763 0.237483 -0.970805 +0.152734 -0.467322 0.263914 0.091833 0.459292 -0.883526 +0.155530 -0.262569 -0.016368 -0.337074 -0.888113 -0.312469 +0.155727 -0.254876 -0.036430 -0.342224 -0.857119 -0.385006 +0.155893 -0.247380 -0.052821 -0.342668 -0.822810 -0.453390 +0.155999 -0.240096 -0.063906 -0.336893 -0.797882 -0.499887 +0.156097 -0.232894 -0.073662 -0.342590 -0.767352 -0.542037 +0.156195 -0.225738 -0.083002 -0.340069 -0.739590 -0.580827 +0.156293 -0.218597 -0.092954 -0.342187 -0.704075 -0.622244 +0.156377 -0.211524 -0.101523 -0.340554 -0.675968 -0.653522 +0.156445 -0.204511 -0.108611 -0.336046 -0.649591 -0.681986 +0.156513 -0.197537 -0.115140 -0.336014 -0.626111 -0.703619 +0.156573 -0.190592 -0.121336 -0.333328 -0.596180 -0.730385 +0.156633 -0.183670 -0.127344 -0.330319 -0.571616 -0.751096 +0.156686 -0.176779 -0.132535 -0.326082 -0.539586 -0.776220 +0.156732 -0.169917 -0.137213 -0.321283 -0.501540 -0.803265 +0.156770 -0.163079 -0.141157 -0.320145 -0.453334 -0.831863 +0.156807 -0.156255 -0.144717 -0.318427 -0.416451 -0.851571 +0.156838 -0.149447 -0.147988 -0.313439 -0.362028 -0.877890 +0.156868 -0.142653 -0.150731 -0.306933 -0.312642 -0.898914 +0.156890 -0.135875 -0.153369 -0.306862 -0.268058 -0.913225 +0.156921 -0.129104 -0.156089 -0.305559 -0.236874 -0.922239 +0.156936 -0.122341 -0.157608 -0.309915 -0.224651 -0.923842 +0.156943 -0.115578 -0.158145 -0.313401 -0.225022 -0.922575 +0.156936 -0.108822 -0.157865 -0.328368 -0.237976 -0.914080 +0.156936 -0.102067 -0.157767 -0.343354 -0.258881 -0.902823 +0.156943 -0.095311 -0.158167 -0.355603 -0.280477 -0.891560 +0.156951 -0.088563 -0.159278 -0.382800 -0.325101 -0.864739 +0.156981 -0.081838 -0.162248 -0.427528 -0.393667 -0.813785 +0.157026 -0.075135 -0.166638 -0.464646 -0.485691 -0.740411 +0.157117 -0.068508 -0.175812 -0.486732 -0.573556 -0.658881 +0.157215 -0.061919 -0.185431 -0.484533 -0.640908 -0.595369 +0.157314 -0.055375 -0.195852 -0.465850 -0.674299 -0.572978 +0.157374 -0.048793 -0.201806 -0.428410 -0.675253 -0.600415 +0.157434 -0.042218 -0.207497 -0.382758 -0.649628 -0.656871 +0.157480 -0.035652 -0.212529 -0.344181 -0.625861 -0.699884 +0.157548 -0.029138 -0.218907 -0.294086 -0.598647 -0.745074 +0.157601 -0.022624 -0.224590 -0.259019 -0.580422 -0.772023 +0.157661 -0.016141 -0.230408 -0.230744 -0.567395 -0.790456 +0.157714 -0.009665 -0.235910 -0.207674 -0.550942 -0.808291 +0.157775 -0.003211 -0.241539 -0.190270 -0.532632 -0.824682 +0.157827 0.003234 -0.246874 -0.177436 -0.499130 -0.848166 +0.157865 0.009695 -0.251227 -0.170422 -0.465499 -0.868486 +0.157911 0.016141 -0.255300 -0.162455 -0.422289 -0.891785 +0.157948 0.022594 -0.259033 -0.147904 -0.368667 -0.917720 +0.157979 0.029055 -0.262123 -0.134876 -0.311171 -0.940734 +0.158001 0.035539 -0.264436 -0.119790 -0.249786 -0.960863 +0.158016 0.042038 -0.266219 -0.106572 -0.199606 -0.974064 +0.158024 0.048574 -0.267065 -0.101144 -0.161842 -0.981620 +0.158024 0.055133 -0.267247 -0.098699 -0.124104 -0.987348 +0.158024 0.061707 -0.267020 -0.101460 -0.098341 -0.989967 +0.158016 0.068319 -0.266226 -0.111200 -0.080019 -0.990571 +0.158009 0.074931 -0.265342 -0.127852 -0.074280 -0.989008 +0.158001 0.081543 -0.264617 -0.143941 -0.074324 -0.986791 +0.158001 0.088133 -0.264277 -0.166255 -0.077406 -0.983040 +0.158001 0.094707 -0.264269 -0.188481 -0.083255 -0.978541 +0.158009 0.101206 -0.265509 -0.208743 -0.086897 -0.974102 +0.158024 0.107697 -0.266831 -0.224046 -0.084517 -0.970907 +0.158039 0.114196 -0.268033 -0.235242 -0.075141 -0.969028 +0.158047 0.120694 -0.269121 -0.239878 -0.057679 -0.969088 +0.158054 0.127208 -0.269854 -0.235716 -0.033457 -0.971246 +0.158062 0.133737 -0.270337 -0.225506 -0.004736 -0.974230 +0.158054 0.140319 -0.270141 -0.212456 0.026726 -0.976805 +0.158047 0.146938 -0.269272 -0.197325 0.056510 -0.978708 +0.158039 0.153573 -0.268297 -0.185034 0.081563 -0.979342 +0.158024 0.160230 -0.267020 -0.175830 0.099729 -0.979356 +0.158016 0.166850 -0.266355 -0.168645 0.111808 -0.979315 +0.158016 0.173447 -0.266038 -0.161746 0.119575 -0.979561 +0.158016 0.180013 -0.266076 -0.155596 0.124091 -0.979995 +0.158016 0.186595 -0.265894 -0.151274 0.126045 -0.980423 +0.158009 0.193185 -0.265622 -0.145643 0.131038 -0.980621 +0.158001 0.199850 -0.264488 -0.137108 0.141792 -0.980355 +0.157986 0.206567 -0.262849 -0.124250 0.154327 -0.980176 +0.157963 0.213330 -0.260703 -0.110356 0.168908 -0.979434 +0.157956 0.219995 -0.259720 -0.097092 0.182871 -0.978331 +0.157941 0.226675 -0.258602 -0.086690 0.194309 -0.977102 +0.157926 0.233393 -0.257106 -0.080558 0.201982 -0.976070 +0.157903 0.240194 -0.254869 -0.078042 0.205958 -0.975444 +0.157888 0.246972 -0.252897 -0.076752 0.210330 -0.974613 +0.157873 0.253705 -0.251400 -0.079771 0.206828 -0.975120 +0.157858 0.260393 -0.250486 -0.084703 0.202621 -0.975587 +0.157858 0.266982 -0.250554 -0.095568 0.199105 -0.975307 +0.157865 0.273534 -0.251022 -0.106496 0.196380 -0.974727 +0.157873 0.280070 -0.251590 -0.112778 0.197009 -0.973894 +0.157873 0.286614 -0.252043 -0.121192 0.203339 -0.971579 +0.157865 0.293347 -0.250736 -0.120824 0.223421 -0.967205 +0.157843 0.300156 -0.248854 -0.124909 0.251319 -0.959811 +0.157820 0.306994 -0.246647 -0.115098 0.295151 -0.948493 +0.157790 0.313984 -0.243247 -0.105010 0.344782 -0.932791 +0.157752 0.321042 -0.239333 -0.093326 0.394812 -0.914010 +0.157707 0.328191 -0.234783 -0.083050 0.456837 -0.885665 +0.157669 0.335279 -0.230854 -0.074437 0.512445 -0.855488 +0.157631 0.342359 -0.227068 -0.074227 0.551766 -0.830689 +0.157578 0.349599 -0.222141 -0.087287 0.582901 -0.807842 +0.157518 0.356974 -0.216217 -0.129554 0.578572 -0.805277 +0.157442 0.364583 -0.208622 -0.190643 0.552151 -0.811655 +0.157344 0.372540 -0.198474 -0.266342 0.467791 -0.842754 +0.157261 0.380309 -0.190056 -0.327799 0.334337 -0.883610 +0.157246 0.387223 -0.188394 -0.361782 0.260238 -0.895204 +0.157246 0.393903 -0.188636 -0.382276 0.177649 -0.906811 +0.157253 0.400507 -0.189346 -0.391839 0.130734 -0.910698 +0.157253 0.407195 -0.189436 -0.387759 0.104309 -0.915840 +0.157253 0.413913 -0.189338 -0.382846 0.054762 -0.922188 +0.157253 0.420646 -0.189149 -0.373871 0.062072 -0.925401 +0.157253 0.427341 -0.189180 -0.366124 0.054455 -0.928972 +0.157253 0.434021 -0.189331 -0.362656 0.070311 -0.929267 +0.157246 0.440807 -0.188756 -0.352540 0.098312 -0.930618 +0.160034 -0.657363 0.286864 0.286242 0.156279 -0.945327 +0.160057 -0.649557 0.284596 0.294871 0.184322 -0.937591 +0.160049 -0.642167 0.285715 0.302031 0.195548 -0.933026 +0.160034 -0.634807 0.287098 0.301467 0.197392 -0.932821 +0.160019 -0.627515 0.289100 0.295462 0.190430 -0.936183 +0.159996 -0.620298 0.291836 0.285825 0.181260 -0.940983 +0.159974 -0.613089 0.294684 0.269860 0.169293 -0.947901 +0.159951 -0.605865 0.297518 0.254987 0.146057 -0.955850 +0.159936 -0.598527 0.299422 0.241370 0.112746 -0.963861 +0.159921 -0.591099 0.300518 0.205203 0.044067 -0.977727 +0.159921 -0.583558 0.300594 0.168658 -0.015347 -0.985555 +0.159928 -0.575941 0.299959 0.127595 -0.096305 -0.987140 +0.159936 -0.568256 0.298689 0.081163 -0.195960 -0.977247 +0.159958 -0.560488 0.296475 0.044256 -0.291665 -0.955496 +0.159981 -0.552621 0.293294 0.005325 -0.371644 -0.928360 +0.160019 -0.544641 0.288753 -0.035280 -0.474476 -0.879561 +0.160072 -0.536503 0.282465 -0.076566 -0.563084 -0.822845 +0.160132 -0.528259 0.274871 -0.099732 -0.673200 -0.732704 +0.160215 -0.519863 0.265297 -0.078872 -0.625227 -0.776448 +0.160329 -0.511128 0.251710 -0.077583 -0.565771 -0.820905 +0.160427 -0.502581 0.239642 -0.049994 -0.435578 -0.898762 +0.160450 -0.494851 0.236423 -0.024216 -0.282339 -0.959009 +0.160419 -0.487718 0.239937 -0.007886 -0.037901 -0.999250 +0.160382 -0.480667 0.244630 0.033469 0.094245 -0.994986 +0.160314 -0.473904 0.253025 0.044977 0.191220 -0.980516 +0.160102 -0.468547 0.279095 0.140633 0.616821 -0.774438 +0.162581 -0.262350 -0.022504 -0.325680 -0.885158 -0.332306 +0.162762 -0.254619 -0.043972 -0.322924 -0.850903 -0.414349 +0.162875 -0.247206 -0.058178 -0.318080 -0.821637 -0.473008 +0.162966 -0.239952 -0.068765 -0.326722 -0.793538 -0.513371 +0.163049 -0.232743 -0.078944 -0.329307 -0.759980 -0.560345 +0.163117 -0.225617 -0.087430 -0.329524 -0.732595 -0.595582 +0.163193 -0.218506 -0.096430 -0.333060 -0.699144 -0.632668 +0.163253 -0.211471 -0.103805 -0.332350 -0.671205 -0.662592 +0.163306 -0.204459 -0.110893 -0.326893 -0.646440 -0.689389 +0.163359 -0.197491 -0.117399 -0.327116 -0.619475 -0.713614 +0.163412 -0.190547 -0.123649 -0.324343 -0.592703 -0.737227 +0.163465 -0.183625 -0.129891 -0.317051 -0.563685 -0.762718 +0.163510 -0.176741 -0.135278 -0.306633 -0.531418 -0.789665 +0.163548 -0.169880 -0.140084 -0.299945 -0.491922 -0.817341 +0.163578 -0.163041 -0.143976 -0.297707 -0.448192 -0.842908 +0.163608 -0.156225 -0.147648 -0.291682 -0.408752 -0.864780 +0.163638 -0.149424 -0.150958 -0.285749 -0.357120 -0.889276 +0.163661 -0.142638 -0.153542 -0.283696 -0.306532 -0.908600 +0.163676 -0.135860 -0.155749 -0.285023 -0.266285 -0.920790 +0.163691 -0.129097 -0.157797 -0.290617 -0.240119 -0.926221 +0.163706 -0.122334 -0.159406 -0.301563 -0.234559 -0.924144 +0.163714 -0.115585 -0.159898 -0.311119 -0.238148 -0.920049 +0.163706 -0.108830 -0.159656 -0.320557 -0.247513 -0.914320 +0.163706 -0.102074 -0.159293 -0.349195 -0.276666 -0.895276 +0.163714 -0.095319 -0.159739 -0.370444 -0.311156 -0.875188 +0.163722 -0.088578 -0.161341 -0.401980 -0.363475 -0.840415 +0.163759 -0.081868 -0.165558 -0.445344 -0.436041 -0.782008 +0.163820 -0.075203 -0.172895 -0.493489 -0.533539 -0.686880 +0.163918 -0.068621 -0.184812 -0.515750 -0.604258 -0.607350 +0.164009 -0.062062 -0.195784 -0.514112 -0.638789 -0.572396 +0.164077 -0.055503 -0.204006 -0.475471 -0.636252 -0.607544 +0.164115 -0.048921 -0.209144 -0.435298 -0.621213 -0.651621 +0.164152 -0.042339 -0.213640 -0.381075 -0.591422 -0.710635 +0.164183 -0.035758 -0.217411 -0.345899 -0.579795 -0.737694 +0.164220 -0.029214 -0.222126 -0.303649 -0.566351 -0.766188 +0.164266 -0.022685 -0.227015 -0.264529 -0.550949 -0.791504 +0.164303 -0.016186 -0.232177 -0.232718 -0.542855 -0.806939 +0.164356 -0.009718 -0.237814 -0.207529 -0.537751 -0.817163 +0.164402 -0.003264 -0.243277 -0.179950 -0.515705 -0.837655 +0.164447 0.003174 -0.248809 -0.161110 -0.490277 -0.856547 +0.164477 0.009620 -0.253297 -0.145883 -0.451631 -0.880198 +0.164515 0.016081 -0.257053 -0.133771 -0.411649 -0.901471 +0.164538 0.022542 -0.260604 -0.115447 -0.356773 -0.927030 +0.164560 0.029018 -0.263227 -0.100049 -0.296732 -0.949705 +0.164583 0.035509 -0.265335 -0.087036 -0.239330 -0.967029 +0.164591 0.042015 -0.266869 -0.076718 -0.196057 -0.977587 +0.164598 0.048566 -0.267239 -0.076637 -0.158046 -0.984453 +0.164598 0.055133 -0.267232 -0.076888 -0.129369 -0.988611 +0.164591 0.061722 -0.266726 -0.083608 -0.107024 -0.990735 +0.164583 0.068342 -0.265690 -0.097595 -0.097248 -0.990463 +0.164575 0.074954 -0.264828 -0.116853 -0.094665 -0.988627 +0.164568 0.081574 -0.263967 -0.138291 -0.095250 -0.985801 +0.164575 0.088103 -0.264866 -0.158424 -0.101522 -0.982138 +0.164583 0.094639 -0.265410 -0.183620 -0.104313 -0.977447 +0.164598 0.101085 -0.267549 -0.201279 -0.104746 -0.973917 +0.164613 0.107553 -0.269325 -0.218563 -0.097391 -0.970951 +0.164628 0.114007 -0.271131 -0.225865 -0.079811 -0.970884 +0.164643 0.120467 -0.272665 -0.228432 -0.056530 -0.971917 +0.164643 0.126989 -0.273284 -0.223159 -0.025616 -0.974445 +0.164643 0.133525 -0.273556 -0.212773 0.008673 -0.977063 +0.164643 0.140122 -0.272952 -0.198391 0.042796 -0.979188 +0.164636 0.146742 -0.272075 -0.182405 0.072793 -0.980525 +0.164621 0.153399 -0.270753 -0.168576 0.095922 -0.981010 +0.164606 0.160102 -0.268788 -0.157260 0.109694 -0.981446 +0.164598 0.166759 -0.267617 -0.145954 0.119944 -0.981993 +0.164591 0.173379 -0.266876 -0.138088 0.125646 -0.982418 +0.164591 0.179983 -0.266423 -0.129738 0.129218 -0.983092 +0.164591 0.186550 -0.266446 -0.123899 0.132125 -0.983459 +0.164591 0.193124 -0.266408 -0.118109 0.139495 -0.983154 +0.164583 0.199729 -0.265970 -0.111042 0.152445 -0.982054 +0.164575 0.206401 -0.264723 -0.101104 0.166759 -0.980800 +0.164560 0.213134 -0.262917 -0.089649 0.181771 -0.979246 +0.164538 0.219950 -0.260219 -0.078251 0.193882 -0.977899 +0.164523 0.226691 -0.258436 -0.068210 0.203526 -0.976691 +0.164500 0.233514 -0.255859 -0.062956 0.207521 -0.976203 +0.164485 0.240323 -0.253486 -0.059592 0.210246 -0.975831 +0.164462 0.247116 -0.251348 -0.060421 0.206359 -0.976609 +0.164462 0.253766 -0.250796 -0.065367 0.201518 -0.977301 +0.164462 0.260333 -0.251091 -0.073505 0.197499 -0.977543 +0.164462 0.266892 -0.251454 -0.078039 0.191655 -0.978355 +0.164470 0.273413 -0.252202 -0.084808 0.189891 -0.978135 +0.164477 0.279942 -0.252784 -0.089682 0.193012 -0.977089 +0.164477 0.286509 -0.253048 -0.093886 0.201942 -0.974887 +0.164462 0.293272 -0.251491 -0.094757 0.219481 -0.971004 +0.164447 0.300080 -0.249504 -0.086510 0.258360 -0.962168 +0.164432 0.306957 -0.247018 -0.074901 0.302828 -0.950098 +0.164402 0.313924 -0.243798 -0.065575 0.350245 -0.934360 +0.164371 0.320997 -0.239718 -0.051801 0.404955 -0.912868 +0.164326 0.328168 -0.234942 -0.038567 0.461445 -0.886330 +0.164296 0.335264 -0.230945 -0.034927 0.513256 -0.857525 +0.164266 0.342374 -0.226977 -0.036323 0.549526 -0.834687 +0.164228 0.349553 -0.222542 -0.056840 0.560730 -0.826046 +0.164175 0.356959 -0.216338 -0.102855 0.554868 -0.825556 +0.164107 0.364689 -0.207776 -0.167004 0.512283 -0.842423 +0.164039 0.372367 -0.199812 -0.238812 0.443707 -0.863767 +0.163979 0.380014 -0.192331 -0.313184 0.326510 -0.891800 +0.163971 0.386853 -0.191295 -0.342706 0.254948 -0.904187 +0.163971 0.393495 -0.191681 -0.366843 0.171715 -0.914298 +0.163979 0.400084 -0.192535 -0.379241 0.137688 -0.914996 +0.163979 0.406764 -0.192663 -0.379328 0.106077 -0.919162 +0.163979 0.413497 -0.192406 -0.381339 0.072775 -0.921566 +0.163979 0.420238 -0.192043 -0.374954 0.076770 -0.923859 +0.163979 0.426872 -0.192497 -0.368083 0.071346 -0.927052 +0.163986 0.433477 -0.193177 -0.362137 0.089525 -0.927816 +0.163971 0.440474 -0.191084 -0.350713 0.119008 -0.928890 +0.167500 -0.666106 0.296483 0.279181 0.148154 -0.948740 +0.167560 -0.657386 0.287060 0.287843 0.165361 -0.943293 +0.167568 -0.649701 0.285745 0.297914 0.181838 -0.937114 +0.167560 -0.642401 0.287612 0.298361 0.189580 -0.935436 +0.167545 -0.635124 0.289773 0.292790 0.191478 -0.936809 +0.167530 -0.627923 0.292584 0.285532 0.180889 -0.941143 +0.167507 -0.620691 0.295198 0.271663 0.167816 -0.947648 +0.167492 -0.613444 0.297783 0.258510 0.153697 -0.953703 +0.167477 -0.606152 0.300095 0.240312 0.125270 -0.962578 +0.167470 -0.598739 0.301289 0.216251 0.078228 -0.973199 +0.167470 -0.591243 0.301803 0.178684 0.011471 -0.983840 +0.167470 -0.583664 0.301561 0.140771 -0.062131 -0.988091 +0.167477 -0.575994 0.300442 0.098590 -0.139903 -0.985245 +0.167485 -0.568278 0.298916 0.055619 -0.241758 -0.968741 +0.167500 -0.560480 0.296437 0.015840 -0.310352 -0.950490 +0.167523 -0.552576 0.292818 -0.016032 -0.407735 -0.912959 +0.167560 -0.544536 0.287747 -0.052545 -0.511715 -0.857547 +0.167598 -0.536382 0.281256 -0.087822 -0.598028 -0.796649 +0.167651 -0.528145 0.273654 -0.101970 -0.676284 -0.729549 +0.167711 -0.519712 0.263710 -0.080849 -0.624326 -0.776968 +0.167802 -0.510947 0.249677 -0.064503 -0.567327 -0.820962 +0.167870 -0.502551 0.239257 -0.033237 -0.407399 -0.912645 +0.167885 -0.494934 0.237345 -0.013780 -0.291456 -0.956485 +0.167863 -0.487793 0.240851 0.025780 0.021020 -0.999447 +0.167825 -0.480856 0.246843 0.025159 0.063220 -0.997682 +0.167764 -0.474184 0.256418 0.068254 0.197486 -0.977927 +0.169397 -0.270367 0.004776 -0.241410 -0.954045 -0.177539 +0.169631 -0.262017 -0.031587 -0.299883 -0.880200 -0.367857 +0.169744 -0.254461 -0.048657 -0.305979 -0.847226 -0.434265 +0.169827 -0.247100 -0.061443 -0.312119 -0.821931 -0.476457 +0.169903 -0.239801 -0.073533 -0.315333 -0.786985 -0.530301 +0.169971 -0.232614 -0.083319 -0.319318 -0.754750 -0.573051 +0.170024 -0.225504 -0.091722 -0.324548 -0.726178 -0.606081 +0.170069 -0.218431 -0.099407 -0.331384 -0.696376 -0.636589 +0.170114 -0.211418 -0.106019 -0.333239 -0.663526 -0.669839 +0.170160 -0.204413 -0.113054 -0.327154 -0.643640 -0.691880 +0.170205 -0.197446 -0.119674 -0.322320 -0.612389 -0.721865 +0.170243 -0.190502 -0.126059 -0.318817 -0.582579 -0.747635 +0.170281 -0.183595 -0.131908 -0.308430 -0.553220 -0.773834 +0.170318 -0.176711 -0.137039 -0.295135 -0.520619 -0.801156 +0.170349 -0.169857 -0.141769 -0.287700 -0.482966 -0.827026 +0.170379 -0.163018 -0.146182 -0.278482 -0.435780 -0.855888 +0.170402 -0.156202 -0.149893 -0.269933 -0.398873 -0.876377 +0.170424 -0.149409 -0.153202 -0.264751 -0.352753 -0.897481 +0.170439 -0.142623 -0.155719 -0.266223 -0.304552 -0.914535 +0.170455 -0.135852 -0.157850 -0.274959 -0.272060 -0.922161 +0.170462 -0.129089 -0.159550 -0.282218 -0.249871 -0.926238 +0.170470 -0.122334 -0.160752 -0.294092 -0.249024 -0.922766 +0.170477 -0.115585 -0.161590 -0.315486 -0.262477 -0.911907 +0.170477 -0.108830 -0.161477 -0.331681 -0.269874 -0.903967 +0.170477 -0.102082 -0.161107 -0.349941 -0.298702 -0.887873 +0.170485 -0.095334 -0.162278 -0.390131 -0.350198 -0.851563 +0.170492 -0.088601 -0.164394 -0.425192 -0.407054 -0.808405 +0.170538 -0.081913 -0.170893 -0.471995 -0.497867 -0.727564 +0.170606 -0.075294 -0.181600 -0.512639 -0.580902 -0.632261 +0.170689 -0.068735 -0.194144 -0.522613 -0.621361 -0.583769 +0.170749 -0.062175 -0.203605 -0.509045 -0.622136 -0.594828 +0.170795 -0.055616 -0.211048 -0.470909 -0.584804 -0.660491 +0.170825 -0.049035 -0.215529 -0.426684 -0.566635 -0.704887 +0.170855 -0.042453 -0.219345 -0.375244 -0.541919 -0.752008 +0.170870 -0.035856 -0.221915 -0.345615 -0.539705 -0.767639 +0.170893 -0.029282 -0.225088 -0.300548 -0.524080 -0.796876 +0.170915 -0.022745 -0.229388 -0.267391 -0.523974 -0.808673 +0.170946 -0.016239 -0.234262 -0.228993 -0.516694 -0.824978 +0.170983 -0.009770 -0.239590 -0.194059 -0.508852 -0.838696 +0.171021 -0.003310 -0.244917 -0.161962 -0.492343 -0.855200 +0.171051 0.003121 -0.250350 -0.140314 -0.477174 -0.867535 +0.171082 0.009582 -0.254574 -0.117405 -0.439849 -0.890364 +0.171104 0.016050 -0.257944 -0.095835 -0.395392 -0.913499 +0.171127 0.022511 -0.261247 -0.076496 -0.342544 -0.936382 +0.171142 0.029002 -0.263612 -0.060627 -0.282846 -0.957247 +0.171150 0.035501 -0.265358 -0.053095 -0.229513 -0.971856 +0.171157 0.042015 -0.266854 -0.047133 -0.191742 -0.980313 +0.171165 0.048574 -0.267020 -0.052525 -0.163941 -0.985071 +0.171157 0.055156 -0.266665 -0.057631 -0.134778 -0.989199 +0.171157 0.061760 -0.266022 -0.069189 -0.121138 -0.990221 +0.171150 0.068372 -0.265093 -0.085057 -0.115921 -0.989610 +0.171150 0.074962 -0.264715 -0.105740 -0.113286 -0.987920 +0.171142 0.081559 -0.264254 -0.129697 -0.118396 -0.984460 +0.171150 0.088065 -0.265463 -0.155523 -0.123558 -0.980074 +0.171165 0.094526 -0.267534 -0.176838 -0.125282 -0.976234 +0.171180 0.100941 -0.270133 -0.194917 -0.120784 -0.973354 +0.171195 0.107372 -0.272332 -0.209060 -0.107709 -0.971953 +0.171210 0.113810 -0.274305 -0.217272 -0.085283 -0.972378 +0.171218 0.120279 -0.275680 -0.219714 -0.056327 -0.973937 +0.171218 0.126823 -0.275823 -0.213560 -0.020325 -0.976718 +0.171218 0.133374 -0.275854 -0.205006 0.016877 -0.978615 +0.171218 0.139979 -0.275128 -0.190155 0.054216 -0.980256 +0.171210 0.146606 -0.274025 -0.174388 0.085495 -0.980958 +0.171195 0.153256 -0.272763 -0.157393 0.109293 -0.981470 +0.171188 0.159920 -0.271252 -0.146210 0.122016 -0.981700 +0.171180 0.166623 -0.269431 -0.133132 0.130434 -0.982478 +0.171172 0.173281 -0.268184 -0.121651 0.134989 -0.983351 +0.171165 0.179908 -0.267345 -0.112216 0.136322 -0.984288 +0.171165 0.186505 -0.266982 -0.102990 0.139629 -0.984833 +0.171157 0.193079 -0.266914 -0.096119 0.147725 -0.984347 +0.171157 0.199653 -0.266892 -0.088778 0.160178 -0.983088 +0.171157 0.206273 -0.266226 -0.081210 0.173908 -0.981408 +0.171150 0.212960 -0.264904 -0.071778 0.191525 -0.978860 +0.171135 0.219746 -0.262509 -0.062725 0.203228 -0.977120 +0.171112 0.226577 -0.259645 -0.054097 0.210234 -0.976153 +0.171097 0.233439 -0.256667 -0.050142 0.210938 -0.976213 +0.171074 0.240338 -0.253275 -0.047938 0.208028 -0.976947 +0.171059 0.247131 -0.251189 -0.051060 0.202654 -0.977918 +0.171051 0.253804 -0.250373 -0.053545 0.194948 -0.979351 +0.171051 0.260385 -0.250554 -0.061216 0.187937 -0.980271 +0.171059 0.266914 -0.251250 -0.069140 0.185931 -0.980127 +0.171067 0.273413 -0.252149 -0.074958 0.186816 -0.979531 +0.171067 0.279957 -0.252632 -0.078775 0.189308 -0.978753 +0.171067 0.286546 -0.252708 -0.075723 0.200184 -0.976828 +0.171059 0.293309 -0.251136 -0.076108 0.225119 -0.971354 +0.171044 0.300133 -0.249065 -0.064091 0.267445 -0.961439 +0.171029 0.307032 -0.246353 -0.047358 0.316610 -0.947373 +0.171006 0.314007 -0.243043 -0.031103 0.368105 -0.929264 +0.170983 0.321020 -0.239529 -0.017158 0.414941 -0.909686 +0.170953 0.328145 -0.235131 -0.007861 0.469503 -0.882896 +0.170923 0.335317 -0.230522 -0.002611 0.512194 -0.858866 +0.170893 0.342480 -0.226063 -0.008921 0.543287 -0.839499 +0.170870 0.349636 -0.221832 -0.032411 0.540326 -0.840831 +0.170832 0.356928 -0.216618 -0.084371 0.528810 -0.844536 +0.170779 0.364606 -0.208464 -0.155930 0.484922 -0.860544 +0.170734 0.372231 -0.200915 -0.229677 0.413466 -0.881076 +0.170689 0.379742 -0.194492 -0.296757 0.316898 -0.900839 +0.170689 0.386490 -0.194046 -0.330490 0.233226 -0.914539 +0.170689 0.393125 -0.194484 -0.352577 0.169463 -0.920311 +0.170696 0.399699 -0.195406 -0.368072 0.139955 -0.919204 +0.170696 0.406371 -0.195534 -0.374553 0.103421 -0.921420 +0.170696 0.413104 -0.195262 -0.379041 0.090091 -0.920984 +0.170696 0.419837 -0.194960 -0.373847 0.085077 -0.923580 +0.170696 0.426442 -0.195595 -0.365595 0.089106 -0.926499 +0.170704 0.433031 -0.196275 -0.360916 0.113923 -0.925614 +0.170689 0.440096 -0.193721 -0.348979 0.144534 -0.925918 +0.175072 -0.665502 0.291737 0.289121 0.144655 -0.946300 +0.175087 -0.657545 0.288314 0.294015 0.175529 -0.939545 +0.175087 -0.650003 0.288216 0.296483 0.184422 -0.937063 +0.175072 -0.642734 0.290407 0.293345 0.183019 -0.938325 +0.175064 -0.635487 0.292795 0.284982 0.183289 -0.940845 +0.175049 -0.628255 0.295387 0.274918 0.170336 -0.946259 +0.175041 -0.621001 0.297896 0.259370 0.153369 -0.953522 +0.175026 -0.613724 0.300269 0.245979 0.135032 -0.959823 +0.175019 -0.606364 0.301984 0.225669 0.101529 -0.968899 +0.175019 -0.598898 0.302740 0.190103 0.039984 -0.980950 +0.175019 -0.591356 0.302861 0.152121 -0.029090 -0.987934 +0.175019 -0.583739 0.302309 0.117452 -0.083861 -0.989531 +0.175026 -0.576047 0.300994 0.071535 -0.178926 -0.981259 +0.175034 -0.568294 0.299022 0.033633 -0.279925 -0.959433 +0.175049 -0.560465 0.296279 -0.007773 -0.347905 -0.937498 +0.175064 -0.552500 0.292040 -0.034468 -0.438853 -0.897898 +0.175094 -0.544422 0.286592 -0.066464 -0.525536 -0.848171 +0.175124 -0.536269 0.280048 -0.097880 -0.621893 -0.776961 +0.175162 -0.528024 0.272400 -0.091733 -0.648528 -0.755643 +0.175208 -0.519538 0.261806 -0.072495 -0.619229 -0.781857 +0.175276 -0.510841 0.248537 -0.058918 -0.568394 -0.820644 +0.175313 -0.502604 0.239877 -0.039340 -0.420800 -0.906300 +0.175321 -0.495032 0.238441 -0.019365 -0.280323 -0.959710 +0.175306 -0.487929 0.242400 -0.024858 -0.243188 -0.969660 +0.175268 -0.481090 0.249640 0.050665 0.108777 -0.992774 +0.175200 -0.474750 0.263257 0.043960 0.163190 -0.985615 +0.176477 -0.270035 -0.003937 -0.224176 -0.946846 -0.230712 +0.176628 -0.261866 -0.035886 -0.284724 -0.882756 -0.373730 +0.176704 -0.254355 -0.051801 -0.298126 -0.847402 -0.439353 +0.176772 -0.246964 -0.065637 -0.301379 -0.819080 -0.488138 +0.176832 -0.239642 -0.078657 -0.313738 -0.775563 -0.547786 +0.176878 -0.232494 -0.087415 -0.319774 -0.748048 -0.581523 +0.176908 -0.225405 -0.095297 -0.324778 -0.721290 -0.611768 +0.176946 -0.218363 -0.102075 -0.330468 -0.691033 -0.642856 +0.176976 -0.211358 -0.108543 -0.333603 -0.662077 -0.671090 +0.177006 -0.204368 -0.115238 -0.326597 -0.636270 -0.698924 +0.177036 -0.197401 -0.121661 -0.322149 -0.599074 -0.733028 +0.177067 -0.190471 -0.127775 -0.314241 -0.573206 -0.756762 +0.177089 -0.183565 -0.133306 -0.302168 -0.541640 -0.784424 +0.177119 -0.176688 -0.138747 -0.289988 -0.512608 -0.808171 +0.177142 -0.169827 -0.143817 -0.276708 -0.471711 -0.837210 +0.177165 -0.162996 -0.148389 -0.264667 -0.429208 -0.863558 +0.177180 -0.156180 -0.152046 -0.256362 -0.389620 -0.884576 +0.177195 -0.149386 -0.155288 -0.252898 -0.347743 -0.902839 +0.177210 -0.142608 -0.157669 -0.257916 -0.309078 -0.915396 +0.177218 -0.135845 -0.159444 -0.267503 -0.280470 -0.921834 +0.177225 -0.129089 -0.160812 -0.281376 -0.266243 -0.921923 +0.177225 -0.122334 -0.161726 -0.297466 -0.275808 -0.914026 +0.177233 -0.115585 -0.162520 -0.324434 -0.285796 -0.901700 +0.177233 -0.108837 -0.162928 -0.346119 -0.314868 -0.883776 +0.177240 -0.102089 -0.163895 -0.366807 -0.341764 -0.865246 +0.177248 -0.095356 -0.165747 -0.404108 -0.396138 -0.824482 +0.177263 -0.088639 -0.169283 -0.440986 -0.463981 -0.768279 +0.177308 -0.081989 -0.178986 -0.485911 -0.559633 -0.671343 +0.177369 -0.075407 -0.191696 -0.515312 -0.618319 -0.593409 +0.177422 -0.068840 -0.202494 -0.504617 -0.628353 -0.592059 +0.177467 -0.062289 -0.211237 -0.477670 -0.581149 -0.658860 +0.177497 -0.055730 -0.217774 -0.450166 -0.540984 -0.710413 +0.177512 -0.049140 -0.221582 -0.408628 -0.507302 -0.758728 +0.177520 -0.042536 -0.223630 -0.379501 -0.501943 -0.777195 +0.177535 -0.035939 -0.225776 -0.328438 -0.485788 -0.810024 +0.177550 -0.029365 -0.228678 -0.294743 -0.488960 -0.821002 +0.177565 -0.022813 -0.232245 -0.256635 -0.483970 -0.836607 +0.177580 -0.016299 -0.236363 -0.221462 -0.485345 -0.845810 +0.177611 -0.009816 -0.241449 -0.179960 -0.480334 -0.858425 +0.177633 -0.003362 -0.246595 -0.146152 -0.470329 -0.870305 +0.177656 0.003083 -0.251604 -0.113879 -0.453182 -0.884114 +0.177679 0.009544 -0.255715 -0.082145 -0.417937 -0.904755 +0.177694 0.016020 -0.258866 -0.056950 -0.374946 -0.925296 +0.177701 0.022511 -0.261345 -0.038132 -0.326455 -0.944443 +0.177709 0.029010 -0.263340 -0.028491 -0.276226 -0.960670 +0.177716 0.035546 -0.264247 -0.023079 -0.234846 -0.971759 +0.177724 0.042068 -0.265532 -0.025256 -0.194597 -0.980558 +0.177724 0.048634 -0.265584 -0.032204 -0.164818 -0.985798 +0.177724 0.055224 -0.265304 -0.045650 -0.142511 -0.988740 +0.177716 0.061813 -0.264896 -0.061727 -0.134555 -0.988982 +0.177716 0.068410 -0.264292 -0.080385 -0.131933 -0.987994 +0.177716 0.074984 -0.264277 -0.101767 -0.136320 -0.985424 +0.177724 0.081506 -0.265214 -0.126106 -0.142541 -0.981723 +0.177732 0.087974 -0.267224 -0.150392 -0.147460 -0.977567 +0.177747 0.094390 -0.269839 -0.169716 -0.146156 -0.974595 +0.177754 0.100798 -0.272627 -0.187174 -0.137680 -0.972631 +0.177769 0.107221 -0.274826 -0.200059 -0.118499 -0.972592 +0.177777 0.113667 -0.276625 -0.206004 -0.087989 -0.974587 +0.177777 0.120150 -0.277720 -0.206728 -0.054177 -0.976897 +0.177777 0.126717 -0.277486 -0.199796 -0.012693 -0.979755 +0.177777 0.133299 -0.276965 -0.192354 0.029273 -0.980889 +0.177769 0.139926 -0.275884 -0.178604 0.067963 -0.981571 +0.177769 0.146560 -0.274690 -0.162828 0.099531 -0.981622 +0.177762 0.153210 -0.273383 -0.147808 0.121938 -0.981470 +0.177754 0.159852 -0.272212 -0.136003 0.135234 -0.981435 +0.177754 0.166464 -0.271471 -0.123198 0.141644 -0.982222 +0.177739 0.173152 -0.269823 -0.110975 0.145619 -0.983097 +0.177739 0.179817 -0.268547 -0.099021 0.147028 -0.984163 +0.177732 0.186467 -0.267504 -0.088945 0.149589 -0.984740 +0.177732 0.193064 -0.267148 -0.079674 0.155475 -0.984622 +0.177732 0.199615 -0.267277 -0.070860 0.165298 -0.983695 +0.177732 0.206212 -0.267005 -0.064161 0.180397 -0.981499 +0.177724 0.212862 -0.266053 -0.057314 0.197791 -0.978567 +0.177716 0.219610 -0.264028 -0.051112 0.210376 -0.976284 +0.177701 0.226426 -0.261345 -0.045377 0.215782 -0.975387 +0.177686 0.233287 -0.258300 -0.042318 0.212005 -0.976352 +0.177671 0.240202 -0.254725 -0.043221 0.205552 -0.977691 +0.177656 0.247101 -0.251484 -0.046967 0.197774 -0.979122 +0.177648 0.253849 -0.249950 -0.053001 0.190008 -0.980351 +0.177648 0.260423 -0.250146 -0.057717 0.182296 -0.981548 +0.177648 0.266990 -0.250486 -0.064520 0.179903 -0.981566 +0.177656 0.273496 -0.251386 -0.070511 0.182624 -0.980651 +0.177656 0.280048 -0.251801 -0.073678 0.189191 -0.979172 +0.177656 0.286652 -0.251710 -0.068060 0.207931 -0.975773 +0.177648 0.293423 -0.250071 -0.061658 0.237845 -0.969344 +0.177641 0.300269 -0.247773 -0.046618 0.280884 -0.958609 +0.177626 0.307161 -0.245204 -0.027175 0.329242 -0.943854 +0.177611 0.314120 -0.242053 -0.009314 0.380905 -0.924567 +0.177595 0.321133 -0.238570 0.004172 0.423731 -0.905779 +0.177573 0.328221 -0.234489 0.015026 0.473853 -0.880476 +0.177550 0.335445 -0.229464 0.016578 0.514119 -0.857559 +0.177527 0.342662 -0.224605 0.005104 0.524910 -0.851142 +0.177505 0.349795 -0.220555 -0.029985 0.517310 -0.855273 +0.177490 0.356981 -0.216164 -0.072152 0.491205 -0.868050 +0.177452 0.364546 -0.208910 -0.145652 0.439417 -0.886396 +0.177422 0.372064 -0.202245 -0.213586 0.372244 -0.903225 +0.177391 0.379500 -0.196336 -0.293020 0.280099 -0.914158 +0.177391 0.386157 -0.196608 -0.317143 0.214509 -0.923800 +0.177399 0.392701 -0.197718 -0.337581 0.166537 -0.926447 +0.177407 0.399291 -0.198459 -0.361867 0.121151 -0.924324 +0.177407 0.405971 -0.198512 -0.371707 0.104812 -0.922415 +0.177399 0.412704 -0.198141 -0.374499 0.097275 -0.922111 +0.177399 0.419429 -0.197870 -0.369925 0.094254 -0.924268 +0.177399 0.426109 -0.197953 -0.360307 0.107719 -0.926594 +0.177407 0.432721 -0.198497 -0.351636 0.135008 -0.926350 +0.177391 0.439711 -0.196396 -0.340627 0.171417 -0.924440 +0.177331 0.448363 -0.182908 -0.316505 0.232248 -0.919720 +0.182598 -0.673368 0.294284 0.295389 0.127483 -0.946833 +0.182606 -0.665313 0.290219 0.300577 0.152524 -0.941483 +0.182613 -0.657718 0.289705 0.302921 0.164816 -0.938656 +0.182606 -0.650351 0.291035 0.296956 0.180468 -0.937683 +0.182598 -0.643104 0.293422 0.290420 0.175864 -0.940600 +0.182590 -0.635857 0.295924 0.280447 0.166351 -0.945345 +0.182583 -0.628588 0.298244 0.264262 0.156062 -0.951741 +0.182575 -0.621318 0.300601 0.249336 0.136847 -0.958699 +0.182568 -0.614003 0.302679 0.229456 0.112754 -0.966766 +0.182568 -0.606545 0.303571 0.204571 0.066278 -0.976605 +0.182568 -0.599019 0.303858 0.161748 -0.003893 -0.986824 +0.182568 -0.591439 0.303631 0.126771 -0.062730 -0.989946 +0.182568 -0.583807 0.302899 0.087363 -0.131212 -0.987497 +0.182575 -0.576077 0.301259 0.048141 -0.220785 -0.974134 +0.182583 -0.568278 0.298908 0.012114 -0.309246 -0.950905 +0.182590 -0.560404 0.295697 -0.024486 -0.379078 -0.925041 +0.182606 -0.552417 0.291261 -0.054845 -0.470937 -0.880461 +0.182621 -0.544332 0.285654 -0.079610 -0.550803 -0.830830 +0.182643 -0.536140 0.278732 -0.103880 -0.633992 -0.766331 +0.182666 -0.527896 0.271010 -0.083921 -0.633591 -0.769103 +0.182696 -0.519402 0.260355 -0.072245 -0.611547 -0.787903 +0.182734 -0.510765 0.247743 -0.056133 -0.574226 -0.816770 +0.182764 -0.502581 0.239604 -0.028717 -0.475189 -0.879415 +0.182764 -0.495138 0.239687 -0.022449 -0.335984 -0.941600 +0.182749 -0.488126 0.244690 -0.006014 -0.212366 -0.977172 +0.182719 -0.481363 0.252851 0.001723 -0.190757 -0.981636 +0.183535 -0.269566 -0.016428 -0.229105 -0.936658 -0.264920 +0.183611 -0.261662 -0.041440 -0.267385 -0.882998 -0.385771 +0.183656 -0.254204 -0.056244 -0.289036 -0.841237 -0.456923 +0.183701 -0.246798 -0.070684 -0.295085 -0.813393 -0.501315 +0.183739 -0.239521 -0.082805 -0.313853 -0.769855 -0.555715 +0.183769 -0.232373 -0.091594 -0.320937 -0.745714 -0.583875 +0.183792 -0.225292 -0.099407 -0.328615 -0.715688 -0.616282 +0.183807 -0.218272 -0.105710 -0.332750 -0.684192 -0.648968 +0.183830 -0.211282 -0.111754 -0.334438 -0.650928 -0.681502 +0.183845 -0.204307 -0.117747 -0.326127 -0.625512 -0.708784 +0.183860 -0.197363 -0.123860 -0.319467 -0.591826 -0.740056 +0.183883 -0.190434 -0.129664 -0.309715 -0.561291 -0.767482 +0.183898 -0.183534 -0.135120 -0.294436 -0.529886 -0.795317 +0.183913 -0.176650 -0.140848 -0.280952 -0.499607 -0.819426 +0.183935 -0.169789 -0.146402 -0.268952 -0.457930 -0.847328 +0.183943 -0.162965 -0.150701 -0.256512 -0.416119 -0.872380 +0.183958 -0.156164 -0.154049 -0.249164 -0.381118 -0.890318 +0.183966 -0.149371 -0.156996 -0.248236 -0.343031 -0.905930 +0.183973 -0.142600 -0.159021 -0.256224 -0.314512 -0.914020 +0.183973 -0.135837 -0.160699 -0.269379 -0.291485 -0.917862 +0.183981 -0.129082 -0.161666 -0.280304 -0.281218 -0.917794 +0.183981 -0.122334 -0.162565 -0.304796 -0.291352 -0.906760 +0.183981 -0.115585 -0.163427 -0.325043 -0.307727 -0.894232 +0.183988 -0.108837 -0.164152 -0.355814 -0.338096 -0.871257 +0.183988 -0.102097 -0.166011 -0.386079 -0.382806 -0.839287 +0.183996 -0.095372 -0.168716 -0.419069 -0.446526 -0.790567 +0.184026 -0.088692 -0.177134 -0.457743 -0.539149 -0.706958 +0.184064 -0.082087 -0.190079 -0.482156 -0.623346 -0.615601 +0.184094 -0.075498 -0.200235 -0.482549 -0.645172 -0.592367 +0.184124 -0.068939 -0.209998 -0.470407 -0.613313 -0.634480 +0.184147 -0.062372 -0.217449 -0.444233 -0.551001 -0.706438 +0.184162 -0.055805 -0.222746 -0.418668 -0.505380 -0.754525 +0.184170 -0.049216 -0.225625 -0.389411 -0.472975 -0.790350 +0.184177 -0.042604 -0.227355 -0.357531 -0.461329 -0.812002 +0.184185 -0.036007 -0.228942 -0.327739 -0.456542 -0.827137 +0.184192 -0.029425 -0.231247 -0.290142 -0.452070 -0.843475 +0.184200 -0.022874 -0.234595 -0.256014 -0.452759 -0.854088 +0.184208 -0.016352 -0.238396 -0.211663 -0.453032 -0.866003 +0.184223 -0.009869 -0.243217 -0.165890 -0.449374 -0.877806 +0.184238 -0.003400 -0.247879 -0.128530 -0.442521 -0.887499 +0.184253 0.003053 -0.252716 -0.092765 -0.428233 -0.898894 +0.184268 0.009514 -0.256592 -0.054019 -0.391113 -0.918756 +0.184276 0.015998 -0.259509 -0.031231 -0.357579 -0.933361 +0.184283 0.022496 -0.261753 -0.015081 -0.311573 -0.950103 +0.184283 0.029018 -0.263189 -0.005242 -0.266844 -0.963725 +0.184291 0.035569 -0.263809 -0.005459 -0.235665 -0.971819 +0.184291 0.042121 -0.264345 -0.011399 -0.202696 -0.979175 +0.184291 0.048687 -0.264488 -0.022988 -0.175682 -0.984179 +0.184291 0.055269 -0.264224 -0.039034 -0.157783 -0.986702 +0.184291 0.061843 -0.264141 -0.060062 -0.150997 -0.986708 +0.184291 0.068403 -0.264436 -0.081288 -0.151177 -0.985159 +0.184291 0.074947 -0.265078 -0.102664 -0.159143 -0.981903 +0.184298 0.081430 -0.266763 -0.127420 -0.165560 -0.977933 +0.184306 0.087861 -0.269249 -0.148446 -0.166542 -0.974796 +0.184313 0.094276 -0.271871 -0.164071 -0.163459 -0.972811 +0.184321 0.100677 -0.274667 -0.180021 -0.150293 -0.972113 +0.184328 0.107100 -0.276866 -0.188488 -0.126249 -0.973927 +0.184336 0.113553 -0.278536 -0.192552 -0.089928 -0.977158 +0.184336 0.120037 -0.279541 -0.190530 -0.048286 -0.980493 +0.184336 0.126603 -0.279292 -0.185929 -0.003736 -0.982556 +0.184328 0.133223 -0.278158 -0.175693 0.042309 -0.983535 +0.184328 0.139895 -0.276337 -0.164780 0.081204 -0.982982 +0.184321 0.146553 -0.274803 -0.150604 0.113470 -0.982061 +0.184313 0.153248 -0.272876 -0.139918 0.131864 -0.981343 +0.184313 0.159883 -0.271818 -0.126003 0.146039 -0.981222 +0.184313 0.166464 -0.271463 -0.112631 0.153931 -0.981641 +0.184313 0.173054 -0.271123 -0.100278 0.157587 -0.982400 +0.184306 0.179704 -0.269937 -0.088610 0.158430 -0.983386 +0.184298 0.186391 -0.268441 -0.077227 0.159131 -0.984232 +0.184298 0.193049 -0.267284 -0.067319 0.163398 -0.984261 +0.184298 0.199630 -0.267111 -0.057739 0.172444 -0.983326 +0.184298 0.206212 -0.266944 -0.050398 0.187862 -0.980902 +0.184298 0.212854 -0.266121 -0.045474 0.203534 -0.978011 +0.184291 0.219595 -0.264179 -0.042577 0.214430 -0.975811 +0.184283 0.226350 -0.262221 -0.041270 0.218174 -0.975037 +0.184276 0.233197 -0.259237 -0.043024 0.211417 -0.976449 +0.184268 0.240081 -0.256033 -0.046338 0.201999 -0.978289 +0.184253 0.247003 -0.252549 -0.053051 0.191648 -0.980029 +0.184245 0.253789 -0.250562 -0.059308 0.182940 -0.981334 +0.184245 0.260461 -0.249814 -0.066784 0.177005 -0.981941 +0.184245 0.267043 -0.249935 -0.072429 0.177008 -0.981541 +0.184245 0.273579 -0.250592 -0.073586 0.180709 -0.980780 +0.184245 0.280146 -0.250849 -0.073650 0.189840 -0.979049 +0.184245 0.286773 -0.250562 -0.064953 0.212911 -0.974910 +0.184245 0.293574 -0.248627 -0.054910 0.248320 -0.967120 +0.184238 0.300420 -0.246413 -0.037488 0.301200 -0.952824 +0.184230 0.307289 -0.244040 -0.021283 0.348362 -0.937118 +0.184215 0.314249 -0.240942 -0.000858 0.395808 -0.918333 +0.184208 0.321254 -0.237474 0.017504 0.437052 -0.899266 +0.184192 0.328342 -0.233499 0.027466 0.483556 -0.874882 +0.184185 0.335506 -0.228927 0.027853 0.509453 -0.860048 +0.184170 0.342752 -0.223789 0.008931 0.506934 -0.861938 +0.184155 0.349946 -0.219300 -0.028071 0.488304 -0.872222 +0.184140 0.357276 -0.213769 -0.086219 0.447512 -0.890112 +0.184117 0.364772 -0.207096 -0.145818 0.400475 -0.904631 +0.184102 0.372004 -0.202676 -0.217305 0.330306 -0.918519 +0.184094 0.379168 -0.198950 -0.281961 0.248376 -0.926719 +0.184094 0.385742 -0.199781 -0.302572 0.195701 -0.932819 +0.184094 0.392271 -0.200968 -0.333453 0.138614 -0.932521 +0.184102 0.398852 -0.201716 -0.355698 0.096146 -0.929642 +0.184102 0.405533 -0.201716 -0.366599 0.108965 -0.923976 +0.184094 0.412318 -0.200953 -0.369517 0.098206 -0.924020 +0.184094 0.419044 -0.200643 -0.363331 0.106802 -0.925518 +0.184094 0.425716 -0.200741 -0.351338 0.126632 -0.927646 +0.184094 0.432449 -0.200379 -0.342604 0.160350 -0.925695 +0.184094 0.439348 -0.198890 -0.329273 0.199512 -0.922916 +0.184049 0.447955 -0.185719 -0.305043 0.270384 -0.913149 +0.190139 -0.673111 0.292312 0.300440 0.133398 -0.944426 +0.190139 -0.665456 0.291352 0.303026 0.150455 -0.941031 +0.190139 -0.657937 0.291511 0.300905 0.156870 -0.940664 +0.190139 -0.650676 0.293725 0.294725 0.159264 -0.942217 +0.190132 -0.643451 0.296317 0.282727 0.162952 -0.945258 +0.190132 -0.636212 0.298863 0.268066 0.150537 -0.951567 +0.190124 -0.628897 0.300858 0.253025 0.139246 -0.957386 +0.190124 -0.621568 0.302823 0.236390 0.117052 -0.964582 +0.190124 -0.614192 0.304357 0.213579 0.086203 -0.973115 +0.190124 -0.606689 0.304878 0.175889 0.026680 -0.984048 +0.190124 -0.599132 0.304878 0.134835 -0.041888 -0.989982 +0.190124 -0.591515 0.304342 0.101017 -0.102269 -0.989614 +0.190124 -0.583830 0.303155 0.063909 -0.173301 -0.982793 +0.190124 -0.576069 0.301191 0.023614 -0.261423 -0.964936 +0.190132 -0.568248 0.298591 -0.008855 -0.342810 -0.939363 +0.190132 -0.560336 0.294979 -0.037239 -0.404394 -0.913827 +0.190139 -0.552311 0.290173 -0.065926 -0.491417 -0.868425 +0.190147 -0.544188 0.284173 -0.096035 -0.582408 -0.807204 +0.190162 -0.536019 0.277463 -0.107764 -0.649556 -0.752638 +0.190170 -0.527768 0.269642 -0.081465 -0.627285 -0.774517 +0.190185 -0.519229 0.258481 -0.078336 -0.606539 -0.791185 +0.190200 -0.510591 0.245823 -0.054251 -0.558900 -0.827459 +0.190207 -0.502634 0.240247 -0.029242 -0.472782 -0.880694 +0.190207 -0.495282 0.241327 -0.015083 -0.382031 -0.924026 +0.190200 -0.488307 0.246753 -0.013944 -0.235610 -0.971748 +0.190185 -0.481929 0.259576 -0.039138 -0.243498 -0.969112 +0.190547 -0.269377 -0.021370 -0.223840 -0.930376 -0.290339 +0.190578 -0.261473 -0.046775 -0.258616 -0.878559 -0.401562 +0.190600 -0.254060 -0.060370 -0.282594 -0.840910 -0.461532 +0.190616 -0.246685 -0.074236 -0.293451 -0.811053 -0.506043 +0.190631 -0.239408 -0.086379 -0.313645 -0.768043 -0.558334 +0.190646 -0.232237 -0.096475 -0.322745 -0.738516 -0.591971 +0.190653 -0.225171 -0.103888 -0.328644 -0.709550 -0.623323 +0.190661 -0.218151 -0.110342 -0.330514 -0.674591 -0.660066 +0.190668 -0.211161 -0.116780 -0.329944 -0.636129 -0.697479 +0.190676 -0.204224 -0.121782 -0.321324 -0.608456 -0.725625 +0.190684 -0.197280 -0.127601 -0.313877 -0.576912 -0.754091 +0.190691 -0.190358 -0.133865 -0.298885 -0.542992 -0.784747 +0.190699 -0.183466 -0.139495 -0.286017 -0.514767 -0.808214 +0.190706 -0.176605 -0.144059 -0.274200 -0.479687 -0.833495 +0.190714 -0.169766 -0.148087 -0.263896 -0.442266 -0.857182 +0.190714 -0.162950 -0.152069 -0.253773 -0.408722 -0.876667 +0.190721 -0.156149 -0.155621 -0.249115 -0.374978 -0.892935 +0.190721 -0.149363 -0.158356 -0.252540 -0.344539 -0.904166 +0.190729 -0.142593 -0.160404 -0.264469 -0.325211 -0.907906 +0.190729 -0.135830 -0.161991 -0.274150 -0.306108 -0.911669 +0.190729 -0.129082 -0.162452 -0.292037 -0.306690 -0.905901 +0.190729 -0.122334 -0.163200 -0.314211 -0.316745 -0.894955 +0.190729 -0.115585 -0.164265 -0.337771 -0.337724 -0.878552 +0.190736 -0.108845 -0.166003 -0.367005 -0.365981 -0.855199 +0.190736 -0.102112 -0.168936 -0.401013 -0.427373 -0.810272 +0.190744 -0.095402 -0.173923 -0.431844 -0.503696 -0.748198 +0.190759 -0.088767 -0.187328 -0.447509 -0.612681 -0.651427 +0.190774 -0.082163 -0.198217 -0.451970 -0.656979 -0.603409 +0.190789 -0.075566 -0.206552 -0.445614 -0.647627 -0.618067 +0.190797 -0.068999 -0.215325 -0.425393 -0.584887 -0.690614 +0.190804 -0.062432 -0.221484 -0.410780 -0.528053 -0.743249 +0.190812 -0.055866 -0.226365 -0.384398 -0.477780 -0.789914 +0.190820 -0.049269 -0.228829 -0.365626 -0.451733 -0.813791 +0.190820 -0.042672 -0.230529 -0.342581 -0.436624 -0.831864 +0.190820 -0.036060 -0.231716 -0.313454 -0.417447 -0.852927 +0.190820 -0.029471 -0.233265 -0.282738 -0.415885 -0.864349 +0.190827 -0.022911 -0.236129 -0.243750 -0.415596 -0.876280 +0.190827 -0.016382 -0.239680 -0.202868 -0.414709 -0.887052 +0.190835 -0.009906 -0.244426 -0.158548 -0.412512 -0.897049 +0.190842 -0.003438 -0.249081 -0.117664 -0.408126 -0.905311 +0.190850 0.003023 -0.253448 -0.082237 -0.395988 -0.914566 +0.190850 0.009484 -0.257378 -0.048312 -0.371171 -0.927307 +0.190857 0.015975 -0.260159 -0.025321 -0.338458 -0.940641 +0.190857 0.022474 -0.262350 -0.007928 -0.297590 -0.954661 +0.190865 0.029002 -0.263589 -0.004378 -0.269102 -0.963102 +0.190865 0.035554 -0.264126 -0.004364 -0.238170 -0.971214 +0.190865 0.042121 -0.264352 -0.012631 -0.209933 -0.977634 +0.190865 0.048695 -0.264179 -0.024773 -0.190100 -0.981452 +0.190865 0.055269 -0.264186 -0.043205 -0.177681 -0.983139 +0.190865 0.061843 -0.264269 -0.062577 -0.173062 -0.982921 +0.190865 0.068380 -0.264927 -0.083569 -0.176569 -0.980734 +0.190865 0.074871 -0.266514 -0.106541 -0.182149 -0.977482 +0.190865 0.081332 -0.268607 -0.128098 -0.186862 -0.973999 +0.190872 0.087763 -0.271063 -0.144524 -0.186558 -0.971756 +0.190872 0.094178 -0.273723 -0.159218 -0.176730 -0.971296 +0.190880 0.100579 -0.276428 -0.169513 -0.161276 -0.972242 +0.190880 0.107009 -0.278393 -0.175596 -0.130582 -0.975763 +0.190880 0.113470 -0.279836 -0.176593 -0.089588 -0.980198 +0.190880 0.119976 -0.280508 -0.171382 -0.041770 -0.984319 +0.190880 0.126528 -0.280395 -0.165371 0.004683 -0.986220 +0.190880 0.133117 -0.279783 -0.155373 0.052894 -0.986439 +0.190880 0.139820 -0.277433 -0.145630 0.092932 -0.984965 +0.190872 0.146560 -0.274667 -0.135281 0.124944 -0.982898 +0.190872 0.153301 -0.272151 -0.124128 0.145345 -0.981564 +0.190872 0.159913 -0.271433 -0.112340 0.158222 -0.980992 +0.190872 0.166510 -0.270912 -0.099548 0.165617 -0.981153 +0.190872 0.173061 -0.271017 -0.087659 0.168444 -0.981806 +0.190872 0.179666 -0.270481 -0.077180 0.168541 -0.982668 +0.190872 0.186316 -0.269401 -0.066608 0.168582 -0.983435 +0.190865 0.193003 -0.267851 -0.056171 0.172121 -0.983473 +0.190865 0.199630 -0.267141 -0.046627 0.179447 -0.982662 +0.190865 0.206280 -0.266151 -0.039950 0.193200 -0.980346 +0.190865 0.212938 -0.265138 -0.036674 0.207119 -0.977628 +0.190865 0.219618 -0.263944 -0.037477 0.215092 -0.975874 +0.190857 0.226328 -0.262456 -0.043285 0.215070 -0.975639 +0.190857 0.233167 -0.259577 -0.050758 0.205913 -0.977253 +0.190850 0.240013 -0.256743 -0.058243 0.194643 -0.979143 +0.190850 0.246867 -0.253985 -0.066227 0.184190 -0.980657 +0.190842 0.253698 -0.251536 -0.074427 0.175098 -0.981734 +0.190842 0.260401 -0.250380 -0.082041 0.169654 -0.982083 +0.190842 0.267043 -0.249935 -0.086033 0.174382 -0.980912 +0.190842 0.273625 -0.250093 -0.085966 0.182831 -0.979379 +0.190842 0.280237 -0.249995 -0.079824 0.200079 -0.976523 +0.190842 0.286902 -0.249338 -0.070490 0.224048 -0.972026 +0.190842 0.293718 -0.247320 -0.054264 0.270064 -0.961312 +0.190835 0.300549 -0.245250 -0.038882 0.316593 -0.947764 +0.190835 0.307418 -0.242862 -0.018700 0.370215 -0.928758 +0.190827 0.314392 -0.239658 0.002229 0.410206 -0.911990 +0.190827 0.321390 -0.236302 0.021727 0.450464 -0.892530 +0.190820 0.328470 -0.232403 0.032812 0.486883 -0.872851 +0.190812 0.335619 -0.227945 0.025850 0.497946 -0.866823 +0.190812 0.342813 -0.223298 0.001393 0.494054 -0.869430 +0.190804 0.350112 -0.217917 -0.040890 0.453156 -0.890493 +0.190797 0.357488 -0.212083 -0.092209 0.413548 -0.905801 +0.190789 0.364908 -0.206015 -0.157127 0.356151 -0.921123 +0.190782 0.371928 -0.203310 -0.215371 0.283734 -0.934404 +0.190782 0.378805 -0.201769 -0.274509 0.211610 -0.938012 +0.190782 0.385304 -0.203136 -0.303238 0.165854 -0.938370 +0.190782 0.391817 -0.204398 -0.327752 0.117216 -0.937464 +0.190782 0.398429 -0.204912 -0.348019 0.099258 -0.932218 +0.190782 0.405109 -0.204844 -0.360363 0.108741 -0.926452 +0.190782 0.411903 -0.203983 -0.361648 0.102416 -0.926672 +0.190782 0.418711 -0.203076 -0.353724 0.120398 -0.927569 +0.190782 0.425437 -0.202706 -0.347360 0.138920 -0.927385 +0.190782 0.432154 -0.202456 -0.327973 0.189548 -0.925476 +0.190782 0.438850 -0.202343 -0.314492 0.234590 -0.919816 +0.190759 0.448167 -0.184253 -0.284939 0.335024 -0.898092 +0.197681 -0.681582 0.299483 0.320308 0.090467 -0.942984 +0.197673 -0.673058 0.291873 0.309589 0.119802 -0.943293 +0.197673 -0.665630 0.292712 0.305225 0.143496 -0.941407 +0.197673 -0.658293 0.294337 0.299883 0.145625 -0.942796 +0.197681 -0.651046 0.296732 0.290380 0.144286 -0.945971 +0.197681 -0.643822 0.299415 0.277905 0.138431 -0.950582 +0.197681 -0.636575 0.301939 0.259029 0.133055 -0.956661 +0.197681 -0.629230 0.303685 0.242894 0.119656 -0.962645 +0.197681 -0.621809 0.304901 0.222294 0.092913 -0.970543 +0.197681 -0.614328 0.305558 0.189106 0.050139 -0.980676 +0.197681 -0.606787 0.305740 0.148287 -0.015133 -0.988829 +0.197681 -0.599193 0.305445 0.118596 -0.072260 -0.990310 +0.197681 -0.591560 0.304742 0.074447 -0.132949 -0.988323 +0.197681 -0.583845 0.303307 0.043447 -0.206193 -0.977546 +0.197681 -0.576047 0.301002 0.005645 -0.290195 -0.956951 +0.197681 -0.568188 0.297979 -0.024267 -0.366585 -0.930068 +0.197673 -0.560276 0.294405 -0.052354 -0.428427 -0.902058 +0.197673 -0.552198 0.289062 -0.076857 -0.512976 -0.854955 +0.197673 -0.544067 0.282934 -0.105477 -0.603141 -0.790630 +0.197666 -0.535868 0.275952 -0.097650 -0.640915 -0.761375 +0.197666 -0.527639 0.268289 -0.085522 -0.620121 -0.779830 +0.197658 -0.518987 0.255927 -0.071645 -0.604852 -0.793109 +0.197658 -0.510493 0.244743 -0.051355 -0.551808 -0.832388 +0.197651 -0.502710 0.241055 -0.031427 -0.475872 -0.878953 +0.197658 -0.495425 0.242892 -0.004479 -0.353593 -0.935389 +0.197658 -0.488617 0.250388 -0.025872 -0.270059 -0.962496 +0.197537 -0.269052 -0.030113 -0.220528 -0.925818 -0.306967 +0.197530 -0.261299 -0.051733 -0.247200 -0.875916 -0.414323 +0.197522 -0.253924 -0.064398 -0.274123 -0.838047 -0.471735 +0.197515 -0.246602 -0.076745 -0.285892 -0.814005 -0.505629 +0.197507 -0.239279 -0.090596 -0.310413 -0.766316 -0.562498 +0.197507 -0.232116 -0.100661 -0.319912 -0.735901 -0.596746 +0.197500 -0.225035 -0.108800 -0.323960 -0.699303 -0.637201 +0.197500 -0.218015 -0.115623 -0.325834 -0.658036 -0.678838 +0.197500 -0.211048 -0.121563 -0.324669 -0.616515 -0.717286 +0.197492 -0.204103 -0.127208 -0.316768 -0.593291 -0.740043 +0.197492 -0.197166 -0.133230 -0.303802 -0.557243 -0.772778 +0.197492 -0.190282 -0.137999 -0.292272 -0.527509 -0.797691 +0.197484 -0.183413 -0.142480 -0.280611 -0.499978 -0.819316 +0.197484 -0.176575 -0.146160 -0.271822 -0.467702 -0.841052 +0.197484 -0.169744 -0.149795 -0.262198 -0.431866 -0.862985 +0.197484 -0.162935 -0.153263 -0.257259 -0.401500 -0.878986 +0.197484 -0.156134 -0.156625 -0.257364 -0.375716 -0.890282 +0.197477 -0.149356 -0.159527 -0.262306 -0.351880 -0.898541 +0.197477 -0.142585 -0.161658 -0.270628 -0.337722 -0.901501 +0.197477 -0.135830 -0.162958 -0.284340 -0.326708 -0.901340 +0.197477 -0.129082 -0.163419 -0.307460 -0.333771 -0.891103 +0.197477 -0.122334 -0.164371 -0.322147 -0.337683 -0.884416 +0.197477 -0.115585 -0.165648 -0.352158 -0.362573 -0.862859 +0.197477 -0.108845 -0.167613 -0.375849 -0.394992 -0.838283 +0.197477 -0.102120 -0.172155 -0.409719 -0.465865 -0.784283 +0.197469 -0.095440 -0.180353 -0.425509 -0.566064 -0.706055 +0.197462 -0.088828 -0.194900 -0.425681 -0.646811 -0.632797 +0.197462 -0.082208 -0.203046 -0.421110 -0.667278 -0.614335 +0.197454 -0.075619 -0.211343 -0.409022 -0.640391 -0.650077 +0.197454 -0.069044 -0.218612 -0.385737 -0.569358 -0.725974 +0.197454 -0.062470 -0.224325 -0.368656 -0.508407 -0.778213 +0.197447 -0.055903 -0.228874 -0.356777 -0.461130 -0.812446 +0.197447 -0.049314 -0.231224 -0.345032 -0.437639 -0.830316 +0.197447 -0.042710 -0.232645 -0.324089 -0.407572 -0.853728 +0.197447 -0.036113 -0.233937 -0.302264 -0.390940 -0.869369 +0.197447 -0.029516 -0.235388 -0.274215 -0.384730 -0.881356 +0.197447 -0.022949 -0.237557 -0.242409 -0.386144 -0.890017 +0.197447 -0.016405 -0.240549 -0.204450 -0.385435 -0.899800 +0.197447 -0.009914 -0.244947 -0.166799 -0.384265 -0.908030 +0.197439 -0.003446 -0.249375 -0.127703 -0.380372 -0.915975 +0.197439 0.003023 -0.253509 -0.089643 -0.369530 -0.924885 +0.197439 0.009499 -0.257015 -0.060400 -0.349829 -0.934864 +0.197439 0.015982 -0.259872 -0.035195 -0.320258 -0.946676 +0.197439 0.022481 -0.262207 -0.020177 -0.290976 -0.956518 +0.197432 0.029002 -0.263537 -0.016786 -0.264038 -0.964366 +0.197432 0.035554 -0.264073 -0.019102 -0.241346 -0.970251 +0.197432 0.042121 -0.264232 -0.026442 -0.219071 -0.975351 +0.197432 0.048702 -0.264164 -0.040659 -0.204609 -0.977999 +0.197432 0.055262 -0.264322 -0.053885 -0.197373 -0.978846 +0.197432 0.061821 -0.264655 -0.073171 -0.195665 -0.977937 +0.197432 0.068327 -0.266015 -0.093728 -0.198658 -0.975577 +0.197432 0.074803 -0.267934 -0.114007 -0.203547 -0.972405 +0.197432 0.081249 -0.270217 -0.129508 -0.205907 -0.969964 +0.197432 0.087664 -0.272960 -0.140086 -0.200119 -0.969705 +0.197432 0.094072 -0.275627 -0.153958 -0.189754 -0.969686 +0.197432 0.100480 -0.278174 -0.159836 -0.165873 -0.973108 +0.197432 0.106911 -0.280048 -0.160845 -0.130531 -0.978310 +0.197424 0.113372 -0.281446 -0.156705 -0.083689 -0.984093 +0.197424 0.119878 -0.282133 -0.148648 -0.034240 -0.988297 +0.197424 0.126452 -0.281589 -0.138503 0.015654 -0.990238 +0.197432 0.133064 -0.280584 -0.129390 0.060597 -0.989740 +0.197432 0.139722 -0.278876 -0.119673 0.103391 -0.987415 +0.197432 0.146477 -0.275884 -0.115699 0.133108 -0.984325 +0.197432 0.153263 -0.272612 -0.103773 0.156230 -0.982254 +0.197432 0.159966 -0.270640 -0.092776 0.170725 -0.980941 +0.197432 0.166570 -0.270058 -0.082962 0.176743 -0.980754 +0.197432 0.173107 -0.270473 -0.072498 0.179076 -0.981161 +0.197432 0.179666 -0.270504 -0.063049 0.178792 -0.981865 +0.197432 0.186285 -0.269763 -0.052963 0.178768 -0.982465 +0.197432 0.192965 -0.268282 -0.043086 0.181255 -0.982492 +0.197432 0.199668 -0.266650 -0.035007 0.187732 -0.981596 +0.197432 0.206363 -0.265222 -0.030295 0.197474 -0.979840 +0.197432 0.213028 -0.264133 -0.029555 0.207382 -0.977813 +0.197439 0.219693 -0.263061 -0.038142 0.208137 -0.977356 +0.197439 0.226388 -0.261731 -0.048256 0.205643 -0.977437 +0.197439 0.233159 -0.259668 -0.059487 0.197039 -0.978589 +0.197439 0.239967 -0.257272 -0.070813 0.185126 -0.980160 +0.197439 0.246776 -0.254884 -0.081483 0.174737 -0.981238 +0.197439 0.253569 -0.252776 -0.090904 0.168100 -0.981569 +0.197439 0.260287 -0.251559 -0.098705 0.165914 -0.981188 +0.197439 0.266960 -0.250796 -0.101858 0.173332 -0.979582 +0.197439 0.273609 -0.250229 -0.100136 0.186967 -0.977249 +0.197439 0.280312 -0.249255 -0.091719 0.205000 -0.974455 +0.197439 0.287038 -0.248023 -0.080370 0.236095 -0.968401 +0.197439 0.293831 -0.246239 -0.063038 0.284666 -0.956552 +0.197447 0.300685 -0.244010 -0.045596 0.330718 -0.942627 +0.197447 0.307591 -0.241290 -0.021346 0.385855 -0.922312 +0.197447 0.314536 -0.238380 -0.004537 0.429035 -0.903277 +0.197447 0.321533 -0.235056 0.014284 0.461753 -0.886894 +0.197447 0.328599 -0.231240 0.020617 0.496280 -0.867918 +0.197454 0.335747 -0.226879 0.013336 0.492750 -0.870069 +0.197454 0.342919 -0.222428 -0.011085 0.465460 -0.885000 +0.197454 0.350143 -0.217645 -0.054727 0.429195 -0.901552 +0.197454 0.357503 -0.211925 -0.104852 0.373124 -0.921838 +0.197462 0.364961 -0.205623 -0.164134 0.307875 -0.937162 +0.197462 0.371785 -0.204444 -0.226070 0.240762 -0.943888 +0.197462 0.378442 -0.204550 -0.266318 0.184668 -0.946030 +0.197462 0.384873 -0.206461 -0.291740 0.142418 -0.945836 +0.197462 0.391409 -0.207489 -0.322852 0.097195 -0.941445 +0.197462 0.398014 -0.207988 -0.339089 0.080151 -0.937334 +0.197462 0.404716 -0.207754 -0.352624 0.093785 -0.931053 +0.197462 0.411510 -0.206847 -0.348353 0.110588 -0.930817 +0.197462 0.418303 -0.205978 -0.338151 0.140187 -0.930592 +0.197462 0.425059 -0.205411 -0.329674 0.167620 -0.929096 +0.197462 0.431701 -0.205615 -0.317968 0.209379 -0.924693 +0.197462 0.438623 -0.203930 -0.302586 0.253695 -0.918739 +0.197469 0.447283 -0.190343 -0.282159 0.329794 -0.900901 +0.205222 -0.681234 0.296793 0.326415 0.093656 -0.940575 +0.205215 -0.673391 0.294503 0.321944 0.109930 -0.940355 +0.205222 -0.665970 0.295447 0.313702 0.123993 -0.941391 +0.205222 -0.658670 0.297405 0.302079 0.132986 -0.943961 +0.205230 -0.651424 0.299823 0.289050 0.128553 -0.948644 +0.205238 -0.644177 0.302332 0.271266 0.119364 -0.955074 +0.205238 -0.636892 0.304569 0.252225 0.113838 -0.960949 +0.205245 -0.629464 0.305687 0.233335 0.097101 -0.967536 +0.205245 -0.621983 0.306359 0.205992 0.067334 -0.976234 +0.205245 -0.614457 0.306722 0.166504 0.009116 -0.985999 +0.205245 -0.606885 0.306616 0.128848 -0.046527 -0.990572 +0.205245 -0.599245 0.305860 0.091821 -0.111306 -0.989535 +0.205238 -0.591575 0.304863 0.060660 -0.166923 -0.984102 +0.205238 -0.583815 0.302974 0.023497 -0.242821 -0.969787 +0.205230 -0.575994 0.300450 -0.011019 -0.322356 -0.946554 +0.205222 -0.568127 0.297420 -0.039812 -0.393301 -0.918547 +0.205215 -0.560200 0.293687 -0.064240 -0.452222 -0.889589 +0.205207 -0.552100 0.288072 -0.090865 -0.540186 -0.836626 +0.205192 -0.543939 0.281665 -0.110480 -0.616398 -0.779646 +0.205177 -0.535732 0.274501 -0.085718 -0.614417 -0.784312 +0.205154 -0.527412 0.265954 -0.079212 -0.616873 -0.783067 +0.205124 -0.518722 0.253017 -0.061320 -0.601625 -0.796422 +0.205109 -0.510425 0.243987 -0.044606 -0.543309 -0.838347 +0.205102 -0.502808 0.242189 -0.027530 -0.472250 -0.881034 +0.205109 -0.495592 0.244826 -0.015039 -0.411958 -0.911079 +0.205132 -0.488866 0.253297 -0.001194 -0.370160 -0.928967 +0.204497 -0.268780 -0.037224 -0.215703 -0.912586 -0.347361 +0.204459 -0.261156 -0.055534 -0.236608 -0.880917 -0.409881 +0.204429 -0.253788 -0.068304 -0.265389 -0.840073 -0.473123 +0.204406 -0.246458 -0.081120 -0.279060 -0.813209 -0.510702 +0.204376 -0.239143 -0.095039 -0.299841 -0.766061 -0.568547 +0.204353 -0.231987 -0.104893 -0.308248 -0.733780 -0.605434 +0.204331 -0.224907 -0.113530 -0.314321 -0.689131 -0.652917 +0.204323 -0.217902 -0.120301 -0.317785 -0.643027 -0.696800 +0.204308 -0.210919 -0.126724 -0.319091 -0.605174 -0.729346 +0.204293 -0.203983 -0.132603 -0.306483 -0.577076 -0.757002 +0.204285 -0.197091 -0.137145 -0.298896 -0.545392 -0.783076 +0.204278 -0.190222 -0.141256 -0.287567 -0.513575 -0.808422 +0.204270 -0.183376 -0.144641 -0.279938 -0.486404 -0.827675 +0.204263 -0.176545 -0.147883 -0.271981 -0.455255 -0.847803 +0.204255 -0.169728 -0.151208 -0.264903 -0.424994 -0.865567 +0.204248 -0.162920 -0.154744 -0.263889 -0.399434 -0.877961 +0.204240 -0.156119 -0.158137 -0.267952 -0.376280 -0.886913 +0.204232 -0.149341 -0.160790 -0.273761 -0.359217 -0.892198 +0.204225 -0.142578 -0.162898 -0.284479 -0.350589 -0.892278 +0.204225 -0.135822 -0.164265 -0.301939 -0.351594 -0.886123 +0.204225 -0.129074 -0.164832 -0.319723 -0.358671 -0.877002 +0.204217 -0.122326 -0.166336 -0.338848 -0.371536 -0.864374 +0.204217 -0.115585 -0.168255 -0.366423 -0.401693 -0.839271 +0.204210 -0.108853 -0.171187 -0.390369 -0.448551 -0.803999 +0.204195 -0.102142 -0.177021 -0.412748 -0.515492 -0.750937 +0.204172 -0.095485 -0.189157 -0.416156 -0.616763 -0.668145 +0.204149 -0.088858 -0.199049 -0.398998 -0.666377 -0.629874 +0.204134 -0.082238 -0.206937 -0.383990 -0.669000 -0.636388 +0.204119 -0.075649 -0.214494 -0.362363 -0.623098 -0.693139 +0.204096 -0.069082 -0.221711 -0.342158 -0.556992 -0.756761 +0.204089 -0.062508 -0.226932 -0.338954 -0.505191 -0.793657 +0.204081 -0.055941 -0.231066 -0.330124 -0.451840 -0.828769 +0.204074 -0.049352 -0.233446 -0.316510 -0.419382 -0.850847 +0.204074 -0.042755 -0.234859 -0.303957 -0.392913 -0.867888 +0.204066 -0.036151 -0.235796 -0.288038 -0.367836 -0.884155 +0.204066 -0.029561 -0.237300 -0.266456 -0.361492 -0.893490 +0.204066 -0.022987 -0.239030 -0.243005 -0.356995 -0.901944 +0.204059 -0.016428 -0.241373 -0.209280 -0.354010 -0.911526 +0.204051 -0.009906 -0.244645 -0.174013 -0.352009 -0.919679 +0.204044 -0.003415 -0.248521 -0.142920 -0.350563 -0.925570 +0.204036 0.003061 -0.252466 -0.113133 -0.341097 -0.933195 +0.204028 0.009544 -0.255564 -0.084520 -0.327859 -0.940938 +0.204021 0.016035 -0.258330 -0.064825 -0.308593 -0.948983 +0.204013 0.022534 -0.260748 -0.054537 -0.288615 -0.955891 +0.204013 0.029055 -0.262131 -0.048210 -0.266046 -0.962754 +0.204013 0.035607 -0.262781 -0.047390 -0.245077 -0.968345 +0.204013 0.042174 -0.263091 -0.052689 -0.227517 -0.972348 +0.204013 0.048733 -0.263393 -0.063103 -0.219504 -0.973569 +0.204006 0.055284 -0.263846 -0.074745 -0.215381 -0.973665 +0.204006 0.061828 -0.264488 -0.090102 -0.215044 -0.972439 +0.204006 0.068297 -0.266695 -0.106326 -0.217883 -0.970166 +0.203998 0.074743 -0.269143 -0.121212 -0.220079 -0.967922 +0.203991 0.081158 -0.271909 -0.134007 -0.215859 -0.967185 +0.203983 0.087566 -0.274705 -0.143007 -0.211590 -0.966839 +0.203983 0.093974 -0.277350 -0.147321 -0.193344 -0.970008 +0.203976 0.100390 -0.279708 -0.147387 -0.165018 -0.975216 +0.203968 0.106843 -0.281204 -0.142894 -0.123660 -0.981982 +0.203968 0.113334 -0.282088 -0.132532 -0.075390 -0.988308 +0.203968 0.119863 -0.282322 -0.123064 -0.023589 -0.992118 +0.203968 0.126399 -0.282428 -0.110986 0.024194 -0.993527 +0.203968 0.132981 -0.281740 -0.100128 0.070894 -0.992446 +0.203976 0.139639 -0.280116 -0.089623 0.110881 -0.989784 +0.203976 0.146349 -0.277690 -0.085082 0.140223 -0.986458 +0.203983 0.153112 -0.274720 -0.079413 0.164345 -0.983201 +0.203991 0.159905 -0.271531 -0.070752 0.179352 -0.981238 +0.203998 0.166555 -0.270285 -0.062881 0.187106 -0.980325 +0.203998 0.173152 -0.269801 -0.053827 0.189617 -0.980382 +0.203998 0.179689 -0.270171 -0.044122 0.189233 -0.980940 +0.203998 0.186278 -0.269861 -0.034125 0.189324 -0.981321 +0.203998 0.192935 -0.268720 -0.024749 0.190698 -0.981337 +0.204006 0.199646 -0.266960 -0.017419 0.193739 -0.980899 +0.204006 0.206356 -0.265274 -0.015641 0.197993 -0.980079 +0.204006 0.213066 -0.263688 -0.023372 0.198620 -0.979798 +0.204013 0.219746 -0.262486 -0.034224 0.199330 -0.979335 +0.204013 0.226434 -0.261269 -0.049064 0.194309 -0.979713 +0.204021 0.233129 -0.259977 -0.064904 0.185601 -0.980479 +0.204021 0.239899 -0.257975 -0.079737 0.172928 -0.981702 +0.204028 0.246678 -0.255950 -0.093108 0.163152 -0.982198 +0.204028 0.253426 -0.254265 -0.103859 0.158420 -0.981894 +0.204036 0.260159 -0.252874 -0.111095 0.161281 -0.980636 +0.204036 0.266861 -0.251786 -0.114500 0.172733 -0.978291 +0.204036 0.273549 -0.250856 -0.112223 0.189614 -0.975424 +0.204036 0.280267 -0.249685 -0.104428 0.209846 -0.972142 +0.204044 0.287015 -0.248280 -0.093725 0.249238 -0.963896 +0.204044 0.293854 -0.246073 -0.076457 0.299587 -0.951001 +0.204051 0.300723 -0.243632 -0.058285 0.346289 -0.936316 +0.204059 0.307637 -0.240897 -0.037691 0.403432 -0.914233 +0.204066 0.314634 -0.237504 -0.018648 0.442006 -0.896818 +0.204074 0.321662 -0.233930 0.000225 0.479974 -0.877283 +0.204081 0.328720 -0.230227 0.001933 0.496616 -0.867968 +0.204089 0.335823 -0.226260 -0.005252 0.476180 -0.879332 +0.204096 0.342964 -0.222073 -0.027203 0.437620 -0.898748 +0.204112 0.350173 -0.217404 -0.065858 0.398283 -0.914895 +0.204119 0.357473 -0.212174 -0.118604 0.334151 -0.935027 +0.204134 0.364833 -0.206628 -0.171658 0.262775 -0.949465 +0.204134 0.371528 -0.206424 -0.225535 0.203271 -0.952793 +0.204134 0.378087 -0.207323 -0.266425 0.147687 -0.952474 +0.204127 0.384487 -0.209431 -0.289831 0.109578 -0.950784 +0.204127 0.390994 -0.210656 -0.309776 0.085238 -0.946981 +0.204127 0.397598 -0.211124 -0.326564 0.062810 -0.943086 +0.204127 0.404323 -0.210670 -0.331667 0.086667 -0.939407 +0.204127 0.411109 -0.209756 -0.328041 0.119156 -0.937118 +0.204127 0.417895 -0.208902 -0.322556 0.153754 -0.933979 +0.204127 0.424628 -0.208487 -0.311684 0.188034 -0.931395 +0.204127 0.431285 -0.208562 -0.298630 0.232466 -0.925624 +0.204134 0.438343 -0.205872 -0.282567 0.277477 -0.918239 +0.204164 0.447033 -0.192021 -0.262320 0.375280 -0.889018 +0.212809 -0.690091 0.306805 0.346567 0.055888 -0.936359 +0.212771 -0.681250 0.296929 0.329481 0.082905 -0.940515 +0.212764 -0.673678 0.296732 0.323742 0.095227 -0.941341 +0.212771 -0.666340 0.298349 0.314877 0.103198 -0.943505 +0.212779 -0.659071 0.300624 0.302525 0.105720 -0.947260 +0.212794 -0.651832 0.303171 0.283383 0.106181 -0.953110 +0.212802 -0.644532 0.305249 0.265420 0.096922 -0.959249 +0.212809 -0.637157 0.306836 0.246457 0.091548 -0.964820 +0.212809 -0.629653 0.307296 0.221938 0.068438 -0.972656 +0.212809 -0.622119 0.307531 0.187579 0.029943 -0.981793 +0.212809 -0.614547 0.307508 0.147519 -0.027649 -0.988673 +0.212809 -0.606953 0.307213 0.106906 -0.087965 -0.990370 +0.212802 -0.599313 0.306526 0.076107 -0.142523 -0.986861 +0.212802 -0.591613 0.305226 0.041626 -0.204220 -0.978040 +0.212794 -0.583815 0.303012 0.007192 -0.276571 -0.960966 +0.212779 -0.575964 0.300163 -0.022592 -0.346780 -0.937674 +0.212764 -0.568052 0.296725 -0.055819 -0.407936 -0.911303 +0.212749 -0.560072 0.292425 -0.074730 -0.477297 -0.875559 +0.212726 -0.551979 0.286878 -0.100900 -0.559353 -0.822766 +0.212703 -0.543818 0.280380 -0.107422 -0.616813 -0.779745 +0.212673 -0.535558 0.272718 -0.084514 -0.613218 -0.785379 +0.212635 -0.527186 0.263529 -0.070290 -0.612953 -0.786986 +0.212590 -0.518549 0.251151 -0.053436 -0.589959 -0.805663 +0.212567 -0.510561 0.245468 -0.026539 -0.544932 -0.838060 +0.212560 -0.502982 0.244100 -0.003388 -0.445537 -0.895257 +0.212575 -0.495841 0.247637 -0.014278 -0.426598 -0.904329 +0.212620 -0.489380 0.259214 -0.000121 -0.397386 -0.917652 +0.211668 -0.277833 0.015559 -0.162328 -0.977010 -0.138209 +0.211441 -0.268584 -0.042446 -0.206004 -0.912363 -0.353775 +0.211381 -0.261005 -0.059773 -0.223991 -0.883013 -0.412451 +0.211328 -0.253644 -0.072468 -0.254369 -0.839730 -0.479740 +0.211275 -0.246307 -0.085752 -0.267227 -0.811981 -0.518919 +0.211222 -0.239030 -0.098788 -0.287692 -0.765295 -0.575809 +0.211185 -0.231881 -0.108702 -0.293447 -0.732829 -0.613881 +0.211154 -0.224786 -0.117958 -0.301924 -0.680045 -0.668117 +0.211124 -0.217781 -0.124918 -0.303145 -0.637036 -0.708723 +0.211101 -0.210821 -0.131100 -0.300715 -0.591306 -0.748283 +0.211079 -0.203899 -0.136351 -0.296716 -0.566030 -0.769136 +0.211064 -0.197030 -0.140160 -0.290300 -0.534162 -0.793975 +0.211049 -0.190177 -0.143749 -0.281808 -0.503707 -0.816617 +0.211041 -0.183338 -0.146855 -0.277231 -0.476250 -0.834463 +0.211026 -0.176514 -0.149847 -0.273410 -0.447873 -0.851268 +0.211018 -0.169706 -0.152817 -0.270750 -0.423044 -0.864713 +0.211003 -0.162897 -0.156384 -0.272346 -0.398292 -0.875894 +0.210988 -0.156104 -0.159633 -0.279552 -0.381164 -0.881229 +0.210981 -0.149333 -0.162248 -0.286815 -0.367522 -0.884683 +0.210973 -0.142570 -0.164243 -0.296690 -0.361664 -0.883841 +0.210965 -0.135814 -0.165920 -0.313334 -0.367917 -0.875477 +0.210958 -0.129066 -0.167008 -0.330803 -0.382659 -0.862637 +0.210950 -0.122326 -0.169192 -0.352118 -0.400042 -0.846156 +0.210943 -0.115585 -0.171761 -0.372792 -0.439263 -0.817358 +0.210928 -0.108860 -0.175154 -0.397744 -0.490053 -0.775660 +0.210890 -0.102173 -0.184804 -0.389271 -0.573670 -0.720674 +0.210852 -0.095515 -0.194227 -0.388456 -0.635666 -0.667107 +0.210822 -0.088880 -0.202502 -0.365645 -0.670902 -0.645131 +0.210792 -0.082268 -0.210210 -0.343080 -0.664400 -0.663980 +0.210761 -0.075687 -0.217645 -0.322640 -0.611397 -0.722563 +0.210739 -0.069120 -0.224582 -0.309085 -0.549224 -0.776415 +0.210716 -0.062553 -0.229638 -0.297354 -0.489213 -0.819909 +0.210701 -0.055979 -0.233537 -0.298613 -0.441196 -0.846272 +0.210693 -0.049390 -0.235426 -0.294056 -0.412466 -0.862208 +0.210686 -0.042793 -0.236733 -0.287498 -0.377100 -0.880421 +0.210686 -0.036188 -0.237814 -0.277629 -0.352104 -0.893837 +0.210678 -0.029607 -0.239302 -0.260331 -0.339183 -0.903982 +0.210671 -0.023032 -0.240904 -0.240441 -0.329796 -0.912920 +0.210663 -0.016466 -0.242786 -0.217532 -0.328858 -0.918984 +0.210656 -0.009922 -0.245046 -0.193079 -0.330227 -0.923943 +0.210648 -0.003400 -0.247841 -0.166175 -0.328889 -0.929633 +0.210633 0.003114 -0.250675 -0.141716 -0.322300 -0.935970 +0.210625 0.009635 -0.252980 -0.121273 -0.313652 -0.941762 +0.210618 0.016141 -0.255443 -0.105031 -0.296863 -0.949126 +0.210603 0.022640 -0.257733 -0.090202 -0.278748 -0.956119 +0.210603 0.029161 -0.259380 -0.082556 -0.261548 -0.961653 +0.210595 0.035713 -0.260204 -0.080653 -0.245197 -0.966112 +0.210595 0.042272 -0.260733 -0.082979 -0.236588 -0.968060 +0.210588 0.048801 -0.261783 -0.089840 -0.230203 -0.968987 +0.210588 0.055307 -0.263325 -0.098870 -0.228000 -0.968628 +0.210572 0.061775 -0.265660 -0.110075 -0.229043 -0.967173 +0.210565 0.068229 -0.268040 -0.121390 -0.229421 -0.965728 +0.210557 0.074659 -0.270677 -0.129644 -0.229170 -0.964714 +0.210542 0.081090 -0.273209 -0.134013 -0.224567 -0.965199 +0.210535 0.087521 -0.275521 -0.137327 -0.213963 -0.967141 +0.210527 0.093936 -0.278068 -0.135728 -0.192145 -0.971935 +0.210520 0.100352 -0.280388 -0.129519 -0.158650 -0.978803 +0.210512 0.106820 -0.281687 -0.120607 -0.113284 -0.986215 +0.210512 0.113319 -0.282383 -0.110808 -0.066311 -0.991627 +0.210512 0.119855 -0.282428 -0.096188 -0.009662 -0.995316 +0.210512 0.126399 -0.282352 -0.085246 0.039077 -0.995593 +0.210512 0.132959 -0.282080 -0.072537 0.082648 -0.993935 +0.210512 0.139571 -0.281045 -0.063500 0.116994 -0.991100 +0.210520 0.146235 -0.279375 -0.057662 0.145634 -0.987657 +0.210535 0.152953 -0.276972 -0.052969 0.169101 -0.984174 +0.210542 0.159739 -0.273715 -0.047475 0.185883 -0.981424 +0.210550 0.166487 -0.271244 -0.040068 0.194872 -0.980010 +0.210557 0.173144 -0.269937 -0.031981 0.199617 -0.979352 +0.210557 0.179704 -0.269952 -0.022302 0.200650 -0.979409 +0.210557 0.186278 -0.269823 -0.014793 0.199191 -0.979849 +0.210565 0.192913 -0.269023 -0.005072 0.198002 -0.980188 +0.210572 0.199630 -0.267156 0.002253 0.196536 -0.980494 +0.210580 0.206348 -0.265358 0.002019 0.194167 -0.980967 +0.210580 0.213074 -0.263620 -0.008325 0.189252 -0.981893 +0.210588 0.219754 -0.262403 -0.023102 0.185265 -0.982417 +0.210595 0.226449 -0.261126 -0.042121 0.178358 -0.983064 +0.210595 0.233159 -0.259690 -0.061985 0.169105 -0.983647 +0.210603 0.239877 -0.258209 -0.080747 0.158217 -0.984097 +0.210610 0.246617 -0.256607 -0.097005 0.149517 -0.983989 +0.210618 0.253305 -0.255504 -0.110023 0.147335 -0.982948 +0.210618 0.259985 -0.254597 -0.118311 0.154415 -0.980897 +0.210625 0.266665 -0.253713 -0.121694 0.166815 -0.978450 +0.210625 0.273360 -0.252670 -0.121976 0.176554 -0.976704 +0.210633 0.280085 -0.251446 -0.115720 0.213994 -0.969956 +0.210633 0.286833 -0.249980 -0.105109 0.260586 -0.959712 +0.210648 0.293718 -0.247343 -0.087992 0.314208 -0.945268 +0.210656 0.300609 -0.244690 -0.072082 0.363489 -0.928806 +0.210671 0.307539 -0.241811 -0.053122 0.414977 -0.908280 +0.210686 0.314612 -0.237723 -0.033062 0.456765 -0.888973 +0.210701 0.321677 -0.233793 -0.015455 0.491836 -0.870551 +0.210716 0.328758 -0.229887 -0.011476 0.495728 -0.868402 +0.210731 0.335853 -0.225957 -0.024255 0.461056 -0.887040 +0.210746 0.342994 -0.221817 -0.044108 0.421216 -0.905887 +0.210761 0.350218 -0.217078 -0.077144 0.365299 -0.927688 +0.210784 0.357442 -0.212469 -0.126406 0.298799 -0.945907 +0.210799 0.364614 -0.208381 -0.175874 0.227619 -0.957736 +0.210799 0.371226 -0.208826 -0.222532 0.161183 -0.961509 +0.210792 0.377702 -0.210361 -0.248550 0.122649 -0.960823 +0.210784 0.384057 -0.212741 -0.272594 0.091236 -0.957794 +0.210777 0.390601 -0.213617 -0.293748 0.069179 -0.953376 +0.210777 0.397220 -0.213905 -0.306935 0.054955 -0.950143 +0.210777 0.403946 -0.213436 -0.312283 0.093032 -0.945423 +0.210784 0.410724 -0.212567 -0.305205 0.124446 -0.944120 +0.210784 0.417502 -0.211736 -0.300947 0.161011 -0.939950 +0.210784 0.424243 -0.211215 -0.283621 0.213341 -0.934904 +0.210784 0.430900 -0.211260 -0.268837 0.260329 -0.927338 +0.210807 0.438154 -0.207187 -0.252348 0.309406 -0.916836 +0.210852 0.446776 -0.193819 -0.235950 0.407537 -0.882180 +0.220336 -0.689403 0.301561 0.354883 0.053218 -0.933395 +0.220328 -0.681537 0.299128 0.343539 0.074337 -0.936192 +0.220328 -0.674063 0.299740 0.333636 0.081537 -0.939169 +0.220336 -0.666748 0.301606 0.319885 0.084938 -0.943641 +0.220351 -0.659479 0.303911 0.306941 0.079359 -0.948414 +0.220366 -0.652187 0.306064 0.284820 0.079009 -0.955319 +0.220373 -0.644819 0.307652 0.263949 0.074533 -0.961653 +0.220381 -0.637384 0.308694 0.240307 0.064402 -0.968558 +0.220381 -0.629819 0.308709 0.207523 0.034795 -0.977611 +0.220381 -0.622248 0.308679 0.170608 -0.010539 -0.985283 +0.220381 -0.614661 0.308468 0.128639 -0.069278 -0.989269 +0.220373 -0.607021 0.307795 0.091453 -0.122873 -0.988200 +0.220366 -0.599351 0.306850 0.058151 -0.169504 -0.983812 +0.220358 -0.591621 0.305317 0.027052 -0.230961 -0.972587 +0.220343 -0.583792 0.302808 -0.007578 -0.306407 -0.951870 +0.220328 -0.575903 0.299649 -0.034314 -0.371386 -0.927844 +0.220305 -0.567969 0.295893 -0.058715 -0.427221 -0.902239 +0.220283 -0.559966 0.291397 -0.083027 -0.501714 -0.861040 +0.220252 -0.551873 0.285768 -0.104597 -0.583022 -0.805695 +0.220215 -0.543674 0.278974 -0.095229 -0.603400 -0.791732 +0.220169 -0.535385 0.270874 -0.060895 -0.608011 -0.791590 +0.220116 -0.527012 0.261738 -0.047552 -0.606454 -0.793695 +0.220048 -0.518465 0.250282 -0.045001 -0.579807 -0.813510 +0.220033 -0.510697 0.246942 -0.026166 -0.539456 -0.841607 +0.220033 -0.503246 0.247025 -0.011245 -0.495522 -0.868523 +0.220064 -0.496234 0.252126 -0.016004 -0.433633 -0.900948 +0.218613 -0.277002 -0.005456 -0.153250 -0.972575 -0.174964 +0.218378 -0.268418 -0.046859 -0.192881 -0.914805 -0.354864 +0.218280 -0.260831 -0.064609 -0.215483 -0.876493 -0.430496 +0.218205 -0.253478 -0.077470 -0.240386 -0.838483 -0.489041 +0.218137 -0.246179 -0.089795 -0.248356 -0.813721 -0.525526 +0.218069 -0.238932 -0.101757 -0.268341 -0.765462 -0.584860 +0.218008 -0.231776 -0.112186 -0.272185 -0.728047 -0.629176 +0.217963 -0.224703 -0.120921 -0.277373 -0.675562 -0.683140 +0.217917 -0.217690 -0.128447 -0.278775 -0.630768 -0.724166 +0.217887 -0.210746 -0.134243 -0.282501 -0.588336 -0.757664 +0.217857 -0.203839 -0.139072 -0.279357 -0.557699 -0.781621 +0.217842 -0.196978 -0.142593 -0.277109 -0.526122 -0.803994 +0.217819 -0.190131 -0.145790 -0.273846 -0.493105 -0.825746 +0.217804 -0.183308 -0.148752 -0.274989 -0.471655 -0.837809 +0.217789 -0.176492 -0.151646 -0.275450 -0.443833 -0.852725 +0.217774 -0.169683 -0.154691 -0.274165 -0.420581 -0.864838 +0.217751 -0.162875 -0.158432 -0.280164 -0.400426 -0.872449 +0.217729 -0.156089 -0.161454 -0.290385 -0.387142 -0.875099 +0.217721 -0.149318 -0.164031 -0.298896 -0.377567 -0.876416 +0.217706 -0.142555 -0.166124 -0.310655 -0.376797 -0.872650 +0.217691 -0.135799 -0.168331 -0.324342 -0.388656 -0.862409 +0.217683 -0.129059 -0.170371 -0.339297 -0.409409 -0.846913 +0.217668 -0.122318 -0.173001 -0.357107 -0.428572 -0.829940 +0.217645 -0.115593 -0.176575 -0.376176 -0.478223 -0.793596 +0.217615 -0.108875 -0.181706 -0.378263 -0.536608 -0.754300 +0.217570 -0.102195 -0.190374 -0.375013 -0.604546 -0.702773 +0.217525 -0.095538 -0.198277 -0.359615 -0.648662 -0.670757 +0.217479 -0.088903 -0.205902 -0.328560 -0.665375 -0.670316 +0.217441 -0.082299 -0.213209 -0.298110 -0.654040 -0.695242 +0.217404 -0.075709 -0.220169 -0.282360 -0.602440 -0.746551 +0.217366 -0.069150 -0.226773 -0.278870 -0.546894 -0.789391 +0.217336 -0.062576 -0.231504 -0.275872 -0.491922 -0.825777 +0.217321 -0.056009 -0.235275 -0.270844 -0.439709 -0.856329 +0.217305 -0.049420 -0.237254 -0.274107 -0.406239 -0.871685 +0.217298 -0.042831 -0.238789 -0.270402 -0.367450 -0.889867 +0.217290 -0.036241 -0.240126 -0.266562 -0.338380 -0.902465 +0.217283 -0.029659 -0.241501 -0.255711 -0.324639 -0.910616 +0.217275 -0.023078 -0.242945 -0.241620 -0.313565 -0.918312 +0.217268 -0.016518 -0.244607 -0.224892 -0.308434 -0.924279 +0.217253 -0.009959 -0.246504 -0.208680 -0.306889 -0.928586 +0.217245 -0.003415 -0.248461 -0.190398 -0.307924 -0.932165 +0.217237 0.003144 -0.249685 -0.169983 -0.305616 -0.936859 +0.217230 0.009695 -0.251128 -0.153649 -0.298486 -0.941965 +0.217215 0.016232 -0.252859 -0.136747 -0.286731 -0.948201 +0.217207 0.022753 -0.254763 -0.123293 -0.273119 -0.954047 +0.217200 0.029267 -0.256751 -0.114797 -0.259943 -0.958776 +0.217184 0.035788 -0.258239 -0.112629 -0.251615 -0.961252 +0.217177 0.042325 -0.259478 -0.114038 -0.242411 -0.963448 +0.217169 0.048801 -0.261881 -0.118327 -0.236711 -0.964348 +0.217154 0.055284 -0.263907 -0.122588 -0.236259 -0.963926 +0.217139 0.061730 -0.266529 -0.127744 -0.236235 -0.963262 +0.217124 0.068161 -0.269499 -0.133396 -0.235131 -0.962766 +0.217109 0.074599 -0.271916 -0.136488 -0.234201 -0.962560 +0.217094 0.081022 -0.274448 -0.133998 -0.225616 -0.964957 +0.217086 0.087468 -0.276511 -0.128541 -0.210285 -0.969153 +0.217071 0.093906 -0.278521 -0.120034 -0.185379 -0.975308 +0.217064 0.100352 -0.280350 -0.108719 -0.147959 -0.983000 +0.217056 0.106835 -0.281378 -0.097381 -0.103408 -0.989860 +0.217056 0.113334 -0.282080 -0.084597 -0.052913 -0.995009 +0.217056 0.119901 -0.281748 -0.074562 -0.000903 -0.997216 +0.217056 0.126452 -0.281574 -0.061495 0.051322 -0.996787 +0.217056 0.133011 -0.281370 -0.049689 0.094812 -0.994254 +0.217064 0.139586 -0.280924 -0.043433 0.124993 -0.991207 +0.217064 0.146175 -0.280259 -0.035372 0.152324 -0.987697 +0.217071 0.152840 -0.278559 -0.029428 0.174007 -0.984305 +0.217086 0.159580 -0.275922 -0.024566 0.190661 -0.981348 +0.217101 0.166359 -0.272929 -0.016671 0.201711 -0.979303 +0.217116 0.173084 -0.270723 -0.008222 0.207909 -0.978114 +0.217124 0.179719 -0.269793 -0.000986 0.210006 -0.977700 +0.217124 0.186308 -0.269483 0.009397 0.210315 -0.977588 +0.217124 0.192920 -0.268856 0.017606 0.206005 -0.978392 +0.217139 0.199615 -0.267345 0.023711 0.199124 -0.979688 +0.217147 0.206341 -0.265486 0.021702 0.189590 -0.981623 +0.217154 0.213066 -0.263695 0.009065 0.177300 -0.984115 +0.217162 0.219754 -0.262395 -0.006896 0.168557 -0.985668 +0.217169 0.226449 -0.261111 -0.026128 0.158129 -0.987073 +0.217177 0.233167 -0.259622 -0.047961 0.147885 -0.987841 +0.217184 0.239862 -0.258352 -0.069238 0.137986 -0.988011 +0.217192 0.246549 -0.257242 -0.088111 0.131641 -0.987374 +0.217192 0.253169 -0.256917 -0.104833 0.136384 -0.985094 +0.217200 0.259781 -0.256637 -0.115004 0.143270 -0.982979 +0.217200 0.266408 -0.256245 -0.120372 0.159718 -0.979796 +0.217200 0.273050 -0.255731 -0.121596 0.178070 -0.976476 +0.217207 0.279768 -0.254431 -0.117357 0.219147 -0.968608 +0.217215 0.286516 -0.252950 -0.109737 0.266674 -0.957519 +0.217230 0.293393 -0.250343 -0.097822 0.317811 -0.943095 +0.217253 0.300345 -0.247108 -0.080354 0.370621 -0.925302 +0.217268 0.307327 -0.243678 -0.057876 0.426466 -0.902650 +0.217298 0.314453 -0.239076 -0.041677 0.469438 -0.881981 +0.217321 0.321579 -0.234655 -0.026519 0.499111 -0.866132 +0.217343 0.328727 -0.230144 -0.025193 0.485198 -0.874041 +0.217373 0.335876 -0.225769 -0.035717 0.449748 -0.892441 +0.217396 0.343047 -0.221363 -0.054555 0.398288 -0.915636 +0.217419 0.350286 -0.216512 -0.089120 0.335947 -0.937655 +0.217441 0.357367 -0.213058 -0.130384 0.259320 -0.956950 +0.217457 0.364364 -0.210376 -0.171934 0.186343 -0.967324 +0.217449 0.370855 -0.211736 -0.200830 0.137309 -0.969955 +0.217441 0.377271 -0.213671 -0.224847 0.093953 -0.969854 +0.217426 0.383626 -0.216028 -0.249293 0.069452 -0.965935 +0.217419 0.390185 -0.216769 -0.270839 0.048209 -0.961417 +0.217419 0.396827 -0.216859 -0.280056 0.047896 -0.958788 +0.217426 0.403598 -0.216020 -0.284165 0.092997 -0.954255 +0.217426 0.410354 -0.215272 -0.272265 0.134579 -0.952765 +0.217434 0.417124 -0.214471 -0.266428 0.179896 -0.946918 +0.217441 0.423880 -0.213799 -0.255652 0.227595 -0.939597 +0.217449 0.430764 -0.212197 -0.228238 0.287405 -0.930218 +0.217464 0.437784 -0.209741 -0.213688 0.342759 -0.914797 +0.217555 0.446958 -0.192565 -0.198810 0.444454 -0.873461 +0.227915 -0.689781 0.304440 0.355318 0.043503 -0.933733 +0.227900 -0.681937 0.302241 0.346070 0.058324 -0.936394 +0.227907 -0.674524 0.303382 0.335114 0.060684 -0.940221 +0.227915 -0.667187 0.305113 0.320122 0.061435 -0.945382 +0.227930 -0.659872 0.307024 0.305736 0.054502 -0.950555 +0.227945 -0.652489 0.308528 0.283456 0.051299 -0.957612 +0.227953 -0.645046 0.309541 0.259008 0.047553 -0.964704 +0.227953 -0.637542 0.310077 0.234621 0.036807 -0.971390 +0.227953 -0.629970 0.310017 0.195399 -0.001336 -0.980723 +0.227953 -0.622384 0.309828 0.153883 -0.051479 -0.986747 +0.227953 -0.614767 0.309412 0.113533 -0.104226 -0.988052 +0.227945 -0.607104 0.308551 0.081801 -0.155650 -0.984420 +0.227930 -0.599374 0.307085 0.047708 -0.201053 -0.978418 +0.227915 -0.591613 0.305226 0.015032 -0.262893 -0.964708 +0.227900 -0.583754 0.302407 -0.015118 -0.328963 -0.944222 +0.227877 -0.575865 0.299226 -0.041671 -0.396344 -0.917156 +0.227847 -0.567916 0.295365 -0.067714 -0.453363 -0.888750 +0.227809 -0.559868 0.290400 -0.091207 -0.524686 -0.846396 +0.227764 -0.551745 0.284491 -0.095980 -0.584446 -0.805736 +0.227711 -0.543516 0.277334 -0.063949 -0.586185 -0.807650 +0.227658 -0.535233 0.269325 -0.049954 -0.598933 -0.799239 +0.227582 -0.526838 0.259901 -0.035236 -0.593220 -0.804269 +0.227514 -0.518450 0.250138 -0.005758 -0.572480 -0.819898 +0.227499 -0.510788 0.247932 0.009415 -0.510614 -0.859758 +0.227514 -0.503526 0.250199 0.009744 -0.487052 -0.873319 +0.227560 -0.496634 0.256712 0.030803 -0.452789 -0.891086 +0.225557 -0.276586 -0.016028 -0.160062 -0.960443 -0.227880 +0.225293 -0.268259 -0.051151 -0.184969 -0.914780 -0.359115 +0.225164 -0.260665 -0.069264 -0.196818 -0.881578 -0.429048 +0.225074 -0.253335 -0.081604 -0.220012 -0.842055 -0.492481 +0.224983 -0.246050 -0.093619 -0.229653 -0.813416 -0.534428 +0.224900 -0.238834 -0.105180 -0.241732 -0.764156 -0.598023 +0.224824 -0.231700 -0.114898 -0.243237 -0.730567 -0.638050 +0.224764 -0.224635 -0.123490 -0.243164 -0.676685 -0.694959 +0.224711 -0.217637 -0.130563 -0.246859 -0.633226 -0.733543 +0.224673 -0.210700 -0.136034 -0.257169 -0.588068 -0.766838 +0.224635 -0.203809 -0.140296 -0.260787 -0.557205 -0.788361 +0.224613 -0.196947 -0.144150 -0.260688 -0.523211 -0.811352 +0.224582 -0.190101 -0.147498 -0.266149 -0.493040 -0.828297 +0.224567 -0.183277 -0.150505 -0.269208 -0.474331 -0.838175 +0.224545 -0.176469 -0.153218 -0.272679 -0.444535 -0.853250 +0.224522 -0.169660 -0.156316 -0.277247 -0.423890 -0.862236 +0.224499 -0.162860 -0.159626 -0.286894 -0.408070 -0.866701 +0.224469 -0.156074 -0.163298 -0.298439 -0.395267 -0.868733 +0.224446 -0.149295 -0.166238 -0.309573 -0.388799 -0.867756 +0.224431 -0.142540 -0.168890 -0.321500 -0.391298 -0.862278 +0.224409 -0.135784 -0.171641 -0.334302 -0.407827 -0.849659 +0.224386 -0.129044 -0.174875 -0.346446 -0.432611 -0.832360 +0.224356 -0.122311 -0.178479 -0.360940 -0.460241 -0.811111 +0.224325 -0.115593 -0.182711 -0.363446 -0.509880 -0.779699 +0.224295 -0.108890 -0.187253 -0.359317 -0.565776 -0.742151 +0.224242 -0.102210 -0.194620 -0.348587 -0.616130 -0.706308 +0.224182 -0.095560 -0.202124 -0.319784 -0.650975 -0.688455 +0.224137 -0.088926 -0.209061 -0.289034 -0.654342 -0.698782 +0.224084 -0.082321 -0.216006 -0.260305 -0.638657 -0.724126 +0.224031 -0.075740 -0.222784 -0.247747 -0.593152 -0.766024 +0.223985 -0.069173 -0.228905 -0.244481 -0.542349 -0.803795 +0.223955 -0.062606 -0.233431 -0.242408 -0.486366 -0.839456 +0.223925 -0.056039 -0.237164 -0.247882 -0.444393 -0.860854 +0.223910 -0.049465 -0.239710 -0.249278 -0.401311 -0.881368 +0.223895 -0.042876 -0.241365 -0.252306 -0.364355 -0.896430 +0.223887 -0.036294 -0.242575 -0.253210 -0.332454 -0.908493 +0.223880 -0.029712 -0.243882 -0.249704 -0.315702 -0.915413 +0.223865 -0.023138 -0.245121 -0.243908 -0.300921 -0.921930 +0.223857 -0.016571 -0.246640 -0.236072 -0.294974 -0.925884 +0.223849 -0.009997 -0.247894 -0.223707 -0.290534 -0.930347 +0.223834 -0.003438 -0.249133 -0.209497 -0.289279 -0.934039 +0.223834 0.003136 -0.249904 -0.194584 -0.286567 -0.938092 +0.223827 0.009695 -0.251098 -0.178593 -0.281278 -0.942861 +0.223819 0.016270 -0.251816 -0.164794 -0.272267 -0.948005 +0.223804 0.022806 -0.253297 -0.153029 -0.262129 -0.952823 +0.223797 0.029327 -0.255224 -0.146823 -0.253549 -0.956115 +0.223781 0.035841 -0.257098 -0.143742 -0.249582 -0.957626 +0.223751 0.042279 -0.260514 -0.144104 -0.242846 -0.959302 +0.223736 0.048733 -0.263385 -0.144681 -0.239720 -0.960001 +0.223713 0.055186 -0.266053 -0.143566 -0.238587 -0.960450 +0.223691 0.061624 -0.268796 -0.143464 -0.237190 -0.960812 +0.223676 0.068062 -0.271494 -0.144532 -0.238572 -0.960309 +0.223653 0.074508 -0.273768 -0.137067 -0.230538 -0.963361 +0.223638 0.080946 -0.276020 -0.128264 -0.219170 -0.967219 +0.223630 0.087407 -0.277629 -0.116259 -0.200861 -0.972697 +0.223615 0.093876 -0.279103 -0.100039 -0.172338 -0.979945 +0.223608 0.100359 -0.280236 -0.083823 -0.134235 -0.987398 +0.223600 0.106858 -0.281022 -0.071545 -0.090869 -0.993290 +0.223600 0.113372 -0.281521 -0.061702 -0.041382 -0.997236 +0.223600 0.119939 -0.281113 -0.048490 0.010641 -0.998767 +0.223608 0.126505 -0.280743 -0.037902 0.061541 -0.997385 +0.223608 0.133049 -0.280728 -0.032367 0.100464 -0.994414 +0.223608 0.139608 -0.280576 -0.023069 0.133857 -0.990732 +0.223615 0.146198 -0.279889 -0.014227 0.159688 -0.987065 +0.223615 0.152795 -0.279209 -0.008313 0.179393 -0.983742 +0.223630 0.159490 -0.277108 -0.001567 0.195643 -0.980674 +0.223645 0.166215 -0.274788 0.005992 0.207680 -0.978179 +0.223668 0.172986 -0.272053 0.015459 0.216012 -0.976268 +0.223683 0.179681 -0.270239 0.025314 0.219408 -0.975305 +0.223691 0.186316 -0.269401 0.034331 0.219417 -0.975027 +0.223698 0.192981 -0.268184 0.040298 0.211594 -0.976527 +0.223706 0.199668 -0.266710 0.043393 0.199605 -0.978915 +0.223721 0.206341 -0.265509 0.039528 0.183910 -0.982148 +0.223729 0.213051 -0.263892 0.028224 0.166403 -0.985654 +0.223736 0.219746 -0.262516 0.013696 0.151287 -0.988395 +0.223751 0.226494 -0.260635 -0.007096 0.137274 -0.990508 +0.223766 0.233219 -0.259056 -0.029380 0.126158 -0.991575 +0.223766 0.239816 -0.258829 -0.051930 0.118180 -0.991633 +0.223774 0.246489 -0.257907 -0.070729 0.112485 -0.991133 +0.223766 0.253018 -0.258496 -0.086710 0.118208 -0.989196 +0.223766 0.259547 -0.259025 -0.098726 0.129058 -0.986710 +0.223766 0.266128 -0.258988 -0.103779 0.150375 -0.983167 +0.223766 0.272756 -0.258594 -0.109827 0.180536 -0.977417 +0.223774 0.279451 -0.257514 -0.112210 0.220147 -0.968992 +0.223789 0.286191 -0.256003 -0.106202 0.266581 -0.957944 +0.223804 0.293037 -0.253599 -0.097976 0.317181 -0.943290 +0.223834 0.300012 -0.250116 -0.077005 0.373612 -0.924383 +0.223857 0.307063 -0.246088 -0.057818 0.428883 -0.901508 +0.223895 0.314226 -0.241123 -0.036560 0.479336 -0.876870 +0.223933 0.321420 -0.236023 -0.027460 0.503494 -0.863562 +0.223978 0.328682 -0.230552 -0.031326 0.482736 -0.875206 +0.224008 0.335868 -0.225837 -0.042164 0.439126 -0.897436 +0.224046 0.343107 -0.220887 -0.061184 0.377410 -0.924023 +0.224076 0.350248 -0.216814 -0.093204 0.303812 -0.948162 +0.224091 0.357201 -0.214426 -0.132884 0.226375 -0.964933 +0.224106 0.364032 -0.213036 -0.159553 0.152528 -0.975335 +0.224091 0.370470 -0.214759 -0.184683 0.103837 -0.977297 +0.224076 0.376863 -0.216874 -0.209318 0.073780 -0.975060 +0.224061 0.383225 -0.219081 -0.226958 0.046662 -0.972786 +0.224053 0.389837 -0.219375 -0.242772 0.040437 -0.969240 +0.224053 0.396495 -0.219368 -0.245646 0.047267 -0.968207 +0.224061 0.403266 -0.218469 -0.242825 0.093393 -0.965564 +0.224069 0.410021 -0.217690 -0.241033 0.138689 -0.960556 +0.224076 0.416815 -0.216708 -0.219894 0.200197 -0.954761 +0.224084 0.423615 -0.215680 -0.204680 0.249461 -0.946507 +0.224099 0.430499 -0.214079 -0.190209 0.305871 -0.932879 +0.224121 0.437671 -0.210512 -0.161169 0.382258 -0.909892 +0.224242 0.446723 -0.194152 -0.136178 0.506078 -0.851669 +0.235570 -0.698743 0.314997 0.377438 -0.008659 -0.925994 +0.235494 -0.690129 0.307085 0.362711 0.027057 -0.931509 +0.235479 -0.682353 0.305430 0.350131 0.037737 -0.935940 +0.235487 -0.674940 0.306601 0.338148 0.037179 -0.940358 +0.235502 -0.667580 0.308188 0.320394 0.036376 -0.946586 +0.235517 -0.660227 0.309911 0.301202 0.028506 -0.953134 +0.235532 -0.652799 0.311045 0.278920 0.022289 -0.960056 +0.235532 -0.645295 0.311573 0.253906 0.018503 -0.967052 +0.235532 -0.637716 0.311521 0.223788 0.000094 -0.974638 +0.235532 -0.630076 0.310916 0.181571 -0.041547 -0.982500 +0.235524 -0.622452 0.310463 0.139804 -0.092575 -0.985842 +0.235517 -0.614827 0.309911 0.103590 -0.141237 -0.984541 +0.235509 -0.607127 0.308755 0.070346 -0.186116 -0.980006 +0.235494 -0.599366 0.307024 0.037299 -0.234088 -0.971500 +0.235471 -0.591560 0.304773 0.006519 -0.292475 -0.956251 +0.235449 -0.583709 0.302022 -0.021750 -0.355378 -0.934470 +0.235419 -0.575797 0.298568 -0.046219 -0.419375 -0.906636 +0.235381 -0.567802 0.294314 -0.070900 -0.472998 -0.878206 +0.235335 -0.559792 0.289675 -0.085148 -0.538073 -0.838587 +0.235275 -0.551609 0.283138 -0.067172 -0.566750 -0.821147 +0.235207 -0.543364 0.275831 -0.053244 -0.583469 -0.810388 +0.235131 -0.535052 0.267465 -0.036623 -0.599528 -0.799515 +0.235056 -0.526710 0.258511 -0.021922 -0.582019 -0.812880 +0.234988 -0.518579 0.251536 0.006152 -0.551435 -0.834195 +0.234988 -0.511098 0.251310 0.020352 -0.528243 -0.848849 +0.235003 -0.503783 0.253010 0.040988 -0.462956 -0.885433 +0.232449 -0.276110 -0.027997 -0.133049 -0.959292 -0.249111 +0.232199 -0.268093 -0.055579 -0.161303 -0.912974 -0.374779 +0.232041 -0.260529 -0.073103 -0.176145 -0.881620 -0.437858 +0.231927 -0.253199 -0.085488 -0.194668 -0.844664 -0.498646 +0.231814 -0.245937 -0.097291 -0.201137 -0.813568 -0.545574 +0.231723 -0.238750 -0.107817 -0.210195 -0.768196 -0.604726 +0.231640 -0.231640 -0.116893 -0.207124 -0.730908 -0.650287 +0.231565 -0.224589 -0.124971 -0.210186 -0.680115 -0.702328 +0.231504 -0.217607 -0.131674 -0.214911 -0.638643 -0.738883 +0.231459 -0.210678 -0.137107 -0.222653 -0.597425 -0.770395 +0.231414 -0.203786 -0.141558 -0.233576 -0.564341 -0.791809 +0.231376 -0.196917 -0.145669 -0.246533 -0.527581 -0.812945 +0.231346 -0.190071 -0.149145 -0.255964 -0.497407 -0.828896 +0.231323 -0.183255 -0.152024 -0.261273 -0.479140 -0.837950 +0.231293 -0.176446 -0.154714 -0.268853 -0.453486 -0.849746 +0.231270 -0.169645 -0.157487 -0.280109 -0.434478 -0.856019 +0.231240 -0.162852 -0.160646 -0.290097 -0.416059 -0.861823 +0.231210 -0.156059 -0.164409 -0.302592 -0.405358 -0.862626 +0.231172 -0.149280 -0.168505 -0.316326 -0.399984 -0.860204 +0.231134 -0.142517 -0.172238 -0.327325 -0.405624 -0.853422 +0.231104 -0.135769 -0.176122 -0.335882 -0.428347 -0.838870 +0.231066 -0.129029 -0.179908 -0.343275 -0.456667 -0.820742 +0.231036 -0.122303 -0.183618 -0.350460 -0.480145 -0.804138 +0.230998 -0.115593 -0.187728 -0.345605 -0.529219 -0.774909 +0.230960 -0.108898 -0.191431 -0.338241 -0.579183 -0.741715 +0.230900 -0.102225 -0.198172 -0.316141 -0.617611 -0.720147 +0.230839 -0.095576 -0.205184 -0.285067 -0.640832 -0.712791 +0.230779 -0.088948 -0.211940 -0.244902 -0.639742 -0.728528 +0.230711 -0.082352 -0.218748 -0.223207 -0.626333 -0.746917 +0.230658 -0.075770 -0.225134 -0.213832 -0.590385 -0.778281 +0.230605 -0.069196 -0.230560 -0.211567 -0.538708 -0.815496 +0.230567 -0.062629 -0.234942 -0.218396 -0.490193 -0.843809 +0.230529 -0.056062 -0.238789 -0.220232 -0.444653 -0.868206 +0.230507 -0.049495 -0.241547 -0.228278 -0.405885 -0.884956 +0.230484 -0.042921 -0.243632 -0.235405 -0.369379 -0.898968 +0.230469 -0.036355 -0.245332 -0.239214 -0.333162 -0.912020 +0.230461 -0.029780 -0.246708 -0.241485 -0.314303 -0.918095 +0.230446 -0.023206 -0.248015 -0.241390 -0.296278 -0.924094 +0.230439 -0.016632 -0.249058 -0.238855 -0.286702 -0.927766 +0.230431 -0.010065 -0.250131 -0.233094 -0.279309 -0.931479 +0.230416 -0.003498 -0.251318 -0.224156 -0.275679 -0.934749 +0.230409 0.003068 -0.252202 -0.214149 -0.271770 -0.938233 +0.230401 0.009635 -0.252988 -0.202829 -0.266466 -0.942261 +0.230393 0.016194 -0.253788 -0.191313 -0.259354 -0.946644 +0.230378 0.022715 -0.255799 -0.181330 -0.252038 -0.950577 +0.230356 0.029214 -0.258050 -0.173758 -0.246168 -0.953525 +0.230333 0.035705 -0.260453 -0.169157 -0.241855 -0.955454 +0.230303 0.042151 -0.263605 -0.166287 -0.238709 -0.956748 +0.230280 0.048604 -0.266272 -0.164089 -0.238677 -0.957135 +0.230257 0.055073 -0.268493 -0.157386 -0.237061 -0.958661 +0.230235 0.061518 -0.271055 -0.153337 -0.237848 -0.959123 +0.230212 0.067964 -0.273488 -0.142301 -0.231103 -0.962466 +0.230197 0.074402 -0.275748 -0.131146 -0.221749 -0.966244 +0.230174 0.080856 -0.277720 -0.116744 -0.206360 -0.971487 +0.230167 0.087332 -0.278982 -0.097751 -0.183721 -0.978106 +0.230159 0.093846 -0.279632 -0.077079 -0.154313 -0.985011 +0.230152 0.100344 -0.280418 -0.058823 -0.117927 -0.991278 +0.230144 0.106850 -0.281136 -0.045394 -0.080535 -0.995718 +0.230144 0.113387 -0.281302 -0.029825 -0.029740 -0.999113 +0.230144 0.119939 -0.281083 -0.018730 0.022874 -0.999563 +0.230152 0.126513 -0.280592 -0.013603 0.065395 -0.997767 +0.230152 0.133087 -0.280146 -0.005512 0.108360 -0.994096 +0.230159 0.139654 -0.279919 -0.000343 0.140778 -0.990041 +0.230159 0.146220 -0.279579 0.008366 0.167026 -0.985917 +0.230167 0.152802 -0.279103 0.017810 0.187425 -0.982117 +0.230182 0.159460 -0.277539 0.027069 0.203723 -0.978654 +0.230197 0.166155 -0.275672 0.036011 0.215659 -0.975805 +0.230220 0.172880 -0.273420 0.045548 0.224306 -0.973454 +0.230235 0.179605 -0.271229 0.052174 0.226109 -0.972704 +0.230257 0.186346 -0.269023 0.058484 0.223387 -0.972974 +0.230273 0.193026 -0.267549 0.062948 0.213465 -0.974921 +0.230280 0.199714 -0.266181 0.062663 0.197363 -0.978326 +0.230295 0.206386 -0.264980 0.057060 0.177300 -0.982501 +0.230303 0.213081 -0.263506 0.046925 0.155919 -0.986655 +0.230325 0.219837 -0.261466 0.030898 0.135895 -0.990241 +0.230341 0.226539 -0.260060 0.012022 0.118824 -0.992842 +0.230348 0.233242 -0.258746 -0.009566 0.106146 -0.994305 +0.230348 0.239847 -0.258556 -0.029379 0.095437 -0.995002 +0.230341 0.246323 -0.259652 -0.047667 0.096038 -0.994236 +0.230333 0.252791 -0.260801 -0.063268 0.103419 -0.992624 +0.230325 0.259320 -0.261337 -0.071795 0.119852 -0.990192 +0.230325 0.265887 -0.261398 -0.083278 0.143986 -0.986070 +0.230333 0.272521 -0.260831 -0.086672 0.171727 -0.981324 +0.230341 0.279209 -0.259804 -0.087591 0.219792 -0.971607 +0.230356 0.285957 -0.258254 -0.085010 0.272808 -0.958305 +0.230378 0.292796 -0.255882 -0.076049 0.322795 -0.943409 +0.230401 0.299702 -0.252980 -0.062142 0.382272 -0.921958 +0.230439 0.306768 -0.248688 -0.044512 0.439347 -0.897214 +0.230492 0.313954 -0.243489 -0.025656 0.486445 -0.873334 +0.230537 0.321216 -0.237829 -0.017007 0.503655 -0.863738 +0.230597 0.328569 -0.231550 -0.026224 0.474150 -0.880053 +0.230650 0.335906 -0.225572 -0.039612 0.423031 -0.905249 +0.230696 0.343138 -0.220600 -0.062714 0.354756 -0.932853 +0.230733 0.350271 -0.216618 -0.094475 0.266798 -0.959111 +0.230741 0.357064 -0.215492 -0.121449 0.193749 -0.973505 +0.230749 0.363760 -0.215182 -0.140348 0.136074 -0.980707 +0.230726 0.370145 -0.217358 -0.166126 0.080951 -0.982776 +0.230703 0.376500 -0.219685 -0.189810 0.055559 -0.980248 +0.230688 0.382900 -0.221575 -0.200780 0.034570 -0.979026 +0.230688 0.389520 -0.221779 -0.206970 0.032129 -0.977820 +0.230688 0.396208 -0.221507 -0.208772 0.048558 -0.976758 +0.230696 0.402978 -0.220577 -0.209691 0.088580 -0.973747 +0.230711 0.409787 -0.219398 -0.190871 0.162206 -0.968121 +0.230718 0.416565 -0.218469 -0.179219 0.212176 -0.960657 +0.230726 0.423434 -0.216965 -0.147058 0.290429 -0.945529 +0.230741 0.430318 -0.215333 -0.127867 0.341866 -0.931009 +0.230786 0.437671 -0.210534 -0.116664 0.404449 -0.907089 +0.230922 0.446459 -0.195973 -0.071481 0.556576 -0.827716 +0.243141 -0.698736 0.314959 0.378465 -0.028029 -0.925191 +0.243089 -0.690469 0.309684 0.363028 0.002316 -0.931775 +0.243073 -0.682791 0.308868 0.353646 0.008681 -0.935339 +0.243089 -0.675378 0.310039 0.334600 0.013767 -0.942260 +0.243104 -0.667988 0.311415 0.319572 0.007160 -0.947535 +0.243119 -0.660597 0.312866 0.294141 0.002615 -0.955758 +0.243126 -0.653101 0.313478 0.276063 -0.009731 -0.961090 +0.243126 -0.645522 0.313462 0.249522 -0.009025 -0.968327 +0.243119 -0.637897 0.313032 0.212750 -0.039686 -0.976300 +0.243111 -0.630250 0.312397 0.172038 -0.083851 -0.981515 +0.243104 -0.622573 0.311483 0.128402 -0.131938 -0.982907 +0.243096 -0.614880 0.310425 0.095805 -0.172647 -0.980313 +0.243081 -0.607150 0.308989 0.061770 -0.211928 -0.975331 +0.243058 -0.599374 0.307040 0.030652 -0.264357 -0.963938 +0.243028 -0.591553 0.304682 0.001577 -0.319918 -0.947444 +0.242998 -0.583694 0.301848 -0.025281 -0.384723 -0.922686 +0.242960 -0.575737 0.297994 -0.049331 -0.432865 -0.900108 +0.242915 -0.567734 0.293657 -0.068031 -0.490416 -0.868829 +0.242854 -0.559672 0.288458 -0.076157 -0.551357 -0.830786 +0.242779 -0.551435 0.281445 -0.047044 -0.564483 -0.824103 +0.242696 -0.543183 0.273949 -0.034295 -0.582384 -0.812190 +0.242612 -0.534878 0.265698 -0.016407 -0.588500 -0.808331 +0.242529 -0.526679 0.258224 0.004275 -0.565326 -0.824857 +0.242492 -0.518866 0.254581 0.018988 -0.534124 -0.845193 +0.242469 -0.511226 0.252760 0.037162 -0.499778 -0.865356 +0.242529 -0.504236 0.258133 0.055230 -0.468740 -0.881608 +0.239408 -0.276027 -0.030227 -0.111701 -0.956362 -0.269989 +0.239091 -0.267964 -0.058987 -0.138239 -0.917298 -0.373437 +0.238910 -0.260408 -0.076382 -0.156131 -0.881765 -0.445099 +0.238766 -0.253078 -0.089153 -0.164718 -0.845120 -0.508567 +0.238645 -0.245839 -0.100269 -0.165760 -0.814483 -0.556005 +0.238539 -0.238682 -0.109918 -0.168821 -0.768776 -0.616833 +0.238449 -0.231594 -0.118480 -0.168412 -0.733265 -0.658756 +0.238373 -0.224574 -0.125750 -0.172546 -0.684980 -0.707835 +0.238298 -0.217584 -0.132694 -0.180189 -0.644349 -0.743200 +0.238230 -0.210640 -0.138618 -0.194265 -0.604718 -0.772384 +0.238184 -0.203748 -0.143265 -0.212764 -0.570549 -0.793224 +0.238139 -0.196879 -0.147482 -0.231387 -0.535682 -0.812099 +0.238101 -0.190033 -0.151087 -0.246833 -0.501836 -0.828996 +0.238056 -0.183209 -0.154638 -0.257942 -0.482596 -0.836999 +0.238026 -0.176401 -0.157729 -0.268350 -0.461221 -0.845733 +0.237995 -0.169600 -0.160676 -0.282501 -0.439103 -0.852867 +0.237965 -0.162814 -0.163396 -0.295093 -0.423111 -0.856678 +0.237927 -0.156036 -0.167076 -0.305757 -0.414576 -0.857111 +0.237874 -0.149258 -0.171414 -0.316860 -0.410302 -0.855133 +0.237829 -0.142495 -0.175963 -0.325885 -0.420411 -0.846790 +0.237784 -0.135746 -0.179991 -0.331593 -0.441486 -0.833748 +0.237746 -0.129021 -0.183618 -0.335211 -0.469006 -0.817109 +0.237708 -0.122303 -0.187147 -0.334224 -0.501678 -0.797881 +0.237670 -0.115593 -0.190804 -0.325842 -0.538209 -0.777276 +0.237625 -0.108905 -0.194469 -0.310554 -0.578475 -0.754270 +0.237557 -0.102233 -0.200749 -0.280711 -0.607981 -0.742671 +0.237489 -0.095591 -0.207467 -0.248644 -0.629742 -0.735936 +0.237413 -0.088971 -0.214313 -0.212139 -0.629835 -0.747198 +0.237338 -0.082367 -0.220940 -0.193864 -0.621979 -0.758656 +0.237277 -0.075785 -0.226887 -0.178705 -0.585147 -0.790992 +0.237225 -0.069211 -0.231920 -0.182310 -0.542749 -0.819870 +0.237179 -0.062644 -0.236212 -0.186194 -0.493675 -0.849480 +0.237134 -0.056085 -0.240179 -0.192227 -0.453026 -0.870526 +0.237096 -0.049526 -0.243322 -0.201900 -0.411792 -0.888630 +0.237073 -0.042959 -0.245628 -0.213428 -0.372279 -0.903248 +0.237051 -0.036400 -0.247721 -0.221180 -0.338527 -0.914592 +0.237036 -0.029841 -0.249345 -0.230006 -0.315909 -0.920488 +0.237021 -0.023274 -0.250909 -0.234169 -0.296924 -0.925743 +0.237005 -0.016715 -0.252240 -0.236394 -0.281770 -0.929905 +0.236990 -0.010163 -0.253637 -0.235930 -0.273053 -0.932620 +0.236975 -0.003604 -0.254748 -0.232024 -0.266150 -0.935590 +0.236960 0.002940 -0.256109 -0.224457 -0.261431 -0.938761 +0.236945 0.009491 -0.257287 -0.216467 -0.255302 -0.942318 +0.236937 0.016028 -0.258534 -0.205623 -0.247120 -0.946917 +0.236915 0.022542 -0.260476 -0.196491 -0.241325 -0.950344 +0.236892 0.029048 -0.262441 -0.188868 -0.236431 -0.953115 +0.236862 0.035524 -0.264964 -0.182097 -0.233915 -0.955052 +0.236839 0.042000 -0.267254 -0.176182 -0.233766 -0.956197 +0.236817 0.048468 -0.269514 -0.167461 -0.231901 -0.958216 +0.236794 0.054952 -0.271274 -0.157844 -0.229456 -0.960435 +0.236779 0.061435 -0.272770 -0.147369 -0.226465 -0.962806 +0.236756 0.067874 -0.275295 -0.133367 -0.216362 -0.967161 +0.236733 0.074319 -0.277350 -0.117489 -0.203837 -0.971929 +0.236711 0.080780 -0.279110 -0.097213 -0.184335 -0.978044 +0.236696 0.087264 -0.280312 -0.075301 -0.162465 -0.983837 +0.236688 0.093770 -0.280939 -0.051089 -0.132033 -0.989928 +0.236688 0.100314 -0.281030 -0.033631 -0.100761 -0.994342 +0.236688 0.106850 -0.281143 -0.014542 -0.061997 -0.997970 +0.236688 0.113387 -0.281264 0.004268 -0.016445 -0.999856 +0.236688 0.119939 -0.281060 0.014385 0.029699 -0.999455 +0.236696 0.126528 -0.280440 0.018374 0.073195 -0.997148 +0.236703 0.133110 -0.279882 0.025298 0.112459 -0.993334 +0.236711 0.139684 -0.279458 0.032419 0.147963 -0.988461 +0.236711 0.146266 -0.278937 0.040931 0.175756 -0.983583 +0.236718 0.152855 -0.278317 0.050618 0.196667 -0.979163 +0.236733 0.159482 -0.277259 0.057886 0.210068 -0.975972 +0.236749 0.166132 -0.275937 0.067856 0.222019 -0.972678 +0.236764 0.172827 -0.274086 0.078218 0.230715 -0.969873 +0.236786 0.179553 -0.271932 0.083953 0.231713 -0.969155 +0.236809 0.186285 -0.269771 0.084952 0.224892 -0.970673 +0.236839 0.193026 -0.267541 0.083311 0.210060 -0.974133 +0.236854 0.199744 -0.265826 0.080754 0.192856 -0.977899 +0.236877 0.206454 -0.264126 0.073136 0.168459 -0.982992 +0.236892 0.213187 -0.262282 0.061695 0.143898 -0.987667 +0.236915 0.219920 -0.260521 0.046888 0.120121 -0.991651 +0.236922 0.226600 -0.259464 0.028923 0.099705 -0.994597 +0.236930 0.233212 -0.259138 0.010002 0.084884 -0.996341 +0.236915 0.239695 -0.260136 -0.008395 0.077028 -0.996994 +0.236900 0.246156 -0.261390 -0.020811 0.078636 -0.996686 +0.236892 0.252647 -0.262267 -0.033687 0.091912 -0.995197 +0.236892 0.259184 -0.262698 -0.044774 0.109701 -0.992956 +0.236885 0.265735 -0.262894 -0.051702 0.135723 -0.989397 +0.236900 0.272400 -0.262025 -0.057134 0.166313 -0.984416 +0.236907 0.279111 -0.260763 -0.056768 0.218740 -0.974130 +0.236922 0.285844 -0.259335 -0.053257 0.275364 -0.959864 +0.236953 0.292675 -0.257015 -0.045255 0.326955 -0.943956 +0.236983 0.299581 -0.254030 -0.037458 0.386823 -0.921393 +0.237021 0.306564 -0.250546 -0.023342 0.445193 -0.895130 +0.237073 0.313705 -0.245696 -0.004973 0.493195 -0.869905 +0.237141 0.321012 -0.239620 -0.003655 0.502793 -0.864399 +0.237217 0.328433 -0.232675 -0.012225 0.466943 -0.884203 +0.237285 0.335876 -0.225806 -0.028721 0.407176 -0.912898 +0.237345 0.343160 -0.220433 -0.051782 0.332410 -0.941712 +0.237383 0.350248 -0.216791 -0.083136 0.241643 -0.966797 +0.237398 0.357034 -0.215726 -0.106064 0.146970 -0.983438 +0.237383 0.363518 -0.217116 -0.125152 0.117104 -0.985202 +0.237353 0.369858 -0.219595 -0.143011 0.055361 -0.988172 +0.237330 0.376243 -0.221703 -0.162388 0.041216 -0.985866 +0.237315 0.382689 -0.223192 -0.166633 0.025125 -0.985699 +0.237315 0.389286 -0.223562 -0.172364 0.027257 -0.984656 +0.237315 0.395981 -0.223162 -0.166926 0.048533 -0.984774 +0.237330 0.402767 -0.222164 -0.157700 0.097209 -0.982691 +0.237345 0.409590 -0.220849 -0.139887 0.177158 -0.974190 +0.237353 0.416422 -0.219519 -0.112256 0.247689 -0.962314 +0.237376 0.423290 -0.217978 -0.098306 0.306552 -0.946764 +0.237391 0.430212 -0.216058 -0.086489 0.361680 -0.928282 +0.237466 0.437807 -0.209598 -0.037544 0.459468 -0.887401 +0.237633 0.446754 -0.193978 0.013179 0.658085 -0.752828 +0.250736 -0.698879 0.316069 0.380962 -0.037708 -0.923821 +0.250698 -0.690922 0.313130 0.366090 -0.018109 -0.930403 +0.250690 -0.683297 0.312782 0.354906 -0.015399 -0.934775 +0.250706 -0.675854 0.313742 0.340801 -0.019319 -0.939937 +0.250713 -0.668388 0.314619 0.325272 -0.029667 -0.945155 +0.250721 -0.660900 0.315306 0.292887 -0.032270 -0.955602 +0.250721 -0.653336 0.315427 0.272518 -0.032654 -0.961596 +0.250721 -0.645711 0.315057 0.240830 -0.045159 -0.969516 +0.250713 -0.638049 0.314302 0.202608 -0.078014 -0.976147 +0.250698 -0.630356 0.313304 0.162120 -0.121545 -0.979257 +0.250683 -0.622678 0.312382 0.128891 -0.164655 -0.977894 +0.250675 -0.614978 0.311233 0.091611 -0.202415 -0.975005 +0.250645 -0.607187 0.309329 0.058283 -0.243190 -0.968226 +0.250622 -0.599389 0.307168 0.031160 -0.287592 -0.957246 +0.250585 -0.591545 0.304599 0.000550 -0.350560 -0.936540 +0.250547 -0.583656 0.301516 -0.024012 -0.399013 -0.916631 +0.250502 -0.575676 0.297450 -0.046998 -0.446407 -0.893595 +0.250441 -0.567644 0.292758 -0.060689 -0.501776 -0.862866 +0.250366 -0.559513 0.286932 -0.039273 -0.531182 -0.846347 +0.250275 -0.551276 0.279858 -0.032211 -0.557833 -0.829328 +0.250184 -0.543002 0.272120 -0.015365 -0.575707 -0.817512 +0.250078 -0.534720 0.264050 0.001316 -0.569596 -0.821924 +0.250003 -0.526679 0.258232 0.027076 -0.556796 -0.830208 +0.249995 -0.519100 0.257106 0.036640 -0.527321 -0.848876 +0.249995 -0.511649 0.257385 0.066033 -0.476376 -0.876758 +0.246353 -0.275921 -0.032803 -0.083433 -0.957905 -0.274693 +0.246013 -0.267926 -0.060053 -0.104262 -0.921607 -0.373858 +0.245764 -0.260302 -0.079337 -0.122287 -0.884916 -0.449410 +0.245620 -0.253002 -0.091337 -0.131890 -0.845524 -0.517391 +0.245476 -0.245771 -0.102377 -0.126834 -0.812961 -0.568338 +0.245363 -0.238630 -0.111777 -0.124682 -0.765918 -0.630733 +0.245250 -0.231526 -0.120762 -0.131441 -0.732283 -0.668196 +0.245159 -0.224521 -0.127503 -0.141521 -0.687851 -0.711922 +0.245068 -0.217524 -0.135037 -0.154555 -0.647135 -0.746545 +0.245000 -0.210595 -0.140568 -0.175753 -0.614406 -0.769166 +0.244940 -0.203695 -0.145450 -0.194051 -0.581614 -0.789981 +0.244879 -0.196834 -0.149847 -0.218944 -0.545200 -0.809210 +0.244834 -0.189988 -0.153814 -0.240287 -0.515060 -0.822785 +0.244781 -0.183157 -0.157774 -0.254497 -0.492198 -0.832449 +0.244743 -0.176348 -0.161130 -0.269835 -0.464419 -0.843507 +0.244706 -0.169555 -0.164167 -0.280460 -0.448307 -0.848742 +0.244668 -0.162769 -0.167182 -0.292416 -0.431810 -0.853248 +0.244623 -0.155998 -0.170689 -0.301367 -0.423961 -0.854070 +0.244570 -0.149227 -0.174565 -0.310665 -0.420949 -0.852226 +0.244524 -0.142472 -0.178623 -0.318319 -0.430796 -0.844445 +0.244471 -0.135739 -0.182424 -0.321343 -0.452119 -0.832062 +0.244426 -0.129014 -0.186021 -0.319870 -0.477851 -0.818133 +0.244381 -0.122296 -0.189694 -0.312876 -0.508289 -0.802341 +0.244335 -0.115593 -0.193177 -0.301153 -0.539341 -0.786396 +0.244298 -0.108905 -0.196676 -0.284554 -0.570020 -0.770782 +0.244214 -0.102241 -0.202759 -0.251322 -0.599809 -0.759649 +0.244131 -0.095598 -0.209469 -0.209346 -0.615081 -0.760164 +0.244048 -0.088986 -0.216338 -0.187753 -0.618395 -0.763110 +0.243965 -0.082382 -0.222602 -0.161356 -0.607935 -0.777419 +0.243897 -0.075800 -0.228005 -0.150720 -0.585098 -0.796834 +0.243837 -0.069226 -0.232849 -0.146264 -0.548548 -0.823227 +0.243784 -0.062659 -0.237088 -0.152754 -0.495484 -0.855080 +0.243738 -0.056100 -0.241041 -0.159993 -0.457284 -0.874811 +0.243693 -0.049548 -0.244675 -0.171574 -0.418998 -0.891630 +0.243655 -0.042997 -0.247350 -0.183639 -0.381886 -0.905782 +0.243633 -0.036445 -0.249617 -0.196806 -0.349637 -0.915981 +0.243602 -0.029894 -0.251884 -0.207736 -0.321532 -0.923831 +0.243572 -0.023350 -0.253871 -0.216071 -0.302972 -0.928182 +0.243557 -0.016798 -0.255337 -0.222029 -0.286587 -0.931972 +0.243534 -0.010262 -0.257106 -0.225015 -0.272475 -0.935482 +0.243512 -0.003725 -0.258904 -0.225528 -0.262152 -0.938303 +0.243489 0.002804 -0.260574 -0.222096 -0.253969 -0.941368 +0.243474 0.009333 -0.261912 -0.217954 -0.245988 -0.944450 +0.243459 0.015869 -0.263174 -0.210272 -0.238406 -0.948129 +0.243436 0.022383 -0.264776 -0.200765 -0.231599 -0.951870 +0.243413 0.028882 -0.266642 -0.192380 -0.227629 -0.954555 +0.243383 0.035358 -0.268969 -0.181179 -0.223907 -0.957622 +0.243361 0.041849 -0.270791 -0.171551 -0.223092 -0.959583 +0.243345 0.048347 -0.272212 -0.160736 -0.221691 -0.961778 +0.243338 0.054869 -0.273103 -0.148743 -0.219205 -0.964274 +0.243323 0.061382 -0.274048 -0.134277 -0.213469 -0.967678 +0.243293 0.067821 -0.276435 -0.116927 -0.203055 -0.972161 +0.243270 0.074274 -0.278362 -0.095928 -0.187053 -0.977655 +0.243247 0.080735 -0.280048 -0.072590 -0.164618 -0.983683 +0.243232 0.087226 -0.281068 -0.049965 -0.139567 -0.988951 +0.243225 0.093732 -0.281718 -0.028481 -0.112144 -0.993284 +0.243225 0.100254 -0.281982 -0.003577 -0.077790 -0.996963 +0.243225 0.106820 -0.281604 0.017466 -0.042374 -0.998949 +0.243232 0.113379 -0.281325 0.035817 0.000836 -0.999358 +0.243232 0.119931 -0.281264 0.044606 0.035196 -0.998384 +0.243240 0.126528 -0.280448 0.055319 0.079099 -0.995331 +0.243255 0.133132 -0.279496 0.062873 0.119639 -0.990825 +0.243262 0.139744 -0.278574 0.069915 0.154948 -0.985445 +0.243277 0.146349 -0.277735 0.077661 0.183710 -0.979908 +0.243285 0.152953 -0.276965 0.087593 0.205466 -0.974736 +0.243293 0.159550 -0.276315 0.095198 0.219016 -0.971066 +0.243308 0.166185 -0.275241 0.101933 0.229125 -0.968045 +0.243323 0.172842 -0.273882 0.110723 0.234896 -0.965694 +0.243353 0.179560 -0.271788 0.113119 0.232446 -0.966009 +0.243376 0.186293 -0.269703 0.112200 0.223570 -0.968209 +0.243406 0.193033 -0.267504 0.105825 0.205003 -0.973023 +0.243429 0.199782 -0.265365 0.097529 0.183487 -0.978172 +0.243459 0.206522 -0.263302 0.087027 0.157169 -0.983730 +0.243481 0.213270 -0.261315 0.073879 0.129897 -0.988771 +0.243504 0.219988 -0.259788 0.058272 0.102190 -0.993057 +0.243512 0.226623 -0.259222 0.041809 0.081726 -0.995777 +0.243504 0.233151 -0.259720 0.025238 0.066334 -0.997478 +0.243481 0.239597 -0.261149 0.011227 0.062595 -0.997976 +0.243466 0.246058 -0.262418 0.001665 0.064833 -0.997895 +0.243459 0.252542 -0.263355 -0.007653 0.081381 -0.996654 +0.243451 0.259093 -0.263582 -0.016715 0.100111 -0.994836 +0.243459 0.265698 -0.263287 -0.025933 0.130805 -0.991069 +0.243474 0.272385 -0.262229 -0.021894 0.171099 -0.985011 +0.243489 0.279103 -0.260831 -0.017910 0.223869 -0.974455 +0.243512 0.285859 -0.259161 -0.015030 0.280329 -0.959786 +0.243534 0.292667 -0.257053 -0.003996 0.336108 -0.941815 +0.243572 0.299574 -0.254128 -0.001672 0.396040 -0.918232 +0.243617 0.306556 -0.250592 0.015458 0.459751 -0.887913 +0.243670 0.313644 -0.246254 0.022786 0.499295 -0.866133 +0.243746 0.320906 -0.240549 0.019512 0.497903 -0.867013 +0.243837 0.328380 -0.233159 0.006496 0.458068 -0.888894 +0.243927 0.335846 -0.226078 -0.009972 0.391327 -0.920198 +0.244003 0.343221 -0.219912 -0.036943 0.313827 -0.948761 +0.244041 0.350241 -0.216890 -0.063375 0.216861 -0.974143 +0.244041 0.356898 -0.216822 -0.081224 0.125284 -0.988790 +0.244018 0.363321 -0.218673 -0.101535 0.096309 -0.990159 +0.243988 0.369669 -0.221121 -0.116288 0.037381 -0.992512 +0.243965 0.376084 -0.222904 -0.129889 0.032440 -0.990998 +0.243950 0.382560 -0.224182 -0.126632 0.019758 -0.991753 +0.243950 0.389180 -0.224348 -0.122818 0.033635 -0.991859 +0.243950 0.395853 -0.224136 -0.117035 0.065554 -0.990962 +0.243965 0.402653 -0.222988 -0.097163 0.119810 -0.988031 +0.243980 0.409500 -0.221499 -0.076369 0.202202 -0.976362 +0.244003 0.416384 -0.219799 -0.067041 0.258230 -0.963755 +0.244026 0.423313 -0.217796 -0.033906 0.334058 -0.941942 +0.244063 0.430394 -0.214834 -0.007652 0.408901 -0.912547 +0.244146 0.437996 -0.208260 0.010910 0.493052 -0.869932 +0.258360 -0.699340 0.319508 0.393764 -0.077737 -0.915919 +0.258323 -0.691428 0.317007 0.379397 -0.062132 -0.923145 +0.258307 -0.683728 0.316069 0.365090 -0.057665 -0.929184 +0.258323 -0.676270 0.317037 0.341174 -0.050117 -0.938663 +0.258338 -0.668796 0.317838 0.321148 -0.059020 -0.945188 +0.258345 -0.661293 0.318457 0.301652 -0.065200 -0.951186 +0.258338 -0.653645 0.317929 0.269442 -0.068412 -0.960584 +0.258323 -0.645945 0.316946 0.235860 -0.082051 -0.968317 +0.258300 -0.638200 0.315571 0.196720 -0.114959 -0.973697 +0.258285 -0.630492 0.314475 0.160773 -0.155510 -0.974663 +0.258270 -0.622754 0.313024 0.124001 -0.194873 -0.972959 +0.258247 -0.614993 0.311407 0.089075 -0.231397 -0.968773 +0.258217 -0.607225 0.309609 0.057222 -0.269873 -0.961194 +0.258187 -0.599396 0.307282 0.033253 -0.313509 -0.949003 +0.258149 -0.591545 0.304591 0.004625 -0.373212 -0.927735 +0.258096 -0.583618 0.301138 -0.017275 -0.419395 -0.907639 +0.258035 -0.575616 0.296868 -0.035728 -0.457511 -0.888486 +0.257960 -0.567545 0.291790 -0.028154 -0.503309 -0.863648 +0.257877 -0.559399 0.285798 -0.011387 -0.527672 -0.849372 +0.257771 -0.551125 0.278354 -0.003906 -0.548861 -0.835904 +0.257658 -0.542843 0.270496 0.018326 -0.560066 -0.828245 +0.257575 -0.534773 0.264594 0.023490 -0.554291 -0.831991 +0.257499 -0.526778 0.259222 0.047677 -0.528513 -0.847586 +0.257499 -0.519281 0.259086 0.063754 -0.519314 -0.852202 +0.257544 -0.512088 0.262206 0.096207 -0.448931 -0.888372 +0.253297 -0.275846 -0.034813 -0.057763 -0.958202 -0.280201 +0.252897 -0.267813 -0.062962 -0.070703 -0.922018 -0.380636 +0.252648 -0.260272 -0.080319 -0.089189 -0.888265 -0.450590 +0.252459 -0.252934 -0.093369 -0.095570 -0.843902 -0.527916 +0.252308 -0.245718 -0.104016 -0.086535 -0.810884 -0.578773 +0.252164 -0.238562 -0.114014 -0.089312 -0.767874 -0.634345 +0.252043 -0.231473 -0.122780 -0.098305 -0.731650 -0.674555 +0.251937 -0.224461 -0.129959 -0.113983 -0.688916 -0.715823 +0.251839 -0.217479 -0.136699 -0.133647 -0.654753 -0.743933 +0.251756 -0.210549 -0.142374 -0.162199 -0.619123 -0.768360 +0.251695 -0.203665 -0.147097 -0.183346 -0.594023 -0.783276 +0.251627 -0.196789 -0.151880 -0.209320 -0.560845 -0.801023 +0.251559 -0.189935 -0.156421 -0.234390 -0.525786 -0.817686 +0.251507 -0.183111 -0.160208 -0.246683 -0.501393 -0.829309 +0.251461 -0.176310 -0.163510 -0.262456 -0.475647 -0.839569 +0.251416 -0.169517 -0.166676 -0.274114 -0.455376 -0.847051 +0.251363 -0.162739 -0.170318 -0.283208 -0.441547 -0.851369 +0.251310 -0.155968 -0.173877 -0.290801 -0.433240 -0.853075 +0.251257 -0.149205 -0.177338 -0.298408 -0.430380 -0.851895 +0.251212 -0.142464 -0.180603 -0.304069 -0.439770 -0.845071 +0.251167 -0.135731 -0.184147 -0.305689 -0.458462 -0.834486 +0.251114 -0.129006 -0.187850 -0.297145 -0.485230 -0.822348 +0.251061 -0.122296 -0.191220 -0.288379 -0.507076 -0.812226 +0.251008 -0.115601 -0.194802 -0.275435 -0.534051 -0.799328 +0.250962 -0.108913 -0.198368 -0.256261 -0.562209 -0.786290 +0.250872 -0.102248 -0.204746 -0.223594 -0.585776 -0.779020 +0.250774 -0.095613 -0.211607 -0.185169 -0.602363 -0.776448 +0.250675 -0.088994 -0.218031 -0.159292 -0.607086 -0.778507 +0.250600 -0.082397 -0.223706 -0.136459 -0.597326 -0.790304 +0.250524 -0.075808 -0.228791 -0.118694 -0.581865 -0.804577 +0.250456 -0.069233 -0.233393 -0.109870 -0.546603 -0.830153 +0.250396 -0.062667 -0.237655 -0.113368 -0.508554 -0.853534 +0.250343 -0.056108 -0.241562 -0.126615 -0.467866 -0.874683 +0.250290 -0.049563 -0.245234 -0.136741 -0.429002 -0.892894 +0.250245 -0.043019 -0.248370 -0.149400 -0.393036 -0.907305 +0.250199 -0.036483 -0.251476 -0.162764 -0.362079 -0.917827 +0.250169 -0.029939 -0.253819 -0.175974 -0.335502 -0.925457 +0.250131 -0.023403 -0.256078 -0.188942 -0.314385 -0.930303 +0.250109 -0.016866 -0.257952 -0.199665 -0.293209 -0.934966 +0.250078 -0.010337 -0.259879 -0.206540 -0.276990 -0.938412 +0.250056 -0.003816 -0.261753 -0.210413 -0.262144 -0.941811 +0.250033 0.002713 -0.263476 -0.211407 -0.250424 -0.944772 +0.250003 0.009227 -0.265214 -0.206948 -0.237667 -0.949045 +0.249980 0.015748 -0.266672 -0.200676 -0.226683 -0.953071 +0.249965 0.022262 -0.268131 -0.194525 -0.221569 -0.955545 +0.249942 0.028761 -0.269816 -0.182537 -0.215806 -0.959223 +0.249912 0.035259 -0.271531 -0.169928 -0.213067 -0.962147 +0.249889 0.041750 -0.273050 -0.156658 -0.210633 -0.964931 +0.249882 0.048272 -0.273912 -0.141749 -0.207640 -0.967881 +0.249874 0.054816 -0.274146 -0.125092 -0.202622 -0.971234 +0.249874 0.061360 -0.274418 -0.108300 -0.196822 -0.974439 +0.249844 0.067813 -0.276466 -0.087548 -0.183520 -0.979110 +0.249814 0.074266 -0.278446 -0.062725 -0.164473 -0.984385 +0.249791 0.080712 -0.280358 -0.040422 -0.142041 -0.989035 +0.249776 0.087218 -0.281189 -0.018200 -0.116746 -0.992995 +0.249761 0.093717 -0.281997 0.002571 -0.087439 -0.996167 +0.249753 0.100216 -0.282715 0.024190 -0.057530 -0.998051 +0.249761 0.106782 -0.282254 0.046019 -0.021690 -0.998705 +0.249769 0.113357 -0.281755 0.061687 0.013069 -0.998010 +0.249776 0.119931 -0.281196 0.074481 0.049857 -0.995975 +0.249784 0.126513 -0.280592 0.087830 0.088542 -0.992193 +0.249799 0.133125 -0.279624 0.096960 0.126237 -0.987250 +0.249821 0.139767 -0.278189 0.104079 0.161025 -0.981447 +0.249837 0.146394 -0.277139 0.112589 0.190211 -0.975266 +0.249844 0.153006 -0.276201 0.119024 0.211436 -0.970118 +0.249859 0.159626 -0.275264 0.127876 0.227369 -0.965376 +0.249874 0.166260 -0.274191 0.135857 0.236421 -0.962106 +0.249897 0.172910 -0.272997 0.138864 0.235977 -0.961786 +0.249920 0.179628 -0.270942 0.138077 0.229278 -0.963518 +0.249957 0.186384 -0.268493 0.132277 0.215624 -0.967476 +0.250003 0.193192 -0.265516 0.122557 0.194516 -0.973213 +0.250033 0.199940 -0.263469 0.111069 0.170431 -0.979090 +0.250056 0.206673 -0.261557 0.095620 0.141930 -0.985248 +0.250086 0.213406 -0.259758 0.079383 0.108610 -0.990910 +0.250093 0.220041 -0.259176 0.064678 0.086810 -0.994123 +0.250086 0.226615 -0.259267 0.049343 0.065116 -0.996657 +0.250078 0.233106 -0.260234 0.035214 0.051892 -0.998032 +0.250056 0.239552 -0.261640 0.023548 0.048827 -0.998530 +0.250041 0.246020 -0.262781 0.018408 0.056571 -0.998229 +0.250033 0.252572 -0.263075 0.014032 0.076514 -0.996970 +0.250041 0.259184 -0.262713 0.008274 0.100915 -0.994861 +0.250048 0.265834 -0.261935 0.003854 0.134202 -0.990946 +0.250063 0.272491 -0.261141 0.008541 0.175895 -0.984372 +0.250086 0.279216 -0.259773 0.020434 0.234365 -0.971934 +0.250109 0.285980 -0.258058 0.026514 0.291946 -0.956067 +0.250139 0.292826 -0.255625 0.037913 0.351221 -0.935525 +0.250184 0.299717 -0.252836 0.047285 0.410651 -0.910566 +0.250229 0.306654 -0.249715 0.052581 0.464370 -0.884079 +0.250290 0.313780 -0.245068 0.054688 0.495700 -0.866770 +0.250373 0.321042 -0.239333 0.046817 0.489690 -0.870639 +0.250471 0.328478 -0.232320 0.033175 0.441961 -0.896421 +0.250577 0.335966 -0.225005 0.014855 0.370582 -0.928681 +0.250660 0.343311 -0.219187 -0.013863 0.287653 -0.957634 +0.250698 0.350233 -0.216927 -0.037558 0.193903 -0.980301 +0.250683 0.356800 -0.217645 -0.059173 0.131961 -0.989487 +0.250653 0.363200 -0.219693 -0.071733 0.078467 -0.994333 +0.250622 0.369540 -0.222111 -0.084049 0.046314 -0.995385 +0.250592 0.375964 -0.223834 -0.090818 0.026443 -0.995516 +0.250577 0.382455 -0.224990 -0.085444 0.021562 -0.996110 +0.250585 0.389120 -0.224802 -0.079946 0.032605 -0.996266 +0.250592 0.395853 -0.224144 -0.067979 0.081114 -0.994384 +0.250607 0.402646 -0.223048 -0.045955 0.134992 -0.989780 +0.250630 0.409492 -0.221582 -0.017549 0.224980 -0.974205 +0.250653 0.416391 -0.219723 0.004757 0.286286 -0.958133 +0.250690 0.423389 -0.217298 0.027601 0.362230 -0.931680 +0.250743 0.430613 -0.213285 0.058306 0.440198 -0.896005 +0.250849 0.438290 -0.206212 0.094114 0.559103 -0.823739 +0.265985 -0.699710 0.322296 0.409659 -0.102392 -0.906474 +0.265955 -0.691859 0.320286 0.391352 -0.088719 -0.915954 +0.265940 -0.684174 0.319500 0.374728 -0.086489 -0.923092 +0.265947 -0.676640 0.319886 0.357622 -0.090422 -0.929479 +0.265955 -0.669091 0.320188 0.333821 -0.100805 -0.937231 +0.265955 -0.661512 0.320256 0.301104 -0.095047 -0.948843 +0.265947 -0.653849 0.319583 0.276392 -0.105694 -0.955215 +0.265932 -0.646142 0.318616 0.236368 -0.121920 -0.963984 +0.265909 -0.638411 0.317324 0.195465 -0.151358 -0.968960 +0.265879 -0.630620 0.315533 0.164083 -0.186046 -0.968743 +0.265857 -0.622852 0.313916 0.128209 -0.226740 -0.965480 +0.265826 -0.615076 0.312140 0.097367 -0.255291 -0.961949 +0.265789 -0.607225 0.309616 0.066363 -0.299005 -0.951941 +0.265751 -0.599396 0.307289 0.040783 -0.342724 -0.938550 +0.265705 -0.591538 0.304508 0.014726 -0.391744 -0.919956 +0.265637 -0.583565 0.300632 -0.004003 -0.438159 -0.898888 +0.265569 -0.575540 0.296173 -0.007481 -0.472488 -0.881305 +0.265486 -0.567455 0.290899 0.009331 -0.499518 -0.866253 +0.265380 -0.559271 0.284536 0.016190 -0.521205 -0.853278 +0.265267 -0.551012 0.277153 0.030984 -0.539187 -0.841616 +0.265146 -0.542783 0.269906 0.051191 -0.541993 -0.838822 +0.265071 -0.534833 0.265168 0.054569 -0.540347 -0.839671 +0.265010 -0.526974 0.261292 0.078210 -0.514009 -0.854212 +0.265056 -0.519742 0.264042 0.113475 -0.480329 -0.869717 +0.265252 -0.513395 0.276465 0.105370 -0.476451 -0.872864 +0.260242 -0.275785 -0.036317 -0.015233 -0.957005 -0.289671 +0.259804 -0.267783 -0.063800 -0.040273 -0.924079 -0.380075 +0.259501 -0.260196 -0.082435 -0.050985 -0.886728 -0.459471 +0.259305 -0.252881 -0.094745 -0.051341 -0.846544 -0.529838 +0.259131 -0.245657 -0.105724 -0.050853 -0.804715 -0.591480 +0.258972 -0.238509 -0.115525 -0.064525 -0.763861 -0.642147 +0.258836 -0.231436 -0.124049 -0.066646 -0.731332 -0.678758 +0.258723 -0.224423 -0.131273 -0.088480 -0.701693 -0.706964 +0.258632 -0.217479 -0.136812 -0.116731 -0.669850 -0.733263 +0.258542 -0.210549 -0.142480 -0.146718 -0.637283 -0.756534 +0.258459 -0.203650 -0.147777 -0.172853 -0.607443 -0.775329 +0.258376 -0.196766 -0.152923 -0.197260 -0.576854 -0.792671 +0.258292 -0.189912 -0.157873 -0.220705 -0.539503 -0.812543 +0.258224 -0.183081 -0.162218 -0.239307 -0.506320 -0.828476 +0.258164 -0.176272 -0.166139 -0.250823 -0.484967 -0.837791 +0.258103 -0.169479 -0.169623 -0.261442 -0.461178 -0.847917 +0.258051 -0.162701 -0.173129 -0.267429 -0.450107 -0.851989 +0.257998 -0.155938 -0.176341 -0.273735 -0.440906 -0.854793 +0.257945 -0.149190 -0.179545 -0.281242 -0.438556 -0.853564 +0.257907 -0.142449 -0.182220 -0.285183 -0.447480 -0.847604 +0.257847 -0.135724 -0.185726 -0.286875 -0.462989 -0.838656 +0.257786 -0.128998 -0.189875 -0.271560 -0.488031 -0.829506 +0.257726 -0.122296 -0.193313 -0.260452 -0.509782 -0.819931 +0.257673 -0.115601 -0.196630 -0.250221 -0.525514 -0.813157 +0.257620 -0.108913 -0.200069 -0.232647 -0.549810 -0.802237 +0.257522 -0.102256 -0.206235 -0.205120 -0.573750 -0.792929 +0.257416 -0.095621 -0.212650 -0.164918 -0.587368 -0.792339 +0.257318 -0.089001 -0.219111 -0.138355 -0.590537 -0.795062 +0.257227 -0.082404 -0.224650 -0.113333 -0.584543 -0.803408 +0.257144 -0.075815 -0.229532 -0.090822 -0.568585 -0.817595 +0.257076 -0.069233 -0.233854 -0.077223 -0.545793 -0.834354 +0.257008 -0.062667 -0.238063 -0.077455 -0.516213 -0.852950 +0.256947 -0.056115 -0.241970 -0.086357 -0.476450 -0.874950 +0.256887 -0.049571 -0.245771 -0.099589 -0.437615 -0.893630 +0.256834 -0.043035 -0.249323 -0.110405 -0.404450 -0.907872 +0.256781 -0.036506 -0.252526 -0.124758 -0.375671 -0.918317 +0.256736 -0.029977 -0.255413 -0.139765 -0.348249 -0.926924 +0.256698 -0.023440 -0.257491 -0.152633 -0.325308 -0.933208 +0.256668 -0.016911 -0.259509 -0.162955 -0.306650 -0.937770 +0.256637 -0.010383 -0.261549 -0.173514 -0.285884 -0.942424 +0.256600 -0.003869 -0.263514 -0.177367 -0.265047 -0.947782 +0.256577 0.002653 -0.265161 -0.180525 -0.248156 -0.951751 +0.256547 0.009166 -0.266997 -0.181777 -0.232843 -0.955375 +0.256524 0.015673 -0.268667 -0.177823 -0.220150 -0.959121 +0.256494 0.022186 -0.270163 -0.170222 -0.211353 -0.962473 +0.256479 0.028700 -0.271342 -0.159069 -0.204747 -0.965803 +0.256456 0.035206 -0.272718 -0.146244 -0.201843 -0.968438 +0.256433 0.041713 -0.273919 -0.128503 -0.198591 -0.971622 +0.256418 0.048226 -0.274939 -0.108991 -0.194467 -0.974835 +0.256418 0.054770 -0.275249 -0.088138 -0.187049 -0.978389 +0.256411 0.061307 -0.275642 -0.065398 -0.175598 -0.982287 +0.256403 0.067828 -0.276194 -0.041702 -0.159987 -0.986238 +0.256373 0.074304 -0.277735 -0.018171 -0.140185 -0.989959 +0.256343 0.080750 -0.279760 -0.004324 -0.124543 -0.992205 +0.256320 0.087226 -0.280962 0.016008 -0.097863 -0.995071 +0.256305 0.093725 -0.281876 0.035328 -0.068101 -0.997053 +0.256297 0.100216 -0.282753 0.052854 -0.038976 -0.997841 +0.256297 0.106760 -0.282708 0.071220 -0.004404 -0.997451 +0.256305 0.113326 -0.282254 0.084193 0.027630 -0.996066 +0.256313 0.119901 -0.281665 0.099018 0.064683 -0.992981 +0.256328 0.126498 -0.280834 0.111226 0.097393 -0.989011 +0.256343 0.133117 -0.279760 0.121683 0.132293 -0.983713 +0.256373 0.139782 -0.278038 0.129212 0.164110 -0.977943 +0.256388 0.146417 -0.276715 0.137838 0.195927 -0.970883 +0.256411 0.153074 -0.275295 0.144984 0.218582 -0.964988 +0.256433 0.159701 -0.274237 0.152382 0.234163 -0.960181 +0.256449 0.166351 -0.273028 0.156854 0.239584 -0.958121 +0.256471 0.173024 -0.271501 0.157548 0.234996 -0.959143 +0.256509 0.179764 -0.269249 0.154420 0.224357 -0.962195 +0.256554 0.186542 -0.266521 0.144458 0.203416 -0.968377 +0.256607 0.193374 -0.263363 0.132125 0.181274 -0.974517 +0.256637 0.200129 -0.261133 0.113461 0.151430 -0.981935 +0.256668 0.206870 -0.259267 0.095845 0.122376 -0.987845 +0.256690 0.213542 -0.258202 0.078342 0.093740 -0.992510 +0.256683 0.220094 -0.258617 0.065380 0.070448 -0.995371 +0.256675 0.226623 -0.259161 0.050962 0.051291 -0.997383 +0.256653 0.233091 -0.260370 0.038585 0.038834 -0.998500 +0.256637 0.239575 -0.261435 0.031196 0.041298 -0.998660 +0.256622 0.246088 -0.262108 0.027769 0.054363 -0.998135 +0.256622 0.252670 -0.262078 0.025388 0.072941 -0.997013 +0.256630 0.259290 -0.261594 0.028524 0.105714 -0.993987 +0.256645 0.265932 -0.260990 0.034968 0.142974 -0.989109 +0.256660 0.272642 -0.259720 0.041265 0.186744 -0.981542 +0.256690 0.279383 -0.258156 0.055055 0.248054 -0.967181 +0.256721 0.286153 -0.256380 0.067991 0.303193 -0.950500 +0.256751 0.292992 -0.254083 0.082550 0.358737 -0.929781 +0.256796 0.299884 -0.251302 0.085730 0.417458 -0.904643 +0.256849 0.306843 -0.248045 0.087375 0.466101 -0.880406 +0.256932 0.314007 -0.243020 0.083175 0.487909 -0.868922 +0.257023 0.321276 -0.237285 0.073212 0.471894 -0.878610 +0.257129 0.328659 -0.230726 0.055504 0.428658 -0.901760 +0.257242 0.336125 -0.223683 0.027889 0.349072 -0.936681 +0.257325 0.343387 -0.218514 0.004729 0.258380 -0.966032 +0.257348 0.350203 -0.217177 -0.017713 0.166126 -0.985945 +0.257325 0.356724 -0.218265 -0.033712 0.118105 -0.992429 +0.257295 0.363117 -0.220343 -0.040465 0.066931 -0.996937 +0.257257 0.369472 -0.222625 -0.046931 0.039227 -0.998128 +0.257234 0.375941 -0.224008 -0.046332 0.030188 -0.998470 +0.257219 0.382470 -0.224915 -0.041668 0.024397 -0.998834 +0.257227 0.389127 -0.224786 -0.026691 0.047471 -0.998516 +0.257234 0.395853 -0.224152 -0.013598 0.098784 -0.995016 +0.257257 0.402661 -0.222890 0.019697 0.178140 -0.983808 +0.257272 0.409485 -0.221643 0.039400 0.237963 -0.970475 +0.257302 0.416406 -0.219617 0.070868 0.317076 -0.945749 +0.257355 0.423517 -0.216346 0.096677 0.395781 -0.913242 +0.257446 0.430923 -0.211109 0.128767 0.486090 -0.864370 +0.257582 0.438842 -0.202388 0.163824 0.598933 -0.783863 +0.273655 -0.700285 0.326626 0.416365 -0.140829 -0.898225 +0.273610 -0.692373 0.324201 0.393843 -0.122505 -0.910977 +0.273587 -0.684597 0.322803 0.375582 -0.116756 -0.919405 +0.273579 -0.676988 0.322636 0.358676 -0.120741 -0.925620 +0.273579 -0.669393 0.322599 0.335481 -0.131268 -0.932856 +0.273579 -0.661784 0.322440 0.315141 -0.135195 -0.939366 +0.273564 -0.654091 0.321563 0.282590 -0.142744 -0.948560 +0.273542 -0.646338 0.320226 0.245750 -0.162289 -0.955651 +0.273511 -0.638540 0.318420 0.205037 -0.189132 -0.960307 +0.273474 -0.630734 0.316538 0.170209 -0.216851 -0.961252 +0.273443 -0.622943 0.314664 0.136438 -0.250631 -0.958420 +0.273406 -0.615137 0.312692 0.111307 -0.282438 -0.952806 +0.273360 -0.607263 0.309987 0.081152 -0.326342 -0.941762 +0.273307 -0.599396 0.307289 0.056792 -0.368446 -0.927913 +0.273254 -0.591492 0.304115 0.038879 -0.406843 -0.912670 +0.273186 -0.583535 0.300352 0.029021 -0.443165 -0.895970 +0.273103 -0.575480 0.295591 0.040635 -0.470283 -0.881580 +0.273005 -0.567357 0.289961 0.043894 -0.498239 -0.865928 +0.272892 -0.559173 0.283546 0.049003 -0.516037 -0.855164 +0.272771 -0.550966 0.276715 0.057616 -0.526731 -0.848077 +0.272665 -0.542903 0.271085 0.067672 -0.523575 -0.849288 +0.272597 -0.534999 0.266884 0.088576 -0.514126 -0.853129 +0.272552 -0.527269 0.264450 0.115899 -0.498405 -0.859162 +0.272673 -0.520415 0.271206 0.129162 -0.483584 -0.865716 +0.267217 -0.275793 -0.036098 0.022048 -0.961166 -0.275090 +0.266733 -0.267813 -0.063068 -0.000991 -0.928513 -0.371300 +0.266408 -0.260226 -0.081574 -0.006830 -0.894884 -0.446247 +0.266151 -0.252843 -0.095954 -0.015934 -0.845470 -0.533786 +0.265947 -0.245604 -0.107357 -0.020304 -0.806768 -0.590519 +0.265789 -0.238486 -0.116251 -0.030685 -0.769549 -0.637850 +0.265645 -0.231428 -0.124321 -0.049022 -0.736924 -0.674196 +0.265539 -0.224438 -0.130555 -0.068106 -0.717638 -0.693078 +0.265433 -0.217486 -0.136299 -0.098377 -0.686832 -0.720128 +0.265343 -0.210564 -0.141633 -0.129961 -0.657649 -0.742029 +0.265237 -0.203650 -0.147482 -0.154798 -0.627476 -0.763093 +0.265116 -0.196743 -0.154140 -0.187186 -0.585694 -0.788621 +0.265018 -0.189874 -0.159746 -0.208423 -0.550254 -0.808567 +0.264935 -0.183043 -0.164454 -0.223502 -0.518568 -0.825308 +0.264859 -0.176235 -0.168701 -0.236191 -0.488470 -0.840007 +0.264791 -0.169441 -0.172517 -0.245061 -0.466843 -0.849708 +0.264731 -0.162671 -0.175940 -0.248221 -0.457913 -0.853641 +0.264678 -0.155915 -0.178857 -0.253649 -0.447190 -0.857720 +0.264632 -0.149175 -0.181494 -0.258836 -0.445204 -0.857203 +0.264595 -0.142442 -0.183814 -0.263219 -0.453731 -0.851378 +0.264534 -0.135716 -0.187215 -0.262965 -0.466493 -0.844531 +0.264459 -0.128991 -0.191469 -0.257436 -0.484746 -0.835912 +0.264383 -0.122288 -0.195588 -0.245902 -0.503642 -0.828176 +0.264315 -0.115601 -0.199283 -0.227541 -0.525446 -0.819836 +0.264255 -0.108921 -0.202706 -0.210861 -0.541477 -0.813843 +0.264164 -0.102263 -0.208003 -0.180952 -0.559125 -0.809096 +0.264066 -0.095621 -0.213519 -0.150511 -0.570662 -0.807274 +0.263952 -0.089009 -0.219753 -0.118631 -0.573817 -0.810346 +0.263854 -0.082404 -0.225217 -0.092780 -0.569007 -0.817082 +0.263771 -0.075823 -0.230068 -0.068951 -0.555066 -0.828943 +0.263695 -0.069241 -0.234270 -0.055659 -0.540746 -0.839343 +0.263627 -0.062667 -0.238094 -0.048401 -0.516851 -0.854706 +0.263559 -0.056115 -0.241909 -0.051003 -0.487185 -0.871808 +0.263491 -0.049571 -0.245748 -0.058185 -0.451075 -0.890587 +0.263431 -0.043035 -0.249421 -0.071621 -0.417766 -0.905727 +0.263370 -0.036506 -0.252776 -0.087289 -0.386360 -0.918208 +0.263310 -0.029984 -0.255874 -0.097879 -0.362047 -0.927007 +0.263272 -0.023463 -0.258322 -0.110715 -0.339489 -0.934071 +0.263227 -0.016934 -0.260521 -0.121612 -0.319848 -0.939632 +0.263189 -0.010420 -0.262721 -0.128455 -0.293988 -0.947138 +0.263159 -0.003899 -0.264564 -0.136098 -0.272753 -0.952409 +0.263129 0.002622 -0.266302 -0.143851 -0.251425 -0.957127 +0.263098 0.009144 -0.267738 -0.144692 -0.232885 -0.961680 +0.263076 0.015650 -0.269378 -0.139965 -0.215367 -0.966451 +0.263045 0.022156 -0.270881 -0.131753 -0.202222 -0.970437 +0.263023 0.028670 -0.272136 -0.118839 -0.191380 -0.974295 +0.263000 0.035184 -0.273390 -0.101093 -0.183692 -0.977772 +0.262985 0.041690 -0.274539 -0.079554 -0.177176 -0.980959 +0.262955 0.048189 -0.275839 -0.058281 -0.172556 -0.983274 +0.262955 0.054725 -0.276186 -0.037844 -0.167546 -0.985138 +0.262955 0.061277 -0.276141 -0.013368 -0.155277 -0.987781 +0.262955 0.067843 -0.275937 0.011286 -0.138446 -0.990306 +0.262940 0.074334 -0.277101 0.027103 -0.122597 -0.992086 +0.262902 0.080788 -0.278937 0.041694 -0.104204 -0.993682 +0.262879 0.087271 -0.280184 0.056537 -0.079346 -0.995243 +0.262864 0.093755 -0.281234 0.067775 -0.049906 -0.996452 +0.262849 0.100246 -0.282156 0.079304 -0.021583 -0.996617 +0.262841 0.106775 -0.282368 0.089903 0.007393 -0.995923 +0.262849 0.113334 -0.282088 0.102124 0.039975 -0.993968 +0.262857 0.119916 -0.281506 0.115020 0.075951 -0.990455 +0.262872 0.126513 -0.280682 0.125942 0.107938 -0.986148 +0.262894 0.133132 -0.279526 0.137092 0.140133 -0.980596 +0.262925 0.139805 -0.277622 0.145634 0.172041 -0.974265 +0.262955 0.146477 -0.275929 0.155898 0.203926 -0.966494 +0.262985 0.153150 -0.274252 0.161589 0.225347 -0.960785 +0.263008 0.159800 -0.272884 0.165979 0.238210 -0.956926 +0.263038 0.166472 -0.271365 0.168375 0.240961 -0.955818 +0.263068 0.173167 -0.269627 0.167067 0.233011 -0.958016 +0.263113 0.179945 -0.266922 0.159687 0.214394 -0.963605 +0.263174 0.186754 -0.263876 0.149027 0.192352 -0.969944 +0.263219 0.193555 -0.261133 0.130148 0.160205 -0.978466 +0.263257 0.200303 -0.259108 0.111509 0.130626 -0.985141 +0.263280 0.206998 -0.257725 0.092512 0.100625 -0.990614 +0.263280 0.213603 -0.257544 0.076448 0.074054 -0.994320 +0.263272 0.220139 -0.258066 0.062022 0.054655 -0.996577 +0.263265 0.226660 -0.258798 0.049074 0.039130 -0.998028 +0.263242 0.233136 -0.259879 0.038813 0.030909 -0.998768 +0.263227 0.239650 -0.260604 0.035719 0.038425 -0.998623 +0.263227 0.246202 -0.260884 0.036454 0.056354 -0.997745 +0.263227 0.252814 -0.260552 0.039376 0.078461 -0.996139 +0.263242 0.259448 -0.260038 0.048191 0.115829 -0.992099 +0.263250 0.266098 -0.259320 0.059330 0.154132 -0.986267 +0.263272 0.272816 -0.257960 0.071949 0.199544 -0.977244 +0.263302 0.279579 -0.256313 0.092227 0.265229 -0.959764 +0.263340 0.286373 -0.254355 0.103290 0.322367 -0.940963 +0.263386 0.293226 -0.251892 0.114831 0.367289 -0.922991 +0.263438 0.300141 -0.248975 0.117196 0.421031 -0.899443 +0.263491 0.307100 -0.245726 0.114230 0.465602 -0.877591 +0.263590 0.314309 -0.240368 0.104593 0.483316 -0.869175 +0.263695 0.321601 -0.234489 0.087901 0.450518 -0.888429 +0.263801 0.328954 -0.228247 0.065475 0.402764 -0.912959 +0.263899 0.336239 -0.222693 0.038818 0.329699 -0.943288 +0.263967 0.343342 -0.218877 0.018187 0.247836 -0.968631 +0.263982 0.350090 -0.218121 -0.003576 0.174034 -0.984733 +0.263960 0.356566 -0.219565 -0.011350 0.108950 -0.993982 +0.263922 0.362944 -0.221703 -0.010898 0.061658 -0.998038 +0.263892 0.369389 -0.223298 -0.011192 0.047452 -0.998811 +0.263877 0.375918 -0.224212 -0.004034 0.034690 -0.999390 +0.263869 0.382492 -0.224711 0.006216 0.038749 -0.999230 +0.263877 0.389195 -0.224250 0.028818 0.072146 -0.996978 +0.263884 0.395913 -0.223683 0.043836 0.130364 -0.990497 +0.263899 0.402646 -0.223010 0.071807 0.195081 -0.978155 +0.263915 0.409454 -0.221839 0.102369 0.257144 -0.960936 +0.263952 0.416391 -0.219746 0.127492 0.347867 -0.928835 +0.264028 0.423631 -0.215544 0.148132 0.431226 -0.890000 +0.264141 0.431172 -0.209371 0.191459 0.524619 -0.829529 +0.264345 0.439537 -0.197598 0.238286 0.665674 -0.707176 +0.281378 -0.701146 0.333095 0.423318 -0.184319 -0.887033 +0.281295 -0.693015 0.329082 0.402199 -0.161593 -0.901179 +0.281249 -0.685111 0.326747 0.379338 -0.147329 -0.913453 +0.281234 -0.677381 0.325712 0.362210 -0.148815 -0.920140 +0.281219 -0.669718 0.325168 0.343814 -0.153809 -0.926355 +0.281212 -0.662056 0.324647 0.322414 -0.166311 -0.931874 +0.281189 -0.654310 0.323377 0.290979 -0.181887 -0.939281 +0.281159 -0.646535 0.321866 0.258370 -0.199716 -0.945176 +0.281128 -0.638751 0.320188 0.223850 -0.218958 -0.949710 +0.281083 -0.630892 0.317883 0.187108 -0.247292 -0.950703 +0.281038 -0.623049 0.315571 0.155814 -0.271940 -0.949616 +0.280985 -0.615197 0.313198 0.127771 -0.307206 -0.943026 +0.280932 -0.607301 0.310327 0.103653 -0.344086 -0.933199 +0.280871 -0.599404 0.307349 0.084563 -0.381437 -0.920519 +0.280811 -0.591485 0.304062 0.074538 -0.416043 -0.906285 +0.280728 -0.583475 0.299800 0.078100 -0.440622 -0.894289 +0.280630 -0.575404 0.294888 0.078573 -0.469521 -0.879418 +0.280524 -0.567281 0.289236 0.082153 -0.495788 -0.864549 +0.280403 -0.559127 0.283168 0.079150 -0.504234 -0.859932 +0.280282 -0.550974 0.276836 0.081736 -0.512235 -0.854947 +0.280191 -0.543024 0.272355 0.101087 -0.511036 -0.853594 +0.280146 -0.535286 0.269899 0.126247 -0.489505 -0.862813 +0.280131 -0.527737 0.269377 0.149937 -0.460630 -0.874836 +0.274191 -0.275808 -0.035743 0.066375 -0.957320 -0.281305 +0.273663 -0.267828 -0.062667 0.041108 -0.927315 -0.372017 +0.273330 -0.260279 -0.080032 0.037176 -0.895082 -0.444350 +0.273005 -0.252821 -0.096596 0.022847 -0.846418 -0.532028 +0.272793 -0.245604 -0.107500 0.011854 -0.805985 -0.591817 +0.272627 -0.238501 -0.115941 -0.001302 -0.775408 -0.631460 +0.272484 -0.231458 -0.123150 -0.027088 -0.752173 -0.658409 +0.272370 -0.224476 -0.129279 -0.048523 -0.730879 -0.680780 +0.272257 -0.217524 -0.135105 -0.079076 -0.706469 -0.703312 +0.272136 -0.210579 -0.141059 -0.111734 -0.680277 -0.724389 +0.271993 -0.203635 -0.148366 -0.137454 -0.643966 -0.752605 +0.271849 -0.196706 -0.155885 -0.170179 -0.597485 -0.783614 +0.271728 -0.189837 -0.161991 -0.188926 -0.565024 -0.803153 +0.271637 -0.182998 -0.166902 -0.204945 -0.529103 -0.823436 +0.271554 -0.176197 -0.171119 -0.214708 -0.496782 -0.840897 +0.271471 -0.169411 -0.175056 -0.221678 -0.469790 -0.854492 +0.271411 -0.162640 -0.178389 -0.225836 -0.461618 -0.857850 +0.271358 -0.155892 -0.181200 -0.230806 -0.452281 -0.861493 +0.271305 -0.149152 -0.183746 -0.233458 -0.451380 -0.861251 +0.271260 -0.142426 -0.186172 -0.238417 -0.458597 -0.856064 +0.271207 -0.135709 -0.188900 -0.242446 -0.468481 -0.849556 +0.271139 -0.128991 -0.192369 -0.236949 -0.477472 -0.846094 +0.271040 -0.122288 -0.197401 -0.226038 -0.496914 -0.837844 +0.270950 -0.115601 -0.202101 -0.207710 -0.513968 -0.832282 +0.270882 -0.108928 -0.205600 -0.188761 -0.529884 -0.826797 +0.270799 -0.102271 -0.209854 -0.163177 -0.543573 -0.823348 +0.270723 -0.095621 -0.213549 -0.145312 -0.554897 -0.819130 +0.270610 -0.089009 -0.219519 -0.108490 -0.557994 -0.822723 +0.270496 -0.082412 -0.225421 -0.076890 -0.551335 -0.830733 +0.270398 -0.075823 -0.230461 -0.053860 -0.541922 -0.838701 +0.270315 -0.069248 -0.234753 -0.035301 -0.530188 -0.847145 +0.270239 -0.062674 -0.238380 -0.025986 -0.512257 -0.858439 +0.270171 -0.056115 -0.242015 -0.021962 -0.490443 -0.871197 +0.270103 -0.049563 -0.245597 -0.027084 -0.458129 -0.888473 +0.270028 -0.043035 -0.249141 -0.039125 -0.427340 -0.903244 +0.269967 -0.036506 -0.252587 -0.052127 -0.397352 -0.916185 +0.269899 -0.029992 -0.256048 -0.062541 -0.369961 -0.926940 +0.269846 -0.023471 -0.258610 -0.072590 -0.346404 -0.935273 +0.269801 -0.016949 -0.261027 -0.079235 -0.324867 -0.942435 +0.269756 -0.010435 -0.263287 -0.083383 -0.301757 -0.949732 +0.269718 -0.003914 -0.265131 -0.089090 -0.278061 -0.956423 +0.269688 0.002607 -0.266808 -0.092176 -0.256117 -0.962241 +0.269658 0.009129 -0.268161 -0.092781 -0.233781 -0.967852 +0.269627 0.015635 -0.269778 -0.090695 -0.212362 -0.972973 +0.269597 0.022149 -0.271282 -0.081816 -0.191685 -0.978040 +0.269574 0.028655 -0.272536 -0.070192 -0.179762 -0.981203 +0.269552 0.035169 -0.273715 -0.051060 -0.167841 -0.984491 +0.269529 0.041675 -0.274871 -0.032784 -0.159477 -0.986657 +0.269506 0.048181 -0.276043 -0.009266 -0.152812 -0.988212 +0.269491 0.054695 -0.276775 0.016673 -0.143950 -0.989444 +0.269491 0.061246 -0.276791 0.039917 -0.133094 -0.990299 +0.269499 0.067813 -0.276534 0.056127 -0.121045 -0.991059 +0.269484 0.074319 -0.277433 0.071825 -0.106417 -0.991724 +0.269476 0.080848 -0.277765 0.083530 -0.089617 -0.992467 +0.269453 0.087339 -0.278869 0.093256 -0.067222 -0.993370 +0.269431 0.093830 -0.279980 0.097914 -0.044857 -0.994183 +0.269416 0.100322 -0.280924 0.101073 -0.015106 -0.994764 +0.269408 0.106850 -0.281158 0.110436 0.019602 -0.993690 +0.269408 0.113395 -0.281098 0.118965 0.055406 -0.991351 +0.269416 0.119976 -0.280562 0.125516 0.085251 -0.988422 +0.269438 0.126573 -0.279730 0.134963 0.119311 -0.983641 +0.269461 0.133208 -0.278378 0.145202 0.150359 -0.977910 +0.269499 0.139880 -0.276557 0.155696 0.184788 -0.970367 +0.269529 0.146553 -0.274758 0.162496 0.212209 -0.963619 +0.269574 0.153271 -0.272544 0.167774 0.231758 -0.958196 +0.269605 0.159951 -0.270904 0.170949 0.241695 -0.955175 +0.269642 0.166638 -0.269204 0.171069 0.240065 -0.955565 +0.269688 0.173379 -0.266914 0.166225 0.225561 -0.959943 +0.269741 0.180165 -0.264118 0.159221 0.204686 -0.965791 +0.269794 0.186950 -0.261458 0.142118 0.172184 -0.974759 +0.269839 0.193729 -0.259048 0.124657 0.141192 -0.982103 +0.269869 0.200431 -0.257544 0.105807 0.109491 -0.988340 +0.269877 0.207051 -0.257174 0.086493 0.079020 -0.993114 +0.269877 0.213625 -0.257242 0.070494 0.054860 -0.996002 +0.269862 0.220169 -0.257778 0.057786 0.039009 -0.997567 +0.269854 0.226706 -0.258254 0.046734 0.028003 -0.998515 +0.269839 0.233227 -0.258942 0.040351 0.028109 -0.998790 +0.269831 0.239771 -0.259335 0.039547 0.039090 -0.998453 +0.269839 0.246368 -0.259176 0.044824 0.062579 -0.997033 +0.269839 0.252965 -0.258995 0.054468 0.093764 -0.994103 +0.269846 0.259600 -0.258504 0.068451 0.132575 -0.988807 +0.269869 0.266280 -0.257521 0.084122 0.175244 -0.980924 +0.269899 0.273020 -0.255987 0.102171 0.221019 -0.969903 +0.269937 0.279798 -0.254159 0.116449 0.279800 -0.952970 +0.269975 0.286599 -0.252171 0.127650 0.336926 -0.932838 +0.270020 0.293476 -0.249595 0.130793 0.387657 -0.912477 +0.270081 0.300390 -0.246655 0.136467 0.431039 -0.891954 +0.270141 0.307350 -0.243466 0.130453 0.458968 -0.878823 +0.270239 0.314521 -0.238524 0.116072 0.472404 -0.873706 +0.270345 0.321745 -0.233197 0.094152 0.436729 -0.894653 +0.270458 0.329090 -0.227083 0.070178 0.385971 -0.919838 +0.270549 0.336246 -0.222663 0.046296 0.314922 -0.947988 +0.270610 0.343281 -0.219436 0.021206 0.234888 -0.971791 +0.270625 0.349999 -0.218847 0.015062 0.167125 -0.985821 +0.270602 0.356513 -0.220003 0.015398 0.110055 -0.993806 +0.270564 0.362959 -0.221613 0.016327 0.079182 -0.996726 +0.270542 0.369420 -0.223040 0.023881 0.053487 -0.998283 +0.270519 0.375948 -0.223970 0.030170 0.041094 -0.998700 +0.270511 0.382523 -0.224507 0.056621 0.060091 -0.996586 +0.270519 0.389218 -0.224076 0.072680 0.093075 -0.993003 +0.270527 0.395936 -0.223547 0.103468 0.160226 -0.981642 +0.270542 0.402661 -0.222927 0.133129 0.227582 -0.964615 +0.270572 0.409507 -0.221446 0.155730 0.300815 -0.940882 +0.270625 0.416512 -0.218854 0.179041 0.367445 -0.912649 +0.270738 0.424031 -0.212733 0.217957 0.464703 -0.858222 +0.270889 0.431754 -0.205245 0.245286 0.560442 -0.791037 +0.271154 0.440406 -0.191567 0.299023 0.700205 -0.648304 +0.289033 -0.693854 0.335520 0.410796 -0.190328 -0.891640 +0.288957 -0.685746 0.331667 0.392323 -0.184569 -0.901120 +0.288904 -0.677842 0.329332 0.375418 -0.182643 -0.908682 +0.288866 -0.670036 0.327722 0.352866 -0.189422 -0.916299 +0.288851 -0.662320 0.326777 0.332431 -0.202715 -0.921084 +0.288821 -0.654560 0.325432 0.307141 -0.216911 -0.926614 +0.288783 -0.646769 0.323762 0.275098 -0.234757 -0.932314 +0.288738 -0.638925 0.321677 0.241010 -0.248657 -0.938128 +0.288685 -0.631044 0.319138 0.213851 -0.268930 -0.939119 +0.288632 -0.623154 0.316538 0.185077 -0.293819 -0.937772 +0.288572 -0.615273 0.313840 0.159264 -0.327253 -0.931418 +0.288511 -0.607346 0.310697 0.140838 -0.358750 -0.922748 +0.288443 -0.599434 0.307576 0.130579 -0.389436 -0.911751 +0.288368 -0.591485 0.304025 0.124294 -0.418330 -0.899750 +0.288277 -0.583460 0.299694 0.136808 -0.432411 -0.891237 +0.288164 -0.575367 0.294518 0.131853 -0.465217 -0.875322 +0.288043 -0.567243 0.288851 0.121241 -0.485545 -0.865764 +0.287929 -0.559150 0.283342 0.130755 -0.485965 -0.864142 +0.287808 -0.551065 0.277690 0.147201 -0.490232 -0.859072 +0.287740 -0.543251 0.274644 0.133833 -0.483552 -0.865024 +0.287703 -0.535551 0.272650 0.165911 -0.461603 -0.871433 +0.287846 -0.528712 0.279602 0.173218 -0.450015 -0.876061 +0.281159 -0.275816 -0.035554 0.078452 -0.956799 -0.279965 +0.280622 -0.267889 -0.060952 0.085619 -0.927684 -0.363416 +0.280259 -0.260347 -0.078090 0.074790 -0.900391 -0.428604 +0.279912 -0.252889 -0.094616 0.069292 -0.853274 -0.516839 +0.279640 -0.245612 -0.107259 0.042957 -0.812100 -0.581934 +0.279474 -0.238524 -0.115079 0.022673 -0.785443 -0.618519 +0.279338 -0.231504 -0.121691 -0.004921 -0.761535 -0.648105 +0.279217 -0.224529 -0.127261 -0.024538 -0.744971 -0.666646 +0.279073 -0.217547 -0.133948 -0.055246 -0.722403 -0.689262 +0.278929 -0.210595 -0.140681 -0.090290 -0.694440 -0.713864 +0.278741 -0.203605 -0.149795 -0.115543 -0.657780 -0.744295 +0.278567 -0.196668 -0.157963 -0.146579 -0.610809 -0.778092 +0.278423 -0.189784 -0.164507 -0.163407 -0.570294 -0.805023 +0.278317 -0.182953 -0.169540 -0.175823 -0.539265 -0.823577 +0.278234 -0.176159 -0.173568 -0.187069 -0.500755 -0.845133 +0.278159 -0.169381 -0.177097 -0.193605 -0.474969 -0.858441 +0.278091 -0.162618 -0.180308 -0.197928 -0.466781 -0.861939 +0.278030 -0.155870 -0.183082 -0.204879 -0.457095 -0.865499 +0.277970 -0.149137 -0.185915 -0.211764 -0.456848 -0.863971 +0.277917 -0.142411 -0.188598 -0.217893 -0.463267 -0.859015 +0.277856 -0.135694 -0.191280 -0.218913 -0.471541 -0.854240 +0.277796 -0.128983 -0.194182 -0.216438 -0.477096 -0.851783 +0.277690 -0.122288 -0.199358 -0.208661 -0.494034 -0.844032 +0.277584 -0.115601 -0.204044 -0.193051 -0.507002 -0.840048 +0.277509 -0.108936 -0.207784 -0.176435 -0.519374 -0.836134 +0.277448 -0.102271 -0.210527 -0.156999 -0.529471 -0.833674 +0.277388 -0.095621 -0.213572 -0.134585 -0.536772 -0.832924 +0.277297 -0.088994 -0.217660 -0.106254 -0.538613 -0.835827 +0.277154 -0.082404 -0.224492 -0.073895 -0.535398 -0.841361 +0.277033 -0.075823 -0.230151 -0.045317 -0.528177 -0.847924 +0.276927 -0.069248 -0.235116 -0.022792 -0.516849 -0.855773 +0.276851 -0.062682 -0.238713 -0.010083 -0.504576 -0.863308 +0.276776 -0.056115 -0.242242 -0.003521 -0.487238 -0.873262 +0.276708 -0.049563 -0.245529 -0.005288 -0.464912 -0.885341 +0.276640 -0.043027 -0.248809 -0.012124 -0.435124 -0.900289 +0.276564 -0.036498 -0.252149 -0.019481 -0.407744 -0.912888 +0.276496 -0.029977 -0.255481 -0.030320 -0.377609 -0.925469 +0.276436 -0.023463 -0.258474 -0.038142 -0.353642 -0.934603 +0.276375 -0.016949 -0.261020 -0.043654 -0.327491 -0.943845 +0.276330 -0.010435 -0.263363 -0.046698 -0.303385 -0.951723 +0.276285 -0.003922 -0.265327 -0.049347 -0.278493 -0.959170 +0.276247 0.002592 -0.267133 -0.049199 -0.253259 -0.966147 +0.276217 0.009113 -0.268471 -0.046613 -0.230144 -0.972040 +0.276186 0.015627 -0.270005 -0.041825 -0.206249 -0.977605 +0.276164 0.022149 -0.271108 -0.038359 -0.187780 -0.981462 +0.276141 0.028662 -0.272310 -0.025560 -0.167825 -0.985485 +0.276118 0.035191 -0.273201 -0.007736 -0.152133 -0.988330 +0.276096 0.041698 -0.274350 0.013354 -0.138770 -0.990235 +0.276073 0.048204 -0.275506 0.036515 -0.127993 -0.991103 +0.276058 0.054725 -0.276247 0.059845 -0.119793 -0.990994 +0.276035 0.061231 -0.277169 0.076383 -0.114434 -0.990490 +0.276035 0.067783 -0.277078 0.092817 -0.105616 -0.990066 +0.276043 0.074350 -0.276798 0.104041 -0.095838 -0.989945 +0.276043 0.080894 -0.276934 0.110485 -0.083272 -0.990383 +0.276028 0.087415 -0.277539 0.116545 -0.064074 -0.991116 +0.276005 0.093906 -0.278544 0.120899 -0.037977 -0.991938 +0.275990 0.100420 -0.279194 0.123143 -0.009046 -0.992348 +0.275982 0.106941 -0.279534 0.126313 0.026725 -0.991630 +0.275990 0.113508 -0.279216 0.128759 0.059157 -0.989910 +0.276005 0.120082 -0.278793 0.133485 0.095190 -0.986469 +0.276020 0.126694 -0.277803 0.140058 0.128679 -0.981746 +0.276050 0.133344 -0.276330 0.149683 0.161807 -0.975404 +0.276088 0.140016 -0.274554 0.156356 0.193448 -0.968572 +0.276141 0.146734 -0.272234 0.163468 0.221456 -0.961372 +0.276194 0.153467 -0.269733 0.167110 0.237076 -0.957011 +0.276232 0.160155 -0.268025 0.169975 0.242294 -0.955197 +0.276270 0.166873 -0.266008 0.165765 0.233970 -0.958008 +0.276315 0.173605 -0.263937 0.159547 0.216685 -0.963116 +0.276368 0.180369 -0.261496 0.144400 0.187509 -0.971591 +0.276413 0.187132 -0.259222 0.128901 0.154533 -0.979543 +0.276451 0.193842 -0.257627 0.111533 0.120273 -0.986456 +0.276466 0.200477 -0.257045 0.094303 0.089001 -0.991557 +0.276466 0.207074 -0.256879 0.076429 0.058859 -0.995336 +0.276458 0.213618 -0.257325 0.063492 0.040873 -0.997145 +0.276443 0.220154 -0.257892 0.051644 0.025657 -0.998336 +0.276436 0.226698 -0.258383 0.042705 0.019675 -0.998894 +0.276428 0.233250 -0.258708 0.040888 0.028467 -0.998758 +0.276428 0.239824 -0.258776 0.042604 0.043631 -0.998139 +0.276428 0.246428 -0.258564 0.051736 0.073286 -0.995968 +0.276436 0.253033 -0.258307 0.065671 0.107987 -0.991981 +0.276451 0.259683 -0.257612 0.080774 0.147075 -0.985822 +0.276481 0.266431 -0.256010 0.100319 0.189542 -0.976734 +0.276519 0.273194 -0.254325 0.114284 0.238618 -0.964365 +0.276557 0.279972 -0.252474 0.128132 0.297753 -0.946005 +0.276610 0.286826 -0.250040 0.138495 0.348970 -0.926844 +0.276670 0.293718 -0.247312 0.141548 0.392677 -0.908718 +0.276730 0.300654 -0.244305 0.139291 0.436153 -0.889027 +0.276798 0.307591 -0.241275 0.131961 0.456175 -0.880052 +0.276889 0.314717 -0.236771 0.113855 0.454351 -0.883517 +0.277003 0.321934 -0.231587 0.092713 0.423601 -0.901092 +0.277108 0.329135 -0.226675 0.068042 0.367384 -0.927577 +0.277191 0.336231 -0.222768 0.049957 0.307406 -0.950266 +0.277252 0.343236 -0.219814 0.033977 0.231811 -0.972167 +0.277267 0.349954 -0.219225 0.029135 0.159454 -0.986775 +0.277244 0.356490 -0.220147 0.033465 0.109222 -0.993454 +0.277222 0.362989 -0.221341 0.045464 0.088023 -0.995080 +0.277191 0.369480 -0.222564 0.055280 0.068627 -0.996110 +0.277169 0.375994 -0.223615 0.073747 0.064003 -0.995221 +0.277161 0.382553 -0.224242 0.089302 0.069010 -0.993611 +0.277169 0.389256 -0.223781 0.125128 0.123018 -0.984484 +0.277176 0.395973 -0.223260 0.158034 0.176828 -0.971472 +0.277229 0.402918 -0.221046 0.170131 0.245715 -0.954295 +0.277267 0.409840 -0.219043 0.219322 0.335606 -0.916115 +0.277358 0.417049 -0.215031 0.249464 0.420465 -0.872340 +0.277494 0.424620 -0.208524 0.282557 0.506788 -0.814449 +0.277675 0.432494 -0.200061 0.318145 0.616143 -0.720522 +0.278023 0.441585 -0.183368 0.354802 0.755544 -0.550698 +0.296929 -0.695456 0.347724 0.437472 -0.241646 -0.866156 +0.296718 -0.686637 0.338520 0.397222 -0.217643 -0.891542 +0.296635 -0.678559 0.334938 0.380078 -0.216294 -0.899310 +0.296544 -0.670466 0.331115 0.359339 -0.218388 -0.907294 +0.296499 -0.662623 0.329188 0.338740 -0.229935 -0.912352 +0.296461 -0.654809 0.327435 0.319579 -0.246412 -0.914959 +0.296423 -0.646996 0.325651 0.299168 -0.260681 -0.917902 +0.296378 -0.639167 0.323679 0.272144 -0.275949 -0.921840 +0.296317 -0.631278 0.321148 0.244054 -0.289041 -0.925685 +0.296257 -0.623366 0.318359 0.216132 -0.309304 -0.926077 +0.296181 -0.615439 0.315299 0.197564 -0.340036 -0.919426 +0.296098 -0.607459 0.311702 0.185072 -0.368215 -0.911134 +0.296022 -0.599495 0.308180 0.181084 -0.391067 -0.902372 +0.295932 -0.591515 0.304365 0.178012 -0.412131 -0.893566 +0.295826 -0.583482 0.299861 0.163579 -0.437135 -0.884395 +0.295713 -0.575397 0.294790 0.164684 -0.455681 -0.874776 +0.295592 -0.567304 0.289455 0.172339 -0.470715 -0.865290 +0.295471 -0.559256 0.284370 0.175955 -0.477095 -0.861058 +0.295373 -0.551291 0.279949 0.185316 -0.460112 -0.868306 +0.295342 -0.543644 0.278627 0.211701 -0.445322 -0.869983 +0.295350 -0.536163 0.278967 0.223755 -0.430012 -0.874656 +0.288209 -0.275952 -0.032176 0.119200 -0.958260 -0.259864 +0.287604 -0.267987 -0.058458 0.119769 -0.928477 -0.351548 +0.287204 -0.260423 -0.076080 0.110310 -0.902805 -0.415661 +0.286819 -0.252957 -0.092682 0.100454 -0.856647 -0.506029 +0.286516 -0.245650 -0.105966 0.071143 -0.819287 -0.568954 +0.286335 -0.238562 -0.113878 0.045023 -0.797125 -0.602133 +0.286176 -0.231534 -0.120588 0.023170 -0.781031 -0.624062 +0.286040 -0.224544 -0.126732 -0.005540 -0.760653 -0.649135 +0.285866 -0.217539 -0.134326 -0.034271 -0.736944 -0.675084 +0.285670 -0.210542 -0.142759 -0.065639 -0.707815 -0.703342 +0.285436 -0.203529 -0.153044 -0.096593 -0.660028 -0.745005 +0.285262 -0.196615 -0.160464 -0.119796 -0.616512 -0.778179 +0.285118 -0.189746 -0.166698 -0.130546 -0.570978 -0.810520 +0.285012 -0.182930 -0.171285 -0.140716 -0.545962 -0.825908 +0.284929 -0.176136 -0.175109 -0.152561 -0.508756 -0.847285 +0.284854 -0.169366 -0.178389 -0.163103 -0.481970 -0.860873 +0.284786 -0.162610 -0.181200 -0.169780 -0.470690 -0.865809 +0.284718 -0.155862 -0.184169 -0.177068 -0.465948 -0.866914 +0.284650 -0.149129 -0.187109 -0.187124 -0.465703 -0.864930 +0.284582 -0.142404 -0.190116 -0.194475 -0.470370 -0.860774 +0.284506 -0.135686 -0.193525 -0.198256 -0.475203 -0.857250 +0.284438 -0.128976 -0.196487 -0.199560 -0.480630 -0.853915 +0.284340 -0.122281 -0.200885 -0.194856 -0.488646 -0.850445 +0.284234 -0.115601 -0.205290 -0.181616 -0.498007 -0.847942 +0.284136 -0.108936 -0.209612 -0.164624 -0.508639 -0.845095 +0.284075 -0.102278 -0.212325 -0.145456 -0.513909 -0.845423 +0.284023 -0.095629 -0.214524 -0.123486 -0.515333 -0.848047 +0.283977 -0.088986 -0.216550 -0.102589 -0.519788 -0.848113 +0.283826 -0.082389 -0.223305 -0.069506 -0.517163 -0.853060 +0.283675 -0.075815 -0.229720 -0.039821 -0.511902 -0.858120 +0.283547 -0.069256 -0.235237 -0.016208 -0.504700 -0.863143 +0.283463 -0.062682 -0.238857 0.000678 -0.496348 -0.868124 +0.283388 -0.056115 -0.242151 0.008100 -0.484190 -0.874925 +0.283320 -0.049563 -0.245325 0.009664 -0.466796 -0.884312 +0.283252 -0.043012 -0.248257 0.007431 -0.440507 -0.897718 +0.283176 -0.036483 -0.251544 0.002664 -0.412128 -0.911122 +0.283101 -0.029962 -0.254733 -0.002499 -0.384119 -0.923280 +0.283033 -0.023448 -0.257703 -0.007012 -0.359437 -0.933143 +0.282972 -0.016934 -0.260476 -0.010620 -0.334465 -0.942348 +0.282912 -0.010428 -0.262955 -0.009552 -0.305945 -0.952001 +0.282859 -0.003914 -0.265236 -0.009571 -0.279787 -0.960014 +0.282821 0.002592 -0.267103 -0.007887 -0.252731 -0.967504 +0.282783 0.009121 -0.268463 -0.004058 -0.227850 -0.973688 +0.282761 0.015642 -0.269567 0.000980 -0.201403 -0.979508 +0.282746 0.022179 -0.270398 0.008077 -0.175084 -0.984520 +0.282723 0.028700 -0.271358 0.016252 -0.153186 -0.988064 +0.282700 0.035229 -0.272272 0.024893 -0.137194 -0.990231 +0.282678 0.041750 -0.273186 0.041630 -0.120575 -0.991831 +0.282647 0.048249 -0.274501 0.060767 -0.108709 -0.992215 +0.282617 0.054740 -0.275816 0.080249 -0.101135 -0.991631 +0.282594 0.061246 -0.276851 0.098027 -0.096525 -0.990492 +0.282587 0.067790 -0.277010 0.109413 -0.095183 -0.989429 +0.282587 0.074334 -0.277063 0.120020 -0.088061 -0.988858 +0.282594 0.080901 -0.276798 0.127206 -0.076253 -0.988941 +0.282587 0.087445 -0.277002 0.132296 -0.058919 -0.989458 +0.282587 0.093989 -0.277025 0.134938 -0.035184 -0.990229 +0.282587 0.100533 -0.277259 0.135879 -0.004698 -0.990714 +0.282587 0.107092 -0.277093 0.134861 0.028624 -0.990451 +0.282594 0.113651 -0.276957 0.134759 0.065313 -0.988724 +0.282594 0.120218 -0.276655 0.136378 0.099342 -0.985663 +0.282625 0.126853 -0.275347 0.141364 0.135068 -0.980700 +0.282662 0.133510 -0.273753 0.146144 0.170630 -0.974437 +0.282715 0.140205 -0.271712 0.152508 0.203517 -0.967121 +0.282776 0.146961 -0.268992 0.157016 0.228287 -0.960849 +0.282836 0.153709 -0.266363 0.158825 0.238816 -0.957988 +0.282866 0.160389 -0.264836 0.157410 0.239159 -0.958136 +0.282912 0.167099 -0.263038 0.152227 0.228678 -0.961527 +0.282950 0.173802 -0.261322 0.141399 0.204516 -0.968597 +0.282995 0.180542 -0.259260 0.127620 0.173504 -0.976529 +0.283033 0.187253 -0.257672 0.111299 0.137944 -0.984167 +0.283048 0.193902 -0.256924 0.094317 0.101457 -0.990359 +0.283048 0.200484 -0.256932 0.079424 0.073686 -0.994114 +0.283048 0.207059 -0.257098 0.065749 0.048162 -0.996673 +0.283025 0.213572 -0.257914 0.053954 0.027406 -0.998167 +0.283018 0.220109 -0.258420 0.043195 0.015394 -0.998948 +0.283002 0.226630 -0.259056 0.038740 0.017941 -0.999088 +0.282995 0.233189 -0.259358 0.037773 0.027929 -0.998896 +0.282995 0.239763 -0.259441 0.043598 0.051780 -0.997706 +0.282995 0.246368 -0.259214 0.053886 0.083600 -0.995041 +0.283010 0.253003 -0.258640 0.066222 0.119089 -0.990673 +0.283040 0.259720 -0.257280 0.085365 0.166320 -0.982370 +0.283086 0.266476 -0.255557 0.102599 0.207344 -0.972873 +0.283123 0.273254 -0.253735 0.114689 0.255103 -0.960088 +0.283184 0.280108 -0.251174 0.126985 0.311194 -0.941824 +0.283237 0.286970 -0.248695 0.133702 0.356648 -0.924622 +0.283312 0.293899 -0.245628 0.137318 0.397652 -0.907202 +0.283380 0.300859 -0.242431 0.132772 0.432639 -0.891737 +0.283463 0.307841 -0.239083 0.121664 0.452329 -0.883514 +0.283554 0.314929 -0.234874 0.104931 0.441472 -0.891118 +0.283660 0.322055 -0.230514 0.083468 0.407853 -0.909224 +0.283751 0.329166 -0.226426 0.064527 0.355191 -0.932564 +0.283834 0.336223 -0.222844 0.043781 0.290393 -0.955905 +0.283902 0.343221 -0.219943 0.043276 0.227659 -0.972779 +0.283917 0.349969 -0.219089 0.046782 0.170917 -0.984174 +0.283902 0.356536 -0.219791 0.055396 0.125530 -0.990542 +0.283879 0.363034 -0.221001 0.062866 0.097554 -0.993243 +0.283841 0.369510 -0.222323 0.085565 0.089794 -0.992278 +0.283826 0.376039 -0.223282 0.104156 0.085740 -0.990858 +0.283803 0.382576 -0.224091 0.139388 0.110097 -0.984098 +0.283826 0.389324 -0.223290 0.167627 0.157048 -0.973261 +0.283871 0.396238 -0.221287 0.205760 0.212833 -0.955178 +0.283924 0.403213 -0.218847 0.238685 0.298500 -0.924082 +0.284007 0.410361 -0.215227 0.271807 0.368713 -0.888916 +0.284113 0.417638 -0.210754 0.307514 0.456395 -0.834948 +0.284264 0.425248 -0.204074 0.344636 0.553983 -0.757845 +0.284536 0.433628 -0.192104 0.372458 0.665418 -0.646911 +0.284952 0.442930 -0.174051 0.391393 0.771675 -0.501328 +0.304509 -0.687544 0.345586 0.423174 -0.256169 -0.869080 +0.304380 -0.679270 0.340530 0.401025 -0.247850 -0.881901 +0.304289 -0.671177 0.336775 0.381214 -0.249095 -0.890296 +0.304191 -0.663083 0.332921 0.359947 -0.257140 -0.896837 +0.304131 -0.655149 0.330208 0.340349 -0.271734 -0.900180 +0.304070 -0.647275 0.327971 0.320659 -0.285586 -0.903116 +0.304010 -0.639394 0.325591 0.297848 -0.291854 -0.908905 +0.303949 -0.631489 0.322984 0.269623 -0.305575 -0.913196 +0.303881 -0.623570 0.320090 0.251411 -0.327277 -0.910869 +0.303798 -0.615613 0.316871 0.237083 -0.347059 -0.907382 +0.303708 -0.607618 0.313145 0.233796 -0.364937 -0.901200 +0.303617 -0.599631 0.309405 0.230329 -0.382783 -0.894665 +0.303511 -0.591621 0.305286 0.224613 -0.411092 -0.883489 +0.303390 -0.583543 0.300435 0.225418 -0.429466 -0.874498 +0.303269 -0.575480 0.295569 0.205261 -0.447280 -0.870522 +0.303148 -0.567425 0.290597 0.208379 -0.452107 -0.867281 +0.303058 -0.559490 0.286735 0.223789 -0.456988 -0.860861 +0.302982 -0.551661 0.283690 0.244655 -0.444086 -0.861935 +0.302997 -0.544218 0.284453 0.249555 -0.419634 -0.872714 +0.303118 -0.537168 0.289380 0.267886 -0.388544 -0.881629 +0.295282 -0.276103 -0.028307 0.155386 -0.956016 -0.248773 +0.294640 -0.268138 -0.054279 0.151864 -0.927993 -0.340244 +0.294141 -0.260483 -0.074349 0.139826 -0.902015 -0.408433 +0.293710 -0.252987 -0.091782 0.127389 -0.860051 -0.494049 +0.293408 -0.245718 -0.104084 0.098396 -0.834202 -0.542609 +0.293196 -0.238599 -0.112624 0.073288 -0.811812 -0.579301 +0.293030 -0.231564 -0.119440 0.047466 -0.791581 -0.609217 +0.292849 -0.224544 -0.126777 0.015992 -0.770819 -0.636854 +0.292630 -0.217501 -0.135701 -0.011230 -0.746802 -0.664952 +0.292365 -0.210451 -0.146508 -0.041724 -0.713927 -0.698976 +0.292131 -0.203469 -0.155749 -0.067842 -0.668371 -0.740728 +0.291972 -0.196577 -0.162338 -0.086812 -0.625834 -0.775110 +0.291829 -0.189716 -0.168134 -0.100140 -0.579341 -0.808910 +0.291723 -0.182907 -0.172351 -0.109727 -0.548677 -0.828803 +0.291640 -0.176121 -0.175812 -0.120387 -0.518144 -0.846778 +0.291564 -0.169358 -0.178887 -0.132565 -0.492978 -0.859883 +0.291489 -0.162603 -0.181865 -0.143388 -0.479127 -0.865954 +0.291413 -0.155855 -0.184797 -0.154233 -0.472993 -0.867462 +0.291345 -0.149122 -0.187683 -0.161826 -0.476203 -0.864317 +0.291254 -0.142389 -0.191461 -0.171952 -0.478996 -0.860811 +0.291156 -0.135671 -0.195278 -0.181224 -0.480906 -0.857838 +0.291073 -0.128968 -0.198799 -0.184303 -0.481913 -0.856617 +0.290967 -0.122281 -0.202887 -0.180669 -0.484087 -0.856165 +0.290869 -0.115601 -0.207127 -0.169523 -0.489481 -0.855377 +0.290756 -0.108943 -0.211630 -0.152772 -0.495690 -0.854957 +0.290688 -0.102286 -0.214298 -0.129399 -0.498320 -0.857282 +0.290635 -0.095636 -0.216391 -0.108705 -0.496359 -0.861284 +0.290589 -0.088994 -0.218174 -0.091919 -0.497976 -0.862305 +0.290521 -0.082374 -0.221129 -0.063062 -0.495802 -0.866143 +0.290355 -0.075800 -0.227892 -0.033357 -0.495606 -0.867907 +0.290196 -0.069241 -0.234225 -0.009120 -0.490431 -0.871432 +0.290091 -0.062674 -0.238388 0.007539 -0.485364 -0.874280 +0.290015 -0.056108 -0.241562 0.016851 -0.479937 -0.877141 +0.289939 -0.049548 -0.244569 0.021112 -0.465824 -0.884626 +0.289871 -0.042997 -0.247297 0.022491 -0.442550 -0.896461 +0.289803 -0.036453 -0.250260 0.019921 -0.415200 -0.909512 +0.289720 -0.029931 -0.253524 0.017278 -0.387339 -0.921776 +0.289645 -0.023418 -0.256554 0.015898 -0.361304 -0.932312 +0.289569 -0.016911 -0.259592 0.015813 -0.335832 -0.941789 +0.289509 -0.010405 -0.262146 0.016071 -0.309198 -0.950862 +0.289448 -0.003899 -0.264542 0.016442 -0.280598 -0.959684 +0.289395 0.002607 -0.266590 0.018199 -0.252656 -0.967385 +0.289365 0.009129 -0.268040 0.021661 -0.226564 -0.973755 +0.289342 0.015665 -0.268947 0.025682 -0.198985 -0.979666 +0.289320 0.022201 -0.269755 0.030991 -0.170806 -0.984817 +0.289312 0.028753 -0.270111 0.038653 -0.145280 -0.988635 +0.289297 0.035290 -0.270783 0.046987 -0.122156 -0.991398 +0.289274 0.041811 -0.271735 0.056519 -0.103860 -0.992985 +0.289237 0.048310 -0.273012 0.069104 -0.090614 -0.993486 +0.289206 0.054816 -0.274267 0.084652 -0.085151 -0.992766 +0.289176 0.061307 -0.275529 0.098521 -0.082305 -0.991726 +0.289161 0.067828 -0.276231 0.110473 -0.079733 -0.990676 +0.289161 0.074372 -0.276307 0.120731 -0.076288 -0.989750 +0.289161 0.080939 -0.276103 0.128706 -0.068387 -0.989322 +0.289176 0.087521 -0.275604 0.134214 -0.054309 -0.989463 +0.289176 0.094080 -0.275438 0.137213 -0.033746 -0.989966 +0.289184 0.100639 -0.275377 0.138547 -0.005113 -0.990343 +0.289176 0.107191 -0.275453 0.137322 0.029262 -0.990094 +0.289176 0.113742 -0.275431 0.135228 0.065164 -0.988669 +0.289184 0.120316 -0.275136 0.136238 0.103322 -0.985273 +0.289214 0.126951 -0.273896 0.136664 0.141872 -0.980406 +0.289259 0.133616 -0.272242 0.139306 0.178787 -0.973976 +0.289320 0.140349 -0.269673 0.143325 0.210675 -0.966992 +0.289395 0.147112 -0.266824 0.144617 0.231798 -0.961954 +0.289463 0.153875 -0.264080 0.143289 0.239679 -0.960220 +0.289494 0.160555 -0.262599 0.138516 0.237451 -0.961473 +0.289531 0.167243 -0.261156 0.131225 0.221697 -0.966246 +0.289577 0.173946 -0.259464 0.117204 0.192468 -0.974279 +0.289614 0.180671 -0.257672 0.101421 0.158549 -0.982128 +0.289630 0.187298 -0.257083 0.088485 0.122369 -0.988532 +0.289645 0.193918 -0.256698 0.076034 0.089424 -0.993087 +0.289630 0.200469 -0.257091 0.062223 0.061001 -0.996196 +0.289614 0.206983 -0.257952 0.049423 0.033992 -0.998199 +0.289592 0.213489 -0.258806 0.040334 0.016440 -0.999051 +0.289584 0.220041 -0.259184 0.033966 0.011990 -0.999351 +0.289569 0.226570 -0.259728 0.031308 0.016893 -0.999367 +0.289554 0.233099 -0.260363 0.032967 0.032831 -0.998917 +0.289546 0.239665 -0.260499 0.040377 0.062357 -0.997237 +0.289554 0.246262 -0.260280 0.050931 0.095209 -0.994153 +0.289569 0.252919 -0.259509 0.063314 0.130091 -0.989478 +0.289607 0.259645 -0.258035 0.077668 0.170503 -0.982291 +0.289652 0.266408 -0.256252 0.095792 0.222959 -0.970110 +0.289705 0.273201 -0.254204 0.105608 0.269016 -0.957328 +0.289773 0.280078 -0.251461 0.114276 0.316236 -0.941773 +0.289849 0.287007 -0.248340 0.119939 0.363257 -0.923937 +0.289939 0.294005 -0.244660 0.121444 0.402647 -0.907263 +0.290030 0.301002 -0.241078 0.115644 0.434560 -0.893187 +0.290128 0.308060 -0.237081 0.103218 0.441671 -0.891220 +0.290227 0.315133 -0.233099 0.086842 0.428529 -0.899345 +0.290332 0.322259 -0.228769 0.072295 0.391626 -0.917280 +0.290415 0.329286 -0.225360 0.055221 0.343932 -0.937369 +0.290499 0.336337 -0.221900 0.042160 0.286770 -0.957071 +0.290551 0.343221 -0.219927 0.048836 0.230689 -0.971801 +0.290574 0.349969 -0.219081 0.055518 0.176874 -0.982666 +0.290551 0.356543 -0.219716 0.064832 0.141618 -0.987796 +0.290536 0.363095 -0.220509 0.086764 0.124810 -0.988380 +0.290506 0.369593 -0.221703 0.109215 0.110327 -0.987877 +0.290483 0.376115 -0.222670 0.140914 0.117125 -0.983069 +0.290461 0.382666 -0.223388 0.166567 0.140738 -0.975935 +0.290499 0.389505 -0.221907 0.218106 0.201880 -0.954816 +0.290559 0.396457 -0.219617 0.247494 0.252175 -0.935497 +0.290635 0.403522 -0.216542 0.290898 0.334492 -0.896378 +0.290740 0.410792 -0.212106 0.322037 0.424124 -0.846411 +0.290876 0.418182 -0.206839 0.366448 0.512700 -0.776438 +0.291088 0.426086 -0.198081 0.394250 0.604743 -0.691992 +0.291458 0.434905 -0.183134 0.423884 0.700316 -0.574352 +0.292116 0.445484 -0.156353 0.396786 0.806327 -0.438632 +0.312118 -0.679821 0.344845 0.420429 -0.285697 -0.861172 +0.312005 -0.671668 0.340644 0.393580 -0.278644 -0.876044 +0.311899 -0.663544 0.336624 0.379365 -0.282210 -0.881158 +0.311816 -0.655550 0.333510 0.365237 -0.293755 -0.883351 +0.311740 -0.647577 0.330495 0.346380 -0.300147 -0.888781 +0.311672 -0.639681 0.328024 0.336226 -0.305545 -0.890839 +0.311597 -0.631754 0.325213 0.325433 -0.321804 -0.889121 +0.311513 -0.623797 0.322092 0.309846 -0.335651 -0.889569 +0.311423 -0.615817 0.318631 0.297787 -0.346667 -0.889463 +0.311325 -0.607815 0.314868 0.283181 -0.369556 -0.885007 +0.311226 -0.599820 0.311075 0.276027 -0.387031 -0.879782 +0.311113 -0.591802 0.306964 0.257043 -0.406584 -0.876709 +0.311000 -0.583754 0.302445 0.256291 -0.416464 -0.872280 +0.310871 -0.575714 0.297783 0.265648 -0.425726 -0.864979 +0.310758 -0.567719 0.293460 0.272340 -0.429426 -0.861060 +0.310675 -0.559853 0.290294 0.262520 -0.431218 -0.863212 +0.310667 -0.552289 0.289977 0.270752 -0.435238 -0.858639 +0.310750 -0.545065 0.293075 0.301060 -0.396677 -0.867185 +0.302514 -0.276473 -0.018778 0.199398 -0.951372 -0.234800 +0.301667 -0.268274 -0.050811 0.180064 -0.929303 -0.322448 +0.301123 -0.260597 -0.071266 0.169062 -0.903828 -0.393082 +0.300677 -0.253100 -0.088375 0.147214 -0.864308 -0.480936 +0.300330 -0.245793 -0.101531 0.117139 -0.838788 -0.531708 +0.300088 -0.238667 -0.110447 0.092065 -0.819281 -0.565953 +0.299876 -0.231594 -0.118502 0.066465 -0.801554 -0.594217 +0.299642 -0.224529 -0.127442 0.039489 -0.783023 -0.620738 +0.299355 -0.217433 -0.138399 0.008547 -0.751641 -0.659517 +0.299075 -0.210391 -0.148993 -0.018413 -0.718347 -0.695441 +0.298864 -0.203446 -0.156898 -0.036550 -0.677495 -0.734618 +0.298690 -0.196554 -0.163419 -0.050836 -0.635778 -0.770196 +0.298546 -0.189708 -0.168822 -0.066044 -0.587817 -0.806294 +0.298448 -0.182907 -0.172525 -0.076616 -0.556179 -0.827523 +0.298357 -0.176121 -0.175993 -0.087993 -0.522969 -0.847797 +0.298274 -0.169351 -0.179227 -0.098759 -0.503917 -0.858087 +0.298191 -0.162595 -0.182356 -0.112979 -0.489482 -0.864664 +0.298116 -0.155855 -0.185227 -0.126589 -0.484234 -0.865732 +0.298040 -0.149122 -0.187970 -0.137399 -0.486581 -0.862763 +0.297942 -0.142389 -0.191771 -0.149479 -0.489985 -0.858820 +0.297821 -0.135671 -0.196404 -0.161234 -0.489376 -0.857038 +0.297700 -0.128968 -0.201104 -0.168219 -0.481748 -0.860012 +0.297587 -0.122281 -0.205192 -0.165579 -0.479263 -0.861911 +0.297473 -0.115601 -0.209424 -0.154376 -0.478993 -0.864137 +0.297360 -0.108943 -0.213708 -0.135242 -0.479927 -0.866822 +0.297292 -0.102293 -0.216557 -0.113681 -0.480523 -0.869583 +0.297239 -0.095651 -0.218499 -0.092200 -0.479228 -0.872834 +0.297201 -0.089009 -0.219882 -0.072821 -0.478296 -0.875174 +0.297148 -0.082374 -0.221726 -0.049942 -0.474785 -0.878684 +0.297028 -0.075777 -0.226328 -0.025757 -0.475881 -0.879133 +0.296861 -0.069218 -0.232705 -0.004778 -0.478881 -0.877867 +0.296740 -0.062659 -0.237270 0.012836 -0.477122 -0.878743 +0.296642 -0.056100 -0.240987 0.024786 -0.472253 -0.881114 +0.296567 -0.049533 -0.243776 0.031730 -0.463464 -0.885548 +0.296499 -0.042974 -0.246368 0.035005 -0.442602 -0.896035 +0.296431 -0.036430 -0.248997 0.034436 -0.416323 -0.908564 +0.296355 -0.029901 -0.251990 0.033218 -0.388191 -0.920980 +0.296272 -0.023380 -0.254982 0.033241 -0.363468 -0.931013 +0.296196 -0.016866 -0.258028 0.032930 -0.337564 -0.940726 +0.296113 -0.010375 -0.261111 0.032753 -0.308779 -0.950570 +0.296045 -0.003869 -0.263710 0.033336 -0.282211 -0.958773 +0.295985 0.002637 -0.265864 0.034049 -0.254270 -0.966534 +0.295939 0.009144 -0.267587 0.035739 -0.225188 -0.973660 +0.295924 0.015688 -0.268237 0.038566 -0.196914 -0.979662 +0.295909 0.022239 -0.268728 0.043438 -0.168859 -0.984683 +0.295894 0.028783 -0.269211 0.046814 -0.141356 -0.988851 +0.295886 0.035335 -0.269537 0.052458 -0.114720 -0.992012 +0.295879 0.041879 -0.270005 0.059207 -0.092946 -0.993909 +0.295849 0.048400 -0.271017 0.067869 -0.078024 -0.994639 +0.295826 0.054914 -0.271977 0.078006 -0.069356 -0.994537 +0.295796 0.061428 -0.272974 0.089098 -0.066198 -0.993821 +0.295773 0.067949 -0.273821 0.100119 -0.065052 -0.992847 +0.295766 0.074486 -0.274176 0.111515 -0.064786 -0.991649 +0.295766 0.081037 -0.274237 0.120513 -0.059635 -0.990919 +0.295766 0.087596 -0.274101 0.127408 -0.048540 -0.990662 +0.295773 0.094163 -0.273957 0.131429 -0.030644 -0.990852 +0.295773 0.100730 -0.273798 0.133145 -0.004970 -0.991084 +0.295766 0.107251 -0.274312 0.132263 0.027384 -0.990836 +0.295758 0.113795 -0.274607 0.130426 0.063719 -0.989408 +0.295750 0.120347 -0.274652 0.129384 0.104451 -0.986078 +0.295788 0.126981 -0.273428 0.129159 0.145169 -0.980940 +0.295826 0.133639 -0.271864 0.130403 0.181658 -0.974677 +0.295879 0.140334 -0.269914 0.130420 0.211372 -0.968665 +0.295947 0.147082 -0.267269 0.129037 0.232084 -0.964099 +0.296022 0.153837 -0.264617 0.123884 0.237020 -0.963574 +0.296075 0.160563 -0.262463 0.116319 0.230779 -0.966028 +0.296128 0.167296 -0.260400 0.103420 0.208815 -0.972471 +0.296181 0.174021 -0.258526 0.089857 0.180548 -0.979453 +0.296211 0.180694 -0.257378 0.076588 0.146148 -0.986294 +0.296219 0.187306 -0.256992 0.065149 0.111737 -0.991600 +0.296219 0.193895 -0.256992 0.053140 0.077761 -0.995555 +0.296196 0.200401 -0.257937 0.040330 0.048009 -0.998032 +0.296174 0.206907 -0.258791 0.032875 0.024321 -0.999164 +0.296151 0.213429 -0.259524 0.025833 0.011359 -0.999602 +0.296128 0.219935 -0.260385 0.021534 0.008614 -0.999731 +0.296113 0.226456 -0.261013 0.020864 0.016678 -0.999643 +0.296106 0.233000 -0.261353 0.026944 0.038559 -0.998893 +0.296106 0.239575 -0.261443 0.033843 0.067408 -0.997151 +0.296106 0.246171 -0.261224 0.044208 0.105797 -0.993405 +0.296128 0.252829 -0.260446 0.055261 0.137480 -0.988962 +0.296174 0.259569 -0.258829 0.067883 0.184557 -0.980475 +0.296227 0.266348 -0.256856 0.082642 0.235730 -0.968298 +0.296287 0.273171 -0.254514 0.090214 0.279899 -0.955781 +0.296363 0.280063 -0.251635 0.096753 0.324489 -0.940928 +0.296446 0.286985 -0.248521 0.101830 0.368371 -0.924085 +0.296551 0.294020 -0.244501 0.100303 0.404204 -0.909153 +0.296665 0.301100 -0.240209 0.092749 0.430127 -0.897991 +0.296778 0.308211 -0.235751 0.080908 0.432240 -0.898122 +0.296907 0.315360 -0.231081 0.066890 0.415707 -0.907036 +0.297005 0.322425 -0.227310 0.053118 0.383408 -0.922050 +0.297096 0.329460 -0.223887 0.043978 0.338885 -0.939799 +0.297148 0.336344 -0.221854 0.045380 0.291892 -0.955374 +0.297201 0.343213 -0.219988 0.053137 0.238944 -0.969579 +0.297216 0.349939 -0.219345 0.065824 0.190311 -0.979515 +0.297216 0.356588 -0.219368 0.084920 0.162471 -0.983052 +0.297194 0.363148 -0.220071 0.110687 0.151766 -0.982199 +0.297171 0.369684 -0.220993 0.134709 0.146797 -0.979951 +0.297148 0.376220 -0.221839 0.172566 0.154069 -0.972874 +0.297148 0.382878 -0.221741 0.210913 0.186175 -0.959612 +0.297201 0.389777 -0.219829 0.241633 0.225782 -0.943735 +0.297277 0.396797 -0.217064 0.298454 0.308257 -0.903274 +0.297368 0.403923 -0.213595 0.329749 0.375298 -0.866266 +0.297511 0.411336 -0.208124 0.373364 0.478356 -0.794843 +0.297708 0.419029 -0.200764 0.401179 0.555412 -0.728404 +0.297957 0.427039 -0.191348 0.423474 0.641883 -0.639262 +0.298448 0.436394 -0.172683 0.422046 0.746860 -0.513884 +0.319826 -0.680192 0.347716 0.431142 -0.316445 -0.844973 +0.319728 -0.672114 0.344210 0.413152 -0.303246 -0.858689 +0.319629 -0.664051 0.340689 0.396991 -0.302706 -0.866468 +0.319523 -0.655965 0.336903 0.382139 -0.307090 -0.871588 +0.319433 -0.647970 0.333699 0.370555 -0.313081 -0.874453 +0.319350 -0.640013 0.330835 0.362112 -0.322404 -0.874603 +0.319267 -0.632056 0.327790 0.347282 -0.331723 -0.877129 +0.319176 -0.624091 0.324624 0.339330 -0.338571 -0.877625 +0.319078 -0.616119 0.321268 0.329471 -0.351165 -0.876431 +0.318972 -0.608102 0.317422 0.319644 -0.369426 -0.872555 +0.318866 -0.600084 0.313516 0.315339 -0.378838 -0.870082 +0.318753 -0.592082 0.309525 0.307930 -0.395242 -0.865426 +0.318632 -0.584072 0.305369 0.305587 -0.408093 -0.860277 +0.318526 -0.576122 0.301682 0.304557 -0.409535 -0.859957 +0.318435 -0.568210 0.298236 0.315034 -0.414589 -0.853738 +0.318375 -0.560450 0.296097 0.332006 -0.400937 -0.853827 +0.318466 -0.553226 0.299309 0.355940 -0.380185 -0.853678 +0.309768 -0.276836 -0.009582 0.219151 -0.950155 -0.221764 +0.308725 -0.268425 -0.046775 0.202077 -0.925680 -0.319814 +0.308136 -0.260725 -0.067601 0.190984 -0.902981 -0.384903 +0.307682 -0.253259 -0.083788 0.171207 -0.876952 -0.449047 +0.307297 -0.245929 -0.097427 0.143563 -0.849212 -0.508162 +0.307002 -0.238750 -0.107765 0.113529 -0.831767 -0.543392 +0.306730 -0.231625 -0.117558 0.089628 -0.812948 -0.575398 +0.306443 -0.224514 -0.127827 0.059089 -0.790129 -0.610085 +0.306088 -0.217388 -0.140304 0.030563 -0.759376 -0.649934 +0.305816 -0.210368 -0.150021 0.008783 -0.723264 -0.690516 +0.305597 -0.203431 -0.157721 -0.005850 -0.682317 -0.731033 +0.305430 -0.196547 -0.163623 -0.016950 -0.642363 -0.766213 +0.305287 -0.189708 -0.168716 -0.026854 -0.593743 -0.804206 +0.305181 -0.182900 -0.172714 -0.039829 -0.561170 -0.826742 +0.305075 -0.176114 -0.176432 -0.051922 -0.534736 -0.843423 +0.304977 -0.169343 -0.179945 -0.069210 -0.513836 -0.855092 +0.304886 -0.162588 -0.182953 -0.083302 -0.502845 -0.860354 +0.304811 -0.155847 -0.185839 -0.100570 -0.496882 -0.861971 +0.304728 -0.149114 -0.188794 -0.115438 -0.497702 -0.859631 +0.304614 -0.142381 -0.192625 -0.127617 -0.500653 -0.856189 +0.304486 -0.135663 -0.197310 -0.139099 -0.496433 -0.856858 +0.304335 -0.128961 -0.202623 -0.146845 -0.483670 -0.862844 +0.304214 -0.122273 -0.206907 -0.143604 -0.476051 -0.867613 +0.304093 -0.115608 -0.211298 -0.133126 -0.468907 -0.873157 +0.303972 -0.108951 -0.215567 -0.116404 -0.466056 -0.877064 +0.303896 -0.102301 -0.218144 -0.095326 -0.463718 -0.880840 +0.303844 -0.095659 -0.220003 -0.074203 -0.459845 -0.884894 +0.303813 -0.089016 -0.221235 -0.055568 -0.460520 -0.885909 +0.303760 -0.082389 -0.223162 -0.037815 -0.459219 -0.887518 +0.303647 -0.075792 -0.227181 -0.018364 -0.463452 -0.885932 +0.303511 -0.069211 -0.231874 0.001305 -0.465494 -0.885050 +0.303383 -0.062652 -0.236514 0.019719 -0.464263 -0.885478 +0.303277 -0.056085 -0.240337 0.031254 -0.465234 -0.884636 +0.303179 -0.049533 -0.243784 0.043198 -0.457024 -0.888405 +0.303103 -0.042974 -0.246307 0.047360 -0.441859 -0.895833 +0.303035 -0.036423 -0.248824 0.047697 -0.417311 -0.907511 +0.302967 -0.029886 -0.251370 0.046892 -0.389321 -0.919908 +0.302884 -0.023357 -0.254257 0.045796 -0.367917 -0.928730 +0.302801 -0.016851 -0.257196 0.044397 -0.338969 -0.939749 +0.302718 -0.010345 -0.260166 0.042493 -0.309458 -0.949963 +0.302634 -0.003854 -0.263000 0.042421 -0.282247 -0.958403 +0.302566 0.002653 -0.265358 0.040752 -0.254626 -0.966181 +0.302521 0.009159 -0.267179 0.040971 -0.224918 -0.973516 +0.302506 0.015710 -0.267685 0.041935 -0.195663 -0.979774 +0.302498 0.022270 -0.267927 0.044433 -0.167312 -0.984902 +0.302498 0.028836 -0.267904 0.048160 -0.137557 -0.989322 +0.302491 0.035388 -0.268237 0.052394 -0.109479 -0.992607 +0.302476 0.041939 -0.268607 0.057897 -0.087340 -0.994495 +0.302468 0.048491 -0.268864 0.063277 -0.069878 -0.995547 +0.302461 0.055035 -0.269363 0.070440 -0.059119 -0.995763 +0.302438 0.061571 -0.269997 0.079033 -0.054487 -0.995382 +0.302415 0.068085 -0.270987 0.088537 -0.053218 -0.994650 +0.302400 0.074622 -0.271403 0.098350 -0.052676 -0.993757 +0.302400 0.081181 -0.271516 0.107677 -0.049212 -0.992967 +0.302393 0.087740 -0.271546 0.115487 -0.041201 -0.992454 +0.302385 0.094284 -0.271864 0.120868 -0.025790 -0.992333 +0.302362 0.100790 -0.272688 0.123460 -0.003163 -0.992344 +0.302340 0.107304 -0.273458 0.123287 0.027533 -0.991989 +0.302332 0.113840 -0.273821 0.121760 0.063577 -0.990521 +0.302332 0.120399 -0.273768 0.121923 0.102905 -0.987191 +0.302362 0.127019 -0.272770 0.120941 0.145520 -0.981936 +0.302393 0.133661 -0.271539 0.119612 0.183756 -0.975667 +0.302446 0.140334 -0.269899 0.115944 0.211172 -0.970548 +0.302506 0.147052 -0.267655 0.110432 0.228000 -0.967378 +0.302574 0.153792 -0.265274 0.102421 0.231270 -0.967483 +0.302634 0.160525 -0.262985 0.092691 0.222985 -0.970405 +0.302703 0.167281 -0.260650 0.078574 0.199917 -0.976657 +0.302763 0.174029 -0.258451 0.065455 0.170682 -0.983150 +0.302801 0.180716 -0.257060 0.053024 0.136258 -0.989253 +0.302808 0.187321 -0.256834 0.041903 0.101151 -0.993988 +0.302793 0.193865 -0.257370 0.030368 0.065805 -0.997370 +0.302763 0.200356 -0.258436 0.021035 0.039390 -0.999003 +0.302740 0.206862 -0.259342 0.015993 0.018177 -0.999707 +0.302718 0.213376 -0.260113 0.010791 0.006228 -0.999922 +0.302703 0.219897 -0.260793 0.008400 0.005681 -0.999949 +0.302680 0.226426 -0.261337 0.012178 0.021710 -0.999690 +0.302672 0.232970 -0.261738 0.017042 0.045993 -0.998796 +0.302680 0.239567 -0.261541 0.024565 0.078049 -0.996647 +0.302687 0.246179 -0.261118 0.035353 0.116862 -0.992519 +0.302718 0.252844 -0.260257 0.045068 0.149800 -0.987689 +0.302763 0.259592 -0.258579 0.055288 0.196309 -0.978982 +0.302816 0.266378 -0.256524 0.067126 0.246468 -0.966824 +0.302891 0.273232 -0.253924 0.074059 0.287502 -0.954913 +0.302975 0.280123 -0.251053 0.080736 0.332146 -0.939766 +0.303058 0.287045 -0.247977 0.082285 0.371141 -0.924924 +0.303156 0.294027 -0.244441 0.080684 0.401687 -0.912216 +0.303269 0.301070 -0.240459 0.073601 0.425236 -0.902085 +0.303398 0.308181 -0.236015 0.060883 0.425383 -0.902963 +0.303534 0.315345 -0.231247 0.049466 0.407240 -0.911981 +0.303647 0.322463 -0.226977 0.042691 0.377339 -0.925091 +0.303753 0.329536 -0.223214 0.040692 0.338286 -0.940163 +0.303798 0.336359 -0.221688 0.045038 0.295869 -0.954166 +0.303836 0.343153 -0.220456 0.058812 0.250988 -0.966202 +0.303851 0.349863 -0.219950 0.077630 0.210953 -0.974409 +0.303859 0.356543 -0.219701 0.101795 0.192559 -0.975991 +0.303851 0.363170 -0.219897 0.126189 0.179032 -0.975717 +0.303836 0.369744 -0.220501 0.164785 0.180561 -0.969662 +0.303844 0.376440 -0.220139 0.199430 0.201800 -0.958908 +0.303866 0.383210 -0.219217 0.247438 0.236342 -0.939637 +0.303934 0.390162 -0.216958 0.288830 0.286539 -0.913495 +0.304025 0.397250 -0.213693 0.332461 0.349637 -0.875913 +0.304131 0.404429 -0.209854 0.365386 0.409463 -0.835962 +0.304327 0.412046 -0.202963 0.397945 0.519810 -0.755934 +0.304569 0.419928 -0.194295 0.427465 0.606924 -0.670013 +0.304894 0.428233 -0.182878 0.438072 0.679853 -0.588127 +0.305370 0.437376 -0.165784 0.407697 0.763671 -0.500590 +0.327465 -0.672605 0.348064 0.442946 -0.337005 -0.830799 +0.327360 -0.664504 0.344339 0.424971 -0.324430 -0.845071 +0.327254 -0.656449 0.340840 0.402726 -0.320793 -0.857265 +0.327148 -0.648416 0.337432 0.395277 -0.318275 -0.861660 +0.327065 -0.640451 0.334455 0.385743 -0.325751 -0.863185 +0.326967 -0.632457 0.331183 0.376893 -0.334636 -0.863696 +0.326861 -0.624454 0.327737 0.374779 -0.340493 -0.862325 +0.326755 -0.616459 0.324299 0.366967 -0.352573 -0.860829 +0.326649 -0.608457 0.320649 0.360088 -0.364741 -0.858662 +0.326536 -0.600447 0.316757 0.359253 -0.368231 -0.857522 +0.326415 -0.592422 0.312699 0.355219 -0.381267 -0.853496 +0.326324 -0.584548 0.309881 0.356433 -0.385751 -0.850971 +0.326241 -0.576689 0.307108 0.362162 -0.381545 -0.850448 +0.326188 -0.568928 0.305158 0.369564 -0.376334 -0.849585 +0.326173 -0.561326 0.304735 0.389671 -0.362426 -0.846643 +0.326362 -0.554405 0.311143 0.453416 -0.322871 -0.830764 +0.317196 -0.277380 0.004163 0.267537 -0.939364 -0.214523 +0.315927 -0.268743 -0.038305 0.224366 -0.934015 -0.277987 +0.315201 -0.260914 -0.062448 0.217796 -0.907278 -0.359740 +0.314717 -0.253433 -0.078687 0.196005 -0.881523 -0.429534 +0.314302 -0.246088 -0.092500 0.169760 -0.865493 -0.471279 +0.313932 -0.238834 -0.105105 0.137188 -0.842552 -0.520850 +0.313592 -0.231655 -0.116395 0.111949 -0.823449 -0.556236 +0.313236 -0.224506 -0.128190 0.083025 -0.797312 -0.597830 +0.312866 -0.217380 -0.140659 0.057194 -0.764016 -0.642657 +0.312579 -0.210368 -0.150180 0.042179 -0.727082 -0.685254 +0.312375 -0.203438 -0.157177 0.029273 -0.692298 -0.721017 +0.312194 -0.196554 -0.163260 0.020255 -0.645177 -0.763764 +0.312042 -0.189716 -0.168180 0.010772 -0.603188 -0.797526 +0.311929 -0.182915 -0.172139 -0.001949 -0.575015 -0.818141 +0.311808 -0.176121 -0.175993 -0.020662 -0.545179 -0.838065 +0.311702 -0.169343 -0.179704 -0.035699 -0.527850 -0.848587 +0.311597 -0.162588 -0.183172 -0.050834 -0.518146 -0.853780 +0.311498 -0.155839 -0.186391 -0.070620 -0.511164 -0.856577 +0.311385 -0.149099 -0.190260 -0.087824 -0.509947 -0.855711 +0.311272 -0.142374 -0.194008 -0.101127 -0.508766 -0.854945 +0.311128 -0.135656 -0.198754 -0.112013 -0.503953 -0.856437 +0.310977 -0.128953 -0.204006 -0.116382 -0.487945 -0.865081 +0.310841 -0.122273 -0.208464 -0.116052 -0.471729 -0.874073 +0.310712 -0.115608 -0.212892 -0.107129 -0.461507 -0.880645 +0.310592 -0.108951 -0.216829 -0.091347 -0.455030 -0.885778 +0.310516 -0.102309 -0.219391 -0.073038 -0.448515 -0.890786 +0.310463 -0.095666 -0.221174 -0.055440 -0.444574 -0.894025 +0.310425 -0.089024 -0.222413 -0.037252 -0.442921 -0.895786 +0.310357 -0.082404 -0.224544 -0.021768 -0.446565 -0.894486 +0.310259 -0.075800 -0.227915 -0.004867 -0.446883 -0.894579 +0.310138 -0.069211 -0.232010 0.011079 -0.448838 -0.893545 +0.310002 -0.062644 -0.236469 0.027264 -0.450357 -0.892433 +0.309874 -0.056092 -0.240723 0.041525 -0.454235 -0.889914 +0.309760 -0.049548 -0.244562 0.051122 -0.452800 -0.890145 +0.309692 -0.042989 -0.247003 0.057380 -0.438610 -0.896844 +0.309617 -0.036438 -0.249504 0.059655 -0.417862 -0.906550 +0.309541 -0.029894 -0.251922 0.059496 -0.391560 -0.918227 +0.309458 -0.023372 -0.254809 0.057054 -0.365637 -0.929007 +0.309367 -0.016859 -0.257688 0.054012 -0.339371 -0.939101 +0.309284 -0.010360 -0.260529 0.050277 -0.311973 -0.948760 +0.309209 -0.003854 -0.263007 0.047139 -0.284272 -0.957584 +0.309148 0.002660 -0.265108 0.044237 -0.255496 -0.965798 +0.309095 0.009174 -0.266831 0.043263 -0.225293 -0.973330 +0.309073 0.015710 -0.267617 0.042866 -0.193872 -0.980090 +0.309065 0.022270 -0.267957 0.043791 -0.165413 -0.985252 +0.309065 0.028836 -0.267897 0.046965 -0.134486 -0.989802 +0.309065 0.035403 -0.267813 0.051018 -0.105481 -0.993112 +0.309073 0.041977 -0.267677 0.056077 -0.082405 -0.995020 +0.309058 0.048529 -0.268048 0.060423 -0.063702 -0.996138 +0.309065 0.055095 -0.268017 0.065631 -0.051300 -0.996524 +0.309073 0.061677 -0.267753 0.072816 -0.044996 -0.996330 +0.309065 0.068229 -0.267965 0.080289 -0.043083 -0.995840 +0.309058 0.074788 -0.268146 0.086909 -0.042260 -0.995320 +0.309042 0.081332 -0.268547 0.094829 -0.040306 -0.994677 +0.308997 0.087808 -0.270300 0.103858 -0.034709 -0.993986 +0.308967 0.094314 -0.271237 0.109652 -0.021478 -0.993738 +0.308929 0.100813 -0.272378 0.113015 -0.001258 -0.993593 +0.308906 0.107319 -0.273201 0.114005 0.028412 -0.993074 +0.308899 0.113855 -0.273556 0.113951 0.060087 -0.991668 +0.308899 0.120422 -0.273390 0.113461 0.101288 -0.988366 +0.308922 0.127027 -0.272672 0.112216 0.145181 -0.983021 +0.308959 0.133661 -0.271562 0.108601 0.182291 -0.977229 +0.308997 0.140319 -0.270103 0.100736 0.207412 -0.973053 +0.309050 0.146999 -0.268395 0.092203 0.221346 -0.970827 +0.309118 0.153724 -0.266212 0.081392 0.221430 -0.971774 +0.309194 0.160487 -0.263544 0.070687 0.212065 -0.974696 +0.309277 0.167265 -0.260816 0.057323 0.189615 -0.980184 +0.309367 0.174074 -0.257846 0.043511 0.160519 -0.986073 +0.309405 0.180769 -0.256418 0.031971 0.126059 -0.991507 +0.309413 0.187366 -0.256305 0.021352 0.089691 -0.995741 +0.309390 0.193895 -0.256992 0.012135 0.055770 -0.998370 +0.309352 0.200371 -0.258270 0.007365 0.031912 -0.999464 +0.309322 0.206862 -0.259320 0.001837 0.012178 -0.999924 +0.309292 0.213353 -0.260431 -0.000499 0.003924 -0.999992 +0.309269 0.219874 -0.261013 0.001070 0.008913 -0.999960 +0.309262 0.226419 -0.261405 0.003777 0.026445 -0.999643 +0.309269 0.233023 -0.261179 0.010402 0.053764 -0.998500 +0.309277 0.239643 -0.260748 0.017870 0.087709 -0.995986 +0.309299 0.246285 -0.260038 0.027681 0.126999 -0.991517 +0.309345 0.253003 -0.258625 0.036682 0.165226 -0.985573 +0.309398 0.259773 -0.256720 0.046696 0.209853 -0.976617 +0.309466 0.266582 -0.254521 0.053900 0.255232 -0.965376 +0.309526 0.273383 -0.252496 0.060816 0.297384 -0.952819 +0.309609 0.280259 -0.249738 0.065205 0.337631 -0.939017 +0.309700 0.287181 -0.246685 0.066495 0.375504 -0.924432 +0.309783 0.294088 -0.243927 0.064290 0.399691 -0.914393 +0.309889 0.301078 -0.240398 0.058423 0.417784 -0.906666 +0.310010 0.308136 -0.236408 0.050311 0.422240 -0.905087 +0.310138 0.315254 -0.232033 0.042623 0.403381 -0.914039 +0.310259 0.322342 -0.227990 0.038743 0.378413 -0.924826 +0.310372 0.329422 -0.224227 0.040956 0.343076 -0.938414 +0.310418 0.336246 -0.222693 0.050867 0.304229 -0.951240 +0.310456 0.343032 -0.221461 0.069100 0.267051 -0.961202 +0.310478 0.349787 -0.220569 0.093108 0.238077 -0.966773 +0.310501 0.356520 -0.219920 0.124862 0.227779 -0.965674 +0.310508 0.363223 -0.219481 0.153153 0.219039 -0.963621 +0.310524 0.369941 -0.218983 0.195084 0.222938 -0.955113 +0.310569 0.376757 -0.217668 0.234206 0.246676 -0.940371 +0.310622 0.383656 -0.215794 0.283188 0.293271 -0.913125 +0.310705 0.390676 -0.213013 0.323969 0.335571 -0.884554 +0.310811 0.397817 -0.209484 0.364122 0.398944 -0.841581 +0.310962 0.405185 -0.204300 0.402548 0.480130 -0.779378 +0.311189 0.412900 -0.196706 0.422236 0.567344 -0.706992 +0.311483 0.420948 -0.186943 0.425014 0.655752 -0.623981 +0.311869 0.429472 -0.174066 0.418417 0.725814 -0.546005 +0.312383 0.438653 -0.156830 0.388234 0.782166 -0.487331 +0.335166 -0.665215 0.350014 0.449583 -0.347273 -0.822968 +0.335045 -0.657121 0.346319 0.436121 -0.333306 -0.835886 +0.334939 -0.649074 0.342843 0.429375 -0.330809 -0.840359 +0.334826 -0.641026 0.339321 0.414836 -0.331767 -0.847255 +0.334720 -0.633016 0.335981 0.408287 -0.336870 -0.848422 +0.334606 -0.625006 0.332505 0.405432 -0.335860 -0.850190 +0.334493 -0.616988 0.328908 0.402717 -0.344176 -0.848152 +0.334387 -0.609001 0.325463 0.397820 -0.354646 -0.846148 +0.334274 -0.601021 0.321986 0.400489 -0.355952 -0.844338 +0.334176 -0.593079 0.318737 0.401960 -0.360231 -0.841821 +0.334108 -0.585258 0.316523 0.409723 -0.364430 -0.836252 +0.334040 -0.577460 0.314370 0.417541 -0.356321 -0.835879 +0.334055 -0.569933 0.314853 0.451876 -0.339517 -0.824946 +0.323226 -0.269151 -0.027552 0.254600 -0.933358 -0.253023 +0.322304 -0.261110 -0.056811 0.237011 -0.912559 -0.333260 +0.321760 -0.253599 -0.073904 0.219698 -0.889507 -0.400637 +0.321337 -0.246254 -0.087460 0.187347 -0.871074 -0.454017 +0.320861 -0.238917 -0.102475 0.159769 -0.850318 -0.501431 +0.320468 -0.231700 -0.114860 0.130162 -0.827562 -0.546076 +0.320068 -0.224521 -0.127518 0.104495 -0.805103 -0.583857 +0.319690 -0.217403 -0.139616 0.087108 -0.771393 -0.630369 +0.319387 -0.210391 -0.149145 0.075732 -0.729759 -0.679497 +0.319153 -0.203454 -0.156437 0.067292 -0.697165 -0.713745 +0.318972 -0.196577 -0.162210 0.059808 -0.649576 -0.757941 +0.318806 -0.189731 -0.167545 0.051406 -0.609215 -0.791337 +0.318685 -0.182922 -0.171414 0.035310 -0.585039 -0.810236 +0.318564 -0.176136 -0.175185 0.016533 -0.555793 -0.831156 +0.318443 -0.169358 -0.178941 -0.002779 -0.541381 -0.840773 +0.318314 -0.162588 -0.183127 -0.022291 -0.530894 -0.847145 +0.318194 -0.155832 -0.186897 -0.039106 -0.523520 -0.851115 +0.318050 -0.149091 -0.191318 -0.055376 -0.521618 -0.851380 +0.317929 -0.142366 -0.195112 -0.066975 -0.518085 -0.852703 +0.317778 -0.135656 -0.199925 -0.078276 -0.509787 -0.856732 +0.317627 -0.128953 -0.204852 -0.082376 -0.490536 -0.867519 +0.317476 -0.122273 -0.209598 -0.083172 -0.470458 -0.878494 +0.317332 -0.115608 -0.214063 -0.076878 -0.452570 -0.888409 +0.317211 -0.108951 -0.217993 -0.063528 -0.441707 -0.894907 +0.317120 -0.102309 -0.220728 -0.048409 -0.435755 -0.898762 +0.317075 -0.095674 -0.222194 -0.031723 -0.429728 -0.902401 +0.317037 -0.089032 -0.223380 -0.018019 -0.428626 -0.903302 +0.316969 -0.082412 -0.225474 -0.003652 -0.431832 -0.901947 +0.316879 -0.075800 -0.228459 0.011496 -0.434186 -0.900750 +0.316758 -0.069218 -0.232396 0.024725 -0.437082 -0.899082 +0.316622 -0.062652 -0.236635 0.036412 -0.442092 -0.896230 +0.316486 -0.056100 -0.240851 0.052322 -0.445484 -0.893760 +0.316357 -0.049556 -0.244894 0.059761 -0.445840 -0.893116 +0.316259 -0.043012 -0.248083 0.066697 -0.434650 -0.898126 +0.316176 -0.036468 -0.250773 0.069620 -0.415515 -0.906918 +0.316100 -0.029924 -0.253101 0.068848 -0.392498 -0.917172 +0.316017 -0.023395 -0.255799 0.067548 -0.366884 -0.927811 +0.315927 -0.016881 -0.258458 0.063551 -0.342160 -0.937490 +0.315851 -0.010367 -0.260929 0.059261 -0.314733 -0.947328 +0.315783 -0.003854 -0.263045 0.054133 -0.287844 -0.956146 +0.315723 0.002660 -0.264912 0.049899 -0.258067 -0.964837 +0.315670 0.009174 -0.266658 0.046468 -0.226354 -0.972936 +0.315639 0.015710 -0.267625 0.045456 -0.193542 -0.980038 +0.315617 0.022254 -0.268327 0.044900 -0.161876 -0.985789 +0.315609 0.028806 -0.268728 0.047571 -0.131086 -0.990229 +0.315617 0.035380 -0.268373 0.051677 -0.100878 -0.993556 +0.315624 0.041962 -0.268063 0.056069 -0.076370 -0.995502 +0.315632 0.048536 -0.267904 0.061258 -0.058318 -0.996417 +0.315639 0.055118 -0.267625 0.065753 -0.045305 -0.996807 +0.315654 0.061700 -0.267186 0.070513 -0.038666 -0.996761 +0.315654 0.068267 -0.267186 0.077128 -0.035597 -0.996386 +0.315647 0.074826 -0.267413 0.084100 -0.034946 -0.995844 +0.315632 0.081370 -0.267813 0.089812 -0.032862 -0.995416 +0.315579 0.087846 -0.269605 0.097980 -0.028076 -0.994792 +0.315526 0.094322 -0.271176 0.102705 -0.018760 -0.994535 +0.315496 0.100813 -0.272302 0.105868 -0.000078 -0.994380 +0.315466 0.107327 -0.273065 0.108835 0.026703 -0.993701 +0.315458 0.113863 -0.273420 0.109158 0.058308 -0.992313 +0.315458 0.120430 -0.273322 0.107324 0.099685 -0.989214 +0.315488 0.127034 -0.272544 0.104011 0.141591 -0.984446 +0.315511 0.133654 -0.271644 0.097417 0.177307 -0.979322 +0.315556 0.140296 -0.270413 0.087900 0.200919 -0.975656 +0.315609 0.146984 -0.268667 0.076245 0.212132 -0.974262 +0.315677 0.153694 -0.266574 0.064580 0.210425 -0.975475 +0.315768 0.160480 -0.263589 0.052966 0.200534 -0.978254 +0.315874 0.167311 -0.260242 0.038104 0.177965 -0.983299 +0.315972 0.174119 -0.257234 0.026534 0.149284 -0.988438 +0.316002 0.180777 -0.256259 0.016227 0.115135 -0.993217 +0.316002 0.187366 -0.256252 0.007609 0.079601 -0.996798 +0.315964 0.193865 -0.257332 0.002317 0.049811 -0.998756 +0.315927 0.200356 -0.258488 -0.002000 0.025291 -0.999678 +0.315896 0.206847 -0.259569 -0.005341 0.008831 -0.999947 +0.315874 0.213361 -0.260280 -0.004235 0.005828 -0.999974 +0.315859 0.219912 -0.260627 -0.003588 0.011505 -0.999927 +0.315866 0.226494 -0.260604 0.001050 0.032368 -0.999475 +0.315881 0.233121 -0.260098 0.008599 0.061833 -0.998049 +0.315904 0.239771 -0.259320 0.017001 0.099470 -0.994895 +0.315942 0.246466 -0.258118 0.024788 0.138477 -0.990056 +0.315987 0.253199 -0.256615 0.035510 0.180283 -0.982974 +0.316047 0.259970 -0.254763 0.042498 0.218800 -0.974844 +0.316108 0.266740 -0.252927 0.047503 0.262106 -0.963869 +0.316161 0.273519 -0.251151 0.054068 0.304872 -0.950857 +0.316244 0.280380 -0.248627 0.055877 0.344566 -0.937098 +0.316327 0.287257 -0.246020 0.056489 0.376537 -0.924678 +0.316418 0.294178 -0.243066 0.055413 0.398704 -0.915404 +0.316524 0.301161 -0.239673 0.051421 0.414329 -0.908674 +0.316644 0.308188 -0.235940 0.046345 0.416508 -0.907950 +0.316758 0.315224 -0.232275 0.044906 0.400386 -0.915246 +0.316871 0.322266 -0.228678 0.044960 0.378535 -0.924495 +0.316977 0.329294 -0.225270 0.050635 0.347782 -0.936207 +0.317037 0.336155 -0.223434 0.066414 0.319338 -0.945311 +0.317083 0.342979 -0.221907 0.086375 0.287907 -0.953755 +0.317120 0.349757 -0.220819 0.114019 0.266722 -0.957005 +0.317151 0.356543 -0.219753 0.139020 0.255652 -0.956721 +0.317188 0.363336 -0.218590 0.181474 0.256061 -0.949474 +0.317234 0.370168 -0.217192 0.221487 0.269074 -0.937306 +0.317302 0.377097 -0.215031 0.267249 0.299900 -0.915772 +0.317393 0.384117 -0.212227 0.315543 0.343427 -0.884585 +0.317513 0.391281 -0.208479 0.351077 0.387324 -0.852482 +0.317672 0.398633 -0.203363 0.384439 0.471785 -0.793489 +0.317876 0.406190 -0.196865 0.408328 0.539311 -0.736487 +0.318103 0.413875 -0.189626 0.412458 0.620355 -0.667112 +0.318420 0.421968 -0.179598 0.404318 0.689704 -0.600696 +0.318806 0.430394 -0.167470 0.391645 0.748771 -0.534749 +0.319493 0.440225 -0.145774 0.341408 0.803373 -0.487886 +0.342979 -0.658232 0.355372 0.474754 -0.344069 -0.810077 +0.342888 -0.650268 0.352742 0.474612 -0.332486 -0.814982 +0.342639 -0.641729 0.345215 0.447852 -0.331976 -0.830193 +0.342518 -0.633681 0.341611 0.443486 -0.333402 -0.831964 +0.342405 -0.625648 0.338097 0.447290 -0.329456 -0.831499 +0.342292 -0.617653 0.334727 0.445453 -0.337321 -0.829329 +0.342178 -0.609674 0.331447 0.445063 -0.342034 -0.827606 +0.342080 -0.601732 0.328417 0.446175 -0.345042 -0.825756 +0.342012 -0.593910 0.326362 0.457927 -0.333128 -0.824214 +0.341959 -0.586135 0.324707 0.475405 -0.324494 -0.817737 +0.342110 -0.579024 0.329256 0.513680 -0.306416 -0.801400 +0.330662 -0.269657 -0.014040 0.287424 -0.932523 -0.218604 +0.329445 -0.261337 -0.050614 0.259568 -0.915512 -0.307347 +0.328841 -0.253773 -0.068727 0.241187 -0.896880 -0.370723 +0.328350 -0.246390 -0.083342 0.218462 -0.879385 -0.423032 +0.327806 -0.238992 -0.099785 0.185458 -0.858800 -0.477565 +0.327314 -0.231715 -0.114399 0.160945 -0.836335 -0.524061 +0.326914 -0.224552 -0.126475 0.140706 -0.812235 -0.566106 +0.326551 -0.217463 -0.137447 0.122213 -0.775152 -0.619841 +0.326204 -0.210421 -0.147724 0.110223 -0.733151 -0.671074 +0.325962 -0.203484 -0.155069 0.107271 -0.700335 -0.705708 +0.325765 -0.196607 -0.160910 0.101325 -0.659393 -0.744939 +0.325591 -0.189753 -0.166245 0.084019 -0.616580 -0.782796 +0.325448 -0.182937 -0.170477 0.065978 -0.593758 -0.801934 +0.325319 -0.176144 -0.174346 0.049830 -0.570333 -0.819901 +0.325191 -0.169366 -0.178200 0.029258 -0.556479 -0.830346 +0.325032 -0.162588 -0.182930 0.010387 -0.545053 -0.838337 +0.324881 -0.155832 -0.187336 -0.007697 -0.535395 -0.844567 +0.324730 -0.149084 -0.192051 -0.024079 -0.529954 -0.847684 +0.324594 -0.142358 -0.196018 -0.032283 -0.525932 -0.849914 +0.324443 -0.135648 -0.200673 -0.040605 -0.515631 -0.855848 +0.324284 -0.128953 -0.205419 -0.043976 -0.493389 -0.868697 +0.324103 -0.122273 -0.210724 -0.042587 -0.468205 -0.882593 +0.323952 -0.115608 -0.215235 -0.040669 -0.445795 -0.894211 +0.323823 -0.108958 -0.219179 -0.031514 -0.430557 -0.902013 +0.323748 -0.102316 -0.221393 -0.020328 -0.421870 -0.906428 +0.323702 -0.095674 -0.222867 -0.003836 -0.418408 -0.908251 +0.323665 -0.089039 -0.223993 0.006251 -0.417327 -0.908735 +0.323612 -0.082412 -0.225602 0.019301 -0.418927 -0.907815 +0.323513 -0.075800 -0.228489 0.031076 -0.422751 -0.905713 +0.323385 -0.069218 -0.232260 0.042342 -0.427634 -0.902960 +0.323241 -0.062652 -0.236695 0.051955 -0.434738 -0.899057 +0.323090 -0.056100 -0.241086 0.063314 -0.437348 -0.897061 +0.322947 -0.049563 -0.245408 0.072041 -0.438421 -0.895878 +0.322848 -0.043019 -0.248484 0.076381 -0.431080 -0.899075 +0.322758 -0.036475 -0.251151 0.080074 -0.413556 -0.906951 +0.322675 -0.029939 -0.253615 0.080168 -0.393927 -0.915639 +0.322591 -0.023403 -0.256078 0.076832 -0.367567 -0.926818 +0.322516 -0.016881 -0.258383 0.074425 -0.345272 -0.935547 +0.322440 -0.010360 -0.260756 0.069580 -0.319441 -0.945048 +0.322372 -0.003839 -0.262660 0.065138 -0.292275 -0.954113 +0.322312 0.002675 -0.264443 0.059716 -0.261705 -0.963299 +0.322259 0.009197 -0.266121 0.055067 -0.228853 -0.971902 +0.322199 0.015703 -0.267791 0.051677 -0.193634 -0.979712 +0.322176 0.022247 -0.268577 0.051494 -0.158084 -0.986082 +0.322138 0.028761 -0.269801 0.051483 -0.126686 -0.990606 +0.322123 0.035312 -0.270126 0.054847 -0.097578 -0.993715 +0.322138 0.041894 -0.269650 0.059221 -0.072519 -0.995607 +0.322153 0.048483 -0.269159 0.063807 -0.053611 -0.996521 +0.322168 0.055058 -0.268841 0.069195 -0.041924 -0.996722 +0.322183 0.061647 -0.268335 0.074643 -0.033131 -0.996660 +0.322199 0.068229 -0.267957 0.080815 -0.029499 -0.996292 +0.322191 0.074788 -0.268123 0.087551 -0.028344 -0.995757 +0.322176 0.081332 -0.268667 0.094478 -0.026996 -0.995161 +0.322123 0.087808 -0.270262 0.099657 -0.024026 -0.994732 +0.322085 0.094307 -0.271403 0.104290 -0.015030 -0.994433 +0.322047 0.100805 -0.272491 0.107376 0.002218 -0.994216 +0.322032 0.107342 -0.272892 0.109527 0.024656 -0.993678 +0.322017 0.113878 -0.273224 0.108994 0.056271 -0.992448 +0.322017 0.120430 -0.273270 0.105907 0.094572 -0.989869 +0.322040 0.127027 -0.272634 0.098584 0.134612 -0.985982 +0.322078 0.133654 -0.271599 0.090665 0.168216 -0.981572 +0.322115 0.140296 -0.270405 0.079910 0.191259 -0.978281 +0.322176 0.146984 -0.268660 0.067973 0.202559 -0.976908 +0.322267 0.153754 -0.265781 0.054314 0.199483 -0.978395 +0.322372 0.160555 -0.262599 0.042713 0.189672 -0.980918 +0.322493 0.167386 -0.259169 0.028621 0.167688 -0.985425 +0.322561 0.174134 -0.257030 0.018113 0.139099 -0.990113 +0.322569 0.180739 -0.256811 0.009245 0.105752 -0.994350 +0.322554 0.187298 -0.257144 0.003841 0.072407 -0.997368 +0.322523 0.193789 -0.258262 -0.001938 0.042714 -0.999085 +0.322493 0.200303 -0.259131 -0.004553 0.021471 -0.999759 +0.322486 0.206862 -0.259380 -0.005661 0.007680 -0.999955 +0.322471 0.213398 -0.259849 -0.003909 0.006714 -0.999970 +0.322471 0.219980 -0.259841 -0.000365 0.017820 -0.999841 +0.322478 0.226600 -0.259418 0.004985 0.039497 -0.999207 +0.322501 0.233242 -0.258798 0.013107 0.071596 -0.997348 +0.322539 0.239922 -0.257695 0.022524 0.108142 -0.993880 +0.322584 0.246640 -0.256305 0.033232 0.152001 -0.987821 +0.322622 0.253335 -0.255232 0.040581 0.190333 -0.980880 +0.322659 0.260045 -0.253962 0.046182 0.225419 -0.973167 +0.322720 0.266801 -0.252330 0.052364 0.267360 -0.962173 +0.322773 0.273564 -0.250736 0.055625 0.308755 -0.949514 +0.322848 0.280403 -0.248385 0.054745 0.345710 -0.936743 +0.322939 0.287279 -0.245801 0.056021 0.374971 -0.925342 +0.323030 0.294194 -0.242914 0.054550 0.397662 -0.915909 +0.323158 0.301206 -0.239212 0.052707 0.412642 -0.909367 +0.323287 0.308249 -0.235373 0.051380 0.413995 -0.908828 +0.323423 0.315352 -0.231119 0.052338 0.399942 -0.915045 +0.323544 0.322387 -0.227605 0.057197 0.382884 -0.922024 +0.323619 0.329302 -0.225240 0.066569 0.357828 -0.931412 +0.323687 0.336171 -0.223335 0.085574 0.335239 -0.938239 +0.323740 0.343002 -0.221733 0.113505 0.315744 -0.942031 +0.323778 0.349787 -0.220585 0.129039 0.294630 -0.946859 +0.323823 0.356619 -0.219149 0.169840 0.297836 -0.939387 +0.323876 0.363473 -0.217479 0.210278 0.300936 -0.930173 +0.323952 0.370409 -0.215272 0.245513 0.311242 -0.918070 +0.324065 0.377482 -0.212023 0.292449 0.343695 -0.892383 +0.324193 0.384676 -0.207973 0.330887 0.387475 -0.860452 +0.324352 0.391961 -0.203288 0.367143 0.458673 -0.809212 +0.324541 0.399389 -0.197688 0.385937 0.514109 -0.765993 +0.324753 0.406938 -0.191341 0.397504 0.590576 -0.702289 +0.325025 0.414767 -0.183142 0.392681 0.657114 -0.643430 +0.325365 0.422898 -0.172918 0.372704 0.722486 -0.582328 +0.325841 0.431625 -0.158749 0.339759 0.780139 -0.525307 +0.326551 0.441434 -0.137319 0.289249 0.832100 -0.473228 +0.350415 -0.634595 0.349417 0.504643 -0.328790 -0.798268 +0.350317 -0.626638 0.346681 0.512123 -0.314502 -0.799261 +0.350173 -0.618522 0.342404 0.514401 -0.317653 -0.796548 +0.350060 -0.610558 0.339321 0.518259 -0.316665 -0.794437 +0.350075 -0.602986 0.339760 0.523615 -0.316880 -0.790832 +0.338030 -0.270042 -0.003816 0.303958 -0.930800 -0.203028 +0.336753 -0.261707 -0.040269 0.287908 -0.917453 -0.274570 +0.335906 -0.253924 -0.064292 0.264194 -0.900585 -0.345178 +0.335317 -0.246466 -0.081029 0.238693 -0.882294 -0.405689 +0.334727 -0.239053 -0.097994 0.211215 -0.861905 -0.460986 +0.334176 -0.231730 -0.113719 0.183562 -0.837525 -0.514642 +0.333775 -0.224589 -0.125114 0.173318 -0.812848 -0.556092 +0.333413 -0.217509 -0.135482 0.160997 -0.781072 -0.603329 +0.333057 -0.210481 -0.145412 0.153977 -0.740228 -0.654488 +0.332793 -0.203529 -0.153059 0.142826 -0.702103 -0.697605 +0.332566 -0.196638 -0.159497 0.134821 -0.666250 -0.733440 +0.332392 -0.189784 -0.164507 0.120647 -0.631976 -0.765540 +0.332241 -0.182968 -0.168845 0.106155 -0.610936 -0.784531 +0.332075 -0.176159 -0.173492 0.082691 -0.586447 -0.805756 +0.331931 -0.169373 -0.177671 0.059213 -0.568062 -0.820853 +0.331750 -0.162588 -0.182817 0.041098 -0.556493 -0.829835 +0.331569 -0.155824 -0.188009 0.023901 -0.545992 -0.837449 +0.331395 -0.149076 -0.192845 0.012039 -0.540295 -0.841390 +0.331251 -0.142358 -0.197099 0.002217 -0.531928 -0.846787 +0.331093 -0.135648 -0.201489 -0.001215 -0.518531 -0.855058 +0.330941 -0.128953 -0.205811 -0.002629 -0.493849 -0.869544 +0.330768 -0.122273 -0.210784 -0.000601 -0.467138 -0.884184 +0.330609 -0.115608 -0.215265 0.005349 -0.441155 -0.897415 +0.330473 -0.108958 -0.219179 0.008404 -0.422937 -0.906120 +0.330390 -0.102316 -0.221567 0.017577 -0.410804 -0.911554 +0.330337 -0.095674 -0.222995 0.026503 -0.407586 -0.912782 +0.330307 -0.089039 -0.224046 0.037470 -0.405258 -0.913434 +0.330254 -0.082412 -0.225542 0.047869 -0.409325 -0.911132 +0.330163 -0.075800 -0.228073 0.056581 -0.412788 -0.909068 +0.330050 -0.069203 -0.231300 0.064838 -0.417449 -0.906384 +0.329891 -0.062636 -0.235796 0.071390 -0.425487 -0.902144 +0.329732 -0.056085 -0.240307 0.075299 -0.432731 -0.898373 +0.329581 -0.049548 -0.244720 0.084515 -0.431710 -0.898045 +0.329468 -0.043004 -0.247925 0.088174 -0.427613 -0.899651 +0.329370 -0.036468 -0.250698 0.092549 -0.411735 -0.906592 +0.329279 -0.029924 -0.253192 0.093639 -0.393373 -0.914598 +0.329203 -0.023387 -0.255473 0.091098 -0.370704 -0.924272 +0.329120 -0.016866 -0.257824 0.089095 -0.348160 -0.933192 +0.329037 -0.010345 -0.260136 0.085545 -0.323455 -0.942369 +0.328962 -0.003831 -0.262259 0.080311 -0.294613 -0.952236 +0.328901 0.002690 -0.264005 0.075993 -0.266270 -0.960898 +0.328841 0.009204 -0.265781 0.069479 -0.231284 -0.970402 +0.328780 0.015718 -0.267504 0.065550 -0.194889 -0.978632 +0.328720 0.022217 -0.269249 0.062055 -0.158218 -0.985452 +0.328659 0.028723 -0.270881 0.060721 -0.125032 -0.990293 +0.328644 0.035267 -0.271252 0.062542 -0.093030 -0.993697 +0.328629 0.041803 -0.271803 0.066598 -0.070144 -0.995311 +0.328652 0.048393 -0.271222 0.071175 -0.050743 -0.996172 +0.328667 0.054974 -0.270730 0.076404 -0.037806 -0.996360 +0.328682 0.061556 -0.270269 0.082644 -0.030014 -0.996127 +0.328705 0.068153 -0.269559 0.089583 -0.026008 -0.995640 +0.328712 0.074727 -0.269340 0.099028 -0.023256 -0.994813 +0.328697 0.081271 -0.269823 0.105868 -0.022382 -0.994128 +0.328659 0.087778 -0.270874 0.111396 -0.018816 -0.993598 +0.328629 0.094284 -0.271780 0.112387 -0.011076 -0.993603 +0.328599 0.100798 -0.272597 0.116007 0.004278 -0.993239 +0.328591 0.107334 -0.272906 0.116834 0.024509 -0.992849 +0.328584 0.113886 -0.273028 0.115385 0.054597 -0.991819 +0.328584 0.120445 -0.273050 0.109829 0.088658 -0.989989 +0.328607 0.127042 -0.272446 0.101773 0.125670 -0.986838 +0.328644 0.133669 -0.271440 0.091622 0.156934 -0.983350 +0.328690 0.140326 -0.269997 0.079685 0.180512 -0.980340 +0.328780 0.147067 -0.267436 0.067871 0.189325 -0.979566 +0.328879 0.153837 -0.264602 0.056236 0.189437 -0.980281 +0.328992 0.160638 -0.261511 0.043089 0.179503 -0.982813 +0.329060 0.167364 -0.259456 0.031308 0.157041 -0.987096 +0.329128 0.174097 -0.257484 0.020171 0.129918 -0.991320 +0.329120 0.180656 -0.257816 0.011904 0.098454 -0.995070 +0.329090 0.187185 -0.258549 0.005740 0.066017 -0.997802 +0.329075 0.193721 -0.259124 0.001263 0.037274 -0.999304 +0.329067 0.200288 -0.259297 -0.000041 0.019417 -0.999811 +0.329060 0.206847 -0.259546 0.000239 0.008698 -0.999962 +0.329067 0.213451 -0.259229 0.002635 0.009808 -0.999948 +0.329083 0.220063 -0.258912 0.008254 0.023747 -0.999684 +0.329090 0.226675 -0.258602 0.015243 0.047751 -0.998743 +0.329113 0.233310 -0.257990 0.024380 0.080472 -0.996459 +0.329143 0.239990 -0.257030 0.034024 0.116467 -0.992612 +0.329188 0.246693 -0.255806 0.044653 0.159370 -0.986209 +0.329226 0.253373 -0.254831 0.051508 0.196335 -0.979183 +0.329264 0.260083 -0.253637 0.056873 0.232920 -0.970831 +0.329309 0.266809 -0.252292 0.062028 0.274437 -0.959602 +0.329362 0.273549 -0.250818 0.062593 0.311325 -0.948240 +0.329445 0.280388 -0.248507 0.063588 0.346757 -0.935797 +0.329536 0.287264 -0.245937 0.061730 0.375092 -0.924930 +0.329634 0.294171 -0.243134 0.062710 0.396361 -0.915950 +0.329755 0.301168 -0.239582 0.061301 0.410555 -0.909773 +0.329899 0.308226 -0.235592 0.062489 0.412119 -0.908985 +0.330042 0.315314 -0.231482 0.067778 0.403429 -0.912497 +0.330163 0.322334 -0.228103 0.076163 0.390378 -0.917499 +0.330246 0.329264 -0.225565 0.090506 0.374535 -0.922785 +0.330322 0.336133 -0.223600 0.108429 0.357633 -0.927546 +0.330382 0.343002 -0.221756 0.125876 0.339202 -0.932254 +0.330443 0.349840 -0.220147 0.158673 0.330668 -0.930313 +0.330503 0.356717 -0.218295 0.194781 0.327069 -0.924709 +0.330579 0.363646 -0.216088 0.229651 0.335453 -0.913636 +0.330685 0.370659 -0.213277 0.268310 0.353904 -0.895970 +0.330821 0.377822 -0.209386 0.308975 0.388896 -0.867925 +0.330979 0.385092 -0.204784 0.345038 0.440608 -0.828742 +0.331176 0.392512 -0.199117 0.359257 0.495796 -0.790646 +0.331395 0.400031 -0.192897 0.375854 0.546903 -0.748085 +0.331644 0.407686 -0.185817 0.368278 0.620811 -0.692073 +0.331931 0.415530 -0.177565 0.362634 0.686733 -0.629995 +0.332324 0.423812 -0.166366 0.335491 0.751119 -0.568565 +0.332936 0.433008 -0.148895 0.289042 0.803070 -0.521089 +0.333624 0.442560 -0.129399 0.270612 0.839167 -0.471772 +0.345564 -0.270571 0.010171 0.316648 -0.929294 -0.190121 +0.344226 -0.262214 -0.026274 0.312337 -0.919127 -0.240108 +0.343055 -0.254143 -0.057997 0.291270 -0.901327 -0.320581 +0.342329 -0.246564 -0.077871 0.260479 -0.883787 -0.388678 +0.341611 -0.239068 -0.097374 0.238123 -0.862577 -0.446384 +0.341067 -0.231783 -0.112064 0.209270 -0.840223 -0.500232 +0.340659 -0.224642 -0.123241 0.200868 -0.815308 -0.543070 +0.340281 -0.217562 -0.133366 0.193970 -0.780895 -0.593783 +0.339941 -0.210542 -0.142729 0.191019 -0.744573 -0.639627 +0.339654 -0.203590 -0.150513 0.175249 -0.715201 -0.676591 +0.339412 -0.196683 -0.157003 0.168930 -0.677352 -0.716001 +0.339216 -0.189829 -0.162316 0.152661 -0.646166 -0.747773 +0.339035 -0.182990 -0.167311 0.132862 -0.623577 -0.770389 +0.338861 -0.176182 -0.172003 0.112254 -0.600984 -0.791339 +0.338649 -0.169373 -0.177686 0.091189 -0.582243 -0.807884 +0.338445 -0.162580 -0.183391 0.073631 -0.567286 -0.820223 +0.338249 -0.155817 -0.188711 0.057735 -0.554683 -0.830057 +0.338067 -0.149076 -0.193600 0.046125 -0.545844 -0.836617 +0.337909 -0.142351 -0.197817 0.043690 -0.535730 -0.843258 +0.337765 -0.135641 -0.201882 0.042409 -0.518119 -0.854257 +0.337614 -0.128953 -0.205842 0.044035 -0.491814 -0.869586 +0.337455 -0.122273 -0.210293 0.047821 -0.463514 -0.884798 +0.337297 -0.115608 -0.214524 0.052103 -0.436768 -0.898064 +0.337153 -0.108958 -0.218393 0.056436 -0.415247 -0.907956 +0.337055 -0.102316 -0.221114 0.060629 -0.403802 -0.912835 +0.336994 -0.095674 -0.222655 0.064127 -0.399774 -0.914368 +0.336957 -0.089039 -0.223706 0.070518 -0.399389 -0.914066 +0.336911 -0.082404 -0.224938 0.077243 -0.401456 -0.912615 +0.336836 -0.075785 -0.227061 0.082162 -0.405824 -0.910251 +0.336730 -0.069188 -0.229992 0.090475 -0.411512 -0.906902 +0.336564 -0.062621 -0.234413 0.093582 -0.419018 -0.903142 +0.336397 -0.056070 -0.239008 0.094888 -0.425754 -0.899850 +0.336231 -0.049533 -0.243511 0.098310 -0.426736 -0.899017 +0.336110 -0.042982 -0.246761 0.104185 -0.422167 -0.900511 +0.336004 -0.036445 -0.249655 0.107820 -0.409421 -0.905952 +0.335906 -0.029901 -0.252217 0.109022 -0.393574 -0.912805 +0.335823 -0.023372 -0.254612 0.110346 -0.373450 -0.921064 +0.335732 -0.016843 -0.257060 0.108847 -0.350351 -0.930272 +0.335642 -0.010322 -0.259433 0.106519 -0.326758 -0.939086 +0.335566 -0.003808 -0.261557 0.103122 -0.299146 -0.948619 +0.335491 0.002705 -0.263612 0.096384 -0.266480 -0.959009 +0.335423 0.009219 -0.265501 0.090181 -0.234961 -0.967812 +0.335339 0.015710 -0.267662 0.085140 -0.199153 -0.976263 +0.335271 0.022209 -0.269582 0.080008 -0.161955 -0.983549 +0.335203 0.028700 -0.271426 0.078585 -0.124214 -0.989139 +0.335158 0.035214 -0.272604 0.079547 -0.089737 -0.992784 +0.335128 0.041735 -0.273436 0.081629 -0.063246 -0.994654 +0.335143 0.048310 -0.273088 0.086681 -0.044386 -0.995247 +0.335158 0.054891 -0.272552 0.092146 -0.030898 -0.995266 +0.335181 0.061481 -0.271916 0.098703 -0.022530 -0.994862 +0.335219 0.068085 -0.270942 0.105864 -0.018440 -0.994210 +0.335234 0.074675 -0.270473 0.113342 -0.016973 -0.993411 +0.335234 0.081234 -0.270496 0.120168 -0.016338 -0.992619 +0.335211 0.087763 -0.271131 0.126551 -0.014088 -0.991860 +0.335196 0.094291 -0.271690 0.131336 -0.007709 -0.991308 +0.335166 0.100813 -0.272310 0.133512 0.003679 -0.991040 +0.335158 0.107357 -0.272612 0.134653 0.022687 -0.990633 +0.335158 0.113916 -0.272574 0.132907 0.049092 -0.989912 +0.335166 0.120483 -0.272408 0.126514 0.079569 -0.988768 +0.335196 0.127095 -0.271644 0.115667 0.114586 -0.986657 +0.335234 0.133722 -0.270602 0.105347 0.145308 -0.983762 +0.335287 0.140387 -0.269053 0.094195 0.167556 -0.981352 +0.335385 0.147127 -0.266529 0.081485 0.177250 -0.980787 +0.335483 0.153898 -0.263793 0.069241 0.177982 -0.981595 +0.335589 0.160676 -0.260982 0.055542 0.168988 -0.984052 +0.335634 0.167349 -0.259682 0.042577 0.147595 -0.988131 +0.335679 0.174021 -0.258496 0.031430 0.119670 -0.992316 +0.335657 0.180558 -0.259124 0.022797 0.089281 -0.995746 +0.335649 0.187124 -0.259267 0.016282 0.059172 -0.998115 +0.335634 0.193668 -0.259705 0.011926 0.033636 -0.999363 +0.335642 0.200265 -0.259546 0.010655 0.018307 -0.999776 +0.335649 0.206870 -0.259229 0.011494 0.010618 -0.999878 +0.335664 0.213489 -0.258791 0.015165 0.014810 -0.999775 +0.335672 0.220094 -0.258602 0.022129 0.031285 -0.999266 +0.335679 0.226691 -0.258390 0.030475 0.056994 -0.997909 +0.335702 0.233318 -0.257907 0.040748 0.087814 -0.995303 +0.335717 0.239960 -0.257340 0.050912 0.126905 -0.990608 +0.335763 0.246648 -0.256267 0.059312 0.166731 -0.984217 +0.335800 0.253343 -0.255126 0.066559 0.201789 -0.977165 +0.335846 0.260060 -0.253864 0.071691 0.237741 -0.968679 +0.335899 0.266793 -0.252428 0.075805 0.276701 -0.957961 +0.335959 0.273541 -0.250932 0.077435 0.313410 -0.946456 +0.336035 0.280365 -0.248725 0.078236 0.346906 -0.934631 +0.336133 0.287249 -0.246096 0.079737 0.373966 -0.924008 +0.336239 0.294156 -0.243239 0.080293 0.395312 -0.915031 +0.336360 0.301123 -0.239990 0.081659 0.411929 -0.907550 +0.336496 0.308158 -0.236189 0.086051 0.417608 -0.904543 +0.336639 0.315201 -0.232464 0.093349 0.411423 -0.906651 +0.336760 0.322229 -0.229003 0.102604 0.400517 -0.910526 +0.336866 0.329188 -0.226192 0.111500 0.387601 -0.915059 +0.336964 0.336133 -0.223592 0.130943 0.374487 -0.917940 +0.337032 0.343002 -0.221718 0.155315 0.364748 -0.918061 +0.337115 0.349931 -0.219436 0.182105 0.355606 -0.916723 +0.337206 0.356876 -0.217003 0.216952 0.360069 -0.907349 +0.337304 0.363881 -0.214207 0.248429 0.366955 -0.896452 +0.337440 0.371006 -0.210527 0.282166 0.396129 -0.873764 +0.337614 0.378261 -0.205970 0.314182 0.430676 -0.846054 +0.337803 0.385628 -0.200688 0.333095 0.476098 -0.813866 +0.338022 0.393102 -0.194703 0.348747 0.530857 -0.772377 +0.338264 0.400658 -0.188250 0.351072 0.587086 -0.729437 +0.338513 0.408291 -0.181358 0.329041 0.652640 -0.682490 +0.338838 0.416210 -0.172638 0.316704 0.710363 -0.628556 +0.339322 0.424764 -0.159527 0.277802 0.782857 -0.556742 +0.339964 0.433983 -0.142004 0.245950 0.831119 -0.498747 +0.340629 0.443346 -0.123875 0.214338 0.865558 -0.452623 +0.351548 -0.262531 -0.017388 0.326959 -0.917808 -0.225226 +0.350279 -0.254400 -0.050456 0.317670 -0.902978 -0.289339 +0.349410 -0.246723 -0.073019 0.291644 -0.889245 -0.352403 +0.348594 -0.239174 -0.094125 0.265396 -0.862269 -0.431343 +0.348019 -0.231866 -0.109087 0.246442 -0.843077 -0.478004 +0.347574 -0.224710 -0.120551 0.240516 -0.818121 -0.522332 +0.347181 -0.217630 -0.130805 0.228463 -0.783577 -0.577764 +0.346833 -0.210610 -0.139828 0.221342 -0.749081 -0.624408 +0.346546 -0.203658 -0.147263 0.212806 -0.720201 -0.660321 +0.346274 -0.196743 -0.154283 0.196124 -0.683436 -0.703172 +0.346062 -0.189874 -0.159754 0.186392 -0.661157 -0.726725 +0.345843 -0.183021 -0.165611 0.162025 -0.633175 -0.756860 +0.345609 -0.176189 -0.171520 0.141927 -0.611858 -0.778130 +0.345375 -0.169373 -0.177784 0.121563 -0.592053 -0.796678 +0.345148 -0.162580 -0.183482 0.106119 -0.577247 -0.809645 +0.344944 -0.155817 -0.188794 0.093010 -0.562264 -0.821711 +0.344747 -0.149069 -0.193917 0.085206 -0.548252 -0.831962 +0.344581 -0.142351 -0.198247 0.083878 -0.534697 -0.840871 +0.344438 -0.135641 -0.202078 0.088040 -0.514115 -0.853191 +0.344294 -0.128953 -0.205759 0.093467 -0.486849 -0.868471 +0.344143 -0.122273 -0.209658 0.097022 -0.458481 -0.883393 +0.343992 -0.115608 -0.213489 0.101149 -0.431118 -0.896608 +0.343856 -0.108951 -0.217109 0.098994 -0.412374 -0.905620 +0.343750 -0.102309 -0.219791 0.102798 -0.400904 -0.910334 +0.343667 -0.095674 -0.221915 0.105534 -0.394433 -0.912845 +0.343614 -0.089032 -0.223366 0.107510 -0.394857 -0.912430 +0.343561 -0.082404 -0.224726 0.110264 -0.395273 -0.911922 +0.343485 -0.075785 -0.226773 0.112035 -0.400298 -0.909511 +0.343387 -0.069180 -0.229298 0.115535 -0.407355 -0.905933 +0.343259 -0.062591 -0.232690 0.117535 -0.416173 -0.901657 +0.343085 -0.056039 -0.237118 0.118733 -0.420911 -0.899298 +0.342911 -0.049495 -0.241653 0.122840 -0.421926 -0.898270 +0.342775 -0.042951 -0.245060 0.125509 -0.418871 -0.899330 +0.342654 -0.036415 -0.248197 0.130146 -0.407489 -0.903889 +0.342556 -0.029871 -0.250894 0.132675 -0.391513 -0.910558 +0.342450 -0.023342 -0.253569 0.134809 -0.371486 -0.918599 +0.342352 -0.016821 -0.256071 0.134645 -0.352649 -0.926018 +0.342254 -0.010307 -0.258662 0.132023 -0.327331 -0.935641 +0.342171 -0.003786 -0.260831 0.130080 -0.302053 -0.944375 +0.342087 0.002728 -0.262962 0.124416 -0.270912 -0.954530 +0.342012 0.009234 -0.264882 0.119188 -0.238959 -0.963687 +0.341929 0.015725 -0.267201 0.114074 -0.203926 -0.972317 +0.341846 0.022217 -0.269242 0.111247 -0.163393 -0.980269 +0.341770 0.028708 -0.271161 0.109868 -0.123395 -0.986257 +0.341725 0.035222 -0.272310 0.109051 -0.087858 -0.990146 +0.341695 0.041750 -0.273148 0.107277 -0.060022 -0.992416 +0.341679 0.048287 -0.273602 0.110732 -0.038428 -0.993107 +0.341695 0.054861 -0.273133 0.115926 -0.025110 -0.992940 +0.341725 0.061458 -0.272348 0.122092 -0.016082 -0.992388 +0.341770 0.068078 -0.271153 0.131912 -0.011037 -0.991200 +0.341800 0.074667 -0.270511 0.138964 -0.010131 -0.990246 +0.341808 0.081249 -0.270217 0.145530 -0.010366 -0.989299 +0.341800 0.087793 -0.270473 0.151223 -0.008905 -0.988459 +0.341778 0.094329 -0.271040 0.155572 -0.004320 -0.987815 +0.341747 0.100843 -0.271818 0.157770 0.005090 -0.987463 +0.341747 0.107410 -0.271720 0.157544 0.022301 -0.987260 +0.341755 0.113976 -0.271531 0.155130 0.045000 -0.986869 +0.341770 0.120566 -0.271161 0.151022 0.069823 -0.986061 +0.341800 0.127170 -0.270496 0.141141 0.102132 -0.984707 +0.341838 0.133805 -0.269378 0.129111 0.132497 -0.982738 +0.341906 0.140477 -0.267753 0.118075 0.155265 -0.980791 +0.341997 0.147218 -0.265259 0.104658 0.165063 -0.980715 +0.342095 0.153966 -0.262826 0.092382 0.164532 -0.982036 +0.342178 0.160699 -0.260597 0.079032 0.155436 -0.984679 +0.342201 0.167318 -0.260136 0.065192 0.136604 -0.988478 +0.342216 0.173938 -0.259592 0.052089 0.109243 -0.992649 +0.342193 0.180459 -0.260332 0.042696 0.081617 -0.995749 +0.342193 0.187049 -0.260264 0.034265 0.053328 -0.997989 +0.342208 0.193661 -0.259841 0.028228 0.030030 -0.999150 +0.342216 0.200265 -0.259584 0.027392 0.018043 -0.999462 +0.342224 0.206862 -0.259365 0.027998 0.014667 -0.999500 +0.342239 0.213474 -0.259025 0.032469 0.022072 -0.999229 +0.342246 0.220071 -0.258829 0.039423 0.039122 -0.998456 +0.342254 0.226668 -0.258647 0.048065 0.065235 -0.996712 +0.342269 0.233280 -0.258383 0.058318 0.096238 -0.993648 +0.342276 0.239899 -0.258005 0.068793 0.133970 -0.988595 +0.342307 0.246542 -0.257332 0.077146 0.171023 -0.982242 +0.342360 0.253267 -0.255950 0.082212 0.206408 -0.975006 +0.342412 0.259992 -0.254491 0.087239 0.241967 -0.966355 +0.342480 0.266756 -0.252798 0.093704 0.277980 -0.956006 +0.342548 0.273541 -0.250954 0.097753 0.316163 -0.943655 +0.342639 0.280373 -0.248643 0.100718 0.349270 -0.931593 +0.342737 0.287242 -0.246111 0.103793 0.375823 -0.920861 +0.342858 0.294178 -0.243058 0.104587 0.396224 -0.912177 +0.342987 0.301168 -0.239582 0.106298 0.410926 -0.905451 +0.343115 0.308143 -0.236340 0.112526 0.418021 -0.901441 +0.343251 0.315156 -0.232872 0.118326 0.415176 -0.902013 +0.343380 0.322168 -0.229502 0.128252 0.407806 -0.904017 +0.343501 0.329166 -0.226403 0.141191 0.399795 -0.905665 +0.343606 0.336133 -0.223653 0.159466 0.391279 -0.906351 +0.343712 0.343115 -0.220781 0.176614 0.381271 -0.907436 +0.343818 0.350105 -0.218000 0.201275 0.383078 -0.901521 +0.343939 0.357125 -0.215038 0.231804 0.392063 -0.890255 +0.344075 0.364228 -0.211426 0.254868 0.404413 -0.878347 +0.344241 0.371430 -0.207195 0.278386 0.427358 -0.860155 +0.344430 0.378759 -0.202132 0.302680 0.467949 -0.830306 +0.344657 0.386180 -0.196411 0.309839 0.508587 -0.803330 +0.344876 0.393638 -0.190593 0.311674 0.558452 -0.768759 +0.345110 0.401157 -0.184494 0.308603 0.607750 -0.731713 +0.345390 0.408850 -0.177270 0.288687 0.667472 -0.686397 +0.345737 0.416815 -0.168187 0.274409 0.723766 -0.633137 +0.346281 0.425505 -0.154162 0.238188 0.798232 -0.553256 +0.346931 0.434648 -0.137258 0.215920 0.846649 -0.486378 +0.347543 0.443693 -0.121427 0.189326 0.868797 -0.457544 +0.359135 -0.263052 -0.002871 0.351902 -0.913608 -0.203681 +0.357715 -0.254816 -0.038169 0.340706 -0.900799 -0.269224 +0.356641 -0.246987 -0.064926 0.322464 -0.889470 -0.323822 +0.355682 -0.239340 -0.088609 0.303253 -0.863624 -0.402731 +0.355055 -0.232010 -0.104296 0.283110 -0.843370 -0.456701 +0.354533 -0.224809 -0.117143 0.268442 -0.819531 -0.506269 +0.354125 -0.217720 -0.127359 0.268208 -0.785876 -0.557193 +0.353740 -0.210685 -0.136820 0.254125 -0.751309 -0.609061 +0.353437 -0.203726 -0.144346 0.245298 -0.723853 -0.644877 +0.353150 -0.196796 -0.151631 0.231748 -0.696087 -0.679527 +0.352893 -0.189912 -0.157880 0.209816 -0.669348 -0.712707 +0.352637 -0.183043 -0.164220 0.195979 -0.647695 -0.736263 +0.352380 -0.176204 -0.170613 0.172525 -0.622638 -0.763254 +0.352115 -0.169381 -0.177225 0.153478 -0.602351 -0.783337 +0.351873 -0.162580 -0.183346 0.137157 -0.580958 -0.802294 +0.351662 -0.155817 -0.188469 0.132514 -0.567125 -0.812902 +0.351450 -0.149069 -0.193827 0.126950 -0.549612 -0.825718 +0.351284 -0.142351 -0.197930 0.127451 -0.532261 -0.836932 +0.351140 -0.135648 -0.201542 0.130264 -0.509356 -0.850640 +0.350997 -0.128953 -0.205011 0.134708 -0.481914 -0.865802 +0.350861 -0.122273 -0.208464 0.138635 -0.455217 -0.879521 +0.350717 -0.115608 -0.211985 0.140558 -0.431132 -0.891273 +0.350581 -0.108951 -0.215393 0.141456 -0.409774 -0.901152 +0.350460 -0.102301 -0.218280 0.142772 -0.396016 -0.907076 +0.350370 -0.095666 -0.220562 0.143483 -0.391232 -0.909038 +0.350294 -0.089032 -0.222481 0.145895 -0.390465 -0.908984 +0.350218 -0.082397 -0.224288 0.146580 -0.393755 -0.907453 +0.350128 -0.075785 -0.226524 0.146311 -0.397456 -0.905882 +0.350029 -0.069173 -0.229071 0.146048 -0.404313 -0.902885 +0.349916 -0.062584 -0.231890 0.146824 -0.411310 -0.899592 +0.349780 -0.056009 -0.235229 0.149125 -0.416240 -0.896943 +0.349614 -0.049458 -0.239438 0.152808 -0.417306 -0.895827 +0.349470 -0.042906 -0.242839 0.156742 -0.413491 -0.896915 +0.349334 -0.036370 -0.246285 0.161875 -0.403511 -0.900542 +0.349213 -0.029833 -0.249292 0.164755 -0.389689 -0.906089 +0.349092 -0.023312 -0.252240 0.166248 -0.370234 -0.913941 +0.348979 -0.016791 -0.255050 0.166987 -0.351762 -0.921075 +0.348881 -0.010277 -0.257604 0.165085 -0.330859 -0.929128 +0.348790 -0.003755 -0.259894 0.163205 -0.305071 -0.938241 +0.348700 0.002751 -0.262093 0.158434 -0.278466 -0.947288 +0.348609 0.009257 -0.264322 0.151268 -0.240514 -0.958786 +0.348518 0.015748 -0.266574 0.148995 -0.202571 -0.967866 +0.348435 0.022247 -0.268547 0.148806 -0.164025 -0.975168 +0.348382 0.028753 -0.270005 0.145595 -0.125083 -0.981405 +0.348337 0.035274 -0.271131 0.144931 -0.087244 -0.985588 +0.348299 0.041796 -0.272038 0.144616 -0.056859 -0.987853 +0.348276 0.048332 -0.272574 0.144593 -0.034541 -0.988888 +0.348291 0.054906 -0.272272 0.151208 -0.018643 -0.988326 +0.348314 0.061496 -0.271562 0.155818 -0.009003 -0.987745 +0.348367 0.068123 -0.270239 0.163672 -0.004903 -0.986503 +0.348397 0.074720 -0.269499 0.171319 -0.003615 -0.985209 +0.348412 0.081302 -0.269143 0.176647 -0.004568 -0.984264 +0.348405 0.087853 -0.269423 0.181256 -0.004031 -0.983428 +0.348382 0.094390 -0.269929 0.184349 -0.001230 -0.982860 +0.348359 0.100919 -0.270557 0.185746 0.006679 -0.982575 +0.348352 0.107470 -0.270662 0.185023 0.020846 -0.982513 +0.348367 0.114052 -0.270405 0.181680 0.041653 -0.982475 +0.348390 0.120649 -0.269755 0.178020 0.063324 -0.981987 +0.348435 0.127284 -0.268713 0.170780 0.090355 -0.981157 +0.348488 0.133933 -0.267375 0.160537 0.121739 -0.979494 +0.348556 0.140621 -0.265668 0.149138 0.141439 -0.978648 +0.348639 0.147339 -0.263506 0.133920 0.152001 -0.979266 +0.348707 0.154034 -0.261821 0.120397 0.150828 -0.981201 +0.348745 0.160676 -0.260997 0.106430 0.140271 -0.984376 +0.348752 0.167265 -0.260846 0.090509 0.122870 -0.988287 +0.348752 0.173840 -0.260839 0.077115 0.098308 -0.992164 +0.348760 0.180444 -0.260567 0.066512 0.071925 -0.995190 +0.348783 0.187064 -0.260053 0.055998 0.047148 -0.997317 +0.348805 0.193691 -0.259509 0.051000 0.030061 -0.998246 +0.348820 0.200303 -0.259124 0.048964 0.019455 -0.998611 +0.348820 0.206885 -0.259108 0.048962 0.018351 -0.998632 +0.348805 0.213444 -0.259380 0.054613 0.028322 -0.998106 +0.348798 0.220011 -0.259562 0.061800 0.046962 -0.996983 +0.348798 0.226585 -0.259622 0.071341 0.073194 -0.994763 +0.348798 0.233167 -0.259592 0.080559 0.105820 -0.991117 +0.348820 0.239801 -0.259018 0.086382 0.136732 -0.986835 +0.348851 0.246459 -0.258224 0.093562 0.171900 -0.980661 +0.348904 0.253154 -0.257091 0.102128 0.211552 -0.972016 +0.348964 0.259902 -0.255413 0.109420 0.246203 -0.963022 +0.349047 0.266695 -0.253411 0.117764 0.282908 -0.951890 +0.349145 0.273534 -0.251000 0.122656 0.319845 -0.939497 +0.349244 0.280388 -0.248507 0.123434 0.349745 -0.928678 +0.349357 0.287294 -0.245658 0.127428 0.376157 -0.917751 +0.349501 0.294269 -0.242197 0.131385 0.394777 -0.909334 +0.349637 0.301244 -0.238872 0.136254 0.410785 -0.901494 +0.349765 0.308226 -0.235600 0.144534 0.418751 -0.896525 +0.349901 0.315239 -0.232177 0.150081 0.418096 -0.895919 +0.350037 0.322251 -0.228814 0.157336 0.415456 -0.895903 +0.350173 0.329271 -0.225504 0.167791 0.409553 -0.896723 +0.350302 0.336299 -0.222240 0.180302 0.403725 -0.896938 +0.350438 0.343349 -0.218869 0.191486 0.400671 -0.895989 +0.350566 0.350384 -0.215673 0.206976 0.403174 -0.891410 +0.350710 0.357480 -0.212129 0.228913 0.416615 -0.879790 +0.350876 0.364666 -0.207980 0.247770 0.435089 -0.865625 +0.351057 0.371898 -0.203545 0.264948 0.460718 -0.847078 +0.351269 0.379258 -0.198247 0.265370 0.495905 -0.826836 +0.351488 0.386656 -0.192791 0.275499 0.531003 -0.801334 +0.351715 0.394077 -0.187275 0.273676 0.575739 -0.770471 +0.351941 0.401543 -0.181638 0.260579 0.619766 -0.740262 +0.352206 0.409152 -0.175011 0.241862 0.678501 -0.693642 +0.352606 0.417245 -0.165059 0.220357 0.746501 -0.627836 +0.353128 0.425799 -0.152062 0.202401 0.800019 -0.564804 +0.353883 0.435192 -0.133374 0.175406 0.857151 -0.484277 +0.354480 0.444109 -0.118518 0.148829 0.889183 -0.432670 +0.367100 -0.263853 0.019481 0.375108 -0.907531 -0.188895 +0.365180 -0.255224 -0.026244 0.365104 -0.900955 -0.234475 +0.363941 -0.247282 -0.055836 0.353762 -0.887251 -0.296036 +0.362936 -0.239612 -0.079775 0.340683 -0.864667 -0.369169 +0.362143 -0.232176 -0.098546 0.330329 -0.843201 -0.424140 +0.361576 -0.224945 -0.112163 0.312781 -0.819614 -0.480000 +0.361107 -0.217826 -0.123150 0.299049 -0.790287 -0.534805 +0.360707 -0.210776 -0.132815 0.298744 -0.762186 -0.574304 +0.360344 -0.203786 -0.141490 0.274731 -0.733132 -0.622126 +0.360034 -0.196849 -0.148820 0.258196 -0.701866 -0.663867 +0.359732 -0.189942 -0.155999 0.241528 -0.680449 -0.691848 +0.359445 -0.183066 -0.162898 0.217419 -0.654400 -0.724217 +0.359173 -0.176220 -0.169306 0.205110 -0.633356 -0.746184 +0.358886 -0.169396 -0.176182 0.188091 -0.609989 -0.769763 +0.358644 -0.162603 -0.181804 0.174457 -0.588485 -0.789462 +0.358417 -0.155832 -0.187336 0.166319 -0.568238 -0.805880 +0.358206 -0.149084 -0.192391 0.163431 -0.549001 -0.819688 +0.358024 -0.142358 -0.196630 0.166637 -0.527153 -0.833272 +0.357873 -0.135648 -0.200175 0.173205 -0.504435 -0.845899 +0.357737 -0.128961 -0.203477 0.176173 -0.479435 -0.859712 +0.357601 -0.122273 -0.206673 0.179808 -0.451537 -0.873947 +0.357458 -0.115601 -0.210210 0.180141 -0.426962 -0.886145 +0.357314 -0.108943 -0.213565 0.178372 -0.408561 -0.895132 +0.357186 -0.102293 -0.216542 0.175641 -0.394332 -0.902027 +0.357080 -0.095651 -0.219179 0.178128 -0.390478 -0.903215 +0.356989 -0.089016 -0.221363 0.180593 -0.388839 -0.903432 +0.356891 -0.082389 -0.223554 0.179221 -0.390387 -0.903038 +0.356793 -0.075777 -0.225897 0.178376 -0.396161 -0.900688 +0.356679 -0.069173 -0.228685 0.177705 -0.402088 -0.898190 +0.356558 -0.062576 -0.231587 0.178662 -0.407980 -0.895339 +0.356437 -0.055994 -0.234413 0.181305 -0.411929 -0.892996 +0.356294 -0.049427 -0.237791 0.184624 -0.411974 -0.892295 +0.356158 -0.042876 -0.241018 0.189111 -0.408110 -0.893131 +0.356022 -0.036332 -0.244312 0.193418 -0.398791 -0.896412 +0.355878 -0.029803 -0.247705 0.197644 -0.385060 -0.901480 +0.355750 -0.023274 -0.250743 0.200462 -0.368605 -0.907714 +0.355629 -0.016753 -0.253660 0.200293 -0.349967 -0.915099 +0.355508 -0.010247 -0.256516 0.197857 -0.330058 -0.922992 +0.355410 -0.003725 -0.258927 0.198263 -0.307961 -0.930512 +0.355312 0.002781 -0.261186 0.197782 -0.278825 -0.939755 +0.355228 0.009287 -0.263257 0.196965 -0.245543 -0.949165 +0.355145 0.015801 -0.265116 0.191464 -0.204155 -0.960033 +0.355077 0.022307 -0.266899 0.191019 -0.165250 -0.967576 +0.355009 0.028814 -0.268479 0.190700 -0.125986 -0.973530 +0.354971 0.035342 -0.269408 0.191600 -0.088136 -0.977508 +0.354934 0.041871 -0.270141 0.191322 -0.056832 -0.979881 +0.354934 0.048430 -0.270315 0.192693 -0.031383 -0.980757 +0.354949 0.055012 -0.269937 0.195824 -0.014641 -0.980530 +0.354979 0.061609 -0.269227 0.198663 -0.004258 -0.980059 +0.355032 0.068236 -0.267919 0.205731 0.000839 -0.978608 +0.355055 0.074833 -0.267322 0.209233 0.001188 -0.977865 +0.355062 0.081407 -0.267186 0.212500 0.000088 -0.977161 +0.355032 0.087936 -0.267844 0.214924 -0.000303 -0.976631 +0.355009 0.094473 -0.268479 0.216578 0.001473 -0.976264 +0.354979 0.101002 -0.269068 0.215999 0.007409 -0.976366 +0.354979 0.107561 -0.269128 0.214549 0.019197 -0.976525 +0.354994 0.114150 -0.268758 0.210888 0.037321 -0.976797 +0.355032 0.120770 -0.267889 0.206866 0.058438 -0.976623 +0.355085 0.127420 -0.266559 0.202342 0.086474 -0.975489 +0.355153 0.134092 -0.265040 0.194024 0.108411 -0.974988 +0.355221 0.140772 -0.263385 0.180967 0.126166 -0.975363 +0.355266 0.147422 -0.262327 0.167702 0.135708 -0.976453 +0.355289 0.154041 -0.261731 0.151097 0.135823 -0.979143 +0.355304 0.160646 -0.261390 0.135590 0.125525 -0.982781 +0.355319 0.167250 -0.260982 0.118682 0.108911 -0.986941 +0.355334 0.173855 -0.260635 0.101562 0.086997 -0.991018 +0.355364 0.180482 -0.260060 0.088664 0.062721 -0.994085 +0.355387 0.187109 -0.259456 0.081412 0.039642 -0.995892 +0.355410 0.193736 -0.258912 0.076902 0.026748 -0.996680 +0.355402 0.200303 -0.259048 0.075908 0.020244 -0.996909 +0.355387 0.206862 -0.259342 0.078567 0.023343 -0.996635 +0.355364 0.213398 -0.259909 0.083686 0.035111 -0.995873 +0.355349 0.219935 -0.260370 0.091605 0.056087 -0.994215 +0.355349 0.226517 -0.260385 0.096175 0.080777 -0.992081 +0.355357 0.233121 -0.260060 0.100386 0.107678 -0.989105 +0.355402 0.239801 -0.259025 0.109314 0.143129 -0.983649 +0.355448 0.246481 -0.258020 0.120843 0.181893 -0.975865 +0.355493 0.253161 -0.256970 0.126515 0.215859 -0.968193 +0.355561 0.259924 -0.255239 0.133610 0.253452 -0.958076 +0.355652 0.266718 -0.253161 0.142161 0.287228 -0.947254 +0.355757 0.273572 -0.250622 0.148284 0.321242 -0.935316 +0.355871 0.280463 -0.247834 0.152888 0.353249 -0.922952 +0.356007 0.287393 -0.244683 0.158090 0.378881 -0.911843 +0.356165 0.294420 -0.240837 0.165308 0.400458 -0.901281 +0.356317 0.301425 -0.237262 0.171404 0.415334 -0.893375 +0.356460 0.308423 -0.233809 0.175341 0.419371 -0.890721 +0.356611 0.315443 -0.230325 0.174473 0.421737 -0.889774 +0.356755 0.322485 -0.226789 0.175547 0.418724 -0.890984 +0.356906 0.329521 -0.223358 0.177069 0.413335 -0.893197 +0.357057 0.336601 -0.219670 0.180351 0.411971 -0.893171 +0.357208 0.343674 -0.216119 0.185459 0.416785 -0.889885 +0.357359 0.350762 -0.212559 0.193279 0.426035 -0.883819 +0.357526 0.357926 -0.208547 0.202712 0.440111 -0.874763 +0.357715 0.365158 -0.203998 0.215249 0.456306 -0.863396 +0.357903 0.372404 -0.199532 0.222108 0.481309 -0.847944 +0.358115 0.379749 -0.194424 0.215091 0.522777 -0.824888 +0.358319 0.387057 -0.189686 0.213465 0.545604 -0.810400 +0.358531 0.394424 -0.184661 0.215166 0.593630 -0.775440 +0.358765 0.401890 -0.179039 0.199254 0.626801 -0.753272 +0.359037 0.409485 -0.172585 0.195167 0.690855 -0.696154 +0.359453 0.417585 -0.162618 0.179779 0.758737 -0.626098 +0.360057 0.426313 -0.148329 0.158206 0.814904 -0.557586 +0.360813 0.435623 -0.130321 0.134790 0.862436 -0.487889 +0.361515 0.444827 -0.113508 0.121242 0.889323 -0.440913 +0.372881 -0.255791 -0.009846 0.386950 -0.897759 -0.210472 +0.371384 -0.247660 -0.044063 0.379390 -0.883296 -0.275413 +0.370266 -0.239922 -0.069664 0.377784 -0.864087 -0.332616 +0.369367 -0.232410 -0.090309 0.362211 -0.845023 -0.393369 +0.368679 -0.225111 -0.106019 0.353037 -0.820100 -0.450334 +0.368165 -0.217962 -0.117694 0.346723 -0.789151 -0.506976 +0.367712 -0.210889 -0.128024 0.327614 -0.764024 -0.555820 +0.367281 -0.203862 -0.137901 0.314390 -0.739163 -0.595648 +0.366926 -0.196910 -0.146031 0.291961 -0.711852 -0.638769 +0.366586 -0.189988 -0.153807 0.272752 -0.687053 -0.673472 +0.366261 -0.183096 -0.161334 0.252582 -0.664618 -0.703197 +0.365974 -0.176242 -0.167764 0.234905 -0.638182 -0.733174 +0.365709 -0.169426 -0.173892 0.220481 -0.616556 -0.755809 +0.365445 -0.162625 -0.179938 0.210761 -0.594165 -0.776239 +0.365196 -0.155847 -0.185621 0.202709 -0.569268 -0.796770 +0.364976 -0.149099 -0.190623 0.202415 -0.545124 -0.813553 +0.364788 -0.142366 -0.194922 0.206063 -0.521464 -0.828017 +0.364629 -0.135656 -0.198610 0.208550 -0.497991 -0.841732 +0.364485 -0.128961 -0.201822 0.215713 -0.475212 -0.853019 +0.364364 -0.122281 -0.204603 0.214966 -0.450305 -0.866611 +0.364221 -0.115601 -0.207988 0.214894 -0.426027 -0.878818 +0.364062 -0.108943 -0.211472 0.214010 -0.408318 -0.887398 +0.363934 -0.102286 -0.214570 0.211918 -0.395456 -0.893703 +0.363805 -0.095644 -0.217456 0.209128 -0.388286 -0.897496 +0.363692 -0.089009 -0.220018 0.207695 -0.387383 -0.898219 +0.363578 -0.082382 -0.222610 0.206839 -0.389120 -0.897665 +0.363465 -0.075770 -0.225156 0.206329 -0.394026 -0.895640 +0.363352 -0.069158 -0.227831 0.205986 -0.399557 -0.893266 +0.363216 -0.062568 -0.230952 0.207429 -0.404414 -0.890742 +0.363080 -0.055987 -0.233998 0.210371 -0.407376 -0.888700 +0.362951 -0.049412 -0.236968 0.214550 -0.407124 -0.887817 +0.362815 -0.042853 -0.240088 0.217189 -0.402863 -0.889118 +0.362672 -0.036309 -0.243322 0.221857 -0.394705 -0.891621 +0.362528 -0.029773 -0.246579 0.225482 -0.380343 -0.896938 +0.362400 -0.023244 -0.249579 0.228988 -0.364376 -0.902660 +0.362279 -0.016723 -0.252398 0.231765 -0.346545 -0.908951 +0.362158 -0.010201 -0.255050 0.232514 -0.329355 -0.915130 +0.362052 -0.003687 -0.257446 0.232992 -0.305347 -0.923297 +0.361954 0.002826 -0.259781 0.234400 -0.278050 -0.931528 +0.361856 0.009333 -0.262025 0.236177 -0.245071 -0.940298 +0.361788 0.015854 -0.263537 0.237817 -0.207494 -0.948888 +0.361727 0.022375 -0.264995 0.235623 -0.165304 -0.957683 +0.361667 0.028897 -0.266249 0.236521 -0.124862 -0.963570 +0.361636 0.035433 -0.267050 0.236811 -0.088936 -0.967477 +0.361606 0.041977 -0.267632 0.236862 -0.055517 -0.969956 +0.361606 0.048544 -0.267761 0.240072 -0.030326 -0.970281 +0.361621 0.055126 -0.267352 0.241735 -0.013564 -0.970247 +0.361652 0.061730 -0.266597 0.244519 -0.000790 -0.969644 +0.361697 0.068350 -0.265600 0.247258 0.005213 -0.968936 +0.361712 0.074939 -0.265236 0.249525 0.005936 -0.968350 +0.361712 0.081498 -0.265365 0.250204 0.004753 -0.968181 +0.361697 0.088057 -0.265713 0.250780 0.003912 -0.968036 +0.361674 0.094594 -0.266212 0.249009 0.003522 -0.968495 +0.361644 0.101130 -0.266808 0.246847 0.008548 -0.969017 +0.361644 0.107697 -0.266861 0.244524 0.018733 -0.969462 +0.361659 0.114286 -0.266484 0.240972 0.034591 -0.969916 +0.361682 0.120891 -0.265947 0.238790 0.054268 -0.969554 +0.361735 0.127533 -0.264821 0.231581 0.076636 -0.969792 +0.361788 0.134183 -0.263627 0.224484 0.095394 -0.969797 +0.361825 0.140825 -0.262698 0.213056 0.111158 -0.970696 +0.361848 0.147429 -0.262229 0.197611 0.119593 -0.972958 +0.361863 0.154034 -0.261791 0.180599 0.118902 -0.976343 +0.361878 0.160631 -0.261564 0.163300 0.110391 -0.980381 +0.361916 0.167273 -0.260695 0.146397 0.094629 -0.984689 +0.361946 0.173908 -0.259985 0.132098 0.073759 -0.988489 +0.361999 0.180580 -0.258761 0.120437 0.052060 -0.991355 +0.362029 0.187222 -0.258103 0.111630 0.035014 -0.993133 +0.362029 0.193812 -0.257975 0.108894 0.026903 -0.993689 +0.362007 0.200341 -0.258640 0.109278 0.024664 -0.993705 +0.361969 0.206854 -0.259426 0.113305 0.028624 -0.993148 +0.361939 0.213376 -0.260121 0.117668 0.041422 -0.992189 +0.361931 0.219935 -0.260355 0.121247 0.060371 -0.990785 +0.361939 0.226532 -0.260159 0.126287 0.083707 -0.988456 +0.361961 0.233174 -0.259524 0.134023 0.116724 -0.984080 +0.362007 0.239847 -0.258496 0.139455 0.151334 -0.978596 +0.362060 0.246542 -0.257370 0.149258 0.186643 -0.971023 +0.362128 0.253282 -0.255745 0.160390 0.225356 -0.960984 +0.362211 0.260060 -0.253849 0.166447 0.261435 -0.950761 +0.362309 0.266869 -0.251695 0.174307 0.295149 -0.939417 +0.362407 0.273700 -0.249391 0.183418 0.327384 -0.926918 +0.362536 0.280614 -0.246375 0.190311 0.357403 -0.914355 +0.362694 0.287589 -0.242892 0.195910 0.383056 -0.902711 +0.362868 0.294632 -0.238864 0.197828 0.403366 -0.893398 +0.363027 0.301644 -0.235222 0.195166 0.411896 -0.890085 +0.363185 0.308664 -0.231632 0.190234 0.417698 -0.888448 +0.363352 0.315737 -0.227763 0.174289 0.414590 -0.893162 +0.363518 0.322795 -0.224076 0.165261 0.413432 -0.895412 +0.363669 0.329853 -0.220524 0.156589 0.410255 -0.898427 +0.363835 0.336941 -0.216814 0.149278 0.412798 -0.898507 +0.364002 0.344060 -0.212953 0.146013 0.423195 -0.894196 +0.364175 0.351193 -0.209046 0.148631 0.437901 -0.886652 +0.364372 0.358417 -0.204535 0.148920 0.459973 -0.875356 +0.364561 0.365634 -0.200212 0.158988 0.471930 -0.867182 +0.364742 0.372850 -0.195996 0.167124 0.502606 -0.848208 +0.364931 0.380112 -0.191597 0.152416 0.537476 -0.829390 +0.365135 0.387404 -0.187033 0.160103 0.553023 -0.817639 +0.365332 0.394696 -0.182590 0.155067 0.598470 -0.785995 +0.365536 0.402049 -0.177845 0.165151 0.627862 -0.760601 +0.365845 0.409734 -0.170703 0.148746 0.704697 -0.693741 +0.366261 0.417767 -0.161296 0.145431 0.752952 -0.641805 +0.366918 0.426600 -0.146296 0.116773 0.820608 -0.559434 +0.367697 0.435895 -0.128402 0.111164 0.865027 -0.489255 +0.368634 0.445749 -0.107024 0.099808 0.891995 -0.440890 +0.380868 -0.256516 0.011433 0.414063 -0.895575 -0.162778 +0.378933 -0.248083 -0.031111 0.403917 -0.881309 -0.245246 +0.377679 -0.240262 -0.058586 0.408223 -0.861410 -0.302203 +0.376659 -0.232682 -0.081143 0.403239 -0.839799 -0.363504 +0.375881 -0.225322 -0.098266 0.395648 -0.816295 -0.420862 +0.375329 -0.218151 -0.110349 0.389302 -0.791780 -0.470669 +0.374770 -0.211025 -0.122583 0.369598 -0.767730 -0.523439 +0.374248 -0.203952 -0.134047 0.348137 -0.741654 -0.573367 +0.373833 -0.196970 -0.143152 0.327768 -0.719004 -0.612864 +0.373478 -0.190041 -0.151026 0.307543 -0.695668 -0.649203 +0.373100 -0.183126 -0.159346 0.282076 -0.665024 -0.691503 +0.372813 -0.176280 -0.165731 0.271485 -0.647129 -0.712405 +0.372548 -0.169456 -0.171550 0.255317 -0.621674 -0.740496 +0.372284 -0.162656 -0.177369 0.247573 -0.598535 -0.761881 +0.372019 -0.155877 -0.183044 0.241020 -0.571425 -0.784464 +0.371777 -0.149114 -0.188514 0.237857 -0.542560 -0.805638 +0.371573 -0.142381 -0.192867 0.240084 -0.514830 -0.822988 +0.371415 -0.135671 -0.196434 0.243655 -0.494035 -0.834603 +0.371264 -0.128968 -0.199713 0.248602 -0.471801 -0.845932 +0.371143 -0.122281 -0.202381 0.250631 -0.447445 -0.858474 +0.371007 -0.115601 -0.205313 0.249134 -0.426424 -0.869537 +0.370848 -0.108936 -0.208796 0.244302 -0.407043 -0.880132 +0.370697 -0.102278 -0.212144 0.241754 -0.395962 -0.885872 +0.370561 -0.095629 -0.215129 0.236836 -0.388569 -0.890462 +0.370432 -0.088994 -0.218023 0.232746 -0.386294 -0.892528 +0.370296 -0.082367 -0.220985 0.230190 -0.388348 -0.892299 +0.370168 -0.075755 -0.223910 0.227824 -0.392081 -0.891273 +0.370039 -0.069143 -0.226683 0.227614 -0.396239 -0.889486 +0.369896 -0.062553 -0.229796 0.229688 -0.399781 -0.887366 +0.369760 -0.055964 -0.232811 0.233577 -0.402189 -0.885260 +0.369624 -0.049390 -0.235811 0.238268 -0.400943 -0.884575 +0.369488 -0.042831 -0.238819 0.242904 -0.396287 -0.885412 +0.369344 -0.036279 -0.242008 0.247110 -0.387827 -0.887990 +0.369193 -0.029743 -0.245355 0.252061 -0.374926 -0.892130 +0.369057 -0.023214 -0.248287 0.254994 -0.361137 -0.896972 +0.368929 -0.016685 -0.251030 0.258647 -0.344193 -0.902570 +0.368815 -0.010163 -0.253599 0.262673 -0.324396 -0.908719 +0.368709 -0.003642 -0.255912 0.266334 -0.301777 -0.915422 +0.368611 0.002879 -0.258058 0.268335 -0.273485 -0.923690 +0.368520 0.009401 -0.260076 0.272625 -0.241278 -0.931376 +0.368445 0.015914 -0.261791 0.277242 -0.203751 -0.938947 +0.368377 0.022443 -0.263211 0.277706 -0.166033 -0.946209 +0.368324 0.028972 -0.264428 0.279875 -0.125754 -0.951765 +0.368294 0.035516 -0.264995 0.279992 -0.089945 -0.955780 +0.368279 0.042075 -0.265456 0.279193 -0.055837 -0.958610 +0.368286 0.048657 -0.265191 0.280572 -0.030311 -0.959354 +0.368309 0.055246 -0.264662 0.286832 -0.011797 -0.957908 +0.368339 0.061851 -0.263997 0.285154 -0.001064 -0.958481 +0.368377 0.068463 -0.263211 0.283805 0.004342 -0.958872 +0.368392 0.075052 -0.262894 0.282927 0.004835 -0.959129 +0.368415 0.081649 -0.262479 0.281051 0.003799 -0.959685 +0.368400 0.088216 -0.262690 0.279357 0.003104 -0.960182 +0.368377 0.094760 -0.263310 0.277639 0.003759 -0.960678 +0.368339 0.101289 -0.264035 0.274872 0.008067 -0.961447 +0.368332 0.107848 -0.264247 0.272694 0.016918 -0.961952 +0.368339 0.114430 -0.264141 0.268218 0.031376 -0.962847 +0.368339 0.121004 -0.264118 0.264530 0.047202 -0.963221 +0.368369 0.127624 -0.263401 0.258086 0.067399 -0.963768 +0.368400 0.134243 -0.262751 0.250105 0.086731 -0.964326 +0.368422 0.140848 -0.262282 0.240930 0.097897 -0.965593 +0.368445 0.147460 -0.261799 0.224877 0.104528 -0.968764 +0.368460 0.154064 -0.261451 0.207205 0.103138 -0.972846 +0.368483 0.160684 -0.260884 0.191771 0.093339 -0.976991 +0.368536 0.167341 -0.259811 0.177380 0.078260 -0.981026 +0.368596 0.174029 -0.258420 0.166339 0.060432 -0.984215 +0.368649 0.180701 -0.257302 0.156437 0.043392 -0.986734 +0.368656 0.187306 -0.257023 0.150419 0.030757 -0.988144 +0.368634 0.193842 -0.257597 0.149901 0.027080 -0.988330 +0.368596 0.200356 -0.258420 0.150961 0.027272 -0.988163 +0.368566 0.206885 -0.259108 0.151170 0.032118 -0.987986 +0.368536 0.213406 -0.259819 0.156707 0.044652 -0.986635 +0.368536 0.219995 -0.259728 0.160354 0.063638 -0.985006 +0.368566 0.226630 -0.259131 0.164649 0.091929 -0.982059 +0.368596 0.233280 -0.258398 0.171491 0.125568 -0.977151 +0.368649 0.239975 -0.257181 0.179164 0.160920 -0.970570 +0.368717 0.246700 -0.255685 0.190679 0.199541 -0.961158 +0.368793 0.253448 -0.254023 0.198820 0.232459 -0.952068 +0.368883 0.260234 -0.252111 0.204479 0.269598 -0.941013 +0.368974 0.267035 -0.250055 0.214107 0.303443 -0.928483 +0.369102 0.273912 -0.247335 0.222613 0.333922 -0.915936 +0.369246 0.280856 -0.244056 0.232208 0.360832 -0.903261 +0.369412 0.287846 -0.240451 0.228573 0.382777 -0.895118 +0.369586 0.294866 -0.236695 0.216489 0.395781 -0.892463 +0.369752 0.301894 -0.232947 0.197427 0.401439 -0.894354 +0.369926 0.308944 -0.229124 0.176739 0.402373 -0.898253 +0.370107 0.316025 -0.225172 0.156099 0.402826 -0.901867 +0.370274 0.323098 -0.221454 0.135457 0.403789 -0.904768 +0.370440 0.330171 -0.217796 0.115357 0.406064 -0.906534 +0.370621 0.337289 -0.213814 0.101631 0.414631 -0.904297 +0.370803 0.344422 -0.209900 0.095751 0.428367 -0.898517 +0.370991 0.351594 -0.205766 0.085734 0.448506 -0.889658 +0.371180 0.358787 -0.201534 0.086780 0.470090 -0.878342 +0.371362 0.365959 -0.197605 0.082964 0.481589 -0.872461 +0.371543 0.373153 -0.193661 0.086720 0.508250 -0.856832 +0.371740 0.380407 -0.189316 0.084687 0.541587 -0.836368 +0.371936 0.387669 -0.185031 0.100919 0.558197 -0.823548 +0.372110 0.394893 -0.181094 0.095728 0.609851 -0.786714 +0.372314 0.402200 -0.176711 0.097717 0.638723 -0.763207 +0.372609 0.409802 -0.170205 0.080785 0.710241 -0.699308 +0.373085 0.417978 -0.159724 0.094945 0.761865 -0.640739 +0.373734 0.426729 -0.145359 0.092350 0.829399 -0.550971 +0.374573 0.436091 -0.126989 0.090797 0.872136 -0.480765 +0.375835 0.446860 -0.099203 0.086974 0.896954 -0.433486 +0.386687 -0.248619 -0.014600 0.423404 -0.879662 -0.216619 +0.385190 -0.240640 -0.046284 0.431540 -0.858700 -0.276421 +0.384080 -0.233007 -0.069884 0.435422 -0.834113 -0.338620 +0.383173 -0.225572 -0.088987 0.430668 -0.813925 -0.389938 +0.382485 -0.218325 -0.103586 0.429447 -0.790924 -0.435906 +0.381888 -0.211169 -0.116259 0.411731 -0.772207 -0.483915 +0.381291 -0.204066 -0.128833 0.388987 -0.747620 -0.538288 +0.380785 -0.197038 -0.139676 0.366811 -0.725584 -0.582217 +0.380392 -0.190094 -0.147958 0.345103 -0.702790 -0.622085 +0.380006 -0.183187 -0.156074 0.324303 -0.675774 -0.661934 +0.379674 -0.176318 -0.163192 0.303987 -0.650696 -0.695835 +0.379387 -0.169487 -0.169306 0.295111 -0.626391 -0.721488 +0.379122 -0.162686 -0.174845 0.285008 -0.600514 -0.747097 +0.378865 -0.155900 -0.180225 0.279515 -0.573880 -0.769762 +0.378624 -0.149137 -0.185477 0.274620 -0.544320 -0.792654 +0.378404 -0.142404 -0.190132 0.275739 -0.516371 -0.810758 +0.378223 -0.135678 -0.193963 0.274371 -0.490433 -0.827161 +0.378064 -0.128976 -0.197205 0.277210 -0.466340 -0.840049 +0.377936 -0.122281 -0.199985 0.278860 -0.446732 -0.850098 +0.377800 -0.115601 -0.202834 0.277360 -0.426153 -0.861084 +0.377656 -0.108928 -0.205917 0.274189 -0.410861 -0.869490 +0.377498 -0.102271 -0.209326 0.268275 -0.399762 -0.876481 +0.377339 -0.095621 -0.212620 0.259965 -0.391094 -0.882872 +0.377203 -0.088979 -0.215507 0.256111 -0.388788 -0.885015 +0.377059 -0.082352 -0.218635 0.251109 -0.388213 -0.886699 +0.376908 -0.075732 -0.221824 0.249258 -0.390214 -0.886343 +0.376757 -0.069120 -0.224922 0.249783 -0.391910 -0.885446 +0.376606 -0.062531 -0.228225 0.252422 -0.393860 -0.883831 +0.376455 -0.055941 -0.231346 0.256139 -0.395342 -0.882098 +0.376319 -0.049367 -0.234330 0.261053 -0.394136 -0.881197 +0.376175 -0.042800 -0.237368 0.266228 -0.389665 -0.881637 +0.376032 -0.036241 -0.240315 0.270908 -0.381539 -0.883763 +0.375896 -0.029697 -0.243285 0.274913 -0.369906 -0.887464 +0.375760 -0.023161 -0.246103 0.279274 -0.355459 -0.891995 +0.375631 -0.016624 -0.248831 0.283872 -0.338163 -0.897253 +0.375510 -0.010103 -0.251400 0.287446 -0.318765 -0.903196 +0.375397 -0.003574 -0.253751 0.293578 -0.295278 -0.909188 +0.375299 0.002947 -0.255882 0.299434 -0.267192 -0.915941 +0.375208 0.009476 -0.257793 0.305591 -0.235275 -0.922638 +0.375140 0.016005 -0.259274 0.310877 -0.200113 -0.929145 +0.375064 0.022534 -0.260786 0.313940 -0.160551 -0.935770 +0.375012 0.029063 -0.262040 0.317218 -0.123292 -0.940304 +0.374981 0.035614 -0.262562 0.318888 -0.087870 -0.943711 +0.374981 0.042189 -0.262630 0.320477 -0.056218 -0.945587 +0.374989 0.048778 -0.262388 0.320249 -0.029753 -0.946866 +0.375019 0.055375 -0.261859 0.319650 -0.014347 -0.947427 +0.375057 0.061995 -0.261043 0.317445 -0.003493 -0.948270 +0.375080 0.068599 -0.260476 0.313939 0.001552 -0.949442 +0.375102 0.075203 -0.259985 0.312536 0.001759 -0.949904 +0.375110 0.081793 -0.259856 0.308824 0.001329 -0.951118 +0.375110 0.088375 -0.259834 0.305059 -0.000261 -0.952333 +0.375110 0.094949 -0.259955 0.300071 -0.000541 -0.953917 +0.375072 0.101485 -0.260710 0.297808 0.004492 -0.954615 +0.375034 0.108014 -0.261503 0.294254 0.013750 -0.955628 +0.375027 0.114581 -0.261670 0.291102 0.027421 -0.956299 +0.375012 0.121148 -0.261897 0.285506 0.044283 -0.957353 +0.375027 0.127737 -0.261625 0.279279 0.061801 -0.958219 +0.375034 0.134326 -0.261503 0.270648 0.077606 -0.959545 +0.375042 0.140916 -0.261330 0.259627 0.088224 -0.961671 +0.375064 0.147520 -0.260907 0.247307 0.092173 -0.964543 +0.375080 0.154132 -0.260453 0.235365 0.089331 -0.967793 +0.375125 0.160782 -0.259539 0.221472 0.077709 -0.972066 +0.375193 0.167462 -0.258171 0.211788 0.063916 -0.975223 +0.375253 0.174157 -0.256758 0.201500 0.048869 -0.978269 +0.375299 0.180807 -0.255942 0.194601 0.036139 -0.980216 +0.375284 0.187366 -0.256237 0.194289 0.029985 -0.980486 +0.375253 0.193902 -0.256834 0.192528 0.026805 -0.980925 +0.375216 0.200424 -0.257627 0.193782 0.030127 -0.980582 +0.375178 0.206945 -0.258360 0.193186 0.037878 -0.980431 +0.375170 0.213512 -0.258579 0.195281 0.049093 -0.979518 +0.375185 0.220124 -0.258239 0.201962 0.071810 -0.976757 +0.375208 0.226751 -0.257733 0.208991 0.102230 -0.972559 +0.375261 0.233431 -0.256728 0.215074 0.133464 -0.967435 +0.375329 0.240149 -0.255292 0.226293 0.172939 -0.958584 +0.375405 0.246889 -0.253698 0.233912 0.207962 -0.949756 +0.375480 0.253637 -0.252096 0.242580 0.243115 -0.939175 +0.375571 0.260431 -0.250123 0.251820 0.280259 -0.926306 +0.375684 0.267269 -0.247721 0.257329 0.309167 -0.915531 +0.375813 0.274146 -0.245000 0.263352 0.336120 -0.904250 +0.375971 0.281106 -0.241653 0.254189 0.355540 -0.899433 +0.376138 0.288095 -0.238078 0.230178 0.367211 -0.901207 +0.376319 0.295123 -0.234277 0.209295 0.377282 -0.902139 +0.376493 0.302158 -0.230552 0.181782 0.384887 -0.904885 +0.376666 0.309201 -0.226864 0.149087 0.386861 -0.910006 +0.376840 0.316244 -0.223260 0.114828 0.387825 -0.914553 +0.377022 0.323332 -0.219383 0.083357 0.391604 -0.916350 +0.377218 0.330465 -0.215257 0.063926 0.402098 -0.913363 +0.377384 0.337538 -0.211706 0.044513 0.415175 -0.908652 +0.377566 0.344672 -0.207814 0.053148 0.427518 -0.902443 +0.377770 0.351873 -0.203446 0.027300 0.451975 -0.891613 +0.377944 0.359007 -0.199789 0.011148 0.470908 -0.882112 +0.378117 0.366140 -0.196154 0.011445 0.482065 -0.876061 +0.378299 0.373319 -0.192346 0.013949 0.507969 -0.861263 +0.378495 0.380558 -0.188129 0.016121 0.549500 -0.835338 +0.378684 0.387775 -0.184185 0.018736 0.565263 -0.824698 +0.378873 0.395014 -0.180187 0.028905 0.624065 -0.780837 +0.379085 0.402336 -0.175698 0.037076 0.651878 -0.757417 +0.379417 0.410014 -0.168686 0.029759 0.727474 -0.685490 +0.379931 0.418258 -0.157699 0.048629 0.771508 -0.634359 +0.380551 0.426834 -0.144581 0.057672 0.837879 -0.542801 +0.381442 0.436265 -0.125772 0.071633 0.876535 -0.475979 +0.394833 -0.249375 0.008675 0.449291 -0.876440 -0.173178 +0.392785 -0.241048 -0.033098 0.441939 -0.861773 -0.249073 +0.391545 -0.233340 -0.058420 0.455620 -0.834737 -0.309232 +0.390525 -0.225836 -0.079291 0.464009 -0.808949 -0.360967 +0.389762 -0.218544 -0.094964 0.460381 -0.785667 -0.413253 +0.389082 -0.211350 -0.108785 0.451930 -0.770300 -0.449886 +0.388409 -0.204202 -0.122500 0.431750 -0.751968 -0.498132 +0.387805 -0.197136 -0.134923 0.404284 -0.729786 -0.551333 +0.387336 -0.190162 -0.144422 0.383564 -0.707957 -0.593022 +0.386951 -0.183247 -0.152371 0.367023 -0.682985 -0.631527 +0.386581 -0.176363 -0.159898 0.346962 -0.655603 -0.670673 +0.386271 -0.169524 -0.166200 0.332614 -0.630282 -0.701507 +0.385991 -0.162716 -0.171928 0.327193 -0.606006 -0.725053 +0.385719 -0.155930 -0.177512 0.319416 -0.573349 -0.754483 +0.385477 -0.149167 -0.182446 0.312212 -0.543036 -0.779510 +0.385251 -0.142419 -0.187101 0.309347 -0.515649 -0.799006 +0.385054 -0.135694 -0.191106 0.308015 -0.491248 -0.814741 +0.384888 -0.128983 -0.194514 0.304507 -0.468449 -0.829356 +0.384744 -0.122288 -0.197514 0.303597 -0.448753 -0.840506 +0.384593 -0.115601 -0.200537 0.300741 -0.428487 -0.852029 +0.384450 -0.108921 -0.203530 0.295141 -0.413550 -0.861318 +0.384291 -0.102256 -0.206787 0.290013 -0.402384 -0.868320 +0.384132 -0.095606 -0.210020 0.282964 -0.396504 -0.873336 +0.383966 -0.088964 -0.213323 0.276411 -0.391427 -0.877714 +0.383815 -0.082329 -0.216428 0.271220 -0.388943 -0.880434 +0.383656 -0.075709 -0.219701 0.269024 -0.387644 -0.881679 +0.383490 -0.069097 -0.223094 0.269847 -0.387551 -0.881469 +0.383331 -0.062500 -0.226335 0.273416 -0.388036 -0.880154 +0.383180 -0.055911 -0.229449 0.275067 -0.389163 -0.879142 +0.383029 -0.049337 -0.232464 0.280411 -0.387442 -0.878213 +0.382893 -0.042763 -0.235245 0.286290 -0.383006 -0.878262 +0.382757 -0.036196 -0.238146 0.291122 -0.375313 -0.879993 +0.382614 -0.029644 -0.241033 0.296435 -0.363971 -0.882979 +0.382485 -0.023100 -0.243708 0.301956 -0.349551 -0.886926 +0.382349 -0.016564 -0.246390 0.306252 -0.331809 -0.892251 +0.382228 -0.010027 -0.248960 0.313150 -0.310764 -0.897420 +0.382100 -0.003506 -0.251484 0.319794 -0.287123 -0.902935 +0.381994 0.003023 -0.253615 0.327448 -0.260194 -0.908337 +0.381903 0.009552 -0.255496 0.335149 -0.226960 -0.914420 +0.381835 0.016088 -0.256940 0.340716 -0.193236 -0.920094 +0.381775 0.022632 -0.258118 0.345328 -0.156462 -0.925348 +0.381722 0.029169 -0.259184 0.347706 -0.120007 -0.929892 +0.381707 0.035735 -0.259569 0.350696 -0.087012 -0.932438 +0.381699 0.042317 -0.259652 0.352040 -0.056346 -0.934287 +0.381714 0.048907 -0.259342 0.348274 -0.033560 -0.936792 +0.381752 0.055526 -0.258594 0.344420 -0.018774 -0.938628 +0.381775 0.062131 -0.258111 0.340350 -0.009901 -0.940247 +0.381797 0.068735 -0.257710 0.334866 -0.004551 -0.942255 +0.381805 0.075332 -0.257484 0.330147 -0.002828 -0.943925 +0.381820 0.081921 -0.257280 0.325989 -0.003795 -0.945366 +0.381820 0.088511 -0.257249 0.321636 -0.004223 -0.946854 +0.381805 0.095077 -0.257567 0.318553 -0.002839 -0.947901 +0.381790 0.101652 -0.257793 0.316580 0.001825 -0.948564 +0.381767 0.108203 -0.258262 0.315355 0.010042 -0.948921 +0.381729 0.114740 -0.259146 0.309812 0.023379 -0.950510 +0.381707 0.121291 -0.259524 0.305378 0.039465 -0.951413 +0.381699 0.127865 -0.259660 0.300277 0.054256 -0.952308 +0.381699 0.134440 -0.259758 0.290323 0.067045 -0.954577 +0.381707 0.141029 -0.259592 0.280627 0.075567 -0.956838 +0.381722 0.147641 -0.259252 0.271612 0.078139 -0.959230 +0.381760 0.154276 -0.258496 0.262364 0.074451 -0.962093 +0.381813 0.160933 -0.257438 0.250978 0.063708 -0.965894 +0.381881 0.167628 -0.256003 0.245184 0.053453 -0.968002 +0.381933 0.174301 -0.254839 0.241232 0.040110 -0.969638 +0.381956 0.180928 -0.254408 0.238122 0.031234 -0.970733 +0.381933 0.187479 -0.254861 0.232418 0.028369 -0.972202 +0.381903 0.194016 -0.255519 0.232966 0.027796 -0.972088 +0.381873 0.200545 -0.256191 0.229404 0.032096 -0.972802 +0.381850 0.207096 -0.256630 0.231928 0.041641 -0.971841 +0.381843 0.213671 -0.256796 0.236953 0.057669 -0.969808 +0.381858 0.220283 -0.256486 0.242257 0.082007 -0.966740 +0.381896 0.226940 -0.255640 0.252255 0.113833 -0.960942 +0.381956 0.233643 -0.254431 0.262278 0.145964 -0.953889 +0.382032 0.240376 -0.252897 0.271782 0.183113 -0.944777 +0.382107 0.247124 -0.251318 0.280296 0.218159 -0.934794 +0.382183 0.253872 -0.249753 0.288912 0.252731 -0.923394 +0.382289 0.260680 -0.247592 0.294933 0.284373 -0.912220 +0.382409 0.267526 -0.245159 0.291803 0.308687 -0.905297 +0.382545 0.274410 -0.242453 0.274160 0.326015 -0.904738 +0.382712 0.281385 -0.238955 0.246395 0.337527 -0.908496 +0.382901 0.288413 -0.235086 0.217342 0.345050 -0.913073 +0.383082 0.295425 -0.231451 0.175111 0.348002 -0.920995 +0.383256 0.302453 -0.227869 0.131525 0.353273 -0.926229 +0.383430 0.309481 -0.224356 0.092673 0.361270 -0.927845 +0.383596 0.316516 -0.220857 0.057644 0.367018 -0.928426 +0.383777 0.323581 -0.217214 0.021990 0.367767 -0.929658 +0.383951 0.330639 -0.213746 0.010479 0.375440 -0.926788 +0.384117 0.337720 -0.210202 -0.019114 0.392170 -0.919694 +0.384284 0.344785 -0.206885 -0.039505 0.414446 -0.909216 +0.384495 0.351979 -0.202608 -0.058616 0.443669 -0.894271 +0.384646 0.359044 -0.199441 -0.055127 0.466933 -0.882573 +0.384812 0.366155 -0.196056 -0.076473 0.474815 -0.876757 +0.385001 0.373326 -0.192278 -0.080510 0.515446 -0.853132 +0.385183 0.380505 -0.188507 -0.062555 0.558006 -0.827476 +0.385379 0.387729 -0.184517 -0.042302 0.572904 -0.818530 +0.385576 0.394984 -0.180406 -0.038733 0.631387 -0.774500 +0.385825 0.402374 -0.175404 -0.016462 0.656442 -0.754197 +0.386173 0.410066 -0.168263 -0.006813 0.727564 -0.686006 +0.386709 0.418311 -0.157283 0.020755 0.785703 -0.618256 +0.387374 0.426963 -0.143659 0.040904 0.845472 -0.532451 +0.388311 0.436439 -0.124556 0.062469 0.880746 -0.469450 +0.400719 -0.241630 -0.014222 0.462218 -0.861151 -0.211599 +0.399110 -0.233703 -0.045907 0.464319 -0.838165 -0.286159 +0.398021 -0.226169 -0.067337 0.478781 -0.811086 -0.336019 +0.397122 -0.218801 -0.085088 0.486361 -0.786434 -0.380755 +0.396351 -0.211554 -0.100352 0.477862 -0.770855 -0.421224 +0.395649 -0.204391 -0.114195 0.467022 -0.751035 -0.466729 +0.394969 -0.197280 -0.127646 0.451783 -0.734448 -0.506436 +0.394379 -0.190252 -0.139298 0.424911 -0.712512 -0.558370 +0.393948 -0.183323 -0.147875 0.403325 -0.687630 -0.603734 +0.393540 -0.176424 -0.155802 0.392230 -0.662047 -0.638631 +0.393215 -0.169577 -0.162331 0.377843 -0.632929 -0.675748 +0.392906 -0.162761 -0.168392 0.363042 -0.602698 -0.710602 +0.392618 -0.155960 -0.174044 0.363787 -0.578860 -0.729781 +0.392354 -0.149190 -0.179220 0.352357 -0.545957 -0.760116 +0.392120 -0.142442 -0.183837 0.346017 -0.520763 -0.780435 +0.391916 -0.135709 -0.187963 0.339185 -0.494302 -0.800387 +0.391719 -0.128991 -0.191794 0.329743 -0.470339 -0.818567 +0.391561 -0.122288 -0.194990 0.325771 -0.449567 -0.831723 +0.391394 -0.115601 -0.198172 0.321170 -0.433772 -0.841839 +0.391236 -0.108921 -0.201323 0.313147 -0.417283 -0.853120 +0.391077 -0.102248 -0.204542 0.308391 -0.406905 -0.859839 +0.390918 -0.095591 -0.207610 0.301624 -0.399190 -0.865835 +0.390760 -0.088941 -0.210716 0.298386 -0.394471 -0.869114 +0.390593 -0.082306 -0.214011 0.292068 -0.389530 -0.873478 +0.390427 -0.075679 -0.217350 0.289950 -0.385938 -0.875774 +0.390253 -0.069067 -0.220713 0.289696 -0.383657 -0.876860 +0.390095 -0.062470 -0.223894 0.291906 -0.382068 -0.876821 +0.389936 -0.055873 -0.227008 0.294605 -0.381927 -0.875979 +0.389785 -0.049291 -0.230038 0.300112 -0.379837 -0.875018 +0.389649 -0.042710 -0.232728 0.306400 -0.375587 -0.874674 +0.389520 -0.036135 -0.235207 0.312961 -0.368314 -0.875443 +0.389392 -0.029569 -0.237746 0.319643 -0.357248 -0.877612 +0.389263 -0.023017 -0.240232 0.326616 -0.342635 -0.880865 +0.389112 -0.016481 -0.243270 0.333929 -0.324218 -0.885084 +0.388961 -0.009952 -0.246202 0.340645 -0.302412 -0.890229 +0.388840 -0.003423 -0.248673 0.346970 -0.279299 -0.895323 +0.388712 0.003098 -0.251106 0.355039 -0.251083 -0.900502 +0.388613 0.009627 -0.253116 0.359730 -0.220971 -0.906513 +0.388553 0.016179 -0.254317 0.365737 -0.187339 -0.911669 +0.388500 0.022730 -0.255398 0.370933 -0.151499 -0.916219 +0.388462 0.029290 -0.256123 0.372926 -0.117590 -0.920380 +0.388447 0.035864 -0.256418 0.374464 -0.085842 -0.923259 +0.388447 0.042453 -0.256380 0.371754 -0.060629 -0.926349 +0.388462 0.049058 -0.256048 0.365867 -0.039378 -0.929834 +0.388485 0.055662 -0.255625 0.360417 -0.025347 -0.932447 +0.388493 0.062259 -0.255451 0.354110 -0.015952 -0.935068 +0.388508 0.068856 -0.255232 0.348859 -0.010949 -0.937111 +0.388515 0.075453 -0.255096 0.342863 -0.008725 -0.939345 +0.388508 0.082035 -0.255164 0.338182 -0.008513 -0.941042 +0.388493 0.088609 -0.255511 0.334878 -0.007859 -0.942229 +0.388477 0.095183 -0.255745 0.332584 -0.005434 -0.943058 +0.388470 0.101757 -0.255942 0.330610 -0.000401 -0.943767 +0.388462 0.108332 -0.256161 0.328989 0.007984 -0.944300 +0.388455 0.114913 -0.256297 0.328278 0.019411 -0.944382 +0.388409 0.121442 -0.257151 0.322232 0.034015 -0.946049 +0.388394 0.128009 -0.257416 0.316291 0.047936 -0.947450 +0.388394 0.134598 -0.257431 0.310470 0.058122 -0.948805 +0.388409 0.141195 -0.257174 0.302897 0.064569 -0.950834 +0.388440 0.147822 -0.256615 0.294700 0.066158 -0.953297 +0.388485 0.154480 -0.255587 0.289056 0.061601 -0.955328 +0.388545 0.161160 -0.254385 0.283743 0.053155 -0.957426 +0.388621 0.167847 -0.253018 0.279548 0.043478 -0.959147 +0.388636 0.174467 -0.252678 0.276987 0.035556 -0.960216 +0.388636 0.181064 -0.252625 0.274971 0.028944 -0.961017 +0.388613 0.187615 -0.253124 0.271260 0.026817 -0.962133 +0.388576 0.194152 -0.253788 0.274650 0.029739 -0.961084 +0.388553 0.200703 -0.254317 0.275987 0.034145 -0.960555 +0.388538 0.207270 -0.254559 0.279372 0.045508 -0.959104 +0.388538 0.213859 -0.254597 0.283876 0.064281 -0.956704 +0.388568 0.220502 -0.254023 0.292896 0.091876 -0.951720 +0.388613 0.227174 -0.253071 0.301116 0.120887 -0.945894 +0.388681 0.233892 -0.251756 0.310974 0.157872 -0.937215 +0.388765 0.240632 -0.250191 0.321621 0.195042 -0.926563 +0.388840 0.247373 -0.248673 0.327220 0.228788 -0.916833 +0.388916 0.254129 -0.247093 0.326355 0.254480 -0.910348 +0.389037 0.260952 -0.244819 0.307821 0.273678 -0.911234 +0.389180 0.267859 -0.241887 0.284123 0.290478 -0.913727 +0.389331 0.274773 -0.238917 0.256657 0.300404 -0.918632 +0.389520 0.281778 -0.235184 0.216460 0.303467 -0.927929 +0.389686 0.288753 -0.231897 0.166397 0.306978 -0.937057 +0.389860 0.295743 -0.228549 0.119851 0.314771 -0.941571 +0.390027 0.302748 -0.225149 0.066714 0.316840 -0.946130 +0.390200 0.309768 -0.221771 0.024512 0.318665 -0.947550 +0.390367 0.316773 -0.218560 -0.008148 0.320113 -0.947344 +0.390525 0.323785 -0.215439 -0.058585 0.328159 -0.942804 +0.390654 0.330737 -0.212892 -0.100803 0.345670 -0.932926 +0.390820 0.337788 -0.209598 -0.131247 0.367919 -0.920549 +0.390979 0.344845 -0.206356 -0.151889 0.398072 -0.904692 +0.391122 0.351850 -0.203658 -0.162078 0.426988 -0.889614 +0.391258 0.358871 -0.200839 -0.156408 0.461968 -0.872996 +0.391402 0.365898 -0.198104 -0.167463 0.480023 -0.861124 +0.391598 0.373084 -0.194182 -0.151267 0.515142 -0.843651 +0.391817 0.380331 -0.189882 -0.136540 0.557657 -0.818765 +0.392014 0.387540 -0.185991 -0.124245 0.585112 -0.801379 +0.392256 0.394878 -0.181215 -0.100315 0.637388 -0.763985 +0.392558 0.402389 -0.175306 -0.063385 0.678045 -0.732283 +0.392921 0.410097 -0.168059 -0.039448 0.732141 -0.680010 +0.393435 0.418235 -0.157888 -0.011972 0.789802 -0.613244 +0.394183 0.427039 -0.143152 0.022772 0.845357 -0.533717 +0.395188 0.436613 -0.123324 0.057233 0.895056 -0.442266 +0.409137 -0.242461 0.012831 0.469986 -0.866807 -0.166611 +0.406802 -0.234111 -0.031798 0.482638 -0.839053 -0.251100 +0.405548 -0.226479 -0.055730 0.490627 -0.815045 -0.308200 +0.404573 -0.219073 -0.074274 0.499130 -0.788225 -0.359960 +0.403719 -0.211781 -0.090672 0.500911 -0.771733 -0.391813 +0.402979 -0.204595 -0.104788 0.496659 -0.752360 -0.432765 +0.402246 -0.197461 -0.118767 0.487390 -0.737095 -0.468127 +0.401558 -0.190396 -0.131802 0.468175 -0.715964 -0.517888 +0.401037 -0.183421 -0.141868 0.446600 -0.692399 -0.566685 +0.400576 -0.176507 -0.150618 0.435782 -0.662768 -0.608960 +0.400190 -0.169638 -0.157903 0.423156 -0.638187 -0.643161 +0.399873 -0.162807 -0.163986 0.414998 -0.611209 -0.673944 +0.399563 -0.156006 -0.169940 0.396838 -0.578000 -0.713047 +0.399268 -0.149220 -0.175540 0.388882 -0.549926 -0.739156 +0.399011 -0.142464 -0.180482 0.380790 -0.524604 -0.761439 +0.398777 -0.135724 -0.184917 0.369150 -0.499668 -0.783620 +0.398558 -0.128998 -0.189066 0.362774 -0.478824 -0.799451 +0.398377 -0.122296 -0.192580 0.350233 -0.455552 -0.818419 +0.398195 -0.115601 -0.196034 0.341100 -0.437116 -0.832214 +0.398021 -0.108913 -0.199343 0.332968 -0.423672 -0.842398 +0.397840 -0.102241 -0.202766 0.324646 -0.411309 -0.851722 +0.397689 -0.095576 -0.205751 0.317329 -0.402215 -0.858793 +0.397545 -0.088926 -0.208449 0.313559 -0.395258 -0.863396 +0.397387 -0.082284 -0.211456 0.312159 -0.389395 -0.866561 +0.397220 -0.075656 -0.214653 0.309903 -0.384199 -0.869685 +0.397047 -0.069037 -0.217940 0.310501 -0.379690 -0.871450 +0.396880 -0.062425 -0.221106 0.312548 -0.375986 -0.872323 +0.396722 -0.055828 -0.224197 0.316554 -0.373851 -0.871796 +0.396563 -0.049239 -0.227212 0.321940 -0.371148 -0.870979 +0.396435 -0.042649 -0.229720 0.328439 -0.366745 -0.870417 +0.396306 -0.036067 -0.232063 0.335536 -0.359425 -0.870764 +0.396200 -0.029493 -0.234202 0.343444 -0.348365 -0.872174 +0.396072 -0.022926 -0.236597 0.351393 -0.334141 -0.874570 +0.395913 -0.016382 -0.239559 0.359682 -0.316307 -0.877826 +0.395739 -0.009861 -0.242952 0.367841 -0.294261 -0.882102 +0.395588 -0.003340 -0.245778 0.375488 -0.268958 -0.886944 +0.395475 0.003197 -0.247985 0.381449 -0.242250 -0.892082 +0.395354 0.009726 -0.250214 0.386165 -0.212450 -0.897631 +0.395286 0.016277 -0.251536 0.390551 -0.181070 -0.902598 +0.395241 0.022836 -0.252451 0.393888 -0.148605 -0.907066 +0.395210 0.029410 -0.253025 0.394802 -0.117590 -0.911210 +0.395203 0.035992 -0.253222 0.392144 -0.089744 -0.915516 +0.395203 0.042582 -0.253229 0.387360 -0.066194 -0.919549 +0.395210 0.049186 -0.253086 0.381260 -0.047684 -0.923237 +0.395210 0.055775 -0.253086 0.372457 -0.032754 -0.927471 +0.395210 0.062372 -0.253071 0.364642 -0.023935 -0.930840 +0.395203 0.068954 -0.253154 0.358046 -0.017449 -0.933541 +0.395195 0.075536 -0.253365 0.352154 -0.013828 -0.935840 +0.395180 0.082118 -0.253562 0.348978 -0.012107 -0.937053 +0.395165 0.088692 -0.253939 0.343808 -0.010931 -0.938976 +0.395157 0.095274 -0.254091 0.342370 -0.007574 -0.939535 +0.395135 0.101840 -0.254423 0.342122 -0.001492 -0.939654 +0.395127 0.108430 -0.254551 0.342223 0.007384 -0.939590 +0.395127 0.115012 -0.254665 0.341896 0.018401 -0.939558 +0.395127 0.121601 -0.254619 0.339046 0.030400 -0.940278 +0.395120 0.128183 -0.254809 0.335856 0.040992 -0.941021 +0.395120 0.134772 -0.254733 0.331475 0.049503 -0.942164 +0.395142 0.141392 -0.254317 0.325745 0.055431 -0.943831 +0.395203 0.148057 -0.253229 0.321385 0.055933 -0.945295 +0.395263 0.154737 -0.252050 0.316481 0.052447 -0.947148 +0.395331 0.161424 -0.250736 0.316570 0.046961 -0.947406 +0.395339 0.168036 -0.250509 0.315002 0.040728 -0.948217 +0.395339 0.174626 -0.250584 0.311724 0.035694 -0.949502 +0.395331 0.181207 -0.250758 0.313536 0.032062 -0.949035 +0.395309 0.187774 -0.251196 0.315293 0.029974 -0.948521 +0.395278 0.194326 -0.251740 0.315747 0.030391 -0.948357 +0.395263 0.200892 -0.252058 0.319133 0.037643 -0.946962 +0.395256 0.207474 -0.252149 0.324123 0.051718 -0.944600 +0.395263 0.214086 -0.252005 0.332098 0.073870 -0.940348 +0.395293 0.220728 -0.251438 0.339165 0.098397 -0.935567 +0.395354 0.227424 -0.250350 0.350060 0.132628 -0.927291 +0.395422 0.234141 -0.248983 0.355309 0.167225 -0.919669 +0.395497 0.240882 -0.247479 0.359099 0.197229 -0.912222 +0.395581 0.247630 -0.246005 0.346817 0.220649 -0.911610 +0.395679 0.254423 -0.244040 0.323323 0.235746 -0.916453 +0.395838 0.261338 -0.240980 0.297677 0.249051 -0.921608 +0.396004 0.268267 -0.237844 0.257177 0.255680 -0.931927 +0.396162 0.275196 -0.234791 0.211075 0.255674 -0.943439 +0.396329 0.282148 -0.231686 0.158377 0.263861 -0.951469 +0.396480 0.289085 -0.228761 0.108812 0.275305 -0.955179 +0.396639 0.296045 -0.225738 0.036334 0.269398 -0.962343 +0.396805 0.303035 -0.222542 -0.012896 0.267515 -0.963468 +0.396956 0.310002 -0.219648 -0.061527 0.265865 -0.962045 +0.397077 0.316916 -0.217336 -0.117969 0.270944 -0.955339 +0.397183 0.323793 -0.215386 -0.162168 0.285693 -0.944500 +0.397326 0.330768 -0.212673 -0.211760 0.306538 -0.928005 +0.397364 0.337523 -0.211864 -0.243112 0.320728 -0.915440 +0.397485 0.344453 -0.209643 -0.261995 0.353291 -0.898078 +0.397591 0.351374 -0.207565 -0.269022 0.396610 -0.877683 +0.397712 0.358319 -0.205335 -0.263231 0.429790 -0.863707 +0.397863 0.365369 -0.202343 -0.263049 0.468187 -0.843567 +0.398074 0.372548 -0.198399 -0.241699 0.522148 -0.817889 +0.398309 0.379817 -0.193880 -0.223074 0.547790 -0.806328 +0.398573 0.387170 -0.188832 -0.188839 0.596309 -0.780228 +0.398868 0.394606 -0.183270 -0.145958 0.635740 -0.757978 +0.399178 0.402124 -0.177263 -0.110461 0.686562 -0.718631 +0.399601 0.409946 -0.169192 -0.066610 0.737492 -0.672063 +0.400130 0.418054 -0.159157 -0.026819 0.802467 -0.596094 +0.400863 0.426767 -0.145102 0.016391 0.848180 -0.529455 +0.402072 0.436787 -0.122039 0.059902 0.904108 -0.423085 +0.415046 -0.234791 -0.008275 0.492875 -0.845256 -0.206438 +0.413225 -0.226856 -0.042038 0.507587 -0.814116 -0.282083 +0.412077 -0.219360 -0.063136 0.514814 -0.787074 -0.339826 +0.411177 -0.212038 -0.079775 0.515927 -0.771450 -0.372403 +0.410346 -0.204806 -0.095175 0.519471 -0.753528 -0.402921 +0.409591 -0.197658 -0.109117 0.516506 -0.735247 -0.438900 +0.408858 -0.190570 -0.122644 0.507531 -0.719023 -0.474783 +0.408215 -0.183549 -0.134545 0.493013 -0.693948 -0.524761 +0.407686 -0.176597 -0.144369 0.479636 -0.668729 -0.568111 +0.407210 -0.169698 -0.153172 0.458927 -0.638176 -0.618156 +0.406855 -0.162860 -0.159633 0.453153 -0.614865 -0.645441 +0.406530 -0.156043 -0.165633 0.443832 -0.582122 -0.681283 +0.406235 -0.149258 -0.171112 0.431330 -0.554031 -0.712042 +0.405918 -0.142487 -0.176961 0.418303 -0.529761 -0.737819 +0.405661 -0.135739 -0.181736 0.403219 -0.506038 -0.762456 +0.405434 -0.129014 -0.185870 0.386966 -0.480795 -0.786825 +0.405230 -0.122296 -0.189762 0.376466 -0.463957 -0.801883 +0.405019 -0.115593 -0.193547 0.367600 -0.444533 -0.816860 +0.404822 -0.108913 -0.197205 0.353434 -0.428027 -0.831792 +0.404649 -0.102233 -0.200393 0.347750 -0.417412 -0.839546 +0.404490 -0.095568 -0.203439 0.340186 -0.405632 -0.848373 +0.404331 -0.088911 -0.206303 0.334373 -0.396067 -0.855176 +0.404188 -0.082261 -0.208993 0.333084 -0.387991 -0.859371 +0.404021 -0.075626 -0.212023 0.332780 -0.380019 -0.863043 +0.403848 -0.068999 -0.215204 0.333573 -0.374178 -0.865286 +0.403674 -0.062387 -0.218386 0.336462 -0.369483 -0.866184 +0.403523 -0.055783 -0.221287 0.340437 -0.365586 -0.866285 +0.403364 -0.049186 -0.224159 0.345788 -0.361938 -0.865697 +0.403213 -0.042596 -0.226932 0.352035 -0.356478 -0.865445 +0.403084 -0.036015 -0.229335 0.359516 -0.349108 -0.865374 +0.402971 -0.029425 -0.231421 0.367529 -0.338644 -0.866165 +0.402843 -0.022858 -0.233831 0.376723 -0.324472 -0.867639 +0.402699 -0.016299 -0.236416 0.384882 -0.306824 -0.870474 +0.402525 -0.009770 -0.239726 0.392096 -0.285018 -0.874657 +0.402374 -0.003242 -0.242529 0.398404 -0.261828 -0.879045 +0.402230 0.003287 -0.245106 0.404423 -0.234936 -0.883882 +0.402125 0.009831 -0.247018 0.409184 -0.206107 -0.888869 +0.402057 0.016390 -0.248302 0.413223 -0.175862 -0.893487 +0.401996 0.022950 -0.249398 0.413639 -0.146792 -0.898529 +0.401958 0.029524 -0.250078 0.412196 -0.119997 -0.903158 +0.401951 0.036113 -0.250282 0.408142 -0.094279 -0.908037 +0.401936 0.042703 -0.250524 0.401113 -0.072473 -0.913157 +0.401936 0.049292 -0.250630 0.395168 -0.056198 -0.916888 +0.401928 0.055889 -0.250675 0.386578 -0.042696 -0.921268 +0.401921 0.062471 -0.250841 0.377258 -0.032126 -0.925551 +0.401898 0.069052 -0.251257 0.368831 -0.024492 -0.929174 +0.401883 0.075634 -0.251529 0.362270 -0.019488 -0.931870 +0.401868 0.082208 -0.251816 0.358181 -0.016658 -0.933504 +0.401868 0.088805 -0.251892 0.355991 -0.012477 -0.934406 +0.401845 0.095372 -0.252262 0.355752 -0.007341 -0.934552 +0.401822 0.101946 -0.252670 0.356804 -0.000468 -0.934179 +0.401815 0.108536 -0.252738 0.357823 0.008456 -0.933751 +0.401830 0.115140 -0.252564 0.358158 0.018720 -0.933473 +0.401853 0.121760 -0.252118 0.358291 0.028411 -0.933177 +0.401853 0.128349 -0.252156 0.355089 0.038219 -0.934051 +0.401875 0.134976 -0.251688 0.353151 0.045262 -0.934471 +0.401913 0.141618 -0.250962 0.350476 0.049428 -0.935266 +0.401966 0.148276 -0.250055 0.348309 0.050686 -0.936009 +0.402011 0.154933 -0.249239 0.348336 0.048937 -0.936091 +0.402049 0.161583 -0.248521 0.347722 0.045240 -0.936506 +0.402042 0.168180 -0.248597 0.345147 0.040539 -0.937673 +0.402034 0.174769 -0.248741 0.346965 0.036842 -0.937154 +0.402026 0.181359 -0.248922 0.346982 0.032293 -0.937316 +0.402004 0.187925 -0.249292 0.351123 0.032309 -0.935772 +0.401981 0.194492 -0.249663 0.356579 0.036470 -0.933553 +0.401974 0.201074 -0.249867 0.362283 0.044965 -0.930983 +0.401981 0.207686 -0.249731 0.370236 0.061156 -0.926923 +0.402004 0.214313 -0.249353 0.378334 0.083889 -0.921860 +0.402042 0.220985 -0.248567 0.383020 0.108477 -0.917349 +0.402110 0.227696 -0.247305 0.386889 0.139406 -0.911528 +0.402185 0.234421 -0.246005 0.384492 0.169147 -0.907499 +0.402253 0.241146 -0.244690 0.364271 0.184635 -0.912807 +0.402366 0.247955 -0.242567 0.336891 0.197869 -0.920517 +0.402510 0.254816 -0.240005 0.301687 0.199063 -0.932394 +0.402676 0.261746 -0.236839 0.253894 0.205719 -0.945102 +0.402835 0.268652 -0.234013 0.207051 0.218440 -0.953632 +0.402979 0.275551 -0.231315 0.159639 0.227215 -0.960671 +0.403122 0.282466 -0.228595 0.080897 0.218368 -0.972508 +0.403273 0.289388 -0.225912 0.011988 0.209186 -0.977802 +0.403417 0.296317 -0.223222 -0.032629 0.206864 -0.977825 +0.403568 0.303262 -0.220464 -0.119738 0.200178 -0.972415 +0.403628 0.310032 -0.219353 -0.179387 0.203506 -0.962500 +0.403719 0.316886 -0.217585 -0.232614 0.221370 -0.947041 +0.403742 0.323589 -0.217169 -0.285343 0.231811 -0.929969 +0.403742 0.330239 -0.217169 -0.316439 0.251579 -0.914645 +0.403780 0.336964 -0.216564 -0.345633 0.274916 -0.897195 +0.403848 0.343780 -0.215250 -0.353288 0.327797 -0.876206 +0.403946 0.350656 -0.213467 -0.358231 0.368558 -0.857809 +0.404036 0.357533 -0.211691 -0.353816 0.406671 -0.842279 +0.404233 0.364651 -0.208094 -0.332739 0.458079 -0.824287 +0.404460 0.371845 -0.203930 -0.306276 0.504102 -0.807513 +0.404732 0.379168 -0.198958 -0.271774 0.549547 -0.790023 +0.405034 0.386581 -0.193328 -0.226287 0.611332 -0.758332 +0.405397 0.394167 -0.186603 -0.187476 0.636828 -0.747865 +0.405759 0.401762 -0.179976 -0.143481 0.698324 -0.701253 +0.406213 0.409621 -0.171535 -0.100623 0.745231 -0.659170 +0.406795 0.417835 -0.160782 -0.044426 0.810161 -0.584522 +0.407633 0.426736 -0.145329 0.014598 0.862508 -0.505833 +0.408858 0.436703 -0.122674 0.060240 0.909350 -0.411647 +0.424129 -0.235864 0.028609 0.535157 -0.835771 -0.122858 +0.421243 -0.227378 -0.023010 0.512446 -0.823352 -0.243907 +0.419754 -0.219700 -0.049624 0.522779 -0.795349 -0.306793 +0.418696 -0.212302 -0.068667 0.527718 -0.772817 -0.352517 +0.417774 -0.205033 -0.085163 0.532188 -0.752101 -0.388742 +0.416981 -0.197862 -0.099332 0.536448 -0.734117 -0.416289 +0.416210 -0.190743 -0.113054 0.534620 -0.717341 -0.446770 +0.415507 -0.183693 -0.125666 0.531598 -0.695838 -0.482921 +0.414895 -0.176718 -0.136624 0.521071 -0.669512 -0.529376 +0.414336 -0.169789 -0.146689 0.506691 -0.641844 -0.575588 +0.413905 -0.162920 -0.154359 0.492276 -0.616117 -0.614869 +0.413512 -0.156089 -0.161341 0.480172 -0.588909 -0.650093 +0.413180 -0.149288 -0.167424 0.464450 -0.562175 -0.684285 +0.412870 -0.142510 -0.172865 0.450181 -0.537395 -0.713122 +0.412553 -0.135754 -0.178547 0.436853 -0.513824 -0.738338 +0.412303 -0.129021 -0.182998 0.419382 -0.490797 -0.763700 +0.412077 -0.122303 -0.187132 0.404258 -0.468830 -0.785349 +0.411865 -0.115593 -0.190887 0.395873 -0.454269 -0.798076 +0.411676 -0.108905 -0.194333 0.379928 -0.435306 -0.816188 +0.411495 -0.102225 -0.197590 0.371975 -0.420741 -0.827413 +0.411313 -0.095553 -0.200764 0.361968 -0.405707 -0.839274 +0.411147 -0.088888 -0.203817 0.361194 -0.395621 -0.844407 +0.410973 -0.082238 -0.206839 0.358517 -0.385771 -0.850086 +0.410822 -0.075596 -0.209598 0.357272 -0.376157 -0.854905 +0.410656 -0.068969 -0.212552 0.358589 -0.368085 -0.857862 +0.410482 -0.062349 -0.215665 0.361403 -0.362307 -0.859140 +0.410316 -0.055737 -0.218643 0.365130 -0.357202 -0.859702 +0.410165 -0.049140 -0.221363 0.369374 -0.352073 -0.860004 +0.410014 -0.042543 -0.224091 0.375304 -0.345782 -0.859989 +0.409855 -0.035962 -0.226827 0.383233 -0.338025 -0.859576 +0.409727 -0.029372 -0.229192 0.390789 -0.327347 -0.860307 +0.409575 -0.022806 -0.231836 0.400728 -0.313629 -0.860845 +0.409447 -0.016239 -0.234164 0.408023 -0.296048 -0.863639 +0.409288 -0.009695 -0.236998 0.415251 -0.275610 -0.866952 +0.409152 -0.003151 -0.239514 0.421049 -0.253667 -0.870845 +0.409024 0.003393 -0.241819 0.425733 -0.228260 -0.875585 +0.408903 0.009937 -0.243950 0.428802 -0.200530 -0.880861 +0.408835 0.016504 -0.245121 0.431032 -0.174087 -0.885384 +0.408782 0.023071 -0.246111 0.431538 -0.147984 -0.889874 +0.408744 0.029652 -0.246799 0.429454 -0.123306 -0.894631 +0.408714 0.036234 -0.247320 0.424831 -0.100576 -0.899668 +0.408691 0.042816 -0.247735 0.418023 -0.081061 -0.904812 +0.408676 0.049405 -0.248015 0.409881 -0.064325 -0.909868 +0.408661 0.055995 -0.248287 0.400691 -0.050237 -0.914835 +0.408638 0.062576 -0.248627 0.392627 -0.040959 -0.918785 +0.408616 0.069151 -0.249126 0.383773 -0.031750 -0.922881 +0.408578 0.075725 -0.249700 0.378322 -0.025767 -0.925315 +0.408555 0.082292 -0.250214 0.373687 -0.019298 -0.927354 +0.408548 0.088888 -0.250328 0.371893 -0.012688 -0.928189 +0.408533 0.095470 -0.250509 0.371583 -0.006952 -0.928374 +0.408533 0.102067 -0.250614 0.373109 0.001191 -0.927787 +0.408525 0.108657 -0.250668 0.373787 0.009455 -0.927466 +0.408548 0.115276 -0.250297 0.375901 0.019260 -0.926460 +0.408586 0.121911 -0.249663 0.377857 0.028792 -0.925416 +0.408616 0.128553 -0.249065 0.377789 0.036496 -0.925172 +0.408646 0.135188 -0.248469 0.377218 0.042508 -0.925148 +0.408676 0.141822 -0.247955 0.376422 0.046358 -0.925288 +0.408714 0.148472 -0.247312 0.375889 0.048015 -0.925420 +0.408737 0.155107 -0.246859 0.374425 0.046635 -0.926084 +0.408752 0.161726 -0.246625 0.374713 0.044032 -0.926095 +0.408752 0.168323 -0.246678 0.375446 0.039467 -0.926004 +0.408744 0.174920 -0.246776 0.378027 0.037129 -0.925050 +0.408737 0.181517 -0.246859 0.381727 0.036285 -0.923562 +0.408729 0.188107 -0.247063 0.386390 0.037966 -0.921554 +0.408714 0.194688 -0.247275 0.390246 0.041743 -0.919764 +0.408706 0.201278 -0.247403 0.397761 0.052439 -0.915989 +0.408722 0.207905 -0.247146 0.405390 0.068592 -0.911567 +0.408759 0.214555 -0.246564 0.411904 0.090142 -0.906758 +0.408827 0.221280 -0.245219 0.412312 0.111650 -0.904175 +0.408895 0.227990 -0.244070 0.403662 0.131976 -0.905339 +0.408963 0.234708 -0.242854 0.374099 0.145550 -0.915896 +0.409077 0.241517 -0.240783 0.338143 0.148887 -0.929243 +0.409220 0.248378 -0.238199 0.301278 0.152928 -0.941193 +0.409371 0.255254 -0.235524 0.255665 0.163945 -0.952763 +0.409515 0.262131 -0.232977 0.209215 0.176828 -0.961749 +0.409651 0.269000 -0.230590 0.133673 0.173044 -0.975801 +0.409764 0.275846 -0.228474 0.060582 0.168758 -0.983794 +0.409908 0.282745 -0.225957 0.009462 0.148772 -0.988826 +0.410021 0.289599 -0.223932 -0.080017 0.133315 -0.987838 +0.410142 0.296483 -0.221681 -0.164950 0.122533 -0.978661 +0.410157 0.303148 -0.221491 -0.224691 0.126840 -0.966140 +0.410225 0.309934 -0.220252 -0.282703 0.131455 -0.950157 +0.410172 0.316486 -0.221144 -0.333513 0.153130 -0.930226 +0.410135 0.323052 -0.221824 -0.368627 0.172359 -0.913458 +0.410104 0.329626 -0.222421 -0.397031 0.222154 -0.890513 +0.410112 0.336284 -0.222323 -0.408885 0.256623 -0.875761 +0.410157 0.343024 -0.221522 -0.413434 0.297859 -0.860437 +0.410240 0.349871 -0.219920 -0.416920 0.348543 -0.839462 +0.410354 0.356755 -0.218016 -0.404123 0.392791 -0.826075 +0.410573 0.363911 -0.213973 -0.388679 0.450136 -0.803931 +0.410822 0.371127 -0.209635 -0.353413 0.499749 -0.790791 +0.411117 0.378472 -0.204346 -0.310678 0.561744 -0.766761 +0.411434 0.385893 -0.198610 -0.263142 0.619404 -0.739659 +0.411820 0.393495 -0.191688 -0.219346 0.656125 -0.722072 +0.412273 0.401271 -0.183641 -0.164724 0.711372 -0.683239 +0.412802 0.409265 -0.174164 -0.098394 0.768637 -0.632073 +0.413520 0.417759 -0.161341 -0.039943 0.830544 -0.555519 +0.414442 0.426812 -0.144747 0.023307 0.878378 -0.477397 +0.415810 0.437036 -0.120301 0.069851 0.918352 -0.389552 +0.429782 -0.228111 0.003930 0.548320 -0.819035 -0.168899 +0.427628 -0.220116 -0.033514 0.540137 -0.795524 -0.274579 +0.426291 -0.212589 -0.056796 0.539524 -0.774903 -0.329299 +0.425301 -0.205275 -0.073904 0.545417 -0.752768 -0.368593 +0.424447 -0.198073 -0.088805 0.552695 -0.732534 -0.397394 +0.423623 -0.190932 -0.103004 0.556648 -0.715207 -0.422637 +0.422883 -0.183859 -0.115865 0.557029 -0.694471 -0.455443 +0.422233 -0.176862 -0.127238 0.553947 -0.676691 -0.485008 +0.421613 -0.169902 -0.138006 0.548699 -0.648155 -0.528038 +0.421061 -0.163003 -0.147512 0.535392 -0.617880 -0.575830 +0.420570 -0.156142 -0.156044 0.520674 -0.592853 -0.614348 +0.420208 -0.149333 -0.162354 0.508514 -0.570524 -0.644915 +0.419868 -0.142540 -0.168233 0.491652 -0.544094 -0.679883 +0.419543 -0.135777 -0.173870 0.469821 -0.522602 -0.711445 +0.419263 -0.129029 -0.178812 0.455106 -0.503923 -0.734126 +0.418976 -0.122303 -0.183724 0.436957 -0.481917 -0.759489 +0.418742 -0.115593 -0.187834 0.423086 -0.458868 -0.781305 +0.418530 -0.108898 -0.191507 0.409544 -0.440236 -0.799040 +0.418326 -0.102210 -0.195006 0.403669 -0.426998 -0.809150 +0.418145 -0.095538 -0.198225 0.394374 -0.410384 -0.822225 +0.417963 -0.088873 -0.201346 0.389136 -0.394268 -0.832542 +0.417789 -0.082216 -0.204406 0.387174 -0.383148 -0.838626 +0.417623 -0.075573 -0.207232 0.387501 -0.373157 -0.842969 +0.417465 -0.068939 -0.209975 0.388606 -0.363179 -0.846809 +0.417306 -0.062311 -0.212824 0.389576 -0.354998 -0.849828 +0.417140 -0.055692 -0.215650 0.392096 -0.348464 -0.851372 +0.416981 -0.049087 -0.218408 0.396126 -0.342525 -0.851916 +0.416822 -0.042483 -0.221137 0.400969 -0.335938 -0.852273 +0.416664 -0.035901 -0.223970 0.406791 -0.327893 -0.852647 +0.416505 -0.029319 -0.226691 0.413322 -0.317573 -0.853412 +0.416339 -0.022753 -0.229494 0.419656 -0.304910 -0.854938 +0.416195 -0.016186 -0.232109 0.425347 -0.287965 -0.857995 +0.416059 -0.009619 -0.234406 0.431744 -0.268020 -0.861256 +0.415931 -0.003060 -0.236597 0.438065 -0.246775 -0.864408 +0.415825 0.003499 -0.238524 0.442320 -0.222824 -0.868736 +0.415719 0.010058 -0.240330 0.446091 -0.198708 -0.872650 +0.415651 0.016632 -0.241501 0.447964 -0.172574 -0.877238 +0.415598 0.023207 -0.242476 0.448151 -0.148830 -0.881482 +0.415545 0.029788 -0.243277 0.445590 -0.126961 -0.886189 +0.415515 0.036370 -0.243821 0.441347 -0.106887 -0.890948 +0.415485 0.042952 -0.244411 0.435469 -0.089511 -0.895743 +0.415454 0.049541 -0.244924 0.427416 -0.074354 -0.900992 +0.415417 0.056123 -0.245506 0.418766 -0.061457 -0.906012 +0.415386 0.062697 -0.246103 0.408289 -0.049812 -0.911493 +0.415356 0.069272 -0.246655 0.399728 -0.038974 -0.915805 +0.415318 0.075846 -0.247305 0.393417 -0.030012 -0.918870 +0.415281 0.082412 -0.247932 0.388739 -0.022893 -0.921063 +0.415258 0.088994 -0.248287 0.386561 -0.014512 -0.922150 +0.415266 0.095599 -0.248212 0.388197 -0.005868 -0.921558 +0.415281 0.102218 -0.247887 0.390802 0.003118 -0.920470 +0.415303 0.108838 -0.247592 0.393947 0.012502 -0.919048 +0.415318 0.115465 -0.247267 0.397211 0.021560 -0.917474 +0.415341 0.122085 -0.246927 0.398965 0.029290 -0.916498 +0.415386 0.128742 -0.246043 0.400613 0.036402 -0.915524 +0.415432 0.135399 -0.245272 0.400662 0.041614 -0.915281 +0.415470 0.142049 -0.244668 0.400731 0.045331 -0.915074 +0.415477 0.148661 -0.244524 0.400607 0.047010 -0.915043 +0.415485 0.155281 -0.244380 0.399896 0.046248 -0.915393 +0.415500 0.161908 -0.244146 0.400961 0.045130 -0.914983 +0.415500 0.168520 -0.244108 0.403021 0.043709 -0.914146 +0.415500 0.175124 -0.244131 0.406475 0.042892 -0.912655 +0.415492 0.181729 -0.244192 0.411252 0.043285 -0.910493 +0.415485 0.188318 -0.244365 0.414857 0.045113 -0.908768 +0.415477 0.194908 -0.244554 0.419298 0.049939 -0.906474 +0.415470 0.201512 -0.244652 0.425719 0.060400 -0.902837 +0.415500 0.208154 -0.244184 0.430792 0.074756 -0.899349 +0.415545 0.214834 -0.243360 0.428373 0.089403 -0.899168 +0.415598 0.221529 -0.242393 0.417754 0.100722 -0.902960 +0.415674 0.228255 -0.241131 0.379749 0.102774 -0.919363 +0.415764 0.235010 -0.239574 0.343899 0.096816 -0.934002 +0.415923 0.241894 -0.236756 0.308498 0.102622 -0.945673 +0.416074 0.248763 -0.234179 0.263341 0.113387 -0.958016 +0.416210 0.255617 -0.231806 0.190462 0.111660 -0.975324 +0.416346 0.262486 -0.229411 0.112948 0.106165 -0.987913 +0.416452 0.269295 -0.227643 0.055069 0.094946 -0.993958 +0.416535 0.276080 -0.226154 -0.027887 0.083410 -0.996125 +0.416626 0.282881 -0.224597 -0.098953 0.077074 -0.992103 +0.416664 0.289599 -0.223872 -0.190348 0.067790 -0.979373 +0.416686 0.296279 -0.223547 -0.252257 0.070896 -0.965060 +0.416633 0.302831 -0.224378 -0.329954 0.056572 -0.942300 +0.416573 0.309352 -0.225489 -0.379106 0.070131 -0.922692 +0.416505 0.315858 -0.226691 -0.407095 0.111263 -0.906584 +0.416452 0.322395 -0.227567 -0.422655 0.140953 -0.895262 +0.416414 0.328946 -0.228293 -0.445542 0.187623 -0.875380 +0.416384 0.335521 -0.228799 -0.456868 0.229335 -0.859463 +0.416422 0.342231 -0.228179 -0.452710 0.280270 -0.846464 +0.416528 0.349100 -0.226245 -0.449902 0.329071 -0.830241 +0.416664 0.356029 -0.223894 -0.436071 0.390675 -0.810688 +0.416883 0.363140 -0.220147 -0.408642 0.456148 -0.790532 +0.417140 0.370357 -0.215688 -0.374022 0.514390 -0.771693 +0.417495 0.377815 -0.209462 -0.335740 0.567865 -0.751537 +0.417865 0.385326 -0.202993 -0.281878 0.622084 -0.730449 +0.418281 0.392958 -0.195784 -0.224434 0.675908 -0.701981 +0.418832 0.400923 -0.186270 -0.169453 0.725644 -0.666878 +0.419452 0.409084 -0.175502 -0.101618 0.780156 -0.617276 +0.420245 0.417714 -0.161689 -0.041187 0.836296 -0.546728 +0.421326 0.427061 -0.142993 0.042571 0.889550 -0.454851 +0.422822 0.437504 -0.116954 0.091057 0.926959 -0.363945 +0.435933 -0.220690 -0.011055 0.571171 -0.797582 -0.193977 +0.434029 -0.212914 -0.043186 0.555753 -0.778035 -0.292915 +0.432880 -0.205532 -0.062501 0.557217 -0.755378 -0.344837 +0.431958 -0.198292 -0.078052 0.565511 -0.733252 -0.377544 +0.431112 -0.191129 -0.092289 0.571507 -0.712229 -0.407564 +0.430311 -0.184033 -0.105891 0.579056 -0.692329 -0.430552 +0.429585 -0.176998 -0.118117 0.579377 -0.673530 -0.458999 +0.428958 -0.170031 -0.128606 0.581604 -0.649272 -0.490084 +0.428361 -0.163109 -0.138656 0.572659 -0.624188 -0.531462 +0.427802 -0.156225 -0.148072 0.560556 -0.601414 -0.569278 +0.427341 -0.149386 -0.155863 0.544428 -0.574397 -0.611282 +0.426956 -0.142578 -0.162361 0.530928 -0.555900 -0.639602 +0.426608 -0.135807 -0.168248 0.514831 -0.531365 -0.672756 +0.426283 -0.129051 -0.173673 0.493960 -0.511054 -0.703440 +0.425951 -0.122311 -0.179295 0.478048 -0.487917 -0.730347 +0.425663 -0.115593 -0.184139 0.455735 -0.471469 -0.754998 +0.425429 -0.108890 -0.188129 0.440768 -0.450973 -0.776110 +0.425195 -0.102203 -0.192028 0.432642 -0.430501 -0.792143 +0.424983 -0.095523 -0.195656 0.426743 -0.413625 -0.804242 +0.424779 -0.088858 -0.199033 0.419342 -0.395950 -0.816931 +0.424598 -0.082200 -0.202132 0.418260 -0.380853 -0.824627 +0.424432 -0.075551 -0.204935 0.413911 -0.367199 -0.832972 +0.424273 -0.068908 -0.207572 0.416303 -0.358453 -0.835586 +0.424137 -0.062266 -0.209877 0.416748 -0.348476 -0.839575 +0.423986 -0.055639 -0.212439 0.417709 -0.341245 -0.842064 +0.423835 -0.049027 -0.214985 0.418934 -0.334570 -0.844131 +0.423676 -0.042415 -0.217645 0.421735 -0.327486 -0.845513 +0.423510 -0.035826 -0.220509 0.427209 -0.319597 -0.845784 +0.423336 -0.029244 -0.223449 0.431312 -0.310122 -0.847227 +0.423162 -0.022670 -0.226297 0.435843 -0.297376 -0.849476 +0.423011 -0.016103 -0.228905 0.441488 -0.280512 -0.852292 +0.422868 -0.009536 -0.231300 0.447457 -0.261232 -0.855301 +0.422754 -0.002962 -0.233197 0.453638 -0.240540 -0.858110 +0.422663 0.003620 -0.234769 0.458986 -0.217590 -0.861386 +0.422595 0.010202 -0.235894 0.462677 -0.194766 -0.864868 +0.422527 0.016783 -0.237104 0.464313 -0.172432 -0.868723 +0.422452 0.023358 -0.238320 0.464333 -0.150962 -0.872700 +0.422391 0.029939 -0.239318 0.462782 -0.132333 -0.876539 +0.422346 0.036521 -0.240126 0.457359 -0.112732 -0.882108 +0.422293 0.043095 -0.240995 0.451910 -0.097686 -0.886699 +0.422225 0.049662 -0.242181 0.443851 -0.084385 -0.892119 +0.422180 0.056236 -0.242922 0.435939 -0.072252 -0.897071 +0.422142 0.062818 -0.243526 0.425715 -0.060500 -0.902833 +0.422112 0.069400 -0.244063 0.418356 -0.048404 -0.906993 +0.422082 0.075982 -0.244584 0.410949 -0.037163 -0.910901 +0.422051 0.082564 -0.245098 0.407310 -0.025067 -0.912946 +0.422036 0.089153 -0.245370 0.407261 -0.013907 -0.913206 +0.422044 0.095773 -0.245196 0.409242 -0.002948 -0.912421 +0.422074 0.102407 -0.244690 0.411784 0.007407 -0.911251 +0.422097 0.109034 -0.244267 0.415372 0.015777 -0.909515 +0.422127 0.115677 -0.243784 0.419281 0.023953 -0.907541 +0.422165 0.122319 -0.243156 0.420974 0.031082 -0.906540 +0.422203 0.128969 -0.242582 0.422934 0.036527 -0.905424 +0.422225 0.135611 -0.242151 0.422581 0.040519 -0.905419 +0.422240 0.142230 -0.241940 0.423417 0.044255 -0.904854 +0.422248 0.148858 -0.241796 0.423402 0.046054 -0.904770 +0.422255 0.155477 -0.241622 0.422870 0.047138 -0.904963 +0.422271 0.162112 -0.241381 0.423418 0.047295 -0.904699 +0.422278 0.168731 -0.241267 0.425695 0.047436 -0.903622 +0.422286 0.175351 -0.241169 0.429172 0.047767 -0.901959 +0.422301 0.181978 -0.240919 0.433362 0.048369 -0.899921 +0.422308 0.188613 -0.240678 0.438522 0.051616 -0.897237 +0.422323 0.195248 -0.240436 0.442941 0.056803 -0.894750 +0.422301 0.201822 -0.240919 0.442303 0.064643 -0.894533 +0.422316 0.208456 -0.240655 0.435820 0.068507 -0.897423 +0.422346 0.215121 -0.240043 0.412155 0.069759 -0.908439 +0.422407 0.221824 -0.239053 0.377747 0.056118 -0.924207 +0.422490 0.228565 -0.237678 0.348112 0.059269 -0.935578 +0.422595 0.235350 -0.235925 0.302571 0.061107 -0.951166 +0.422769 0.242250 -0.232993 0.247858 0.053258 -0.967331 +0.422928 0.249126 -0.230325 0.193052 0.047163 -0.980054 +0.423072 0.255995 -0.227937 0.113119 0.044578 -0.992581 +0.423132 0.262735 -0.226895 0.036044 0.032070 -0.998835 +0.423177 0.269446 -0.226109 -0.029532 0.032778 -0.999026 +0.423215 0.276156 -0.225421 -0.129887 0.013703 -0.991434 +0.423200 0.282768 -0.225708 -0.222440 0.002269 -0.974944 +0.423147 0.289312 -0.226600 -0.300055 -0.012961 -0.953834 +0.423019 0.295720 -0.228784 -0.355062 -0.008604 -0.934803 +0.422928 0.302188 -0.230257 -0.396849 0.013050 -0.917791 +0.422845 0.308664 -0.231670 -0.426658 0.044824 -0.903301 +0.422769 0.315148 -0.232985 -0.453245 0.077738 -0.887990 +0.422709 0.321662 -0.233930 -0.464180 0.109738 -0.878917 +0.422686 0.328236 -0.234353 -0.469806 0.163237 -0.867546 +0.422671 0.334833 -0.234640 -0.470905 0.218350 -0.854735 +0.422709 0.341536 -0.233937 -0.469685 0.273245 -0.839484 +0.422799 0.348352 -0.232418 -0.469239 0.324318 -0.821360 +0.423004 0.355394 -0.229056 -0.440275 0.405553 -0.801053 +0.423238 0.362528 -0.225058 -0.404895 0.462132 -0.788983 +0.423510 0.369744 -0.220501 -0.371984 0.525446 -0.765202 +0.423918 0.377271 -0.213655 -0.315412 0.595858 -0.738558 +0.424356 0.384903 -0.206250 -0.253496 0.657720 -0.709327 +0.424840 0.392656 -0.198036 -0.210660 0.700166 -0.682194 +0.425437 0.400696 -0.187963 -0.140270 0.750052 -0.646333 +0.426132 0.408978 -0.176311 -0.080034 0.799567 -0.595220 +0.427009 0.417744 -0.161454 -0.011340 0.852894 -0.521961 +0.428233 0.427348 -0.140893 0.066234 0.904041 -0.422284 +0.429865 0.438011 -0.113379 0.110645 0.931249 -0.347178 +0.442258 -0.213413 -0.022254 0.574763 -0.785266 -0.230228 +0.440701 -0.205857 -0.047856 0.575245 -0.756908 -0.310133 +0.439575 -0.198534 -0.066234 0.575830 -0.732611 -0.362906 +0.438661 -0.191333 -0.081271 0.583159 -0.712304 -0.390575 +0.437807 -0.184207 -0.095236 0.591231 -0.690865 -0.416115 +0.437059 -0.177157 -0.107477 0.596272 -0.674426 -0.435441 +0.436356 -0.170159 -0.118956 0.601840 -0.650392 -0.463442 +0.435714 -0.163215 -0.129505 0.600660 -0.628972 -0.493560 +0.435162 -0.156316 -0.138588 0.593766 -0.605518 -0.529896 +0.434618 -0.149454 -0.147444 0.585649 -0.584048 -0.562053 +0.434172 -0.142631 -0.154782 0.566918 -0.561830 -0.602454 +0.433772 -0.135837 -0.161341 0.556304 -0.544738 -0.627524 +0.433386 -0.129066 -0.167666 0.539614 -0.523108 -0.659678 +0.433016 -0.122318 -0.173688 0.522203 -0.499473 -0.691253 +0.432684 -0.115593 -0.179129 0.502103 -0.476955 -0.721392 +0.432381 -0.108883 -0.184071 0.489723 -0.462400 -0.739160 +0.432124 -0.102188 -0.188326 0.472466 -0.437148 -0.765296 +0.431890 -0.095500 -0.192096 0.459624 -0.415884 -0.784721 +0.431663 -0.088835 -0.195822 0.452224 -0.395469 -0.799436 +0.431459 -0.082170 -0.199177 0.448961 -0.381482 -0.808026 +0.431278 -0.075520 -0.202116 0.442415 -0.366905 -0.818321 +0.431119 -0.068871 -0.204791 0.437342 -0.354250 -0.826583 +0.430976 -0.062228 -0.207149 0.442633 -0.345025 -0.827668 +0.430847 -0.055586 -0.209197 0.444793 -0.337225 -0.829722 +0.430704 -0.048959 -0.211532 0.443371 -0.328962 -0.833790 +0.430553 -0.042347 -0.214011 0.445823 -0.321265 -0.835483 +0.430386 -0.035742 -0.216769 0.446339 -0.312603 -0.838487 +0.430205 -0.029161 -0.219753 0.449972 -0.303068 -0.840045 +0.430031 -0.022579 -0.222549 0.453804 -0.290397 -0.842456 +0.429872 -0.015997 -0.225119 0.457688 -0.273536 -0.845990 +0.429736 -0.009423 -0.227408 0.463329 -0.254349 -0.848901 +0.429631 -0.002841 -0.229109 0.468826 -0.234091 -0.851706 +0.429548 0.003748 -0.230529 0.474212 -0.213395 -0.854158 +0.429487 0.010353 -0.231444 0.477507 -0.191607 -0.857481 +0.429427 0.016950 -0.232434 0.478689 -0.170327 -0.861304 +0.429359 0.023531 -0.233544 0.478974 -0.151198 -0.864710 +0.429283 0.030113 -0.234851 0.477782 -0.135009 -0.868042 +0.429207 0.036687 -0.236015 0.473857 -0.119854 -0.872407 +0.429139 0.043262 -0.237202 0.467029 -0.106280 -0.877832 +0.429049 0.049813 -0.238698 0.460592 -0.093497 -0.882674 +0.428981 0.056380 -0.239748 0.451795 -0.081526 -0.888389 +0.428928 0.062954 -0.240678 0.444805 -0.070433 -0.892853 +0.428898 0.069544 -0.241169 0.437301 -0.056642 -0.897530 +0.428867 0.076133 -0.241577 0.432825 -0.041972 -0.900501 +0.428852 0.082737 -0.241834 0.430387 -0.026279 -0.902262 +0.428845 0.089334 -0.242015 0.428638 -0.011610 -0.903402 +0.428852 0.095961 -0.241827 0.430731 0.000501 -0.902480 +0.428875 0.102589 -0.241494 0.435316 0.011190 -0.900208 +0.428905 0.109231 -0.241010 0.437351 0.019655 -0.899076 +0.428935 0.115873 -0.240473 0.439456 0.026129 -0.897884 +0.428966 0.122515 -0.240013 0.441527 0.031725 -0.896687 +0.428988 0.129158 -0.239612 0.443185 0.036836 -0.895673 +0.429011 0.135792 -0.239325 0.443764 0.040790 -0.895215 +0.429019 0.142419 -0.239159 0.443651 0.043807 -0.895128 +0.429034 0.149054 -0.238894 0.442377 0.045999 -0.895649 +0.429049 0.155696 -0.238615 0.443154 0.047685 -0.895176 +0.429056 0.162316 -0.238547 0.442847 0.048461 -0.895287 +0.429087 0.168973 -0.238026 0.445195 0.049694 -0.894054 +0.429124 0.175638 -0.237368 0.448261 0.050450 -0.892478 +0.429162 0.182303 -0.236778 0.451470 0.053356 -0.890689 +0.429200 0.188968 -0.236219 0.452954 0.055320 -0.889816 +0.429223 0.195625 -0.235841 0.449640 0.053657 -0.891597 +0.429245 0.202283 -0.235403 0.433049 0.050520 -0.899953 +0.429275 0.208948 -0.234905 0.401304 0.031787 -0.915393 +0.429313 0.215620 -0.234323 0.381355 0.035270 -0.923755 +0.429359 0.222308 -0.233620 0.341357 0.021762 -0.939682 +0.429434 0.229056 -0.232328 0.301986 0.008695 -0.953273 +0.429540 0.235842 -0.230590 0.230074 -0.011723 -0.973103 +0.429661 0.242650 -0.228670 0.165808 -0.015742 -0.986032 +0.429759 0.249443 -0.227045 0.090613 -0.015837 -0.995760 +0.429827 0.256199 -0.225859 0.024439 -0.033173 -0.999151 +0.429835 0.262849 -0.225746 -0.083503 -0.055270 -0.994974 +0.429842 0.269491 -0.225731 -0.174051 -0.070069 -0.982240 +0.429759 0.275990 -0.227068 -0.253414 -0.074825 -0.964460 +0.429578 0.282322 -0.230000 -0.334405 -0.078356 -0.939167 +0.429404 0.288647 -0.232872 -0.380801 -0.061616 -0.922602 +0.429275 0.295048 -0.234973 -0.419119 -0.052544 -0.906410 +0.429185 0.301508 -0.236476 -0.447638 -0.025736 -0.893844 +0.429102 0.307984 -0.237746 -0.467382 0.013874 -0.883947 +0.429041 0.314498 -0.238728 -0.469124 0.061948 -0.880957 +0.428973 0.320974 -0.239915 -0.477791 0.097666 -0.873028 +0.428943 0.327533 -0.240421 -0.484724 0.142480 -0.862984 +0.428935 0.334138 -0.240473 -0.485494 0.203810 -0.850151 +0.429026 0.340924 -0.239061 -0.472399 0.258873 -0.842510 +0.429147 0.347777 -0.237104 -0.441543 0.342956 -0.829108 +0.429366 0.354843 -0.233476 -0.406851 0.417400 -0.812557 +0.429623 0.361999 -0.229290 -0.375292 0.478148 -0.794060 +0.429971 0.369352 -0.223592 -0.320338 0.557803 -0.765663 +0.430409 0.376931 -0.216353 -0.264597 0.628515 -0.731408 +0.430855 0.384525 -0.209114 -0.224523 0.674859 -0.702962 +0.431429 0.392444 -0.199645 -0.163606 0.731628 -0.661781 +0.432087 0.400575 -0.188862 -0.113645 0.765278 -0.633588 +0.432827 0.408918 -0.176734 -0.038223 0.822270 -0.567813 +0.433832 0.417903 -0.160306 0.032047 0.872454 -0.487645 +0.435155 0.427658 -0.138656 0.093221 0.909521 -0.405071 +0.437119 0.438986 -0.106458 0.132245 0.929609 -0.344003 +0.448749 -0.206242 -0.030332 0.581620 -0.767507 -0.269537 +0.447374 -0.198814 -0.052239 0.592794 -0.737967 -0.322491 +0.446331 -0.191567 -0.068795 0.594843 -0.712403 -0.372348 +0.445386 -0.184403 -0.083810 0.602331 -0.690087 -0.401220 +0.444578 -0.177323 -0.096778 0.610378 -0.670276 -0.422100 +0.443852 -0.170303 -0.108309 0.618077 -0.649869 -0.442324 +0.443149 -0.163328 -0.119508 0.622302 -0.628760 -0.466263 +0.442522 -0.156406 -0.129415 0.620828 -0.607532 -0.495457 +0.441963 -0.149530 -0.138369 0.614349 -0.590294 -0.523572 +0.441449 -0.142683 -0.146522 0.604978 -0.567032 -0.558995 +0.440996 -0.135875 -0.153754 0.592388 -0.549485 -0.589188 +0.440588 -0.129089 -0.160328 0.576639 -0.529399 -0.622273 +0.440165 -0.122326 -0.166970 0.563060 -0.512084 -0.648640 +0.439787 -0.115585 -0.173008 0.549310 -0.485524 -0.680092 +0.439454 -0.108868 -0.178381 0.536225 -0.464055 -0.705065 +0.439129 -0.102165 -0.183467 0.524011 -0.441756 -0.728192 +0.438850 -0.095477 -0.187925 0.509836 -0.421871 -0.749728 +0.438615 -0.088805 -0.191711 0.496704 -0.399080 -0.770727 +0.438396 -0.082132 -0.195180 0.486434 -0.378203 -0.787620 +0.438200 -0.075475 -0.198300 0.480327 -0.365280 -0.797406 +0.438026 -0.068825 -0.201074 0.479465 -0.354971 -0.802564 +0.437875 -0.062175 -0.203499 0.472561 -0.343721 -0.811506 +0.437731 -0.055533 -0.205774 0.468910 -0.333905 -0.817699 +0.437595 -0.048899 -0.207943 0.473382 -0.326724 -0.818023 +0.437437 -0.042279 -0.210414 0.472113 -0.318652 -0.821931 +0.437278 -0.035667 -0.213028 0.469043 -0.309151 -0.827300 +0.437089 -0.029070 -0.215960 0.469666 -0.298085 -0.830999 +0.436923 -0.022481 -0.218612 0.470624 -0.284632 -0.835163 +0.436772 -0.015891 -0.221038 0.474264 -0.267835 -0.838653 +0.436643 -0.009302 -0.223078 0.478164 -0.248354 -0.842425 +0.436552 -0.002705 -0.224575 0.482657 -0.228234 -0.845548 +0.436462 0.003892 -0.226003 0.486933 -0.208484 -0.848192 +0.436371 0.010481 -0.227454 0.491131 -0.189226 -0.850285 +0.436296 0.017078 -0.228640 0.492910 -0.170539 -0.853203 +0.436228 0.023675 -0.229675 0.492296 -0.151666 -0.857113 +0.436182 0.030279 -0.230469 0.491484 -0.137368 -0.859985 +0.436092 0.036854 -0.231874 0.488445 -0.124588 -0.863655 +0.436008 0.043420 -0.233265 0.484294 -0.113739 -0.867481 +0.435918 0.049987 -0.234633 0.479440 -0.102757 -0.871538 +0.435835 0.056554 -0.235993 0.469968 -0.089207 -0.878164 +0.435767 0.063120 -0.237066 0.463769 -0.076523 -0.882645 +0.435736 0.069717 -0.237557 0.460460 -0.061770 -0.885529 +0.435721 0.076322 -0.237844 0.457640 -0.045255 -0.887985 +0.435714 0.082941 -0.237935 0.455858 -0.027846 -0.889617 +0.435706 0.089553 -0.237988 0.455079 -0.011175 -0.890381 +0.435714 0.096181 -0.237867 0.455645 0.002526 -0.890158 +0.435714 0.102800 -0.237867 0.456515 0.013509 -0.889613 +0.435744 0.109442 -0.237406 0.457227 0.022133 -0.889075 +0.435774 0.116092 -0.236968 0.461219 0.028660 -0.886823 +0.435797 0.122734 -0.236597 0.462428 0.032859 -0.886048 +0.435820 0.129377 -0.236234 0.462384 0.036516 -0.885927 +0.435835 0.136019 -0.235947 0.461733 0.040309 -0.886103 +0.435850 0.142654 -0.235766 0.461534 0.043337 -0.886063 +0.435857 0.149288 -0.235562 0.461941 0.046078 -0.885713 +0.435865 0.155915 -0.235456 0.459646 0.047266 -0.886844 +0.435903 0.162580 -0.234889 0.461366 0.049637 -0.885820 +0.435948 0.169260 -0.234179 0.462493 0.051329 -0.885136 +0.435986 0.175933 -0.233559 0.462746 0.053050 -0.884902 +0.436054 0.182636 -0.232532 0.461030 0.050618 -0.885939 +0.436099 0.189331 -0.231746 0.454153 0.045882 -0.889741 +0.436144 0.196018 -0.231050 0.420667 0.022389 -0.906939 +0.436212 0.202744 -0.229910 0.404326 0.020822 -0.914378 +0.436265 0.209446 -0.229078 0.370715 0.002885 -0.928742 +0.436318 0.216149 -0.228293 0.336790 -0.017439 -0.941418 +0.436356 0.222829 -0.227726 0.280707 -0.037555 -0.959058 +0.436409 0.229547 -0.226849 0.239649 -0.038917 -0.970079 +0.436454 0.236250 -0.226146 0.158941 -0.069863 -0.984813 +0.436515 0.242983 -0.225164 0.072227 -0.095166 -0.992838 +0.436515 0.249625 -0.225149 -0.024132 -0.123620 -0.992036 +0.436530 0.256282 -0.224960 -0.127390 -0.137918 -0.982217 +0.436469 0.262826 -0.225920 -0.200250 -0.151339 -0.967986 +0.436296 0.269196 -0.228640 -0.298988 -0.159493 -0.940834 +0.436046 0.275423 -0.232622 -0.347865 -0.135137 -0.927754 +0.435812 0.281657 -0.236363 -0.404386 -0.123953 -0.906150 +0.435646 0.288005 -0.238955 -0.430879 -0.112074 -0.895423 +0.435517 0.294398 -0.240995 -0.458643 -0.082688 -0.884765 +0.435457 0.300896 -0.242038 -0.462955 -0.036230 -0.885641 +0.435381 0.307380 -0.243232 -0.473447 0.007417 -0.880791 +0.435298 0.313833 -0.244569 -0.486555 0.040402 -0.872715 +0.435253 0.320362 -0.245257 -0.486521 0.088878 -0.869136 +0.435245 0.326959 -0.245325 -0.468759 0.159855 -0.868741 +0.435283 0.333624 -0.244819 -0.457954 0.213721 -0.862903 +0.435381 0.340432 -0.243186 -0.421417 0.291715 -0.858668 +0.435517 0.347294 -0.241071 -0.386176 0.368172 -0.845765 +0.435751 0.354374 -0.237322 -0.357645 0.428269 -0.829865 +0.436092 0.361666 -0.231935 -0.300778 0.520480 -0.799146 +0.436500 0.369117 -0.225436 -0.258665 0.586019 -0.767903 +0.436930 0.376644 -0.218544 -0.210770 0.646362 -0.733343 +0.437444 0.384366 -0.210361 -0.165692 0.699971 -0.694685 +0.438041 0.392286 -0.200862 -0.111739 0.752549 -0.648987 +0.438759 0.400500 -0.189406 -0.060879 0.796461 -0.601618 +0.439590 0.408993 -0.176220 -0.003654 0.835141 -0.550024 +0.440663 0.418061 -0.159104 0.059377 0.878187 -0.474617 +0.442023 0.427840 -0.137379 0.116974 0.913630 -0.389356 +0.444426 0.440021 -0.099098 0.159326 0.925687 -0.343101 +0.459056 -0.207383 0.021287 0.615928 -0.777650 -0.126067 +0.455452 -0.199177 -0.034526 0.601422 -0.742659 -0.294532 +0.454106 -0.191816 -0.055375 0.609037 -0.713918 -0.345536 +0.453056 -0.184607 -0.071690 0.614923 -0.688752 -0.384044 +0.452195 -0.177497 -0.085027 0.621748 -0.669677 -0.406155 +0.451424 -0.170454 -0.096951 0.629564 -0.648532 -0.427851 +0.450683 -0.163457 -0.108467 0.637037 -0.629194 -0.445308 +0.450003 -0.156512 -0.118964 0.639019 -0.609494 -0.469224 +0.449391 -0.149605 -0.128493 0.639075 -0.590721 -0.492577 +0.448832 -0.142744 -0.137153 0.634963 -0.573412 -0.517707 +0.448326 -0.135913 -0.144996 0.624846 -0.554314 -0.549821 +0.447842 -0.129112 -0.152492 0.614815 -0.536677 -0.577910 +0.447404 -0.122334 -0.159278 0.603463 -0.516167 -0.607786 +0.447003 -0.115585 -0.165505 0.590519 -0.496934 -0.635880 +0.446618 -0.108853 -0.171497 0.579955 -0.471726 -0.664174 +0.446255 -0.102142 -0.177066 0.568077 -0.445741 -0.691811 +0.445915 -0.095447 -0.182364 0.556472 -0.420834 -0.716406 +0.445636 -0.088767 -0.186746 0.548236 -0.400662 -0.734103 +0.445401 -0.082087 -0.190343 0.539689 -0.382340 -0.750034 +0.445182 -0.075430 -0.193744 0.527807 -0.364893 -0.766990 +0.444993 -0.068765 -0.196600 0.522487 -0.353875 -0.775745 +0.444842 -0.062107 -0.198958 0.512714 -0.343699 -0.786763 +0.444706 -0.055458 -0.201111 0.509301 -0.336062 -0.792259 +0.444547 -0.048823 -0.203605 0.501312 -0.326809 -0.801175 +0.444381 -0.042196 -0.206151 0.499282 -0.318410 -0.805812 +0.444207 -0.035576 -0.208894 0.495624 -0.308593 -0.811867 +0.444018 -0.028972 -0.211721 0.492425 -0.295592 -0.818623 +0.443860 -0.022375 -0.214283 0.492057 -0.282072 -0.823599 +0.443701 -0.015778 -0.216670 0.492855 -0.263268 -0.829328 +0.443565 -0.009181 -0.218839 0.494923 -0.243936 -0.833994 +0.443444 -0.002584 -0.220713 0.497417 -0.222541 -0.838482 +0.443338 0.004013 -0.222338 0.500876 -0.203318 -0.841300 +0.443248 0.010610 -0.223721 0.504595 -0.185696 -0.843149 +0.443180 0.017214 -0.224779 0.506622 -0.168922 -0.845458 +0.443119 0.023819 -0.225738 0.508004 -0.153914 -0.847492 +0.443074 0.030431 -0.226464 0.506163 -0.141579 -0.850738 +0.442998 0.037028 -0.227552 0.503701 -0.130125 -0.854021 +0.442915 0.043609 -0.228897 0.499321 -0.118657 -0.858254 +0.442817 0.050176 -0.230356 0.495829 -0.108349 -0.861635 +0.442734 0.056750 -0.231723 0.492642 -0.096135 -0.864906 +0.442658 0.063325 -0.232894 0.489210 -0.081384 -0.868361 +0.442620 0.069921 -0.233446 0.484753 -0.065020 -0.872231 +0.442605 0.076541 -0.233643 0.483174 -0.046982 -0.874263 +0.442613 0.083168 -0.233544 0.483222 -0.028672 -0.875028 +0.442605 0.089788 -0.233627 0.483095 -0.011447 -0.875493 +0.442605 0.096415 -0.233680 0.482183 0.003961 -0.876061 +0.442613 0.103050 -0.233499 0.481342 0.015266 -0.876400 +0.442636 0.109692 -0.233167 0.481563 0.022928 -0.876112 +0.442658 0.116342 -0.232849 0.480897 0.028205 -0.876323 +0.442688 0.122999 -0.232350 0.479407 0.032205 -0.877002 +0.442704 0.129641 -0.232131 0.478747 0.036041 -0.877213 +0.442711 0.136276 -0.232003 0.478067 0.039643 -0.877428 +0.442726 0.142926 -0.231761 0.477921 0.042821 -0.877359 +0.442734 0.149553 -0.231723 0.478342 0.045899 -0.876973 +0.442741 0.156195 -0.231557 0.477069 0.049044 -0.877496 +0.442764 0.162852 -0.231202 0.475498 0.050972 -0.878239 +0.442802 0.169532 -0.230590 0.474978 0.050530 -0.878546 +0.442855 0.176220 -0.229781 0.467805 0.045146 -0.882678 +0.442945 0.182961 -0.228406 0.458488 0.035402 -0.887995 +0.443006 0.189678 -0.227416 0.428425 0.017427 -0.903409 +0.443074 0.196396 -0.226381 0.399536 -0.002607 -0.916714 +0.443149 0.203137 -0.225224 0.368129 -0.024413 -0.929454 +0.443202 0.209847 -0.224401 0.318245 -0.051283 -0.946621 +0.443233 0.216527 -0.223894 0.288815 -0.057894 -0.955633 +0.443270 0.223222 -0.223373 0.208885 -0.093017 -0.973506 +0.443278 0.229872 -0.223260 0.133705 -0.123483 -0.983298 +0.443263 0.236499 -0.223449 0.050586 -0.150146 -0.987369 +0.443217 0.243081 -0.224144 -0.031525 -0.177198 -0.983670 +0.443180 0.249663 -0.224734 -0.145653 -0.213253 -0.966079 +0.442976 0.255995 -0.227907 -0.229448 -0.233991 -0.944776 +0.442802 0.262358 -0.230665 -0.314719 -0.224751 -0.922192 +0.442484 0.268501 -0.235532 -0.369322 -0.196531 -0.908283 +0.442250 0.274743 -0.239234 -0.410788 -0.177877 -0.894211 +0.442061 0.281053 -0.242151 -0.437282 -0.155774 -0.885731 +0.441925 0.287446 -0.244229 -0.452587 -0.125070 -0.882906 +0.441835 0.293906 -0.245590 -0.462052 -0.090082 -0.882266 +0.441744 0.300352 -0.247010 -0.474764 -0.051398 -0.878611 +0.441653 0.306806 -0.248385 -0.484166 -0.012770 -0.874883 +0.441578 0.313259 -0.249640 -0.473533 0.047033 -0.879519 +0.441578 0.319863 -0.249647 -0.452349 0.108215 -0.885252 +0.441600 0.326506 -0.249232 -0.428105 0.176951 -0.886236 +0.441661 0.333216 -0.248287 -0.395804 0.237380 -0.887125 +0.441789 0.340055 -0.246322 -0.352413 0.323438 -0.878176 +0.441955 0.346969 -0.243768 -0.316239 0.395840 -0.862150 +0.442265 0.354170 -0.238925 -0.270630 0.469416 -0.840481 +0.442643 0.361515 -0.233106 -0.225640 0.543934 -0.808222 +0.443051 0.368959 -0.226713 -0.188688 0.620653 -0.761043 +0.443557 0.376598 -0.218892 -0.148557 0.671530 -0.725933 +0.444094 0.384336 -0.210550 -0.100860 0.728133 -0.677974 +0.444721 0.392278 -0.200885 -0.060579 0.765610 -0.640446 +0.445484 0.400553 -0.189028 -0.000843 0.810693 -0.585471 +0.446406 0.409182 -0.174807 0.042792 0.851095 -0.523264 +0.447623 0.418500 -0.155938 0.100533 0.889471 -0.445796 +0.449255 0.428784 -0.130563 0.148228 0.917838 -0.368242 +0.451651 0.440807 -0.093521 0.192286 0.924317 -0.329643 +0.464353 -0.199774 -0.005403 0.610293 -0.766974 -0.198226 +0.462094 -0.192111 -0.039491 0.619793 -0.720304 -0.311477 +0.460870 -0.184842 -0.057997 0.625604 -0.695480 -0.353451 +0.459857 -0.177678 -0.073246 0.633251 -0.666819 -0.392867 +0.459064 -0.170613 -0.085284 0.640066 -0.648730 -0.411662 +0.458293 -0.163593 -0.096936 0.645738 -0.631153 -0.429731 +0.457605 -0.156625 -0.107327 0.651516 -0.611593 -0.448865 +0.456902 -0.149696 -0.117868 0.651803 -0.595356 -0.469791 +0.456275 -0.142812 -0.127344 0.650750 -0.577311 -0.493191 +0.455686 -0.135958 -0.136245 0.649543 -0.559486 -0.514848 +0.455164 -0.129134 -0.144097 0.642757 -0.540402 -0.542981 +0.454703 -0.122349 -0.151049 0.636593 -0.520373 -0.569176 +0.454258 -0.115578 -0.157850 0.628856 -0.502957 -0.592937 +0.453850 -0.108837 -0.163903 0.616781 -0.479690 -0.624082 +0.453464 -0.102112 -0.169789 0.607759 -0.455696 -0.650362 +0.453079 -0.095409 -0.175616 0.594812 -0.427817 -0.680567 +0.452769 -0.088714 -0.180278 0.589212 -0.407164 -0.697887 +0.452489 -0.082034 -0.184464 0.579303 -0.386015 -0.717914 +0.452232 -0.075369 -0.188409 0.568842 -0.369440 -0.734802 +0.452036 -0.068704 -0.191348 0.560149 -0.355582 -0.748195 +0.451862 -0.062039 -0.193933 0.552823 -0.347890 -0.757205 +0.451711 -0.055382 -0.196184 0.544879 -0.338979 -0.766942 +0.451545 -0.048740 -0.198799 0.534077 -0.329630 -0.778528 +0.451363 -0.042105 -0.201474 0.530120 -0.321436 -0.784635 +0.451159 -0.035486 -0.204512 0.520688 -0.309749 -0.795575 +0.450971 -0.028874 -0.207421 0.514009 -0.295141 -0.805411 +0.450797 -0.022269 -0.210088 0.514309 -0.282210 -0.809842 +0.450630 -0.015672 -0.212582 0.511791 -0.261532 -0.818334 +0.450472 -0.009075 -0.214970 0.512648 -0.241195 -0.824025 +0.450343 -0.002471 -0.216874 0.512923 -0.219778 -0.829824 +0.450230 0.004126 -0.218552 0.513630 -0.199479 -0.834501 +0.450147 0.010738 -0.219859 0.514779 -0.182403 -0.837694 +0.450071 0.017350 -0.220933 0.516502 -0.167557 -0.839732 +0.450018 0.023962 -0.221839 0.516869 -0.154117 -0.842077 +0.449973 0.030582 -0.222504 0.519585 -0.142656 -0.842426 +0.449913 0.037194 -0.223380 0.517838 -0.132802 -0.845108 +0.449837 0.043791 -0.224537 0.514337 -0.123088 -0.848709 +0.449739 0.050372 -0.225980 0.511283 -0.111665 -0.852127 +0.449663 0.056954 -0.227181 0.509789 -0.099339 -0.854545 +0.449588 0.063536 -0.228308 0.506570 -0.084349 -0.858063 +0.449550 0.070148 -0.228814 0.506518 -0.066848 -0.859634 +0.449542 0.076775 -0.228935 0.505318 -0.048453 -0.861572 +0.449527 0.083395 -0.229222 0.504404 -0.029646 -0.862959 +0.449512 0.090014 -0.229456 0.503499 -0.011193 -0.863924 +0.449512 0.096649 -0.229486 0.501631 0.003281 -0.865075 +0.449550 0.103314 -0.228852 0.500042 0.013539 -0.865896 +0.449565 0.109964 -0.228610 0.499612 0.021544 -0.865982 +0.449588 0.116621 -0.228247 0.498185 0.026949 -0.866652 +0.449618 0.123279 -0.227862 0.496964 0.030963 -0.867218 +0.449625 0.129928 -0.227749 0.497123 0.034357 -0.866999 +0.449633 0.136571 -0.227552 0.496717 0.038151 -0.867074 +0.449618 0.143190 -0.227877 0.494840 0.042231 -0.867957 +0.449603 0.149817 -0.228013 0.493459 0.045091 -0.868600 +0.449610 0.156452 -0.227975 0.490724 0.047888 -0.869998 +0.449633 0.163117 -0.227605 0.487998 0.046810 -0.871589 +0.449678 0.169804 -0.226909 0.476726 0.038050 -0.878228 +0.449754 0.176522 -0.225829 0.456263 0.022186 -0.889568 +0.449845 0.183270 -0.224454 0.426555 0.001511 -0.904460 +0.449920 0.190003 -0.223328 0.394339 -0.027083 -0.918566 +0.450003 0.196751 -0.222051 0.360795 -0.048815 -0.931367 +0.450064 0.203477 -0.221159 0.314704 -0.074650 -0.946250 +0.450094 0.210172 -0.220600 0.261684 -0.102617 -0.959683 +0.450124 0.216852 -0.220207 0.190256 -0.143936 -0.971126 +0.450109 0.223487 -0.220403 0.120185 -0.156305 -0.980370 +0.450064 0.230068 -0.221114 0.046942 -0.203935 -0.977858 +0.450003 0.236627 -0.222036 -0.088758 -0.257230 -0.962265 +0.449852 0.243066 -0.224288 -0.181334 -0.288695 -0.940092 +0.449656 0.249428 -0.227227 -0.245572 -0.281526 -0.927598 +0.449353 0.255617 -0.231829 -0.318173 -0.276870 -0.906702 +0.448991 0.261700 -0.237277 -0.381748 -0.265345 -0.885359 +0.448703 0.267882 -0.241668 -0.416969 -0.234708 -0.878094 +0.448477 0.274138 -0.245098 -0.438243 -0.197381 -0.876917 +0.448318 0.280501 -0.247403 -0.446786 -0.176186 -0.877121 +0.448212 0.286932 -0.249028 -0.462607 -0.147038 -0.874285 +0.448114 0.293377 -0.250494 -0.468477 -0.095662 -0.878281 +0.448023 0.299816 -0.251899 -0.467572 -0.054069 -0.882300 +0.447971 0.306322 -0.252738 -0.447122 0.010046 -0.894417 +0.447948 0.312881 -0.253025 -0.416304 0.070470 -0.906491 +0.447963 0.319493 -0.252829 -0.385478 0.141131 -0.911860 +0.448008 0.326166 -0.252141 -0.347697 0.216672 -0.912228 +0.448129 0.332982 -0.250297 -0.315505 0.280035 -0.906662 +0.448288 0.339866 -0.247879 -0.273703 0.358512 -0.892500 +0.448492 0.346840 -0.244788 -0.237203 0.423692 -0.874197 +0.448847 0.354102 -0.239522 -0.184543 0.504887 -0.843227 +0.449225 0.361440 -0.233718 -0.160724 0.566409 -0.808300 +0.449709 0.368996 -0.226411 -0.128888 0.637002 -0.760010 +0.450237 0.376659 -0.218454 -0.075375 0.701553 -0.708620 +0.450819 0.384450 -0.209734 -0.038224 0.743013 -0.668184 +0.451469 0.392422 -0.199842 -0.003325 0.786196 -0.617969 +0.452240 0.400651 -0.188295 0.044766 0.820607 -0.569737 +0.453260 0.409454 -0.172804 0.092371 0.860590 -0.500852 +0.454628 0.419006 -0.152258 0.133985 0.896689 -0.421897 +0.456570 0.429850 -0.122916 0.180997 0.918736 -0.350947 +0.458708 0.441222 -0.090558 0.202097 0.924008 -0.324600 +0.470882 -0.192617 -0.012650 0.630875 -0.743607 -0.221459 +0.468827 -0.185091 -0.042914 0.639119 -0.696445 -0.326331 +0.467701 -0.177890 -0.059417 0.644836 -0.672697 -0.362856 +0.466749 -0.170771 -0.073450 0.649625 -0.649471 -0.395190 +0.465985 -0.163736 -0.084702 0.655754 -0.629909 -0.416175 +0.465237 -0.156746 -0.095689 0.659579 -0.613456 -0.434313 +0.464550 -0.149794 -0.105815 0.662987 -0.598743 -0.449395 +0.463862 -0.142880 -0.115949 0.663053 -0.583763 -0.468595 +0.463174 -0.136003 -0.126059 0.662546 -0.564818 -0.491948 +0.462555 -0.129165 -0.135105 0.660296 -0.546607 -0.515005 +0.462033 -0.122356 -0.142827 0.655593 -0.526806 -0.540994 +0.461557 -0.115578 -0.149863 0.652900 -0.504474 -0.565003 +0.461127 -0.108822 -0.156187 0.648839 -0.485241 -0.586131 +0.460718 -0.102082 -0.162142 0.642760 -0.459822 -0.612718 +0.460341 -0.095364 -0.167772 0.635531 -0.432114 -0.639826 +0.459993 -0.088661 -0.172850 0.627475 -0.412619 -0.660318 +0.459668 -0.081974 -0.177580 0.617560 -0.391649 -0.682079 +0.459366 -0.075301 -0.182031 0.606985 -0.373852 -0.701287 +0.459132 -0.068629 -0.185477 0.596184 -0.361569 -0.716821 +0.458943 -0.061956 -0.188235 0.589054 -0.351288 -0.727745 +0.458776 -0.055291 -0.190744 0.578585 -0.343717 -0.739661 +0.458580 -0.048642 -0.193638 0.570793 -0.336133 -0.749140 +0.458376 -0.042007 -0.196578 0.559825 -0.326458 -0.761591 +0.458157 -0.035387 -0.199849 0.549883 -0.313795 -0.774055 +0.457945 -0.028775 -0.202955 0.545430 -0.299524 -0.782810 +0.457749 -0.022163 -0.205827 0.539127 -0.282042 -0.793596 +0.457575 -0.015559 -0.208358 0.532959 -0.260578 -0.805018 +0.457416 -0.008954 -0.210686 0.533919 -0.241783 -0.810229 +0.457280 -0.002350 -0.212741 0.533022 -0.219429 -0.817153 +0.457174 0.004262 -0.214343 0.531374 -0.197834 -0.823713 +0.457084 0.010882 -0.215605 0.531086 -0.180193 -0.827936 +0.457016 0.017501 -0.216663 0.531043 -0.165641 -0.830997 +0.456948 0.024121 -0.217615 0.530777 -0.154430 -0.833323 +0.456895 0.030740 -0.218424 0.529706 -0.143851 -0.835894 +0.456834 0.037360 -0.219300 0.528556 -0.134561 -0.838166 +0.456759 0.043965 -0.220403 0.527441 -0.125004 -0.840345 +0.456653 0.050539 -0.222013 0.526642 -0.114361 -0.842359 +0.456562 0.057128 -0.223312 0.524294 -0.101209 -0.845501 +0.456494 0.063725 -0.224325 0.523464 -0.085619 -0.847735 +0.456449 0.070337 -0.224945 0.522734 -0.068439 -0.849744 +0.456419 0.076957 -0.225398 0.521997 -0.049720 -0.851497 +0.456411 0.083584 -0.225549 0.520491 -0.031013 -0.853304 +0.456396 0.090218 -0.225716 0.518812 -0.012926 -0.854791 +0.456426 0.096883 -0.225300 0.517921 0.001564 -0.855427 +0.456472 0.103563 -0.224597 0.518707 0.011985 -0.854868 +0.456502 0.110228 -0.224182 0.516335 0.019844 -0.856157 +0.456540 0.116908 -0.223615 0.515533 0.025018 -0.856504 +0.456547 0.123558 -0.223502 0.514154 0.029448 -0.857192 +0.456555 0.130200 -0.223441 0.513315 0.033375 -0.857551 +0.456532 0.136828 -0.223744 0.511613 0.037110 -0.858414 +0.456502 0.143440 -0.224182 0.508680 0.040348 -0.860010 +0.456494 0.150074 -0.224295 0.504156 0.041787 -0.862601 +0.456509 0.156732 -0.224038 0.496113 0.038356 -0.867411 +0.456547 0.163412 -0.223532 0.481066 0.030729 -0.876146 +0.456600 0.170122 -0.222693 0.461116 0.010173 -0.887281 +0.456661 0.176832 -0.221817 0.425632 -0.015543 -0.904763 +0.456744 0.183573 -0.220653 0.387781 -0.049912 -0.920399 +0.456827 0.190313 -0.219459 0.350116 -0.079737 -0.933306 +0.456872 0.197031 -0.218688 0.310850 -0.101782 -0.944993 +0.456918 0.203726 -0.218099 0.240576 -0.144022 -0.959886 +0.456940 0.210414 -0.217721 0.166516 -0.183554 -0.968804 +0.456925 0.217048 -0.217963 0.073572 -0.225018 -0.971573 +0.456842 0.223592 -0.219209 -0.001656 -0.265248 -0.964179 +0.456736 0.230106 -0.220683 -0.136481 -0.321603 -0.936987 +0.456562 0.236514 -0.223305 -0.203041 -0.345313 -0.916260 +0.456336 0.242847 -0.226630 -0.276342 -0.343648 -0.897519 +0.455882 0.248846 -0.233249 -0.337735 -0.341574 -0.877076 +0.455474 0.254892 -0.239257 -0.387358 -0.315160 -0.866388 +0.455164 0.261050 -0.243889 -0.411808 -0.274892 -0.868820 +0.454892 0.267254 -0.247849 -0.433251 -0.235959 -0.869837 +0.454696 0.273557 -0.250811 -0.449838 -0.208958 -0.868321 +0.454583 0.279980 -0.252451 -0.457119 -0.180718 -0.870852 +0.454484 0.286418 -0.253902 -0.455465 -0.133438 -0.880196 +0.454386 0.292856 -0.255300 -0.445281 -0.086061 -0.891245 +0.454333 0.299362 -0.256063 -0.415239 -0.018259 -0.909529 +0.454318 0.305921 -0.256313 -0.374358 0.053399 -0.925746 +0.454326 0.312526 -0.256177 -0.337529 0.116151 -0.934121 +0.454371 0.319191 -0.255504 -0.304207 0.181092 -0.935235 +0.454454 0.325909 -0.254363 -0.274968 0.231636 -0.933133 +0.454605 0.332770 -0.252096 -0.223976 0.318700 -0.921013 +0.454817 0.339745 -0.248922 -0.196397 0.387073 -0.900890 +0.455096 0.346833 -0.244910 -0.163913 0.453439 -0.876085 +0.455467 0.354117 -0.239408 -0.125497 0.523990 -0.842428 +0.455890 0.361515 -0.233151 -0.089902 0.601543 -0.793765 +0.456426 0.369132 -0.225345 -0.058115 0.660906 -0.748216 +0.456970 0.376802 -0.217320 -0.020574 0.710168 -0.703732 +0.457560 0.384586 -0.208668 0.021285 0.760581 -0.648894 +0.458247 0.392588 -0.198549 0.052798 0.796666 -0.602109 +0.459033 0.400825 -0.186965 0.091370 0.833037 -0.545620 +0.460235 0.409930 -0.169291 0.129330 0.871555 -0.472933 +0.461716 0.419656 -0.147512 0.169373 0.901773 -0.397641 +0.463711 0.430522 -0.118087 0.193728 0.919478 -0.342096 +0.466008 0.442099 -0.084317 0.210854 0.922306 -0.323872 +0.477267 -0.185454 -0.021604 0.655656 -0.715314 -0.241746 +0.475628 -0.178101 -0.045135 0.657248 -0.674504 -0.336257 +0.474555 -0.170945 -0.060498 0.660849 -0.648862 -0.377169 +0.473708 -0.163880 -0.072619 0.666391 -0.628864 -0.400566 +0.472938 -0.156860 -0.083735 0.668665 -0.614764 -0.418274 +0.472197 -0.149892 -0.094291 0.671668 -0.598776 -0.436268 +0.471494 -0.142955 -0.104402 0.673170 -0.587462 -0.449145 +0.470807 -0.136064 -0.114263 0.672693 -0.571564 -0.469893 +0.470081 -0.129195 -0.124661 0.671317 -0.554181 -0.492155 +0.469492 -0.122371 -0.133162 0.670388 -0.535893 -0.513224 +0.468955 -0.115570 -0.140832 0.669240 -0.512602 -0.537919 +0.468449 -0.108800 -0.148094 0.667588 -0.486464 -0.563630 +0.468033 -0.102052 -0.154034 0.668793 -0.464193 -0.580724 +0.467633 -0.095319 -0.159814 0.665435 -0.437699 -0.604662 +0.467262 -0.088608 -0.165157 0.660699 -0.415015 -0.625491 +0.466938 -0.081906 -0.169789 0.653237 -0.396983 -0.644737 +0.466635 -0.075211 -0.174127 0.643810 -0.381038 -0.663565 +0.466363 -0.068538 -0.178041 0.634071 -0.369012 -0.679547 +0.466106 -0.061866 -0.181646 0.623276 -0.357521 -0.695490 +0.465902 -0.055193 -0.184661 0.613667 -0.348557 -0.708464 +0.465668 -0.048543 -0.187993 0.604165 -0.340956 -0.720232 +0.465434 -0.041901 -0.191325 0.591650 -0.331720 -0.734787 +0.465184 -0.035282 -0.194922 0.583407 -0.321565 -0.745810 +0.464935 -0.028670 -0.198451 0.573187 -0.304211 -0.760863 +0.464716 -0.022057 -0.201587 0.565784 -0.285819 -0.773432 +0.464535 -0.015453 -0.204270 0.561150 -0.264840 -0.784201 +0.464368 -0.008841 -0.206665 0.557534 -0.242052 -0.794083 +0.464225 -0.002229 -0.208736 0.553438 -0.217461 -0.804000 +0.464127 0.004398 -0.210126 0.552867 -0.197731 -0.809469 +0.464036 0.011025 -0.211351 0.552306 -0.179716 -0.814040 +0.463975 0.017652 -0.212273 0.549899 -0.165252 -0.818720 +0.463922 0.024287 -0.213058 0.547839 -0.152918 -0.822489 +0.463862 0.030914 -0.213912 0.546660 -0.143161 -0.825026 +0.463779 0.037526 -0.215068 0.547926 -0.134689 -0.825613 +0.463696 0.044138 -0.216270 0.546949 -0.125641 -0.827684 +0.463567 0.050713 -0.218144 0.545194 -0.114459 -0.830459 +0.463462 0.057294 -0.219625 0.545800 -0.101492 -0.831746 +0.463378 0.063891 -0.220804 0.543847 -0.087024 -0.834660 +0.463326 0.070503 -0.221559 0.542488 -0.069702 -0.837167 +0.463303 0.077130 -0.221922 0.540475 -0.050757 -0.839828 +0.463303 0.083773 -0.221945 0.538469 -0.032504 -0.842018 +0.463303 0.090422 -0.221892 0.536329 -0.014647 -0.843882 +0.463333 0.097095 -0.221446 0.533907 -0.000716 -0.845543 +0.463386 0.103783 -0.220766 0.532780 0.009408 -0.846201 +0.463431 0.110470 -0.220071 0.530553 0.017536 -0.847470 +0.463454 0.117143 -0.219769 0.529012 0.023028 -0.848302 +0.463446 0.123785 -0.219867 0.528264 0.027215 -0.848644 +0.463439 0.130427 -0.219957 0.526130 0.031414 -0.849824 +0.463431 0.137069 -0.220041 0.524802 0.035117 -0.850500 +0.463401 0.143689 -0.220501 0.522334 0.036598 -0.851955 +0.463409 0.150346 -0.220351 0.515014 0.032419 -0.856569 +0.463454 0.157041 -0.219776 0.500977 0.019007 -0.865252 +0.463492 0.163729 -0.219187 0.475081 -0.002313 -0.879939 +0.463537 0.170432 -0.218522 0.439357 -0.037157 -0.897544 +0.463605 0.177157 -0.217600 0.392623 -0.069766 -0.917050 +0.463658 0.183875 -0.216769 0.351667 -0.103216 -0.930418 +0.463711 0.190593 -0.216020 0.306376 -0.124191 -0.943775 +0.463741 0.197273 -0.215658 0.221218 -0.181468 -0.958192 +0.463734 0.203923 -0.215771 0.152326 -0.209337 -0.965906 +0.463696 0.210535 -0.216323 0.063161 -0.263794 -0.962509 +0.463590 0.217063 -0.217766 -0.051669 -0.329402 -0.942775 +0.463492 0.223592 -0.219209 -0.130048 -0.355332 -0.925649 +0.463242 0.229917 -0.222799 -0.219201 -0.387078 -0.895612 +0.462902 0.236114 -0.227613 -0.291685 -0.398973 -0.869333 +0.462449 0.242136 -0.234164 -0.355768 -0.388259 -0.850108 +0.462011 0.248166 -0.240398 -0.393388 -0.355150 -0.848006 +0.461663 0.254287 -0.245454 -0.417536 -0.327523 -0.847580 +0.461346 0.260446 -0.249972 -0.437514 -0.295509 -0.849268 +0.461104 0.266688 -0.253448 -0.450180 -0.258217 -0.854788 +0.460945 0.273043 -0.255768 -0.452969 -0.217568 -0.864571 +0.460870 0.279519 -0.256856 -0.439868 -0.168787 -0.882058 +0.460794 0.285987 -0.257922 -0.417036 -0.108906 -0.902342 +0.460718 0.292456 -0.259010 -0.384876 -0.049935 -0.921616 +0.460703 0.299015 -0.259237 -0.337865 0.025902 -0.940838 +0.460688 0.305574 -0.259433 -0.298617 0.082938 -0.950762 +0.460764 0.312284 -0.258292 -0.270733 0.140878 -0.952290 +0.460854 0.319017 -0.257008 -0.229710 0.210955 -0.950122 +0.460953 0.325765 -0.255625 -0.194568 0.269882 -0.943031 +0.461164 0.332710 -0.252557 -0.160239 0.347710 -0.923808 +0.461414 0.339730 -0.249013 -0.126466 0.422619 -0.897440 +0.461708 0.346848 -0.244743 -0.098031 0.475659 -0.874150 +0.462139 0.354208 -0.238645 -0.056602 0.560461 -0.826244 +0.462585 0.361636 -0.232154 -0.027546 0.617637 -0.785980 +0.463152 0.369291 -0.224106 0.007603 0.680628 -0.732590 +0.463734 0.376999 -0.215771 0.043029 0.728297 -0.683910 +0.464338 0.384790 -0.207066 0.064130 0.770642 -0.634033 +0.465101 0.392913 -0.196124 0.097584 0.806667 -0.582895 +0.466023 0.401376 -0.182847 0.124352 0.843038 -0.523281 +0.467225 0.410422 -0.165641 0.159214 0.874812 -0.457553 +0.468880 0.420427 -0.141905 0.191040 0.904653 -0.380929 +0.471056 0.431542 -0.110712 0.221959 0.919015 -0.325800 +0.483978 -0.178403 -0.025557 0.666550 -0.682542 -0.299746 +0.482572 -0.171149 -0.045211 0.670946 -0.655934 -0.345806 +0.481620 -0.164046 -0.058503 0.674196 -0.634463 -0.378044 +0.480751 -0.156996 -0.070662 0.678096 -0.616656 -0.399902 +0.479935 -0.149991 -0.082095 0.679890 -0.601378 -0.419635 +0.479179 -0.143031 -0.092735 0.680855 -0.589067 -0.435242 +0.478469 -0.136117 -0.102709 0.681102 -0.577457 -0.450159 +0.477759 -0.129233 -0.112631 0.680254 -0.560462 -0.472372 +0.477041 -0.122386 -0.122599 0.681200 -0.540060 -0.494269 +0.476444 -0.115570 -0.130979 0.680873 -0.521711 -0.514033 +0.475869 -0.108785 -0.139079 0.680662 -0.493497 -0.541443 +0.475424 -0.102021 -0.145276 0.683141 -0.465822 -0.562431 +0.475000 -0.095273 -0.151155 0.684146 -0.447308 -0.576073 +0.474615 -0.088540 -0.156588 0.681252 -0.422141 -0.598074 +0.474267 -0.081830 -0.161500 0.677620 -0.402469 -0.615508 +0.473935 -0.075127 -0.166132 0.672148 -0.386925 -0.631273 +0.473663 -0.068432 -0.169925 0.667213 -0.376037 -0.642980 +0.473398 -0.061752 -0.173666 0.658058 -0.365945 -0.658061 +0.473134 -0.055080 -0.177331 0.648344 -0.356604 -0.672669 +0.472839 -0.048430 -0.181464 0.635526 -0.346810 -0.689804 +0.472537 -0.041795 -0.185635 0.622649 -0.337853 -0.705807 +0.472265 -0.035168 -0.189504 0.613910 -0.325377 -0.719197 +0.471985 -0.028556 -0.193373 0.604079 -0.307919 -0.735034 +0.471736 -0.021944 -0.196880 0.594891 -0.291235 -0.749191 +0.471524 -0.015332 -0.199835 0.588814 -0.272438 -0.760970 +0.471343 -0.008720 -0.202373 0.582385 -0.245284 -0.775025 +0.471192 -0.002101 -0.204497 0.580639 -0.220902 -0.783620 +0.471101 0.004534 -0.205797 0.576934 -0.198823 -0.792222 +0.471026 0.011169 -0.206855 0.574428 -0.181504 -0.798178 +0.470973 0.017819 -0.207565 0.574423 -0.167282 -0.801284 +0.470920 0.024461 -0.208328 0.572145 -0.154046 -0.805556 +0.470859 0.031096 -0.209182 0.570050 -0.142973 -0.809075 +0.470769 0.037715 -0.210421 0.571250 -0.134001 -0.809763 +0.470663 0.044320 -0.211879 0.570548 -0.124258 -0.811810 +0.470534 0.050909 -0.213685 0.569566 -0.113826 -0.814026 +0.470429 0.057498 -0.215144 0.568345 -0.100548 -0.816624 +0.470338 0.064095 -0.216504 0.566906 -0.086223 -0.819258 +0.470270 0.070707 -0.217426 0.563677 -0.068138 -0.823180 +0.470240 0.077334 -0.217864 0.560351 -0.050906 -0.826689 +0.470232 0.083984 -0.217963 0.558376 -0.035310 -0.828837 +0.470247 0.090649 -0.217698 0.555447 -0.017522 -0.831367 +0.470278 0.097329 -0.217298 0.553607 -0.004889 -0.832763 +0.470315 0.104017 -0.216738 0.550471 0.006442 -0.834830 +0.470353 0.110697 -0.216240 0.547735 0.015082 -0.836516 +0.470353 0.117354 -0.216300 0.545723 0.021789 -0.837682 +0.470368 0.124019 -0.216081 0.545648 0.026307 -0.837602 +0.470383 0.130692 -0.215832 0.543961 0.030406 -0.838559 +0.470368 0.137341 -0.215990 0.541471 0.032351 -0.840097 +0.470346 0.143976 -0.216323 0.534973 0.027388 -0.844425 +0.470383 0.150664 -0.215832 0.520333 0.009977 -0.853905 +0.470436 0.157374 -0.215129 0.494877 -0.017374 -0.868789 +0.470474 0.164069 -0.214577 0.455762 -0.058318 -0.888189 +0.470527 0.170787 -0.213776 0.421163 -0.092885 -0.902216 +0.470565 0.177482 -0.213308 0.378350 -0.109355 -0.919181 +0.470580 0.184170 -0.213036 0.314458 -0.168772 -0.934148 +0.470595 0.190842 -0.212839 0.232298 -0.202965 -0.951232 +0.470565 0.197469 -0.213277 0.132882 -0.258491 -0.956831 +0.470497 0.204051 -0.214267 0.023014 -0.323812 -0.945841 +0.470429 0.210633 -0.215182 -0.047504 -0.355959 -0.933294 +0.470225 0.217033 -0.218091 -0.146752 -0.395666 -0.906594 +0.469877 0.223260 -0.222897 -0.231127 -0.437620 -0.868947 +0.469484 0.229411 -0.228398 -0.303927 -0.442211 -0.843847 +0.469031 0.235456 -0.234746 -0.357031 -0.425172 -0.831719 +0.468577 0.241486 -0.241101 -0.397307 -0.400859 -0.825505 +0.468184 0.247562 -0.246663 -0.424344 -0.375993 -0.823749 +0.467852 0.253720 -0.251234 -0.437027 -0.339624 -0.832864 +0.467587 0.259947 -0.254975 -0.450908 -0.296005 -0.842059 +0.467421 0.266310 -0.257242 -0.441179 -0.249013 -0.862180 +0.467278 0.272680 -0.259342 -0.417871 -0.193895 -0.887575 +0.467194 0.279141 -0.260446 -0.382047 -0.132419 -0.914607 +0.467126 0.285617 -0.261435 -0.339472 -0.061506 -0.938603 +0.467119 0.292191 -0.261519 -0.306356 -0.002937 -0.951912 +0.467126 0.298773 -0.261428 -0.263527 0.059295 -0.962828 +0.467179 0.305438 -0.260688 -0.231479 0.113661 -0.966177 +0.467255 0.312133 -0.259652 -0.191688 0.178652 -0.965059 +0.467391 0.318934 -0.257703 -0.166574 0.243051 -0.955604 +0.467535 0.325750 -0.255738 -0.127450 0.309329 -0.942376 +0.467761 0.332710 -0.252580 -0.098007 0.373483 -0.922445 +0.468033 0.339760 -0.248763 -0.070810 0.437761 -0.896299 +0.468373 0.346939 -0.244010 -0.032891 0.500280 -0.865238 +0.468819 0.354314 -0.237776 0.005793 0.576828 -0.816845 +0.469310 0.361795 -0.230884 0.027645 0.634934 -0.772071 +0.469854 0.369404 -0.223192 0.061093 0.691232 -0.720045 +0.470459 0.377135 -0.214766 0.083496 0.735929 -0.671891 +0.471162 0.385069 -0.204965 0.104712 0.780135 -0.616786 +0.471940 0.393177 -0.194084 0.130061 0.811129 -0.570223 +0.472960 0.401792 -0.179764 0.156025 0.852227 -0.499365 +0.474328 0.411109 -0.160608 0.191845 0.882973 -0.428433 +0.476262 0.421568 -0.133578 0.219024 0.910637 -0.350384 +0.478386 0.432502 -0.103828 0.233961 0.918478 -0.318841 +0.490862 -0.171398 -0.026917 0.684864 -0.662719 -0.302927 +0.489577 -0.164205 -0.044478 0.687464 -0.638457 -0.346073 +0.488655 -0.157124 -0.057128 0.691607 -0.617562 -0.374563 +0.487824 -0.150104 -0.068455 0.687807 -0.603992 -0.402635 +0.486993 -0.143114 -0.079775 0.688178 -0.591133 -0.420681 +0.486154 -0.136170 -0.091284 0.688323 -0.580313 -0.435256 +0.485398 -0.129263 -0.101651 0.689567 -0.565358 -0.452622 +0.484680 -0.122402 -0.111407 0.688693 -0.548979 -0.473628 +0.484015 -0.115563 -0.120498 0.690407 -0.526658 -0.495952 +0.483419 -0.108762 -0.128719 0.690940 -0.504460 -0.517805 +0.482882 -0.101984 -0.136019 0.692231 -0.475692 -0.542709 +0.482429 -0.095220 -0.142193 0.695269 -0.452641 -0.558316 +0.482021 -0.088480 -0.147754 0.695616 -0.431029 -0.574746 +0.481658 -0.081747 -0.152681 0.693468 -0.411772 -0.591224 +0.481325 -0.075029 -0.157268 0.688659 -0.393404 -0.609083 +0.481038 -0.068327 -0.161175 0.686452 -0.382015 -0.618747 +0.480736 -0.061631 -0.165369 0.679359 -0.372045 -0.632498 +0.480411 -0.054959 -0.169751 0.672709 -0.364459 -0.643919 +0.480086 -0.048302 -0.174225 0.664178 -0.355548 -0.657612 +0.479769 -0.041659 -0.178593 0.655805 -0.345045 -0.671464 +0.479451 -0.035025 -0.182862 0.644103 -0.331554 -0.689350 +0.479119 -0.028413 -0.187389 0.628402 -0.316570 -0.710559 +0.478832 -0.021808 -0.191318 0.621305 -0.297922 -0.724723 +0.478605 -0.015189 -0.194469 0.614952 -0.273493 -0.739619 +0.478401 -0.008577 -0.197227 0.611984 -0.252129 -0.749605 +0.478235 -0.001949 -0.199479 0.606679 -0.225488 -0.762296 +0.478136 0.004685 -0.200862 0.601653 -0.203733 -0.772339 +0.478053 0.011335 -0.201950 0.598702 -0.183674 -0.779628 +0.478000 0.017992 -0.202714 0.596643 -0.168797 -0.784554 +0.477940 0.024642 -0.203522 0.600057 -0.153557 -0.785081 +0.477872 0.031277 -0.204504 0.600217 -0.141229 -0.787270 +0.477766 0.037897 -0.205955 0.597350 -0.132340 -0.790986 +0.477660 0.044509 -0.207383 0.595007 -0.122672 -0.794304 +0.477555 0.051121 -0.208812 0.590779 -0.113077 -0.798870 +0.477456 0.057733 -0.210126 0.588748 -0.101866 -0.801872 +0.477381 0.064345 -0.211177 0.585662 -0.087664 -0.805801 +0.477305 0.070964 -0.212182 0.585888 -0.072427 -0.807149 +0.477275 0.077606 -0.212582 0.583475 -0.055735 -0.810216 +0.477267 0.084264 -0.212673 0.582020 -0.037039 -0.812330 +0.477267 0.090921 -0.212711 0.578246 -0.021723 -0.815573 +0.477275 0.097586 -0.212627 0.577211 -0.009895 -0.816535 +0.477313 0.104281 -0.212151 0.573372 0.002209 -0.819292 +0.477313 0.110946 -0.212053 0.569012 0.012157 -0.822239 +0.477343 0.117634 -0.211721 0.567895 0.018905 -0.822884 +0.477358 0.124306 -0.211487 0.565277 0.024408 -0.824540 +0.477366 0.130979 -0.211381 0.562328 0.027380 -0.826461 +0.477373 0.137651 -0.211290 0.558001 0.025922 -0.829435 +0.477381 0.144324 -0.211192 0.542418 0.004742 -0.840095 +0.477434 0.151041 -0.210466 0.519309 -0.027516 -0.854144 +0.477471 0.157737 -0.209975 0.482528 -0.065620 -0.873419 +0.477502 0.164439 -0.209492 0.448152 -0.105824 -0.887672 +0.477532 0.171134 -0.209121 0.402733 -0.142441 -0.904166 +0.477539 0.177807 -0.209061 0.335571 -0.192194 -0.922201 +0.477502 0.184442 -0.209484 0.260791 -0.237849 -0.935637 +0.477358 0.190955 -0.211441 0.139354 -0.312407 -0.939671 +0.477320 0.197575 -0.212023 0.025717 -0.376198 -0.926182 +0.477124 0.204013 -0.214736 -0.067345 -0.398556 -0.914668 +0.476943 0.210459 -0.217184 -0.166574 -0.453691 -0.875453 +0.476512 0.216603 -0.223056 -0.247164 -0.471745 -0.846384 +0.476021 0.222655 -0.229736 -0.317357 -0.473107 -0.821860 +0.475582 0.228738 -0.235781 -0.367468 -0.461693 -0.807346 +0.475129 0.234791 -0.241985 -0.405892 -0.444025 -0.798807 +0.474759 0.240935 -0.246972 -0.426648 -0.415142 -0.803510 +0.474419 0.247086 -0.251703 -0.439960 -0.374796 -0.816065 +0.474139 0.253305 -0.255519 -0.442494 -0.328889 -0.834285 +0.473920 0.259600 -0.258496 -0.425045 -0.280061 -0.860757 +0.473791 0.266008 -0.260204 -0.390250 -0.215671 -0.895093 +0.473708 0.272468 -0.261413 -0.359113 -0.159290 -0.919600 +0.473633 0.278937 -0.262411 -0.314959 -0.085527 -0.945244 +0.473587 0.285451 -0.263045 -0.280061 -0.025404 -0.959646 +0.473580 0.292010 -0.263151 -0.243307 0.034303 -0.969342 +0.473648 0.298690 -0.262176 -0.210211 0.084975 -0.973956 +0.473708 0.305362 -0.261360 -0.183012 0.142454 -0.972735 +0.473807 0.312088 -0.260045 -0.134296 0.216113 -0.967088 +0.473958 0.318904 -0.257960 -0.099493 0.279319 -0.955030 +0.474147 0.325788 -0.255375 -0.063749 0.334485 -0.940242 +0.474388 0.332778 -0.252028 -0.040877 0.398040 -0.916457 +0.474698 0.339866 -0.247857 -0.006908 0.462477 -0.886604 +0.475031 0.347029 -0.243285 0.033208 0.530479 -0.847047 +0.475507 0.354435 -0.236824 0.052433 0.589829 -0.805824 +0.476013 0.361916 -0.229910 0.080028 0.650817 -0.755005 +0.476557 0.369503 -0.222413 0.095427 0.696880 -0.710811 +0.477215 0.377309 -0.213413 0.115099 0.745033 -0.657022 +0.477978 0.385319 -0.203061 0.128457 0.787086 -0.603319 +0.478824 0.393533 -0.191409 0.159233 0.823650 -0.544284 +0.479980 0.402344 -0.175623 0.181567 0.858697 -0.479242 +0.481544 0.411963 -0.154276 0.211145 0.890737 -0.402499 +0.483600 0.422588 -0.126158 0.245606 0.909255 -0.336055 +0.497905 -0.164424 -0.026123 0.723063 -0.627227 -0.289423 +0.496665 -0.157268 -0.042695 0.704294 -0.615008 -0.354591 +0.495804 -0.150217 -0.054181 0.704319 -0.606424 -0.369033 +0.494920 -0.143205 -0.065969 0.702241 -0.592880 -0.394144 +0.494066 -0.136238 -0.077448 0.698113 -0.582541 -0.416275 +0.493189 -0.129301 -0.089145 0.697046 -0.570104 -0.434866 +0.492381 -0.122417 -0.099906 0.696350 -0.555551 -0.454379 +0.491678 -0.115563 -0.109246 0.698615 -0.534383 -0.475784 +0.491028 -0.108739 -0.117913 0.699907 -0.514816 -0.495070 +0.490454 -0.101938 -0.125666 0.701513 -0.484189 -0.522915 +0.489940 -0.095168 -0.132444 0.702577 -0.457643 -0.544931 +0.489471 -0.088412 -0.138702 0.704168 -0.436787 -0.559789 +0.489086 -0.081671 -0.143923 0.704726 -0.418027 -0.573249 +0.488746 -0.074939 -0.148472 0.702292 -0.402405 -0.587245 +0.488421 -0.068221 -0.152772 0.699412 -0.387569 -0.600511 +0.488096 -0.061510 -0.157071 0.695908 -0.379037 -0.609954 +0.487779 -0.054823 -0.161303 0.691692 -0.370334 -0.620011 +0.487416 -0.048158 -0.166230 0.683628 -0.360996 -0.634298 +0.487061 -0.041508 -0.170923 0.679266 -0.351224 -0.644390 +0.486713 -0.034873 -0.175555 0.672415 -0.339234 -0.657858 +0.486388 -0.028246 -0.179938 0.663380 -0.322963 -0.674998 +0.486071 -0.021627 -0.184162 0.656603 -0.302712 -0.690825 +0.485799 -0.015015 -0.187804 0.650595 -0.278388 -0.706560 +0.485557 -0.008395 -0.190963 0.645830 -0.251406 -0.720901 +0.485353 -0.001783 -0.193706 0.640920 -0.230141 -0.732295 +0.485240 0.004867 -0.195210 0.640139 -0.204760 -0.740470 +0.485157 0.011524 -0.196358 0.635799 -0.185124 -0.749326 +0.485096 0.018181 -0.197182 0.633604 -0.164637 -0.755937 +0.485028 0.024839 -0.198021 0.635411 -0.154311 -0.756598 +0.484952 0.031489 -0.199063 0.633261 -0.141506 -0.760891 +0.484847 0.038116 -0.200499 0.630798 -0.130074 -0.764967 +0.484718 0.044728 -0.202207 0.626088 -0.120857 -0.770329 +0.484590 0.051332 -0.203915 0.623025 -0.112479 -0.774072 +0.484514 0.057967 -0.204920 0.620484 -0.102749 -0.777459 +0.484454 0.064602 -0.205774 0.617505 -0.089316 -0.781480 +0.484393 0.071236 -0.206560 0.612256 -0.075551 -0.787042 +0.484371 0.077901 -0.206787 0.607896 -0.059043 -0.791818 +0.484371 0.084566 -0.206839 0.605612 -0.044026 -0.794541 +0.484348 0.091223 -0.207111 0.602015 -0.030339 -0.797908 +0.484325 0.097881 -0.207421 0.597756 -0.014140 -0.801553 +0.484340 0.104561 -0.207217 0.597382 -0.001582 -0.801955 +0.484356 0.111248 -0.207005 0.595274 0.006660 -0.803495 +0.484356 0.117913 -0.207051 0.593232 0.014372 -0.804903 +0.484356 0.124593 -0.207013 0.589622 0.017762 -0.807484 +0.484378 0.131281 -0.206749 0.583908 0.018865 -0.811601 +0.484424 0.137999 -0.206099 0.574858 0.003145 -0.818247 +0.484469 0.144701 -0.205570 0.550104 -0.032402 -0.834468 +0.484499 0.151412 -0.205109 0.513292 -0.076146 -0.854829 +0.484529 0.158114 -0.204693 0.481892 -0.114836 -0.868673 +0.484560 0.164817 -0.204361 0.438680 -0.151949 -0.885704 +0.484560 0.171497 -0.204346 0.373512 -0.222070 -0.900652 +0.484544 0.178162 -0.204482 0.304290 -0.273733 -0.912402 +0.484408 0.184699 -0.206288 0.177042 -0.348926 -0.920275 +0.484257 0.191205 -0.208328 0.056524 -0.421548 -0.905043 +0.484076 0.197673 -0.210784 -0.072044 -0.475532 -0.876743 +0.483713 0.203938 -0.215582 -0.149602 -0.492150 -0.857559 +0.483192 0.209998 -0.222572 -0.260247 -0.511215 -0.819103 +0.482618 0.215975 -0.230288 -0.335590 -0.505391 -0.794959 +0.482141 0.222043 -0.236582 -0.385593 -0.493339 -0.779702 +0.481688 0.228119 -0.242620 -0.403484 -0.478962 -0.779613 +0.481340 0.234300 -0.247275 -0.427983 -0.448642 -0.784571 +0.481008 0.240489 -0.251703 -0.443362 -0.416638 -0.793626 +0.480706 0.246693 -0.255806 -0.428409 -0.363242 -0.827358 +0.480464 0.252965 -0.258988 -0.401662 -0.304534 -0.863671 +0.480290 0.259320 -0.261277 -0.368107 -0.245194 -0.896871 +0.480207 0.265788 -0.262380 -0.330865 -0.184544 -0.925458 +0.480139 0.272264 -0.263340 -0.291484 -0.113390 -0.949832 +0.480169 0.278884 -0.262947 -0.260817 -0.053842 -0.963886 +0.480109 0.285375 -0.263741 -0.220869 0.013941 -0.975204 +0.480101 0.291934 -0.263876 -0.192206 0.068621 -0.978953 +0.480169 0.298614 -0.262917 -0.159883 0.120293 -0.979779 +0.480267 0.305332 -0.261609 -0.116726 0.187744 -0.975257 +0.480396 0.312095 -0.259947 -0.074767 0.253492 -0.964444 +0.480577 0.318964 -0.257461 -0.044737 0.300761 -0.952650 +0.480789 0.325871 -0.254680 -0.019015 0.352765 -0.935519 +0.481053 0.332876 -0.251159 0.016937 0.423041 -0.905952 +0.481356 0.339964 -0.247093 0.055188 0.488238 -0.870964 +0.481726 0.347165 -0.242113 0.072226 0.538973 -0.839221 +0.482209 0.354571 -0.235690 0.096449 0.602573 -0.792214 +0.482708 0.362029 -0.229033 0.112391 0.660538 -0.742333 +0.483275 0.369616 -0.221507 0.127278 0.702336 -0.700374 +0.483955 0.377437 -0.212371 0.136231 0.750108 -0.647132 +0.484786 0.385538 -0.201330 0.155557 0.795281 -0.585944 +0.485806 0.394024 -0.187706 0.175403 0.833511 -0.523922 +0.487114 0.403069 -0.170220 0.209479 0.868309 -0.449619 +0.488799 0.412847 -0.147762 0.240951 0.896056 -0.372861 +0.491421 0.424424 -0.112752 0.266478 0.911483 -0.313350 +0.505144 -0.157472 -0.022882 0.735187 -0.616788 -0.281199 +0.503912 -0.150346 -0.038917 0.732601 -0.599703 -0.321950 +0.502937 -0.143303 -0.051611 0.719981 -0.590596 -0.364448 +0.502023 -0.136298 -0.063619 0.710620 -0.584242 -0.392021 +0.501071 -0.129346 -0.075966 0.706231 -0.574406 -0.413879 +0.500171 -0.122432 -0.087717 0.703943 -0.561430 -0.435041 +0.499370 -0.115555 -0.098213 0.705404 -0.541788 -0.457025 +0.498698 -0.108717 -0.106979 0.708171 -0.520106 -0.477477 +0.498101 -0.101900 -0.114755 0.710127 -0.498702 -0.497007 +0.497542 -0.095107 -0.122077 0.711426 -0.467143 -0.525024 +0.497035 -0.088336 -0.128629 0.710936 -0.444124 -0.545274 +0.496597 -0.081581 -0.134334 0.712442 -0.424988 -0.558401 +0.496204 -0.074840 -0.139533 0.712387 -0.408869 -0.570378 +0.495887 -0.068100 -0.143591 0.711033 -0.393490 -0.582750 +0.495539 -0.061382 -0.148147 0.709176 -0.382218 -0.592435 +0.495169 -0.054687 -0.153029 0.706362 -0.372951 -0.601631 +0.494799 -0.048007 -0.157873 0.702614 -0.362917 -0.612066 +0.494428 -0.041349 -0.162656 0.700138 -0.353684 -0.620253 +0.494051 -0.034700 -0.167620 0.695399 -0.341809 -0.632128 +0.493703 -0.028065 -0.172102 0.694297 -0.326543 -0.641344 +0.493378 -0.021438 -0.176356 0.691272 -0.304107 -0.655486 +0.493083 -0.014811 -0.180187 0.689642 -0.277917 -0.668698 +0.492849 -0.008184 -0.183225 0.687107 -0.253738 -0.680810 +0.492645 -0.001549 -0.185975 0.684720 -0.229951 -0.691579 +0.492464 0.005086 -0.188258 0.680220 -0.204571 -0.703883 +0.492350 0.011743 -0.189762 0.680827 -0.184720 -0.708769 +0.492267 0.018408 -0.190827 0.681118 -0.164619 -0.713428 +0.492192 0.025065 -0.191832 0.678918 -0.148817 -0.718974 +0.492101 0.031723 -0.193071 0.675539 -0.137044 -0.724477 +0.491973 0.038350 -0.194696 0.671531 -0.127625 -0.729902 +0.491844 0.044970 -0.196396 0.667431 -0.119150 -0.735077 +0.491723 0.051597 -0.197945 0.663122 -0.111066 -0.740225 +0.491648 0.058239 -0.198927 0.661460 -0.102816 -0.742899 +0.491580 0.064881 -0.199812 0.656501 -0.092712 -0.748606 +0.491527 0.071531 -0.200575 0.653653 -0.080324 -0.752520 +0.491512 0.078203 -0.200764 0.650903 -0.067948 -0.756114 +0.491481 0.084868 -0.201074 0.644772 -0.050160 -0.762727 +0.491481 0.091548 -0.201089 0.638436 -0.034944 -0.768881 +0.491444 0.098206 -0.201565 0.629864 -0.020213 -0.776442 +0.491398 0.104848 -0.202222 0.623156 -0.008054 -0.782056 +0.491383 0.111520 -0.202350 0.617541 0.001142 -0.786538 +0.491383 0.118200 -0.202426 0.615700 0.005103 -0.787964 +0.491391 0.124888 -0.202290 0.608363 0.009133 -0.793606 +0.491459 0.131621 -0.201414 0.593842 -0.002844 -0.804577 +0.491512 0.138354 -0.200696 0.583914 -0.031882 -0.811189 +0.491572 0.145087 -0.199940 0.559759 -0.079664 -0.824817 +0.491610 0.151805 -0.199471 0.520102 -0.126301 -0.844714 +0.491625 0.158507 -0.199237 0.477955 -0.168885 -0.861996 +0.491625 0.165195 -0.199222 0.437669 -0.202710 -0.875988 +0.491587 0.171837 -0.199736 0.339581 -0.300754 -0.891197 +0.491504 0.178442 -0.200824 0.249055 -0.367483 -0.896062 +0.491277 0.184887 -0.203809 0.090485 -0.466305 -0.879984 +0.490930 0.191205 -0.208351 -0.051953 -0.508583 -0.859444 +0.490476 0.197394 -0.214207 -0.156874 -0.538156 -0.828117 +0.489932 0.203454 -0.221363 -0.272021 -0.541225 -0.795664 +0.489245 0.209341 -0.230310 -0.331993 -0.540794 -0.772866 +0.488753 0.215416 -0.236718 -0.378929 -0.523889 -0.762859 +0.488315 0.221529 -0.242401 -0.409851 -0.496596 -0.765124 +0.487937 0.227688 -0.247380 -0.429282 -0.483830 -0.762644 +0.487597 0.233884 -0.251831 -0.431431 -0.445688 -0.784366 +0.487303 0.240119 -0.255617 -0.408490 -0.391898 -0.824349 +0.487061 0.246406 -0.258746 -0.380825 -0.334988 -0.861832 +0.486857 0.252731 -0.261435 -0.345384 -0.275402 -0.897142 +0.486728 0.259139 -0.263129 -0.306083 -0.214346 -0.927561 +0.486675 0.265645 -0.263831 -0.267313 -0.143947 -0.952797 +0.486645 0.272181 -0.264171 -0.244121 -0.083565 -0.966138 +0.486645 0.278755 -0.264186 -0.205314 -0.011192 -0.978632 +0.486653 0.285330 -0.264156 -0.169462 0.047294 -0.984401 +0.486668 0.291934 -0.263876 -0.141344 0.101110 -0.984784 +0.486766 0.298637 -0.262683 -0.099494 0.158724 -0.982297 +0.486879 0.305377 -0.261201 -0.063724 0.221365 -0.973107 +0.487038 0.312193 -0.259108 -0.033803 0.275365 -0.960745 +0.487235 0.319070 -0.256509 -0.000645 0.328049 -0.944660 +0.487454 0.325984 -0.253705 0.033219 0.380301 -0.924266 +0.487718 0.332997 -0.250176 0.068845 0.449041 -0.890855 +0.488066 0.340123 -0.245726 0.091025 0.507401 -0.856889 +0.488429 0.347309 -0.240942 0.109253 0.553687 -0.825527 +0.488905 0.354684 -0.234783 0.126307 0.612687 -0.780168 +0.489396 0.362112 -0.228345 0.135033 0.657606 -0.741162 +0.489947 0.369661 -0.221167 0.145705 0.709664 -0.689309 +0.490665 0.377513 -0.211789 0.155838 0.753515 -0.638694 +0.491557 0.385696 -0.200129 0.173048 0.800283 -0.574110 +0.492774 0.394477 -0.184290 0.196096 0.844319 -0.498670 +0.494209 0.403704 -0.165482 0.224265 0.874302 -0.430466 +0.496182 0.413920 -0.139828 0.261461 0.899219 -0.350776 +0.499378 0.426449 -0.098032 0.286660 0.910040 -0.299422 +0.512783 -0.150550 -0.014546 0.763641 -0.599351 -0.240065 +0.511378 -0.143424 -0.032554 0.751286 -0.581823 -0.311530 +0.510063 -0.136374 -0.049284 0.739315 -0.577604 -0.346102 +0.509088 -0.129384 -0.061707 0.729674 -0.571855 -0.374910 +0.508166 -0.122447 -0.073450 0.715672 -0.564857 -0.410793 +0.507222 -0.115548 -0.085564 0.716135 -0.550340 -0.429275 +0.506443 -0.108686 -0.095478 0.715212 -0.525648 -0.460615 +0.505794 -0.101855 -0.103790 0.718432 -0.506305 -0.476980 +0.505189 -0.095047 -0.111430 0.719922 -0.480343 -0.500981 +0.504675 -0.088261 -0.118034 0.720523 -0.454405 -0.523796 +0.504176 -0.081490 -0.124367 0.720580 -0.431603 -0.542663 +0.503738 -0.074735 -0.129943 0.720256 -0.413545 -0.556966 +0.503345 -0.067994 -0.134969 0.719718 -0.398861 -0.568257 +0.502990 -0.061261 -0.139570 0.718966 -0.385006 -0.578670 +0.502605 -0.054551 -0.144490 0.718087 -0.374213 -0.586785 +0.502197 -0.047863 -0.149613 0.715651 -0.364868 -0.595580 +0.501819 -0.041183 -0.154442 0.715535 -0.353221 -0.602698 +0.501456 -0.034518 -0.159112 0.715380 -0.340097 -0.610381 +0.501131 -0.027861 -0.163283 0.716815 -0.323513 -0.617669 +0.500814 -0.021211 -0.167326 0.718688 -0.303667 -0.625519 +0.500496 -0.014576 -0.171316 0.716410 -0.279975 -0.639039 +0.500247 -0.007934 -0.174558 0.716617 -0.252270 -0.650246 +0.500020 -0.001292 -0.177429 0.717407 -0.227489 -0.658465 +0.499839 0.005358 -0.179741 0.717166 -0.205348 -0.665962 +0.499680 0.012008 -0.181736 0.716456 -0.183424 -0.673087 +0.499544 0.018665 -0.183527 0.714682 -0.165150 -0.679672 +0.499454 0.025337 -0.184638 0.713922 -0.147354 -0.684545 +0.499340 0.031987 -0.186059 0.713977 -0.135470 -0.686939 +0.499204 0.038630 -0.187812 0.711394 -0.125040 -0.691581 +0.499076 0.045264 -0.189467 0.709558 -0.116242 -0.694993 +0.498962 0.051899 -0.190963 0.704737 -0.110684 -0.700781 +0.498872 0.058549 -0.192111 0.702614 -0.102840 -0.704101 +0.498804 0.065206 -0.192988 0.701055 -0.093581 -0.706940 +0.498743 0.071863 -0.193713 0.697108 -0.083833 -0.712048 +0.498713 0.078543 -0.194114 0.690594 -0.070588 -0.719789 +0.498683 0.085216 -0.194462 0.689009 -0.059751 -0.722286 +0.498653 0.091888 -0.194907 0.683512 -0.045398 -0.728526 +0.498577 0.098531 -0.195814 0.672634 -0.031460 -0.739306 +0.498524 0.105180 -0.196555 0.663054 -0.018468 -0.748343 +0.498494 0.111845 -0.196887 0.656536 -0.009672 -0.754233 +0.498486 0.118533 -0.197001 0.647743 -0.003274 -0.761852 +0.498509 0.125236 -0.196736 0.637065 -0.003302 -0.770803 +0.498562 0.131969 -0.196071 0.616036 -0.037006 -0.786849 +0.498622 0.138717 -0.195248 0.595160 -0.081452 -0.799468 +0.498698 0.145472 -0.194333 0.561618 -0.125435 -0.817833 +0.498728 0.152190 -0.193925 0.539540 -0.172078 -0.824188 +0.498766 0.158923 -0.193441 0.497024 -0.232239 -0.836081 +0.498743 0.165595 -0.193751 0.403975 -0.329500 -0.853366 +0.498645 0.172200 -0.194930 0.305493 -0.405429 -0.861569 +0.498350 0.178600 -0.198784 0.147730 -0.490929 -0.858583 +0.497988 0.184925 -0.203409 -0.002782 -0.556679 -0.830723 +0.497376 0.190978 -0.211192 -0.133928 -0.600872 -0.788045 +0.496620 0.196857 -0.220781 -0.250191 -0.592932 -0.765399 +0.496030 0.202872 -0.228345 -0.329211 -0.577214 -0.747291 +0.495396 0.208819 -0.236393 -0.364992 -0.560239 -0.743581 +0.494950 0.214940 -0.242121 -0.394945 -0.538203 -0.744551 +0.494557 0.221106 -0.247146 -0.419652 -0.513513 -0.748463 +0.494202 0.227303 -0.251688 -0.411724 -0.478087 -0.775833 +0.493915 0.233552 -0.255383 -0.383718 -0.420887 -0.821958 +0.493643 0.239824 -0.258814 -0.345396 -0.352554 -0.869717 +0.493446 0.246164 -0.261299 -0.313375 -0.295422 -0.902509 +0.493280 0.252534 -0.263453 -0.275451 -0.238155 -0.931348 +0.493204 0.259010 -0.264436 -0.245081 -0.169178 -0.954628 +0.493159 0.265531 -0.264964 -0.219335 -0.115359 -0.968806 +0.493159 0.272098 -0.264957 -0.182460 -0.042652 -0.982288 +0.493189 0.278710 -0.264594 -0.157399 0.015846 -0.987408 +0.493227 0.285337 -0.264073 -0.118478 0.081118 -0.989638 +0.493287 0.291995 -0.263287 -0.080306 0.137157 -0.987289 +0.493393 0.298712 -0.262025 -0.048949 0.191826 -0.980207 +0.493522 0.305468 -0.260393 -0.015828 0.252776 -0.967395 +0.493703 0.312314 -0.258028 0.017703 0.308287 -0.951129 +0.493907 0.319198 -0.255413 0.049185 0.359845 -0.931715 +0.494141 0.326135 -0.252421 0.082905 0.413520 -0.906713 +0.494436 0.333171 -0.248673 0.101415 0.468271 -0.877745 +0.494769 0.340281 -0.244426 0.124029 0.527243 -0.840614 +0.495139 0.347460 -0.239710 0.142032 0.570087 -0.809214 +0.495607 0.354813 -0.233748 0.151939 0.619974 -0.769770 +0.496114 0.362248 -0.227280 0.157111 0.662914 -0.732025 +0.496726 0.369880 -0.219459 0.163302 0.712469 -0.682437 +0.497459 0.377732 -0.210096 0.172607 0.759747 -0.626890 +0.498494 0.386112 -0.196940 0.191089 0.808307 -0.556889 +0.499862 0.395120 -0.179401 0.223140 0.852106 -0.473417 +0.501449 0.404543 -0.159210 0.251026 0.884597 -0.393031 +0.504101 0.415878 -0.125379 0.281303 0.902113 -0.327200 +0.521458 -0.143673 0.006257 0.813252 -0.547086 -0.198288 +0.519108 -0.136495 -0.023055 0.784885 -0.562256 -0.260432 +0.517242 -0.129437 -0.046383 0.749683 -0.569648 -0.336863 +0.516214 -0.122470 -0.059168 0.739106 -0.562552 -0.370482 +0.515307 -0.115540 -0.070496 0.736638 -0.551132 -0.391942 +0.514370 -0.108664 -0.082223 0.729283 -0.532634 -0.429474 +0.513562 -0.101810 -0.092289 0.729661 -0.509262 -0.456341 +0.512874 -0.094986 -0.100903 0.730482 -0.487893 -0.477867 +0.512330 -0.088185 -0.107697 0.731260 -0.462599 -0.501259 +0.511824 -0.081399 -0.114014 0.731393 -0.439078 -0.521799 +0.511317 -0.074629 -0.120301 0.729842 -0.420341 -0.539114 +0.510872 -0.067881 -0.125916 0.729691 -0.404095 -0.551596 +0.510456 -0.061140 -0.131122 0.727697 -0.388966 -0.564945 +0.510056 -0.054415 -0.136064 0.728118 -0.374165 -0.574321 +0.509655 -0.047712 -0.141127 0.728110 -0.362123 -0.581999 +0.509270 -0.041017 -0.145910 0.728684 -0.349859 -0.588742 +0.508877 -0.034345 -0.150769 0.730959 -0.334066 -0.595062 +0.508574 -0.027664 -0.154586 0.734387 -0.316879 -0.600220 +0.508265 -0.020992 -0.158455 0.737424 -0.298050 -0.606113 +0.507962 -0.014335 -0.162180 0.740935 -0.277106 -0.611741 +0.507713 -0.007677 -0.165331 0.742666 -0.249320 -0.621520 +0.507486 -0.001020 -0.168164 0.743667 -0.226462 -0.629027 +0.507305 0.005653 -0.170379 0.746608 -0.202536 -0.633685 +0.507139 0.012317 -0.172449 0.745985 -0.180232 -0.641110 +0.506980 0.018982 -0.174467 0.744497 -0.162181 -0.647628 +0.506829 0.025640 -0.176386 0.742952 -0.146445 -0.653127 +0.506700 0.032297 -0.178003 0.742308 -0.133444 -0.656636 +0.506572 0.038962 -0.179522 0.740059 -0.124096 -0.660994 +0.506474 0.045627 -0.180844 0.739067 -0.116325 -0.663512 +0.506360 0.052284 -0.182167 0.736040 -0.109883 -0.667960 +0.506232 0.058927 -0.183814 0.732405 -0.105224 -0.672690 +0.506164 0.065599 -0.184691 0.731176 -0.096647 -0.675308 +0.506103 0.072272 -0.185454 0.730495 -0.088772 -0.677124 +0.506058 0.078952 -0.185945 0.727054 -0.078029 -0.682132 +0.505975 0.085609 -0.187011 0.722353 -0.067073 -0.688264 +0.505892 0.092259 -0.188046 0.716943 -0.055077 -0.694953 +0.505801 0.098893 -0.189232 0.711076 -0.041755 -0.701874 +0.505726 0.105543 -0.190132 0.704200 -0.030422 -0.709350 +0.505695 0.112223 -0.190540 0.696597 -0.020793 -0.717162 +0.505680 0.118911 -0.190713 0.685634 -0.022260 -0.727606 +0.505695 0.125629 -0.190494 0.670693 -0.045119 -0.740362 +0.505748 0.132369 -0.189822 0.650297 -0.079940 -0.755462 +0.505801 0.139110 -0.189240 0.611479 -0.142570 -0.778310 +0.505846 0.145858 -0.188643 0.587721 -0.179457 -0.788910 +0.505862 0.152575 -0.188462 0.524591 -0.250303 -0.813728 +0.505892 0.159308 -0.188038 0.467547 -0.311932 -0.827102 +0.505778 0.165905 -0.189474 0.388863 -0.382778 -0.838013 +0.505688 0.172525 -0.190615 0.274788 -0.480432 -0.832872 +0.505181 0.178744 -0.196910 0.069096 -0.615903 -0.784786 +0.504501 0.184767 -0.205381 -0.100517 -0.639627 -0.762085 +0.503572 0.190510 -0.216988 -0.214170 -0.644689 -0.733831 +0.502763 0.196336 -0.227106 -0.303917 -0.624107 -0.719808 +0.502121 0.202305 -0.235161 -0.346106 -0.603692 -0.718169 +0.501615 0.208396 -0.241411 -0.377286 -0.570642 -0.729399 +0.501229 0.214585 -0.246285 -0.394014 -0.541075 -0.742961 +0.500859 0.220781 -0.250856 -0.387094 -0.504061 -0.772062 +0.500542 0.227008 -0.254892 -0.349740 -0.445150 -0.824332 +0.500270 0.233287 -0.258247 -0.317547 -0.382887 -0.867503 +0.500020 0.239582 -0.261360 -0.286510 -0.323543 -0.901794 +0.499862 0.245967 -0.263363 -0.251899 -0.264326 -0.930956 +0.499718 0.252368 -0.265154 -0.223113 -0.201294 -0.953782 +0.499665 0.258874 -0.265811 -0.190883 -0.142653 -0.971192 +0.499643 0.265411 -0.266113 -0.158217 -0.076017 -0.984474 +0.499665 0.272015 -0.265796 -0.136726 -0.014460 -0.990503 +0.499718 0.278657 -0.265116 -0.097877 0.047975 -0.994042 +0.499779 0.285307 -0.264345 -0.063656 0.112674 -0.991591 +0.499862 0.291987 -0.263355 -0.033079 0.160746 -0.986441 +0.499983 0.298735 -0.261791 0.001108 0.224221 -0.974538 +0.500141 0.305529 -0.259834 0.029481 0.277128 -0.960380 +0.500353 0.312405 -0.257227 0.058479 0.334421 -0.940608 +0.500595 0.319334 -0.254227 0.090034 0.385680 -0.918229 +0.500852 0.326302 -0.250962 0.112713 0.433359 -0.894145 +0.501146 0.333337 -0.247275 0.134715 0.486933 -0.862988 +0.501501 0.340463 -0.242884 0.150236 0.539249 -0.828637 +0.501872 0.347634 -0.238282 0.164242 0.576529 -0.800399 +0.502340 0.354971 -0.232441 0.170918 0.627414 -0.759697 +0.502892 0.362468 -0.225519 0.180709 0.668409 -0.721508 +0.503564 0.370168 -0.217146 0.187559 0.726133 -0.661477 +0.504381 0.378140 -0.206907 0.197088 0.771742 -0.604625 +0.505522 0.386664 -0.192701 0.217972 0.817321 -0.533362 +0.507018 0.395830 -0.174028 0.242613 0.859974 -0.448981 +0.508816 0.405563 -0.151578 0.275711 0.888859 -0.365941 +0.512459 0.418492 -0.106095 0.312633 0.902313 -0.296801 +0.527428 -0.129550 -0.006854 0.824349 -0.529724 -0.199602 +0.524776 -0.122492 -0.039257 0.779909 -0.557076 -0.285323 +0.523552 -0.115540 -0.054158 0.757100 -0.553589 -0.346899 +0.522509 -0.108626 -0.066982 0.749567 -0.538256 -0.385265 +0.521564 -0.101757 -0.078468 0.746334 -0.516971 -0.419197 +0.520763 -0.094918 -0.088223 0.744162 -0.492302 -0.451510 +0.520083 -0.088102 -0.096581 0.743426 -0.473129 -0.472724 +0.519524 -0.081301 -0.103458 0.745681 -0.445324 -0.495626 +0.519002 -0.074515 -0.109745 0.743178 -0.423672 -0.517869 +0.518519 -0.067752 -0.115691 0.743013 -0.408085 -0.530470 +0.518058 -0.061004 -0.121306 0.741428 -0.392079 -0.544572 +0.517620 -0.054271 -0.126709 0.740771 -0.374063 -0.557974 +0.517196 -0.047546 -0.131840 0.740552 -0.359010 -0.568063 +0.516788 -0.040843 -0.136797 0.741408 -0.344267 -0.576015 +0.516403 -0.034148 -0.141543 0.743714 -0.328328 -0.582315 +0.516071 -0.027460 -0.145601 0.747370 -0.311261 -0.586988 +0.515761 -0.020773 -0.149394 0.751717 -0.290617 -0.591999 +0.515496 -0.014085 -0.152658 0.757492 -0.269258 -0.594732 +0.515239 -0.007405 -0.155779 0.762643 -0.246402 -0.598048 +0.515005 -0.000733 -0.158659 0.765416 -0.221425 -0.604243 +0.514809 0.005947 -0.161039 0.768042 -0.198323 -0.608917 +0.514642 0.012627 -0.163087 0.770575 -0.176002 -0.612567 +0.514491 0.019315 -0.164877 0.771969 -0.157191 -0.615919 +0.514355 0.026002 -0.166532 0.773374 -0.141481 -0.617961 +0.514219 0.032675 -0.168225 0.770642 -0.129623 -0.623946 +0.514076 0.039347 -0.170008 0.767483 -0.121165 -0.629515 +0.513985 0.046035 -0.171089 0.767531 -0.113250 -0.630928 +0.513887 0.052715 -0.172268 0.770141 -0.107870 -0.628686 +0.513781 0.059395 -0.173552 0.768298 -0.102619 -0.631813 +0.513698 0.066068 -0.174640 0.767002 -0.098191 -0.634087 +0.513600 0.072740 -0.175804 0.763873 -0.093746 -0.638521 +0.513494 0.079405 -0.177089 0.759907 -0.085338 -0.644405 +0.513403 0.086070 -0.178177 0.754581 -0.076240 -0.651763 +0.513275 0.092705 -0.179764 0.748220 -0.065988 -0.660161 +0.513169 0.099354 -0.181056 0.741189 -0.055115 -0.669030 +0.513063 0.105997 -0.182364 0.734644 -0.045870 -0.676901 +0.513003 0.112662 -0.183142 0.723401 -0.044415 -0.688998 +0.512972 0.119357 -0.183459 0.708541 -0.055062 -0.703518 +0.512980 0.126074 -0.183368 0.680099 -0.084185 -0.728271 +0.513010 0.132807 -0.183036 0.671215 -0.131350 -0.729532 +0.513040 0.139548 -0.182666 0.641189 -0.180457 -0.745864 +0.513086 0.146303 -0.182076 0.604406 -0.222583 -0.764952 +0.513108 0.153036 -0.181842 0.547184 -0.300056 -0.781381 +0.513025 0.159679 -0.182810 0.475619 -0.386683 -0.790103 +0.512814 0.166208 -0.185409 0.315665 -0.497996 -0.807685 +0.512519 0.172646 -0.188998 0.132862 -0.623080 -0.770791 +0.511794 0.178668 -0.197839 -0.025152 -0.676041 -0.736435 +0.510562 0.184170 -0.212960 -0.197218 -0.681481 -0.704761 +0.509579 0.189875 -0.224915 -0.275910 -0.664568 -0.694423 +0.508922 0.195860 -0.232932 -0.319934 -0.647151 -0.691981 +0.508401 0.201950 -0.239370 -0.361075 -0.620313 -0.696302 +0.507932 0.208086 -0.245046 -0.370024 -0.579122 -0.726430 +0.507562 0.214298 -0.249579 -0.357951 -0.528718 -0.769628 +0.507214 0.220517 -0.253819 -0.316944 -0.471843 -0.822746 +0.506920 0.226781 -0.257453 -0.285197 -0.414809 -0.864058 +0.506655 0.233068 -0.260650 -0.258517 -0.354713 -0.898525 +0.506428 0.239386 -0.263423 -0.219860 -0.282026 -0.933875 +0.506300 0.245816 -0.264980 -0.199928 -0.237917 -0.950486 +0.506187 0.252247 -0.266385 -0.166829 -0.176506 -0.970059 +0.506141 0.258761 -0.266982 -0.133015 -0.106624 -0.985362 +0.506134 0.265312 -0.267080 -0.111043 -0.049432 -0.992586 +0.506156 0.271917 -0.266748 -0.068481 0.022847 -0.997391 +0.506224 0.278574 -0.265894 -0.039068 0.081776 -0.995885 +0.506307 0.285247 -0.264942 -0.011758 0.135791 -0.990668 +0.506398 0.291942 -0.263763 0.014070 0.190442 -0.981598 +0.506549 0.298720 -0.261919 0.043830 0.249977 -0.967259 +0.506731 0.305536 -0.259773 0.066492 0.298631 -0.952049 +0.506995 0.312481 -0.256539 0.099567 0.360716 -0.927346 +0.507267 0.319455 -0.253146 0.119072 0.405295 -0.906398 +0.507562 0.326468 -0.249549 0.142570 0.455639 -0.878673 +0.507887 0.333541 -0.245574 0.159413 0.508841 -0.845972 +0.508234 0.340652 -0.241335 0.173422 0.550342 -0.816730 +0.508620 0.347830 -0.236680 0.184669 0.584325 -0.790229 +0.509126 0.355221 -0.230438 0.190995 0.631747 -0.751277 +0.509738 0.362785 -0.222972 0.201074 0.678178 -0.706855 +0.510433 0.370508 -0.214509 0.204987 0.727507 -0.654763 +0.511363 0.378631 -0.203099 0.222301 0.785680 -0.577313 +0.512564 0.387215 -0.188484 0.243014 0.824262 -0.511407 +0.514249 0.396646 -0.167862 0.275546 0.867486 -0.414176 +0.516547 0.407142 -0.139760 0.298263 0.893508 -0.335681 +0.535801 -0.122553 0.009408 0.857148 -0.489973 -0.158821 +0.532884 -0.115525 -0.025534 0.815636 -0.531597 -0.228347 +0.531048 -0.108588 -0.047516 0.771988 -0.547099 -0.323600 +0.529824 -0.101696 -0.062130 0.763618 -0.521745 -0.380354 +0.528751 -0.094843 -0.074954 0.761620 -0.497603 -0.415121 +0.528033 -0.088004 -0.083576 0.759584 -0.474452 -0.444889 +0.527360 -0.081195 -0.091594 0.757547 -0.455465 -0.467626 +0.526763 -0.074402 -0.098803 0.756364 -0.437126 -0.486656 +0.526272 -0.067616 -0.104621 0.758605 -0.408803 -0.507344 +0.525773 -0.060845 -0.110583 0.757190 -0.392829 -0.521870 +0.525297 -0.054105 -0.116341 0.757264 -0.374694 -0.534936 +0.524851 -0.047365 -0.121639 0.757308 -0.357474 -0.546531 +0.524443 -0.040639 -0.126505 0.758190 -0.340053 -0.556338 +0.524043 -0.033936 -0.131356 0.757614 -0.322525 -0.567450 +0.523695 -0.027226 -0.135490 0.762321 -0.303903 -0.571410 +0.523370 -0.020523 -0.139344 0.766281 -0.282833 -0.576905 +0.523068 -0.013828 -0.142993 0.770050 -0.259881 -0.582653 +0.522819 -0.007133 -0.145956 0.774227 -0.237741 -0.586559 +0.522599 -0.000431 -0.148586 0.779451 -0.211784 -0.589579 +0.522403 0.006265 -0.150989 0.781613 -0.191552 -0.593623 +0.522222 0.012960 -0.153134 0.784138 -0.169969 -0.596857 +0.522048 0.019655 -0.155167 0.785622 -0.154881 -0.599007 +0.521912 0.026358 -0.156799 0.787697 -0.138219 -0.600357 +0.521806 0.033068 -0.158099 0.788752 -0.125468 -0.601771 +0.521715 0.039778 -0.159180 0.789767 -0.115577 -0.602421 +0.521617 0.046488 -0.160374 0.790666 -0.108627 -0.602535 +0.521496 0.053176 -0.161780 0.791064 -0.103393 -0.602933 +0.521360 0.059848 -0.163427 0.790667 -0.099274 -0.604144 +0.521300 0.066566 -0.164167 0.790517 -0.096374 -0.604809 +0.521209 0.073261 -0.165217 0.789903 -0.093368 -0.606083 +0.521096 0.079934 -0.166578 0.788832 -0.089546 -0.608050 +0.520975 0.086606 -0.167998 0.787220 -0.084524 -0.610852 +0.520861 0.093271 -0.169366 0.783469 -0.077106 -0.616628 +0.520748 0.099929 -0.170779 0.779067 -0.067069 -0.623343 +0.520612 0.106571 -0.172389 0.766268 -0.064179 -0.639308 +0.520506 0.113228 -0.173651 0.755690 -0.065990 -0.651596 +0.520446 0.119916 -0.174338 0.736706 -0.088782 -0.670359 +0.520423 0.126626 -0.174633 0.717043 -0.124681 -0.685787 +0.520423 0.133351 -0.174656 0.696031 -0.173672 -0.696691 +0.520468 0.140115 -0.174119 0.673574 -0.196252 -0.712589 +0.520438 0.146817 -0.174497 0.632156 -0.280330 -0.722353 +0.520340 0.153467 -0.175676 0.543002 -0.381068 -0.748289 +0.520159 0.160041 -0.177799 0.420099 -0.502073 -0.755936 +0.519834 0.166480 -0.181668 0.263801 -0.615350 -0.742801 +0.519161 0.172593 -0.189708 0.022667 -0.719665 -0.693952 +0.517756 0.178003 -0.206522 -0.143610 -0.729909 -0.668288 +0.516554 0.183550 -0.220895 -0.247816 -0.704804 -0.664710 +0.515799 0.189474 -0.229947 -0.297677 -0.684934 -0.665021 +0.515202 0.195520 -0.237111 -0.330929 -0.654993 -0.679316 +0.514718 0.201656 -0.242922 -0.335133 -0.614404 -0.714278 +0.514287 0.207822 -0.248075 -0.320881 -0.568435 -0.757573 +0.513940 0.214063 -0.252194 -0.286395 -0.507051 -0.812944 +0.513615 0.220313 -0.256139 -0.250642 -0.448519 -0.857910 +0.513335 0.226600 -0.259418 -0.229487 -0.388637 -0.892355 +0.513086 0.232902 -0.262418 -0.197816 -0.322874 -0.925538 +0.512874 0.239242 -0.264964 -0.167734 -0.264250 -0.949756 +0.512761 0.245680 -0.266325 -0.146629 -0.209503 -0.966752 +0.512685 0.252164 -0.267247 -0.103510 -0.140574 -0.984644 +0.512647 0.258685 -0.267730 -0.082534 -0.084687 -0.992983 +0.512640 0.265244 -0.267761 -0.040610 -0.009689 -0.999128 +0.512670 0.271849 -0.267421 -0.016909 0.046951 -0.998754 +0.512731 0.278499 -0.266642 0.011368 0.103039 -0.994612 +0.512829 0.285186 -0.265509 0.033719 0.155397 -0.987276 +0.512950 0.291912 -0.264065 0.061100 0.215696 -0.974547 +0.513123 0.298712 -0.261972 0.080473 0.267255 -0.960260 +0.513327 0.305566 -0.259509 0.110288 0.326920 -0.938594 +0.513615 0.312526 -0.256154 0.129934 0.379395 -0.916066 +0.513924 0.319546 -0.252406 0.149757 0.418943 -0.895578 +0.514272 0.326627 -0.248212 0.166283 0.474960 -0.864154 +0.514605 0.333700 -0.244237 0.181364 0.518191 -0.835814 +0.514990 0.340848 -0.239673 0.194689 0.558801 -0.806126 +0.515406 0.348080 -0.234640 0.205423 0.596457 -0.775913 +0.515972 0.355531 -0.227930 0.217089 0.645128 -0.732586 +0.516569 0.363072 -0.220721 0.222489 0.686188 -0.692564 +0.517348 0.370893 -0.211426 0.236210 0.739096 -0.630827 +0.518345 0.379092 -0.199525 0.245614 0.796554 -0.552427 +0.519675 0.387858 -0.183580 0.271066 0.836335 -0.476516 +0.521610 0.397621 -0.160434 0.301144 0.874862 -0.379379 +0.525373 0.410399 -0.115450 0.323651 0.898352 -0.297009 +0.542413 -0.108475 0.004254 0.860734 -0.483214 -0.160130 +0.539405 -0.101576 -0.030937 0.826066 -0.517852 -0.222362 +0.537237 -0.094737 -0.056388 0.787722 -0.501482 -0.357785 +0.536126 -0.087906 -0.069468 0.782839 -0.477667 -0.398745 +0.535400 -0.081067 -0.077932 0.782007 -0.457886 -0.422854 +0.534728 -0.074258 -0.085858 0.776519 -0.433369 -0.457394 +0.534108 -0.067465 -0.093097 0.777473 -0.416839 -0.470937 +0.533579 -0.060687 -0.099302 0.774205 -0.393496 -0.495750 +0.533065 -0.053924 -0.105279 0.774576 -0.378331 -0.506851 +0.532551 -0.047183 -0.111346 0.774077 -0.359032 -0.521441 +0.532113 -0.040450 -0.116508 0.772745 -0.340733 -0.535506 +0.531720 -0.033717 -0.121049 0.771599 -0.319360 -0.550131 +0.531380 -0.026984 -0.125039 0.773986 -0.299216 -0.558047 +0.531063 -0.020267 -0.128825 0.776579 -0.279411 -0.564672 +0.530745 -0.013556 -0.132467 0.780603 -0.256426 -0.570004 +0.530481 -0.006838 -0.135595 0.784610 -0.231740 -0.575051 +0.530224 -0.000136 -0.138573 0.787031 -0.208781 -0.580510 +0.529990 0.006567 -0.141392 0.789604 -0.189542 -0.583608 +0.529824 0.013292 -0.143326 0.792221 -0.167052 -0.586923 +0.529657 0.020003 -0.145223 0.795432 -0.149975 -0.587193 +0.529514 0.026720 -0.146984 0.796845 -0.133787 -0.589185 +0.529423 0.033453 -0.148004 0.798398 -0.120162 -0.590018 +0.529340 0.040194 -0.148963 0.799665 -0.110075 -0.590271 +0.529249 0.046919 -0.150074 0.800877 -0.102968 -0.589910 +0.529143 0.053637 -0.151306 0.802186 -0.098422 -0.588907 +0.529023 0.060340 -0.152658 0.803480 -0.095214 -0.587668 +0.528932 0.067057 -0.153724 0.804252 -0.093838 -0.586833 +0.528834 0.073768 -0.154888 0.804268 -0.091973 -0.587106 +0.528735 0.080463 -0.156104 0.804325 -0.089836 -0.587360 +0.528607 0.087150 -0.157585 0.803366 -0.086452 -0.589176 +0.528478 0.093823 -0.159074 0.800925 -0.081905 -0.593136 +0.528365 0.100503 -0.160404 0.798861 -0.078079 -0.596427 +0.528297 0.107213 -0.161228 0.795482 -0.081271 -0.600503 +0.528199 0.113901 -0.162323 0.786565 -0.093078 -0.610452 +0.528138 0.120604 -0.163034 0.777580 -0.111900 -0.618747 +0.528093 0.127321 -0.163570 0.768446 -0.148878 -0.622355 +0.528025 0.134016 -0.164371 0.753436 -0.184370 -0.631144 +0.527957 0.140704 -0.165225 0.725179 -0.218456 -0.652987 +0.527829 0.147346 -0.166684 0.669187 -0.328967 -0.666311 +0.527609 0.153913 -0.169283 0.597535 -0.407143 -0.690787 +0.527262 0.160359 -0.173326 0.491246 -0.545307 -0.679204 +0.526831 0.166714 -0.178404 0.159004 -0.734941 -0.659226 +0.525267 0.172064 -0.196759 -0.097670 -0.762384 -0.639712 +0.523688 0.177338 -0.215242 -0.198819 -0.755292 -0.624504 +0.522751 0.183134 -0.226260 -0.271509 -0.729237 -0.628089 +0.522048 0.189112 -0.234443 -0.297980 -0.704168 -0.644481 +0.521534 0.195240 -0.240511 -0.302985 -0.653810 -0.693349 +0.521058 0.201391 -0.246050 -0.282094 -0.602524 -0.746585 +0.520657 0.207595 -0.250766 -0.243062 -0.532198 -0.810978 +0.520332 0.213859 -0.254605 -0.214836 -0.476330 -0.852617 +0.520030 0.220139 -0.258096 -0.189936 -0.419091 -0.887855 +0.519803 0.226479 -0.260801 -0.165728 -0.359532 -0.918298 +0.519554 0.232781 -0.263733 -0.133217 -0.295592 -0.945980 +0.519380 0.239166 -0.265773 -0.112204 -0.243894 -0.963289 +0.519267 0.245612 -0.267065 -0.070174 -0.169340 -0.983056 +0.519207 0.252111 -0.267813 -0.051264 -0.119158 -0.991551 +0.519184 0.258655 -0.268017 -0.016111 -0.045908 -0.998816 +0.519184 0.265222 -0.268017 0.006364 0.008208 -0.999946 +0.519214 0.271819 -0.267693 0.036413 0.071929 -0.996745 +0.519275 0.278461 -0.266990 0.054674 0.118716 -0.991422 +0.519373 0.285148 -0.265864 0.081344 0.183892 -0.979575 +0.519509 0.291889 -0.264262 0.101149 0.237304 -0.966155 +0.519713 0.298728 -0.261836 0.120181 0.291848 -0.948884 +0.519940 0.305597 -0.259206 0.141533 0.338704 -0.930187 +0.520249 0.312594 -0.255541 0.160518 0.391980 -0.905862 +0.520612 0.319674 -0.251264 0.174948 0.436167 -0.882695 +0.521020 0.326815 -0.246549 0.190361 0.488429 -0.851587 +0.521390 0.333941 -0.242174 0.203902 0.530965 -0.822496 +0.521791 0.341120 -0.237436 0.212362 0.561519 -0.799749 +0.522237 0.348367 -0.232252 0.227169 0.604513 -0.763517 +0.522826 0.355848 -0.225338 0.237301 0.653876 -0.718425 +0.523416 0.363359 -0.218416 0.250008 0.692849 -0.676355 +0.524239 0.371226 -0.208819 0.257645 0.745444 -0.614762 +0.525365 0.379598 -0.195557 0.278812 0.803581 -0.525854 +0.526846 0.388553 -0.178230 0.302908 0.844235 -0.442169 +0.529196 0.398913 -0.150663 0.322504 0.879559 -0.349809 +0.549932 -0.094367 0.009839 0.875321 -0.459339 -0.151066 +0.544944 -0.087739 -0.047524 0.817072 -0.478704 -0.321303 +0.543614 -0.080931 -0.062773 0.804914 -0.455889 -0.379841 +0.542851 -0.074107 -0.071523 0.805359 -0.436195 -0.401410 +0.542269 -0.067284 -0.078249 0.804090 -0.409580 -0.430910 +0.541619 -0.060490 -0.085715 0.801800 -0.394016 -0.449297 +0.540985 -0.053727 -0.092984 0.799067 -0.372303 -0.472105 +0.540448 -0.046972 -0.099196 0.795224 -0.355618 -0.491076 +0.539934 -0.040224 -0.105052 0.792759 -0.340184 -0.505775 +0.539458 -0.033491 -0.110538 0.792392 -0.320594 -0.518974 +0.539111 -0.026743 -0.114497 0.790034 -0.297486 -0.536049 +0.538793 -0.020002 -0.118193 0.792076 -0.275115 -0.544911 +0.538499 -0.013269 -0.121578 0.794389 -0.253872 -0.551810 +0.538204 -0.006544 -0.124948 0.794103 -0.229547 -0.562769 +0.537932 0.000182 -0.128115 0.796418 -0.207493 -0.568036 +0.537675 0.006892 -0.131054 0.797368 -0.185730 -0.574203 +0.537478 0.013625 -0.133253 0.799820 -0.162492 -0.577827 +0.537312 0.020358 -0.135165 0.801611 -0.145795 -0.579796 +0.537191 0.027106 -0.136563 0.803639 -0.129893 -0.580769 +0.537093 0.033854 -0.137727 0.804849 -0.116085 -0.582016 +0.537017 0.040609 -0.138543 0.806269 -0.105297 -0.582102 +0.536942 0.047365 -0.139450 0.807609 -0.097128 -0.581664 +0.536844 0.054105 -0.140568 0.809228 -0.092607 -0.580151 +0.536745 0.060838 -0.141739 0.810474 -0.090083 -0.578807 +0.536632 0.067564 -0.142993 0.812341 -0.087965 -0.576511 +0.536534 0.074289 -0.144105 0.812510 -0.087687 -0.576315 +0.536451 0.081022 -0.145125 0.813733 -0.086325 -0.574792 +0.536330 0.087732 -0.146492 0.815205 -0.083690 -0.573095 +0.536209 0.094427 -0.147890 0.815320 -0.081440 -0.573254 +0.536103 0.101138 -0.149122 0.815808 -0.080057 -0.572755 +0.535997 0.107840 -0.150271 0.813412 -0.090149 -0.574660 +0.535914 0.114551 -0.151291 0.809995 -0.101262 -0.577628 +0.535876 0.121291 -0.151737 0.806047 -0.112512 -0.581058 +0.535839 0.128039 -0.152084 0.803086 -0.123415 -0.582943 +0.535786 0.134765 -0.152757 0.797059 -0.148354 -0.585395 +0.535582 0.141377 -0.155039 0.787208 -0.209295 -0.580086 +0.535325 0.147936 -0.158031 0.745776 -0.301161 -0.594239 +0.534841 0.154306 -0.163547 0.653284 -0.396010 -0.645288 +0.534274 0.160585 -0.170091 0.398453 -0.670005 -0.626361 +0.533028 0.166276 -0.184434 -0.003744 -0.783734 -0.621085 +0.531063 0.171301 -0.206960 -0.158246 -0.787100 -0.596181 +0.529824 0.176877 -0.221265 -0.225508 -0.778638 -0.585550 +0.529023 0.182802 -0.230431 -0.269138 -0.742786 -0.613052 +0.528441 0.188900 -0.237141 -0.257150 -0.702590 -0.663506 +0.527934 0.195044 -0.242967 -0.244902 -0.638133 -0.729938 +0.527466 0.201202 -0.248340 -0.213082 -0.580425 -0.785941 +0.527081 0.207421 -0.252768 -0.178842 -0.509262 -0.841824 +0.526756 0.213693 -0.256531 -0.154562 -0.460338 -0.874185 +0.526468 0.219988 -0.259766 -0.126317 -0.396358 -0.909365 +0.526264 0.226350 -0.262161 -0.101029 -0.335020 -0.936779 +0.526053 0.232713 -0.264526 -0.074783 -0.274522 -0.958669 +0.525902 0.239114 -0.266325 -0.039757 -0.207460 -0.977435 +0.525819 0.245597 -0.267254 -0.016962 -0.153395 -0.988019 +0.525758 0.252088 -0.267987 0.012335 -0.084015 -0.996388 +0.525743 0.258647 -0.268116 0.037082 -0.023181 -0.999043 +0.525766 0.265237 -0.267866 0.064942 0.037899 -0.997169 +0.525796 0.271841 -0.267489 0.080723 0.092562 -0.992429 +0.525856 0.278483 -0.266794 0.104372 0.143880 -0.984076 +0.525970 0.285179 -0.265546 0.120177 0.197559 -0.972897 +0.526128 0.291949 -0.263733 0.137182 0.253243 -0.957627 +0.526348 0.298803 -0.261179 0.159260 0.307717 -0.938055 +0.526604 0.305710 -0.258186 0.173999 0.356001 -0.918144 +0.526937 0.312722 -0.254431 0.189209 0.400167 -0.896698 +0.527337 0.319841 -0.249829 0.197279 0.447393 -0.872308 +0.527783 0.327035 -0.244675 0.215480 0.501556 -0.837860 +0.528184 0.334191 -0.240058 0.225990 0.538900 -0.811489 +0.528614 0.341400 -0.235093 0.240245 0.574532 -0.782429 +0.529083 0.348677 -0.229728 0.251531 0.620838 -0.742491 +0.529620 0.356075 -0.223547 0.262257 0.664239 -0.700005 +0.530345 0.363752 -0.215250 0.273040 0.703163 -0.656515 +0.531252 0.371732 -0.204844 0.290039 0.754745 -0.588420 +0.532529 0.380293 -0.190162 0.316840 0.809841 -0.493730 +0.534161 0.389445 -0.171376 0.335501 0.847325 -0.411678 +0.537380 0.401051 -0.134455 0.370186 0.880624 -0.295741 +0.557209 -0.080251 0.012347 0.875467 -0.468374 -0.119097 +0.551360 -0.073911 -0.053531 0.829717 -0.433979 -0.351043 +0.550400 -0.067110 -0.064337 0.829575 -0.415442 -0.373113 +0.549856 -0.060279 -0.070480 0.820788 -0.393561 -0.414024 +0.549304 -0.053463 -0.076639 0.825101 -0.374679 -0.422876 +0.548579 -0.046715 -0.084800 0.820544 -0.350734 -0.451323 +0.547944 -0.039967 -0.092009 0.818963 -0.336341 -0.464945 +0.547430 -0.033219 -0.097790 0.818219 -0.317133 -0.479524 +0.546985 -0.026478 -0.102830 0.815288 -0.298992 -0.495891 +0.546622 -0.019722 -0.106873 0.812854 -0.277482 -0.512126 +0.546320 -0.012967 -0.110251 0.812325 -0.251884 -0.526006 +0.546025 -0.006219 -0.113598 0.810697 -0.228374 -0.539088 +0.545738 0.000514 -0.116833 0.813995 -0.206161 -0.543057 +0.545466 0.007247 -0.119946 0.810988 -0.184202 -0.555310 +0.545224 0.013980 -0.122606 0.812250 -0.159345 -0.561123 +0.545043 0.020728 -0.124707 0.813366 -0.141106 -0.564381 +0.544929 0.027491 -0.125961 0.814181 -0.126842 -0.566587 +0.544831 0.034262 -0.127019 0.815809 -0.112835 -0.567207 +0.544755 0.041040 -0.127941 0.817408 -0.101375 -0.567069 +0.544702 0.047826 -0.128485 0.821688 -0.091073 -0.562614 +0.544619 0.054589 -0.129467 0.823228 -0.085601 -0.561221 +0.544514 0.061345 -0.130677 0.824130 -0.083496 -0.560212 +0.544400 0.068085 -0.131946 0.824124 -0.081015 -0.560585 +0.544279 0.074826 -0.133268 0.825279 -0.080072 -0.559019 +0.544166 0.081559 -0.134530 0.826387 -0.077760 -0.557708 +0.544053 0.088291 -0.135822 0.826646 -0.076087 -0.557554 +0.543947 0.095017 -0.137017 0.828382 -0.074366 -0.555205 +0.543826 0.101735 -0.138376 0.830095 -0.075352 -0.552507 +0.543728 0.108468 -0.139472 0.830724 -0.090064 -0.549351 +0.543652 0.115201 -0.140356 0.832157 -0.090208 -0.547153 +0.543599 0.121956 -0.140900 0.833628 -0.101531 -0.542915 +0.543524 0.128689 -0.141785 0.832806 -0.118856 -0.540655 +0.543448 0.135414 -0.142661 0.826483 -0.122480 -0.549476 +0.543259 0.142057 -0.144785 0.821498 -0.169131 -0.544551 +0.543017 0.148654 -0.147512 0.807744 -0.253671 -0.532165 +0.542073 0.154684 -0.158129 0.672159 -0.466260 -0.575156 +0.541249 0.160782 -0.167432 0.244965 -0.797022 -0.552040 +0.538869 0.165558 -0.194190 -0.088874 -0.836007 -0.541474 +0.537093 0.170757 -0.214253 -0.175213 -0.809163 -0.560852 +0.536148 0.176598 -0.224877 -0.227723 -0.786920 -0.573497 +0.535423 0.182598 -0.233083 -0.220039 -0.744738 -0.630039 +0.534818 0.188681 -0.239884 -0.190394 -0.678009 -0.709967 +0.534335 0.194847 -0.245318 -0.165192 -0.615406 -0.770705 +0.533904 0.201043 -0.250191 -0.127266 -0.544002 -0.829377 +0.533541 0.207300 -0.254234 -0.111897 -0.490072 -0.864470 +0.533247 0.213595 -0.257604 -0.079738 -0.434731 -0.897023 +0.532975 0.219912 -0.260597 -0.062447 -0.376112 -0.924467 +0.532778 0.226290 -0.262871 -0.029681 -0.304535 -0.952039 +0.532589 0.232668 -0.265010 0.001918 -0.239360 -0.970929 +0.532446 0.239091 -0.266590 0.023632 -0.181763 -0.983058 +0.532385 0.245597 -0.267239 0.050121 -0.119031 -0.991625 +0.532347 0.252118 -0.267693 0.072167 -0.058372 -0.995683 +0.532340 0.258678 -0.267821 0.095518 0.000701 -0.995428 +0.532370 0.265282 -0.267413 0.114340 0.056392 -0.991840 +0.532438 0.271924 -0.266665 0.132520 0.107937 -0.985286 +0.532529 0.278597 -0.265675 0.147217 0.163992 -0.975415 +0.532650 0.285322 -0.264262 0.161335 0.214732 -0.963255 +0.532831 0.292108 -0.262282 0.182485 0.274279 -0.944177 +0.533058 0.298962 -0.259705 0.194947 0.321768 -0.926532 +0.533315 0.305869 -0.256803 0.203291 0.365750 -0.908240 +0.533655 0.312889 -0.252927 0.214830 0.405176 -0.888640 +0.534108 0.320060 -0.247894 0.230245 0.464355 -0.855197 +0.534599 0.327314 -0.242303 0.241647 0.511201 -0.824791 +0.535015 0.334478 -0.237617 0.247695 0.549800 -0.797726 +0.535453 0.341694 -0.232668 0.267621 0.585292 -0.765384 +0.535914 0.348941 -0.227545 0.270785 0.626536 -0.730841 +0.536594 0.356520 -0.219889 0.282164 0.672338 -0.684357 +0.537373 0.364281 -0.211056 0.310394 0.716488 -0.624740 +0.538415 0.372435 -0.199305 0.335352 0.774770 -0.535976 +0.539859 0.381215 -0.183036 0.347160 0.821239 -0.452820 +0.542284 0.391477 -0.155757 0.372584 0.856748 -0.356600 +0.559952 -0.066740 -0.035222 0.883022 -0.409500 -0.229307 +0.558455 -0.060007 -0.051801 0.867975 -0.379559 -0.320243 +0.557670 -0.053206 -0.060415 0.862729 -0.357043 -0.358077 +0.557133 -0.046390 -0.066407 0.863699 -0.342587 -0.369674 +0.556415 -0.039627 -0.074312 0.851363 -0.329981 -0.407791 +0.555622 -0.032909 -0.083032 0.843476 -0.318062 -0.432880 +0.555070 -0.026161 -0.089183 0.837868 -0.302828 -0.454172 +0.554579 -0.019420 -0.094579 0.836777 -0.282322 -0.469147 +0.554209 -0.012657 -0.098652 0.832034 -0.258617 -0.490751 +0.553861 -0.005909 -0.102505 0.827219 -0.233094 -0.511249 +0.553574 0.000847 -0.105687 0.830556 -0.210702 -0.515540 +0.553317 0.007610 -0.108558 0.829823 -0.184692 -0.526576 +0.553053 0.014350 -0.111482 0.831016 -0.160108 -0.532708 +0.552849 0.021113 -0.113689 0.828961 -0.137011 -0.542266 +0.552728 0.027892 -0.115087 0.828565 -0.118964 -0.547108 +0.552614 0.034677 -0.116319 0.830746 -0.107987 -0.546077 +0.552516 0.041463 -0.117354 0.829100 -0.095252 -0.550926 +0.552448 0.048257 -0.118140 0.829623 -0.087807 -0.551376 +0.552372 0.055050 -0.119002 0.830171 -0.081477 -0.551523 +0.552289 0.061828 -0.119938 0.831260 -0.078107 -0.550369 +0.552191 0.068599 -0.121004 0.832593 -0.075658 -0.548693 +0.552063 0.075355 -0.122409 0.834324 -0.074024 -0.546282 +0.551942 0.082103 -0.123755 0.834896 -0.073473 -0.545482 +0.551813 0.088851 -0.125122 0.836732 -0.071202 -0.542964 +0.551707 0.095599 -0.126316 0.837832 -0.069283 -0.541514 +0.551609 0.102347 -0.127397 0.838494 -0.070817 -0.540290 +0.551571 0.109133 -0.127850 0.838112 -0.084124 -0.538973 +0.551511 0.115903 -0.128485 0.839113 -0.088702 -0.536676 +0.551443 0.122666 -0.129241 0.839529 -0.091216 -0.535604 +0.551405 0.129452 -0.129633 0.842860 -0.103810 -0.528026 +0.551322 0.136193 -0.130593 0.843220 -0.113102 -0.525536 +0.551148 0.142873 -0.132505 0.845065 -0.143725 -0.514984 +0.550748 0.149371 -0.136956 0.831108 -0.164014 -0.531375 +0.549539 0.155235 -0.150271 0.757557 -0.393350 -0.520945 +0.547211 0.160162 -0.176046 0.015376 -0.874238 -0.485255 +0.544566 0.164749 -0.205245 -0.120297 -0.847038 -0.517740 +0.543410 0.170469 -0.218053 -0.173473 -0.838366 -0.516768 +0.542488 0.176349 -0.228179 -0.170675 -0.781474 -0.600140 +0.541839 0.182416 -0.235373 -0.145014 -0.721079 -0.677507 +0.541272 0.188537 -0.241637 -0.108785 -0.647226 -0.754496 +0.540765 0.194688 -0.247252 -0.087514 -0.592367 -0.800901 +0.540373 0.200930 -0.251620 -0.049796 -0.521165 -0.852002 +0.540040 0.207210 -0.255255 -0.037186 -0.465787 -0.884115 +0.539753 0.213519 -0.258458 -0.021912 -0.417244 -0.908530 +0.539519 0.219882 -0.260982 0.013705 -0.345270 -0.938403 +0.539315 0.226252 -0.263295 0.039157 -0.272415 -0.961383 +0.539148 0.232653 -0.265123 0.064835 -0.219302 -0.973500 +0.539065 0.239144 -0.266022 0.087355 -0.157301 -0.983679 +0.539005 0.245650 -0.266658 0.106632 -0.094894 -0.989760 +0.538982 0.252194 -0.266952 0.131495 -0.035427 -0.990684 +0.539005 0.258783 -0.266688 0.143142 0.020059 -0.989499 +0.539073 0.265426 -0.265985 0.164187 0.077170 -0.983406 +0.539164 0.272098 -0.264972 0.178656 0.128641 -0.975466 +0.539254 0.278778 -0.263922 0.192856 0.178178 -0.964914 +0.539390 0.285519 -0.262395 0.207787 0.234772 -0.949582 +0.539572 0.292304 -0.260431 0.218093 0.284986 -0.933391 +0.539798 0.299158 -0.257960 0.226545 0.333693 -0.915056 +0.540085 0.306088 -0.254793 0.236686 0.375750 -0.895986 +0.540456 0.313146 -0.250690 0.246968 0.417684 -0.874384 +0.540939 0.320355 -0.245302 0.260264 0.472632 -0.841951 +0.541415 0.327579 -0.240028 0.265360 0.523117 -0.809897 +0.541846 0.334750 -0.235305 0.280068 0.563893 -0.776908 +0.542315 0.342004 -0.230083 0.289023 0.598164 -0.747439 +0.542896 0.349417 -0.223668 0.301797 0.642345 -0.704494 +0.543614 0.357027 -0.215794 0.319206 0.684195 -0.655732 +0.544506 0.364923 -0.205910 0.337795 0.726748 -0.598106 +0.545783 0.373387 -0.191787 0.362418 0.787438 -0.498592 +0.547702 0.382817 -0.170567 0.393684 0.831085 -0.392824 +0.550582 0.393699 -0.138747 0.419280 0.856915 -0.299835 +0.568128 -0.052594 -0.022134 0.909642 -0.376113 -0.176328 +0.566012 -0.046012 -0.045121 0.887900 -0.333242 -0.317148 +0.565385 -0.039188 -0.051914 0.886932 -0.321343 -0.331798 +0.564743 -0.032395 -0.058828 0.885747 -0.312732 -0.343002 +0.563798 -0.025700 -0.069113 0.879892 -0.292753 -0.374280 +0.563088 -0.018982 -0.076806 0.870873 -0.276253 -0.406527 +0.562415 -0.012272 -0.084082 0.868523 -0.260205 -0.421855 +0.561969 -0.005524 -0.088941 0.865337 -0.234007 -0.443207 +0.561576 0.001224 -0.093150 0.864822 -0.207208 -0.457327 +0.561191 0.007957 -0.097382 0.854296 -0.180992 -0.487258 +0.560949 0.014736 -0.100004 0.857500 -0.162383 -0.488185 +0.560753 0.021514 -0.102127 0.857204 -0.134507 -0.497102 +0.560624 0.028322 -0.103480 0.854519 -0.117324 -0.505997 +0.560541 0.035138 -0.104410 0.857404 -0.100117 -0.504812 +0.560458 0.041947 -0.105347 0.854973 -0.089904 -0.510822 +0.560375 0.048763 -0.106186 0.859128 -0.079762 -0.505507 +0.560269 0.055556 -0.107372 0.863918 -0.066993 -0.499158 +0.560156 0.062342 -0.108581 0.864393 -0.065833 -0.498489 +0.560088 0.069151 -0.109359 0.865851 -0.066427 -0.495872 +0.559959 0.075929 -0.110682 0.866885 -0.066793 -0.494014 +0.559823 0.082692 -0.112170 0.863045 -0.063048 -0.501178 +0.559763 0.089493 -0.112820 0.861956 -0.062336 -0.503136 +0.559680 0.096279 -0.113742 0.860345 -0.058927 -0.506294 +0.559619 0.103072 -0.114445 0.862034 -0.059014 -0.503403 +0.559657 0.109926 -0.114029 0.867069 -0.068976 -0.493389 +0.559634 0.116750 -0.114211 0.867256 -0.064661 -0.493646 +0.559574 0.123543 -0.114860 0.869232 -0.071006 -0.489279 +0.559498 0.130321 -0.115714 0.870181 -0.072329 -0.487395 +0.559430 0.137107 -0.116417 0.871758 -0.079631 -0.483422 +0.559256 0.143810 -0.118306 0.872571 -0.087726 -0.480546 +0.558909 0.150376 -0.122122 0.873943 -0.114784 -0.472279 +0.557700 0.156286 -0.135241 0.847428 -0.175748 -0.500978 +0.552660 0.159172 -0.189890 -0.026632 -0.892621 -0.450020 +0.550914 0.164492 -0.208774 -0.122172 -0.872913 -0.472331 +0.549765 0.170228 -0.221273 -0.131765 -0.829018 -0.543476 +0.548957 0.176205 -0.230023 -0.094137 -0.768004 -0.633489 +0.548315 0.182288 -0.237013 -0.056437 -0.696515 -0.715319 +0.547763 0.188431 -0.242967 -0.035522 -0.623075 -0.781355 +0.547287 0.194620 -0.248121 -0.000326 -0.565936 -0.824449 +0.546909 0.200877 -0.252209 0.005918 -0.513317 -0.858179 +0.546599 0.207187 -0.255564 0.031676 -0.451092 -0.891915 +0.546320 0.213512 -0.258564 0.047277 -0.392297 -0.918623 +0.546085 0.219867 -0.261149 0.079172 -0.315931 -0.945473 +0.545919 0.226275 -0.262977 0.092737 -0.255447 -0.962365 +0.545783 0.232721 -0.264413 0.120351 -0.195093 -0.973373 +0.545700 0.239204 -0.265335 0.142879 -0.132326 -0.980854 +0.545677 0.245756 -0.265584 0.169426 -0.069181 -0.983112 +0.545692 0.252345 -0.265410 0.184250 -0.017656 -0.982721 +0.545745 0.258972 -0.264828 0.201481 0.042014 -0.978591 +0.545828 0.265637 -0.263922 0.218997 0.094491 -0.971139 +0.545934 0.272325 -0.262796 0.231690 0.145206 -0.961891 +0.546063 0.279043 -0.261383 0.246269 0.194360 -0.949514 +0.546206 0.285791 -0.259834 0.252490 0.244508 -0.936197 +0.546373 0.292561 -0.258020 0.263441 0.297124 -0.917778 +0.546622 0.299445 -0.255292 0.268515 0.339197 -0.901579 +0.546924 0.306390 -0.252088 0.275727 0.382809 -0.881721 +0.547294 0.313440 -0.248068 0.284690 0.432106 -0.855708 +0.547755 0.320627 -0.242998 0.287369 0.478737 -0.829596 +0.548239 0.327843 -0.237784 0.300523 0.532198 -0.791487 +0.548707 0.335060 -0.232683 0.305020 0.569603 -0.763227 +0.549267 0.342405 -0.226691 0.323549 0.611009 -0.722485 +0.549886 0.349871 -0.219912 0.335946 0.660251 -0.671721 +0.550740 0.357654 -0.210708 0.357686 0.702790 -0.614937 +0.551806 0.365777 -0.199094 0.384419 0.751737 -0.535830 +0.553355 0.374588 -0.182326 0.403758 0.798873 -0.445849 +0.555788 0.384699 -0.155931 0.435338 0.830506 -0.347478 +0.575103 -0.031617 -0.022360 0.929481 -0.285166 -0.233977 +0.573727 -0.024967 -0.036982 0.922027 -0.283075 -0.264073 +0.572798 -0.018241 -0.046829 0.916738 -0.275335 -0.289452 +0.571581 -0.011637 -0.059826 0.905886 -0.262607 -0.332277 +0.570848 -0.004927 -0.067571 0.893305 -0.241936 -0.378778 +0.570357 0.001829 -0.072846 0.892855 -0.217330 -0.394433 +0.569760 0.008532 -0.079231 0.888276 -0.185150 -0.420339 +0.569367 0.015287 -0.083395 0.886296 -0.160587 -0.434386 +0.569057 0.022058 -0.086651 0.884750 -0.135764 -0.445855 +0.568868 0.028866 -0.088647 0.885461 -0.113540 -0.450629 +0.568838 0.035728 -0.089039 0.885213 -0.089554 -0.456484 +0.568785 0.042582 -0.089546 0.886638 -0.073640 -0.456563 +0.568763 0.049451 -0.089840 0.889222 -0.067419 -0.452481 +0.568710 0.056297 -0.090400 0.889440 -0.061506 -0.452894 +0.568657 0.063151 -0.090914 0.888711 -0.058785 -0.454684 +0.568513 0.069952 -0.092485 0.888553 -0.057232 -0.455190 +0.568309 0.076715 -0.094601 0.881297 -0.057957 -0.468996 +0.568136 0.083486 -0.096445 0.882649 -0.057761 -0.466471 +0.567977 0.090264 -0.098183 0.886367 -0.054766 -0.459733 +0.567924 0.097095 -0.098712 0.889187 -0.053775 -0.454372 +0.567886 0.103926 -0.099112 0.891570 -0.052914 -0.449781 +0.567863 0.110772 -0.099392 0.890489 -0.059734 -0.451066 +0.567879 0.117641 -0.099226 0.892933 -0.053655 -0.446981 +0.567886 0.124503 -0.099135 0.892833 -0.059248 -0.446474 +0.567758 0.131281 -0.100488 0.891783 -0.060192 -0.448442 +0.567644 0.138059 -0.101712 0.882784 -0.065715 -0.465160 +0.567531 0.144830 -0.102936 0.882886 -0.072134 -0.464014 +0.567062 0.151344 -0.107893 0.885107 -0.095688 -0.455445 +0.566012 0.157404 -0.119107 0.874849 -0.113552 -0.470898 +0.558864 0.158795 -0.195157 -0.035267 -0.907836 -0.417840 +0.557367 0.164326 -0.211094 -0.078949 -0.890379 -0.448322 +0.556249 0.170099 -0.223010 -0.030951 -0.810227 -0.585298 +0.555486 0.176122 -0.231096 -0.001758 -0.741882 -0.670528 +0.554889 0.182258 -0.237436 0.019632 -0.684892 -0.728380 +0.554330 0.188394 -0.243398 0.043911 -0.605551 -0.794595 +0.553899 0.194628 -0.248007 0.058740 -0.551000 -0.832435 +0.553521 0.200892 -0.251998 0.068902 -0.491582 -0.868101 +0.553204 0.207202 -0.255383 0.089214 -0.433276 -0.896835 +0.552917 0.213519 -0.258466 0.120786 -0.357710 -0.925988 +0.552728 0.219927 -0.260484 0.141165 -0.297499 -0.944228 +0.552584 0.226366 -0.262017 0.165773 -0.235017 -0.957751 +0.552471 0.232827 -0.263234 0.187662 -0.170547 -0.967314 +0.552418 0.239355 -0.263756 0.209472 -0.107531 -0.971884 +0.552418 0.245922 -0.263793 0.223521 -0.054889 -0.973152 +0.552448 0.252534 -0.263431 0.243905 0.004597 -0.969788 +0.552584 0.259252 -0.261980 0.261678 0.060718 -0.963243 +0.552712 0.265962 -0.260642 0.277319 0.115091 -0.953860 +0.552826 0.272672 -0.259403 0.288310 0.161657 -0.943792 +0.552939 0.279375 -0.258239 0.296100 0.205377 -0.932816 +0.553075 0.286108 -0.256803 0.304603 0.256031 -0.917423 +0.553234 0.292886 -0.255043 0.304924 0.300440 -0.903746 +0.553483 0.299763 -0.252444 0.311818 0.350318 -0.883203 +0.553770 0.306692 -0.249406 0.321476 0.393791 -0.861152 +0.554126 0.313720 -0.245582 0.323188 0.433577 -0.841166 +0.554594 0.320899 -0.240610 0.329337 0.487535 -0.808608 +0.555100 0.328138 -0.235222 0.333604 0.536121 -0.775424 +0.555622 0.335422 -0.229622 0.346879 0.582577 -0.735037 +0.556219 0.342813 -0.223312 0.356487 0.615715 -0.702718 +0.556944 0.350400 -0.215552 0.379342 0.670268 -0.637840 +0.557949 0.358372 -0.204920 0.402433 0.712851 -0.574361 +0.559325 0.366881 -0.190268 0.428503 0.762817 -0.484247 +0.561244 0.376168 -0.169850 0.446314 0.807815 -0.385018 +0.563972 0.386641 -0.140787 0.461549 0.829216 -0.315236 +0.582924 -0.003408 -0.013670 0.945892 -0.257983 -0.196807 +0.579841 0.002637 -0.045853 0.931527 -0.227893 -0.283412 +0.578873 0.009265 -0.055994 0.929575 -0.195123 -0.312758 +0.578428 0.016043 -0.060657 0.924414 -0.170437 -0.341189 +0.577997 0.022814 -0.065138 0.918029 -0.127368 -0.375499 +0.577642 0.029592 -0.068863 0.911710 -0.099773 -0.398535 +0.577423 0.036415 -0.071176 0.915403 -0.078781 -0.394754 +0.577347 0.043292 -0.071969 0.916316 -0.067139 -0.394789 +0.577370 0.050206 -0.071705 0.921525 -0.047439 -0.385411 +0.577528 0.057189 -0.070057 0.928619 -0.034269 -0.369448 +0.577755 0.064209 -0.067677 0.928803 -0.030514 -0.369314 +0.578125 0.071297 -0.063838 0.930915 -0.029728 -0.364024 +0.577808 0.078060 -0.067095 0.931005 -0.031133 -0.363677 +0.577234 0.084672 -0.073141 0.929532 -0.034674 -0.367108 +0.576773 0.091322 -0.077924 0.929529 -0.040210 -0.366549 +0.576622 0.098130 -0.079526 0.929957 -0.041795 -0.365284 +0.576523 0.104969 -0.080516 0.924615 -0.042397 -0.378535 +0.576501 0.111845 -0.080795 0.928208 -0.044912 -0.369341 +0.576569 0.118775 -0.080077 0.924701 -0.039371 -0.378654 +0.576622 0.125704 -0.079503 0.930642 -0.022546 -0.365236 +0.576614 0.132588 -0.079594 0.932666 -0.024740 -0.359892 +0.576470 0.139389 -0.081083 0.933420 -0.021202 -0.358159 +0.576289 0.146152 -0.083017 0.933317 -0.026362 -0.358083 +0.576108 0.152908 -0.084921 0.934942 -0.030475 -0.353491 +0.575601 0.159422 -0.090166 0.920709 -0.087041 -0.380420 +0.565226 0.158553 -0.198595 -0.002667 -0.941078 -0.338180 +0.563828 0.164167 -0.213232 0.007455 -0.877932 -0.478727 +0.562823 0.170046 -0.223683 0.043718 -0.795509 -0.604362 +0.562105 0.176114 -0.231232 0.063736 -0.724050 -0.686796 +0.561508 0.182250 -0.237458 0.089495 -0.649884 -0.754746 +0.560987 0.188439 -0.242907 0.098850 -0.591717 -0.800062 +0.560541 0.194666 -0.247585 0.126254 -0.531909 -0.837337 +0.560178 0.200953 -0.251348 0.144337 -0.466193 -0.872829 +0.559899 0.207293 -0.254279 0.168019 -0.402418 -0.899905 +0.559649 0.213663 -0.256871 0.191975 -0.337442 -0.921563 +0.559445 0.220048 -0.259056 0.212592 -0.270682 -0.938901 +0.559309 0.226502 -0.260476 0.232575 -0.209724 -0.949697 +0.559204 0.232985 -0.261572 0.254917 -0.139162 -0.956897 +0.559181 0.239544 -0.261791 0.274153 -0.083578 -0.958047 +0.559204 0.246141 -0.261541 0.289745 -0.030923 -0.956604 +0.559272 0.252783 -0.260861 0.303721 0.023242 -0.952478 +0.559430 0.259532 -0.259146 0.317671 0.077403 -0.945036 +0.559581 0.266272 -0.257597 0.331731 0.128168 -0.934627 +0.559725 0.273005 -0.256131 0.338532 0.172394 -0.925028 +0.559831 0.279708 -0.255028 0.347282 0.215333 -0.912703 +0.559952 0.286441 -0.253698 0.351889 0.260422 -0.899085 +0.560103 0.293196 -0.252134 0.355828 0.307073 -0.882662 +0.560330 0.300050 -0.249783 0.359787 0.354316 -0.863142 +0.560609 0.306972 -0.246897 0.359232 0.391575 -0.847125 +0.560964 0.313999 -0.243141 0.364108 0.439948 -0.820896 +0.561463 0.321208 -0.237904 0.369595 0.490243 -0.789342 +0.561992 0.328470 -0.232373 0.375270 0.544641 -0.750026 +0.562574 0.335808 -0.226350 0.384705 0.585370 -0.713683 +0.563246 0.343289 -0.219323 0.409291 0.635002 -0.655174 +0.564085 0.351012 -0.210512 0.412955 0.683881 -0.601478 +0.565340 0.359301 -0.197394 0.442339 0.728579 -0.522981 +0.567176 0.368384 -0.178237 0.478178 0.772369 -0.418081 +0.569420 0.378087 -0.154774 0.474905 0.808900 -0.346621 +0.591629 0.011154 0.003725 0.964984 -0.189668 -0.181198 +0.590254 0.017720 -0.010375 0.963400 -0.189124 -0.189981 +0.587511 0.023751 -0.038531 0.953937 -0.149367 -0.260181 +0.586694 0.030408 -0.046859 0.951026 -0.113274 -0.287607 +0.586422 0.037247 -0.049685 0.943224 -0.068423 -0.325032 +0.586264 0.044123 -0.051287 0.945196 -0.049660 -0.322704 +0.586226 0.051053 -0.051695 0.940385 -0.027024 -0.339038 +0.586438 0.058088 -0.049511 0.940456 -0.019426 -0.339361 +0.586883 0.065236 -0.044947 0.951769 -0.016725 -0.306361 +0.587397 0.072445 -0.039635 0.961597 -0.014335 -0.274091 +0.587866 0.079639 -0.034874 0.964845 -0.015280 -0.262376 +0.588002 0.086674 -0.033476 0.964216 -0.027838 -0.263652 +0.587820 0.093558 -0.035297 0.957965 -0.028011 -0.285514 +0.586521 0.099800 -0.048627 0.959893 -0.017244 -0.279836 +0.586082 0.106495 -0.053138 0.950929 -0.025500 -0.308357 +0.585901 0.113326 -0.055065 0.951122 -0.030800 -0.307277 +0.585969 0.120301 -0.054332 0.956561 -0.015235 -0.291134 +0.586007 0.127261 -0.053947 0.960429 -0.007494 -0.278424 +0.586490 0.134515 -0.048982 0.972166 0.017029 -0.233675 +0.587072 0.141845 -0.043005 0.970510 0.041334 -0.237489 +0.587843 0.149319 -0.035131 0.968865 0.069410 -0.237662 +0.588931 0.157057 -0.023932 0.995257 0.000299 -0.097280 +0.589543 0.164485 -0.017630 0.994716 0.006158 -0.102479 +0.571838 0.158500 -0.199381 0.064610 -0.931156 -0.358851 +0.570402 0.164107 -0.214079 0.086229 -0.832375 -0.547464 +0.569533 0.170099 -0.223003 0.121120 -0.765305 -0.632169 +0.568823 0.176182 -0.230348 0.147579 -0.700979 -0.697746 +0.568241 0.182348 -0.236287 0.166246 -0.641776 -0.748656 +0.567682 0.188507 -0.242023 0.182561 -0.568237 -0.802358 +0.567259 0.194764 -0.246368 0.196298 -0.518037 -0.832529 +0.566934 0.201089 -0.249715 0.222600 -0.441684 -0.869117 +0.566662 0.207444 -0.252504 0.236189 -0.387534 -0.891085 +0.566420 0.213829 -0.254960 0.253109 -0.313749 -0.915149 +0.566231 0.220237 -0.256932 0.282034 -0.247466 -0.926940 +0.566103 0.226706 -0.258224 0.299735 -0.183114 -0.936284 +0.566012 0.233204 -0.259138 0.312140 -0.121804 -0.942195 +0.565982 0.239756 -0.259486 0.324642 -0.068784 -0.943332 +0.566020 0.246375 -0.259131 0.341793 -0.012092 -0.939697 +0.566118 0.253055 -0.258080 0.359037 0.043561 -0.932306 +0.566284 0.259804 -0.256395 0.374055 0.092047 -0.922827 +0.566435 0.266552 -0.254801 0.380238 0.135732 -0.914875 +0.566601 0.273315 -0.253161 0.391193 0.180180 -0.902498 +0.566700 0.280010 -0.252126 0.399426 0.220123 -0.889947 +0.566821 0.286735 -0.250909 0.394944 0.266759 -0.879124 +0.566942 0.293468 -0.249617 0.395842 0.316192 -0.862167 +0.567191 0.300352 -0.247055 0.391068 0.356315 -0.848590 +0.567501 0.307304 -0.243874 0.400546 0.394046 -0.827219 +0.567894 0.314362 -0.239884 0.403205 0.443368 -0.800531 +0.568385 0.321556 -0.234837 0.407834 0.498387 -0.765037 +0.568906 0.328810 -0.229456 0.409421 0.548173 -0.729302 +0.569564 0.336239 -0.222700 0.431503 0.596535 -0.676721 +0.570380 0.343893 -0.214313 0.440744 0.641246 -0.628131 +0.571445 0.351881 -0.203416 0.457508 0.693576 -0.556451 +0.573214 0.360797 -0.185273 0.489696 0.741610 -0.458490 +0.575216 0.370084 -0.164689 0.498606 0.782797 -0.372317 +0.579516 0.382417 -0.120596 0.499237 0.819348 -0.281836 +0.599344 0.032516 0.010579 0.978800 -0.144077 -0.145574 +0.598672 0.039310 0.003809 0.978800 -0.144077 -0.145574 +0.598483 0.046269 0.001934 0.972604 -0.045216 -0.228026 +0.598505 0.053312 0.002123 0.972436 -0.037881 -0.230072 +0.598710 0.060438 0.004179 0.969134 -0.049313 -0.241554 +0.599563 0.067866 0.012846 0.975589 0.048184 -0.214251 +0.600689 0.075453 0.024196 0.995128 0.000078 -0.098589 +0.578579 0.158538 -0.198822 0.133048 -0.905682 -0.402540 +0.577264 0.164250 -0.212091 0.179065 -0.813160 -0.553811 +0.576304 0.170190 -0.221764 0.199955 -0.749200 -0.631441 +0.575617 0.176303 -0.228708 0.226545 -0.679664 -0.697663 +0.575035 0.182477 -0.234572 0.241841 -0.620684 -0.745832 +0.574521 0.188688 -0.239733 0.255172 -0.560742 -0.787690 +0.574098 0.194960 -0.243972 0.278876 -0.482605 -0.830253 +0.573765 0.201285 -0.247380 0.291494 -0.428958 -0.855001 +0.573486 0.207648 -0.250154 0.307360 -0.362707 -0.879758 +0.573251 0.214033 -0.252564 0.322769 -0.291565 -0.900450 +0.573062 0.220464 -0.254438 0.334572 -0.228395 -0.914274 +0.572964 0.226963 -0.255451 0.350782 -0.166237 -0.921584 +0.572881 0.233476 -0.256252 0.365227 -0.105473 -0.924924 +0.572866 0.240043 -0.256448 0.378223 -0.048245 -0.924456 +0.572919 0.246685 -0.255889 0.390098 0.003781 -0.920766 +0.572994 0.253343 -0.255149 0.407012 0.058294 -0.911561 +0.573146 0.260083 -0.253584 0.419390 0.100827 -0.902189 +0.573297 0.266831 -0.252081 0.428405 0.147467 -0.891472 +0.573402 0.273534 -0.250985 0.433782 0.186158 -0.881577 +0.573546 0.280274 -0.249595 0.444654 0.225086 -0.866960 +0.573690 0.287030 -0.248091 0.443079 0.266462 -0.855967 +0.573856 0.293816 -0.246421 0.443497 0.311415 -0.840435 +0.574113 0.300700 -0.243852 0.444135 0.358356 -0.821173 +0.574438 0.307667 -0.240595 0.447597 0.393745 -0.802883 +0.574861 0.314763 -0.236340 0.451859 0.449122 -0.770787 +0.575375 0.321987 -0.231141 0.459249 0.503447 -0.731869 +0.575957 0.329294 -0.225292 0.470973 0.558481 -0.682849 +0.576720 0.336851 -0.217570 0.473320 0.604092 -0.641124 +0.577747 0.344740 -0.207225 0.497136 0.652688 -0.571711 +0.579387 0.353422 -0.190698 0.515875 0.709981 -0.479375 +0.581178 0.362354 -0.172638 0.521767 0.751049 -0.404580 +0.584405 0.373160 -0.140062 0.522018 0.789247 -0.323399 +0.585553 0.158742 -0.195935 0.242229 -0.877598 -0.413700 +0.584186 0.164439 -0.209514 0.253441 -0.807222 -0.533067 +0.583249 0.170417 -0.218779 0.273929 -0.732148 -0.623636 +0.582455 0.176462 -0.226698 0.281215 -0.663793 -0.693035 +0.581889 0.182658 -0.232298 0.304514 -0.611696 -0.730136 +0.581382 0.188885 -0.237300 0.329635 -0.539649 -0.774674 +0.580967 0.195164 -0.241426 0.332354 -0.475054 -0.814778 +0.580627 0.201497 -0.244804 0.351805 -0.409732 -0.841637 +0.580370 0.207882 -0.247373 0.369356 -0.341355 -0.864322 +0.580143 0.214290 -0.249595 0.386358 -0.263592 -0.883882 +0.579984 0.220751 -0.251181 0.402893 -0.203677 -0.892296 +0.579886 0.227257 -0.252164 0.414357 -0.146554 -0.898237 +0.579826 0.233794 -0.252761 0.423584 -0.086171 -0.901749 +0.579818 0.240383 -0.252829 0.441780 -0.028171 -0.896681 +0.579856 0.247010 -0.252444 0.454815 0.026876 -0.890180 +0.579916 0.253668 -0.251816 0.461832 0.068379 -0.884328 +0.580037 0.260378 -0.250600 0.472938 0.110915 -0.874087 +0.580150 0.267088 -0.249534 0.478636 0.153555 -0.864482 +0.580264 0.273798 -0.248401 0.485516 0.191817 -0.852925 +0.580430 0.280577 -0.246723 0.488143 0.225051 -0.843249 +0.580604 0.287362 -0.244985 0.490575 0.268065 -0.829143 +0.580823 0.294201 -0.242809 0.495568 0.315918 -0.809078 +0.581118 0.301131 -0.239907 0.490638 0.358442 -0.794225 +0.581480 0.308143 -0.236325 0.499851 0.406053 -0.765030 +0.581964 0.315307 -0.231557 0.505117 0.453148 -0.734517 +0.582516 0.322561 -0.226101 0.512260 0.511886 -0.689610 +0.583241 0.330042 -0.218862 0.526118 0.555432 -0.643968 +0.584140 0.337742 -0.209990 0.539010 0.609457 -0.581405 +0.585667 0.346228 -0.194847 0.553394 0.667544 -0.498136 +0.587322 0.354918 -0.178434 0.554357 0.717418 -0.421900 +0.590231 0.365195 -0.149605 0.554484 0.762913 -0.332433 +0.592936 0.159225 -0.189180 0.306643 -0.874454 -0.375899 +0.591251 0.164726 -0.205645 0.339526 -0.777183 -0.529819 +0.590269 0.170681 -0.215235 0.337285 -0.707277 -0.621287 +0.589430 0.176719 -0.223350 0.360546 -0.646705 -0.672145 +0.588841 0.182908 -0.229146 0.372693 -0.586070 -0.719459 +0.588274 0.189096 -0.234647 0.389246 -0.517766 -0.761843 +0.587881 0.195406 -0.238479 0.406241 -0.453671 -0.793190 +0.587563 0.201761 -0.241607 0.419205 -0.386960 -0.821297 +0.587307 0.208162 -0.244078 0.441023 -0.313801 -0.840849 +0.587095 0.214592 -0.246134 0.452797 -0.240978 -0.858432 +0.586959 0.221084 -0.247456 0.461642 -0.191912 -0.866058 +0.586868 0.227605 -0.248340 0.474145 -0.129221 -0.870912 +0.586823 0.234164 -0.248801 0.488021 -0.066101 -0.870325 +0.586823 0.240761 -0.248809 0.500152 -0.009209 -0.865889 +0.586853 0.247388 -0.248499 0.507318 0.038181 -0.860913 +0.586891 0.254030 -0.248106 0.516102 0.079271 -0.852851 +0.586989 0.260718 -0.247176 0.521061 0.121911 -0.844768 +0.587095 0.267428 -0.246126 0.528369 0.160234 -0.833757 +0.587269 0.274206 -0.244448 0.531062 0.188782 -0.826035 +0.587458 0.281007 -0.242597 0.542248 0.231292 -0.807757 +0.587684 0.287846 -0.240421 0.536515 0.271375 -0.799066 +0.587919 0.294715 -0.238078 0.540822 0.314737 -0.780034 +0.588289 0.301728 -0.234504 0.554221 0.364938 -0.748103 +0.588712 0.308808 -0.230370 0.551739 0.403669 -0.729819 +0.589203 0.315979 -0.225580 0.562478 0.459154 -0.687602 +0.589929 0.323430 -0.218507 0.569300 0.512797 -0.642602 +0.590843 0.331123 -0.209582 0.576242 0.576117 -0.579684 +0.592165 0.339314 -0.196721 0.595770 0.620447 -0.510004 +0.593594 0.347672 -0.182817 0.591669 0.679456 -0.433898 +0.596140 0.357412 -0.157963 0.594463 0.729443 -0.338418 +0.600712 0.159958 -0.178925 0.391038 -0.842777 -0.369888 +0.598422 0.165074 -0.200870 0.406623 -0.760175 -0.506746 +0.597357 0.170991 -0.211048 0.420052 -0.699253 -0.578448 +0.596533 0.177051 -0.219005 0.436496 -0.620377 -0.651616 +0.595914 0.183233 -0.224952 0.446248 -0.563218 -0.695448 +0.595279 0.189391 -0.230990 0.450456 -0.501899 -0.738368 +0.594909 0.195724 -0.234579 0.468530 -0.426024 -0.773940 +0.594546 0.202064 -0.238018 0.483042 -0.362724 -0.796933 +0.594319 0.208494 -0.240232 0.492464 -0.293481 -0.819358 +0.594115 0.214940 -0.242159 0.502084 -0.228511 -0.834083 +0.593994 0.221446 -0.243315 0.517465 -0.172845 -0.838066 +0.593941 0.228013 -0.243806 0.531683 -0.109198 -0.839874 +0.593934 0.234610 -0.243920 0.542109 -0.044455 -0.839131 +0.593956 0.241237 -0.243700 0.550126 0.003048 -0.835076 +0.593964 0.247857 -0.243640 0.551344 0.047188 -0.832942 +0.593994 0.254491 -0.243315 0.560555 0.094872 -0.822665 +0.594062 0.261171 -0.242635 0.565980 0.132993 -0.813621 +0.594221 0.267934 -0.241146 0.572795 0.168803 -0.802130 +0.594410 0.274728 -0.239348 0.575328 0.201034 -0.792832 +0.594629 0.281567 -0.237202 0.586560 0.238207 -0.774083 +0.594909 0.288473 -0.234519 0.592775 0.277673 -0.755987 +0.595279 0.295478 -0.231005 0.603378 0.327001 -0.727328 +0.595679 0.302529 -0.227197 0.609472 0.368176 -0.702132 +0.596163 0.309685 -0.222519 0.615618 0.414954 -0.669946 +0.596737 0.316946 -0.217041 0.621485 0.466966 -0.629047 +0.597644 0.324594 -0.208358 0.630289 0.527612 -0.569526 +0.598815 0.332581 -0.197106 0.627468 0.582558 -0.516634 +0.600070 0.340689 -0.185091 0.630634 0.629608 -0.453757 +0.602284 0.349939 -0.163887 0.617198 0.691252 -0.375814 +0.608616 0.160752 -0.167779 0.529764 -0.779460 -0.334354 +0.605798 0.165550 -0.194363 0.485197 -0.728879 -0.483032 +0.604573 0.171384 -0.205857 0.479470 -0.673907 -0.562101 +0.603750 0.177459 -0.213685 0.503545 -0.607391 -0.614426 +0.603039 0.183595 -0.220343 0.495566 -0.550918 -0.671493 +0.602480 0.189822 -0.225633 0.510762 -0.489390 -0.706838 +0.602027 0.196117 -0.229864 0.532514 -0.397006 -0.747540 +0.601672 0.202464 -0.233265 0.540829 -0.343631 -0.767738 +0.601392 0.208865 -0.235857 0.555918 -0.272990 -0.785132 +0.601233 0.215356 -0.237398 0.570815 -0.205585 -0.794925 +0.601120 0.221877 -0.238448 0.583195 -0.150868 -0.798199 +0.601105 0.228489 -0.238570 0.594314 -0.085592 -0.799665 +0.601120 0.235116 -0.238418 0.598272 -0.033865 -0.800577 +0.601158 0.241766 -0.238101 0.603354 0.014150 -0.797348 +0.601218 0.248438 -0.237542 0.612565 0.066513 -0.787617 +0.601271 0.255111 -0.236990 0.615429 0.109907 -0.780492 +0.601309 0.261768 -0.236627 0.616975 0.142616 -0.773952 +0.601498 0.268562 -0.234905 0.627777 0.178353 -0.757685 +0.601755 0.275438 -0.232456 0.633738 0.218631 -0.742008 +0.602095 0.282405 -0.229222 0.639048 0.248774 -0.727825 +0.602488 0.289425 -0.225580 0.651093 0.292822 -0.700238 +0.602873 0.296461 -0.221892 0.663190 0.339333 -0.667107 +0.603334 0.303579 -0.217540 0.668690 0.387628 -0.634506 +0.603924 0.310856 -0.212000 0.677183 0.427098 -0.599175 +0.604679 0.318314 -0.204912 0.679692 0.475107 -0.558831 +0.605624 0.326014 -0.196026 0.678785 0.537390 -0.500463 +0.606833 0.334032 -0.184623 0.681563 0.580013 -0.446158 +0.608798 0.342934 -0.166094 0.679053 0.638503 -0.362217 +0.613679 0.166359 -0.183346 0.560088 -0.706597 -0.432460 +0.611934 0.171852 -0.199555 0.569239 -0.634276 -0.523126 +0.611004 0.177875 -0.208169 0.564695 -0.590258 -0.576815 +0.610347 0.184071 -0.214267 0.579382 -0.526945 -0.621808 +0.609772 0.190306 -0.219595 0.586215 -0.460078 -0.666844 +0.609311 0.196608 -0.223826 0.610912 -0.364449 -0.702825 +0.608941 0.202963 -0.227280 0.614977 -0.321283 -0.720125 +0.608631 0.209348 -0.230182 0.616183 -0.249414 -0.747069 +0.608465 0.215854 -0.231686 0.629743 -0.192341 -0.752615 +0.608374 0.222406 -0.232569 0.637284 -0.130715 -0.759462 +0.608374 0.229033 -0.232562 0.644311 -0.072129 -0.761355 +0.608427 0.235706 -0.232018 0.650761 -0.020165 -0.759015 +0.608503 0.242401 -0.231330 0.661507 0.035534 -0.749097 +0.608609 0.249126 -0.230386 0.670974 0.080923 -0.737052 +0.608684 0.255821 -0.229675 0.665984 0.116262 -0.736850 +0.608767 0.262531 -0.228920 0.672858 0.155976 -0.723141 +0.608994 0.269385 -0.226773 0.681047 0.194536 -0.705925 +0.609289 0.276292 -0.224084 0.687723 0.225015 -0.690221 +0.609651 0.283289 -0.220698 0.702182 0.263662 -0.661380 +0.610112 0.290393 -0.216406 0.711034 0.306696 -0.632747 +0.610656 0.297594 -0.211366 0.715896 0.348446 -0.605044 +0.611216 0.304826 -0.206197 0.723056 0.390808 -0.569613 +0.611828 0.312133 -0.200507 0.723890 0.429515 -0.539908 +0.612651 0.319674 -0.192890 0.720042 0.483155 -0.498098 +0.613792 0.327586 -0.182303 0.713762 0.528197 -0.459947 +0.615402 0.336042 -0.167341 0.713439 0.579077 -0.394557 +0.622029 0.167454 -0.168361 0.683178 -0.660114 -0.312277 +0.619739 0.172623 -0.189300 0.621773 -0.615850 -0.483867 +0.618387 0.178381 -0.201648 0.622625 -0.564826 -0.541581 +0.617692 0.184563 -0.208018 0.638023 -0.505023 -0.581272 +0.617125 0.190819 -0.213164 0.653923 -0.438117 -0.616797 +0.616687 0.197152 -0.217154 0.664301 -0.354879 -0.657848 +0.616316 0.203530 -0.220524 0.662345 -0.291106 -0.690331 +0.615976 0.209907 -0.223630 0.670295 -0.234899 -0.703937 +0.615840 0.216444 -0.224884 0.679250 -0.169980 -0.713951 +0.615772 0.223026 -0.225519 0.687667 -0.119293 -0.716159 +0.615780 0.229675 -0.225444 0.699429 -0.056173 -0.712491 +0.615855 0.236378 -0.224726 0.702223 -0.000479 -0.711957 +0.615954 0.243103 -0.223842 0.708649 0.046921 -0.703999 +0.616044 0.249829 -0.223026 0.710449 0.089582 -0.698024 +0.616165 0.256577 -0.221945 0.717393 0.133563 -0.683746 +0.616309 0.263355 -0.220638 0.723434 0.170442 -0.669024 +0.616566 0.270239 -0.218265 0.725712 0.202531 -0.657513 +0.616974 0.277274 -0.214555 0.737402 0.244796 -0.629534 +0.617465 0.284400 -0.210051 0.742887 0.282454 -0.606910 +0.618009 0.291594 -0.205109 0.750515 0.322684 -0.576717 +0.618591 0.298841 -0.199812 0.760591 0.369635 -0.533733 +0.619203 0.306141 -0.194197 0.758501 0.407386 -0.508639 +0.619944 0.313591 -0.187404 0.757528 0.443267 -0.479235 +0.621039 0.321428 -0.177421 0.761924 0.488221 -0.425573 +0.622702 0.329891 -0.162248 0.757511 0.545188 -0.359091 +0.628097 0.173734 -0.174406 0.733349 -0.579932 -0.354794 +0.626412 0.179303 -0.189542 0.716023 -0.531395 -0.452692 +0.625369 0.185273 -0.198935 0.709342 -0.483100 -0.513272 +0.624621 0.191416 -0.205661 0.714017 -0.422725 -0.558107 +0.624122 0.197726 -0.210111 0.712306 -0.336572 -0.615905 +0.623813 0.204164 -0.212922 0.730847 -0.274304 -0.624995 +0.623556 0.210625 -0.215220 0.739331 -0.193496 -0.644941 +0.623359 0.217131 -0.216980 0.738507 -0.156029 -0.655944 +0.623284 0.223721 -0.217683 0.740856 -0.096287 -0.664726 +0.623284 0.230378 -0.217660 0.745768 -0.042656 -0.664839 +0.623367 0.237096 -0.216950 0.750410 0.010680 -0.660887 +0.623457 0.243829 -0.216126 0.752634 0.058090 -0.655871 +0.623578 0.250592 -0.215031 0.757455 0.107238 -0.644020 +0.623752 0.257401 -0.213474 0.757358 0.147990 -0.636010 +0.623994 0.264277 -0.211298 0.764787 0.181968 -0.618052 +0.624349 0.271267 -0.208079 0.768870 0.219339 -0.600608 +0.624848 0.278400 -0.203613 0.781818 0.257489 -0.567856 +0.625407 0.285602 -0.198587 0.785690 0.292687 -0.545000 +0.626027 0.292879 -0.192996 0.791599 0.342522 -0.506013 +0.626676 0.300201 -0.187154 0.791710 0.375920 -0.481539 +0.627523 0.307743 -0.179575 0.802093 0.402976 -0.440746 +0.628649 0.315586 -0.169442 0.792847 0.449757 -0.411231 +0.630455 0.324155 -0.153240 0.790744 0.498972 -0.354614 +0.634906 0.180520 -0.173696 0.778428 -0.514333 -0.359876 +0.633561 0.186316 -0.185643 0.779459 -0.453457 -0.432228 +0.632692 0.192414 -0.193275 0.781060 -0.395098 -0.483573 +0.632049 0.198640 -0.198973 0.786648 -0.312528 -0.532457 +0.631702 0.205071 -0.202041 0.792883 -0.269679 -0.546452 +0.631437 0.211547 -0.204414 0.791306 -0.196271 -0.579062 +0.631248 0.218076 -0.206106 0.789143 -0.142704 -0.597402 +0.631180 0.224703 -0.206643 0.795245 -0.082146 -0.600697 +0.631135 0.231338 -0.207081 0.801834 -0.027244 -0.596926 +0.631180 0.238041 -0.206703 0.796608 0.019440 -0.604184 +0.631286 0.244811 -0.205721 0.794654 0.071228 -0.602870 +0.631422 0.251597 -0.204504 0.794043 0.112221 -0.597413 +0.631641 0.258466 -0.202570 0.800327 0.158548 -0.578221 +0.631959 0.265418 -0.199797 0.804638 0.211104 -0.554971 +0.632344 0.272446 -0.196381 0.808018 0.240176 -0.537979 +0.632994 0.279723 -0.190661 0.816481 0.275718 -0.507286 +0.633765 0.287136 -0.183837 0.823395 0.322768 -0.466735 +0.634739 0.294768 -0.175192 0.826336 0.362607 -0.430911 +0.635948 0.302649 -0.164507 0.829491 0.390909 -0.398917 +0.637127 0.310539 -0.154056 0.834792 0.410573 -0.366815 +0.639296 0.319440 -0.134855 0.843202 0.432086 -0.319862 +0.642893 0.188107 -0.162769 0.843895 -0.429087 -0.322064 +0.641435 0.193842 -0.175464 0.837480 -0.374169 -0.398278 +0.640626 0.199986 -0.182515 0.843184 -0.297982 -0.447491 +0.640044 0.206280 -0.187570 0.846380 -0.245377 -0.472684 +0.639583 0.212643 -0.191613 0.842334 -0.189264 -0.504630 +0.639311 0.219134 -0.193986 0.842314 -0.137762 -0.521085 +0.639190 0.225731 -0.195044 0.841602 -0.076324 -0.534678 +0.639168 0.232411 -0.195187 0.835634 -0.023243 -0.548795 +0.639183 0.239114 -0.195096 0.843240 0.030883 -0.536649 +0.639266 0.245877 -0.194333 0.832922 0.079746 -0.547614 +0.639364 0.252647 -0.193532 0.830249 0.126237 -0.542910 +0.639545 0.259501 -0.191915 0.835951 0.182235 -0.517664 +0.640037 0.266627 -0.187638 0.843871 0.214093 -0.491982 +0.640732 0.273942 -0.181570 0.850070 0.256258 -0.460123 +0.641933 0.281725 -0.171149 0.870747 0.286260 -0.399818 +0.643641 0.290015 -0.156233 0.880710 0.321823 -0.347534 +0.645613 0.298607 -0.139019 0.887655 0.343160 -0.307098 +0.651545 0.202940 -0.146440 0.931240 -0.302893 -0.202603 +0.650261 0.208797 -0.157427 0.923670 -0.238826 -0.299660 +0.649195 0.214774 -0.166578 0.917511 -0.168054 -0.360460 +0.648507 0.221000 -0.172495 0.912009 -0.125275 -0.390572 +0.647873 0.227250 -0.177935 0.904394 -0.064112 -0.421854 +0.647601 0.233764 -0.180293 0.904211 -0.020686 -0.426586 +0.647419 0.240338 -0.181850 0.891470 0.029781 -0.452100 +0.647548 0.247161 -0.180701 0.897986 0.088162 -0.431102 +0.647805 0.254083 -0.178532 0.897234 0.124951 -0.423508 +0.648545 0.261428 -0.172139 0.895820 0.187417 -0.402967 +0.649981 0.269385 -0.159814 0.901796 0.234886 -0.362758 +0.651651 0.277584 -0.145472 0.907204 0.294193 -0.300720 +0.658815 0.243988 -0.142261 0.974696 0.053194 -0.217111 +0.658701 0.250683 -0.143190 0.973237 0.084152 -0.213844 diff --git a/include/.DS_Store b/include/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..58d267fe99a2eab3240206712918324aff877668 Binary files /dev/null and b/include/.DS_Store differ diff --git a/include/eigen/.clang-format b/include/eigen/.clang-format new file mode 100644 index 0000000000000000000000000000000000000000..1f33cbed2e4486c6e783d5ff032b3b9edf6ba175 --- /dev/null +++ b/include/eigen/.clang-format @@ -0,0 +1,19 @@ +--- +BasedOnStyle: Google +ColumnLimit: 120 +--- +Language: Cpp +BasedOnStyle: Google +ColumnLimit: 120 +StatementMacros: + - EIGEN_STATIC_ASSERT + - EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED + - EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN +SortIncludes: false +AttributeMacros: +- EIGEN_STRONG_INLINE +- EIGEN_ALWAYS_INLINE +- EIGEN_DEVICE_FUNC +- EIGEN_DONT_INLINE +- EIGEN_DEPRECATED +- EIGEN_UNUSED diff --git a/include/eigen/.gitignore b/include/eigen/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..19dfac9ef6a76a91edd2844e09751a15524e1691 --- /dev/null +++ b/include/eigen/.gitignore @@ -0,0 +1,41 @@ +qrc_*cxx +*.orig +*.pyc +*.diff +diff +*.save +save +*.old +*.gmo +*.qm +core +core.* +*.bak +*~ +*build* +*.moc.* +*.moc +ui_* +CMakeCache.txt +tags +.*.swp +activity.png +*.out +*.php* +*.log +*.orig +*.rej +log +patch +*.patch +a +a.* +lapack/testing +lapack/reference +.*project +.settings +Makefile +!ci/build.gitlab-ci.yml +!scripts/buildtests.in +!Eigen/Core +!Eigen/src/Core diff --git a/include/eigen/.gitlab-ci.yml b/include/eigen/.gitlab-ci.yml new file mode 100644 index 0000000000000000000000000000000000000000..68cd68040dc0eab42cebc8a8379ad1476841a16c --- /dev/null +++ b/include/eigen/.gitlab-ci.yml @@ -0,0 +1,34 @@ +# This file is part of Eigen, a lightweight C++ template library +# for linear algebra. +# +# Copyright (C) 2023, The Eigen Authors +# +# This Source Code Form is subject to the terms of the Mozilla +# Public License v. 2.0. If a copy of the MPL was not distributed +# with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +stages: + - checkformat + - build + - test + - deploy + +variables: + # CMake build directory. + EIGEN_CI_BUILDDIR: .build + # Specify the CMake build target. + EIGEN_CI_BUILD_TARGET: "" + # If a test regex is specified, that will be selected. + # Otherwise, we will try a label if specified. + EIGEN_CI_CTEST_REGEX: "" + EIGEN_CI_CTEST_LABEL: "" + EIGEN_CI_CTEST_ARGS: "" + +include: + - "/ci/checkformat.gitlab-ci.yml" + - "/ci/common.gitlab-ci.yml" + - "/ci/build.linux.gitlab-ci.yml" + - "/ci/build.windows.gitlab-ci.yml" + - "/ci/test.linux.gitlab-ci.yml" + - "/ci/test.windows.gitlab-ci.yml" + - "/ci/deploy.gitlab-ci.yml" diff --git a/include/eigen/.hgeol b/include/eigen/.hgeol new file mode 100644 index 0000000000000000000000000000000000000000..5327df161536cc2b12f8884e9935daaca82690b1 --- /dev/null +++ b/include/eigen/.hgeol @@ -0,0 +1,11 @@ +[patterns] +*.sh = LF +*.MINPACK = CRLF +scripts/*.in = LF +debug/msvc/*.dat = CRLF +debug/msvc/*.natvis = CRLF +unsupported/test/mpreal/*.* = CRLF +** = native + +[repository] +native = LF diff --git a/include/eigen/CMakeLists.txt b/include/eigen/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..94be8721deb11b8a9aea6088188c02048e61910e --- /dev/null +++ b/include/eigen/CMakeLists.txt @@ -0,0 +1,770 @@ +cmake_minimum_required(VERSION 3.10.0) + +#============================================================================== +# CMake Policy issues. +#============================================================================== +# Allow overriding options in a parent project via `set` before including Eigen. +if (POLICY CMP0077) + cmake_policy (SET CMP0077 NEW) +endif (POLICY CMP0077) + +# NOTE Remove setting the policy once the minimum required CMake version is +# increased to at least 3.15. Retain enabling the export to package registry. +if (POLICY CMP0090) + # The export command does not populate package registry by default + cmake_policy (SET CMP0090 NEW) + # Unless otherwise specified, always export to package registry to ensure + # backwards compatibility. + if (NOT DEFINED CMAKE_EXPORT_PACKAGE_REGISTRY) + set (CMAKE_EXPORT_PACKAGE_REGISTRY ON) + endif (NOT DEFINED CMAKE_EXPORT_PACKAGE_REGISTRY) +endif (POLICY CMP0090) + +# Disable warning about find_package(CUDA). +# CUDA language support is lacking for clang as the CUDA compiler +# until at least cmake version 3.18. Even then, there seems to be +# issues on Windows+Ninja in passing build flags. Continue using +# the "old" way for now. +if (POLICY CMP0146) + cmake_policy(SET CMP0146 OLD) +endif () + +#============================================================================== +# CMake Project. +#============================================================================== + +project(Eigen3) + +# Remove this block after bumping CMake to v3.21.0 +# PROJECT_IS_TOP_LEVEL is defined then by default +if(CMAKE_VERSION VERSION_LESS 3.21.0) + if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR) + set(PROJECT_IS_TOP_LEVEL ON) + else() + set(PROJECT_IS_TOP_LEVEL OFF) + endif() +endif() + +#============================================================================== +# Build ON/OFF Settings. +#============================================================================== +# Determine if we should build tests. +include(CMakeDependentOption) +cmake_dependent_option(BUILD_TESTING "Enable creation of tests." ON "PROJECT_IS_TOP_LEVEL" OFF) +option(EIGEN_BUILD_TESTING "Enable creation of Eigen tests." ${BUILD_TESTING}) +option(EIGEN_LEAVE_TEST_IN_ALL_TARGET "Leaves tests in the all target, needed by ctest for automatic building." OFF) + +# Determine if we should build BLAS/LAPACK implementations. +option(EIGEN_BUILD_BLAS "Toggles the building of the Eigen Blas library" ${PROJECT_IS_TOP_LEVEL}) +option(EIGEN_BUILD_LAPACK "Toggles the building of the included Eigen LAPACK library" ${PROJECT_IS_TOP_LEVEL}) +if (EIGEN_BUILD_BLAS OR EIGEN_BUILD_LAPACK) + # BLAS and LAPACK currently need a fortran compiler. + include(CMakeDetermineFortranCompiler) + if (NOT CMAKE_Fortran_COMPILER) + set(EIGEN_BUILD_BLAS OFF) + set(EIGEN_BUILD_LAPACK OFF) + else() + # Determine if we should build shared libraries for BLAS/LAPACK on this platform. + get_cmake_property(EIGEN_BUILD_SHARED_LIBS TARGET_SUPPORTS_SHARED_LIBS) + endif() +endif() + +option(EIGEN_BUILD_BTL "Build benchmark suite" OFF) +option(EIGEN_BUILD_SPBENCH "Build sparse benchmark suite" OFF) +# Avoid building docs if included from another project. +# Building documentation requires creating and running executables on the host +# platform. We shouldn't do this if cross-compiling. +if (PROJECT_IS_TOP_LEVEL AND NOT CMAKE_CROSSCOMPILING) + set(EIGEN_BUILD_DOC_DEFAULT ON) +endif() +option(EIGEN_BUILD_DOC "Enable creation of Eigen documentation" ${EIGEN_BUILD_DOC_DEFAULT}) + +option(EIGEN_BUILD_DEMOS "Toggles the building of the Eigen demos" ${PROJECT_IS_TOP_LEVEL}) + +# Disable pkgconfig only for native Windows builds +if(NOT WIN32 OR NOT CMAKE_HOST_SYSTEM_NAME MATCHES Windows) + option(EIGEN_BUILD_PKGCONFIG "Build pkg-config .pc file for Eigen" ${PROJECT_IS_TOP_LEVEL}) +endif() +option(EIGEN_BUILD_CMAKE_PACKAGE "Enables the creation of EigenConfig.cmake and related files" ${PROJECT_IS_TOP_LEVEL}) + +if (EIGEN_BUILD_TESTING OR EIGEN_BUILD_BLAS OR EIGEN_BUILD_LAPACK OR EIGEN_BUILT_BTL OR EIGEN_BUILD_BTL OR EIGEN_BUILD_SPBENCH OR EIGEN_BUILD_DOC OR EIGEN_BUILD_DEMOS) + set(EIGEN_IS_BUILDING_ ON) +endif() + +#============================================================================== +# Version Info. +#============================================================================== + +# Automatically parse the version number from header files. +file(READ "${PROJECT_SOURCE_DIR}/Eigen/src/Core/util/Macros.h" _eigen_version_header) +string(REGEX MATCH "define[ \t]+EIGEN_WORLD_VERSION[ \t]+([0-9]+)" _eigen_world_version_match "${_eigen_version_header}") +set(EIGEN_WORLD_VERSION "${CMAKE_MATCH_1}") +string(REGEX MATCH "define[ \t]+EIGEN_MAJOR_VERSION[ \t]+([0-9]+)" _eigen_major_version_match "${_eigen_version_header}") +set(EIGEN_MAJOR_VERSION "${CMAKE_MATCH_1}") +string(REGEX MATCH "define[ \t]+EIGEN_MINOR_VERSION[ \t]+([0-9]+)" _eigen_minor_version_match "${_eigen_version_header}") +set(EIGEN_MINOR_VERSION "${CMAKE_MATCH_1}") +set(EIGEN_VERSION_NUMBER ${EIGEN_WORLD_VERSION}.${EIGEN_MAJOR_VERSION}.${EIGEN_MINOR_VERSION}) + +# If we are in a git repo, extract a changeset. +if(IS_DIRECTORY ${CMAKE_SOURCE_DIR}/.git) + # if the git program is absent or this will leave the EIGEN_GIT_REVNUM string empty, + # but won't stop CMake. + execute_process(COMMAND git ls-remote -q ${CMAKE_SOURCE_DIR} HEAD OUTPUT_VARIABLE EIGEN_GIT_OUTPUT) +endif() + +# extract the git rev number from the git output... +if(EIGEN_GIT_OUTPUT) +string(REGEX MATCH "^([0-9;a-f]+).*" EIGEN_GIT_CHANGESET_MATCH "${EIGEN_GIT_OUTPUT}") +set(EIGEN_GIT_REVNUM "${CMAKE_MATCH_1}") +endif() +#...and show it next to the version number +if(EIGEN_GIT_REVNUM) + set(EIGEN_VERSION "${EIGEN_VERSION_NUMBER} (git rev ${EIGEN_GIT_REVNUM})") +else() + set(EIGEN_VERSION "${EIGEN_VERSION_NUMBER}") +endif() + +#============================================================================== +# Install Path Configuration. +#============================================================================== + +# Unconditionally allow install of targets to support nested dependency +# installations. +# +# Note: projects that depend on Eigen should _probably_ exclude installing +# Eigen by default (e.g. by using EXCLUDE_FROM_ALL when using +# FetchContent_Declare or add_subdirectory) to avoid overwriting a previous +# installation. + +include(GNUInstallDirs) +# Backward compatibility support for EIGEN_INCLUDE_INSTALL_DIR +if(EIGEN_INCLUDE_INSTALL_DIR) + message(WARNING "EIGEN_INCLUDE_INSTALL_DIR is deprecated. Use INCLUDE_INSTALL_DIR instead.") +endif() + +if(EIGEN_INCLUDE_INSTALL_DIR AND NOT INCLUDE_INSTALL_DIR) + set(INCLUDE_INSTALL_DIR ${EIGEN_INCLUDE_INSTALL_DIR} + CACHE PATH "The directory relative to CMAKE_INSTALL_PREFIX where Eigen header files are installed") +else() + set(INCLUDE_INSTALL_DIR + "${CMAKE_INSTALL_INCLUDEDIR}/eigen3" + CACHE PATH "The directory relative to CMAKE_INSTALL_PREFIX where Eigen header files are installed" + ) +endif() +set(CMAKEPACKAGE_INSTALL_DIR + "${CMAKE_INSTALL_DATADIR}/eigen3/cmake" + CACHE PATH "The directory relative to CMAKE_INSTALL_PREFIX where Eigen3Config.cmake is installed" + ) +set(PKGCONFIG_INSTALL_DIR + "${CMAKE_INSTALL_DATADIR}/pkgconfig" + CACHE PATH "The directory relative to CMAKE_INSTALL_PREFIX where eigen3.pc is installed" + ) + +foreach(var INCLUDE_INSTALL_DIR CMAKEPACKAGE_INSTALL_DIR PKGCONFIG_INSTALL_DIR) + # If an absolute path is specified, make it relative to "{CMAKE_INSTALL_PREFIX}". + if(IS_ABSOLUTE "${${var}}") + file(RELATIVE_PATH "${var}" "${CMAKE_INSTALL_PREFIX}" "${${var}}") + endif() +endforeach() + +#============================================================================== +# Eigen Library. +#============================================================================== + +set ( EIGEN_VERSION_STRING ${EIGEN_VERSION_NUMBER} ) +set ( EIGEN_VERSION_MAJOR ${EIGEN_WORLD_VERSION} ) +set ( EIGEN_VERSION_MINOR ${EIGEN_MAJOR_VERSION} ) +set ( EIGEN_VERSION_PATCH ${EIGEN_MINOR_VERSION} ) +set ( EIGEN_DEFINITIONS "") +set ( EIGEN_INCLUDE_DIR "${CMAKE_INSTALL_PREFIX}/${INCLUDE_INSTALL_DIR}" ) +set ( EIGEN_ROOT_DIR ${CMAKE_INSTALL_PREFIX} ) + +# Alias Eigen_*_DIR to Eigen3_*_DIR: +set(Eigen_SOURCE_DIR ${Eigen3_SOURCE_DIR}) +set(Eigen_BINARY_DIR ${Eigen3_BINARY_DIR}) + +# Imported target support +add_library (eigen INTERFACE) +add_library (Eigen3::Eigen ALIAS eigen) +target_include_directories (eigen INTERFACE + $ + $ +) + +# Export as title case Eigen +set_target_properties (eigen PROPERTIES EXPORT_NAME Eigen) + +#============================================================================== +# Install Rule Configuration. +#============================================================================== + +install(FILES + signature_of_eigen3_matrix_library + DESTINATION ${INCLUDE_INSTALL_DIR} COMPONENT Devel + ) + +if(EIGEN_BUILD_PKGCONFIG) + configure_file(eigen3.pc.in eigen3.pc @ONLY) + install(FILES ${CMAKE_CURRENT_BINARY_DIR}/eigen3.pc + DESTINATION ${PKGCONFIG_INSTALL_DIR}) +endif() + +install(DIRECTORY Eigen DESTINATION ${INCLUDE_INSTALL_DIR} COMPONENT Devel) + +install(TARGETS eigen EXPORT Eigen3Targets) + +if(EIGEN_BUILD_CMAKE_PACKAGE) + include (CMakePackageConfigHelpers) + configure_package_config_file ( + ${CMAKE_CURRENT_SOURCE_DIR}/cmake/Eigen3Config.cmake.in + ${CMAKE_CURRENT_BINARY_DIR}/Eigen3Config.cmake + PATH_VARS EIGEN_INCLUDE_DIR EIGEN_ROOT_DIR + INSTALL_DESTINATION ${CMAKEPACKAGE_INSTALL_DIR} + NO_SET_AND_CHECK_MACRO # Eigen does not provide legacy style defines + NO_CHECK_REQUIRED_COMPONENTS_MACRO # Eigen does not provide components + ) + + set(CVF_VERSION "${EIGEN_VERSION_NUMBER}") + configure_file("${CMAKE_CURRENT_SOURCE_DIR}/cmake/Eigen3ConfigVersion.cmake.in" + "Eigen3ConfigVersion.cmake" + @ONLY) + + # The Eigen target will be located in the Eigen3 namespace. Other CMake + # targets can refer to it using Eigen3::Eigen. + export (TARGETS eigen NAMESPACE Eigen3:: FILE Eigen3Targets.cmake) + # Export Eigen3 package to CMake registry such that it can be easily found by + # CMake even if it has not been installed to a standard directory. + export (PACKAGE Eigen3) + + install (EXPORT Eigen3Targets NAMESPACE Eigen3:: DESTINATION ${CMAKEPACKAGE_INSTALL_DIR}) + + install (FILES ${CMAKE_CURRENT_SOURCE_DIR}/cmake/UseEigen3.cmake + ${CMAKE_CURRENT_BINARY_DIR}/Eigen3Config.cmake + ${CMAKE_CURRENT_BINARY_DIR}/Eigen3ConfigVersion.cmake + DESTINATION ${CMAKEPACKAGE_INSTALL_DIR}) + + # Add uninstall target + if(NOT TARGET uninstall) + add_custom_target ( uninstall + COMMAND ${CMAKE_COMMAND} -P ${CMAKE_CURRENT_SOURCE_DIR}/cmake/EigenUninstall.cmake) + endif() +endif() + +#============================================================================== +# General Build Configuration. +#============================================================================== + +# Guard against in-source builds +if(${CMAKE_SOURCE_DIR} STREQUAL ${CMAKE_BINARY_DIR}) + message(FATAL_ERROR "In-source builds not allowed. Please make a new directory (called a build directory) and run CMake from there. You may need to remove CMakeCache.txt. ") +endif() + +# Guard against bad build-type strings +if (PROJECT_IS_TOP_LEVEL AND NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE "Release") +endif() + +# Only try to figure out how to link the math library if we are building something. +# Otherwise, let the parent project deal with dependencies. +if (EIGEN_IS_BUILDING_) + # Use Eigen's cmake files. + set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) + + set(CMAKE_INCLUDE_CURRENT_DIR OFF) + + find_package(StandardMathLibrary) + set(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO "") + if(NOT STANDARD_MATH_LIBRARY_FOUND) + message(FATAL_ERROR + "Can't link to the standard math library. Please report to the Eigen developers, telling them about your platform.") + else() + if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO) + set(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO "${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO} ${STANDARD_MATH_LIBRARY}") + else() + set(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO "${STANDARD_MATH_LIBRARY}") + endif() + endif() + if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO) + message(STATUS "Standard libraries to link to explicitly: ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO}") + else() + message(STATUS "Standard libraries to link to explicitly: none") + endif() + + # Default tests/examples/libraries to row-major. + option(EIGEN_DEFAULT_TO_ROW_MAJOR "Use row-major as default matrix storage order" OFF) + if(EIGEN_DEFAULT_TO_ROW_MAJOR) + add_definitions("-DEIGEN_DEFAULT_TO_ROW_MAJOR") + endif() +endif() + +#============================================================================== +# Test Configuration. +#============================================================================== + +if (EIGEN_BUILD_TESTING) + function(ei_maybe_separate_arguments variable mode args) + # Use separate_arguments if the input is a single string containing a space. + # Otherwise, if it is already a list or doesn't have a space, just propagate + # the original value. This is to better support multi-argument lists. + list(LENGTH args list_length) + if (${list_length} EQUAL 1) + string(FIND "${args}" " " has_space) + if (${has_space} GREATER -1) + separate_arguments(args ${mode} "${args}") + endif() + endif() + set(${variable} ${args} PARENT_SCOPE) + endfunction(ei_maybe_separate_arguments) + + include(CheckCXXCompilerFlag) + macro(ei_add_cxx_compiler_flag FLAG) + string(REGEX REPLACE "-" "" SFLAG1 ${FLAG}) + string(REGEX REPLACE "\\+" "p" SFLAG ${SFLAG1}) + check_cxx_compiler_flag(${FLAG} COMPILER_SUPPORT_${SFLAG}) + if(COMPILER_SUPPORT_${SFLAG}) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${FLAG}") + endif() + endmacro() + + check_cxx_compiler_flag("-std=c++11" EIGEN_COMPILER_SUPPORT_CPP11) + + option(EIGEN_TEST_CXX11 "Enable testing with C++11 and C++11 features (e.g. Tensor module)." ${EIGEN_COMPILER_SUPPORT_CPP11}) + if(EIGEN_TEST_CXX11) + set(CMAKE_CXX_STANDARD 11) + set(CMAKE_CXX_EXTENSIONS OFF) + if(EIGEN_COMPILER_SUPPORT_CPP11) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11") + endif() + else() + ei_add_cxx_compiler_flag("-std=c++03") + endif() + + set(EIGEN_TEST_CUSTOM_LINKER_FLAGS "" CACHE STRING "Additional linker flags when linking unit tests.") + set(EIGEN_TEST_CUSTOM_CXX_FLAGS "" CACHE STRING "Additional compiler flags when compiling unit tests.") + # Convert space-separated arguments into CMake lists for downstream consumption. + ei_maybe_separate_arguments(EIGEN_TEST_CUSTOM_LINKER_FLAGS NATIVE_COMMAND "${EIGEN_TEST_CUSTOM_LINKER_FLAGS}") + ei_maybe_separate_arguments(EIGEN_TEST_CUSTOM_CXX_FLAGS NATIVE_COMMAND "${EIGEN_TEST_CUSTOM_CXX_FLAGS}") + + option(EIGEN_SPLIT_LARGE_TESTS "Split large tests into smaller executables" ON) + set(EIGEN_TEST_MAX_SIZE "320" CACHE STRING "Maximal matrix/vector size, default is 320") + + # Flags for tests. + if(NOT MSVC) + # We assume that other compilers are partly compatible with GNUCC + + # clang outputs some warnings for unknown flags that are not caught by check_cxx_compiler_flag + # adding -Werror turns such warnings into errors + check_cxx_compiler_flag("-Werror" COMPILER_SUPPORT_WERROR) + if(COMPILER_SUPPORT_WERROR) + set(CMAKE_REQUIRED_FLAGS "-Werror") + endif() + ei_add_cxx_compiler_flag("-pedantic") + ei_add_cxx_compiler_flag("-Wall") + ei_add_cxx_compiler_flag("-Wextra") + # ei_add_cxx_compiler_flag("-Weverything") # clang + ei_add_cxx_compiler_flag("-Wundef") + ei_add_cxx_compiler_flag("-Wcast-align") + ei_add_cxx_compiler_flag("-Wchar-subscripts") + ei_add_cxx_compiler_flag("-Wnon-virtual-dtor") + ei_add_cxx_compiler_flag("-Wunused-local-typedefs") + ei_add_cxx_compiler_flag("-Wpointer-arith") + ei_add_cxx_compiler_flag("-Wwrite-strings") + ei_add_cxx_compiler_flag("-Wformat-security") + ei_add_cxx_compiler_flag("-Wshorten-64-to-32") + ei_add_cxx_compiler_flag("-Wlogical-op") + ei_add_cxx_compiler_flag("-Wenum-conversion") + ei_add_cxx_compiler_flag("-Wc++11-extensions") + ei_add_cxx_compiler_flag("-Wdouble-promotion") + # ei_add_cxx_compiler_flag("-Wconversion") + ei_add_cxx_compiler_flag("-Wshadow") + ei_add_cxx_compiler_flag("-Wno-psabi") + ei_add_cxx_compiler_flag("-Wno-variadic-macros") + ei_add_cxx_compiler_flag("-Wno-long-long") + ei_add_cxx_compiler_flag("-fno-check-new") + ei_add_cxx_compiler_flag("-fno-common") + ei_add_cxx_compiler_flag("-fstrict-aliasing") + ei_add_cxx_compiler_flag("-wd981") # disable ICC's "operands are evaluated in unspecified order" remark + ei_add_cxx_compiler_flag("-wd2304") # disable ICC's "warning #2304: non-explicit constructor with single argument may cause implicit type conversion" produced by -Wnon-virtual-dtor + + if(ANDROID_NDK) + ei_add_cxx_compiler_flag("-pie") + ei_add_cxx_compiler_flag("-fPIE") + endif() + + set(CMAKE_REQUIRED_FLAGS "") + + option(EIGEN_TEST_SSE2 "Enable/Disable SSE2 in tests/examples" OFF) + if(EIGEN_TEST_SSE2) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse2") + message(STATUS "Enabling SSE2 in tests/examples") + endif() + + option(EIGEN_TEST_SSE3 "Enable/Disable SSE3 in tests/examples" OFF) + if(EIGEN_TEST_SSE3) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse3") + message(STATUS "Enabling SSE3 in tests/examples") + endif() + + option(EIGEN_TEST_SSSE3 "Enable/Disable SSSE3 in tests/examples" OFF) + if(EIGEN_TEST_SSSE3) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mssse3") + message(STATUS "Enabling SSSE3 in tests/examples") + endif() + + option(EIGEN_TEST_SSE4_1 "Enable/Disable SSE4.1 in tests/examples" OFF) + if(EIGEN_TEST_SSE4_1) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse4.1") + message(STATUS "Enabling SSE4.1 in tests/examples") + endif() + + option(EIGEN_TEST_SSE4_2 "Enable/Disable SSE4.2 in tests/examples" OFF) + if(EIGEN_TEST_SSE4_2) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -msse4.2") + message(STATUS "Enabling SSE4.2 in tests/examples") + endif() + + option(EIGEN_TEST_AVX "Enable/Disable AVX in tests/examples" OFF) + if(EIGEN_TEST_AVX) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx") + message(STATUS "Enabling AVX in tests/examples") + endif() + + option(EIGEN_TEST_FMA "Enable/Disable FMA in tests/examples" OFF) + if(EIGEN_TEST_FMA AND NOT EIGEN_TEST_NEON) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfma") + message(STATUS "Enabling FMA in tests/examples") + endif() + + option(EIGEN_TEST_AVX2 "Enable/Disable AVX2 in tests/examples" OFF) + if(EIGEN_TEST_AVX2) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx2 -mfma") + message(STATUS "Enabling AVX2 in tests/examples") + endif() + + option(EIGEN_TEST_AVX512 "Enable/Disable AVX512 in tests/examples" OFF) + if(EIGEN_TEST_AVX512) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx512f -mfma") + message(STATUS "Enabling AVX512 in tests/examples") + endif() + + option(EIGEN_TEST_AVX512DQ "Enable/Disable AVX512DQ in tests/examples" OFF) + if(EIGEN_TEST_AVX512DQ) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx512dq -mfma") + message(STATUS "Enabling AVX512DQ in tests/examples") + endif() + + option(EIGEN_TEST_AVX512FP16 "Enable/Disable AVX512-FP16 in tests/examples" OFF) + if(EIGEN_TEST_AVX512FP16) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mavx512f -mfma -mavx512vl -mavx512fp16") + message(STATUS "Enabling AVX512-FP16 in tests/examples") + endif() + + option(EIGEN_TEST_F16C "Enable/Disable F16C in tests/examples" OFF) + if(EIGEN_TEST_F16C) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mf16c") + message(STATUS "Enabling F16C in tests/examples") + endif() + + option(EIGEN_TEST_ALTIVEC "Enable/Disable AltiVec in tests/examples" OFF) + if(EIGEN_TEST_ALTIVEC) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -maltivec -mabi=altivec") + message(STATUS "Enabling AltiVec in tests/examples") + endif() + + option(EIGEN_TEST_VSX "Enable/Disable VSX in tests/examples" OFF) + if(EIGEN_TEST_VSX) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -m64 -mvsx") + message(STATUS "Enabling VSX in tests/examples") + endif() + + option(EIGEN_TEST_MSA "Enable/Disable MSA in tests/examples" OFF) + if(EIGEN_TEST_MSA) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mmsa") + message(STATUS "Enabling MSA in tests/examples") + endif() + + option(EIGEN_TEST_NEON "Enable/Disable Neon in tests/examples" OFF) + if(EIGEN_TEST_NEON) + if(EIGEN_TEST_FMA) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfpu=neon-vfpv4") + else() + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfpu=neon") + endif() + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfloat-abi=hard") + message(STATUS "Enabling NEON in tests/examples") + endif() + + option(EIGEN_TEST_NEON64 "Enable/Disable Neon in tests/examples" OFF) + if(EIGEN_TEST_NEON64) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") + message(STATUS "Enabling NEON in tests/examples") + endif() + + option(EIGEN_TEST_Z13 "Enable/Disable S390X(zEC13) ZVECTOR in tests/examples" OFF) + if(EIGEN_TEST_Z13) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=z13 -mzvector") + message(STATUS "Enabling S390X(zEC13) ZVECTOR in tests/examples") + endif() + + option(EIGEN_TEST_Z14 "Enable/Disable S390X(zEC14) ZVECTOR in tests/examples" OFF) + if(EIGEN_TEST_Z14) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=z14 -mzvector") + message(STATUS "Enabling S390X(zEC13) ZVECTOR in tests/examples") + endif() + + check_cxx_compiler_flag("-fopenmp" COMPILER_SUPPORT_OPENMP) + if(COMPILER_SUPPORT_OPENMP) + option(EIGEN_TEST_OPENMP "Enable/Disable OpenMP in tests/examples" OFF) + if(EIGEN_TEST_OPENMP) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fopenmp") + message(STATUS "Enabling OpenMP in tests/examples") + endif() + endif() + + else() + # C4127 - conditional expression is constant + # C4714 - marked as __forceinline not inlined (I failed to deactivate it selectively) + # We can disable this warning in the unit tests since it is clear that it occurs + # because we are oftentimes returning objects that have a destructor or may + # throw exceptions - in particular in the unit tests we are throwing extra many + # exceptions to cover indexing errors. + # C4505 - unreferenced local function has been removed (impossible to deactivate selectively) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /EHsc /wd4127 /wd4505 /wd4714") + + # replace all /Wx by /W4 + string(REGEX REPLACE "/W[0-9]" "/W4" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}") + + check_cxx_compiler_flag("/openmp" COMPILER_SUPPORT_OPENMP) + if(COMPILER_SUPPORT_OPENMP) + option(EIGEN_TEST_OPENMP "Enable/Disable OpenMP in tests/examples" OFF) + if(EIGEN_TEST_OPENMP) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /openmp") + message(STATUS "Enabling OpenMP in tests/examples") + endif() + endif() + + option(EIGEN_TEST_SSE2 "Enable/Disable SSE2 in tests/examples" OFF) + if(EIGEN_TEST_SSE2) + if(NOT CMAKE_CL_64) + # arch is not supported on 64 bit systems, SSE is enabled automatically. + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:SSE2") + endif() + message(STATUS "Enabling SSE2 in tests/examples") + endif() + + option(EIGEN_TEST_AVX "Enable/Disable AVX in tests/examples" OFF) + if(EIGEN_TEST_AVX) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX") + message(STATUS "Enabling AVX in tests/examples") + endif() + + option(EIGEN_TEST_FMA "Enable/Disable FMA/AVX2 in tests/examples" OFF) + option(EIGEN_TEST_AVX2 "Enable/Disable FMA/AVX2 in tests/examples" OFF) + if((EIGEN_TEST_FMA AND NOT EIGEN_TEST_NEON) OR EIGEN_TEST_AVX2) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2") + message(STATUS "Enabling FMA/AVX2 in tests/examples") + endif() + + option(EIGEN_TEST_AVX512 "Enable/Disable AVX512 in tests/examples" OFF) + option(EIGEN_TEST_AVX512DQ "Enable/Disable AVX512DQ in tests/examples" OFF) + if(EIGEN_TEST_AVX512 OR EIGEN_TEST_AVX512DQ) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX512") + message(STATUS "Enabling AVX512 in tests/examples") + endif() + + endif(NOT MSVC) + + option(EIGEN_TEST_NO_EXPLICIT_VECTORIZATION "Disable explicit vectorization in tests/examples" OFF) + option(EIGEN_TEST_X87 "Force using X87 instructions. Implies no vectorization." OFF) + option(EIGEN_TEST_32BIT "Force generating 32bit code." OFF) + + if(EIGEN_TEST_X87) + set(EIGEN_TEST_NO_EXPLICIT_VECTORIZATION ON) + if(CMAKE_COMPILER_IS_GNUCXX) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfpmath=387") + message(STATUS "Forcing use of x87 instructions in tests/examples") + else() + message(STATUS "EIGEN_TEST_X87 ignored on your compiler") + endif() + endif() + + if(EIGEN_TEST_32BIT) + if(CMAKE_COMPILER_IS_GNUCXX) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -m32") + message(STATUS "Forcing generation of 32-bit code in tests/examples") + else() + message(STATUS "EIGEN_TEST_32BIT ignored on your compiler") + endif() + endif() + + if(EIGEN_TEST_NO_EXPLICIT_VECTORIZATION) + add_definitions(-DEIGEN_DONT_VECTORIZE=1) + message(STATUS "Disabling vectorization in tests/examples") + endif() + + option(EIGEN_TEST_NO_EXPLICIT_ALIGNMENT "Disable explicit alignment (hence vectorization) in tests/examples" OFF) + if(EIGEN_TEST_NO_EXPLICIT_ALIGNMENT) + add_definitions(-DEIGEN_DONT_ALIGN=1) + message(STATUS "Disabling alignment in tests/examples") + endif() + + option(EIGEN_TEST_NO_EXCEPTIONS "Disables C++ exceptions" OFF) + if(EIGEN_TEST_NO_EXCEPTIONS) + ei_add_cxx_compiler_flag("-fno-exceptions") + message(STATUS "Disabling exceptions in tests/examples") + endif() + + set(EIGEN_CUDA_CXX_FLAGS "" CACHE STRING "Additional flags to pass to the cuda compiler.") + set(EIGEN_CUDA_COMPUTE_ARCH 30 CACHE STRING "The CUDA compute architecture(s) to target when compiling CUDA code") + + option(EIGEN_TEST_SYCL "Add Sycl support." OFF) + if(EIGEN_TEST_SYCL) + option(EIGEN_SYCL_DPCPP "Use the DPCPP Sycl implementation (DPCPP is default SYCL-Compiler)." ON) + option(EIGEN_SYCL_TRISYCL "Use the triSYCL Sycl implementation." OFF) + option(EIGEN_SYCL_ComputeCpp "Use the ComputeCPP Sycl implementation." OFF) + + # Building options + # https://developer.codeplay.com/products/computecpp/ce/2.11.0/guides/eigen-overview/options-for-building-eigen-sycl + option(EIGEN_SYCL_USE_DEFAULT_SELECTOR "Use sycl default selector to select the preferred device." OFF) + option(EIGEN_SYCL_NO_LOCAL_MEM "Build for devices without dedicated shared memory." OFF) + option(EIGEN_SYCL_LOCAL_MEM "Allow the use of local memory (enabled by default)." ON) + option(EIGEN_SYCL_LOCAL_THREAD_DIM0 "Set work group size for dimension 0." 16) + option(EIGEN_SYCL_LOCAL_THREAD_DIM1 "Set work group size for dimension 1." 16) + option(EIGEN_SYCL_ASYNC_EXECUTION "Allow asynchronous execution (enabled by default)." ON) + option(EIGEN_SYCL_DISABLE_SKINNY "Disable optimization for tall/skinny matrices." OFF) + option(EIGEN_SYCL_DISABLE_DOUBLE_BUFFER "Disable double buffer." OFF) + option(EIGEN_SYCL_DISABLE_SCALAR "Disable scalar contraction." OFF) + option(EIGEN_SYCL_DISABLE_GEMV "Disable GEMV and create a single kernel to calculate contraction instead." OFF) + + set(EIGEN_SYCL ON) + set(CMAKE_CXX_STANDARD 17) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated-declarations -Wno-shorten-64-to-32 -Wno-cast-align") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-deprecated-copy-with-user-provided-copy -Wno-unused-variable") + set (CMAKE_MODULE_PATH "${CMAKE_ROOT}/Modules" "cmake/Modules/" "${CMAKE_MODULE_PATH}") + find_package(Threads REQUIRED) + if(EIGEN_SYCL_TRISYCL) + message(STATUS "Using triSYCL") + include(FindTriSYCL) + elseif(EIGEN_SYCL_ComputeCpp) + message(STATUS "Using ComputeCPP SYCL") + include(FindComputeCpp) + set(COMPUTECPP_DRIVER_DEFAULT_VALUE OFF) + if (NOT MSVC) + set(COMPUTECPP_DRIVER_DEFAULT_VALUE ON) + endif() + option(COMPUTECPP_USE_COMPILER_DRIVER + "Use ComputeCpp driver instead of a 2 steps compilation" + ${COMPUTECPP_DRIVER_DEFAULT_VALUE} + ) + else() #Default SYCL compiler is DPCPP (EIGEN_SYCL_DPCPP) + set(DPCPP_SYCL_TARGET "spir64" CACHE STRING "Default target for Intel CPU/GPU") + message(STATUS "Using DPCPP") + find_package(DPCPP) + add_definitions(-DSYCL_COMPILER_IS_DPCPP) + endif(EIGEN_SYCL_TRISYCL) + if(EIGEN_DONT_VECTORIZE_SYCL) + message(STATUS "Disabling SYCL vectorization in tests/examples") + # When disabling SYCL vectorization, also disable Eigen default vectorization + add_definitions(-DEIGEN_DONT_VECTORIZE=1) + add_definitions(-DEIGEN_DONT_VECTORIZE_SYCL=1) + endif() + endif() + + include(EigenConfigureTesting) + + if(EIGEN_LEAVE_TEST_IN_ALL_TARGET) + # CTest automatic test building relies on the "all" target. + add_subdirectory(test) + add_subdirectory(failtest) + else() + add_subdirectory(test EXCLUDE_FROM_ALL) + add_subdirectory(failtest EXCLUDE_FROM_ALL) + endif() + + ei_testing_print_summary() + + if (EIGEN_SPLIT_TESTSUITE) + ei_split_testsuite("${EIGEN_SPLIT_TESTSUITE}") + endif() +endif(EIGEN_BUILD_TESTING) + +#============================================================================== +# Other Build Configurations. +#============================================================================== +add_subdirectory(unsupported) + +if(EIGEN_BUILD_BLAS) + add_subdirectory(blas) +endif() + +if (EIGEN_BUILD_LAPACK) + add_subdirectory(lapack) +endif() + +if(EIGEN_BUILD_DOC) + add_subdirectory(doc EXCLUDE_FROM_ALL) +endif() + +# TODO: consider also replacing EIGEN_BUILD_BTL by a custom target "make btl"? +if(EIGEN_BUILD_BTL) + add_subdirectory(bench/btl EXCLUDE_FROM_ALL) +endif() + +if(NOT WIN32 AND EIGEN_BUILD_SPBENCH) + add_subdirectory(bench/spbench EXCLUDE_FROM_ALL) +endif() + +if (EIGEN_BUILD_DEMOS) + add_subdirectory(demos EXCLUDE_FROM_ALL) +endif() + +if (PROJECT_IS_TOP_LEVEL) + # must be after test and unsupported, for configuring buildtests.in + add_subdirectory(scripts EXCLUDE_FROM_ALL) + configure_file(scripts/cdashtesting.cmake.in cdashtesting.cmake @ONLY) +endif() + +#============================================================================== +# Summary. +#============================================================================== + +if(PROJECT_IS_TOP_LEVEL) + string(TOLOWER "${CMAKE_GENERATOR}" cmake_generator_tolower) + if(cmake_generator_tolower MATCHES "makefile") + message(STATUS "Available targets (use: make TARGET):") + else() + message(STATUS "Available targets (use: cmake --build . --target TARGET):") + endif() + message(STATUS "---------+--------------------------------------------------------------") + message(STATUS "Target | Description") + message(STATUS "---------+--------------------------------------------------------------") + message(STATUS "install | Install Eigen. Headers will be installed to:") + message(STATUS " | /") + message(STATUS " | Using the following values:") + message(STATUS " | CMAKE_INSTALL_PREFIX: ${CMAKE_INSTALL_PREFIX}") + message(STATUS " | INCLUDE_INSTALL_DIR: ${INCLUDE_INSTALL_DIR}") + message(STATUS " | Change the install location of Eigen headers using:") + message(STATUS " | cmake . -DCMAKE_INSTALL_PREFIX=yourprefix") + message(STATUS " | Or:") + message(STATUS " | cmake . -DINCLUDE_INSTALL_DIR=yourdir") + message(STATUS "uninstall| Remove files installed by the install target") + if (EIGEN_BUILD_DOC) + message(STATUS "doc | Generate the API documentation, requires Doxygen & LaTeX") + endif() + if(EIGEN_BUILD_TESTING) + message(STATUS "check | Build and run the unit-tests. Read this page:") + message(STATUS " | http://eigen.tuxfamily.org/index.php?title=Tests") + endif() + if (EIGEN_BUILD_BLAS) + message(STATUS "blas | Build BLAS library (not the same thing as Eigen)") + endif() + if (EIGEN_BUILD_LAPACK) + message(STATUS "lapack | Build LAPACK subset library (not the same thing as Eigen)") + endif() + message(STATUS "---------+--------------------------------------------------------------") + message(STATUS "") +endif() + +message(STATUS "") +message(STATUS "Configured Eigen ${EIGEN_VERSION_NUMBER}") +message(STATUS "") diff --git a/include/eigen/COPYING.APACHE b/include/eigen/COPYING.APACHE new file mode 100644 index 0000000000000000000000000000000000000000..61e948d2aaa3f7cd1db246b874d3b8ad1e8204fb --- /dev/null +++ b/include/eigen/COPYING.APACHE @@ -0,0 +1,203 @@ +/* + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ \ No newline at end of file diff --git a/include/eigen/COPYING.BSD b/include/eigen/COPYING.BSD new file mode 100644 index 0000000000000000000000000000000000000000..8964ddfdd0effc65e8dd90ea1d8c411efb30e5fd --- /dev/null +++ b/include/eigen/COPYING.BSD @@ -0,0 +1,26 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ diff --git a/include/eigen/COPYING.GPL b/include/eigen/COPYING.GPL new file mode 100644 index 0000000000000000000000000000000000000000..94a9ed024d3859793618152ea559a168bbcbb5e2 --- /dev/null +++ b/include/eigen/COPYING.GPL @@ -0,0 +1,674 @@ + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. diff --git a/include/eigen/COPYING.LGPL b/include/eigen/COPYING.LGPL new file mode 100644 index 0000000000000000000000000000000000000000..4362b49151d7b34ef83b3067a8f9c9f877d72a0e --- /dev/null +++ b/include/eigen/COPYING.LGPL @@ -0,0 +1,502 @@ + GNU LESSER GENERAL PUBLIC LICENSE + Version 2.1, February 1999 + + Copyright (C) 1991, 1999 Free Software Foundation, Inc. + 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + +[This is the first released version of the Lesser GPL. It also counts + as the successor of the GNU Library Public License, version 2, hence + the version number 2.1.] + + Preamble + + The licenses for most software are designed to take away your +freedom to share and change it. By contrast, the GNU General Public +Licenses are intended to guarantee your freedom to share and change +free software--to make sure the software is free for all its users. + + This license, the Lesser General Public License, applies to some +specially designated software packages--typically libraries--of the +Free Software Foundation and other authors who decide to use it. You +can use it too, but we suggest you first think carefully about whether +this license or the ordinary General Public License is the better +strategy to use in any particular case, based on the explanations below. + + When we speak of free software, we are referring to freedom of use, +not price. Our General Public Licenses are designed to make sure that +you have the freedom to distribute copies of free software (and charge +for this service if you wish); that you receive source code or can get +it if you want it; that you can change the software and use pieces of +it in new free programs; and that you are informed that you can do +these things. + + To protect your rights, we need to make restrictions that forbid +distributors to deny you these rights or to ask you to surrender these +rights. These restrictions translate to certain responsibilities for +you if you distribute copies of the library or if you modify it. + + For example, if you distribute copies of the library, whether gratis +or for a fee, you must give the recipients all the rights that we gave +you. You must make sure that they, too, receive or can get the source +code. If you link other code with the library, you must provide +complete object files to the recipients, so that they can relink them +with the library after making changes to the library and recompiling +it. And you must show them these terms so they know their rights. + + We protect your rights with a two-step method: (1) we copyright the +library, and (2) we offer you this license, which gives you legal +permission to copy, distribute and/or modify the library. + + To protect each distributor, we want to make it very clear that +there is no warranty for the free library. Also, if the library is +modified by someone else and passed on, the recipients should know +that what they have is not the original version, so that the original +author's reputation will not be affected by problems that might be +introduced by others. + + Finally, software patents pose a constant threat to the existence of +any free program. We wish to make sure that a company cannot +effectively restrict the users of a free program by obtaining a +restrictive license from a patent holder. Therefore, we insist that +any patent license obtained for a version of the library must be +consistent with the full freedom of use specified in this license. + + Most GNU software, including some libraries, is covered by the +ordinary GNU General Public License. This license, the GNU Lesser +General Public License, applies to certain designated libraries, and +is quite different from the ordinary General Public License. We use +this license for certain libraries in order to permit linking those +libraries into non-free programs. + + When a program is linked with a library, whether statically or using +a shared library, the combination of the two is legally speaking a +combined work, a derivative of the original library. The ordinary +General Public License therefore permits such linking only if the +entire combination fits its criteria of freedom. The Lesser General +Public License permits more lax criteria for linking other code with +the library. + + We call this license the "Lesser" General Public License because it +does Less to protect the user's freedom than the ordinary General +Public License. It also provides other free software developers Less +of an advantage over competing non-free programs. These disadvantages +are the reason we use the ordinary General Public License for many +libraries. However, the Lesser license provides advantages in certain +special circumstances. + + For example, on rare occasions, there may be a special need to +encourage the widest possible use of a certain library, so that it becomes +a de-facto standard. To achieve this, non-free programs must be +allowed to use the library. A more frequent case is that a free +library does the same job as widely used non-free libraries. In this +case, there is little to gain by limiting the free library to free +software only, so we use the Lesser General Public License. + + In other cases, permission to use a particular library in non-free +programs enables a greater number of people to use a large body of +free software. For example, permission to use the GNU C Library in +non-free programs enables many more people to use the whole GNU +operating system, as well as its variant, the GNU/Linux operating +system. + + Although the Lesser General Public License is Less protective of the +users' freedom, it does ensure that the user of a program that is +linked with the Library has the freedom and the wherewithal to run +that program using a modified version of the Library. + + The precise terms and conditions for copying, distribution and +modification follow. Pay close attention to the difference between a +"work based on the library" and a "work that uses the library". The +former contains code derived from the library, whereas the latter must +be combined with the library in order to run. + + GNU LESSER GENERAL PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. This License Agreement applies to any software library or other +program which contains a notice placed by the copyright holder or +other authorized party saying it may be distributed under the terms of +this Lesser General Public License (also called "this License"). +Each licensee is addressed as "you". + + A "library" means a collection of software functions and/or data +prepared so as to be conveniently linked with application programs +(which use some of those functions and data) to form executables. + + The "Library", below, refers to any such software library or work +which has been distributed under these terms. A "work based on the +Library" means either the Library or any derivative work under +copyright law: that is to say, a work containing the Library or a +portion of it, either verbatim or with modifications and/or translated +straightforwardly into another language. (Hereinafter, translation is +included without limitation in the term "modification".) + + "Source code" for a work means the preferred form of the work for +making modifications to it. For a library, complete source code means +all the source code for all modules it contains, plus any associated +interface definition files, plus the scripts used to control compilation +and installation of the library. + + Activities other than copying, distribution and modification are not +covered by this License; they are outside its scope. The act of +running a program using the Library is not restricted, and output from +such a program is covered only if its contents constitute a work based +on the Library (independent of the use of the Library in a tool for +writing it). Whether that is true depends on what the Library does +and what the program that uses the Library does. + + 1. You may copy and distribute verbatim copies of the Library's +complete source code as you receive it, in any medium, provided that +you conspicuously and appropriately publish on each copy an +appropriate copyright notice and disclaimer of warranty; keep intact +all the notices that refer to this License and to the absence of any +warranty; and distribute a copy of this License along with the +Library. + + You may charge a fee for the physical act of transferring a copy, +and you may at your option offer warranty protection in exchange for a +fee. + + 2. You may modify your copy or copies of the Library or any portion +of it, thus forming a work based on the Library, and copy and +distribute such modifications or work under the terms of Section 1 +above, provided that you also meet all of these conditions: + + a) The modified work must itself be a software library. + + b) You must cause the files modified to carry prominent notices + stating that you changed the files and the date of any change. + + c) You must cause the whole of the work to be licensed at no + charge to all third parties under the terms of this License. + + d) If a facility in the modified Library refers to a function or a + table of data to be supplied by an application program that uses + the facility, other than as an argument passed when the facility + is invoked, then you must make a good faith effort to ensure that, + in the event an application does not supply such function or + table, the facility still operates, and performs whatever part of + its purpose remains meaningful. + + (For example, a function in a library to compute square roots has + a purpose that is entirely well-defined independent of the + application. Therefore, Subsection 2d requires that any + application-supplied function or table used by this function must + be optional: if the application does not supply it, the square + root function must still compute square roots.) + +These requirements apply to the modified work as a whole. If +identifiable sections of that work are not derived from the Library, +and can be reasonably considered independent and separate works in +themselves, then this License, and its terms, do not apply to those +sections when you distribute them as separate works. But when you +distribute the same sections as part of a whole which is a work based +on the Library, the distribution of the whole must be on the terms of +this License, whose permissions for other licensees extend to the +entire whole, and thus to each and every part regardless of who wrote +it. + +Thus, it is not the intent of this section to claim rights or contest +your rights to work written entirely by you; rather, the intent is to +exercise the right to control the distribution of derivative or +collective works based on the Library. + +In addition, mere aggregation of another work not based on the Library +with the Library (or with a work based on the Library) on a volume of +a storage or distribution medium does not bring the other work under +the scope of this License. + + 3. You may opt to apply the terms of the ordinary GNU General Public +License instead of this License to a given copy of the Library. To do +this, you must alter all the notices that refer to this License, so +that they refer to the ordinary GNU General Public License, version 2, +instead of to this License. (If a newer version than version 2 of the +ordinary GNU General Public License has appeared, then you can specify +that version instead if you wish.) Do not make any other change in +these notices. + + Once this change is made in a given copy, it is irreversible for +that copy, so the ordinary GNU General Public License applies to all +subsequent copies and derivative works made from that copy. + + This option is useful when you wish to copy part of the code of +the Library into a program that is not a library. + + 4. You may copy and distribute the Library (or a portion or +derivative of it, under Section 2) in object code or executable form +under the terms of Sections 1 and 2 above provided that you accompany +it with the complete corresponding machine-readable source code, which +must be distributed under the terms of Sections 1 and 2 above on a +medium customarily used for software interchange. + + If distribution of object code is made by offering access to copy +from a designated place, then offering equivalent access to copy the +source code from the same place satisfies the requirement to +distribute the source code, even though third parties are not +compelled to copy the source along with the object code. + + 5. A program that contains no derivative of any portion of the +Library, but is designed to work with the Library by being compiled or +linked with it, is called a "work that uses the Library". Such a +work, in isolation, is not a derivative work of the Library, and +therefore falls outside the scope of this License. + + However, linking a "work that uses the Library" with the Library +creates an executable that is a derivative of the Library (because it +contains portions of the Library), rather than a "work that uses the +library". The executable is therefore covered by this License. +Section 6 states terms for distribution of such executables. + + When a "work that uses the Library" uses material from a header file +that is part of the Library, the object code for the work may be a +derivative work of the Library even though the source code is not. +Whether this is true is especially significant if the work can be +linked without the Library, or if the work is itself a library. The +threshold for this to be true is not precisely defined by law. + + If such an object file uses only numerical parameters, data +structure layouts and accessors, and small macros and small inline +functions (ten lines or less in length), then the use of the object +file is unrestricted, regardless of whether it is legally a derivative +work. (Executables containing this object code plus portions of the +Library will still fall under Section 6.) + + Otherwise, if the work is a derivative of the Library, you may +distribute the object code for the work under the terms of Section 6. +Any executables containing that work also fall under Section 6, +whether or not they are linked directly with the Library itself. + + 6. As an exception to the Sections above, you may also combine or +link a "work that uses the Library" with the Library to produce a +work containing portions of the Library, and distribute that work +under terms of your choice, provided that the terms permit +modification of the work for the customer's own use and reverse +engineering for debugging such modifications. + + You must give prominent notice with each copy of the work that the +Library is used in it and that the Library and its use are covered by +this License. You must supply a copy of this License. If the work +during execution displays copyright notices, you must include the +copyright notice for the Library among them, as well as a reference +directing the user to the copy of this License. Also, you must do one +of these things: + + a) Accompany the work with the complete corresponding + machine-readable source code for the Library including whatever + changes were used in the work (which must be distributed under + Sections 1 and 2 above); and, if the work is an executable linked + with the Library, with the complete machine-readable "work that + uses the Library", as object code and/or source code, so that the + user can modify the Library and then relink to produce a modified + executable containing the modified Library. (It is understood + that the user who changes the contents of definitions files in the + Library will not necessarily be able to recompile the application + to use the modified definitions.) + + b) Use a suitable shared library mechanism for linking with the + Library. A suitable mechanism is one that (1) uses at run time a + copy of the library already present on the user's computer system, + rather than copying library functions into the executable, and (2) + will operate properly with a modified version of the library, if + the user installs one, as long as the modified version is + interface-compatible with the version that the work was made with. + + c) Accompany the work with a written offer, valid for at + least three years, to give the same user the materials + specified in Subsection 6a, above, for a charge no more + than the cost of performing this distribution. + + d) If distribution of the work is made by offering access to copy + from a designated place, offer equivalent access to copy the above + specified materials from the same place. + + e) Verify that the user has already received a copy of these + materials or that you have already sent this user a copy. + + For an executable, the required form of the "work that uses the +Library" must include any data and utility programs needed for +reproducing the executable from it. However, as a special exception, +the materials to be distributed need not include anything that is +normally distributed (in either source or binary form) with the major +components (compiler, kernel, and so on) of the operating system on +which the executable runs, unless that component itself accompanies +the executable. + + It may happen that this requirement contradicts the license +restrictions of other proprietary libraries that do not normally +accompany the operating system. Such a contradiction means you cannot +use both them and the Library together in an executable that you +distribute. + + 7. You may place library facilities that are a work based on the +Library side-by-side in a single library together with other library +facilities not covered by this License, and distribute such a combined +library, provided that the separate distribution of the work based on +the Library and of the other library facilities is otherwise +permitted, and provided that you do these two things: + + a) Accompany the combined library with a copy of the same work + based on the Library, uncombined with any other library + facilities. This must be distributed under the terms of the + Sections above. + + b) Give prominent notice with the combined library of the fact + that part of it is a work based on the Library, and explaining + where to find the accompanying uncombined form of the same work. + + 8. You may not copy, modify, sublicense, link with, or distribute +the Library except as expressly provided under this License. Any +attempt otherwise to copy, modify, sublicense, link with, or +distribute the Library is void, and will automatically terminate your +rights under this License. However, parties who have received copies, +or rights, from you under this License will not have their licenses +terminated so long as such parties remain in full compliance. + + 9. You are not required to accept this License, since you have not +signed it. However, nothing else grants you permission to modify or +distribute the Library or its derivative works. These actions are +prohibited by law if you do not accept this License. Therefore, by +modifying or distributing the Library (or any work based on the +Library), you indicate your acceptance of this License to do so, and +all its terms and conditions for copying, distributing or modifying +the Library or works based on it. + + 10. Each time you redistribute the Library (or any work based on the +Library), the recipient automatically receives a license from the +original licensor to copy, distribute, link with or modify the Library +subject to these terms and conditions. You may not impose any further +restrictions on the recipients' exercise of the rights granted herein. +You are not responsible for enforcing compliance by third parties with +this License. + + 11. If, as a consequence of a court judgment or allegation of patent +infringement or for any other reason (not limited to patent issues), +conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot +distribute so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you +may not distribute the Library at all. For example, if a patent +license would not permit royalty-free redistribution of the Library by +all those who receive copies directly or indirectly through you, then +the only way you could satisfy both it and this License would be to +refrain entirely from distribution of the Library. + +If any portion of this section is held invalid or unenforceable under any +particular circumstance, the balance of the section is intended to apply, +and the section as a whole is intended to apply in other circumstances. + +It is not the purpose of this section to induce you to infringe any +patents or other property right claims or to contest validity of any +such claims; this section has the sole purpose of protecting the +integrity of the free software distribution system which is +implemented by public license practices. Many people have made +generous contributions to the wide range of software distributed +through that system in reliance on consistent application of that +system; it is up to the author/donor to decide if he or she is willing +to distribute software through any other system and a licensee cannot +impose that choice. + +This section is intended to make thoroughly clear what is believed to +be a consequence of the rest of this License. + + 12. If the distribution and/or use of the Library is restricted in +certain countries either by patents or by copyrighted interfaces, the +original copyright holder who places the Library under this License may add +an explicit geographical distribution limitation excluding those countries, +so that distribution is permitted only in or among countries not thus +excluded. In such case, this License incorporates the limitation as if +written in the body of this License. + + 13. The Free Software Foundation may publish revised and/or new +versions of the Lesser General Public License from time to time. +Such new versions will be similar in spirit to the present version, +but may differ in detail to address new problems or concerns. + +Each version is given a distinguishing version number. If the Library +specifies a version number of this License which applies to it and +"any later version", you have the option of following the terms and +conditions either of that version or of any later version published by +the Free Software Foundation. If the Library does not specify a +license version number, you may choose any version ever published by +the Free Software Foundation. + + 14. If you wish to incorporate parts of the Library into other free +programs whose distribution conditions are incompatible with these, +write to the author to ask for permission. For software which is +copyrighted by the Free Software Foundation, write to the Free +Software Foundation; we sometimes make exceptions for this. Our +decision will be guided by the two goals of preserving the free status +of all derivatives of our free software and of promoting the sharing +and reuse of software generally. + + NO WARRANTY + + 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO +WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. +EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR +OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY +KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE +LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME +THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN +WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY +AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU +FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR +CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE +LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING +RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A +FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF +SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH +DAMAGES. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Libraries + + If you develop a new library, and you want it to be of the greatest +possible use to the public, we recommend making it free software that +everyone can redistribute and change. You can do so by permitting +redistribution under these terms (or, alternatively, under the terms of the +ordinary General Public License). + + To apply these terms, attach the following notices to the library. It is +safest to attach them to the start of each source file to most effectively +convey the exclusion of warranty; and each file should have at least the +"copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this library; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + +Also add information on how to contact you by electronic and paper mail. + +You should also get your employer (if you work as a programmer) or your +school, if any, to sign a "copyright disclaimer" for the library, if +necessary. Here is a sample; alter the names: + + Yoyodyne, Inc., hereby disclaims all copyright interest in the + library `Frob' (a library for tweaking knobs) written by James Random Hacker. + + , 1 April 1990 + Ty Coon, President of Vice + +That's all there is to it! diff --git a/include/eigen/COPYING.MINPACK b/include/eigen/COPYING.MINPACK new file mode 100644 index 0000000000000000000000000000000000000000..132cc3f33fa7fd4169a92b05241db59c8428a7ab --- /dev/null +++ b/include/eigen/COPYING.MINPACK @@ -0,0 +1,51 @@ +Minpack Copyright Notice (1999) University of Chicago. All rights reserved + +Redistribution and use in source and binary forms, with or +without modification, are permitted provided that the +following conditions are met: + +1. Redistributions of source code must retain the above +copyright notice, this list of conditions and the following +disclaimer. + +2. Redistributions in binary form must reproduce the above +copyright notice, this list of conditions and the following +disclaimer in the documentation and/or other materials +provided with the distribution. + +3. The end-user documentation included with the +redistribution, if any, must include the following +acknowledgment: + + "This product includes software developed by the + University of Chicago, as Operator of Argonne National + Laboratory. + +Alternately, this acknowledgment may appear in the software +itself, if and wherever such third-party acknowledgments +normally appear. + +4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" +WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE +UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND +THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES +OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE +OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY +OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR +USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF +THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) +DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION +UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL +BE CORRECTED. + +5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT +HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF +ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, +INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF +ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF +PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER +SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT +(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, +EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE +POSSIBILITY OF SUCH LOSS OR DAMAGES. diff --git a/include/eigen/COPYING.MPL2 b/include/eigen/COPYING.MPL2 new file mode 100644 index 0000000000000000000000000000000000000000..14e2f777f6c395e7e04ab4aa306bbcc4b0c1120e --- /dev/null +++ b/include/eigen/COPYING.MPL2 @@ -0,0 +1,373 @@ +Mozilla Public License Version 2.0 +================================== + +1. Definitions +-------------- + +1.1. "Contributor" + means each individual or legal entity that creates, contributes to + the creation of, or owns Covered Software. + +1.2. "Contributor Version" + means the combination of the Contributions of others (if any) used + by a Contributor and that particular Contributor's Contribution. + +1.3. "Contribution" + means Covered Software of a particular Contributor. + +1.4. "Covered Software" + means Source Code Form to which the initial Contributor has attached + the notice in Exhibit A, the Executable Form of such Source Code + Form, and Modifications of such Source Code Form, in each case + including portions thereof. + +1.5. "Incompatible With Secondary Licenses" + means + + (a) that the initial Contributor has attached the notice described + in Exhibit B to the Covered Software; or + + (b) that the Covered Software was made available under the terms of + version 1.1 or earlier of the License, but not also under the + terms of a Secondary License. + +1.6. "Executable Form" + means any form of the work other than Source Code Form. + +1.7. "Larger Work" + means a work that combines Covered Software with other material, in + a separate file or files, that is not Covered Software. + +1.8. "License" + means this document. + +1.9. "Licensable" + means having the right to grant, to the maximum extent possible, + whether at the time of the initial grant or subsequently, any and + all of the rights conveyed by this License. + +1.10. "Modifications" + means any of the following: + + (a) any file in Source Code Form that results from an addition to, + deletion from, or modification of the contents of Covered + Software; or + + (b) any new file in Source Code Form that contains any Covered + Software. + +1.11. "Patent Claims" of a Contributor + means any patent claim(s), including without limitation, method, + process, and apparatus claims, in any patent Licensable by such + Contributor that would be infringed, but for the grant of the + License, by the making, using, selling, offering for sale, having + made, import, or transfer of either its Contributions or its + Contributor Version. + +1.12. "Secondary License" + means either the GNU General Public License, Version 2.0, the GNU + Lesser General Public License, Version 2.1, the GNU Affero General + Public License, Version 3.0, or any later versions of those + licenses. + +1.13. "Source Code Form" + means the form of the work preferred for making modifications. + +1.14. "You" (or "Your") + means an individual or a legal entity exercising rights under this + License. For legal entities, "You" includes any entity that + controls, is controlled by, or is under common control with You. For + purposes of this definition, "control" means (a) the power, direct + or indirect, to cause the direction or management of such entity, + whether by contract or otherwise, or (b) ownership of more than + fifty percent (50%) of the outstanding shares or beneficial + ownership of such entity. + +2. License Grants and Conditions +-------------------------------- + +2.1. Grants + +Each Contributor hereby grants You a world-wide, royalty-free, +non-exclusive license: + +(a) under intellectual property rights (other than patent or trademark) + Licensable by such Contributor to use, reproduce, make available, + modify, display, perform, distribute, and otherwise exploit its + Contributions, either on an unmodified basis, with Modifications, or + as part of a Larger Work; and + +(b) under Patent Claims of such Contributor to make, use, sell, offer + for sale, have made, import, and otherwise transfer either its + Contributions or its Contributor Version. + +2.2. Effective Date + +The licenses granted in Section 2.1 with respect to any Contribution +become effective for each Contribution on the date the Contributor first +distributes such Contribution. + +2.3. Limitations on Grant Scope + +The licenses granted in this Section 2 are the only rights granted under +this License. No additional rights or licenses will be implied from the +distribution or licensing of Covered Software under this License. +Notwithstanding Section 2.1(b) above, no patent license is granted by a +Contributor: + +(a) for any code that a Contributor has removed from Covered Software; + or + +(b) for infringements caused by: (i) Your and any other third party's + modifications of Covered Software, or (ii) the combination of its + Contributions with other software (except as part of its Contributor + Version); or + +(c) under Patent Claims infringed by Covered Software in the absence of + its Contributions. + +This License does not grant any rights in the trademarks, service marks, +or logos of any Contributor (except as may be necessary to comply with +the notice requirements in Section 3.4). + +2.4. Subsequent Licenses + +No Contributor makes additional grants as a result of Your choice to +distribute the Covered Software under a subsequent version of this +License (see Section 10.2) or under the terms of a Secondary License (if +permitted under the terms of Section 3.3). + +2.5. Representation + +Each Contributor represents that the Contributor believes its +Contributions are its original creation(s) or it has sufficient rights +to grant the rights to its Contributions conveyed by this License. + +2.6. Fair Use + +This License is not intended to limit any rights You have under +applicable copyright doctrines of fair use, fair dealing, or other +equivalents. + +2.7. Conditions + +Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted +in Section 2.1. + +3. Responsibilities +------------------- + +3.1. Distribution of Source Form + +All distribution of Covered Software in Source Code Form, including any +Modifications that You create or to which You contribute, must be under +the terms of this License. You must inform recipients that the Source +Code Form of the Covered Software is governed by the terms of this +License, and how they can obtain a copy of this License. You may not +attempt to alter or restrict the recipients' rights in the Source Code +Form. + +3.2. Distribution of Executable Form + +If You distribute Covered Software in Executable Form then: + +(a) such Covered Software must also be made available in Source Code + Form, as described in Section 3.1, and You must inform recipients of + the Executable Form how they can obtain a copy of such Source Code + Form by reasonable means in a timely manner, at a charge no more + than the cost of distribution to the recipient; and + +(b) You may distribute such Executable Form under the terms of this + License, or sublicense it under different terms, provided that the + license for the Executable Form does not attempt to limit or alter + the recipients' rights in the Source Code Form under this License. + +3.3. Distribution of a Larger Work + +You may create and distribute a Larger Work under terms of Your choice, +provided that You also comply with the requirements of this License for +the Covered Software. If the Larger Work is a combination of Covered +Software with a work governed by one or more Secondary Licenses, and the +Covered Software is not Incompatible With Secondary Licenses, this +License permits You to additionally distribute such Covered Software +under the terms of such Secondary License(s), so that the recipient of +the Larger Work may, at their option, further distribute the Covered +Software under the terms of either this License or such Secondary +License(s). + +3.4. Notices + +You may not remove or alter the substance of any license notices +(including copyright notices, patent notices, disclaimers of warranty, +or limitations of liability) contained within the Source Code Form of +the Covered Software, except that You may alter any license notices to +the extent required to remedy known factual inaccuracies. + +3.5. Application of Additional Terms + +You may choose to offer, and to charge a fee for, warranty, support, +indemnity or liability obligations to one or more recipients of Covered +Software. However, You may do so only on Your own behalf, and not on +behalf of any Contributor. You must make it absolutely clear that any +such warranty, support, indemnity, or liability obligation is offered by +You alone, and You hereby agree to indemnify every Contributor for any +liability incurred by such Contributor as a result of warranty, support, +indemnity or liability terms You offer. You may include additional +disclaimers of warranty and limitations of liability specific to any +jurisdiction. + +4. Inability to Comply Due to Statute or Regulation +--------------------------------------------------- + +If it is impossible for You to comply with any of the terms of this +License with respect to some or all of the Covered Software due to +statute, judicial order, or regulation then You must: (a) comply with +the terms of this License to the maximum extent possible; and (b) +describe the limitations and the code they affect. Such description must +be placed in a text file included with all distributions of the Covered +Software under this License. Except to the extent prohibited by statute +or regulation, such description must be sufficiently detailed for a +recipient of ordinary skill to be able to understand it. + +5. Termination +-------------- + +5.1. The rights granted under this License will terminate automatically +if You fail to comply with any of its terms. However, if You become +compliant, then the rights granted under this License from a particular +Contributor are reinstated (a) provisionally, unless and until such +Contributor explicitly and finally terminates Your grants, and (b) on an +ongoing basis, if such Contributor fails to notify You of the +non-compliance by some reasonable means prior to 60 days after You have +come back into compliance. Moreover, Your grants from a particular +Contributor are reinstated on an ongoing basis if such Contributor +notifies You of the non-compliance by some reasonable means, this is the +first time You have received notice of non-compliance with this License +from such Contributor, and You become compliant prior to 30 days after +Your receipt of the notice. + +5.2. If You initiate litigation against any entity by asserting a patent +infringement claim (excluding declaratory judgment actions, +counter-claims, and cross-claims) alleging that a Contributor Version +directly or indirectly infringes any patent, then the rights granted to +You by any and all Contributors for the Covered Software under Section +2.1 of this License shall terminate. + +5.3. In the event of termination under Sections 5.1 or 5.2 above, all +end user license agreements (excluding distributors and resellers) which +have been validly granted by You or Your distributors under this License +prior to termination shall survive termination. + +************************************************************************ +* * +* 6. Disclaimer of Warranty * +* ------------------------- * +* * +* Covered Software is provided under this License on an "as is" * +* basis, without warranty of any kind, either expressed, implied, or * +* statutory, including, without limitation, warranties that the * +* Covered Software is free of defects, merchantable, fit for a * +* particular purpose or non-infringing. The entire risk as to the * +* quality and performance of the Covered Software is with You. * +* Should any Covered Software prove defective in any respect, You * +* (not any Contributor) assume the cost of any necessary servicing, * +* repair, or correction. This disclaimer of warranty constitutes an * +* essential part of this License. No use of any Covered Software is * +* authorized under this License except under this disclaimer. * +* * +************************************************************************ + +************************************************************************ +* * +* 7. Limitation of Liability * +* -------------------------- * +* * +* Under no circumstances and under no legal theory, whether tort * +* (including negligence), contract, or otherwise, shall any * +* Contributor, or anyone who distributes Covered Software as * +* permitted above, be liable to You for any direct, indirect, * +* special, incidental, or consequential damages of any character * +* including, without limitation, damages for lost profits, loss of * +* goodwill, work stoppage, computer failure or malfunction, or any * +* and all other commercial damages or losses, even if such party * +* shall have been informed of the possibility of such damages. This * +* limitation of liability shall not apply to liability for death or * +* personal injury resulting from such party's negligence to the * +* extent applicable law prohibits such limitation. Some * +* jurisdictions do not allow the exclusion or limitation of * +* incidental or consequential damages, so this exclusion and * +* limitation may not apply to You. * +* * +************************************************************************ + +8. Litigation +------------- + +Any litigation relating to this License may be brought only in the +courts of a jurisdiction where the defendant maintains its principal +place of business and such litigation shall be governed by laws of that +jurisdiction, without reference to its conflict-of-law provisions. +Nothing in this Section shall prevent a party's ability to bring +cross-claims or counter-claims. + +9. Miscellaneous +---------------- + +This License represents the complete agreement concerning the subject +matter hereof. If any provision of this License is held to be +unenforceable, such provision shall be reformed only to the extent +necessary to make it enforceable. Any law or regulation which provides +that the language of a contract shall be construed against the drafter +shall not be used to construe this License against a Contributor. + +10. Versions of the License +--------------------------- + +10.1. New Versions + +Mozilla Foundation is the license steward. Except as provided in Section +10.3, no one other than the license steward has the right to modify or +publish new versions of this License. Each version will be given a +distinguishing version number. + +10.2. Effect of New Versions + +You may distribute the Covered Software under the terms of the version +of the License under which You originally received the Covered Software, +or under the terms of any subsequent version published by the license +steward. + +10.3. Modified Versions + +If you create software not governed by this License, and you want to +create a new license for such software, you may create and use a +modified version of this License if you rename the license and remove +any references to the name of the license steward (except to note that +such modified license differs from this License). + +10.4. Distributing Source Code Form that is Incompatible With Secondary +Licenses + +If You choose to distribute Source Code Form that is Incompatible With +Secondary Licenses under the terms of this version of the License, the +notice described in Exhibit B of this License must be attached. + +Exhibit A - Source Code Form License Notice +------------------------------------------- + + This Source Code Form is subject to the terms of the Mozilla Public + License, v. 2.0. If a copy of the MPL was not distributed with this + file, You can obtain one at http://mozilla.org/MPL/2.0/. + +If it is not possible or desirable to put the notice in a particular +file, then You may include the notice in a location (such as a LICENSE +file in a relevant directory) where a recipient would be likely to look +for such a notice. + +You may add additional accurate notices of copyright ownership. + +Exhibit B - "Incompatible With Secondary Licenses" Notice +--------------------------------------------------------- + + This Source Code Form is "Incompatible With Secondary Licenses", as + defined by the Mozilla Public License, v. 2.0. diff --git a/include/eigen/COPYING.README b/include/eigen/COPYING.README new file mode 100644 index 0000000000000000000000000000000000000000..de5b6321582327d85c88749388edf2576cd242c8 --- /dev/null +++ b/include/eigen/COPYING.README @@ -0,0 +1,18 @@ +Eigen is primarily MPL2 licensed. See COPYING.MPL2 and these links: + http://www.mozilla.org/MPL/2.0/ + http://www.mozilla.org/MPL/2.0/FAQ.html + +Some files contain third-party code under BSD or LGPL licenses, whence the other +COPYING.* files here. + +All the LGPL code is either LGPL 2.1-only, or LGPL 2.1-or-later. +For this reason, the COPYING.LGPL file contains the LGPL 2.1 text. + +If you want to guarantee that the Eigen code that you are #including is licensed +under the MPL2 and possibly more permissive licenses (like BSD), #define this +preprocessor symbol: + EIGEN_MPL2_ONLY +For example, with most compilers, you could add this to your project CXXFLAGS: + -DEIGEN_MPL2_ONLY +This will cause a compilation error to be generated if you #include any code that is +LGPL licensed. diff --git a/include/eigen/CTestConfig.cmake b/include/eigen/CTestConfig.cmake new file mode 100644 index 0000000000000000000000000000000000000000..0ea24b8e3447872d8bbb08e574678af7ef4f937f --- /dev/null +++ b/include/eigen/CTestConfig.cmake @@ -0,0 +1,17 @@ +## This file should be placed in the root directory of your project. +## Then modify the CMakeLists.txt file in the root directory of your +## project to incorporate the testing dashboard. +## # The following are required to uses Dart and the Cdash dashboard +## enable_testing() +## include(CTest) +set(CTEST_PROJECT_NAME "Eigen") +set(CTEST_NIGHTLY_START_TIME "00:00:00 UTC") + +set(CTEST_DROP_METHOD "http") +set(CTEST_DROP_SITE "my.cdash.org") +set(CTEST_DROP_LOCATION "/submit.php?project=Eigen") +set(CTEST_DROP_SITE_CDASH TRUE) +#set(CTEST_PROJECT_SUBPROJECTS +#Official +#Unsupported +#) diff --git a/include/eigen/CTestCustom.cmake.in b/include/eigen/CTestCustom.cmake.in new file mode 100644 index 0000000000000000000000000000000000000000..89e487f05a0d19e336302e09747f6b94df43db03 --- /dev/null +++ b/include/eigen/CTestCustom.cmake.in @@ -0,0 +1,4 @@ + +set(CTEST_CUSTOM_MAXIMUM_NUMBER_OF_WARNINGS "2000") +set(CTEST_CUSTOM_MAXIMUM_NUMBER_OF_ERRORS "2000") +list(APPEND CTEST_CUSTOM_ERROR_EXCEPTION @EIGEN_CTEST_ERROR_EXCEPTION@) diff --git a/include/eigen/Eigen/src/Cholesky/LDLT.h b/include/eigen/Eigen/src/Cholesky/LDLT.h new file mode 100644 index 0000000000000000000000000000000000000000..1013ca045df62921d5c89054e13855649741ec86 --- /dev/null +++ b/include/eigen/Eigen/src/Cholesky/LDLT.h @@ -0,0 +1,688 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2011 Gael Guennebaud +// Copyright (C) 2009 Keir Mierle +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2011 Timothy E. Holy +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LDLT_H +#define EIGEN_LDLT_H + +namespace Eigen { + +namespace internal { + template struct traits > + : traits<_MatrixType> + { + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; + }; + + template struct LDLT_Traits; + + // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef + enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; +} + +/** \ingroup Cholesky_Module + * + * \class LDLT + * + * \brief Robust Cholesky decomposition of a matrix with pivoting + * + * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * The other triangular part won't be read. + * + * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite + * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L + * is lower triangular with a unit diagonal and D is a diagonal matrix. + * + * The decomposition uses pivoting to ensure stability, so that D will have + * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root + * on D also stabilizes the computation. + * + * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky + * decomposition to determine whether a system of equations has a solution. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT + */ +template class LDLT + : public SolverBase > +{ + public: + typedef _MatrixType MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(LDLT) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, + UpLo = _UpLo + }; + typedef Matrix TmpMatrixType; + + typedef Transpositions TranspositionType; + typedef PermutationMatrix PermutationType; + + typedef internal::LDLT_Traits Traits; + + /** \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LDLT::compute(const MatrixType&). + */ + LDLT() + : m_matrix(), + m_transpositions(), + m_sign(internal::ZeroSign), + m_isInitialized(false) + {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa LDLT() + */ + explicit LDLT(Index size) + : m_matrix(size, size), + m_transpositions(size), + m_temporary(size), + m_sign(internal::ZeroSign), + m_isInitialized(false) + {} + + /** \brief Constructor with decomposition + * + * This calculates the decomposition for the input \a matrix. + * + * \sa LDLT(Index size) + */ + template + explicit LDLT(const EigenBase& matrix) + : m_matrix(matrix.rows(), matrix.cols()), + m_transpositions(matrix.rows()), + m_temporary(matrix.rows()), + m_sign(internal::ZeroSign), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \brief Constructs a LDLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa LDLT(const EigenBase&) + */ + template + explicit LDLT(EigenBase& matrix) + : m_matrix(matrix.derived()), + m_transpositions(matrix.rows()), + m_temporary(matrix.rows()), + m_sign(internal::ZeroSign), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** Clear any existing decomposition + * \sa rankUpdate(w,sigma) + */ + void setZero() + { + m_isInitialized = false; + } + + /** \returns a view of the upper triangular matrix U */ + inline typename Traits::MatrixU matrixU() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return Traits::getU(m_matrix); + } + + /** \returns a view of the lower triangular matrix L */ + inline typename Traits::MatrixL matrixL() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return Traits::getL(m_matrix); + } + + /** \returns the permutation matrix P as a transposition sequence. + */ + inline const TranspositionType& transpositionsP() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_transpositions; + } + + /** \returns the coefficients of the diagonal matrix D */ + inline Diagonal vectorD() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_matrix.diagonal(); + } + + /** \returns true if the matrix is positive (semidefinite) */ + inline bool isPositive() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; + } + + /** \returns true if the matrix is negative (semidefinite) */ + inline bool isNegative(void) const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * This function also supports in-place solves using the syntax x = decompositionObject.solve(x) . + * + * \note_about_checking_solutions + * + * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ + * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, + * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then + * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the + * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function + * computes the least-square solution of \f$ A x = b \f$ if \f$ A \f$ is singular. + * + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + template + bool solveInPlace(MatrixBase &bAndX) const; + + template + LDLT& compute(const EigenBase& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the LDLT decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + template + LDLT& rankUpdate(const MatrixBase& w, const RealScalar& alpha=1); + + /** \returns the internal LDLT decomposition matrix + * + * TODO: document the storage layout + */ + inline const MatrixType& matrixLDLT() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_matrix; + } + + MatrixType reconstructedMatrix() const; + + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LDLT& adjoint() const { return *this; }; + + EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the factorization failed because of a zero pivot. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return m_info; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + /** \internal + * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. + * The strict upper part is used during the decomposition, the strict lower + * part correspond to the coefficients of L (its diagonal is equal to 1 and + * is not stored), and the diagonal entries correspond to D. + */ + MatrixType m_matrix; + RealScalar m_l1_norm; + TranspositionType m_transpositions; + TmpMatrixType m_temporary; + internal::SignMatrix m_sign; + bool m_isInitialized; + ComputationInfo m_info; +}; + +namespace internal { + +template struct ldlt_inplace; + +template<> struct ldlt_inplace +{ + template + static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) + { + using std::abs; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename TranspositionType::StorageIndex IndexType; + eigen_assert(mat.rows()==mat.cols()); + const Index size = mat.rows(); + bool found_zero_pivot = false; + bool ret = true; + + if (size <= 1) + { + transpositions.setIdentity(); + if(size==0) sign = ZeroSign; + else if (numext::real(mat.coeff(0,0)) > static_cast(0) ) sign = PositiveSemiDef; + else if (numext::real(mat.coeff(0,0)) < static_cast(0)) sign = NegativeSemiDef; + else sign = ZeroSign; + return true; + } + + for (Index k = 0; k < size; ++k) + { + // Find largest diagonal element + Index index_of_biggest_in_corner; + mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); + index_of_biggest_in_corner += k; + + transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); + if(k != index_of_biggest_in_corner) + { + // apply the transposition while taking care to consider only + // the lower triangular part + Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element + mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); + mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); + std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); + for(Index i=k+1;i::IsComplex) + mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); + } + + // partition the matrix: + // A00 | - | - + // lu = A10 | A11 | - + // A20 | A21 | A22 + Index rs = size - k - 1; + Block A21(mat,k+1,k,rs,1); + Block A10(mat,k,0,1,k); + Block A20(mat,k+1,0,rs,k); + + if(k>0) + { + temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); + mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); + if(rs>0) + A21.noalias() -= A20 * temp.head(k); + } + + // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot + // was smaller than the cutoff value. However, since LDLT is not rank-revealing + // we should only make sure that we do not introduce INF or NaN values. + // Remark that LAPACK also uses 0 as the cutoff value. + RealScalar realAkk = numext::real(mat.coeffRef(k,k)); + bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); + + if(k==0 && !pivot_is_valid) + { + // The entire diagonal is zero, there is nothing more to do + // except filling the transpositions, and checking whether the matrix is zero. + sign = ZeroSign; + for(Index j = 0; j0) && pivot_is_valid) + A21 /= realAkk; + else if(rs>0) + ret = ret && (A21.array()==Scalar(0)).all(); + + if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed + else if(!pivot_is_valid) found_zero_pivot = true; + + if (sign == PositiveSemiDef) { + if (realAkk < static_cast(0)) sign = Indefinite; + } else if (sign == NegativeSemiDef) { + if (realAkk > static_cast(0)) sign = Indefinite; + } else if (sign == ZeroSign) { + if (realAkk > static_cast(0)) sign = PositiveSemiDef; + else if (realAkk < static_cast(0)) sign = NegativeSemiDef; + } + } + + return ret; + } + + // Reference for the algorithm: Davis and Hager, "Multiple Rank + // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) + // Trivial rearrangements of their computations (Timothy E. Holy) + // allow their algorithm to work for rank-1 updates even if the + // original matrix is not of full rank. + // Here only rank-1 updates are implemented, to reduce the + // requirement for intermediate storage and improve accuracy + template + static bool updateInPlace(MatrixType& mat, MatrixBase& w, const typename MatrixType::RealScalar& sigma=1) + { + using numext::isfinite; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + + const Index size = mat.rows(); + eigen_assert(mat.cols() == size && w.size()==size); + + RealScalar alpha = 1; + + // Apply the update + for (Index j = 0; j < size; j++) + { + // Check for termination due to an original decomposition of low-rank + if (!(isfinite)(alpha)) + break; + + // Update the diagonal terms + RealScalar dj = numext::real(mat.coeff(j,j)); + Scalar wj = w.coeff(j); + RealScalar swj2 = sigma*numext::abs2(wj); + RealScalar gamma = dj*alpha + swj2; + + mat.coeffRef(j,j) += swj2/alpha; + alpha += swj2/dj; + + + // Update the terms of L + Index rs = size-j-1; + w.tail(rs) -= wj * mat.col(j).tail(rs); + if(gamma != 0) + mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); + } + return true; + } + + template + static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) + { + // Apply the permutation to the input w + tmp = transpositions * w; + + return ldlt_inplace::updateInPlace(mat,tmp,sigma); + } +}; + +template<> struct ldlt_inplace +{ + template + static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) + { + Transpose matt(mat); + return ldlt_inplace::unblocked(matt, transpositions, temp, sign); + } + + template + static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) + { + Transpose matt(mat); + return ldlt_inplace::update(matt, transpositions, tmp, w.conjugate(), sigma); + } +}; + +template struct LDLT_Traits +{ + typedef const TriangularView MatrixL; + typedef const TriangularView MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } +}; + +template struct LDLT_Traits +{ + typedef const TriangularView MatrixL; + typedef const TriangularView MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } +}; + +} // end namespace internal + +/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix + */ +template +template +LDLT& LDLT::compute(const EigenBase& a) +{ + check_template_parameters(); + + eigen_assert(a.rows()==a.cols()); + const Index size = a.rows(); + + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } + + m_transpositions.resize(size); + m_isInitialized = false; + m_temporary.resize(size); + m_sign = internal::ZeroSign; + + m_info = internal::ldlt_inplace::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; + + m_isInitialized = true; + return *this; +} + +/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. + * \param w a vector to be incorporated into the decomposition. + * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. + * \sa setZero() + */ +template +template +LDLT& LDLT::rankUpdate(const MatrixBase& w, const typename LDLT::RealScalar& sigma) +{ + typedef typename TranspositionType::StorageIndex IndexType; + const Index size = w.rows(); + if (m_isInitialized) + { + eigen_assert(m_matrix.rows()==size); + } + else + { + m_matrix.resize(size,size); + m_matrix.setZero(); + m_transpositions.resize(size); + for (Index i = 0; i < size; i++) + m_transpositions.coeffRef(i) = IndexType(i); + m_temporary.resize(size); + m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; + m_isInitialized = true; + } + + internal::ldlt_inplace::update(m_matrix, m_transpositions, m_temporary, w, sigma); + + return *this; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + _solve_impl_transposed(rhs, dst); +} + +template +template +void LDLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + // dst = P b + dst = m_transpositions * rhs; + + // dst = L^-1 (P b) + // dst = L^-*T (P b) + matrixL().template conjugateIf().solveInPlace(dst); + + // dst = D^-* (L^-1 P b) + // dst = D^-1 (L^-*T P b) + // more precisely, use pseudo-inverse of D (see bug 241) + using std::abs; + const typename Diagonal::RealReturnType vecD(vectorD()); + // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min()) + // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS: + // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits::epsilon(),RealScalar(1) / NumTraits::highest()); + // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest + // diagonal element is not well justified and leads to numerical issues in some cases. + // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. + // Using numeric_limits::min() gives us more robustness to denormals. + RealScalar tolerance = (std::numeric_limits::min)(); + for (Index i = 0; i < vecD.size(); ++i) + { + if(abs(vecD(i)) > tolerance) + dst.row(i) /= vecD(i); + else + dst.row(i).setZero(); + } + + // dst = L^-* (D^-* L^-1 P b) + // dst = L^-T (D^-1 L^-*T P b) + matrixL().transpose().template conjugateIf().solveInPlace(dst); + + // dst = P^T (L^-* D^-* L^-1 P b) = A^-1 b + // dst = P^-T (L^-T D^-1 L^-*T P b) = A^-1 b + dst = m_transpositions.transpose() * dst; +} +#endif + +/** \internal use x = ldlt_object.solve(x); + * + * This is the \em in-place version of solve(). + * + * \param bAndX represents both the right-hand side matrix b and result x. + * + * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. + * + * This version avoids a copy when the right hand side matrix b is not + * needed anymore. + * + * \sa LDLT::solve(), MatrixBase::ldlt() + */ +template +template +bool LDLT::solveInPlace(MatrixBase &bAndX) const +{ + eigen_assert(m_isInitialized && "LDLT is not initialized."); + eigen_assert(m_matrix.rows() == bAndX.rows()); + + bAndX = this->solve(bAndX); + + return true; +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: P^T L D L^* P. + * This function is provided for debug purpose. */ +template +MatrixType LDLT::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LDLT is not initialized."); + const Index size = m_matrix.rows(); + MatrixType res(size,size); + + // P + res.setIdentity(); + res = transpositionsP() * res; + // L^* P + res = matrixU() * res; + // D(L^*P) + res = vectorD().real().asDiagonal() * res; + // L(DL^*P) + res = matrixL() * res; + // P^T (LDL^*P) + res = transpositionsP().transpose() * res; + + return res; +} + +/** \cholesky_module + * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa MatrixBase::ldlt() + */ +template +inline const LDLT::PlainObject, UpLo> +SelfAdjointView::ldlt() const +{ + return LDLT(m_matrix); +} + +/** \cholesky_module + * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa SelfAdjointView::ldlt() + */ +template +inline const LDLT::PlainObject> +MatrixBase::ldlt() const +{ + return LDLT(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_LDLT_H diff --git a/include/eigen/Eigen/src/Cholesky/LLT.h b/include/eigen/Eigen/src/Cholesky/LLT.h new file mode 100644 index 0000000000000000000000000000000000000000..8c9b2b398791d24f3d3abc6d5d0704c47fb3637a --- /dev/null +++ b/include/eigen/Eigen/src/Cholesky/LLT.h @@ -0,0 +1,558 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LLT_H +#define EIGEN_LLT_H + +namespace Eigen { + +namespace internal{ + +template struct traits > + : traits<_MatrixType> +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; +}; + +template struct LLT_Traits; +} + +/** \ingroup Cholesky_Module + * + * \class LLT + * + * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features + * + * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * The other triangular part won't be read. + * + * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite + * matrix A such that A = LL^* = U^*U, where L is lower triangular. + * + * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, + * for that purpose, we recommend the Cholesky decomposition without square root which is more stable + * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other + * situations like generalised eigen problems with hermitian matrices. + * + * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, + * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations + * has a solution. + * + * Example: \include LLT_example.cpp + * Output: \verbinclude LLT_example.out + * + * \b Performance: for best performance, it is recommended to use a column-major storage format + * with the Lower triangular part (the default), or, equivalently, a row-major storage format + * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization + * step, and rank-updates can be up to 3 times slower. + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered. + * Therefore, the strict lower part does not have to store correct values. + * + * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT + */ +template class LLT + : public SolverBase > +{ + public: + typedef _MatrixType MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) + enum { + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + enum { + PacketSize = internal::packet_traits::size, + AlignmentMask = int(PacketSize)-1, + UpLo = _UpLo + }; + + typedef internal::LLT_Traits Traits; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LLT::compute(const MatrixType&). + */ + LLT() : m_matrix(), m_isInitialized(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa LLT() + */ + explicit LLT(Index size) : m_matrix(size, size), + m_isInitialized(false) {} + + template + explicit LLT(const EigenBase& matrix) + : m_matrix(matrix.rows(), matrix.cols()), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \brief Constructs a LLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when + * \c MatrixType is a Eigen::Ref. + * + * \sa LLT(const EigenBase&) + */ + template + explicit LLT(EigenBase& matrix) + : m_matrix(matrix.derived()), + m_isInitialized(false) + { + compute(matrix.derived()); + } + + /** \returns a view of the upper triangular matrix U */ + inline typename Traits::MatrixU matrixU() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return Traits::getU(m_matrix); + } + + /** \returns a view of the lower triangular matrix L */ + inline typename Traits::MatrixL matrixL() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return Traits::getL(m_matrix); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * Since this LLT class assumes anyway that the matrix A is invertible, the solution + * theoretically exists and is unique regardless of b. + * + * Example: \include LLT_solve.cpp + * Output: \verbinclude LLT_solve.out + * + * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + template + void solveInPlace(const MatrixBase &bAndX) const; + + template + LLT& compute(const EigenBase& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the Cholesky decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + /** \returns the LLT decomposition matrix + * + * TODO: document the storage layout + */ + inline const MatrixType& matrixLLT() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return m_matrix; + } + + MatrixType reconstructedMatrix() const; + + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix.appears not to be positive definite. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + return m_info; + } + + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; }; + + inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + template + LLT & rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + /** \internal + * Used to compute and store L + * The strict upper part is not used and even not initialized. + */ + MatrixType m_matrix; + RealScalar m_l1_norm; + bool m_isInitialized; + ComputationInfo m_info; +}; + +namespace internal { + +template struct llt_inplace; + +template +static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) +{ + using std::sqrt; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::ColXpr ColXpr; + typedef typename internal::remove_all::type ColXprCleaned; + typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; + typedef Matrix TempVectorType; + typedef typename TempVectorType::SegmentReturnType TempVecSegment; + + Index n = mat.cols(); + eigen_assert(mat.rows()==n && vec.size()==n); + + TempVectorType temp; + + if(sigma>0) + { + // This version is based on Givens rotations. + // It is faster than the other one below, but only works for updates, + // i.e., for sigma > 0 + temp = sqrt(sigma) * vec; + + for(Index i=0; i g; + g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); + + Index rs = n-i-1; + if(rs>0) + { + ColXprSegment x(mat.col(i).tail(rs)); + TempVecSegment y(temp.tail(rs)); + apply_rotation_in_the_plane(x, y, g); + } + } + } + else + { + temp = vec; + RealScalar beta = 1; + for(Index j=0; j struct llt_inplace +{ + typedef typename NumTraits::Real RealScalar; + template + static Index unblocked(MatrixType& mat) + { + using std::sqrt; + + eigen_assert(mat.rows()==mat.cols()); + const Index size = mat.rows(); + for(Index k = 0; k < size; ++k) + { + Index rs = size-k-1; // remaining size + + Block A21(mat,k+1,k,rs,1); + Block A10(mat,k,0,1,k); + Block A20(mat,k+1,0,rs,k); + + RealScalar x = numext::real(mat.coeff(k,k)); + if (k>0) x -= A10.squaredNorm(); + if (x<=RealScalar(0)) + return k; + mat.coeffRef(k,k) = x = sqrt(x); + if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); + if (rs>0) A21 /= x; + } + return -1; + } + + template + static Index blocked(MatrixType& m) + { + eigen_assert(m.rows()==m.cols()); + Index size = m.rows(); + if(size<32) + return unblocked(m); + + Index blockSize = size/8; + blockSize = (blockSize/16)*16; + blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); + + for (Index k=0; k A11(m,k, k, bs,bs); + Block A21(m,k+bs,k, rs,bs); + Block A22(m,k+bs,k+bs,rs,rs); + + Index ret; + if((ret=unblocked(A11))>=0) return k+ret; + if(rs>0) A11.adjoint().template triangularView().template solveInPlace(A21); + if(rs>0) A22.template selfadjointView().rankUpdate(A21,typename NumTraits::Literal(-1)); // bottleneck + } + return -1; + } + + template + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + { + return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); + } +}; + +template struct llt_inplace +{ + typedef typename NumTraits::Real RealScalar; + + template + static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) + { + Transpose matt(mat); + return llt_inplace::unblocked(matt); + } + template + static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) + { + Transpose matt(mat); + return llt_inplace::blocked(matt); + } + template + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) + { + Transpose matt(mat); + return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); + } +}; + +template struct LLT_Traits +{ + typedef const TriangularView MatrixL; + typedef const TriangularView MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } + static bool inplace_decomposition(MatrixType& m) + { return llt_inplace::blocked(m)==-1; } +}; + +template struct LLT_Traits +{ + typedef const TriangularView MatrixL; + typedef const TriangularView MatrixU; + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } + static bool inplace_decomposition(MatrixType& m) + { return llt_inplace::blocked(m)==-1; } +}; + +} // end namespace internal + +/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix + * + * \returns a reference to *this + * + * Example: \include TutorialLinAlgComputeTwice.cpp + * Output: \verbinclude TutorialLinAlgComputeTwice.out + */ +template +template +LLT& LLT::compute(const EigenBase& a) +{ + check_template_parameters(); + + eigen_assert(a.rows()==a.cols()); + const Index size = a.rows(); + m_matrix.resize(size, size); + if (!internal::is_same_dense(m_matrix, a.derived())) + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } + + m_isInitialized = true; + bool ok = Traits::inplace_decomposition(m_matrix); + m_info = ok ? Success : NumericalIssue; + + return *this; +} + +/** Performs a rank one update (or dowdate) of the current decomposition. + * If A = LL^* before the rank one update, + * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector + * of same dimension. + */ +template +template +LLT<_MatrixType,_UpLo> & LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); + eigen_assert(v.size()==m_matrix.cols()); + eigen_assert(m_isInitialized); + if(internal::llt_inplace::rankUpdate(m_matrix,v,sigma)>=0) + m_info = NumericalIssue; + else + m_info = Success; + + return *this; +} + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + _solve_impl_transposed(rhs, dst); +} + +template +template +void LLT<_MatrixType,_UpLo>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + dst = rhs; + + matrixL().template conjugateIf().solveInPlace(dst); + matrixU().template conjugateIf().solveInPlace(dst); +} +#endif + +/** \internal use x = llt_object.solve(x); + * + * This is the \em in-place version of solve(). + * + * \param bAndX represents both the right-hand side matrix b and result x. + * + * This version avoids a copy when the right hand side matrix b is not needed anymore. + * + * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. + * This function will const_cast it, so constness isn't honored here. + * + * \sa LLT::solve(), MatrixBase::llt() + */ +template +template +void LLT::solveInPlace(const MatrixBase &bAndX) const +{ + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(m_matrix.rows()==bAndX.rows()); + matrixL().solveInPlace(bAndX); + matrixU().solveInPlace(bAndX); +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: L L^*. + * This function is provided for debug purpose. */ +template +MatrixType LLT::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LLT is not initialized."); + return matrixL() * matrixL().adjoint().toDenseMatrix(); +} + +/** \cholesky_module + * \returns the LLT decomposition of \c *this + * \sa SelfAdjointView::llt() + */ +template +inline const LLT::PlainObject> +MatrixBase::llt() const +{ + return LLT(derived()); +} + +/** \cholesky_module + * \returns the LLT decomposition of \c *this + * \sa SelfAdjointView::llt() + */ +template +inline const LLT::PlainObject, UpLo> +SelfAdjointView::llt() const +{ + return LLT(m_matrix); +} + +} // end namespace Eigen + +#endif // EIGEN_LLT_H diff --git a/include/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h b/include/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h new file mode 100644 index 0000000000000000000000000000000000000000..bc6489e69a98328e016d4cc7e0d36a147744d337 --- /dev/null +++ b/include/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h @@ -0,0 +1,99 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * LLt decomposition based on LAPACKE_?potrf function. + ******************************************************************************** +*/ + +#ifndef EIGEN_LLT_LAPACKE_H +#define EIGEN_LLT_LAPACKE_H + +namespace Eigen { + +namespace internal { + +template struct lapacke_llt; + +#define EIGEN_LAPACKE_LLT(EIGTYPE, BLASTYPE, LAPACKE_PREFIX) \ +template<> struct lapacke_llt \ +{ \ + template \ + static inline Index potrf(MatrixType& m, char uplo) \ + { \ + lapack_int matrix_order; \ + lapack_int size, lda, info, StorageOrder; \ + EIGTYPE* a; \ + eigen_assert(m.rows()==m.cols()); \ + /* Set up parameters for ?potrf */ \ + size = convert_index(m.rows()); \ + StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \ + matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \ + a = &(m.coeffRef(0,0)); \ + lda = convert_index(m.outerStride()); \ +\ + info = LAPACKE_##LAPACKE_PREFIX##potrf( matrix_order, uplo, size, (BLASTYPE*)a, lda ); \ + info = (info==0) ? -1 : info>0 ? info-1 : size; \ + return info; \ + } \ +}; \ +template<> struct llt_inplace \ +{ \ + template \ + static Index blocked(MatrixType& m) \ + { \ + return lapacke_llt::potrf(m, 'L'); \ + } \ + template \ + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ + { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \ +}; \ +template<> struct llt_inplace \ +{ \ + template \ + static Index blocked(MatrixType& m) \ + { \ + return lapacke_llt::potrf(m, 'U'); \ + } \ + template \ + static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \ + { \ + Transpose matt(mat); \ + return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); \ + } \ +}; + +EIGEN_LAPACKE_LLT(double, double, d) +EIGEN_LAPACKE_LLT(float, float, s) +EIGEN_LAPACKE_LLT(dcomplex, lapack_complex_double, z) +EIGEN_LAPACKE_LLT(scomplex, lapack_complex_float, c) + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_LLT_LAPACKE_H diff --git a/include/eigen/Eigen/src/Core/CoreEvaluators.h b/include/eigen/Eigen/src/Core/CoreEvaluators.h new file mode 100644 index 0000000000000000000000000000000000000000..0ff8c8deb820deb7bbaa2f762afc5e4366f29616 --- /dev/null +++ b/include/eigen/Eigen/src/Core/CoreEvaluators.h @@ -0,0 +1,1741 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011 Benoit Jacob +// Copyright (C) 2011-2014 Gael Guennebaud +// Copyright (C) 2011-2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_COREEVALUATORS_H +#define EIGEN_COREEVALUATORS_H + +namespace Eigen { + +namespace internal { + +// This class returns the evaluator kind from the expression storage kind. +// Default assumes index based accessors +template +struct storage_kind_to_evaluator_kind { + typedef IndexBased Kind; +}; + +// This class returns the evaluator shape from the expression storage kind. +// It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc. +template struct storage_kind_to_shape; + +template<> struct storage_kind_to_shape { typedef DenseShape Shape; }; +template<> struct storage_kind_to_shape { typedef SolverShape Shape; }; +template<> struct storage_kind_to_shape { typedef PermutationShape Shape; }; +template<> struct storage_kind_to_shape { typedef TranspositionsShape Shape; }; + +// Evaluators have to be specialized with respect to various criteria such as: +// - storage/structure/shape +// - scalar type +// - etc. +// Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators. +// We currently distinguish the following kind of evaluators: +// - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate) +// - binary_evaluator for expression taking two arguments (CwiseBinaryOp) +// - ternary_evaluator for expression taking three arguments (CwiseTernaryOp) +// - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching. +// - mapbase_evaluator for Map, Block, Ref +// - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator) + +template< typename T, + typename Arg1Kind = typename evaluator_traits::Kind, + typename Arg2Kind = typename evaluator_traits::Kind, + typename Arg3Kind = typename evaluator_traits::Kind, + typename Arg1Scalar = typename traits::Scalar, + typename Arg2Scalar = typename traits::Scalar, + typename Arg3Scalar = typename traits::Scalar> struct ternary_evaluator; + +template< typename T, + typename LhsKind = typename evaluator_traits::Kind, + typename RhsKind = typename evaluator_traits::Kind, + typename LhsScalar = typename traits::Scalar, + typename RhsScalar = typename traits::Scalar> struct binary_evaluator; + +template< typename T, + typename Kind = typename evaluator_traits::Kind, + typename Scalar = typename T::Scalar> struct unary_evaluator; + +// evaluator_traits contains traits for evaluator + +template +struct evaluator_traits_base +{ + // by default, get evaluator kind and shape from storage + typedef typename storage_kind_to_evaluator_kind::StorageKind>::Kind Kind; + typedef typename storage_kind_to_shape::StorageKind>::Shape Shape; +}; + +// Default evaluator traits +template +struct evaluator_traits : public evaluator_traits_base +{ +}; + +template::Shape > +struct evaluator_assume_aliasing { + static const bool value = false; +}; + +// By default, we assume a unary expression: +template +struct evaluator : public unary_evaluator +{ + typedef unary_evaluator Base; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const T& xpr) : Base(xpr) {} +}; + + +// TODO: Think about const-correctness +template +struct evaluator + : evaluator +{ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const T& xpr) : evaluator(xpr) {} +}; + +// ---------- base class for all evaluators ---------- + +template +struct evaluator_base +{ + // TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices. + typedef traits ExpressionTraits; + + enum { + Alignment = 0 + }; + // noncopyable: + // Don't make this class inherit noncopyable as this kills EBO (Empty Base Optimization) + // and make complex evaluator much larger than then should do. + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE evaluator_base() {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~evaluator_base() {} +private: + EIGEN_DEVICE_FUNC evaluator_base(const evaluator_base&); + EIGEN_DEVICE_FUNC const evaluator_base& operator=(const evaluator_base&); +}; + +// -------------------- Matrix and Array -------------------- +// +// evaluator is a common base class for the +// Matrix and Array evaluators. +// Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense, +// so no need for more sophisticated dispatching. + +// this helper permits to completely eliminate m_outerStride if it is known at compiletime. +template class plainobjectbase_evaluator_data { +public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + plainobjectbase_evaluator_data(const Scalar* ptr, Index outerStride) : data(ptr) + { +#ifndef EIGEN_INTERNAL_DEBUGGING + EIGEN_UNUSED_VARIABLE(outerStride); +#endif + eigen_internal_assert(outerStride==OuterStride); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + Index outerStride() const EIGEN_NOEXCEPT { return OuterStride; } + const Scalar *data; +}; + +template class plainobjectbase_evaluator_data { +public: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + plainobjectbase_evaluator_data(const Scalar* ptr, Index outerStride) : data(ptr), m_outerStride(outerStride) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Index outerStride() const { return m_outerStride; } + const Scalar *data; +protected: + Index m_outerStride; +}; + +template +struct evaluator > + : evaluator_base +{ + typedef PlainObjectBase PlainObjectType; + typedef typename PlainObjectType::Scalar Scalar; + typedef typename PlainObjectType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = PlainObjectType::IsRowMajor, + IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime, + RowsAtCompileTime = PlainObjectType::RowsAtCompileTime, + ColsAtCompileTime = PlainObjectType::ColsAtCompileTime, + + CoeffReadCost = NumTraits::ReadCost, + Flags = traits::EvaluatorFlags, + Alignment = traits::Alignment + }; + enum { + // We do not need to know the outer stride for vectors + OuterStrideAtCompileTime = IsVectorAtCompileTime ? 0 + : int(IsRowMajor) ? ColsAtCompileTime + : RowsAtCompileTime + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + evaluator() + : m_d(0,OuterStrideAtCompileTime) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const PlainObjectType& m) + : m_d(m.data(),IsVectorAtCompileTime ? 0 : m.outerStride()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + if (IsRowMajor) + return m_d.data[row * m_d.outerStride() + col]; + else + return m_d.data[row + col * m_d.outerStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.data[index]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + if (IsRowMajor) + return const_cast(m_d.data)[row * m_d.outerStride() + col]; + else + return const_cast(m_d.data)[row + col * m_d.outerStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return const_cast(m_d.data)[index]; + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + if (IsRowMajor) + return ploadt(m_d.data + row * m_d.outerStride() + col); + else + return ploadt(m_d.data + row + col * m_d.outerStride()); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return ploadt(m_d.data + index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + if (IsRowMajor) + return pstoret + (const_cast(m_d.data) + row * m_d.outerStride() + col, x); + else + return pstoret + (const_cast(m_d.data) + row + col * m_d.outerStride(), x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + return pstoret(const_cast(m_d.data) + index, x); + } + +protected: + + plainobjectbase_evaluator_data m_d; +}; + +template +struct evaluator > + : evaluator > > +{ + typedef Matrix XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + evaluator() {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& m) + : evaluator >(m) + { } +}; + +template +struct evaluator > + : evaluator > > +{ + typedef Array XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + evaluator() {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& m) + : evaluator >(m) + { } +}; + +// -------------------- Transpose -------------------- + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef Transpose XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = evaluator::Flags ^ RowMajorBit, + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {} + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(col, row); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(col, row); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + typename XprType::Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(col, row); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_argImpl.template packet(index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + m_argImpl.template writePacket(col, row, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + m_argImpl.template writePacket(index, x); + } + +protected: + evaluator m_argImpl; +}; + +// -------------------- CwiseNullaryOp -------------------- +// Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator. +// Likewise, there is not need to more sophisticated dispatching here. + +template::value, + bool has_unary = has_unary_operator::value, + bool has_binary = has_binary_operator::value> +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { return op(i,j); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } + + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { return op.template packetOp(i,j); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp(i); } +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType=0, IndexType=0) const { return op(); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType=0, IndexType=0) const { return op.template packetOp(); } +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j=0) const { return op(i,j); } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j=0) const { return op.template packetOp(i,j); } +}; + +// We need the following specialization for vector-only functors assigned to a runtime vector, +// for instance, using linspace and assigning a RowVectorXd to a MatrixXd or even a row of a MatrixXd. +// In this case, i==0 and j is used for the actual iteration. +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { + eigen_assert(i==0 || j==0); + return op(i+j); + } + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { + eigen_assert(i==0 || j==0); + return op.template packetOp(i+j); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp(i); } +}; + +template +struct nullary_wrapper {}; + +#if 0 && EIGEN_COMP_MSVC>0 +// Disable this ugly workaround. This is now handled in traits::match, +// but this piece of code might still become handly if some other weird compilation +// erros pop up again. + +// MSVC exhibits a weird compilation error when +// compiling: +// Eigen::MatrixXf A = MatrixXf::Random(3,3); +// Ref R = 2.f*A; +// and that has_*ary_operator> have not been instantiated yet. +// The "problem" is that evaluator<2.f*A> is instantiated by traits::match<2.f*A> +// and at that time has_*ary_operator returns true regardless of T. +// Then nullary_wrapper is badly instantiated as nullary_wrapper<.,.,true,true,true>. +// The trick is thus to defer the proper instantiation of nullary_wrapper when coeff(), +// and packet() are really instantiated as implemented below: + +// This is a simple wrapper around Index to enforce the re-instantiation of +// has_*ary_operator when needed. +template struct nullary_wrapper_workaround_msvc { + nullary_wrapper_workaround_msvc(const T&); + operator T()const; +}; + +template +struct nullary_wrapper +{ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().operator()(op,i,j); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().operator()(op,i); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().template packetOp(op,i,j); + } + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { + return nullary_wrapper >::value, + has_unary_operator >::value, + has_binary_operator >::value>().template packetOp(op,i); + } +}; +#endif // MSVC workaround + +template +struct evaluator > + : evaluator_base > +{ + typedef CwiseNullaryOp XprType; + typedef typename internal::remove_all::type PlainObjectTypeCleaned; + + enum { + CoeffReadCost = internal::functor_traits::Cost, + + Flags = (evaluator::Flags + & ( HereditaryBits + | (functor_has_linear_access::ret ? LinearAccessBit : 0) + | (functor_traits::PacketAccess ? PacketAccessBit : 0))) + | (functor_traits::IsRepeatable ? 0 : EvalBeforeNestingBit), + Alignment = AlignedMax + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n) + : m_functor(n.functor()), m_wrapper() + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(IndexType row, IndexType col) const + { + return m_wrapper(m_functor, row, col); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(IndexType index) const + { + return m_wrapper(m_functor,index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(IndexType row, IndexType col) const + { + return m_wrapper.template packetOp(m_functor, row, col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(IndexType index) const + { + return m_wrapper.template packetOp(m_functor, index); + } + +protected: + const NullaryOp m_functor; + const internal::nullary_wrapper m_wrapper; +}; + +// -------------------- CwiseUnaryOp -------------------- + +template +struct unary_evaluator, IndexBased > + : evaluator_base > +{ + typedef CwiseUnaryOp XprType; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + + Flags = evaluator::Flags + & (HereditaryBits | LinearAccessBit | (functor_traits::PacketAccess ? PacketAccessBit : 0)), + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& op) : m_d(op) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_d.func()(m_d.argImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.func()(m_d.argImpl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_d.func().packetOp(m_d.argImpl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_d.func().packetOp(m_d.argImpl.template packet(index)); + } + +protected: + + // this helper permits to completely eliminate the functor if it is empty + struct Data + { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Data(const XprType& xpr) : op(xpr.functor()), argImpl(xpr.nestedExpression()) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const UnaryOp& func() const { return op; } + UnaryOp op; + evaluator argImpl; + }; + + Data m_d; +}; + +// -------------------- CwiseTernaryOp -------------------- + +// this is a ternary expression +template +struct evaluator > + : public ternary_evaluator > +{ + typedef CwiseTernaryOp XprType; + typedef ternary_evaluator > Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} +}; + +template +struct ternary_evaluator, IndexBased, IndexBased> + : evaluator_base > +{ + typedef CwiseTernaryOp XprType; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + + Arg1Flags = evaluator::Flags, + Arg2Flags = evaluator::Flags, + Arg3Flags = evaluator::Flags, + SameType = is_same::value && is_same::value, + StorageOrdersAgree = (int(Arg1Flags)&RowMajorBit)==(int(Arg2Flags)&RowMajorBit) && (int(Arg1Flags)&RowMajorBit)==(int(Arg3Flags)&RowMajorBit), + Flags0 = (int(Arg1Flags) | int(Arg2Flags) | int(Arg3Flags)) & ( + HereditaryBits + | (int(Arg1Flags) & int(Arg2Flags) & int(Arg3Flags) & + ( (StorageOrdersAgree ? LinearAccessBit : 0) + | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) + ) + ) + ), + Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit), + Alignment = EIGEN_PLAIN_ENUM_MIN( + EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment), + evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr) : m_d(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_d.func()(m_d.arg1Impl.coeff(row, col), m_d.arg2Impl.coeff(row, col), m_d.arg3Impl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.func()(m_d.arg1Impl.coeff(index), m_d.arg2Impl.coeff(index), m_d.arg3Impl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_d.func().packetOp(m_d.arg1Impl.template packet(row, col), + m_d.arg2Impl.template packet(row, col), + m_d.arg3Impl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_d.func().packetOp(m_d.arg1Impl.template packet(index), + m_d.arg2Impl.template packet(index), + m_d.arg3Impl.template packet(index)); + } + +protected: + // this helper permits to completely eliminate the functor if it is empty + struct Data + { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Data(const XprType& xpr) : op(xpr.functor()), arg1Impl(xpr.arg1()), arg2Impl(xpr.arg2()), arg3Impl(xpr.arg3()) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TernaryOp& func() const { return op; } + TernaryOp op; + evaluator arg1Impl; + evaluator arg2Impl; + evaluator arg3Impl; + }; + + Data m_d; +}; + +// -------------------- CwiseBinaryOp -------------------- + +// this is a binary expression +template +struct evaluator > + : public binary_evaluator > +{ + typedef CwiseBinaryOp XprType; + typedef binary_evaluator > Base; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& xpr) : Base(xpr) {} +}; + +template +struct binary_evaluator, IndexBased, IndexBased> + : evaluator_base > +{ + typedef CwiseBinaryOp XprType; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + + LhsFlags = evaluator::Flags, + RhsFlags = evaluator::Flags, + SameType = is_same::value, + StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit), + Flags0 = (int(LhsFlags) | int(RhsFlags)) & ( + HereditaryBits + | (int(LhsFlags) & int(RhsFlags) & + ( (StorageOrdersAgree ? LinearAccessBit : 0) + | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) + ) + ) + ), + Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit), + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment,evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit binary_evaluator(const XprType& xpr) : m_d(xpr) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_d.func()(m_d.lhsImpl.coeff(row, col), m_d.rhsImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.func()(m_d.lhsImpl.coeff(index), m_d.rhsImpl.coeff(index)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_d.func().packetOp(m_d.lhsImpl.template packet(row, col), + m_d.rhsImpl.template packet(row, col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_d.func().packetOp(m_d.lhsImpl.template packet(index), + m_d.rhsImpl.template packet(index)); + } + +protected: + + // this helper permits to completely eliminate the functor if it is empty + struct Data + { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Data(const XprType& xpr) : op(xpr.functor()), lhsImpl(xpr.lhs()), rhsImpl(xpr.rhs()) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const BinaryOp& func() const { return op; } + BinaryOp op; + evaluator lhsImpl; + evaluator rhsImpl; + }; + + Data m_d; +}; + +// -------------------- CwiseUnaryView -------------------- + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef CwiseUnaryView XprType; + + enum { + CoeffReadCost = int(evaluator::CoeffReadCost) + int(functor_traits::Cost), + + Flags = (evaluator::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit)), + + Alignment = 0 // FIXME it is not very clear why alignment is necessarily lost... + }; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : m_d(op) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits::Cost); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_d.func()(m_d.argImpl.coeff(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_d.func()(m_d.argImpl.coeff(index)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_d.func()(m_d.argImpl.coeffRef(row, col)); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_d.func()(m_d.argImpl.coeffRef(index)); + } + +protected: + + // this helper permits to completely eliminate the functor if it is empty + struct Data + { + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Data(const XprType& xpr) : op(xpr.functor()), argImpl(xpr.nestedExpression()) {} + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const UnaryOp& func() const { return op; } + UnaryOp op; + evaluator argImpl; + }; + + Data m_d; +}; + +// -------------------- Map -------------------- + +// FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ? +// but that might complicate template specialization +template +struct mapbase_evaluator; + +template +struct mapbase_evaluator : evaluator_base +{ + typedef Derived XprType; + typedef typename XprType::PointerType PointerType; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = XprType::RowsAtCompileTime, + ColsAtCompileTime = XprType::ColsAtCompileTime, + CoeffReadCost = NumTraits::ReadCost + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit mapbase_evaluator(const XprType& map) + : m_data(const_cast(map.data())), + m_innerStride(map.innerStride()), + m_outerStride(map.outerStride()) + { + EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator::Flags&PacketAccessBit, internal::inner_stride_at_compile_time::ret==1), + PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1); + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_data[col * colStride() + row * rowStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_data[index * m_innerStride.value()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_data[col * colStride() + row * rowStride()]; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_data[index * m_innerStride.value()]; + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + PointerType ptr = m_data + row * rowStride() + col * colStride(); + return internal::ploadt(ptr); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return internal::ploadt(m_data + index * m_innerStride.value()); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + PointerType ptr = m_data + row * rowStride() + col * colStride(); + return internal::pstoret(ptr, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + internal::pstoret(m_data + index * m_innerStride.value(), x); + } +protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + Index rowStride() const EIGEN_NOEXCEPT { + return XprType::IsRowMajor ? m_outerStride.value() : m_innerStride.value(); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + Index colStride() const EIGEN_NOEXCEPT { + return XprType::IsRowMajor ? m_innerStride.value() : m_outerStride.value(); + } + + PointerType m_data; + const internal::variable_if_dynamic m_innerStride; + const internal::variable_if_dynamic m_outerStride; +}; + +template +struct evaluator > + : public mapbase_evaluator, PlainObjectType> +{ + typedef Map XprType; + typedef typename XprType::Scalar Scalar; + // TODO: should check for smaller packet types once we can handle multi-sized packet types + typedef typename packet_traits::type PacketScalar; + + enum { + InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 + ? int(PlainObjectType::InnerStrideAtCompileTime) + : int(StrideType::InnerStrideAtCompileTime), + OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 + ? int(PlainObjectType::OuterStrideAtCompileTime) + : int(StrideType::OuterStrideAtCompileTime), + HasNoInnerStride = InnerStrideAtCompileTime == 1, + HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0, + HasNoStride = HasNoInnerStride && HasNoOuterStride, + IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic, + + PacketAccessMask = bool(HasNoInnerStride) ? ~int(0) : ~int(PacketAccessBit), + LinearAccessMask = bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime) ? ~int(0) : ~int(LinearAccessBit), + Flags = int( evaluator::Flags) & (LinearAccessMask&PacketAccessMask), + + Alignment = int(MapOptions)&int(AlignedMask) + }; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map) + : mapbase_evaluator(map) + { } +}; + +// -------------------- Ref -------------------- + +template +struct evaluator > + : public mapbase_evaluator, PlainObjectType> +{ + typedef Ref XprType; + + enum { + Flags = evaluator >::Flags, + Alignment = evaluator >::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& ref) + : mapbase_evaluator(ref) + { } +}; + +// -------------------- Block -------------------- + +template::ret> struct block_evaluator; + +template +struct evaluator > + : block_evaluator +{ + typedef Block XprType; + typedef typename XprType::Scalar Scalar; + // TODO: should check for smaller packet types once we can handle multi-sized packet types + typedef typename packet_traits::type PacketScalar; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + + RowsAtCompileTime = traits::RowsAtCompileTime, + ColsAtCompileTime = traits::ColsAtCompileTime, + MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = traits::MaxColsAtCompileTime, + + ArgTypeIsRowMajor = (int(evaluator::Flags)&RowMajorBit) != 0, + IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1 + : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0 + : ArgTypeIsRowMajor, + HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor), + InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), + InnerStrideAtCompileTime = HasSameStorageOrderAsArgType + ? int(inner_stride_at_compile_time::ret) + : int(outer_stride_at_compile_time::ret), + OuterStrideAtCompileTime = HasSameStorageOrderAsArgType + ? int(outer_stride_at_compile_time::ret) + : int(inner_stride_at_compile_time::ret), + MaskPacketAccessBit = (InnerStrideAtCompileTime == 1 || HasSameStorageOrderAsArgType) ? PacketAccessBit : 0, + + FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator::Flags&LinearAccessBit))) ? LinearAccessBit : 0, + FlagsRowMajorBit = XprType::Flags&RowMajorBit, + Flags0 = evaluator::Flags & ( (HereditaryBits & ~RowMajorBit) | + DirectAccessBit | + MaskPacketAccessBit), + Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit, + + PacketAlignment = unpacket_traits::alignment, + Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) + && (OuterStrideAtCompileTime!=0) + && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0, + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, Alignment0) + }; + typedef block_evaluator block_evaluator_type; + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& block) : block_evaluator_type(block) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } +}; + +// no direct-access => dispatch to a unary evaluator +template +struct block_evaluator + : unary_evaluator > +{ + typedef Block XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit block_evaluator(const XprType& block) + : unary_evaluator(block) + {} +}; + +template +struct unary_evaluator, IndexBased> + : evaluator_base > +{ + typedef Block XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& block) + : m_argImpl(block.nestedExpression()), + m_startRow(block.startRow()), + m_startCol(block.startCol()), + m_linear_offset(ForwardLinearAccess?(ArgType::IsRowMajor ? block.startRow()*block.nestedExpression().cols() + block.startCol() : block.startCol()*block.nestedExpression().rows() + block.startRow()):0) + { } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + RowsAtCompileTime = XprType::RowsAtCompileTime, + ForwardLinearAccess = (InnerPanel || int(XprType::IsRowMajor)==int(ArgType::IsRowMajor)) && bool(evaluator::Flags&LinearAccessBit) + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return linear_coeff_impl(index, bool_constant()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return linear_coeffRef_impl(index, bool_constant()); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(m_startRow.value() + row, m_startCol.value() + col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + if (ForwardLinearAccess) + return m_argImpl.template packet(m_linear_offset.value() + index); + else + return packet(RowsAtCompileTime == 1 ? 0 : index, + RowsAtCompileTime == 1 ? index : 0); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + return m_argImpl.template writePacket(m_startRow.value() + row, m_startCol.value() + col, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + if (ForwardLinearAccess) + return m_argImpl.template writePacket(m_linear_offset.value() + index, x); + else + return writePacket(RowsAtCompileTime == 1 ? 0 : index, + RowsAtCompileTime == 1 ? index : 0, + x); + } + +protected: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType linear_coeff_impl(Index index, internal::true_type /* ForwardLinearAccess */) const + { + return m_argImpl.coeff(m_linear_offset.value() + index); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType linear_coeff_impl(Index index, internal::false_type /* not ForwardLinearAccess */) const + { + return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& linear_coeffRef_impl(Index index, internal::true_type /* ForwardLinearAccess */) + { + return m_argImpl.coeffRef(m_linear_offset.value() + index); + } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& linear_coeffRef_impl(Index index, internal::false_type /* not ForwardLinearAccess */) + { + return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); + } + + evaluator m_argImpl; + const variable_if_dynamic m_startRow; + const variable_if_dynamic m_startCol; + const variable_if_dynamic m_linear_offset; +}; + +// TODO: This evaluator does not actually use the child evaluator; +// all action is via the data() as returned by the Block expression. + +template +struct block_evaluator + : mapbase_evaluator, + typename Block::PlainObject> +{ + typedef Block XprType; + typedef typename XprType::Scalar Scalar; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit block_evaluator(const XprType& block) + : mapbase_evaluator(block) + { + // TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime + eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator::Alignment)) == 0) && "data is not aligned"); + } +}; + + +// -------------------- Select -------------------- +// NOTE shall we introduce a ternary_evaluator? + +// TODO enable vectorization for Select +template +struct evaluator > + : evaluator_base > +{ + typedef Select XprType; + enum { + CoeffReadCost = evaluator::CoeffReadCost + + EIGEN_PLAIN_ENUM_MAX(evaluator::CoeffReadCost, + evaluator::CoeffReadCost), + + Flags = (unsigned int)evaluator::Flags & evaluator::Flags & HereditaryBits, + + Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment) + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& select) + : m_conditionImpl(select.conditionMatrix()), + m_thenImpl(select.thenMatrix()), + m_elseImpl(select.elseMatrix()) + { + EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); + } + + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + if (m_conditionImpl.coeff(row, col)) + return m_thenImpl.coeff(row, col); + else + return m_elseImpl.coeff(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + if (m_conditionImpl.coeff(index)) + return m_thenImpl.coeff(index); + else + return m_elseImpl.coeff(index); + } + +protected: + evaluator m_conditionImpl; + evaluator m_thenImpl; + evaluator m_elseImpl; +}; + + +// -------------------- Replicate -------------------- + +template +struct unary_evaluator > + : evaluator_base > +{ + typedef Replicate XprType; + typedef typename XprType::CoeffReturnType CoeffReturnType; + enum { + Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor + }; + typedef typename internal::nested_eval::type ArgTypeNested; + typedef typename internal::remove_all::type ArgTypeNestedCleaned; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + LinearAccessMask = XprType::IsVectorAtCompileTime ? LinearAccessBit : 0, + Flags = (evaluator::Flags & (HereditaryBits|LinearAccessMask) & ~RowMajorBit) | (traits::Flags & RowMajorBit), + + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& replicate) + : m_arg(replicate.nestedExpression()), + m_argImpl(m_arg), + m_rows(replicate.nestedExpression().rows()), + m_cols(replicate.nestedExpression().cols()) + {} + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + // try to avoid using modulo; this is a pure optimization strategy + const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 + : RowFactor==1 ? row + : row % m_rows.value(); + const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 + : ColFactor==1 ? col + : col % m_cols.value(); + + return m_argImpl.coeff(actual_row, actual_col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + // try to avoid using modulo; this is a pure optimization strategy + const Index actual_index = internal::traits::RowsAtCompileTime==1 + ? (ColFactor==1 ? index : index%m_cols.value()) + : (RowFactor==1 ? index : index%m_rows.value()); + + return m_argImpl.coeff(actual_index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + const Index actual_row = internal::traits::RowsAtCompileTime==1 ? 0 + : RowFactor==1 ? row + : row % m_rows.value(); + const Index actual_col = internal::traits::ColsAtCompileTime==1 ? 0 + : ColFactor==1 ? col + : col % m_cols.value(); + + return m_argImpl.template packet(actual_row, actual_col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + const Index actual_index = internal::traits::RowsAtCompileTime==1 + ? (ColFactor==1 ? index : index%m_cols.value()) + : (RowFactor==1 ? index : index%m_rows.value()); + + return m_argImpl.template packet(actual_index); + } + +protected: + const ArgTypeNested m_arg; + evaluator m_argImpl; + const variable_if_dynamic m_rows; + const variable_if_dynamic m_cols; +}; + +// -------------------- MatrixWrapper and ArrayWrapper -------------------- +// +// evaluator_wrapper_base is a common base class for the +// MatrixWrapper and ArrayWrapper evaluators. + +template +struct evaluator_wrapper_base + : evaluator_base +{ + typedef typename remove_all::type ArgType; + enum { + CoeffReadCost = evaluator::CoeffReadCost, + Flags = evaluator::Flags, + Alignment = evaluator::Alignment + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {} + + typedef typename ArgType::Scalar Scalar; + typedef typename ArgType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(row, col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + return m_argImpl.template packet(row, col); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + return m_argImpl.template packet(index); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + m_argImpl.template writePacket(row, col, x); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + m_argImpl.template writePacket(index, x); + } + +protected: + evaluator m_argImpl; +}; + +template +struct unary_evaluator > + : evaluator_wrapper_base > +{ + typedef MatrixWrapper XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& wrapper) + : evaluator_wrapper_base >(wrapper.nestedExpression()) + { } +}; + +template +struct unary_evaluator > + : evaluator_wrapper_base > +{ + typedef ArrayWrapper XprType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& wrapper) + : evaluator_wrapper_base >(wrapper.nestedExpression()) + { } +}; + + +// -------------------- Reverse -------------------- + +// defined in Reverse.h: +template struct reverse_packet_cond; + +template +struct unary_evaluator > + : evaluator_base > +{ + typedef Reverse XprType; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + enum { + IsRowMajor = XprType::IsRowMajor, + IsColMajor = !IsRowMajor, + ReverseRow = (Direction == Vertical) || (Direction == BothDirections), + ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), + ReversePacket = (Direction == BothDirections) + || ((Direction == Vertical) && IsColMajor) + || ((Direction == Horizontal) && IsRowMajor), + + CoeffReadCost = evaluator::CoeffReadCost, + + // let's enable LinearAccess only with vectorization because of the product overhead + // FIXME enable DirectAccess with negative strides? + Flags0 = evaluator::Flags, + LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) ) + || ((ReverseRow && XprType::ColsAtCompileTime==1) || (ReverseCol && XprType::RowsAtCompileTime==1)) + ? LinearAccessBit : 0, + + Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess), + + Alignment = 0 // FIXME in some rare cases, Alignment could be preserved, like a Vector4f. + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit unary_evaluator(const XprType& reverse) + : m_argImpl(reverse.nestedExpression()), + m_rows(ReverseRow ? reverse.nestedExpression().rows() : 1), + m_cols(ReverseCol ? reverse.nestedExpression().cols() : 1) + { } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index col) const + { + return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row, + ReverseCol ? m_cols.value() - col - 1 : col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index col) + { + return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row, + ReverseCol ? m_cols.value() - col - 1 : col); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index row, Index col) const + { + enum { + PacketSize = unpacket_traits::size, + OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, + OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 + }; + typedef internal::reverse_packet_cond reverse_packet; + return reverse_packet::run(m_argImpl.template packet( + ReverseRow ? m_rows.value() - row - OffsetRow : row, + ReverseCol ? m_cols.value() - col - OffsetCol : col)); + } + + template + EIGEN_STRONG_INLINE + PacketType packet(Index index) const + { + enum { PacketSize = unpacket_traits::size }; + return preverse(m_argImpl.template packet(m_rows.value() * m_cols.value() - index - PacketSize)); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index row, Index col, const PacketType& x) + { + // FIXME we could factorize some code with packet(i,j) + enum { + PacketSize = unpacket_traits::size, + OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, + OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 + }; + typedef internal::reverse_packet_cond reverse_packet; + m_argImpl.template writePacket( + ReverseRow ? m_rows.value() - row - OffsetRow : row, + ReverseCol ? m_cols.value() - col - OffsetCol : col, + reverse_packet::run(x)); + } + + template + EIGEN_STRONG_INLINE + void writePacket(Index index, const PacketType& x) + { + enum { PacketSize = unpacket_traits::size }; + m_argImpl.template writePacket + (m_rows.value() * m_cols.value() - index - PacketSize, preverse(x)); + } + +protected: + evaluator m_argImpl; + + // If we do not reverse rows, then we do not need to know the number of rows; same for columns + // Nonetheless, in this case it is important to set to 1 such that the coeff(index) method works fine for vectors. + const variable_if_dynamic m_rows; + const variable_if_dynamic m_cols; +}; + + +// -------------------- Diagonal -------------------- + +template +struct evaluator > + : evaluator_base > +{ + typedef Diagonal XprType; + + enum { + CoeffReadCost = evaluator::CoeffReadCost, + + Flags = (unsigned int)(evaluator::Flags & (HereditaryBits | DirectAccessBit) & ~RowMajorBit) | LinearAccessBit, + + Alignment = 0 + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + explicit evaluator(const XprType& diagonal) + : m_argImpl(diagonal.nestedExpression()), + m_index(diagonal.index()) + { } + + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index row, Index) const + { + return m_argImpl.coeff(row + rowOffset(), row + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + CoeffReturnType coeff(Index index) const + { + return m_argImpl.coeff(index + rowOffset(), index + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index row, Index) + { + return m_argImpl.coeffRef(row + rowOffset(), row + colOffset()); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + Scalar& coeffRef(Index index) + { + return m_argImpl.coeffRef(index + rowOffset(), index + colOffset()); + } + +protected: + evaluator m_argImpl; + const internal::variable_if_dynamicindex m_index; + +private: + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); } + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR + Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; } +}; + + +//---------------------------------------------------------------------- +// deprecated code +//---------------------------------------------------------------------- + +// -------------------- EvalToTemp -------------------- + +// expression class for evaluating nested expression to a temporary + +template class EvalToTemp; + +template +struct traits > + : public traits +{ }; + +template +class EvalToTemp + : public dense_xpr_base >::type +{ + public: + + typedef typename dense_xpr_base::type Base; + EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp) + + explicit EvalToTemp(const ArgType& arg) + : m_arg(arg) + { } + + const ArgType& arg() const + { + return m_arg; + } + + EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT + { + return m_arg.rows(); + } + + EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT + { + return m_arg.cols(); + } + + private: + const ArgType& m_arg; +}; + +template +struct evaluator > + : public evaluator +{ + typedef EvalToTemp XprType; + typedef typename ArgType::PlainObject PlainObject; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) + : m_result(xpr.arg()) + { + ::new (static_cast(this)) Base(m_result); + } + + // This constructor is used when nesting an EvalTo evaluator in another evaluator + EIGEN_DEVICE_FUNC evaluator(const ArgType& arg) + : m_result(arg) + { + ::new (static_cast(this)) Base(m_result); + } + +protected: + PlainObject m_result; +}; + +} // namespace internal + +} // end namespace Eigen + +#endif // EIGEN_COREEVALUATORS_H diff --git a/include/eigen/Eigen/src/Core/DenseCoeffsBase.h b/include/eigen/Eigen/src/Core/DenseCoeffsBase.h new file mode 100644 index 0000000000000000000000000000000000000000..37fcdb59119ff83758ce004d7526b69a73dbb275 --- /dev/null +++ b/include/eigen/Eigen/src/Core/DenseCoeffsBase.h @@ -0,0 +1,685 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DENSECOEFFSBASE_H +#define EIGEN_DENSECOEFFSBASE_H + +namespace Eigen { + +namespace internal { +template struct add_const_on_value_type_if_arithmetic +{ + typedef typename conditional::value, T, typename add_const_on_value_type::type>::type type; +}; +} + +/** \brief Base class providing read-only coefficient access to matrices and arrays. + * \ingroup Core_Module + * \tparam Derived Type of the derived class + * + * \note #ReadOnlyAccessors Constant indicating read-only access + * + * This class defines the \c operator() \c const function and friends, which can be used to read specific + * entries of a matrix or array. + * + * \sa DenseCoeffsBase, DenseCoeffsBase, + * \ref TopicClassHierarchy + */ +template +class DenseCoeffsBase : public EigenBase +{ + public: + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::packet_traits::type PacketScalar; + + // Explanation for this CoeffReturnType typedef. + // - This is the return type of the coeff() method. + // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references + // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value). + // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems + // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is + // not possible, since the underlying expressions might not offer a valid address the reference could be referring to. + typedef typename internal::conditional::Flags&LvalueBit), + const Scalar&, + typename internal::conditional::value, Scalar, const Scalar>::type + >::type CoeffReturnType; + + typedef typename internal::add_const_on_value_type_if_arithmetic< + typename internal::packet_traits::type + >::type PacketReturnType; + + typedef EigenBase Base; + using Base::rows; + using Base::cols; + using Base::size; + using Base::derived; + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const + { + return int(Derived::RowsAtCompileTime) == 1 ? 0 + : int(Derived::ColsAtCompileTime) == 1 ? inner + : int(Derived::Flags)&RowMajorBit ? outer + : inner; + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const + { + return int(Derived::ColsAtCompileTime) == 1 ? 0 + : int(Derived::RowsAtCompileTime) == 1 ? inner + : int(Derived::Flags)&RowMajorBit ? inner + : outer; + } + + /** Short version: don't use this function, use + * \link operator()(Index,Index) const \endlink instead. + * + * Long version: this function is similar to + * \link operator()(Index,Index) const \endlink, but without the assertion. + * Use this for limiting the performance cost of debugging code when doing + * repeated coefficient access. Only use this when it is guaranteed that the + * parameters \a row and \a col are in range. + * + * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this + * function equivalent to \link operator()(Index,Index) const \endlink. + * + * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const + { + eigen_internal_assert(row >= 0 && row < rows() + && col >= 0 && col < cols()); + return internal::evaluator(derived()).coeff(row,col); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const + { + return coeff(rowIndexByOuterInner(outer, inner), + colIndexByOuterInner(outer, inner)); + } + + /** \returns the coefficient at given the given row and column. + * + * \sa operator()(Index,Index), operator[](Index) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const + { + eigen_assert(row >= 0 && row < rows() + && col >= 0 && col < cols()); + return coeff(row, col); + } + + /** Short version: don't use this function, use + * \link operator[](Index) const \endlink instead. + * + * Long version: this function is similar to + * \link operator[](Index) const \endlink, but without the assertion. + * Use this for limiting the performance cost of debugging code when doing + * repeated coefficient access. Only use this when it is guaranteed that the + * parameter \a index is in range. + * + * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this + * function equivalent to \link operator[](Index) const \endlink. + * + * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + coeff(Index index) const + { + EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) + eigen_internal_assert(index >= 0 && index < size()); + return internal::evaluator(derived()).coeff(index); + } + + + /** \returns the coefficient at given index. + * + * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. + * + * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, + * z() const, w() const + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + operator[](Index index) const + { + EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, + THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) + eigen_assert(index >= 0 && index < size()); + return coeff(index); + } + + /** \returns the coefficient at given index. + * + * This is synonymous to operator[](Index) const. + * + * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. + * + * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, + * z() const, w() const + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + operator()(Index index) const + { + eigen_assert(index >= 0 && index < size()); + return coeff(index); + } + + /** equivalent to operator[](0). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + x() const { return (*this)[0]; } + + /** equivalent to operator[](1). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + y() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS); + return (*this)[1]; + } + + /** equivalent to operator[](2). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + z() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS); + return (*this)[2]; + } + + /** equivalent to operator[](3). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE CoeffReturnType + w() const + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS); + return (*this)[3]; + } + + /** \internal + * \returns the packet of coefficients starting at the given row and column. It is your responsibility + * to ensure that a packet really starts there. This method is only available on expressions having the + * PacketAccessBit. + * + * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select + * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets + * starting at an address which is a multiple of the packet size. + */ + + template + EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const + { + typedef typename internal::packet_traits::type DefaultPacketType; + eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); + return internal::evaluator(derived()).template packet(row,col); + } + + + /** \internal */ + template + EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const + { + return packet(rowIndexByOuterInner(outer, inner), + colIndexByOuterInner(outer, inner)); + } + + /** \internal + * \returns the packet of coefficients starting at the given index. It is your responsibility + * to ensure that a packet really starts there. This method is only available on expressions having the + * PacketAccessBit and the LinearAccessBit. + * + * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select + * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets + * starting at an address which is a multiple of the packet size. + */ + + template + EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const + { + EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) + typedef typename internal::packet_traits::type DefaultPacketType; + eigen_internal_assert(index >= 0 && index < size()); + return internal::evaluator(derived()).template packet(index); + } + + protected: + // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase. + // But some methods are only available in the DirectAccess case. + // So we add dummy methods here with these names, so that "using... " doesn't fail. + // It's not private so that the child class DenseBase can access them, and it's not public + // either since it's an implementation detail, so has to be protected. + void coeffRef(); + void coeffRefByOuterInner(); + void writePacket(); + void writePacketByOuterInner(); + void copyCoeff(); + void copyCoeffByOuterInner(); + void copyPacket(); + void copyPacketByOuterInner(); + void stride(); + void innerStride(); + void outerStride(); + void rowStride(); + void colStride(); +}; + +/** \brief Base class providing read/write coefficient access to matrices and arrays. + * \ingroup Core_Module + * \tparam Derived Type of the derived class + * + * \note #WriteAccessors Constant indicating read/write access + * + * This class defines the non-const \c operator() function and friends, which can be used to write specific + * entries of a matrix or array. This class inherits DenseCoeffsBase which + * defines the const variant for reading specific entries. + * + * \sa DenseCoeffsBase, \ref TopicClassHierarchy + */ +template +class DenseCoeffsBase : public DenseCoeffsBase +{ + public: + + typedef DenseCoeffsBase Base; + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::packet_traits::type PacketScalar; + typedef typename NumTraits::Real RealScalar; + + using Base::coeff; + using Base::rows; + using Base::cols; + using Base::size; + using Base::derived; + using Base::rowIndexByOuterInner; + using Base::colIndexByOuterInner; + using Base::operator[]; + using Base::operator(); + using Base::x; + using Base::y; + using Base::z; + using Base::w; + + /** Short version: don't use this function, use + * \link operator()(Index,Index) \endlink instead. + * + * Long version: this function is similar to + * \link operator()(Index,Index) \endlink, but without the assertion. + * Use this for limiting the performance cost of debugging code when doing + * repeated coefficient access. Only use this when it is guaranteed that the + * parameters \a row and \a col are in range. + * + * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this + * function equivalent to \link operator()(Index,Index) \endlink. + * + * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index) + */ + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) + { + eigen_internal_assert(row >= 0 && row < rows() + && col >= 0 && col < cols()); + return internal::evaluator(derived()).coeffRef(row,col); + } + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + coeffRefByOuterInner(Index outer, Index inner) + { + return coeffRef(rowIndexByOuterInner(outer, inner), + colIndexByOuterInner(outer, inner)); + } + + /** \returns a reference to the coefficient at given the given row and column. + * + * \sa operator[](Index) + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + operator()(Index row, Index col) + { + eigen_assert(row >= 0 && row < rows() + && col >= 0 && col < cols()); + return coeffRef(row, col); + } + + + /** Short version: don't use this function, use + * \link operator[](Index) \endlink instead. + * + * Long version: this function is similar to + * \link operator[](Index) \endlink, but without the assertion. + * Use this for limiting the performance cost of debugging code when doing + * repeated coefficient access. Only use this when it is guaranteed that the + * parameters \a row and \a col are in range. + * + * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this + * function equivalent to \link operator[](Index) \endlink. + * + * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index) + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + coeffRef(Index index) + { + EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, + THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) + eigen_internal_assert(index >= 0 && index < size()); + return internal::evaluator(derived()).coeffRef(index); + } + + /** \returns a reference to the coefficient at given index. + * + * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. + * + * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + operator[](Index index) + { + EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, + THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) + eigen_assert(index >= 0 && index < size()); + return coeffRef(index); + } + + /** \returns a reference to the coefficient at given index. + * + * This is synonymous to operator[](Index). + * + * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. + * + * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() + */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + operator()(Index index) + { + eigen_assert(index >= 0 && index < size()); + return coeffRef(index); + } + + /** equivalent to operator[](0). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + x() { return (*this)[0]; } + + /** equivalent to operator[](1). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + y() + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS); + return (*this)[1]; + } + + /** equivalent to operator[](2). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + z() + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS); + return (*this)[2]; + } + + /** equivalent to operator[](3). */ + + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE Scalar& + w() + { + EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS); + return (*this)[3]; + } +}; + +/** \brief Base class providing direct read-only coefficient access to matrices and arrays. + * \ingroup Core_Module + * \tparam Derived Type of the derived class + * + * \note #DirectAccessors Constant indicating direct access + * + * This class defines functions to work with strides which can be used to access entries directly. This class + * inherits DenseCoeffsBase which defines functions to access entries read-only using + * \c operator() . + * + * \sa \blank \ref TopicClassHierarchy + */ +template +class DenseCoeffsBase : public DenseCoeffsBase +{ + public: + + typedef DenseCoeffsBase Base; + typedef typename internal::traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + + using Base::rows; + using Base::cols; + using Base::size; + using Base::derived; + + /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. + * + * \sa outerStride(), rowStride(), colStride() + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index innerStride() const + { + return derived().innerStride(); + } + + /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns + * in a column-major matrix). + * + * \sa innerStride(), rowStride(), colStride() + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index outerStride() const + { + return derived().outerStride(); + } + + // FIXME shall we remove it ? + EIGEN_CONSTEXPR inline Index stride() const + { + return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); + } + + /** \returns the pointer increment between two consecutive rows. + * + * \sa innerStride(), outerStride(), colStride() + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rowStride() const + { + return Derived::IsRowMajor ? outerStride() : innerStride(); + } + + /** \returns the pointer increment between two consecutive columns. + * + * \sa innerStride(), outerStride(), rowStride() + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index colStride() const + { + return Derived::IsRowMajor ? innerStride() : outerStride(); + } +}; + +/** \brief Base class providing direct read/write coefficient access to matrices and arrays. + * \ingroup Core_Module + * \tparam Derived Type of the derived class + * + * \note #DirectWriteAccessors Constant indicating direct access + * + * This class defines functions to work with strides which can be used to access entries directly. This class + * inherits DenseCoeffsBase which defines functions to access entries read/write using + * \c operator(). + * + * \sa \blank \ref TopicClassHierarchy + */ +template +class DenseCoeffsBase + : public DenseCoeffsBase +{ + public: + + typedef DenseCoeffsBase Base; + typedef typename internal::traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + + using Base::rows; + using Base::cols; + using Base::size; + using Base::derived; + + /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. + * + * \sa outerStride(), rowStride(), colStride() + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index innerStride() const EIGEN_NOEXCEPT + { + return derived().innerStride(); + } + + /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns + * in a column-major matrix). + * + * \sa innerStride(), rowStride(), colStride() + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index outerStride() const EIGEN_NOEXCEPT + { + return derived().outerStride(); + } + + // FIXME shall we remove it ? + EIGEN_CONSTEXPR inline Index stride() const EIGEN_NOEXCEPT + { + return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); + } + + /** \returns the pointer increment between two consecutive rows. + * + * \sa innerStride(), outerStride(), colStride() + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rowStride() const EIGEN_NOEXCEPT + { + return Derived::IsRowMajor ? outerStride() : innerStride(); + } + + /** \returns the pointer increment between two consecutive columns. + * + * \sa innerStride(), outerStride(), rowStride() + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index colStride() const EIGEN_NOEXCEPT + { + return Derived::IsRowMajor ? innerStride() : outerStride(); + } +}; + +namespace internal { + +template +struct first_aligned_impl +{ + static EIGEN_CONSTEXPR inline Index run(const Derived&) EIGEN_NOEXCEPT + { return 0; } +}; + +template +struct first_aligned_impl +{ + static inline Index run(const Derived& m) + { + return internal::first_aligned(m.data(), m.size()); + } +}; + +/** \internal \returns the index of the first element of the array stored by \a m that is properly aligned with respect to \a Alignment for vectorization. + * + * \tparam Alignment requested alignment in Bytes. + * + * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more + * documentation. + */ +template +static inline Index first_aligned(const DenseBase& m) +{ + enum { ReturnZero = (int(evaluator::Alignment) >= Alignment) || !(Derived::Flags & DirectAccessBit) }; + return first_aligned_impl::run(m.derived()); +} + +template +static inline Index first_default_aligned(const DenseBase& m) +{ + typedef typename Derived::Scalar Scalar; + typedef typename packet_traits::type DefaultPacketType; + return internal::first_aligned::alignment),Derived>(m); +} + +template::ret> +struct inner_stride_at_compile_time +{ + enum { ret = traits::InnerStrideAtCompileTime }; +}; + +template +struct inner_stride_at_compile_time +{ + enum { ret = 0 }; +}; + +template::ret> +struct outer_stride_at_compile_time +{ + enum { ret = traits::OuterStrideAtCompileTime }; +}; + +template +struct outer_stride_at_compile_time +{ + enum { ret = 0 }; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_DENSECOEFFSBASE_H diff --git a/include/eigen/Eigen/src/Core/TriangularMatrix.h b/include/eigen/Eigen/src/Core/TriangularMatrix.h new file mode 100644 index 0000000000000000000000000000000000000000..bd722cf8a457a9b8d4155cb5253ba537325c6d01 --- /dev/null +++ b/include/eigen/Eigen/src/Core/TriangularMatrix.h @@ -0,0 +1,994 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Benoit Jacob +// Copyright (C) 2008-2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRIANGULARMATRIX_H +#define EIGEN_TRIANGULARMATRIX_H + +namespace Eigen { + +namespace internal { + +template struct triangular_solve_retval; + +} + +/** \class TriangularBase + * \ingroup Core_Module + * + * \brief Base class for triangular part in a matrix + */ +template class TriangularBase : public EigenBase +{ + public: + + enum { + Mode = internal::traits::Mode, + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, + + SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, + internal::traits::ColsAtCompileTime>::ret), + /**< This is equal to the number of coefficients, i.e. the number of + * rows times the number of columns, or to \a Dynamic if this is not + * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ + + MaxSizeAtCompileTime = (internal::size_at_compile_time::MaxRowsAtCompileTime, + internal::traits::MaxColsAtCompileTime>::ret) + + }; + typedef typename internal::traits::Scalar Scalar; + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::StorageIndex StorageIndex; + typedef typename internal::traits::FullMatrixType DenseMatrixType; + typedef DenseMatrixType DenseType; + typedef Derived const& Nested; + + EIGEN_DEVICE_FUNC + inline TriangularBase() { eigen_assert(!((int(Mode) & int(UnitDiag)) && (int(Mode) & int(ZeroDiag)))); } + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return derived().rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return derived().cols(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index outerStride() const EIGEN_NOEXCEPT { return derived().outerStride(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index innerStride() const EIGEN_NOEXCEPT { return derived().innerStride(); } + + // dummy resize function + EIGEN_DEVICE_FUNC + void resize(Index rows, Index cols) + { + EIGEN_UNUSED_VARIABLE(rows); + EIGEN_UNUSED_VARIABLE(cols); + eigen_assert(rows==this->rows() && cols==this->cols()); + } + + EIGEN_DEVICE_FUNC + inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); } + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); } + + /** \see MatrixBase::copyCoeff(row,col) + */ + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other) + { + derived().coeffRef(row, col) = other.coeff(row, col); + } + + EIGEN_DEVICE_FUNC + inline Scalar operator()(Index row, Index col) const + { + check_coordinates(row, col); + return coeff(row,col); + } + EIGEN_DEVICE_FUNC + inline Scalar& operator()(Index row, Index col) + { + check_coordinates(row, col); + return coeffRef(row,col); + } + + EIGEN_DEVICE_FUNC + inline const Derived& derived() const { return *static_cast(this); } + EIGEN_DEVICE_FUNC + inline Derived& derived() { return *static_cast(this); } + + template + EIGEN_DEVICE_FUNC + void evalTo(MatrixBase &other) const; + template + EIGEN_DEVICE_FUNC + void evalToLazy(MatrixBase &other) const; + + EIGEN_DEVICE_FUNC + DenseMatrixType toDenseMatrix() const + { + DenseMatrixType res(rows(), cols()); + evalToLazy(res); + return res; + } + + protected: + + void check_coordinates(Index row, Index col) const + { + EIGEN_ONLY_USED_FOR_DEBUG(row); + EIGEN_ONLY_USED_FOR_DEBUG(col); + eigen_assert(col>=0 && col=0 && row=row) + || (mode==Lower && col<=row) + || ((mode==StrictlyUpper || mode==UnitUpper) && col>row) + || ((mode==StrictlyLower || mode==UnitLower) && col +struct traits > : traits +{ + typedef typename ref_selector::non_const_type MatrixTypeNested; + typedef typename remove_reference::type MatrixTypeNestedNonRef; + typedef typename remove_all::type MatrixTypeNestedCleaned; + typedef typename MatrixType::PlainObject FullMatrixType; + typedef MatrixType ExpressionType; + enum { + Mode = _Mode, + FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, + Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) + }; +}; +} + +template class TriangularViewImpl; + +template class TriangularView + : public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > +{ + public: + + typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base; + typedef typename internal::traits::Scalar Scalar; + typedef _MatrixType MatrixType; + + protected: + typedef typename internal::traits::MatrixTypeNested MatrixTypeNested; + typedef typename internal::traits::MatrixTypeNestedNonRef MatrixTypeNestedNonRef; + + typedef typename internal::remove_all::type MatrixConjugateReturnType; + typedef TriangularView::type, _Mode> ConstTriangularView; + + public: + + typedef typename internal::traits::StorageKind StorageKind; + typedef typename internal::traits::MatrixTypeNestedCleaned NestedExpression; + + enum { + Mode = _Mode, + Flags = internal::traits::Flags, + TransposeMode = (Mode & Upper ? Lower : 0) + | (Mode & Lower ? Upper : 0) + | (Mode & (UnitDiag)) + | (Mode & (ZeroDiag)), + IsVectorAtCompileTime = false + }; + + EIGEN_DEVICE_FUNC + explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix) + {} + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TriangularView) + + /** \copydoc EigenBase::rows() */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + /** \copydoc EigenBase::cols() */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + /** \returns a const reference to the nested expression */ + EIGEN_DEVICE_FUNC + const NestedExpression& nestedExpression() const { return m_matrix; } + + /** \returns a reference to the nested expression */ + EIGEN_DEVICE_FUNC + NestedExpression& nestedExpression() { return m_matrix; } + + typedef TriangularView ConjugateReturnType; + /** \sa MatrixBase::conjugate() const */ + EIGEN_DEVICE_FUNC + inline const ConjugateReturnType conjugate() const + { return ConjugateReturnType(m_matrix.conjugate()); } + + /** \returns an expression of the complex conjugate of \c *this if Cond==true, + * returns \c *this otherwise. + */ + template + EIGEN_DEVICE_FUNC + inline typename internal::conditional::type + conjugateIf() const + { + typedef typename internal::conditional::type ReturnType; + return ReturnType(m_matrix.template conjugateIf()); + } + + typedef TriangularView AdjointReturnType; + /** \sa MatrixBase::adjoint() const */ + EIGEN_DEVICE_FUNC + inline const AdjointReturnType adjoint() const + { return AdjointReturnType(m_matrix.adjoint()); } + + typedef TriangularView TransposeReturnType; + /** \sa MatrixBase::transpose() */ + EIGEN_DEVICE_FUNC + inline TransposeReturnType transpose() + { + EIGEN_STATIC_ASSERT_LVALUE(MatrixType) + typename MatrixType::TransposeReturnType tmp(m_matrix); + return TransposeReturnType(tmp); + } + + typedef TriangularView ConstTransposeReturnType; + /** \sa MatrixBase::transpose() const */ + EIGEN_DEVICE_FUNC + inline const ConstTransposeReturnType transpose() const + { + return ConstTransposeReturnType(m_matrix.transpose()); + } + + template + EIGEN_DEVICE_FUNC + inline const Solve + solve(const MatrixBase& other) const + { return Solve(*this, other.derived()); } + + // workaround MSVC ICE + #if EIGEN_COMP_MSVC + template + EIGEN_DEVICE_FUNC + inline const internal::triangular_solve_retval + solve(const MatrixBase& other) const + { return Base::template solve(other); } + #else + using Base::solve; + #endif + + /** \returns a selfadjoint view of the referenced triangular part which must be either \c #Upper or \c #Lower. + * + * This is a shortcut for \code this->nestedExpression().selfadjointView<(*this)::Mode>() \endcode + * \sa MatrixBase::selfadjointView() */ + EIGEN_DEVICE_FUNC + SelfAdjointView selfadjointView() + { + EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR); + return SelfAdjointView(m_matrix); + } + + /** This is the const version of selfadjointView() */ + EIGEN_DEVICE_FUNC + const SelfAdjointView selfadjointView() const + { + EIGEN_STATIC_ASSERT((Mode&(UnitDiag|ZeroDiag))==0,PROGRAMMING_ERROR); + return SelfAdjointView(m_matrix); + } + + + /** \returns the determinant of the triangular matrix + * \sa MatrixBase::determinant() */ + EIGEN_DEVICE_FUNC + Scalar determinant() const + { + if (Mode & UnitDiag) + return 1; + else if (Mode & ZeroDiag) + return 0; + else + return m_matrix.diagonal().prod(); + } + + protected: + + MatrixTypeNested m_matrix; +}; + +/** \ingroup Core_Module + * + * \brief Base class for a triangular part in a \b dense matrix + * + * This class is an abstract base class of class TriangularView, and objects of type TriangularViewImpl cannot be instantiated. + * It extends class TriangularView with additional methods which available for dense expressions only. + * + * \sa class TriangularView, MatrixBase::triangularView() + */ +template class TriangularViewImpl<_MatrixType,_Mode,Dense> + : public TriangularBase > +{ + public: + + typedef TriangularView<_MatrixType, _Mode> TriangularViewType; + typedef TriangularBase Base; + typedef typename internal::traits::Scalar Scalar; + + typedef _MatrixType MatrixType; + typedef typename MatrixType::PlainObject DenseMatrixType; + typedef DenseMatrixType PlainObject; + + public: + using Base::evalToLazy; + using Base::derived; + + typedef typename internal::traits::StorageKind StorageKind; + + enum { + Mode = _Mode, + Flags = internal::traits::Flags + }; + + /** \returns the outer-stride of the underlying dense matrix + * \sa DenseCoeffsBase::outerStride() */ + EIGEN_DEVICE_FUNC + inline Index outerStride() const { return derived().nestedExpression().outerStride(); } + /** \returns the inner-stride of the underlying dense matrix + * \sa DenseCoeffsBase::innerStride() */ + EIGEN_DEVICE_FUNC + inline Index innerStride() const { return derived().nestedExpression().innerStride(); } + + /** \sa MatrixBase::operator+=() */ + template + EIGEN_DEVICE_FUNC + TriangularViewType& operator+=(const DenseBase& other) { + internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op()); + return derived(); + } + /** \sa MatrixBase::operator-=() */ + template + EIGEN_DEVICE_FUNC + TriangularViewType& operator-=(const DenseBase& other) { + internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op()); + return derived(); + } + + /** \sa MatrixBase::operator*=() */ + EIGEN_DEVICE_FUNC + TriangularViewType& operator*=(const typename internal::traits::Scalar& other) { return *this = derived().nestedExpression() * other; } + /** \sa DenseBase::operator/=() */ + EIGEN_DEVICE_FUNC + TriangularViewType& operator/=(const typename internal::traits::Scalar& other) { return *this = derived().nestedExpression() / other; } + + /** \sa MatrixBase::fill() */ + EIGEN_DEVICE_FUNC + void fill(const Scalar& value) { setConstant(value); } + /** \sa MatrixBase::setConstant() */ + EIGEN_DEVICE_FUNC + TriangularViewType& setConstant(const Scalar& value) + { return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); } + /** \sa MatrixBase::setZero() */ + EIGEN_DEVICE_FUNC + TriangularViewType& setZero() { return setConstant(Scalar(0)); } + /** \sa MatrixBase::setOnes() */ + EIGEN_DEVICE_FUNC + TriangularViewType& setOnes() { return setConstant(Scalar(1)); } + + /** \sa MatrixBase::coeff() + * \warning the coordinates must fit into the referenced triangular part + */ + EIGEN_DEVICE_FUNC + inline Scalar coeff(Index row, Index col) const + { + Base::check_coordinates_internal(row, col); + return derived().nestedExpression().coeff(row, col); + } + + /** \sa MatrixBase::coeffRef() + * \warning the coordinates must fit into the referenced triangular part + */ + EIGEN_DEVICE_FUNC + inline Scalar& coeffRef(Index row, Index col) + { + EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType); + Base::check_coordinates_internal(row, col); + return derived().nestedExpression().coeffRef(row, col); + } + + /** Assigns a triangular matrix to a triangular part of a dense matrix */ + template + EIGEN_DEVICE_FUNC + TriangularViewType& operator=(const TriangularBase& other); + + /** Shortcut for\code *this = other.other.triangularView<(*this)::Mode>() \endcode */ + template + EIGEN_DEVICE_FUNC + TriangularViewType& operator=(const MatrixBase& other); + + EIGEN_DEVICE_FUNC + TriangularViewType& operator=(const TriangularViewImpl& other) + { return *this = other.derived().nestedExpression(); } + + template + /** \deprecated */ + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC + void lazyAssign(const TriangularBase& other); + + template + /** \deprecated */ + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC + void lazyAssign(const MatrixBase& other); + + /** Efficient triangular matrix times vector/matrix product */ + template + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase& rhs) const + { + return Product(derived(), rhs.derived()); + } + + /** Efficient vector/matrix times triangular matrix product */ + template friend + EIGEN_DEVICE_FUNC + const Product + operator*(const MatrixBase& lhs, const TriangularViewImpl& rhs) + { + return Product(lhs.derived(),rhs.derived()); + } + + /** \returns the product of the inverse of \c *this with \a other, \a *this being triangular. + * + * This function computes the inverse-matrix matrix product inverse(\c *this) * \a other if + * \a Side==OnTheLeft (the default), or the right-inverse-multiply \a other * inverse(\c *this) if + * \a Side==OnTheRight. + * + * Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft + * + * The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the + * diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this + * is an upper (resp. lower) triangular matrix. + * + * Example: \include Triangular_solve.cpp + * Output: \verbinclude Triangular_solve.out + * + * This function returns an expression of the inverse-multiply and can works in-place if it is assigned + * to the same matrix or vector \a other. + * + * For users coming from BLAS, this function (and more specifically solveInPlace()) offer + * all the operations supported by the \c *TRSV and \c *TRSM BLAS routines. + * + * \sa TriangularView::solveInPlace() + */ + template + inline const internal::triangular_solve_retval + solve(const MatrixBase& other) const; + + /** "in-place" version of TriangularView::solve() where the result is written in \a other + * + * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. + * This function will const_cast it, so constness isn't honored here. + * + * Note that the template parameter \c Side can be omitted, in which case \c Side==OnTheLeft + * + * See TriangularView:solve() for the details. + */ + template + EIGEN_DEVICE_FUNC + void solveInPlace(const MatrixBase& other) const; + + template + EIGEN_DEVICE_FUNC + void solveInPlace(const MatrixBase& other) const + { return solveInPlace(other); } + + /** Swaps the coefficients of the common triangular parts of two matrices */ + template + EIGEN_DEVICE_FUNC + void swap(TriangularBase const & other) + { + EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); + call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); + } + + /** Shortcut for \code (*this).swap(other.triangularView<(*this)::Mode>()) \endcode */ + template + /** \deprecated */ + EIGEN_DEPRECATED EIGEN_DEVICE_FUNC + void swap(MatrixBase const & other) + { + EIGEN_STATIC_ASSERT_LVALUE(OtherDerived); + call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); + } + + template + EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const { + if(!internal::is_same_dense(dst,rhs)) + dst = rhs; + this->solveInPlace(dst); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha, + bool beta); + + protected: + EIGEN_DEFAULT_COPY_CONSTRUCTOR(TriangularViewImpl) + EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(TriangularViewImpl) + +}; + +/*************************************************************************** +* Implementation of triangular evaluation/assignment +***************************************************************************/ + +#ifndef EIGEN_PARSED_BY_DOXYGEN +// FIXME should we keep that possibility +template +template +EIGEN_DEVICE_FUNC inline TriangularView& +TriangularViewImpl::operator=(const MatrixBase& other) +{ + internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op()); + return derived(); +} + +// FIXME should we keep that possibility +template +template +EIGEN_DEVICE_FUNC void TriangularViewImpl::lazyAssign(const MatrixBase& other) +{ + internal::call_assignment_no_alias(derived(), other.template triangularView()); +} + + + +template +template +EIGEN_DEVICE_FUNC inline TriangularView& +TriangularViewImpl::operator=(const TriangularBase& other) +{ + eigen_assert(Mode == int(OtherDerived::Mode)); + internal::call_assignment(derived(), other.derived()); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC void TriangularViewImpl::lazyAssign(const TriangularBase& other) +{ + eigen_assert(Mode == int(OtherDerived::Mode)); + internal::call_assignment_no_alias(derived(), other.derived()); +} +#endif + +/*************************************************************************** +* Implementation of TriangularBase methods +***************************************************************************/ + +/** Assigns a triangular or selfadjoint matrix to a dense matrix. + * If the matrix is triangular, the opposite part is set to zero. */ +template +template +EIGEN_DEVICE_FUNC void TriangularBase::evalTo(MatrixBase &other) const +{ + evalToLazy(other.derived()); +} + +/*************************************************************************** +* Implementation of TriangularView methods +***************************************************************************/ + +/*************************************************************************** +* Implementation of MatrixBase methods +***************************************************************************/ + +/** + * \returns an expression of a triangular view extracted from the current matrix + * + * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, + * \c #Lower, \c #StrictlyLower, \c #UnitLower. + * + * Example: \include MatrixBase_triangularView.cpp + * Output: \verbinclude MatrixBase_triangularView.out + * + * \sa class TriangularView + */ +template +template +EIGEN_DEVICE_FUNC +typename MatrixBase::template TriangularViewReturnType::Type +MatrixBase::triangularView() +{ + return typename TriangularViewReturnType::Type(derived()); +} + +/** This is the const version of MatrixBase::triangularView() */ +template +template +EIGEN_DEVICE_FUNC +typename MatrixBase::template ConstTriangularViewReturnType::Type +MatrixBase::triangularView() const +{ + return typename ConstTriangularViewReturnType::Type(derived()); +} + +/** \returns true if *this is approximately equal to an upper triangular matrix, + * within the precision given by \a prec. + * + * \sa isLowerTriangular() + */ +template +bool MatrixBase::isUpperTriangular(const RealScalar& prec) const +{ + RealScalar maxAbsOnUpperPart = static_cast(-1); + for(Index j = 0; j < cols(); ++j) + { + Index maxi = numext::mini(j, rows()-1); + for(Index i = 0; i <= maxi; ++i) + { + RealScalar absValue = numext::abs(coeff(i,j)); + if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue; + } + } + RealScalar threshold = maxAbsOnUpperPart * prec; + for(Index j = 0; j < cols(); ++j) + for(Index i = j+1; i < rows(); ++i) + if(numext::abs(coeff(i, j)) > threshold) return false; + return true; +} + +/** \returns true if *this is approximately equal to a lower triangular matrix, + * within the precision given by \a prec. + * + * \sa isUpperTriangular() + */ +template +bool MatrixBase::isLowerTriangular(const RealScalar& prec) const +{ + RealScalar maxAbsOnLowerPart = static_cast(-1); + for(Index j = 0; j < cols(); ++j) + for(Index i = j; i < rows(); ++i) + { + RealScalar absValue = numext::abs(coeff(i,j)); + if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue; + } + RealScalar threshold = maxAbsOnLowerPart * prec; + for(Index j = 1; j < cols(); ++j) + { + Index maxi = numext::mini(j, rows()-1); + for(Index i = 0; i < maxi; ++i) + if(numext::abs(coeff(i, j)) > threshold) return false; + } + return true; +} + + +/*************************************************************************** +**************************************************************************** +* Evaluators and Assignment of triangular expressions +*************************************************************************** +***************************************************************************/ + +namespace internal { + + +// TODO currently a triangular expression has the form TriangularView<.,.> +// in the future triangular-ness should be defined by the expression traits +// such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) +template +struct evaluator_traits > +{ + typedef typename storage_kind_to_evaluator_kind::Kind Kind; + typedef typename glue_shapes::Shape, TriangularShape>::type Shape; +}; + +template +struct unary_evaluator, IndexBased> + : evaluator::type> +{ + typedef TriangularView XprType; + typedef evaluator::type> Base; + EIGEN_DEVICE_FUNC + unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {} +}; + +// Additional assignment kinds: +struct Triangular2Triangular {}; +struct Triangular2Dense {}; +struct Dense2Triangular {}; + + +template struct triangular_assignment_loop; + + +/** \internal Specialization of the dense assignment kernel for triangular matrices. + * The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions. + * \tparam UpLo must be either Lower or Upper + * \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint + */ +template +class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel +{ +protected: + typedef generic_dense_assignment_kernel Base; + typedef typename Base::DstXprType DstXprType; + typedef typename Base::SrcXprType SrcXprType; + using Base::m_dst; + using Base::m_src; + using Base::m_functor; +public: + + typedef typename Base::DstEvaluatorType DstEvaluatorType; + typedef typename Base::SrcEvaluatorType SrcEvaluatorType; + typedef typename Base::Scalar Scalar; + typedef typename Base::AssignmentTraits AssignmentTraits; + + + EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) + : Base(dst, src, func, dstExpr) + {} + +#ifdef EIGEN_INTERNAL_DEBUGGING + EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) + { + eigen_internal_assert(row!=col); + Base::assignCoeff(row,col); + } +#else + using Base::assignCoeff; +#endif + + EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) + { + if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1)); + else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0)); + else if(Mode==0) Base::assignCoeff(id,id); + } + + EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col) + { + eigen_internal_assert(row!=col); + if(SetOpposite) + m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0)); + } +}; + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src, const Functor &func) +{ + typedef evaluator DstEvaluatorType; + typedef evaluator SrcEvaluatorType; + + SrcEvaluatorType srcEvaluator(src); + + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + DstEvaluatorType dstEvaluator(dst); + + typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite, + DstEvaluatorType,SrcEvaluatorType,Functor> Kernel; + Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); + + enum { + unroll = DstXprType::SizeAtCompileTime != Dynamic + && SrcEvaluatorType::CoeffReadCost < HugeCost + && DstXprType::SizeAtCompileTime * (int(DstEvaluatorType::CoeffReadCost) + int(SrcEvaluatorType::CoeffReadCost)) / 2 <= EIGEN_UNROLLING_LIMIT + }; + + triangular_assignment_loop::run(kernel); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +void call_triangular_assignment_loop(DstXprType& dst, const SrcXprType& src) +{ + call_triangular_assignment_loop(dst, src, internal::assign_op()); +} + +template<> struct AssignmentKind { typedef Triangular2Triangular Kind; }; +template<> struct AssignmentKind { typedef Triangular2Dense Kind; }; +template<> struct AssignmentKind { typedef Dense2Triangular Kind; }; + + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { + eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode)); + + call_triangular_assignment_loop(dst, src, func); + } +}; + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { + call_triangular_assignment_loop(dst, src, func); + } +}; + +template< typename DstXprType, typename SrcXprType, typename Functor> +struct Assignment +{ + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) + { + call_triangular_assignment_loop(dst, src, func); + } +}; + + +template +struct triangular_assignment_loop +{ + // FIXME: this is not very clean, perhaps this information should be provided by the kernel? + typedef typename Kernel::DstEvaluatorType DstEvaluatorType; + typedef typename DstEvaluatorType::XprType DstXprType; + + enum { + col = (UnrollCount-1) / DstXprType::RowsAtCompileTime, + row = (UnrollCount-1) % DstXprType::RowsAtCompileTime + }; + + typedef typename Kernel::Scalar Scalar; + + EIGEN_DEVICE_FUNC + static inline void run(Kernel &kernel) + { + triangular_assignment_loop::run(kernel); + + if(row==col) + kernel.assignDiagonalCoeff(row); + else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row +struct triangular_assignment_loop +{ + EIGEN_DEVICE_FUNC + static inline void run(Kernel &) {} +}; + + + +// TODO: experiment with a recursive assignment procedure splitting the current +// triangular part into one rectangular and two triangular parts. + + +template +struct triangular_assignment_loop +{ + typedef typename Kernel::Scalar Scalar; + EIGEN_DEVICE_FUNC + static inline void run(Kernel &kernel) + { + for(Index j = 0; j < kernel.cols(); ++j) + { + Index maxi = numext::mini(j, kernel.rows()); + Index i = 0; + if (((Mode&Lower) && SetOpposite) || (Mode&Upper)) + { + for(; i < maxi; ++i) + if(Mode&Upper) kernel.assignCoeff(i, j); + else kernel.assignOppositeCoeff(i, j); + } + else + i = maxi; + + if(i +template +EIGEN_DEVICE_FUNC void TriangularBase::evalToLazy(MatrixBase &other) const +{ + other.derived().resize(this->rows(), this->cols()); + internal::call_triangular_assignment_loop(other.derived(), derived().nestedExpression()); +} + +namespace internal { + +// Triangular = Product +template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> +struct Assignment, internal::assign_op::Scalar>, Dense2Triangular> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst._assignProduct(src, Scalar(1), false); + } +}; + +// Triangular += Product +template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> +struct Assignment, internal::add_assign_op::Scalar>, Dense2Triangular> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &) + { + dst._assignProduct(src, Scalar(1), true); + } +}; + +// Triangular -= Product +template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> +struct Assignment, internal::sub_assign_op::Scalar>, Dense2Triangular> +{ + typedef Product SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &) + { + dst._assignProduct(src, Scalar(-1), true); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIANGULARMATRIX_H diff --git a/include/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h b/include/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h new file mode 100644 index 0000000000000000000000000000000000000000..6a99f4c5e1cbe415043e83249b39c5b1adff884d --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h @@ -0,0 +1,345 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Claire Maurice +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2010,2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H +#define EIGEN_COMPLEX_EIGEN_SOLVER_H + +#include "./ComplexSchur.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class ComplexEigenSolver + * + * \brief Computes eigenvalues and eigenvectors of general complex matrices + * + * \tparam _MatrixType the type of the matrix of which we are + * computing the eigendecomposition; this is expected to be an + * instantiation of the Matrix class template. + * + * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars + * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v + * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on + * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as + * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is + * almost always invertible, in which case we have \f$ A = V D V^{-1} + * \f$. This is called the eigendecomposition. + * + * The main function in this class is compute(), which computes the + * eigenvalues and eigenvectors of a given function. The + * documentation for that function contains an example showing the + * main features of the class. + * + * \sa class EigenSolver, class SelfAdjointEigenSolver + */ +template class ComplexEigenSolver +{ + public: + + /** \brief Synonym for the template parameter \p _MatrixType. */ + typedef _MatrixType MatrixType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type #MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Complex scalar type for #MatrixType. + * + * This is \c std::complex if #Scalar is real (e.g., + * \c float or \c double) and just \c Scalar if #Scalar is + * complex. + */ + typedef std::complex ComplexScalar; + + /** \brief Type for vector of eigenvalues as returned by eigenvalues(). + * + * This is a column vector with entries of type #ComplexScalar. + * The length of the vector is the size of #MatrixType. + */ + typedef Matrix EigenvalueType; + + /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). + * + * This is a square matrix with entries of type #ComplexScalar. + * The size is the same as the size of #MatrixType. + */ + typedef Matrix EigenvectorType; + + /** \brief Default constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). + */ + ComplexEigenSolver() + : m_eivec(), + m_eivalues(), + m_schur(), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_matX() + {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa ComplexEigenSolver() + */ + explicit ComplexEigenSolver(Index size) + : m_eivec(size, size), + m_eivalues(size), + m_schur(size), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_matX(size, size) + {} + + /** \brief Constructor; computes eigendecomposition of given matrix. + * + * \param[in] matrix Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * + * This constructor calls compute() to compute the eigendecomposition. + */ + template + explicit ComplexEigenSolver(const EigenBase& matrix, bool computeEigenvectors = true) + : m_eivec(matrix.rows(),matrix.cols()), + m_eivalues(matrix.cols()), + m_schur(matrix.rows()), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_matX(matrix.rows(),matrix.cols()) + { + compute(matrix.derived(), computeEigenvectors); + } + + /** \brief Returns the eigenvectors of given matrix. + * + * \returns A const reference to the matrix whose columns are the eigenvectors. + * + * \pre Either the constructor + * ComplexEigenSolver(const MatrixType& matrix, bool) or the member + * function compute(const MatrixType& matrix, bool) has been called before + * to compute the eigendecomposition of a matrix, and + * \p computeEigenvectors was set to true (the default). + * + * This function returns a matrix whose columns are the eigenvectors. Column + * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k + * \f$ as returned by eigenvalues(). The eigenvectors are normalized to + * have (Euclidean) norm equal to one. The matrix returned by this + * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D + * V^{-1} \f$, if it exists. + * + * Example: \include ComplexEigenSolver_eigenvectors.cpp + * Output: \verbinclude ComplexEigenSolver_eigenvectors.out + */ + const EigenvectorType& eigenvectors() const + { + eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec; + } + + /** \brief Returns the eigenvalues of given matrix. + * + * \returns A const reference to the column vector containing the eigenvalues. + * + * \pre Either the constructor + * ComplexEigenSolver(const MatrixType& matrix, bool) or the member + * function compute(const MatrixType& matrix, bool) has been called before + * to compute the eigendecomposition of a matrix. + * + * This function returns a column vector containing the + * eigenvalues. Eigenvalues are repeated according to their + * algebraic multiplicity, so there are as many eigenvalues as + * rows in the matrix. The eigenvalues are not sorted in any particular + * order. + * + * Example: \include ComplexEigenSolver_eigenvalues.cpp + * Output: \verbinclude ComplexEigenSolver_eigenvalues.out + */ + const EigenvalueType& eigenvalues() const + { + eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); + return m_eivalues; + } + + /** \brief Computes eigendecomposition of given matrix. + * + * \param[in] matrix Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * \returns Reference to \c *this + * + * This function computes the eigenvalues of the complex matrix \p matrix. + * The eigenvalues() function can be used to retrieve them. If + * \p computeEigenvectors is true, then the eigenvectors are also computed + * and can be retrieved by calling eigenvectors(). + * + * The matrix is first reduced to Schur form using the + * ComplexSchur class. The Schur decomposition is then used to + * compute the eigenvalues and eigenvectors. + * + * The cost of the computation is dominated by the cost of the + * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ + * is the size of the matrix. + * + * Example: \include ComplexEigenSolver_compute.cpp + * Output: \verbinclude ComplexEigenSolver_compute.out + */ + template + ComplexEigenSolver& compute(const EigenBase& matrix, bool computeEigenvectors = true); + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); + return m_schur.info(); + } + + /** \brief Sets the maximum number of iterations allowed. */ + ComplexEigenSolver& setMaxIterations(Index maxIters) + { + m_schur.setMaxIterations(maxIters); + return *this; + } + + /** \brief Returns the maximum number of iterations. */ + Index getMaxIterations() + { + return m_schur.getMaxIterations(); + } + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + EigenvectorType m_eivec; + EigenvalueType m_eivalues; + ComplexSchur m_schur; + bool m_isInitialized; + bool m_eigenvectorsOk; + EigenvectorType m_matX; + + private: + void doComputeEigenvectors(RealScalar matrixnorm); + void sortEigenvalues(bool computeEigenvectors); +}; + + +template +template +ComplexEigenSolver& +ComplexEigenSolver::compute(const EigenBase& matrix, bool computeEigenvectors) +{ + check_template_parameters(); + + // this code is inspired from Jampack + eigen_assert(matrix.cols() == matrix.rows()); + + // Do a complex Schur decomposition, A = U T U^* + // The eigenvalues are on the diagonal of T. + m_schur.compute(matrix.derived(), computeEigenvectors); + + if(m_schur.info() == Success) + { + m_eivalues = m_schur.matrixT().diagonal(); + if(computeEigenvectors) + doComputeEigenvectors(m_schur.matrixT().norm()); + sortEigenvalues(computeEigenvectors); + } + + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + return *this; +} + + +template +void ComplexEigenSolver::doComputeEigenvectors(RealScalar matrixnorm) +{ + const Index n = m_eivalues.size(); + + matrixnorm = numext::maxi(matrixnorm,(std::numeric_limits::min)()); + + // Compute X such that T = X D X^(-1), where D is the diagonal of T. + // The matrix X is unit triangular. + m_matX = EigenvectorType::Zero(n, n); + for(Index k=n-1 ; k>=0 ; k--) + { + m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0); + // Compute X(i,k) using the (i,k) entry of the equation X T = D X + for(Index i=k-1 ; i>=0 ; i--) + { + m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); + if(k-i-1>0) + m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value(); + ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); + if(z==ComplexScalar(0)) + { + // If the i-th and k-th eigenvalue are equal, then z equals 0. + // Use a small value instead, to prevent division by zero. + numext::real_ref(z) = NumTraits::epsilon() * matrixnorm; + } + m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z; + } + } + + // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1) + m_eivec.noalias() = m_schur.matrixU() * m_matX; + // .. and normalize the eigenvectors + for (Index k = 0; k < n; k++) { + m_eivec.col(k).stableNormalize(); + } +} + + +template +void ComplexEigenSolver::sortEigenvalues(bool computeEigenvectors) +{ + const Index n = m_eivalues.size(); + for (Index i=0; i +// Copyright (C) 2010,2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_COMPLEX_SCHUR_H +#define EIGEN_COMPLEX_SCHUR_H + +#include "./HessenbergDecomposition.h" + +namespace Eigen { + +namespace internal { +template struct complex_schur_reduce_to_hessenberg; +} + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class ComplexSchur + * + * \brief Performs a complex Schur decomposition of a real or complex square matrix + * + * \tparam _MatrixType the type of the matrix of which we are + * computing the Schur decomposition; this is expected to be an + * instantiation of the Matrix class template. + * + * Given a real or complex square matrix A, this class computes the + * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary + * complex matrix, and T is a complex upper triangular matrix. The + * diagonal of the matrix T corresponds to the eigenvalues of the + * matrix A. + * + * Call the function compute() to compute the Schur decomposition of + * a given matrix. Alternatively, you can use the + * ComplexSchur(const MatrixType&, bool) constructor which computes + * the Schur decomposition at construction time. Once the + * decomposition is computed, you can use the matrixU() and matrixT() + * functions to retrieve the matrices U and V in the decomposition. + * + * \note This code is inspired from Jampack + * + * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver + */ +template class ComplexSchur +{ + public: + typedef _MatrixType MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type \p _MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Complex scalar type for \p _MatrixType. + * + * This is \c std::complex if #Scalar is real (e.g., + * \c float or \c double) and just \c Scalar if #Scalar is + * complex. + */ + typedef std::complex ComplexScalar; + + /** \brief Type for the matrices in the Schur decomposition. + * + * This is a square matrix with entries of type #ComplexScalar. + * The size is the same as the size of \p _MatrixType. + */ + typedef Matrix ComplexMatrixType; + + /** \brief Default constructor. + * + * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. + * + * The default constructor is useful in cases in which the user + * intends to perform decompositions via compute(). The \p size + * parameter is only used as a hint. It is not an error to give a + * wrong \p size, but it may impair performance. + * + * \sa compute() for an example. + */ + explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) + : m_matT(size,size), + m_matU(size,size), + m_hess(size), + m_isInitialized(false), + m_matUisUptodate(false), + m_maxIters(-1) + {} + + /** \brief Constructor; computes Schur decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Schur decomposition is to be computed. + * \param[in] computeU If true, both T and U are computed; if false, only T is computed. + * + * This constructor calls compute() to compute the Schur decomposition. + * + * \sa matrixT() and matrixU() for examples. + */ + template + explicit ComplexSchur(const EigenBase& matrix, bool computeU = true) + : m_matT(matrix.rows(),matrix.cols()), + m_matU(matrix.rows(),matrix.cols()), + m_hess(matrix.rows()), + m_isInitialized(false), + m_matUisUptodate(false), + m_maxIters(-1) + { + compute(matrix.derived(), computeU); + } + + /** \brief Returns the unitary matrix in the Schur decomposition. + * + * \returns A const reference to the matrix U. + * + * It is assumed that either the constructor + * ComplexSchur(const MatrixType& matrix, bool computeU) or the + * member function compute(const MatrixType& matrix, bool computeU) + * has been called before to compute the Schur decomposition of a + * matrix, and that \p computeU was set to true (the default + * value). + * + * Example: \include ComplexSchur_matrixU.cpp + * Output: \verbinclude ComplexSchur_matrixU.out + */ + const ComplexMatrixType& matrixU() const + { + eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); + eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); + return m_matU; + } + + /** \brief Returns the triangular matrix in the Schur decomposition. + * + * \returns A const reference to the matrix T. + * + * It is assumed that either the constructor + * ComplexSchur(const MatrixType& matrix, bool computeU) or the + * member function compute(const MatrixType& matrix, bool computeU) + * has been called before to compute the Schur decomposition of a + * matrix. + * + * Note that this function returns a plain square matrix. If you want to reference + * only the upper triangular part, use: + * \code schur.matrixT().triangularView() \endcode + * + * Example: \include ComplexSchur_matrixT.cpp + * Output: \verbinclude ComplexSchur_matrixT.out + */ + const ComplexMatrixType& matrixT() const + { + eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); + return m_matT; + } + + /** \brief Computes Schur decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Schur decomposition is to be computed. + * \param[in] computeU If true, both T and U are computed; if false, only T is computed. + + * \returns Reference to \c *this + * + * The Schur decomposition is computed by first reducing the + * matrix to Hessenberg form using the class + * HessenbergDecomposition. The Hessenberg matrix is then reduced + * to triangular form by performing QR iterations with a single + * shift. The cost of computing the Schur decomposition depends + * on the number of iterations; as a rough guide, it may be taken + * on the number of iterations; as a rough guide, it may be taken + * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops + * if \a computeU is false. + * + * Example: \include ComplexSchur_compute.cpp + * Output: \verbinclude ComplexSchur_compute.out + * + * \sa compute(const MatrixType&, bool, Index) + */ + template + ComplexSchur& compute(const EigenBase& matrix, bool computeU = true); + + /** \brief Compute Schur decomposition from a given Hessenberg matrix + * \param[in] matrixH Matrix in Hessenberg form H + * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T + * \param computeU Computes the matriX U of the Schur vectors + * \return Reference to \c *this + * + * This routine assumes that the matrix is already reduced in Hessenberg form matrixH + * using either the class HessenbergDecomposition or another mean. + * It computes the upper quasi-triangular matrix T of the Schur decomposition of H + * When computeU is true, this routine computes the matrix U such that + * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix + * + * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix + * is not available, the user should give an identity matrix (Q.setIdentity()) + * + * \sa compute(const MatrixType&, bool) + */ + template + ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true); + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); + return m_info; + } + + /** \brief Sets the maximum number of iterations allowed. + * + * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size + * of the matrix. + */ + ComplexSchur& setMaxIterations(Index maxIters) + { + m_maxIters = maxIters; + return *this; + } + + /** \brief Returns the maximum number of iterations. */ + Index getMaxIterations() + { + return m_maxIters; + } + + /** \brief Maximum number of iterations per row. + * + * If not otherwise specified, the maximum number of iterations is this number times the size of the + * matrix. It is currently set to 30. + */ + static const int m_maxIterationsPerRow = 30; + + protected: + ComplexMatrixType m_matT, m_matU; + HessenbergDecomposition m_hess; + ComputationInfo m_info; + bool m_isInitialized; + bool m_matUisUptodate; + Index m_maxIters; + + private: + bool subdiagonalEntryIsNeglegible(Index i); + ComplexScalar computeShift(Index iu, Index iter); + void reduceToTriangularForm(bool computeU); + friend struct internal::complex_schur_reduce_to_hessenberg::IsComplex>; +}; + +/** If m_matT(i+1,i) is neglegible in floating point arithmetic + * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and + * return true, else return false. */ +template +inline bool ComplexSchur::subdiagonalEntryIsNeglegible(Index i) +{ + RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1)); + RealScalar sd = numext::norm1(m_matT.coeff(i+1,i)); + if (internal::isMuchSmallerThan(sd, d, NumTraits::epsilon())) + { + m_matT.coeffRef(i+1,i) = ComplexScalar(0); + return true; + } + return false; +} + + +/** Compute the shift in the current QR iteration. */ +template +typename ComplexSchur::ComplexScalar ComplexSchur::computeShift(Index iu, Index iter) +{ + using std::abs; + if (iter == 10 || iter == 20) + { + // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f + return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2))); + } + + // compute the shift as one of the eigenvalues of t, the 2x2 + // diagonal block on the bottom of the active submatrix + Matrix t = m_matT.template block<2,2>(iu-1,iu-1); + RealScalar normt = t.cwiseAbs().sum(); + t /= normt; // the normalization by sf is to avoid under/overflow + + ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); + ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); + ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); + ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; + ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); + ComplexScalar eival1 = (trace + disc) / RealScalar(2); + ComplexScalar eival2 = (trace - disc) / RealScalar(2); + RealScalar eival1_norm = numext::norm1(eival1); + RealScalar eival2_norm = numext::norm1(eival2); + // A division by zero can only occur if eival1==eival2==0. + // In this case, det==0, and all we have to do is checking that eival2_norm!=0 + if(eival1_norm > eival2_norm) + eival2 = det / eival1; + else if(eival2_norm!=RealScalar(0)) + eival1 = det / eival2; + + // choose the eigenvalue closest to the bottom entry of the diagonal + if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1))) + return normt * eival1; + else + return normt * eival2; +} + + +template +template +ComplexSchur& ComplexSchur::compute(const EigenBase& matrix, bool computeU) +{ + m_matUisUptodate = false; + eigen_assert(matrix.cols() == matrix.rows()); + + if(matrix.cols() == 1) + { + m_matT = matrix.derived().template cast(); + if(computeU) m_matU = ComplexMatrixType::Identity(1,1); + m_info = Success; + m_isInitialized = true; + m_matUisUptodate = computeU; + return *this; + } + + internal::complex_schur_reduce_to_hessenberg::IsComplex>::run(*this, matrix.derived(), computeU); + computeFromHessenberg(m_matT, m_matU, computeU); + return *this; +} + +template +template +ComplexSchur& ComplexSchur::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) +{ + m_matT = matrixH; + if(computeU) + m_matU = matrixQ; + reduceToTriangularForm(computeU); + return *this; +} +namespace internal { + +/* Reduce given matrix to Hessenberg form */ +template +struct complex_schur_reduce_to_hessenberg +{ + // this is the implementation for the case IsComplex = true + static void run(ComplexSchur& _this, const MatrixType& matrix, bool computeU) + { + _this.m_hess.compute(matrix); + _this.m_matT = _this.m_hess.matrixH(); + if(computeU) _this.m_matU = _this.m_hess.matrixQ(); + } +}; + +template +struct complex_schur_reduce_to_hessenberg +{ + static void run(ComplexSchur& _this, const MatrixType& matrix, bool computeU) + { + typedef typename ComplexSchur::ComplexScalar ComplexScalar; + + // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar + _this.m_hess.compute(matrix); + _this.m_matT = _this.m_hess.matrixH().template cast(); + if(computeU) + { + // This may cause an allocation which seems to be avoidable + MatrixType Q = _this.m_hess.matrixQ(); + _this.m_matU = Q.template cast(); + } + } +}; + +} // end namespace internal + +// Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. +template +void ComplexSchur::reduceToTriangularForm(bool computeU) +{ + Index maxIters = m_maxIters; + if (maxIters == -1) + maxIters = m_maxIterationsPerRow * m_matT.rows(); + + // The matrix m_matT is divided in three parts. + // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. + // Rows il,...,iu is the part we are working on (the active submatrix). + // Rows iu+1,...,end are already brought in triangular form. + Index iu = m_matT.cols() - 1; + Index il; + Index iter = 0; // number of iterations we are working on the (iu,iu) element + Index totalIter = 0; // number of iterations for whole matrix + + while(true) + { + // find iu, the bottom row of the active submatrix + while(iu > 0) + { + if(!subdiagonalEntryIsNeglegible(iu-1)) break; + iter = 0; + --iu; + } + + // if iu is zero then we are done; the whole matrix is triangularized + if(iu==0) break; + + // if we spent too many iterations, we give up + iter++; + totalIter++; + if(totalIter > maxIters) break; + + // find il, the top row of the active submatrix + il = iu-1; + while(il > 0 && !subdiagonalEntryIsNeglegible(il-1)) + { + --il; + } + + /* perform the QR step using Givens rotations. The first rotation + creates a bulge; the (il+2,il) element becomes nonzero. This + bulge is chased down to the bottom of the active submatrix. */ + + ComplexScalar shift = computeShift(iu, iter); + JacobiRotation rot; + rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); + m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); + m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot); + if(computeU) m_matU.applyOnTheRight(il, il+1, rot); + + for(Index i=il+1 ; i template inline \ +ComplexSchur >& \ +ComplexSchur >::compute(const EigenBase& matrix, bool computeU) \ +{ \ + typedef Matrix MatrixType; \ + typedef MatrixType::RealScalar RealScalar; \ + typedef std::complex ComplexScalar; \ +\ + eigen_assert(matrix.cols() == matrix.rows()); \ +\ + m_matUisUptodate = false; \ + if(matrix.cols() == 1) \ + { \ + m_matT = matrix.derived().template cast(); \ + if(computeU) m_matU = ComplexMatrixType::Identity(1,1); \ + m_info = Success; \ + m_isInitialized = true; \ + m_matUisUptodate = computeU; \ + return *this; \ + } \ + lapack_int n = internal::convert_index(matrix.cols()), sdim, info; \ + lapack_int matrix_order = LAPACKE_COLROW; \ + char jobvs, sort='N'; \ + LAPACK_##LAPACKE_PREFIX_U##_SELECT1 select = 0; \ + jobvs = (computeU) ? 'V' : 'N'; \ + m_matU.resize(n, n); \ + lapack_int ldvs = internal::convert_index(m_matU.outerStride()); \ + m_matT = matrix; \ + lapack_int lda = internal::convert_index(m_matT.outerStride()); \ + Matrix w; \ + w.resize(n, 1);\ + info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)w.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \ + if(info == 0) \ + m_info = Success; \ + else \ + m_info = NoConvergence; \ +\ + m_isInitialized = true; \ + m_matUisUptodate = computeU; \ + return *this; \ +\ +} + +EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, ColMajor, LAPACK_COL_MAJOR) +EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, ColMajor, LAPACK_COL_MAJOR) +EIGEN_LAPACKE_SCHUR_COMPLEX(dcomplex, lapack_complex_double, z, Z, RowMajor, LAPACK_ROW_MAJOR) +EIGEN_LAPACKE_SCHUR_COMPLEX(scomplex, lapack_complex_float, c, C, RowMajor, LAPACK_ROW_MAJOR) + +} // end namespace Eigen + +#endif // EIGEN_COMPLEX_SCHUR_LAPACKE_H diff --git a/include/eigen/Eigen/src/Eigenvalues/EigenSolver.h b/include/eigen/Eigen/src/Eigenvalues/EigenSolver.h new file mode 100644 index 0000000000000000000000000000000000000000..572b29e4e983aba8e87bf2f262d6bb28a5bec3d9 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/EigenSolver.h @@ -0,0 +1,622 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2010,2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EIGENSOLVER_H +#define EIGEN_EIGENSOLVER_H + +#include "./RealSchur.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class EigenSolver + * + * \brief Computes eigenvalues and eigenvectors of general matrices + * + * \tparam _MatrixType the type of the matrix of which we are computing the + * eigendecomposition; this is expected to be an instantiation of the Matrix + * class template. Currently, only real matrices are supported. + * + * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars + * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If + * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and + * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = + * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we + * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition. + * + * The eigenvalues and eigenvectors of a matrix may be complex, even when the + * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D + * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the + * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to + * have blocks of the form + * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f] + * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These + * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call + * this variant of the eigendecomposition the pseudo-eigendecomposition. + * + * Call the function compute() to compute the eigenvalues and eigenvectors of + * a given matrix. Alternatively, you can use the + * EigenSolver(const MatrixType&, bool) constructor which computes the + * eigenvalues and eigenvectors at construction time. Once the eigenvalue and + * eigenvectors are computed, they can be retrieved with the eigenvalues() and + * eigenvectors() functions. The pseudoEigenvalueMatrix() and + * pseudoEigenvectors() methods allow the construction of the + * pseudo-eigendecomposition. + * + * The documentation for EigenSolver(const MatrixType&, bool) contains an + * example of the typical use of this class. + * + * \note The implementation is adapted from + * JAMA (public domain). + * Their code is based on EISPACK. + * + * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver + */ +template class EigenSolver +{ + public: + + /** \brief Synonym for the template parameter \p _MatrixType. */ + typedef _MatrixType MatrixType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type #MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Complex scalar type for #MatrixType. + * + * This is \c std::complex if #Scalar is real (e.g., + * \c float or \c double) and just \c Scalar if #Scalar is + * complex. + */ + typedef std::complex ComplexScalar; + + /** \brief Type for vector of eigenvalues as returned by eigenvalues(). + * + * This is a column vector with entries of type #ComplexScalar. + * The length of the vector is the size of #MatrixType. + */ + typedef Matrix EigenvalueType; + + /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). + * + * This is a square matrix with entries of type #ComplexScalar. + * The size is the same as the size of #MatrixType. + */ + typedef Matrix EigenvectorsType; + + /** \brief Default constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via EigenSolver::compute(const MatrixType&, bool). + * + * \sa compute() for an example. + */ + EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_eigenvectorsOk(false), m_realSchur(), m_matT(), m_tmp() {} + + /** \brief Default constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa EigenSolver() + */ + explicit EigenSolver(Index size) + : m_eivec(size, size), + m_eivalues(size), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_realSchur(size), + m_matT(size, size), + m_tmp(size) + {} + + /** \brief Constructor; computes eigendecomposition of given matrix. + * + * \param[in] matrix Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * + * This constructor calls compute() to compute the eigenvalues + * and eigenvectors. + * + * Example: \include EigenSolver_EigenSolver_MatrixType.cpp + * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out + * + * \sa compute() + */ + template + explicit EigenSolver(const EigenBase& matrix, bool computeEigenvectors = true) + : m_eivec(matrix.rows(), matrix.cols()), + m_eivalues(matrix.cols()), + m_isInitialized(false), + m_eigenvectorsOk(false), + m_realSchur(matrix.cols()), + m_matT(matrix.rows(), matrix.cols()), + m_tmp(matrix.cols()) + { + compute(matrix.derived(), computeEigenvectors); + } + + /** \brief Returns the eigenvectors of given matrix. + * + * \returns %Matrix whose columns are the (possibly complex) eigenvectors. + * + * \pre Either the constructor + * EigenSolver(const MatrixType&,bool) or the member function + * compute(const MatrixType&, bool) has been called before, and + * \p computeEigenvectors was set to true (the default). + * + * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding + * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The + * eigenvectors are normalized to have (Euclidean) norm equal to one. The + * matrix returned by this function is the matrix \f$ V \f$ in the + * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists. + * + * Example: \include EigenSolver_eigenvectors.cpp + * Output: \verbinclude EigenSolver_eigenvectors.out + * + * \sa eigenvalues(), pseudoEigenvectors() + */ + EigenvectorsType eigenvectors() const; + + /** \brief Returns the pseudo-eigenvectors of given matrix. + * + * \returns Const reference to matrix whose columns are the pseudo-eigenvectors. + * + * \pre Either the constructor + * EigenSolver(const MatrixType&,bool) or the member function + * compute(const MatrixType&, bool) has been called before, and + * \p computeEigenvectors was set to true (the default). + * + * The real matrix \f$ V \f$ returned by this function and the + * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix() + * satisfy \f$ AV = VD \f$. + * + * Example: \include EigenSolver_pseudoEigenvectors.cpp + * Output: \verbinclude EigenSolver_pseudoEigenvectors.out + * + * \sa pseudoEigenvalueMatrix(), eigenvectors() + */ + const MatrixType& pseudoEigenvectors() const + { + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec; + } + + /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition. + * + * \returns A block-diagonal matrix. + * + * \pre Either the constructor + * EigenSolver(const MatrixType&,bool) or the member function + * compute(const MatrixType&, bool) has been called before. + * + * The matrix \f$ D \f$ returned by this function is real and + * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2 + * blocks of the form + * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$. + * These blocks are not sorted in any particular order. + * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by + * pseudoEigenvectors() satisfy \f$ AV = VD \f$. + * + * \sa pseudoEigenvectors() for an example, eigenvalues() + */ + MatrixType pseudoEigenvalueMatrix() const; + + /** \brief Returns the eigenvalues of given matrix. + * + * \returns A const reference to the column vector containing the eigenvalues. + * + * \pre Either the constructor + * EigenSolver(const MatrixType&,bool) or the member function + * compute(const MatrixType&, bool) has been called before. + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. The eigenvalues + * are not sorted in any particular order. + * + * Example: \include EigenSolver_eigenvalues.cpp + * Output: \verbinclude EigenSolver_eigenvalues.out + * + * \sa eigenvectors(), pseudoEigenvalueMatrix(), + * MatrixBase::eigenvalues() + */ + const EigenvalueType& eigenvalues() const + { + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + return m_eivalues; + } + + /** \brief Computes eigendecomposition of given matrix. + * + * \param[in] matrix Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * \returns Reference to \c *this + * + * This function computes the eigenvalues of the real matrix \p matrix. + * The eigenvalues() function can be used to retrieve them. If + * \p computeEigenvectors is true, then the eigenvectors are also computed + * and can be retrieved by calling eigenvectors(). + * + * The matrix is first reduced to real Schur form using the RealSchur + * class. The Schur decomposition is then used to compute the eigenvalues + * and eigenvectors. + * + * The cost of the computation is dominated by the cost of the + * Schur decomposition, which is very approximately \f$ 25n^3 \f$ + * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors + * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false. + * + * This method reuses of the allocated data in the EigenSolver object. + * + * Example: \include EigenSolver_compute.cpp + * Output: \verbinclude EigenSolver_compute.out + */ + template + EigenSolver& compute(const EigenBase& matrix, bool computeEigenvectors = true); + + /** \returns NumericalIssue if the input contains INF or NaN values or overflow occurred. Returns Success otherwise. */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + return m_info; + } + + /** \brief Sets the maximum number of iterations allowed. */ + EigenSolver& setMaxIterations(Index maxIters) + { + m_realSchur.setMaxIterations(maxIters); + return *this; + } + + /** \brief Returns the maximum number of iterations. */ + Index getMaxIterations() + { + return m_realSchur.getMaxIterations(); + } + + private: + void doComputeEigenvectors(); + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); + } + + MatrixType m_eivec; + EigenvalueType m_eivalues; + bool m_isInitialized; + bool m_eigenvectorsOk; + ComputationInfo m_info; + RealSchur m_realSchur; + MatrixType m_matT; + + typedef Matrix ColumnVectorType; + ColumnVectorType m_tmp; +}; + +template +MatrixType EigenSolver::pseudoEigenvalueMatrix() const +{ + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + const RealScalar precision = RealScalar(2)*NumTraits::epsilon(); + Index n = m_eivalues.rows(); + MatrixType matD = MatrixType::Zero(n,n); + for (Index i=0; i(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)), + -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)); + ++i; + } + } + return matD; +} + +template +typename EigenSolver::EigenvectorsType EigenSolver::eigenvectors() const +{ + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + const RealScalar precision = RealScalar(2)*NumTraits::epsilon(); + Index n = m_eivec.cols(); + EigenvectorsType matV(n,n); + for (Index j=0; j(); + matV.col(j).normalize(); + } + else + { + // we have a pair of complex eigen values + for (Index i=0; i +template +EigenSolver& +EigenSolver::compute(const EigenBase& matrix, bool computeEigenvectors) +{ + check_template_parameters(); + + using std::sqrt; + using std::abs; + using numext::isfinite; + eigen_assert(matrix.cols() == matrix.rows()); + + // Reduce to real Schur form. + m_realSchur.compute(matrix.derived(), computeEigenvectors); + + m_info = m_realSchur.info(); + + if (m_info == Success) + { + m_matT = m_realSchur.matrixT(); + if (computeEigenvectors) + m_eivec = m_realSchur.matrixU(); + + // Compute eigenvalues from matT + m_eivalues.resize(matrix.cols()); + Index i = 0; + while (i < matrix.cols()) + { + if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) + { + m_eivalues.coeffRef(i) = m_matT.coeff(i, i); + if(!(isfinite)(m_eivalues.coeffRef(i))) + { + m_isInitialized = true; + m_eigenvectorsOk = false; + m_info = NumericalIssue; + return *this; + } + ++i; + } + else + { + Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); + Scalar z; + // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); + // without overflow + { + Scalar t0 = m_matT.coeff(i+1, i); + Scalar t1 = m_matT.coeff(i, i+1); + Scalar maxval = numext::maxi(abs(p),numext::maxi(abs(t0),abs(t1))); + t0 /= maxval; + t1 /= maxval; + Scalar p0 = p/maxval; + z = maxval * sqrt(abs(p0 * p0 + t0 * t1)); + } + + m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); + m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); + if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1)))) + { + m_isInitialized = true; + m_eigenvectorsOk = false; + m_info = NumericalIssue; + return *this; + } + i += 2; + } + } + + // Compute eigenvectors. + if (computeEigenvectors) + doComputeEigenvectors(); + } + + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + + return *this; +} + + +template +void EigenSolver::doComputeEigenvectors() +{ + using std::abs; + const Index size = m_eivec.cols(); + const Scalar eps = NumTraits::epsilon(); + + // inefficient! this is already computed in RealSchur + Scalar norm(0); + for (Index j = 0; j < size; ++j) + { + norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); + } + + // Backsubstitute to find vectors of upper triangular form + if (norm == Scalar(0)) + { + return; + } + + for (Index n = size-1; n >= 0; n--) + { + Scalar p = m_eivalues.coeff(n).real(); + Scalar q = m_eivalues.coeff(n).imag(); + + // Scalar vector + if (q == Scalar(0)) + { + Scalar lastr(0), lastw(0); + Index l = n; + + m_matT.coeffRef(n,n) = Scalar(1); + for (Index i = n-1; i >= 0; i--) + { + Scalar w = m_matT.coeff(i,i) - p; + Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); + + if (m_eivalues.coeff(i).imag() < Scalar(0)) + { + lastw = w; + lastr = r; + } + else + { + l = i; + if (m_eivalues.coeff(i).imag() == Scalar(0)) + { + if (w != Scalar(0)) + m_matT.coeffRef(i,n) = -r / w; + else + m_matT.coeffRef(i,n) = -r / (eps * norm); + } + else // Solve real equations + { + Scalar x = m_matT.coeff(i,i+1); + Scalar y = m_matT.coeff(i+1,i); + Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); + Scalar t = (x * lastr - lastw * r) / denom; + m_matT.coeffRef(i,n) = t; + if (abs(x) > abs(lastw)) + m_matT.coeffRef(i+1,n) = (-r - w * t) / x; + else + m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; + } + + // Overflow control + Scalar t = abs(m_matT.coeff(i,n)); + if ((eps * t) * t > Scalar(1)) + m_matT.col(n).tail(size-i) /= t; + } + } + } + else if (q < Scalar(0) && n > 0) // Complex vector + { + Scalar lastra(0), lastsa(0), lastw(0); + Index l = n-1; + + // Last vector component imaginary so matrix is triangular + if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n))) + { + m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); + m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); + } + else + { + ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q); + m_matT.coeffRef(n-1,n-1) = numext::real(cc); + m_matT.coeffRef(n-1,n) = numext::imag(cc); + } + m_matT.coeffRef(n,n-1) = Scalar(0); + m_matT.coeffRef(n,n) = Scalar(1); + for (Index i = n-2; i >= 0; i--) + { + Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); + Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); + Scalar w = m_matT.coeff(i,i) - p; + + if (m_eivalues.coeff(i).imag() < Scalar(0)) + { + lastw = w; + lastra = ra; + lastsa = sa; + } + else + { + l = i; + if (m_eivalues.coeff(i).imag() == RealScalar(0)) + { + ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q); + m_matT.coeffRef(i,n-1) = numext::real(cc); + m_matT.coeffRef(i,n) = numext::imag(cc); + } + else + { + // Solve complex equations + Scalar x = m_matT.coeff(i,i+1); + Scalar y = m_matT.coeff(i+1,i); + Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; + Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; + if ((vr == Scalar(0)) && (vi == Scalar(0))) + vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); + + ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi); + m_matT.coeffRef(i,n-1) = numext::real(cc); + m_matT.coeffRef(i,n) = numext::imag(cc); + if (abs(x) > (abs(lastw) + abs(q))) + { + m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; + m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; + } + else + { + cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q); + m_matT.coeffRef(i+1,n-1) = numext::real(cc); + m_matT.coeffRef(i+1,n) = numext::imag(cc); + } + } + + // Overflow control + Scalar t = numext::maxi(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n))); + if ((eps * t) * t > Scalar(1)) + m_matT.block(i, n-1, size-i, 2) /= t; + + } + } + + // We handled a pair of complex conjugate eigenvalues, so need to skip them both + n--; + } + else + { + eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen + } + } + + // Back transformation to get eigenvectors of original matrix + for (Index j = size-1; j >= 0; j--) + { + m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); + m_eivec.col(j) = m_tmp; + } +} + +} // end namespace Eigen + +#endif // EIGEN_EIGENSOLVER_H diff --git a/include/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h b/include/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h new file mode 100644 index 0000000000000000000000000000000000000000..26324cee9d91576b6ee0e9a8de5ee9fda8907cd2 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h @@ -0,0 +1,417 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012-2016 Gael Guennebaud +// Copyright (C) 2010,2012 Jitse Niesen +// Copyright (C) 2016 Tobias Wood +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H +#define EIGEN_GENERALIZEDEIGENSOLVER_H + +#include "./RealQZ.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class GeneralizedEigenSolver + * + * \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices + * + * \tparam _MatrixType the type of the matrices of which we are computing the + * eigen-decomposition; this is expected to be an instantiation of the Matrix + * class template. Currently, only real matrices are supported. + * + * The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars + * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If + * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and + * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = + * B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we + * have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition. + * + * The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the + * matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is + * singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$ + * and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero, + * then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that: + * \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is + * called the left eigenvector. + * + * Call the function compute() to compute the generalized eigenvalues and eigenvectors of + * a given matrix pair. Alternatively, you can use the + * GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the + * eigenvalues and eigenvectors at construction time. Once the eigenvalue and + * eigenvectors are computed, they can be retrieved with the eigenvalues() and + * eigenvectors() functions. + * + * Here is an usage example of this class: + * Example: \include GeneralizedEigenSolver.cpp + * Output: \verbinclude GeneralizedEigenSolver.out + * + * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver + */ +template class GeneralizedEigenSolver +{ + public: + + /** \brief Synonym for the template parameter \p _MatrixType. */ + typedef _MatrixType MatrixType; + + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type #MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Complex scalar type for #MatrixType. + * + * This is \c std::complex if #Scalar is real (e.g., + * \c float or \c double) and just \c Scalar if #Scalar is + * complex. + */ + typedef std::complex ComplexScalar; + + /** \brief Type for vector of real scalar values eigenvalues as returned by betas(). + * + * This is a column vector with entries of type #Scalar. + * The length of the vector is the size of #MatrixType. + */ + typedef Matrix VectorType; + + /** \brief Type for vector of complex scalar values eigenvalues as returned by alphas(). + * + * This is a column vector with entries of type #ComplexScalar. + * The length of the vector is the size of #MatrixType. + */ + typedef Matrix ComplexVectorType; + + /** \brief Expression type for the eigenvalues as returned by eigenvalues(). + */ + typedef CwiseBinaryOp,ComplexVectorType,VectorType> EigenvalueType; + + /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). + * + * This is a square matrix with entries of type #ComplexScalar. + * The size is the same as the size of #MatrixType. + */ + typedef Matrix EigenvectorsType; + + /** \brief Default constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via EigenSolver::compute(const MatrixType&, bool). + * + * \sa compute() for an example. + */ + GeneralizedEigenSolver() + : m_eivec(), + m_alphas(), + m_betas(), + m_computeEigenvectors(false), + m_isInitialized(false), + m_realQZ() + {} + + /** \brief Default constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa GeneralizedEigenSolver() + */ + explicit GeneralizedEigenSolver(Index size) + : m_eivec(size, size), + m_alphas(size), + m_betas(size), + m_computeEigenvectors(false), + m_isInitialized(false), + m_realQZ(size), + m_tmp(size) + {} + + /** \brief Constructor; computes the generalized eigendecomposition of given matrix pair. + * + * \param[in] A Square matrix whose eigendecomposition is to be computed. + * \param[in] B Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are computed. + * + * This constructor calls compute() to compute the generalized eigenvalues + * and eigenvectors. + * + * \sa compute() + */ + GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true) + : m_eivec(A.rows(), A.cols()), + m_alphas(A.cols()), + m_betas(A.cols()), + m_computeEigenvectors(false), + m_isInitialized(false), + m_realQZ(A.cols()), + m_tmp(A.cols()) + { + compute(A, B, computeEigenvectors); + } + + /* \brief Returns the computed generalized eigenvectors. + * + * \returns %Matrix whose columns are the (possibly complex) right eigenvectors. + * i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues. + * + * \pre Either the constructor + * GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function + * compute(const MatrixType&, const MatrixType& bool) has been called before, and + * \p computeEigenvectors was set to true (the default). + * + * \sa eigenvalues() + */ + EigenvectorsType eigenvectors() const { + eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute eigenvectors"); + eigen_assert(m_computeEigenvectors && "Eigenvectors for GeneralizedEigenSolver were not calculated"); + return m_eivec; + } + + /** \brief Returns an expression of the computed generalized eigenvalues. + * + * \returns An expression of the column vector containing the eigenvalues. + * + * It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode + * Not that betas might contain zeros. It is therefore not recommended to use this function, + * but rather directly deal with the alphas and betas vectors. + * + * \pre Either the constructor + * GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function + * compute(const MatrixType&,const MatrixType&,bool) has been called before. + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. The eigenvalues + * are not sorted in any particular order. + * + * \sa alphas(), betas(), eigenvectors() + */ + EigenvalueType eigenvalues() const + { + eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute eigenvalues."); + return EigenvalueType(m_alphas,m_betas); + } + + /** \returns A const reference to the vectors containing the alpha values + * + * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). + * + * \sa betas(), eigenvalues() */ + ComplexVectorType alphas() const + { + eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute alphas."); + return m_alphas; + } + + /** \returns A const reference to the vectors containing the beta values + * + * This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j). + * + * \sa alphas(), eigenvalues() */ + VectorType betas() const + { + eigen_assert(info() == Success && "GeneralizedEigenSolver failed to compute betas."); + return m_betas; + } + + /** \brief Computes generalized eigendecomposition of given matrix. + * + * \param[in] A Square matrix whose eigendecomposition is to be computed. + * \param[in] B Square matrix whose eigendecomposition is to be computed. + * \param[in] computeEigenvectors If true, both the eigenvectors and the + * eigenvalues are computed; if false, only the eigenvalues are + * computed. + * \returns Reference to \c *this + * + * This function computes the eigenvalues of the real matrix \p matrix. + * The eigenvalues() function can be used to retrieve them. If + * \p computeEigenvectors is true, then the eigenvectors are also computed + * and can be retrieved by calling eigenvectors(). + * + * The matrix is first reduced to real generalized Schur form using the RealQZ + * class. The generalized Schur decomposition is then used to compute the eigenvalues + * and eigenvectors. + * + * The cost of the computation is dominated by the cost of the + * generalized Schur decomposition. + * + * This method reuses of the allocated data in the GeneralizedEigenSolver object. + */ + GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true); + + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "EigenSolver is not initialized."); + return m_realQZ.info(); + } + + /** Sets the maximal number of iterations allowed. + */ + GeneralizedEigenSolver& setMaxIterations(Index maxIters) + { + m_realQZ.setMaxIterations(maxIters); + return *this; + } + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); + } + + EigenvectorsType m_eivec; + ComplexVectorType m_alphas; + VectorType m_betas; + bool m_computeEigenvectors; + bool m_isInitialized; + RealQZ m_realQZ; + ComplexVectorType m_tmp; +}; + +template +GeneralizedEigenSolver& +GeneralizedEigenSolver::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors) +{ + check_template_parameters(); + + using std::sqrt; + using std::abs; + eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows()); + Index size = A.cols(); + // Reduce to generalized real Schur form: + // A = Q S Z and B = Q T Z + m_realQZ.compute(A, B, computeEigenvectors); + if (m_realQZ.info() == Success) + { + // Resize storage + m_alphas.resize(size); + m_betas.resize(size); + if (computeEigenvectors) + { + m_eivec.resize(size,size); + m_tmp.resize(size); + } + + // Aliases: + Map v(reinterpret_cast(m_tmp.data()), size); + ComplexVectorType &cv = m_tmp; + const MatrixType &mS = m_realQZ.matrixS(); + const MatrixType &mT = m_realQZ.matrixT(); + + Index i = 0; + while (i < size) + { + if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0)) + { + // Real eigenvalue + m_alphas.coeffRef(i) = mS.diagonal().coeff(i); + m_betas.coeffRef(i) = mT.diagonal().coeff(i); + if (computeEigenvectors) + { + v.setConstant(Scalar(0.0)); + v.coeffRef(i) = Scalar(1.0); + // For singular eigenvalues do nothing more + if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits::min)()) + { + // Non-singular eigenvalue + const Scalar alpha = real(m_alphas.coeffRef(i)); + const Scalar beta = m_betas.coeffRef(i); + for (Index j = i-1; j >= 0; j--) + { + const Index st = j+1; + const Index sz = i-j; + if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) + { + // 2x2 block + Matrix rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) ); + Matrix lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); + v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); + j--; + } + else + { + v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j)); + } + } + } + m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v; + m_eivec.col(i).real().normalize(); + m_eivec.col(i).imag().setConstant(0); + } + ++i; + } + else + { + // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T + // Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00): + + // T = [a 0] + // [0 b] + RealScalar a = mT.diagonal().coeff(i), + b = mT.diagonal().coeff(i+1); + const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b; + + // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug. + Matrix S2 = mS.template block<2,2>(i,i) * Matrix(b,a).asDiagonal(); + + Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1)); + Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1))); + const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z); + m_alphas.coeffRef(i) = conj(alpha); + m_alphas.coeffRef(i+1) = alpha; + + if (computeEigenvectors) { + // Compute eigenvector in position (i+1) and then position (i) is just the conjugate + cv.setZero(); + cv.coeffRef(i+1) = Scalar(1.0); + // here, the "static_cast" workaound expression template issues. + cv.coeffRef(i) = -(static_cast(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1)) + / (static_cast(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i)); + for (Index j = i-1; j >= 0; j--) + { + const Index st = j+1; + const Index sz = i+1-j; + if (j > 0 && mS.coeff(j, j-1) != Scalar(0)) + { + // 2x2 block + Matrix rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) ); + Matrix lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1); + cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs); + j--; + } else { + cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() + / (alpha*mT.coeffRef(j,j) - static_cast(beta*mS.coeffRef(j,j))); + } + } + m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv); + m_eivec.col(i+1).normalize(); + m_eivec.col(i) = m_eivec.col(i+1).conjugate(); + } + i += 2; + } + } + } + m_computeEigenvectors = computeEigenvectors; + m_isInitialized = true; + return *this; +} + +} // end namespace Eigen + +#endif // EIGEN_GENERALIZEDEIGENSOLVER_H diff --git a/include/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h b/include/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h new file mode 100644 index 0000000000000000000000000000000000000000..d0f9091bebef445bcf6ac5c1cb3aa559281ced98 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h @@ -0,0 +1,226 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H +#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H + +#include "./Tridiagonalization.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class GeneralizedSelfAdjointEigenSolver + * + * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem + * + * \tparam _MatrixType the type of the matrix of which we are computing the + * eigendecomposition; this is expected to be an instantiation of the Matrix + * class template. + * + * This class solves the generalized eigenvalue problem + * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be + * selfadjoint and the matrix \f$ B \f$ should be positive definite. + * + * Only the \b lower \b triangular \b part of the input matrix is referenced. + * + * Call the function compute() to compute the eigenvalues and eigenvectors of + * a given matrix. Alternatively, you can use the + * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) + * constructor which computes the eigenvalues and eigenvectors at construction time. + * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues() + * and eigenvectors() functions. + * + * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) + * contains an example of the typical use of this class. + * + * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver + */ +template +class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType> +{ + typedef SelfAdjointEigenSolver<_MatrixType> Base; + public: + + typedef _MatrixType MatrixType; + + /** \brief Default constructor for fixed-size matrices. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). This constructor + * can only be used if \p _MatrixType is a fixed-size matrix; use + * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices. + */ + GeneralizedSelfAdjointEigenSolver() : Base() {} + + /** \brief Constructor, pre-allocates memory for dynamic-size matrices. + * + * \param [in] size Positive integer, size of the matrix whose + * eigenvalues and eigenvectors will be computed. + * + * This constructor is useful for dynamic-size matrices, when the user + * intends to perform decompositions via compute(). The \p size + * parameter is only used as a hint. It is not an error to give a wrong + * \p size, but it may impair performance. + * + * \sa compute() for an example + */ + explicit GeneralizedSelfAdjointEigenSolver(Index size) + : Base(size) + {} + + /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil. + * + * \param[in] matA Selfadjoint matrix in matrix pencil. + * Only the lower triangular part of the matrix is referenced. + * \param[in] matB Positive-definite matrix in matrix pencil. + * Only the lower triangular part of the matrix is referenced. + * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}. + * Default is #ComputeEigenvectors|#Ax_lBx. + * + * This constructor calls compute(const MatrixType&, const MatrixType&, int) + * to compute the eigenvalues and (if requested) the eigenvectors of the + * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the + * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix + * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property + * \f$ x^* B x = 1 \f$. The eigenvectors are computed if + * \a options contains ComputeEigenvectors. + * + * In addition, the two following variants can be solved via \p options: + * - \c ABx_lx: \f$ ABx = \lambda x \f$ + * - \c BAx_lx: \f$ BAx = \lambda x \f$ + * + * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp + * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out + * + * \sa compute(const MatrixType&, const MatrixType&, int) + */ + GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, + int options = ComputeEigenvectors|Ax_lBx) + : Base(matA.cols()) + { + compute(matA, matB, options); + } + + /** \brief Computes generalized eigendecomposition of given matrix pencil. + * + * \param[in] matA Selfadjoint matrix in matrix pencil. + * Only the lower triangular part of the matrix is referenced. + * \param[in] matB Positive-definite matrix in matrix pencil. + * Only the lower triangular part of the matrix is referenced. + * \param[in] options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}. + * Default is #ComputeEigenvectors|#Ax_lBx. + * + * \returns Reference to \c *this + * + * According to \p options, this function computes eigenvalues and (if requested) + * the eigenvectors of one of the following three generalized eigenproblems: + * - \c Ax_lBx: \f$ Ax = \lambda B x \f$ + * - \c ABx_lx: \f$ ABx = \lambda x \f$ + * - \c BAx_lx: \f$ BAx = \lambda x \f$ + * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite + * matrix \f$ B \f$. + * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$. + * + * The eigenvalues() function can be used to retrieve + * the eigenvalues. If \p options contains ComputeEigenvectors, then the + * eigenvectors are also computed and can be retrieved by calling + * eigenvectors(). + * + * The implementation uses LLT to compute the Cholesky decomposition + * \f$ B = LL^* \f$ and computes the classical eigendecomposition + * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx + * and of \f$ L^{*} A L \f$ otherwise. This solves the + * generalized eigenproblem, because any solution of the generalized + * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution + * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the + * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements + * can be made for the two other variants. + * + * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp + * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out + * + * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int) + */ + GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, + int options = ComputeEigenvectors|Ax_lBx); + + protected: + +}; + + +template +GeneralizedSelfAdjointEigenSolver& GeneralizedSelfAdjointEigenSolver:: +compute(const MatrixType& matA, const MatrixType& matB, int options) +{ + eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()); + eigen_assert((options&~(EigVecMask|GenEigMask))==0 + && (options&EigVecMask)!=EigVecMask + && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx + || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx) + && "invalid option parameter"); + + bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors); + + // Compute the cholesky decomposition of matB = L L' = U'U + LLT cholB(matB); + + int type = (options&GenEigMask); + if(type==0) + type = Ax_lBx; + + if(type==Ax_lBx) + { + // compute C = inv(L) A inv(L') + MatrixType matC = matA.template selfadjointView(); + cholB.matrixL().template solveInPlace(matC); + cholB.matrixU().template solveInPlace(matC); + + Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly ); + + // transform back the eigen vectors: evecs = inv(U) * evecs + if(computeEigVecs) + cholB.matrixU().solveInPlace(Base::m_eivec); + } + else if(type==ABx_lx) + { + // compute C = L' A L + MatrixType matC = matA.template selfadjointView(); + matC = matC * cholB.matrixL(); + matC = cholB.matrixU() * matC; + + Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly); + + // transform back the eigen vectors: evecs = inv(U) * evecs + if(computeEigVecs) + cholB.matrixU().solveInPlace(Base::m_eivec); + } + else if(type==BAx_lx) + { + // compute C = L' A L + MatrixType matC = matA.template selfadjointView(); + matC = matC * cholB.matrixL(); + matC = cholB.matrixU() * matC; + + Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly); + + // transform back the eigen vectors: evecs = L * evecs + if(computeEigVecs) + Base::m_eivec = cholB.matrixL() * Base::m_eivec; + } + + return *this; +} + +} // end namespace Eigen + +#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H diff --git a/include/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h b/include/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h new file mode 100644 index 0000000000000000000000000000000000000000..1f21139346e7394b6c522dba3a4368125232fa99 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h @@ -0,0 +1,374 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HESSENBERGDECOMPOSITION_H +#define EIGEN_HESSENBERGDECOMPOSITION_H + +namespace Eigen { + +namespace internal { + +template struct HessenbergDecompositionMatrixHReturnType; +template +struct traits > +{ + typedef MatrixType ReturnType; +}; + +} + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class HessenbergDecomposition + * + * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation + * + * \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition + * + * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In + * the real case, the Hessenberg decomposition consists of an orthogonal + * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H + * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its + * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the + * subdiagonal, so it is almost upper triangular. The Hessenberg decomposition + * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is, + * \f$ Q^{-1} = Q^* \f$). + * + * Call the function compute() to compute the Hessenberg decomposition of a + * given matrix. Alternatively, you can use the + * HessenbergDecomposition(const MatrixType&) constructor which computes the + * Hessenberg decomposition at construction time. Once the decomposition is + * computed, you can use the matrixH() and matrixQ() functions to construct + * the matrices H and Q in the decomposition. + * + * The documentation for matrixH() contains an example of the typical use of + * this class. + * + * \sa class ComplexSchur, class Tridiagonalization, \ref QR_Module "QR Module" + */ +template class HessenbergDecomposition +{ + public: + + /** \brief Synonym for the template parameter \p _MatrixType. */ + typedef _MatrixType MatrixType; + + enum { + Size = MatrixType::RowsAtCompileTime, + SizeMinusOne = Size == Dynamic ? Dynamic : Size - 1, + Options = MatrixType::Options, + MaxSize = MatrixType::MaxRowsAtCompileTime, + MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : MaxSize - 1 + }; + + /** \brief Scalar type for matrices of type #MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + /** \brief Type for vector of Householder coefficients. + * + * This is column vector with entries of type #Scalar. The length of the + * vector is one less than the size of #MatrixType, if it is a fixed-side + * type. + */ + typedef Matrix CoeffVectorType; + + /** \brief Return type of matrixQ() */ + typedef HouseholderSequence::type> HouseholderSequenceType; + + typedef internal::HessenbergDecompositionMatrixHReturnType MatrixHReturnType; + + /** \brief Default constructor; the decomposition will be computed later. + * + * \param [in] size The size of the matrix whose Hessenberg decomposition will be computed. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). The \p size parameter is only + * used as a hint. It is not an error to give a wrong \p size, but it may + * impair performance. + * + * \sa compute() for an example. + */ + explicit HessenbergDecomposition(Index size = Size==Dynamic ? 2 : Size) + : m_matrix(size,size), + m_temp(size), + m_isInitialized(false) + { + if(size>1) + m_hCoeffs.resize(size-1); + } + + /** \brief Constructor; computes Hessenberg decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed. + * + * This constructor calls compute() to compute the Hessenberg + * decomposition. + * + * \sa matrixH() for an example. + */ + template + explicit HessenbergDecomposition(const EigenBase& matrix) + : m_matrix(matrix.derived()), + m_temp(matrix.rows()), + m_isInitialized(false) + { + if(matrix.rows()<2) + { + m_isInitialized = true; + return; + } + m_hCoeffs.resize(matrix.rows()-1,1); + _compute(m_matrix, m_hCoeffs, m_temp); + m_isInitialized = true; + } + + /** \brief Computes Hessenberg decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Hessenberg decomposition is to be computed. + * \returns Reference to \c *this + * + * The Hessenberg decomposition is computed by bringing the columns of the + * matrix successively in the required form using Householder reflections + * (see, e.g., Algorithm 7.4.2 in Golub \& Van Loan, %Matrix + * Computations). The cost is \f$ 10n^3/3 \f$ flops, where \f$ n \f$ + * denotes the size of the given matrix. + * + * This method reuses of the allocated data in the HessenbergDecomposition + * object. + * + * Example: \include HessenbergDecomposition_compute.cpp + * Output: \verbinclude HessenbergDecomposition_compute.out + */ + template + HessenbergDecomposition& compute(const EigenBase& matrix) + { + m_matrix = matrix.derived(); + if(matrix.rows()<2) + { + m_isInitialized = true; + return *this; + } + m_hCoeffs.resize(matrix.rows()-1,1); + _compute(m_matrix, m_hCoeffs, m_temp); + m_isInitialized = true; + return *this; + } + + /** \brief Returns the Householder coefficients. + * + * \returns a const reference to the vector of Householder coefficients + * + * \pre Either the constructor HessenbergDecomposition(const MatrixType&) + * or the member function compute(const MatrixType&) has been called + * before to compute the Hessenberg decomposition of a matrix. + * + * The Householder coefficients allow the reconstruction of the matrix + * \f$ Q \f$ in the Hessenberg decomposition from the packed data. + * + * \sa packedMatrix(), \ref Householder_Module "Householder module" + */ + const CoeffVectorType& householderCoefficients() const + { + eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); + return m_hCoeffs; + } + + /** \brief Returns the internal representation of the decomposition + * + * \returns a const reference to a matrix with the internal representation + * of the decomposition. + * + * \pre Either the constructor HessenbergDecomposition(const MatrixType&) + * or the member function compute(const MatrixType&) has been called + * before to compute the Hessenberg decomposition of a matrix. + * + * The returned matrix contains the following information: + * - the upper part and lower sub-diagonal represent the Hessenberg matrix H + * - the rest of the lower part contains the Householder vectors that, combined with + * Householder coefficients returned by householderCoefficients(), + * allows to reconstruct the matrix Q as + * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. + * Here, the matrices \f$ H_i \f$ are the Householder transformations + * \f$ H_i = (I - h_i v_i v_i^T) \f$ + * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and + * \f$ v_i \f$ is the Householder vector defined by + * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ + * with M the matrix returned by this function. + * + * See LAPACK for further details on this packed storage. + * + * Example: \include HessenbergDecomposition_packedMatrix.cpp + * Output: \verbinclude HessenbergDecomposition_packedMatrix.out + * + * \sa householderCoefficients() + */ + const MatrixType& packedMatrix() const + { + eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); + return m_matrix; + } + + /** \brief Reconstructs the orthogonal matrix Q in the decomposition + * + * \returns object representing the matrix Q + * + * \pre Either the constructor HessenbergDecomposition(const MatrixType&) + * or the member function compute(const MatrixType&) has been called + * before to compute the Hessenberg decomposition of a matrix. + * + * This function returns a light-weight object of template class + * HouseholderSequence. You can either apply it directly to a matrix or + * you can convert it to a matrix of type #MatrixType. + * + * \sa matrixH() for an example, class HouseholderSequence + */ + HouseholderSequenceType matrixQ() const + { + eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); + return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) + .setLength(m_matrix.rows() - 1) + .setShift(1); + } + + /** \brief Constructs the Hessenberg matrix H in the decomposition + * + * \returns expression object representing the matrix H + * + * \pre Either the constructor HessenbergDecomposition(const MatrixType&) + * or the member function compute(const MatrixType&) has been called + * before to compute the Hessenberg decomposition of a matrix. + * + * The object returned by this function constructs the Hessenberg matrix H + * when it is assigned to a matrix or otherwise evaluated. The matrix H is + * constructed from the packed matrix as returned by packedMatrix(): The + * upper part (including the subdiagonal) of the packed matrix contains + * the matrix H. It may sometimes be better to directly use the packed + * matrix instead of constructing the matrix H. + * + * Example: \include HessenbergDecomposition_matrixH.cpp + * Output: \verbinclude HessenbergDecomposition_matrixH.out + * + * \sa matrixQ(), packedMatrix() + */ + MatrixHReturnType matrixH() const + { + eigen_assert(m_isInitialized && "HessenbergDecomposition is not initialized."); + return MatrixHReturnType(*this); + } + + private: + + typedef Matrix VectorType; + typedef typename NumTraits::Real RealScalar; + static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp); + + protected: + MatrixType m_matrix; + CoeffVectorType m_hCoeffs; + VectorType m_temp; + bool m_isInitialized; +}; + +/** \internal + * Performs a tridiagonal decomposition of \a matA in place. + * + * \param matA the input selfadjoint matrix + * \param hCoeffs returned Householder coefficients + * + * The result is written in the lower triangular part of \a matA. + * + * Implemented from Golub's "%Matrix Computations", algorithm 8.3.1. + * + * \sa packedMatrix() + */ +template +void HessenbergDecomposition::_compute(MatrixType& matA, CoeffVectorType& hCoeffs, VectorType& temp) +{ + eigen_assert(matA.rows()==matA.cols()); + Index n = matA.rows(); + temp.resize(n); + for (Index i = 0; i struct HessenbergDecompositionMatrixHReturnType +: public ReturnByValue > +{ + public: + /** \brief Constructor. + * + * \param[in] hess Hessenberg decomposition + */ + HessenbergDecompositionMatrixHReturnType(const HessenbergDecomposition& hess) : m_hess(hess) { } + + /** \brief Hessenberg matrix in decomposition. + * + * \param[out] result Hessenberg matrix in decomposition \p hess which + * was passed to the constructor + */ + template + inline void evalTo(ResultType& result) const + { + result = m_hess.packedMatrix(); + Index n = result.rows(); + if (n>2) + result.bottomLeftCorner(n-2, n-2).template triangularView().setZero(); + } + + Index rows() const { return m_hess.packedMatrix().rows(); } + Index cols() const { return m_hess.packedMatrix().cols(); } + + protected: + const HessenbergDecomposition& m_hess; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_HESSENBERGDECOMPOSITION_H diff --git a/include/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h b/include/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h new file mode 100644 index 0000000000000000000000000000000000000000..66e5a3dbb047cb7365fe8eae7cd2547f2293b5a0 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h @@ -0,0 +1,158 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MATRIXBASEEIGENVALUES_H +#define EIGEN_MATRIXBASEEIGENVALUES_H + +namespace Eigen { + +namespace internal { + +template +struct eigenvalues_selector +{ + // this is the implementation for the case IsComplex = true + static inline typename MatrixBase::EigenvaluesReturnType const + run(const MatrixBase& m) + { + typedef typename Derived::PlainObject PlainObject; + PlainObject m_eval(m); + return ComplexEigenSolver(m_eval, false).eigenvalues(); + } +}; + +template +struct eigenvalues_selector +{ + static inline typename MatrixBase::EigenvaluesReturnType const + run(const MatrixBase& m) + { + typedef typename Derived::PlainObject PlainObject; + PlainObject m_eval(m); + return EigenSolver(m_eval, false).eigenvalues(); + } +}; + +} // end namespace internal + +/** \brief Computes the eigenvalues of a matrix + * \returns Column vector containing the eigenvalues. + * + * \eigenvalues_module + * This function computes the eigenvalues with the help of the EigenSolver + * class (for real matrices) or the ComplexEigenSolver class (for complex + * matrices). + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. + * + * The SelfAdjointView class provides a better algorithm for selfadjoint + * matrices. + * + * Example: \include MatrixBase_eigenvalues.cpp + * Output: \verbinclude MatrixBase_eigenvalues.out + * + * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), + * SelfAdjointView::eigenvalues() + */ +template +inline typename MatrixBase::EigenvaluesReturnType +MatrixBase::eigenvalues() const +{ + return internal::eigenvalues_selector::IsComplex>::run(derived()); +} + +/** \brief Computes the eigenvalues of a matrix + * \returns Column vector containing the eigenvalues. + * + * \eigenvalues_module + * This function computes the eigenvalues with the help of the + * SelfAdjointEigenSolver class. The eigenvalues are repeated according to + * their algebraic multiplicity, so there are as many eigenvalues as rows in + * the matrix. + * + * Example: \include SelfAdjointView_eigenvalues.cpp + * Output: \verbinclude SelfAdjointView_eigenvalues.out + * + * \sa SelfAdjointEigenSolver::eigenvalues(), MatrixBase::eigenvalues() + */ +template +EIGEN_DEVICE_FUNC inline typename SelfAdjointView::EigenvaluesReturnType +SelfAdjointView::eigenvalues() const +{ + PlainObject thisAsMatrix(*this); + return SelfAdjointEigenSolver(thisAsMatrix, false).eigenvalues(); +} + + + +/** \brief Computes the L2 operator norm + * \returns Operator norm of the matrix. + * + * \eigenvalues_module + * This function computes the L2 operator norm of a matrix, which is also + * known as the spectral norm. The norm of a matrix \f$ A \f$ is defined to be + * \f[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \f] + * where the maximum is over all vectors and the norm on the right is the + * Euclidean vector norm. The norm equals the largest singular value, which is + * the square root of the largest eigenvalue of the positive semi-definite + * matrix \f$ A^*A \f$. + * + * The current implementation uses the eigenvalues of \f$ A^*A \f$, as computed + * by SelfAdjointView::eigenvalues(), to compute the operator norm of a + * matrix. The SelfAdjointView class provides a better algorithm for + * selfadjoint matrices. + * + * Example: \include MatrixBase_operatorNorm.cpp + * Output: \verbinclude MatrixBase_operatorNorm.out + * + * \sa SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm() + */ +template +inline typename MatrixBase::RealScalar +MatrixBase::operatorNorm() const +{ + using std::sqrt; + typename Derived::PlainObject m_eval(derived()); + // FIXME if it is really guaranteed that the eigenvalues are already sorted, + // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough. + return sqrt((m_eval*m_eval.adjoint()) + .eval() + .template selfadjointView() + .eigenvalues() + .maxCoeff() + ); +} + +/** \brief Computes the L2 operator norm + * \returns Operator norm of the matrix. + * + * \eigenvalues_module + * This function computes the L2 operator norm of a self-adjoint matrix. For a + * self-adjoint matrix, the operator norm is the largest eigenvalue. + * + * The current implementation uses the eigenvalues of the matrix, as computed + * by eigenvalues(), to compute the operator norm of the matrix. + * + * Example: \include SelfAdjointView_operatorNorm.cpp + * Output: \verbinclude SelfAdjointView_operatorNorm.out + * + * \sa eigenvalues(), MatrixBase::operatorNorm() + */ +template +EIGEN_DEVICE_FUNC inline typename SelfAdjointView::RealScalar +SelfAdjointView::operatorNorm() const +{ + return eigenvalues().cwiseAbs().maxCoeff(); +} + +} // end namespace Eigen + +#endif diff --git a/include/eigen/Eigen/src/Eigenvalues/RealQZ.h b/include/eigen/Eigen/src/Eigenvalues/RealQZ.h new file mode 100644 index 0000000000000000000000000000000000000000..509130184b9e5424d229c2b9f99f4529fd52ebee --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/RealQZ.h @@ -0,0 +1,657 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Alexey Korepanov +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REAL_QZ_H +#define EIGEN_REAL_QZ_H + +namespace Eigen { + + /** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class RealQZ + * + * \brief Performs a real QZ decomposition of a pair of square matrices + * + * \tparam _MatrixType the type of the matrix of which we are computing the + * real QZ decomposition; this is expected to be an instantiation of the + * Matrix class template. + * + * Given a real square matrices A and B, this class computes the real QZ + * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are + * real orthogonal matrixes, T is upper-triangular matrix, and S is upper + * quasi-triangular matrix. An orthogonal matrix is a matrix whose + * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular + * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 + * blocks and 2-by-2 blocks where further reduction is impossible due to + * complex eigenvalues. + * + * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from + * 1x1 and 2x2 blocks on the diagonals of S and T. + * + * Call the function compute() to compute the real QZ decomposition of a + * given pair of matrices. Alternatively, you can use the + * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ) + * constructor which computes the real QZ decomposition at construction + * time. Once the decomposition is computed, you can use the matrixS(), + * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices + * S, T, Q and Z in the decomposition. If computeQZ==false, some time + * is saved by not computing matrices Q and Z. + * + * Example: \include RealQZ_compute.cpp + * Output: \include RealQZ_compute.out + * + * \note The implementation is based on the algorithm in "Matrix Computations" + * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for + * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart. + * + * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver + */ + + template class RealQZ + { + public: + typedef _MatrixType MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + typedef std::complex::Real> ComplexScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + typedef Matrix EigenvalueType; + typedef Matrix ColumnVectorType; + + /** \brief Default constructor. + * + * \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). The \p size parameter is only + * used as a hint. It is not an error to give a wrong \p size, but it may + * impair performance. + * + * \sa compute() for an example. + */ + explicit RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) : + m_S(size, size), + m_T(size, size), + m_Q(size, size), + m_Z(size, size), + m_workspace(size*2), + m_maxIters(400), + m_isInitialized(false), + m_computeQZ(true) + {} + + /** \brief Constructor; computes real QZ decomposition of given matrices + * + * \param[in] A Matrix A. + * \param[in] B Matrix B. + * \param[in] computeQZ If false, A and Z are not computed. + * + * This constructor calls compute() to compute the QZ decomposition. + */ + RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) : + m_S(A.rows(),A.cols()), + m_T(A.rows(),A.cols()), + m_Q(A.rows(),A.cols()), + m_Z(A.rows(),A.cols()), + m_workspace(A.rows()*2), + m_maxIters(400), + m_isInitialized(false), + m_computeQZ(true) + { + compute(A, B, computeQZ); + } + + /** \brief Returns matrix Q in the QZ decomposition. + * + * \returns A const reference to the matrix Q. + */ + const MatrixType& matrixQ() const { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); + return m_Q; + } + + /** \brief Returns matrix Z in the QZ decomposition. + * + * \returns A const reference to the matrix Z. + */ + const MatrixType& matrixZ() const { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition."); + return m_Z; + } + + /** \brief Returns matrix S in the QZ decomposition. + * + * \returns A const reference to the matrix S. + */ + const MatrixType& matrixS() const { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + return m_S; + } + + /** \brief Returns matrix S in the QZ decomposition. + * + * \returns A const reference to the matrix S. + */ + const MatrixType& matrixT() const { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + return m_T; + } + + /** \brief Computes QZ decomposition of given matrix. + * + * \param[in] A Matrix A. + * \param[in] B Matrix B. + * \param[in] computeQZ If false, A and Z are not computed. + * \returns Reference to \c *this + */ + RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true); + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + return m_info; + } + + /** \brief Returns number of performed QR-like iterations. + */ + Index iterations() const + { + eigen_assert(m_isInitialized && "RealQZ is not initialized."); + return m_global_iter; + } + + /** Sets the maximal number of iterations allowed to converge to one eigenvalue + * or decouple the problem. + */ + RealQZ& setMaxIterations(Index maxIters) + { + m_maxIters = maxIters; + return *this; + } + + private: + + MatrixType m_S, m_T, m_Q, m_Z; + Matrix m_workspace; + ComputationInfo m_info; + Index m_maxIters; + bool m_isInitialized; + bool m_computeQZ; + Scalar m_normOfT, m_normOfS; + Index m_global_iter; + + typedef Matrix Vector3s; + typedef Matrix Vector2s; + typedef Matrix Matrix2s; + typedef JacobiRotation JRs; + + void hessenbergTriangular(); + void computeNorms(); + Index findSmallSubdiagEntry(Index iu); + Index findSmallDiagEntry(Index f, Index l); + void splitOffTwoRows(Index i); + void pushDownZero(Index z, Index f, Index l); + void step(Index f, Index l, Index iter); + + }; // RealQZ + + /** \internal Reduces S and T to upper Hessenberg - triangular form */ + template + void RealQZ::hessenbergTriangular() + { + + const Index dim = m_S.cols(); + + // perform QR decomposition of T, overwrite T with R, save Q + HouseholderQR qrT(m_T); + m_T = qrT.matrixQR(); + m_T.template triangularView().setZero(); + m_Q = qrT.householderQ(); + // overwrite S with Q* S + m_S.applyOnTheLeft(m_Q.adjoint()); + // init Z as Identity + if (m_computeQZ) + m_Z = MatrixType::Identity(dim,dim); + // reduce S to upper Hessenberg with Givens rotations + for (Index j=0; j<=dim-3; j++) { + for (Index i=dim-1; i>=j+2; i--) { + JRs G; + // kill S(i,j) + if(m_S.coeff(i,j) != 0) + { + G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j)); + m_S.coeffRef(i,j) = Scalar(0.0); + m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint()); + m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint()); + // update Q + if (m_computeQZ) + m_Q.applyOnTheRight(i-1,i,G); + } + // kill T(i,i-1) + if(m_T.coeff(i,i-1)!=Scalar(0)) + { + G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i)); + m_T.coeffRef(i,i-1) = Scalar(0.0); + m_S.applyOnTheRight(i,i-1,G); + m_T.topRows(i).applyOnTheRight(i,i-1,G); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(i,i-1,G.adjoint()); + } + } + } + } + + /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */ + template + inline void RealQZ::computeNorms() + { + const Index size = m_S.cols(); + m_normOfS = Scalar(0.0); + m_normOfT = Scalar(0.0); + for (Index j = 0; j < size; ++j) + { + m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); + m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum(); + } + } + + + /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */ + template + inline Index RealQZ::findSmallSubdiagEntry(Index iu) + { + using std::abs; + Index res = iu; + while (res > 0) + { + Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res)); + if (s == Scalar(0.0)) + s = m_normOfS; + if (abs(m_S.coeff(res,res-1)) < NumTraits::epsilon() * s) + break; + res--; + } + return res; + } + + /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */ + template + inline Index RealQZ::findSmallDiagEntry(Index f, Index l) + { + using std::abs; + Index res = l; + while (res >= f) { + if (abs(m_T.coeff(res,res)) <= NumTraits::epsilon() * m_normOfT) + break; + res--; + } + return res; + } + + /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */ + template + inline void RealQZ::splitOffTwoRows(Index i) + { + using std::abs; + using std::sqrt; + const Index dim=m_S.cols(); + if (abs(m_S.coeff(i+1,i))==Scalar(0)) + return; + Index j = findSmallDiagEntry(i,i+1); + if (j==i-1) + { + // block of (S T^{-1}) + Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView(). + template solve(m_S.template block<2,2>(i,i)); + Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1)); + Scalar q = p*p + STi(1,0)*STi(0,1); + if (q>=0) { + Scalar z = sqrt(q); + // one QR-like iteration for ABi - lambda I + // is enough - when we know exact eigenvalue in advance, + // convergence is immediate + JRs G; + if (p>=0) + G.makeGivens(p + z, STi(1,0)); + else + G.makeGivens(p - z, STi(1,0)); + m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); + m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint()); + // update Q + if (m_computeQZ) + m_Q.applyOnTheRight(i,i+1,G); + + G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i)); + m_S.topRows(i+2).applyOnTheRight(i+1,i,G); + m_T.topRows(i+2).applyOnTheRight(i+1,i,G); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(i+1,i,G.adjoint()); + + m_S.coeffRef(i+1,i) = Scalar(0.0); + m_T.coeffRef(i+1,i) = Scalar(0.0); + } + } + else + { + pushDownZero(j,i,i+1); + } + } + + /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */ + template + inline void RealQZ::pushDownZero(Index z, Index f, Index l) + { + JRs G; + const Index dim = m_S.cols(); + for (Index zz=z; zzf ? (zz-1) : zz; + G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1)); + m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint()); + m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint()); + m_T.coeffRef(zz+1,zz+1) = Scalar(0.0); + // update Q + if (m_computeQZ) + m_Q.applyOnTheRight(zz,zz+1,G); + // kill S(zz+1, zz-1) + if (zz>f) + { + G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1)); + m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G); + m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G); + m_S.coeffRef(zz+1,zz-1) = Scalar(0.0); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(zz,zz-1,G.adjoint()); + } + } + // finally kill S(l,l-1) + G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1)); + m_S.applyOnTheRight(l,l-1,G); + m_T.applyOnTheRight(l,l-1,G); + m_S.coeffRef(l,l-1)=Scalar(0.0); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(l,l-1,G.adjoint()); + } + + /** \internal QR-like iterative step for block f..l */ + template + inline void RealQZ::step(Index f, Index l, Index iter) + { + using std::abs; + const Index dim = m_S.cols(); + + // x, y, z + Scalar x, y, z; + if (iter==10) + { + // Wilkinson ad hoc shift + const Scalar + a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1), + a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1), + b12=m_T.coeff(f+0,f+1), + b11i=Scalar(1.0)/m_T.coeff(f+0,f+0), + b22i=Scalar(1.0)/m_T.coeff(f+1,f+1), + a87=m_S.coeff(l-1,l-2), + a98=m_S.coeff(l-0,l-1), + b77i=Scalar(1.0)/m_T.coeff(l-2,l-2), + b88i=Scalar(1.0)/m_T.coeff(l-1,l-1); + Scalar ss = abs(a87*b77i) + abs(a98*b88i), + lpl = Scalar(1.5)*ss, + ll = ss*ss; + x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i + - a11*a21*b12*b11i*b11i*b22i; + y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i + - a21*a21*b12*b11i*b11i*b22i; + z = a21*a32*b11i*b22i; + } + else if (iter==16) + { + // another exceptional shift + x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) / + (m_T.coeff(l-1,l-1)*m_T.coeff(l,l)); + y = m_S.coeff(f+1,f)/m_T.coeff(f,f); + z = 0; + } + else if (iter>23 && !(iter%8)) + { + // extremely exceptional shift + x = internal::random(-1.0,1.0); + y = internal::random(-1.0,1.0); + z = internal::random(-1.0,1.0); + } + else + { + // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1 + // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where + // U and V are 2x2 bottom right sub matrices of A and B. Thus: + // = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1) + // = AB^-1AB^-1 + det(M) - tr(M)(AB^-1) + // Since we are only interested in having x, y, z with a correct ratio, we have: + const Scalar + a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1), + a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1), + a32 = m_S.coeff(f+2,f+1), + + a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l), + a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l), + + b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1), + b22 = m_T.coeff(f+1,f+1), + + b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l), + b99 = m_T.coeff(l,l); + + x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21) + + a12/b22 - (a11/b11)*(b12/b22); + y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99); + z = a32/b22; + } + + JRs G; + + for (Index k=f; k<=l-2; k++) + { + // variables for Householder reflections + Vector2s essential2; + Scalar tau, beta; + + Vector3s hr(x,y,z); + + // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1) + hr.makeHouseholderInPlace(tau, beta); + essential2 = hr.template bottomRows<2>(); + Index fc=(std::max)(k-1,Index(0)); // first col to update + m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); + m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data()); + if (m_computeQZ) + m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data()); + if (k>f) + m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0); + + // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k) + hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1); + hr.makeHouseholderInPlace(tau, beta); + essential2 = hr.template bottomRows<2>(); + { + Index lr = (std::min)(k+4,dim); // last row to update + Map > tmp(m_workspace.data(),lr); + // S + tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2; + tmp += m_S.col(k+2).head(lr); + m_S.col(k+2).head(lr) -= tau*tmp; + m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); + // T + tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2; + tmp += m_T.col(k+2).head(lr); + m_T.col(k+2).head(lr) -= tau*tmp; + m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint(); + } + if (m_computeQZ) + { + // Z + Map > tmp(m_workspace.data(),dim); + tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k)); + tmp += m_Z.row(k+2); + m_Z.row(k+2) -= tau*tmp; + m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp); + } + m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0); + + // Z_{k2} to annihilate T(k+1,k) + G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k)); + m_S.applyOnTheRight(k+1,k,G); + m_T.applyOnTheRight(k+1,k,G); + // update Z + if (m_computeQZ) + m_Z.applyOnTheLeft(k+1,k,G.adjoint()); + m_T.coeffRef(k+1,k) = Scalar(0.0); + + // update x,y,z + x = m_S.coeff(k+1,k); + y = m_S.coeff(k+2,k); + if (k < l-2) + z = m_S.coeff(k+3,k); + } // loop over k + + // Q_{n-1} to annihilate y = S(l,l-2) + G.makeGivens(x,y); + m_S.applyOnTheLeft(l-1,l,G.adjoint()); + m_T.applyOnTheLeft(l-1,l,G.adjoint()); + if (m_computeQZ) + m_Q.applyOnTheRight(l-1,l,G); + m_S.coeffRef(l,l-2) = Scalar(0.0); + + // Z_{n-1} to annihilate T(l,l-1) + G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1)); + m_S.applyOnTheRight(l,l-1,G); + m_T.applyOnTheRight(l,l-1,G); + if (m_computeQZ) + m_Z.applyOnTheLeft(l,l-1,G.adjoint()); + m_T.coeffRef(l,l-1) = Scalar(0.0); + } + + template + RealQZ& RealQZ::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) + { + + const Index dim = A_in.cols(); + + eigen_assert (A_in.rows()==dim && A_in.cols()==dim + && B_in.rows()==dim && B_in.cols()==dim + && "Need square matrices of the same dimension"); + + m_isInitialized = true; + m_computeQZ = computeQZ; + m_S = A_in; m_T = B_in; + m_workspace.resize(dim*2); + m_global_iter = 0; + + // entrance point: hessenberg triangular decomposition + hessenbergTriangular(); + // compute L1 vector norms of T, S into m_normOfS, m_normOfT + computeNorms(); + + Index l = dim-1, + f, + local_iter = 0; + + while (l>0 && local_iter0) m_S.coeffRef(f,f-1) = Scalar(0.0); + if (f == l) // One root found + { + l--; + local_iter = 0; + } + else if (f == l-1) // Two roots found + { + splitOffTwoRows(f); + l -= 2; + local_iter = 0; + } + else // No convergence yet + { + // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations + Index z = findSmallDiagEntry(f,l); + if (z>=f) + { + // zero found + pushDownZero(z,f,l); + } + else + { + // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg + // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to + // apply a QR-like iteration to rows and columns f..l. + step(f,l, local_iter); + local_iter++; + m_global_iter++; + } + } + } + // check if we converged before reaching iterations limit + m_info = (local_iter j_left, j_right; + internal::real_2x2_jacobi_svd(m_T, i, i+1, &j_left, &j_right); + + // Apply resulting Jacobi rotations + m_S.applyOnTheLeft(i,i+1,j_left); + m_S.applyOnTheRight(i,i+1,j_right); + m_T.applyOnTheLeft(i,i+1,j_left); + m_T.applyOnTheRight(i,i+1,j_right); + m_T(i+1,i) = m_T(i,i+1) = Scalar(0); + + if(m_computeQZ) { + m_Q.applyOnTheRight(i,i+1,j_left.transpose()); + m_Z.applyOnTheLeft(i,i+1,j_right.transpose()); + } + + i++; + } + } + } + + return *this; + } // end compute + +} // end namespace Eigen + +#endif //EIGEN_REAL_QZ diff --git a/include/eigen/Eigen/src/Eigenvalues/RealSchur.h b/include/eigen/Eigen/src/Eigenvalues/RealSchur.h new file mode 100644 index 0000000000000000000000000000000000000000..37394e191a542e980a7fd8ee5031df54eb197676 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/RealSchur.h @@ -0,0 +1,557 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2010,2012 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REAL_SCHUR_H +#define EIGEN_REAL_SCHUR_H + +#include "./HessenbergDecomposition.h" + +namespace Eigen { + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class RealSchur + * + * \brief Performs a real Schur decomposition of a square matrix + * + * \tparam _MatrixType the type of the matrix of which we are computing the + * real Schur decomposition; this is expected to be an instantiation of the + * Matrix class template. + * + * Given a real square matrix A, this class computes the real Schur + * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and + * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose + * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular + * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 + * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the + * blocks on the diagonal of T are the same as the eigenvalues of the matrix + * A, and thus the real Schur decomposition is used in EigenSolver to compute + * the eigendecomposition of a matrix. + * + * Call the function compute() to compute the real Schur decomposition of a + * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) + * constructor which computes the real Schur decomposition at construction + * time. Once the decomposition is computed, you can use the matrixU() and + * matrixT() functions to retrieve the matrices U and T in the decomposition. + * + * The documentation of RealSchur(const MatrixType&, bool) contains an example + * of the typical use of this class. + * + * \note The implementation is adapted from + * JAMA (public domain). + * Their code is based on EISPACK. + * + * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver + */ +template class RealSchur +{ + public: + typedef _MatrixType MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + typedef std::complex::Real> ComplexScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + typedef Matrix EigenvalueType; + typedef Matrix ColumnVectorType; + + /** \brief Default constructor. + * + * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). The \p size parameter is only + * used as a hint. It is not an error to give a wrong \p size, but it may + * impair performance. + * + * \sa compute() for an example. + */ + explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) + : m_matT(size, size), + m_matU(size, size), + m_workspaceVector(size), + m_hess(size), + m_isInitialized(false), + m_matUisUptodate(false), + m_maxIters(-1) + { } + + /** \brief Constructor; computes real Schur decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Schur decomposition is to be computed. + * \param[in] computeU If true, both T and U are computed; if false, only T is computed. + * + * This constructor calls compute() to compute the Schur decomposition. + * + * Example: \include RealSchur_RealSchur_MatrixType.cpp + * Output: \verbinclude RealSchur_RealSchur_MatrixType.out + */ + template + explicit RealSchur(const EigenBase& matrix, bool computeU = true) + : m_matT(matrix.rows(),matrix.cols()), + m_matU(matrix.rows(),matrix.cols()), + m_workspaceVector(matrix.rows()), + m_hess(matrix.rows()), + m_isInitialized(false), + m_matUisUptodate(false), + m_maxIters(-1) + { + compute(matrix.derived(), computeU); + } + + /** \brief Returns the orthogonal matrix in the Schur decomposition. + * + * \returns A const reference to the matrix U. + * + * \pre Either the constructor RealSchur(const MatrixType&, bool) or the + * member function compute(const MatrixType&, bool) has been called before + * to compute the Schur decomposition of a matrix, and \p computeU was set + * to true (the default value). + * + * \sa RealSchur(const MatrixType&, bool) for an example + */ + const MatrixType& matrixU() const + { + eigen_assert(m_isInitialized && "RealSchur is not initialized."); + eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition."); + return m_matU; + } + + /** \brief Returns the quasi-triangular matrix in the Schur decomposition. + * + * \returns A const reference to the matrix T. + * + * \pre Either the constructor RealSchur(const MatrixType&, bool) or the + * member function compute(const MatrixType&, bool) has been called before + * to compute the Schur decomposition of a matrix. + * + * \sa RealSchur(const MatrixType&, bool) for an example + */ + const MatrixType& matrixT() const + { + eigen_assert(m_isInitialized && "RealSchur is not initialized."); + return m_matT; + } + + /** \brief Computes Schur decomposition of given matrix. + * + * \param[in] matrix Square matrix whose Schur decomposition is to be computed. + * \param[in] computeU If true, both T and U are computed; if false, only T is computed. + * \returns Reference to \c *this + * + * The Schur decomposition is computed by first reducing the matrix to + * Hessenberg form using the class HessenbergDecomposition. The Hessenberg + * matrix is then reduced to triangular form by performing Francis QR + * iterations with implicit double shift. The cost of computing the Schur + * decomposition depends on the number of iterations; as a rough guide, it + * may be taken to be \f$25n^3\f$ flops if \a computeU is true and + * \f$10n^3\f$ flops if \a computeU is false. + * + * Example: \include RealSchur_compute.cpp + * Output: \verbinclude RealSchur_compute.out + * + * \sa compute(const MatrixType&, bool, Index) + */ + template + RealSchur& compute(const EigenBase& matrix, bool computeU = true); + + /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T + * \param[in] matrixH Matrix in Hessenberg form H + * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T + * \param computeU Computes the matriX U of the Schur vectors + * \return Reference to \c *this + * + * This routine assumes that the matrix is already reduced in Hessenberg form matrixH + * using either the class HessenbergDecomposition or another mean. + * It computes the upper quasi-triangular matrix T of the Schur decomposition of H + * When computeU is true, this routine computes the matrix U such that + * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix + * + * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix + * is not available, the user should give an identity matrix (Q.setIdentity()) + * + * \sa compute(const MatrixType&, bool) + */ + template + RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU); + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "RealSchur is not initialized."); + return m_info; + } + + /** \brief Sets the maximum number of iterations allowed. + * + * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size + * of the matrix. + */ + RealSchur& setMaxIterations(Index maxIters) + { + m_maxIters = maxIters; + return *this; + } + + /** \brief Returns the maximum number of iterations. */ + Index getMaxIterations() + { + return m_maxIters; + } + + /** \brief Maximum number of iterations per row. + * + * If not otherwise specified, the maximum number of iterations is this number times the size of the + * matrix. It is currently set to 40. + */ + static const int m_maxIterationsPerRow = 40; + + private: + + MatrixType m_matT; + MatrixType m_matU; + ColumnVectorType m_workspaceVector; + HessenbergDecomposition m_hess; + ComputationInfo m_info; + bool m_isInitialized; + bool m_matUisUptodate; + Index m_maxIters; + + typedef Matrix Vector3s; + + Scalar computeNormOfT(); + Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero); + void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift); + void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo); + void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector); + void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace); +}; + + +template +template +RealSchur& RealSchur::compute(const EigenBase& matrix, bool computeU) +{ + const Scalar considerAsZero = (std::numeric_limits::min)(); + + eigen_assert(matrix.cols() == matrix.rows()); + Index maxIters = m_maxIters; + if (maxIters == -1) + maxIters = m_maxIterationsPerRow * matrix.rows(); + + Scalar scale = matrix.derived().cwiseAbs().maxCoeff(); + if(scale +template +RealSchur& RealSchur::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) +{ + using std::abs; + + m_matT = matrixH; + m_workspaceVector.resize(m_matT.cols()); + if(computeU && !internal::is_same_dense(m_matU,matrixQ)) + m_matU = matrixQ; + + Index maxIters = m_maxIters; + if (maxIters == -1) + maxIters = m_maxIterationsPerRow * matrixH.rows(); + Scalar* workspace = &m_workspaceVector.coeffRef(0); + + // The matrix m_matT is divided in three parts. + // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. + // Rows il,...,iu is the part we are working on (the active window). + // Rows iu+1,...,end are already brought in triangular form. + Index iu = m_matT.cols() - 1; + Index iter = 0; // iteration count for current eigenvalue + Index totalIter = 0; // iteration count for whole matrix + Scalar exshift(0); // sum of exceptional shifts + Scalar norm = computeNormOfT(); + // sub-diagonal entries smaller than considerAsZero will be treated as zero. + // We use eps^2 to enable more precision in small eigenvalues. + Scalar considerAsZero = numext::maxi( norm * numext::abs2(NumTraits::epsilon()), + (std::numeric_limits::min)() ); + + if(norm!=Scalar(0)) + { + while (iu >= 0) + { + Index il = findSmallSubdiagEntry(iu,considerAsZero); + + // Check for convergence + if (il == iu) // One root found + { + m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift; + if (iu > 0) + m_matT.coeffRef(iu, iu-1) = Scalar(0); + iu--; + iter = 0; + } + else if (il == iu-1) // Two roots found + { + splitOffTwoRows(iu, computeU, exshift); + iu -= 2; + iter = 0; + } + else // No convergence yet + { + // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG ) + Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo; + computeShift(iu, iter, exshift, shiftInfo); + iter = iter + 1; + totalIter = totalIter + 1; + if (totalIter > maxIters) break; + Index im; + initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); + performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); + } + } + } + if(totalIter <= maxIters) + m_info = Success; + else + m_info = NoConvergence; + + m_isInitialized = true; + m_matUisUptodate = computeU; + return *this; +} + +/** \internal Computes and returns vector L1 norm of T */ +template +inline typename MatrixType::Scalar RealSchur::computeNormOfT() +{ + const Index size = m_matT.cols(); + // FIXME to be efficient the following would requires a triangular reduxion code + // Scalar norm = m_matT.upper().cwiseAbs().sum() + // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum(); + Scalar norm(0); + for (Index j = 0; j < size; ++j) + norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum(); + return norm; +} + +/** \internal Look for single small sub-diagonal element and returns its index */ +template +inline Index RealSchur::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero) +{ + using std::abs; + Index res = iu; + while (res > 0) + { + Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res)); + + s = numext::maxi(s * NumTraits::epsilon(), considerAsZero); + + if (abs(m_matT.coeff(res,res-1)) <= s) + break; + res--; + } + return res; +} + +/** \internal Update T given that rows iu-1 and iu decouple from the rest. */ +template +inline void RealSchur::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) +{ + using std::sqrt; + using std::abs; + const Index size = m_matT.cols(); + + // The eigenvalues of the 2x2 matrix [a b; c d] are + // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc + Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)); + Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4 + m_matT.coeffRef(iu,iu) += exshift; + m_matT.coeffRef(iu-1,iu-1) += exshift; + + if (q >= Scalar(0)) // Two real eigenvalues + { + Scalar z = sqrt(abs(q)); + JacobiRotation rot; + if (p >= Scalar(0)) + rot.makeGivens(p + z, m_matT.coeff(iu, iu-1)); + else + rot.makeGivens(p - z, m_matT.coeff(iu, iu-1)); + + m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint()); + m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot); + m_matT.coeffRef(iu, iu-1) = Scalar(0); + if (computeU) + m_matU.applyOnTheRight(iu-1, iu, rot); + } + + if (iu > 1) + m_matT.coeffRef(iu-1, iu-2) = Scalar(0); +} + +/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */ +template +inline void RealSchur::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo) +{ + using std::sqrt; + using std::abs; + shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu); + shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1); + shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); + + // Alternate exceptional shifting strategy every 16 iterations. + if (iter % 16 == 0) { + // Wilkinson's original ad hoc shift + if (iter % 32 != 0) { + exshift += shiftInfo.coeff(0); + for (Index i = 0; i <= iu; ++i) + m_matT.coeffRef(i,i) -= shiftInfo.coeff(0); + Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2)); + shiftInfo.coeffRef(0) = Scalar(0.75) * s; + shiftInfo.coeffRef(1) = Scalar(0.75) * s; + shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s; + } else { + // MATLAB's new ad hoc shift + Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); + s = s * s + shiftInfo.coeff(2); + if (s > Scalar(0)) + { + s = sqrt(s); + if (shiftInfo.coeff(1) < shiftInfo.coeff(0)) + s = -s; + s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); + s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s; + exshift += s; + for (Index i = 0; i <= iu; ++i) + m_matT.coeffRef(i,i) -= s; + shiftInfo.setConstant(Scalar(0.964)); + } + } + } +} + +/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */ +template +inline void RealSchur::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector) +{ + using std::abs; + Vector3s& v = firstHouseholderVector; // alias to save typing + + for (im = iu-2; im >= il; --im) + { + const Scalar Tmm = m_matT.coeff(im,im); + const Scalar r = shiftInfo.coeff(0) - Tmm; + const Scalar s = shiftInfo.coeff(1) - Tmm; + v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1); + v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s; + v.coeffRef(2) = m_matT.coeff(im+2,im+1); + if (im == il) { + break; + } + const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2))); + const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1))); + if (abs(lhs) < NumTraits::epsilon() * rhs) + break; + } +} + +/** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */ +template +inline void RealSchur::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace) +{ + eigen_assert(im >= il); + eigen_assert(im <= iu-2); + + const Index size = m_matT.cols(); + + for (Index k = im; k <= iu-2; ++k) + { + bool firstIteration = (k == im); + + Vector3s v; + if (firstIteration) + v = firstHouseholderVector; + else + v = m_matT.template block<3,1>(k,k-1); + + Scalar tau, beta; + Matrix ess; + v.makeHouseholder(ess, tau, beta); + + if (beta != Scalar(0)) // if v is not zero + { + if (firstIteration && k > il) + m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1); + else if (!firstIteration) + m_matT.coeffRef(k,k-1) = beta; + + // These Householder transformations form the O(n^3) part of the algorithm + m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace); + m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); + if (computeU) + m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace); + } + } + + Matrix v = m_matT.template block<2,1>(iu-1, iu-2); + Scalar tau, beta; + Matrix ess; + v.makeHouseholder(ess, tau, beta); + + if (beta != Scalar(0)) // if v is not zero + { + m_matT.coeffRef(iu-1, iu-2) = beta; + m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace); + m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace); + if (computeU) + m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); + } + + // clean up pollution due to round-off errors + for (Index i = im+2; i <= iu; ++i) + { + m_matT.coeffRef(i,i-2) = Scalar(0); + if (i > im+2) + m_matT.coeffRef(i,i-3) = Scalar(0); + } +} + +} // end namespace Eigen + +#endif // EIGEN_REAL_SCHUR_H diff --git a/include/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h b/include/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h new file mode 100644 index 0000000000000000000000000000000000000000..2c22517155e701eb5848ea099fa20b016b33ee20 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h @@ -0,0 +1,77 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * Real Schur needed to real unsymmetrical eigenvalues/eigenvectors. + ******************************************************************************** +*/ + +#ifndef EIGEN_REAL_SCHUR_LAPACKE_H +#define EIGEN_REAL_SCHUR_LAPACKE_H + +namespace Eigen { + +/** \internal Specialization for the data types supported by LAPACKe */ + +#define EIGEN_LAPACKE_SCHUR_REAL(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, LAPACKE_PREFIX_U, EIGCOLROW, LAPACKE_COLROW) \ +template<> template inline \ +RealSchur >& \ +RealSchur >::compute(const EigenBase& matrix, bool computeU) \ +{ \ + eigen_assert(matrix.cols() == matrix.rows()); \ +\ + lapack_int n = internal::convert_index(matrix.cols()), sdim, info; \ + lapack_int matrix_order = LAPACKE_COLROW; \ + char jobvs, sort='N'; \ + LAPACK_##LAPACKE_PREFIX_U##_SELECT2 select = 0; \ + jobvs = (computeU) ? 'V' : 'N'; \ + m_matU.resize(n, n); \ + lapack_int ldvs = internal::convert_index(m_matU.outerStride()); \ + m_matT = matrix; \ + lapack_int lda = internal::convert_index(m_matT.outerStride()); \ + Matrix wr, wi; \ + wr.resize(n, 1); wi.resize(n, 1); \ + info = LAPACKE_##LAPACKE_PREFIX##gees( matrix_order, jobvs, sort, select, n, (LAPACKE_TYPE*)m_matT.data(), lda, &sdim, (LAPACKE_TYPE*)wr.data(), (LAPACKE_TYPE*)wi.data(), (LAPACKE_TYPE*)m_matU.data(), ldvs ); \ + if(info == 0) \ + m_info = Success; \ + else \ + m_info = NoConvergence; \ +\ + m_isInitialized = true; \ + m_matUisUptodate = computeU; \ + return *this; \ +\ +} + +EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, ColMajor, LAPACK_COL_MAJOR) +EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, ColMajor, LAPACK_COL_MAJOR) +EIGEN_LAPACKE_SCHUR_REAL(double, double, d, D, RowMajor, LAPACK_ROW_MAJOR) +EIGEN_LAPACKE_SCHUR_REAL(float, float, s, S, RowMajor, LAPACK_ROW_MAJOR) + +} // end namespace Eigen + +#endif // EIGEN_REAL_SCHUR_LAPACKE_H diff --git a/include/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/include/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h new file mode 100644 index 0000000000000000000000000000000000000000..14692365ffbf3a53eb67c0d64a961e098d14578b --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h @@ -0,0 +1,904 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H +#define EIGEN_SELFADJOINTEIGENSOLVER_H + +#include "./Tridiagonalization.h" + +namespace Eigen { + +template +class GeneralizedSelfAdjointEigenSolver; + +namespace internal { +template struct direct_selfadjoint_eigenvalues; + +template +EIGEN_DEVICE_FUNC +ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec); +} + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class SelfAdjointEigenSolver + * + * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices + * + * \tparam _MatrixType the type of the matrix of which we are computing the + * eigendecomposition; this is expected to be an instantiation of the Matrix + * class template. + * + * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real + * matrices, this means that the matrix is symmetric: it equals its + * transpose. This class computes the eigenvalues and eigenvectors of a + * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors + * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a + * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with + * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the + * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the + * eigendecomposition. + * + * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal + * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then + * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is + * equal to its transpose, \f$ V^{-1} = V^T \f$. + * + * The algorithm exploits the fact that the matrix is selfadjoint, making it + * faster and more accurate than the general purpose eigenvalue algorithms + * implemented in EigenSolver and ComplexEigenSolver. + * + * Only the \b lower \b triangular \b part of the input matrix is referenced. + * + * Call the function compute() to compute the eigenvalues and eigenvectors of + * a given matrix. Alternatively, you can use the + * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes + * the eigenvalues and eigenvectors at construction time. Once the eigenvalue + * and eigenvectors are computed, they can be retrieved with the eigenvalues() + * and eigenvectors() functions. + * + * The documentation for SelfAdjointEigenSolver(const MatrixType&, int) + * contains an example of the typical use of this class. + * + * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and + * the likes, see the class GeneralizedSelfAdjointEigenSolver. + * + * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver + */ +template class SelfAdjointEigenSolver +{ + public: + + typedef _MatrixType MatrixType; + enum { + Size = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + /** \brief Scalar type for matrices of type \p _MatrixType. */ + typedef typename MatrixType::Scalar Scalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + typedef Matrix EigenvectorsType; + + /** \brief Real scalar type for \p _MatrixType. + * + * This is just \c Scalar if #Scalar is real (e.g., \c float or + * \c double), and the type of the real part of \c Scalar if #Scalar is + * complex. + */ + typedef typename NumTraits::Real RealScalar; + + friend struct internal::direct_selfadjoint_eigenvalues::IsComplex>; + + /** \brief Type for vector of eigenvalues as returned by eigenvalues(). + * + * This is a column vector with entries of type #RealScalar. + * The length of the vector is the size of \p _MatrixType. + */ + typedef typename internal::plain_col_type::type RealVectorType; + typedef Tridiagonalization TridiagonalizationType; + typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; + + /** \brief Default constructor for fixed-size matrices. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). This constructor + * can only be used if \p _MatrixType is a fixed-size matrix; use + * SelfAdjointEigenSolver(Index) for dynamic-size matrices. + * + * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp + * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out + */ + EIGEN_DEVICE_FUNC + SelfAdjointEigenSolver() + : m_eivec(), + m_eivalues(), + m_subdiag(), + m_hcoeffs(), + m_info(InvalidInput), + m_isInitialized(false), + m_eigenvectorsOk(false) + { } + + /** \brief Constructor, pre-allocates memory for dynamic-size matrices. + * + * \param [in] size Positive integer, size of the matrix whose + * eigenvalues and eigenvectors will be computed. + * + * This constructor is useful for dynamic-size matrices, when the user + * intends to perform decompositions via compute(). The \p size + * parameter is only used as a hint. It is not an error to give a wrong + * \p size, but it may impair performance. + * + * \sa compute() for an example + */ + EIGEN_DEVICE_FUNC + explicit SelfAdjointEigenSolver(Index size) + : m_eivec(size, size), + m_eivalues(size), + m_subdiag(size > 1 ? size - 1 : 1), + m_hcoeffs(size > 1 ? size - 1 : 1), + m_isInitialized(false), + m_eigenvectorsOk(false) + {} + + /** \brief Constructor; computes eigendecomposition of given matrix. + * + * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to + * be computed. Only the lower triangular part of the matrix is referenced. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * + * This constructor calls compute(const MatrixType&, int) to compute the + * eigenvalues of the matrix \p matrix. The eigenvectors are computed if + * \p options equals #ComputeEigenvectors. + * + * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp + * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out + * + * \sa compute(const MatrixType&, int) + */ + template + EIGEN_DEVICE_FUNC + explicit SelfAdjointEigenSolver(const EigenBase& matrix, int options = ComputeEigenvectors) + : m_eivec(matrix.rows(), matrix.cols()), + m_eivalues(matrix.cols()), + m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), + m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1), + m_isInitialized(false), + m_eigenvectorsOk(false) + { + compute(matrix.derived(), options); + } + + /** \brief Computes eigendecomposition of given matrix. + * + * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to + * be computed. Only the lower triangular part of the matrix is referenced. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * \returns Reference to \c *this + * + * This function computes the eigenvalues of \p matrix. The eigenvalues() + * function can be used to retrieve them. If \p options equals #ComputeEigenvectors, + * then the eigenvectors are also computed and can be retrieved by + * calling eigenvectors(). + * + * This implementation uses a symmetric QR algorithm. The matrix is first + * reduced to tridiagonal form using the Tridiagonalization class. The + * tridiagonal matrix is then brought to diagonal form with implicit + * symmetric QR steps with Wilkinson shift. Details can be found in + * Section 8.3 of Golub \& Van Loan, %Matrix Computations. + * + * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors + * are required and \f$ 4n^3/3 \f$ if they are not required. + * + * This method reuses the memory in the SelfAdjointEigenSolver object that + * was allocated when the object was constructed, if the size of the + * matrix does not change. + * + * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp + * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out + * + * \sa SelfAdjointEigenSolver(const MatrixType&, int) + */ + template + EIGEN_DEVICE_FUNC + SelfAdjointEigenSolver& compute(const EigenBase& matrix, int options = ComputeEigenvectors); + + /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm + * + * This is a variant of compute(const MatrixType&, int options) which + * directly solves the underlying polynomial equation. + * + * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d). + * + * This method is usually significantly faster than the QR iterative algorithm + * but it might also be less accurate. It is also worth noting that + * for 3x3 matrices it involves trigonometric operations which are + * not necessarily available for all scalar types. + * + * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues: + * - double: 1e-8 + * - float: 1e-3 + * + * \sa compute(const MatrixType&, int options) + */ + EIGEN_DEVICE_FUNC + SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors); + + /** + *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix + * + * \param[in] diag The vector containing the diagonal of the matrix. + * \param[in] subdiag The subdiagonal of the matrix. + * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. + * \returns Reference to \c *this + * + * This function assumes that the matrix has been reduced to tridiagonal form. + * + * \sa compute(const MatrixType&, int) for more information + */ + SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors); + + /** \brief Returns the eigenvectors of given matrix. + * + * \returns A const reference to the matrix whose columns are the eigenvectors. + * + * \pre The eigenvectors have been computed before. + * + * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding + * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The + * eigenvectors are normalized to have (Euclidean) norm equal to one. If + * this object was used to solve the eigenproblem for the selfadjoint + * matrix \f$ A \f$, then the matrix returned by this function is the + * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. + * + * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal + * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then + * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is + * equal to its transpose, \f$ V^{-1} = V^T \f$. + * + * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp + * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out + * + * \sa eigenvalues() + */ + EIGEN_DEVICE_FUNC + const EigenvectorsType& eigenvectors() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec; + } + + /** \brief Returns the eigenvalues of given matrix. + * + * \returns A const reference to the column vector containing the eigenvalues. + * + * \pre The eigenvalues have been computed before. + * + * The eigenvalues are repeated according to their algebraic multiplicity, + * so there are as many eigenvalues as rows in the matrix. The eigenvalues + * are sorted in increasing order. + * + * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp + * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out + * + * \sa eigenvectors(), MatrixBase::eigenvalues() + */ + EIGEN_DEVICE_FUNC + const RealVectorType& eigenvalues() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + return m_eivalues; + } + + /** \brief Computes the positive-definite square root of the matrix. + * + * \returns the positive-definite square root of the matrix + * + * \pre The eigenvalues and eigenvectors of a positive-definite matrix + * have been computed before. + * + * The square root of a positive-definite matrix \f$ A \f$ is the + * positive-definite matrix whose square equals \f$ A \f$. This function + * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the + * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. + * + * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp + * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out + * + * \sa operatorInverseSqrt(), MatrixFunctions Module + */ + EIGEN_DEVICE_FUNC + MatrixType operatorSqrt() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); + } + + /** \brief Computes the inverse square root of the matrix. + * + * \returns the inverse positive-definite square root of the matrix + * + * \pre The eigenvalues and eigenvectors of a positive-definite matrix + * have been computed before. + * + * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to + * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is + * cheaper than first computing the square root with operatorSqrt() and + * then its inverse with MatrixBase::inverse(). + * + * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp + * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out + * + * \sa operatorSqrt(), MatrixBase::inverse(), MatrixFunctions Module + */ + EIGEN_DEVICE_FUNC + MatrixType operatorInverseSqrt() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); + return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); + } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, \c NoConvergence otherwise. + */ + EIGEN_DEVICE_FUNC + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); + return m_info; + } + + /** \brief Maximum number of iterations. + * + * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n + * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK). + */ + static const int m_maxIterations = 30; + + protected: + static EIGEN_DEVICE_FUNC + void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + EigenvectorsType m_eivec; + RealVectorType m_eivalues; + typename TridiagonalizationType::SubDiagonalType m_subdiag; + typename TridiagonalizationType::CoeffVectorType m_hcoeffs; + ComputationInfo m_info; + bool m_isInitialized; + bool m_eigenvectorsOk; +}; + +namespace internal { +/** \internal + * + * \eigenvalues_module \ingroup Eigenvalues_Module + * + * Performs a QR step on a tridiagonal symmetric matrix represented as a + * pair of two vectors \a diag and \a subdiag. + * + * \param diag the diagonal part of the input selfadjoint tridiagonal matrix + * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix + * \param start starting index of the submatrix to work on + * \param end last+1 index of the submatrix to work on + * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0 + * \param n size of the input matrix + * + * For compilation efficiency reasons, this procedure does not use eigen expression + * for its arguments. + * + * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: + * "implicit symmetric QR step with Wilkinson shift" + */ +template +EIGEN_DEVICE_FUNC +static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); +} + +template +template +EIGEN_DEVICE_FUNC +SelfAdjointEigenSolver& SelfAdjointEigenSolver +::compute(const EigenBase& a_matrix, int options) +{ + check_template_parameters(); + + const InputType &matrix(a_matrix.derived()); + + EIGEN_USING_STD(abs); + eigen_assert(matrix.cols() == matrix.rows()); + eigen_assert((options&~(EigVecMask|GenEigMask))==0 + && (options&EigVecMask)!=EigVecMask + && "invalid option parameter"); + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; + Index n = matrix.cols(); + m_eivalues.resize(n,1); + + if(n==1) + { + m_eivec = matrix; + m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); + if(computeEigenvectors) + m_eivec.setOnes(n,n); + m_info = Success; + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + return *this; + } + + // declare some aliases + RealVectorType& diag = m_eivalues; + EigenvectorsType& mat = m_eivec; + + // map the matrix coefficients to [-1:1] to avoid over- and underflow. + mat = matrix.template triangularView(); + RealScalar scale = mat.cwiseAbs().maxCoeff(); + if(scale==RealScalar(0)) scale = RealScalar(1); + mat.template triangularView() /= scale; + m_subdiag.resize(n-1); + m_hcoeffs.resize(n-1); + internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors); + + m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); + + // scale back the eigen values + m_eivalues *= scale; + + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + return *this; +} + +template +SelfAdjointEigenSolver& SelfAdjointEigenSolver +::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options) +{ + //TODO : Add an option to scale the values beforehand + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; + + m_eivalues = diag; + m_subdiag = subdiag; + if (computeEigenvectors) + { + m_eivec.setIdentity(diag.size(), diag.size()); + } + m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); + + m_isInitialized = true; + m_eigenvectorsOk = computeEigenvectors; + return *this; +} + +namespace internal { +/** + * \internal + * \brief Compute the eigendecomposition from a tridiagonal matrix + * + * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues + * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition) + * \param[in] maxIterations : the maximum number of iterations + * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not + * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input. + * \returns \c Success or \c NoConvergence + */ +template +EIGEN_DEVICE_FUNC +ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec) +{ + ComputationInfo info; + typedef typename MatrixType::Scalar Scalar; + + Index n = diag.size(); + Index end = n-1; + Index start = 0; + Index iter = 0; // total number of iterations + + typedef typename DiagType::RealScalar RealScalar; + const RealScalar considerAsZero = (std::numeric_limits::min)(); + const RealScalar precision_inv = RealScalar(1)/NumTraits::epsilon(); + while (end>0) + { + for (Index i = start; i0 && subdiag[end-1]==RealScalar(0)) + { + end--; + } + if (end<=0) + break; + + // if we spent too many iterations, we give up + iter++; + if(iter > maxIterations * n) break; + + start = end - 1; + while (start>0 && subdiag[start-1]!=0) + start--; + + internal::tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); + } + if (iter <= maxIterations * n) + info = Success; + else + info = NoConvergence; + + // Sort eigenvalues and corresponding vectors. + // TODO make the sort optional ? + // TODO use a better sort algorithm !! + if (info == Success) + { + for (Index i = 0; i < n-1; ++i) + { + Index k; + diag.segment(i,n-i).minCoeff(&k); + if (k > 0) + { + numext::swap(diag[i], diag[k+i]); + if(computeEigenvectors) + eivec.col(i).swap(eivec.col(k+i)); + } + } + } + return info; +} + +template struct direct_selfadjoint_eigenvalues +{ + EIGEN_DEVICE_FUNC + static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options) + { eig.compute(A,options); } +}; + +template struct direct_selfadjoint_eigenvalues +{ + typedef typename SolverType::MatrixType MatrixType; + typedef typename SolverType::RealVectorType VectorType; + typedef typename SolverType::Scalar Scalar; + typedef typename SolverType::EigenvectorsType EigenvectorsType; + + + /** \internal + * Computes the roots of the characteristic polynomial of \a m. + * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized. + */ + EIGEN_DEVICE_FUNC + static inline void computeRoots(const MatrixType& m, VectorType& roots) + { + EIGEN_USING_STD(sqrt) + EIGEN_USING_STD(atan2) + EIGEN_USING_STD(cos) + EIGEN_USING_STD(sin) + const Scalar s_inv3 = Scalar(1)/Scalar(3); + const Scalar s_sqrt3 = sqrt(Scalar(3)); + + // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The + // eigenvalues are the roots to this equation, all guaranteed to be + // real-valued, because the matrix is symmetric. + Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0); + Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1); + Scalar c2 = m(0,0) + m(1,1) + m(2,2); + + // Construct the parameters used in classifying the roots of the equation + // and in solving the equation for the roots in closed form. + Scalar c2_over_3 = c2*s_inv3; + Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3; + a_over_3 = numext::maxi(a_over_3, Scalar(0)); + + Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1)); + + Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b; + q = numext::maxi(q, Scalar(0)); + + // Compute the eigenvalues by solving for the roots of the polynomial. + Scalar rho = sqrt(a_over_3); + Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3] + Scalar cos_theta = cos(theta); + Scalar sin_theta = sin(theta); + // roots are already sorted, since cos is monotonically decreasing on [0, pi] + roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3) + roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3) + roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; + } + + EIGEN_DEVICE_FUNC + static inline bool extract_kernel(MatrixType& mat, Ref res, Ref representative) + { + EIGEN_USING_STD(abs); + EIGEN_USING_STD(sqrt); + Index i0; + // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal): + mat.diagonal().cwiseAbs().maxCoeff(&i0); + // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector, + // so let's save it: + representative = mat.col(i0); + Scalar n0, n1; + VectorType c0, c1; + n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm(); + n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm(); + if(n0>n1) res = c0/sqrt(n0); + else res = c1/sqrt(n1); + + return true; + } + + EIGEN_DEVICE_FUNC + static inline void run(SolverType& solver, const MatrixType& mat, int options) + { + eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows()); + eigen_assert((options&~(EigVecMask|GenEigMask))==0 + && (options&EigVecMask)!=EigVecMask + && "invalid option parameter"); + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; + + EigenvectorsType& eivecs = solver.m_eivec; + VectorType& eivals = solver.m_eivalues; + + // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. + Scalar shift = mat.trace() / Scalar(3); + // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later + MatrixType scaledMat = mat.template selfadjointView(); + scaledMat.diagonal().array() -= shift; + Scalar scale = scaledMat.cwiseAbs().maxCoeff(); + if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations + + // compute the eigenvalues + computeRoots(scaledMat,eivals); + + // compute the eigenvectors + if(computeEigenvectors) + { + if((eivals(2)-eivals(0))<=Eigen::NumTraits::epsilon()) + { + // All three eigenvalues are numerically the same + eivecs.setIdentity(); + } + else + { + MatrixType tmp; + tmp = scaledMat; + + // Compute the eigenvector of the most distinct eigenvalue + Scalar d0 = eivals(2) - eivals(1); + Scalar d1 = eivals(1) - eivals(0); + Index k(0), l(2); + if(d0 > d1) + { + numext::swap(k,l); + d0 = d1; + } + + // Compute the eigenvector of index k + { + tmp.diagonal().array () -= eivals(k); + // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector. + extract_kernel(tmp, eivecs.col(k), eivecs.col(l)); + } + + // Compute eigenvector of index l + if(d0<=2*Eigen::NumTraits::epsilon()*d1) + { + // If d0 is too small, then the two other eigenvalues are numerically the same, + // and thus we only have to ortho-normalize the near orthogonal vector we saved above. + eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l); + eivecs.col(l).normalize(); + } + else + { + tmp = scaledMat; + tmp.diagonal().array () -= eivals(l); + + VectorType dummy; + extract_kernel(tmp, eivecs.col(l), dummy); + } + + // Compute last eigenvector from the other two + eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized(); + } + } + + // Rescale back to the original size. + eivals *= scale; + eivals.array() += shift; + + solver.m_info = Success; + solver.m_isInitialized = true; + solver.m_eigenvectorsOk = computeEigenvectors; + } +}; + +// 2x2 direct eigenvalues decomposition, code from Hauke Heibel +template +struct direct_selfadjoint_eigenvalues +{ + typedef typename SolverType::MatrixType MatrixType; + typedef typename SolverType::RealVectorType VectorType; + typedef typename SolverType::Scalar Scalar; + typedef typename SolverType::EigenvectorsType EigenvectorsType; + + EIGEN_DEVICE_FUNC + static inline void computeRoots(const MatrixType& m, VectorType& roots) + { + EIGEN_USING_STD(sqrt); + const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0))); + const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1)); + roots(0) = t1 - t0; + roots(1) = t1 + t0; + } + + EIGEN_DEVICE_FUNC + static inline void run(SolverType& solver, const MatrixType& mat, int options) + { + EIGEN_USING_STD(sqrt); + EIGEN_USING_STD(abs); + + eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows()); + eigen_assert((options&~(EigVecMask|GenEigMask))==0 + && (options&EigVecMask)!=EigVecMask + && "invalid option parameter"); + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; + + EigenvectorsType& eivecs = solver.m_eivec; + VectorType& eivals = solver.m_eivalues; + + // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. + Scalar shift = mat.trace() / Scalar(2); + MatrixType scaledMat = mat; + scaledMat.coeffRef(0,1) = mat.coeff(1,0); + scaledMat.diagonal().array() -= shift; + Scalar scale = scaledMat.cwiseAbs().maxCoeff(); + if(scale > Scalar(0)) + scaledMat /= scale; + + // Compute the eigenvalues + computeRoots(scaledMat,eivals); + + // compute the eigen vectors + if(computeEigenvectors) + { + if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits::epsilon()) + { + eivecs.setIdentity(); + } + else + { + scaledMat.diagonal().array () -= eivals(1); + Scalar a2 = numext::abs2(scaledMat(0,0)); + Scalar c2 = numext::abs2(scaledMat(1,1)); + Scalar b2 = numext::abs2(scaledMat(1,0)); + if(a2>c2) + { + eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0); + eivecs.col(1) /= sqrt(a2+b2); + } + else + { + eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0); + eivecs.col(1) /= sqrt(c2+b2); + } + + eivecs.col(0) << eivecs.col(1).unitOrthogonal(); + } + } + + // Rescale back to the original size. + eivals *= scale; + eivals.array() += shift; + + solver.m_info = Success; + solver.m_isInitialized = true; + solver.m_eigenvectorsOk = computeEigenvectors; + } +}; + +} + +template +EIGEN_DEVICE_FUNC +SelfAdjointEigenSolver& SelfAdjointEigenSolver +::computeDirect(const MatrixType& matrix, int options) +{ + internal::direct_selfadjoint_eigenvalues::IsComplex>::run(*this,matrix,options); + return *this; +} + +namespace internal { + +// Francis implicit QR step. +template +EIGEN_DEVICE_FUNC +static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n) +{ + // Wilkinson Shift. + RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); + RealScalar e = subdiag[end-1]; + // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still + // underflow thus leading to inf/NaN values when using the following commented code: + // RealScalar e2 = numext::abs2(subdiag[end-1]); + // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2)); + // This explain the following, somewhat more complicated, version: + RealScalar mu = diag[end]; + if(td==RealScalar(0)) { + mu -= numext::abs(e); + } else if (e != RealScalar(0)) { + const RealScalar e2 = numext::abs2(e); + const RealScalar h = numext::hypot(td,e); + if(e2 == RealScalar(0)) { + mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e); + } else { + mu -= e2 / (td + (td>RealScalar(0) ? h : -h)); + } + } + + RealScalar x = diag[start] - mu; + RealScalar z = subdiag[start]; + // If z ever becomes zero, the Givens rotation will be the identity and + // z will stay zero for all future iterations. + for (Index k = start; k < end && z != RealScalar(0); ++k) + { + JacobiRotation rot; + rot.makeGivens(x, z); + + // do T = G' T G + RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; + RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; + + diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); + diag[k+1] = rot.s() * sdk + rot.c() * dkp1; + subdiag[k] = rot.c() * sdk - rot.s() * dkp1; + + if (k > start) + subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; + + // "Chasing the bulge" to return to triangular form. + x = subdiag[k]; + if (k < end - 1) + { + z = -rot.s() * subdiag[k+1]; + subdiag[k + 1] = rot.c() * subdiag[k+1]; + } + + // apply the givens rotation to the unit matrix Q = Q * G + if (matrixQ) + { + // FIXME if StorageOrder == RowMajor this operation is not very efficient + Map > q(matrixQ,n,n); + q.applyOnTheRight(k,k+1,rot); + } + } +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_SELFADJOINTEIGENSOLVER_H diff --git a/include/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h b/include/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h new file mode 100644 index 0000000000000000000000000000000000000000..b0c947dc07b6362b7a91f1a90275f4d969f7e4d0 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h @@ -0,0 +1,87 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * Self-adjoint eigenvalues/eigenvectors. + ******************************************************************************** +*/ + +#ifndef EIGEN_SAEIGENSOLVER_LAPACKE_H +#define EIGEN_SAEIGENSOLVER_LAPACKE_H + +namespace Eigen { + +/** \internal Specialization for the data types supported by LAPACKe */ + +#define EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, EIGCOLROW ) \ +template<> template inline \ +SelfAdjointEigenSolver >& \ +SelfAdjointEigenSolver >::compute(const EigenBase& matrix, int options) \ +{ \ + eigen_assert(matrix.cols() == matrix.rows()); \ + eigen_assert((options&~(EigVecMask|GenEigMask))==0 \ + && (options&EigVecMask)!=EigVecMask \ + && "invalid option parameter"); \ + bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; \ + lapack_int n = internal::convert_index(matrix.cols()), lda, info; \ + m_eivalues.resize(n,1); \ + m_subdiag.resize(n-1); \ + m_eivec = matrix; \ +\ + if(n==1) \ + { \ + m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); \ + if(computeEigenvectors) m_eivec.setOnes(n,n); \ + m_info = Success; \ + m_isInitialized = true; \ + m_eigenvectorsOk = computeEigenvectors; \ + return *this; \ + } \ +\ + lda = internal::convert_index(m_eivec.outerStride()); \ + char jobz, uplo='L'/*, range='A'*/; \ + jobz = computeEigenvectors ? 'V' : 'N'; \ +\ + info = LAPACKE_##LAPACKE_NAME( LAPACK_COL_MAJOR, jobz, uplo, n, (LAPACKE_TYPE*)m_eivec.data(), lda, (LAPACKE_RTYPE*)m_eivalues.data() ); \ + m_info = (info==0) ? Success : NoConvergence; \ + m_isInitialized = true; \ + m_eigenvectorsOk = computeEigenvectors; \ + return *this; \ +} + +#define EIGEN_LAPACKE_EIG_SELFADJ(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME ) \ + EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, ColMajor ) \ + EIGEN_LAPACKE_EIG_SELFADJ_2(EIGTYPE, LAPACKE_TYPE, LAPACKE_RTYPE, LAPACKE_NAME, RowMajor ) + +EIGEN_LAPACKE_EIG_SELFADJ(double, double, double, dsyev) +EIGEN_LAPACKE_EIG_SELFADJ(float, float, float, ssyev) +EIGEN_LAPACKE_EIG_SELFADJ(dcomplex, lapack_complex_double, double, zheev) +EIGEN_LAPACKE_EIG_SELFADJ(scomplex, lapack_complex_float, float, cheev) + +} // end namespace Eigen + +#endif // EIGEN_SAEIGENSOLVER_H diff --git a/include/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h b/include/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h new file mode 100644 index 0000000000000000000000000000000000000000..eda82794ab683fdc46c164971ede750cf469fdc0 --- /dev/null +++ b/include/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h @@ -0,0 +1,560 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2010 Jitse Niesen +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRIDIAGONALIZATION_H +#define EIGEN_TRIDIAGONALIZATION_H + +namespace Eigen { + +namespace internal { + +template struct TridiagonalizationMatrixTReturnType; +template +struct traits > + : public traits +{ + typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix? + enum { Flags = 0 }; +}; + +template +EIGEN_DEVICE_FUNC +void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); +} + +/** \eigenvalues_module \ingroup Eigenvalues_Module + * + * + * \class Tridiagonalization + * + * \brief Tridiagonal decomposition of a selfadjoint matrix + * + * \tparam _MatrixType the type of the matrix of which we are computing the + * tridiagonal decomposition; this is expected to be an instantiation of the + * Matrix class template. + * + * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: + * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. + * + * A tridiagonal matrix is a matrix which has nonzero elements only on the + * main diagonal and the first diagonal below and above it. The Hessenberg + * decomposition of a selfadjoint matrix is in fact a tridiagonal + * decomposition. This class is used in SelfAdjointEigenSolver to compute the + * eigenvalues and eigenvectors of a selfadjoint matrix. + * + * Call the function compute() to compute the tridiagonal decomposition of a + * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) + * constructor which computes the tridiagonal Schur decomposition at + * construction time. Once the decomposition is computed, you can use the + * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the + * decomposition. + * + * The documentation of Tridiagonalization(const MatrixType&) contains an + * example of the typical use of this class. + * + * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver + */ +template class Tridiagonalization +{ + public: + + /** \brief Synonym for the template parameter \p _MatrixType. */ + typedef _MatrixType MatrixType; + + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + + enum { + Size = MatrixType::RowsAtCompileTime, + SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), + Options = MatrixType::Options, + MaxSize = MatrixType::MaxRowsAtCompileTime, + MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) + }; + + typedef Matrix CoeffVectorType; + typedef typename internal::plain_col_type::type DiagonalType; + typedef Matrix SubDiagonalType; + typedef typename internal::remove_all::type MatrixTypeRealView; + typedef internal::TridiagonalizationMatrixTReturnType MatrixTReturnType; + + typedef typename internal::conditional::IsComplex, + typename internal::add_const_on_value_type::RealReturnType>::type, + const Diagonal + >::type DiagonalReturnType; + + typedef typename internal::conditional::IsComplex, + typename internal::add_const_on_value_type::RealReturnType>::type, + const Diagonal + >::type SubDiagonalReturnType; + + /** \brief Return type of matrixQ() */ + typedef HouseholderSequence::type> HouseholderSequenceType; + + /** \brief Default constructor. + * + * \param [in] size Positive integer, size of the matrix whose tridiagonal + * decomposition will be computed. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via compute(). The \p size parameter is only + * used as a hint. It is not an error to give a wrong \p size, but it may + * impair performance. + * + * \sa compute() for an example. + */ + explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) + : m_matrix(size,size), + m_hCoeffs(size > 1 ? size-1 : 1), + m_isInitialized(false) + {} + + /** \brief Constructor; computes tridiagonal decomposition of given matrix. + * + * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition + * is to be computed. + * + * This constructor calls compute() to compute the tridiagonal decomposition. + * + * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp + * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out + */ + template + explicit Tridiagonalization(const EigenBase& matrix) + : m_matrix(matrix.derived()), + m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), + m_isInitialized(false) + { + internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); + m_isInitialized = true; + } + + /** \brief Computes tridiagonal decomposition of given matrix. + * + * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition + * is to be computed. + * \returns Reference to \c *this + * + * The tridiagonal decomposition is computed by bringing the columns of + * the matrix successively in the required form using Householder + * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes + * the size of the given matrix. + * + * This method reuses of the allocated data in the Tridiagonalization + * object, if the size of the matrix does not change. + * + * Example: \include Tridiagonalization_compute.cpp + * Output: \verbinclude Tridiagonalization_compute.out + */ + template + Tridiagonalization& compute(const EigenBase& matrix) + { + m_matrix = matrix.derived(); + m_hCoeffs.resize(matrix.rows()-1, 1); + internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); + m_isInitialized = true; + return *this; + } + + /** \brief Returns the Householder coefficients. + * + * \returns a const reference to the vector of Householder coefficients + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * The Householder coefficients allow the reconstruction of the matrix + * \f$ Q \f$ in the tridiagonal decomposition from the packed data. + * + * Example: \include Tridiagonalization_householderCoefficients.cpp + * Output: \verbinclude Tridiagonalization_householderCoefficients.out + * + * \sa packedMatrix(), \ref Householder_Module "Householder module" + */ + inline CoeffVectorType householderCoefficients() const + { + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return m_hCoeffs; + } + + /** \brief Returns the internal representation of the decomposition + * + * \returns a const reference to a matrix with the internal representation + * of the decomposition. + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * The returned matrix contains the following information: + * - the strict upper triangular part is equal to the input matrix A. + * - the diagonal and lower sub-diagonal represent the real tridiagonal + * symmetric matrix T. + * - the rest of the lower part contains the Householder vectors that, + * combined with Householder coefficients returned by + * householderCoefficients(), allows to reconstruct the matrix Q as + * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. + * Here, the matrices \f$ H_i \f$ are the Householder transformations + * \f$ H_i = (I - h_i v_i v_i^T) \f$ + * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and + * \f$ v_i \f$ is the Householder vector defined by + * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ + * with M the matrix returned by this function. + * + * See LAPACK for further details on this packed storage. + * + * Example: \include Tridiagonalization_packedMatrix.cpp + * Output: \verbinclude Tridiagonalization_packedMatrix.out + * + * \sa householderCoefficients() + */ + inline const MatrixType& packedMatrix() const + { + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return m_matrix; + } + + /** \brief Returns the unitary matrix Q in the decomposition + * + * \returns object representing the matrix Q + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * This function returns a light-weight object of template class + * HouseholderSequence. You can either apply it directly to a matrix or + * you can convert it to a matrix of type #MatrixType. + * + * \sa Tridiagonalization(const MatrixType&) for an example, + * matrixT(), class HouseholderSequence + */ + HouseholderSequenceType matrixQ() const + { + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) + .setLength(m_matrix.rows() - 1) + .setShift(1); + } + + /** \brief Returns an expression of the tridiagonal matrix T in the decomposition + * + * \returns expression object representing the matrix T + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * Currently, this function can be used to extract the matrix T from internal + * data and copy it to a dense matrix object. In most cases, it may be + * sufficient to directly use the packed matrix or the vector expressions + * returned by diagonal() and subDiagonal() instead of creating a new + * dense copy matrix with this function. + * + * \sa Tridiagonalization(const MatrixType&) for an example, + * matrixQ(), packedMatrix(), diagonal(), subDiagonal() + */ + MatrixTReturnType matrixT() const + { + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return MatrixTReturnType(m_matrix.real()); + } + + /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. + * + * \returns expression representing the diagonal of T + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * Example: \include Tridiagonalization_diagonal.cpp + * Output: \verbinclude Tridiagonalization_diagonal.out + * + * \sa matrixT(), subDiagonal() + */ + DiagonalReturnType diagonal() const; + + /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. + * + * \returns expression representing the subdiagonal of T + * + * \pre Either the constructor Tridiagonalization(const MatrixType&) or + * the member function compute(const MatrixType&) has been called before + * to compute the tridiagonal decomposition of a matrix. + * + * \sa diagonal() for an example, matrixT() + */ + SubDiagonalReturnType subDiagonal() const; + + protected: + + MatrixType m_matrix; + CoeffVectorType m_hCoeffs; + bool m_isInitialized; +}; + +template +typename Tridiagonalization::DiagonalReturnType +Tridiagonalization::diagonal() const +{ + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return m_matrix.diagonal().real(); +} + +template +typename Tridiagonalization::SubDiagonalReturnType +Tridiagonalization::subDiagonal() const +{ + eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); + return m_matrix.template diagonal<-1>().real(); +} + +namespace internal { + +/** \internal + * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. + * + * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. + * On output, the strict upper part is left unchanged, and the lower triangular part + * represents the T and Q matrices in packed format has detailed below. + * \param[out] hCoeffs returned Householder coefficients (see below) + * + * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal + * and lower sub-diagonal of the matrix \a matA. + * The unitary matrix Q is represented in a compact way as a product of + * Householder reflectors \f$ H_i \f$ such that: + * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. + * The Householder reflectors are defined as + * \f$ H_i = (I - h_i v_i v_i^T) \f$ + * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and + * \f$ v_i \f$ is the Householder vector defined by + * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. + * + * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. + * + * \sa Tridiagonalization::packedMatrix() + */ +template +EIGEN_DEVICE_FUNC +void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) +{ + using numext::conj; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + Index n = matA.rows(); + eigen_assert(n==matA.cols()); + eigen_assert(n==hCoeffs.size()+1 || n==1); + + for (Index i = 0; i() + * (conj(h) * matA.col(i).tail(remainingSize))); + + hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); + + matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView() + .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); + + matA.col(i).coeffRef(i+1) = beta; + hCoeffs.coeffRef(i) = h; + } +} + +// forward declaration, implementation at the end of this file +template::IsComplex> +struct tridiagonalization_inplace_selector; + +/** \brief Performs a full tridiagonalization in place + * + * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal + * decomposition is to be computed. Only the lower triangular part referenced. + * The rest is left unchanged. On output, the orthogonal matrix Q + * in the decomposition if \p extractQ is true. + * \param[out] diag The diagonal of the tridiagonal matrix T in the + * decomposition. + * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in + * the decomposition. + * \param[in] extractQ If true, the orthogonal matrix Q in the + * decomposition is computed and stored in \p mat. + * + * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place + * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real + * symmetric tridiagonal matrix. + * + * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If + * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower + * part of the matrix \p mat is destroyed. + * + * The vectors \p diag and \p subdiag are not resized. The function + * assumes that they are already of the correct size. The length of the + * vector \p diag should equal the number of rows in \p mat, and the + * length of the vector \p subdiag should be one left. + * + * This implementation contains an optimized path for 3-by-3 matrices + * which is especially useful for plane fitting. + * + * \note Currently, it requires two temporary vectors to hold the intermediate + * Householder coefficients, and to reconstruct the matrix Q from the Householder + * reflectors. + * + * Example (this uses the same matrix as the example in + * Tridiagonalization::Tridiagonalization(const MatrixType&)): + * \include Tridiagonalization_decomposeInPlace.cpp + * Output: \verbinclude Tridiagonalization_decomposeInPlace.out + * + * \sa class Tridiagonalization + */ +template +EIGEN_DEVICE_FUNC +void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, + CoeffVectorType& hcoeffs, bool extractQ) +{ + eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); + tridiagonalization_inplace_selector::run(mat, diag, subdiag, hcoeffs, extractQ); +} + +/** \internal + * General full tridiagonalization + */ +template +struct tridiagonalization_inplace_selector +{ + typedef typename Tridiagonalization::HouseholderSequenceType HouseholderSequenceType; + template + static EIGEN_DEVICE_FUNC + void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, bool extractQ) + { + tridiagonalization_inplace(mat, hCoeffs); + diag = mat.diagonal().real(); + subdiag = mat.template diagonal<-1>().real(); + if(extractQ) + mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) + .setLength(mat.rows() - 1) + .setShift(1); + } +}; + +/** \internal + * Specialization for 3x3 real matrices. + * Especially useful for plane fitting. + */ +template +struct tridiagonalization_inplace_selector +{ + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + + template + static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, bool extractQ) + { + using std::sqrt; + const RealScalar tol = (std::numeric_limits::min)(); + diag[0] = mat(0,0); + RealScalar v1norm2 = numext::abs2(mat(2,0)); + if(v1norm2 <= tol) + { + diag[1] = mat(1,1); + diag[2] = mat(2,2); + subdiag[0] = mat(1,0); + subdiag[1] = mat(2,1); + if (extractQ) + mat.setIdentity(); + } + else + { + RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); + RealScalar invBeta = RealScalar(1)/beta; + Scalar m01 = mat(1,0) * invBeta; + Scalar m02 = mat(2,0) * invBeta; + Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); + diag[1] = mat(1,1) + m02*q; + diag[2] = mat(2,2) - m02*q; + subdiag[0] = beta; + subdiag[1] = mat(2,1) - m01 * q; + if (extractQ) + { + mat << 1, 0, 0, + 0, m01, m02, + 0, m02, -m01; + } + } + } +}; + +/** \internal + * Trivial specialization for 1x1 matrices + */ +template +struct tridiagonalization_inplace_selector +{ + typedef typename MatrixType::Scalar Scalar; + + template + static EIGEN_DEVICE_FUNC + void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, bool extractQ) + { + diag(0,0) = numext::real(mat(0,0)); + if(extractQ) + mat(0,0) = Scalar(1); + } +}; + +/** \internal + * \eigenvalues_module \ingroup Eigenvalues_Module + * + * \brief Expression type for return value of Tridiagonalization::matrixT() + * + * \tparam MatrixType type of underlying dense matrix + */ +template struct TridiagonalizationMatrixTReturnType +: public ReturnByValue > +{ + public: + /** \brief Constructor. + * + * \param[in] mat The underlying dense matrix + */ + TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } + + template + inline void evalTo(ResultType& result) const + { + result.setZero(); + result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); + result.diagonal() = m_matrix.diagonal(); + result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); + } + + EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } + EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + protected: + typename MatrixType::Nested m_matrix; +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRIDIAGONALIZATION_H diff --git a/include/eigen/Eigen/src/Geometry/AlignedBox.h b/include/eigen/Eigen/src/Geometry/AlignedBox.h new file mode 100644 index 0000000000000000000000000000000000000000..55a9d0ae134a6ab2a9f5a6ede2dad5843ceda518 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/AlignedBox.h @@ -0,0 +1,486 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// Function void Eigen::AlignedBox::transform(const Transform& transform) +// is provided under the following license agreement: +// +// Software License Agreement (BSD License) +// +// Copyright (c) 2011-2014, Willow Garage, Inc. +// Copyright (c) 2014-2015, Open Source Robotics Foundation +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Open Source Robotics Foundation nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +// POSSIBILITY OF SUCH DAMAGE. + +#ifndef EIGEN_ALIGNEDBOX_H +#define EIGEN_ALIGNEDBOX_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * + * \class AlignedBox + * + * \brief An axis aligned box + * + * \tparam _Scalar the type of the scalar coefficients + * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. + * + * This class represents an axis aligned box as a pair of the minimal and maximal corners. + * \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty(). + * \sa alignedboxtypedefs + */ +template +class AlignedBox +{ +public: +EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) + enum { AmbientDimAtCompileTime = _AmbientDim }; + typedef _Scalar Scalar; + typedef NumTraits ScalarTraits; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef typename ScalarTraits::Real RealScalar; + typedef typename ScalarTraits::NonInteger NonInteger; + typedef Matrix VectorType; + typedef CwiseBinaryOp, const VectorType, const VectorType> VectorTypeSum; + + /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ + enum CornerType + { + /** 1D names @{ */ + Min=0, Max=1, + /** @} */ + + /** Identifier for 2D corner @{ */ + BottomLeft=0, BottomRight=1, + TopLeft=2, TopRight=3, + /** @} */ + + /** Identifier for 3D corner @{ */ + BottomLeftFloor=0, BottomRightFloor=1, + TopLeftFloor=2, TopRightFloor=3, + BottomLeftCeil=4, BottomRightCeil=5, + TopLeftCeil=6, TopRightCeil=7 + /** @} */ + }; + + + /** Default constructor initializing a null box. */ + EIGEN_DEVICE_FUNC inline AlignedBox() + { if (EIGEN_CONST_CONDITIONAL(AmbientDimAtCompileTime!=Dynamic)) setEmpty(); } + + /** Constructs a null box with \a _dim the dimension of the ambient space. */ + EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) + { setEmpty(); } + + /** Constructs a box with extremities \a _min and \a _max. + * \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */ + template + EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {} + + /** Constructs a box containing a single point \a p. */ + template + EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase& p) : m_min(p), m_max(m_min) + { } + + EIGEN_DEVICE_FUNC ~AlignedBox() {} + + /** \returns the dimension in which the box holds */ + EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); } + + /** \deprecated use isEmpty() */ + EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); } + + /** \deprecated use setEmpty() */ + EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); } + + /** \returns true if the box is empty. + * \sa setEmpty */ + EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } + + /** Makes \c *this an empty box. + * \sa isEmpty */ + EIGEN_DEVICE_FUNC inline void setEmpty() + { + m_min.setConstant( ScalarTraits::highest() ); + m_max.setConstant( ScalarTraits::lowest() ); + } + + /** \returns the minimal corner */ + EIGEN_DEVICE_FUNC inline const VectorType& (min)() const { return m_min; } + /** \returns a non const reference to the minimal corner */ + EIGEN_DEVICE_FUNC inline VectorType& (min)() { return m_min; } + /** \returns the maximal corner */ + EIGEN_DEVICE_FUNC inline const VectorType& (max)() const { return m_max; } + /** \returns a non const reference to the maximal corner */ + EIGEN_DEVICE_FUNC inline VectorType& (max)() { return m_max; } + + /** \returns the center of the box */ + EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient) + center() const + { return (m_min+m_max)/RealScalar(2); } + + /** \returns the lengths of the sides of the bounding box. + * Note that this function does not get the same + * result for integral or floating scalar types: see + */ + EIGEN_DEVICE_FUNC inline const CwiseBinaryOp< internal::scalar_difference_op, const VectorType, const VectorType> sizes() const + { return m_max - m_min; } + + /** \returns the volume of the bounding box */ + EIGEN_DEVICE_FUNC inline Scalar volume() const + { return sizes().prod(); } + + /** \returns an expression for the bounding box diagonal vector + * if the length of the diagonal is needed: diagonal().norm() + * will provide it. + */ + EIGEN_DEVICE_FUNC inline CwiseBinaryOp< internal::scalar_difference_op, const VectorType, const VectorType> diagonal() const + { return sizes(); } + + /** \returns the vertex of the bounding box at the corner defined by + * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. + * For 1D bounding boxes corners are named by 2 enum constants: + * BottomLeft and BottomRight. + * For 2D bounding boxes, corners are named by 4 enum constants: + * BottomLeft, BottomRight, TopLeft, TopRight. + * For 3D bounding boxes, the following names are added: + * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. + */ + EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const + { + EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); + + VectorType res; + + Index mult = 1; + for(Index d=0; d(Scalar(0), Scalar(1)); + } + else + r[d] = internal::random(m_min[d], m_max[d]); + } + return r; + } + + /** \returns true if the point \a p is inside the box \c *this. */ + template + EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase& p) const + { + typename internal::nested_eval::type p_n(p.derived()); + return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all(); + } + + /** \returns true if the box \a b is entirely inside the box \c *this. */ + EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const + { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); } + + /** \returns true if the box \a b is intersecting the box \c *this. + * \sa intersection, clamp */ + EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const + { return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); } + + /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. + * \sa extend(const AlignedBox&) */ + template + EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase& p) + { + typename internal::nested_eval::type p_n(p.derived()); + m_min = m_min.cwiseMin(p_n); + m_max = m_max.cwiseMax(p_n); + return *this; + } + + /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. + * \sa merged, extend(const MatrixBase&) */ + EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b) + { + m_min = m_min.cwiseMin(b.m_min); + m_max = m_max.cwiseMax(b.m_max); + return *this; + } + + /** Clamps \c *this by the box \a b and returns a reference to \c *this. + * \note If the boxes don't intersect, the resulting box is empty. + * \sa intersection(), intersects() */ + EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b) + { + m_min = m_min.cwiseMax(b.m_min); + m_max = m_max.cwiseMin(b.m_max); + return *this; + } + + /** Returns an AlignedBox that is the intersection of \a b and \c *this + * \note If the boxes don't intersect, the resulting box is empty. + * \sa intersects(), clamp, contains() */ + EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const + {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); } + + /** Returns an AlignedBox that is the union of \a b and \c *this. + * \note Merging with an empty box may result in a box bigger than \c *this. + * \sa extend(const AlignedBox&) */ + EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const + { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); } + + /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ + template + EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase& a_t) + { + const typename internal::nested_eval::type t(a_t.derived()); + m_min += t; + m_max += t; + return *this; + } + + /** \returns a copy of \c *this translated by the vector \a t. */ + template + EIGEN_DEVICE_FUNC inline AlignedBox translated(const MatrixBase& a_t) const + { + AlignedBox result(m_min, m_max); + result.translate(a_t); + return result; + } + + /** \returns the squared distance between the point \a p and the box \c *this, + * and zero if \a p is inside the box. + * \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&) + */ + template + EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase& p) const; + + /** \returns the squared distance between the boxes \a b and \c *this, + * and zero if the boxes intersect. + * \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&) + */ + EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const; + + /** \returns the distance between the point \a p and the box \c *this, + * and zero if \a p is inside the box. + * \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&) + */ + template + EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase& p) const + { EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p))); } + + /** \returns the distance between the boxes \a b and \c *this, + * and zero if the boxes intersect. + * \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&) + */ + EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const + { EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); } + + /** + * Specialization of transform for pure translation. + */ + template + EIGEN_DEVICE_FUNC inline void transform( + const typename Transform::TranslationType& translation) + { + this->translate(translation); + } + + /** + * Transforms this box by \a transform and recomputes it to + * still be an axis-aligned box. + * + * \note This method is provided under BSD license (see the top of this file). + */ + template + EIGEN_DEVICE_FUNC inline void transform(const Transform& transform) + { + // Only Affine and Isometry transforms are currently supported. + EIGEN_STATIC_ASSERT(Mode == Affine || Mode == AffineCompact || Mode == Isometry, THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS); + + // Method adapted from FCL src/shape/geometric_shapes_utility.cpp#computeBV(...) + // https://github.com/flexible-collision-library/fcl/blob/fcl-0.4/src/shape/geometric_shapes_utility.cpp#L292 + // + // Here's a nice explanation why it works: https://zeuxcg.org/2010/10/17/aabb-from-obb-with-component-wise-abs/ + + // two times rotated extent + const VectorType rotated_extent_2 = transform.linear().cwiseAbs() * sizes(); + // two times new center + const VectorType rotated_center_2 = transform.linear() * (this->m_max + this->m_min) + + Scalar(2) * transform.translation(); + + this->m_max = (rotated_center_2 + rotated_extent_2) / Scalar(2); + this->m_min = (rotated_center_2 - rotated_extent_2) / Scalar(2); + } + + /** + * \returns a copy of \c *this transformed by \a transform and recomputed to + * still be an axis-aligned box. + */ + template + EIGEN_DEVICE_FUNC AlignedBox transformed(const Transform& transform) const + { + AlignedBox result(m_min, m_max); + result.transform(transform); + return result; + } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { + return typename internal::cast_return_type >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox& other) + { + m_min = (other.min)().template cast(); + m_max = (other.max)().template cast(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const + { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } + +protected: + + VectorType m_min, m_max; +}; + + + +template +template +EIGEN_DEVICE_FUNC inline Scalar AlignedBox::squaredExteriorDistance(const MatrixBase& a_p) const +{ + typename internal::nested_eval::type p(a_p.derived()); + Scalar dist2(0); + Scalar aux; + for (Index k=0; k p[k] ) + { + aux = m_min[k] - p[k]; + dist2 += aux*aux; + } + else if( p[k] > m_max[k] ) + { + aux = p[k] - m_max[k]; + dist2 += aux*aux; + } + } + return dist2; +} + +template +EIGEN_DEVICE_FUNC inline Scalar AlignedBox::squaredExteriorDistance(const AlignedBox& b) const +{ + Scalar dist2(0); + Scalar aux; + for (Index k=0; k b.m_max[k] ) + { + aux = m_min[k] - b.m_max[k]; + dist2 += aux*aux; + } + else if( b.m_min[k] > m_max[k] ) + { + aux = b.m_min[k] - m_max[k]; + dist2 += aux*aux; + } + } + return dist2; +} + +/** \defgroup alignedboxtypedefs Global aligned box typedefs + * + * \ingroup Geometry_Module + * + * Eigen defines several typedef shortcuts for most common aligned box types. + * + * The general patterns are the following: + * + * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, + * and where \c Type can be \c i for integer, \c f for float, \c d for double. + * + * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats. + * + * \sa class AlignedBox + */ + +#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ +/** \ingroup alignedboxtypedefs */ \ +typedef AlignedBox AlignedBox##SizeSuffix##TypeSuffix; + +#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) + +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) + +#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES +#undef EIGEN_MAKE_TYPEDEFS + +} // end namespace Eigen + +#endif // EIGEN_ALIGNEDBOX_H diff --git a/include/eigen/Eigen/src/Geometry/AngleAxis.h b/include/eigen/Eigen/src/Geometry/AngleAxis.h new file mode 100644 index 0000000000000000000000000000000000000000..78328b6b572c69447a59b42d6aa2a1f07afcdc2b --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/AngleAxis.h @@ -0,0 +1,247 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ANGLEAXIS_H +#define EIGEN_ANGLEAXIS_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class AngleAxis + * + * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis + * + * \param _Scalar the scalar type, i.e., the type of the coefficients. + * + * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. + * + * The following two typedefs are provided for convenience: + * \li \c AngleAxisf for \c float + * \li \c AngleAxisd for \c double + * + * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily + * mimic Euler-angles. Here is an example: + * \include AngleAxis_mimic_euler.cpp + * Output: \verbinclude AngleAxis_mimic_euler.out + * + * \note This class is not aimed to be used to store a rotation transformation, + * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) + * and transformation objects. + * + * \sa class Quaternion, class Transform, MatrixBase::UnitX() + */ + +namespace internal { +template struct traits > +{ + typedef _Scalar Scalar; +}; +} + +template +class AngleAxis : public RotationBase,3> +{ + typedef RotationBase,3> Base; + +public: + + using Base::operator*; + + enum { Dim = 3 }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + typedef Matrix Matrix3; + typedef Matrix Vector3; + typedef Quaternion QuaternionType; + +protected: + + Vector3 m_axis; + Scalar m_angle; + +public: + + /** Default constructor without initialization. */ + EIGEN_DEVICE_FUNC AngleAxis() {} + /** Constructs and initialize the angle-axis rotation from an \a angle in radian + * and an \a axis which \b must \b be \b normalized. + * + * \warning If the \a axis vector is not normalized, then the angle-axis object + * represents an invalid rotation. */ + template + EIGEN_DEVICE_FUNC + inline AngleAxis(const Scalar& angle, const MatrixBase& axis) : m_axis(axis), m_angle(angle) {} + /** Constructs and initialize the angle-axis rotation from a quaternion \a q. + * This function implicitly normalizes the quaternion \a q. + */ + template + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase& q) { *this = q; } + /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ + template + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase& m) { *this = m; } + + /** \returns the value of the rotation angle in radian */ + EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } + /** \returns a read-write reference to the stored angle in radian */ + EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } + + /** \returns the rotation axis */ + EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } + /** \returns a read-write reference to the stored rotation axis. + * + * \warning The rotation axis must remain a \b unit vector. + */ + EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } + + /** Concatenates two rotations */ + EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const + { return QuaternionType(*this) * QuaternionType(other); } + + /** Concatenates two rotations */ + EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const + { return QuaternionType(*this) * other; } + + /** Concatenates two rotations */ + friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) + { return a * QuaternionType(b); } + + /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ + EIGEN_DEVICE_FUNC AngleAxis inverse() const + { return AngleAxis(-m_angle, m_axis); } + + template + EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase& q); + template + EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase& m); + + template + EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase& m); + EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { return typename internal::cast_return_type >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis& other) + { + m_axis = other.axis().template cast(); + m_angle = Scalar(other.angle()); + } + + EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } +}; + +/** \ingroup Geometry_Module + * single precision angle-axis type */ +typedef AngleAxis AngleAxisf; +/** \ingroup Geometry_Module + * double precision angle-axis type */ +typedef AngleAxis AngleAxisd; + +/** Set \c *this from a \b unit quaternion. + * + * The resulting axis is normalized, and the computed angle is in the [0,pi] range. + * + * This function implicitly normalizes the quaternion \a q. + */ +template +template +EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::operator=(const QuaternionBase& q) +{ + EIGEN_USING_STD(atan2) + EIGEN_USING_STD(abs) + Scalar n = q.vec().norm(); + if(n::epsilon()) + n = q.vec().stableNorm(); + + if (n != Scalar(0)) + { + m_angle = Scalar(2)*atan2(n, abs(q.w())); + if(q.w() < Scalar(0)) + n = -n; + m_axis = q.vec() / n; + } + else + { + m_angle = Scalar(0); + m_axis << Scalar(1), Scalar(0), Scalar(0); + } + return *this; +} + +/** Set \c *this from a 3x3 rotation matrix \a mat. + */ +template +template +EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::operator=(const MatrixBase& mat) +{ + // Since a direct conversion would not be really faster, + // let's use the robust Quaternion implementation: + return *this = QuaternionType(mat); +} + +/** +* \brief Sets \c *this from a 3x3 rotation matrix. +**/ +template +template +EIGEN_DEVICE_FUNC AngleAxis& AngleAxis::fromRotationMatrix(const MatrixBase& mat) +{ + return *this = QuaternionType(mat); +} + +/** Constructs and \returns an equivalent 3x3 rotation matrix. + */ +template +typename AngleAxis::Matrix3 +EIGEN_DEVICE_FUNC AngleAxis::toRotationMatrix(void) const +{ + EIGEN_USING_STD(sin) + EIGEN_USING_STD(cos) + Matrix3 res; + Vector3 sin_axis = sin(m_angle) * m_axis; + Scalar c = cos(m_angle); + Vector3 cos1_axis = (Scalar(1)-c) * m_axis; + + Scalar tmp; + tmp = cos1_axis.x() * m_axis.y(); + res.coeffRef(0,1) = tmp - sin_axis.z(); + res.coeffRef(1,0) = tmp + sin_axis.z(); + + tmp = cos1_axis.x() * m_axis.z(); + res.coeffRef(0,2) = tmp + sin_axis.y(); + res.coeffRef(2,0) = tmp - sin_axis.y(); + + tmp = cos1_axis.y() * m_axis.z(); + res.coeffRef(1,2) = tmp - sin_axis.x(); + res.coeffRef(2,1) = tmp + sin_axis.x(); + + res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; + + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_ANGLEAXIS_H diff --git a/include/eigen/Eigen/src/Geometry/EulerAngles.h b/include/eigen/Eigen/src/Geometry/EulerAngles.h new file mode 100644 index 0000000000000000000000000000000000000000..19b734ca7e002da98e829e666340bf847245ef53 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/EulerAngles.h @@ -0,0 +1,114 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_EULERANGLES_H +#define EIGEN_EULERANGLES_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * + * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) + * + * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. + * For instance, in: + * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode + * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that + * we have the following equality: + * \code + * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) + * * AngleAxisf(ea[1], Vector3f::UnitX()) + * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode + * This corresponds to the right-multiply conventions (with right hand side frames). + * + * The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi]. + * + * \sa class AngleAxis + */ +template +EIGEN_DEVICE_FUNC inline Matrix::Scalar,3,1> +MatrixBase::eulerAngles(Index a0, Index a1, Index a2) const +{ + EIGEN_USING_STD(atan2) + EIGEN_USING_STD(sin) + EIGEN_USING_STD(cos) + /* Implemented from Graphics Gems IV */ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) + + Matrix res; + typedef Matrix Vector2; + + const Index odd = ((a0+1)%3 == a1) ? 0 : 1; + const Index i = a0; + const Index j = (a0 + 1 + odd)%3; + const Index k = (a0 + 2 - odd)%3; + + if (a0==a2) + { + res[0] = atan2(coeff(j,i), coeff(k,i)); + if((odd && res[0]Scalar(0))) + { + if(res[0] > Scalar(0)) { + res[0] -= Scalar(EIGEN_PI); + } + else { + res[0] += Scalar(EIGEN_PI); + } + Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); + res[1] = -atan2(s2, coeff(i,i)); + } + else + { + Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm(); + res[1] = atan2(s2, coeff(i,i)); + } + + // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles, + // we can compute their respective rotation, and apply its inverse to M. Since the result must + // be a rotation around x, we have: + // + // c2 s1.s2 c1.s2 1 0 0 + // 0 c1 -s1 * M = 0 c3 s3 + // -s2 s1.c2 c1.c2 0 -s3 c3 + // + // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3 + + Scalar s1 = sin(res[0]); + Scalar c1 = cos(res[0]); + res[2] = atan2(c1*coeff(j,k)-s1*coeff(k,k), c1*coeff(j,j) - s1 * coeff(k,j)); + } + else + { + res[0] = atan2(coeff(j,k), coeff(k,k)); + Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm(); + if((odd && res[0]Scalar(0))) { + if(res[0] > Scalar(0)) { + res[0] -= Scalar(EIGEN_PI); + } + else { + res[0] += Scalar(EIGEN_PI); + } + res[1] = atan2(-coeff(i,k), -c2); + } + else + res[1] = atan2(-coeff(i,k), c2); + Scalar s1 = sin(res[0]); + Scalar c1 = cos(res[0]); + res[2] = atan2(s1*coeff(k,i)-c1*coeff(j,i), c1*coeff(j,j) - s1 * coeff(k,j)); + } + if (!odd) + res = -res; + + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_EULERANGLES_H diff --git a/include/eigen/Eigen/src/Geometry/Homogeneous.h b/include/eigen/Eigen/src/Geometry/Homogeneous.h new file mode 100644 index 0000000000000000000000000000000000000000..94083ac5413a183bb8c0f4fa7b7f41e6d13ba891 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/Homogeneous.h @@ -0,0 +1,501 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HOMOGENEOUS_H +#define EIGEN_HOMOGENEOUS_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Homogeneous + * + * \brief Expression of one (or a set of) homogeneous vector(s) + * + * \param MatrixType the type of the object in which we are making homogeneous + * + * This class represents an expression of one (or a set of) homogeneous vector(s). + * It is the return type of MatrixBase::homogeneous() and most of the time + * this is the only way it is used. + * + * \sa MatrixBase::homogeneous() + */ + +namespace internal { + +template +struct traits > + : traits +{ + typedef typename traits::StorageKind StorageKind; + typedef typename ref_selector::type MatrixTypeNested; + typedef typename remove_reference::type _MatrixTypeNested; + enum { + RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? + int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, + ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? + int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, + RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, + ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + TmpFlags = _MatrixTypeNested::Flags & HereditaryBits, + Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit) + : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit) + : TmpFlags + }; +}; + +template struct homogeneous_left_product_impl; +template struct homogeneous_right_product_impl; + +} // end namespace internal + +template class Homogeneous + : public MatrixBase >, internal::no_assignment_operator +{ + public: + + typedef MatrixType NestedExpression; + enum { Direction = _Direction }; + + typedef MatrixBase Base; + EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) + + EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) + : m_matrix(matrix) + {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); } + + EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } + + template + EIGEN_DEVICE_FUNC inline const Product + operator* (const MatrixBase& rhs) const + { + eigen_assert(int(Direction)==Horizontal); + return Product(*this,rhs.derived()); + } + + template friend + EIGEN_DEVICE_FUNC inline const Product + operator* (const MatrixBase& lhs, const Homogeneous& rhs) + { + eigen_assert(int(Direction)==Vertical); + return Product(lhs.derived(),rhs); + } + + template friend + EIGEN_DEVICE_FUNC inline const Product, Homogeneous > + operator* (const Transform& lhs, const Homogeneous& rhs) + { + eigen_assert(int(Direction)==Vertical); + return Product, Homogeneous>(lhs,rhs); + } + + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of::type + redux(const Func& func) const + { + return func(m_matrix.redux(func), Scalar(1)); + } + + protected: + typename MatrixType::Nested m_matrix; +}; + +/** \geometry_module \ingroup Geometry_Module + * + * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient. + * + * This can be used to convert affine coordinates to homogeneous coordinates. + * + * \only_for_vectors + * + * Example: \include MatrixBase_homogeneous.cpp + * Output: \verbinclude MatrixBase_homogeneous.out + * + * \sa VectorwiseOp::homogeneous(), class Homogeneous + */ +template +EIGEN_DEVICE_FUNC inline typename MatrixBase::HomogeneousReturnType +MatrixBase::homogeneous() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return HomogeneousReturnType(derived()); +} + +/** \geometry_module \ingroup Geometry_Module + * + * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix. + * + * This can be used to convert affine coordinates to homogeneous coordinates. + * + * Example: \include VectorwiseOp_homogeneous.cpp + * Output: \verbinclude VectorwiseOp_homogeneous.out + * + * \sa MatrixBase::homogeneous(), class Homogeneous */ +template +EIGEN_DEVICE_FUNC inline Homogeneous +VectorwiseOp::homogeneous() const +{ + return HomogeneousReturnType(_expression()); +} + +/** \geometry_module \ingroup Geometry_Module + * + * \brief homogeneous normalization + * + * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. + * + * This can be used to convert homogeneous coordinates to affine coordinates. + * + * It is essentially a shortcut for: + * \code + this->head(this->size()-1)/this->coeff(this->size()-1); + \endcode + * + * Example: \include MatrixBase_hnormalized.cpp + * Output: \verbinclude MatrixBase_hnormalized.out + * + * \sa VectorwiseOp::hnormalized() */ +template +EIGEN_DEVICE_FUNC inline const typename MatrixBase::HNormalizedReturnType +MatrixBase::hnormalized() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); + return ConstStartMinusOne(derived(),0,0, + ColsAtCompileTime==1?size()-1:1, + ColsAtCompileTime==1?1:size()-1) / coeff(size()-1); +} + +/** \geometry_module \ingroup Geometry_Module + * + * \brief column or row-wise homogeneous normalization + * + * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row). + * + * This can be used to convert homogeneous coordinates to affine coordinates. + * + * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. + * + * Example: \include DirectionWise_hnormalized.cpp + * Output: \verbinclude DirectionWise_hnormalized.out + * + * \sa MatrixBase::hnormalized() */ +template +EIGEN_DEVICE_FUNC inline const typename VectorwiseOp::HNormalizedReturnType +VectorwiseOp::hnormalized() const +{ + return HNormalized_Block(_expression(),0,0, + Direction==Vertical ? _expression().rows()-1 : _expression().rows(), + Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient( + Replicate + (HNormalized_Factors(_expression(), + Direction==Vertical ? _expression().rows()-1:0, + Direction==Horizontal ? _expression().cols()-1:0, + Direction==Vertical ? 1 : _expression().rows(), + Direction==Horizontal ? 1 : _expression().cols()), + Direction==Vertical ? _expression().rows()-1 : 1, + Direction==Horizontal ? _expression().cols()-1 : 1)); +} + +namespace internal { + +template +struct take_matrix_for_product +{ + typedef MatrixOrTransformType type; + EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; } +}; + +template +struct take_matrix_for_product > +{ + typedef Transform TransformType; + typedef typename internal::add_const::type type; + EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); } +}; + +template +struct take_matrix_for_product > +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType type; + EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); } +}; + +template +struct traits,Lhs> > +{ + typedef typename take_matrix_for_product::type LhsMatrixType; + typedef typename remove_all::type MatrixTypeCleaned; + typedef typename remove_all::type LhsMatrixTypeCleaned; + typedef typename make_proper_matrix_type< + typename traits::Scalar, + LhsMatrixTypeCleaned::RowsAtCompileTime, + MatrixTypeCleaned::ColsAtCompileTime, + MatrixTypeCleaned::PlainObject::Options, + LhsMatrixTypeCleaned::MaxRowsAtCompileTime, + MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; +}; + +template +struct homogeneous_left_product_impl,Lhs> + : public ReturnByValue,Lhs> > +{ + typedef typename traits::LhsMatrixType LhsMatrixType; + typedef typename remove_all::type LhsMatrixTypeCleaned; + typedef typename remove_all::type LhsMatrixTypeNested; + EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) + : m_lhs(take_matrix_for_product::run(lhs)), + m_rhs(rhs) + {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } + + template EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const + { + // FIXME investigate how to allow lazy evaluation of this product when possible + dst = Block + (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; + dst += m_lhs.col(m_lhs.cols()-1).rowwise() + .template replicate(m_rhs.cols()); + } + + typename LhsMatrixTypeCleaned::Nested m_lhs; + typename MatrixType::Nested m_rhs; +}; + +template +struct traits,Rhs> > +{ + typedef typename make_proper_matrix_type::Scalar, + MatrixType::RowsAtCompileTime, + Rhs::ColsAtCompileTime, + MatrixType::PlainObject::Options, + MatrixType::MaxRowsAtCompileTime, + Rhs::MaxColsAtCompileTime>::type ReturnType; +}; + +template +struct homogeneous_right_product_impl,Rhs> + : public ReturnByValue,Rhs> > +{ + typedef typename remove_all::type RhsNested; + EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) + : m_lhs(lhs), m_rhs(rhs) + {} + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } + + template EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const + { + // FIXME investigate how to allow lazy evaluation of this product when possible + dst = m_lhs * Block + (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); + dst += m_rhs.row(m_rhs.rows()-1).colwise() + .template replicate(m_lhs.rows()); + } + + typename MatrixType::Nested m_lhs; + typename Rhs::Nested m_rhs; +}; + +template +struct evaluator_traits > +{ + typedef typename storage_kind_to_evaluator_kind::Kind Kind; + typedef HomogeneousShape Shape; +}; + +template<> struct AssignmentKind { typedef Dense2Dense Kind; }; + + +template +struct unary_evaluator, IndexBased> + : evaluator::PlainObject > +{ + typedef Homogeneous XprType; + typedef typename XprType::PlainObject PlainObject; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) + : Base(), m_temp(op) + { + ::new (static_cast(this)) Base(m_temp); + } + +protected: + PlainObject m_temp; +}; + +// dense = homogeneous +template< typename DstXprType, typename ArgType, typename Scalar> +struct Assignment, internal::assign_op, Dense2Dense> +{ + typedef Homogeneous SrcXprType; + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst.template topRows(src.nestedExpression().rows()) = src.nestedExpression(); + dst.row(dst.rows()-1).setOnes(); + } +}; + +// dense = homogeneous +template< typename DstXprType, typename ArgType, typename Scalar> +struct Assignment, internal::assign_op, Dense2Dense> +{ + typedef Homogeneous SrcXprType; + EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + dst.template leftCols(src.nestedExpression().cols()) = src.nestedExpression(); + dst.col(dst.cols()-1).setOnes(); + } +}; + +template +struct generic_product_impl, Rhs, HomogeneousShape, DenseShape, ProductTag> +{ + template + EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous& lhs, const Rhs& rhs) + { + homogeneous_right_product_impl, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); + } +}; + +template +struct homogeneous_right_product_refactoring_helper +{ + enum { + Dim = Lhs::ColsAtCompileTime, + Rows = Lhs::RowsAtCompileTime + }; + typedef typename Rhs::template ConstNRowsBlockXpr::Type LinearBlockConst; + typedef typename remove_const::type LinearBlock; + typedef typename Rhs::ConstRowXpr ConstantColumn; + typedef Replicate ConstantBlock; + typedef Product LinearProduct; + typedef CwiseBinaryOp, const LinearProduct, const ConstantBlock> Xpr; +}; + +template +struct product_evaluator, ProductTag, HomogeneousShape, DenseShape> + : public evaluator::Xpr> +{ + typedef Product XprType; + typedef homogeneous_right_product_refactoring_helper helper; + typedef typename helper::ConstantBlock ConstantBlock; + typedef typename helper::Xpr RefactoredXpr; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows(xpr.lhs().nestedExpression().cols()) ) + + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) ) + {} +}; + +template +struct generic_product_impl, DenseShape, HomogeneousShape, ProductTag> +{ + template + EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous& rhs) + { + homogeneous_left_product_impl, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); + } +}; + +// TODO: the following specialization is to address a regression from 3.2 to 3.3 +// In the future, this path should be optimized. +template +struct generic_product_impl, TriangularShape, HomogeneousShape, ProductTag> +{ + template + static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous& rhs) + { + dst.noalias() = lhs * rhs.eval(); + } +}; + +template +struct homogeneous_left_product_refactoring_helper +{ + enum { + Dim = Rhs::RowsAtCompileTime, + Cols = Rhs::ColsAtCompileTime + }; + typedef typename Lhs::template ConstNColsBlockXpr::Type LinearBlockConst; + typedef typename remove_const::type LinearBlock; + typedef typename Lhs::ConstColXpr ConstantColumn; + typedef Replicate ConstantBlock; + typedef Product LinearProduct; + typedef CwiseBinaryOp, const LinearProduct, const ConstantBlock> Xpr; +}; + +template +struct product_evaluator, ProductTag, DenseShape, HomogeneousShape> + : public evaluator::Xpr> +{ + typedef Product XprType; + typedef homogeneous_left_product_refactoring_helper helper; + typedef typename helper::ConstantBlock ConstantBlock; + typedef typename helper::Xpr RefactoredXpr; + typedef evaluator Base; + + EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) + : Base( xpr.lhs().template leftCols(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() ) + + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) ) + {} +}; + +template +struct generic_product_impl, Homogeneous, DenseShape, HomogeneousShape, ProductTag> +{ + typedef Transform TransformType; + template + EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous& rhs) + { + homogeneous_left_product_impl, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst); + } +}; + +template +struct permutation_matrix_product + : public permutation_matrix_product +{}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_HOMOGENEOUS_H diff --git a/include/eigen/Eigen/src/Geometry/Hyperplane.h b/include/eigen/Eigen/src/Geometry/Hyperplane.h new file mode 100644 index 0000000000000000000000000000000000000000..cebe0355702f2d6ec0313fa6010605da0e025a06 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/Hyperplane.h @@ -0,0 +1,282 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HYPERPLANE_H +#define EIGEN_HYPERPLANE_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Hyperplane + * + * \brief A hyperplane + * + * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. + * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients + * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. + * Notice that the dimension of the hyperplane is _AmbientDim-1. + * + * This class represents an hyperplane as the zero set of the implicit equation + * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) + * and \f$ d \f$ is the distance (offset) to the origin. + */ +template +class Hyperplane +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) + enum { + AmbientDimAtCompileTime = _AmbientDim, + Options = _Options + }; + typedef _Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef Matrix VectorType; + typedef Matrix Coefficients; + typedef Block NormalReturnType; + typedef const Block ConstNormalReturnType; + + /** Default constructor without initialization */ + EIGEN_DEVICE_FUNC inline Hyperplane() {} + + template + EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane& other) + : m_coeffs(other.coeffs()) + {} + + /** Constructs a dynamic-size hyperplane with \a _dim the dimension + * of the ambient space */ + EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {} + + /** Construct a plane from its normal \a n and a point \a e onto the plane. + * \warning the vector normal is assumed to be normalized. + */ + EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e) + : m_coeffs(n.size()+1) + { + normal() = n; + offset() = -n.dot(e); + } + + /** Constructs a plane from its normal \a n and distance to the origin \a d + * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. + * \warning the vector normal is assumed to be normalized. + */ + EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d) + : m_coeffs(n.size()+1) + { + normal() = n; + offset() = d; + } + + /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space + * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. + */ + EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) + { + Hyperplane result(p0.size()); + result.normal() = (p1 - p0).unitOrthogonal(); + result.offset() = -p0.dot(result.normal()); + return result; + } + + /** Constructs a hyperplane passing through the three points. The dimension of the ambient space + * is required to be exactly 3. + */ + EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) + Hyperplane result(p0.size()); + VectorType v0(p2 - p0), v1(p1 - p0); + result.normal() = v0.cross(v1); + RealScalar norm = result.normal().norm(); + if(norm <= v0.norm() * v1.norm() * NumTraits::epsilon()) + { + Matrix m; m << v0.transpose(), v1.transpose(); + JacobiSVD > svd(m, ComputeFullV); + result.normal() = svd.matrixV().col(2); + } + else + result.normal() /= norm; + result.offset() = -p0.dot(result.normal()); + return result; + } + + /** Constructs a hyperplane passing through the parametrized line \a parametrized. + * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, + * so an arbitrary choice is made. + */ + // FIXME to be consistent with the rest this could be implemented as a static Through function ?? + EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine& parametrized) + { + normal() = parametrized.direction().unitOrthogonal(); + offset() = -parametrized.origin().dot(normal()); + } + + EIGEN_DEVICE_FUNC ~Hyperplane() {} + + /** \returns the dimension in which the plane holds */ + EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); } + + /** normalizes \c *this */ + EIGEN_DEVICE_FUNC void normalize(void) + { + m_coeffs /= normal().norm(); + } + + /** \returns the signed distance between the plane \c *this and a point \a p. + * \sa absDistance() + */ + EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); } + + /** \returns the absolute distance between the plane \c *this and a point \a p. + * \sa signedDistance() + */ + EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); } + + /** \returns the projection of a point \a p onto the plane \c *this. + */ + EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } + + /** \returns a constant reference to the unit normal vector of the plane, which corresponds + * to the linear part of the implicit equation. + */ + EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); } + + /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds + * to the linear part of the implicit equation. + */ + EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } + + /** \returns the distance to the origin, which is also the "constant term" of the implicit equation + * \warning the vector normal is assumed to be normalized. + */ + EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } + + /** \returns a non-constant reference to the distance to the origin, which is also the constant part + * of the implicit equation */ + EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); } + + /** \returns a constant reference to the coefficients c_i of the plane equation: + * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ + */ + EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } + + /** \returns a non-constant reference to the coefficients c_i of the plane equation: + * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ + */ + EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } + + /** \returns the intersection of *this with \a other. + * + * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. + * + * \note If \a other is approximately parallel to *this, this method will return any point on *this. + */ + EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const + { + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) + Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); + // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests + // whether the two lines are approximately parallel. + if(internal::isMuchSmallerThan(det, Scalar(1))) + { // special case where the two lines are approximately parallel. Pick any point on the first line. + if(numext::abs(coeffs().coeff(1))>numext::abs(coeffs().coeff(0))) + return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); + else + return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); + } + else + { // general case + Scalar invdet = Scalar(1) / det; + return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), + invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); + } + } + + /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. + * + * \param mat the Dim x Dim transformation matrix + * \param traits specifies whether the matrix \a mat represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + */ + template + EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase& mat, TransformTraits traits = Affine) + { + if (traits==Affine) + { + normal() = mat.inverse().transpose() * normal(); + m_coeffs /= normal().norm(); + } + else if (traits==Isometry) + normal() = mat * normal(); + else + { + eigen_assert(0 && "invalid traits value in Hyperplane::transform()"); + } + return *this; + } + + /** Applies the transformation \a t to \c *this and returns a reference to \c *this. + * + * \param t the transformation of dimension Dim + * \param traits specifies whether the transformation \a t represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + * Other kind of transformations are not supported. + */ + template + EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform& t, + TransformTraits traits = Affine) + { + transform(t.linear(), traits); + offset() -= normal().dot(t.translation()); + return *this; + } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { + return typename internal::cast_return_type >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit Hyperplane(const Hyperplane& other) + { m_coeffs = other.coeffs().template cast(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + template + EIGEN_DEVICE_FUNC bool isApprox(const Hyperplane& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_coeffs.isApprox(other.m_coeffs, prec); } + +protected: + + Coefficients m_coeffs; +}; + +} // end namespace Eigen + +#endif // EIGEN_HYPERPLANE_H diff --git a/include/eigen/Eigen/src/Geometry/OrthoMethods.h b/include/eigen/Eigen/src/Geometry/OrthoMethods.h new file mode 100644 index 0000000000000000000000000000000000000000..524aebe1b96a53a5fac41cffd09a7efb9281f63e --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/OrthoMethods.h @@ -0,0 +1,235 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ORTHOMETHODS_H +#define EIGEN_ORTHOMETHODS_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \returns the cross product of \c *this and \a other + * + * Here is a very good explanation of cross-product: http://xkcd.com/199/ + * + * With complex numbers, the cross product is implemented as + * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$ + * + * \sa MatrixBase::cross3() + */ +template +template +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename MatrixBase::template cross_product_return_type::type +#else +typename MatrixBase::PlainObject +#endif +MatrixBase::cross(const MatrixBase& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) + + // Note that there is no need for an expression here since the compiler + // optimize such a small temporary very well (even within a complex expression) + typename internal::nested_eval::type lhs(derived()); + typename internal::nested_eval::type rhs(other.derived()); + return typename cross_product_return_type::type( + numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), + numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), + numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) + ); +} + +namespace internal { + +template< int Arch,typename VectorLhs,typename VectorRhs, + typename Scalar = typename VectorLhs::Scalar, + bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> +struct cross3_impl { + EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type::type + run(const VectorLhs& lhs, const VectorRhs& rhs) + { + return typename internal::plain_matrix_type::type( + numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), + numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), + numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), + 0 + ); + } +}; + +} + +/** \geometry_module \ingroup Geometry_Module + * + * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients + * + * The size of \c *this and \a other must be four. This function is especially useful + * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. + * + * \sa MatrixBase::cross() + */ +template +template +EIGEN_DEVICE_FUNC inline typename MatrixBase::PlainObject +MatrixBase::cross3(const MatrixBase& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) + + typedef typename internal::nested_eval::type DerivedNested; + typedef typename internal::nested_eval::type OtherDerivedNested; + DerivedNested lhs(derived()); + OtherDerivedNested rhs(other.derived()); + + return internal::cross3_impl::type, + typename internal::remove_all::type>::run(lhs,rhs); +} + +/** \geometry_module \ingroup Geometry_Module + * + * \returns a matrix expression of the cross product of each column or row + * of the referenced expression with the \a other vector. + * + * The referenced matrix must have one dimension equal to 3. + * The result matrix has the same dimensions than the referenced one. + * + * \sa MatrixBase::cross() */ +template +template +EIGEN_DEVICE_FUNC +const typename VectorwiseOp::CrossReturnType +VectorwiseOp::cross(const MatrixBase& other) const +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + typename internal::nested_eval::type mat(_expression()); + typename internal::nested_eval::type vec(other.derived()); + + CrossReturnType res(_expression().rows(),_expression().cols()); + if(Direction==Vertical) + { + eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); + res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); + res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); + res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); + } + else + { + eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); + res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); + res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); + res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); + } + return res; +} + +namespace internal { + +template +struct unitOrthogonal_selector +{ + typedef typename plain_matrix_type::type VectorType; + typedef typename traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Matrix Vector2; + EIGEN_DEVICE_FUNC + static inline VectorType run(const Derived& src) + { + VectorType perp = VectorType::Zero(src.size()); + Index maxi = 0; + Index sndi = 0; + src.cwiseAbs().maxCoeff(&maxi); + if (maxi==0) + sndi = 1; + RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); + perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; + perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm; + + return perp; + } +}; + +template +struct unitOrthogonal_selector +{ + typedef typename plain_matrix_type::type VectorType; + typedef typename traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + EIGEN_DEVICE_FUNC + static inline VectorType run(const Derived& src) + { + VectorType perp; + /* Let us compute the crossed product of *this with a vector + * that is not too close to being colinear to *this. + */ + + /* unless the x and y coords are both close to zero, we can + * simply take ( -y, x, 0 ) and normalize it. + */ + if((!isMuchSmallerThan(src.x(), src.z())) + || (!isMuchSmallerThan(src.y(), src.z()))) + { + RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); + perp.coeffRef(0) = -numext::conj(src.y())*invnm; + perp.coeffRef(1) = numext::conj(src.x())*invnm; + perp.coeffRef(2) = 0; + } + /* if both x and y are close to zero, then the vector is close + * to the z-axis, so it's far from colinear to the x-axis for instance. + * So we take the crossed product with (1,0,0) and normalize it. + */ + else + { + RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); + perp.coeffRef(0) = 0; + perp.coeffRef(1) = -numext::conj(src.z())*invnm; + perp.coeffRef(2) = numext::conj(src.y())*invnm; + } + + return perp; + } +}; + +template +struct unitOrthogonal_selector +{ + typedef typename plain_matrix_type::type VectorType; + EIGEN_DEVICE_FUNC + static inline VectorType run(const Derived& src) + { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); } +}; + +} // end namespace internal + +/** \geometry_module \ingroup Geometry_Module + * + * \returns a unit vector which is orthogonal to \c *this + * + * The size of \c *this must be at least 2. If the size is exactly 2, + * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). + * + * \sa cross() + */ +template +EIGEN_DEVICE_FUNC typename MatrixBase::PlainObject +MatrixBase::unitOrthogonal() const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return internal::unitOrthogonal_selector::run(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_ORTHOMETHODS_H diff --git a/include/eigen/Eigen/src/Geometry/ParametrizedLine.h b/include/eigen/Eigen/src/Geometry/ParametrizedLine.h new file mode 100644 index 0000000000000000000000000000000000000000..584f50087bdf79be820dd7bb30bf2f75a0697955 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/ParametrizedLine.h @@ -0,0 +1,232 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARAMETRIZEDLINE_H +#define EIGEN_PARAMETRIZEDLINE_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class ParametrizedLine + * + * \brief A parametrized line + * + * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit + * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to + * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$. + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients + * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. + */ +template +class ParametrizedLine +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) + enum { + AmbientDimAtCompileTime = _AmbientDim, + Options = _Options + }; + typedef _Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef Matrix VectorType; + + /** Default constructor without initialization */ + EIGEN_DEVICE_FUNC inline ParametrizedLine() {} + + template + EIGEN_DEVICE_FUNC ParametrizedLine(const ParametrizedLine& other) + : m_origin(other.origin()), m_direction(other.direction()) + {} + + /** Constructs a dynamic-size line with \a _dim the dimension + * of the ambient space */ + EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {} + + /** Initializes a parametrized line of direction \a direction and origin \a origin. + * \warning the vector direction is assumed to be normalized. + */ + EIGEN_DEVICE_FUNC ParametrizedLine(const VectorType& origin, const VectorType& direction) + : m_origin(origin), m_direction(direction) {} + + template + EIGEN_DEVICE_FUNC explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane); + + /** Constructs a parametrized line going from \a p0 to \a p1. */ + EIGEN_DEVICE_FUNC static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) + { return ParametrizedLine(p0, (p1-p0).normalized()); } + + EIGEN_DEVICE_FUNC ~ParametrizedLine() {} + + /** \returns the dimension in which the line holds */ + EIGEN_DEVICE_FUNC inline Index dim() const { return m_direction.size(); } + + EIGEN_DEVICE_FUNC const VectorType& origin() const { return m_origin; } + EIGEN_DEVICE_FUNC VectorType& origin() { return m_origin; } + + EIGEN_DEVICE_FUNC const VectorType& direction() const { return m_direction; } + EIGEN_DEVICE_FUNC VectorType& direction() { return m_direction; } + + /** \returns the squared distance of a point \a p to its projection onto the line \c *this. + * \sa distance() + */ + EIGEN_DEVICE_FUNC RealScalar squaredDistance(const VectorType& p) const + { + VectorType diff = p - origin(); + return (diff - direction().dot(diff) * direction()).squaredNorm(); + } + /** \returns the distance of a point \a p to its projection onto the line \c *this. + * \sa squaredDistance() + */ + EIGEN_DEVICE_FUNC RealScalar distance(const VectorType& p) const { EIGEN_USING_STD(sqrt) return sqrt(squaredDistance(p)); } + + /** \returns the projection of a point \a p onto the line \c *this. */ + EIGEN_DEVICE_FUNC VectorType projection(const VectorType& p) const + { return origin() + direction().dot(p-origin()) * direction(); } + + EIGEN_DEVICE_FUNC VectorType pointAt(const Scalar& t) const; + + template + EIGEN_DEVICE_FUNC Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; + + template + EIGEN_DEVICE_FUNC Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; + + template + EIGEN_DEVICE_FUNC VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const; + + /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. + * + * \param mat the Dim x Dim transformation matrix + * \param traits specifies whether the matrix \a mat represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + */ + template + EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const MatrixBase& mat, TransformTraits traits = Affine) + { + if (traits==Affine) + direction() = (mat * direction()).normalized(); + else if (traits==Isometry) + direction() = mat * direction(); + else + { + eigen_assert(0 && "invalid traits value in ParametrizedLine::transform()"); + } + origin() = mat * origin(); + return *this; + } + + /** Applies the transformation \a t to \c *this and returns a reference to \c *this. + * + * \param t the transformation of dimension Dim + * \param traits specifies whether the transformation \a t represents an #Isometry + * or a more generic #Affine transformation. The default is #Affine. + * Other kind of transformations are not supported. + */ + template + EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const Transform& t, + TransformTraits traits = Affine) + { + transform(t.linear(), traits); + origin() += t.translation(); + return *this; + } + +/** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { + return typename internal::cast_return_type >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(const ParametrizedLine& other) + { + m_origin = other.origin().template cast(); + m_direction = other.direction().template cast(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const ParametrizedLine& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } + +protected: + + VectorType m_origin, m_direction; +}; + +/** Constructs a parametrized line from a 2D hyperplane + * + * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line + */ +template +template +EIGEN_DEVICE_FUNC inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) + direction() = hyperplane.normal().unitOrthogonal(); + origin() = -hyperplane.normal()*hyperplane.offset(); +} + +/** \returns the point at \a t along this line + */ +template +EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType +ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const +{ + return origin() + (direction()*t); +} + +/** \returns the parameter value of the intersection between \c *this and the given \a hyperplane + */ +template +template +EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const +{ + return -(hyperplane.offset()+hyperplane.normal().dot(origin())) + / hyperplane.normal().dot(direction()); +} + + +/** \deprecated use intersectionParameter() + * \returns the parameter value of the intersection between \c *this and the given \a hyperplane + */ +template +template +EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const +{ + return intersectionParameter(hyperplane); +} + +/** \returns the point of the intersection between \c *this and the given hyperplane + */ +template +template +EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType +ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const +{ + return pointAt(intersectionParameter(hyperplane)); +} + +} // end namespace Eigen + +#endif // EIGEN_PARAMETRIZEDLINE_H diff --git a/include/eigen/Eigen/src/Geometry/Quaternion.h b/include/eigen/Eigen/src/Geometry/Quaternion.h new file mode 100644 index 0000000000000000000000000000000000000000..3259e592df85afa2cc1a1e3518776f2ada1474c1 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/Quaternion.h @@ -0,0 +1,870 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2009 Mathieu Gautier +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_QUATERNION_H +#define EIGEN_QUATERNION_H +namespace Eigen { + + +/*************************************************************************** +* Definition of QuaternionBase +* The implementation is at the end of the file +***************************************************************************/ + +namespace internal { +template +struct quaternionbase_assign_impl; +} + +/** \geometry_module \ingroup Geometry_Module + * \class QuaternionBase + * \brief Base class for quaternion expressions + * \tparam Derived derived type (CRTP) + * \sa class Quaternion + */ +template +class QuaternionBase : public RotationBase +{ + public: + typedef RotationBase Base; + + using Base::operator*; + using Base::derived; + + typedef typename internal::traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + typedef typename internal::traits::Coefficients Coefficients; + typedef typename Coefficients::CoeffReturnType CoeffReturnType; + typedef typename internal::conditional::Flags&LvalueBit), + Scalar&, CoeffReturnType>::type NonConstCoeffReturnType; + + + enum { + Flags = Eigen::internal::traits::Flags + }; + + // typedef typename Matrix Coefficients; + /** the type of a 3D vector */ + typedef Matrix Vector3; + /** the equivalent rotation matrix type */ + typedef Matrix Matrix3; + /** the equivalent angle-axis type */ + typedef AngleAxis AngleAxisType; + + + + /** \returns the \c x coefficient */ + EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } + /** \returns the \c y coefficient */ + EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } + /** \returns the \c z coefficient */ + EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } + /** \returns the \c w coefficient */ + EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } + + /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ + EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } + /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ + EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } + /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ + EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } + /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ + EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } + + /** \returns a read-only vector expression of the imaginary part (x,y,z) */ + EIGEN_DEVICE_FUNC inline const VectorBlock vec() const { return coeffs().template head<3>(); } + + /** \returns a vector expression of the imaginary part (x,y,z) */ + EIGEN_DEVICE_FUNC inline VectorBlock vec() { return coeffs().template head<3>(); } + + /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ + EIGEN_DEVICE_FUNC inline const typename internal::traits::Coefficients& coeffs() const { return derived().coeffs(); } + + /** \returns a vector expression of the coefficients (x,y,z,w) */ + EIGEN_DEVICE_FUNC inline typename internal::traits::Coefficients& coeffs() { return derived().coeffs(); } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase& operator=(const QuaternionBase& other); + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase& other); + +// disabled this copy operator as it is giving very strange compilation errors when compiling +// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's +// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase +// we didn't have to add, in addition to templated operator=, such a non-templated copy operator. +// Derived& operator=(const QuaternionBase& other) +// { return operator=(other); } + + EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); + template EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase& m); + + /** \returns a quaternion representing an identity rotation + * \sa MatrixBase::Identity() + */ + EIGEN_DEVICE_FUNC static inline Quaternion Identity() { return Quaternion(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); } + + /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() + */ + EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; } + + /** \returns the squared norm of the quaternion's coefficients + * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() + */ + EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } + + /** \returns the norm of the quaternion's coefficients + * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() + */ + EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } + + /** Normalizes the quaternion \c *this + * \sa normalized(), MatrixBase::normalize() */ + EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } + /** \returns a normalized copy of \c *this + * \sa normalize(), MatrixBase::normalized() */ + EIGEN_DEVICE_FUNC inline Quaternion normalized() const { return Quaternion(coeffs().normalized()); } + + /** \returns the dot product of \c *this and \a other + * Geometrically speaking, the dot product of two unit quaternions + * corresponds to the cosine of half the angle between the two rotations. + * \sa angularDistance() + */ + template EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase& other) const { return coeffs().dot(other.coeffs()); } + + template EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase& other) const; + + /** \returns an equivalent 3x3 rotation matrix */ + EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const; + + /** \returns the quaternion which transform \a a into \a b through a rotation */ + template + EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase& a, const MatrixBase& b); + + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion operator* (const QuaternionBase& q) const; + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase& q); + + /** \returns the quaternion describing the inverse rotation */ + EIGEN_DEVICE_FUNC Quaternion inverse() const; + + /** \returns the conjugated quaternion */ + EIGEN_DEVICE_FUNC Quaternion conjugate() const; + + template EIGEN_DEVICE_FUNC Quaternion slerp(const Scalar& t, const QuaternionBase& other) const; + + /** \returns true if each coefficients of \c *this and \a other are all exactly equal. + * \warning When using floating point scalar values you probably should rather use a + * fuzzy comparison such as isApprox() + * \sa isApprox(), operator!= */ + template + EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase& other) const + { return coeffs() == other.coeffs(); } + + /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. + * \warning When using floating point scalar values you probably should rather use a + * fuzzy comparison such as isApprox() + * \sa isApprox(), operator== */ + template + EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase& other) const + { return coeffs() != other.coeffs(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + template + EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const + { return coeffs().isApprox(other.coeffs(), prec); } + + /** return the result vector of \a v through the rotation*/ + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const; + + #else + + template + EIGEN_DEVICE_FUNC inline + typename internal::enable_if::value,const Derived&>::type cast() const + { + return derived(); + } + + template + EIGEN_DEVICE_FUNC inline + typename internal::enable_if::value,Quaternion >::type cast() const + { + return Quaternion(coeffs().template cast()); + } + #endif + +#ifndef EIGEN_NO_IO + friend std::ostream& operator<<(std::ostream& s, const QuaternionBase& q) { + s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" << " + " << q.w(); + return s; + } +#endif + +#ifdef EIGEN_QUATERNIONBASE_PLUGIN +# include EIGEN_QUATERNIONBASE_PLUGIN +#endif +protected: + EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase) + EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase) +}; + +/*************************************************************************** +* Definition/implementation of Quaternion +***************************************************************************/ + +/** \geometry_module \ingroup Geometry_Module + * + * \class Quaternion + * + * \brief The quaternion class used to represent 3D orientations and rotations + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients + * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. + * + * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of + * orientations and rotations of objects in three dimensions. Compared to other representations + * like Euler angles or 3x3 matrices, quaternions offer the following advantages: + * \li \b compact storage (4 scalars) + * \li \b efficient to compose (28 flops), + * \li \b stable spherical interpolation + * + * The following two typedefs are provided for convenience: + * \li \c Quaternionf for \c float + * \li \c Quaterniond for \c double + * + * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. + * + * \sa class AngleAxis, class Transform + */ + +namespace internal { +template +struct traits > +{ + typedef Quaternion<_Scalar,_Options> PlainObject; + typedef _Scalar Scalar; + typedef Matrix<_Scalar,4,1,_Options> Coefficients; + enum{ + Alignment = internal::traits::Alignment, + Flags = LvalueBit + }; +}; +} + +template +class Quaternion : public QuaternionBase > +{ +public: + typedef QuaternionBase > Base; + enum { NeedsAlignment = internal::traits::Alignment>0 }; + + typedef _Scalar Scalar; + + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) + using Base::operator*=; + + typedef typename internal::traits::Coefficients Coefficients; + typedef typename Base::AngleAxisType AngleAxisType; + + /** Default constructor leaving the quaternion uninitialized. */ + EIGEN_DEVICE_FUNC inline Quaternion() {} + + /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from + * its four coefficients \a w, \a x, \a y and \a z. + * + * \warning Note the order of the arguments: the real \a w coefficient first, + * while internally the coefficients are stored in the following order: + * [\c x, \c y, \c z, \c w] + */ + EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} + + /** Constructs and initialize a quaternion from the array data */ + EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} + + /** Copy constructor */ + template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase& other) { this->Base::operator=(other); } + + /** Constructs and initializes a quaternion from the angle-axis \a aa */ + EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } + + /** Constructs and initializes a quaternion from either: + * - a rotation matrix expression, + * - a 4D vector expression representing quaternion coefficients. + */ + template + EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase& other) { *this = other; } + + /** Explicit copy constructor with scalar conversion */ + template + EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion& other) + { m_coeffs = other.coeffs().template cast(); } + +#if EIGEN_HAS_RVALUE_REFERENCES + // We define a copy constructor, which means we don't get an implicit move constructor or assignment operator. + /** Default move constructor */ + EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible::value) + : m_coeffs(std::move(other.coeffs())) + {} + + /** Default move assignment operator */ + EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable::value) + { + m_coeffs = std::move(other.coeffs()); + return *this; + } +#endif + + EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); + + template + EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase& a, const MatrixBase& b); + + EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;} + EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} + + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) + +#ifdef EIGEN_QUATERNION_PLUGIN +# include EIGEN_QUATERNION_PLUGIN +#endif + +protected: + Coefficients m_coeffs; + +#ifndef EIGEN_PARSED_BY_DOXYGEN + static EIGEN_STRONG_INLINE void _check_template_params() + { + EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, + INVALID_MATRIX_TEMPLATE_PARAMETERS) + } +#endif +}; + +/** \ingroup Geometry_Module + * single precision quaternion type */ +typedef Quaternion Quaternionf; +/** \ingroup Geometry_Module + * double precision quaternion type */ +typedef Quaternion Quaterniond; + +/*************************************************************************** +* Specialization of Map> +***************************************************************************/ + +namespace internal { + template + struct traits, _Options> > : traits > + { + typedef Map, _Options> Coefficients; + }; +} + +namespace internal { + template + struct traits, _Options> > : traits > + { + typedef Map, _Options> Coefficients; + typedef traits > TraitsBase; + enum { + Flags = TraitsBase::Flags & ~LvalueBit + }; + }; +} + +/** \ingroup Geometry_Module + * \brief Quaternion expression mapping a constant memory buffer + * + * \tparam _Scalar the type of the Quaternion coefficients + * \tparam _Options see class Map + * + * This is a specialization of class Map for Quaternion. This class allows to view + * a 4 scalar memory buffer as an Eigen's Quaternion object. + * + * \sa class Map, class Quaternion, class QuaternionBase + */ +template +class Map, _Options > + : public QuaternionBase, _Options> > +{ + public: + typedef QuaternionBase, _Options> > Base; + + typedef _Scalar Scalar; + typedef typename internal::traits::Coefficients Coefficients; + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) + using Base::operator*=; + + /** Constructs a Mapped Quaternion object from the pointer \a coeffs + * + * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: + * \code *coeffs == {x, y, z, w} \endcode + * + * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ + EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} + + EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} + + protected: + const Coefficients m_coeffs; +}; + +/** \ingroup Geometry_Module + * \brief Expression of a quaternion from a memory buffer + * + * \tparam _Scalar the type of the Quaternion coefficients + * \tparam _Options see class Map + * + * This is a specialization of class Map for Quaternion. This class allows to view + * a 4 scalar memory buffer as an Eigen's Quaternion object. + * + * \sa class Map, class Quaternion, class QuaternionBase + */ +template +class Map, _Options > + : public QuaternionBase, _Options> > +{ + public: + typedef QuaternionBase, _Options> > Base; + + typedef _Scalar Scalar; + typedef typename internal::traits::Coefficients Coefficients; + EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) + using Base::operator*=; + + /** Constructs a Mapped Quaternion object from the pointer \a coeffs + * + * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: + * \code *coeffs == {x, y, z, w} \endcode + * + * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ + EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} + + EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } + EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } + + protected: + Coefficients m_coeffs; +}; + +/** \ingroup Geometry_Module + * Map an unaligned array of single precision scalars as a quaternion */ +typedef Map, 0> QuaternionMapf; +/** \ingroup Geometry_Module + * Map an unaligned array of double precision scalars as a quaternion */ +typedef Map, 0> QuaternionMapd; +/** \ingroup Geometry_Module + * Map a 16-byte aligned array of single precision scalars as a quaternion */ +typedef Map, Aligned> QuaternionMapAlignedf; +/** \ingroup Geometry_Module + * Map a 16-byte aligned array of double precision scalars as a quaternion */ +typedef Map, Aligned> QuaternionMapAlignedd; + +/*************************************************************************** +* Implementation of QuaternionBase methods +***************************************************************************/ + +// Generic Quaternion * Quaternion product +// This product can be specialized for a given architecture via the Arch template argument. +namespace internal { +template struct quat_product +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion run(const QuaternionBase& a, const QuaternionBase& b){ + return Quaternion + ( + a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), + a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), + a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), + a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() + ); + } +}; +} + +/** \returns the concatenation of two rotations as a quaternion-quaternion product */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion::Scalar> +QuaternionBase::operator* (const QuaternionBase& other) const +{ + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + return internal::quat_product::Scalar>::run(*this, other); +} + +/** \sa operator*(Quaternion) */ +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator*= (const QuaternionBase& other) +{ + derived() = derived() * other.derived(); + return derived(); +} + +/** Rotation of a vector by a quaternion. + * \remarks If the quaternion is used to rotate several points (>1) + * then it is much more efficient to first convert it to a 3x3 Matrix. + * Comparison of the operation cost for n transformations: + * - Quaternion2: 30n + * - Via a Matrix3: 24 + 15n + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase::Vector3 +QuaternionBase::_transformVector(const Vector3& v) const +{ + // Note that this algorithm comes from the optimization by hand + // of the conversion to a Matrix followed by a Matrix/Vector product. + // It appears to be much faster than the common algorithm found + // in the literature (30 versus 39 flops). It also requires two + // Vector3 as temporaries. + Vector3 uv = this->vec().cross(v); + uv += uv; + return v + this->w() * uv + this->vec().cross(uv); +} + +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase& QuaternionBase::operator=(const QuaternionBase& other) +{ + coeffs() = other.coeffs(); + return derived(); +} + +template +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator=(const QuaternionBase& other) +{ + coeffs() = other.coeffs(); + return derived(); +} + +/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase::operator=(const AngleAxisType& aa) +{ + EIGEN_USING_STD(cos) + EIGEN_USING_STD(sin) + Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings + this->w() = cos(ha); + this->vec() = sin(ha) * aa.axis(); + return derived(); +} + +/** Set \c *this from the expression \a xpr: + * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion + * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix + * and \a xpr is converted to a quaternion + */ + +template +template +EIGEN_DEVICE_FUNC inline Derived& QuaternionBase::operator=(const MatrixBase& xpr) +{ + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + internal::quaternionbase_assign_impl::run(*this, xpr.derived()); + return derived(); +} + +/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to + * be normalized, otherwise the result is undefined. + */ +template +EIGEN_DEVICE_FUNC inline typename QuaternionBase::Matrix3 +QuaternionBase::toRotationMatrix(void) const +{ + // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) + // if not inlined then the cost of the return by value is huge ~ +35%, + // however, not inlining this function is an order of magnitude slower, so + // it has to be inlined, and so the return by value is not an issue + Matrix3 res; + + const Scalar tx = Scalar(2)*this->x(); + const Scalar ty = Scalar(2)*this->y(); + const Scalar tz = Scalar(2)*this->z(); + const Scalar twx = tx*this->w(); + const Scalar twy = ty*this->w(); + const Scalar twz = tz*this->w(); + const Scalar txx = tx*this->x(); + const Scalar txy = ty*this->x(); + const Scalar txz = tz*this->x(); + const Scalar tyy = ty*this->y(); + const Scalar tyz = tz*this->y(); + const Scalar tzz = tz*this->z(); + + res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); + res.coeffRef(0,1) = txy-twz; + res.coeffRef(0,2) = txz+twy; + res.coeffRef(1,0) = txy+twz; + res.coeffRef(1,1) = Scalar(1)-(txx+tzz); + res.coeffRef(1,2) = tyz-twx; + res.coeffRef(2,0) = txz-twy; + res.coeffRef(2,1) = tyz+twx; + res.coeffRef(2,2) = Scalar(1)-(txx+tyy); + + return res; +} + +/** Sets \c *this to be a quaternion representing a rotation between + * the two arbitrary vectors \a a and \a b. In other words, the built + * rotation represent a rotation sending the line of direction \a a + * to the line of direction \a b, both lines passing through the origin. + * + * \returns a reference to \c *this. + * + * Note that the two input vectors do \b not have to be normalized, and + * do not need to have the same norm. + */ +template +template +EIGEN_DEVICE_FUNC inline Derived& QuaternionBase::setFromTwoVectors(const MatrixBase& a, const MatrixBase& b) +{ + EIGEN_USING_STD(sqrt) + Vector3 v0 = a.normalized(); + Vector3 v1 = b.normalized(); + Scalar c = v1.dot(v0); + + // if dot == -1, vectors are nearly opposites + // => accurately compute the rotation axis by computing the + // intersection of the two planes. This is done by solving: + // x^T v0 = 0 + // x^T v1 = 0 + // under the constraint: + // ||x|| = 1 + // which yields a singular value problem + if (c < Scalar(-1)+NumTraits::dummy_precision()) + { + c = numext::maxi(c,Scalar(-1)); + Matrix m; m << v0.transpose(), v1.transpose(); + JacobiSVD > svd(m, ComputeFullV); + Vector3 axis = svd.matrixV().col(2); + + Scalar w2 = (Scalar(1)+c)*Scalar(0.5); + this->w() = sqrt(w2); + this->vec() = axis * sqrt(Scalar(1) - w2); + return derived(); + } + Vector3 axis = v0.cross(v1); + Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); + Scalar invs = Scalar(1)/s; + this->vec() = axis * invs; + this->w() = s * Scalar(0.5); + + return derived(); +} + +/** \returns a random unit quaternion following a uniform distribution law on SO(3) + * + * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html + */ +template +EIGEN_DEVICE_FUNC Quaternion Quaternion::UnitRandom() +{ + EIGEN_USING_STD(sqrt) + EIGEN_USING_STD(sin) + EIGEN_USING_STD(cos) + const Scalar u1 = internal::random(0, 1), + u2 = internal::random(0, 2*EIGEN_PI), + u3 = internal::random(0, 2*EIGEN_PI); + const Scalar a = sqrt(Scalar(1) - u1), + b = sqrt(u1); + return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); +} + + +/** Returns a quaternion representing a rotation between + * the two arbitrary vectors \a a and \a b. In other words, the built + * rotation represent a rotation sending the line of direction \a a + * to the line of direction \a b, both lines passing through the origin. + * + * \returns resulting quaternion + * + * Note that the two input vectors do \b not have to be normalized, and + * do not need to have the same norm. + */ +template +template +EIGEN_DEVICE_FUNC Quaternion Quaternion::FromTwoVectors(const MatrixBase& a, const MatrixBase& b) +{ + Quaternion quat; + quat.setFromTwoVectors(a, b); + return quat; +} + + +/** \returns the multiplicative inverse of \c *this + * Note that in most cases, i.e., if you simply want the opposite rotation, + * and/or the quaternion is normalized, then it is enough to use the conjugate. + * + * \sa QuaternionBase::conjugate() + */ +template +EIGEN_DEVICE_FUNC inline Quaternion::Scalar> QuaternionBase::inverse() const +{ + // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? + Scalar n2 = this->squaredNorm(); + if (n2 > Scalar(0)) + return Quaternion(conjugate().coeffs() / n2); + else + { + // return an invalid result to flag the error + return Quaternion(Coefficients::Zero()); + } +} + +// Generic conjugate of a Quaternion +namespace internal { +template struct quat_conj +{ + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion run(const QuaternionBase& q){ + return Quaternion(q.w(),-q.x(),-q.y(),-q.z()); + } +}; +} + +/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse + * if the quaternion is normalized. + * The conjugate of a quaternion represents the opposite rotation. + * + * \sa Quaternion2::inverse() + */ +template +EIGEN_DEVICE_FUNC inline Quaternion::Scalar> +QuaternionBase::conjugate() const +{ + return internal::quat_conj::Scalar>::run(*this); + +} + +/** \returns the angle (in radian) between two rotations + * \sa dot() + */ +template +template +EIGEN_DEVICE_FUNC inline typename internal::traits::Scalar +QuaternionBase::angularDistance(const QuaternionBase& other) const +{ + EIGEN_USING_STD(atan2) + Quaternion d = (*this) * other.conjugate(); + return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) ); +} + + + +/** \returns the spherical linear interpolation between the two quaternions + * \c *this and \a other at the parameter \a t in [0;1]. + * + * This represents an interpolation for a constant motion between \c *this and \a other, + * see also http://en.wikipedia.org/wiki/Slerp. + */ +template +template +EIGEN_DEVICE_FUNC Quaternion::Scalar> +QuaternionBase::slerp(const Scalar& t, const QuaternionBase& other) const +{ + EIGEN_USING_STD(acos) + EIGEN_USING_STD(sin) + const Scalar one = Scalar(1) - NumTraits::epsilon(); + Scalar d = this->dot(other); + Scalar absD = numext::abs(d); + + Scalar scale0; + Scalar scale1; + + if(absD>=one) + { + scale0 = Scalar(1) - t; + scale1 = t; + } + else + { + // theta is the angle between the 2 quaternions + Scalar theta = acos(absD); + Scalar sinTheta = sin(theta); + + scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; + scale1 = sin( ( t * theta) ) / sinTheta; + } + if(d(scale0 * coeffs() + scale1 * other.coeffs()); +} + +namespace internal { + +// set from a rotation matrix +template +struct quaternionbase_assign_impl +{ + typedef typename Other::Scalar Scalar; + template EIGEN_DEVICE_FUNC static inline void run(QuaternionBase& q, const Other& a_mat) + { + const typename internal::nested_eval::type mat(a_mat); + EIGEN_USING_STD(sqrt) + // This algorithm comes from "Quaternion Calculus and Fast Animation", + // Ken Shoemake, 1987 SIGGRAPH course notes + Scalar t = mat.trace(); + if (t > Scalar(0)) + { + t = sqrt(t + Scalar(1.0)); + q.w() = Scalar(0.5)*t; + t = Scalar(0.5)/t; + q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; + q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; + q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; + } + else + { + Index i = 0; + if (mat.coeff(1,1) > mat.coeff(0,0)) + i = 1; + if (mat.coeff(2,2) > mat.coeff(i,i)) + i = 2; + Index j = (i+1)%3; + Index k = (j+1)%3; + + t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); + q.coeffs().coeffRef(i) = Scalar(0.5) * t; + t = Scalar(0.5)/t; + q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; + q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; + q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; + } + } +}; + +// set from a vector of coefficients assumed to be a quaternion +template +struct quaternionbase_assign_impl +{ + typedef typename Other::Scalar Scalar; + template EIGEN_DEVICE_FUNC static inline void run(QuaternionBase& q, const Other& vec) + { + q.coeffs() = vec; + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_QUATERNION_H diff --git a/include/eigen/Eigen/src/Geometry/Rotation2D.h b/include/eigen/Eigen/src/Geometry/Rotation2D.h new file mode 100644 index 0000000000000000000000000000000000000000..d0bd57569f2e24fb9438909a11fb552f52f95d89 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/Rotation2D.h @@ -0,0 +1,199 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ROTATION2D_H +#define EIGEN_ROTATION2D_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Rotation2D + * + * \brief Represents a rotation/orientation in a 2 dimensional space. + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients + * + * This class is equivalent to a single scalar representing a counter clock wise rotation + * as a single angle in radian. It provides some additional features such as the automatic + * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar + * interface to Quaternion in order to facilitate the writing of generic algorithms + * dealing with rotations. + * + * \sa class Quaternion, class Transform + */ + +namespace internal { + +template struct traits > +{ + typedef _Scalar Scalar; +}; +} // end namespace internal + +template +class Rotation2D : public RotationBase,2> +{ + typedef RotationBase,2> Base; + +public: + + using Base::operator*; + + enum { Dim = 2 }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + typedef Matrix Vector2; + typedef Matrix Matrix2; + +protected: + + Scalar m_angle; + +public: + + /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ + EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} + + /** Default constructor wihtout initialization. The represented rotation is undefined. */ + EIGEN_DEVICE_FUNC Rotation2D() {} + + /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. + * + * \sa fromRotationMatrix() + */ + template + EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase& m) + { + fromRotationMatrix(m.derived()); + } + + /** \returns the rotation angle */ + EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } + + /** \returns a read-write reference to the rotation angle */ + EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } + + /** \returns the rotation angle in [0,2pi] */ + EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { + Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); + return tmpScalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI); + else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI); + return tmp; + } + + /** \returns the inverse rotation */ + EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } + + /** Concatenates two rotations */ + EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const + { return Rotation2D(m_angle + other.m_angle); } + + /** Concatenates two rotations */ + EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) + { m_angle += other.m_angle; return *this; } + + /** Applies the rotation to a 2D vector */ + EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const + { return toRotationMatrix() * vec; } + + template + EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase& m); + EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; + + /** Set \c *this from a 2x2 rotation matrix \a mat. + * In other words, this function extract the rotation angle from the rotation matrix. + * + * This method is an alias for fromRotationMatrix() + * + * \sa fromRotationMatrix() + */ + template + EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase& m) + { return fromRotationMatrix(m.derived()); } + + /** \returns the spherical interpolation between \c *this and \a other using + * parameter \a t. It is in fact equivalent to a linear interpolation. + */ + EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const + { + Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle(); + return Rotation2D(m_angle + dist*t); + } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { return typename internal::cast_return_type >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D& other) + { + m_angle = Scalar(other.angle()); + } + + EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return internal::isApprox(m_angle,other.m_angle, prec); } + +}; + +/** \ingroup Geometry_Module + * single precision 2D rotation type */ +typedef Rotation2D Rotation2Df; +/** \ingroup Geometry_Module + * double precision 2D rotation type */ +typedef Rotation2D Rotation2Dd; + +/** Set \c *this from a 2x2 rotation matrix \a mat. + * In other words, this function extract the rotation angle + * from the rotation matrix. + */ +template +template +EIGEN_DEVICE_FUNC Rotation2D& Rotation2D::fromRotationMatrix(const MatrixBase& mat) +{ + EIGEN_USING_STD(atan2) + EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) + m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); + return *this; +} + +/** Constructs and \returns an equivalent 2x2 rotation matrix. + */ +template +typename Rotation2D::Matrix2 +EIGEN_DEVICE_FUNC Rotation2D::toRotationMatrix(void) const +{ + EIGEN_USING_STD(sin) + EIGEN_USING_STD(cos) + Scalar sinA = sin(m_angle); + Scalar cosA = cos(m_angle); + return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); +} + +} // end namespace Eigen + +#endif // EIGEN_ROTATION2D_H diff --git a/include/eigen/Eigen/src/Geometry/RotationBase.h b/include/eigen/Eigen/src/Geometry/RotationBase.h new file mode 100644 index 0000000000000000000000000000000000000000..f0ee0bd03c58e60daa9d34c3b5110614303a886f --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/RotationBase.h @@ -0,0 +1,206 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ROTATIONBASE_H +#define EIGEN_ROTATIONBASE_H + +namespace Eigen { + +// forward declaration +namespace internal { +template +struct rotation_base_generic_product_selector; +} + +/** \class RotationBase + * + * \brief Common base class for compact rotation representations + * + * \tparam Derived is the derived type, i.e., a rotation type + * \tparam _Dim the dimension of the space + */ +template +class RotationBase +{ + public: + enum { Dim = _Dim }; + /** the scalar type of the coefficients */ + typedef typename internal::traits::Scalar Scalar; + + /** corresponding linear transformation matrix type */ + typedef Matrix RotationMatrixType; + typedef Matrix VectorType; + + public: + EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast(this); } + EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast(this); } + + /** \returns an equivalent rotation matrix */ + EIGEN_DEVICE_FUNC inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); } + + /** \returns an equivalent rotation matrix + * This function is added to be conform with the Transform class' naming scheme. + */ + EIGEN_DEVICE_FUNC inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); } + + /** \returns the inverse rotation */ + EIGEN_DEVICE_FUNC inline Derived inverse() const { return derived().inverse(); } + + /** \returns the concatenation of the rotation \c *this with a translation \a t */ + EIGEN_DEVICE_FUNC inline Transform operator*(const Translation& t) const + { return Transform(*this) * t; } + + /** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */ + EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const UniformScaling& s) const + { return toRotationMatrix() * s.factor(); } + + /** \returns the concatenation of the rotation \c *this with a generic expression \a e + * \a e can be: + * - a DimxDim linear transformation matrix + * - a DimxDim diagonal matrix (axis aligned scaling) + * - a vector of size Dim + */ + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector::ReturnType + operator*(const EigenBase& e) const + { return internal::rotation_base_generic_product_selector::run(derived(), e.derived()); } + + /** \returns the concatenation of a linear transformation \a l with the rotation \a r */ + template friend + EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const EigenBase& l, const Derived& r) + { return l.derived() * r.toRotationMatrix(); } + + /** \returns the concatenation of a scaling \a l with the rotation \a r */ + EIGEN_DEVICE_FUNC friend inline Transform operator*(const DiagonalMatrix& l, const Derived& r) + { + Transform res(r); + res.linear().applyOnTheLeft(l); + return res; + } + + /** \returns the concatenation of the rotation \c *this with a transformation \a t */ + template + EIGEN_DEVICE_FUNC inline Transform operator*(const Transform& t) const + { return toRotationMatrix() * t; } + + template + EIGEN_DEVICE_FUNC inline VectorType _transformVector(const OtherVectorType& v) const + { return toRotationMatrix() * v; } +}; + +namespace internal { + +// implementation of the generic product rotation * matrix +template +struct rotation_base_generic_product_selector +{ + enum { Dim = RotationDerived::Dim }; + typedef Matrix ReturnType; + EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const MatrixType& m) + { return r.toRotationMatrix() * m; } +}; + +template +struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix, false > +{ + typedef Transform ReturnType; + EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix& m) + { + ReturnType res(r); + res.linear() *= m; + return res; + } +}; + +template +struct rotation_base_generic_product_selector +{ + enum { Dim = RotationDerived::Dim }; + typedef Matrix ReturnType; + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v) + { + return r._transformVector(v); + } +}; + +} // end namespace internal + +/** \geometry_module + * + * \brief Constructs a Dim x Dim rotation matrix from the rotation \a r + */ +template +template +EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> +::Matrix(const RotationBase& r) +{ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) + *this = r.toRotationMatrix(); +} + +/** \geometry_module + * + * \brief Set a Dim x Dim rotation matrix from the rotation \a r + */ +template +template +EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>& +Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols> +::operator=(const RotationBase& r) +{ + EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim)) + return *this = r.toRotationMatrix(); +} + +namespace internal { + +/** \internal + * + * Helper function to return an arbitrary rotation object to a rotation matrix. + * + * \tparam Scalar the numeric type of the matrix coefficients + * \tparam Dim the dimension of the current space + * + * It returns a Dim x Dim fixed size matrix. + * + * Default specializations are provided for: + * - any scalar type (2D), + * - any matrix expression, + * - any type based on RotationBase (e.g., Quaternion, AngleAxis, Rotation2D) + * + * Currently toRotationMatrix is only used by Transform. + * + * \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis + */ +template +EIGEN_DEVICE_FUNC static inline Matrix toRotationMatrix(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE) + return Rotation2D(s).toRotationMatrix(); +} + +template +EIGEN_DEVICE_FUNC static inline Matrix toRotationMatrix(const RotationBase& r) +{ + return r.toRotationMatrix(); +} + +template +EIGEN_DEVICE_FUNC static inline const MatrixBase& toRotationMatrix(const MatrixBase& mat) +{ + EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim, + YOU_MADE_A_PROGRAMMING_MISTAKE) + return mat; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_ROTATIONBASE_H diff --git a/include/eigen/Eigen/src/Geometry/Scaling.h b/include/eigen/Eigen/src/Geometry/Scaling.h new file mode 100644 index 0000000000000000000000000000000000000000..d352f1f2b8abcbf23c5a184b1e09f22fa16af89b --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/Scaling.h @@ -0,0 +1,188 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SCALING_H +#define EIGEN_SCALING_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class UniformScaling + * + * \brief Represents a generic uniform scaling transformation + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients. + * + * This class represent a uniform scaling transformation. It is the return + * type of Scaling(Scalar), and most of the time this is the only way it + * is used. In particular, this class is not aimed to be used to store a scaling transformation, + * but rather to make easier the constructions and updates of Transform objects. + * + * To represent an axis aligned scaling, use the DiagonalMatrix class. + * + * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform + */ + +namespace internal +{ + // This helper helps nvcc+MSVC to properly parse this file. + // See bug 1412. + template + struct uniformscaling_times_affine_returntype + { + enum + { + NewMode = int(Mode) == int(Isometry) ? Affine : Mode + }; + typedef Transform type; + }; +} + +template +class UniformScaling +{ +public: + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + +protected: + + Scalar m_factor; + +public: + + /** Default constructor without initialization. */ + UniformScaling() {} + /** Constructs and initialize a uniform scaling transformation */ + explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} + + inline const Scalar& factor() const { return m_factor; } + inline Scalar& factor() { return m_factor; } + + /** Concatenates two uniform scaling */ + inline UniformScaling operator* (const UniformScaling& other) const + { return UniformScaling(m_factor * other.factor()); } + + /** Concatenates a uniform scaling and a translation */ + template + inline Transform operator* (const Translation& t) const; + + /** Concatenates a uniform scaling and an affine transformation */ + template + inline typename + internal::uniformscaling_times_affine_returntype::type + operator* (const Transform& t) const + { + typename internal::uniformscaling_times_affine_returntype::type res = t; + res.prescale(factor()); + return res; + } + + /** Concatenates a uniform scaling and a linear transformation matrix */ + // TODO returns an expression + template + inline typename Eigen::internal::plain_matrix_type::type operator* (const MatrixBase& other) const + { return other * m_factor; } + + template + inline Matrix operator*(const RotationBase& r) const + { return r.toRotationMatrix() * m_factor; } + + /** \returns the inverse scaling */ + inline UniformScaling inverse() const + { return UniformScaling(Scalar(1)/m_factor); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + inline UniformScaling cast() const + { return UniformScaling(NewScalarType(m_factor)); } + + /** Copy constructor with scalar type conversion */ + template + inline explicit UniformScaling(const UniformScaling& other) + { m_factor = Scalar(other.factor()); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const UniformScaling& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return internal::isApprox(m_factor, other.factor(), prec); } + +}; + +/** \addtogroup Geometry_Module */ +//@{ + +/** Concatenates a linear transformation matrix and a uniform scaling + * \relates UniformScaling + */ +// NOTE this operator is defined in MatrixBase and not as a friend function +// of UniformScaling to fix an internal crash of Intel's ICC +template +EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product) +operator*(const MatrixBase& matrix, const UniformScaling& s) +{ return matrix.derived() * s.factor(); } + +/** Constructs a uniform scaling from scale factor \a s */ +inline UniformScaling Scaling(float s) { return UniformScaling(s); } +/** Constructs a uniform scaling from scale factor \a s */ +inline UniformScaling Scaling(double s) { return UniformScaling(s); } +/** Constructs a uniform scaling from scale factor \a s */ +template +inline UniformScaling > Scaling(const std::complex& s) +{ return UniformScaling >(s); } + +/** Constructs a 2D axis aligned scaling */ +template +inline DiagonalMatrix Scaling(const Scalar& sx, const Scalar& sy) +{ return DiagonalMatrix(sx, sy); } +/** Constructs a 3D axis aligned scaling */ +template +inline DiagonalMatrix Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) +{ return DiagonalMatrix(sx, sy, sz); } + +/** Constructs an axis aligned scaling expression from vector expression \a coeffs + * This is an alias for coeffs.asDiagonal() + */ +template +inline const DiagonalWrapper Scaling(const MatrixBase& coeffs) +{ return coeffs.asDiagonal(); } + +/** \deprecated */ +typedef DiagonalMatrix AlignedScaling2f; +/** \deprecated */ +typedef DiagonalMatrix AlignedScaling2d; +/** \deprecated */ +typedef DiagonalMatrix AlignedScaling3f; +/** \deprecated */ +typedef DiagonalMatrix AlignedScaling3d; +//@} + +template +template +inline Transform +UniformScaling::operator* (const Translation& t) const +{ + Transform res; + res.matrix().setZero(); + res.linear().diagonal().fill(factor()); + res.translation() = factor() * t.vector(); + res(Dim,Dim) = Scalar(1); + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_SCALING_H diff --git a/include/eigen/Eigen/src/Geometry/Transform.h b/include/eigen/Eigen/src/Geometry/Transform.h new file mode 100644 index 0000000000000000000000000000000000000000..a7756bebef412a277bce0e27910d262aba3e4913 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/Transform.h @@ -0,0 +1,1566 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2010 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSFORM_H +#define EIGEN_TRANSFORM_H + +namespace Eigen { + +namespace internal { + +template +struct transform_traits +{ + enum + { + Dim = Transform::Dim, + HDim = Transform::HDim, + Mode = Transform::Mode, + IsProjective = (int(Mode)==int(Projective)) + }; +}; + +template< typename TransformType, + typename MatrixType, + int Case = transform_traits::IsProjective ? 0 + : int(MatrixType::RowsAtCompileTime) == int(transform_traits::HDim) ? 1 + : 2, + int RhsCols = MatrixType::ColsAtCompileTime> +struct transform_right_product_impl; + +template< typename Other, + int Mode, + int Options, + int Dim, + int HDim, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> +struct transform_left_product_impl; + +template< typename Lhs, + typename Rhs, + bool AnyProjective = + transform_traits::IsProjective || + transform_traits::IsProjective> +struct transform_transform_product_impl; + +template< typename Other, + int Mode, + int Options, + int Dim, + int HDim, + int OtherRows=Other::RowsAtCompileTime, + int OtherCols=Other::ColsAtCompileTime> +struct transform_construct_from_matrix; + +template struct transform_take_affine_part; + +template +struct traits > +{ + typedef _Scalar Scalar; + typedef Eigen::Index StorageIndex; + typedef Dense StorageKind; + enum { + Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1, + RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim, + ColsAtCompileTime = Dim1, + MaxRowsAtCompileTime = RowsAtCompileTime, + MaxColsAtCompileTime = ColsAtCompileTime, + Flags = 0 + }; +}; + +template struct transform_make_affine; + +} // end namespace internal + +/** \geometry_module \ingroup Geometry_Module + * + * \class Transform + * + * \brief Represents an homogeneous transformation in a N dimensional space + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients + * \tparam _Dim the dimension of the space + * \tparam _Mode the type of the transformation. Can be: + * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, + * where the last row is assumed to be [0 ... 0 1]. + * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. + * - #Projective: the transformation is stored as a (Dim+1)^2 matrix + * without any assumption. + * - #Isometry: same as #Affine with the additional assumption that + * the linear part represents a rotation. This assumption is exploited + * to speed up some functions such as inverse() and rotation(). + * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. + * These Options are passed directly to the underlying matrix type. + * + * The homography is internally represented and stored by a matrix which + * is available through the matrix() method. To understand the behavior of + * this class you have to think a Transform object as its internal + * matrix representation. The chosen convention is right multiply: + * + * \code v' = T * v \endcode + * + * Therefore, an affine transformation matrix M is shaped like this: + * + * \f$ \left( \begin{array}{cc} + * linear & translation\\ + * 0 ... 0 & 1 + * \end{array} \right) \f$ + * + * Note that for a projective transformation the last row can be anything, + * and then the interpretation of different parts might be slightly different. + * + * However, unlike a plain matrix, the Transform class provides many features + * simplifying both its assembly and usage. In particular, it can be composed + * with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) + * and can be directly used to transform implicit homogeneous vectors. All these + * operations are handled via the operator*. For the composition of transformations, + * its principle consists to first convert the right/left hand sides of the product + * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. + * Of course, internally, operator* tries to perform the minimal number of operations + * according to the nature of each terms. Likewise, when applying the transform + * to points, the latters are automatically promoted to homogeneous vectors + * before doing the matrix product. The conventions to homogeneous representations + * are performed as follow: + * + * \b Translation t (Dim)x(1): + * \f$ \left( \begin{array}{cc} + * I & t \\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Rotation R (Dim)x(Dim): + * \f$ \left( \begin{array}{cc} + * R & 0\\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Scaling \b DiagonalMatrix S (Dim)x(Dim): + * \f$ \left( \begin{array}{cc} + * S & 0\\ + * 0\,...\,0 & 1 + * \end{array} \right) \f$ + * + * \b Column \b point v (Dim)x(1): + * \f$ \left( \begin{array}{c} + * v\\ + * 1 + * \end{array} \right) \f$ + * + * \b Set \b of \b column \b points V1...Vn (Dim)x(n): + * \f$ \left( \begin{array}{ccc} + * v_1 & ... & v_n\\ + * 1 & ... & 1 + * \end{array} \right) \f$ + * + * The concatenation of a Transform object with any kind of other transformation + * always returns a Transform object. + * + * A little exception to the "as pure matrix product" rule is the case of the + * transformation of non homogeneous vectors by an affine transformation. In + * that case the last matrix row can be ignored, and the product returns non + * homogeneous vectors. + * + * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, + * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. + * The solution is either to use a Dim x Dynamic matrix or explicitly request a + * vector transformation by making the vector homogeneous: + * \code + * m' = T * m.colwise().homogeneous(); + * \endcode + * Note that there is zero overhead. + * + * Conversion methods from/to Qt's QMatrix and QTransform are available if the + * preprocessor token EIGEN_QT_SUPPORT is defined. + * + * This class can be extended with the help of the plugin mechanism described on the page + * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. + * + * \sa class Matrix, class Quaternion + */ +template +class Transform +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) + enum { + Mode = _Mode, + Options = _Options, + Dim = _Dim, ///< space dimension in which the transformation holds + HDim = _Dim+1, ///< size of a respective homogeneous vector + Rows = int(Mode)==(AffineCompact) ? Dim : HDim + }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + typedef Eigen::Index StorageIndex; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + /** type of the matrix used to represent the transformation */ + typedef typename internal::make_proper_matrix_type::type MatrixType; + /** constified MatrixType */ + typedef const MatrixType ConstMatrixType; + /** type of the matrix used to represent the linear part of the transformation */ + typedef Matrix LinearMatrixType; + /** type of read/write reference to the linear part of the transformation */ + typedef Block LinearPart; + /** type of read reference to the linear part of the transformation */ + typedef const Block ConstLinearPart; + /** type of read/write reference to the affine part of the transformation */ + typedef typename internal::conditional >::type AffinePart; + /** type of read reference to the affine part of the transformation */ + typedef typename internal::conditional >::type ConstAffinePart; + /** type of a vector */ + typedef Matrix VectorType; + /** type of a read/write reference to the translation part of the rotation */ + typedef Block::Flags & RowMajorBit)> TranslationPart; + /** type of a read reference to the translation part of the rotation */ + typedef const Block::Flags & RowMajorBit)> ConstTranslationPart; + /** corresponding translation type */ + typedef Translation TranslationType; + + // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 + enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; + /** The return type of the product between a diagonal matrix and a transform */ + typedef Transform TransformTimeDiagonalReturnType; + +protected: + + MatrixType m_matrix; + +public: + + /** Default constructor without initialization of the meaningful coefficients. + * If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1] */ + EIGEN_DEVICE_FUNC inline Transform() + { + check_template_params(); + internal::transform_make_affine<(int(Mode)==Affine || int(Mode)==Isometry) ? Affine : AffineCompact>::run(m_matrix); + } + + EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t) + { + check_template_params(); + *this = t; + } + EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling& s) + { + check_template_params(); + *this = s; + } + template + EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase& r) + { + check_template_params(); + *this = r; + } + + typedef internal::transform_take_affine_part take_affine_part; + + /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ + template + EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase& other) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); + + check_template_params(); + internal::transform_construct_from_matrix::run(this, other.derived()); + } + + /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ + template + EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase& other) + { + EIGEN_STATIC_ASSERT((internal::is_same::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); + + internal::transform_construct_from_matrix::run(this, other.derived()); + return *this; + } + + template + EIGEN_DEVICE_FUNC inline Transform(const Transform& other) + { + check_template_params(); + // only the options change, we can directly copy the matrices + m_matrix = other.matrix(); + } + + template + EIGEN_DEVICE_FUNC inline Transform(const Transform& other) + { + check_template_params(); + // prevent conversions as: + // Affine | AffineCompact | Isometry = Projective + EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)), + YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) + + // prevent conversions as: + // Isometry = Affine | AffineCompact + EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), + YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) + + enum { ModeIsAffineCompact = Mode == int(AffineCompact), + OtherModeIsAffineCompact = OtherMode == int(AffineCompact) + }; + + if(EIGEN_CONST_CONDITIONAL(ModeIsAffineCompact == OtherModeIsAffineCompact)) + { + // We need the block expression because the code is compiled for all + // combinations of transformations and will trigger a compile time error + // if one tries to assign the matrices directly + m_matrix.template block(0,0) = other.matrix().template block(0,0); + makeAffine(); + } + else if(EIGEN_CONST_CONDITIONAL(OtherModeIsAffineCompact)) + { + typedef typename Transform::MatrixType OtherMatrixType; + internal::transform_construct_from_matrix::run(this, other.matrix()); + } + else + { + // here we know that Mode == AffineCompact and OtherMode != AffineCompact. + // if OtherMode were Projective, the static assert above would already have caught it. + // So the only possibility is that OtherMode == Affine + linear() = other.linear(); + translation() = other.translation(); + } + } + + template + EIGEN_DEVICE_FUNC Transform(const ReturnByValue& other) + { + check_template_params(); + other.evalTo(*this); + } + + template + EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue& other) + { + other.evalTo(*this); + return *this; + } + + #ifdef EIGEN_QT_SUPPORT + inline Transform(const QMatrix& other); + inline Transform& operator=(const QMatrix& other); + inline QMatrix toQMatrix(void) const; + inline Transform(const QTransform& other); + inline Transform& operator=(const QTransform& other); + inline QTransform toQTransform(void) const; + #endif + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } + + /** shortcut for m_matrix(row,col); + * \sa MatrixBase::operator(Index,Index) const */ + EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } + /** shortcut for m_matrix(row,col); + * \sa MatrixBase::operator(Index,Index) */ + EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } + + /** \returns a read-only expression of the transformation matrix */ + EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; } + /** \returns a writable expression of the transformation matrix */ + EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; } + + /** \returns a read-only expression of the linear part of the transformation */ + EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } + /** \returns a writable expression of the linear part of the transformation */ + EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); } + + /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ + EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } + /** \returns a writable expression of the Dim x HDim affine part of the transformation */ + EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); } + + /** \returns a read-only expression of the translation vector of the transformation */ + EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } + /** \returns a writable expression of the translation vector of the transformation */ + EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } + + /** \returns an expression of the product between the transform \c *this and a matrix expression \a other. + * + * The right-hand-side \a other can be either: + * \li an homogeneous vector of size Dim+1, + * \li a set of homogeneous vectors of size Dim+1 x N, + * \li a transformation matrix of size Dim+1 x Dim+1. + * + * Moreover, if \c *this represents an affine transformation (i.e., Mode!=Projective), then \a other can also be: + * \li a point of size Dim (computes: \code this->linear() * other + this->translation()\endcode), + * \li a set of N points as a Dim x N matrix (computes: \code (this->linear() * other).colwise() + this->translation()\endcode), + * + * In all cases, the return type is a matrix or vector of same sizes as the right-hand-side \a other. + * + * If you want to interpret \a other as a linear or affine transformation, then first convert it to a Transform<> type, + * or do your own cooking. + * + * Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only: + * \code + * Affine3f A; + * Vector3f v1, v2; + * v2 = A.linear() * v1; + * \endcode + * + */ + // note: this function is defined here because some compilers cannot find the respective declaration + template + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl::ResultType + operator * (const EigenBase &other) const + { return internal::transform_right_product_impl::run(*this,other.derived()); } + + /** \returns the product expression of a transformation matrix \a a times a transform \a b + * + * The left hand side \a other can be either: + * \li a linear transformation matrix of size Dim x Dim, + * \li an affine transformation matrix of size Dim x Dim+1, + * \li a general transformation matrix of size Dim+1 x Dim+1. + */ + template friend + EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl::ResultType + operator * (const EigenBase &a, const Transform &b) + { return internal::transform_left_product_impl::run(a.derived(),b); } + + /** \returns The product expression of a transform \a a times a diagonal matrix \a b + * + * The rhs diagonal matrix is interpreted as an affine scaling transformation. The + * product results in a Transform of the same type (mode) as the lhs only if the lhs + * mode is no isometry. In that case, the returned transform is an affinity. + */ + template + EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType + operator * (const DiagonalBase &b) const + { + TransformTimeDiagonalReturnType res(*this); + res.linearExt() *= b; + return res; + } + + /** \returns The product expression of a diagonal matrix \a a times a transform \a b + * + * The lhs diagonal matrix is interpreted as an affine scaling transformation. The + * product results in a Transform of the same type (mode) as the lhs only if the lhs + * mode is no isometry. In that case, the returned transform is an affinity. + */ + template + EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType + operator * (const DiagonalBase &a, const Transform &b) + { + TransformTimeDiagonalReturnType res; + res.linear().noalias() = a*b.linear(); + res.translation().noalias() = a*b.translation(); + if (EIGEN_CONST_CONDITIONAL(Mode!=int(AffineCompact))) + res.matrix().row(Dim) = b.matrix().row(Dim); + return res; + } + + template + EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase& other) { return *this = *this * other; } + + /** Concatenates two transformations */ + EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const + { + return internal::transform_transform_product_impl::run(*this,other); + } + + #if EIGEN_COMP_ICC +private: + // this intermediate structure permits to workaround a bug in ICC 11: + // error: template instantiation resulted in unexpected function type of "Eigen::Transform + // (const Eigen::Transform &) const" + // (the meaning of a name may have changed since the template declaration -- the type of the template is: + // "Eigen::internal::transform_transform_product_impl, + // Eigen::Transform, >::ResultType (const Eigen::Transform &) const") + // + template struct icc_11_workaround + { + typedef internal::transform_transform_product_impl > ProductType; + typedef typename ProductType::ResultType ResultType; + }; + +public: + /** Concatenates two different transformations */ + template + inline typename icc_11_workaround::ResultType + operator * (const Transform& other) const + { + typedef typename icc_11_workaround::ProductType ProductType; + return ProductType::run(*this,other); + } + #else + /** Concatenates two different transformations */ + template + EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl >::ResultType + operator * (const Transform& other) const + { + return internal::transform_transform_product_impl >::run(*this,other); + } + #endif + + /** \sa MatrixBase::setIdentity() */ + EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); } + + /** + * \brief Returns an identity transformation. + * \todo In the future this function should be returning a Transform expression. + */ + EIGEN_DEVICE_FUNC static const Transform Identity() + { + return Transform(MatrixType::Identity()); + } + + template + EIGEN_DEVICE_FUNC + inline Transform& scale(const MatrixBase &other); + + template + EIGEN_DEVICE_FUNC + inline Transform& prescale(const MatrixBase &other); + + EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s); + EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s); + + template + EIGEN_DEVICE_FUNC + inline Transform& translate(const MatrixBase &other); + + template + EIGEN_DEVICE_FUNC + inline Transform& pretranslate(const MatrixBase &other); + + template + EIGEN_DEVICE_FUNC + inline Transform& rotate(const RotationType& rotation); + + template + EIGEN_DEVICE_FUNC + inline Transform& prerotate(const RotationType& rotation); + + EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy); + EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy); + + EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t); + + EIGEN_DEVICE_FUNC + inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } + + EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const; + + EIGEN_DEVICE_FUNC + inline Transform& operator=(const UniformScaling& t); + + EIGEN_DEVICE_FUNC + inline Transform& operator*=(const UniformScaling& s) { return scale(s.factor()); } + + EIGEN_DEVICE_FUNC + inline TransformTimeDiagonalReturnType operator*(const UniformScaling& s) const + { + TransformTimeDiagonalReturnType res = *this; + res.scale(s.factor()); + return res; + } + + EIGEN_DEVICE_FUNC + inline Transform& operator*=(const DiagonalMatrix& s) { linearExt() *= s; return *this; } + + template + EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase& r); + template + EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase& r) { return rotate(r.toRotationMatrix()); } + template + EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase& r) const; + + typedef typename internal::conditional::type RotationReturnType; + EIGEN_DEVICE_FUNC RotationReturnType rotation() const; + + template + EIGEN_DEVICE_FUNC + void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; + template + EIGEN_DEVICE_FUNC + void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; + + template + EIGEN_DEVICE_FUNC + Transform& fromPositionOrientationScale(const MatrixBase &position, + const OrientationType& orientation, const MatrixBase &scale); + + EIGEN_DEVICE_FUNC + inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; + + /** \returns a const pointer to the column major internal matrix */ + EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); } + /** \returns a non-const pointer to the column major internal matrix */ + EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { return typename internal::cast_return_type >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit Transform(const Transform& other) + { + check_template_params(); + m_matrix = other.matrix().template cast(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_matrix.isApprox(other.m_matrix, prec); } + + /** Sets the last row to [0 ... 0 1] + */ + EIGEN_DEVICE_FUNC void makeAffine() + { + internal::transform_make_affine::run(m_matrix); + } + + /** \internal + * \returns the Dim x Dim linear part if the transformation is affine, + * and the HDim x Dim part for projective transformations. + */ + EIGEN_DEVICE_FUNC inline Block linearExt() + { return m_matrix.template block(0,0); } + /** \internal + * \returns the Dim x Dim linear part if the transformation is affine, + * and the HDim x Dim part for projective transformations. + */ + EIGEN_DEVICE_FUNC inline const Block linearExt() const + { return m_matrix.template block(0,0); } + + /** \internal + * \returns the translation part if the transformation is affine, + * and the last column for projective transformations. + */ + EIGEN_DEVICE_FUNC inline Block translationExt() + { return m_matrix.template block(0,Dim); } + /** \internal + * \returns the translation part if the transformation is affine, + * and the last column for projective transformations. + */ + EIGEN_DEVICE_FUNC inline const Block translationExt() const + { return m_matrix.template block(0,Dim); } + + + #ifdef EIGEN_TRANSFORM_PLUGIN + #include EIGEN_TRANSFORM_PLUGIN + #endif + +protected: + #ifndef EIGEN_PARSED_BY_DOXYGEN + EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params() + { + EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) + } + #endif + +}; + +/** \ingroup Geometry_Module */ +typedef Transform Isometry2f; +/** \ingroup Geometry_Module */ +typedef Transform Isometry3f; +/** \ingroup Geometry_Module */ +typedef Transform Isometry2d; +/** \ingroup Geometry_Module */ +typedef Transform Isometry3d; + +/** \ingroup Geometry_Module */ +typedef Transform Affine2f; +/** \ingroup Geometry_Module */ +typedef Transform Affine3f; +/** \ingroup Geometry_Module */ +typedef Transform Affine2d; +/** \ingroup Geometry_Module */ +typedef Transform Affine3d; + +/** \ingroup Geometry_Module */ +typedef Transform AffineCompact2f; +/** \ingroup Geometry_Module */ +typedef Transform AffineCompact3f; +/** \ingroup Geometry_Module */ +typedef Transform AffineCompact2d; +/** \ingroup Geometry_Module */ +typedef Transform AffineCompact3d; + +/** \ingroup Geometry_Module */ +typedef Transform Projective2f; +/** \ingroup Geometry_Module */ +typedef Transform Projective3f; +/** \ingroup Geometry_Module */ +typedef Transform Projective2d; +/** \ingroup Geometry_Module */ +typedef Transform Projective3d; + +/************************** +*** Optional QT support *** +**************************/ + +#ifdef EIGEN_QT_SUPPORT +/** Initializes \c *this from a QMatrix assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +Transform::Transform(const QMatrix& other) +{ + check_template_params(); + *this = other; +} + +/** Set \c *this from a QMatrix assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +Transform& Transform::operator=(const QMatrix& other) +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(); + else + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(), + 0, 0, 1; + return *this; +} + +/** \returns a QMatrix from \c *this assuming the dimension is 2. + * + * \warning this conversion might loss data if \c *this is not affine + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +QMatrix Transform::toQMatrix(void) const +{ + check_template_params(); + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2)); +} + +/** Initializes \c *this from a QTransform assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +Transform::Transform(const QTransform& other) +{ + check_template_params(); + *this = other; +} + +/** Set \c *this from a QTransform assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +Transform& Transform::operator=(const QTransform& other) +{ + check_template_params(); + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(); + else + m_matrix << other.m11(), other.m21(), other.dx(), + other.m12(), other.m22(), other.dy(), + other.m13(), other.m23(), other.m33(); + return *this; +} + +/** \returns a QTransform from \c *this assuming the dimension is 2. + * + * This function is available only if the token EIGEN_QT_SUPPORT is defined. + */ +template +QTransform Transform::toQTransform(void) const +{ + EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact))) + return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2)); + else + return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), + m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), + m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); +} +#endif + +/********************* +*** Procedural API *** +*********************/ + +/** Applies on the right the non uniform scale transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \sa prescale() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::scale(const MatrixBase &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + linearExt().noalias() = (linearExt() * other.asDiagonal()); + return *this; +} + +/** Applies on the right a uniform scale of a factor \a c to \c *this + * and returns a reference to \c *this. + * \sa prescale(Scalar) + */ +template +EIGEN_DEVICE_FUNC inline Transform& Transform::scale(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + linearExt() *= s; + return *this; +} + +/** Applies on the left the non uniform scale transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \sa scale() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::prescale(const MatrixBase &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + affine().noalias() = (other.asDiagonal() * affine()); + return *this; +} + +/** Applies on the left a uniform scale of a factor \a c to \c *this + * and returns a reference to \c *this. + * \sa scale(Scalar) + */ +template +EIGEN_DEVICE_FUNC inline Transform& Transform::prescale(const Scalar& s) +{ + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + m_matrix.template topRows() *= s; + return *this; +} + +/** Applies on the right the translation matrix represented by the vector \a other + * to \c *this and returns a reference to \c *this. + * \sa pretranslate() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::translate(const MatrixBase &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + translationExt() += linearExt() * other; + return *this; +} + +/** Applies on the left the translation matrix represented by the vector \a other + * to \c *this and returns a reference to \c *this. + * \sa translate() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::pretranslate(const MatrixBase &other) +{ + EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) + if(EIGEN_CONST_CONDITIONAL(int(Mode)==int(Projective))) + affine() += other * m_matrix.row(Dim); + else + translation() += other; + return *this; +} + +/** Applies on the right the rotation represented by the rotation \a rotation + * to \c *this and returns a reference to \c *this. + * + * The template parameter \a RotationType is the type of the rotation which + * must be known by internal::toRotationMatrix<>. + * + * Natively supported types includes: + * - any scalar (2D), + * - a Dim x Dim matrix expression, + * - a Quaternion (3D), + * - a AngleAxis (3D) + * + * This mechanism is easily extendable to support user types such as Euler angles, + * or a pair of Quaternion for 4D rotations. + * + * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::rotate(const RotationType& rotation) +{ + linearExt() *= internal::toRotationMatrix(rotation); + return *this; +} + +/** Applies on the left the rotation represented by the rotation \a rotation + * to \c *this and returns a reference to \c *this. + * + * See rotate() for further details. + * + * \sa rotate() + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::prerotate(const RotationType& rotation) +{ + m_matrix.template block(0,0) = internal::toRotationMatrix(rotation) + * m_matrix.template block(0,0); + return *this; +} + +/** Applies on the right the shear transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \warning 2D only. + * \sa preshear() + */ +template +EIGEN_DEVICE_FUNC Transform& +Transform::shear(const Scalar& sx, const Scalar& sy) +{ + EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + VectorType tmp = linear().col(0)*sy + linear().col(1); + linear() << linear().col(0) + linear().col(1)*sx, tmp; + return *this; +} + +/** Applies on the left the shear transformation represented + * by the vector \a other to \c *this and returns a reference to \c *this. + * \warning 2D only. + * \sa shear() + */ +template +EIGEN_DEVICE_FUNC Transform& +Transform::preshear(const Scalar& sx, const Scalar& sy) +{ + EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) + EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) + LinearMatrixType shear = LinearMatrixType::Identity(2, 2); + shear.coeffRef(0, 1) = sy; + shear.coeffRef(1, 0) = sx; + m_matrix.template block(0, 0) = shear * m_matrix.template block(0, 0); + return *this; +} + +/****************************************************** +*** Scaling, Translation and Rotation compatibility *** +******************************************************/ + +template +EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const TranslationType& t) +{ + linear().setIdentity(); + translation() = t.vector(); + makeAffine(); + return *this; +} + +template +EIGEN_DEVICE_FUNC inline Transform Transform::operator*(const TranslationType& t) const +{ + Transform res = *this; + res.translate(t.vector()); + return res; +} + +template +EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const UniformScaling& s) +{ + m_matrix.setZero(); + linear().diagonal().fill(s.factor()); + makeAffine(); + return *this; +} + +template +template +EIGEN_DEVICE_FUNC inline Transform& Transform::operator=(const RotationBase& r) +{ + linear() = internal::toRotationMatrix(r); + translation().setZero(); + makeAffine(); + return *this; +} + +template +template +EIGEN_DEVICE_FUNC inline Transform Transform::operator*(const RotationBase& r) const +{ + Transform res = *this; + res.rotate(r.derived()); + return res; +} + +/************************ +*** Special functions *** +************************/ + +namespace internal { +template struct transform_rotation_impl { + template + EIGEN_DEVICE_FUNC static inline + const typename TransformType::LinearMatrixType run(const TransformType& t) + { + typedef typename TransformType::LinearMatrixType LinearMatrixType; + LinearMatrixType result; + t.computeRotationScaling(&result, (LinearMatrixType*)0); + return result; + } +}; +template<> struct transform_rotation_impl { + template + EIGEN_DEVICE_FUNC static inline + typename TransformType::ConstLinearPart run(const TransformType& t) + { + return t.linear(); + } +}; +} +/** \returns the rotation part of the transformation + * + * If Mode==Isometry, then this method is an alias for linear(), + * otherwise it calls computeRotationScaling() to extract the rotation + * through a SVD decomposition. + * + * \svd_module + * + * \sa computeRotationScaling(), computeScalingRotation(), class SVD + */ +template +EIGEN_DEVICE_FUNC +typename Transform::RotationReturnType +Transform::rotation() const +{ + return internal::transform_rotation_impl::run(*this); +} + + +/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * + * + * \svd_module + * + * \sa computeScalingRotation(), rotation(), class SVD + */ +template +template +EIGEN_DEVICE_FUNC void Transform::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const +{ + // Note that JacobiSVD is faster than BDCSVD for small matrices. + JacobiSVD svd(linear(), ComputeFullU | ComputeFullV); + + Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1 + VectorType sv(svd.singularValues()); + sv.coeffRef(Dim-1) *= x; + if(scaling) *scaling = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); + if(rotation) + { + LinearMatrixType m(svd.matrixU()); + m.col(Dim-1) *= x; + *rotation = m * svd.matrixV().adjoint(); + } +} + +/** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * + * + * \svd_module + * + * \sa computeRotationScaling(), rotation(), class SVD + */ +template +template +EIGEN_DEVICE_FUNC void Transform::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const +{ + // Note that JacobiSVD is faster than BDCSVD for small matrices. + JacobiSVD svd(linear(), ComputeFullU | ComputeFullV); + + Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant() < Scalar(0) ? Scalar(-1) : Scalar(1); // so x has absolute value 1 + VectorType sv(svd.singularValues()); + sv.coeffRef(Dim-1) *= x; + if(scaling) *scaling = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); + if(rotation) + { + LinearMatrixType m(svd.matrixU()); + m.col(Dim-1) *= x; + *rotation = m * svd.matrixV().adjoint(); + } +} + +/** Convenient method to set \c *this from a position, orientation and scale + * of a 3D object. + */ +template +template +EIGEN_DEVICE_FUNC Transform& +Transform::fromPositionOrientationScale(const MatrixBase &position, + const OrientationType& orientation, const MatrixBase &scale) +{ + linear() = internal::toRotationMatrix(orientation); + linear() *= scale.asDiagonal(); + translation() = position; + makeAffine(); + return *this; +} + +namespace internal { + +template +struct transform_make_affine +{ + template + EIGEN_DEVICE_FUNC static void run(MatrixType &mat) + { + static const int Dim = MatrixType::ColsAtCompileTime-1; + mat.template block<1,Dim>(Dim,0).setZero(); + mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1); + } +}; + +template<> +struct transform_make_affine +{ + template EIGEN_DEVICE_FUNC static void run(MatrixType &) { } +}; + +// selector needed to avoid taking the inverse of a 3x4 matrix +template +struct projective_transform_inverse +{ + EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&) + {} +}; + +template +struct projective_transform_inverse +{ + EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res) + { + res.matrix() = m.matrix().inverse(); + } +}; + +} // end namespace internal + + +/** + * + * \returns the inverse transformation according to some given knowledge + * on \c *this. + * + * \param hint allows to optimize the inversion process when the transformation + * is known to be not a general transformation (optional). The possible values are: + * - #Projective if the transformation is not necessarily affine, i.e., if the + * last row is not guaranteed to be [0 ... 0 1] + * - #Affine if the last row can be assumed to be [0 ... 0 1] + * - #Isometry if the transformation is only a concatenations of translations + * and rotations. + * The default is the template class parameter \c Mode. + * + * \warning unless \a traits is always set to NoShear or NoScaling, this function + * requires the generic inverse method of MatrixBase defined in the LU module. If + * you forget to include this module, then you will get hard to debug linking errors. + * + * \sa MatrixBase::inverse() + */ +template +EIGEN_DEVICE_FUNC Transform +Transform::inverse(TransformTraits hint) const +{ + Transform res; + if (hint == Projective) + { + internal::projective_transform_inverse::run(*this, res); + } + else + { + if (hint == Isometry) + { + res.matrix().template topLeftCorner() = linear().transpose(); + } + else if(hint&Affine) + { + res.matrix().template topLeftCorner() = linear().inverse(); + } + else + { + eigen_assert(false && "Invalid transform traits in Transform::Inverse"); + } + // translation and remaining parts + res.matrix().template topRightCorner() + = - res.matrix().template topLeftCorner() * translation(); + res.makeAffine(); // we do need this, because in the beginning res is uninitialized + } + return res; +} + +namespace internal { + +/***************************************************** +*** Specializations of take affine part *** +*****************************************************/ + +template struct transform_take_affine_part { + typedef typename TransformType::MatrixType MatrixType; + typedef typename TransformType::AffinePart AffinePart; + typedef typename TransformType::ConstAffinePart ConstAffinePart; + static inline AffinePart run(MatrixType& m) + { return m.template block(0,0); } + static inline ConstAffinePart run(const MatrixType& m) + { return m.template block(0,0); } +}; + +template +struct transform_take_affine_part > { + typedef typename Transform::MatrixType MatrixType; + static inline MatrixType& run(MatrixType& m) { return m; } + static inline const MatrixType& run(const MatrixType& m) { return m; } +}; + +/***************************************************** +*** Specializations of construct from matrix *** +*****************************************************/ + +template +struct transform_construct_from_matrix +{ + static inline void run(Transform *transform, const Other& other) + { + transform->linear() = other; + transform->translation().setZero(); + transform->makeAffine(); + } +}; + +template +struct transform_construct_from_matrix +{ + static inline void run(Transform *transform, const Other& other) + { + transform->affine() = other; + transform->makeAffine(); + } +}; + +template +struct transform_construct_from_matrix +{ + static inline void run(Transform *transform, const Other& other) + { transform->matrix() = other; } +}; + +template +struct transform_construct_from_matrix +{ + static inline void run(Transform *transform, const Other& other) + { transform->matrix() = other.template block(0,0); } +}; + +/********************************************************** +*** Specializations of operator* with rhs EigenBase *** +**********************************************************/ + +template +struct transform_product_result +{ + enum + { + Mode = + (LhsMode == (int)Projective || RhsMode == (int)Projective ) ? Projective : + (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine : + (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : + (LhsMode == (int)Isometry || RhsMode == (int)Isometry ) ? Isometry : Projective + }; +}; + +template< typename TransformType, typename MatrixType, int RhsCols> +struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols> +{ + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + return T.matrix() * other; + } +}; + +template< typename TransformType, typename MatrixType, int RhsCols> +struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols> +{ + enum { + Dim = TransformType::Dim, + HDim = TransformType::HDim, + OtherRows = MatrixType::RowsAtCompileTime, + OtherCols = MatrixType::ColsAtCompileTime + }; + + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); + + typedef Block TopLeftLhs; + + ResultType res(other.rows(),other.cols()); + TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; + res.row(OtherRows-1) = other.row(OtherRows-1); + + return res; + } +}; + +template< typename TransformType, typename MatrixType, int RhsCols> +struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols> +{ + enum { + Dim = TransformType::Dim, + HDim = TransformType::HDim, + OtherRows = MatrixType::RowsAtCompileTime, + OtherCols = MatrixType::ColsAtCompileTime + }; + + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); + + typedef Block TopLeftLhs; + ResultType res(Replicate(T.translation(),1,other.cols())); + TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; + + return res; + } +}; + +template< typename TransformType, typename MatrixType > +struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim +{ + typedef typename TransformType::MatrixType TransformMatrix; + enum { + Dim = TransformType::Dim, + HDim = TransformType::HDim, + OtherRows = MatrixType::RowsAtCompileTime, + WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim) + }; + + typedef typename MatrixType::PlainObject ResultType; + + static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) + { + EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); + + Matrix rhs; + rhs.template head() = other; rhs[Dim] = typename ResultType::Scalar(1); + Matrix res(T.matrix() * rhs); + return res.template head(); + } +}; + +/********************************************************** +*** Specializations of operator* with lhs EigenBase *** +**********************************************************/ + +// generic HDim x HDim matrix * T => Projective +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef Transform ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { return ResultType(other * tr.matrix()); } +}; + +// generic HDim x HDim matrix * AffineCompact => Projective +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef Transform ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.matrix().noalias() = other.template block(0,0) * tr.matrix(); + res.matrix().col(Dim) += other.col(Dim); + return res; + } +}; + +// affine matrix * T +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.affine().noalias() = other * tr.matrix(); + res.matrix().row(Dim) = tr.matrix().row(Dim); + return res; + } +}; + +// affine matrix * AffineCompact +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other,const TransformType& tr) + { + ResultType res; + res.matrix().noalias() = other.template block(0,0) * tr.matrix(); + res.translation() += other.col(Dim); + return res; + } +}; + +// linear matrix * T +template +struct transform_left_product_impl +{ + typedef Transform TransformType; + typedef typename TransformType::MatrixType MatrixType; + typedef TransformType ResultType; + static ResultType run(const Other& other, const TransformType& tr) + { + TransformType res; + if(Mode!=int(AffineCompact)) + res.matrix().row(Dim) = tr.matrix().row(Dim); + res.matrix().template topRows().noalias() + = other * tr.matrix().template topRows(); + return res; + } +}; + +/********************************************************** +*** Specializations of operator* with another Transform *** +**********************************************************/ + +template +struct transform_transform_product_impl,Transform,false > +{ + enum { ResultMode = transform_product_result::Mode }; + typedef Transform Lhs; + typedef Transform Rhs; + typedef Transform ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res; + res.linear() = lhs.linear() * rhs.linear(); + res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); + res.makeAffine(); + return res; + } +}; + +template +struct transform_transform_product_impl,Transform,true > +{ + typedef Transform Lhs; + typedef Transform Rhs; + typedef Transform ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + return ResultType( lhs.matrix() * rhs.matrix() ); + } +}; + +template +struct transform_transform_product_impl,Transform,true > +{ + typedef Transform Lhs; + typedef Transform Rhs; + typedef Transform ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res; + res.matrix().template topRows() = lhs.matrix() * rhs.matrix(); + res.matrix().row(Dim) = rhs.matrix().row(Dim); + return res; + } +}; + +template +struct transform_transform_product_impl,Transform,true > +{ + typedef Transform Lhs; + typedef Transform Rhs; + typedef Transform ResultType; + static ResultType run(const Lhs& lhs, const Rhs& rhs) + { + ResultType res(lhs.matrix().template leftCols() * rhs.matrix()); + res.matrix().col(Dim) += lhs.matrix().col(Dim); + return res; + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_TRANSFORM_H diff --git a/include/eigen/Eigen/src/Geometry/Translation.h b/include/eigen/Eigen/src/Geometry/Translation.h new file mode 100644 index 0000000000000000000000000000000000000000..8c22901219002fc071c2dbc3d0c3788b904239b8 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/Translation.h @@ -0,0 +1,202 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSLATION_H +#define EIGEN_TRANSLATION_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Translation + * + * \brief Represents a translation transformation + * + * \tparam _Scalar the scalar type, i.e., the type of the coefficients. + * \tparam _Dim the dimension of the space, can be a compile time value or Dynamic + * + * \note This class is not aimed to be used to store a translation transformation, + * but rather to make easier the constructions and updates of Transform objects. + * + * \sa class Scaling, class Transform + */ +template +class Translation +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) + /** dimension of the space */ + enum { Dim = _Dim }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + /** corresponding vector type */ + typedef Matrix VectorType; + /** corresponding linear transformation matrix type */ + typedef Matrix LinearMatrixType; + /** corresponding affine transformation type */ + typedef Transform AffineTransformType; + /** corresponding isometric transformation type */ + typedef Transform IsometryTransformType; + +protected: + + VectorType m_coeffs; + +public: + + /** Default constructor without initialization. */ + EIGEN_DEVICE_FUNC Translation() {} + /** */ + EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy) + { + eigen_assert(Dim==2); + m_coeffs.x() = sx; + m_coeffs.y() = sy; + } + /** */ + EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) + { + eigen_assert(Dim==3); + m_coeffs.x() = sx; + m_coeffs.y() = sy; + m_coeffs.z() = sz; + } + /** Constructs and initialize the translation transformation from a vector of translation coefficients */ + EIGEN_DEVICE_FUNC explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {} + + /** \brief Returns the x-translation by value. **/ + EIGEN_DEVICE_FUNC inline Scalar x() const { return m_coeffs.x(); } + /** \brief Returns the y-translation by value. **/ + EIGEN_DEVICE_FUNC inline Scalar y() const { return m_coeffs.y(); } + /** \brief Returns the z-translation by value. **/ + EIGEN_DEVICE_FUNC inline Scalar z() const { return m_coeffs.z(); } + + /** \brief Returns the x-translation as a reference. **/ + EIGEN_DEVICE_FUNC inline Scalar& x() { return m_coeffs.x(); } + /** \brief Returns the y-translation as a reference. **/ + EIGEN_DEVICE_FUNC inline Scalar& y() { return m_coeffs.y(); } + /** \brief Returns the z-translation as a reference. **/ + EIGEN_DEVICE_FUNC inline Scalar& z() { return m_coeffs.z(); } + + EIGEN_DEVICE_FUNC const VectorType& vector() const { return m_coeffs; } + EIGEN_DEVICE_FUNC VectorType& vector() { return m_coeffs; } + + EIGEN_DEVICE_FUNC const VectorType& translation() const { return m_coeffs; } + EIGEN_DEVICE_FUNC VectorType& translation() { return m_coeffs; } + + /** Concatenates two translation */ + EIGEN_DEVICE_FUNC inline Translation operator* (const Translation& other) const + { return Translation(m_coeffs + other.m_coeffs); } + + /** Concatenates a translation and a uniform scaling */ + EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const UniformScaling& other) const; + + /** Concatenates a translation and a linear transformation */ + template + EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const EigenBase& linear) const; + + /** Concatenates a translation and a rotation */ + template + EIGEN_DEVICE_FUNC inline IsometryTransformType operator*(const RotationBase& r) const + { return *this * IsometryTransformType(r); } + + /** \returns the concatenation of a linear transformation \a l with the translation \a t */ + // its a nightmare to define a templated friend function outside its declaration + template friend + EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase& linear, const Translation& t) + { + AffineTransformType res; + res.matrix().setZero(); + res.linear() = linear.derived(); + res.translation() = linear.derived() * t.m_coeffs; + res.matrix().row(Dim).setZero(); + res(Dim,Dim) = Scalar(1); + return res; + } + + /** Concatenates a translation and a transformation */ + template + EIGEN_DEVICE_FUNC inline Transform operator* (const Transform& t) const + { + Transform res = t; + res.pretranslate(m_coeffs); + return res; + } + + /** Applies translation to vector */ + template + inline typename internal::enable_if::type + operator* (const MatrixBase& vec) const + { return m_coeffs + vec.derived(); } + + /** \returns the inverse translation (opposite) */ + Translation inverse() const { return Translation(-m_coeffs); } + + static const Translation Identity() { return Translation(VectorType::Zero()); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type >::type cast() const + { return typename internal::cast_return_type >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template + EIGEN_DEVICE_FUNC inline explicit Translation(const Translation& other) + { m_coeffs = other.vector().template cast(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + EIGEN_DEVICE_FUNC bool isApprox(const Translation& other, const typename NumTraits::Real& prec = NumTraits::dummy_precision()) const + { return m_coeffs.isApprox(other.m_coeffs, prec); } + +}; + +/** \addtogroup Geometry_Module */ +//@{ +typedef Translation Translation2f; +typedef Translation Translation2d; +typedef Translation Translation3f; +typedef Translation Translation3d; +//@} + +template +EIGEN_DEVICE_FUNC inline typename Translation::AffineTransformType +Translation::operator* (const UniformScaling& other) const +{ + AffineTransformType res; + res.matrix().setZero(); + res.linear().diagonal().fill(other.factor()); + res.translation() = m_coeffs; + res(Dim,Dim) = Scalar(1); + return res; +} + +template +template +EIGEN_DEVICE_FUNC inline typename Translation::AffineTransformType +Translation::operator* (const EigenBase& linear) const +{ + AffineTransformType res; + res.matrix().setZero(); + res.linear() = linear.derived(); + res.translation() = m_coeffs; + res.matrix().row(Dim).setZero(); + res(Dim,Dim) = Scalar(1); + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_TRANSLATION_H diff --git a/include/eigen/Eigen/src/Geometry/Umeyama.h b/include/eigen/Eigen/src/Geometry/Umeyama.h new file mode 100644 index 0000000000000000000000000000000000000000..2a5c395b25d448dd7f6cdd3591e197f1eecde405 --- /dev/null +++ b/include/eigen/Eigen/src/Geometry/Umeyama.h @@ -0,0 +1,168 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Hauke Heibel +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_UMEYAMA_H +#define EIGEN_UMEYAMA_H + +// This file requires the user to include +// * Eigen/Core +// * Eigen/LU +// * Eigen/SVD +// * Eigen/Array + +namespace Eigen { + +#ifndef EIGEN_PARSED_BY_DOXYGEN + +// These helpers are required since it allows to use mixed types as parameters +// for the Umeyama. The problem with mixed parameters is that the return type +// cannot trivially be deduced when float and double types are mixed. +namespace internal { + +// Compile time return type deduction for different MatrixBase types. +// Different means here different alignment and parameters but the same underlying +// real scalar type. +template +struct umeyama_transform_matrix_type +{ + enum { + MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime), + + // When possible we want to choose some small fixed size value since the result + // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want. + HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1 + }; + + typedef Matrix::Scalar, + HomogeneousDimension, + HomogeneousDimension, + AutoAlign | (traits::Flags & RowMajorBit ? RowMajor : ColMajor), + HomogeneousDimension, + HomogeneousDimension + > type; +}; + +} + +#endif + +/** +* \geometry_module \ingroup Geometry_Module +* +* \brief Returns the transformation between two point sets. +* +* The algorithm is based on: +* "Least-squares estimation of transformation parameters between two point patterns", +* Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 +* +* It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that +* \f{align*} +* \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 +* \f} +* is minimized. +* +* The algorithm is based on the analysis of the covariance matrix +* \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$ +* of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where +* \f$d\f$ is corresponding to the dimension (which is typically small). +* The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ +* though the actual computational effort lies in the covariance +* matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when +* the input point sets have dimension \f$d \times m\f$. +* +* Currently the method is working only for floating point matrices. +* +* \todo Should the return type of umeyama() become a Transform? +* +* \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$. +* \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$. +* \param with_scaling Sets \f$ c=1 \f$ when false is passed. +* \return The homogeneous transformation +* \f{align*} +* T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} +* \f} +* minimizing the residual above. This transformation is always returned as an +* Eigen::Matrix. +*/ +template +typename internal::umeyama_transform_matrix_type::type +umeyama(const MatrixBase& src, const MatrixBase& dst, bool with_scaling = true) +{ + typedef typename internal::umeyama_transform_matrix_type::type TransformationMatrixType; + typedef typename internal::traits::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + + EIGEN_STATIC_ASSERT(!NumTraits::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) + EIGEN_STATIC_ASSERT((internal::is_same::Scalar>::value), + YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) + + enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) }; + + typedef Matrix VectorType; + typedef Matrix MatrixType; + typedef typename internal::plain_matrix_type_row_major::type RowMajorMatrixType; + + const Index m = src.rows(); // dimension + const Index n = src.cols(); // number of measurements + + // required for demeaning ... + const RealScalar one_over_n = RealScalar(1) / static_cast(n); + + // computation of mean + const VectorType src_mean = src.rowwise().sum() * one_over_n; + const VectorType dst_mean = dst.rowwise().sum() * one_over_n; + + // demeaning of src and dst points + const RowMajorMatrixType src_demean = src.colwise() - src_mean; + const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean; + + // Eq. (36)-(37) + const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n; + + // Eq. (38) + const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose(); + + JacobiSVD svd(sigma, ComputeFullU | ComputeFullV); + + // Initialize the resulting transformation with an identity matrix... + TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1); + + // Eq. (39) + VectorType S = VectorType::Ones(m); + + if ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 ) { + Index tmp = m - 1; + S(tmp) = -1; + } + + // Eq. (40) and (43) + Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); + + if (with_scaling) + { + // Eq. (42) + const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S); + + // Eq. (41) + Rt.col(m).head(m) = dst_mean; + Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; + Rt.block(0,0,m,m) *= c; + } + else + { + Rt.col(m).head(m) = dst_mean; + Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean; + } + + return Rt; +} + +} // end namespace Eigen + +#endif // EIGEN_UMEYAMA_H diff --git a/include/eigen/Eigen/src/Householder/BlockHouseholder.h b/include/eigen/Eigen/src/Householder/BlockHouseholder.h new file mode 100644 index 0000000000000000000000000000000000000000..39ce1c2a0efa24f1a86866dd699c4a7216728f47 --- /dev/null +++ b/include/eigen/Eigen/src/Householder/BlockHouseholder.h @@ -0,0 +1,110 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Vincent Lejeune +// Copyright (C) 2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BLOCK_HOUSEHOLDER_H +#define EIGEN_BLOCK_HOUSEHOLDER_H + +// This file contains some helper function to deal with block householder reflectors + +namespace Eigen { + +namespace internal { + +/** \internal */ +// template +// void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs) +// { +// typedef typename VectorsType::Scalar Scalar; +// const Index nbVecs = vectors.cols(); +// eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs); +// +// for(Index i = 0; i < nbVecs; i++) +// { +// Index rs = vectors.rows() - i; +// // Warning, note that hCoeffs may alias with vectors. +// // It is then necessary to copy it before modifying vectors(i,i). +// typename CoeffsType::Scalar h = hCoeffs(i); +// // This hack permits to pass trough nested Block<> and Transpose<> expressions. +// Scalar *Vii_ptr = const_cast(vectors.data() + vectors.outerStride()*i + vectors.innerStride()*i); +// Scalar Vii = *Vii_ptr; +// *Vii_ptr = Scalar(1); +// triFactor.col(i).head(i).noalias() = -h * vectors.block(i, 0, rs, i).adjoint() +// * vectors.col(i).tail(rs); +// *Vii_ptr = Vii; +// // FIXME add .noalias() once the triangular product can work inplace +// triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView() +// * triFactor.col(i).head(i); +// triFactor(i,i) = hCoeffs(i); +// } +// } + +/** \internal */ +// This variant avoid modifications in vectors +template +void make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs) +{ + const Index nbVecs = vectors.cols(); + eigen_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs); + + for(Index i = nbVecs-1; i >=0 ; --i) + { + Index rs = vectors.rows() - i - 1; + Index rt = nbVecs-i-1; + + if(rt>0) + { + triFactor.row(i).tail(rt).noalias() = -hCoeffs(i) * vectors.col(i).tail(rs).adjoint() + * vectors.bottomRightCorner(rs, rt).template triangularView(); + + // FIXME use the following line with .noalias() once the triangular product can work inplace + // triFactor.row(i).tail(rt) = triFactor.row(i).tail(rt) * triFactor.bottomRightCorner(rt,rt).template triangularView(); + for(Index j=nbVecs-1; j>i; --j) + { + typename TriangularFactorType::Scalar z = triFactor(i,j); + triFactor(i,j) = z * triFactor(j,j); + if(nbVecs-j-1>0) + triFactor.row(i).tail(nbVecs-j-1) += z * triFactor.row(j).tail(nbVecs-j-1); + } + + } + triFactor(i,i) = hCoeffs(i); + } +} + +/** \internal + * if forward then perform mat = H0 * H1 * H2 * mat + * otherwise perform mat = H2 * H1 * H0 * mat + */ +template +void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs, bool forward) +{ + enum { TFactorSize = MatrixType::ColsAtCompileTime }; + Index nbVecs = vectors.cols(); + Matrix T(nbVecs,nbVecs); + + if(forward) make_block_householder_triangular_factor(T, vectors, hCoeffs); + else make_block_householder_triangular_factor(T, vectors, hCoeffs.conjugate()); + const TriangularView V(vectors); + + // A -= V T V^* A + Matrix tmp = V.adjoint() * mat; + // FIXME add .noalias() once the triangular product can work inplace + if(forward) tmp = T.template triangularView() * tmp; + else tmp = T.template triangularView().adjoint() * tmp; + mat.noalias() -= V * tmp; +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_BLOCK_HOUSEHOLDER_H diff --git a/include/eigen/Eigen/src/Householder/Householder.h b/include/eigen/Eigen/src/Householder/Householder.h new file mode 100644 index 0000000000000000000000000000000000000000..d8984a347f6e6bb10a9d9f06b80315aac7b207e7 --- /dev/null +++ b/include/eigen/Eigen/src/Householder/Householder.h @@ -0,0 +1,176 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2010 Benoit Jacob +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HOUSEHOLDER_H +#define EIGEN_HOUSEHOLDER_H + +namespace Eigen { + +namespace internal { +template struct decrement_size +{ + enum { + ret = n==Dynamic ? n : n-1 + }; +}; +} + +/** Computes the elementary reflector H such that: + * \f$ H *this = [ beta 0 ... 0]^T \f$ + * where the transformation H is: + * \f$ H = I - tau v v^*\f$ + * and the vector v is: + * \f$ v^T = [1 essential^T] \f$ + * + * The essential part of the vector \c v is stored in *this. + * + * On output: + * \param tau the scaling factor of the Householder transformation + * \param beta the result of H * \c *this + * + * \sa MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(), + * MatrixBase::applyHouseholderOnTheRight() + */ +template +EIGEN_DEVICE_FUNC +void MatrixBase::makeHouseholderInPlace(Scalar& tau, RealScalar& beta) +{ + VectorBlock::ret> essentialPart(derived(), 1, size()-1); + makeHouseholder(essentialPart, tau, beta); +} + +/** Computes the elementary reflector H such that: + * \f$ H *this = [ beta 0 ... 0]^T \f$ + * where the transformation H is: + * \f$ H = I - tau v v^*\f$ + * and the vector v is: + * \f$ v^T = [1 essential^T] \f$ + * + * On output: + * \param essential the essential part of the vector \c v + * \param tau the scaling factor of the Householder transformation + * \param beta the result of H * \c *this + * + * \sa MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(), + * MatrixBase::applyHouseholderOnTheRight() + */ +template +template +EIGEN_DEVICE_FUNC +void MatrixBase::makeHouseholder( + EssentialPart& essential, + Scalar& tau, + RealScalar& beta) const +{ + using numext::sqrt; + using numext::conj; + + EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart) + VectorBlock tail(derived(), 1, size()-1); + + RealScalar tailSqNorm = size()==1 ? RealScalar(0) : tail.squaredNorm(); + Scalar c0 = coeff(0); + const RealScalar tol = (std::numeric_limits::min)(); + + if(tailSqNorm <= tol && numext::abs2(numext::imag(c0))<=tol) + { + tau = RealScalar(0); + beta = numext::real(c0); + essential.setZero(); + } + else + { + beta = sqrt(numext::abs2(c0) + tailSqNorm); + if (numext::real(c0)>=RealScalar(0)) + beta = -beta; + essential = tail / (c0 - beta); + tau = conj((beta - c0) / beta); + } +} + +/** Apply the elementary reflector H given by + * \f$ H = I - tau v v^*\f$ + * with + * \f$ v^T = [1 essential^T] \f$ + * from the left to a vector or matrix. + * + * On input: + * \param essential the essential part of the vector \c v + * \param tau the scaling factor of the Householder transformation + * \param workspace a pointer to working space with at least + * this->cols() entries + * + * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), + * MatrixBase::applyHouseholderOnTheRight() + */ +template +template +EIGEN_DEVICE_FUNC +void MatrixBase::applyHouseholderOnTheLeft( + const EssentialPart& essential, + const Scalar& tau, + Scalar* workspace) +{ + if(rows() == 1) + { + *this *= Scalar(1)-tau; + } + else if(tau!=Scalar(0)) + { + Map::type> tmp(workspace,cols()); + Block bottom(derived(), 1, 0, rows()-1, cols()); + tmp.noalias() = essential.adjoint() * bottom; + tmp += this->row(0); + this->row(0) -= tau * tmp; + bottom.noalias() -= tau * essential * tmp; + } +} + +/** Apply the elementary reflector H given by + * \f$ H = I - tau v v^*\f$ + * with + * \f$ v^T = [1 essential^T] \f$ + * from the right to a vector or matrix. + * + * On input: + * \param essential the essential part of the vector \c v + * \param tau the scaling factor of the Householder transformation + * \param workspace a pointer to working space with at least + * this->rows() entries + * + * \sa MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), + * MatrixBase::applyHouseholderOnTheLeft() + */ +template +template +EIGEN_DEVICE_FUNC +void MatrixBase::applyHouseholderOnTheRight( + const EssentialPart& essential, + const Scalar& tau, + Scalar* workspace) +{ + if(cols() == 1) + { + *this *= Scalar(1)-tau; + } + else if(tau!=Scalar(0)) + { + Map::type> tmp(workspace,rows()); + Block right(derived(), 0, 1, rows(), cols()-1); + tmp.noalias() = right * essential; + tmp += this->col(0); + this->col(0) -= tau * tmp; + right.noalias() -= tau * tmp * essential.adjoint(); + } +} + +} // end namespace Eigen + +#endif // EIGEN_HOUSEHOLDER_H diff --git a/include/eigen/Eigen/src/Householder/HouseholderSequence.h b/include/eigen/Eigen/src/Householder/HouseholderSequence.h new file mode 100644 index 0000000000000000000000000000000000000000..b9c4aee6540bceac9250e44bb3e8e33567a3b932 --- /dev/null +++ b/include/eigen/Eigen/src/Householder/HouseholderSequence.h @@ -0,0 +1,553 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H +#define EIGEN_HOUSEHOLDER_SEQUENCE_H + +namespace Eigen { + +/** \ingroup Householder_Module + * + * \householder_module + * + * \class HouseholderSequence + * \brief Sequence of Householder reflections acting on subspaces with decreasing size + * \tparam VectorsType type of matrix containing the Householder vectors + * \tparam CoeffsType type of vector containing the Householder coefficients + * \tparam Side either OnTheLeft (the default) or OnTheRight + * + * This class represents a product sequence of Householder reflections where the first Householder reflection + * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by + * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace + * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but + * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections + * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods + * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), + * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. + * + * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the + * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i + * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ + * v_i \f$ is a vector of the form + * \f[ + * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. + * \f] + * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. + * + * Typical usages are listed below, where H is a HouseholderSequence: + * \code + * A.applyOnTheRight(H); // A = A * H + * A.applyOnTheLeft(H); // A = H * A + * A.applyOnTheRight(H.adjoint()); // A = A * H^* + * A.applyOnTheLeft(H.adjoint()); // A = H^* * A + * MatrixXd Q = H; // conversion to a dense matrix + * \endcode + * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. + * + * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. + * + * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ + +namespace internal { + +template +struct traits > +{ + typedef typename VectorsType::Scalar Scalar; + typedef typename VectorsType::StorageIndex StorageIndex; + typedef typename VectorsType::StorageKind StorageKind; + enum { + RowsAtCompileTime = Side==OnTheLeft ? traits::RowsAtCompileTime + : traits::ColsAtCompileTime, + ColsAtCompileTime = RowsAtCompileTime, + MaxRowsAtCompileTime = Side==OnTheLeft ? traits::MaxRowsAtCompileTime + : traits::MaxColsAtCompileTime, + MaxColsAtCompileTime = MaxRowsAtCompileTime, + Flags = 0 + }; +}; + +struct HouseholderSequenceShape {}; + +template +struct evaluator_traits > + : public evaluator_traits_base > +{ + typedef HouseholderSequenceShape Shape; +}; + +template +struct hseq_side_dependent_impl +{ + typedef Block EssentialVectorType; + typedef HouseholderSequence HouseholderSequenceType; + static EIGEN_DEVICE_FUNC inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) + { + Index start = k+1+h.m_shift; + return Block(h.m_vectors, start, k, h.rows()-start, 1); + } +}; + +template +struct hseq_side_dependent_impl +{ + typedef Transpose > EssentialVectorType; + typedef HouseholderSequence HouseholderSequenceType; + static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) + { + Index start = k+1+h.m_shift; + return Block(h.m_vectors, k, start, 1, h.rows()-start).transpose(); + } +}; + +template struct matrix_type_times_scalar_type +{ + typedef typename ScalarBinaryOpTraits::ReturnType + ResultScalar; + typedef Matrix Type; +}; + +} // end namespace internal + +template class HouseholderSequence + : public EigenBase > +{ + typedef typename internal::hseq_side_dependent_impl::EssentialVectorType EssentialVectorType; + + public: + enum { + RowsAtCompileTime = internal::traits::RowsAtCompileTime, + ColsAtCompileTime = internal::traits::ColsAtCompileTime, + MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, + MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime + }; + typedef typename internal::traits::Scalar Scalar; + + typedef HouseholderSequence< + typename internal::conditional::IsComplex, + typename internal::remove_all::type, + VectorsType>::type, + typename internal::conditional::IsComplex, + typename internal::remove_all::type, + CoeffsType>::type, + Side + > ConjugateReturnType; + + typedef HouseholderSequence< + VectorsType, + typename internal::conditional::IsComplex, + typename internal::remove_all::type, + CoeffsType>::type, + Side + > AdjointReturnType; + + typedef HouseholderSequence< + typename internal::conditional::IsComplex, + typename internal::remove_all::type, + VectorsType>::type, + CoeffsType, + Side + > TransposeReturnType; + + typedef HouseholderSequence< + typename internal::add_const::type, + typename internal::add_const::type, + Side + > ConstHouseholderSequence; + + /** \brief Constructor. + * \param[in] v %Matrix containing the essential parts of the Householder vectors + * \param[in] h Vector containing the Householder coefficients + * + * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The + * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th + * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the + * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many + * Householder reflections as there are columns. + * + * \note The %HouseholderSequence object stores \p v and \p h by reference. + * + * Example: \include HouseholderSequence_HouseholderSequence.cpp + * Output: \verbinclude HouseholderSequence_HouseholderSequence.out + * + * \sa setLength(), setShift() + */ + EIGEN_DEVICE_FUNC + HouseholderSequence(const VectorsType& v, const CoeffsType& h) + : m_vectors(v), m_coeffs(h), m_reverse(false), m_length(v.diagonalSize()), + m_shift(0) + { + } + + /** \brief Copy constructor. */ + EIGEN_DEVICE_FUNC + HouseholderSequence(const HouseholderSequence& other) + : m_vectors(other.m_vectors), + m_coeffs(other.m_coeffs), + m_reverse(other.m_reverse), + m_length(other.m_length), + m_shift(other.m_shift) + { + } + + /** \brief Number of rows of transformation viewed as a matrix. + * \returns Number of rows + * \details This equals the dimension of the space that the transformation acts on. + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index rows() const EIGEN_NOEXCEPT { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } + + /** \brief Number of columns of transformation viewed as a matrix. + * \returns Number of columns + * \details This equals the dimension of the space that the transformation acts on. + */ + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + Index cols() const EIGEN_NOEXCEPT { return rows(); } + + /** \brief Essential part of a Householder vector. + * \param[in] k Index of Householder reflection + * \returns Vector containing non-trivial entries of k-th Householder vector + * + * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of + * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector + * \f[ + * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. + * \f] + * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v + * passed to the constructor. + * + * \sa setShift(), shift() + */ + EIGEN_DEVICE_FUNC + const EssentialVectorType essentialVector(Index k) const + { + eigen_assert(k >= 0 && k < m_length); + return internal::hseq_side_dependent_impl::essentialVector(*this, k); + } + + /** \brief %Transpose of the Householder sequence. */ + TransposeReturnType transpose() const + { + return TransposeReturnType(m_vectors.conjugate(), m_coeffs) + .setReverseFlag(!m_reverse) + .setLength(m_length) + .setShift(m_shift); + } + + /** \brief Complex conjugate of the Householder sequence. */ + ConjugateReturnType conjugate() const + { + return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) + .setReverseFlag(m_reverse) + .setLength(m_length) + .setShift(m_shift); + } + + /** \returns an expression of the complex conjugate of \c *this if Cond==true, + * returns \c *this otherwise. + */ + template + EIGEN_DEVICE_FUNC + inline typename internal::conditional::type + conjugateIf() const + { + typedef typename internal::conditional::type ReturnType; + return ReturnType(m_vectors.template conjugateIf(), m_coeffs.template conjugateIf()); + } + + /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ + AdjointReturnType adjoint() const + { + return AdjointReturnType(m_vectors, m_coeffs.conjugate()) + .setReverseFlag(!m_reverse) + .setLength(m_length) + .setShift(m_shift); + } + + /** \brief Inverse of the Householder sequence (equals the adjoint). */ + AdjointReturnType inverse() const { return adjoint(); } + + /** \internal */ + template + inline EIGEN_DEVICE_FUNC + void evalTo(DestType& dst) const + { + Matrix workspace(rows()); + evalTo(dst, workspace); + } + + /** \internal */ + template + EIGEN_DEVICE_FUNC + void evalTo(Dest& dst, Workspace& workspace) const + { + workspace.resize(rows()); + Index vecs = m_length; + if(internal::is_same_dense(dst,m_vectors)) + { + // in-place + dst.diagonal().setOnes(); + dst.template triangularView().setZero(); + for(Index k = vecs-1; k >= 0; --k) + { + Index cornerSize = rows() - k - m_shift; + if(m_reverse) + dst.bottomRightCorner(cornerSize, cornerSize) + .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); + else + dst.bottomRightCorner(cornerSize, cornerSize) + .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); + + // clear the off diagonal vector + dst.col(k).tail(rows()-k-1).setZero(); + } + // clear the remaining columns if needed + for(Index k = 0; kBlockSize) + { + dst.setIdentity(rows(), rows()); + if(m_reverse) + applyThisOnTheLeft(dst,workspace,true); + else + applyThisOnTheLeft(dst,workspace,true); + } + else + { + dst.setIdentity(rows(), rows()); + for(Index k = vecs-1; k >= 0; --k) + { + Index cornerSize = rows() - k - m_shift; + if(m_reverse) + dst.bottomRightCorner(cornerSize, cornerSize) + .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); + else + dst.bottomRightCorner(cornerSize, cornerSize) + .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); + } + } + } + + /** \internal */ + template inline void applyThisOnTheRight(Dest& dst) const + { + Matrix workspace(dst.rows()); + applyThisOnTheRight(dst, workspace); + } + + /** \internal */ + template + inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const + { + workspace.resize(dst.rows()); + for(Index k = 0; k < m_length; ++k) + { + Index actual_k = m_reverse ? m_length-k-1 : k; + dst.rightCols(rows()-m_shift-actual_k) + .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); + } + } + + /** \internal */ + template inline void applyThisOnTheLeft(Dest& dst, bool inputIsIdentity = false) const + { + Matrix workspace; + applyThisOnTheLeft(dst, workspace, inputIsIdentity); + } + + /** \internal */ + template + inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace, bool inputIsIdentity = false) const + { + if(inputIsIdentity && m_reverse) + inputIsIdentity = false; + // if the entries are large enough, then apply the reflectors by block + if(m_length>=BlockSize && dst.cols()>1) + { + // Make sure we have at least 2 useful blocks, otherwise it is point-less: + Index blockSize = m_length::type,Dynamic,Dynamic> SubVectorsType; + SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start, + Side==OnTheRight ? start : k, + Side==OnTheRight ? bs : m_vectors.rows()-start, + Side==OnTheRight ? m_vectors.cols()-start : bs); + typename internal::conditional, SubVectorsType&>::type sub_vecs(sub_vecs1); + + Index dstStart = dst.rows()-rows()+m_shift+k; + Index dstRows = rows()-m_shift-k; + Block sub_dst(dst, + dstStart, + inputIsIdentity ? dstStart : 0, + dstRows, + inputIsIdentity ? dstRows : dst.cols()); + apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_reverse); + } + } + else + { + workspace.resize(dst.cols()); + for(Index k = 0; k < m_length; ++k) + { + Index actual_k = m_reverse ? k : m_length-k-1; + Index dstStart = rows()-m_shift-actual_k; + dst.bottomRightCorner(dstStart, inputIsIdentity ? dstStart : dst.cols()) + .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); + } + } + } + + /** \brief Computes the product of a Householder sequence with a matrix. + * \param[in] other %Matrix being multiplied. + * \returns Expression object representing the product. + * + * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this + * and \f$ M \f$ is the matrix \p other. + */ + template + typename internal::matrix_type_times_scalar_type::Type operator*(const MatrixBase& other) const + { + typename internal::matrix_type_times_scalar_type::Type + res(other.template cast::ResultScalar>()); + applyThisOnTheLeft(res, internal::is_identity::value && res.rows()==res.cols()); + return res; + } + + template friend struct internal::hseq_side_dependent_impl; + + /** \brief Sets the length of the Householder sequence. + * \param [in] length New value for the length. + * + * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set + * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that + * is smaller. After this function is called, the length equals \p length. + * + * \sa length() + */ + EIGEN_DEVICE_FUNC + HouseholderSequence& setLength(Index length) + { + m_length = length; + return *this; + } + + /** \brief Sets the shift of the Householder sequence. + * \param [in] shift New value for the shift. + * + * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th + * column of the matrix \p v passed to the constructor corresponds to the i-th Householder + * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} + * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th + * Householder reflection. + * + * \sa shift() + */ + EIGEN_DEVICE_FUNC + HouseholderSequence& setShift(Index shift) + { + m_shift = shift; + return *this; + } + + EIGEN_DEVICE_FUNC + Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */ + + EIGEN_DEVICE_FUNC + Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */ + + /* Necessary for .adjoint() and .conjugate() */ + template friend class HouseholderSequence; + + protected: + + /** \internal + * \brief Sets the reverse flag. + * \param [in] reverse New value of the reverse flag. + * + * By default, the reverse flag is not set. If the reverse flag is set, then this object represents + * \f$ H^r = H_{n-1} \ldots H_1 H_0 \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. + * \note For real valued HouseholderSequence this is equivalent to transposing \f$ H \f$. + * + * \sa reverseFlag(), transpose(), adjoint() + */ + HouseholderSequence& setReverseFlag(bool reverse) + { + m_reverse = reverse; + return *this; + } + + bool reverseFlag() const { return m_reverse; } /**< \internal \brief Returns the reverse flag. */ + + typename VectorsType::Nested m_vectors; + typename CoeffsType::Nested m_coeffs; + bool m_reverse; + Index m_length; + Index m_shift; + enum { BlockSize = 48 }; +}; + +/** \brief Computes the product of a matrix with a Householder sequence. + * \param[in] other %Matrix being multiplied. + * \param[in] h %HouseholderSequence being multiplied. + * \returns Expression object representing the product. + * + * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the + * Householder sequence represented by \p h. + */ +template +typename internal::matrix_type_times_scalar_type::Type operator*(const MatrixBase& other, const HouseholderSequence& h) +{ + typename internal::matrix_type_times_scalar_type::Type + res(other.template cast::ResultScalar>()); + h.applyThisOnTheRight(res); + return res; +} + +/** \ingroup Householder_Module + * + * \householder_module + * + * \brief Convenience function for constructing a Householder sequence. + * \returns A HouseholderSequence constructed from the specified arguments. + */ +template +HouseholderSequence householderSequence(const VectorsType& v, const CoeffsType& h) +{ + return HouseholderSequence(v, h); +} + +/** \ingroup Householder_Module + * + * \householder_module + * + * \brief Convenience function for constructing a Householder sequence. + * \returns A HouseholderSequence constructed from the specified arguments. + * \details This function differs from householderSequence() in that the template argument \p OnTheSide of + * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. + */ +template +HouseholderSequence rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) +{ + return HouseholderSequence(v, h); +} + +} // end namespace Eigen + +#endif // EIGEN_HOUSEHOLDER_SEQUENCE_H diff --git a/include/eigen/Eigen/src/Jacobi/Jacobi.h b/include/eigen/Eigen/src/Jacobi/Jacobi.h new file mode 100644 index 0000000000000000000000000000000000000000..76668a574aee62f2a52e434fd4b7ebc7d5a952ee --- /dev/null +++ b/include/eigen/Eigen/src/Jacobi/Jacobi.h @@ -0,0 +1,483 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_JACOBI_H +#define EIGEN_JACOBI_H + +namespace Eigen { + +/** \ingroup Jacobi_Module + * \jacobi_module + * \class JacobiRotation + * \brief Rotation given by a cosine-sine pair. + * + * This class represents a Jacobi or Givens rotation. + * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by + * its cosine \c c and sine \c s as follow: + * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ + * + * You can apply the respective counter-clockwise rotation to a column vector \c v by + * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: + * \code + * v.applyOnTheLeft(J.adjoint()); + * \endcode + * + * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template class JacobiRotation +{ + public: + typedef typename NumTraits::Real RealScalar; + + /** Default constructor without any initialization. */ + EIGEN_DEVICE_FUNC + JacobiRotation() {} + + /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ + EIGEN_DEVICE_FUNC + JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} + + EIGEN_DEVICE_FUNC Scalar& c() { return m_c; } + EIGEN_DEVICE_FUNC Scalar c() const { return m_c; } + EIGEN_DEVICE_FUNC Scalar& s() { return m_s; } + EIGEN_DEVICE_FUNC Scalar s() const { return m_s; } + + /** Concatenates two planar rotation */ + EIGEN_DEVICE_FUNC + JacobiRotation operator*(const JacobiRotation& other) + { + using numext::conj; + return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, + conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); + } + + /** Returns the transposed transformation */ + EIGEN_DEVICE_FUNC + JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); } + + /** Returns the adjoint transformation */ + EIGEN_DEVICE_FUNC + JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } + + template + EIGEN_DEVICE_FUNC + bool makeJacobi(const MatrixBase&, Index p, Index q); + EIGEN_DEVICE_FUNC + bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); + + EIGEN_DEVICE_FUNC + void makeGivens(const Scalar& p, const Scalar& q, Scalar* r=0); + + protected: + EIGEN_DEVICE_FUNC + void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type); + EIGEN_DEVICE_FUNC + void makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type); + + Scalar m_c, m_s; +}; + +/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix + * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ + * + * \sa MatrixBase::makeJacobi(const MatrixBase&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +EIGEN_DEVICE_FUNC +bool JacobiRotation::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) +{ + using std::sqrt; + using std::abs; + + RealScalar deno = RealScalar(2)*abs(y); + if(deno < (std::numeric_limits::min)()) + { + m_c = Scalar(1); + m_s = Scalar(0); + return false; + } + else + { + RealScalar tau = (x-z)/deno; + RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); + RealScalar t; + if(tau>RealScalar(0)) + { + t = RealScalar(1) / (tau + w); + } + else + { + t = RealScalar(1) / (tau - w); + } + RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); + RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); + m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; + m_c = n; + return true; + } +} + +/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix + * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields + * a diagonal matrix \f$ A = J^* B J \f$ + * + * Example: \include Jacobi_makeJacobi.cpp + * Output: \verbinclude Jacobi_makeJacobi.out + * + * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +template +EIGEN_DEVICE_FUNC +inline bool JacobiRotation::makeJacobi(const MatrixBase& m, Index p, Index q) +{ + return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q))); +} + +/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector + * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: + * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. + * + * The value of \a r is returned if \a r is not null (the default is null). + * Also note that G is built such that the cosine is always real. + * + * Example: \include Jacobi_makeGivens.cpp + * Output: \verbinclude Jacobi_makeGivens.out + * + * This function implements the continuous Givens rotation generation algorithm + * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. + * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. + * + * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +EIGEN_DEVICE_FUNC +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r) +{ + makeGivens(p, q, r, typename internal::conditional::IsComplex, internal::true_type, internal::false_type>::type()); +} + + +// specialization for complexes +template +EIGEN_DEVICE_FUNC +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) +{ + using std::sqrt; + using std::abs; + using numext::conj; + + if(q==Scalar(0)) + { + m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1); + m_s = 0; + if(r) *r = m_c * p; + } + else if(p==Scalar(0)) + { + m_c = 0; + m_s = -q/abs(q); + if(r) *r = abs(q); + } + else + { + RealScalar p1 = numext::norm1(p); + RealScalar q1 = numext::norm1(q); + if(p1>=q1) + { + Scalar ps = p / p1; + RealScalar p2 = numext::abs2(ps); + Scalar qs = q / p1; + RealScalar q2 = numext::abs2(qs); + + RealScalar u = sqrt(RealScalar(1) + q2/p2); + if(numext::real(p) +EIGEN_DEVICE_FUNC +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) +{ + using std::sqrt; + using std::abs; + if(q==Scalar(0)) + { + m_c = p abs(q)) + { + Scalar t = q/p; + Scalar u = sqrt(Scalar(1) + numext::abs2(t)); + if(p +EIGEN_DEVICE_FUNC +void apply_rotation_in_the_plane(DenseBase& xpr_x, DenseBase& xpr_y, const JacobiRotation& j); +} + +/** \jacobi_module + * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, + * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. + * + * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() + */ +template +template +EIGEN_DEVICE_FUNC +inline void MatrixBase::applyOnTheLeft(Index p, Index q, const JacobiRotation& j) +{ + RowXpr x(this->row(p)); + RowXpr y(this->row(q)); + internal::apply_rotation_in_the_plane(x, y, j); +} + +/** \ingroup Jacobi_Module + * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J + * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. + * + * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() + */ +template +template +EIGEN_DEVICE_FUNC +inline void MatrixBase::applyOnTheRight(Index p, Index q, const JacobiRotation& j) +{ + ColXpr x(this->col(p)); + ColXpr y(this->col(q)); + internal::apply_rotation_in_the_plane(x, y, j.transpose()); +} + +namespace internal { + +template +struct apply_rotation_in_the_plane_selector +{ + static EIGEN_DEVICE_FUNC + inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) + { + for(Index i=0; i +struct apply_rotation_in_the_plane_selector +{ + static inline void run(Scalar *x, Index incrx, Scalar *y, Index incry, Index size, OtherScalar c, OtherScalar s) + { + enum { + PacketSize = packet_traits::size, + OtherPacketSize = packet_traits::size + }; + typedef typename packet_traits::type Packet; + typedef typename packet_traits::type OtherPacket; + + /*** dynamic-size vectorized paths ***/ + if(SizeAtCompileTime == Dynamic && ((incrx==1 && incry==1) || PacketSize == 1)) + { + // both vectors are sequentially stored in memory => vectorization + enum { Peeling = 2 }; + + Index alignedStart = internal::first_default_aligned(y, size); + Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; + + const OtherPacket pc = pset1(c); + const OtherPacket ps = pset1(s); + conj_helper::IsComplex,false> pcj; + conj_helper pm; + + for(Index i=0; i(px); + Packet yi = pload(py); + pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); + pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); + px += PacketSize; + py += PacketSize; + } + } + else + { + Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); + for(Index i=alignedStart; i(px); + Packet xi1 = ploadu(px+PacketSize); + Packet yi = pload (py); + Packet yi1 = pload (py+PacketSize); + pstoreu(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); + pstoreu(px+PacketSize, padd(pm.pmul(pc,xi1),pcj.pmul(ps,yi1))); + pstore (py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); + pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pm.pmul(ps,xi1))); + px += Peeling*PacketSize; + py += Peeling*PacketSize; + } + if(alignedEnd!=peelingEnd) + { + Packet xi = ploadu(x+peelingEnd); + Packet yi = pload (y+peelingEnd); + pstoreu(x+peelingEnd, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); + pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); + } + } + + for(Index i=alignedEnd; i0) // FIXME should be compared to the required alignment + { + const OtherPacket pc = pset1(c); + const OtherPacket ps = pset1(s); + conj_helper::IsComplex,false> pcj; + conj_helper pm; + Scalar* EIGEN_RESTRICT px = x; + Scalar* EIGEN_RESTRICT py = y; + for(Index i=0; i(px); + Packet yi = pload(py); + pstore(px, padd(pm.pmul(pc,xi),pcj.pmul(ps,yi))); + pstore(py, psub(pcj.pmul(pc,yi),pm.pmul(ps,xi))); + px += PacketSize; + py += PacketSize; + } + } + + /*** non-vectorized path ***/ + else + { + apply_rotation_in_the_plane_selector::run(x,incrx,y,incry,size,c,s); + } + } +}; + +template +EIGEN_DEVICE_FUNC +void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(DenseBase& xpr_x, DenseBase& xpr_y, const JacobiRotation& j) +{ + typedef typename VectorX::Scalar Scalar; + const bool Vectorizable = (int(VectorX::Flags) & int(VectorY::Flags) & PacketAccessBit) + && (int(packet_traits::size) == int(packet_traits::size)); + + eigen_assert(xpr_x.size() == xpr_y.size()); + Index size = xpr_x.size(); + Index incrx = xpr_x.derived().innerStride(); + Index incry = xpr_y.derived().innerStride(); + + Scalar* EIGEN_RESTRICT x = &xpr_x.derived().coeffRef(0); + Scalar* EIGEN_RESTRICT y = &xpr_y.derived().coeffRef(0); + + OtherScalar c = j.c(); + OtherScalar s = j.s(); + if (c==OtherScalar(1) && s==OtherScalar(0)) + return; + + apply_rotation_in_the_plane_selector< + Scalar,OtherScalar, + VectorX::SizeAtCompileTime, + EIGEN_PLAIN_ENUM_MIN(evaluator::Alignment, evaluator::Alignment), + Vectorizable>::run(x,incrx,y,incry,size,c,s); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_JACOBI_H diff --git a/include/eigen/Eigen/src/LU/Determinant.h b/include/eigen/Eigen/src/LU/Determinant.h new file mode 100644 index 0000000000000000000000000000000000000000..3a41e6fcba3b4e47c429c774579d02202c68db88 --- /dev/null +++ b/include/eigen/Eigen/src/LU/Determinant.h @@ -0,0 +1,117 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_DETERMINANT_H +#define EIGEN_DETERMINANT_H + +namespace Eigen { + +namespace internal { + +template +EIGEN_DEVICE_FUNC +inline const typename Derived::Scalar bruteforce_det3_helper +(const MatrixBase& matrix, int a, int b, int c) +{ + return matrix.coeff(0,a) + * (matrix.coeff(1,b) * matrix.coeff(2,c) - matrix.coeff(1,c) * matrix.coeff(2,b)); +} + +template struct determinant_impl +{ + static inline typename traits::Scalar run(const Derived& m) + { + if(Derived::ColsAtCompileTime==Dynamic && m.rows()==0) + return typename traits::Scalar(1); + return m.partialPivLu().determinant(); + } +}; + +template struct determinant_impl +{ + static inline EIGEN_DEVICE_FUNC + typename traits::Scalar run(const Derived& m) + { + return m.coeff(0,0); + } +}; + +template struct determinant_impl +{ + static inline EIGEN_DEVICE_FUNC + typename traits::Scalar run(const Derived& m) + { + return m.coeff(0,0) * m.coeff(1,1) - m.coeff(1,0) * m.coeff(0,1); + } +}; + +template struct determinant_impl +{ + static inline EIGEN_DEVICE_FUNC + typename traits::Scalar run(const Derived& m) + { + return bruteforce_det3_helper(m,0,1,2) + - bruteforce_det3_helper(m,1,0,2) + + bruteforce_det3_helper(m,2,0,1); + } +}; + +template struct determinant_impl +{ + typedef typename traits::Scalar Scalar; + static EIGEN_DEVICE_FUNC + Scalar run(const Derived& m) + { + Scalar d2_01 = det2(m, 0, 1); + Scalar d2_02 = det2(m, 0, 2); + Scalar d2_03 = det2(m, 0, 3); + Scalar d2_12 = det2(m, 1, 2); + Scalar d2_13 = det2(m, 1, 3); + Scalar d2_23 = det2(m, 2, 3); + Scalar d3_0 = det3(m, 1,d2_23, 2,d2_13, 3,d2_12); + Scalar d3_1 = det3(m, 0,d2_23, 2,d2_03, 3,d2_02); + Scalar d3_2 = det3(m, 0,d2_13, 1,d2_03, 3,d2_01); + Scalar d3_3 = det3(m, 0,d2_12, 1,d2_02, 2,d2_01); + return internal::pmadd(-m(0,3),d3_0, m(1,3)*d3_1) + + internal::pmadd(-m(2,3),d3_2, m(3,3)*d3_3); + } +protected: + static EIGEN_DEVICE_FUNC + Scalar det2(const Derived& m, Index i0, Index i1) + { + return m(i0,0) * m(i1,1) - m(i1,0) * m(i0,1); + } + + static EIGEN_DEVICE_FUNC + Scalar det3(const Derived& m, Index i0, const Scalar& d0, Index i1, const Scalar& d1, Index i2, const Scalar& d2) + { + return internal::pmadd(m(i0,2), d0, internal::pmadd(-m(i1,2), d1, m(i2,2)*d2)); + } +}; + +} // end namespace internal + +/** \lu_module + * + * \returns the determinant of this matrix + */ +template +EIGEN_DEVICE_FUNC +inline typename internal::traits::Scalar MatrixBase::determinant() const +{ + eigen_assert(rows() == cols()); + typedef typename internal::nested_eval::type Nested; + return internal::determinant_impl::type>::run(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN_DETERMINANT_H diff --git a/include/eigen/Eigen/src/LU/FullPivLU.h b/include/eigen/Eigen/src/LU/FullPivLU.h new file mode 100644 index 0000000000000000000000000000000000000000..ba1749fa69c6a93afd16c2c7325c1dbc2fe0f4aa --- /dev/null +++ b/include/eigen/Eigen/src/LU/FullPivLU.h @@ -0,0 +1,877 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_LU_H +#define EIGEN_LU_H + +namespace Eigen { + +namespace internal { +template struct traits > + : traits<_MatrixType> +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + enum { Flags = 0 }; +}; + +} // end namespace internal + +/** \ingroup LU_Module + * + * \class FullPivLU + * + * \brief LU decomposition of a matrix with complete pivoting, and related features + * + * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition + * + * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is + * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is + * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU + * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any + * zeros are at the end. + * + * This decomposition provides the generic approach to solving systems of linear equations, computing + * the rank, invertibility, inverse, kernel, and determinant. + * + * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD + * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, + * working with the SVD allows to select the smallest singular values of the matrix, something that + * the LU decomposition doesn't see. + * + * The data of the LU decomposition can be directly accessed through the methods matrixLU(), + * permutationP(), permutationQ(). + * + * As an example, here is how the original matrix can be retrieved: + * \include class_FullPivLU.cpp + * Output: \verbinclude class_FullPivLU.out + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() + */ +template class FullPivLU + : public SolverBase > +{ + public: + typedef _MatrixType MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename internal::plain_row_type::type IntRowVectorType; + typedef typename internal::plain_col_type::type IntColVectorType; + typedef PermutationMatrix PermutationQType; + typedef PermutationMatrix PermutationPType; + typedef typename MatrixType::PlainObject PlainObject; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via LU::compute(const MatrixType&). + */ + FullPivLU(); + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa FullPivLU() + */ + FullPivLU(Index rows, Index cols); + + /** Constructor. + * + * \param matrix the matrix of which to compute the LU decomposition. + * It is required to be nonzero. + */ + template + explicit FullPivLU(const EigenBase& matrix); + + /** \brief Constructs a LU factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa FullPivLU(const EigenBase&) + */ + template + explicit FullPivLU(EigenBase& matrix); + + /** Computes the LU decomposition of the given matrix. + * + * \param matrix the matrix of which to compute the LU decomposition. + * It is required to be nonzero. + * + * \returns a reference to *this + */ + template + FullPivLU& compute(const EigenBase& matrix) { + m_lu = matrix.derived(); + computeInPlace(); + return *this; + } + + /** \returns the LU decomposition matrix: the upper-triangular part is U, the + * unit-lower-triangular part is L (at least for square matrices; in the non-square + * case, special care is needed, see the documentation of class FullPivLU). + * + * \sa matrixL(), matrixU() + */ + inline const MatrixType& matrixLU() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_lu; + } + + /** \returns the number of nonzero pivots in the LU decomposition. + * Here nonzero is meant in the exact sense, not in a fuzzy sense. + * So that notion isn't really intrinsically interesting, but it is + * still useful when implementing algorithms. + * + * \sa rank() + */ + inline Index nonzeroPivots() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_nonzero_pivots; + } + + /** \returns the absolute value of the biggest pivot, i.e. the biggest + * diagonal coefficient of U. + */ + RealScalar maxPivot() const { return m_maxpivot; } + + /** \returns the permutation matrix P + * + * \sa permutationQ() + */ + EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_p; + } + + /** \returns the permutation matrix Q + * + * \sa permutationP() + */ + inline const PermutationQType& permutationQ() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return m_q; + } + + /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix + * will form a basis of the kernel. + * + * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + * + * Example: \include FullPivLU_kernel.cpp + * Output: \verbinclude FullPivLU_kernel.out + * + * \sa image() + */ + inline const internal::kernel_retval kernel() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return internal::kernel_retval(*this); + } + + /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix + * will form a basis of the image (column-space). + * + * \param originalMatrix the original matrix, of which *this is the LU decomposition. + * The reason why it is needed to pass it here, is that this allows + * a large optimization, as otherwise this method would need to reconstruct it + * from the LU decomposition. + * + * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + * + * Example: \include FullPivLU_image.cpp + * Output: \verbinclude FullPivLU_image.out + * + * \sa kernel() + */ + inline const internal::image_retval + image(const MatrixType& originalMatrix) const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return internal::image_retval(*this, originalMatrix); + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** \return a solution x to the equation Ax=b, where A is the matrix of which + * *this is the LU decomposition. + * + * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, + * the only requirement in order for the equation to make sense is that + * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. + * + * \returns a solution. + * + * \note_about_checking_solutions + * + * \note_about_arbitrary_choice_of_solution + * \note_about_using_kernel_to_study_multiple_solutions + * + * Example: \include FullPivLU_solve.cpp + * Output: \verbinclude FullPivLU_solve.out + * + * \sa TriangularView::solve(), kernel(), inverse() + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is + the LU decomposition. + */ + inline RealScalar rcond() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + /** \returns the determinant of the matrix of which + * *this is the LU decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the LU decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers + * optimized paths. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * + * \sa MatrixBase::determinant() + */ + typename internal::traits::Scalar determinant() const; + + /** Allows to prescribe a threshold to be used by certain methods, such as rank(), + * who need to determine when pivots are to be considered nonzero. This is not used for the + * LU decomposition itself. + * + * When it needs to get the threshold value, Eigen calls threshold(). By default, this + * uses a formula to automatically determine a reasonable threshold. + * Once you have called the present method setThreshold(const RealScalar&), + * your value is used instead. + * + * \param threshold The new value to use as the threshold. + * + * A pivot will be considered nonzero if its absolute value is strictly greater than + * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ + * where maxpivot is the biggest pivot. + * + * If you want to come back to the default behavior, call setThreshold(Default_t) + */ + FullPivLU& setThreshold(const RealScalar& threshold) + { + m_usePrescribedThreshold = true; + m_prescribedThreshold = threshold; + return *this; + } + + /** Allows to come back to the default behavior, letting Eigen use its default formula for + * determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code lu.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + FullPivLU& setThreshold(Default_t) + { + m_usePrescribedThreshold = false; + return *this; + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const + { + eigen_assert(m_isInitialized || m_usePrescribedThreshold); + return m_usePrescribedThreshold ? m_prescribedThreshold + // this formula comes from experimenting (see "LU precision tuning" thread on the list) + // and turns out to be identical to Higham's formula used already in LDLt. + : NumTraits::epsilon() * RealScalar(m_lu.diagonalSize()); + } + + /** \returns the rank of the matrix of which *this is the LU decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index rank() const + { + using std::abs; + eigen_assert(m_isInitialized && "LU is not initialized."); + RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); + Index result = 0; + for(Index i = 0; i < m_nonzero_pivots; ++i) + result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); + return result; + } + + /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index dimensionOfKernel() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return cols() - rank(); + } + + /** \returns true if the matrix of which *this is the LU decomposition represents an injective + * linear map, i.e. has trivial kernel; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInjective() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return rank() == cols(); + } + + /** \returns true if the matrix of which *this is the LU decomposition represents a surjective + * linear map; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isSurjective() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return rank() == rows(); + } + + /** \returns true if the matrix of which *this is the LU decomposition is invertible. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInvertible() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + return isInjective() && (m_lu.rows() == m_lu.cols()); + } + + /** \returns the inverse of the matrix of which *this is the LU decomposition. + * + * \note If this matrix is not invertible, the returned matrix has undefined coefficients. + * Use isInvertible() to first determine whether this matrix is invertible. + * + * \sa MatrixBase::inverse() + */ + inline const Inverse inverse() const + { + eigen_assert(m_isInitialized && "LU is not initialized."); + eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); + return Inverse(*this); + } + + MatrixType reconstructedMatrix() const; + + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } + EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR + inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + void _solve_impl(const RhsType &rhs, DstType &dst) const; + + template + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; + #endif + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + void computeInPlace(); + + MatrixType m_lu; + PermutationPType m_p; + PermutationQType m_q; + IntColVectorType m_rowsTranspositions; + IntRowVectorType m_colsTranspositions; + Index m_nonzero_pivots; + RealScalar m_l1_norm; + RealScalar m_maxpivot, m_prescribedThreshold; + signed char m_det_pq; + bool m_isInitialized, m_usePrescribedThreshold; +}; + +template +FullPivLU::FullPivLU() + : m_isInitialized(false), m_usePrescribedThreshold(false) +{ +} + +template +FullPivLU::FullPivLU(Index rows, Index cols) + : m_lu(rows, cols), + m_p(rows), + m_q(cols), + m_rowsTranspositions(rows), + m_colsTranspositions(cols), + m_isInitialized(false), + m_usePrescribedThreshold(false) +{ +} + +template +template +FullPivLU::FullPivLU(const EigenBase& matrix) + : m_lu(matrix.rows(), matrix.cols()), + m_p(matrix.rows()), + m_q(matrix.cols()), + m_rowsTranspositions(matrix.rows()), + m_colsTranspositions(matrix.cols()), + m_isInitialized(false), + m_usePrescribedThreshold(false) +{ + compute(matrix.derived()); +} + +template +template +FullPivLU::FullPivLU(EigenBase& matrix) + : m_lu(matrix.derived()), + m_p(matrix.rows()), + m_q(matrix.cols()), + m_rowsTranspositions(matrix.rows()), + m_colsTranspositions(matrix.cols()), + m_isInitialized(false), + m_usePrescribedThreshold(false) +{ + computeInPlace(); +} + +template +void FullPivLU::computeInPlace() +{ + check_template_parameters(); + + // the permutations are stored as int indices, so just to be sure: + eigen_assert(m_lu.rows()<=NumTraits::highest() && m_lu.cols()<=NumTraits::highest()); + + m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); + + const Index size = m_lu.diagonalSize(); + const Index rows = m_lu.rows(); + const Index cols = m_lu.cols(); + + // will store the transpositions, before we accumulate them at the end. + // can't accumulate on-the-fly because that will be done in reverse order for the rows. + m_rowsTranspositions.resize(m_lu.rows()); + m_colsTranspositions.resize(m_lu.cols()); + Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i + + m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) + m_maxpivot = RealScalar(0); + + for(Index k = 0; k < size; ++k) + { + // First, we need to find the pivot. + + // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) + Index row_of_biggest_in_corner, col_of_biggest_in_corner; + typedef internal::scalar_score_coeff_op Scoring; + typedef typename Scoring::result_type Score; + Score biggest_in_corner; + biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) + .unaryExpr(Scoring()) + .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); + row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, + col_of_biggest_in_corner += k; // need to add k to them. + + if(biggest_in_corner==Score(0)) + { + // before exiting, make sure to initialize the still uninitialized transpositions + // in a sane state without destroying what we already have. + m_nonzero_pivots = k; + for(Index i = k; i < size; ++i) + { + m_rowsTranspositions.coeffRef(i) = internal::convert_index(i); + m_colsTranspositions.coeffRef(i) = internal::convert_index(i); + } + break; + } + + RealScalar abs_pivot = internal::abs_knowing_score()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner); + if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot; + + // Now that we've found the pivot, we need to apply the row/col swaps to + // bring it to the location (k,k). + + m_rowsTranspositions.coeffRef(k) = internal::convert_index(row_of_biggest_in_corner); + m_colsTranspositions.coeffRef(k) = internal::convert_index(col_of_biggest_in_corner); + if(k != row_of_biggest_in_corner) { + m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); + ++number_of_transpositions; + } + if(k != col_of_biggest_in_corner) { + m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); + ++number_of_transpositions; + } + + // Now that the pivot is at the right location, we update the remaining + // bottom-right corner by Gaussian elimination. + + if(k= 0; --k) + m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); + + m_q.setIdentity(cols); + for(Index k = 0; k < size; ++k) + m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); + + m_det_pq = (number_of_transpositions%2) ? -1 : 1; + + m_isInitialized = true; +} + +template +typename internal::traits::Scalar FullPivLU::determinant() const +{ + eigen_assert(m_isInitialized && "LU is not initialized."); + eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); + return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$. + * This function is provided for debug purposes. */ +template +MatrixType FullPivLU::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LU is not initialized."); + const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); + // LU + MatrixType res(m_lu.rows(),m_lu.cols()); + // FIXME the .toDenseMatrix() should not be needed... + res = m_lu.leftCols(smalldim) + .template triangularView().toDenseMatrix() + * m_lu.topRows(smalldim) + .template triangularView().toDenseMatrix(); + + // P^{-1}(LU) + res = m_p.inverse() * res; + + // (P^{-1}LU)Q^{-1} + res = res * m_q.inverse(); + + return res; +} + +/********* Implementation of kernel() **************************************************/ + +namespace internal { +template +struct kernel_retval > + : kernel_retval_base > +{ + EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) + + enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( + MatrixType::MaxColsAtCompileTime, + MatrixType::MaxRowsAtCompileTime) + }; + + template void evalTo(Dest& dst) const + { + using std::abs; + const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); + if(dimker == 0) + { + // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's + // avoid crashing/asserting as that depends on floating point calculations. Let's + // just return a single column vector filled with zeros. + dst.setZero(); + return; + } + + /* Let us use the following lemma: + * + * Lemma: If the matrix A has the LU decomposition PAQ = LU, + * then Ker A = Q(Ker U). + * + * Proof: trivial: just keep in mind that P, Q, L are invertible. + */ + + /* Thus, all we need to do is to compute Ker U, and then apply Q. + * + * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. + * Thus, the diagonal of U ends with exactly + * dimKer zero's. Let us use that to construct dimKer linearly + * independent vectors in Ker U. + */ + + Matrix pivots(rank()); + RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); + Index p = 0; + for(Index i = 0; i < dec().nonzeroPivots(); ++i) + if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) + pivots.coeffRef(p++) = i; + eigen_internal_assert(p == rank()); + + // we construct a temporaty trapezoid matrix m, by taking the U matrix and + // permuting the rows and cols to bring the nonnegligible pivots to the top of + // the main diagonal. We need that to be able to apply our triangular solvers. + // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified + Matrix + m(dec().matrixLU().block(0, 0, rank(), cols)); + for(Index i = 0; i < rank(); ++i) + { + if(i) m.row(i).head(i).setZero(); + m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); + } + m.block(0, 0, rank(), rank()); + m.block(0, 0, rank(), rank()).template triangularView().setZero(); + for(Index i = 0; i < rank(); ++i) + m.col(i).swap(m.col(pivots.coeff(i))); + + // ok, we have our trapezoid matrix, we can apply the triangular solver. + // notice that the math behind this suggests that we should apply this to the + // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. + m.topLeftCorner(rank(), rank()) + .template triangularView().solveInPlace( + m.topRightCorner(rank(), dimker) + ); + + // now we must undo the column permutation that we had applied! + for(Index i = rank()-1; i >= 0; --i) + m.col(i).swap(m.col(pivots.coeff(i))); + + // see the negative sign in the next line, that's what we were talking about above. + for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); + for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); + for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); + } +}; + +/***** Implementation of image() *****************************************************/ + +template +struct image_retval > + : image_retval_base > +{ + EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) + + enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( + MatrixType::MaxColsAtCompileTime, + MatrixType::MaxRowsAtCompileTime) + }; + + template void evalTo(Dest& dst) const + { + using std::abs; + if(rank() == 0) + { + // The Image is just {0}, so it doesn't have a basis properly speaking, but let's + // avoid crashing/asserting as that depends on floating point calculations. Let's + // just return a single column vector filled with zeros. + dst.setZero(); + return; + } + + Matrix pivots(rank()); + RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); + Index p = 0; + for(Index i = 0; i < dec().nonzeroPivots(); ++i) + if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) + pivots.coeffRef(p++) = i; + eigen_internal_assert(p == rank()); + + for(Index i = 0; i < rank(); ++i) + dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); + } +}; + +/***** Implementation of solve() *****************************************************/ + +} // end namespace internal + +#ifndef EIGEN_PARSED_BY_DOXYGEN +template +template +void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const +{ + /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. + * So we proceed as follows: + * Step 1: compute c = P * rhs. + * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. + * Step 3: replace c by the solution x to Ux = c. May or may not exist. + * Step 4: result = Q * c; + */ + + const Index rows = this->rows(), + cols = this->cols(), + nonzero_pivots = this->rank(); + const Index smalldim = (std::min)(rows, cols); + + if(nonzero_pivots == 0) + { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); + + // Step 1 + c = permutationP() * rhs; + + // Step 2 + m_lu.topLeftCorner(smalldim,smalldim) + .template triangularView() + .solveInPlace(c.topRows(smalldim)); + if(rows>cols) + c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols); + + // Step 3 + m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) + .template triangularView() + .solveInPlace(c.topRows(nonzero_pivots)); + + // Step 4 + for(Index i = 0; i < nonzero_pivots; ++i) + dst.row(permutationQ().indices().coeff(i)) = c.row(i); + for(Index i = nonzero_pivots; i < m_lu.cols(); ++i) + dst.row(permutationQ().indices().coeff(i)).setZero(); +} + +template +template +void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const +{ + /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}, + * and since permutations are real and unitary, we can write this + * as A^T = Q U^T L^T P, + * So we proceed as follows: + * Step 1: compute c = Q^T rhs. + * Step 2: replace c by the solution x to U^T x = c. May or may not exist. + * Step 3: replace c by the solution x to L^T x = c. + * Step 4: result = P^T c. + * If Conjugate is true, replace "^T" by "^*" above. + */ + + const Index rows = this->rows(), cols = this->cols(), + nonzero_pivots = this->rank(); + const Index smalldim = (std::min)(rows, cols); + + if(nonzero_pivots == 0) + { + dst.setZero(); + return; + } + + typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); + + // Step 1 + c = permutationQ().inverse() * rhs; + + // Step 2 + m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) + .template triangularView() + .transpose() + .template conjugateIf() + .solveInPlace(c.topRows(nonzero_pivots)); + + // Step 3 + m_lu.topLeftCorner(smalldim, smalldim) + .template triangularView() + .transpose() + .template conjugateIf() + .solveInPlace(c.topRows(smalldim)); + + // Step 4 + PermutationPType invp = permutationP().inverse().eval(); + for(Index i = 0; i < smalldim; ++i) + dst.row(invp.indices().coeff(i)) = c.row(i); + for(Index i = smalldim; i < rows; ++i) + dst.row(invp.indices().coeff(i)).setZero(); +} + +#endif + +namespace internal { + + +/***** Implementation of inverse() *****************************************************/ +template +struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> +{ + typedef FullPivLU LuType; + typedef Inverse SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); + } +}; +} // end namespace internal + +/******* MatrixBase methods *****************************************************************/ + +/** \lu_module + * + * \return the full-pivoting LU decomposition of \c *this. + * + * \sa class FullPivLU + */ +template +inline const FullPivLU::PlainObject> +MatrixBase::fullPivLu() const +{ + return FullPivLU(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_LU_H diff --git a/include/eigen/Eigen/src/LU/InverseImpl.h b/include/eigen/Eigen/src/LU/InverseImpl.h new file mode 100644 index 0000000000000000000000000000000000000000..a40cefa9e7dcd4cbcc5e42dcb8d8e5fe79be6e97 --- /dev/null +++ b/include/eigen/Eigen/src/LU/InverseImpl.h @@ -0,0 +1,432 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Benoit Jacob +// Copyright (C) 2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INVERSE_IMPL_H +#define EIGEN_INVERSE_IMPL_H + +namespace Eigen { + +namespace internal { + +/********************************** +*** General case implementation *** +**********************************/ + +template +struct compute_inverse +{ + EIGEN_DEVICE_FUNC + static inline void run(const MatrixType& matrix, ResultType& result) + { + result = matrix.partialPivLu().inverse(); + } +}; + +template +struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; + +/**************************** +*** Size 1 implementation *** +****************************/ + +template +struct compute_inverse +{ + EIGEN_DEVICE_FUNC + static inline void run(const MatrixType& matrix, ResultType& result) + { + typedef typename MatrixType::Scalar Scalar; + internal::evaluator matrixEval(matrix); + result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0); + } +}; + +template +struct compute_inverse_and_det_with_check +{ + EIGEN_DEVICE_FUNC + static inline void run( + const MatrixType& matrix, + const typename MatrixType::RealScalar& absDeterminantThreshold, + ResultType& result, + typename ResultType::Scalar& determinant, + bool& invertible + ) + { + using std::abs; + determinant = matrix.coeff(0,0); + invertible = abs(determinant) > absDeterminantThreshold; + if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; + } +}; + +/**************************** +*** Size 2 implementation *** +****************************/ + +template +EIGEN_DEVICE_FUNC +inline void compute_inverse_size2_helper( + const MatrixType& matrix, const typename ResultType::Scalar& invdet, + ResultType& result) +{ + typename ResultType::Scalar temp = matrix.coeff(0,0); + result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; + result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; + result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; + result.coeffRef(1,1) = temp * invdet; +} + +template +struct compute_inverse +{ + EIGEN_DEVICE_FUNC + static inline void run(const MatrixType& matrix, ResultType& result) + { + typedef typename ResultType::Scalar Scalar; + const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); + compute_inverse_size2_helper(matrix, invdet, result); + } +}; + +template +struct compute_inverse_and_det_with_check +{ + EIGEN_DEVICE_FUNC + static inline void run( + const MatrixType& matrix, + const typename MatrixType::RealScalar& absDeterminantThreshold, + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible + ) + { + using std::abs; + typedef typename ResultType::Scalar Scalar; + determinant = matrix.determinant(); + invertible = abs(determinant) > absDeterminantThreshold; + if(!invertible) return; + const Scalar invdet = Scalar(1) / determinant; + compute_inverse_size2_helper(matrix, invdet, inverse); + } +}; + +/**************************** +*** Size 3 implementation *** +****************************/ + +template +EIGEN_DEVICE_FUNC +inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) +{ + enum { + i1 = (i+1) % 3, + i2 = (i+2) % 3, + j1 = (j+1) % 3, + j2 = (j+2) % 3 + }; + return m.coeff(i1, j1) * m.coeff(i2, j2) + - m.coeff(i1, j2) * m.coeff(i2, j1); +} + +template +EIGEN_DEVICE_FUNC +inline void compute_inverse_size3_helper( + const MatrixType& matrix, + const typename ResultType::Scalar& invdet, + const Matrix& cofactors_col0, + ResultType& result) +{ + // Compute cofactors in a way that avoids aliasing issues. + typedef typename ResultType::Scalar Scalar; + const Scalar c01 = cofactor_3x3(matrix) * invdet; + const Scalar c11 = cofactor_3x3(matrix) * invdet; + const Scalar c02 = cofactor_3x3(matrix) * invdet; + result.coeffRef(1,2) = cofactor_3x3(matrix) * invdet; + result.coeffRef(2,1) = cofactor_3x3(matrix) * invdet; + result.coeffRef(2,2) = cofactor_3x3(matrix) * invdet; + result.coeffRef(1,0) = c01; + result.coeffRef(1,1) = c11; + result.coeffRef(2,0) = c02; + result.row(0) = cofactors_col0 * invdet; +} + +template +struct compute_inverse +{ + EIGEN_DEVICE_FUNC + static inline void run(const MatrixType& matrix, ResultType& result) + { + typedef typename ResultType::Scalar Scalar; + Matrix cofactors_col0; + cofactors_col0.coeffRef(0) = cofactor_3x3(matrix); + cofactors_col0.coeffRef(1) = cofactor_3x3(matrix); + cofactors_col0.coeffRef(2) = cofactor_3x3(matrix); + const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); + const Scalar invdet = Scalar(1) / det; + compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); + } +}; + +template +struct compute_inverse_and_det_with_check +{ + EIGEN_DEVICE_FUNC + static inline void run( + const MatrixType& matrix, + const typename MatrixType::RealScalar& absDeterminantThreshold, + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible + ) + { + typedef typename ResultType::Scalar Scalar; + Matrix cofactors_col0; + cofactors_col0.coeffRef(0) = cofactor_3x3(matrix); + cofactors_col0.coeffRef(1) = cofactor_3x3(matrix); + cofactors_col0.coeffRef(2) = cofactor_3x3(matrix); + determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); + invertible = Eigen::numext::abs(determinant) > absDeterminantThreshold; + if(!invertible) return; + const Scalar invdet = Scalar(1) / determinant; + compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); + } +}; + +/**************************** +*** Size 4 implementation *** +****************************/ + +template +EIGEN_DEVICE_FUNC +inline const typename Derived::Scalar general_det3_helper +(const MatrixBase& matrix, int i1, int i2, int i3, int j1, int j2, int j3) +{ + return matrix.coeff(i1,j1) + * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2)); +} + +template +EIGEN_DEVICE_FUNC +inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) +{ + enum { + i1 = (i+1) % 4, + i2 = (i+2) % 4, + i3 = (i+3) % 4, + j1 = (j+1) % 4, + j2 = (j+2) % 4, + j3 = (j+3) % 4 + }; + return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) + + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) + + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); +} + +template +struct compute_inverse_size4 +{ + EIGEN_DEVICE_FUNC + static void run(const MatrixType& matrix, ResultType& result) + { + result.coeffRef(0,0) = cofactor_4x4(matrix); + result.coeffRef(1,0) = -cofactor_4x4(matrix); + result.coeffRef(2,0) = cofactor_4x4(matrix); + result.coeffRef(3,0) = -cofactor_4x4(matrix); + result.coeffRef(0,2) = cofactor_4x4(matrix); + result.coeffRef(1,2) = -cofactor_4x4(matrix); + result.coeffRef(2,2) = cofactor_4x4(matrix); + result.coeffRef(3,2) = -cofactor_4x4(matrix); + result.coeffRef(0,1) = -cofactor_4x4(matrix); + result.coeffRef(1,1) = cofactor_4x4(matrix); + result.coeffRef(2,1) = -cofactor_4x4(matrix); + result.coeffRef(3,1) = cofactor_4x4(matrix); + result.coeffRef(0,3) = -cofactor_4x4(matrix); + result.coeffRef(1,3) = cofactor_4x4(matrix); + result.coeffRef(2,3) = -cofactor_4x4(matrix); + result.coeffRef(3,3) = cofactor_4x4(matrix); + result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); + } +}; + +template +struct compute_inverse + : compute_inverse_size4 +{ +}; + +template +struct compute_inverse_and_det_with_check +{ + EIGEN_DEVICE_FUNC + static inline void run( + const MatrixType& matrix, + const typename MatrixType::RealScalar& absDeterminantThreshold, + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible + ) + { + using std::abs; + determinant = matrix.determinant(); + invertible = abs(determinant) > absDeterminantThreshold; + if(invertible && extract_data(matrix) != extract_data(inverse)) { + compute_inverse::run(matrix, inverse); + } + else if(invertible) { + MatrixType matrix_t = matrix; + compute_inverse::run(matrix_t, inverse); + } + } +}; + +/************************* +*** MatrixBase methods *** +*************************/ + +} // end namespace internal + +namespace internal { + +// Specialization for "dense = dense_xpr.inverse()" +template +struct Assignment, internal::assign_op, Dense2Dense> +{ + typedef Inverse SrcXprType; + EIGEN_DEVICE_FUNC + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + Index dstRows = src.rows(); + Index dstCols = src.cols(); + if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) + dst.resize(dstRows, dstCols); + + const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime); + EIGEN_ONLY_USED_FOR_DEBUG(Size); + eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst))) + && "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); + + typedef typename internal::nested_eval::type ActualXprType; + typedef typename internal::remove_all::type ActualXprTypeCleanded; + + ActualXprType actual_xpr(src.nestedExpression()); + + compute_inverse::run(actual_xpr, dst); + } +}; + + +} // end namespace internal + +/** \lu_module + * + * \returns the matrix inverse of this matrix. + * + * For small fixed sizes up to 4x4, this method uses cofactors. + * In the general case, this method uses class PartialPivLU. + * + * \note This matrix must be invertible, otherwise the result is undefined. If you need an + * invertibility check, do the following: + * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). + * \li for the general case, use class FullPivLU. + * + * Example: \include MatrixBase_inverse.cpp + * Output: \verbinclude MatrixBase_inverse.out + * + * \sa computeInverseAndDetWithCheck() + */ +template +EIGEN_DEVICE_FUNC +inline const Inverse MatrixBase::inverse() const +{ + EIGEN_STATIC_ASSERT(!NumTraits::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) + eigen_assert(rows() == cols()); + return Inverse(derived()); +} + +/** \lu_module + * + * Computation of matrix inverse and determinant, with invertibility check. + * + * This is only for fixed-size square matrices of size up to 4x4. + * + * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. + * + * \param inverse Reference to the matrix in which to store the inverse. + * \param determinant Reference to the variable in which to store the determinant. + * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. + * \param absDeterminantThreshold Optional parameter controlling the invertibility check. + * The matrix will be declared invertible if the absolute value of its + * determinant is greater than this threshold. + * + * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp + * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out + * + * \sa inverse(), computeInverseWithCheck() + */ +template +template +inline void MatrixBase::computeInverseAndDetWithCheck( + ResultType& inverse, + typename ResultType::Scalar& determinant, + bool& invertible, + const RealScalar& absDeterminantThreshold + ) const +{ + // i'd love to put some static assertions there, but SFINAE means that they have no effect... + eigen_assert(rows() == cols()); + // for 2x2, it's worth giving a chance to avoid evaluating. + // for larger sizes, evaluating has negligible cost and limits code size. + typedef typename internal::conditional< + RowsAtCompileTime == 2, + typename internal::remove_all::type>::type, + PlainObject + >::type MatrixType; + internal::compute_inverse_and_det_with_check::run + (derived(), absDeterminantThreshold, inverse, determinant, invertible); +} + +/** \lu_module + * + * Computation of matrix inverse, with invertibility check. + * + * This is only for fixed-size square matrices of size up to 4x4. + * + * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. + * + * \param inverse Reference to the matrix in which to store the inverse. + * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. + * \param absDeterminantThreshold Optional parameter controlling the invertibility check. + * The matrix will be declared invertible if the absolute value of its + * determinant is greater than this threshold. + * + * Example: \include MatrixBase_computeInverseWithCheck.cpp + * Output: \verbinclude MatrixBase_computeInverseWithCheck.out + * + * \sa inverse(), computeInverseAndDetWithCheck() + */ +template +template +inline void MatrixBase::computeInverseWithCheck( + ResultType& inverse, + bool& invertible, + const RealScalar& absDeterminantThreshold + ) const +{ + Scalar determinant; + // i'd love to put some static assertions there, but SFINAE means that they have no effect... + eigen_assert(rows() == cols()); + computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); +} + +} // end namespace Eigen + +#endif // EIGEN_INVERSE_IMPL_H diff --git a/include/eigen/Eigen/src/LU/PartialPivLU.h b/include/eigen/Eigen/src/LU/PartialPivLU.h new file mode 100644 index 0000000000000000000000000000000000000000..34aed72494d4315d7ba22950445c26fc27b2fbae --- /dev/null +++ b/include/eigen/Eigen/src/LU/PartialPivLU.h @@ -0,0 +1,624 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2006-2009 Benoit Jacob +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARTIALLU_H +#define EIGEN_PARTIALLU_H + +namespace Eigen { + +namespace internal { +template struct traits > + : traits<_MatrixType> +{ + typedef MatrixXpr XprKind; + typedef SolverStorage StorageKind; + typedef int StorageIndex; + typedef traits<_MatrixType> BaseTraits; + enum { + Flags = BaseTraits::Flags & RowMajorBit, + CoeffReadCost = Dynamic + }; +}; + +template +struct enable_if_ref; +// { +// typedef Derived type; +// }; + +template +struct enable_if_ref,Derived> { + typedef Derived type; +}; + +} // end namespace internal + +/** \ingroup LU_Module + * + * \class PartialPivLU + * + * \brief LU decomposition of a matrix with partial pivoting, and related features + * + * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition + * + * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A + * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P + * is a permutation matrix. + * + * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible + * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class + * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the + * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. + * + * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided + * by class FullPivLU. + * + * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, + * such as rank computation. If you need these features, use class FullPivLU. + * + * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses + * in the general case. + * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. + * + * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). + * + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU + */ +template class PartialPivLU + : public SolverBase > +{ + public: + + typedef _MatrixType MatrixType; + typedef SolverBase Base; + friend class SolverBase; + + EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU) + enum { + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef PermutationMatrix PermutationType; + typedef Transpositions TranspositionType; + typedef typename MatrixType::PlainObject PlainObject; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via PartialPivLU::compute(const MatrixType&). + */ + PartialPivLU(); + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa PartialPivLU() + */ + explicit PartialPivLU(Index size); + + /** Constructor. + * + * \param matrix the matrix of which to compute the LU decomposition. + * + * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). + * If you need to deal with non-full rank, use class FullPivLU instead. + */ + template + explicit PartialPivLU(const EigenBase& matrix); + + /** Constructor for \link InplaceDecomposition inplace decomposition \endlink + * + * \param matrix the matrix of which to compute the LU decomposition. + * + * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). + * If you need to deal with non-full rank, use class FullPivLU instead. + */ + template + explicit PartialPivLU(EigenBase& matrix); + + template + PartialPivLU& compute(const EigenBase& matrix) { + m_lu = matrix.derived(); + compute(); + return *this; + } + + /** \returns the LU decomposition matrix: the upper-triangular part is U, the + * unit-lower-triangular part is L (at least for square matrices; in the non-square + * case, special care is needed, see the documentation of class FullPivLU). + * + * \sa matrixL(), matrixU() + */ + inline const MatrixType& matrixLU() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return m_lu; + } + + /** \returns the permutation matrix P. + */ + inline const PermutationType& permutationP() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return m_p; + } + + #ifdef EIGEN_PARSED_BY_DOXYGEN + /** This method returns the solution x to the equation Ax=b, where A is the matrix of which + * *this is the LU decomposition. + * + * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, + * the only requirement in order for the equation to make sense is that + * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. + * + * \returns the solution. + * + * Example: \include PartialPivLU_solve.cpp + * Output: \verbinclude PartialPivLU_solve.out + * + * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution + * theoretically exists and is unique regardless of b. + * + * \sa TriangularView::solve(), inverse(), computeInverse() + */ + template + inline const Solve + solve(const MatrixBase& b) const; + #endif + + /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is + the LU decomposition. + */ + inline RealScalar rcond() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } + + /** \returns the inverse of the matrix of which *this is the LU decomposition. + * + * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for + * invertibility, use class FullPivLU instead. + * + * \sa MatrixBase::inverse(), LU::inverse() + */ + inline const Inverse inverse() const + { + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return Inverse(*this); + } + + /** \returns the determinant of the matrix of which + * *this is the LU decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the LU decomposition has already been computed. + * + * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers + * optimized paths. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * + * \sa MatrixBase::determinant() + */ + Scalar determinant() const; + + MatrixType reconstructedMatrix() const; + + EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } + EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + template + EIGEN_DEVICE_FUNC + void _solve_impl(const RhsType &rhs, DstType &dst) const { + /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. + * So we proceed as follows: + * Step 1: compute c = Pb. + * Step 2: replace c by the solution x to Lx = c. + * Step 3: replace c by the solution x to Ux = c. + */ + + // Step 1 + dst = permutationP() * rhs; + + // Step 2 + m_lu.template triangularView().solveInPlace(dst); + + // Step 3 + m_lu.template triangularView().solveInPlace(dst); + } + + template + EIGEN_DEVICE_FUNC + void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const { + /* The decomposition PA = LU can be rewritten as A^T = U^T L^T P. + * So we proceed as follows: + * Step 1: compute c as the solution to L^T c = b + * Step 2: replace c by the solution x to U^T x = c. + * Step 3: update c = P^-1 c. + */ + + eigen_assert(rhs.rows() == m_lu.cols()); + + // Step 1 + dst = m_lu.template triangularView().transpose() + .template conjugateIf().solve(rhs); + // Step 2 + m_lu.template triangularView().transpose() + .template conjugateIf().solveInPlace(dst); + // Step 3 + dst = permutationP().transpose() * dst; + } + #endif + + protected: + + static void check_template_parameters() + { + EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); + } + + void compute(); + + MatrixType m_lu; + PermutationType m_p; + TranspositionType m_rowsTranspositions; + RealScalar m_l1_norm; + signed char m_det_p; + bool m_isInitialized; +}; + +template +PartialPivLU::PartialPivLU() + : m_lu(), + m_p(), + m_rowsTranspositions(), + m_l1_norm(0), + m_det_p(0), + m_isInitialized(false) +{ +} + +template +PartialPivLU::PartialPivLU(Index size) + : m_lu(size, size), + m_p(size), + m_rowsTranspositions(size), + m_l1_norm(0), + m_det_p(0), + m_isInitialized(false) +{ +} + +template +template +PartialPivLU::PartialPivLU(const EigenBase& matrix) + : m_lu(matrix.rows(),matrix.cols()), + m_p(matrix.rows()), + m_rowsTranspositions(matrix.rows()), + m_l1_norm(0), + m_det_p(0), + m_isInitialized(false) +{ + compute(matrix.derived()); +} + +template +template +PartialPivLU::PartialPivLU(EigenBase& matrix) + : m_lu(matrix.derived()), + m_p(matrix.rows()), + m_rowsTranspositions(matrix.rows()), + m_l1_norm(0), + m_det_p(0), + m_isInitialized(false) +{ + compute(); +} + +namespace internal { + +/** \internal This is the blocked version of fullpivlu_unblocked() */ +template +struct partial_lu_impl +{ + static const int UnBlockedBound = 16; + static const bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound; + static const int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic; + // Remaining rows and columns at compile-time: + static const int RRows = SizeAtCompileTime==2 ? 1 : Dynamic; + static const int RCols = SizeAtCompileTime==2 ? 1 : Dynamic; + typedef Matrix MatrixType; + typedef Ref MatrixTypeRef; + typedef Ref > BlockType; + typedef typename MatrixType::RealScalar RealScalar; + + /** \internal performs the LU decomposition in-place of the matrix \a lu + * using an unblocked algorithm. + * + * In addition, this function returns the row transpositions in the + * vector \a row_transpositions which must have a size equal to the number + * of columns of the matrix \a lu, and an integer \a nb_transpositions + * which returns the actual number of transpositions. + * + * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. + */ + static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) + { + typedef scalar_score_coeff_op Scoring; + typedef typename Scoring::result_type Score; + const Index rows = lu.rows(); + const Index cols = lu.cols(); + const Index size = (std::min)(rows,cols); + // For small compile-time matrices it is worth processing the last row separately: + // speedup: +100% for 2x2, +10% for others. + const Index endk = UnBlockedAtCompileTime ? size-1 : size; + nb_transpositions = 0; + Index first_zero_pivot = -1; + for(Index k = 0; k < endk; ++k) + { + int rrows = internal::convert_index(rows-k-1); + int rcols = internal::convert_index(cols-k-1); + + Index row_of_biggest_in_col; + Score biggest_in_corner + = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col); + row_of_biggest_in_col += k; + + row_transpositions[k] = PivIndex(row_of_biggest_in_col); + + if(biggest_in_corner != Score(0)) + { + if(k != row_of_biggest_in_col) + { + lu.row(k).swap(lu.row(row_of_biggest_in_col)); + ++nb_transpositions; + } + + lu.col(k).tail(fix(rrows)) /= lu.coeff(k,k); + } + else if(first_zero_pivot==-1) + { + // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, + // and continue the factorization such we still have A = PLU + first_zero_pivot = k; + } + + if(k(rrows),fix(rcols)).noalias() -= lu.col(k).tail(fix(rrows)) * lu.row(k).tail(fix(rcols)); + } + + // special handling of the last entry + if(UnBlockedAtCompileTime) + { + Index k = endk; + row_transpositions[k] = PivIndex(k); + if (Scoring()(lu(k, k)) == Score(0) && first_zero_pivot == -1) + first_zero_pivot = k; + } + + return first_zero_pivot; + } + + /** \internal performs the LU decomposition in-place of the matrix represented + * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a + * recursive, blocked algorithm. + * + * In addition, this function returns the row transpositions in the + * vector \a row_transpositions which must have a size equal to the number + * of columns of the matrix \a lu, and an integer \a nb_transpositions + * which returns the actual number of transpositions. + * + * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. + * + * \note This very low level interface using pointers, etc. is to: + * 1 - reduce the number of instantiations to the strict minimum + * 2 - avoid infinite recursion of the instantiations with Block > > + */ + static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) + { + MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride)); + + const Index size = (std::min)(rows,cols); + + // if the matrix is too small, no blocking: + if(UnBlockedAtCompileTime || size<=UnBlockedBound) + { + return unblocked_lu(lu, row_transpositions, nb_transpositions); + } + + // automatically adjust the number of subdivisions to the size + // of the matrix so that there is enough sub blocks: + Index blockSize; + { + blockSize = size/8; + blockSize = (blockSize/16)*16; + blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); + } + + nb_transpositions = 0; + Index first_zero_pivot = -1; + for(Index k = 0; k < size; k+=blockSize) + { + Index bs = (std::min)(size-k,blockSize); // actual size of the block + Index trows = rows - k - bs; // trailing rows + Index tsize = size - k - bs; // trailing size + + // partition the matrix: + // A00 | A01 | A02 + // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 + // A20 | A21 | A22 + BlockType A_0 = lu.block(0,0,rows,k); + BlockType A_2 = lu.block(0,k+bs,rows,tsize); + BlockType A11 = lu.block(k,k,bs,bs); + BlockType A12 = lu.block(k,k+bs,bs,tsize); + BlockType A21 = lu.block(k+bs,k,trows,bs); + BlockType A22 = lu.block(k+bs,k+bs,trows,tsize); + + PivIndex nb_transpositions_in_panel; + // recursively call the blocked LU algorithm on [A11^T A21^T]^T + // with a very small blocking size: + Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, + row_transpositions+k, nb_transpositions_in_panel, 16); + if(ret>=0 && first_zero_pivot==-1) + first_zero_pivot = k+ret; + + nb_transpositions += nb_transpositions_in_panel; + // update permutations and apply them to A_0 + for(Index i=k; i(k)); + A_0.row(i).swap(A_0.row(piv)); + } + + if(trows) + { + // apply permutations to A_2 + for(Index i=k;i().solveInPlace(A12); + + A22.noalias() -= A21 * A12; + } + } + return first_zero_pivot; + } +}; + +/** \internal performs the LU decomposition with partial pivoting in-place. + */ +template +void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions) +{ + // Special-case of zero matrix. + if (lu.rows() == 0 || lu.cols() == 0) { + nb_transpositions = 0; + return; + } + eigen_assert(lu.cols() == row_transpositions.size()); + eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); + + partial_lu_impl + < typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, + typename TranspositionType::StorageIndex, + EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime)> + ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); +} + +} // end namespace internal + +template +void PartialPivLU::compute() +{ + check_template_parameters(); + + // the row permutation is stored as int indices, so just to be sure: + eigen_assert(m_lu.rows()::highest()); + + if(m_lu.cols()>0) + m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); + else + m_l1_norm = RealScalar(0); + + eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); + const Index size = m_lu.rows(); + + m_rowsTranspositions.resize(size); + + typename TranspositionType::StorageIndex nb_transpositions; + internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); + m_det_p = (nb_transpositions%2) ? -1 : 1; + + m_p = m_rowsTranspositions; + + m_isInitialized = true; +} + +template +typename PartialPivLU::Scalar PartialPivLU::determinant() const +{ + eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); + return Scalar(m_det_p) * m_lu.diagonal().prod(); +} + +/** \returns the matrix represented by the decomposition, + * i.e., it returns the product: P^{-1} L U. + * This function is provided for debug purpose. */ +template +MatrixType PartialPivLU::reconstructedMatrix() const +{ + eigen_assert(m_isInitialized && "LU is not initialized."); + // LU + MatrixType res = m_lu.template triangularView().toDenseMatrix() + * m_lu.template triangularView(); + + // P^{-1}(LU) + res = m_p.inverse() * res; + + return res; +} + +/***** Implementation details *****************************************************/ + +namespace internal { + +/***** Implementation of inverse() *****************************************************/ +template +struct Assignment >, internal::assign_op::Scalar>, Dense2Dense> +{ + typedef PartialPivLU LuType; + typedef Inverse SrcXprType; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) + { + dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); + } +}; +} // end namespace internal + +/******** MatrixBase methods *******/ + +/** \lu_module + * + * \return the partial-pivoting LU decomposition of \c *this. + * + * \sa class PartialPivLU + */ +template +inline const PartialPivLU::PlainObject> +MatrixBase::partialPivLu() const +{ + return PartialPivLU(eval()); +} + +/** \lu_module + * + * Synonym of partialPivLu(). + * + * \return the partial-pivoting LU decomposition of \c *this. + * + * \sa class PartialPivLU + */ +template +inline const PartialPivLU::PlainObject> +MatrixBase::lu() const +{ + return PartialPivLU(eval()); +} + +} // end namespace Eigen + +#endif // EIGEN_PARTIALLU_H diff --git a/include/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h b/include/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h new file mode 100644 index 0000000000000000000000000000000000000000..755168a9460a898b70a7aed7932a388a2c13b306 --- /dev/null +++ b/include/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h @@ -0,0 +1,83 @@ +/* + Copyright (c) 2011, Intel Corporation. All rights reserved. + + Redistribution and use in source and binary forms, with or without modification, + are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors may + be used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND + ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR + ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ******************************************************************************** + * Content : Eigen bindings to LAPACKe + * LU decomposition with partial pivoting based on LAPACKE_?getrf function. + ******************************************************************************** +*/ + +#ifndef EIGEN_PARTIALLU_LAPACK_H +#define EIGEN_PARTIALLU_LAPACK_H + +namespace Eigen { + +namespace internal { + +/** \internal Specialization for the data types supported by LAPACKe */ + +#define EIGEN_LAPACKE_LU_PARTPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX) \ +template \ +struct partial_lu_impl \ +{ \ + /* \internal performs the LU decomposition in-place of the matrix represented */ \ + static lapack_int blocked_lu(Index rows, Index cols, EIGTYPE* lu_data, Index luStride, lapack_int* row_transpositions, lapack_int& nb_transpositions, lapack_int maxBlockSize=256) \ + { \ + EIGEN_UNUSED_VARIABLE(maxBlockSize);\ + lapack_int matrix_order, first_zero_pivot; \ + lapack_int m, n, lda, *ipiv, info; \ + EIGTYPE* a; \ +/* Set up parameters for ?getrf */ \ + matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \ + lda = convert_index(luStride); \ + a = lu_data; \ + ipiv = row_transpositions; \ + m = convert_index(rows); \ + n = convert_index(cols); \ + nb_transpositions = 0; \ +\ + info = LAPACKE_##LAPACKE_PREFIX##getrf( matrix_order, m, n, (LAPACKE_TYPE*)a, lda, ipiv ); \ +\ + for(int i=0;i= 0); \ +/* something should be done with nb_transpositions */ \ +\ + first_zero_pivot = info; \ + return first_zero_pivot; \ + } \ +}; + +EIGEN_LAPACKE_LU_PARTPIV(double, double, d) +EIGEN_LAPACKE_LU_PARTPIV(float, float, s) +EIGEN_LAPACKE_LU_PARTPIV(dcomplex, lapack_complex_double, z) +EIGEN_LAPACKE_LU_PARTPIV(scomplex, lapack_complex_float, c) + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_PARTIALLU_LAPACK_H diff --git a/include/eigen/Eigen/src/SparseQR/SparseQR.h b/include/eigen/Eigen/src/SparseQR/SparseQR.h new file mode 100644 index 0000000000000000000000000000000000000000..07802f4d685b8c7d88e1b1e3b81c524a32e69985 --- /dev/null +++ b/include/eigen/Eigen/src/SparseQR/SparseQR.h @@ -0,0 +1,758 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012-2013 Desire Nuentsa +// Copyright (C) 2012-2014 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SPARSE_QR_H +#define EIGEN_SPARSE_QR_H + +namespace Eigen { + +template class SparseQR; +template struct SparseQRMatrixQReturnType; +template struct SparseQRMatrixQTransposeReturnType; +template struct SparseQR_QProduct; +namespace internal { + template struct traits > + { + typedef typename SparseQRType::MatrixType ReturnType; + typedef typename ReturnType::StorageIndex StorageIndex; + typedef typename ReturnType::StorageKind StorageKind; + enum { + RowsAtCompileTime = Dynamic, + ColsAtCompileTime = Dynamic + }; + }; + template struct traits > + { + typedef typename SparseQRType::MatrixType ReturnType; + }; + template struct traits > + { + typedef typename Derived::PlainObject ReturnType; + }; +} // End namespace internal + +/** + * \ingroup SparseQR_Module + * \class SparseQR + * \brief Sparse left-looking QR factorization with numerical column pivoting + * + * This class implements a left-looking QR decomposition of sparse matrices + * with numerical column pivoting. + * When a column has a norm less than a given tolerance + * it is implicitly permuted to the end. The QR factorization thus obtained is + * given by A*P = Q*R where R is upper triangular or trapezoidal. + * + * P is the column permutation which is the product of the fill-reducing and the + * numerical permutations. Use colsPermutation() to get it. + * + * Q is the orthogonal matrix represented as products of Householder reflectors. + * Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint. + * You can then apply it to a vector. + * + * R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient. + * matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank. + * + * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> + * \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module + * OrderingMethods \endlink module for the list of built-in and external ordering methods. + * + * \implsparsesolverconcept + * + * The numerical pivoting strategy and default threshold are the same as in SuiteSparse QR, and + * detailed in the following paper: + * + * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing + * Sparse QR Factorization", ACM Trans. on Math. Soft. 38(1), 2011. + * + * Even though it is qualified as "rank-revealing", this strategy might fail for some + * rank deficient problems. When this class is used to solve linear or least-square problems + * it is thus strongly recommended to check the accuracy of the computed solution. If it + * failed, it usually helps to increase the threshold with setPivotThreshold. + * + * \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()). + * \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix. + * + */ +template +class SparseQR : public SparseSolverBase > +{ + protected: + typedef SparseSolverBase > Base; + using Base::m_isInitialized; + public: + using Base::_solve_impl; + typedef _MatrixType MatrixType; + typedef _OrderingType OrderingType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::StorageIndex StorageIndex; + typedef SparseMatrix QRMatrixType; + typedef Matrix IndexVector; + typedef Matrix ScalarVector; + typedef PermutationMatrix PermutationType; + + enum { + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + + public: + SparseQR () : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false) + { } + + /** Construct a QR factorization of the matrix \a mat. + * + * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). + * + * \sa compute() + */ + explicit SparseQR(const MatrixType& mat) : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false) + { + compute(mat); + } + + /** Computes the QR factorization of the sparse matrix \a mat. + * + * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). + * + * \sa analyzePattern(), factorize() + */ + void compute(const MatrixType& mat) + { + analyzePattern(mat); + factorize(mat); + } + void analyzePattern(const MatrixType& mat); + void factorize(const MatrixType& mat); + + /** \returns the number of rows of the represented matrix. + */ + inline Index rows() const { return m_pmat.rows(); } + + /** \returns the number of columns of the represented matrix. + */ + inline Index cols() const { return m_pmat.cols();} + + /** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization. + * \warning The entries of the returned matrix are not sorted. This means that using it in algorithms + * expecting sorted entries will fail. This include random coefficient accesses (SpaseMatrix::coeff()), + * and coefficient-wise operations. Matrix products and triangular solves are fine though. + * + * To sort the entries, you can assign it to a row-major matrix, and if a column-major matrix + * is required, you can copy it again: + * \code + * SparseMatrix R = qr.matrixR(); // column-major, not sorted! + * SparseMatrix Rr = qr.matrixR(); // row-major, sorted + * SparseMatrix Rc = Rr; // column-major, sorted + * \endcode + */ + const QRMatrixType& matrixR() const { return m_R; } + + /** \returns the number of non linearly dependent columns as determined by the pivoting threshold. + * + * \sa setPivotThreshold() + */ + Index rank() const + { + eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); + return m_nonzeropivots; + } + + /** \returns an expression of the matrix Q as products of sparse Householder reflectors. + * The common usage of this function is to apply it to a dense matrix or vector + * \code + * VectorXd B1, B2; + * // Initialize B1 + * B2 = matrixQ() * B1; + * \endcode + * + * To get a plain SparseMatrix representation of Q: + * \code + * SparseMatrix Q; + * Q = SparseQR >(A).matrixQ(); + * \endcode + * Internally, this call simply performs a sparse product between the matrix Q + * and a sparse identity matrix. However, due to the fact that the sparse + * reflectors are stored unsorted, two transpositions are needed to sort + * them before performing the product. + */ + SparseQRMatrixQReturnType matrixQ() const + { return SparseQRMatrixQReturnType(*this); } + + /** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R + * It is the combination of the fill-in reducing permutation and numerical column pivoting. + */ + const PermutationType& colsPermutation() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_outputPerm_c; + } + + /** \returns A string describing the type of error. + * This method is provided to ease debugging, not to handle errors. + */ + std::string lastErrorMessage() const { return m_lastError; } + + /** \internal */ + template + bool _solve_impl(const MatrixBase &B, MatrixBase &dest) const + { + eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); + eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); + + Index rank = this->rank(); + + // Compute Q^* * b; + typename Dest::PlainObject y, b; + y = this->matrixQ().adjoint() * B; + b = y; + + // Solve with the triangular matrix R + y.resize((std::max)(cols(),y.rows()),y.cols()); + y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView().solve(b.topRows(rank)); + y.bottomRows(y.rows()-rank).setZero(); + + // Apply the column permutation + if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols()); + else dest = y.topRows(cols()); + + m_info = Success; + return true; + } + + /** Sets the threshold that is used to determine linearly dependent columns during the factorization. + * + * In practice, if during the factorization the norm of the column that has to be eliminated is below + * this threshold, then the entire column is treated as zero, and it is moved at the end. + */ + void setPivotThreshold(const RealScalar& threshold) + { + m_useDefaultThreshold = false; + m_threshold = threshold; + } + + /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. + * + * \sa compute() + */ + template + inline const Solve solve(const MatrixBase& B) const + { + eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); + eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); + return Solve(*this, B.derived()); + } + template + inline const Solve solve(const SparseMatrixBase& B) const + { + eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); + eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix"); + return Solve(*this, B.derived()); + } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the QR factorization reports a numerical problem + * \c InvalidInput if the input matrix is invalid + * + * \sa iparm() + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + + /** \internal */ + inline void _sort_matrix_Q() + { + if(this->m_isQSorted) return; + // The matrix Q is sorted during the transposition + SparseMatrix mQrm(this->m_Q); + this->m_Q = mQrm; + this->m_isQSorted = true; + } + + + protected: + bool m_analysisIsok; + bool m_factorizationIsok; + mutable ComputationInfo m_info; + std::string m_lastError; + QRMatrixType m_pmat; // Temporary matrix + QRMatrixType m_R; // The triangular factor matrix + QRMatrixType m_Q; // The orthogonal reflectors + ScalarVector m_hcoeffs; // The Householder coefficients + PermutationType m_perm_c; // Fill-reducing Column permutation + PermutationType m_pivotperm; // The permutation for rank revealing + PermutationType m_outputPerm_c; // The final column permutation + RealScalar m_threshold; // Threshold to determine null Householder reflections + bool m_useDefaultThreshold; // Use default threshold + Index m_nonzeropivots; // Number of non zero pivots found + IndexVector m_etree; // Column elimination tree + IndexVector m_firstRowElt; // First element in each row + bool m_isQSorted; // whether Q is sorted or not + bool m_isEtreeOk; // whether the elimination tree match the initial input matrix + + template friend struct SparseQR_QProduct; + +}; + +/** \brief Preprocessing step of a QR factorization + * + * \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()). + * + * In this step, the fill-reducing permutation is computed and applied to the columns of A + * and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited. + * + * \note In this step it is assumed that there is no empty row in the matrix \a mat. + */ +template +void SparseQR::analyzePattern(const MatrixType& mat) +{ + eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR"); + // Copy to a column major matrix if the input is rowmajor + typename internal::conditional::type matCpy(mat); + // Compute the column fill reducing ordering + OrderingType ord; + ord(matCpy, m_perm_c); + Index n = mat.cols(); + Index m = mat.rows(); + Index diagSize = (std::min)(m,n); + + if (!m_perm_c.size()) + { + m_perm_c.resize(n); + m_perm_c.indices().setLinSpaced(n, 0,StorageIndex(n-1)); + } + + // Compute the column elimination tree of the permuted matrix + m_outputPerm_c = m_perm_c.inverse(); + internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); + m_isEtreeOk = true; + + m_R.resize(m, n); + m_Q.resize(m, diagSize); + + // Allocate space for nonzero elements: rough estimation + m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree + m_Q.reserve(2*mat.nonZeros()); + m_hcoeffs.resize(diagSize); + m_analysisIsok = true; +} + +/** \brief Performs the numerical QR factorization of the input matrix + * + * The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with + * a matrix having the same sparsity pattern than \a mat. + * + * \param mat The sparse column-major matrix + */ +template +void SparseQR::factorize(const MatrixType& mat) +{ + using std::abs; + + eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step"); + StorageIndex m = StorageIndex(mat.rows()); + StorageIndex n = StorageIndex(mat.cols()); + StorageIndex diagSize = (std::min)(m,n); + IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes + IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q + Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q + ScalarVector tval(m); // The dense vector used to compute the current column + RealScalar pivotThreshold = m_threshold; + + m_R.setZero(); + m_Q.setZero(); + m_pmat = mat; + if(!m_isEtreeOk) + { + m_outputPerm_c = m_perm_c.inverse(); + internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data()); + m_isEtreeOk = true; + } + + m_pmat.uncompress(); // To have the innerNonZeroPtr allocated + + // Apply the fill-in reducing permutation lazily: + { + // If the input is row major, copy the original column indices, + // otherwise directly use the input matrix + // + IndexVector originalOuterIndicesCpy; + const StorageIndex *originalOuterIndices = mat.outerIndexPtr(); + if(MatrixType::IsRowMajor) + { + originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1); + originalOuterIndices = originalOuterIndicesCpy.data(); + } + + for (int i = 0; i < n; i++) + { + Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i; + m_pmat.outerIndexPtr()[p] = originalOuterIndices[i]; + m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i]; + } + } + + /* Compute the default threshold as in MatLab, see: + * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing + * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 + */ + if(m_useDefaultThreshold) + { + RealScalar max2Norm = 0.0; + for (int j = 0; j < n; j++) max2Norm = numext::maxi(max2Norm, m_pmat.col(j).norm()); + if(max2Norm==RealScalar(0)) + max2Norm = RealScalar(1); + pivotThreshold = 20 * (m + n) * max2Norm * NumTraits::epsilon(); + } + + // Initialize the numerical permutation + m_pivotperm.setIdentity(n); + + StorageIndex nonzeroCol = 0; // Record the number of valid pivots + m_Q.startVec(0); + + // Left looking rank-revealing QR factorization: compute a column of R and Q at a time + for (StorageIndex col = 0; col < n; ++col) + { + mark.setConstant(-1); + m_R.startVec(col); + mark(nonzeroCol) = col; + Qidx(0) = nonzeroCol; + nzcolR = 0; nzcolQ = 1; + bool found_diag = nonzeroCol>=m; + tval.setZero(); + + // Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e., + // all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k. + // Note: if the diagonal entry does not exist, then its contribution must be explicitly added, + // thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found. + for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp) + { + StorageIndex curIdx = nonzeroCol; + if(itp) curIdx = StorageIndex(itp.row()); + if(curIdx == nonzeroCol) found_diag = true; + + // Get the nonzeros indexes of the current column of R + StorageIndex st = m_firstRowElt(curIdx); // The traversal of the etree starts here + if (st < 0 ) + { + m_lastError = "Empty row found during numerical factorization"; + m_info = InvalidInput; + return; + } + + // Traverse the etree + Index bi = nzcolR; + for (; mark(st) != col; st = m_etree(st)) + { + Ridx(nzcolR) = st; // Add this row to the list, + mark(st) = col; // and mark this row as visited + nzcolR++; + } + + // Reverse the list to get the topological ordering + Index nt = nzcolR-bi; + for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1)); + + // Copy the current (curIdx,pcol) value of the input matrix + if(itp) tval(curIdx) = itp.value(); + else tval(curIdx) = Scalar(0); + + // Compute the pattern of Q(:,k) + if(curIdx > nonzeroCol && mark(curIdx) != col ) + { + Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q, + mark(curIdx) = col; // and mark it as visited + nzcolQ++; + } + } + + // Browse all the indexes of R(:,col) in reverse order + for (Index i = nzcolR-1; i >= 0; i--) + { + Index curIdx = Ridx(i); + + // Apply the curIdx-th householder vector to the current column (temporarily stored into tval) + Scalar tdot(0); + + // First compute q' * tval + tdot = m_Q.col(curIdx).dot(tval); + + tdot *= m_hcoeffs(curIdx); + + // Then update tval = tval - q * tau + // FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse") + for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) + tval(itq.row()) -= itq.value() * tdot; + + // Detect fill-in for the current column of Q + if(m_etree(Ridx(i)) == nonzeroCol) + { + for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq) + { + StorageIndex iQ = StorageIndex(itq.row()); + if (mark(iQ) != col) + { + Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q, + mark(iQ) = col; // and mark it as visited + } + } + } + } // End update current column + + Scalar tau = RealScalar(0); + RealScalar beta = 0; + + if(nonzeroCol < diagSize) + { + // Compute the Householder reflection that eliminate the current column + // FIXME this step should call the Householder module. + Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0); + + // First, the squared norm of Q((col+1):m, col) + RealScalar sqrNorm = 0.; + for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq))); + if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0)) + { + beta = numext::real(c0); + tval(Qidx(0)) = 1; + } + else + { + using std::sqrt; + beta = sqrt(numext::abs2(c0) + sqrNorm); + if(numext::real(c0) >= RealScalar(0)) + beta = -beta; + tval(Qidx(0)) = 1; + for (Index itq = 1; itq < nzcolQ; ++itq) + tval(Qidx(itq)) /= (c0 - beta); + tau = numext::conj((beta-c0) / beta); + + } + } + + // Insert values in R + for (Index i = nzcolR-1; i >= 0; i--) + { + Index curIdx = Ridx(i); + if(curIdx < nonzeroCol) + { + m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx); + tval(curIdx) = Scalar(0.); + } + } + + if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold) + { + m_R.insertBackByOuterInner(col, nonzeroCol) = beta; + // The householder coefficient + m_hcoeffs(nonzeroCol) = tau; + // Record the householder reflections + for (Index itq = 0; itq < nzcolQ; ++itq) + { + Index iQ = Qidx(itq); + m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ); + tval(iQ) = Scalar(0.); + } + nonzeroCol++; + if(nonzeroCol +struct SparseQR_QProduct : ReturnByValue > +{ + typedef typename SparseQRType::QRMatrixType MatrixType; + typedef typename SparseQRType::Scalar Scalar; + // Get the references + SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) : + m_qr(qr),m_other(other),m_transpose(transpose) {} + inline Index rows() const { return m_qr.matrixQ().rows(); } + inline Index cols() const { return m_other.cols(); } + + // Assign to a vector + template + void evalTo(DesType& res) const + { + Index m = m_qr.rows(); + Index n = m_qr.cols(); + Index diagSize = (std::min)(m,n); + res = m_other; + if (m_transpose) + { + eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes"); + //Compute res = Q' * other column by column + for(Index j = 0; j < res.cols(); j++){ + for (Index k = 0; k < diagSize; k++) + { + Scalar tau = Scalar(0); + tau = m_qr.m_Q.col(k).dot(res.col(j)); + if(tau==Scalar(0)) continue; + tau = tau * m_qr.m_hcoeffs(k); + res.col(j) -= tau * m_qr.m_Q.col(k); + } + } + } + else + { + eigen_assert(m_qr.matrixQ().cols() == m_other.rows() && "Non conforming object sizes"); + + res.conservativeResize(rows(), cols()); + + // Compute res = Q * other column by column + for(Index j = 0; j < res.cols(); j++) + { + Index start_k = internal::is_identity::value ? numext::mini(j,diagSize-1) : diagSize-1; + for (Index k = start_k; k >=0; k--) + { + Scalar tau = Scalar(0); + tau = m_qr.m_Q.col(k).dot(res.col(j)); + if(tau==Scalar(0)) continue; + tau = tau * numext::conj(m_qr.m_hcoeffs(k)); + res.col(j) -= tau * m_qr.m_Q.col(k); + } + } + } + } + + const SparseQRType& m_qr; + const Derived& m_other; + bool m_transpose; // TODO this actually means adjoint +}; + +template +struct SparseQRMatrixQReturnType : public EigenBase > +{ + typedef typename SparseQRType::Scalar Scalar; + typedef Matrix DenseMatrix; + enum { + RowsAtCompileTime = Dynamic, + ColsAtCompileTime = Dynamic + }; + explicit SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {} + template + SparseQR_QProduct operator*(const MatrixBase& other) + { + return SparseQR_QProduct(m_qr,other.derived(),false); + } + // To use for operations with the adjoint of Q + SparseQRMatrixQTransposeReturnType adjoint() const + { + return SparseQRMatrixQTransposeReturnType(m_qr); + } + inline Index rows() const { return m_qr.rows(); } + inline Index cols() const { return m_qr.rows(); } + // To use for operations with the transpose of Q FIXME this is the same as adjoint at the moment + SparseQRMatrixQTransposeReturnType transpose() const + { + return SparseQRMatrixQTransposeReturnType(m_qr); + } + const SparseQRType& m_qr; +}; + +// TODO this actually represents the adjoint of Q +template +struct SparseQRMatrixQTransposeReturnType +{ + explicit SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {} + template + SparseQR_QProduct operator*(const MatrixBase& other) + { + return SparseQR_QProduct(m_qr,other.derived(), true); + } + const SparseQRType& m_qr; +}; + +namespace internal { + +template +struct evaluator_traits > +{ + typedef typename SparseQRType::MatrixType MatrixType; + typedef typename storage_kind_to_evaluator_kind::Kind Kind; + typedef SparseShape Shape; +}; + +template< typename DstXprType, typename SparseQRType> +struct Assignment, internal::assign_op, Sparse2Sparse> +{ + typedef SparseQRMatrixQReturnType SrcXprType; + typedef typename DstXprType::Scalar Scalar; + typedef typename DstXprType::StorageIndex StorageIndex; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + typename DstXprType::PlainObject idMat(src.rows(), src.cols()); + idMat.setIdentity(); + // Sort the sparse householder reflectors if needed + const_cast(&src.m_qr)->_sort_matrix_Q(); + dst = SparseQR_QProduct(src.m_qr, idMat, false); + } +}; + +template< typename DstXprType, typename SparseQRType> +struct Assignment, internal::assign_op, Sparse2Dense> +{ + typedef SparseQRMatrixQReturnType SrcXprType; + typedef typename DstXprType::Scalar Scalar; + typedef typename DstXprType::StorageIndex StorageIndex; + static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) + { + dst = src.m_qr.matrixQ() * DstXprType::Identity(src.m_qr.rows(), src.m_qr.rows()); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif diff --git a/include/eigen/Eigen/src/misc/Image.h b/include/eigen/Eigen/src/misc/Image.h new file mode 100644 index 0000000000000000000000000000000000000000..b8b8a045529ab8848b5a8e9f3eb7c7a017b68d54 --- /dev/null +++ b/include/eigen/Eigen/src/misc/Image.h @@ -0,0 +1,82 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MISC_IMAGE_H +#define EIGEN_MISC_IMAGE_H + +namespace Eigen { + +namespace internal { + +/** \class image_retval_base + * + */ +template +struct traits > +{ + typedef typename DecompositionType::MatrixType MatrixType; + typedef Matrix< + typename MatrixType::Scalar, + MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose + // dimension is the number of rows of the original matrix + Dynamic, // we don't know at compile time the dimension of the image (the rank) + MatrixType::Options, + MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix, + MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns. + > ReturnType; +}; + +template struct image_retval_base + : public ReturnByValue > +{ + typedef _DecompositionType DecompositionType; + typedef typename DecompositionType::MatrixType MatrixType; + typedef ReturnByValue Base; + + image_retval_base(const DecompositionType& dec, const MatrixType& originalMatrix) + : m_dec(dec), m_rank(dec.rank()), + m_cols(m_rank == 0 ? 1 : m_rank), + m_originalMatrix(originalMatrix) + {} + + inline Index rows() const { return m_dec.rows(); } + inline Index cols() const { return m_cols; } + inline Index rank() const { return m_rank; } + inline const DecompositionType& dec() const { return m_dec; } + inline const MatrixType& originalMatrix() const { return m_originalMatrix; } + + template inline void evalTo(Dest& dst) const + { + static_cast*>(this)->evalTo(dst); + } + + protected: + const DecompositionType& m_dec; + Index m_rank, m_cols; + const MatrixType& m_originalMatrix; +}; + +} // end namespace internal + +#define EIGEN_MAKE_IMAGE_HELPERS(DecompositionType) \ + typedef typename DecompositionType::MatrixType MatrixType; \ + typedef typename MatrixType::Scalar Scalar; \ + typedef typename MatrixType::RealScalar RealScalar; \ + typedef Eigen::internal::image_retval_base Base; \ + using Base::dec; \ + using Base::originalMatrix; \ + using Base::rank; \ + using Base::rows; \ + using Base::cols; \ + image_retval(const DecompositionType& dec, const MatrixType& originalMatrix) \ + : Base(dec, originalMatrix) {} + +} // end namespace Eigen + +#endif // EIGEN_MISC_IMAGE_H diff --git a/include/eigen/Eigen/src/misc/Kernel.h b/include/eigen/Eigen/src/misc/Kernel.h new file mode 100644 index 0000000000000000000000000000000000000000..bef5d6ff5830cf28ff2c88d5fe09dc3b3b4bbff7 --- /dev/null +++ b/include/eigen/Eigen/src/misc/Kernel.h @@ -0,0 +1,79 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_MISC_KERNEL_H +#define EIGEN_MISC_KERNEL_H + +namespace Eigen { + +namespace internal { + +/** \class kernel_retval_base + * + */ +template +struct traits > +{ + typedef typename DecompositionType::MatrixType MatrixType; + typedef Matrix< + typename MatrixType::Scalar, + MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" + // is the number of cols of the original matrix + // so that the product "matrix * kernel = zero" makes sense + Dynamic, // we don't know at compile-time the dimension of the kernel + MatrixType::Options, + MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter + MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space, + // whose dimension is the number of columns of the original matrix + > ReturnType; +}; + +template struct kernel_retval_base + : public ReturnByValue > +{ + typedef _DecompositionType DecompositionType; + typedef ReturnByValue Base; + + explicit kernel_retval_base(const DecompositionType& dec) + : m_dec(dec), + m_rank(dec.rank()), + m_cols(m_rank==dec.cols() ? 1 : dec.cols() - m_rank) + {} + + inline Index rows() const { return m_dec.cols(); } + inline Index cols() const { return m_cols; } + inline Index rank() const { return m_rank; } + inline const DecompositionType& dec() const { return m_dec; } + + template inline void evalTo(Dest& dst) const + { + static_cast*>(this)->evalTo(dst); + } + + protected: + const DecompositionType& m_dec; + Index m_rank, m_cols; +}; + +} // end namespace internal + +#define EIGEN_MAKE_KERNEL_HELPERS(DecompositionType) \ + typedef typename DecompositionType::MatrixType MatrixType; \ + typedef typename MatrixType::Scalar Scalar; \ + typedef typename MatrixType::RealScalar RealScalar; \ + typedef Eigen::internal::kernel_retval_base Base; \ + using Base::dec; \ + using Base::rank; \ + using Base::rows; \ + using Base::cols; \ + kernel_retval(const DecompositionType& dec) : Base(dec) {} + +} // end namespace Eigen + +#endif // EIGEN_MISC_KERNEL_H diff --git a/include/eigen/Eigen/src/misc/RealSvd2x2.h b/include/eigen/Eigen/src/misc/RealSvd2x2.h new file mode 100644 index 0000000000000000000000000000000000000000..abb4d3c2fc72641d46e5852bc114cb3b0cab8215 --- /dev/null +++ b/include/eigen/Eigen/src/misc/RealSvd2x2.h @@ -0,0 +1,55 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Benoit Jacob +// Copyright (C) 2013-2016 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_REALSVD2X2_H +#define EIGEN_REALSVD2X2_H + +namespace Eigen { + +namespace internal { + +template +void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, + JacobiRotation *j_left, + JacobiRotation *j_right) +{ + using std::sqrt; + using std::abs; + Matrix m; + m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), + numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); + JacobiRotation rot1; + RealScalar t = m.coeff(0,0) + m.coeff(1,1); + RealScalar d = m.coeff(1,0) - m.coeff(0,1); + + if(abs(d) < (std::numeric_limits::min)()) + { + rot1.s() = RealScalar(0); + rot1.c() = RealScalar(1); + } + else + { + // If d!=0, then t/d cannot overflow because the magnitude of the + // entries forming d are not too small compared to the ones forming t. + RealScalar u = t / d; + RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u)); + rot1.s() = RealScalar(1) / tmp; + rot1.c() = u / tmp; + } + m.applyOnTheLeft(0,1,rot1); + j_right->makeJacobi(m,0,1); + *j_left = rot1 * j_right->transpose(); +} + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_REALSVD2X2_H diff --git a/include/eigen/Eigen/src/misc/blas.h b/include/eigen/Eigen/src/misc/blas.h new file mode 100644 index 0000000000000000000000000000000000000000..25215b15e8af7db305449ec36d54e226d1e8a4d6 --- /dev/null +++ b/include/eigen/Eigen/src/misc/blas.h @@ -0,0 +1,440 @@ +#ifndef BLAS_H +#define BLAS_H + +#ifdef __cplusplus +extern "C" +{ +#endif + +#define BLASFUNC(FUNC) FUNC##_ + +#ifdef __WIN64__ +typedef long long BLASLONG; +typedef unsigned long long BLASULONG; +#else +typedef long BLASLONG; +typedef unsigned long BLASULONG; +#endif + +int BLASFUNC(xerbla)(const char *, int *info, int); + +float BLASFUNC(sdot) (int *, float *, int *, float *, int *); +float BLASFUNC(sdsdot)(int *, float *, float *, int *, float *, int *); + +double BLASFUNC(dsdot) (int *, float *, int *, float *, int *); +double BLASFUNC(ddot) (int *, double *, int *, double *, int *); +double BLASFUNC(qdot) (int *, double *, int *, double *, int *); + +int BLASFUNC(cdotuw) (int *, float *, int *, float *, int *, float*); +int BLASFUNC(cdotcw) (int *, float *, int *, float *, int *, float*); +int BLASFUNC(zdotuw) (int *, double *, int *, double *, int *, double*); +int BLASFUNC(zdotcw) (int *, double *, int *, double *, int *, double*); + +int BLASFUNC(saxpy) (const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(daxpy) (const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(qaxpy) (const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(caxpy) (const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(zaxpy) (const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(xaxpy) (const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(caxpyc)(const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(zaxpyc)(const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(xaxpyc)(const int *, const double *, const double *, const int *, double *, const int *); + +int BLASFUNC(scopy) (int *, float *, int *, float *, int *); +int BLASFUNC(dcopy) (int *, double *, int *, double *, int *); +int BLASFUNC(qcopy) (int *, double *, int *, double *, int *); +int BLASFUNC(ccopy) (int *, float *, int *, float *, int *); +int BLASFUNC(zcopy) (int *, double *, int *, double *, int *); +int BLASFUNC(xcopy) (int *, double *, int *, double *, int *); + +int BLASFUNC(sswap) (int *, float *, int *, float *, int *); +int BLASFUNC(dswap) (int *, double *, int *, double *, int *); +int BLASFUNC(qswap) (int *, double *, int *, double *, int *); +int BLASFUNC(cswap) (int *, float *, int *, float *, int *); +int BLASFUNC(zswap) (int *, double *, int *, double *, int *); +int BLASFUNC(xswap) (int *, double *, int *, double *, int *); + +float BLASFUNC(sasum) (int *, float *, int *); +float BLASFUNC(scasum)(int *, float *, int *); +double BLASFUNC(dasum) (int *, double *, int *); +double BLASFUNC(qasum) (int *, double *, int *); +double BLASFUNC(dzasum)(int *, double *, int *); +double BLASFUNC(qxasum)(int *, double *, int *); + +int BLASFUNC(isamax)(int *, float *, int *); +int BLASFUNC(idamax)(int *, double *, int *); +int BLASFUNC(iqamax)(int *, double *, int *); +int BLASFUNC(icamax)(int *, float *, int *); +int BLASFUNC(izamax)(int *, double *, int *); +int BLASFUNC(ixamax)(int *, double *, int *); + +int BLASFUNC(ismax) (int *, float *, int *); +int BLASFUNC(idmax) (int *, double *, int *); +int BLASFUNC(iqmax) (int *, double *, int *); +int BLASFUNC(icmax) (int *, float *, int *); +int BLASFUNC(izmax) (int *, double *, int *); +int BLASFUNC(ixmax) (int *, double *, int *); + +int BLASFUNC(isamin)(int *, float *, int *); +int BLASFUNC(idamin)(int *, double *, int *); +int BLASFUNC(iqamin)(int *, double *, int *); +int BLASFUNC(icamin)(int *, float *, int *); +int BLASFUNC(izamin)(int *, double *, int *); +int BLASFUNC(ixamin)(int *, double *, int *); + +int BLASFUNC(ismin)(int *, float *, int *); +int BLASFUNC(idmin)(int *, double *, int *); +int BLASFUNC(iqmin)(int *, double *, int *); +int BLASFUNC(icmin)(int *, float *, int *); +int BLASFUNC(izmin)(int *, double *, int *); +int BLASFUNC(ixmin)(int *, double *, int *); + +float BLASFUNC(samax) (int *, float *, int *); +double BLASFUNC(damax) (int *, double *, int *); +double BLASFUNC(qamax) (int *, double *, int *); +float BLASFUNC(scamax)(int *, float *, int *); +double BLASFUNC(dzamax)(int *, double *, int *); +double BLASFUNC(qxamax)(int *, double *, int *); + +float BLASFUNC(samin) (int *, float *, int *); +double BLASFUNC(damin) (int *, double *, int *); +double BLASFUNC(qamin) (int *, double *, int *); +float BLASFUNC(scamin)(int *, float *, int *); +double BLASFUNC(dzamin)(int *, double *, int *); +double BLASFUNC(qxamin)(int *, double *, int *); + +float BLASFUNC(smax) (int *, float *, int *); +double BLASFUNC(dmax) (int *, double *, int *); +double BLASFUNC(qmax) (int *, double *, int *); +float BLASFUNC(scmax) (int *, float *, int *); +double BLASFUNC(dzmax) (int *, double *, int *); +double BLASFUNC(qxmax) (int *, double *, int *); + +float BLASFUNC(smin) (int *, float *, int *); +double BLASFUNC(dmin) (int *, double *, int *); +double BLASFUNC(qmin) (int *, double *, int *); +float BLASFUNC(scmin) (int *, float *, int *); +double BLASFUNC(dzmin) (int *, double *, int *); +double BLASFUNC(qxmin) (int *, double *, int *); + +int BLASFUNC(sscal) (int *, float *, float *, int *); +int BLASFUNC(dscal) (int *, double *, double *, int *); +int BLASFUNC(qscal) (int *, double *, double *, int *); +int BLASFUNC(cscal) (int *, float *, float *, int *); +int BLASFUNC(zscal) (int *, double *, double *, int *); +int BLASFUNC(xscal) (int *, double *, double *, int *); +int BLASFUNC(csscal)(int *, float *, float *, int *); +int BLASFUNC(zdscal)(int *, double *, double *, int *); +int BLASFUNC(xqscal)(int *, double *, double *, int *); + +float BLASFUNC(snrm2) (int *, float *, int *); +float BLASFUNC(scnrm2)(int *, float *, int *); + +double BLASFUNC(dnrm2) (int *, double *, int *); +double BLASFUNC(qnrm2) (int *, double *, int *); +double BLASFUNC(dznrm2)(int *, double *, int *); +double BLASFUNC(qxnrm2)(int *, double *, int *); + +int BLASFUNC(srot) (int *, float *, int *, float *, int *, float *, float *); +int BLASFUNC(drot) (int *, double *, int *, double *, int *, double *, double *); +int BLASFUNC(qrot) (int *, double *, int *, double *, int *, double *, double *); +int BLASFUNC(csrot) (int *, float *, int *, float *, int *, float *, float *); +int BLASFUNC(zdrot) (int *, double *, int *, double *, int *, double *, double *); +int BLASFUNC(xqrot) (int *, double *, int *, double *, int *, double *, double *); + +int BLASFUNC(srotg) (float *, float *, float *, float *); +int BLASFUNC(drotg) (double *, double *, double *, double *); +int BLASFUNC(qrotg) (double *, double *, double *, double *); +int BLASFUNC(crotg) (float *, float *, float *, float *); +int BLASFUNC(zrotg) (double *, double *, double *, double *); +int BLASFUNC(xrotg) (double *, double *, double *, double *); + +int BLASFUNC(srotmg)(float *, float *, float *, float *, float *); +int BLASFUNC(drotmg)(double *, double *, double *, double *, double *); + +int BLASFUNC(srotm) (int *, float *, int *, float *, int *, float *); +int BLASFUNC(drotm) (int *, double *, int *, double *, int *, double *); +int BLASFUNC(qrotm) (int *, double *, int *, double *, int *, double *); + +/* Level 2 routines */ + +int BLASFUNC(sger)(int *, int *, float *, float *, int *, + float *, int *, float *, int *); +int BLASFUNC(dger)(int *, int *, double *, double *, int *, + double *, int *, double *, int *); +int BLASFUNC(qger)(int *, int *, double *, double *, int *, + double *, int *, double *, int *); +int BLASFUNC(cgeru)(int *, int *, float *, float *, int *, + float *, int *, float *, int *); +int BLASFUNC(cgerc)(int *, int *, float *, float *, int *, + float *, int *, float *, int *); +int BLASFUNC(zgeru)(int *, int *, double *, double *, int *, + double *, int *, double *, int *); +int BLASFUNC(zgerc)(int *, int *, double *, double *, int *, + double *, int *, double *, int *); +int BLASFUNC(xgeru)(int *, int *, double *, double *, int *, + double *, int *, double *, int *); +int BLASFUNC(xgerc)(int *, int *, double *, double *, int *, + double *, int *, double *, int *); + +int BLASFUNC(sgemv)(const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(qgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(cgemv)(const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xgemv)(const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(strsv) (const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); +int BLASFUNC(dtrsv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(qtrsv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(ctrsv) (const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); +int BLASFUNC(ztrsv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(xtrsv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); + +int BLASFUNC(stpsv) (char *, char *, char *, int *, float *, float *, int *); +int BLASFUNC(dtpsv) (char *, char *, char *, int *, double *, double *, int *); +int BLASFUNC(qtpsv) (char *, char *, char *, int *, double *, double *, int *); +int BLASFUNC(ctpsv) (char *, char *, char *, int *, float *, float *, int *); +int BLASFUNC(ztpsv) (char *, char *, char *, int *, double *, double *, int *); +int BLASFUNC(xtpsv) (char *, char *, char *, int *, double *, double *, int *); + +int BLASFUNC(strmv) (const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); +int BLASFUNC(dtrmv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(qtrmv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(ctrmv) (const char *, const char *, const char *, const int *, const float *, const int *, float *, const int *); +int BLASFUNC(ztrmv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(xtrmv) (const char *, const char *, const char *, const int *, const double *, const int *, double *, const int *); + +int BLASFUNC(stpmv) (char *, char *, char *, int *, float *, float *, int *); +int BLASFUNC(dtpmv) (char *, char *, char *, int *, double *, double *, int *); +int BLASFUNC(qtpmv) (char *, char *, char *, int *, double *, double *, int *); +int BLASFUNC(ctpmv) (char *, char *, char *, int *, float *, float *, int *); +int BLASFUNC(ztpmv) (char *, char *, char *, int *, double *, double *, int *); +int BLASFUNC(xtpmv) (char *, char *, char *, int *, double *, double *, int *); + +int BLASFUNC(stbmv) (char *, char *, char *, int *, int *, float *, int *, float *, int *); +int BLASFUNC(dtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); +int BLASFUNC(qtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); +int BLASFUNC(ctbmv) (char *, char *, char *, int *, int *, float *, int *, float *, int *); +int BLASFUNC(ztbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); +int BLASFUNC(xtbmv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); + +int BLASFUNC(stbsv) (char *, char *, char *, int *, int *, float *, int *, float *, int *); +int BLASFUNC(dtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); +int BLASFUNC(qtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); +int BLASFUNC(ctbsv) (char *, char *, char *, int *, int *, float *, int *, float *, int *); +int BLASFUNC(ztbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); +int BLASFUNC(xtbsv) (char *, char *, char *, int *, int *, double *, int *, double *, int *); + +int BLASFUNC(ssymv) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dsymv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(qsymv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(sspmv) (char *, int *, float *, float *, + float *, int *, float *, float *, int *); +int BLASFUNC(dspmv) (char *, int *, double *, double *, + double *, int *, double *, double *, int *); +int BLASFUNC(qspmv) (char *, int *, double *, double *, + double *, int *, double *, double *, int *); + +int BLASFUNC(ssyr) (const char *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(dsyr) (const char *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(qsyr) (const char *, const int *, const double *, const double *, const int *, double *, const int *); + +int BLASFUNC(ssyr2) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, float *, const int *); +int BLASFUNC(dsyr2) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(qsyr2) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(csyr2) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, float *, const int *); +int BLASFUNC(zsyr2) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, double *, const int *); +int BLASFUNC(xsyr2) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, double *, const int *); + +int BLASFUNC(sspr) (char *, int *, float *, float *, int *, + float *); +int BLASFUNC(dspr) (char *, int *, double *, double *, int *, + double *); +int BLASFUNC(qspr) (char *, int *, double *, double *, int *, + double *); + +int BLASFUNC(sspr2) (char *, int *, float *, + float *, int *, float *, int *, float *); +int BLASFUNC(dspr2) (char *, int *, double *, + double *, int *, double *, int *, double *); +int BLASFUNC(qspr2) (char *, int *, double *, + double *, int *, double *, int *, double *); +int BLASFUNC(cspr2) (char *, int *, float *, + float *, int *, float *, int *, float *); +int BLASFUNC(zspr2) (char *, int *, double *, + double *, int *, double *, int *, double *); +int BLASFUNC(xspr2) (char *, int *, double *, + double *, int *, double *, int *, double *); + +int BLASFUNC(cher) (char *, int *, float *, float *, int *, + float *, int *); +int BLASFUNC(zher) (char *, int *, double *, double *, int *, + double *, int *); +int BLASFUNC(xher) (char *, int *, double *, double *, int *, + double *, int *); + +int BLASFUNC(chpr) (char *, int *, float *, float *, int *, float *); +int BLASFUNC(zhpr) (char *, int *, double *, double *, int *, double *); +int BLASFUNC(xhpr) (char *, int *, double *, double *, int *, double *); + +int BLASFUNC(cher2) (char *, int *, float *, + float *, int *, float *, int *, float *, int *); +int BLASFUNC(zher2) (char *, int *, double *, + double *, int *, double *, int *, double *, int *); +int BLASFUNC(xher2) (char *, int *, double *, + double *, int *, double *, int *, double *, int *); + +int BLASFUNC(chpr2) (char *, int *, float *, + float *, int *, float *, int *, float *); +int BLASFUNC(zhpr2) (char *, int *, double *, + double *, int *, double *, int *, double *); +int BLASFUNC(xhpr2) (char *, int *, double *, + double *, int *, double *, int *, double *); + +int BLASFUNC(chemv) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zhemv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xhemv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(chpmv) (char *, int *, float *, float *, + float *, int *, float *, float *, int *); +int BLASFUNC(zhpmv) (char *, int *, double *, double *, + double *, int *, double *, double *, int *); +int BLASFUNC(xhpmv) (char *, int *, double *, double *, + double *, int *, double *, double *, int *); + +int BLASFUNC(snorm)(char *, int *, int *, float *, int *); +int BLASFUNC(dnorm)(char *, int *, int *, double *, int *); +int BLASFUNC(cnorm)(char *, int *, int *, float *, int *); +int BLASFUNC(znorm)(char *, int *, int *, double *, int *); + +int BLASFUNC(sgbmv)(char *, int *, int *, int *, int *, float *, float *, int *, + float *, int *, float *, float *, int *); +int BLASFUNC(dgbmv)(char *, int *, int *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); +int BLASFUNC(qgbmv)(char *, int *, int *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); +int BLASFUNC(cgbmv)(char *, int *, int *, int *, int *, float *, float *, int *, + float *, int *, float *, float *, int *); +int BLASFUNC(zgbmv)(char *, int *, int *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); +int BLASFUNC(xgbmv)(char *, int *, int *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); + +int BLASFUNC(ssbmv)(char *, int *, int *, float *, float *, int *, + float *, int *, float *, float *, int *); +int BLASFUNC(dsbmv)(char *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); +int BLASFUNC(qsbmv)(char *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); +int BLASFUNC(csbmv)(char *, int *, int *, float *, float *, int *, + float *, int *, float *, float *, int *); +int BLASFUNC(zsbmv)(char *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); +int BLASFUNC(xsbmv)(char *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); + +int BLASFUNC(chbmv)(char *, int *, int *, float *, float *, int *, + float *, int *, float *, float *, int *); +int BLASFUNC(zhbmv)(char *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); +int BLASFUNC(xhbmv)(char *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); + +/* Level 3 routines */ + +int BLASFUNC(sgemm)(const char *, const char *, const int *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(qgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(cgemm)(const char *, const char *, const int *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xgemm)(const char *, const char *, const int *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(cgemm3m)(char *, char *, int *, int *, int *, float *, + float *, int *, float *, int *, float *, float *, int *); +int BLASFUNC(zgemm3m)(char *, char *, int *, int *, int *, double *, + double *, int *, double *, int *, double *, double *, int *); +int BLASFUNC(xgemm3m)(char *, char *, int *, int *, int *, double *, + double *, int *, double *, int *, double *, double *, int *); + +int BLASFUNC(sge2mm)(char *, char *, char *, int *, int *, + float *, float *, int *, float *, int *, + float *, float *, int *); +int BLASFUNC(dge2mm)(char *, char *, char *, int *, int *, + double *, double *, int *, double *, int *, + double *, double *, int *); +int BLASFUNC(cge2mm)(char *, char *, char *, int *, int *, + float *, float *, int *, float *, int *, + float *, float *, int *); +int BLASFUNC(zge2mm)(char *, char *, char *, int *, int *, + double *, double *, int *, double *, int *, + double *, double *, int *); + +int BLASFUNC(strsm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(dtrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(qtrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(ctrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(ztrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(xtrsm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); + +int BLASFUNC(strmm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(dtrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(qtrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(ctrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, float *, const int *); +int BLASFUNC(ztrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); +int BLASFUNC(xtrmm)(const char *, const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, double *, const int *); + +int BLASFUNC(ssymm)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(qsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(csymm)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xsymm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(csymm3m)(char *, char *, int *, int *, float *, float *, int *, float *, int *, float *, float *, int *); +int BLASFUNC(zsymm3m)(char *, char *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *); +int BLASFUNC(xsymm3m)(char *, char *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *); + +int BLASFUNC(ssyrk)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(qsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(csyrk)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xsyrk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(ssyr2k)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(dsyr2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); +int BLASFUNC(qsyr2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); +int BLASFUNC(csyr2k)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zsyr2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); +int BLASFUNC(xsyr2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); + +int BLASFUNC(chemm)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zhemm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xhemm)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(chemm3m)(char *, char *, int *, int *, float *, float *, int *, + float *, int *, float *, float *, int *); +int BLASFUNC(zhemm3m)(char *, char *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); +int BLASFUNC(xhemm3m)(char *, char *, int *, int *, double *, double *, int *, + double *, int *, double *, double *, int *); + +int BLASFUNC(cherk)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zherk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xherk)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, double *, const int *); + +int BLASFUNC(cher2k)(const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zher2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xher2k)(const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(cher2m)(const char *, const char *, const char *, const int *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zher2m)(const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); +int BLASFUNC(xher2m)(const char *, const char *, const char *, const int *, const int *, const double *, const double *, const int *, const double*, const int *, const double *, double *, const int *); + + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/include/eigen/Eigen/src/misc/lapack.h b/include/eigen/Eigen/src/misc/lapack.h new file mode 100644 index 0000000000000000000000000000000000000000..249f3575c6dd912ac9a52a932d2e68010e523a63 --- /dev/null +++ b/include/eigen/Eigen/src/misc/lapack.h @@ -0,0 +1,152 @@ +#ifndef LAPACK_H +#define LAPACK_H + +#include "blas.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +int BLASFUNC(csymv) (const char *, const int *, const float *, const float *, const int *, const float *, const int *, const float *, float *, const int *); +int BLASFUNC(zsymv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); +int BLASFUNC(xsymv) (const char *, const int *, const double *, const double *, const int *, const double *, const int *, const double *, double *, const int *); + + +int BLASFUNC(cspmv) (char *, int *, float *, float *, + float *, int *, float *, float *, int *); +int BLASFUNC(zspmv) (char *, int *, double *, double *, + double *, int *, double *, double *, int *); +int BLASFUNC(xspmv) (char *, int *, double *, double *, + double *, int *, double *, double *, int *); + +int BLASFUNC(csyr) (char *, int *, float *, float *, int *, + float *, int *); +int BLASFUNC(zsyr) (char *, int *, double *, double *, int *, + double *, int *); +int BLASFUNC(xsyr) (char *, int *, double *, double *, int *, + double *, int *); + +int BLASFUNC(cspr) (char *, int *, float *, float *, int *, + float *); +int BLASFUNC(zspr) (char *, int *, double *, double *, int *, + double *); +int BLASFUNC(xspr) (char *, int *, double *, double *, int *, + double *); + +int BLASFUNC(sgemt)(char *, int *, int *, float *, float *, int *, + float *, int *); +int BLASFUNC(dgemt)(char *, int *, int *, double *, double *, int *, + double *, int *); +int BLASFUNC(cgemt)(char *, int *, int *, float *, float *, int *, + float *, int *); +int BLASFUNC(zgemt)(char *, int *, int *, double *, double *, int *, + double *, int *); + +int BLASFUNC(sgema)(char *, char *, int *, int *, float *, + float *, int *, float *, float *, int *, float *, int *); +int BLASFUNC(dgema)(char *, char *, int *, int *, double *, + double *, int *, double*, double *, int *, double*, int *); +int BLASFUNC(cgema)(char *, char *, int *, int *, float *, + float *, int *, float *, float *, int *, float *, int *); +int BLASFUNC(zgema)(char *, char *, int *, int *, double *, + double *, int *, double*, double *, int *, double*, int *); + +int BLASFUNC(sgems)(char *, char *, int *, int *, float *, + float *, int *, float *, float *, int *, float *, int *); +int BLASFUNC(dgems)(char *, char *, int *, int *, double *, + double *, int *, double*, double *, int *, double*, int *); +int BLASFUNC(cgems)(char *, char *, int *, int *, float *, + float *, int *, float *, float *, int *, float *, int *); +int BLASFUNC(zgems)(char *, char *, int *, int *, double *, + double *, int *, double*, double *, int *, double*, int *); + +int BLASFUNC(sgetf2)(int *, int *, float *, int *, int *, int *); +int BLASFUNC(dgetf2)(int *, int *, double *, int *, int *, int *); +int BLASFUNC(qgetf2)(int *, int *, double *, int *, int *, int *); +int BLASFUNC(cgetf2)(int *, int *, float *, int *, int *, int *); +int BLASFUNC(zgetf2)(int *, int *, double *, int *, int *, int *); +int BLASFUNC(xgetf2)(int *, int *, double *, int *, int *, int *); + +int BLASFUNC(sgetrf)(int *, int *, float *, int *, int *, int *); +int BLASFUNC(dgetrf)(int *, int *, double *, int *, int *, int *); +int BLASFUNC(qgetrf)(int *, int *, double *, int *, int *, int *); +int BLASFUNC(cgetrf)(int *, int *, float *, int *, int *, int *); +int BLASFUNC(zgetrf)(int *, int *, double *, int *, int *, int *); +int BLASFUNC(xgetrf)(int *, int *, double *, int *, int *, int *); + +int BLASFUNC(slaswp)(int *, float *, int *, int *, int *, int *, int *); +int BLASFUNC(dlaswp)(int *, double *, int *, int *, int *, int *, int *); +int BLASFUNC(qlaswp)(int *, double *, int *, int *, int *, int *, int *); +int BLASFUNC(claswp)(int *, float *, int *, int *, int *, int *, int *); +int BLASFUNC(zlaswp)(int *, double *, int *, int *, int *, int *, int *); +int BLASFUNC(xlaswp)(int *, double *, int *, int *, int *, int *, int *); + +int BLASFUNC(sgetrs)(char *, int *, int *, float *, int *, int *, float *, int *, int *); +int BLASFUNC(dgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *); +int BLASFUNC(qgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *); +int BLASFUNC(cgetrs)(char *, int *, int *, float *, int *, int *, float *, int *, int *); +int BLASFUNC(zgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *); +int BLASFUNC(xgetrs)(char *, int *, int *, double *, int *, int *, double *, int *, int *); + +int BLASFUNC(sgesv)(int *, int *, float *, int *, int *, float *, int *, int *); +int BLASFUNC(dgesv)(int *, int *, double *, int *, int *, double*, int *, int *); +int BLASFUNC(qgesv)(int *, int *, double *, int *, int *, double*, int *, int *); +int BLASFUNC(cgesv)(int *, int *, float *, int *, int *, float *, int *, int *); +int BLASFUNC(zgesv)(int *, int *, double *, int *, int *, double*, int *, int *); +int BLASFUNC(xgesv)(int *, int *, double *, int *, int *, double*, int *, int *); + +int BLASFUNC(spotf2)(char *, int *, float *, int *, int *); +int BLASFUNC(dpotf2)(char *, int *, double *, int *, int *); +int BLASFUNC(qpotf2)(char *, int *, double *, int *, int *); +int BLASFUNC(cpotf2)(char *, int *, float *, int *, int *); +int BLASFUNC(zpotf2)(char *, int *, double *, int *, int *); +int BLASFUNC(xpotf2)(char *, int *, double *, int *, int *); + +int BLASFUNC(spotrf)(char *, int *, float *, int *, int *); +int BLASFUNC(dpotrf)(char *, int *, double *, int *, int *); +int BLASFUNC(qpotrf)(char *, int *, double *, int *, int *); +int BLASFUNC(cpotrf)(char *, int *, float *, int *, int *); +int BLASFUNC(zpotrf)(char *, int *, double *, int *, int *); +int BLASFUNC(xpotrf)(char *, int *, double *, int *, int *); + +int BLASFUNC(slauu2)(char *, int *, float *, int *, int *); +int BLASFUNC(dlauu2)(char *, int *, double *, int *, int *); +int BLASFUNC(qlauu2)(char *, int *, double *, int *, int *); +int BLASFUNC(clauu2)(char *, int *, float *, int *, int *); +int BLASFUNC(zlauu2)(char *, int *, double *, int *, int *); +int BLASFUNC(xlauu2)(char *, int *, double *, int *, int *); + +int BLASFUNC(slauum)(char *, int *, float *, int *, int *); +int BLASFUNC(dlauum)(char *, int *, double *, int *, int *); +int BLASFUNC(qlauum)(char *, int *, double *, int *, int *); +int BLASFUNC(clauum)(char *, int *, float *, int *, int *); +int BLASFUNC(zlauum)(char *, int *, double *, int *, int *); +int BLASFUNC(xlauum)(char *, int *, double *, int *, int *); + +int BLASFUNC(strti2)(char *, char *, int *, float *, int *, int *); +int BLASFUNC(dtrti2)(char *, char *, int *, double *, int *, int *); +int BLASFUNC(qtrti2)(char *, char *, int *, double *, int *, int *); +int BLASFUNC(ctrti2)(char *, char *, int *, float *, int *, int *); +int BLASFUNC(ztrti2)(char *, char *, int *, double *, int *, int *); +int BLASFUNC(xtrti2)(char *, char *, int *, double *, int *, int *); + +int BLASFUNC(strtri)(char *, char *, int *, float *, int *, int *); +int BLASFUNC(dtrtri)(char *, char *, int *, double *, int *, int *); +int BLASFUNC(qtrtri)(char *, char *, int *, double *, int *, int *); +int BLASFUNC(ctrtri)(char *, char *, int *, float *, int *, int *); +int BLASFUNC(ztrtri)(char *, char *, int *, double *, int *, int *); +int BLASFUNC(xtrtri)(char *, char *, int *, double *, int *, int *); + +int BLASFUNC(spotri)(char *, int *, float *, int *, int *); +int BLASFUNC(dpotri)(char *, int *, double *, int *, int *); +int BLASFUNC(qpotri)(char *, int *, double *, int *, int *); +int BLASFUNC(cpotri)(char *, int *, float *, int *, int *); +int BLASFUNC(zpotri)(char *, int *, double *, int *, int *); +int BLASFUNC(xpotri)(char *, int *, double *, int *, int *); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/include/eigen/Eigen/src/misc/lapacke.h b/include/eigen/Eigen/src/misc/lapacke.h new file mode 100644 index 0000000000000000000000000000000000000000..3d8e24f5a2ea640658a65f70f21f656c40185fea --- /dev/null +++ b/include/eigen/Eigen/src/misc/lapacke.h @@ -0,0 +1,16292 @@ +/***************************************************************************** + Copyright (c) 2010, Intel Corp. + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + * Neither the name of Intel Corporation nor the names of its contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + THE POSSIBILITY OF SUCH DAMAGE. +****************************************************************************** +* Contents: Native C interface to LAPACK +* Author: Intel Corporation +* Generated November, 2011 +*****************************************************************************/ + +#ifndef _MKL_LAPACKE_H_ + +#ifndef _LAPACKE_H_ +#define _LAPACKE_H_ + +/* +* Turn on HAVE_LAPACK_CONFIG_H to redefine C-LAPACK datatypes +*/ +#ifdef HAVE_LAPACK_CONFIG_H +#include "lapacke_config.h" +#endif + +#include + +#ifndef lapack_int +#define lapack_int int +#endif + +#ifndef lapack_logical +#define lapack_logical lapack_int +#endif + +/* Complex types are structures equivalent to the +* Fortran complex types COMPLEX(4) and COMPLEX(8). +* +* One can also redefine the types with his own types +* for example by including in the code definitions like +* +* #define lapack_complex_float std::complex +* #define lapack_complex_double std::complex +* +* or define these types in the command line: +* +* -Dlapack_complex_float="std::complex" +* -Dlapack_complex_double="std::complex" +*/ + +#ifndef LAPACK_COMPLEX_CUSTOM + +/* Complex type (single precision) */ +#ifndef lapack_complex_float +#include +#define lapack_complex_float float _Complex +#endif + +#ifndef lapack_complex_float_real +#define lapack_complex_float_real(z) (creal(z)) +#endif + +#ifndef lapack_complex_float_imag +#define lapack_complex_float_imag(z) (cimag(z)) +#endif + +lapack_complex_float lapack_make_complex_float( float re, float im ); + +/* Complex type (double precision) */ +#ifndef lapack_complex_double +#include +#define lapack_complex_double double _Complex +#endif + +#ifndef lapack_complex_double_real +#define lapack_complex_double_real(z) (creal(z)) +#endif + +#ifndef lapack_complex_double_imag +#define lapack_complex_double_imag(z) (cimag(z)) +#endif + +lapack_complex_double lapack_make_complex_double( double re, double im ); + +#endif + + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + +#ifndef LAPACKE_malloc +#define LAPACKE_malloc( size ) malloc( size ) +#endif +#ifndef LAPACKE_free +#define LAPACKE_free( p ) free( p ) +#endif + +#define LAPACK_C2INT( x ) (lapack_int)(*((float*)&x )) +#define LAPACK_Z2INT( x ) (lapack_int)(*((double*)&x )) + +#define LAPACK_ROW_MAJOR 101 +#define LAPACK_COL_MAJOR 102 + +#define LAPACK_WORK_MEMORY_ERROR -1010 +#define LAPACK_TRANSPOSE_MEMORY_ERROR -1011 + +/* Callback logical functions of one, two, or three arguments are used +* to select eigenvalues to sort to the top left of the Schur form. +* The value is selected if function returns TRUE (non-zero). */ + +typedef lapack_logical (*LAPACK_S_SELECT2) ( const float*, const float* ); +typedef lapack_logical (*LAPACK_S_SELECT3) + ( const float*, const float*, const float* ); +typedef lapack_logical (*LAPACK_D_SELECT2) ( const double*, const double* ); +typedef lapack_logical (*LAPACK_D_SELECT3) + ( const double*, const double*, const double* ); + +typedef lapack_logical (*LAPACK_C_SELECT1) ( const lapack_complex_float* ); +typedef lapack_logical (*LAPACK_C_SELECT2) + ( const lapack_complex_float*, const lapack_complex_float* ); +typedef lapack_logical (*LAPACK_Z_SELECT1) ( const lapack_complex_double* ); +typedef lapack_logical (*LAPACK_Z_SELECT2) + ( const lapack_complex_double*, const lapack_complex_double* ); + +#include "lapacke_mangling.h" + +#define LAPACK_lsame LAPACK_GLOBAL(lsame,LSAME) +lapack_logical LAPACK_lsame( char* ca, char* cb, + lapack_int lca, lapack_int lcb ); + +/* C-LAPACK function prototypes */ + +lapack_int LAPACKE_sbdsdc( int matrix_order, char uplo, char compq, + lapack_int n, float* d, float* e, float* u, + lapack_int ldu, float* vt, lapack_int ldvt, float* q, + lapack_int* iq ); +lapack_int LAPACKE_dbdsdc( int matrix_order, char uplo, char compq, + lapack_int n, double* d, double* e, double* u, + lapack_int ldu, double* vt, lapack_int ldvt, + double* q, lapack_int* iq ); + +lapack_int LAPACKE_sbdsqr( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + float* d, float* e, float* vt, lapack_int ldvt, + float* u, lapack_int ldu, float* c, lapack_int ldc ); +lapack_int LAPACKE_dbdsqr( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + double* d, double* e, double* vt, lapack_int ldvt, + double* u, lapack_int ldu, double* c, + lapack_int ldc ); +lapack_int LAPACKE_cbdsqr( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + float* d, float* e, lapack_complex_float* vt, + lapack_int ldvt, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* c, + lapack_int ldc ); +lapack_int LAPACKE_zbdsqr( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + double* d, double* e, lapack_complex_double* vt, + lapack_int ldvt, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* c, + lapack_int ldc ); + +lapack_int LAPACKE_sdisna( char job, lapack_int m, lapack_int n, const float* d, + float* sep ); +lapack_int LAPACKE_ddisna( char job, lapack_int m, lapack_int n, + const double* d, double* sep ); + +lapack_int LAPACKE_sgbbrd( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, float* ab, lapack_int ldab, float* d, + float* e, float* q, lapack_int ldq, float* pt, + lapack_int ldpt, float* c, lapack_int ldc ); +lapack_int LAPACKE_dgbbrd( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, double* ab, lapack_int ldab, + double* d, double* e, double* q, lapack_int ldq, + double* pt, lapack_int ldpt, double* c, + lapack_int ldc ); +lapack_int LAPACKE_cgbbrd( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, lapack_complex_float* ab, + lapack_int ldab, float* d, float* e, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* pt, lapack_int ldpt, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zgbbrd( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, lapack_complex_double* ab, + lapack_int ldab, double* d, double* e, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* pt, lapack_int ldpt, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_sgbcon( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, const lapack_int* ipiv, float anorm, + float* rcond ); +lapack_int LAPACKE_dgbcon( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, const lapack_int* ipiv, + double anorm, double* rcond ); +lapack_int LAPACKE_cgbcon( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zgbcon( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_sgbequ( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_dgbequ( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); +lapack_int LAPACKE_cgbequ( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_zgbequ( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, lapack_int ldab, + double* r, double* c, double* rowcnd, double* colcnd, + double* amax ); + +lapack_int LAPACKE_sgbequb( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_dgbequb( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); +lapack_int LAPACKE_cgbequb( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_zgbequb( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, lapack_int ldab, + double* r, double* c, double* rowcnd, + double* colcnd, double* amax ); + +lapack_int LAPACKE_sgbrfs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const float* ab, lapack_int ldab, const float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dgbrfs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const double* ab, lapack_int ldab, const double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_cgbrfs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* afb, lapack_int ldafb, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zgbrfs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* afb, lapack_int ldafb, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sgbrfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const float* ab, lapack_int ldab, + const float* afb, lapack_int ldafb, + const lapack_int* ipiv, const float* r, + const float* c, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dgbrfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const double* ab, lapack_int ldab, + const double* afb, lapack_int ldafb, + const lapack_int* ipiv, const double* r, + const double* c, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cgbrfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const lapack_complex_float* ab, + lapack_int ldab, const lapack_complex_float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const float* r, const float* c, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zgbrfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const lapack_complex_double* ab, + lapack_int ldab, const lapack_complex_double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const double* r, const double* c, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_sgbsv( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, float* ab, + lapack_int ldab, lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgbsv( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, double* ab, + lapack_int ldab, lapack_int* ipiv, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgbsv( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgbsv( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sgbsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, float* ab, lapack_int ldab, + float* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* rpivot ); +lapack_int LAPACKE_dgbsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, double* ab, lapack_int ldab, + double* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, double* r, double* c, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* rpivot ); +lapack_int LAPACKE_cgbsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + float* r, float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, float* rpivot ); +lapack_int LAPACKE_zgbsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + double* r, double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, double* rpivot ); + +lapack_int LAPACKE_sgbsvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, float* ab, lapack_int ldab, + float* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dgbsvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, double* ab, lapack_int ldab, + double* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, double* r, double* c, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); +lapack_int LAPACKE_cgbsvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + float* r, float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zgbsvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + double* r, double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_sgbtrf( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, float* ab, + lapack_int ldab, lapack_int* ipiv ); +lapack_int LAPACKE_dgbtrf( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, double* ab, + lapack_int ldab, lapack_int* ipiv ); +lapack_int LAPACKE_cgbtrf( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + lapack_complex_float* ab, lapack_int ldab, + lapack_int* ipiv ); +lapack_int LAPACKE_zgbtrf( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + lapack_complex_double* ab, lapack_int ldab, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgbtrs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const float* ab, lapack_int ldab, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dgbtrs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const double* ab, lapack_int ldab, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_cgbtrs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgbtrs( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sgebak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const float* scale, + lapack_int m, float* v, lapack_int ldv ); +lapack_int LAPACKE_dgebak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const double* scale, + lapack_int m, double* v, lapack_int ldv ); +lapack_int LAPACKE_cgebak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const float* scale, + lapack_int m, lapack_complex_float* v, + lapack_int ldv ); +lapack_int LAPACKE_zgebak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const double* scale, + lapack_int m, lapack_complex_double* v, + lapack_int ldv ); + +lapack_int LAPACKE_sgebal( int matrix_order, char job, lapack_int n, float* a, + lapack_int lda, lapack_int* ilo, lapack_int* ihi, + float* scale ); +lapack_int LAPACKE_dgebal( int matrix_order, char job, lapack_int n, double* a, + lapack_int lda, lapack_int* ilo, lapack_int* ihi, + double* scale ); +lapack_int LAPACKE_cgebal( int matrix_order, char job, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ilo, lapack_int* ihi, float* scale ); +lapack_int LAPACKE_zgebal( int matrix_order, char job, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ilo, lapack_int* ihi, double* scale ); + +lapack_int LAPACKE_sgebrd( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* d, float* e, + float* tauq, float* taup ); +lapack_int LAPACKE_dgebrd( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* d, double* e, + double* tauq, double* taup ); +lapack_int LAPACKE_cgebrd( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, float* d, + float* e, lapack_complex_float* tauq, + lapack_complex_float* taup ); +lapack_int LAPACKE_zgebrd( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, double* d, + double* e, lapack_complex_double* tauq, + lapack_complex_double* taup ); + +lapack_int LAPACKE_sgecon( int matrix_order, char norm, lapack_int n, + const float* a, lapack_int lda, float anorm, + float* rcond ); +lapack_int LAPACKE_dgecon( int matrix_order, char norm, lapack_int n, + const double* a, lapack_int lda, double anorm, + double* rcond ); +lapack_int LAPACKE_cgecon( int matrix_order, char norm, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float anorm, float* rcond ); +lapack_int LAPACKE_zgecon( int matrix_order, char norm, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double anorm, double* rcond ); + +lapack_int LAPACKE_sgeequ( int matrix_order, lapack_int m, lapack_int n, + const float* a, lapack_int lda, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_dgeequ( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* r, + double* c, double* rowcnd, double* colcnd, + double* amax ); +lapack_int LAPACKE_cgeequ( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_zgeequ( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* r, double* c, double* rowcnd, double* colcnd, + double* amax ); + +lapack_int LAPACKE_sgeequb( int matrix_order, lapack_int m, lapack_int n, + const float* a, lapack_int lda, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_dgeequb( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* r, + double* c, double* rowcnd, double* colcnd, + double* amax ); +lapack_int LAPACKE_cgeequb( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_zgeequb( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* r, double* c, double* rowcnd, + double* colcnd, double* amax ); + +lapack_int LAPACKE_sgees( int matrix_order, char jobvs, char sort, + LAPACK_S_SELECT2 select, lapack_int n, float* a, + lapack_int lda, lapack_int* sdim, float* wr, + float* wi, float* vs, lapack_int ldvs ); +lapack_int LAPACKE_dgees( int matrix_order, char jobvs, char sort, + LAPACK_D_SELECT2 select, lapack_int n, double* a, + lapack_int lda, lapack_int* sdim, double* wr, + double* wi, double* vs, lapack_int ldvs ); +lapack_int LAPACKE_cgees( int matrix_order, char jobvs, char sort, + LAPACK_C_SELECT1 select, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int ldvs ); +lapack_int LAPACKE_zgees( int matrix_order, char jobvs, char sort, + LAPACK_Z_SELECT1 select, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int ldvs ); + +lapack_int LAPACKE_sgeesx( int matrix_order, char jobvs, char sort, + LAPACK_S_SELECT2 select, char sense, lapack_int n, + float* a, lapack_int lda, lapack_int* sdim, + float* wr, float* wi, float* vs, lapack_int ldvs, + float* rconde, float* rcondv ); +lapack_int LAPACKE_dgeesx( int matrix_order, char jobvs, char sort, + LAPACK_D_SELECT2 select, char sense, lapack_int n, + double* a, lapack_int lda, lapack_int* sdim, + double* wr, double* wi, double* vs, lapack_int ldvs, + double* rconde, double* rcondv ); +lapack_int LAPACKE_cgeesx( int matrix_order, char jobvs, char sort, + LAPACK_C_SELECT1 select, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int ldvs, + float* rconde, float* rcondv ); +lapack_int LAPACKE_zgeesx( int matrix_order, char jobvs, char sort, + LAPACK_Z_SELECT1 select, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int ldvs, + double* rconde, double* rcondv ); + +lapack_int LAPACKE_sgeev( int matrix_order, char jobvl, char jobvr, + lapack_int n, float* a, lapack_int lda, float* wr, + float* wi, float* vl, lapack_int ldvl, float* vr, + lapack_int ldvr ); +lapack_int LAPACKE_dgeev( int matrix_order, char jobvl, char jobvr, + lapack_int n, double* a, lapack_int lda, double* wr, + double* wi, double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr ); +lapack_int LAPACKE_cgeev( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_float* a, lapack_int lda, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr ); +lapack_int LAPACKE_zgeev( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* w, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr ); + +lapack_int LAPACKE_sgeevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, float* a, + lapack_int lda, float* wr, float* wi, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* scale, + float* abnrm, float* rconde, float* rcondv ); +lapack_int LAPACKE_dgeevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, double* a, + lapack_int lda, double* wr, double* wi, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, double* scale, + double* abnrm, double* rconde, double* rcondv ); +lapack_int LAPACKE_cgeevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, + float* scale, float* abnrm, float* rconde, + float* rcondv ); +lapack_int LAPACKE_zgeevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int ldvl, lapack_complex_double* vr, + lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, + double* scale, double* abnrm, double* rconde, + double* rcondv ); + +lapack_int LAPACKE_sgehrd( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, float* a, lapack_int lda, + float* tau ); +lapack_int LAPACKE_dgehrd( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, double* a, lapack_int lda, + double* tau ); +lapack_int LAPACKE_cgehrd( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* tau ); +lapack_int LAPACKE_zgehrd( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* tau ); + +lapack_int LAPACKE_sgejsv( int matrix_order, char joba, char jobu, char jobv, + char jobr, char jobt, char jobp, lapack_int m, + lapack_int n, float* a, lapack_int lda, float* sva, + float* u, lapack_int ldu, float* v, lapack_int ldv, + float* stat, lapack_int* istat ); +lapack_int LAPACKE_dgejsv( int matrix_order, char joba, char jobu, char jobv, + char jobr, char jobt, char jobp, lapack_int m, + lapack_int n, double* a, lapack_int lda, double* sva, + double* u, lapack_int ldu, double* v, lapack_int ldv, + double* stat, lapack_int* istat ); + +lapack_int LAPACKE_sgelq2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgelq2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgelq2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgelq2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgelqf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgelqf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgelqf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgelqf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgels( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* b, lapack_int ldb ); +lapack_int LAPACKE_dgels( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* b, lapack_int ldb ); +lapack_int LAPACKE_cgels( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zgels( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sgelsd( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_dgelsd( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* s, double rcond, + lapack_int* rank ); +lapack_int LAPACKE_cgelsd( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_zgelsd( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* s, double rcond, + lapack_int* rank ); + +lapack_int LAPACKE_sgelss( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_dgelss( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* s, double rcond, + lapack_int* rank ); +lapack_int LAPACKE_cgelss( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_zgelss( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* s, double rcond, + lapack_int* rank ); + +lapack_int LAPACKE_sgelsy( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* b, + lapack_int ldb, lapack_int* jpvt, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_dgelsy( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, lapack_int* jpvt, + double rcond, lapack_int* rank ); +lapack_int LAPACKE_cgelsy( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_int* jpvt, float rcond, + lapack_int* rank ); +lapack_int LAPACKE_zgelsy( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_int* jpvt, double rcond, + lapack_int* rank ); + +lapack_int LAPACKE_sgeqlf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgeqlf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgeqlf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqlf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqp3( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* jpvt, + float* tau ); +lapack_int LAPACKE_dgeqp3( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* jpvt, + double* tau ); +lapack_int LAPACKE_cgeqp3( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqp3( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqpf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* jpvt, + float* tau ); +lapack_int LAPACKE_dgeqpf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* jpvt, + double* tau ); +lapack_int LAPACKE_cgeqpf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqpf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqr2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgeqr2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgeqr2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqr2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqrf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgeqrf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgeqrf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqrf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgeqrfp( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgeqrfp( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgeqrfp( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgeqrfp( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgerfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dgerfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_cgerfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zgerfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sgerfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* r, + const float* c, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dgerfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* r, + const double* c, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cgerfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* r, + const float* c, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zgerfsx( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* r, + const double* c, const lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_sgerqf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dgerqf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_cgerqf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_zgerqf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_sgesdd( int matrix_order, char jobz, lapack_int m, + lapack_int n, float* a, lapack_int lda, float* s, + float* u, lapack_int ldu, float* vt, + lapack_int ldvt ); +lapack_int LAPACKE_dgesdd( int matrix_order, char jobz, lapack_int m, + lapack_int n, double* a, lapack_int lda, double* s, + double* u, lapack_int ldu, double* vt, + lapack_int ldvt ); +lapack_int LAPACKE_cgesdd( int matrix_order, char jobz, lapack_int m, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float* s, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* vt, + lapack_int ldvt ); +lapack_int LAPACKE_zgesdd( int matrix_order, char jobz, lapack_int m, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double* s, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* vt, + lapack_int ldvt ); + +lapack_int LAPACKE_sgesv( int matrix_order, lapack_int n, lapack_int nrhs, + float* a, lapack_int lda, lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgesv( int matrix_order, lapack_int n, lapack_int nrhs, + double* a, lapack_int lda, lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cgesv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgesv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); +lapack_int LAPACKE_dsgesv( int matrix_order, lapack_int n, lapack_int nrhs, + double* a, lapack_int lda, lapack_int* ipiv, + double* b, lapack_int ldb, double* x, lapack_int ldx, + lapack_int* iter ); +lapack_int LAPACKE_zcgesv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, lapack_int* iter ); + +lapack_int LAPACKE_sgesvd( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, float* a, lapack_int lda, + float* s, float* u, lapack_int ldu, float* vt, + lapack_int ldvt, float* superb ); +lapack_int LAPACKE_dgesvd( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, double* a, + lapack_int lda, double* s, double* u, lapack_int ldu, + double* vt, lapack_int ldvt, double* superb ); +lapack_int LAPACKE_cgesvd( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, lapack_complex_float* a, + lapack_int lda, float* s, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* vt, + lapack_int ldvt, float* superb ); +lapack_int LAPACKE_zgesvd( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, lapack_complex_double* a, + lapack_int lda, double* s, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* vt, + lapack_int ldvt, double* superb ); + +lapack_int LAPACKE_sgesvj( int matrix_order, char joba, char jobu, char jobv, + lapack_int m, lapack_int n, float* a, lapack_int lda, + float* sva, lapack_int mv, float* v, lapack_int ldv, + float* stat ); +lapack_int LAPACKE_dgesvj( int matrix_order, char joba, char jobu, char jobv, + lapack_int m, lapack_int n, double* a, + lapack_int lda, double* sva, lapack_int mv, + double* v, lapack_int ldv, double* stat ); + +lapack_int LAPACKE_sgesvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + float* b, lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* rpivot ); +lapack_int LAPACKE_dgesvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* rpivot ); +lapack_int LAPACKE_cgesvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* rpivot ); +lapack_int LAPACKE_zgesvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* rpivot ); + +lapack_int LAPACKE_sgesvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + float* b, lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dgesvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cgesvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zgesvxx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_sgetf2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dgetf2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_cgetf2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zgetf2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgetrf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dgetrf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_cgetrf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zgetrf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgetri( int matrix_order, lapack_int n, float* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_dgetri( int matrix_order, lapack_int n, double* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_cgetri( int matrix_order, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zgetri( int matrix_order, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); + +lapack_int LAPACKE_sgetrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dgetrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_cgetrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zgetrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sggbak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const float* lscale, + const float* rscale, lapack_int m, float* v, + lapack_int ldv ); +lapack_int LAPACKE_dggbak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const double* lscale, + const double* rscale, lapack_int m, double* v, + lapack_int ldv ); +lapack_int LAPACKE_cggbak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const float* lscale, + const float* rscale, lapack_int m, + lapack_complex_float* v, lapack_int ldv ); +lapack_int LAPACKE_zggbak( int matrix_order, char job, char side, lapack_int n, + lapack_int ilo, lapack_int ihi, const double* lscale, + const double* rscale, lapack_int m, + lapack_complex_double* v, lapack_int ldv ); + +lapack_int LAPACKE_sggbal( int matrix_order, char job, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale ); +lapack_int LAPACKE_dggbal( int matrix_order, char job, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale ); +lapack_int LAPACKE_cggbal( int matrix_order, char job, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale ); +lapack_int LAPACKE_zggbal( int matrix_order, char job, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale ); + +lapack_int LAPACKE_sgges( int matrix_order, char jobvsl, char jobvsr, char sort, + LAPACK_S_SELECT3 selctg, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + lapack_int* sdim, float* alphar, float* alphai, + float* beta, float* vsl, lapack_int ldvsl, float* vsr, + lapack_int ldvsr ); +lapack_int LAPACKE_dgges( int matrix_order, char jobvsl, char jobvsr, char sort, + LAPACK_D_SELECT3 selctg, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + lapack_int* sdim, double* alphar, double* alphai, + double* beta, double* vsl, lapack_int ldvsl, + double* vsr, lapack_int ldvsr ); +lapack_int LAPACKE_cgges( int matrix_order, char jobvsl, char jobvsr, char sort, + LAPACK_C_SELECT2 selctg, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int* sdim, lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* vsl, + lapack_int ldvsl, lapack_complex_float* vsr, + lapack_int ldvsr ); +lapack_int LAPACKE_zgges( int matrix_order, char jobvsl, char jobvsr, char sort, + LAPACK_Z_SELECT2 selctg, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int* sdim, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int ldvsl, + lapack_complex_double* vsr, lapack_int ldvsr ); + +lapack_int LAPACKE_sggesx( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_S_SELECT3 selctg, char sense, + lapack_int n, float* a, lapack_int lda, float* b, + lapack_int ldb, lapack_int* sdim, float* alphar, + float* alphai, float* beta, float* vsl, + lapack_int ldvsl, float* vsr, lapack_int ldvsr, + float* rconde, float* rcondv ); +lapack_int LAPACKE_dggesx( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_D_SELECT3 selctg, char sense, + lapack_int n, double* a, lapack_int lda, double* b, + lapack_int ldb, lapack_int* sdim, double* alphar, + double* alphai, double* beta, double* vsl, + lapack_int ldvsl, double* vsr, lapack_int ldvsr, + double* rconde, double* rcondv ); +lapack_int LAPACKE_cggesx( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_C_SELECT2 selctg, char sense, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_int* sdim, + lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int ldvsl, + lapack_complex_float* vsr, lapack_int ldvsr, + float* rconde, float* rcondv ); +lapack_int LAPACKE_zggesx( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_Z_SELECT2 selctg, char sense, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_int* sdim, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int ldvsl, + lapack_complex_double* vsr, lapack_int ldvsr, + double* rconde, double* rcondv ); + +lapack_int LAPACKE_sggev( int matrix_order, char jobvl, char jobvr, + lapack_int n, float* a, lapack_int lda, float* b, + lapack_int ldb, float* alphar, float* alphai, + float* beta, float* vl, lapack_int ldvl, float* vr, + lapack_int ldvr ); +lapack_int LAPACKE_dggev( int matrix_order, char jobvl, char jobvr, + lapack_int n, double* a, lapack_int lda, double* b, + lapack_int ldb, double* alphar, double* alphai, + double* beta, double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr ); +lapack_int LAPACKE_cggev( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr ); +lapack_int LAPACKE_zggev( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr ); + +lapack_int LAPACKE_sggevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* alphar, float* alphai, float* beta, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* abnrm, float* bbnrm, + float* rconde, float* rcondv ); +lapack_int LAPACKE_dggevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* alphar, double* alphai, double* beta, + double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, + double* lscale, double* rscale, double* abnrm, + double* bbnrm, double* rconde, double* rcondv ); +lapack_int LAPACKE_cggevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr, lapack_int* ilo, lapack_int* ihi, + float* lscale, float* rscale, float* abnrm, + float* bbnrm, float* rconde, float* rcondv ); +lapack_int LAPACKE_zggevx( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale, double* abnrm, double* bbnrm, + double* rconde, double* rcondv ); + +lapack_int LAPACKE_sggglm( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, float* a, lapack_int lda, float* b, + lapack_int ldb, float* d, float* x, float* y ); +lapack_int LAPACKE_dggglm( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, double* a, lapack_int lda, double* b, + lapack_int ldb, double* d, double* x, double* y ); +lapack_int LAPACKE_cggglm( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* d, + lapack_complex_float* x, lapack_complex_float* y ); +lapack_int LAPACKE_zggglm( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* d, + lapack_complex_double* x, lapack_complex_double* y ); + +lapack_int LAPACKE_sgghrd( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + float* a, lapack_int lda, float* b, lapack_int ldb, + float* q, lapack_int ldq, float* z, lapack_int ldz ); +lapack_int LAPACKE_dgghrd( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + double* a, lapack_int lda, double* b, lapack_int ldb, + double* q, lapack_int ldq, double* z, + lapack_int ldz ); +lapack_int LAPACKE_cgghrd( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zgghrd( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_sgglse( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, float* a, lapack_int lda, float* b, + lapack_int ldb, float* c, float* d, float* x ); +lapack_int LAPACKE_dgglse( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, double* a, lapack_int lda, double* b, + lapack_int ldb, double* c, double* d, double* x ); +lapack_int LAPACKE_cgglse( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* c, + lapack_complex_float* d, lapack_complex_float* x ); +lapack_int LAPACKE_zgglse( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* c, + lapack_complex_double* d, lapack_complex_double* x ); + +lapack_int LAPACKE_sggqrf( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, float* a, lapack_int lda, float* taua, + float* b, lapack_int ldb, float* taub ); +lapack_int LAPACKE_dggqrf( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, double* a, lapack_int lda, + double* taua, double* b, lapack_int ldb, + double* taub ); +lapack_int LAPACKE_cggqrf( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* taua, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* taub ); +lapack_int LAPACKE_zggqrf( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* taua, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* taub ); + +lapack_int LAPACKE_sggrqf( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, float* a, lapack_int lda, float* taua, + float* b, lapack_int ldb, float* taub ); +lapack_int LAPACKE_dggrqf( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, double* a, lapack_int lda, + double* taua, double* b, lapack_int ldb, + double* taub ); +lapack_int LAPACKE_cggrqf( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* taua, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* taub ); +lapack_int LAPACKE_zggrqf( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* taua, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* taub ); + +lapack_int LAPACKE_sggsvd( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int n, lapack_int p, + lapack_int* k, lapack_int* l, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* alpha, float* beta, float* u, lapack_int ldu, + float* v, lapack_int ldv, float* q, lapack_int ldq, + lapack_int* iwork ); +lapack_int LAPACKE_dggsvd( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int n, lapack_int p, + lapack_int* k, lapack_int* l, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* alpha, double* beta, double* u, + lapack_int ldu, double* v, lapack_int ldv, double* q, + lapack_int ldq, lapack_int* iwork ); +lapack_int LAPACKE_cggsvd( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int n, lapack_int p, + lapack_int* k, lapack_int* l, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float* alpha, float* beta, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* v, + lapack_int ldv, lapack_complex_float* q, + lapack_int ldq, lapack_int* iwork ); +lapack_int LAPACKE_zggsvd( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int n, lapack_int p, + lapack_int* k, lapack_int* l, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double* alpha, double* beta, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* v, lapack_int ldv, + lapack_complex_double* q, lapack_int ldq, + lapack_int* iwork ); + +lapack_int LAPACKE_sggsvp( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, float tola, + float tolb, lapack_int* k, lapack_int* l, float* u, + lapack_int ldu, float* v, lapack_int ldv, float* q, + lapack_int ldq ); +lapack_int LAPACKE_dggsvp( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double tola, double tolb, lapack_int* k, + lapack_int* l, double* u, lapack_int ldu, double* v, + lapack_int ldv, double* q, lapack_int ldq ); +lapack_int LAPACKE_cggsvp( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, float tola, + float tolb, lapack_int* k, lapack_int* l, + lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* v, lapack_int ldv, + lapack_complex_float* q, lapack_int ldq ); +lapack_int LAPACKE_zggsvp( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double tola, double tolb, lapack_int* k, + lapack_int* l, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* v, + lapack_int ldv, lapack_complex_double* q, + lapack_int ldq ); + +lapack_int LAPACKE_sgtcon( char norm, lapack_int n, const float* dl, + const float* d, const float* du, const float* du2, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_dgtcon( char norm, lapack_int n, const double* dl, + const double* d, const double* du, const double* du2, + const lapack_int* ipiv, double anorm, + double* rcond ); +lapack_int LAPACKE_cgtcon( char norm, lapack_int n, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zgtcon( char norm, lapack_int n, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_sgtrfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* dl, const float* d, + const float* du, const float* dlf, const float* df, + const float* duf, const float* du2, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dgtrfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* dl, const double* d, + const double* du, const double* dlf, + const double* df, const double* duf, + const double* du2, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_cgtrfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* dlf, + const lapack_complex_float* df, + const lapack_complex_float* duf, + const lapack_complex_float* du2, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zgtrfs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* dlf, + const lapack_complex_double* df, + const lapack_complex_double* duf, + const lapack_complex_double* du2, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sgtsv( int matrix_order, lapack_int n, lapack_int nrhs, + float* dl, float* d, float* du, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgtsv( int matrix_order, lapack_int n, lapack_int nrhs, + double* dl, double* d, double* du, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgtsv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_float* dl, lapack_complex_float* d, + lapack_complex_float* du, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgtsv( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* dl, lapack_complex_double* d, + lapack_complex_double* du, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sgtsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, const float* dl, + const float* d, const float* du, float* dlf, + float* df, float* duf, float* du2, lapack_int* ipiv, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dgtsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, const double* dl, + const double* d, const double* du, double* dlf, + double* df, double* duf, double* du2, + lapack_int* ipiv, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* ferr, double* berr ); +lapack_int LAPACKE_cgtsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + lapack_complex_float* dlf, lapack_complex_float* df, + lapack_complex_float* duf, lapack_complex_float* du2, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_zgtsvx( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + lapack_complex_double* dlf, + lapack_complex_double* df, + lapack_complex_double* duf, + lapack_complex_double* du2, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_sgttrf( lapack_int n, float* dl, float* d, float* du, + float* du2, lapack_int* ipiv ); +lapack_int LAPACKE_dgttrf( lapack_int n, double* dl, double* d, double* du, + double* du2, lapack_int* ipiv ); +lapack_int LAPACKE_cgttrf( lapack_int n, lapack_complex_float* dl, + lapack_complex_float* d, lapack_complex_float* du, + lapack_complex_float* du2, lapack_int* ipiv ); +lapack_int LAPACKE_zgttrf( lapack_int n, lapack_complex_double* dl, + lapack_complex_double* d, lapack_complex_double* du, + lapack_complex_double* du2, lapack_int* ipiv ); + +lapack_int LAPACKE_sgttrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* dl, const float* d, + const float* du, const float* du2, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dgttrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* dl, const double* d, + const double* du, const double* du2, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_cgttrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgttrs( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chbev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab, float* w, lapack_complex_float* z, + lapack_int ldz ); +lapack_int LAPACKE_zhbev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab, double* w, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_chbevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab, float* w, lapack_complex_float* z, + lapack_int ldz ); +lapack_int LAPACKE_zhbevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab, double* w, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_chbevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* q, lapack_int ldq, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_zhbevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* q, lapack_int ldq, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chbgst( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* bb, lapack_int ldbb, + lapack_complex_float* x, lapack_int ldx ); +lapack_int LAPACKE_zhbgst( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* bb, lapack_int ldbb, + lapack_complex_double* x, lapack_int ldx ); + +lapack_int LAPACKE_chbgv( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhbgv( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chbgvd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhbgvd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, + double* w, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_chbgvx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, + lapack_complex_float* q, lapack_int ldq, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_zhbgvx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, + lapack_complex_double* q, lapack_int ldq, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chbtrd( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab, float* d, float* e, + lapack_complex_float* q, lapack_int ldq ); +lapack_int LAPACKE_zhbtrd( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab, double* d, double* e, + lapack_complex_double* q, lapack_int ldq ); + +lapack_int LAPACKE_checon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zhecon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_cheequb( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zheequb( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_cheev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, float* w ); +lapack_int LAPACKE_zheev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, double* w ); + +lapack_int LAPACKE_cheevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, float* w ); +lapack_int LAPACKE_zheevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double* w ); + +lapack_int LAPACKE_cheevr( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int* isuppz ); +lapack_int LAPACKE_zheevr( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, lapack_int ldz, + lapack_int* isuppz ); + +lapack_int LAPACKE_cheevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_zheevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chegst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhegst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chegv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* w ); +lapack_int LAPACKE_zhegv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* w ); + +lapack_int LAPACKE_chegvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* w ); +lapack_int LAPACKE_zhegvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* w ); + +lapack_int LAPACKE_chegvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_zhegvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_cherfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zherfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_cherfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* s, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zherfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_chesv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zhesv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_chesvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* af, + lapack_int ldaf, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zhesvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* af, + lapack_int ldaf, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_chesvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zhesvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_chetrd( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, float* d, + float* e, lapack_complex_float* tau ); +lapack_int LAPACKE_zhetrd( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, double* d, + double* e, lapack_complex_double* tau ); + +lapack_int LAPACKE_chetrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zhetrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_chetri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zhetri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); + +lapack_int LAPACKE_chetrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zhetrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_chfrk( int matrix_order, char transr, char uplo, char trans, + lapack_int n, lapack_int k, float alpha, + const lapack_complex_float* a, lapack_int lda, + float beta, lapack_complex_float* c ); +lapack_int LAPACKE_zhfrk( int matrix_order, char transr, char uplo, char trans, + lapack_int n, lapack_int k, double alpha, + const lapack_complex_double* a, lapack_int lda, + double beta, lapack_complex_double* c ); + +lapack_int LAPACKE_shgeqz( int matrix_order, char job, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + float* h, lapack_int ldh, float* t, lapack_int ldt, + float* alphar, float* alphai, float* beta, float* q, + lapack_int ldq, float* z, lapack_int ldz ); +lapack_int LAPACKE_dhgeqz( int matrix_order, char job, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + double* h, lapack_int ldh, double* t, lapack_int ldt, + double* alphar, double* alphai, double* beta, + double* q, lapack_int ldq, double* z, + lapack_int ldz ); +lapack_int LAPACKE_chgeqz( int matrix_order, char job, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_float* h, lapack_int ldh, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* q, + lapack_int ldq, lapack_complex_float* z, + lapack_int ldz ); +lapack_int LAPACKE_zhgeqz( int matrix_order, char job, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_double* h, lapack_int ldh, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zhpcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_chpev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_float* ap, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhpev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_double* ap, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_float* ap, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhpevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_complex_double* ap, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_float* ap, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_zhpevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_complex_double* ap, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chpgst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_float* ap, + const lapack_complex_float* bp ); +lapack_int LAPACKE_zhpgst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_double* ap, + const lapack_complex_double* bp ); + +lapack_int LAPACKE_chpgv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* ap, + lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhpgv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_double* ap, + lapack_complex_double* bp, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpgvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* ap, + lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zhpgvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_double* ap, + lapack_complex_double* bp, double* w, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_chpgvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_complex_float* bp, + float vl, float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_zhpgvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_complex_double* bp, + double vl, double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_chprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zhprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_chpsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhpsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chpsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + lapack_complex_float* afp, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zhpsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + lapack_complex_double* afp, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_chptrd( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, float* d, float* e, + lapack_complex_float* tau ); +lapack_int LAPACKE_zhptrd( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, double* d, double* e, + lapack_complex_double* tau ); + +lapack_int LAPACKE_chptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_zhptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_int* ipiv ); + +lapack_int LAPACKE_chptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, const lapack_int* ipiv ); +lapack_int LAPACKE_zhptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, const lapack_int* ipiv ); + +lapack_int LAPACKE_chptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_shsein( int matrix_order, char job, char eigsrc, char initv, + lapack_logical* select, lapack_int n, const float* h, + lapack_int ldh, float* wr, const float* wi, + float* vl, lapack_int ldvl, float* vr, + lapack_int ldvr, lapack_int mm, lapack_int* m, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_dhsein( int matrix_order, char job, char eigsrc, char initv, + lapack_logical* select, lapack_int n, + const double* h, lapack_int ldh, double* wr, + const double* wi, double* vl, lapack_int ldvl, + double* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m, lapack_int* ifaill, + lapack_int* ifailr ); +lapack_int LAPACKE_chsein( int matrix_order, char job, char eigsrc, char initv, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* h, lapack_int ldh, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int ldvl, lapack_complex_float* vr, + lapack_int ldvr, lapack_int mm, lapack_int* m, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_zhsein( int matrix_order, char job, char eigsrc, char initv, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* h, lapack_int ldh, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int ldvl, lapack_complex_double* vr, + lapack_int ldvr, lapack_int mm, lapack_int* m, + lapack_int* ifaill, lapack_int* ifailr ); + +lapack_int LAPACKE_shseqr( int matrix_order, char job, char compz, lapack_int n, + lapack_int ilo, lapack_int ihi, float* h, + lapack_int ldh, float* wr, float* wi, float* z, + lapack_int ldz ); +lapack_int LAPACKE_dhseqr( int matrix_order, char job, char compz, lapack_int n, + lapack_int ilo, lapack_int ihi, double* h, + lapack_int ldh, double* wr, double* wi, double* z, + lapack_int ldz ); +lapack_int LAPACKE_chseqr( int matrix_order, char job, char compz, lapack_int n, + lapack_int ilo, lapack_int ihi, + lapack_complex_float* h, lapack_int ldh, + lapack_complex_float* w, lapack_complex_float* z, + lapack_int ldz ); +lapack_int LAPACKE_zhseqr( int matrix_order, char job, char compz, lapack_int n, + lapack_int ilo, lapack_int ihi, + lapack_complex_double* h, lapack_int ldh, + lapack_complex_double* w, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_clacgv( lapack_int n, lapack_complex_float* x, + lapack_int incx ); +lapack_int LAPACKE_zlacgv( lapack_int n, lapack_complex_double* x, + lapack_int incx ); + +lapack_int LAPACKE_slacpy( int matrix_order, char uplo, lapack_int m, + lapack_int n, const float* a, lapack_int lda, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dlacpy( int matrix_order, char uplo, lapack_int m, + lapack_int n, const double* a, lapack_int lda, double* b, + lapack_int ldb ); +lapack_int LAPACKE_clacpy( int matrix_order, char uplo, lapack_int m, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zlacpy( int matrix_order, char uplo, lapack_int m, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_zlag2c( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_float* sa, lapack_int ldsa ); + +lapack_int LAPACKE_slag2d( int matrix_order, lapack_int m, lapack_int n, + const float* sa, lapack_int ldsa, double* a, + lapack_int lda ); + +lapack_int LAPACKE_dlag2s( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, float* sa, + lapack_int ldsa ); + +lapack_int LAPACKE_clag2z( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* sa, lapack_int ldsa, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_slagge( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* d, + float* a, lapack_int lda, lapack_int* iseed ); +lapack_int LAPACKE_dlagge( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* d, + double* a, lapack_int lda, lapack_int* iseed ); +lapack_int LAPACKE_clagge( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* d, + lapack_complex_float* a, lapack_int lda, + lapack_int* iseed ); +lapack_int LAPACKE_zlagge( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* d, + lapack_complex_double* a, lapack_int lda, + lapack_int* iseed ); + +float LAPACKE_slamch( char cmach ); +double LAPACKE_dlamch( char cmach ); + +float LAPACKE_slange( int matrix_order, char norm, lapack_int m, + lapack_int n, const float* a, lapack_int lda ); +double LAPACKE_dlange( int matrix_order, char norm, lapack_int m, + lapack_int n, const double* a, lapack_int lda ); +float LAPACKE_clange( int matrix_order, char norm, lapack_int m, + lapack_int n, const lapack_complex_float* a, + lapack_int lda ); +double LAPACKE_zlange( int matrix_order, char norm, lapack_int m, + lapack_int n, const lapack_complex_double* a, + lapack_int lda ); + +float LAPACKE_clanhe( int matrix_order, char norm, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda ); +double LAPACKE_zlanhe( int matrix_order, char norm, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda ); + +float LAPACKE_slansy( int matrix_order, char norm, char uplo, lapack_int n, + const float* a, lapack_int lda ); +double LAPACKE_dlansy( int matrix_order, char norm, char uplo, lapack_int n, + const double* a, lapack_int lda ); +float LAPACKE_clansy( int matrix_order, char norm, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda ); +double LAPACKE_zlansy( int matrix_order, char norm, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda ); + +float LAPACKE_slantr( int matrix_order, char norm, char uplo, char diag, + lapack_int m, lapack_int n, const float* a, + lapack_int lda ); +double LAPACKE_dlantr( int matrix_order, char norm, char uplo, char diag, + lapack_int m, lapack_int n, const double* a, + lapack_int lda ); +float LAPACKE_clantr( int matrix_order, char norm, char uplo, char diag, + lapack_int m, lapack_int n, const lapack_complex_float* a, + lapack_int lda ); +double LAPACKE_zlantr( int matrix_order, char norm, char uplo, char diag, + lapack_int m, lapack_int n, const lapack_complex_double* a, + lapack_int lda ); + + +lapack_int LAPACKE_slarfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, const float* v, lapack_int ldv, + const float* t, lapack_int ldt, float* c, + lapack_int ldc ); +lapack_int LAPACKE_dlarfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, const double* v, lapack_int ldv, + const double* t, lapack_int ldt, double* c, + lapack_int ldc ); +lapack_int LAPACKE_clarfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, const lapack_complex_float* v, + lapack_int ldv, const lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* c, + lapack_int ldc ); +lapack_int LAPACKE_zlarfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, const lapack_complex_double* v, + lapack_int ldv, const lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* c, + lapack_int ldc ); + +lapack_int LAPACKE_slarfg( lapack_int n, float* alpha, float* x, + lapack_int incx, float* tau ); +lapack_int LAPACKE_dlarfg( lapack_int n, double* alpha, double* x, + lapack_int incx, double* tau ); +lapack_int LAPACKE_clarfg( lapack_int n, lapack_complex_float* alpha, + lapack_complex_float* x, lapack_int incx, + lapack_complex_float* tau ); +lapack_int LAPACKE_zlarfg( lapack_int n, lapack_complex_double* alpha, + lapack_complex_double* x, lapack_int incx, + lapack_complex_double* tau ); + +lapack_int LAPACKE_slarft( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, const float* v, + lapack_int ldv, const float* tau, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dlarft( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, const double* v, + lapack_int ldv, const double* tau, double* t, + lapack_int ldt ); +lapack_int LAPACKE_clarft( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* tau, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zlarft( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* tau, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_slarfx( int matrix_order, char side, lapack_int m, + lapack_int n, const float* v, float tau, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dlarfx( int matrix_order, char side, lapack_int m, + lapack_int n, const double* v, double tau, double* c, + lapack_int ldc, double* work ); +lapack_int LAPACKE_clarfx( int matrix_order, char side, lapack_int m, + lapack_int n, const lapack_complex_float* v, + lapack_complex_float tau, lapack_complex_float* c, + lapack_int ldc, lapack_complex_float* work ); +lapack_int LAPACKE_zlarfx( int matrix_order, char side, lapack_int m, + lapack_int n, const lapack_complex_double* v, + lapack_complex_double tau, lapack_complex_double* c, + lapack_int ldc, lapack_complex_double* work ); + +lapack_int LAPACKE_slarnv( lapack_int idist, lapack_int* iseed, lapack_int n, + float* x ); +lapack_int LAPACKE_dlarnv( lapack_int idist, lapack_int* iseed, lapack_int n, + double* x ); +lapack_int LAPACKE_clarnv( lapack_int idist, lapack_int* iseed, lapack_int n, + lapack_complex_float* x ); +lapack_int LAPACKE_zlarnv( lapack_int idist, lapack_int* iseed, lapack_int n, + lapack_complex_double* x ); + +lapack_int LAPACKE_slaset( int matrix_order, char uplo, lapack_int m, + lapack_int n, float alpha, float beta, float* a, + lapack_int lda ); +lapack_int LAPACKE_dlaset( int matrix_order, char uplo, lapack_int m, + lapack_int n, double alpha, double beta, double* a, + lapack_int lda ); +lapack_int LAPACKE_claset( int matrix_order, char uplo, lapack_int m, + lapack_int n, lapack_complex_float alpha, + lapack_complex_float beta, lapack_complex_float* a, + lapack_int lda ); +lapack_int LAPACKE_zlaset( int matrix_order, char uplo, lapack_int m, + lapack_int n, lapack_complex_double alpha, + lapack_complex_double beta, lapack_complex_double* a, + lapack_int lda ); + +lapack_int LAPACKE_slasrt( char id, lapack_int n, float* d ); +lapack_int LAPACKE_dlasrt( char id, lapack_int n, double* d ); + +lapack_int LAPACKE_slaswp( int matrix_order, lapack_int n, float* a, + lapack_int lda, lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_dlaswp( int matrix_order, lapack_int n, double* a, + lapack_int lda, lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_claswp( int matrix_order, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int k1, lapack_int k2, const lapack_int* ipiv, + lapack_int incx ); +lapack_int LAPACKE_zlaswp( int matrix_order, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int k1, lapack_int k2, const lapack_int* ipiv, + lapack_int incx ); + +lapack_int LAPACKE_slatms( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, float* d, + lapack_int mode, float cond, float dmax, + lapack_int kl, lapack_int ku, char pack, float* a, + lapack_int lda ); +lapack_int LAPACKE_dlatms( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, double* d, + lapack_int mode, double cond, double dmax, + lapack_int kl, lapack_int ku, char pack, double* a, + lapack_int lda ); +lapack_int LAPACKE_clatms( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, float* d, + lapack_int mode, float cond, float dmax, + lapack_int kl, lapack_int ku, char pack, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zlatms( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, double* d, + lapack_int mode, double cond, double dmax, + lapack_int kl, lapack_int ku, char pack, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_slauum( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda ); +lapack_int LAPACKE_dlauum( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda ); +lapack_int LAPACKE_clauum( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zlauum( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_sopgtr( int matrix_order, char uplo, lapack_int n, + const float* ap, const float* tau, float* q, + lapack_int ldq ); +lapack_int LAPACKE_dopgtr( int matrix_order, char uplo, lapack_int n, + const double* ap, const double* tau, double* q, + lapack_int ldq ); + +lapack_int LAPACKE_sopmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, const float* ap, + const float* tau, float* c, lapack_int ldc ); +lapack_int LAPACKE_dopmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, const double* ap, + const double* tau, double* c, lapack_int ldc ); + +lapack_int LAPACKE_sorgbr( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorgbr( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, double* a, + lapack_int lda, const double* tau ); + +lapack_int LAPACKE_sorghr( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorghr( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorglq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorglq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorgql( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorgql( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorgqr( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorgqr( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorgrq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau ); +lapack_int LAPACKE_dorgrq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau ); + +lapack_int LAPACKE_sorgtr( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, const float* tau ); +lapack_int LAPACKE_dorgtr( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, const double* tau ); + +lapack_int LAPACKE_sormbr( int matrix_order, char vect, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormbr( int matrix_order, char vect, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormhr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc ); +lapack_int LAPACKE_dormhr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormlq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormlq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormql( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormql( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormqr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormqr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormrq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, const float* tau, + float* c, lapack_int ldc ); +lapack_int LAPACKE_dormrq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, const double* tau, + double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormrz( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc ); +lapack_int LAPACKE_dormrz( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc ); + +lapack_int LAPACKE_sormtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, const float* a, + lapack_int lda, const float* tau, float* c, + lapack_int ldc ); +lapack_int LAPACKE_dormtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, const double* a, + lapack_int lda, const double* tau, double* c, + lapack_int ldc ); + +lapack_int LAPACKE_spbcon( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const float* ab, lapack_int ldab, + float anorm, float* rcond ); +lapack_int LAPACKE_dpbcon( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const double* ab, lapack_int ldab, + double anorm, double* rcond ); +lapack_int LAPACKE_cpbcon( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_float* ab, + lapack_int ldab, float anorm, float* rcond ); +lapack_int LAPACKE_zpbcon( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_double* ab, + lapack_int ldab, double anorm, double* rcond ); + +lapack_int LAPACKE_spbequ( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const float* ab, lapack_int ldab, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_dpbequ( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const double* ab, lapack_int ldab, + double* s, double* scond, double* amax ); +lapack_int LAPACKE_cpbequ( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_float* ab, + lapack_int ldab, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_zpbequ( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_double* ab, + lapack_int ldab, double* s, double* scond, + double* amax ); + +lapack_int LAPACKE_spbrfs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const float* ab, + lapack_int ldab, const float* afb, lapack_int ldafb, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dpbrfs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const double* ab, + lapack_int ldab, const double* afb, lapack_int ldafb, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_cpbrfs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* afb, lapack_int ldafb, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zpbrfs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* afb, lapack_int ldafb, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_spbstf( int matrix_order, char uplo, lapack_int n, + lapack_int kb, float* bb, lapack_int ldbb ); +lapack_int LAPACKE_dpbstf( int matrix_order, char uplo, lapack_int n, + lapack_int kb, double* bb, lapack_int ldbb ); +lapack_int LAPACKE_cpbstf( int matrix_order, char uplo, lapack_int n, + lapack_int kb, lapack_complex_float* bb, + lapack_int ldbb ); +lapack_int LAPACKE_zpbstf( int matrix_order, char uplo, lapack_int n, + lapack_int kb, lapack_complex_double* bb, + lapack_int ldbb ); + +lapack_int LAPACKE_spbsv( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dpbsv( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, double* ab, + lapack_int ldab, double* b, lapack_int ldb ); +lapack_int LAPACKE_cpbsv( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpbsv( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spbsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, float* ab, + lapack_int ldab, float* afb, lapack_int ldafb, + char* equed, float* s, float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dpbsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, double* ab, + lapack_int ldab, double* afb, lapack_int ldafb, + char* equed, double* s, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* ferr, double* berr ); +lapack_int LAPACKE_cpbsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* afb, lapack_int ldafb, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_zpbsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* afb, lapack_int ldafb, + char* equed, double* s, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr ); + +lapack_int LAPACKE_spbtrf( int matrix_order, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab ); +lapack_int LAPACKE_dpbtrf( int matrix_order, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab ); +lapack_int LAPACKE_cpbtrf( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab ); +lapack_int LAPACKE_zpbtrf( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab ); + +lapack_int LAPACKE_spbtrs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dpbtrs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const double* ab, + lapack_int ldab, double* b, lapack_int ldb ); +lapack_int LAPACKE_cpbtrs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpbtrs( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spftrf( int matrix_order, char transr, char uplo, + lapack_int n, float* a ); +lapack_int LAPACKE_dpftrf( int matrix_order, char transr, char uplo, + lapack_int n, double* a ); +lapack_int LAPACKE_cpftrf( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_zpftrf( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_spftri( int matrix_order, char transr, char uplo, + lapack_int n, float* a ); +lapack_int LAPACKE_dpftri( int matrix_order, char transr, char uplo, + lapack_int n, double* a ); +lapack_int LAPACKE_cpftri( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_zpftri( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_spftrs( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, const float* a, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dpftrs( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, const double* a, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cpftrs( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpftrs( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spocon( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float anorm, + float* rcond ); +lapack_int LAPACKE_dpocon( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double anorm, + double* rcond ); +lapack_int LAPACKE_cpocon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float anorm, float* rcond ); +lapack_int LAPACKE_zpocon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double anorm, double* rcond ); + +lapack_int LAPACKE_spoequ( int matrix_order, lapack_int n, const float* a, + lapack_int lda, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dpoequ( int matrix_order, lapack_int n, const double* a, + lapack_int lda, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cpoequ( int matrix_order, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zpoequ( int matrix_order, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_spoequb( int matrix_order, lapack_int n, const float* a, + lapack_int lda, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dpoequb( int matrix_order, lapack_int n, const double* a, + lapack_int lda, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cpoequb( int matrix_order, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zpoequb( int matrix_order, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_sporfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dporfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const double* af, lapack_int ldaf, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_cporfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_zporfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* ferr, double* berr ); + +lapack_int LAPACKE_sporfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, lapack_int ldaf, + const float* s, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dporfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, lapack_int ldaf, + const double* s, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cporfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, lapack_int ldaf, + const float* s, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zporfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, lapack_int ldaf, + const double* s, const lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_sposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); +lapack_int LAPACKE_dsposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* x, lapack_int ldx, + lapack_int* iter ); +lapack_int LAPACKE_zcposv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, lapack_int* iter ); + +lapack_int LAPACKE_sposvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, float* af, + lapack_int ldaf, char* equed, float* s, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_dposvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* af, lapack_int ldaf, char* equed, double* s, + double* b, lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); +lapack_int LAPACKE_cposvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* af, + lapack_int ldaf, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zposvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* af, + lapack_int ldaf, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_sposvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + char* equed, float* s, float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_dposvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + char* equed, double* s, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); +lapack_int LAPACKE_cposvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zposvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + char* equed, double* s, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_spotrf( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda ); +lapack_int LAPACKE_dpotrf( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda ); +lapack_int LAPACKE_cpotrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zpotrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_spotri( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda ); +lapack_int LAPACKE_dpotri( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda ); +lapack_int LAPACKE_cpotri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zpotri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_spotrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dpotrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cpotrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zpotrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sppcon( int matrix_order, char uplo, lapack_int n, + const float* ap, float anorm, float* rcond ); +lapack_int LAPACKE_dppcon( int matrix_order, char uplo, lapack_int n, + const double* ap, double anorm, double* rcond ); +lapack_int LAPACKE_cppcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, float anorm, + float* rcond ); +lapack_int LAPACKE_zppcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, double anorm, + double* rcond ); + +lapack_int LAPACKE_sppequ( int matrix_order, char uplo, lapack_int n, + const float* ap, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dppequ( int matrix_order, char uplo, lapack_int n, + const double* ap, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cppequ( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, float* s, + float* scond, float* amax ); +lapack_int LAPACKE_zppequ( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, double* s, + double* scond, double* amax ); + +lapack_int LAPACKE_spprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, const float* afp, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dpprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, const double* afp, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_cpprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zpprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sppsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* ap, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dppsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* ap, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cppsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zppsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sppsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, float* ap, float* afp, char* equed, + float* s, float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dppsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, double* ap, double* afp, + char* equed, double* s, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* ferr, double* berr ); +lapack_int LAPACKE_cppsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_complex_float* afp, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zppsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_complex_double* afp, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_spptrf( int matrix_order, char uplo, lapack_int n, + float* ap ); +lapack_int LAPACKE_dpptrf( int matrix_order, char uplo, lapack_int n, + double* ap ); +lapack_int LAPACKE_cpptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_zpptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_spptri( int matrix_order, char uplo, lapack_int n, + float* ap ); +lapack_int LAPACKE_dpptri( int matrix_order, char uplo, lapack_int n, + double* ap ); +lapack_int LAPACKE_cpptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_zpptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_spptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dpptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spstrf( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, lapack_int* piv, lapack_int* rank, + float tol ); +lapack_int LAPACKE_dpstrf( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, lapack_int* piv, lapack_int* rank, + double tol ); +lapack_int LAPACKE_cpstrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* piv, lapack_int* rank, float tol ); +lapack_int LAPACKE_zpstrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* piv, lapack_int* rank, double tol ); + +lapack_int LAPACKE_sptcon( lapack_int n, const float* d, const float* e, + float anorm, float* rcond ); +lapack_int LAPACKE_dptcon( lapack_int n, const double* d, const double* e, + double anorm, double* rcond ); +lapack_int LAPACKE_cptcon( lapack_int n, const float* d, + const lapack_complex_float* e, float anorm, + float* rcond ); +lapack_int LAPACKE_zptcon( lapack_int n, const double* d, + const lapack_complex_double* e, double anorm, + double* rcond ); + +lapack_int LAPACKE_spteqr( int matrix_order, char compz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dpteqr( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz ); +lapack_int LAPACKE_cpteqr( int matrix_order, char compz, lapack_int n, float* d, + float* e, lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zpteqr( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_sptrfs( int matrix_order, lapack_int n, lapack_int nrhs, + const float* d, const float* e, const float* df, + const float* ef, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dptrfs( int matrix_order, lapack_int n, lapack_int nrhs, + const double* d, const double* e, const double* df, + const double* ef, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* ferr, + double* berr ); +lapack_int LAPACKE_cptrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, const float* df, + const lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zptrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, const double* df, + const lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sptsv( int matrix_order, lapack_int n, lapack_int nrhs, + float* d, float* e, float* b, lapack_int ldb ); +lapack_int LAPACKE_dptsv( int matrix_order, lapack_int n, lapack_int nrhs, + double* d, double* e, double* b, lapack_int ldb ); +lapack_int LAPACKE_cptsv( int matrix_order, lapack_int n, lapack_int nrhs, + float* d, lapack_complex_float* e, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zptsv( int matrix_order, lapack_int n, lapack_int nrhs, + double* d, lapack_complex_double* e, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sptsvx( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const float* d, const float* e, + float* df, float* ef, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dptsvx( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const double* d, const double* e, + double* df, double* ef, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); +lapack_int LAPACKE_cptsvx( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, float* df, + lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zptsvx( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, double* df, + lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_spttrf( lapack_int n, float* d, float* e ); +lapack_int LAPACKE_dpttrf( lapack_int n, double* d, double* e ); +lapack_int LAPACKE_cpttrf( lapack_int n, float* d, lapack_complex_float* e ); +lapack_int LAPACKE_zpttrf( lapack_int n, double* d, lapack_complex_double* e ); + +lapack_int LAPACKE_spttrs( int matrix_order, lapack_int n, lapack_int nrhs, + const float* d, const float* e, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dpttrs( int matrix_order, lapack_int n, lapack_int nrhs, + const double* d, const double* e, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpttrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpttrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssbev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab, float* w, + float* z, lapack_int ldz ); +lapack_int LAPACKE_dsbev( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab, double* w, + double* z, lapack_int ldz ); + +lapack_int LAPACKE_ssbevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab, float* w, + float* z, lapack_int ldz ); +lapack_int LAPACKE_dsbevd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_ssbevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int kd, float* ab, + lapack_int ldab, float* q, lapack_int ldq, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dsbevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int kd, double* ab, + lapack_int ldab, double* q, lapack_int ldq, + double vl, double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssbgst( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, float* ab, + lapack_int ldab, const float* bb, lapack_int ldbb, + float* x, lapack_int ldx ); +lapack_int LAPACKE_dsbgst( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, double* ab, + lapack_int ldab, const double* bb, lapack_int ldbb, + double* x, lapack_int ldx ); + +lapack_int LAPACKE_ssbgv( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, float* ab, + lapack_int ldab, float* bb, lapack_int ldbb, float* w, + float* z, lapack_int ldz ); +lapack_int LAPACKE_dsbgv( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, double* ab, + lapack_int ldab, double* bb, lapack_int ldbb, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_ssbgvd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, float* ab, + lapack_int ldab, float* bb, lapack_int ldbb, + float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dsbgvd( int matrix_order, char jobz, char uplo, lapack_int n, + lapack_int ka, lapack_int kb, double* ab, + lapack_int ldab, double* bb, lapack_int ldbb, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_ssbgvx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + float* ab, lapack_int ldab, float* bb, + lapack_int ldbb, float* q, lapack_int ldq, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dsbgvx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + double* ab, lapack_int ldab, double* bb, + lapack_int ldbb, double* q, lapack_int ldq, + double vl, double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssbtrd( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab, float* d, + float* e, float* q, lapack_int ldq ); +lapack_int LAPACKE_dsbtrd( int matrix_order, char vect, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab, + double* d, double* e, double* q, lapack_int ldq ); + +lapack_int LAPACKE_ssfrk( int matrix_order, char transr, char uplo, char trans, + lapack_int n, lapack_int k, float alpha, + const float* a, lapack_int lda, float beta, + float* c ); +lapack_int LAPACKE_dsfrk( int matrix_order, char transr, char uplo, char trans, + lapack_int n, lapack_int k, double alpha, + const double* a, lapack_int lda, double beta, + double* c ); + +lapack_int LAPACKE_sspcon( int matrix_order, char uplo, lapack_int n, + const float* ap, const lapack_int* ipiv, float anorm, + float* rcond ); +lapack_int LAPACKE_dspcon( int matrix_order, char uplo, lapack_int n, + const double* ap, const lapack_int* ipiv, + double anorm, double* rcond ); +lapack_int LAPACKE_cspcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zspcon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_sspev( int matrix_order, char jobz, char uplo, lapack_int n, + float* ap, float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dspev( int matrix_order, char jobz, char uplo, lapack_int n, + double* ap, double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sspevd( int matrix_order, char jobz, char uplo, lapack_int n, + float* ap, float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dspevd( int matrix_order, char jobz, char uplo, lapack_int n, + double* ap, double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sspevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, float* ap, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dspevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, double* ap, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_sspgst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, float* ap, const float* bp ); +lapack_int LAPACKE_dspgst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, double* ap, const double* bp ); + +lapack_int LAPACKE_sspgv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* ap, float* bp, + float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dspgv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* ap, double* bp, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sspgvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* ap, float* bp, + float* w, float* z, lapack_int ldz ); +lapack_int LAPACKE_dspgvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* ap, double* bp, + double* w, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sspgvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, float* ap, + float* bp, float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, float* w, + float* z, lapack_int ldz, lapack_int* ifail ); +lapack_int LAPACKE_dspgvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, double* ap, + double* bp, double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, double* z, lapack_int ldz, + lapack_int* ifail ); + +lapack_int LAPACKE_ssprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, const float* afp, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dsprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, const double* afp, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_csprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zsprfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_sspsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* ap, lapack_int* ipiv, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dspsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* ap, lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cspsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zspsv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sspsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, float* afp, + lapack_int* ipiv, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dspsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, double* afp, + lapack_int* ipiv, const double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* ferr, double* berr ); +lapack_int LAPACKE_cspsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + lapack_complex_float* afp, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zspsvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + lapack_complex_double* afp, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_ssptrd( int matrix_order, char uplo, lapack_int n, float* ap, + float* d, float* e, float* tau ); +lapack_int LAPACKE_dsptrd( int matrix_order, char uplo, lapack_int n, + double* ap, double* d, double* e, double* tau ); + +lapack_int LAPACKE_ssptrf( int matrix_order, char uplo, lapack_int n, float* ap, + lapack_int* ipiv ); +lapack_int LAPACKE_dsptrf( int matrix_order, char uplo, lapack_int n, + double* ap, lapack_int* ipiv ); +lapack_int LAPACKE_csptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_zsptrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_int* ipiv ); + +lapack_int LAPACKE_ssptri( int matrix_order, char uplo, lapack_int n, float* ap, + const lapack_int* ipiv ); +lapack_int LAPACKE_dsptri( int matrix_order, char uplo, lapack_int n, + double* ap, const lapack_int* ipiv ); +lapack_int LAPACKE_csptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, const lapack_int* ipiv ); +lapack_int LAPACKE_zsptri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, const lapack_int* ipiv ); + +lapack_int LAPACKE_ssptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dsptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_csptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zsptrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* ap, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sstebz( char range, char order, lapack_int n, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + const float* d, const float* e, lapack_int* m, + lapack_int* nsplit, float* w, lapack_int* iblock, + lapack_int* isplit ); +lapack_int LAPACKE_dstebz( char range, char order, lapack_int n, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, const double* d, const double* e, + lapack_int* m, lapack_int* nsplit, double* w, + lapack_int* iblock, lapack_int* isplit ); + +lapack_int LAPACKE_sstedc( int matrix_order, char compz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dstedc( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz ); +lapack_int LAPACKE_cstedc( int matrix_order, char compz, lapack_int n, float* d, + float* e, lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zstedc( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_sstegr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* isuppz ); +lapack_int LAPACKE_dstegr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* isuppz ); +lapack_int LAPACKE_cstegr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* isuppz ); +lapack_int LAPACKE_zstegr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* isuppz ); + +lapack_int LAPACKE_sstein( int matrix_order, lapack_int n, const float* d, + const float* e, lapack_int m, const float* w, + const lapack_int* iblock, const lapack_int* isplit, + float* z, lapack_int ldz, lapack_int* ifailv ); +lapack_int LAPACKE_dstein( int matrix_order, lapack_int n, const double* d, + const double* e, lapack_int m, const double* w, + const lapack_int* iblock, const lapack_int* isplit, + double* z, lapack_int ldz, lapack_int* ifailv ); +lapack_int LAPACKE_cstein( int matrix_order, lapack_int n, const float* d, + const float* e, lapack_int m, const float* w, + const lapack_int* iblock, const lapack_int* isplit, + lapack_complex_float* z, lapack_int ldz, + lapack_int* ifailv ); +lapack_int LAPACKE_zstein( int matrix_order, lapack_int n, const double* d, + const double* e, lapack_int m, const double* w, + const lapack_int* iblock, const lapack_int* isplit, + lapack_complex_double* z, lapack_int ldz, + lapack_int* ifailv ); + +lapack_int LAPACKE_sstemr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, lapack_int* m, + float* w, float* z, lapack_int ldz, lapack_int nzc, + lapack_int* isuppz, lapack_logical* tryrac ); +lapack_int LAPACKE_dstemr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + lapack_int* m, double* w, double* z, lapack_int ldz, + lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac ); +lapack_int LAPACKE_cstemr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, lapack_int* m, + float* w, lapack_complex_float* z, lapack_int ldz, + lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac ); +lapack_int LAPACKE_zstemr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int ldz, lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac ); + +lapack_int LAPACKE_ssteqr( int matrix_order, char compz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dsteqr( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz ); +lapack_int LAPACKE_csteqr( int matrix_order, char compz, lapack_int n, float* d, + float* e, lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zsteqr( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz ); + +lapack_int LAPACKE_ssterf( lapack_int n, float* d, float* e ); +lapack_int LAPACKE_dsterf( lapack_int n, double* d, double* e ); + +lapack_int LAPACKE_sstev( int matrix_order, char jobz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dstev( int matrix_order, char jobz, lapack_int n, double* d, + double* e, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sstevd( int matrix_order, char jobz, lapack_int n, float* d, + float* e, float* z, lapack_int ldz ); +lapack_int LAPACKE_dstevd( int matrix_order, char jobz, lapack_int n, double* d, + double* e, double* z, lapack_int ldz ); + +lapack_int LAPACKE_sstevr( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* isuppz ); +lapack_int LAPACKE_dstevr( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* isuppz ); + +lapack_int LAPACKE_sstevx( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dstevx( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssycon( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_dsycon( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond ); +lapack_int LAPACKE_csycon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, float* rcond ); +lapack_int LAPACKE_zsycon( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond ); + +lapack_int LAPACKE_ssyequb( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float* s, + float* scond, float* amax ); +lapack_int LAPACKE_dsyequb( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double* s, + double* scond, double* amax ); +lapack_int LAPACKE_csyequb( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zsyequb( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_ssyev( int matrix_order, char jobz, char uplo, lapack_int n, + float* a, lapack_int lda, float* w ); +lapack_int LAPACKE_dsyev( int matrix_order, char jobz, char uplo, lapack_int n, + double* a, lapack_int lda, double* w ); + +lapack_int LAPACKE_ssyevd( int matrix_order, char jobz, char uplo, lapack_int n, + float* a, lapack_int lda, float* w ); +lapack_int LAPACKE_dsyevd( int matrix_order, char jobz, char uplo, lapack_int n, + double* a, lapack_int lda, double* w ); + +lapack_int LAPACKE_ssyevr( int matrix_order, char jobz, char range, char uplo, + lapack_int n, float* a, lapack_int lda, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* isuppz ); +lapack_int LAPACKE_dsyevr( int matrix_order, char jobz, char range, char uplo, + lapack_int n, double* a, lapack_int lda, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* isuppz ); + +lapack_int LAPACKE_ssyevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, float* a, lapack_int lda, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dsyevx( int matrix_order, char jobz, char range, char uplo, + lapack_int n, double* a, lapack_int lda, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssygst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, float* a, lapack_int lda, + const float* b, lapack_int ldb ); +lapack_int LAPACKE_dsygst( int matrix_order, lapack_int itype, char uplo, + lapack_int n, double* a, lapack_int lda, + const double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssygv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* a, lapack_int lda, + float* b, lapack_int ldb, float* w ); +lapack_int LAPACKE_dsygv( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, double* w ); + +lapack_int LAPACKE_ssygvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* a, lapack_int lda, + float* b, lapack_int ldb, float* w ); +lapack_int LAPACKE_dsygvd( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, double* w ); + +lapack_int LAPACKE_ssygvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, float vl, + float vu, lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, lapack_int ldz, + lapack_int* ifail ); +lapack_int LAPACKE_dsygvx( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* ifail ); + +lapack_int LAPACKE_ssyrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dsyrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_csyrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_zsyrfs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_ssyrfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* s, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dsyrfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* s, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); +lapack_int LAPACKE_csyrfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* s, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params ); +lapack_int LAPACKE_zsyrfsx( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, lapack_int ldaf, + const lapack_int* ipiv, const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params ); + +lapack_int LAPACKE_ssysv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dsysv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_csysv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zsysv( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssysvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + float* af, lapack_int ldaf, lapack_int* ipiv, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr ); +lapack_int LAPACKE_dsysvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + double* af, lapack_int ldaf, lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr ); +lapack_int LAPACKE_csysvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* af, + lapack_int ldaf, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr ); +lapack_int LAPACKE_zsysvx( int matrix_order, char fact, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* af, + lapack_int ldaf, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr ); + +lapack_int LAPACKE_ssysvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_dsysvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); +lapack_int LAPACKE_csysvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params ); +lapack_int LAPACKE_zsysvxx( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params ); + +lapack_int LAPACKE_ssytrd( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, float* d, float* e, float* tau ); +lapack_int LAPACKE_dsytrd( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, double* d, double* e, double* tau ); + +lapack_int LAPACKE_ssytrf( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dsytrf( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_csytrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zsytrf( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_ssytri( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_dsytri( int matrix_order, char uplo, lapack_int n, double* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_csytri( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zsytri( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); + +lapack_int LAPACKE_ssytrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_dsytrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_csytrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zsytrs( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stbcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, lapack_int kd, const float* ab, + lapack_int ldab, float* rcond ); +lapack_int LAPACKE_dtbcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, lapack_int kd, const double* ab, + lapack_int ldab, double* rcond ); +lapack_int LAPACKE_ctbcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, lapack_int kd, + const lapack_complex_float* ab, lapack_int ldab, + float* rcond ); +lapack_int LAPACKE_ztbcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, lapack_int kd, + const lapack_complex_double* ab, lapack_int ldab, + double* rcond ); + +lapack_int LAPACKE_stbrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const float* ab, lapack_int ldab, const float* b, + lapack_int ldb, const float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_dtbrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const double* ab, lapack_int ldab, const double* b, + lapack_int ldb, const double* x, lapack_int ldx, + double* ferr, double* berr ); +lapack_int LAPACKE_ctbrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_ztbrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_stbtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const float* ab, lapack_int ldab, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dtbtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const double* ab, lapack_int ldab, double* b, + lapack_int ldb ); +lapack_int LAPACKE_ctbtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztbtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stfsm( int matrix_order, char transr, char side, char uplo, + char trans, char diag, lapack_int m, lapack_int n, + float alpha, const float* a, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dtfsm( int matrix_order, char transr, char side, char uplo, + char trans, char diag, lapack_int m, lapack_int n, + double alpha, const double* a, double* b, + lapack_int ldb ); +lapack_int LAPACKE_ctfsm( int matrix_order, char transr, char side, char uplo, + char trans, char diag, lapack_int m, lapack_int n, + lapack_complex_float alpha, + const lapack_complex_float* a, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztfsm( int matrix_order, char transr, char side, char uplo, + char trans, char diag, lapack_int m, lapack_int n, + lapack_complex_double alpha, + const lapack_complex_double* a, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stftri( int matrix_order, char transr, char uplo, char diag, + lapack_int n, float* a ); +lapack_int LAPACKE_dtftri( int matrix_order, char transr, char uplo, char diag, + lapack_int n, double* a ); +lapack_int LAPACKE_ctftri( int matrix_order, char transr, char uplo, char diag, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_ztftri( int matrix_order, char transr, char uplo, char diag, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_stfttp( int matrix_order, char transr, char uplo, + lapack_int n, const float* arf, float* ap ); +lapack_int LAPACKE_dtfttp( int matrix_order, char transr, char uplo, + lapack_int n, const double* arf, double* ap ); +lapack_int LAPACKE_ctfttp( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* arf, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztfttp( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* arf, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stfttr( int matrix_order, char transr, char uplo, + lapack_int n, const float* arf, float* a, + lapack_int lda ); +lapack_int LAPACKE_dtfttr( int matrix_order, char transr, char uplo, + lapack_int n, const double* arf, double* a, + lapack_int lda ); +lapack_int LAPACKE_ctfttr( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* arf, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztfttr( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* arf, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_stgevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const float* s, lapack_int lds, const float* p, + lapack_int ldp, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m ); +lapack_int LAPACKE_dtgevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const double* s, lapack_int lds, const double* p, + lapack_int ldp, double* vl, lapack_int ldvl, + double* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m ); +lapack_int LAPACKE_ctgevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* s, lapack_int lds, + const lapack_complex_float* p, lapack_int ldp, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ztgevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* s, lapack_int lds, + const lapack_complex_double* p, lapack_int ldp, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); + +lapack_int LAPACKE_stgexc( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, float* q, + lapack_int ldq, float* z, lapack_int ldz, + lapack_int* ifst, lapack_int* ilst ); +lapack_int LAPACKE_dtgexc( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, double* q, + lapack_int ldq, double* z, lapack_int ldz, + lapack_int* ifst, lapack_int* ilst ); +lapack_int LAPACKE_ctgexc( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz, + lapack_int ifst, lapack_int ilst ); +lapack_int LAPACKE_ztgexc( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_int ifst, lapack_int ilst ); + +lapack_int LAPACKE_stgsen( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* alphar, float* alphai, float* beta, float* q, + lapack_int ldq, float* z, lapack_int ldz, + lapack_int* m, float* pl, float* pr, float* dif ); +lapack_int LAPACKE_dtgsen( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + double* a, lapack_int lda, double* b, lapack_int ldb, + double* alphar, double* alphai, double* beta, + double* q, lapack_int ldq, double* z, lapack_int ldz, + lapack_int* m, double* pl, double* pr, double* dif ); +lapack_int LAPACKE_ctgsen( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, lapack_complex_float* q, + lapack_int ldq, lapack_complex_float* z, + lapack_int ldz, lapack_int* m, float* pl, float* pr, + float* dif ); +lapack_int LAPACKE_ztgsen( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_int* m, double* pl, double* pr, double* dif ); + +lapack_int LAPACKE_stgsja( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_int k, lapack_int l, float* a, lapack_int lda, + float* b, lapack_int ldb, float tola, float tolb, + float* alpha, float* beta, float* u, lapack_int ldu, + float* v, lapack_int ldv, float* q, lapack_int ldq, + lapack_int* ncycle ); +lapack_int LAPACKE_dtgsja( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_int k, lapack_int l, double* a, + lapack_int lda, double* b, lapack_int ldb, + double tola, double tolb, double* alpha, + double* beta, double* u, lapack_int ldu, double* v, + lapack_int ldv, double* q, lapack_int ldq, + lapack_int* ncycle ); +lapack_int LAPACKE_ctgsja( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_int k, lapack_int l, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float tola, float tolb, float* alpha, + float* beta, lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* v, lapack_int ldv, + lapack_complex_float* q, lapack_int ldq, + lapack_int* ncycle ); +lapack_int LAPACKE_ztgsja( int matrix_order, char jobu, char jobv, char jobq, + lapack_int m, lapack_int p, lapack_int n, + lapack_int k, lapack_int l, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double tola, double tolb, + double* alpha, double* beta, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* v, lapack_int ldv, + lapack_complex_double* q, lapack_int ldq, + lapack_int* ncycle ); + +lapack_int LAPACKE_stgsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, const float* vl, lapack_int ldvl, + const float* vr, lapack_int ldvr, float* s, + float* dif, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_dtgsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const double* a, lapack_int lda, const double* b, + lapack_int ldb, const double* vl, lapack_int ldvl, + const double* vr, lapack_int ldvr, double* s, + double* dif, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ctgsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* vl, lapack_int ldvl, + const lapack_complex_float* vr, lapack_int ldvr, + float* s, float* dif, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ztgsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* vl, lapack_int ldvl, + const lapack_complex_double* vr, lapack_int ldvr, + double* s, double* dif, lapack_int mm, + lapack_int* m ); + +lapack_int LAPACKE_stgsyl( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, const float* a, + lapack_int lda, const float* b, lapack_int ldb, + float* c, lapack_int ldc, const float* d, + lapack_int ldd, const float* e, lapack_int lde, + float* f, lapack_int ldf, float* scale, float* dif ); +lapack_int LAPACKE_dtgsyl( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, const double* a, + lapack_int lda, const double* b, lapack_int ldb, + double* c, lapack_int ldc, const double* d, + lapack_int ldd, const double* e, lapack_int lde, + double* f, lapack_int ldf, double* scale, + double* dif ); +lapack_int LAPACKE_ctgsyl( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* c, lapack_int ldc, + const lapack_complex_float* d, lapack_int ldd, + const lapack_complex_float* e, lapack_int lde, + lapack_complex_float* f, lapack_int ldf, + float* scale, float* dif ); +lapack_int LAPACKE_ztgsyl( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* c, lapack_int ldc, + const lapack_complex_double* d, lapack_int ldd, + const lapack_complex_double* e, lapack_int lde, + lapack_complex_double* f, lapack_int ldf, + double* scale, double* dif ); + +lapack_int LAPACKE_stpcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const float* ap, float* rcond ); +lapack_int LAPACKE_dtpcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const double* ap, double* rcond ); +lapack_int LAPACKE_ctpcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const lapack_complex_float* ap, + float* rcond ); +lapack_int LAPACKE_ztpcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const lapack_complex_double* ap, + double* rcond ); + +lapack_int LAPACKE_stprfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const float* ap, + const float* b, lapack_int ldb, const float* x, + lapack_int ldx, float* ferr, float* berr ); +lapack_int LAPACKE_dtprfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const double* ap, + const double* b, lapack_int ldb, const double* x, + lapack_int ldx, double* ferr, double* berr ); +lapack_int LAPACKE_ctprfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_ztprfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_stptri( int matrix_order, char uplo, char diag, lapack_int n, + float* ap ); +lapack_int LAPACKE_dtptri( int matrix_order, char uplo, char diag, lapack_int n, + double* ap ); +lapack_int LAPACKE_ctptri( int matrix_order, char uplo, char diag, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztptri( int matrix_order, char uplo, char diag, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stptrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const float* ap, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dtptrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const double* ap, + double* b, lapack_int ldb ); +lapack_int LAPACKE_ctptrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztptrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stpttf( int matrix_order, char transr, char uplo, + lapack_int n, const float* ap, float* arf ); +lapack_int LAPACKE_dtpttf( int matrix_order, char transr, char uplo, + lapack_int n, const double* ap, double* arf ); +lapack_int LAPACKE_ctpttf( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* ap, + lapack_complex_float* arf ); +lapack_int LAPACKE_ztpttf( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* ap, + lapack_complex_double* arf ); + +lapack_int LAPACKE_stpttr( int matrix_order, char uplo, lapack_int n, + const float* ap, float* a, lapack_int lda ); +lapack_int LAPACKE_dtpttr( int matrix_order, char uplo, lapack_int n, + const double* ap, double* a, lapack_int lda ); +lapack_int LAPACKE_ctpttr( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztpttr( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_strcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const float* a, lapack_int lda, + float* rcond ); +lapack_int LAPACKE_dtrcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const double* a, lapack_int lda, + double* rcond ); +lapack_int LAPACKE_ctrcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, float* rcond ); +lapack_int LAPACKE_ztrcon( int matrix_order, char norm, char uplo, char diag, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, double* rcond ); + +lapack_int LAPACKE_strevc( int matrix_order, char side, char howmny, + lapack_logical* select, lapack_int n, const float* t, + lapack_int ldt, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m ); +lapack_int LAPACKE_dtrevc( int matrix_order, char side, char howmny, + lapack_logical* select, lapack_int n, + const double* t, lapack_int ldt, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ctrevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ztrevc( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m ); + +lapack_int LAPACKE_strexc( int matrix_order, char compq, lapack_int n, float* t, + lapack_int ldt, float* q, lapack_int ldq, + lapack_int* ifst, lapack_int* ilst ); +lapack_int LAPACKE_dtrexc( int matrix_order, char compq, lapack_int n, + double* t, lapack_int ldt, double* q, lapack_int ldq, + lapack_int* ifst, lapack_int* ilst ); +lapack_int LAPACKE_ctrexc( int matrix_order, char compq, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* q, lapack_int ldq, + lapack_int ifst, lapack_int ilst ); +lapack_int LAPACKE_ztrexc( int matrix_order, char compq, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* q, lapack_int ldq, + lapack_int ifst, lapack_int ilst ); + +lapack_int LAPACKE_strrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* b, lapack_int ldb, + const float* x, lapack_int ldx, float* ferr, + float* berr ); +lapack_int LAPACKE_dtrrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* b, lapack_int ldb, + const double* x, lapack_int ldx, double* ferr, + double* berr ); +lapack_int LAPACKE_ctrrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr ); +lapack_int LAPACKE_ztrrfs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr ); + +lapack_int LAPACKE_strsen( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, float* t, + lapack_int ldt, float* q, lapack_int ldq, float* wr, + float* wi, lapack_int* m, float* s, float* sep ); +lapack_int LAPACKE_dtrsen( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + double* t, lapack_int ldt, double* q, lapack_int ldq, + double* wr, double* wi, lapack_int* m, double* s, + double* sep ); +lapack_int LAPACKE_ctrsen( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* w, lapack_int* m, float* s, + float* sep ); +lapack_int LAPACKE_ztrsen( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* w, lapack_int* m, double* s, + double* sep ); + +lapack_int LAPACKE_strsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const float* t, lapack_int ldt, const float* vl, + lapack_int ldvl, const float* vr, lapack_int ldvr, + float* s, float* sep, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_dtrsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const double* t, lapack_int ldt, const double* vl, + lapack_int ldvl, const double* vr, lapack_int ldvr, + double* s, double* sep, lapack_int mm, + lapack_int* m ); +lapack_int LAPACKE_ctrsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* t, lapack_int ldt, + const lapack_complex_float* vl, lapack_int ldvl, + const lapack_complex_float* vr, lapack_int ldvr, + float* s, float* sep, lapack_int mm, lapack_int* m ); +lapack_int LAPACKE_ztrsna( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* t, lapack_int ldt, + const lapack_complex_double* vl, lapack_int ldvl, + const lapack_complex_double* vr, lapack_int ldvr, + double* s, double* sep, lapack_int mm, + lapack_int* m ); + +lapack_int LAPACKE_strsyl( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, float* c, lapack_int ldc, + float* scale ); +lapack_int LAPACKE_dtrsyl( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const double* a, lapack_int lda, const double* b, + lapack_int ldb, double* c, lapack_int ldc, + double* scale ); +lapack_int LAPACKE_ctrsyl( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* c, lapack_int ldc, + float* scale ); +lapack_int LAPACKE_ztrsyl( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* c, lapack_int ldc, + double* scale ); + +lapack_int LAPACKE_strtri( int matrix_order, char uplo, char diag, lapack_int n, + float* a, lapack_int lda ); +lapack_int LAPACKE_dtrtri( int matrix_order, char uplo, char diag, lapack_int n, + double* a, lapack_int lda ); +lapack_int LAPACKE_ctrtri( int matrix_order, char uplo, char diag, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztrtri( int matrix_order, char uplo, char diag, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_strtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, float* b, lapack_int ldb ); +lapack_int LAPACKE_dtrtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, double* b, lapack_int ldb ); +lapack_int LAPACKE_ctrtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztrtrs( int matrix_order, char uplo, char trans, char diag, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_strttf( int matrix_order, char transr, char uplo, + lapack_int n, const float* a, lapack_int lda, + float* arf ); +lapack_int LAPACKE_dtrttf( int matrix_order, char transr, char uplo, + lapack_int n, const double* a, lapack_int lda, + double* arf ); +lapack_int LAPACKE_ctrttf( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* arf ); +lapack_int LAPACKE_ztrttf( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* arf ); + +lapack_int LAPACKE_strttp( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float* ap ); +lapack_int LAPACKE_dtrttp( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double* ap ); +lapack_int LAPACKE_ctrttp( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztrttp( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stzrzf( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau ); +lapack_int LAPACKE_dtzrzf( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau ); +lapack_int LAPACKE_ctzrzf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau ); +lapack_int LAPACKE_ztzrzf( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau ); + +lapack_int LAPACKE_cungbr( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zungbr( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cunghr( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zunghr( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cunglq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zunglq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cungql( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zungql( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cungqr( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zungqr( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cungrq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau ); +lapack_int LAPACKE_zungrq( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau ); + +lapack_int LAPACKE_cungtr( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau ); +lapack_int LAPACKE_zungtr( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau ); + +lapack_int LAPACKE_cunmbr( int matrix_order, char vect, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmbr( int matrix_order, char vect, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmhr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmhr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmlq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmlq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmql( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmql( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmqr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmqr( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmrq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmrq( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmrz( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmrz( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cunmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zunmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_cupgtr( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_complex_float* tau, + lapack_complex_float* q, lapack_int ldq ); +lapack_int LAPACKE_zupgtr( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_complex_double* tau, + lapack_complex_double* q, lapack_int ldq ); + +lapack_int LAPACKE_cupmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, + const lapack_complex_float* ap, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc ); +lapack_int LAPACKE_zupmtr( int matrix_order, char side, char uplo, char trans, + lapack_int m, lapack_int n, + const lapack_complex_double* ap, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc ); + +lapack_int LAPACKE_sbdsdc_work( int matrix_order, char uplo, char compq, + lapack_int n, float* d, float* e, float* u, + lapack_int ldu, float* vt, lapack_int ldvt, + float* q, lapack_int* iq, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dbdsdc_work( int matrix_order, char uplo, char compq, + lapack_int n, double* d, double* e, double* u, + lapack_int ldu, double* vt, lapack_int ldvt, + double* q, lapack_int* iq, double* work, + lapack_int* iwork ); + +lapack_int LAPACKE_sbdsqr_work( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + float* d, float* e, float* vt, lapack_int ldvt, + float* u, lapack_int ldu, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dbdsqr_work( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + double* d, double* e, double* vt, + lapack_int ldvt, double* u, lapack_int ldu, + double* c, lapack_int ldc, double* work ); +lapack_int LAPACKE_cbdsqr_work( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + float* d, float* e, lapack_complex_float* vt, + lapack_int ldvt, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_zbdsqr_work( int matrix_order, char uplo, lapack_int n, + lapack_int ncvt, lapack_int nru, lapack_int ncc, + double* d, double* e, lapack_complex_double* vt, + lapack_int ldvt, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* c, + lapack_int ldc, double* work ); + +lapack_int LAPACKE_sdisna_work( char job, lapack_int m, lapack_int n, + const float* d, float* sep ); +lapack_int LAPACKE_ddisna_work( char job, lapack_int m, lapack_int n, + const double* d, double* sep ); + +lapack_int LAPACKE_sgbbrd_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, float* ab, lapack_int ldab, + float* d, float* e, float* q, lapack_int ldq, + float* pt, lapack_int ldpt, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dgbbrd_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, double* ab, lapack_int ldab, + double* d, double* e, double* q, lapack_int ldq, + double* pt, lapack_int ldpt, double* c, + lapack_int ldc, double* work ); +lapack_int LAPACKE_cgbbrd_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, lapack_complex_float* ab, + lapack_int ldab, float* d, float* e, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* pt, lapack_int ldpt, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgbbrd_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int ncc, lapack_int kl, + lapack_int ku, lapack_complex_double* ab, + lapack_int ldab, double* d, double* e, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* pt, lapack_int ldpt, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgbcon_work( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, const lapack_int* ipiv, + float anorm, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgbcon_work( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, const lapack_int* ipiv, + double anorm, double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgbcon_work( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgbcon_work( int matrix_order, char norm, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, + lapack_int ldab, const lapack_int* ipiv, + double anorm, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgbequ_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_dgbequ_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); +lapack_int LAPACKE_cgbequ_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, lapack_int ldab, + float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_zgbequ_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); + +lapack_int LAPACKE_sgbequb_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* ab, + lapack_int ldab, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_dgbequb_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); +lapack_int LAPACKE_cgbequb_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_float* ab, + lapack_int ldab, float* r, float* c, + float* rowcnd, float* colcnd, float* amax ); +lapack_int LAPACKE_zgbequb_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + const lapack_complex_double* ab, + lapack_int ldab, double* r, double* c, + double* rowcnd, double* colcnd, double* amax ); + +lapack_int LAPACKE_sgbrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const float* ab, lapack_int ldab, + const float* afb, lapack_int ldafb, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgbrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const double* ab, lapack_int ldab, + const double* afb, lapack_int ldafb, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgbrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgbrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, + const lapack_complex_double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgbrfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const float* ab, + lapack_int ldab, const float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const float* r, const float* c, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgbrfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, const double* ab, + lapack_int ldab, const double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const double* r, const double* c, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgbrfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, + const lapack_complex_float* ab, + lapack_int ldab, + const lapack_complex_float* afb, + lapack_int ldafb, const lapack_int* ipiv, + const float* r, const float* c, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgbrfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, + const lapack_complex_double* afb, + lapack_int ldafb, const lapack_int* ipiv, + const double* r, const double* c, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgbsv_work( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, float* ab, + lapack_int ldab, lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgbsv_work( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, double* ab, + lapack_int ldab, lapack_int* ipiv, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgbsv_work( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgbsv_work( int matrix_order, lapack_int n, lapack_int kl, + lapack_int ku, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sgbsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, float* ab, lapack_int ldab, + float* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dgbsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, double* ab, lapack_int ldab, + double* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, double* r, double* c, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cgbsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + float* r, float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgbsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* afb, + lapack_int ldafb, lapack_int* ipiv, char* equed, + double* r, double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgbsvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, float* ab, lapack_int ldab, + float* afb, lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgbsvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, double* ab, lapack_int ldab, + double* afb, lapack_int ldafb, + lapack_int* ipiv, char* equed, double* r, + double* c, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgbsvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* afb, + lapack_int ldafb, lapack_int* ipiv, + char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgbsvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int kl, lapack_int ku, + lapack_int nrhs, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* afb, + lapack_int ldafb, lapack_int* ipiv, + char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgbtrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, float* ab, + lapack_int ldab, lapack_int* ipiv ); +lapack_int LAPACKE_dgbtrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, double* ab, + lapack_int ldab, lapack_int* ipiv ); +lapack_int LAPACKE_cgbtrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + lapack_complex_float* ab, lapack_int ldab, + lapack_int* ipiv ); +lapack_int LAPACKE_zgbtrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, + lapack_complex_double* ab, lapack_int ldab, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgbtrs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const float* ab, lapack_int ldab, + const lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgbtrs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const double* ab, lapack_int ldab, + const lapack_int* ipiv, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgbtrs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgbtrs_work( int matrix_order, char trans, lapack_int n, + lapack_int kl, lapack_int ku, lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sgebak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const float* scale, lapack_int m, float* v, + lapack_int ldv ); +lapack_int LAPACKE_dgebak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const double* scale, lapack_int m, double* v, + lapack_int ldv ); +lapack_int LAPACKE_cgebak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const float* scale, lapack_int m, + lapack_complex_float* v, lapack_int ldv ); +lapack_int LAPACKE_zgebak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const double* scale, lapack_int m, + lapack_complex_double* v, lapack_int ldv ); + +lapack_int LAPACKE_sgebal_work( int matrix_order, char job, lapack_int n, + float* a, lapack_int lda, lapack_int* ilo, + lapack_int* ihi, float* scale ); +lapack_int LAPACKE_dgebal_work( int matrix_order, char job, lapack_int n, + double* a, lapack_int lda, lapack_int* ilo, + lapack_int* ihi, double* scale ); +lapack_int LAPACKE_cgebal_work( int matrix_order, char job, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ilo, lapack_int* ihi, + float* scale ); +lapack_int LAPACKE_zgebal_work( int matrix_order, char job, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ilo, lapack_int* ihi, + double* scale ); + +lapack_int LAPACKE_sgebrd_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* d, float* e, + float* tauq, float* taup, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgebrd_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* d, double* e, + double* tauq, double* taup, double* work, + lapack_int lwork ); +lapack_int LAPACKE_cgebrd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float* d, float* e, lapack_complex_float* tauq, + lapack_complex_float* taup, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgebrd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double* d, double* e, + lapack_complex_double* tauq, + lapack_complex_double* taup, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgecon_work( int matrix_order, char norm, lapack_int n, + const float* a, lapack_int lda, float anorm, + float* rcond, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dgecon_work( int matrix_order, char norm, lapack_int n, + const double* a, lapack_int lda, double anorm, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgecon_work( int matrix_order, char norm, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float anorm, float* rcond, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgecon_work( int matrix_order, char norm, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double anorm, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgeequ_work( int matrix_order, lapack_int m, lapack_int n, + const float* a, lapack_int lda, float* r, + float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_dgeequ_work( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* r, + double* c, double* rowcnd, double* colcnd, + double* amax ); +lapack_int LAPACKE_cgeequ_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_zgeequ_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* r, double* c, double* rowcnd, + double* colcnd, double* amax ); + +lapack_int LAPACKE_sgeequb_work( int matrix_order, lapack_int m, lapack_int n, + const float* a, lapack_int lda, float* r, + float* c, float* rowcnd, float* colcnd, + float* amax ); +lapack_int LAPACKE_dgeequb_work( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* r, + double* c, double* rowcnd, double* colcnd, + double* amax ); +lapack_int LAPACKE_cgeequb_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* r, float* c, float* rowcnd, + float* colcnd, float* amax ); +lapack_int LAPACKE_zgeequb_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* r, double* c, double* rowcnd, + double* colcnd, double* amax ); + +lapack_int LAPACKE_sgees_work( int matrix_order, char jobvs, char sort, + LAPACK_S_SELECT2 select, lapack_int n, float* a, + lapack_int lda, lapack_int* sdim, float* wr, + float* wi, float* vs, lapack_int ldvs, + float* work, lapack_int lwork, + lapack_logical* bwork ); +lapack_int LAPACKE_dgees_work( int matrix_order, char jobvs, char sort, + LAPACK_D_SELECT2 select, lapack_int n, double* a, + lapack_int lda, lapack_int* sdim, double* wr, + double* wi, double* vs, lapack_int ldvs, + double* work, lapack_int lwork, + lapack_logical* bwork ); +lapack_int LAPACKE_cgees_work( int matrix_order, char jobvs, char sort, + LAPACK_C_SELECT1 select, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int ldvs, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_logical* bwork ); +lapack_int LAPACKE_zgees_work( int matrix_order, char jobvs, char sort, + LAPACK_Z_SELECT1 select, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int ldvs, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_logical* bwork ); + +lapack_int LAPACKE_sgeesx_work( int matrix_order, char jobvs, char sort, + LAPACK_S_SELECT2 select, char sense, + lapack_int n, float* a, lapack_int lda, + lapack_int* sdim, float* wr, float* wi, + float* vs, lapack_int ldvs, float* rconde, + float* rcondv, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork, + lapack_logical* bwork ); +lapack_int LAPACKE_dgeesx_work( int matrix_order, char jobvs, char sort, + LAPACK_D_SELECT2 select, char sense, + lapack_int n, double* a, lapack_int lda, + lapack_int* sdim, double* wr, double* wi, + double* vs, lapack_int ldvs, double* rconde, + double* rcondv, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork, + lapack_logical* bwork ); +lapack_int LAPACKE_cgeesx_work( int matrix_order, char jobvs, char sort, + LAPACK_C_SELECT1 select, char sense, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_int* sdim, + lapack_complex_float* w, + lapack_complex_float* vs, lapack_int ldvs, + float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_logical* bwork ); +lapack_int LAPACKE_zgeesx_work( int matrix_order, char jobvs, char sort, + LAPACK_Z_SELECT1 select, char sense, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_int* sdim, + lapack_complex_double* w, + lapack_complex_double* vs, lapack_int ldvs, + double* rconde, double* rcondv, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_logical* bwork ); + +lapack_int LAPACKE_sgeev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, float* a, lapack_int lda, + float* wr, float* wi, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgeev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, double* a, lapack_int lda, + double* wr, double* wi, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* w, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zgeev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* w, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_sgeevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, float* a, + lapack_int lda, float* wr, float* wi, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* scale, + float* abnrm, float* rconde, float* rcondv, + float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dgeevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, double* a, + lapack_int lda, double* wr, double* wi, + double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr, lapack_int* ilo, + lapack_int* ihi, double* scale, double* abnrm, + double* rconde, double* rcondv, double* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_cgeevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* w, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* scale, + float* abnrm, float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zgeevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* w, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, double* scale, + double* abnrm, double* rconde, double* rcondv, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_sgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, float* a, lapack_int lda, + float* tau, float* work, lapack_int lwork ); +lapack_int LAPACKE_dgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, double* a, lapack_int lda, + double* tau, double* work, lapack_int lwork ); +lapack_int LAPACKE_cgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgehrd_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgejsv_work( int matrix_order, char joba, char jobu, + char jobv, char jobr, char jobt, char jobp, + lapack_int m, lapack_int n, float* a, + lapack_int lda, float* sva, float* u, + lapack_int ldu, float* v, lapack_int ldv, + float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dgejsv_work( int matrix_order, char joba, char jobu, + char jobv, char jobr, char jobt, char jobp, + lapack_int m, lapack_int n, double* a, + lapack_int lda, double* sva, double* u, + lapack_int ldu, double* v, lapack_int ldv, + double* work, lapack_int lwork, + lapack_int* iwork ); + +lapack_int LAPACKE_sgelq2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work ); +lapack_int LAPACKE_dgelq2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work ); +lapack_int LAPACKE_cgelq2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work ); +lapack_int LAPACKE_zgelq2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work ); + +lapack_int LAPACKE_sgelqf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgelqf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgelqf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgelqf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgels_work( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgels_work( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgels_work( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgels_work( int matrix_order, char trans, lapack_int m, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgelsd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + float* b, lapack_int ldb, float* s, float rcond, + lapack_int* rank, float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dgelsd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* s, + double rcond, lapack_int* rank, double* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_cgelsd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int* iwork ); +lapack_int LAPACKE_zgelsd_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* s, double rcond, + lapack_int* rank, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int* iwork ); + +lapack_int LAPACKE_sgelss_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + float* b, lapack_int ldb, float* s, float rcond, + lapack_int* rank, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgelss_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* s, + double rcond, lapack_int* rank, double* work, + lapack_int lwork ); +lapack_int LAPACKE_cgelss_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* s, float rcond, + lapack_int* rank, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zgelss_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double* s, double rcond, + lapack_int* rank, lapack_complex_double* work, + lapack_int lwork, double* rwork ); + +lapack_int LAPACKE_sgelsy_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + float* b, lapack_int ldb, lapack_int* jpvt, + float rcond, lapack_int* rank, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgelsy_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, lapack_int* jpvt, + double rcond, lapack_int* rank, double* work, + lapack_int lwork ); +lapack_int LAPACKE_cgelsy_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_int* jpvt, float rcond, + lapack_int* rank, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zgelsy_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_int* jpvt, double rcond, + lapack_int* rank, lapack_complex_double* work, + lapack_int lwork, double* rwork ); + +lapack_int LAPACKE_sgeqlf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgeqlf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeqlf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgeqlf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgeqp3_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* jpvt, + float* tau, float* work, lapack_int lwork ); +lapack_int LAPACKE_dgeqp3_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* jpvt, + double* tau, double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeqp3_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zgeqp3_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_sgeqpf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* jpvt, + float* tau, float* work ); +lapack_int LAPACKE_dgeqpf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* jpvt, + double* tau, double* work ); +lapack_int LAPACKE_cgeqpf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_float* tau, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgeqpf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* jpvt, lapack_complex_double* tau, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgeqr2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work ); +lapack_int LAPACKE_dgeqr2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work ); +lapack_int LAPACKE_cgeqr2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work ); +lapack_int LAPACKE_zgeqr2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work ); + +lapack_int LAPACKE_sgeqrf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgeqrf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeqrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgeqrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgeqrfp_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sgerfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgerfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cgerfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgerfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgerfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* r, const float* c, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgerfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* r, const double* c, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgerfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* r, const float* c, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgerfsx_work( int matrix_order, char trans, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* r, const double* c, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgerqf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgerqf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgerqf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgerqf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgesdd_work( int matrix_order, char jobz, lapack_int m, + lapack_int n, float* a, lapack_int lda, + float* s, float* u, lapack_int ldu, float* vt, + lapack_int ldvt, float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dgesdd_work( int matrix_order, char jobz, lapack_int m, + lapack_int n, double* a, lapack_int lda, + double* s, double* u, lapack_int ldu, + double* vt, lapack_int ldvt, double* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_cgesdd_work( int matrix_order, char jobz, lapack_int m, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float* s, + lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* vt, lapack_int ldvt, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int* iwork ); +lapack_int LAPACKE_zgesdd_work( int matrix_order, char jobz, lapack_int m, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double* s, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* vt, lapack_int ldvt, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int* iwork ); + +lapack_int LAPACKE_sgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + float* a, lapack_int lda, lapack_int* ipiv, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* a, lapack_int lda, lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); +lapack_int LAPACKE_dsgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* a, lapack_int lda, lapack_int* ipiv, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* work, float* swork, + lapack_int* iter ); +lapack_int LAPACKE_zcgesv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, lapack_complex_double* work, + lapack_complex_float* swork, double* rwork, + lapack_int* iter ); + +lapack_int LAPACKE_sgesvd_work( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, float* a, + lapack_int lda, float* s, float* u, + lapack_int ldu, float* vt, lapack_int ldvt, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgesvd_work( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, double* a, + lapack_int lda, double* s, double* u, + lapack_int ldu, double* vt, lapack_int ldvt, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgesvd_work( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float* s, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* vt, + lapack_int ldvt, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zgesvd_work( int matrix_order, char jobu, char jobvt, + lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double* s, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* vt, + lapack_int ldvt, lapack_complex_double* work, + lapack_int lwork, double* rwork ); + +lapack_int LAPACKE_sgesvj_work( int matrix_order, char joba, char jobu, + char jobv, lapack_int m, lapack_int n, float* a, + lapack_int lda, float* sva, lapack_int mv, + float* v, lapack_int ldv, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dgesvj_work( int matrix_order, char joba, char jobu, + char jobv, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* sva, + lapack_int mv, double* v, lapack_int ldv, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgesvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, + float* c, float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dgesvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, + double* c, double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, double* work, lapack_int* iwork ); +lapack_int LAPACKE_cgesvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, + float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zgesvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, + double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sgesvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, + float* c, float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgesvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, + double* c, double* b, lapack_int ldb, + double* x, lapack_int ldx, double* rcond, + double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgesvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* r, + float* c, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgesvxx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* r, + double* c, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgetf2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dgetf2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_cgetf2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zgetf2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgetrf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_dgetrf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv ); +lapack_int LAPACKE_cgetrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv ); +lapack_int LAPACKE_zgetrf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv ); + +lapack_int LAPACKE_sgetri_work( int matrix_order, lapack_int n, float* a, + lapack_int lda, const lapack_int* ipiv, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dgetri_work( int matrix_order, lapack_int n, double* a, + lapack_int lda, const lapack_int* ipiv, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cgetri_work( int matrix_order, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgetri_work( int matrix_order, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgetrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgetrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cgetrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zgetrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sggbak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const float* lscale, const float* rscale, + lapack_int m, float* v, lapack_int ldv ); +lapack_int LAPACKE_dggbak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const double* lscale, const double* rscale, + lapack_int m, double* v, lapack_int ldv ); +lapack_int LAPACKE_cggbak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const float* lscale, const float* rscale, + lapack_int m, lapack_complex_float* v, + lapack_int ldv ); +lapack_int LAPACKE_zggbak_work( int matrix_order, char job, char side, + lapack_int n, lapack_int ilo, lapack_int ihi, + const double* lscale, const double* rscale, + lapack_int m, lapack_complex_double* v, + lapack_int ldv ); + +lapack_int LAPACKE_sggbal_work( int matrix_order, char job, lapack_int n, + float* a, lapack_int lda, float* b, + lapack_int ldb, lapack_int* ilo, + lapack_int* ihi, float* lscale, float* rscale, + float* work ); +lapack_int LAPACKE_dggbal_work( int matrix_order, char job, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, lapack_int* ilo, + lapack_int* ihi, double* lscale, double* rscale, + double* work ); +lapack_int LAPACKE_cggbal_work( int matrix_order, char job, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* work ); +lapack_int LAPACKE_zggbal_work( int matrix_order, char job, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int* ilo, lapack_int* ihi, + double* lscale, double* rscale, double* work ); + +lapack_int LAPACKE_sgges_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_S_SELECT3 selctg, lapack_int n, + float* a, lapack_int lda, float* b, + lapack_int ldb, lapack_int* sdim, float* alphar, + float* alphai, float* beta, float* vsl, + lapack_int ldvsl, float* vsr, lapack_int ldvsr, + float* work, lapack_int lwork, + lapack_logical* bwork ); +lapack_int LAPACKE_dgges_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_D_SELECT3 selctg, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, lapack_int* sdim, double* alphar, + double* alphai, double* beta, double* vsl, + lapack_int ldvsl, double* vsr, lapack_int ldvsr, + double* work, lapack_int lwork, + lapack_logical* bwork ); +lapack_int LAPACKE_cgges_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_C_SELECT2 selctg, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int* sdim, lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int ldvsl, + lapack_complex_float* vsr, lapack_int ldvsr, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_logical* bwork ); +lapack_int LAPACKE_zgges_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_Z_SELECT2 selctg, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int* sdim, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int ldvsl, + lapack_complex_double* vsr, lapack_int ldvsr, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_logical* bwork ); + +lapack_int LAPACKE_sggesx_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_S_SELECT3 selctg, char sense, + lapack_int n, float* a, lapack_int lda, + float* b, lapack_int ldb, lapack_int* sdim, + float* alphar, float* alphai, float* beta, + float* vsl, lapack_int ldvsl, float* vsr, + lapack_int ldvsr, float* rconde, float* rcondv, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork, + lapack_logical* bwork ); +lapack_int LAPACKE_dggesx_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_D_SELECT3 selctg, char sense, + lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, lapack_int* sdim, + double* alphar, double* alphai, double* beta, + double* vsl, lapack_int ldvsl, double* vsr, + lapack_int ldvsr, double* rconde, + double* rcondv, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork, + lapack_logical* bwork ); +lapack_int LAPACKE_cggesx_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_C_SELECT2 selctg, char sense, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_int* sdim, + lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int ldvsl, + lapack_complex_float* vsr, lapack_int ldvsr, + float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int* iwork, + lapack_int liwork, lapack_logical* bwork ); +lapack_int LAPACKE_zggesx_work( int matrix_order, char jobvsl, char jobvsr, + char sort, LAPACK_Z_SELECT2 selctg, char sense, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_int* sdim, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int ldvsl, + lapack_complex_double* vsr, lapack_int ldvsr, + double* rconde, double* rcondv, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int* iwork, + lapack_int liwork, lapack_logical* bwork ); + +lapack_int LAPACKE_sggev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, float* a, lapack_int lda, float* b, + lapack_int ldb, float* alphar, float* alphai, + float* beta, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dggev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, double* alphar, + double* alphai, double* beta, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + double* work, lapack_int lwork ); +lapack_int LAPACKE_cggev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zggev_work( int matrix_order, char jobvl, char jobvr, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_sggevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* alphar, float* alphai, float* beta, + float* vl, lapack_int ldvl, float* vr, + lapack_int ldvr, lapack_int* ilo, + lapack_int* ihi, float* lscale, float* rscale, + float* abnrm, float* bbnrm, float* rconde, + float* rcondv, float* work, lapack_int lwork, + lapack_int* iwork, lapack_logical* bwork ); +lapack_int LAPACKE_dggevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* alphar, double* alphai, double* beta, + double* vl, lapack_int ldvl, double* vr, + lapack_int ldvr, lapack_int* ilo, + lapack_int* ihi, double* lscale, double* rscale, + double* abnrm, double* bbnrm, double* rconde, + double* rcondv, double* work, lapack_int lwork, + lapack_int* iwork, lapack_logical* bwork ); +lapack_int LAPACKE_cggevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* abnrm, float* bbnrm, + float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int* iwork, + lapack_logical* bwork ); +lapack_int LAPACKE_zggevx_work( int matrix_order, char balanc, char jobvl, + char jobvr, char sense, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int* ilo, lapack_int* ihi, + double* lscale, double* rscale, double* abnrm, + double* bbnrm, double* rconde, double* rcondv, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int* iwork, + lapack_logical* bwork ); + +lapack_int LAPACKE_sggglm_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, float* a, lapack_int lda, + float* b, lapack_int ldb, float* d, float* x, + float* y, float* work, lapack_int lwork ); +lapack_int LAPACKE_dggglm_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, double* a, lapack_int lda, + double* b, lapack_int ldb, double* d, double* x, + double* y, double* work, lapack_int lwork ); +lapack_int LAPACKE_cggglm_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* d, + lapack_complex_float* x, + lapack_complex_float* y, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zggglm_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* d, + lapack_complex_double* x, + lapack_complex_double* y, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sgghrd_work( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* q, lapack_int ldq, + float* z, lapack_int ldz ); +lapack_int LAPACKE_dgghrd_work( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* q, lapack_int ldq, + double* z, lapack_int ldz ); +lapack_int LAPACKE_cgghrd_work( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz ); +lapack_int LAPACKE_zgghrd_work( int matrix_order, char compq, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz ); + +lapack_int LAPACKE_sgglse_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, float* a, lapack_int lda, + float* b, lapack_int ldb, float* c, float* d, + float* x, float* work, lapack_int lwork ); +lapack_int LAPACKE_dgglse_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, double* a, lapack_int lda, + double* b, lapack_int ldb, double* c, double* d, + double* x, double* work, lapack_int lwork ); +lapack_int LAPACKE_cgglse_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* c, + lapack_complex_float* d, + lapack_complex_float* x, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zgglse_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* c, + lapack_complex_double* d, + lapack_complex_double* x, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sggqrf_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, float* a, lapack_int lda, + float* taua, float* b, lapack_int ldb, + float* taub, float* work, lapack_int lwork ); +lapack_int LAPACKE_dggqrf_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, double* a, lapack_int lda, + double* taua, double* b, lapack_int ldb, + double* taub, double* work, lapack_int lwork ); +lapack_int LAPACKE_cggqrf_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* taua, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* taub, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zggqrf_work( int matrix_order, lapack_int n, lapack_int m, + lapack_int p, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* taua, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* taub, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sggrqf_work( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, float* a, lapack_int lda, + float* taua, float* b, lapack_int ldb, + float* taub, float* work, lapack_int lwork ); +lapack_int LAPACKE_dggrqf_work( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, double* a, lapack_int lda, + double* taua, double* b, lapack_int ldb, + double* taub, double* work, lapack_int lwork ); +lapack_int LAPACKE_cggrqf_work( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* taua, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* taub, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zggrqf_work( int matrix_order, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* taua, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* taub, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_sggsvd_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int n, + lapack_int p, lapack_int* k, lapack_int* l, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* alpha, float* beta, + float* u, lapack_int ldu, float* v, + lapack_int ldv, float* q, lapack_int ldq, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dggsvd_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int n, + lapack_int p, lapack_int* k, lapack_int* l, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* alpha, double* beta, + double* u, lapack_int ldu, double* v, + lapack_int ldv, double* q, lapack_int ldq, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cggsvd_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int n, + lapack_int p, lapack_int* k, lapack_int* l, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float* alpha, float* beta, + lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* v, lapack_int ldv, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* work, float* rwork, + lapack_int* iwork ); +lapack_int LAPACKE_zggsvd_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int n, + lapack_int p, lapack_int* k, lapack_int* l, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double* alpha, double* beta, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* v, lapack_int ldv, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* work, double* rwork, + lapack_int* iwork ); + +lapack_int LAPACKE_sggsvp_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, float* a, lapack_int lda, + float* b, lapack_int ldb, float tola, + float tolb, lapack_int* k, lapack_int* l, + float* u, lapack_int ldu, float* v, + lapack_int ldv, float* q, lapack_int ldq, + lapack_int* iwork, float* tau, float* work ); +lapack_int LAPACKE_dggsvp_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, double* a, lapack_int lda, + double* b, lapack_int ldb, double tola, + double tolb, lapack_int* k, lapack_int* l, + double* u, lapack_int ldu, double* v, + lapack_int ldv, double* q, lapack_int ldq, + lapack_int* iwork, double* tau, double* work ); +lapack_int LAPACKE_cggsvp_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float tola, float tolb, + lapack_int* k, lapack_int* l, + lapack_complex_float* u, lapack_int ldu, + lapack_complex_float* v, lapack_int ldv, + lapack_complex_float* q, lapack_int ldq, + lapack_int* iwork, float* rwork, + lapack_complex_float* tau, + lapack_complex_float* work ); +lapack_int LAPACKE_zggsvp_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, double tola, double tolb, + lapack_int* k, lapack_int* l, + lapack_complex_double* u, lapack_int ldu, + lapack_complex_double* v, lapack_int ldv, + lapack_complex_double* q, lapack_int ldq, + lapack_int* iwork, double* rwork, + lapack_complex_double* tau, + lapack_complex_double* work ); + +lapack_int LAPACKE_sgtcon_work( char norm, lapack_int n, const float* dl, + const float* d, const float* du, + const float* du2, const lapack_int* ipiv, + float anorm, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgtcon_work( char norm, lapack_int n, const double* dl, + const double* d, const double* du, + const double* du2, const lapack_int* ipiv, + double anorm, double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgtcon_work( char norm, lapack_int n, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zgtcon_work( char norm, lapack_int n, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_sgtrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* dl, + const float* d, const float* du, + const float* dlf, const float* df, + const float* duf, const float* du2, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dgtrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* dl, + const double* d, const double* du, + const double* dlf, const double* df, + const double* duf, const double* du2, + const lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cgtrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* dlf, + const lapack_complex_float* df, + const lapack_complex_float* duf, + const lapack_complex_float* du2, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgtrfs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* dlf, + const lapack_complex_double* df, + const lapack_complex_double* duf, + const lapack_complex_double* du2, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + float* dl, float* d, float* du, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* dl, double* d, double* du, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_float* dl, + lapack_complex_float* d, + lapack_complex_float* du, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zgtsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + lapack_complex_double* dl, + lapack_complex_double* d, + lapack_complex_double* du, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sgtsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, const float* dl, + const float* d, const float* du, float* dlf, + float* df, float* duf, float* du2, + lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dgtsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, const double* dl, + const double* d, const double* du, double* dlf, + double* df, double* duf, double* du2, + lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cgtsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + lapack_complex_float* dlf, + lapack_complex_float* df, + lapack_complex_float* duf, + lapack_complex_float* du2, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zgtsvx_work( int matrix_order, char fact, char trans, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + lapack_complex_double* dlf, + lapack_complex_double* df, + lapack_complex_double* duf, + lapack_complex_double* du2, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sgttrf_work( lapack_int n, float* dl, float* d, float* du, + float* du2, lapack_int* ipiv ); +lapack_int LAPACKE_dgttrf_work( lapack_int n, double* dl, double* d, double* du, + double* du2, lapack_int* ipiv ); +lapack_int LAPACKE_cgttrf_work( lapack_int n, lapack_complex_float* dl, + lapack_complex_float* d, + lapack_complex_float* du, + lapack_complex_float* du2, lapack_int* ipiv ); +lapack_int LAPACKE_zgttrf_work( lapack_int n, lapack_complex_double* dl, + lapack_complex_double* d, + lapack_complex_double* du, + lapack_complex_double* du2, lapack_int* ipiv ); + +lapack_int LAPACKE_sgttrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const float* dl, + const float* d, const float* du, + const float* du2, const lapack_int* ipiv, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dgttrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const double* dl, + const double* d, const double* du, + const double* du2, const lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cgttrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zgttrs_work( int matrix_order, char trans, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_chbev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zhbev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chbevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zhbevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_chbevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* q, lapack_int ldq, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + float* rwork, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_zhbevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* q, lapack_int ldq, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + double* rwork, lapack_int* iwork, + lapack_int* ifail ); + +lapack_int LAPACKE_chbgst_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* bb, lapack_int ldbb, + lapack_complex_float* x, lapack_int ldx, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhbgst_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + const lapack_complex_double* bb, + lapack_int ldbb, lapack_complex_double* x, + lapack_int ldx, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chbgv_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zhbgv_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chbgvd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* bb, lapack_int ldbb, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zhbgvd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* bb, lapack_int ldbb, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_chbgvx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int ka, + lapack_int kb, lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* bb, + lapack_int ldbb, lapack_complex_float* q, + lapack_int ldq, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zhbgvx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int ka, + lapack_int kb, lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* bb, + lapack_int ldbb, lapack_complex_double* q, + lapack_int ldq, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_chbtrd_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_float* ab, lapack_int ldab, + float* d, float* e, lapack_complex_float* q, + lapack_int ldq, lapack_complex_float* work ); +lapack_int LAPACKE_zhbtrd_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int kd, + lapack_complex_double* ab, lapack_int ldab, + double* d, double* e, lapack_complex_double* q, + lapack_int ldq, lapack_complex_double* work ); + +lapack_int LAPACKE_checon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zhecon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_cheequb_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax, + lapack_complex_float* work ); +lapack_int LAPACKE_zheequb_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax, + lapack_complex_double* work ); + +lapack_int LAPACKE_cheev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float* w, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zheev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double* w, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_cheevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, float* w, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_zheevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, double* w, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_cheevr_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_int* isuppz, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_zheevr_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_int* isuppz, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_cheevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zheevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_chegst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhegst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chegv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb, float* w, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zhegv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double* w, lapack_complex_double* work, + lapack_int lwork, double* rwork ); + +lapack_int LAPACKE_chegvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float* w, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zhegvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double* w, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_chegvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zhegvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_cherfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zherfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_cherfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* s, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zherfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chesv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zhesv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_chesvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zhesvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_chesvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zhesvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chetrd_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + float* d, float* e, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zhetrd_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + double* d, double* e, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_chetrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_float* work, + lapack_int lwork ); +lapack_int LAPACKE_zhetrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* work, + lapack_int lwork ); + +lapack_int LAPACKE_chetri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_zhetri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work ); + +lapack_int LAPACKE_chetrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zhetrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_chfrk_work( int matrix_order, char transr, char uplo, + char trans, lapack_int n, lapack_int k, + float alpha, const lapack_complex_float* a, + lapack_int lda, float beta, + lapack_complex_float* c ); +lapack_int LAPACKE_zhfrk_work( int matrix_order, char transr, char uplo, + char trans, lapack_int n, lapack_int k, + double alpha, const lapack_complex_double* a, + lapack_int lda, double beta, + lapack_complex_double* c ); + +lapack_int LAPACKE_shgeqz_work( int matrix_order, char job, char compq, + char compz, lapack_int n, lapack_int ilo, + lapack_int ihi, float* h, lapack_int ldh, + float* t, lapack_int ldt, float* alphar, + float* alphai, float* beta, float* q, + lapack_int ldq, float* z, lapack_int ldz, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dhgeqz_work( int matrix_order, char job, char compq, + char compz, lapack_int n, lapack_int ilo, + lapack_int ihi, double* h, lapack_int ldh, + double* t, lapack_int ldt, double* alphar, + double* alphai, double* beta, double* q, + lapack_int ldq, double* z, lapack_int ldz, + double* work, lapack_int lwork ); +lapack_int LAPACKE_chgeqz_work( int matrix_order, char job, char compq, + char compz, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* h, + lapack_int ldh, lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, lapack_int lwork, + float* rwork ); +lapack_int LAPACKE_zhgeqz_work( int matrix_order, char job, char compq, + char compz, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* h, + lapack_int ldh, lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_chpcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zhpcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_chpev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_float* ap, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhpev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_double* ap, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_chpevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_float* ap, + float* w, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zhpevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_complex_double* ap, + double* w, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_chpevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_float* ap, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zhpevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, + lapack_complex_double* ap, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_chpgst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_float* ap, + const lapack_complex_float* bp ); +lapack_int LAPACKE_zhpgst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, lapack_complex_double* ap, + const lapack_complex_double* bp ); + +lapack_int LAPACKE_chpgv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_float* ap, + lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhpgv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_double* ap, + lapack_complex_double* bp, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_chpgvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_float* ap, + lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_zhpgvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, + lapack_complex_double* ap, + lapack_complex_double* bp, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int lrwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_chpgvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_float* ap, + lapack_complex_float* bp, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_zhpgvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, + lapack_complex_double* ap, + lapack_complex_double* bp, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_chprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_chpsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhpsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_chpsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + lapack_complex_float* afp, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zhpsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* afp, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_chptrd_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, float* d, float* e, + lapack_complex_float* tau ); +lapack_int LAPACKE_zhptrd_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, double* d, double* e, + lapack_complex_double* tau ); + +lapack_int LAPACKE_chptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_zhptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_int* ipiv ); + +lapack_int LAPACKE_chptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, + const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_zhptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, + const lapack_int* ipiv, + lapack_complex_double* work ); + +lapack_int LAPACKE_chptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zhptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_shsein_work( int matrix_order, char job, char eigsrc, + char initv, lapack_logical* select, + lapack_int n, const float* h, lapack_int ldh, + float* wr, const float* wi, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, float* work, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_dhsein_work( int matrix_order, char job, char eigsrc, + char initv, lapack_logical* select, + lapack_int n, const double* h, lapack_int ldh, + double* wr, const double* wi, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, double* work, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_chsein_work( int matrix_order, char job, char eigsrc, + char initv, const lapack_logical* select, + lapack_int n, const lapack_complex_float* h, + lapack_int ldh, lapack_complex_float* w, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_float* work, float* rwork, + lapack_int* ifaill, lapack_int* ifailr ); +lapack_int LAPACKE_zhsein_work( int matrix_order, char job, char eigsrc, + char initv, const lapack_logical* select, + lapack_int n, const lapack_complex_double* h, + lapack_int ldh, lapack_complex_double* w, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, double* rwork, + lapack_int* ifaill, lapack_int* ifailr ); + +lapack_int LAPACKE_shseqr_work( int matrix_order, char job, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + float* h, lapack_int ldh, float* wr, float* wi, + float* z, lapack_int ldz, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dhseqr_work( int matrix_order, char job, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + double* h, lapack_int ldh, double* wr, + double* wi, double* z, lapack_int ldz, + double* work, lapack_int lwork ); +lapack_int LAPACKE_chseqr_work( int matrix_order, char job, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_float* h, lapack_int ldh, + lapack_complex_float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zhseqr_work( int matrix_order, char job, char compz, + lapack_int n, lapack_int ilo, lapack_int ihi, + lapack_complex_double* h, lapack_int ldh, + lapack_complex_double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_clacgv_work( lapack_int n, lapack_complex_float* x, + lapack_int incx ); +lapack_int LAPACKE_zlacgv_work( lapack_int n, lapack_complex_double* x, + lapack_int incx ); + +lapack_int LAPACKE_slacpy_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, const float* a, lapack_int lda, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dlacpy_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, const double* a, lapack_int lda, + double* b, lapack_int ldb ); +lapack_int LAPACKE_clacpy_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zlacpy_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_zlag2c_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_float* sa, lapack_int ldsa ); + +lapack_int LAPACKE_slag2d_work( int matrix_order, lapack_int m, lapack_int n, + const float* sa, lapack_int ldsa, double* a, + lapack_int lda ); + +lapack_int LAPACKE_dlag2s_work( int matrix_order, lapack_int m, lapack_int n, + const double* a, lapack_int lda, float* sa, + lapack_int ldsa ); + +lapack_int LAPACKE_clag2z_work( int matrix_order, lapack_int m, lapack_int n, + const lapack_complex_float* sa, lapack_int ldsa, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_slagge_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* d, + float* a, lapack_int lda, lapack_int* iseed, + float* work ); +lapack_int LAPACKE_dlagge_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* d, + double* a, lapack_int lda, lapack_int* iseed, + double* work ); +lapack_int LAPACKE_clagge_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const float* d, + lapack_complex_float* a, lapack_int lda, + lapack_int* iseed, lapack_complex_float* work ); +lapack_int LAPACKE_zlagge_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int kl, lapack_int ku, const double* d, + lapack_complex_double* a, lapack_int lda, + lapack_int* iseed, + lapack_complex_double* work ); + +lapack_int LAPACKE_claghe_work( int matrix_order, lapack_int n, lapack_int k, + const float* d, lapack_complex_float* a, + lapack_int lda, lapack_int* iseed, + lapack_complex_float* work ); +lapack_int LAPACKE_zlaghe_work( int matrix_order, lapack_int n, lapack_int k, + const double* d, lapack_complex_double* a, + lapack_int lda, lapack_int* iseed, + lapack_complex_double* work ); + +lapack_int LAPACKE_slagsy_work( int matrix_order, lapack_int n, lapack_int k, + const float* d, float* a, lapack_int lda, + lapack_int* iseed, float* work ); +lapack_int LAPACKE_dlagsy_work( int matrix_order, lapack_int n, lapack_int k, + const double* d, double* a, lapack_int lda, + lapack_int* iseed, double* work ); +lapack_int LAPACKE_clagsy_work( int matrix_order, lapack_int n, lapack_int k, + const float* d, lapack_complex_float* a, + lapack_int lda, lapack_int* iseed, + lapack_complex_float* work ); +lapack_int LAPACKE_zlagsy_work( int matrix_order, lapack_int n, lapack_int k, + const double* d, lapack_complex_double* a, + lapack_int lda, lapack_int* iseed, + lapack_complex_double* work ); + +lapack_int LAPACKE_slapmr_work( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, float* x, + lapack_int ldx, lapack_int* k ); +lapack_int LAPACKE_dlapmr_work( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, double* x, + lapack_int ldx, lapack_int* k ); +lapack_int LAPACKE_clapmr_work( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, + lapack_complex_float* x, lapack_int ldx, + lapack_int* k ); +lapack_int LAPACKE_zlapmr_work( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, + lapack_complex_double* x, lapack_int ldx, + lapack_int* k ); + +lapack_int LAPACKE_slartgp_work( float f, float g, float* cs, float* sn, + float* r ); +lapack_int LAPACKE_dlartgp_work( double f, double g, double* cs, double* sn, + double* r ); + +lapack_int LAPACKE_slartgs_work( float x, float y, float sigma, float* cs, + float* sn ); +lapack_int LAPACKE_dlartgs_work( double x, double y, double sigma, double* cs, + double* sn ); + +float LAPACKE_slapy2_work( float x, float y ); +double LAPACKE_dlapy2_work( double x, double y ); + +float LAPACKE_slapy3_work( float x, float y, float z ); +double LAPACKE_dlapy3_work( double x, double y, double z ); + +float LAPACKE_slamch_work( char cmach ); +double LAPACKE_dlamch_work( char cmach ); + +float LAPACKE_slange_work( int matrix_order, char norm, lapack_int m, + lapack_int n, const float* a, lapack_int lda, + float* work ); +double LAPACKE_dlange_work( int matrix_order, char norm, lapack_int m, + lapack_int n, const double* a, lapack_int lda, + double* work ); +float LAPACKE_clange_work( int matrix_order, char norm, lapack_int m, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, float* work ); +double LAPACKE_zlange_work( int matrix_order, char norm, lapack_int m, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, double* work ); + +float LAPACKE_clanhe_work( int matrix_order, char norm, char uplo, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, float* work ); +double LAPACKE_zlanhe_work( int matrix_order, char norm, char uplo, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, double* work ); + +float LAPACKE_slansy_work( int matrix_order, char norm, char uplo, + lapack_int n, const float* a, lapack_int lda, + float* work ); +double LAPACKE_dlansy_work( int matrix_order, char norm, char uplo, + lapack_int n, const double* a, lapack_int lda, + double* work ); +float LAPACKE_clansy_work( int matrix_order, char norm, char uplo, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, float* work ); +double LAPACKE_zlansy_work( int matrix_order, char norm, char uplo, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, double* work ); + +float LAPACKE_slantr_work( int matrix_order, char norm, char uplo, + char diag, lapack_int m, lapack_int n, const float* a, + lapack_int lda, float* work ); +double LAPACKE_dlantr_work( int matrix_order, char norm, char uplo, + char diag, lapack_int m, lapack_int n, + const double* a, lapack_int lda, double* work ); +float LAPACKE_clantr_work( int matrix_order, char norm, char uplo, + char diag, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* work ); +double LAPACKE_zlantr_work( int matrix_order, char norm, char uplo, + char diag, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* work ); + +lapack_int LAPACKE_slarfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, const float* v, + lapack_int ldv, const float* t, lapack_int ldt, + float* c, lapack_int ldc, float* work, + lapack_int ldwork ); +lapack_int LAPACKE_dlarfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, const double* v, + lapack_int ldv, const double* t, lapack_int ldt, + double* c, lapack_int ldc, double* work, + lapack_int ldwork ); +lapack_int LAPACKE_clarfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int ldwork ); +lapack_int LAPACKE_zlarfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, + lapack_int ldwork ); + +lapack_int LAPACKE_slarfg_work( lapack_int n, float* alpha, float* x, + lapack_int incx, float* tau ); +lapack_int LAPACKE_dlarfg_work( lapack_int n, double* alpha, double* x, + lapack_int incx, double* tau ); +lapack_int LAPACKE_clarfg_work( lapack_int n, lapack_complex_float* alpha, + lapack_complex_float* x, lapack_int incx, + lapack_complex_float* tau ); +lapack_int LAPACKE_zlarfg_work( lapack_int n, lapack_complex_double* alpha, + lapack_complex_double* x, lapack_int incx, + lapack_complex_double* tau ); + +lapack_int LAPACKE_slarft_work( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, const float* v, + lapack_int ldv, const float* tau, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dlarft_work( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, const double* v, + lapack_int ldv, const double* tau, double* t, + lapack_int ldt ); +lapack_int LAPACKE_clarft_work( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* tau, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zlarft_work( int matrix_order, char direct, char storev, + lapack_int n, lapack_int k, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* tau, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_slarfx_work( int matrix_order, char side, lapack_int m, + lapack_int n, const float* v, float tau, + float* c, lapack_int ldc, float* work ); +lapack_int LAPACKE_dlarfx_work( int matrix_order, char side, lapack_int m, + lapack_int n, const double* v, double tau, + double* c, lapack_int ldc, double* work ); +lapack_int LAPACKE_clarfx_work( int matrix_order, char side, lapack_int m, + lapack_int n, const lapack_complex_float* v, + lapack_complex_float tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work ); +lapack_int LAPACKE_zlarfx_work( int matrix_order, char side, lapack_int m, + lapack_int n, const lapack_complex_double* v, + lapack_complex_double tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work ); + +lapack_int LAPACKE_slarnv_work( lapack_int idist, lapack_int* iseed, + lapack_int n, float* x ); +lapack_int LAPACKE_dlarnv_work( lapack_int idist, lapack_int* iseed, + lapack_int n, double* x ); +lapack_int LAPACKE_clarnv_work( lapack_int idist, lapack_int* iseed, + lapack_int n, lapack_complex_float* x ); +lapack_int LAPACKE_zlarnv_work( lapack_int idist, lapack_int* iseed, + lapack_int n, lapack_complex_double* x ); + +lapack_int LAPACKE_slaset_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, float alpha, float beta, float* a, + lapack_int lda ); +lapack_int LAPACKE_dlaset_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, double alpha, double beta, + double* a, lapack_int lda ); +lapack_int LAPACKE_claset_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, lapack_complex_float alpha, + lapack_complex_float beta, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zlaset_work( int matrix_order, char uplo, lapack_int m, + lapack_int n, lapack_complex_double alpha, + lapack_complex_double beta, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_slasrt_work( char id, lapack_int n, float* d ); +lapack_int LAPACKE_dlasrt_work( char id, lapack_int n, double* d ); + +lapack_int LAPACKE_slaswp_work( int matrix_order, lapack_int n, float* a, + lapack_int lda, lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_dlaswp_work( int matrix_order, lapack_int n, double* a, + lapack_int lda, lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_claswp_work( int matrix_order, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); +lapack_int LAPACKE_zlaswp_work( int matrix_order, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int k1, lapack_int k2, + const lapack_int* ipiv, lapack_int incx ); + +lapack_int LAPACKE_slatms_work( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, + float* d, lapack_int mode, float cond, + float dmax, lapack_int kl, lapack_int ku, + char pack, float* a, lapack_int lda, + float* work ); +lapack_int LAPACKE_dlatms_work( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, + double* d, lapack_int mode, double cond, + double dmax, lapack_int kl, lapack_int ku, + char pack, double* a, lapack_int lda, + double* work ); +lapack_int LAPACKE_clatms_work( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, + float* d, lapack_int mode, float cond, + float dmax, lapack_int kl, lapack_int ku, + char pack, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* work ); +lapack_int LAPACKE_zlatms_work( int matrix_order, lapack_int m, lapack_int n, + char dist, lapack_int* iseed, char sym, + double* d, lapack_int mode, double cond, + double dmax, lapack_int kl, lapack_int ku, + char pack, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* work ); + +lapack_int LAPACKE_slauum_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda ); +lapack_int LAPACKE_dlauum_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda ); +lapack_int LAPACKE_clauum_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zlauum_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_sopgtr_work( int matrix_order, char uplo, lapack_int n, + const float* ap, const float* tau, float* q, + lapack_int ldq, float* work ); +lapack_int LAPACKE_dopgtr_work( int matrix_order, char uplo, lapack_int n, + const double* ap, const double* tau, double* q, + lapack_int ldq, double* work ); + +lapack_int LAPACKE_sopmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const float* ap, const float* tau, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dopmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const double* ap, const double* tau, double* c, + lapack_int ldc, double* work ); + +lapack_int LAPACKE_sorgbr_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, float* a, + lapack_int lda, const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorgbr_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, double* a, + lapack_int lda, const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorghr_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorghr_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorglq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorglq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorgql_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorgql_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorgqr_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorgqr_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorgrq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, float* a, lapack_int lda, + const float* tau, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dorgrq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, double* a, lapack_int lda, + const double* tau, double* work, + lapack_int lwork ); + +lapack_int LAPACKE_sorgtr_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, const float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dorgtr_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, const double* tau, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormbr_work( int matrix_order, char vect, char side, + char trans, lapack_int m, lapack_int n, + lapack_int k, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormbr_work( int matrix_order, char vect, char side, + char trans, lapack_int m, lapack_int n, + lapack_int k, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormhr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormhr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormlq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormlq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormql_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormql_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormqr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormqr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormrq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormrq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormrz_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormrz_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_sormtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const float* a, lapack_int lda, + const float* tau, float* c, lapack_int ldc, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dormtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const double* a, lapack_int lda, + const double* tau, double* c, lapack_int ldc, + double* work, lapack_int lwork ); + +lapack_int LAPACKE_spbcon_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const float* ab, lapack_int ldab, + float anorm, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dpbcon_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const double* ab, + lapack_int ldab, double anorm, double* rcond, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cpbcon_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_float* ab, + lapack_int ldab, float anorm, float* rcond, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zpbcon_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_double* ab, + lapack_int ldab, double anorm, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spbequ_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const float* ab, lapack_int ldab, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_dpbequ_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const double* ab, + lapack_int ldab, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cpbequ_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_float* ab, + lapack_int ldab, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_zpbequ_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, const lapack_complex_double* ab, + lapack_int ldab, double* s, double* scond, + double* amax ); + +lapack_int LAPACKE_spbrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const float* ab, + lapack_int ldab, const float* afb, + lapack_int ldafb, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dpbrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const double* ab, lapack_int ldab, + const double* afb, lapack_int ldafb, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cpbrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + const lapack_complex_float* afb, + lapack_int ldafb, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zpbrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, + const lapack_complex_double* afb, + lapack_int ldafb, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spbstf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kb, float* bb, lapack_int ldbb ); +lapack_int LAPACKE_dpbstf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kb, double* bb, lapack_int ldbb ); +lapack_int LAPACKE_cpbstf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kb, lapack_complex_float* bb, + lapack_int ldbb ); +lapack_int LAPACKE_zpbstf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kb, lapack_complex_double* bb, + lapack_int ldbb ); + +lapack_int LAPACKE_spbsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dpbsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, double* ab, + lapack_int ldab, double* b, lapack_int ldb ); +lapack_int LAPACKE_cpbsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpbsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spbsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int kd, lapack_int nrhs, + float* ab, lapack_int ldab, float* afb, + lapack_int ldafb, char* equed, float* s, + float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dpbsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int kd, lapack_int nrhs, + double* ab, lapack_int ldab, double* afb, + lapack_int ldafb, char* equed, double* s, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, double* work, lapack_int* iwork ); +lapack_int LAPACKE_cpbsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int kd, lapack_int nrhs, + lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* afb, lapack_int ldafb, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zpbsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int kd, lapack_int nrhs, + lapack_complex_double* ab, lapack_int ldab, + lapack_complex_double* afb, lapack_int ldafb, + char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spbtrf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, float* ab, lapack_int ldab ); +lapack_int LAPACKE_dpbtrf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, double* ab, lapack_int ldab ); +lapack_int LAPACKE_cpbtrf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_complex_float* ab, + lapack_int ldab ); +lapack_int LAPACKE_zpbtrf_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_complex_double* ab, + lapack_int ldab ); + +lapack_int LAPACKE_spbtrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, const float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dpbtrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const double* ab, lapack_int ldab, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpbtrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_float* ab, lapack_int ldab, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpbtrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int kd, lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_spftrf_work( int matrix_order, char transr, char uplo, + lapack_int n, float* a ); +lapack_int LAPACKE_dpftrf_work( int matrix_order, char transr, char uplo, + lapack_int n, double* a ); +lapack_int LAPACKE_cpftrf_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_zpftrf_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_spftri_work( int matrix_order, char transr, char uplo, + lapack_int n, float* a ); +lapack_int LAPACKE_dpftri_work( int matrix_order, char transr, char uplo, + lapack_int n, double* a ); +lapack_int LAPACKE_cpftri_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_float* a ); +lapack_int LAPACKE_zpftri_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_complex_double* a ); + +lapack_int LAPACKE_spftrs_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, const float* a, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dpftrs_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, const double* a, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cpftrs_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpftrs_work( int matrix_order, char transr, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spocon_work( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float anorm, + float* rcond, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dpocon_work( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double anorm, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cpocon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float anorm, float* rcond, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zpocon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double anorm, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spoequ_work( int matrix_order, lapack_int n, const float* a, + lapack_int lda, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dpoequ_work( int matrix_order, lapack_int n, const double* a, + lapack_int lda, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cpoequ_work( int matrix_order, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zpoequ_work( int matrix_order, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_spoequb_work( int matrix_order, lapack_int n, const float* a, + lapack_int lda, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dpoequb_work( int matrix_order, lapack_int n, + const double* a, lapack_int lda, double* s, + double* scond, double* amax ); +lapack_int LAPACKE_cpoequb_work( int matrix_order, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax ); +lapack_int LAPACKE_zpoequb_work( int matrix_order, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax ); + +lapack_int LAPACKE_sporfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dporfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cporfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zporfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sporfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, + lapack_int ldaf, const float* s, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dporfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const double* s, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cporfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, + lapack_int ldaf, const float* s, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zporfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, + lapack_int ldaf, const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); +lapack_int LAPACKE_dsposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* work, float* swork, + lapack_int* iter ); +lapack_int LAPACKE_zcposv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, lapack_complex_double* work, + lapack_complex_float* swork, double* rwork, + lapack_int* iter ); + +lapack_int LAPACKE_sposvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + char* equed, float* s, float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dposvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + char* equed, double* s, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cposvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zposvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sposvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + char* equed, float* s, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dposvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + char* equed, double* s, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cposvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + char* equed, float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zposvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_spotrf_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda ); +lapack_int LAPACKE_dpotrf_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda ); +lapack_int LAPACKE_cpotrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zpotrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_spotri_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda ); +lapack_int LAPACKE_dpotri_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda ); +lapack_int LAPACKE_cpotri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zpotri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_spotrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dpotrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, double* b, lapack_int ldb ); +lapack_int LAPACKE_cpotrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zpotrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sppcon_work( int matrix_order, char uplo, lapack_int n, + const float* ap, float anorm, float* rcond, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dppcon_work( int matrix_order, char uplo, lapack_int n, + const double* ap, double anorm, double* rcond, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cppcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, float anorm, + float* rcond, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zppcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, double anorm, + double* rcond, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_sppequ_work( int matrix_order, char uplo, lapack_int n, + const float* ap, float* s, float* scond, + float* amax ); +lapack_int LAPACKE_dppequ_work( int matrix_order, char uplo, lapack_int n, + const double* ap, double* s, double* scond, + double* amax ); +lapack_int LAPACKE_cppequ_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, float* s, + float* scond, float* amax ); +lapack_int LAPACKE_zppequ_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, double* s, + double* scond, double* amax ); + +lapack_int LAPACKE_spprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, + const float* afp, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dpprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, + const double* afp, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cpprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zpprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sppsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* ap, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dppsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* ap, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cppsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zppsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sppsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* ap, + float* afp, char* equed, float* s, float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dppsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* ap, + double* afp, char* equed, double* s, double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cppsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* ap, + lapack_complex_float* afp, char* equed, + float* s, lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zppsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* ap, + lapack_complex_double* afp, char* equed, + double* s, lapack_complex_double* b, + lapack_int ldb, lapack_complex_double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_spptrf_work( int matrix_order, char uplo, lapack_int n, + float* ap ); +lapack_int LAPACKE_dpptrf_work( int matrix_order, char uplo, lapack_int n, + double* ap ); +lapack_int LAPACKE_cpptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_zpptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_spptri_work( int matrix_order, char uplo, lapack_int n, + float* ap ); +lapack_int LAPACKE_dpptri_work( int matrix_order, char uplo, lapack_int n, + double* ap ); +lapack_int LAPACKE_cpptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap ); +lapack_int LAPACKE_zpptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap ); + +lapack_int LAPACKE_spptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dpptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_spstrf_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, lapack_int* piv, + lapack_int* rank, float tol, float* work ); +lapack_int LAPACKE_dpstrf_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, lapack_int* piv, + lapack_int* rank, double tol, double* work ); +lapack_int LAPACKE_cpstrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* piv, lapack_int* rank, float tol, + float* work ); +lapack_int LAPACKE_zpstrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* piv, lapack_int* rank, double tol, + double* work ); + +lapack_int LAPACKE_sptcon_work( lapack_int n, const float* d, const float* e, + float anorm, float* rcond, float* work ); +lapack_int LAPACKE_dptcon_work( lapack_int n, const double* d, const double* e, + double anorm, double* rcond, double* work ); +lapack_int LAPACKE_cptcon_work( lapack_int n, const float* d, + const lapack_complex_float* e, float anorm, + float* rcond, float* work ); +lapack_int LAPACKE_zptcon_work( lapack_int n, const double* d, + const lapack_complex_double* e, double anorm, + double* rcond, double* work ); + +lapack_int LAPACKE_spteqr_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work ); +lapack_int LAPACKE_dpteqr_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work ); +lapack_int LAPACKE_cpteqr_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, lapack_complex_float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_zpteqr_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_sptrfs_work( int matrix_order, lapack_int n, lapack_int nrhs, + const float* d, const float* e, const float* df, + const float* ef, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* ferr, + float* berr, float* work ); +lapack_int LAPACKE_dptrfs_work( int matrix_order, lapack_int n, lapack_int nrhs, + const double* d, const double* e, + const double* df, const double* ef, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work ); +lapack_int LAPACKE_cptrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, const float* df, + const lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zptrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, + const double* df, + const lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + float* d, float* e, float* b, lapack_int ldb ); +lapack_int LAPACKE_dptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* d, double* e, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + float* d, lapack_complex_float* e, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zptsv_work( int matrix_order, lapack_int n, lapack_int nrhs, + double* d, lapack_complex_double* e, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sptsvx_work( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const float* d, const float* e, + float* df, float* ef, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work ); +lapack_int LAPACKE_dptsvx_work( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const double* d, + const double* e, double* df, double* ef, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* ferr, + double* berr, double* work ); +lapack_int LAPACKE_cptsvx_work( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, float* df, + lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zptsvx_work( int matrix_order, char fact, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, double* df, + lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_spttrf_work( lapack_int n, float* d, float* e ); +lapack_int LAPACKE_dpttrf_work( lapack_int n, double* d, double* e ); +lapack_int LAPACKE_cpttrf_work( lapack_int n, float* d, + lapack_complex_float* e ); +lapack_int LAPACKE_zpttrf_work( lapack_int n, double* d, + lapack_complex_double* e ); + +lapack_int LAPACKE_spttrs_work( int matrix_order, lapack_int n, lapack_int nrhs, + const float* d, const float* e, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dpttrs_work( int matrix_order, lapack_int n, lapack_int nrhs, + const double* d, const double* e, double* b, + lapack_int ldb ); +lapack_int LAPACKE_cpttrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* d, + const lapack_complex_float* e, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zpttrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* d, + const lapack_complex_double* e, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssbev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, float* ab, + lapack_int ldab, float* w, float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_dsbev_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, double* ab, + lapack_int ldab, double* w, double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_ssbevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, float* ab, + lapack_int ldab, float* w, float* z, + lapack_int ldz, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dsbevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int kd, double* ab, + lapack_int ldab, double* w, double* z, + lapack_int ldz, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssbevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int kd, + float* ab, lapack_int ldab, float* q, + lapack_int ldq, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dsbevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int kd, + double* ab, lapack_int ldab, double* q, + lapack_int ldq, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, + lapack_int ldz, double* work, lapack_int* iwork, + lapack_int* ifail ); + +lapack_int LAPACKE_ssbgst_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + float* ab, lapack_int ldab, const float* bb, + lapack_int ldbb, float* x, lapack_int ldx, + float* work ); +lapack_int LAPACKE_dsbgst_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + double* ab, lapack_int ldab, const double* bb, + lapack_int ldbb, double* x, lapack_int ldx, + double* work ); + +lapack_int LAPACKE_ssbgv_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + float* ab, lapack_int ldab, float* bb, + lapack_int ldbb, float* w, float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_dsbgv_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + double* ab, lapack_int ldab, double* bb, + lapack_int ldbb, double* w, double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_ssbgvd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + float* ab, lapack_int ldab, float* bb, + lapack_int ldbb, float* w, float* z, + lapack_int ldz, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dsbgvd_work( int matrix_order, char jobz, char uplo, + lapack_int n, lapack_int ka, lapack_int kb, + double* ab, lapack_int ldab, double* bb, + lapack_int ldbb, double* w, double* z, + lapack_int ldz, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssbgvx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int ka, + lapack_int kb, float* ab, lapack_int ldab, + float* bb, lapack_int ldbb, float* q, + lapack_int ldq, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dsbgvx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, lapack_int ka, + lapack_int kb, double* ab, lapack_int ldab, + double* bb, lapack_int ldbb, double* q, + lapack_int ldq, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, + lapack_int ldz, double* work, lapack_int* iwork, + lapack_int* ifail ); + +lapack_int LAPACKE_ssbtrd_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int kd, float* ab, + lapack_int ldab, float* d, float* e, float* q, + lapack_int ldq, float* work ); +lapack_int LAPACKE_dsbtrd_work( int matrix_order, char vect, char uplo, + lapack_int n, lapack_int kd, double* ab, + lapack_int ldab, double* d, double* e, + double* q, lapack_int ldq, double* work ); + +lapack_int LAPACKE_ssfrk_work( int matrix_order, char transr, char uplo, + char trans, lapack_int n, lapack_int k, + float alpha, const float* a, lapack_int lda, + float beta, float* c ); +lapack_int LAPACKE_dsfrk_work( int matrix_order, char transr, char uplo, + char trans, lapack_int n, lapack_int k, + double alpha, const double* a, lapack_int lda, + double beta, double* c ); + +lapack_int LAPACKE_sspcon_work( int matrix_order, char uplo, lapack_int n, + const float* ap, const lapack_int* ipiv, + float anorm, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dspcon_work( int matrix_order, char uplo, lapack_int n, + const double* ap, const lapack_int* ipiv, + double anorm, double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_cspcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zspcon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_sspev_work( int matrix_order, char jobz, char uplo, + lapack_int n, float* ap, float* w, float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_dspev_work( int matrix_order, char jobz, char uplo, + lapack_int n, double* ap, double* w, double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_sspevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, float* ap, float* w, float* z, + lapack_int ldz, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dspevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, double* ap, double* w, double* z, + lapack_int ldz, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_sspevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, float* ap, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dspevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, double* ap, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + double* z, lapack_int ldz, double* work, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_sspgst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, float* ap, const float* bp ); +lapack_int LAPACKE_dspgst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, double* ap, const double* bp ); + +lapack_int LAPACKE_sspgv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* ap, float* bp, + float* w, float* z, lapack_int ldz, + float* work ); +lapack_int LAPACKE_dspgv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* ap, double* bp, + double* w, double* z, lapack_int ldz, + double* work ); + +lapack_int LAPACKE_sspgvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* ap, float* bp, + float* w, float* z, lapack_int ldz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dspgvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* ap, double* bp, + double* w, double* z, lapack_int ldz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_sspgvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, float* ap, + float* bp, float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, float* z, lapack_int ldz, float* work, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_dspgvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, double* ap, + double* bp, double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, double* z, lapack_int ldz, + double* work, lapack_int* iwork, + lapack_int* ifail ); + +lapack_int LAPACKE_ssprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, + const float* afp, const lapack_int* ipiv, + const float* b, lapack_int ldb, float* x, + lapack_int ldx, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dsprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, + const double* afp, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_csprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zsprfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_sspsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* ap, lapack_int* ipiv, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dspsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* ap, lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_cspsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* ap, + lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zspsv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* ap, + lapack_int* ipiv, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_sspsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, const float* ap, + float* afp, lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dspsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, const double* ap, + double* afp, lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_cspsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + lapack_complex_float* afp, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zspsvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* afp, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_ssptrd_work( int matrix_order, char uplo, lapack_int n, + float* ap, float* d, float* e, float* tau ); +lapack_int LAPACKE_dsptrd_work( int matrix_order, char uplo, lapack_int n, + double* ap, double* d, double* e, double* tau ); + +lapack_int LAPACKE_ssptrf_work( int matrix_order, char uplo, lapack_int n, + float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_dsptrf_work( int matrix_order, char uplo, lapack_int n, + double* ap, lapack_int* ipiv ); +lapack_int LAPACKE_csptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, lapack_int* ipiv ); +lapack_int LAPACKE_zsptrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, lapack_int* ipiv ); + +lapack_int LAPACKE_ssptri_work( int matrix_order, char uplo, lapack_int n, + float* ap, const lapack_int* ipiv, + float* work ); +lapack_int LAPACKE_dsptri_work( int matrix_order, char uplo, lapack_int n, + double* ap, const lapack_int* ipiv, + double* work ); +lapack_int LAPACKE_csptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* ap, + const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_zsptri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* ap, + const lapack_int* ipiv, + lapack_complex_double* work ); + +lapack_int LAPACKE_ssptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* ap, + const lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dsptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* ap, + const lapack_int* ipiv, double* b, + lapack_int ldb ); +lapack_int LAPACKE_csptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_zsptrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_sstebz_work( char range, char order, lapack_int n, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, const float* d, const float* e, + lapack_int* m, lapack_int* nsplit, float* w, + lapack_int* iblock, lapack_int* isplit, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dstebz_work( char range, char order, lapack_int n, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, const double* d, const double* e, + lapack_int* m, lapack_int* nsplit, double* w, + lapack_int* iblock, lapack_int* isplit, + double* work, lapack_int* iwork ); + +lapack_int LAPACKE_sstedc_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dstedc_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_cstedc_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, lapack_complex_float* z, + lapack_int ldz, lapack_complex_float* work, + lapack_int lwork, float* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zstedc_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz, lapack_complex_double* work, + lapack_int lwork, double* rwork, + lapack_int lrwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_sstegr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, float* z, + lapack_int ldz, lapack_int* isuppz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dstegr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + double* z, lapack_int ldz, lapack_int* isuppz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_cstegr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int* isuppz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zstegr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int* isuppz, double* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_sstein_work( int matrix_order, lapack_int n, const float* d, + const float* e, lapack_int m, const float* w, + const lapack_int* iblock, + const lapack_int* isplit, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifailv ); +lapack_int LAPACKE_dstein_work( int matrix_order, lapack_int n, const double* d, + const double* e, lapack_int m, const double* w, + const lapack_int* iblock, + const lapack_int* isplit, double* z, + lapack_int ldz, double* work, lapack_int* iwork, + lapack_int* ifailv ); +lapack_int LAPACKE_cstein_work( int matrix_order, lapack_int n, const float* d, + const float* e, lapack_int m, const float* w, + const lapack_int* iblock, + const lapack_int* isplit, + lapack_complex_float* z, lapack_int ldz, + float* work, lapack_int* iwork, + lapack_int* ifailv ); +lapack_int LAPACKE_zstein_work( int matrix_order, lapack_int n, const double* d, + const double* e, lapack_int m, const double* w, + const lapack_int* iblock, + const lapack_int* isplit, + lapack_complex_double* z, lapack_int ldz, + double* work, lapack_int* iwork, + lapack_int* ifailv ); + +lapack_int LAPACKE_sstemr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + lapack_int* m, float* w, float* z, + lapack_int ldz, lapack_int nzc, + lapack_int* isuppz, lapack_logical* tryrac, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dstemr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int nzc, + lapack_int* isuppz, lapack_logical* tryrac, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_cstemr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + lapack_int* m, float* w, + lapack_complex_float* z, lapack_int ldz, + lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_zstemr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + lapack_int* m, double* w, + lapack_complex_double* z, lapack_int ldz, + lapack_int nzc, lapack_int* isuppz, + lapack_logical* tryrac, double* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_ssteqr_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work ); +lapack_int LAPACKE_dsteqr_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work ); +lapack_int LAPACKE_csteqr_work( int matrix_order, char compz, lapack_int n, + float* d, float* e, lapack_complex_float* z, + lapack_int ldz, float* work ); +lapack_int LAPACKE_zsteqr_work( int matrix_order, char compz, lapack_int n, + double* d, double* e, lapack_complex_double* z, + lapack_int ldz, double* work ); + +lapack_int LAPACKE_ssterf_work( lapack_int n, float* d, float* e ); +lapack_int LAPACKE_dsterf_work( lapack_int n, double* d, double* e ); + +lapack_int LAPACKE_sstev_work( int matrix_order, char jobz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work ); +lapack_int LAPACKE_dstev_work( int matrix_order, char jobz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work ); + +lapack_int LAPACKE_sstevd_work( int matrix_order, char jobz, lapack_int n, + float* d, float* e, float* z, lapack_int ldz, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dstevd_work( int matrix_order, char jobz, lapack_int n, + double* d, double* e, double* z, lapack_int ldz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_sstevr_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, float* z, + lapack_int ldz, lapack_int* isuppz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dstevr_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + double* z, lapack_int ldz, lapack_int* isuppz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_sstevx_work( int matrix_order, char jobz, char range, + lapack_int n, float* d, float* e, float vl, + float vu, lapack_int il, lapack_int iu, + float abstol, lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dstevx_work( int matrix_order, char jobz, char range, + lapack_int n, double* d, double* e, double vl, + double vu, lapack_int il, lapack_int iu, + double abstol, lapack_int* m, double* w, + double* z, lapack_int ldz, double* work, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_ssycon_work( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, + float* rcond, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dsycon_work( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_csycon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, float anorm, + float* rcond, lapack_complex_float* work ); +lapack_int LAPACKE_zsycon_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, double anorm, + double* rcond, lapack_complex_double* work ); + +lapack_int LAPACKE_ssyequb_work( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float* s, + float* scond, float* amax, float* work ); +lapack_int LAPACKE_dsyequb_work( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double* s, + double* scond, double* amax, double* work ); +lapack_int LAPACKE_csyequb_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* s, float* scond, float* amax, + lapack_complex_float* work ); +lapack_int LAPACKE_zsyequb_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* s, double* scond, double* amax, + lapack_complex_double* work ); + +lapack_int LAPACKE_ssyev_work( int matrix_order, char jobz, char uplo, + lapack_int n, float* a, lapack_int lda, float* w, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dsyev_work( int matrix_order, char jobz, char uplo, + lapack_int n, double* a, lapack_int lda, + double* w, double* work, lapack_int lwork ); + +lapack_int LAPACKE_ssyevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, float* a, lapack_int lda, + float* w, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dsyevd_work( int matrix_order, char jobz, char uplo, + lapack_int n, double* a, lapack_int lda, + double* w, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssyevr_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, float* a, + lapack_int lda, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, + lapack_int ldz, lapack_int* isuppz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dsyevr_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, double* a, + lapack_int lda, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, + lapack_int ldz, lapack_int* isuppz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssyevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, float* a, + lapack_int lda, float vl, float vu, + lapack_int il, lapack_int iu, float abstol, + lapack_int* m, float* w, float* z, + lapack_int ldz, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int* ifail ); +lapack_int LAPACKE_dsyevx_work( int matrix_order, char jobz, char range, + char uplo, lapack_int n, double* a, + lapack_int lda, double vl, double vu, + lapack_int il, lapack_int iu, double abstol, + lapack_int* m, double* w, double* z, + lapack_int ldz, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_ssygst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, float* a, lapack_int lda, + const float* b, lapack_int ldb ); +lapack_int LAPACKE_dsygst_work( int matrix_order, lapack_int itype, char uplo, + lapack_int n, double* a, lapack_int lda, + const double* b, lapack_int ldb ); + +lapack_int LAPACKE_ssygv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* w, float* work, lapack_int lwork ); +lapack_int LAPACKE_dsygv_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* w, double* work, lapack_int lwork ); + +lapack_int LAPACKE_ssygvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* w, float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dsygvd_work( int matrix_order, lapack_int itype, char jobz, + char uplo, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* w, double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); + +lapack_int LAPACKE_ssygvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float vl, float vu, lapack_int il, + lapack_int iu, float abstol, lapack_int* m, + float* w, float* z, lapack_int ldz, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int* ifail ); +lapack_int LAPACKE_dsygvx_work( int matrix_order, lapack_int itype, char jobz, + char range, char uplo, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double vl, double vu, lapack_int il, + lapack_int iu, double abstol, lapack_int* m, + double* w, double* z, lapack_int ldz, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int* ifail ); + +lapack_int LAPACKE_ssyrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const float* af, lapack_int ldaf, + const lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dsyrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* b, lapack_int ldb, double* x, + lapack_int ldx, double* ferr, double* berr, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_csyrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_zsyrfs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_ssyrfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, const float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* s, const float* b, lapack_int ldb, + float* x, lapack_int ldx, float* rcond, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dsyrfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, const double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* s, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_csyrfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* af, + lapack_int ldaf, const lapack_int* ipiv, + const float* s, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zsyrfsx_work( int matrix_order, char uplo, char equed, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* af, + lapack_int ldaf, const lapack_int* ipiv, + const double* s, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_ssysv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, float* a, lapack_int lda, + lapack_int* ipiv, float* b, lapack_int ldb, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dsysv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, double* a, lapack_int lda, + lapack_int* ipiv, double* b, lapack_int ldb, + double* work, lapack_int lwork ); +lapack_int LAPACKE_csysv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_float* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zsysv_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, lapack_complex_double* a, + lapack_int lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_ssysvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, const float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, const float* b, + lapack_int ldb, float* x, lapack_int ldx, + float* rcond, float* ferr, float* berr, + float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dsysvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, const double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, const double* b, + lapack_int ldb, double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + double* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_csysvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int ldb, lapack_complex_float* x, + lapack_int ldx, float* rcond, float* ferr, + float* berr, lapack_complex_float* work, + lapack_int lwork, float* rwork ); +lapack_int LAPACKE_zsysvx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, lapack_int lwork, + double* rwork ); + +lapack_int LAPACKE_ssysvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, float* a, + lapack_int lda, float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + float* b, lapack_int ldb, float* x, + lapack_int ldx, float* rcond, float* rpvgrw, + float* berr, lapack_int n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int nparams, float* params, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dsysvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, double* a, + lapack_int lda, double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + double* b, lapack_int ldb, double* x, + lapack_int ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int nparams, double* params, + double* work, lapack_int* iwork ); +lapack_int LAPACKE_csysvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* x, lapack_int ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int nparams, + float* params, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_zsysvxx_work( int matrix_order, char fact, char uplo, + lapack_int n, lapack_int nrhs, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* af, lapack_int ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* x, lapack_int ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int nparams, + double* params, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_ssytrd_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, float* d, float* e, + float* tau, float* work, lapack_int lwork ); +lapack_int LAPACKE_dsytrd_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, double* d, double* e, + double* tau, double* work, lapack_int lwork ); + +lapack_int LAPACKE_ssytrf_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, lapack_int* ipiv, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dsytrf_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, lapack_int* ipiv, + double* work, lapack_int lwork ); +lapack_int LAPACKE_csytrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_float* work, + lapack_int lwork ); +lapack_int LAPACKE_zsytrf_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_int* ipiv, lapack_complex_double* work, + lapack_int lwork ); + +lapack_int LAPACKE_ssytri_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, + const lapack_int* ipiv, float* work ); +lapack_int LAPACKE_dsytri_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, + const lapack_int* ipiv, double* work ); +lapack_int LAPACKE_csytri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_zsytri_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work ); + +lapack_int LAPACKE_ssytrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dsytrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const lapack_int* ipiv, + double* b, lapack_int ldb ); +lapack_int LAPACKE_csytrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_zsytrs_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stbcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, lapack_int kd, + const float* ab, lapack_int ldab, float* rcond, + float* work, lapack_int* iwork ); +lapack_int LAPACKE_dtbcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, lapack_int kd, + const double* ab, lapack_int ldab, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctbcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, lapack_int kd, + const lapack_complex_float* ab, lapack_int ldab, + float* rcond, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_ztbcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, lapack_int kd, + const lapack_complex_double* ab, + lapack_int ldab, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stbrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const float* ab, + lapack_int ldab, const float* b, lapack_int ldb, + const float* x, lapack_int ldx, float* ferr, + float* berr, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dtbrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const double* ab, + lapack_int ldab, const double* b, + lapack_int ldb, const double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctbrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const lapack_complex_float* ab, + lapack_int ldab, const lapack_complex_float* b, + lapack_int ldb, const lapack_complex_float* x, + lapack_int ldx, float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztbrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, const lapack_complex_double* b, + lapack_int ldb, const lapack_complex_double* x, + lapack_int ldx, double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stbtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const float* ab, + lapack_int ldab, float* b, lapack_int ldb ); +lapack_int LAPACKE_dtbtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const double* ab, + lapack_int ldab, double* b, lapack_int ldb ); +lapack_int LAPACKE_ctbtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, const lapack_complex_float* ab, + lapack_int ldab, lapack_complex_float* b, + lapack_int ldb ); +lapack_int LAPACKE_ztbtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int kd, + lapack_int nrhs, + const lapack_complex_double* ab, + lapack_int ldab, lapack_complex_double* b, + lapack_int ldb ); + +lapack_int LAPACKE_stfsm_work( int matrix_order, char transr, char side, + char uplo, char trans, char diag, lapack_int m, + lapack_int n, float alpha, const float* a, + float* b, lapack_int ldb ); +lapack_int LAPACKE_dtfsm_work( int matrix_order, char transr, char side, + char uplo, char trans, char diag, lapack_int m, + lapack_int n, double alpha, const double* a, + double* b, lapack_int ldb ); +lapack_int LAPACKE_ctfsm_work( int matrix_order, char transr, char side, + char uplo, char trans, char diag, lapack_int m, + lapack_int n, lapack_complex_float alpha, + const lapack_complex_float* a, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztfsm_work( int matrix_order, char transr, char side, + char uplo, char trans, char diag, lapack_int m, + lapack_int n, lapack_complex_double alpha, + const lapack_complex_double* a, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stftri_work( int matrix_order, char transr, char uplo, + char diag, lapack_int n, float* a ); +lapack_int LAPACKE_dtftri_work( int matrix_order, char transr, char uplo, + char diag, lapack_int n, double* a ); +lapack_int LAPACKE_ctftri_work( int matrix_order, char transr, char uplo, + char diag, lapack_int n, + lapack_complex_float* a ); +lapack_int LAPACKE_ztftri_work( int matrix_order, char transr, char uplo, + char diag, lapack_int n, + lapack_complex_double* a ); + +lapack_int LAPACKE_stfttp_work( int matrix_order, char transr, char uplo, + lapack_int n, const float* arf, float* ap ); +lapack_int LAPACKE_dtfttp_work( int matrix_order, char transr, char uplo, + lapack_int n, const double* arf, double* ap ); +lapack_int LAPACKE_ctfttp_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* arf, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztfttp_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* arf, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stfttr_work( int matrix_order, char transr, char uplo, + lapack_int n, const float* arf, float* a, + lapack_int lda ); +lapack_int LAPACKE_dtfttr_work( int matrix_order, char transr, char uplo, + lapack_int n, const double* arf, double* a, + lapack_int lda ); +lapack_int LAPACKE_ctfttr_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* arf, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztfttr_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* arf, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_stgevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const float* s, lapack_int lds, const float* p, + lapack_int ldp, float* vl, lapack_int ldvl, + float* vr, lapack_int ldvr, lapack_int mm, + lapack_int* m, float* work ); +lapack_int LAPACKE_dtgevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const double* s, lapack_int lds, + const double* p, lapack_int ldp, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, double* work ); +lapack_int LAPACKE_ctgevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* s, lapack_int lds, + const lapack_complex_float* p, lapack_int ldp, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztgevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* s, lapack_int lds, + const lapack_complex_double* p, lapack_int ldp, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stgexc_work( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, float* a, + lapack_int lda, float* b, lapack_int ldb, + float* q, lapack_int ldq, float* z, + lapack_int ldz, lapack_int* ifst, + lapack_int* ilst, float* work, + lapack_int lwork ); +lapack_int LAPACKE_dtgexc_work( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* q, lapack_int ldq, double* z, + lapack_int ldz, lapack_int* ifst, + lapack_int* ilst, double* work, + lapack_int lwork ); +lapack_int LAPACKE_ctgexc_work( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz, + lapack_int ifst, lapack_int ilst ); +lapack_int LAPACKE_ztgexc_work( int matrix_order, lapack_logical wantq, + lapack_logical wantz, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_int ifst, lapack_int ilst ); + +lapack_int LAPACKE_stgsen_work( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* alphar, float* alphai, + float* beta, float* q, lapack_int ldq, float* z, + lapack_int ldz, lapack_int* m, float* pl, + float* pr, float* dif, float* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); +lapack_int LAPACKE_dtgsen_work( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* alphar, double* alphai, + double* beta, double* q, lapack_int ldq, + double* z, lapack_int ldz, lapack_int* m, + double* pl, double* pr, double* dif, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_ctgsen_work( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* alpha, + lapack_complex_float* beta, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* z, lapack_int ldz, + lapack_int* m, float* pl, float* pr, float* dif, + lapack_complex_float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_ztgsen_work( int matrix_order, lapack_int ijob, + lapack_logical wantq, lapack_logical wantz, + const lapack_logical* select, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* alpha, + lapack_complex_double* beta, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* z, lapack_int ldz, + lapack_int* m, double* pl, double* pr, + double* dif, lapack_complex_double* work, + lapack_int lwork, lapack_int* iwork, + lapack_int liwork ); + +lapack_int LAPACKE_stgsja_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_int k, lapack_int l, + float* a, lapack_int lda, float* b, + lapack_int ldb, float tola, float tolb, + float* alpha, float* beta, float* u, + lapack_int ldu, float* v, lapack_int ldv, + float* q, lapack_int ldq, float* work, + lapack_int* ncycle ); +lapack_int LAPACKE_dtgsja_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_int k, lapack_int l, + double* a, lapack_int lda, double* b, + lapack_int ldb, double tola, double tolb, + double* alpha, double* beta, double* u, + lapack_int ldu, double* v, lapack_int ldv, + double* q, lapack_int ldq, double* work, + lapack_int* ncycle ); +lapack_int LAPACKE_ctgsja_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_int k, lapack_int l, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + float tola, float tolb, float* alpha, + float* beta, lapack_complex_float* u, + lapack_int ldu, lapack_complex_float* v, + lapack_int ldv, lapack_complex_float* q, + lapack_int ldq, lapack_complex_float* work, + lapack_int* ncycle ); +lapack_int LAPACKE_ztgsja_work( int matrix_order, char jobu, char jobv, + char jobq, lapack_int m, lapack_int p, + lapack_int n, lapack_int k, lapack_int l, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + double tola, double tolb, double* alpha, + double* beta, lapack_complex_double* u, + lapack_int ldu, lapack_complex_double* v, + lapack_int ldv, lapack_complex_double* q, + lapack_int ldq, lapack_complex_double* work, + lapack_int* ncycle ); + +lapack_int LAPACKE_stgsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, const float* vl, + lapack_int ldvl, const float* vr, + lapack_int ldvr, float* s, float* dif, + lapack_int mm, lapack_int* m, float* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_dtgsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const double* a, lapack_int lda, + const double* b, lapack_int ldb, + const double* vl, lapack_int ldvl, + const double* vr, lapack_int ldvr, double* s, + double* dif, lapack_int mm, lapack_int* m, + double* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_ctgsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* vl, lapack_int ldvl, + const lapack_complex_float* vr, lapack_int ldvr, + float* s, float* dif, lapack_int mm, + lapack_int* m, lapack_complex_float* work, + lapack_int lwork, lapack_int* iwork ); +lapack_int LAPACKE_ztgsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* vl, + lapack_int ldvl, + const lapack_complex_double* vr, + lapack_int ldvr, double* s, double* dif, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, lapack_int lwork, + lapack_int* iwork ); + +lapack_int LAPACKE_stgsyl_work( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, const float* a, + lapack_int lda, const float* b, lapack_int ldb, + float* c, lapack_int ldc, const float* d, + lapack_int ldd, const float* e, lapack_int lde, + float* f, lapack_int ldf, float* scale, + float* dif, float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dtgsyl_work( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, const double* a, + lapack_int lda, const double* b, lapack_int ldb, + double* c, lapack_int ldc, const double* d, + lapack_int ldd, const double* e, lapack_int lde, + double* f, lapack_int ldf, double* scale, + double* dif, double* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_ctgsyl_work( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* c, lapack_int ldc, + const lapack_complex_float* d, lapack_int ldd, + const lapack_complex_float* e, lapack_int lde, + lapack_complex_float* f, lapack_int ldf, + float* scale, float* dif, + lapack_complex_float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_ztgsyl_work( int matrix_order, char trans, lapack_int ijob, + lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* c, lapack_int ldc, + const lapack_complex_double* d, lapack_int ldd, + const lapack_complex_double* e, lapack_int lde, + lapack_complex_double* f, lapack_int ldf, + double* scale, double* dif, + lapack_complex_double* work, lapack_int lwork, + lapack_int* iwork ); + +lapack_int LAPACKE_stpcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, const float* ap, + float* rcond, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dtpcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, const double* ap, + double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctpcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, + const lapack_complex_float* ap, float* rcond, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztpcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, + const lapack_complex_double* ap, double* rcond, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stprfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const float* ap, const float* b, lapack_int ldb, + const float* x, lapack_int ldx, float* ferr, + float* berr, float* work, lapack_int* iwork ); +lapack_int LAPACKE_dtprfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const double* ap, const double* b, + lapack_int ldb, const double* x, lapack_int ldx, + double* ferr, double* berr, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctprfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztprfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_stptri_work( int matrix_order, char uplo, char diag, + lapack_int n, float* ap ); +lapack_int LAPACKE_dtptri_work( int matrix_order, char uplo, char diag, + lapack_int n, double* ap ); +lapack_int LAPACKE_ctptri_work( int matrix_order, char uplo, char diag, + lapack_int n, lapack_complex_float* ap ); +lapack_int LAPACKE_ztptri_work( int matrix_order, char uplo, char diag, + lapack_int n, lapack_complex_double* ap ); + +lapack_int LAPACKE_stptrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const float* ap, float* b, lapack_int ldb ); +lapack_int LAPACKE_dtptrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const double* ap, double* b, lapack_int ldb ); +lapack_int LAPACKE_ctptrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztptrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_stpttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const float* ap, float* arf ); +lapack_int LAPACKE_dtpttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const double* ap, double* arf ); +lapack_int LAPACKE_ctpttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* ap, + lapack_complex_float* arf ); +lapack_int LAPACKE_ztpttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* ap, + lapack_complex_double* arf ); + +lapack_int LAPACKE_stpttr_work( int matrix_order, char uplo, lapack_int n, + const float* ap, float* a, lapack_int lda ); +lapack_int LAPACKE_dtpttr_work( int matrix_order, char uplo, lapack_int n, + const double* ap, double* a, lapack_int lda ); +lapack_int LAPACKE_ctpttr_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_ztpttr_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_strcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, const float* a, + lapack_int lda, float* rcond, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dtrcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, const double* a, + lapack_int lda, double* rcond, double* work, + lapack_int* iwork ); +lapack_int LAPACKE_ctrcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + float* rcond, lapack_complex_float* work, + float* rwork ); +lapack_int LAPACKE_ztrcon_work( int matrix_order, char norm, char uplo, + char diag, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + double* rcond, lapack_complex_double* work, + double* rwork ); + +lapack_int LAPACKE_strevc_work( int matrix_order, char side, char howmny, + lapack_logical* select, lapack_int n, + const float* t, lapack_int ldt, float* vl, + lapack_int ldvl, float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, float* work ); +lapack_int LAPACKE_dtrevc_work( int matrix_order, char side, char howmny, + lapack_logical* select, lapack_int n, + const double* t, lapack_int ldt, double* vl, + lapack_int ldvl, double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, double* work ); +lapack_int LAPACKE_ctrevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* vl, lapack_int ldvl, + lapack_complex_float* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztrevc_work( int matrix_order, char side, char howmny, + const lapack_logical* select, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* vl, lapack_int ldvl, + lapack_complex_double* vr, lapack_int ldvr, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_strexc_work( int matrix_order, char compq, lapack_int n, + float* t, lapack_int ldt, float* q, + lapack_int ldq, lapack_int* ifst, + lapack_int* ilst, float* work ); +lapack_int LAPACKE_dtrexc_work( int matrix_order, char compq, lapack_int n, + double* t, lapack_int ldt, double* q, + lapack_int ldq, lapack_int* ifst, + lapack_int* ilst, double* work ); +lapack_int LAPACKE_ctrexc_work( int matrix_order, char compq, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* q, lapack_int ldq, + lapack_int ifst, lapack_int ilst ); +lapack_int LAPACKE_ztrexc_work( int matrix_order, char compq, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* q, lapack_int ldq, + lapack_int ifst, lapack_int ilst ); + +lapack_int LAPACKE_strrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, const float* x, lapack_int ldx, + float* ferr, float* berr, float* work, + lapack_int* iwork ); +lapack_int LAPACKE_dtrrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const double* a, lapack_int lda, + const double* b, lapack_int ldb, + const double* x, lapack_int ldx, double* ferr, + double* berr, double* work, lapack_int* iwork ); +lapack_int LAPACKE_ctrrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + const lapack_complex_float* x, lapack_int ldx, + float* ferr, float* berr, + lapack_complex_float* work, float* rwork ); +lapack_int LAPACKE_ztrrfs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + const lapack_complex_double* x, lapack_int ldx, + double* ferr, double* berr, + lapack_complex_double* work, double* rwork ); + +lapack_int LAPACKE_strsen_work( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + float* t, lapack_int ldt, float* q, + lapack_int ldq, float* wr, float* wi, + lapack_int* m, float* s, float* sep, + float* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_dtrsen_work( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + double* t, lapack_int ldt, double* q, + lapack_int ldq, double* wr, double* wi, + lapack_int* m, double* s, double* sep, + double* work, lapack_int lwork, + lapack_int* iwork, lapack_int liwork ); +lapack_int LAPACKE_ctrsen_work( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* w, lapack_int* m, + float* s, float* sep, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_ztrsen_work( int matrix_order, char job, char compq, + const lapack_logical* select, lapack_int n, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* w, lapack_int* m, + double* s, double* sep, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_strsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const float* t, lapack_int ldt, const float* vl, + lapack_int ldvl, const float* vr, + lapack_int ldvr, float* s, float* sep, + lapack_int mm, lapack_int* m, float* work, + lapack_int ldwork, lapack_int* iwork ); +lapack_int LAPACKE_dtrsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const double* t, lapack_int ldt, + const double* vl, lapack_int ldvl, + const double* vr, lapack_int ldvr, double* s, + double* sep, lapack_int mm, lapack_int* m, + double* work, lapack_int ldwork, + lapack_int* iwork ); +lapack_int LAPACKE_ctrsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_float* t, lapack_int ldt, + const lapack_complex_float* vl, lapack_int ldvl, + const lapack_complex_float* vr, lapack_int ldvr, + float* s, float* sep, lapack_int mm, + lapack_int* m, lapack_complex_float* work, + lapack_int ldwork, float* rwork ); +lapack_int LAPACKE_ztrsna_work( int matrix_order, char job, char howmny, + const lapack_logical* select, lapack_int n, + const lapack_complex_double* t, lapack_int ldt, + const lapack_complex_double* vl, + lapack_int ldvl, + const lapack_complex_double* vr, + lapack_int ldvr, double* s, double* sep, + lapack_int mm, lapack_int* m, + lapack_complex_double* work, lapack_int ldwork, + double* rwork ); + +lapack_int LAPACKE_strsyl_work( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const float* a, lapack_int lda, const float* b, + lapack_int ldb, float* c, lapack_int ldc, + float* scale ); +lapack_int LAPACKE_dtrsyl_work( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const double* a, lapack_int lda, + const double* b, lapack_int ldb, double* c, + lapack_int ldc, double* scale ); +lapack_int LAPACKE_ctrsyl_work( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* c, lapack_int ldc, + float* scale ); +lapack_int LAPACKE_ztrsyl_work( int matrix_order, char trana, char tranb, + lapack_int isgn, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* c, lapack_int ldc, + double* scale ); + +lapack_int LAPACKE_strtri_work( int matrix_order, char uplo, char diag, + lapack_int n, float* a, lapack_int lda ); +lapack_int LAPACKE_dtrtri_work( int matrix_order, char uplo, char diag, + lapack_int n, double* a, lapack_int lda ); +lapack_int LAPACKE_ctrtri_work( int matrix_order, char uplo, char diag, + lapack_int n, lapack_complex_float* a, + lapack_int lda ); +lapack_int LAPACKE_ztrtri_work( int matrix_order, char uplo, char diag, + lapack_int n, lapack_complex_double* a, + lapack_int lda ); + +lapack_int LAPACKE_strtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const float* a, lapack_int lda, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dtrtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const double* a, lapack_int lda, double* b, + lapack_int ldb ); +lapack_int LAPACKE_ctrtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztrtrs_work( int matrix_order, char uplo, char trans, + char diag, lapack_int n, lapack_int nrhs, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_strttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const float* a, lapack_int lda, + float* arf ); +lapack_int LAPACKE_dtrttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const double* a, lapack_int lda, + double* arf ); +lapack_int LAPACKE_ctrttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_float* a, + lapack_int lda, lapack_complex_float* arf ); +lapack_int LAPACKE_ztrttf_work( int matrix_order, char transr, char uplo, + lapack_int n, const lapack_complex_double* a, + lapack_int lda, lapack_complex_double* arf ); + +lapack_int LAPACKE_strttp_work( int matrix_order, char uplo, lapack_int n, + const float* a, lapack_int lda, float* ap ); +lapack_int LAPACKE_dtrttp_work( int matrix_order, char uplo, lapack_int n, + const double* a, lapack_int lda, double* ap ); +lapack_int LAPACKE_ctrttp_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + lapack_complex_float* ap ); +lapack_int LAPACKE_ztrttp_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + lapack_complex_double* ap ); + +lapack_int LAPACKE_stzrzf_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* tau, + float* work, lapack_int lwork ); +lapack_int LAPACKE_dtzrzf_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* tau, + double* work, lapack_int lwork ); +lapack_int LAPACKE_ctzrzf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_ztzrzf_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungbr_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, + lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungbr_work( int matrix_order, char vect, lapack_int m, + lapack_int n, lapack_int k, + lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunghr_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunghr_work( int matrix_order, lapack_int n, lapack_int ilo, + lapack_int ihi, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunglq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunglq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungql_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungql_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungqr_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungqr_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungrq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungrq_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int k, lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cungtr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zungtr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmbr_work( int matrix_order, char vect, char side, + char trans, lapack_int m, lapack_int n, + lapack_int k, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmbr_work( int matrix_order, char vect, char side, + char trans, lapack_int m, lapack_int n, + lapack_int k, const lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmhr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmhr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int ilo, + lapack_int ihi, const lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmlq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmlq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmql_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmql_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmqr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmqr_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmrq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmrq_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmrz_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const lapack_complex_float* a, + lapack_int lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmrz_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, const lapack_complex_double* a, + lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cunmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const lapack_complex_float* a, lapack_int lda, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_zunmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const lapack_complex_double* a, lapack_int lda, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work, lapack_int lwork ); + +lapack_int LAPACKE_cupgtr_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_float* ap, + const lapack_complex_float* tau, + lapack_complex_float* q, lapack_int ldq, + lapack_complex_float* work ); +lapack_int LAPACKE_zupgtr_work( int matrix_order, char uplo, lapack_int n, + const lapack_complex_double* ap, + const lapack_complex_double* tau, + lapack_complex_double* q, lapack_int ldq, + lapack_complex_double* work ); + +lapack_int LAPACKE_cupmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const lapack_complex_float* ap, + const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int ldc, + lapack_complex_float* work ); +lapack_int LAPACKE_zupmtr_work( int matrix_order, char side, char uplo, + char trans, lapack_int m, lapack_int n, + const lapack_complex_double* ap, + const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int ldc, + lapack_complex_double* work ); + +lapack_int LAPACKE_claghe( int matrix_order, lapack_int n, lapack_int k, + const float* d, lapack_complex_float* a, + lapack_int lda, lapack_int* iseed ); +lapack_int LAPACKE_zlaghe( int matrix_order, lapack_int n, lapack_int k, + const double* d, lapack_complex_double* a, + lapack_int lda, lapack_int* iseed ); + +lapack_int LAPACKE_slagsy( int matrix_order, lapack_int n, lapack_int k, + const float* d, float* a, lapack_int lda, + lapack_int* iseed ); +lapack_int LAPACKE_dlagsy( int matrix_order, lapack_int n, lapack_int k, + const double* d, double* a, lapack_int lda, + lapack_int* iseed ); +lapack_int LAPACKE_clagsy( int matrix_order, lapack_int n, lapack_int k, + const float* d, lapack_complex_float* a, + lapack_int lda, lapack_int* iseed ); +lapack_int LAPACKE_zlagsy( int matrix_order, lapack_int n, lapack_int k, + const double* d, lapack_complex_double* a, + lapack_int lda, lapack_int* iseed ); + +lapack_int LAPACKE_slapmr( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, float* x, lapack_int ldx, + lapack_int* k ); +lapack_int LAPACKE_dlapmr( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, double* x, + lapack_int ldx, lapack_int* k ); +lapack_int LAPACKE_clapmr( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, lapack_complex_float* x, + lapack_int ldx, lapack_int* k ); +lapack_int LAPACKE_zlapmr( int matrix_order, lapack_logical forwrd, + lapack_int m, lapack_int n, lapack_complex_double* x, + lapack_int ldx, lapack_int* k ); + + +float LAPACKE_slapy2( float x, float y ); +double LAPACKE_dlapy2( double x, double y ); + +float LAPACKE_slapy3( float x, float y, float z ); +double LAPACKE_dlapy3( double x, double y, double z ); + +lapack_int LAPACKE_slartgp( float f, float g, float* cs, float* sn, float* r ); +lapack_int LAPACKE_dlartgp( double f, double g, double* cs, double* sn, + double* r ); + +lapack_int LAPACKE_slartgs( float x, float y, float sigma, float* cs, + float* sn ); +lapack_int LAPACKE_dlartgs( double x, double y, double sigma, double* cs, + double* sn ); + + +//LAPACK 3.3.0 +lapack_int LAPACKE_cbbcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, lapack_int m, + lapack_int p, lapack_int q, float* theta, float* phi, + lapack_complex_float* u1, lapack_int ldu1, + lapack_complex_float* u2, lapack_int ldu2, + lapack_complex_float* v1t, lapack_int ldv1t, + lapack_complex_float* v2t, lapack_int ldv2t, + float* b11d, float* b11e, float* b12d, float* b12e, + float* b21d, float* b21e, float* b22d, float* b22e ); +lapack_int LAPACKE_cbbcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + lapack_int m, lapack_int p, lapack_int q, + float* theta, float* phi, + lapack_complex_float* u1, lapack_int ldu1, + lapack_complex_float* u2, lapack_int ldu2, + lapack_complex_float* v1t, lapack_int ldv1t, + lapack_complex_float* v2t, lapack_int ldv2t, + float* b11d, float* b11e, float* b12d, + float* b12e, float* b21d, float* b21e, + float* b22d, float* b22e, float* rwork, + lapack_int lrwork ); +lapack_int LAPACKE_cheswapr( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_cheswapr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_chetri2( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_chetri2_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_chetri2x( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, lapack_int nb ); +lapack_int LAPACKE_chetri2x_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int nb ); +lapack_int LAPACKE_chetrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_chetrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work ); +lapack_int LAPACKE_csyconv( int matrix_order, char uplo, char way, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_csyconv_work( int matrix_order, char uplo, char way, + lapack_int n, lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* work ); +lapack_int LAPACKE_csyswapr( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_csyswapr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_csytri2( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_csytri2_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_csytri2x( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, lapack_int nb ); +lapack_int LAPACKE_csytri2x_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int nb ); +lapack_int LAPACKE_csytrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_csytrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_float* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work ); +lapack_int LAPACKE_cunbdb( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_float* x11, lapack_int ldx11, + lapack_complex_float* x12, lapack_int ldx12, + lapack_complex_float* x21, lapack_int ldx21, + lapack_complex_float* x22, lapack_int ldx22, + float* theta, float* phi, + lapack_complex_float* taup1, + lapack_complex_float* taup2, + lapack_complex_float* tauq1, + lapack_complex_float* tauq2 ); +lapack_int LAPACKE_cunbdb_work( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_float* x11, lapack_int ldx11, + lapack_complex_float* x12, lapack_int ldx12, + lapack_complex_float* x21, lapack_int ldx21, + lapack_complex_float* x22, lapack_int ldx22, + float* theta, float* phi, + lapack_complex_float* taup1, + lapack_complex_float* taup2, + lapack_complex_float* tauq1, + lapack_complex_float* tauq2, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_cuncsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_float* x11, lapack_int ldx11, + lapack_complex_float* x12, lapack_int ldx12, + lapack_complex_float* x21, lapack_int ldx21, + lapack_complex_float* x22, lapack_int ldx22, + float* theta, lapack_complex_float* u1, + lapack_int ldu1, lapack_complex_float* u2, + lapack_int ldu2, lapack_complex_float* v1t, + lapack_int ldv1t, lapack_complex_float* v2t, + lapack_int ldv2t ); +lapack_int LAPACKE_cuncsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + char signs, lapack_int m, lapack_int p, + lapack_int q, lapack_complex_float* x11, + lapack_int ldx11, lapack_complex_float* x12, + lapack_int ldx12, lapack_complex_float* x21, + lapack_int ldx21, lapack_complex_float* x22, + lapack_int ldx22, float* theta, + lapack_complex_float* u1, lapack_int ldu1, + lapack_complex_float* u2, lapack_int ldu2, + lapack_complex_float* v1t, lapack_int ldv1t, + lapack_complex_float* v2t, lapack_int ldv2t, + lapack_complex_float* work, lapack_int lwork, + float* rwork, lapack_int lrwork, + lapack_int* iwork ); +lapack_int LAPACKE_dbbcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, lapack_int m, + lapack_int p, lapack_int q, double* theta, + double* phi, double* u1, lapack_int ldu1, double* u2, + lapack_int ldu2, double* v1t, lapack_int ldv1t, + double* v2t, lapack_int ldv2t, double* b11d, + double* b11e, double* b12d, double* b12e, + double* b21d, double* b21e, double* b22d, + double* b22e ); +lapack_int LAPACKE_dbbcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + lapack_int m, lapack_int p, lapack_int q, + double* theta, double* phi, double* u1, + lapack_int ldu1, double* u2, lapack_int ldu2, + double* v1t, lapack_int ldv1t, double* v2t, + lapack_int ldv2t, double* b11d, double* b11e, + double* b12d, double* b12e, double* b21d, + double* b21e, double* b22d, double* b22e, + double* work, lapack_int lwork ); +lapack_int LAPACKE_dorbdb( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + double* x11, lapack_int ldx11, double* x12, + lapack_int ldx12, double* x21, lapack_int ldx21, + double* x22, lapack_int ldx22, double* theta, + double* phi, double* taup1, double* taup2, + double* tauq1, double* tauq2 ); +lapack_int LAPACKE_dorbdb_work( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + double* x11, lapack_int ldx11, double* x12, + lapack_int ldx12, double* x21, lapack_int ldx21, + double* x22, lapack_int ldx22, double* theta, + double* phi, double* taup1, double* taup2, + double* tauq1, double* tauq2, double* work, + lapack_int lwork ); +lapack_int LAPACKE_dorcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + double* x11, lapack_int ldx11, double* x12, + lapack_int ldx12, double* x21, lapack_int ldx21, + double* x22, lapack_int ldx22, double* theta, + double* u1, lapack_int ldu1, double* u2, + lapack_int ldu2, double* v1t, lapack_int ldv1t, + double* v2t, lapack_int ldv2t ); +lapack_int LAPACKE_dorcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + char signs, lapack_int m, lapack_int p, + lapack_int q, double* x11, lapack_int ldx11, + double* x12, lapack_int ldx12, double* x21, + lapack_int ldx21, double* x22, lapack_int ldx22, + double* theta, double* u1, lapack_int ldu1, + double* u2, lapack_int ldu2, double* v1t, + lapack_int ldv1t, double* v2t, lapack_int ldv2t, + double* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_dsyconv( int matrix_order, char uplo, char way, lapack_int n, + double* a, lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_dsyconv_work( int matrix_order, char uplo, char way, + lapack_int n, double* a, lapack_int lda, + const lapack_int* ipiv, double* work ); +lapack_int LAPACKE_dsyswapr( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int i1, lapack_int i2 ); +lapack_int LAPACKE_dsyswapr_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int i1, lapack_int i2 ); +lapack_int LAPACKE_dsytri2( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_dsytri2_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int lwork ); +lapack_int LAPACKE_dsytri2x( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, const lapack_int* ipiv, + lapack_int nb ); +lapack_int LAPACKE_dsytri2x_work( int matrix_order, char uplo, lapack_int n, + double* a, lapack_int lda, + const lapack_int* ipiv, double* work, + lapack_int nb ); +lapack_int LAPACKE_dsytrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, lapack_int lda, + const lapack_int* ipiv, double* b, lapack_int ldb ); +lapack_int LAPACKE_dsytrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const double* a, + lapack_int lda, const lapack_int* ipiv, + double* b, lapack_int ldb, double* work ); +lapack_int LAPACKE_sbbcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, lapack_int m, + lapack_int p, lapack_int q, float* theta, float* phi, + float* u1, lapack_int ldu1, float* u2, + lapack_int ldu2, float* v1t, lapack_int ldv1t, + float* v2t, lapack_int ldv2t, float* b11d, + float* b11e, float* b12d, float* b12e, float* b21d, + float* b21e, float* b22d, float* b22e ); +lapack_int LAPACKE_sbbcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + lapack_int m, lapack_int p, lapack_int q, + float* theta, float* phi, float* u1, + lapack_int ldu1, float* u2, lapack_int ldu2, + float* v1t, lapack_int ldv1t, float* v2t, + lapack_int ldv2t, float* b11d, float* b11e, + float* b12d, float* b12e, float* b21d, + float* b21e, float* b22d, float* b22e, + float* work, lapack_int lwork ); +lapack_int LAPACKE_sorbdb( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, float* x11, + lapack_int ldx11, float* x12, lapack_int ldx12, + float* x21, lapack_int ldx21, float* x22, + lapack_int ldx22, float* theta, float* phi, + float* taup1, float* taup2, float* tauq1, + float* tauq2 ); +lapack_int LAPACKE_sorbdb_work( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + float* x11, lapack_int ldx11, float* x12, + lapack_int ldx12, float* x21, lapack_int ldx21, + float* x22, lapack_int ldx22, float* theta, + float* phi, float* taup1, float* taup2, + float* tauq1, float* tauq2, float* work, + lapack_int lwork ); +lapack_int LAPACKE_sorcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, float* x11, + lapack_int ldx11, float* x12, lapack_int ldx12, + float* x21, lapack_int ldx21, float* x22, + lapack_int ldx22, float* theta, float* u1, + lapack_int ldu1, float* u2, lapack_int ldu2, + float* v1t, lapack_int ldv1t, float* v2t, + lapack_int ldv2t ); +lapack_int LAPACKE_sorcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + char signs, lapack_int m, lapack_int p, + lapack_int q, float* x11, lapack_int ldx11, + float* x12, lapack_int ldx12, float* x21, + lapack_int ldx21, float* x22, lapack_int ldx22, + float* theta, float* u1, lapack_int ldu1, + float* u2, lapack_int ldu2, float* v1t, + lapack_int ldv1t, float* v2t, lapack_int ldv2t, + float* work, lapack_int lwork, + lapack_int* iwork ); +lapack_int LAPACKE_ssyconv( int matrix_order, char uplo, char way, lapack_int n, + float* a, lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_ssyconv_work( int matrix_order, char uplo, char way, + lapack_int n, float* a, lapack_int lda, + const lapack_int* ipiv, float* work ); +lapack_int LAPACKE_ssyswapr( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int i1, lapack_int i2 ); +lapack_int LAPACKE_ssyswapr_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int i1, lapack_int i2 ); +lapack_int LAPACKE_ssytri2( int matrix_order, char uplo, lapack_int n, float* a, + lapack_int lda, const lapack_int* ipiv ); +lapack_int LAPACKE_ssytri2_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int lwork ); +lapack_int LAPACKE_ssytri2x( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, const lapack_int* ipiv, + lapack_int nb ); +lapack_int LAPACKE_ssytri2x_work( int matrix_order, char uplo, lapack_int n, + float* a, lapack_int lda, + const lapack_int* ipiv, float* work, + lapack_int nb ); +lapack_int LAPACKE_ssytrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, lapack_int lda, + const lapack_int* ipiv, float* b, lapack_int ldb ); +lapack_int LAPACKE_ssytrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const float* a, + lapack_int lda, const lapack_int* ipiv, + float* b, lapack_int ldb, float* work ); +lapack_int LAPACKE_zbbcsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, lapack_int m, + lapack_int p, lapack_int q, double* theta, + double* phi, lapack_complex_double* u1, + lapack_int ldu1, lapack_complex_double* u2, + lapack_int ldu2, lapack_complex_double* v1t, + lapack_int ldv1t, lapack_complex_double* v2t, + lapack_int ldv2t, double* b11d, double* b11e, + double* b12d, double* b12e, double* b21d, + double* b21e, double* b22d, double* b22e ); +lapack_int LAPACKE_zbbcsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + lapack_int m, lapack_int p, lapack_int q, + double* theta, double* phi, + lapack_complex_double* u1, lapack_int ldu1, + lapack_complex_double* u2, lapack_int ldu2, + lapack_complex_double* v1t, lapack_int ldv1t, + lapack_complex_double* v2t, lapack_int ldv2t, + double* b11d, double* b11e, double* b12d, + double* b12e, double* b21d, double* b21e, + double* b22d, double* b22e, double* rwork, + lapack_int lrwork ); +lapack_int LAPACKE_zheswapr( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_zheswapr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_zhetri2( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zhetri2_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int lwork ); +lapack_int LAPACKE_zhetri2x( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, lapack_int nb ); +lapack_int LAPACKE_zhetri2x_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int nb ); +lapack_int LAPACKE_zhetrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); +lapack_int LAPACKE_zhetrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work ); +lapack_int LAPACKE_zsyconv( int matrix_order, char uplo, char way, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zsyconv_work( int matrix_order, char uplo, char way, + lapack_int n, lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* work ); +lapack_int LAPACKE_zsyswapr( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_zsyswapr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int i1, + lapack_int i2 ); +lapack_int LAPACKE_zsytri2( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv ); +lapack_int LAPACKE_zsytri2_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int lwork ); +lapack_int LAPACKE_zsytri2x( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, lapack_int nb ); +lapack_int LAPACKE_zsytri2x_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double* a, lapack_int lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int nb ); +lapack_int LAPACKE_zsytrs2( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb ); +lapack_int LAPACKE_zsytrs2_work( int matrix_order, char uplo, lapack_int n, + lapack_int nrhs, const lapack_complex_double* a, + lapack_int lda, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work ); +lapack_int LAPACKE_zunbdb( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_double* x11, lapack_int ldx11, + lapack_complex_double* x12, lapack_int ldx12, + lapack_complex_double* x21, lapack_int ldx21, + lapack_complex_double* x22, lapack_int ldx22, + double* theta, double* phi, + lapack_complex_double* taup1, + lapack_complex_double* taup2, + lapack_complex_double* tauq1, + lapack_complex_double* tauq2 ); +lapack_int LAPACKE_zunbdb_work( int matrix_order, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_double* x11, lapack_int ldx11, + lapack_complex_double* x12, lapack_int ldx12, + lapack_complex_double* x21, lapack_int ldx21, + lapack_complex_double* x22, lapack_int ldx22, + double* theta, double* phi, + lapack_complex_double* taup1, + lapack_complex_double* taup2, + lapack_complex_double* tauq1, + lapack_complex_double* tauq2, + lapack_complex_double* work, lapack_int lwork ); +lapack_int LAPACKE_zuncsd( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, char signs, + lapack_int m, lapack_int p, lapack_int q, + lapack_complex_double* x11, lapack_int ldx11, + lapack_complex_double* x12, lapack_int ldx12, + lapack_complex_double* x21, lapack_int ldx21, + lapack_complex_double* x22, lapack_int ldx22, + double* theta, lapack_complex_double* u1, + lapack_int ldu1, lapack_complex_double* u2, + lapack_int ldu2, lapack_complex_double* v1t, + lapack_int ldv1t, lapack_complex_double* v2t, + lapack_int ldv2t ); +lapack_int LAPACKE_zuncsd_work( int matrix_order, char jobu1, char jobu2, + char jobv1t, char jobv2t, char trans, + char signs, lapack_int m, lapack_int p, + lapack_int q, lapack_complex_double* x11, + lapack_int ldx11, lapack_complex_double* x12, + lapack_int ldx12, lapack_complex_double* x21, + lapack_int ldx21, lapack_complex_double* x22, + lapack_int ldx22, double* theta, + lapack_complex_double* u1, lapack_int ldu1, + lapack_complex_double* u2, lapack_int ldu2, + lapack_complex_double* v1t, lapack_int ldv1t, + lapack_complex_double* v2t, lapack_int ldv2t, + lapack_complex_double* work, lapack_int lwork, + double* rwork, lapack_int lrwork, + lapack_int* iwork ); +//LAPACK 3.4.0 +lapack_int LAPACKE_sgemqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const float* v, lapack_int ldv, + const float* t, lapack_int ldt, float* c, + lapack_int ldc ); +lapack_int LAPACKE_dgemqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const double* v, lapack_int ldv, + const double* t, lapack_int ldt, double* c, + lapack_int ldc ); +lapack_int LAPACKE_cgemqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const lapack_complex_float* v, + lapack_int ldv, const lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* c, + lapack_int ldc ); +lapack_int LAPACKE_zgemqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const lapack_complex_double* v, + lapack_int ldv, const lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* c, + lapack_int ldc ); + +lapack_int LAPACKE_sgeqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* t, + lapack_int ldt ); +lapack_int LAPACKE_zgeqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* t, + lapack_int ldt ); + +lapack_int LAPACKE_sgeqrt2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zgeqrt2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_sgeqrt3( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt3( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt3( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zgeqrt3( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stpmqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, const float* v, + lapack_int ldv, const float* t, lapack_int ldt, + float* a, lapack_int lda, float* b, + lapack_int ldb ); +lapack_int LAPACKE_dtpmqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, const double* v, + lapack_int ldv, const double* t, lapack_int ldt, + double* a, lapack_int lda, double* b, + lapack_int ldb ); +lapack_int LAPACKE_ctpmqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb ); +lapack_int LAPACKE_ztpmqrt( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb ); + +lapack_int LAPACKE_dtpqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, double* a, + lapack_int lda, double* b, lapack_int ldb, double* t, + lapack_int ldt ); +lapack_int LAPACKE_ctpqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* t, + lapack_complex_float* b, lapack_int ldb, + lapack_int ldt ); +lapack_int LAPACKE_ztpqrt( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stpqrt2( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* b, lapack_int ldb, + float* t, lapack_int ldt ); +lapack_int LAPACKE_dtpqrt2( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* t, lapack_int ldt ); +lapack_int LAPACKE_ctpqrt2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_ztpqrt2( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stprfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, lapack_int l, const float* v, + lapack_int ldv, const float* t, lapack_int ldt, + float* a, lapack_int lda, float* b, lapack_int ldb, + lapack_int myldwork ); +lapack_int LAPACKE_dtprfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, lapack_int l, const double* v, + lapack_int ldv, const double* t, lapack_int ldt, + double* a, lapack_int lda, double* b, lapack_int ldb, + lapack_int myldwork ); +lapack_int LAPACKE_ctprfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, lapack_int l, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_int myldwork ); +lapack_int LAPACKE_ztprfb( int matrix_order, char side, char trans, char direct, + char storev, lapack_int m, lapack_int n, + lapack_int k, lapack_int l, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_int myldwork ); + +lapack_int LAPACKE_sgemqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const float* v, lapack_int ldv, + const float* t, lapack_int ldt, float* c, + lapack_int ldc, float* work ); +lapack_int LAPACKE_dgemqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const double* v, lapack_int ldv, + const double* t, lapack_int ldt, double* c, + lapack_int ldc, double* work ); +lapack_int LAPACKE_cgemqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const lapack_complex_float* v, + lapack_int ldv, const lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* c, + lapack_int ldc, lapack_complex_float* work ); +lapack_int LAPACKE_zgemqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int nb, const lapack_complex_double* v, + lapack_int ldv, const lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* c, + lapack_int ldc, lapack_complex_double* work ); + +lapack_int LAPACKE_sgeqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, float* a, lapack_int lda, + float* t, lapack_int ldt, float* work ); +lapack_int LAPACKE_dgeqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, double* a, lapack_int lda, + double* t, lapack_int ldt, double* work ); +lapack_int LAPACKE_cgeqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, lapack_complex_float* a, + lapack_int lda, lapack_complex_float* t, + lapack_int ldt, lapack_complex_float* work ); +lapack_int LAPACKE_zgeqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int nb, lapack_complex_double* a, + lapack_int lda, lapack_complex_double* t, + lapack_int ldt, lapack_complex_double* work ); + +lapack_int LAPACKE_sgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zgeqrt2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_sgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* t, + lapack_int ldt ); +lapack_int LAPACKE_dgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* t, + lapack_int ldt ); +lapack_int LAPACKE_cgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_zgeqrt3_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stpmqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, const float* v, + lapack_int ldv, const float* t, lapack_int ldt, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* work ); +lapack_int LAPACKE_dtpmqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, const double* v, + lapack_int ldv, const double* t, + lapack_int ldt, double* a, lapack_int lda, + double* b, lapack_int ldb, double* work ); +lapack_int LAPACKE_ctpmqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* work ); +lapack_int LAPACKE_ztpmqrt_work( int matrix_order, char side, char trans, + lapack_int m, lapack_int n, lapack_int k, + lapack_int l, lapack_int nb, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* work ); + +lapack_int LAPACKE_dtpqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, double* a, + lapack_int lda, double* b, lapack_int ldb, + double* t, lapack_int ldt, double* work ); +lapack_int LAPACKE_ctpqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* t, + lapack_complex_float* b, lapack_int ldb, + lapack_int ldt, lapack_complex_float* work ); +lapack_int LAPACKE_ztpqrt_work( int matrix_order, lapack_int m, lapack_int n, + lapack_int l, lapack_int nb, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* work ); + +lapack_int LAPACKE_stpqrt2_work( int matrix_order, lapack_int m, lapack_int n, + float* a, lapack_int lda, float* b, + lapack_int ldb, float* t, lapack_int ldt ); +lapack_int LAPACKE_dtpqrt2_work( int matrix_order, lapack_int m, lapack_int n, + double* a, lapack_int lda, double* b, + lapack_int ldb, double* t, lapack_int ldt ); +lapack_int LAPACKE_ctpqrt2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + lapack_complex_float* t, lapack_int ldt ); +lapack_int LAPACKE_ztpqrt2_work( int matrix_order, lapack_int m, lapack_int n, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + lapack_complex_double* t, lapack_int ldt ); + +lapack_int LAPACKE_stprfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, lapack_int l, + const float* v, lapack_int ldv, const float* t, + lapack_int ldt, float* a, lapack_int lda, + float* b, lapack_int ldb, const float* mywork, + lapack_int myldwork ); +lapack_int LAPACKE_dtprfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, lapack_int l, + const double* v, lapack_int ldv, + const double* t, lapack_int ldt, double* a, + lapack_int lda, double* b, lapack_int ldb, + const double* mywork, lapack_int myldwork ); +lapack_int LAPACKE_ctprfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, lapack_int l, + const lapack_complex_float* v, lapack_int ldv, + const lapack_complex_float* t, lapack_int ldt, + lapack_complex_float* a, lapack_int lda, + lapack_complex_float* b, lapack_int ldb, + const float* mywork, lapack_int myldwork ); +lapack_int LAPACKE_ztprfb_work( int matrix_order, char side, char trans, + char direct, char storev, lapack_int m, + lapack_int n, lapack_int k, lapack_int l, + const lapack_complex_double* v, lapack_int ldv, + const lapack_complex_double* t, lapack_int ldt, + lapack_complex_double* a, lapack_int lda, + lapack_complex_double* b, lapack_int ldb, + const double* mywork, lapack_int myldwork ); +//LAPACK 3.X.X +lapack_int LAPACKE_csyr( int matrix_order, char uplo, lapack_int n, + lapack_complex_float alpha, + const lapack_complex_float* x, lapack_int incx, + lapack_complex_float* a, lapack_int lda ); +lapack_int LAPACKE_zsyr( int matrix_order, char uplo, lapack_int n, + lapack_complex_double alpha, + const lapack_complex_double* x, lapack_int incx, + lapack_complex_double* a, lapack_int lda ); + +lapack_int LAPACKE_csyr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_float alpha, + const lapack_complex_float* x, + lapack_int incx, lapack_complex_float* a, + lapack_int lda ); +lapack_int LAPACKE_zsyr_work( int matrix_order, char uplo, lapack_int n, + lapack_complex_double alpha, + const lapack_complex_double* x, + lapack_int incx, lapack_complex_double* a, + lapack_int lda ); + + + +#define LAPACK_sgetrf LAPACK_GLOBAL(sgetrf,SGETRF) +#define LAPACK_dgetrf LAPACK_GLOBAL(dgetrf,DGETRF) +#define LAPACK_cgetrf LAPACK_GLOBAL(cgetrf,CGETRF) +#define LAPACK_zgetrf LAPACK_GLOBAL(zgetrf,ZGETRF) +#define LAPACK_sgbtrf LAPACK_GLOBAL(sgbtrf,SGBTRF) +#define LAPACK_dgbtrf LAPACK_GLOBAL(dgbtrf,DGBTRF) +#define LAPACK_cgbtrf LAPACK_GLOBAL(cgbtrf,CGBTRF) +#define LAPACK_zgbtrf LAPACK_GLOBAL(zgbtrf,ZGBTRF) +#define LAPACK_sgttrf LAPACK_GLOBAL(sgttrf,SGTTRF) +#define LAPACK_dgttrf LAPACK_GLOBAL(dgttrf,DGTTRF) +#define LAPACK_cgttrf LAPACK_GLOBAL(cgttrf,CGTTRF) +#define LAPACK_zgttrf LAPACK_GLOBAL(zgttrf,ZGTTRF) +#define LAPACK_spotrf LAPACK_GLOBAL(spotrf,SPOTRF) +#define LAPACK_dpotrf LAPACK_GLOBAL(dpotrf,DPOTRF) +#define LAPACK_cpotrf LAPACK_GLOBAL(cpotrf,CPOTRF) +#define LAPACK_zpotrf LAPACK_GLOBAL(zpotrf,ZPOTRF) +#define LAPACK_dpstrf LAPACK_GLOBAL(dpstrf,DPSTRF) +#define LAPACK_spstrf LAPACK_GLOBAL(spstrf,SPSTRF) +#define LAPACK_zpstrf LAPACK_GLOBAL(zpstrf,ZPSTRF) +#define LAPACK_cpstrf LAPACK_GLOBAL(cpstrf,CPSTRF) +#define LAPACK_dpftrf LAPACK_GLOBAL(dpftrf,DPFTRF) +#define LAPACK_spftrf LAPACK_GLOBAL(spftrf,SPFTRF) +#define LAPACK_zpftrf LAPACK_GLOBAL(zpftrf,ZPFTRF) +#define LAPACK_cpftrf LAPACK_GLOBAL(cpftrf,CPFTRF) +#define LAPACK_spptrf LAPACK_GLOBAL(spptrf,SPPTRF) +#define LAPACK_dpptrf LAPACK_GLOBAL(dpptrf,DPPTRF) +#define LAPACK_cpptrf LAPACK_GLOBAL(cpptrf,CPPTRF) +#define LAPACK_zpptrf LAPACK_GLOBAL(zpptrf,ZPPTRF) +#define LAPACK_spbtrf LAPACK_GLOBAL(spbtrf,SPBTRF) +#define LAPACK_dpbtrf LAPACK_GLOBAL(dpbtrf,DPBTRF) +#define LAPACK_cpbtrf LAPACK_GLOBAL(cpbtrf,CPBTRF) +#define LAPACK_zpbtrf LAPACK_GLOBAL(zpbtrf,ZPBTRF) +#define LAPACK_spttrf LAPACK_GLOBAL(spttrf,SPTTRF) +#define LAPACK_dpttrf LAPACK_GLOBAL(dpttrf,DPTTRF) +#define LAPACK_cpttrf LAPACK_GLOBAL(cpttrf,CPTTRF) +#define LAPACK_zpttrf LAPACK_GLOBAL(zpttrf,ZPTTRF) +#define LAPACK_ssytrf LAPACK_GLOBAL(ssytrf,SSYTRF) +#define LAPACK_dsytrf LAPACK_GLOBAL(dsytrf,DSYTRF) +#define LAPACK_csytrf LAPACK_GLOBAL(csytrf,CSYTRF) +#define LAPACK_zsytrf LAPACK_GLOBAL(zsytrf,ZSYTRF) +#define LAPACK_chetrf LAPACK_GLOBAL(chetrf,CHETRF) +#define LAPACK_zhetrf LAPACK_GLOBAL(zhetrf,ZHETRF) +#define LAPACK_ssptrf LAPACK_GLOBAL(ssptrf,SSPTRF) +#define LAPACK_dsptrf LAPACK_GLOBAL(dsptrf,DSPTRF) +#define LAPACK_csptrf LAPACK_GLOBAL(csptrf,CSPTRF) +#define LAPACK_zsptrf LAPACK_GLOBAL(zsptrf,ZSPTRF) +#define LAPACK_chptrf LAPACK_GLOBAL(chptrf,CHPTRF) +#define LAPACK_zhptrf LAPACK_GLOBAL(zhptrf,ZHPTRF) +#define LAPACK_sgetrs LAPACK_GLOBAL(sgetrs,SGETRS) +#define LAPACK_dgetrs LAPACK_GLOBAL(dgetrs,DGETRS) +#define LAPACK_cgetrs LAPACK_GLOBAL(cgetrs,CGETRS) +#define LAPACK_zgetrs LAPACK_GLOBAL(zgetrs,ZGETRS) +#define LAPACK_sgbtrs LAPACK_GLOBAL(sgbtrs,SGBTRS) +#define LAPACK_dgbtrs LAPACK_GLOBAL(dgbtrs,DGBTRS) +#define LAPACK_cgbtrs LAPACK_GLOBAL(cgbtrs,CGBTRS) +#define LAPACK_zgbtrs LAPACK_GLOBAL(zgbtrs,ZGBTRS) +#define LAPACK_sgttrs LAPACK_GLOBAL(sgttrs,SGTTRS) +#define LAPACK_dgttrs LAPACK_GLOBAL(dgttrs,DGTTRS) +#define LAPACK_cgttrs LAPACK_GLOBAL(cgttrs,CGTTRS) +#define LAPACK_zgttrs LAPACK_GLOBAL(zgttrs,ZGTTRS) +#define LAPACK_spotrs LAPACK_GLOBAL(spotrs,SPOTRS) +#define LAPACK_dpotrs LAPACK_GLOBAL(dpotrs,DPOTRS) +#define LAPACK_cpotrs LAPACK_GLOBAL(cpotrs,CPOTRS) +#define LAPACK_zpotrs LAPACK_GLOBAL(zpotrs,ZPOTRS) +#define LAPACK_dpftrs LAPACK_GLOBAL(dpftrs,DPFTRS) +#define LAPACK_spftrs LAPACK_GLOBAL(spftrs,SPFTRS) +#define LAPACK_zpftrs LAPACK_GLOBAL(zpftrs,ZPFTRS) +#define LAPACK_cpftrs LAPACK_GLOBAL(cpftrs,CPFTRS) +#define LAPACK_spptrs LAPACK_GLOBAL(spptrs,SPPTRS) +#define LAPACK_dpptrs LAPACK_GLOBAL(dpptrs,DPPTRS) +#define LAPACK_cpptrs LAPACK_GLOBAL(cpptrs,CPPTRS) +#define LAPACK_zpptrs LAPACK_GLOBAL(zpptrs,ZPPTRS) +#define LAPACK_spbtrs LAPACK_GLOBAL(spbtrs,SPBTRS) +#define LAPACK_dpbtrs LAPACK_GLOBAL(dpbtrs,DPBTRS) +#define LAPACK_cpbtrs LAPACK_GLOBAL(cpbtrs,CPBTRS) +#define LAPACK_zpbtrs LAPACK_GLOBAL(zpbtrs,ZPBTRS) +#define LAPACK_spttrs LAPACK_GLOBAL(spttrs,SPTTRS) +#define LAPACK_dpttrs LAPACK_GLOBAL(dpttrs,DPTTRS) +#define LAPACK_cpttrs LAPACK_GLOBAL(cpttrs,CPTTRS) +#define LAPACK_zpttrs LAPACK_GLOBAL(zpttrs,ZPTTRS) +#define LAPACK_ssytrs LAPACK_GLOBAL(ssytrs,SSYTRS) +#define LAPACK_dsytrs LAPACK_GLOBAL(dsytrs,DSYTRS) +#define LAPACK_csytrs LAPACK_GLOBAL(csytrs,CSYTRS) +#define LAPACK_zsytrs LAPACK_GLOBAL(zsytrs,ZSYTRS) +#define LAPACK_chetrs LAPACK_GLOBAL(chetrs,CHETRS) +#define LAPACK_zhetrs LAPACK_GLOBAL(zhetrs,ZHETRS) +#define LAPACK_ssptrs LAPACK_GLOBAL(ssptrs,SSPTRS) +#define LAPACK_dsptrs LAPACK_GLOBAL(dsptrs,DSPTRS) +#define LAPACK_csptrs LAPACK_GLOBAL(csptrs,CSPTRS) +#define LAPACK_zsptrs LAPACK_GLOBAL(zsptrs,ZSPTRS) +#define LAPACK_chptrs LAPACK_GLOBAL(chptrs,CHPTRS) +#define LAPACK_zhptrs LAPACK_GLOBAL(zhptrs,ZHPTRS) +#define LAPACK_strtrs LAPACK_GLOBAL(strtrs,STRTRS) +#define LAPACK_dtrtrs LAPACK_GLOBAL(dtrtrs,DTRTRS) +#define LAPACK_ctrtrs LAPACK_GLOBAL(ctrtrs,CTRTRS) +#define LAPACK_ztrtrs LAPACK_GLOBAL(ztrtrs,ZTRTRS) +#define LAPACK_stptrs LAPACK_GLOBAL(stptrs,STPTRS) +#define LAPACK_dtptrs LAPACK_GLOBAL(dtptrs,DTPTRS) +#define LAPACK_ctptrs LAPACK_GLOBAL(ctptrs,CTPTRS) +#define LAPACK_ztptrs LAPACK_GLOBAL(ztptrs,ZTPTRS) +#define LAPACK_stbtrs LAPACK_GLOBAL(stbtrs,STBTRS) +#define LAPACK_dtbtrs LAPACK_GLOBAL(dtbtrs,DTBTRS) +#define LAPACK_ctbtrs LAPACK_GLOBAL(ctbtrs,CTBTRS) +#define LAPACK_ztbtrs LAPACK_GLOBAL(ztbtrs,ZTBTRS) +#define LAPACK_sgecon LAPACK_GLOBAL(sgecon,SGECON) +#define LAPACK_dgecon LAPACK_GLOBAL(dgecon,DGECON) +#define LAPACK_cgecon LAPACK_GLOBAL(cgecon,CGECON) +#define LAPACK_zgecon LAPACK_GLOBAL(zgecon,ZGECON) +#define LAPACK_sgbcon LAPACK_GLOBAL(sgbcon,SGBCON) +#define LAPACK_dgbcon LAPACK_GLOBAL(dgbcon,DGBCON) +#define LAPACK_cgbcon LAPACK_GLOBAL(cgbcon,CGBCON) +#define LAPACK_zgbcon LAPACK_GLOBAL(zgbcon,ZGBCON) +#define LAPACK_sgtcon LAPACK_GLOBAL(sgtcon,SGTCON) +#define LAPACK_dgtcon LAPACK_GLOBAL(dgtcon,DGTCON) +#define LAPACK_cgtcon LAPACK_GLOBAL(cgtcon,CGTCON) +#define LAPACK_zgtcon LAPACK_GLOBAL(zgtcon,ZGTCON) +#define LAPACK_spocon LAPACK_GLOBAL(spocon,SPOCON) +#define LAPACK_dpocon LAPACK_GLOBAL(dpocon,DPOCON) +#define LAPACK_cpocon LAPACK_GLOBAL(cpocon,CPOCON) +#define LAPACK_zpocon LAPACK_GLOBAL(zpocon,ZPOCON) +#define LAPACK_sppcon LAPACK_GLOBAL(sppcon,SPPCON) +#define LAPACK_dppcon LAPACK_GLOBAL(dppcon,DPPCON) +#define LAPACK_cppcon LAPACK_GLOBAL(cppcon,CPPCON) +#define LAPACK_zppcon LAPACK_GLOBAL(zppcon,ZPPCON) +#define LAPACK_spbcon LAPACK_GLOBAL(spbcon,SPBCON) +#define LAPACK_dpbcon LAPACK_GLOBAL(dpbcon,DPBCON) +#define LAPACK_cpbcon LAPACK_GLOBAL(cpbcon,CPBCON) +#define LAPACK_zpbcon LAPACK_GLOBAL(zpbcon,ZPBCON) +#define LAPACK_sptcon LAPACK_GLOBAL(sptcon,SPTCON) +#define LAPACK_dptcon LAPACK_GLOBAL(dptcon,DPTCON) +#define LAPACK_cptcon LAPACK_GLOBAL(cptcon,CPTCON) +#define LAPACK_zptcon LAPACK_GLOBAL(zptcon,ZPTCON) +#define LAPACK_ssycon LAPACK_GLOBAL(ssycon,SSYCON) +#define LAPACK_dsycon LAPACK_GLOBAL(dsycon,DSYCON) +#define LAPACK_csycon LAPACK_GLOBAL(csycon,CSYCON) +#define LAPACK_zsycon LAPACK_GLOBAL(zsycon,ZSYCON) +#define LAPACK_checon LAPACK_GLOBAL(checon,CHECON) +#define LAPACK_zhecon LAPACK_GLOBAL(zhecon,ZHECON) +#define LAPACK_sspcon LAPACK_GLOBAL(sspcon,SSPCON) +#define LAPACK_dspcon LAPACK_GLOBAL(dspcon,DSPCON) +#define LAPACK_cspcon LAPACK_GLOBAL(cspcon,CSPCON) +#define LAPACK_zspcon LAPACK_GLOBAL(zspcon,ZSPCON) +#define LAPACK_chpcon LAPACK_GLOBAL(chpcon,CHPCON) +#define LAPACK_zhpcon LAPACK_GLOBAL(zhpcon,ZHPCON) +#define LAPACK_strcon LAPACK_GLOBAL(strcon,STRCON) +#define LAPACK_dtrcon LAPACK_GLOBAL(dtrcon,DTRCON) +#define LAPACK_ctrcon LAPACK_GLOBAL(ctrcon,CTRCON) +#define LAPACK_ztrcon LAPACK_GLOBAL(ztrcon,ZTRCON) +#define LAPACK_stpcon LAPACK_GLOBAL(stpcon,STPCON) +#define LAPACK_dtpcon LAPACK_GLOBAL(dtpcon,DTPCON) +#define LAPACK_ctpcon LAPACK_GLOBAL(ctpcon,CTPCON) +#define LAPACK_ztpcon LAPACK_GLOBAL(ztpcon,ZTPCON) +#define LAPACK_stbcon LAPACK_GLOBAL(stbcon,STBCON) +#define LAPACK_dtbcon LAPACK_GLOBAL(dtbcon,DTBCON) +#define LAPACK_ctbcon LAPACK_GLOBAL(ctbcon,CTBCON) +#define LAPACK_ztbcon LAPACK_GLOBAL(ztbcon,ZTBCON) +#define LAPACK_sgerfs LAPACK_GLOBAL(sgerfs,SGERFS) +#define LAPACK_dgerfs LAPACK_GLOBAL(dgerfs,DGERFS) +#define LAPACK_cgerfs LAPACK_GLOBAL(cgerfs,CGERFS) +#define LAPACK_zgerfs LAPACK_GLOBAL(zgerfs,ZGERFS) +#define LAPACK_dgerfsx LAPACK_GLOBAL(dgerfsx,DGERFSX) +#define LAPACK_sgerfsx LAPACK_GLOBAL(sgerfsx,SGERFSX) +#define LAPACK_zgerfsx LAPACK_GLOBAL(zgerfsx,ZGERFSX) +#define LAPACK_cgerfsx LAPACK_GLOBAL(cgerfsx,CGERFSX) +#define LAPACK_sgbrfs LAPACK_GLOBAL(sgbrfs,SGBRFS) +#define LAPACK_dgbrfs LAPACK_GLOBAL(dgbrfs,DGBRFS) +#define LAPACK_cgbrfs LAPACK_GLOBAL(cgbrfs,CGBRFS) +#define LAPACK_zgbrfs LAPACK_GLOBAL(zgbrfs,ZGBRFS) +#define LAPACK_dgbrfsx LAPACK_GLOBAL(dgbrfsx,DGBRFSX) +#define LAPACK_sgbrfsx LAPACK_GLOBAL(sgbrfsx,SGBRFSX) +#define LAPACK_zgbrfsx LAPACK_GLOBAL(zgbrfsx,ZGBRFSX) +#define LAPACK_cgbrfsx LAPACK_GLOBAL(cgbrfsx,CGBRFSX) +#define LAPACK_sgtrfs LAPACK_GLOBAL(sgtrfs,SGTRFS) +#define LAPACK_dgtrfs LAPACK_GLOBAL(dgtrfs,DGTRFS) +#define LAPACK_cgtrfs LAPACK_GLOBAL(cgtrfs,CGTRFS) +#define LAPACK_zgtrfs LAPACK_GLOBAL(zgtrfs,ZGTRFS) +#define LAPACK_sporfs LAPACK_GLOBAL(sporfs,SPORFS) +#define LAPACK_dporfs LAPACK_GLOBAL(dporfs,DPORFS) +#define LAPACK_cporfs LAPACK_GLOBAL(cporfs,CPORFS) +#define LAPACK_zporfs LAPACK_GLOBAL(zporfs,ZPORFS) +#define LAPACK_dporfsx LAPACK_GLOBAL(dporfsx,DPORFSX) +#define LAPACK_sporfsx LAPACK_GLOBAL(sporfsx,SPORFSX) +#define LAPACK_zporfsx LAPACK_GLOBAL(zporfsx,ZPORFSX) +#define LAPACK_cporfsx LAPACK_GLOBAL(cporfsx,CPORFSX) +#define LAPACK_spprfs LAPACK_GLOBAL(spprfs,SPPRFS) +#define LAPACK_dpprfs LAPACK_GLOBAL(dpprfs,DPPRFS) +#define LAPACK_cpprfs LAPACK_GLOBAL(cpprfs,CPPRFS) +#define LAPACK_zpprfs LAPACK_GLOBAL(zpprfs,ZPPRFS) +#define LAPACK_spbrfs LAPACK_GLOBAL(spbrfs,SPBRFS) +#define LAPACK_dpbrfs LAPACK_GLOBAL(dpbrfs,DPBRFS) +#define LAPACK_cpbrfs LAPACK_GLOBAL(cpbrfs,CPBRFS) +#define LAPACK_zpbrfs LAPACK_GLOBAL(zpbrfs,ZPBRFS) +#define LAPACK_sptrfs LAPACK_GLOBAL(sptrfs,SPTRFS) +#define LAPACK_dptrfs LAPACK_GLOBAL(dptrfs,DPTRFS) +#define LAPACK_cptrfs LAPACK_GLOBAL(cptrfs,CPTRFS) +#define LAPACK_zptrfs LAPACK_GLOBAL(zptrfs,ZPTRFS) +#define LAPACK_ssyrfs LAPACK_GLOBAL(ssyrfs,SSYRFS) +#define LAPACK_dsyrfs LAPACK_GLOBAL(dsyrfs,DSYRFS) +#define LAPACK_csyrfs LAPACK_GLOBAL(csyrfs,CSYRFS) +#define LAPACK_zsyrfs LAPACK_GLOBAL(zsyrfs,ZSYRFS) +#define LAPACK_dsyrfsx LAPACK_GLOBAL(dsyrfsx,DSYRFSX) +#define LAPACK_ssyrfsx LAPACK_GLOBAL(ssyrfsx,SSYRFSX) +#define LAPACK_zsyrfsx LAPACK_GLOBAL(zsyrfsx,ZSYRFSX) +#define LAPACK_csyrfsx LAPACK_GLOBAL(csyrfsx,CSYRFSX) +#define LAPACK_cherfs LAPACK_GLOBAL(cherfs,CHERFS) +#define LAPACK_zherfs LAPACK_GLOBAL(zherfs,ZHERFS) +#define LAPACK_zherfsx LAPACK_GLOBAL(zherfsx,ZHERFSX) +#define LAPACK_cherfsx LAPACK_GLOBAL(cherfsx,CHERFSX) +#define LAPACK_ssprfs LAPACK_GLOBAL(ssprfs,SSPRFS) +#define LAPACK_dsprfs LAPACK_GLOBAL(dsprfs,DSPRFS) +#define LAPACK_csprfs LAPACK_GLOBAL(csprfs,CSPRFS) +#define LAPACK_zsprfs LAPACK_GLOBAL(zsprfs,ZSPRFS) +#define LAPACK_chprfs LAPACK_GLOBAL(chprfs,CHPRFS) +#define LAPACK_zhprfs LAPACK_GLOBAL(zhprfs,ZHPRFS) +#define LAPACK_strrfs LAPACK_GLOBAL(strrfs,STRRFS) +#define LAPACK_dtrrfs LAPACK_GLOBAL(dtrrfs,DTRRFS) +#define LAPACK_ctrrfs LAPACK_GLOBAL(ctrrfs,CTRRFS) +#define LAPACK_ztrrfs LAPACK_GLOBAL(ztrrfs,ZTRRFS) +#define LAPACK_stprfs LAPACK_GLOBAL(stprfs,STPRFS) +#define LAPACK_dtprfs LAPACK_GLOBAL(dtprfs,DTPRFS) +#define LAPACK_ctprfs LAPACK_GLOBAL(ctprfs,CTPRFS) +#define LAPACK_ztprfs LAPACK_GLOBAL(ztprfs,ZTPRFS) +#define LAPACK_stbrfs LAPACK_GLOBAL(stbrfs,STBRFS) +#define LAPACK_dtbrfs LAPACK_GLOBAL(dtbrfs,DTBRFS) +#define LAPACK_ctbrfs LAPACK_GLOBAL(ctbrfs,CTBRFS) +#define LAPACK_ztbrfs LAPACK_GLOBAL(ztbrfs,ZTBRFS) +#define LAPACK_sgetri LAPACK_GLOBAL(sgetri,SGETRI) +#define LAPACK_dgetri LAPACK_GLOBAL(dgetri,DGETRI) +#define LAPACK_cgetri LAPACK_GLOBAL(cgetri,CGETRI) +#define LAPACK_zgetri LAPACK_GLOBAL(zgetri,ZGETRI) +#define LAPACK_spotri LAPACK_GLOBAL(spotri,SPOTRI) +#define LAPACK_dpotri LAPACK_GLOBAL(dpotri,DPOTRI) +#define LAPACK_cpotri LAPACK_GLOBAL(cpotri,CPOTRI) +#define LAPACK_zpotri LAPACK_GLOBAL(zpotri,ZPOTRI) +#define LAPACK_dpftri LAPACK_GLOBAL(dpftri,DPFTRI) +#define LAPACK_spftri LAPACK_GLOBAL(spftri,SPFTRI) +#define LAPACK_zpftri LAPACK_GLOBAL(zpftri,ZPFTRI) +#define LAPACK_cpftri LAPACK_GLOBAL(cpftri,CPFTRI) +#define LAPACK_spptri LAPACK_GLOBAL(spptri,SPPTRI) +#define LAPACK_dpptri LAPACK_GLOBAL(dpptri,DPPTRI) +#define LAPACK_cpptri LAPACK_GLOBAL(cpptri,CPPTRI) +#define LAPACK_zpptri LAPACK_GLOBAL(zpptri,ZPPTRI) +#define LAPACK_ssytri LAPACK_GLOBAL(ssytri,SSYTRI) +#define LAPACK_dsytri LAPACK_GLOBAL(dsytri,DSYTRI) +#define LAPACK_csytri LAPACK_GLOBAL(csytri,CSYTRI) +#define LAPACK_zsytri LAPACK_GLOBAL(zsytri,ZSYTRI) +#define LAPACK_chetri LAPACK_GLOBAL(chetri,CHETRI) +#define LAPACK_zhetri LAPACK_GLOBAL(zhetri,ZHETRI) +#define LAPACK_ssptri LAPACK_GLOBAL(ssptri,SSPTRI) +#define LAPACK_dsptri LAPACK_GLOBAL(dsptri,DSPTRI) +#define LAPACK_csptri LAPACK_GLOBAL(csptri,CSPTRI) +#define LAPACK_zsptri LAPACK_GLOBAL(zsptri,ZSPTRI) +#define LAPACK_chptri LAPACK_GLOBAL(chptri,CHPTRI) +#define LAPACK_zhptri LAPACK_GLOBAL(zhptri,ZHPTRI) +#define LAPACK_strtri LAPACK_GLOBAL(strtri,STRTRI) +#define LAPACK_dtrtri LAPACK_GLOBAL(dtrtri,DTRTRI) +#define LAPACK_ctrtri LAPACK_GLOBAL(ctrtri,CTRTRI) +#define LAPACK_ztrtri LAPACK_GLOBAL(ztrtri,ZTRTRI) +#define LAPACK_dtftri LAPACK_GLOBAL(dtftri,DTFTRI) +#define LAPACK_stftri LAPACK_GLOBAL(stftri,STFTRI) +#define LAPACK_ztftri LAPACK_GLOBAL(ztftri,ZTFTRI) +#define LAPACK_ctftri LAPACK_GLOBAL(ctftri,CTFTRI) +#define LAPACK_stptri LAPACK_GLOBAL(stptri,STPTRI) +#define LAPACK_dtptri LAPACK_GLOBAL(dtptri,DTPTRI) +#define LAPACK_ctptri LAPACK_GLOBAL(ctptri,CTPTRI) +#define LAPACK_ztptri LAPACK_GLOBAL(ztptri,ZTPTRI) +#define LAPACK_sgeequ LAPACK_GLOBAL(sgeequ,SGEEQU) +#define LAPACK_dgeequ LAPACK_GLOBAL(dgeequ,DGEEQU) +#define LAPACK_cgeequ LAPACK_GLOBAL(cgeequ,CGEEQU) +#define LAPACK_zgeequ LAPACK_GLOBAL(zgeequ,ZGEEQU) +#define LAPACK_dgeequb LAPACK_GLOBAL(dgeequb,DGEEQUB) +#define LAPACK_sgeequb LAPACK_GLOBAL(sgeequb,SGEEQUB) +#define LAPACK_zgeequb LAPACK_GLOBAL(zgeequb,ZGEEQUB) +#define LAPACK_cgeequb LAPACK_GLOBAL(cgeequb,CGEEQUB) +#define LAPACK_sgbequ LAPACK_GLOBAL(sgbequ,SGBEQU) +#define LAPACK_dgbequ LAPACK_GLOBAL(dgbequ,DGBEQU) +#define LAPACK_cgbequ LAPACK_GLOBAL(cgbequ,CGBEQU) +#define LAPACK_zgbequ LAPACK_GLOBAL(zgbequ,ZGBEQU) +#define LAPACK_dgbequb LAPACK_GLOBAL(dgbequb,DGBEQUB) +#define LAPACK_sgbequb LAPACK_GLOBAL(sgbequb,SGBEQUB) +#define LAPACK_zgbequb LAPACK_GLOBAL(zgbequb,ZGBEQUB) +#define LAPACK_cgbequb LAPACK_GLOBAL(cgbequb,CGBEQUB) +#define LAPACK_spoequ LAPACK_GLOBAL(spoequ,SPOEQU) +#define LAPACK_dpoequ LAPACK_GLOBAL(dpoequ,DPOEQU) +#define LAPACK_cpoequ LAPACK_GLOBAL(cpoequ,CPOEQU) +#define LAPACK_zpoequ LAPACK_GLOBAL(zpoequ,ZPOEQU) +#define LAPACK_dpoequb LAPACK_GLOBAL(dpoequb,DPOEQUB) +#define LAPACK_spoequb LAPACK_GLOBAL(spoequb,SPOEQUB) +#define LAPACK_zpoequb LAPACK_GLOBAL(zpoequb,ZPOEQUB) +#define LAPACK_cpoequb LAPACK_GLOBAL(cpoequb,CPOEQUB) +#define LAPACK_sppequ LAPACK_GLOBAL(sppequ,SPPEQU) +#define LAPACK_dppequ LAPACK_GLOBAL(dppequ,DPPEQU) +#define LAPACK_cppequ LAPACK_GLOBAL(cppequ,CPPEQU) +#define LAPACK_zppequ LAPACK_GLOBAL(zppequ,ZPPEQU) +#define LAPACK_spbequ LAPACK_GLOBAL(spbequ,SPBEQU) +#define LAPACK_dpbequ LAPACK_GLOBAL(dpbequ,DPBEQU) +#define LAPACK_cpbequ LAPACK_GLOBAL(cpbequ,CPBEQU) +#define LAPACK_zpbequ LAPACK_GLOBAL(zpbequ,ZPBEQU) +#define LAPACK_dsyequb LAPACK_GLOBAL(dsyequb,DSYEQUB) +#define LAPACK_ssyequb LAPACK_GLOBAL(ssyequb,SSYEQUB) +#define LAPACK_zsyequb LAPACK_GLOBAL(zsyequb,ZSYEQUB) +#define LAPACK_csyequb LAPACK_GLOBAL(csyequb,CSYEQUB) +#define LAPACK_zheequb LAPACK_GLOBAL(zheequb,ZHEEQUB) +#define LAPACK_cheequb LAPACK_GLOBAL(cheequb,CHEEQUB) +#define LAPACK_sgesv LAPACK_GLOBAL(sgesv,SGESV) +#define LAPACK_dgesv LAPACK_GLOBAL(dgesv,DGESV) +#define LAPACK_cgesv LAPACK_GLOBAL(cgesv,CGESV) +#define LAPACK_zgesv LAPACK_GLOBAL(zgesv,ZGESV) +#define LAPACK_dsgesv LAPACK_GLOBAL(dsgesv,DSGESV) +#define LAPACK_zcgesv LAPACK_GLOBAL(zcgesv,ZCGESV) +#define LAPACK_sgesvx LAPACK_GLOBAL(sgesvx,SGESVX) +#define LAPACK_dgesvx LAPACK_GLOBAL(dgesvx,DGESVX) +#define LAPACK_cgesvx LAPACK_GLOBAL(cgesvx,CGESVX) +#define LAPACK_zgesvx LAPACK_GLOBAL(zgesvx,ZGESVX) +#define LAPACK_dgesvxx LAPACK_GLOBAL(dgesvxx,DGESVXX) +#define LAPACK_sgesvxx LAPACK_GLOBAL(sgesvxx,SGESVXX) +#define LAPACK_zgesvxx LAPACK_GLOBAL(zgesvxx,ZGESVXX) +#define LAPACK_cgesvxx LAPACK_GLOBAL(cgesvxx,CGESVXX) +#define LAPACK_sgbsv LAPACK_GLOBAL(sgbsv,SGBSV) +#define LAPACK_dgbsv LAPACK_GLOBAL(dgbsv,DGBSV) +#define LAPACK_cgbsv LAPACK_GLOBAL(cgbsv,CGBSV) +#define LAPACK_zgbsv LAPACK_GLOBAL(zgbsv,ZGBSV) +#define LAPACK_sgbsvx LAPACK_GLOBAL(sgbsvx,SGBSVX) +#define LAPACK_dgbsvx LAPACK_GLOBAL(dgbsvx,DGBSVX) +#define LAPACK_cgbsvx LAPACK_GLOBAL(cgbsvx,CGBSVX) +#define LAPACK_zgbsvx LAPACK_GLOBAL(zgbsvx,ZGBSVX) +#define LAPACK_dgbsvxx LAPACK_GLOBAL(dgbsvxx,DGBSVXX) +#define LAPACK_sgbsvxx LAPACK_GLOBAL(sgbsvxx,SGBSVXX) +#define LAPACK_zgbsvxx LAPACK_GLOBAL(zgbsvxx,ZGBSVXX) +#define LAPACK_cgbsvxx LAPACK_GLOBAL(cgbsvxx,CGBSVXX) +#define LAPACK_sgtsv LAPACK_GLOBAL(sgtsv,SGTSV) +#define LAPACK_dgtsv LAPACK_GLOBAL(dgtsv,DGTSV) +#define LAPACK_cgtsv LAPACK_GLOBAL(cgtsv,CGTSV) +#define LAPACK_zgtsv LAPACK_GLOBAL(zgtsv,ZGTSV) +#define LAPACK_sgtsvx LAPACK_GLOBAL(sgtsvx,SGTSVX) +#define LAPACK_dgtsvx LAPACK_GLOBAL(dgtsvx,DGTSVX) +#define LAPACK_cgtsvx LAPACK_GLOBAL(cgtsvx,CGTSVX) +#define LAPACK_zgtsvx LAPACK_GLOBAL(zgtsvx,ZGTSVX) +#define LAPACK_sposv LAPACK_GLOBAL(sposv,SPOSV) +#define LAPACK_dposv LAPACK_GLOBAL(dposv,DPOSV) +#define LAPACK_cposv LAPACK_GLOBAL(cposv,CPOSV) +#define LAPACK_zposv LAPACK_GLOBAL(zposv,ZPOSV) +#define LAPACK_dsposv LAPACK_GLOBAL(dsposv,DSPOSV) +#define LAPACK_zcposv LAPACK_GLOBAL(zcposv,ZCPOSV) +#define LAPACK_sposvx LAPACK_GLOBAL(sposvx,SPOSVX) +#define LAPACK_dposvx LAPACK_GLOBAL(dposvx,DPOSVX) +#define LAPACK_cposvx LAPACK_GLOBAL(cposvx,CPOSVX) +#define LAPACK_zposvx LAPACK_GLOBAL(zposvx,ZPOSVX) +#define LAPACK_dposvxx LAPACK_GLOBAL(dposvxx,DPOSVXX) +#define LAPACK_sposvxx LAPACK_GLOBAL(sposvxx,SPOSVXX) +#define LAPACK_zposvxx LAPACK_GLOBAL(zposvxx,ZPOSVXX) +#define LAPACK_cposvxx LAPACK_GLOBAL(cposvxx,CPOSVXX) +#define LAPACK_sppsv LAPACK_GLOBAL(sppsv,SPPSV) +#define LAPACK_dppsv LAPACK_GLOBAL(dppsv,DPPSV) +#define LAPACK_cppsv LAPACK_GLOBAL(cppsv,CPPSV) +#define LAPACK_zppsv LAPACK_GLOBAL(zppsv,ZPPSV) +#define LAPACK_sppsvx LAPACK_GLOBAL(sppsvx,SPPSVX) +#define LAPACK_dppsvx LAPACK_GLOBAL(dppsvx,DPPSVX) +#define LAPACK_cppsvx LAPACK_GLOBAL(cppsvx,CPPSVX) +#define LAPACK_zppsvx LAPACK_GLOBAL(zppsvx,ZPPSVX) +#define LAPACK_spbsv LAPACK_GLOBAL(spbsv,SPBSV) +#define LAPACK_dpbsv LAPACK_GLOBAL(dpbsv,DPBSV) +#define LAPACK_cpbsv LAPACK_GLOBAL(cpbsv,CPBSV) +#define LAPACK_zpbsv LAPACK_GLOBAL(zpbsv,ZPBSV) +#define LAPACK_spbsvx LAPACK_GLOBAL(spbsvx,SPBSVX) +#define LAPACK_dpbsvx LAPACK_GLOBAL(dpbsvx,DPBSVX) +#define LAPACK_cpbsvx LAPACK_GLOBAL(cpbsvx,CPBSVX) +#define LAPACK_zpbsvx LAPACK_GLOBAL(zpbsvx,ZPBSVX) +#define LAPACK_sptsv LAPACK_GLOBAL(sptsv,SPTSV) +#define LAPACK_dptsv LAPACK_GLOBAL(dptsv,DPTSV) +#define LAPACK_cptsv LAPACK_GLOBAL(cptsv,CPTSV) +#define LAPACK_zptsv LAPACK_GLOBAL(zptsv,ZPTSV) +#define LAPACK_sptsvx LAPACK_GLOBAL(sptsvx,SPTSVX) +#define LAPACK_dptsvx LAPACK_GLOBAL(dptsvx,DPTSVX) +#define LAPACK_cptsvx LAPACK_GLOBAL(cptsvx,CPTSVX) +#define LAPACK_zptsvx LAPACK_GLOBAL(zptsvx,ZPTSVX) +#define LAPACK_ssysv LAPACK_GLOBAL(ssysv,SSYSV) +#define LAPACK_dsysv LAPACK_GLOBAL(dsysv,DSYSV) +#define LAPACK_csysv LAPACK_GLOBAL(csysv,CSYSV) +#define LAPACK_zsysv LAPACK_GLOBAL(zsysv,ZSYSV) +#define LAPACK_ssysvx LAPACK_GLOBAL(ssysvx,SSYSVX) +#define LAPACK_dsysvx LAPACK_GLOBAL(dsysvx,DSYSVX) +#define LAPACK_csysvx LAPACK_GLOBAL(csysvx,CSYSVX) +#define LAPACK_zsysvx LAPACK_GLOBAL(zsysvx,ZSYSVX) +#define LAPACK_dsysvxx LAPACK_GLOBAL(dsysvxx,DSYSVXX) +#define LAPACK_ssysvxx LAPACK_GLOBAL(ssysvxx,SSYSVXX) +#define LAPACK_zsysvxx LAPACK_GLOBAL(zsysvxx,ZSYSVXX) +#define LAPACK_csysvxx LAPACK_GLOBAL(csysvxx,CSYSVXX) +#define LAPACK_chesv LAPACK_GLOBAL(chesv,CHESV) +#define LAPACK_zhesv LAPACK_GLOBAL(zhesv,ZHESV) +#define LAPACK_chesvx LAPACK_GLOBAL(chesvx,CHESVX) +#define LAPACK_zhesvx LAPACK_GLOBAL(zhesvx,ZHESVX) +#define LAPACK_zhesvxx LAPACK_GLOBAL(zhesvxx,ZHESVXX) +#define LAPACK_chesvxx LAPACK_GLOBAL(chesvxx,CHESVXX) +#define LAPACK_sspsv LAPACK_GLOBAL(sspsv,SSPSV) +#define LAPACK_dspsv LAPACK_GLOBAL(dspsv,DSPSV) +#define LAPACK_cspsv LAPACK_GLOBAL(cspsv,CSPSV) +#define LAPACK_zspsv LAPACK_GLOBAL(zspsv,ZSPSV) +#define LAPACK_sspsvx LAPACK_GLOBAL(sspsvx,SSPSVX) +#define LAPACK_dspsvx LAPACK_GLOBAL(dspsvx,DSPSVX) +#define LAPACK_cspsvx LAPACK_GLOBAL(cspsvx,CSPSVX) +#define LAPACK_zspsvx LAPACK_GLOBAL(zspsvx,ZSPSVX) +#define LAPACK_chpsv LAPACK_GLOBAL(chpsv,CHPSV) +#define LAPACK_zhpsv LAPACK_GLOBAL(zhpsv,ZHPSV) +#define LAPACK_chpsvx LAPACK_GLOBAL(chpsvx,CHPSVX) +#define LAPACK_zhpsvx LAPACK_GLOBAL(zhpsvx,ZHPSVX) +#define LAPACK_sgeqrf LAPACK_GLOBAL(sgeqrf,SGEQRF) +#define LAPACK_dgeqrf LAPACK_GLOBAL(dgeqrf,DGEQRF) +#define LAPACK_cgeqrf LAPACK_GLOBAL(cgeqrf,CGEQRF) +#define LAPACK_zgeqrf LAPACK_GLOBAL(zgeqrf,ZGEQRF) +#define LAPACK_sgeqpf LAPACK_GLOBAL(sgeqpf,SGEQPF) +#define LAPACK_dgeqpf LAPACK_GLOBAL(dgeqpf,DGEQPF) +#define LAPACK_cgeqpf LAPACK_GLOBAL(cgeqpf,CGEQPF) +#define LAPACK_zgeqpf LAPACK_GLOBAL(zgeqpf,ZGEQPF) +#define LAPACK_sgeqp3 LAPACK_GLOBAL(sgeqp3,SGEQP3) +#define LAPACK_dgeqp3 LAPACK_GLOBAL(dgeqp3,DGEQP3) +#define LAPACK_cgeqp3 LAPACK_GLOBAL(cgeqp3,CGEQP3) +#define LAPACK_zgeqp3 LAPACK_GLOBAL(zgeqp3,ZGEQP3) +#define LAPACK_sorgqr LAPACK_GLOBAL(sorgqr,SORGQR) +#define LAPACK_dorgqr LAPACK_GLOBAL(dorgqr,DORGQR) +#define LAPACK_sormqr LAPACK_GLOBAL(sormqr,SORMQR) +#define LAPACK_dormqr LAPACK_GLOBAL(dormqr,DORMQR) +#define LAPACK_cungqr LAPACK_GLOBAL(cungqr,CUNGQR) +#define LAPACK_zungqr LAPACK_GLOBAL(zungqr,ZUNGQR) +#define LAPACK_cunmqr LAPACK_GLOBAL(cunmqr,CUNMQR) +#define LAPACK_zunmqr LAPACK_GLOBAL(zunmqr,ZUNMQR) +#define LAPACK_sgelqf LAPACK_GLOBAL(sgelqf,SGELQF) +#define LAPACK_dgelqf LAPACK_GLOBAL(dgelqf,DGELQF) +#define LAPACK_cgelqf LAPACK_GLOBAL(cgelqf,CGELQF) +#define LAPACK_zgelqf LAPACK_GLOBAL(zgelqf,ZGELQF) +#define LAPACK_sorglq LAPACK_GLOBAL(sorglq,SORGLQ) +#define LAPACK_dorglq LAPACK_GLOBAL(dorglq,DORGLQ) +#define LAPACK_sormlq LAPACK_GLOBAL(sormlq,SORMLQ) +#define LAPACK_dormlq LAPACK_GLOBAL(dormlq,DORMLQ) +#define LAPACK_cunglq LAPACK_GLOBAL(cunglq,CUNGLQ) +#define LAPACK_zunglq LAPACK_GLOBAL(zunglq,ZUNGLQ) +#define LAPACK_cunmlq LAPACK_GLOBAL(cunmlq,CUNMLQ) +#define LAPACK_zunmlq LAPACK_GLOBAL(zunmlq,ZUNMLQ) +#define LAPACK_sgeqlf LAPACK_GLOBAL(sgeqlf,SGEQLF) +#define LAPACK_dgeqlf LAPACK_GLOBAL(dgeqlf,DGEQLF) +#define LAPACK_cgeqlf LAPACK_GLOBAL(cgeqlf,CGEQLF) +#define LAPACK_zgeqlf LAPACK_GLOBAL(zgeqlf,ZGEQLF) +#define LAPACK_sorgql LAPACK_GLOBAL(sorgql,SORGQL) +#define LAPACK_dorgql LAPACK_GLOBAL(dorgql,DORGQL) +#define LAPACK_cungql LAPACK_GLOBAL(cungql,CUNGQL) +#define LAPACK_zungql LAPACK_GLOBAL(zungql,ZUNGQL) +#define LAPACK_sormql LAPACK_GLOBAL(sormql,SORMQL) +#define LAPACK_dormql LAPACK_GLOBAL(dormql,DORMQL) +#define LAPACK_cunmql LAPACK_GLOBAL(cunmql,CUNMQL) +#define LAPACK_zunmql LAPACK_GLOBAL(zunmql,ZUNMQL) +#define LAPACK_sgerqf LAPACK_GLOBAL(sgerqf,SGERQF) +#define LAPACK_dgerqf LAPACK_GLOBAL(dgerqf,DGERQF) +#define LAPACK_cgerqf LAPACK_GLOBAL(cgerqf,CGERQF) +#define LAPACK_zgerqf LAPACK_GLOBAL(zgerqf,ZGERQF) +#define LAPACK_sorgrq LAPACK_GLOBAL(sorgrq,SORGRQ) +#define LAPACK_dorgrq LAPACK_GLOBAL(dorgrq,DORGRQ) +#define LAPACK_cungrq LAPACK_GLOBAL(cungrq,CUNGRQ) +#define LAPACK_zungrq LAPACK_GLOBAL(zungrq,ZUNGRQ) +#define LAPACK_sormrq LAPACK_GLOBAL(sormrq,SORMRQ) +#define LAPACK_dormrq LAPACK_GLOBAL(dormrq,DORMRQ) +#define LAPACK_cunmrq LAPACK_GLOBAL(cunmrq,CUNMRQ) +#define LAPACK_zunmrq LAPACK_GLOBAL(zunmrq,ZUNMRQ) +#define LAPACK_stzrzf LAPACK_GLOBAL(stzrzf,STZRZF) +#define LAPACK_dtzrzf LAPACK_GLOBAL(dtzrzf,DTZRZF) +#define LAPACK_ctzrzf LAPACK_GLOBAL(ctzrzf,CTZRZF) +#define LAPACK_ztzrzf LAPACK_GLOBAL(ztzrzf,ZTZRZF) +#define LAPACK_sormrz LAPACK_GLOBAL(sormrz,SORMRZ) +#define LAPACK_dormrz LAPACK_GLOBAL(dormrz,DORMRZ) +#define LAPACK_cunmrz LAPACK_GLOBAL(cunmrz,CUNMRZ) +#define LAPACK_zunmrz LAPACK_GLOBAL(zunmrz,ZUNMRZ) +#define LAPACK_sggqrf LAPACK_GLOBAL(sggqrf,SGGQRF) +#define LAPACK_dggqrf LAPACK_GLOBAL(dggqrf,DGGQRF) +#define LAPACK_cggqrf LAPACK_GLOBAL(cggqrf,CGGQRF) +#define LAPACK_zggqrf LAPACK_GLOBAL(zggqrf,ZGGQRF) +#define LAPACK_sggrqf LAPACK_GLOBAL(sggrqf,SGGRQF) +#define LAPACK_dggrqf LAPACK_GLOBAL(dggrqf,DGGRQF) +#define LAPACK_cggrqf LAPACK_GLOBAL(cggrqf,CGGRQF) +#define LAPACK_zggrqf LAPACK_GLOBAL(zggrqf,ZGGRQF) +#define LAPACK_sgebrd LAPACK_GLOBAL(sgebrd,SGEBRD) +#define LAPACK_dgebrd LAPACK_GLOBAL(dgebrd,DGEBRD) +#define LAPACK_cgebrd LAPACK_GLOBAL(cgebrd,CGEBRD) +#define LAPACK_zgebrd LAPACK_GLOBAL(zgebrd,ZGEBRD) +#define LAPACK_sgbbrd LAPACK_GLOBAL(sgbbrd,SGBBRD) +#define LAPACK_dgbbrd LAPACK_GLOBAL(dgbbrd,DGBBRD) +#define LAPACK_cgbbrd LAPACK_GLOBAL(cgbbrd,CGBBRD) +#define LAPACK_zgbbrd LAPACK_GLOBAL(zgbbrd,ZGBBRD) +#define LAPACK_sorgbr LAPACK_GLOBAL(sorgbr,SORGBR) +#define LAPACK_dorgbr LAPACK_GLOBAL(dorgbr,DORGBR) +#define LAPACK_sormbr LAPACK_GLOBAL(sormbr,SORMBR) +#define LAPACK_dormbr LAPACK_GLOBAL(dormbr,DORMBR) +#define LAPACK_cungbr LAPACK_GLOBAL(cungbr,CUNGBR) +#define LAPACK_zungbr LAPACK_GLOBAL(zungbr,ZUNGBR) +#define LAPACK_cunmbr LAPACK_GLOBAL(cunmbr,CUNMBR) +#define LAPACK_zunmbr LAPACK_GLOBAL(zunmbr,ZUNMBR) +#define LAPACK_sbdsqr LAPACK_GLOBAL(sbdsqr,SBDSQR) +#define LAPACK_dbdsqr LAPACK_GLOBAL(dbdsqr,DBDSQR) +#define LAPACK_cbdsqr LAPACK_GLOBAL(cbdsqr,CBDSQR) +#define LAPACK_zbdsqr LAPACK_GLOBAL(zbdsqr,ZBDSQR) +#define LAPACK_sbdsdc LAPACK_GLOBAL(sbdsdc,SBDSDC) +#define LAPACK_dbdsdc LAPACK_GLOBAL(dbdsdc,DBDSDC) +#define LAPACK_ssytrd LAPACK_GLOBAL(ssytrd,SSYTRD) +#define LAPACK_dsytrd LAPACK_GLOBAL(dsytrd,DSYTRD) +#define LAPACK_sorgtr LAPACK_GLOBAL(sorgtr,SORGTR) +#define LAPACK_dorgtr LAPACK_GLOBAL(dorgtr,DORGTR) +#define LAPACK_sormtr LAPACK_GLOBAL(sormtr,SORMTR) +#define LAPACK_dormtr LAPACK_GLOBAL(dormtr,DORMTR) +#define LAPACK_chetrd LAPACK_GLOBAL(chetrd,CHETRD) +#define LAPACK_zhetrd LAPACK_GLOBAL(zhetrd,ZHETRD) +#define LAPACK_cungtr LAPACK_GLOBAL(cungtr,CUNGTR) +#define LAPACK_zungtr LAPACK_GLOBAL(zungtr,ZUNGTR) +#define LAPACK_cunmtr LAPACK_GLOBAL(cunmtr,CUNMTR) +#define LAPACK_zunmtr LAPACK_GLOBAL(zunmtr,ZUNMTR) +#define LAPACK_ssptrd LAPACK_GLOBAL(ssptrd,SSPTRD) +#define LAPACK_dsptrd LAPACK_GLOBAL(dsptrd,DSPTRD) +#define LAPACK_sopgtr LAPACK_GLOBAL(sopgtr,SOPGTR) +#define LAPACK_dopgtr LAPACK_GLOBAL(dopgtr,DOPGTR) +#define LAPACK_sopmtr LAPACK_GLOBAL(sopmtr,SOPMTR) +#define LAPACK_dopmtr LAPACK_GLOBAL(dopmtr,DOPMTR) +#define LAPACK_chptrd LAPACK_GLOBAL(chptrd,CHPTRD) +#define LAPACK_zhptrd LAPACK_GLOBAL(zhptrd,ZHPTRD) +#define LAPACK_cupgtr LAPACK_GLOBAL(cupgtr,CUPGTR) +#define LAPACK_zupgtr LAPACK_GLOBAL(zupgtr,ZUPGTR) +#define LAPACK_cupmtr LAPACK_GLOBAL(cupmtr,CUPMTR) +#define LAPACK_zupmtr LAPACK_GLOBAL(zupmtr,ZUPMTR) +#define LAPACK_ssbtrd LAPACK_GLOBAL(ssbtrd,SSBTRD) +#define LAPACK_dsbtrd LAPACK_GLOBAL(dsbtrd,DSBTRD) +#define LAPACK_chbtrd LAPACK_GLOBAL(chbtrd,CHBTRD) +#define LAPACK_zhbtrd LAPACK_GLOBAL(zhbtrd,ZHBTRD) +#define LAPACK_ssterf LAPACK_GLOBAL(ssterf,SSTERF) +#define LAPACK_dsterf LAPACK_GLOBAL(dsterf,DSTERF) +#define LAPACK_ssteqr LAPACK_GLOBAL(ssteqr,SSTEQR) +#define LAPACK_dsteqr LAPACK_GLOBAL(dsteqr,DSTEQR) +#define LAPACK_csteqr LAPACK_GLOBAL(csteqr,CSTEQR) +#define LAPACK_zsteqr LAPACK_GLOBAL(zsteqr,ZSTEQR) +#define LAPACK_sstemr LAPACK_GLOBAL(sstemr,SSTEMR) +#define LAPACK_dstemr LAPACK_GLOBAL(dstemr,DSTEMR) +#define LAPACK_cstemr LAPACK_GLOBAL(cstemr,CSTEMR) +#define LAPACK_zstemr LAPACK_GLOBAL(zstemr,ZSTEMR) +#define LAPACK_sstedc LAPACK_GLOBAL(sstedc,SSTEDC) +#define LAPACK_dstedc LAPACK_GLOBAL(dstedc,DSTEDC) +#define LAPACK_cstedc LAPACK_GLOBAL(cstedc,CSTEDC) +#define LAPACK_zstedc LAPACK_GLOBAL(zstedc,ZSTEDC) +#define LAPACK_sstegr LAPACK_GLOBAL(sstegr,SSTEGR) +#define LAPACK_dstegr LAPACK_GLOBAL(dstegr,DSTEGR) +#define LAPACK_cstegr LAPACK_GLOBAL(cstegr,CSTEGR) +#define LAPACK_zstegr LAPACK_GLOBAL(zstegr,ZSTEGR) +#define LAPACK_spteqr LAPACK_GLOBAL(spteqr,SPTEQR) +#define LAPACK_dpteqr LAPACK_GLOBAL(dpteqr,DPTEQR) +#define LAPACK_cpteqr LAPACK_GLOBAL(cpteqr,CPTEQR) +#define LAPACK_zpteqr LAPACK_GLOBAL(zpteqr,ZPTEQR) +#define LAPACK_sstebz LAPACK_GLOBAL(sstebz,SSTEBZ) +#define LAPACK_dstebz LAPACK_GLOBAL(dstebz,DSTEBZ) +#define LAPACK_sstein LAPACK_GLOBAL(sstein,SSTEIN) +#define LAPACK_dstein LAPACK_GLOBAL(dstein,DSTEIN) +#define LAPACK_cstein LAPACK_GLOBAL(cstein,CSTEIN) +#define LAPACK_zstein LAPACK_GLOBAL(zstein,ZSTEIN) +#define LAPACK_sdisna LAPACK_GLOBAL(sdisna,SDISNA) +#define LAPACK_ddisna LAPACK_GLOBAL(ddisna,DDISNA) +#define LAPACK_ssygst LAPACK_GLOBAL(ssygst,SSYGST) +#define LAPACK_dsygst LAPACK_GLOBAL(dsygst,DSYGST) +#define LAPACK_chegst LAPACK_GLOBAL(chegst,CHEGST) +#define LAPACK_zhegst LAPACK_GLOBAL(zhegst,ZHEGST) +#define LAPACK_sspgst LAPACK_GLOBAL(sspgst,SSPGST) +#define LAPACK_dspgst LAPACK_GLOBAL(dspgst,DSPGST) +#define LAPACK_chpgst LAPACK_GLOBAL(chpgst,CHPGST) +#define LAPACK_zhpgst LAPACK_GLOBAL(zhpgst,ZHPGST) +#define LAPACK_ssbgst LAPACK_GLOBAL(ssbgst,SSBGST) +#define LAPACK_dsbgst LAPACK_GLOBAL(dsbgst,DSBGST) +#define LAPACK_chbgst LAPACK_GLOBAL(chbgst,CHBGST) +#define LAPACK_zhbgst LAPACK_GLOBAL(zhbgst,ZHBGST) +#define LAPACK_spbstf LAPACK_GLOBAL(spbstf,SPBSTF) +#define LAPACK_dpbstf LAPACK_GLOBAL(dpbstf,DPBSTF) +#define LAPACK_cpbstf LAPACK_GLOBAL(cpbstf,CPBSTF) +#define LAPACK_zpbstf LAPACK_GLOBAL(zpbstf,ZPBSTF) +#define LAPACK_sgehrd LAPACK_GLOBAL(sgehrd,SGEHRD) +#define LAPACK_dgehrd LAPACK_GLOBAL(dgehrd,DGEHRD) +#define LAPACK_cgehrd LAPACK_GLOBAL(cgehrd,CGEHRD) +#define LAPACK_zgehrd LAPACK_GLOBAL(zgehrd,ZGEHRD) +#define LAPACK_sorghr LAPACK_GLOBAL(sorghr,SORGHR) +#define LAPACK_dorghr LAPACK_GLOBAL(dorghr,DORGHR) +#define LAPACK_sormhr LAPACK_GLOBAL(sormhr,SORMHR) +#define LAPACK_dormhr LAPACK_GLOBAL(dormhr,DORMHR) +#define LAPACK_cunghr LAPACK_GLOBAL(cunghr,CUNGHR) +#define LAPACK_zunghr LAPACK_GLOBAL(zunghr,ZUNGHR) +#define LAPACK_cunmhr LAPACK_GLOBAL(cunmhr,CUNMHR) +#define LAPACK_zunmhr LAPACK_GLOBAL(zunmhr,ZUNMHR) +#define LAPACK_sgebal LAPACK_GLOBAL(sgebal,SGEBAL) +#define LAPACK_dgebal LAPACK_GLOBAL(dgebal,DGEBAL) +#define LAPACK_cgebal LAPACK_GLOBAL(cgebal,CGEBAL) +#define LAPACK_zgebal LAPACK_GLOBAL(zgebal,ZGEBAL) +#define LAPACK_sgebak LAPACK_GLOBAL(sgebak,SGEBAK) +#define LAPACK_dgebak LAPACK_GLOBAL(dgebak,DGEBAK) +#define LAPACK_cgebak LAPACK_GLOBAL(cgebak,CGEBAK) +#define LAPACK_zgebak LAPACK_GLOBAL(zgebak,ZGEBAK) +#define LAPACK_shseqr LAPACK_GLOBAL(shseqr,SHSEQR) +#define LAPACK_dhseqr LAPACK_GLOBAL(dhseqr,DHSEQR) +#define LAPACK_chseqr LAPACK_GLOBAL(chseqr,CHSEQR) +#define LAPACK_zhseqr LAPACK_GLOBAL(zhseqr,ZHSEQR) +#define LAPACK_shsein LAPACK_GLOBAL(shsein,SHSEIN) +#define LAPACK_dhsein LAPACK_GLOBAL(dhsein,DHSEIN) +#define LAPACK_chsein LAPACK_GLOBAL(chsein,CHSEIN) +#define LAPACK_zhsein LAPACK_GLOBAL(zhsein,ZHSEIN) +#define LAPACK_strevc LAPACK_GLOBAL(strevc,STREVC) +#define LAPACK_dtrevc LAPACK_GLOBAL(dtrevc,DTREVC) +#define LAPACK_ctrevc LAPACK_GLOBAL(ctrevc,CTREVC) +#define LAPACK_ztrevc LAPACK_GLOBAL(ztrevc,ZTREVC) +#define LAPACK_strsna LAPACK_GLOBAL(strsna,STRSNA) +#define LAPACK_dtrsna LAPACK_GLOBAL(dtrsna,DTRSNA) +#define LAPACK_ctrsna LAPACK_GLOBAL(ctrsna,CTRSNA) +#define LAPACK_ztrsna LAPACK_GLOBAL(ztrsna,ZTRSNA) +#define LAPACK_strexc LAPACK_GLOBAL(strexc,STREXC) +#define LAPACK_dtrexc LAPACK_GLOBAL(dtrexc,DTREXC) +#define LAPACK_ctrexc LAPACK_GLOBAL(ctrexc,CTREXC) +#define LAPACK_ztrexc LAPACK_GLOBAL(ztrexc,ZTREXC) +#define LAPACK_strsen LAPACK_GLOBAL(strsen,STRSEN) +#define LAPACK_dtrsen LAPACK_GLOBAL(dtrsen,DTRSEN) +#define LAPACK_ctrsen LAPACK_GLOBAL(ctrsen,CTRSEN) +#define LAPACK_ztrsen LAPACK_GLOBAL(ztrsen,ZTRSEN) +#define LAPACK_strsyl LAPACK_GLOBAL(strsyl,STRSYL) +#define LAPACK_dtrsyl LAPACK_GLOBAL(dtrsyl,DTRSYL) +#define LAPACK_ctrsyl LAPACK_GLOBAL(ctrsyl,CTRSYL) +#define LAPACK_ztrsyl LAPACK_GLOBAL(ztrsyl,ZTRSYL) +#define LAPACK_sgghrd LAPACK_GLOBAL(sgghrd,SGGHRD) +#define LAPACK_dgghrd LAPACK_GLOBAL(dgghrd,DGGHRD) +#define LAPACK_cgghrd LAPACK_GLOBAL(cgghrd,CGGHRD) +#define LAPACK_zgghrd LAPACK_GLOBAL(zgghrd,ZGGHRD) +#define LAPACK_sggbal LAPACK_GLOBAL(sggbal,SGGBAL) +#define LAPACK_dggbal LAPACK_GLOBAL(dggbal,DGGBAL) +#define LAPACK_cggbal LAPACK_GLOBAL(cggbal,CGGBAL) +#define LAPACK_zggbal LAPACK_GLOBAL(zggbal,ZGGBAL) +#define LAPACK_sggbak LAPACK_GLOBAL(sggbak,SGGBAK) +#define LAPACK_dggbak LAPACK_GLOBAL(dggbak,DGGBAK) +#define LAPACK_cggbak LAPACK_GLOBAL(cggbak,CGGBAK) +#define LAPACK_zggbak LAPACK_GLOBAL(zggbak,ZGGBAK) +#define LAPACK_shgeqz LAPACK_GLOBAL(shgeqz,SHGEQZ) +#define LAPACK_dhgeqz LAPACK_GLOBAL(dhgeqz,DHGEQZ) +#define LAPACK_chgeqz LAPACK_GLOBAL(chgeqz,CHGEQZ) +#define LAPACK_zhgeqz LAPACK_GLOBAL(zhgeqz,ZHGEQZ) +#define LAPACK_stgevc LAPACK_GLOBAL(stgevc,STGEVC) +#define LAPACK_dtgevc LAPACK_GLOBAL(dtgevc,DTGEVC) +#define LAPACK_ctgevc LAPACK_GLOBAL(ctgevc,CTGEVC) +#define LAPACK_ztgevc LAPACK_GLOBAL(ztgevc,ZTGEVC) +#define LAPACK_stgexc LAPACK_GLOBAL(stgexc,STGEXC) +#define LAPACK_dtgexc LAPACK_GLOBAL(dtgexc,DTGEXC) +#define LAPACK_ctgexc LAPACK_GLOBAL(ctgexc,CTGEXC) +#define LAPACK_ztgexc LAPACK_GLOBAL(ztgexc,ZTGEXC) +#define LAPACK_stgsen LAPACK_GLOBAL(stgsen,STGSEN) +#define LAPACK_dtgsen LAPACK_GLOBAL(dtgsen,DTGSEN) +#define LAPACK_ctgsen LAPACK_GLOBAL(ctgsen,CTGSEN) +#define LAPACK_ztgsen LAPACK_GLOBAL(ztgsen,ZTGSEN) +#define LAPACK_stgsyl LAPACK_GLOBAL(stgsyl,STGSYL) +#define LAPACK_dtgsyl LAPACK_GLOBAL(dtgsyl,DTGSYL) +#define LAPACK_ctgsyl LAPACK_GLOBAL(ctgsyl,CTGSYL) +#define LAPACK_ztgsyl LAPACK_GLOBAL(ztgsyl,ZTGSYL) +#define LAPACK_stgsna LAPACK_GLOBAL(stgsna,STGSNA) +#define LAPACK_dtgsna LAPACK_GLOBAL(dtgsna,DTGSNA) +#define LAPACK_ctgsna LAPACK_GLOBAL(ctgsna,CTGSNA) +#define LAPACK_ztgsna LAPACK_GLOBAL(ztgsna,ZTGSNA) +#define LAPACK_sggsvp LAPACK_GLOBAL(sggsvp,SGGSVP) +#define LAPACK_dggsvp LAPACK_GLOBAL(dggsvp,DGGSVP) +#define LAPACK_cggsvp LAPACK_GLOBAL(cggsvp,CGGSVP) +#define LAPACK_zggsvp LAPACK_GLOBAL(zggsvp,ZGGSVP) +#define LAPACK_stgsja LAPACK_GLOBAL(stgsja,STGSJA) +#define LAPACK_dtgsja LAPACK_GLOBAL(dtgsja,DTGSJA) +#define LAPACK_ctgsja LAPACK_GLOBAL(ctgsja,CTGSJA) +#define LAPACK_ztgsja LAPACK_GLOBAL(ztgsja,ZTGSJA) +#define LAPACK_sgels LAPACK_GLOBAL(sgels,SGELS) +#define LAPACK_dgels LAPACK_GLOBAL(dgels,DGELS) +#define LAPACK_cgels LAPACK_GLOBAL(cgels,CGELS) +#define LAPACK_zgels LAPACK_GLOBAL(zgels,ZGELS) +#define LAPACK_sgelsy LAPACK_GLOBAL(sgelsy,SGELSY) +#define LAPACK_dgelsy LAPACK_GLOBAL(dgelsy,DGELSY) +#define LAPACK_cgelsy LAPACK_GLOBAL(cgelsy,CGELSY) +#define LAPACK_zgelsy LAPACK_GLOBAL(zgelsy,ZGELSY) +#define LAPACK_sgelss LAPACK_GLOBAL(sgelss,SGELSS) +#define LAPACK_dgelss LAPACK_GLOBAL(dgelss,DGELSS) +#define LAPACK_cgelss LAPACK_GLOBAL(cgelss,CGELSS) +#define LAPACK_zgelss LAPACK_GLOBAL(zgelss,ZGELSS) +#define LAPACK_sgelsd LAPACK_GLOBAL(sgelsd,SGELSD) +#define LAPACK_dgelsd LAPACK_GLOBAL(dgelsd,DGELSD) +#define LAPACK_cgelsd LAPACK_GLOBAL(cgelsd,CGELSD) +#define LAPACK_zgelsd LAPACK_GLOBAL(zgelsd,ZGELSD) +#define LAPACK_sgglse LAPACK_GLOBAL(sgglse,SGGLSE) +#define LAPACK_dgglse LAPACK_GLOBAL(dgglse,DGGLSE) +#define LAPACK_cgglse LAPACK_GLOBAL(cgglse,CGGLSE) +#define LAPACK_zgglse LAPACK_GLOBAL(zgglse,ZGGLSE) +#define LAPACK_sggglm LAPACK_GLOBAL(sggglm,SGGGLM) +#define LAPACK_dggglm LAPACK_GLOBAL(dggglm,DGGGLM) +#define LAPACK_cggglm LAPACK_GLOBAL(cggglm,CGGGLM) +#define LAPACK_zggglm LAPACK_GLOBAL(zggglm,ZGGGLM) +#define LAPACK_ssyev LAPACK_GLOBAL(ssyev,SSYEV) +#define LAPACK_dsyev LAPACK_GLOBAL(dsyev,DSYEV) +#define LAPACK_cheev LAPACK_GLOBAL(cheev,CHEEV) +#define LAPACK_zheev LAPACK_GLOBAL(zheev,ZHEEV) +#define LAPACK_ssyevd LAPACK_GLOBAL(ssyevd,SSYEVD) +#define LAPACK_dsyevd LAPACK_GLOBAL(dsyevd,DSYEVD) +#define LAPACK_cheevd LAPACK_GLOBAL(cheevd,CHEEVD) +#define LAPACK_zheevd LAPACK_GLOBAL(zheevd,ZHEEVD) +#define LAPACK_ssyevx LAPACK_GLOBAL(ssyevx,SSYEVX) +#define LAPACK_dsyevx LAPACK_GLOBAL(dsyevx,DSYEVX) +#define LAPACK_cheevx LAPACK_GLOBAL(cheevx,CHEEVX) +#define LAPACK_zheevx LAPACK_GLOBAL(zheevx,ZHEEVX) +#define LAPACK_ssyevr LAPACK_GLOBAL(ssyevr,SSYEVR) +#define LAPACK_dsyevr LAPACK_GLOBAL(dsyevr,DSYEVR) +#define LAPACK_cheevr LAPACK_GLOBAL(cheevr,CHEEVR) +#define LAPACK_zheevr LAPACK_GLOBAL(zheevr,ZHEEVR) +#define LAPACK_sspev LAPACK_GLOBAL(sspev,SSPEV) +#define LAPACK_dspev LAPACK_GLOBAL(dspev,DSPEV) +#define LAPACK_chpev LAPACK_GLOBAL(chpev,CHPEV) +#define LAPACK_zhpev LAPACK_GLOBAL(zhpev,ZHPEV) +#define LAPACK_sspevd LAPACK_GLOBAL(sspevd,SSPEVD) +#define LAPACK_dspevd LAPACK_GLOBAL(dspevd,DSPEVD) +#define LAPACK_chpevd LAPACK_GLOBAL(chpevd,CHPEVD) +#define LAPACK_zhpevd LAPACK_GLOBAL(zhpevd,ZHPEVD) +#define LAPACK_sspevx LAPACK_GLOBAL(sspevx,SSPEVX) +#define LAPACK_dspevx LAPACK_GLOBAL(dspevx,DSPEVX) +#define LAPACK_chpevx LAPACK_GLOBAL(chpevx,CHPEVX) +#define LAPACK_zhpevx LAPACK_GLOBAL(zhpevx,ZHPEVX) +#define LAPACK_ssbev LAPACK_GLOBAL(ssbev,SSBEV) +#define LAPACK_dsbev LAPACK_GLOBAL(dsbev,DSBEV) +#define LAPACK_chbev LAPACK_GLOBAL(chbev,CHBEV) +#define LAPACK_zhbev LAPACK_GLOBAL(zhbev,ZHBEV) +#define LAPACK_ssbevd LAPACK_GLOBAL(ssbevd,SSBEVD) +#define LAPACK_dsbevd LAPACK_GLOBAL(dsbevd,DSBEVD) +#define LAPACK_chbevd LAPACK_GLOBAL(chbevd,CHBEVD) +#define LAPACK_zhbevd LAPACK_GLOBAL(zhbevd,ZHBEVD) +#define LAPACK_ssbevx LAPACK_GLOBAL(ssbevx,SSBEVX) +#define LAPACK_dsbevx LAPACK_GLOBAL(dsbevx,DSBEVX) +#define LAPACK_chbevx LAPACK_GLOBAL(chbevx,CHBEVX) +#define LAPACK_zhbevx LAPACK_GLOBAL(zhbevx,ZHBEVX) +#define LAPACK_sstev LAPACK_GLOBAL(sstev,SSTEV) +#define LAPACK_dstev LAPACK_GLOBAL(dstev,DSTEV) +#define LAPACK_sstevd LAPACK_GLOBAL(sstevd,SSTEVD) +#define LAPACK_dstevd LAPACK_GLOBAL(dstevd,DSTEVD) +#define LAPACK_sstevx LAPACK_GLOBAL(sstevx,SSTEVX) +#define LAPACK_dstevx LAPACK_GLOBAL(dstevx,DSTEVX) +#define LAPACK_sstevr LAPACK_GLOBAL(sstevr,SSTEVR) +#define LAPACK_dstevr LAPACK_GLOBAL(dstevr,DSTEVR) +#define LAPACK_sgees LAPACK_GLOBAL(sgees,SGEES) +#define LAPACK_dgees LAPACK_GLOBAL(dgees,DGEES) +#define LAPACK_cgees LAPACK_GLOBAL(cgees,CGEES) +#define LAPACK_zgees LAPACK_GLOBAL(zgees,ZGEES) +#define LAPACK_sgeesx LAPACK_GLOBAL(sgeesx,SGEESX) +#define LAPACK_dgeesx LAPACK_GLOBAL(dgeesx,DGEESX) +#define LAPACK_cgeesx LAPACK_GLOBAL(cgeesx,CGEESX) +#define LAPACK_zgeesx LAPACK_GLOBAL(zgeesx,ZGEESX) +#define LAPACK_sgeev LAPACK_GLOBAL(sgeev,SGEEV) +#define LAPACK_dgeev LAPACK_GLOBAL(dgeev,DGEEV) +#define LAPACK_cgeev LAPACK_GLOBAL(cgeev,CGEEV) +#define LAPACK_zgeev LAPACK_GLOBAL(zgeev,ZGEEV) +#define LAPACK_sgeevx LAPACK_GLOBAL(sgeevx,SGEEVX) +#define LAPACK_dgeevx LAPACK_GLOBAL(dgeevx,DGEEVX) +#define LAPACK_cgeevx LAPACK_GLOBAL(cgeevx,CGEEVX) +#define LAPACK_zgeevx LAPACK_GLOBAL(zgeevx,ZGEEVX) +#define LAPACK_sgesvd LAPACK_GLOBAL(sgesvd,SGESVD) +#define LAPACK_dgesvd LAPACK_GLOBAL(dgesvd,DGESVD) +#define LAPACK_cgesvd LAPACK_GLOBAL(cgesvd,CGESVD) +#define LAPACK_zgesvd LAPACK_GLOBAL(zgesvd,ZGESVD) +#define LAPACK_sgesdd LAPACK_GLOBAL(sgesdd,SGESDD) +#define LAPACK_dgesdd LAPACK_GLOBAL(dgesdd,DGESDD) +#define LAPACK_cgesdd LAPACK_GLOBAL(cgesdd,CGESDD) +#define LAPACK_zgesdd LAPACK_GLOBAL(zgesdd,ZGESDD) +#define LAPACK_dgejsv LAPACK_GLOBAL(dgejsv,DGEJSV) +#define LAPACK_sgejsv LAPACK_GLOBAL(sgejsv,SGEJSV) +#define LAPACK_dgesvj LAPACK_GLOBAL(dgesvj,DGESVJ) +#define LAPACK_sgesvj LAPACK_GLOBAL(sgesvj,SGESVJ) +#define LAPACK_sggsvd LAPACK_GLOBAL(sggsvd,SGGSVD) +#define LAPACK_dggsvd LAPACK_GLOBAL(dggsvd,DGGSVD) +#define LAPACK_cggsvd LAPACK_GLOBAL(cggsvd,CGGSVD) +#define LAPACK_zggsvd LAPACK_GLOBAL(zggsvd,ZGGSVD) +#define LAPACK_ssygv LAPACK_GLOBAL(ssygv,SSYGV) +#define LAPACK_dsygv LAPACK_GLOBAL(dsygv,DSYGV) +#define LAPACK_chegv LAPACK_GLOBAL(chegv,CHEGV) +#define LAPACK_zhegv LAPACK_GLOBAL(zhegv,ZHEGV) +#define LAPACK_ssygvd LAPACK_GLOBAL(ssygvd,SSYGVD) +#define LAPACK_dsygvd LAPACK_GLOBAL(dsygvd,DSYGVD) +#define LAPACK_chegvd LAPACK_GLOBAL(chegvd,CHEGVD) +#define LAPACK_zhegvd LAPACK_GLOBAL(zhegvd,ZHEGVD) +#define LAPACK_ssygvx LAPACK_GLOBAL(ssygvx,SSYGVX) +#define LAPACK_dsygvx LAPACK_GLOBAL(dsygvx,DSYGVX) +#define LAPACK_chegvx LAPACK_GLOBAL(chegvx,CHEGVX) +#define LAPACK_zhegvx LAPACK_GLOBAL(zhegvx,ZHEGVX) +#define LAPACK_sspgv LAPACK_GLOBAL(sspgv,SSPGV) +#define LAPACK_dspgv LAPACK_GLOBAL(dspgv,DSPGV) +#define LAPACK_chpgv LAPACK_GLOBAL(chpgv,CHPGV) +#define LAPACK_zhpgv LAPACK_GLOBAL(zhpgv,ZHPGV) +#define LAPACK_sspgvd LAPACK_GLOBAL(sspgvd,SSPGVD) +#define LAPACK_dspgvd LAPACK_GLOBAL(dspgvd,DSPGVD) +#define LAPACK_chpgvd LAPACK_GLOBAL(chpgvd,CHPGVD) +#define LAPACK_zhpgvd LAPACK_GLOBAL(zhpgvd,ZHPGVD) +#define LAPACK_sspgvx LAPACK_GLOBAL(sspgvx,SSPGVX) +#define LAPACK_dspgvx LAPACK_GLOBAL(dspgvx,DSPGVX) +#define LAPACK_chpgvx LAPACK_GLOBAL(chpgvx,CHPGVX) +#define LAPACK_zhpgvx LAPACK_GLOBAL(zhpgvx,ZHPGVX) +#define LAPACK_ssbgv LAPACK_GLOBAL(ssbgv,SSBGV) +#define LAPACK_dsbgv LAPACK_GLOBAL(dsbgv,DSBGV) +#define LAPACK_chbgv LAPACK_GLOBAL(chbgv,CHBGV) +#define LAPACK_zhbgv LAPACK_GLOBAL(zhbgv,ZHBGV) +#define LAPACK_ssbgvd LAPACK_GLOBAL(ssbgvd,SSBGVD) +#define LAPACK_dsbgvd LAPACK_GLOBAL(dsbgvd,DSBGVD) +#define LAPACK_chbgvd LAPACK_GLOBAL(chbgvd,CHBGVD) +#define LAPACK_zhbgvd LAPACK_GLOBAL(zhbgvd,ZHBGVD) +#define LAPACK_ssbgvx LAPACK_GLOBAL(ssbgvx,SSBGVX) +#define LAPACK_dsbgvx LAPACK_GLOBAL(dsbgvx,DSBGVX) +#define LAPACK_chbgvx LAPACK_GLOBAL(chbgvx,CHBGVX) +#define LAPACK_zhbgvx LAPACK_GLOBAL(zhbgvx,ZHBGVX) +#define LAPACK_sgges LAPACK_GLOBAL(sgges,SGGES) +#define LAPACK_dgges LAPACK_GLOBAL(dgges,DGGES) +#define LAPACK_cgges LAPACK_GLOBAL(cgges,CGGES) +#define LAPACK_zgges LAPACK_GLOBAL(zgges,ZGGES) +#define LAPACK_sggesx LAPACK_GLOBAL(sggesx,SGGESX) +#define LAPACK_dggesx LAPACK_GLOBAL(dggesx,DGGESX) +#define LAPACK_cggesx LAPACK_GLOBAL(cggesx,CGGESX) +#define LAPACK_zggesx LAPACK_GLOBAL(zggesx,ZGGESX) +#define LAPACK_sggev LAPACK_GLOBAL(sggev,SGGEV) +#define LAPACK_dggev LAPACK_GLOBAL(dggev,DGGEV) +#define LAPACK_cggev LAPACK_GLOBAL(cggev,CGGEV) +#define LAPACK_zggev LAPACK_GLOBAL(zggev,ZGGEV) +#define LAPACK_sggevx LAPACK_GLOBAL(sggevx,SGGEVX) +#define LAPACK_dggevx LAPACK_GLOBAL(dggevx,DGGEVX) +#define LAPACK_cggevx LAPACK_GLOBAL(cggevx,CGGEVX) +#define LAPACK_zggevx LAPACK_GLOBAL(zggevx,ZGGEVX) +#define LAPACK_dsfrk LAPACK_GLOBAL(dsfrk,DSFRK) +#define LAPACK_ssfrk LAPACK_GLOBAL(ssfrk,SSFRK) +#define LAPACK_zhfrk LAPACK_GLOBAL(zhfrk,ZHFRK) +#define LAPACK_chfrk LAPACK_GLOBAL(chfrk,CHFRK) +#define LAPACK_dtfsm LAPACK_GLOBAL(dtfsm,DTFSM) +#define LAPACK_stfsm LAPACK_GLOBAL(stfsm,STFSM) +#define LAPACK_ztfsm LAPACK_GLOBAL(ztfsm,ZTFSM) +#define LAPACK_ctfsm LAPACK_GLOBAL(ctfsm,CTFSM) +#define LAPACK_dtfttp LAPACK_GLOBAL(dtfttp,DTFTTP) +#define LAPACK_stfttp LAPACK_GLOBAL(stfttp,STFTTP) +#define LAPACK_ztfttp LAPACK_GLOBAL(ztfttp,ZTFTTP) +#define LAPACK_ctfttp LAPACK_GLOBAL(ctfttp,CTFTTP) +#define LAPACK_dtfttr LAPACK_GLOBAL(dtfttr,DTFTTR) +#define LAPACK_stfttr LAPACK_GLOBAL(stfttr,STFTTR) +#define LAPACK_ztfttr LAPACK_GLOBAL(ztfttr,ZTFTTR) +#define LAPACK_ctfttr LAPACK_GLOBAL(ctfttr,CTFTTR) +#define LAPACK_dtpttf LAPACK_GLOBAL(dtpttf,DTPTTF) +#define LAPACK_stpttf LAPACK_GLOBAL(stpttf,STPTTF) +#define LAPACK_ztpttf LAPACK_GLOBAL(ztpttf,ZTPTTF) +#define LAPACK_ctpttf LAPACK_GLOBAL(ctpttf,CTPTTF) +#define LAPACK_dtpttr LAPACK_GLOBAL(dtpttr,DTPTTR) +#define LAPACK_stpttr LAPACK_GLOBAL(stpttr,STPTTR) +#define LAPACK_ztpttr LAPACK_GLOBAL(ztpttr,ZTPTTR) +#define LAPACK_ctpttr LAPACK_GLOBAL(ctpttr,CTPTTR) +#define LAPACK_dtrttf LAPACK_GLOBAL(dtrttf,DTRTTF) +#define LAPACK_strttf LAPACK_GLOBAL(strttf,STRTTF) +#define LAPACK_ztrttf LAPACK_GLOBAL(ztrttf,ZTRTTF) +#define LAPACK_ctrttf LAPACK_GLOBAL(ctrttf,CTRTTF) +#define LAPACK_dtrttp LAPACK_GLOBAL(dtrttp,DTRTTP) +#define LAPACK_strttp LAPACK_GLOBAL(strttp,STRTTP) +#define LAPACK_ztrttp LAPACK_GLOBAL(ztrttp,ZTRTTP) +#define LAPACK_ctrttp LAPACK_GLOBAL(ctrttp,CTRTTP) +#define LAPACK_sgeqrfp LAPACK_GLOBAL(sgeqrfp,SGEQRFP) +#define LAPACK_dgeqrfp LAPACK_GLOBAL(dgeqrfp,DGEQRFP) +#define LAPACK_cgeqrfp LAPACK_GLOBAL(cgeqrfp,CGEQRFP) +#define LAPACK_zgeqrfp LAPACK_GLOBAL(zgeqrfp,ZGEQRFP) +#define LAPACK_clacgv LAPACK_GLOBAL(clacgv,CLACGV) +#define LAPACK_zlacgv LAPACK_GLOBAL(zlacgv,ZLACGV) +#define LAPACK_slarnv LAPACK_GLOBAL(slarnv,SLARNV) +#define LAPACK_dlarnv LAPACK_GLOBAL(dlarnv,DLARNV) +#define LAPACK_clarnv LAPACK_GLOBAL(clarnv,CLARNV) +#define LAPACK_zlarnv LAPACK_GLOBAL(zlarnv,ZLARNV) +#define LAPACK_sgeqr2 LAPACK_GLOBAL(sgeqr2,SGEQR2) +#define LAPACK_dgeqr2 LAPACK_GLOBAL(dgeqr2,DGEQR2) +#define LAPACK_cgeqr2 LAPACK_GLOBAL(cgeqr2,CGEQR2) +#define LAPACK_zgeqr2 LAPACK_GLOBAL(zgeqr2,ZGEQR2) +#define LAPACK_slacpy LAPACK_GLOBAL(slacpy,SLACPY) +#define LAPACK_dlacpy LAPACK_GLOBAL(dlacpy,DLACPY) +#define LAPACK_clacpy LAPACK_GLOBAL(clacpy,CLACPY) +#define LAPACK_zlacpy LAPACK_GLOBAL(zlacpy,ZLACPY) +#define LAPACK_sgetf2 LAPACK_GLOBAL(sgetf2,SGETF2) +#define LAPACK_dgetf2 LAPACK_GLOBAL(dgetf2,DGETF2) +#define LAPACK_cgetf2 LAPACK_GLOBAL(cgetf2,CGETF2) +#define LAPACK_zgetf2 LAPACK_GLOBAL(zgetf2,ZGETF2) +#define LAPACK_slaswp LAPACK_GLOBAL(slaswp,SLASWP) +#define LAPACK_dlaswp LAPACK_GLOBAL(dlaswp,DLASWP) +#define LAPACK_claswp LAPACK_GLOBAL(claswp,CLASWP) +#define LAPACK_zlaswp LAPACK_GLOBAL(zlaswp,ZLASWP) +#define LAPACK_slange LAPACK_GLOBAL(slange,SLANGE) +#define LAPACK_dlange LAPACK_GLOBAL(dlange,DLANGE) +#define LAPACK_clange LAPACK_GLOBAL(clange,CLANGE) +#define LAPACK_zlange LAPACK_GLOBAL(zlange,ZLANGE) +#define LAPACK_clanhe LAPACK_GLOBAL(clanhe,CLANHE) +#define LAPACK_zlanhe LAPACK_GLOBAL(zlanhe,ZLANHE) +#define LAPACK_slansy LAPACK_GLOBAL(slansy,SLANSY) +#define LAPACK_dlansy LAPACK_GLOBAL(dlansy,DLANSY) +#define LAPACK_clansy LAPACK_GLOBAL(clansy,CLANSY) +#define LAPACK_zlansy LAPACK_GLOBAL(zlansy,ZLANSY) +#define LAPACK_slantr LAPACK_GLOBAL(slantr,SLANTR) +#define LAPACK_dlantr LAPACK_GLOBAL(dlantr,DLANTR) +#define LAPACK_clantr LAPACK_GLOBAL(clantr,CLANTR) +#define LAPACK_zlantr LAPACK_GLOBAL(zlantr,ZLANTR) +#define LAPACK_slamch LAPACK_GLOBAL(slamch,SLAMCH) +#define LAPACK_dlamch LAPACK_GLOBAL(dlamch,DLAMCH) +#define LAPACK_sgelq2 LAPACK_GLOBAL(sgelq2,SGELQ2) +#define LAPACK_dgelq2 LAPACK_GLOBAL(dgelq2,DGELQ2) +#define LAPACK_cgelq2 LAPACK_GLOBAL(cgelq2,CGELQ2) +#define LAPACK_zgelq2 LAPACK_GLOBAL(zgelq2,ZGELQ2) +#define LAPACK_slarfb LAPACK_GLOBAL(slarfb,SLARFB) +#define LAPACK_dlarfb LAPACK_GLOBAL(dlarfb,DLARFB) +#define LAPACK_clarfb LAPACK_GLOBAL(clarfb,CLARFB) +#define LAPACK_zlarfb LAPACK_GLOBAL(zlarfb,ZLARFB) +#define LAPACK_slarfg LAPACK_GLOBAL(slarfg,SLARFG) +#define LAPACK_dlarfg LAPACK_GLOBAL(dlarfg,DLARFG) +#define LAPACK_clarfg LAPACK_GLOBAL(clarfg,CLARFG) +#define LAPACK_zlarfg LAPACK_GLOBAL(zlarfg,ZLARFG) +#define LAPACK_slarft LAPACK_GLOBAL(slarft,SLARFT) +#define LAPACK_dlarft LAPACK_GLOBAL(dlarft,DLARFT) +#define LAPACK_clarft LAPACK_GLOBAL(clarft,CLARFT) +#define LAPACK_zlarft LAPACK_GLOBAL(zlarft,ZLARFT) +#define LAPACK_slarfx LAPACK_GLOBAL(slarfx,SLARFX) +#define LAPACK_dlarfx LAPACK_GLOBAL(dlarfx,DLARFX) +#define LAPACK_clarfx LAPACK_GLOBAL(clarfx,CLARFX) +#define LAPACK_zlarfx LAPACK_GLOBAL(zlarfx,ZLARFX) +#define LAPACK_slatms LAPACK_GLOBAL(slatms,SLATMS) +#define LAPACK_dlatms LAPACK_GLOBAL(dlatms,DLATMS) +#define LAPACK_clatms LAPACK_GLOBAL(clatms,CLATMS) +#define LAPACK_zlatms LAPACK_GLOBAL(zlatms,ZLATMS) +#define LAPACK_slag2d LAPACK_GLOBAL(slag2d,SLAG2D) +#define LAPACK_dlag2s LAPACK_GLOBAL(dlag2s,DLAG2S) +#define LAPACK_clag2z LAPACK_GLOBAL(clag2z,CLAG2Z) +#define LAPACK_zlag2c LAPACK_GLOBAL(zlag2c,ZLAG2C) +#define LAPACK_slauum LAPACK_GLOBAL(slauum,SLAUUM) +#define LAPACK_dlauum LAPACK_GLOBAL(dlauum,DLAUUM) +#define LAPACK_clauum LAPACK_GLOBAL(clauum,CLAUUM) +#define LAPACK_zlauum LAPACK_GLOBAL(zlauum,ZLAUUM) +#define LAPACK_slagge LAPACK_GLOBAL(slagge,SLAGGE) +#define LAPACK_dlagge LAPACK_GLOBAL(dlagge,DLAGGE) +#define LAPACK_clagge LAPACK_GLOBAL(clagge,CLAGGE) +#define LAPACK_zlagge LAPACK_GLOBAL(zlagge,ZLAGGE) +#define LAPACK_slaset LAPACK_GLOBAL(slaset,SLASET) +#define LAPACK_dlaset LAPACK_GLOBAL(dlaset,DLASET) +#define LAPACK_claset LAPACK_GLOBAL(claset,CLASET) +#define LAPACK_zlaset LAPACK_GLOBAL(zlaset,ZLASET) +#define LAPACK_slasrt LAPACK_GLOBAL(slasrt,SLASRT) +#define LAPACK_dlasrt LAPACK_GLOBAL(dlasrt,DLASRT) +#define LAPACK_slagsy LAPACK_GLOBAL(slagsy,SLAGSY) +#define LAPACK_dlagsy LAPACK_GLOBAL(dlagsy,DLAGSY) +#define LAPACK_clagsy LAPACK_GLOBAL(clagsy,CLAGSY) +#define LAPACK_zlagsy LAPACK_GLOBAL(zlagsy,ZLAGSY) +#define LAPACK_claghe LAPACK_GLOBAL(claghe,CLAGHE) +#define LAPACK_zlaghe LAPACK_GLOBAL(zlaghe,ZLAGHE) +#define LAPACK_slapmr LAPACK_GLOBAL(slapmr,SLAPMR) +#define LAPACK_dlapmr LAPACK_GLOBAL(dlapmr,DLAPMR) +#define LAPACK_clapmr LAPACK_GLOBAL(clapmr,CLAPMR) +#define LAPACK_zlapmr LAPACK_GLOBAL(zlapmr,ZLAPMR) +#define LAPACK_slapy2 LAPACK_GLOBAL(slapy2,SLAPY2) +#define LAPACK_dlapy2 LAPACK_GLOBAL(dlapy2,DLAPY2) +#define LAPACK_slapy3 LAPACK_GLOBAL(slapy3,SLAPY3) +#define LAPACK_dlapy3 LAPACK_GLOBAL(dlapy3,DLAPY3) +#define LAPACK_slartgp LAPACK_GLOBAL(slartgp,SLARTGP) +#define LAPACK_dlartgp LAPACK_GLOBAL(dlartgp,DLARTGP) +#define LAPACK_slartgs LAPACK_GLOBAL(slartgs,SLARTGS) +#define LAPACK_dlartgs LAPACK_GLOBAL(dlartgs,DLARTGS) +// LAPACK 3.3.0 +#define LAPACK_cbbcsd LAPACK_GLOBAL(cbbcsd,CBBCSD) +#define LAPACK_cheswapr LAPACK_GLOBAL(cheswapr,CHESWAPR) +#define LAPACK_chetri2 LAPACK_GLOBAL(chetri2,CHETRI2) +#define LAPACK_chetri2x LAPACK_GLOBAL(chetri2x,CHETRI2X) +#define LAPACK_chetrs2 LAPACK_GLOBAL(chetrs2,CHETRS2) +#define LAPACK_csyconv LAPACK_GLOBAL(csyconv,CSYCONV) +#define LAPACK_csyswapr LAPACK_GLOBAL(csyswapr,CSYSWAPR) +#define LAPACK_csytri2 LAPACK_GLOBAL(csytri2,CSYTRI2) +#define LAPACK_csytri2x LAPACK_GLOBAL(csytri2x,CSYTRI2X) +#define LAPACK_csytrs2 LAPACK_GLOBAL(csytrs2,CSYTRS2) +#define LAPACK_cunbdb LAPACK_GLOBAL(cunbdb,CUNBDB) +#define LAPACK_cuncsd LAPACK_GLOBAL(cuncsd,CUNCSD) +#define LAPACK_dbbcsd LAPACK_GLOBAL(dbbcsd,DBBCSD) +#define LAPACK_dorbdb LAPACK_GLOBAL(dorbdb,DORBDB) +#define LAPACK_dorcsd LAPACK_GLOBAL(dorcsd,DORCSD) +#define LAPACK_dsyconv LAPACK_GLOBAL(dsyconv,DSYCONV) +#define LAPACK_dsyswapr LAPACK_GLOBAL(dsyswapr,DSYSWAPR) +#define LAPACK_dsytri2 LAPACK_GLOBAL(dsytri2,DSYTRI2) +#define LAPACK_dsytri2x LAPACK_GLOBAL(dsytri2x,DSYTRI2X) +#define LAPACK_dsytrs2 LAPACK_GLOBAL(dsytrs2,DSYTRS2) +#define LAPACK_sbbcsd LAPACK_GLOBAL(sbbcsd,SBBCSD) +#define LAPACK_sorbdb LAPACK_GLOBAL(sorbdb,SORBDB) +#define LAPACK_sorcsd LAPACK_GLOBAL(sorcsd,SORCSD) +#define LAPACK_ssyconv LAPACK_GLOBAL(ssyconv,SSYCONV) +#define LAPACK_ssyswapr LAPACK_GLOBAL(ssyswapr,SSYSWAPR) +#define LAPACK_ssytri2 LAPACK_GLOBAL(ssytri2,SSYTRI2) +#define LAPACK_ssytri2x LAPACK_GLOBAL(ssytri2x,SSYTRI2X) +#define LAPACK_ssytrs2 LAPACK_GLOBAL(ssytrs2,SSYTRS2) +#define LAPACK_zbbcsd LAPACK_GLOBAL(zbbcsd,ZBBCSD) +#define LAPACK_zheswapr LAPACK_GLOBAL(zheswapr,ZHESWAPR) +#define LAPACK_zhetri2 LAPACK_GLOBAL(zhetri2,ZHETRI2) +#define LAPACK_zhetri2x LAPACK_GLOBAL(zhetri2x,ZHETRI2X) +#define LAPACK_zhetrs2 LAPACK_GLOBAL(zhetrs2,ZHETRS2) +#define LAPACK_zsyconv LAPACK_GLOBAL(zsyconv,ZSYCONV) +#define LAPACK_zsyswapr LAPACK_GLOBAL(zsyswapr,ZSYSWAPR) +#define LAPACK_zsytri2 LAPACK_GLOBAL(zsytri2,ZSYTRI2) +#define LAPACK_zsytri2x LAPACK_GLOBAL(zsytri2x,ZSYTRI2X) +#define LAPACK_zsytrs2 LAPACK_GLOBAL(zsytrs2,ZSYTRS2) +#define LAPACK_zunbdb LAPACK_GLOBAL(zunbdb,ZUNBDB) +#define LAPACK_zuncsd LAPACK_GLOBAL(zuncsd,ZUNCSD) +// LAPACK 3.4.0 +#define LAPACK_sgemqrt LAPACK_GLOBAL(sgemqrt,SGEMQRT) +#define LAPACK_dgemqrt LAPACK_GLOBAL(dgemqrt,DGEMQRT) +#define LAPACK_cgemqrt LAPACK_GLOBAL(cgemqrt,CGEMQRT) +#define LAPACK_zgemqrt LAPACK_GLOBAL(zgemqrt,ZGEMQRT) +#define LAPACK_sgeqrt LAPACK_GLOBAL(sgeqrt,SGEQRT) +#define LAPACK_dgeqrt LAPACK_GLOBAL(dgeqrt,DGEQRT) +#define LAPACK_cgeqrt LAPACK_GLOBAL(cgeqrt,CGEQRT) +#define LAPACK_zgeqrt LAPACK_GLOBAL(zgeqrt,ZGEQRT) +#define LAPACK_sgeqrt2 LAPACK_GLOBAL(sgeqrt2,SGEQRT2) +#define LAPACK_dgeqrt2 LAPACK_GLOBAL(dgeqrt2,DGEQRT2) +#define LAPACK_cgeqrt2 LAPACK_GLOBAL(cgeqrt2,CGEQRT2) +#define LAPACK_zgeqrt2 LAPACK_GLOBAL(zgeqrt2,ZGEQRT2) +#define LAPACK_sgeqrt3 LAPACK_GLOBAL(sgeqrt3,SGEQRT3) +#define LAPACK_dgeqrt3 LAPACK_GLOBAL(dgeqrt3,DGEQRT3) +#define LAPACK_cgeqrt3 LAPACK_GLOBAL(cgeqrt3,CGEQRT3) +#define LAPACK_zgeqrt3 LAPACK_GLOBAL(zgeqrt3,ZGEQRT3) +#define LAPACK_stpmqrt LAPACK_GLOBAL(stpmqrt,STPMQRT) +#define LAPACK_dtpmqrt LAPACK_GLOBAL(dtpmqrt,DTPMQRT) +#define LAPACK_ctpmqrt LAPACK_GLOBAL(ctpmqrt,CTPMQRT) +#define LAPACK_ztpmqrt LAPACK_GLOBAL(ztpmqrt,ZTPMQRT) +#define LAPACK_dtpqrt LAPACK_GLOBAL(dtpqrt,DTPQRT) +#define LAPACK_ctpqrt LAPACK_GLOBAL(ctpqrt,CTPQRT) +#define LAPACK_ztpqrt LAPACK_GLOBAL(ztpqrt,ZTPQRT) +#define LAPACK_stpqrt2 LAPACK_GLOBAL(stpqrt2,STPQRT2) +#define LAPACK_dtpqrt2 LAPACK_GLOBAL(dtpqrt2,DTPQRT2) +#define LAPACK_ctpqrt2 LAPACK_GLOBAL(ctpqrt2,CTPQRT2) +#define LAPACK_ztpqrt2 LAPACK_GLOBAL(ztpqrt2,ZTPQRT2) +#define LAPACK_stprfb LAPACK_GLOBAL(stprfb,STPRFB) +#define LAPACK_dtprfb LAPACK_GLOBAL(dtprfb,DTPRFB) +#define LAPACK_ctprfb LAPACK_GLOBAL(ctprfb,CTPRFB) +#define LAPACK_ztprfb LAPACK_GLOBAL(ztprfb,ZTPRFB) +// LAPACK 3.X.X +#define LAPACK_csyr LAPACK_GLOBAL(csyr,CSYR) +#define LAPACK_zsyr LAPACK_GLOBAL(zsyr,ZSYR) + + +void LAPACK_sgetrf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_dgetrf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_cgetrf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, lapack_int *info ); +void LAPACK_zgetrf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, lapack_int *info ); +void LAPACK_sgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, float* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_dgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, double* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_cgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_complex_float* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_zgbtrf( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_complex_double* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_sgttrf( lapack_int* n, float* dl, float* d, float* du, float* du2, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_dgttrf( lapack_int* n, double* dl, double* d, double* du, + double* du2, lapack_int* ipiv, lapack_int *info ); +void LAPACK_cgttrf( lapack_int* n, lapack_complex_float* dl, + lapack_complex_float* d, lapack_complex_float* du, + lapack_complex_float* du2, lapack_int* ipiv, + lapack_int *info ); +void LAPACK_zgttrf( lapack_int* n, lapack_complex_double* dl, + lapack_complex_double* d, lapack_complex_double* du, + lapack_complex_double* du2, lapack_int* ipiv, + lapack_int *info ); +void LAPACK_spotrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dpotrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_cpotrf( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_zpotrf( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_dpstrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int* piv, lapack_int* rank, double* tol, + double* work, lapack_int *info ); +void LAPACK_spstrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int* piv, lapack_int* rank, float* tol, float* work, + lapack_int *info ); +void LAPACK_zpstrf( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* piv, lapack_int* rank, + double* tol, double* work, lapack_int *info ); +void LAPACK_cpstrf( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* piv, lapack_int* rank, + float* tol, float* work, lapack_int *info ); +void LAPACK_dpftrf( char* transr, char* uplo, lapack_int* n, double* a, + lapack_int *info ); +void LAPACK_spftrf( char* transr, char* uplo, lapack_int* n, float* a, + lapack_int *info ); +void LAPACK_zpftrf( char* transr, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int *info ); +void LAPACK_cpftrf( char* transr, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int *info ); +void LAPACK_spptrf( char* uplo, lapack_int* n, float* ap, lapack_int *info ); +void LAPACK_dpptrf( char* uplo, lapack_int* n, double* ap, lapack_int *info ); +void LAPACK_cpptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, + lapack_int *info ); +void LAPACK_zpptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, + lapack_int *info ); +void LAPACK_spbtrf( char* uplo, lapack_int* n, lapack_int* kd, float* ab, + lapack_int* ldab, lapack_int *info ); +void LAPACK_dpbtrf( char* uplo, lapack_int* n, lapack_int* kd, double* ab, + lapack_int* ldab, lapack_int *info ); +void LAPACK_cpbtrf( char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_float* ab, lapack_int* ldab, + lapack_int *info ); +void LAPACK_zpbtrf( char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_double* ab, lapack_int* ldab, + lapack_int *info ); +void LAPACK_spttrf( lapack_int* n, float* d, float* e, lapack_int *info ); +void LAPACK_dpttrf( lapack_int* n, double* d, double* e, lapack_int *info ); +void LAPACK_cpttrf( lapack_int* n, float* d, lapack_complex_float* e, + lapack_int *info ); +void LAPACK_zpttrf( lapack_int* n, double* d, lapack_complex_double* e, + lapack_int *info ); +void LAPACK_ssytrf( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int* ipiv, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dsytrf( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int* ipiv, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_csytrf( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zsytrf( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_chetrf( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zhetrf( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ssptrf( char* uplo, lapack_int* n, float* ap, lapack_int* ipiv, + lapack_int *info ); +void LAPACK_dsptrf( char* uplo, lapack_int* n, double* ap, lapack_int* ipiv, + lapack_int *info ); +void LAPACK_csptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_zsptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_chptrf( char* uplo, lapack_int* n, lapack_complex_float* ap, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_zhptrf( char* uplo, lapack_int* n, lapack_complex_double* ap, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_sgetrs( char* trans, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const lapack_int* ipiv, + float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_dgetrs( char* trans, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const lapack_int* ipiv, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_cgetrs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zgetrs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_sgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const float* ab, lapack_int* ldab, + const lapack_int* ipiv, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const double* ab, lapack_int* ldab, + const lapack_int* ipiv, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const lapack_complex_float* ab, + lapack_int* ldab, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zgbtrs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const lapack_complex_double* ab, + lapack_int* ldab, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sgttrs( char* trans, lapack_int* n, lapack_int* nrhs, + const float* dl, const float* d, const float* du, + const float* du2, const lapack_int* ipiv, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dgttrs( char* trans, lapack_int* n, lapack_int* nrhs, + const double* dl, const double* d, const double* du, + const double* du2, const lapack_int* ipiv, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_cgttrs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zgttrs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_spotrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, + lapack_int* lda, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_cpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zpotrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_spftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, + const float* a, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_cpftrs( char* transr, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_spptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zpptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_spbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const float* ab, lapack_int* ldab, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const double* ab, lapack_int* ldab, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_cpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zpbtrs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_spttrs( lapack_int* n, lapack_int* nrhs, const float* d, + const float* e, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpttrs( lapack_int* n, lapack_int* nrhs, const double* d, + const double* e, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cpttrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* d, + const lapack_complex_float* e, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zpttrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* d, const lapack_complex_double* e, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ssytrs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, + lapack_int* lda, const lapack_int* ipiv, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dsytrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const lapack_int* ipiv, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_csytrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zsytrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_chetrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zhetrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_ssptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, const lapack_int* ipiv, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dsptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, const lapack_int* ipiv, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_csptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zsptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_chptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zhptrs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_strtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const float* a, lapack_int* lda, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dtrtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const double* a, lapack_int* lda, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_ctrtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ztrtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_stptrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const float* ap, float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dtptrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const double* ap, double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_ctptrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* ap, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ztptrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_double* ap, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_stbtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, const float* ab, + lapack_int* ldab, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dtbtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, const double* ab, + lapack_int* ldab, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ctbtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_ztbtrs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sgecon( char* norm, lapack_int* n, const float* a, lapack_int* lda, + float* anorm, float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgecon( char* norm, lapack_int* n, const double* a, lapack_int* lda, + double* anorm, double* rcond, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgecon( char* norm, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* anorm, float* rcond, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgecon( char* norm, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* anorm, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, + const float* ab, lapack_int* ldab, const lapack_int* ipiv, + float* anorm, float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, + const double* ab, lapack_int* ldab, const lapack_int* ipiv, + double* anorm, double* rcond, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, + const lapack_complex_float* ab, lapack_int* ldab, + const lapack_int* ipiv, float* anorm, float* rcond, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgbcon( char* norm, lapack_int* n, lapack_int* kl, lapack_int* ku, + const lapack_complex_double* ab, lapack_int* ldab, + const lapack_int* ipiv, double* anorm, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sgtcon( char* norm, lapack_int* n, const float* dl, const float* d, + const float* du, const float* du2, const lapack_int* ipiv, + float* anorm, float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgtcon( char* norm, lapack_int* n, const double* dl, + const double* d, const double* du, const double* du2, + const lapack_int* ipiv, double* anorm, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cgtcon( char* norm, lapack_int* n, const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* du2, const lapack_int* ipiv, + float* anorm, float* rcond, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zgtcon( char* norm, lapack_int* n, const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* du2, const lapack_int* ipiv, + double* anorm, double* rcond, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_spocon( char* uplo, lapack_int* n, const float* a, lapack_int* lda, + float* anorm, float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dpocon( char* uplo, lapack_int* n, const double* a, lapack_int* lda, + double* anorm, double* rcond, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cpocon( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* anorm, float* rcond, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zpocon( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* anorm, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sppcon( char* uplo, lapack_int* n, const float* ap, float* anorm, + float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dppcon( char* uplo, lapack_int* n, const double* ap, double* anorm, + double* rcond, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cppcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, + float* anorm, float* rcond, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zppcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, + double* anorm, double* rcond, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_spbcon( char* uplo, lapack_int* n, lapack_int* kd, const float* ab, + lapack_int* ldab, float* anorm, float* rcond, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dpbcon( char* uplo, lapack_int* n, lapack_int* kd, const double* ab, + lapack_int* ldab, double* anorm, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cpbcon( char* uplo, lapack_int* n, lapack_int* kd, + const lapack_complex_float* ab, lapack_int* ldab, + float* anorm, float* rcond, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zpbcon( char* uplo, lapack_int* n, lapack_int* kd, + const lapack_complex_double* ab, lapack_int* ldab, + double* anorm, double* rcond, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sptcon( lapack_int* n, const float* d, const float* e, float* anorm, + float* rcond, float* work, lapack_int *info ); +void LAPACK_dptcon( lapack_int* n, const double* d, const double* e, + double* anorm, double* rcond, double* work, + lapack_int *info ); +void LAPACK_cptcon( lapack_int* n, const float* d, + const lapack_complex_float* e, float* anorm, float* rcond, + float* work, lapack_int *info ); +void LAPACK_zptcon( lapack_int* n, const double* d, + const lapack_complex_double* e, double* anorm, + double* rcond, double* work, lapack_int *info ); +void LAPACK_ssycon( char* uplo, lapack_int* n, const float* a, lapack_int* lda, + const lapack_int* ipiv, float* anorm, float* rcond, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dsycon( char* uplo, lapack_int* n, const double* a, lapack_int* lda, + const lapack_int* ipiv, double* anorm, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_csycon( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, float* anorm, + float* rcond, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zsycon( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, double* anorm, + double* rcond, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_checon( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, float* anorm, + float* rcond, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zhecon( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, double* anorm, + double* rcond, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_sspcon( char* uplo, lapack_int* n, const float* ap, + const lapack_int* ipiv, float* anorm, float* rcond, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dspcon( char* uplo, lapack_int* n, const double* ap, + const lapack_int* ipiv, double* anorm, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cspcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, + const lapack_int* ipiv, float* anorm, float* rcond, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zspcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, + const lapack_int* ipiv, double* anorm, double* rcond, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_chpcon( char* uplo, lapack_int* n, const lapack_complex_float* ap, + const lapack_int* ipiv, float* anorm, float* rcond, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zhpcon( char* uplo, lapack_int* n, const lapack_complex_double* ap, + const lapack_int* ipiv, double* anorm, double* rcond, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_strcon( char* norm, char* uplo, char* diag, lapack_int* n, + const float* a, lapack_int* lda, float* rcond, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dtrcon( char* norm, char* uplo, char* diag, lapack_int* n, + const double* a, lapack_int* lda, double* rcond, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_ctrcon( char* norm, char* uplo, char* diag, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, + float* rcond, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztrcon( char* norm, char* uplo, char* diag, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + double* rcond, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_stpcon( char* norm, char* uplo, char* diag, lapack_int* n, + const float* ap, float* rcond, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dtpcon( char* norm, char* uplo, char* diag, lapack_int* n, + const double* ap, double* rcond, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ctpcon( char* norm, char* uplo, char* diag, lapack_int* n, + const lapack_complex_float* ap, float* rcond, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztpcon( char* norm, char* uplo, char* diag, lapack_int* n, + const lapack_complex_double* ap, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_stbcon( char* norm, char* uplo, char* diag, lapack_int* n, + lapack_int* kd, const float* ab, lapack_int* ldab, + float* rcond, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dtbcon( char* norm, char* uplo, char* diag, lapack_int* n, + lapack_int* kd, const double* ab, lapack_int* ldab, + double* rcond, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_ctbcon( char* norm, char* uplo, char* diag, lapack_int* n, + lapack_int* kd, const lapack_complex_float* ab, + lapack_int* ldab, float* rcond, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_ztbcon( char* norm, char* uplo, char* diag, lapack_int* n, + lapack_int* kd, const lapack_complex_double* ab, + lapack_int* ldab, double* rcond, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sgerfs( char* trans, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const float* af, + lapack_int* ldaf, const lapack_int* ipiv, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, + float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgerfs( char* trans, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const lapack_int* ipiv, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cgerfs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgerfs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const lapack_int* ipiv, const double* r, + const double* c, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* rcond, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const float* af, + lapack_int* ldaf, const lapack_int* ipiv, const float* r, + const float* c, const float* b, lapack_int* ldb, float* x, + lapack_int* ldx, float* rcond, float* berr, + lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const double* r, const double* c, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cgerfsx( char* trans, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const float* r, const float* c, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const float* ab, lapack_int* ldab, + const float* afb, lapack_int* ldafb, const lapack_int* ipiv, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const double* ab, lapack_int* ldab, + const double* afb, lapack_int* ldafb, + const lapack_int* ipiv, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* ferr, double* berr, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const lapack_complex_float* ab, + lapack_int* ldab, const lapack_complex_float* afb, + lapack_int* ldafb, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgbrfs( char* trans, lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, const lapack_complex_double* ab, + lapack_int* ldab, const lapack_complex_double* afb, + lapack_int* ldafb, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_dgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, const double* ab, + lapack_int* ldab, const double* afb, lapack_int* ldafb, + const lapack_int* ipiv, const double* r, const double* c, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* rcond, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, const float* ab, + lapack_int* ldab, const float* afb, lapack_int* ldafb, + const lapack_int* ipiv, const float* r, const float* c, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_zgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + const lapack_complex_double* afb, lapack_int* ldafb, + const lapack_int* ipiv, const double* r, const double* c, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cgbrfsx( char* trans, char* equed, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + const lapack_complex_float* afb, lapack_int* ldafb, + const lapack_int* ipiv, const float* r, const float* c, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, + const float* dl, const float* d, const float* du, + const float* dlf, const float* df, const float* duf, + const float* du2, const lapack_int* ipiv, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, + float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, + const double* dl, const double* d, const double* du, + const double* dlf, const double* df, const double* duf, + const double* du2, const lapack_int* ipiv, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, + const lapack_complex_float* dlf, + const lapack_complex_float* df, + const lapack_complex_float* duf, + const lapack_complex_float* du2, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgtrfs( char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, + const lapack_complex_double* dlf, + const lapack_complex_double* df, + const lapack_complex_double* duf, + const lapack_complex_double* du2, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sporfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, + lapack_int* lda, const float* af, lapack_int* ldaf, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dporfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* ferr, double* berr, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cporfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zporfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_dporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const double* s, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_sporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const float* af, + lapack_int* ldaf, const float* s, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const double* s, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cporfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const float* s, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_spprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, const float* afp, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* ferr, + float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, const double* afp, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* afp, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zpprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_spbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const float* ab, lapack_int* ldab, const float* afb, + lapack_int* ldafb, const float* b, lapack_int* ldb, + float* x, lapack_int* ldx, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const double* ab, lapack_int* ldab, const double* afb, + lapack_int* ldafb, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* ferr, double* berr, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + const lapack_complex_float* afb, lapack_int* ldafb, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zpbrfs( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + const lapack_complex_double* afb, lapack_int* ldafb, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sptrfs( lapack_int* n, lapack_int* nrhs, const float* d, + const float* e, const float* df, const float* ef, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int *info ); +void LAPACK_dptrfs( lapack_int* n, lapack_int* nrhs, const double* d, + const double* e, const double* df, const double* ef, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* ferr, double* berr, double* work, + lapack_int *info ); +void LAPACK_cptrfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* d, + const lapack_complex_float* e, const float* df, + const lapack_complex_float* ef, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zptrfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* d, const lapack_complex_double* e, + const double* df, const lapack_complex_double* ef, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_ssyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, const float* a, + lapack_int* lda, const float* af, lapack_int* ldaf, + const lapack_int* ipiv, const float* b, lapack_int* ldb, + float* x, lapack_int* ldx, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dsyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const lapack_int* ipiv, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_csyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zsyrfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dsyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, const double* af, + lapack_int* ldaf, const lapack_int* ipiv, const double* s, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* rcond, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_ssyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, const float* af, + lapack_int* ldaf, const lapack_int* ipiv, const float* s, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_zsyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const double* s, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_csyrfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const float* s, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_cherfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zherfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_zherfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* af, lapack_int* ldaf, + const lapack_int* ipiv, const double* s, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cherfsx( char* uplo, char* equed, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* af, lapack_int* ldaf, + const lapack_int* ipiv, const float* s, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* berr, lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ssprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, const float* afp, const lapack_int* ipiv, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dsprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, const double* afp, const lapack_int* ipiv, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* ferr, double* berr, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_csprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* afp, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zsprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_chprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, + const lapack_complex_float* afp, const lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zhprfs( char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, + const lapack_complex_double* afp, const lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* ferr, + double* berr, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_strrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const float* a, lapack_int* lda, + const float* b, lapack_int* ldb, const float* x, + lapack_int* ldx, float* ferr, float* berr, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dtrrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const double* a, lapack_int* lda, + const double* b, lapack_int* ldb, const double* x, + lapack_int* ldx, double* ferr, double* berr, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ctrrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* b, + lapack_int* ldb, const lapack_complex_float* x, + lapack_int* ldx, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztrrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* b, + lapack_int* ldb, const lapack_complex_double* x, + lapack_int* ldx, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_stprfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const float* ap, const float* b, + lapack_int* ldb, const float* x, lapack_int* ldx, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dtprfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const double* ap, const double* b, + lapack_int* ldb, const double* x, lapack_int* ldx, + double* ferr, double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_ctprfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* ap, + const lapack_complex_float* b, lapack_int* ldb, + const lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztprfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* nrhs, const lapack_complex_double* ap, + const lapack_complex_double* b, lapack_int* ldb, + const lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_stbrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, const float* ab, + lapack_int* ldab, const float* b, lapack_int* ldb, + const float* x, lapack_int* ldx, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dtbrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, const double* ab, + lapack_int* ldab, const double* b, lapack_int* ldb, + const double* x, lapack_int* ldx, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_ctbrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, + const lapack_complex_float* ab, lapack_int* ldab, + const lapack_complex_float* b, lapack_int* ldb, + const lapack_complex_float* x, lapack_int* ldx, float* ferr, + float* berr, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztbrfs( char* uplo, char* trans, char* diag, lapack_int* n, + lapack_int* kd, lapack_int* nrhs, + const lapack_complex_double* ab, lapack_int* ldab, + const lapack_complex_double* b, lapack_int* ldb, + const lapack_complex_double* x, lapack_int* ldx, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sgetri( lapack_int* n, float* a, lapack_int* lda, + const lapack_int* ipiv, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgetri( lapack_int* n, double* a, lapack_int* lda, + const lapack_int* ipiv, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgetri( lapack_int* n, lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zgetri( lapack_int* n, lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_spotri( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dpotri( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_cpotri( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_zpotri( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_dpftri( char* transr, char* uplo, lapack_int* n, double* a, + lapack_int *info ); +void LAPACK_spftri( char* transr, char* uplo, lapack_int* n, float* a, + lapack_int *info ); +void LAPACK_zpftri( char* transr, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int *info ); +void LAPACK_cpftri( char* transr, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int *info ); +void LAPACK_spptri( char* uplo, lapack_int* n, float* ap, lapack_int *info ); +void LAPACK_dpptri( char* uplo, lapack_int* n, double* ap, lapack_int *info ); +void LAPACK_cpptri( char* uplo, lapack_int* n, lapack_complex_float* ap, + lapack_int *info ); +void LAPACK_zpptri( char* uplo, lapack_int* n, lapack_complex_double* ap, + lapack_int *info ); +void LAPACK_ssytri( char* uplo, lapack_int* n, float* a, lapack_int* lda, + const lapack_int* ipiv, float* work, lapack_int *info ); +void LAPACK_dsytri( char* uplo, lapack_int* n, double* a, lapack_int* lda, + const lapack_int* ipiv, double* work, lapack_int *info ); +void LAPACK_csytri( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zsytri( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_chetri( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zhetri( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_ssptri( char* uplo, lapack_int* n, float* ap, + const lapack_int* ipiv, float* work, lapack_int *info ); +void LAPACK_dsptri( char* uplo, lapack_int* n, double* ap, + const lapack_int* ipiv, double* work, lapack_int *info ); +void LAPACK_csptri( char* uplo, lapack_int* n, lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zsptri( char* uplo, lapack_int* n, lapack_complex_double* ap, + const lapack_int* ipiv, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_chptri( char* uplo, lapack_int* n, lapack_complex_float* ap, + const lapack_int* ipiv, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zhptri( char* uplo, lapack_int* n, lapack_complex_double* ap, + const lapack_int* ipiv, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_strtri( char* uplo, char* diag, lapack_int* n, float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_dtrtri( char* uplo, char* diag, lapack_int* n, double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_ctrtri( char* uplo, char* diag, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_ztrtri( char* uplo, char* diag, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dtftri( char* transr, char* uplo, char* diag, lapack_int* n, + double* a, lapack_int *info ); +void LAPACK_stftri( char* transr, char* uplo, char* diag, lapack_int* n, + float* a, lapack_int *info ); +void LAPACK_ztftri( char* transr, char* uplo, char* diag, lapack_int* n, + lapack_complex_double* a, lapack_int *info ); +void LAPACK_ctftri( char* transr, char* uplo, char* diag, lapack_int* n, + lapack_complex_float* a, lapack_int *info ); +void LAPACK_stptri( char* uplo, char* diag, lapack_int* n, float* ap, + lapack_int *info ); +void LAPACK_dtptri( char* uplo, char* diag, lapack_int* n, double* ap, + lapack_int *info ); +void LAPACK_ctptri( char* uplo, char* diag, lapack_int* n, + lapack_complex_float* ap, lapack_int *info ); +void LAPACK_ztptri( char* uplo, char* diag, lapack_int* n, + lapack_complex_double* ap, lapack_int *info ); +void LAPACK_sgeequ( lapack_int* m, lapack_int* n, const float* a, + lapack_int* lda, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_dgeequ( lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, double* r, double* c, double* rowcnd, + double* colcnd, double* amax, lapack_int *info ); +void LAPACK_cgeequ( lapack_int* m, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_zgeequ( lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* r, + double* c, double* rowcnd, double* colcnd, double* amax, + lapack_int *info ); +void LAPACK_dgeequb( lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, double* r, double* c, double* rowcnd, + double* colcnd, double* amax, lapack_int *info ); +void LAPACK_sgeequb( lapack_int* m, lapack_int* n, const float* a, + lapack_int* lda, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_zgeequb( lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* r, + double* c, double* rowcnd, double* colcnd, double* amax, + lapack_int *info ); +void LAPACK_cgeequb( lapack_int* m, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, float* r, + float* c, float* rowcnd, float* colcnd, float* amax, + lapack_int *info ); +void LAPACK_sgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const float* ab, lapack_int* ldab, float* r, + float* c, float* rowcnd, float* colcnd, float* amax, + lapack_int *info ); +void LAPACK_dgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const double* ab, lapack_int* ldab, + double* r, double* c, double* rowcnd, double* colcnd, + double* amax, lapack_int *info ); +void LAPACK_cgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const lapack_complex_float* ab, + lapack_int* ldab, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_zgbequ( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const lapack_complex_double* ab, + lapack_int* ldab, double* r, double* c, double* rowcnd, + double* colcnd, double* amax, lapack_int *info ); +void LAPACK_dgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const double* ab, lapack_int* ldab, + double* r, double* c, double* rowcnd, double* colcnd, + double* amax, lapack_int *info ); +void LAPACK_sgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const float* ab, lapack_int* ldab, + float* r, float* c, float* rowcnd, float* colcnd, + float* amax, lapack_int *info ); +void LAPACK_zgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const lapack_complex_double* ab, + lapack_int* ldab, double* r, double* c, double* rowcnd, + double* colcnd, double* amax, lapack_int *info ); +void LAPACK_cgbequb( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const lapack_complex_float* ab, + lapack_int* ldab, float* r, float* c, float* rowcnd, + float* colcnd, float* amax, lapack_int *info ); +void LAPACK_spoequ( lapack_int* n, const float* a, lapack_int* lda, float* s, + float* scond, float* amax, lapack_int *info ); +void LAPACK_dpoequ( lapack_int* n, const double* a, lapack_int* lda, double* s, + double* scond, double* amax, lapack_int *info ); +void LAPACK_cpoequ( lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* s, float* scond, float* amax, + lapack_int *info ); +void LAPACK_zpoequ( lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* s, double* scond, double* amax, + lapack_int *info ); +void LAPACK_dpoequb( lapack_int* n, const double* a, lapack_int* lda, double* s, + double* scond, double* amax, lapack_int *info ); +void LAPACK_spoequb( lapack_int* n, const float* a, lapack_int* lda, float* s, + float* scond, float* amax, lapack_int *info ); +void LAPACK_zpoequb( lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* s, double* scond, double* amax, + lapack_int *info ); +void LAPACK_cpoequb( lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* s, float* scond, float* amax, + lapack_int *info ); +void LAPACK_sppequ( char* uplo, lapack_int* n, const float* ap, float* s, + float* scond, float* amax, lapack_int *info ); +void LAPACK_dppequ( char* uplo, lapack_int* n, const double* ap, double* s, + double* scond, double* amax, lapack_int *info ); +void LAPACK_cppequ( char* uplo, lapack_int* n, const lapack_complex_float* ap, + float* s, float* scond, float* amax, lapack_int *info ); +void LAPACK_zppequ( char* uplo, lapack_int* n, const lapack_complex_double* ap, + double* s, double* scond, double* amax, lapack_int *info ); +void LAPACK_spbequ( char* uplo, lapack_int* n, lapack_int* kd, const float* ab, + lapack_int* ldab, float* s, float* scond, float* amax, + lapack_int *info ); +void LAPACK_dpbequ( char* uplo, lapack_int* n, lapack_int* kd, const double* ab, + lapack_int* ldab, double* s, double* scond, double* amax, + lapack_int *info ); +void LAPACK_cpbequ( char* uplo, lapack_int* n, lapack_int* kd, + const lapack_complex_float* ab, lapack_int* ldab, float* s, + float* scond, float* amax, lapack_int *info ); +void LAPACK_zpbequ( char* uplo, lapack_int* n, lapack_int* kd, + const lapack_complex_double* ab, lapack_int* ldab, + double* s, double* scond, double* amax, lapack_int *info ); +void LAPACK_dsyequb( char* uplo, lapack_int* n, const double* a, + lapack_int* lda, double* s, double* scond, double* amax, + double* work, lapack_int *info ); +void LAPACK_ssyequb( char* uplo, lapack_int* n, const float* a, lapack_int* lda, + float* s, float* scond, float* amax, float* work, + lapack_int *info ); +void LAPACK_zsyequb( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* s, double* scond, double* amax, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_csyequb( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* s, float* scond, float* amax, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zheequb( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, double* s, double* scond, double* amax, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_cheequb( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, float* s, float* scond, float* amax, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_sgesv( lapack_int* n, lapack_int* nrhs, float* a, lapack_int* lda, + lapack_int* ipiv, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dgesv( lapack_int* n, lapack_int* nrhs, double* a, lapack_int* lda, + lapack_int* ipiv, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_dsgesv( lapack_int* n, lapack_int* nrhs, double* a, lapack_int* lda, + lapack_int* ipiv, double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* work, float* swork, + lapack_int* iter, lapack_int *info ); +void LAPACK_zcgesv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + lapack_complex_double* work, lapack_complex_float* swork, + double* rwork, lapack_int* iter, lapack_int *info ); +void LAPACK_sgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int* ldb, double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgesvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int* ldb, double* x, lapack_int* ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cgesvxx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* r, float* c, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, float* ab, lapack_int* ldab, + lapack_int* ipiv, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, double* ab, lapack_int* ldab, + lapack_int* ipiv, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, lapack_complex_float* ab, lapack_int* ldab, + lapack_int* ipiv, lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zgbsv( lapack_int* n, lapack_int* kl, lapack_int* ku, + lapack_int* nrhs, lapack_complex_double* ab, + lapack_int* ldab, lapack_int* ipiv, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_sgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, float* ab, + lapack_int* ldab, float* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, float* r, float* c, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, double* ab, + lapack_int* ldab, double* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int* ldb, double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, lapack_complex_float* ab, + lapack_int* ldab, lapack_complex_float* afb, + lapack_int* ldafb, lapack_int* ipiv, char* equed, float* r, + float* c, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgbsvx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, lapack_complex_double* ab, + lapack_int* ldab, lapack_complex_double* afb, + lapack_int* ldafb, lapack_int* ipiv, char* equed, double* r, + double* c, lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, double* ab, + lapack_int* ldab, double* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, double* r, double* c, + double* b, lapack_int* ldb, double* x, lapack_int* ldx, + double* rcond, double* rpvgrw, double* berr, + lapack_int* n_err_bnds, double* err_bnds_norm, + double* err_bnds_comp, lapack_int* nparams, double* params, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, float* ab, + lapack_int* ldab, float* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, float* r, float* c, + float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* rpvgrw, float* berr, + lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, + lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* afb, lapack_int* ldafb, + lapack_int* ipiv, char* equed, double* r, double* c, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cgbsvxx( char* fact, char* trans, lapack_int* n, lapack_int* kl, + lapack_int* ku, lapack_int* nrhs, lapack_complex_float* ab, + lapack_int* ldab, lapack_complex_float* afb, + lapack_int* ldafb, lapack_int* ipiv, char* equed, float* r, + float* c, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sgtsv( lapack_int* n, lapack_int* nrhs, float* dl, float* d, + float* du, float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_dgtsv( lapack_int* n, lapack_int* nrhs, double* dl, double* d, + double* du, double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_cgtsv( lapack_int* n, lapack_int* nrhs, lapack_complex_float* dl, + lapack_complex_float* d, lapack_complex_float* du, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zgtsv( lapack_int* n, lapack_int* nrhs, lapack_complex_double* dl, + lapack_complex_double* d, lapack_complex_double* du, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + const float* dl, const float* d, const float* du, + float* dlf, float* df, float* duf, float* du2, + lapack_int* ipiv, const float* b, lapack_int* ldb, float* x, + lapack_int* ldx, float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + const double* dl, const double* d, const double* du, + double* dlf, double* df, double* duf, double* du2, + lapack_int* ipiv, const double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* rcond, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* dl, + const lapack_complex_float* d, + const lapack_complex_float* du, lapack_complex_float* dlf, + lapack_complex_float* df, lapack_complex_float* duf, + lapack_complex_float* du2, lapack_int* ipiv, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgtsvx( char* fact, char* trans, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* dl, + const lapack_complex_double* d, + const lapack_complex_double* du, lapack_complex_double* dlf, + lapack_complex_double* df, lapack_complex_double* duf, + lapack_complex_double* du2, lapack_int* ipiv, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sposv( char* uplo, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dposv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cposv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zposv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dsposv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* work, float* swork, + lapack_int* iter, lapack_int *info ); +void LAPACK_zcposv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, + lapack_complex_double* work, lapack_complex_float* swork, + double* rwork, lapack_int* iter, lapack_int *info ); +void LAPACK_sposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + char* equed, float* s, float* b, lapack_int* ldb, float* x, + lapack_int* ldx, float* rcond, float* ferr, float* berr, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + char* equed, double* s, double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* rcond, double* ferr, + double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, char* equed, + float* s, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zposvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, char* equed, + double* s, lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_dposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + char* equed, double* s, double* b, lapack_int* ldb, + double* x, lapack_int* ldx, double* rcond, double* rpvgrw, + double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_sposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + char* equed, float* s, float* b, lapack_int* ldb, float* x, + lapack_int* ldx, float* rcond, float* rpvgrw, float* berr, + lapack_int* n_err_bnds, float* err_bnds_norm, + float* err_bnds_comp, lapack_int* nparams, float* params, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_zposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, char* equed, + double* s, lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_cposvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, char* equed, + float* s, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sppsv( char* uplo, lapack_int* n, lapack_int* nrhs, float* ap, + float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_dppsv( char* uplo, lapack_int* n, lapack_int* nrhs, double* ap, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_cppsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* ap, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zppsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* ap, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_sppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + float* ap, float* afp, char* equed, float* s, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + double* ap, double* afp, char* equed, double* s, double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* ap, lapack_complex_float* afp, + char* equed, float* s, lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zppsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* ap, lapack_complex_double* afp, + char* equed, double* s, lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_spbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + float* ab, lapack_int* ldab, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + double* ab, lapack_int* ldab, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zpbsv( char* uplo, lapack_int* n, lapack_int* kd, lapack_int* nrhs, + lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_spbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, + lapack_int* nrhs, float* ab, lapack_int* ldab, float* afb, + lapack_int* ldafb, char* equed, float* s, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, + lapack_int* nrhs, double* ab, lapack_int* ldab, double* afb, + lapack_int* ldafb, char* equed, double* s, double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_cpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, + lapack_int* nrhs, lapack_complex_float* ab, + lapack_int* ldab, lapack_complex_float* afb, + lapack_int* ldafb, char* equed, float* s, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zpbsvx( char* fact, char* uplo, lapack_int* n, lapack_int* kd, + lapack_int* nrhs, lapack_complex_double* ab, + lapack_int* ldab, lapack_complex_double* afb, + lapack_int* ldafb, char* equed, double* s, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sptsv( lapack_int* n, lapack_int* nrhs, float* d, float* e, + float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_dptsv( lapack_int* n, lapack_int* nrhs, double* d, double* e, + double* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_cptsv( lapack_int* n, lapack_int* nrhs, float* d, + lapack_complex_float* e, lapack_complex_float* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_zptsv( lapack_int* n, lapack_int* nrhs, double* d, + lapack_complex_double* e, lapack_complex_double* b, + lapack_int* ldb, lapack_int *info ); +void LAPACK_sptsvx( char* fact, lapack_int* n, lapack_int* nrhs, const float* d, + const float* e, float* df, float* ef, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int *info ); +void LAPACK_dptsvx( char* fact, lapack_int* n, lapack_int* nrhs, + const double* d, const double* e, double* df, double* ef, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* rcond, double* ferr, double* berr, + double* work, lapack_int *info ); +void LAPACK_cptsvx( char* fact, lapack_int* n, lapack_int* nrhs, const float* d, + const lapack_complex_float* e, float* df, + lapack_complex_float* ef, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zptsvx( char* fact, lapack_int* n, lapack_int* nrhs, + const double* d, const lapack_complex_double* e, double* df, + lapack_complex_double* ef, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_ssysv( char* uplo, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, lapack_int* ipiv, float* b, lapack_int* ldb, + float* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_dsysv( char* uplo, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, lapack_int* ipiv, double* b, + lapack_int* ldb, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_csysv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zsysv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ssysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const float* a, lapack_int* lda, float* af, + lapack_int* ldaf, lapack_int* ipiv, const float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* ferr, float* berr, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dsysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const double* a, lapack_int* lda, double* af, + lapack_int* ldaf, lapack_int* ipiv, const double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* ferr, double* berr, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_csysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zsysvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_dsysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* s, double* b, + lapack_int* ldb, double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ssysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* s, float* b, + lapack_int* ldb, float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_zsysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_csysvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_chesv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zhesv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_chesvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zhesvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_zhesvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, double* s, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* x, lapack_int* ldx, double* rcond, + double* rpvgrw, double* berr, lapack_int* n_err_bnds, + double* err_bnds_norm, double* err_bnds_comp, + lapack_int* nparams, double* params, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_chesvxx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* af, lapack_int* ldaf, + lapack_int* ipiv, char* equed, float* s, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* x, lapack_int* ldx, float* rcond, + float* rpvgrw, float* berr, lapack_int* n_err_bnds, + float* err_bnds_norm, float* err_bnds_comp, + lapack_int* nparams, float* params, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_sspsv( char* uplo, lapack_int* n, lapack_int* nrhs, float* ap, + lapack_int* ipiv, float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dspsv( char* uplo, lapack_int* n, lapack_int* nrhs, double* ap, + lapack_int* ipiv, double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_cspsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* ap, lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zspsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* ap, lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const float* ap, float* afp, lapack_int* ipiv, + const float* b, lapack_int* ldb, float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, float* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const double* ap, double* afp, lapack_int* ipiv, + const double* b, lapack_int* ldb, double* x, + lapack_int* ldx, double* rcond, double* ferr, double* berr, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, lapack_complex_float* afp, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zspsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, lapack_complex_double* afp, + lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_chpsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* ap, lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, lapack_int *info ); +void LAPACK_zhpsv( char* uplo, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* ap, lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_chpsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_float* ap, lapack_complex_float* afp, + lapack_int* ipiv, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* x, lapack_int* ldx, + float* rcond, float* ferr, float* berr, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zhpsvx( char* fact, char* uplo, lapack_int* n, lapack_int* nrhs, + const lapack_complex_double* ap, lapack_complex_double* afp, + lapack_int* ipiv, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* x, lapack_int* ldx, + double* rcond, double* ferr, double* berr, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sgeqrf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgeqrf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgeqrf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgeqrf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgeqpf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + lapack_int* jpvt, float* tau, float* work, + lapack_int *info ); +void LAPACK_dgeqpf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + lapack_int* jpvt, double* tau, double* work, + lapack_int *info ); +void LAPACK_cgeqpf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* jpvt, + lapack_complex_float* tau, lapack_complex_float* work, + float* rwork, lapack_int *info ); +void LAPACK_zgeqpf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* jpvt, + lapack_complex_double* tau, lapack_complex_double* work, + double* rwork, lapack_int *info ); +void LAPACK_sgeqp3( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + lapack_int* jpvt, float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgeqp3( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + lapack_int* jpvt, double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgeqp3( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* jpvt, + lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int *info ); +void LAPACK_zgeqp3( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* jpvt, + lapack_complex_double* tau, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int *info ); +void LAPACK_sorgqr( lapack_int* m, lapack_int* n, lapack_int* k, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorgqr( lapack_int* m, lapack_int* n, lapack_int* k, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sormqr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormqr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cungqr( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zungqr( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmqr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmqr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgelqf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgelqf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgelqf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgelqf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sorglq( lapack_int* m, lapack_int* n, lapack_int* k, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorglq( lapack_int* m, lapack_int* n, lapack_int* k, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sormlq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormlq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cunglq( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zunglq( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmlq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmlq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgeqlf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgeqlf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgeqlf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgeqlf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sorgql( lapack_int* m, lapack_int* n, lapack_int* k, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorgql( lapack_int* m, lapack_int* n, lapack_int* k, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cungql( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zungql( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sormql( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormql( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cunmql( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmql( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgerqf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgerqf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgerqf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgerqf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sorgrq( lapack_int* m, lapack_int* n, lapack_int* k, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorgrq( lapack_int* m, lapack_int* n, lapack_int* k, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cungrq( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zungrq( lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sormrq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormrq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cunmrq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmrq( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_stzrzf( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dtzrzf( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ctzrzf( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ztzrzf( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sormrz( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, const float* a, + lapack_int* lda, const float* tau, float* c, + lapack_int* ldc, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dormrz( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, const double* a, + lapack_int* lda, const double* tau, double* c, + lapack_int* ldc, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmrz( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmrz( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, lapack_complex_double* c, + lapack_int* ldc, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sggqrf( lapack_int* n, lapack_int* m, lapack_int* p, float* a, + lapack_int* lda, float* taua, float* b, lapack_int* ldb, + float* taub, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dggqrf( lapack_int* n, lapack_int* m, lapack_int* p, double* a, + lapack_int* lda, double* taua, double* b, lapack_int* ldb, + double* taub, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cggqrf( lapack_int* n, lapack_int* m, lapack_int* p, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* taua, lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* taub, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zggqrf( lapack_int* n, lapack_int* m, lapack_int* p, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* taua, lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* taub, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sggrqf( lapack_int* m, lapack_int* p, lapack_int* n, float* a, + lapack_int* lda, float* taua, float* b, lapack_int* ldb, + float* taub, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dggrqf( lapack_int* m, lapack_int* p, lapack_int* n, double* a, + lapack_int* lda, double* taua, double* b, lapack_int* ldb, + double* taub, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cggrqf( lapack_int* m, lapack_int* p, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* taua, lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* taub, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zggrqf( lapack_int* m, lapack_int* p, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* taua, lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* taub, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgebrd( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* d, float* e, float* tauq, float* taup, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgebrd( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* d, double* e, double* tauq, double* taup, + double* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_cgebrd( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, float* d, float* e, + lapack_complex_float* tauq, lapack_complex_float* taup, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgebrd( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, double* d, double* e, + lapack_complex_double* tauq, lapack_complex_double* taup, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, + lapack_int* kl, lapack_int* ku, float* ab, lapack_int* ldab, + float* d, float* e, float* q, lapack_int* ldq, float* pt, + lapack_int* ldpt, float* c, lapack_int* ldc, float* work, + lapack_int *info ); +void LAPACK_dgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, + lapack_int* kl, lapack_int* ku, double* ab, + lapack_int* ldab, double* d, double* e, double* q, + lapack_int* ldq, double* pt, lapack_int* ldpt, double* c, + lapack_int* ldc, double* work, lapack_int *info ); +void LAPACK_cgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, + lapack_int* kl, lapack_int* ku, lapack_complex_float* ab, + lapack_int* ldab, float* d, float* e, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* pt, lapack_int* ldpt, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zgbbrd( char* vect, lapack_int* m, lapack_int* n, lapack_int* ncc, + lapack_int* kl, lapack_int* ku, lapack_complex_double* ab, + lapack_int* ldab, double* d, double* e, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* pt, lapack_int* ldpt, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sorgbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, + float* a, lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorgbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, + double* a, lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sormbr( char* vect, char* side, char* trans, lapack_int* m, + lapack_int* n, lapack_int* k, const float* a, + lapack_int* lda, const float* tau, float* c, + lapack_int* ldc, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dormbr( char* vect, char* side, char* trans, lapack_int* m, + lapack_int* n, lapack_int* k, const double* a, + lapack_int* lda, const double* tau, double* c, + lapack_int* ldc, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cungbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zungbr( char* vect, lapack_int* m, lapack_int* n, lapack_int* k, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmbr( char* vect, char* side, char* trans, lapack_int* m, + lapack_int* n, lapack_int* k, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmbr( char* vect, char* side, char* trans, lapack_int* m, + lapack_int* n, lapack_int* k, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, lapack_complex_double* c, + lapack_int* ldc, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, + lapack_int* nru, lapack_int* ncc, float* d, float* e, + float* vt, lapack_int* ldvt, float* u, lapack_int* ldu, + float* c, lapack_int* ldc, float* work, lapack_int *info ); +void LAPACK_dbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, + lapack_int* nru, lapack_int* ncc, double* d, double* e, + double* vt, lapack_int* ldvt, double* u, lapack_int* ldu, + double* c, lapack_int* ldc, double* work, + lapack_int *info ); +void LAPACK_cbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, + lapack_int* nru, lapack_int* ncc, float* d, float* e, + lapack_complex_float* vt, lapack_int* ldvt, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* c, lapack_int* ldc, float* work, + lapack_int *info ); +void LAPACK_zbdsqr( char* uplo, lapack_int* n, lapack_int* ncvt, + lapack_int* nru, lapack_int* ncc, double* d, double* e, + lapack_complex_double* vt, lapack_int* ldvt, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* c, lapack_int* ldc, double* work, + lapack_int *info ); +void LAPACK_sbdsdc( char* uplo, char* compq, lapack_int* n, float* d, float* e, + float* u, lapack_int* ldu, float* vt, lapack_int* ldvt, + float* q, lapack_int* iq, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dbdsdc( char* uplo, char* compq, lapack_int* n, double* d, + double* e, double* u, lapack_int* ldu, double* vt, + lapack_int* ldvt, double* q, lapack_int* iq, double* work, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ssytrd( char* uplo, lapack_int* n, float* a, lapack_int* lda, + float* d, float* e, float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dsytrd( char* uplo, lapack_int* n, double* a, lapack_int* lda, + double* d, double* e, double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sorgtr( char* uplo, lapack_int* n, float* a, lapack_int* lda, + const float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dorgtr( char* uplo, lapack_int* n, double* a, lapack_int* lda, + const double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sormtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const float* a, lapack_int* lda, + const float* tau, float* c, lapack_int* ldc, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dormtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const double* a, lapack_int* lda, + const double* tau, double* c, lapack_int* ldc, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_chetrd( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, float* d, float* e, + lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zhetrd( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, double* d, double* e, + lapack_complex_double* tau, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cungtr( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zungtr( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zunmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ssptrd( char* uplo, lapack_int* n, float* ap, float* d, float* e, + float* tau, lapack_int *info ); +void LAPACK_dsptrd( char* uplo, lapack_int* n, double* ap, double* d, double* e, + double* tau, lapack_int *info ); +void LAPACK_sopgtr( char* uplo, lapack_int* n, const float* ap, + const float* tau, float* q, lapack_int* ldq, float* work, + lapack_int *info ); +void LAPACK_dopgtr( char* uplo, lapack_int* n, const double* ap, + const double* tau, double* q, lapack_int* ldq, double* work, + lapack_int *info ); +void LAPACK_sopmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const float* ap, const float* tau, float* c, + lapack_int* ldc, float* work, lapack_int *info ); +void LAPACK_dopmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const double* ap, const double* tau, + double* c, lapack_int* ldc, double* work, + lapack_int *info ); +void LAPACK_chptrd( char* uplo, lapack_int* n, lapack_complex_float* ap, + float* d, float* e, lapack_complex_float* tau, + lapack_int *info ); +void LAPACK_zhptrd( char* uplo, lapack_int* n, lapack_complex_double* ap, + double* d, double* e, lapack_complex_double* tau, + lapack_int *info ); +void LAPACK_cupgtr( char* uplo, lapack_int* n, const lapack_complex_float* ap, + const lapack_complex_float* tau, lapack_complex_float* q, + lapack_int* ldq, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zupgtr( char* uplo, lapack_int* n, const lapack_complex_double* ap, + const lapack_complex_double* tau, lapack_complex_double* q, + lapack_int* ldq, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_cupmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const lapack_complex_float* ap, + const lapack_complex_float* tau, lapack_complex_float* c, + lapack_int* ldc, lapack_complex_float* work, + lapack_int *info ); +void LAPACK_zupmtr( char* side, char* uplo, char* trans, lapack_int* m, + lapack_int* n, const lapack_complex_double* ap, + const lapack_complex_double* tau, lapack_complex_double* c, + lapack_int* ldc, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_ssbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, + float* ab, lapack_int* ldab, float* d, float* e, float* q, + lapack_int* ldq, float* work, lapack_int *info ); +void LAPACK_dsbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, + double* ab, lapack_int* ldab, double* d, double* e, + double* q, lapack_int* ldq, double* work, + lapack_int *info ); +void LAPACK_chbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_float* ab, lapack_int* ldab, float* d, + float* e, lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zhbtrd( char* vect, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_double* ab, lapack_int* ldab, double* d, + double* e, lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_ssterf( lapack_int* n, float* d, float* e, lapack_int *info ); +void LAPACK_dsterf( lapack_int* n, double* d, double* e, lapack_int *info ); +void LAPACK_ssteqr( char* compz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dsteqr( char* compz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_csteqr( char* compz, lapack_int* n, float* d, float* e, + lapack_complex_float* z, lapack_int* ldz, float* work, + lapack_int *info ); +void LAPACK_zsteqr( char* compz, lapack_int* n, double* d, double* e, + lapack_complex_double* z, lapack_int* ldz, double* work, + lapack_int *info ); +void LAPACK_sstemr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + lapack_int* m, float* w, float* z, lapack_int* ldz, + lapack_int* nzc, lapack_int* isuppz, lapack_logical* tryrac, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dstemr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, lapack_int* m, double* w, double* z, + lapack_int* ldz, lapack_int* nzc, lapack_int* isuppz, + lapack_logical* tryrac, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_cstemr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_int* nzc, lapack_int* isuppz, + lapack_logical* tryrac, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_zstemr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int* ldz, lapack_int* nzc, + lapack_int* isuppz, lapack_logical* tryrac, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_sstedc( char* compz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dstedc( char* compz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_cstedc( char* compz, lapack_int* n, float* d, float* e, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zstedc( char* compz, lapack_int* n, double* d, double* e, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sstegr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, float* z, + lapack_int* ldz, lapack_int* isuppz, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_dstegr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, lapack_int* isuppz, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_cstegr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_int* isuppz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_zstegr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_int* isuppz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_spteqr( char* compz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dpteqr( char* compz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_cpteqr( char* compz, lapack_int* n, float* d, float* e, + lapack_complex_float* z, lapack_int* ldz, float* work, + lapack_int *info ); +void LAPACK_zpteqr( char* compz, lapack_int* n, double* d, double* e, + lapack_complex_double* z, lapack_int* ldz, double* work, + lapack_int *info ); +void LAPACK_sstebz( char* range, char* order, lapack_int* n, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + const float* d, const float* e, lapack_int* m, + lapack_int* nsplit, float* w, lapack_int* iblock, + lapack_int* isplit, float* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dstebz( char* range, char* order, lapack_int* n, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + const double* d, const double* e, lapack_int* m, + lapack_int* nsplit, double* w, lapack_int* iblock, + lapack_int* isplit, double* work, lapack_int* iwork, + lapack_int *info ); +void LAPACK_sstein( lapack_int* n, const float* d, const float* e, + lapack_int* m, const float* w, const lapack_int* iblock, + const lapack_int* isplit, float* z, lapack_int* ldz, + float* work, lapack_int* iwork, lapack_int* ifailv, + lapack_int *info ); +void LAPACK_dstein( lapack_int* n, const double* d, const double* e, + lapack_int* m, const double* w, const lapack_int* iblock, + const lapack_int* isplit, double* z, lapack_int* ldz, + double* work, lapack_int* iwork, lapack_int* ifailv, + lapack_int *info ); +void LAPACK_cstein( lapack_int* n, const float* d, const float* e, + lapack_int* m, const float* w, const lapack_int* iblock, + const lapack_int* isplit, lapack_complex_float* z, + lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifailv, lapack_int *info ); +void LAPACK_zstein( lapack_int* n, const double* d, const double* e, + lapack_int* m, const double* w, const lapack_int* iblock, + const lapack_int* isplit, lapack_complex_double* z, + lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifailv, lapack_int *info ); +void LAPACK_sdisna( char* job, lapack_int* m, lapack_int* n, const float* d, + float* sep, lapack_int *info ); +void LAPACK_ddisna( char* job, lapack_int* m, lapack_int* n, const double* d, + double* sep, lapack_int *info ); +void LAPACK_ssygst( lapack_int* itype, char* uplo, lapack_int* n, float* a, + lapack_int* lda, const float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_dsygst( lapack_int* itype, char* uplo, lapack_int* n, double* a, + lapack_int* lda, const double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_chegst( lapack_int* itype, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_zhegst( lapack_int* itype, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* b, lapack_int* ldb, + lapack_int *info ); +void LAPACK_sspgst( lapack_int* itype, char* uplo, lapack_int* n, float* ap, + const float* bp, lapack_int *info ); +void LAPACK_dspgst( lapack_int* itype, char* uplo, lapack_int* n, double* ap, + const double* bp, lapack_int *info ); +void LAPACK_chpgst( lapack_int* itype, char* uplo, lapack_int* n, + lapack_complex_float* ap, const lapack_complex_float* bp, + lapack_int *info ); +void LAPACK_zhpgst( lapack_int* itype, char* uplo, lapack_int* n, + lapack_complex_double* ap, const lapack_complex_double* bp, + lapack_int *info ); +void LAPACK_ssbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, float* ab, lapack_int* ldab, + const float* bb, lapack_int* ldbb, float* x, + lapack_int* ldx, float* work, lapack_int *info ); +void LAPACK_dsbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, double* ab, lapack_int* ldab, + const double* bb, lapack_int* ldbb, double* x, + lapack_int* ldx, double* work, lapack_int *info ); +void LAPACK_chbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, + const lapack_complex_float* bb, lapack_int* ldbb, + lapack_complex_float* x, lapack_int* ldx, + lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zhbgst( char* vect, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, + const lapack_complex_double* bb, lapack_int* ldbb, + lapack_complex_double* x, lapack_int* ldx, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_spbstf( char* uplo, lapack_int* n, lapack_int* kb, float* bb, + lapack_int* ldbb, lapack_int *info ); +void LAPACK_dpbstf( char* uplo, lapack_int* n, lapack_int* kb, double* bb, + lapack_int* ldbb, lapack_int *info ); +void LAPACK_cpbstf( char* uplo, lapack_int* n, lapack_int* kb, + lapack_complex_float* bb, lapack_int* ldbb, + lapack_int *info ); +void LAPACK_zpbstf( char* uplo, lapack_int* n, lapack_int* kb, + lapack_complex_double* bb, lapack_int* ldbb, + lapack_int *info ); +void LAPACK_sgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, float* a, + lapack_int* lda, float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, double* a, + lapack_int* lda, double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zgehrd( lapack_int* n, lapack_int* ilo, lapack_int* ihi, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* tau, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sorghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, float* a, + lapack_int* lda, const float* tau, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dorghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, double* a, + lapack_int* lda, const double* tau, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sormhr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, const float* a, + lapack_int* lda, const float* tau, float* c, + lapack_int* ldc, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dormhr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, const double* a, + lapack_int* lda, const double* tau, double* c, + lapack_int* ldc, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, + lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zunghr( lapack_int* n, lapack_int* ilo, lapack_int* ihi, + lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cunmhr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* tau, lapack_complex_float* c, + lapack_int* ldc, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zunmhr( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* tau, lapack_complex_double* c, + lapack_int* ldc, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sgebal( char* job, lapack_int* n, float* a, lapack_int* lda, + lapack_int* ilo, lapack_int* ihi, float* scale, + lapack_int *info ); +void LAPACK_dgebal( char* job, lapack_int* n, double* a, lapack_int* lda, + lapack_int* ilo, lapack_int* ihi, double* scale, + lapack_int *info ); +void LAPACK_cgebal( char* job, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ilo, lapack_int* ihi, + float* scale, lapack_int *info ); +void LAPACK_zgebal( char* job, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ilo, lapack_int* ihi, + double* scale, lapack_int *info ); +void LAPACK_sgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const float* scale, lapack_int* m, + float* v, lapack_int* ldv, lapack_int *info ); +void LAPACK_dgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const double* scale, lapack_int* m, + double* v, lapack_int* ldv, lapack_int *info ); +void LAPACK_cgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const float* scale, lapack_int* m, + lapack_complex_float* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_zgebak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const double* scale, lapack_int* m, + lapack_complex_double* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_shseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, float* h, lapack_int* ldh, float* wr, + float* wi, float* z, lapack_int* ldz, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dhseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, double* h, lapack_int* ldh, double* wr, + double* wi, double* z, lapack_int* ldz, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_chseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, lapack_complex_float* h, lapack_int* ldh, + lapack_complex_float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zhseqr( char* job, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, lapack_complex_double* h, lapack_int* ldh, + lapack_complex_double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_shsein( char* job, char* eigsrc, char* initv, + lapack_logical* select, lapack_int* n, const float* h, + lapack_int* ldh, float* wr, const float* wi, float* vl, + lapack_int* ldvl, float* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, float* work, + lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); +void LAPACK_dhsein( char* job, char* eigsrc, char* initv, + lapack_logical* select, lapack_int* n, const double* h, + lapack_int* ldh, double* wr, const double* wi, double* vl, + lapack_int* ldvl, double* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, double* work, + lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); +void LAPACK_chsein( char* job, char* eigsrc, char* initv, + const lapack_logical* select, lapack_int* n, + const lapack_complex_float* h, lapack_int* ldh, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int* ldvl, lapack_complex_float* vr, + lapack_int* ldvr, lapack_int* mm, lapack_int* m, + lapack_complex_float* work, float* rwork, + lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); +void LAPACK_zhsein( char* job, char* eigsrc, char* initv, + const lapack_logical* select, lapack_int* n, + const lapack_complex_double* h, lapack_int* ldh, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int* ldvl, lapack_complex_double* vr, + lapack_int* ldvr, lapack_int* mm, lapack_int* m, + lapack_complex_double* work, double* rwork, + lapack_int* ifaill, lapack_int* ifailr, lapack_int *info ); +void LAPACK_strevc( char* side, char* howmny, lapack_logical* select, + lapack_int* n, const float* t, lapack_int* ldt, float* vl, + lapack_int* ldvl, float* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, float* work, + lapack_int *info ); +void LAPACK_dtrevc( char* side, char* howmny, lapack_logical* select, + lapack_int* n, const double* t, lapack_int* ldt, double* vl, + lapack_int* ldvl, double* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, double* work, + lapack_int *info ); +void LAPACK_ctrevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* vl, lapack_int* ldvl, + lapack_complex_float* vr, lapack_int* ldvr, lapack_int* mm, + lapack_int* m, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztrevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* vl, lapack_int* ldvl, + lapack_complex_double* vr, lapack_int* ldvr, lapack_int* mm, + lapack_int* m, lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_strsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const float* t, lapack_int* ldt, + const float* vl, lapack_int* ldvl, const float* vr, + lapack_int* ldvr, float* s, float* sep, lapack_int* mm, + lapack_int* m, float* work, lapack_int* ldwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dtrsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const double* t, lapack_int* ldt, + const double* vl, lapack_int* ldvl, const double* vr, + lapack_int* ldvr, double* s, double* sep, lapack_int* mm, + lapack_int* m, double* work, lapack_int* ldwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ctrsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_float* t, + lapack_int* ldt, const lapack_complex_float* vl, + lapack_int* ldvl, const lapack_complex_float* vr, + lapack_int* ldvr, float* s, float* sep, lapack_int* mm, + lapack_int* m, lapack_complex_float* work, + lapack_int* ldwork, float* rwork, lapack_int *info ); +void LAPACK_ztrsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_double* t, + lapack_int* ldt, const lapack_complex_double* vl, + lapack_int* ldvl, const lapack_complex_double* vr, + lapack_int* ldvr, double* s, double* sep, lapack_int* mm, + lapack_int* m, lapack_complex_double* work, + lapack_int* ldwork, double* rwork, lapack_int *info ); +void LAPACK_strexc( char* compq, lapack_int* n, float* t, lapack_int* ldt, + float* q, lapack_int* ldq, lapack_int* ifst, + lapack_int* ilst, float* work, lapack_int *info ); +void LAPACK_dtrexc( char* compq, lapack_int* n, double* t, lapack_int* ldt, + double* q, lapack_int* ldq, lapack_int* ifst, + lapack_int* ilst, double* work, lapack_int *info ); +void LAPACK_ctrexc( char* compq, lapack_int* n, lapack_complex_float* t, + lapack_int* ldt, lapack_complex_float* q, lapack_int* ldq, + lapack_int* ifst, lapack_int* ilst, lapack_int *info ); +void LAPACK_ztrexc( char* compq, lapack_int* n, lapack_complex_double* t, + lapack_int* ldt, lapack_complex_double* q, lapack_int* ldq, + lapack_int* ifst, lapack_int* ilst, lapack_int *info ); +void LAPACK_strsen( char* job, char* compq, const lapack_logical* select, + lapack_int* n, float* t, lapack_int* ldt, float* q, + lapack_int* ldq, float* wr, float* wi, lapack_int* m, + float* s, float* sep, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dtrsen( char* job, char* compq, const lapack_logical* select, + lapack_int* n, double* t, lapack_int* ldt, double* q, + lapack_int* ldq, double* wr, double* wi, lapack_int* m, + double* s, double* sep, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_ctrsen( char* job, char* compq, const lapack_logical* select, + lapack_int* n, lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* w, lapack_int* m, float* s, + float* sep, lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_ztrsen( char* job, char* compq, const lapack_logical* select, + lapack_int* n, lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* w, lapack_int* m, double* s, + double* sep, lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_strsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, + lapack_int* n, const float* a, lapack_int* lda, + const float* b, lapack_int* ldb, float* c, lapack_int* ldc, + float* scale, lapack_int *info ); +void LAPACK_dtrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, + lapack_int* n, const double* a, lapack_int* lda, + const double* b, lapack_int* ldb, double* c, + lapack_int* ldc, double* scale, lapack_int *info ); +void LAPACK_ctrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, + lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* b, + lapack_int* ldb, lapack_complex_float* c, lapack_int* ldc, + float* scale, lapack_int *info ); +void LAPACK_ztrsyl( char* trana, char* tranb, lapack_int* isgn, lapack_int* m, + lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* b, + lapack_int* ldb, lapack_complex_double* c, lapack_int* ldc, + double* scale, lapack_int *info ); +void LAPACK_sgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* q, lapack_int* ldq, float* z, + lapack_int* ldz, lapack_int *info ); +void LAPACK_dgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* q, lapack_int* ldq, double* z, + lapack_int* ldz, lapack_int *info ); +void LAPACK_cgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* z, lapack_int* ldz, + lapack_int *info ); +void LAPACK_zgghrd( char* compq, char* compz, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* z, lapack_int* ldz, + lapack_int *info ); +void LAPACK_sggbal( char* job, lapack_int* n, float* a, lapack_int* lda, + float* b, lapack_int* ldb, lapack_int* ilo, lapack_int* ihi, + float* lscale, float* rscale, float* work, + lapack_int *info ); +void LAPACK_dggbal( char* job, lapack_int* n, double* a, lapack_int* lda, + double* b, lapack_int* ldb, lapack_int* ilo, + lapack_int* ihi, double* lscale, double* rscale, + double* work, lapack_int *info ); +void LAPACK_cggbal( char* job, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* work, lapack_int *info ); +void LAPACK_zggbal( char* job, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale, double* work, lapack_int *info ); +void LAPACK_sggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const float* lscale, const float* rscale, + lapack_int* m, float* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_dggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const double* lscale, const double* rscale, + lapack_int* m, double* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_cggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const float* lscale, const float* rscale, + lapack_int* m, lapack_complex_float* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_zggbak( char* job, char* side, lapack_int* n, lapack_int* ilo, + lapack_int* ihi, const double* lscale, const double* rscale, + lapack_int* m, lapack_complex_double* v, lapack_int* ldv, + lapack_int *info ); +void LAPACK_shgeqz( char* job, char* compq, char* compz, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, float* h, lapack_int* ldh, + float* t, lapack_int* ldt, float* alphar, float* alphai, + float* beta, float* q, lapack_int* ldq, float* z, + lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dhgeqz( char* job, char* compq, char* compz, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, double* h, + lapack_int* ldh, double* t, lapack_int* ldt, double* alphar, + double* alphai, double* beta, double* q, lapack_int* ldq, + double* z, lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_chgeqz( char* job, char* compq, char* compz, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, lapack_complex_float* h, + lapack_int* ldh, lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zhgeqz( char* job, char* compq, char* compz, lapack_int* n, + lapack_int* ilo, lapack_int* ihi, lapack_complex_double* h, + lapack_int* ldh, lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_stgevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, const float* s, lapack_int* lds, + const float* p, lapack_int* ldp, float* vl, + lapack_int* ldvl, float* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, float* work, + lapack_int *info ); +void LAPACK_dtgevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, const double* s, lapack_int* lds, + const double* p, lapack_int* ldp, double* vl, + lapack_int* ldvl, double* vr, lapack_int* ldvr, + lapack_int* mm, lapack_int* m, double* work, + lapack_int *info ); +void LAPACK_ctgevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_float* s, + lapack_int* lds, const lapack_complex_float* p, + lapack_int* ldp, lapack_complex_float* vl, lapack_int* ldvl, + lapack_complex_float* vr, lapack_int* ldvr, lapack_int* mm, + lapack_int* m, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_ztgevc( char* side, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_double* s, + lapack_int* lds, const lapack_complex_double* p, + lapack_int* ldp, lapack_complex_double* vl, + lapack_int* ldvl, lapack_complex_double* vr, + lapack_int* ldvr, lapack_int* mm, lapack_int* m, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_stgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* q, lapack_int* ldq, float* z, lapack_int* ldz, + lapack_int* ifst, lapack_int* ilst, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dtgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* q, lapack_int* ldq, double* z, lapack_int* ldz, + lapack_int* ifst, lapack_int* ilst, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_ctgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* z, lapack_int* ldz, lapack_int* ifst, + lapack_int* ilst, lapack_int *info ); +void LAPACK_ztgexc( lapack_logical* wantq, lapack_logical* wantz, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* z, lapack_int* ldz, lapack_int* ifst, + lapack_int* ilst, lapack_int *info ); +void LAPACK_stgsen( lapack_int* ijob, lapack_logical* wantq, + lapack_logical* wantz, const lapack_logical* select, + lapack_int* n, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* alphar, float* alphai, float* beta, + float* q, lapack_int* ldq, float* z, lapack_int* ldz, + lapack_int* m, float* pl, float* pr, float* dif, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dtgsen( lapack_int* ijob, lapack_logical* wantq, + lapack_logical* wantz, const lapack_logical* select, + lapack_int* n, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* alphar, double* alphai, + double* beta, double* q, lapack_int* ldq, double* z, + lapack_int* ldz, lapack_int* m, double* pl, double* pr, + double* dif, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_ctgsen( lapack_int* ijob, lapack_logical* wantq, + lapack_logical* wantz, const lapack_logical* select, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* z, lapack_int* ldz, lapack_int* m, + float* pl, float* pr, float* dif, + lapack_complex_float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_ztgsen( lapack_int* ijob, lapack_logical* wantq, + lapack_logical* wantz, const lapack_logical* select, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* z, lapack_int* ldz, lapack_int* m, + double* pl, double* pr, double* dif, + lapack_complex_double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_stgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, + const float* a, lapack_int* lda, const float* b, + lapack_int* ldb, float* c, lapack_int* ldc, const float* d, + lapack_int* ldd, const float* e, lapack_int* lde, float* f, + lapack_int* ldf, float* scale, float* dif, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_dtgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, + const double* a, lapack_int* lda, const double* b, + lapack_int* ldb, double* c, lapack_int* ldc, + const double* d, lapack_int* ldd, const double* e, + lapack_int* lde, double* f, lapack_int* ldf, double* scale, + double* dif, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ctgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, + const lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* c, lapack_int* ldc, + const lapack_complex_float* d, lapack_int* ldd, + const lapack_complex_float* e, lapack_int* lde, + lapack_complex_float* f, lapack_int* ldf, float* scale, + float* dif, lapack_complex_float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ztgsyl( char* trans, lapack_int* ijob, lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + const lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* c, lapack_int* ldc, + const lapack_complex_double* d, lapack_int* ldd, + const lapack_complex_double* e, lapack_int* lde, + lapack_complex_double* f, lapack_int* ldf, double* scale, + double* dif, lapack_complex_double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_stgsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const float* a, lapack_int* lda, + const float* b, lapack_int* ldb, const float* vl, + lapack_int* ldvl, const float* vr, lapack_int* ldvr, + float* s, float* dif, lapack_int* mm, lapack_int* m, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dtgsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const double* a, lapack_int* lda, + const double* b, lapack_int* ldb, const double* vl, + lapack_int* ldvl, const double* vr, lapack_int* ldvr, + double* s, double* dif, lapack_int* mm, lapack_int* m, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_ctgsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, const lapack_complex_float* b, + lapack_int* ldb, const lapack_complex_float* vl, + lapack_int* ldvl, const lapack_complex_float* vr, + lapack_int* ldvr, float* s, float* dif, lapack_int* mm, + lapack_int* m, lapack_complex_float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_ztgsna( char* job, char* howmny, const lapack_logical* select, + lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, const lapack_complex_double* b, + lapack_int* ldb, const lapack_complex_double* vl, + lapack_int* ldvl, const lapack_complex_double* vr, + lapack_int* ldvr, double* s, double* dif, lapack_int* mm, + lapack_int* m, lapack_complex_double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_sggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, float* a, lapack_int* lda, + float* b, lapack_int* ldb, float* tola, float* tolb, + lapack_int* k, lapack_int* l, float* u, lapack_int* ldu, + float* v, lapack_int* ldv, float* q, lapack_int* ldq, + lapack_int* iwork, float* tau, float* work, + lapack_int *info ); +void LAPACK_dggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, double* a, lapack_int* lda, + double* b, lapack_int* ldb, double* tola, double* tolb, + lapack_int* k, lapack_int* l, double* u, lapack_int* ldu, + double* v, lapack_int* ldv, double* q, lapack_int* ldq, + lapack_int* iwork, double* tau, double* work, + lapack_int *info ); +void LAPACK_cggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, + float* tola, float* tolb, lapack_int* k, lapack_int* l, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* v, lapack_int* ldv, + lapack_complex_float* q, lapack_int* ldq, lapack_int* iwork, + float* rwork, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zggsvp( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, + double* tola, double* tolb, lapack_int* k, lapack_int* l, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* v, lapack_int* ldv, + lapack_complex_double* q, lapack_int* ldq, + lapack_int* iwork, double* rwork, + lapack_complex_double* tau, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_stgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* tola, float* tolb, float* alpha, float* beta, + float* u, lapack_int* ldu, float* v, lapack_int* ldv, + float* q, lapack_int* ldq, float* work, lapack_int* ncycle, + lapack_int *info ); +void LAPACK_dtgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* tola, double* tolb, double* alpha, double* beta, + double* u, lapack_int* ldu, double* v, lapack_int* ldv, + double* q, lapack_int* ldq, double* work, + lapack_int* ncycle, lapack_int *info ); +void LAPACK_ctgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* tola, + float* tolb, float* alpha, float* beta, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* v, lapack_int* ldv, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* work, lapack_int* ncycle, + lapack_int *info ); +void LAPACK_ztgsja( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* p, lapack_int* n, lapack_int* k, lapack_int* l, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* tola, + double* tolb, double* alpha, double* beta, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* v, lapack_int* ldv, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* work, lapack_int* ncycle, + lapack_int *info ); +void LAPACK_sgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_dgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_cgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgels( char* trans, lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_sgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, float* b, lapack_int* ldb, + lapack_int* jpvt, float* rcond, lapack_int* rank, + float* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_dgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, + lapack_int* jpvt, double* rcond, lapack_int* rank, + double* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_cgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, lapack_int* jpvt, + float* rcond, lapack_int* rank, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int *info ); +void LAPACK_zgelsy( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, lapack_int* jpvt, + double* rcond, lapack_int* rank, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_sgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* s, + float* rcond, lapack_int* rank, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* s, + double* rcond, lapack_int* rank, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* s, + float* rcond, lapack_int* rank, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int *info ); +void LAPACK_zgelss( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* s, + double* rcond, lapack_int* rank, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_sgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* s, + float* rcond, lapack_int* rank, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_dgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* s, + double* rcond, lapack_int* rank, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_cgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* s, + float* rcond, lapack_int* rank, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_zgelsd( lapack_int* m, lapack_int* n, lapack_int* nrhs, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* s, + double* rcond, lapack_int* rank, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_sgglse( lapack_int* m, lapack_int* n, lapack_int* p, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* c, + float* d, float* x, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgglse( lapack_int* m, lapack_int* n, lapack_int* p, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* c, + double* d, double* x, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgglse( lapack_int* m, lapack_int* n, lapack_int* p, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* c, lapack_complex_float* d, + lapack_complex_float* x, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zgglse( lapack_int* m, lapack_int* n, lapack_int* p, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* c, lapack_complex_double* d, + lapack_complex_double* x, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sggglm( lapack_int* n, lapack_int* m, lapack_int* p, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* d, + float* x, float* y, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dggglm( lapack_int* n, lapack_int* m, lapack_int* p, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* d, + double* x, double* y, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cggglm( lapack_int* n, lapack_int* m, lapack_int* p, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* d, lapack_complex_float* x, + lapack_complex_float* y, lapack_complex_float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_zggglm( lapack_int* n, lapack_int* m, lapack_int* p, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* d, lapack_complex_double* x, + lapack_complex_double* y, lapack_complex_double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_ssyev( char* jobz, char* uplo, lapack_int* n, float* a, + lapack_int* lda, float* w, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dsyev( char* jobz, char* uplo, lapack_int* n, double* a, + lapack_int* lda, double* w, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cheev( char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* w, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zheev( char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* w, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_ssyevd( char* jobz, char* uplo, lapack_int* n, float* a, + lapack_int* lda, float* w, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dsyevd( char* jobz, char* uplo, lapack_int* n, double* a, + lapack_int* lda, double* w, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_cheevd( char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* w, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zheevd( char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* w, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_ssyevx( char* jobz, char* range, char* uplo, lapack_int* n, + float* a, lapack_int* lda, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, float* z, lapack_int* ldz, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dsyevx( char* jobz, char* range, char* uplo, lapack_int* n, + double* a, lapack_int* lda, double* vl, double* vu, + lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, double* z, lapack_int* ldz, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_cheevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_zheevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_ssyevr( char* jobz, char* range, char* uplo, lapack_int* n, + float* a, lapack_int* lda, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, float* z, lapack_int* ldz, + lapack_int* isuppz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dsyevr( char* jobz, char* range, char* uplo, lapack_int* n, + double* a, lapack_int* lda, double* vl, double* vu, + lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, double* z, lapack_int* ldz, + lapack_int* isuppz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_cheevr( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_int* isuppz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zheevr( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_int* isuppz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sspev( char* jobz, char* uplo, lapack_int* n, float* ap, float* w, + float* z, lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dspev( char* jobz, char* uplo, lapack_int* n, double* ap, double* w, + double* z, lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_chpev( char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* ap, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, float* rwork, + lapack_int *info ); +void LAPACK_zhpev( char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* ap, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sspevd( char* jobz, char* uplo, lapack_int* n, float* ap, float* w, + float* z, lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dspevd( char* jobz, char* uplo, lapack_int* n, double* ap, + double* w, double* z, lapack_int* ldz, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_chpevd( char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* ap, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* lrwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_zhpevd( char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* ap, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sspevx( char* jobz, char* range, char* uplo, lapack_int* n, + float* ap, float* vl, float* vu, lapack_int* il, + lapack_int* iu, float* abstol, lapack_int* m, float* w, + float* z, lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dspevx( char* jobz, char* range, char* uplo, lapack_int* n, + double* ap, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_chpevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_float* ap, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_zhpevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_complex_double* ap, double* vl, double* vu, + lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_ssbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + float* ab, lapack_int* ldab, float* w, float* z, + lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dsbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + double* ab, lapack_int* ldab, double* w, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_chbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_float* ab, lapack_int* ldab, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, float* rwork, lapack_int *info ); +void LAPACK_zhbev( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_double* ab, lapack_int* ldab, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_ssbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + float* ab, lapack_int* ldab, float* w, float* z, + lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dsbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + double* ab, lapack_int* ldab, double* w, double* z, + lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_chbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_float* ab, lapack_int* ldab, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zhbevd( char* jobz, char* uplo, lapack_int* n, lapack_int* kd, + lapack_complex_double* ab, lapack_int* ldab, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_ssbevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* kd, float* ab, lapack_int* ldab, float* q, + lapack_int* ldq, float* vl, float* vu, lapack_int* il, + lapack_int* iu, float* abstol, lapack_int* m, float* w, + float* z, lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dsbevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* kd, double* ab, lapack_int* ldab, double* q, + lapack_int* ldq, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_chbevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* kd, lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* q, lapack_int* ldq, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_zhbevx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* kd, lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* q, lapack_int* ldq, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_sstev( char* jobz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int *info ); +void LAPACK_dstev( char* jobz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_sstevd( char* jobz, lapack_int* n, float* d, float* e, float* z, + lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_dstevd( char* jobz, lapack_int* n, double* d, double* e, double* z, + lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_sstevx( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, float* z, + lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dstevx( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_sstevr( char* jobz, char* range, lapack_int* n, float* d, float* e, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, float* z, + lapack_int* ldz, lapack_int* isuppz, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_dstevr( char* jobz, char* range, lapack_int* n, double* d, + double* e, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, lapack_int* isuppz, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sgees( char* jobvs, char* sort, LAPACK_S_SELECT2 select, + lapack_int* n, float* a, lapack_int* lda, lapack_int* sdim, + float* wr, float* wi, float* vs, lapack_int* ldvs, + float* work, lapack_int* lwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_dgees( char* jobvs, char* sort, LAPACK_D_SELECT2 select, + lapack_int* n, double* a, lapack_int* lda, lapack_int* sdim, + double* wr, double* wi, double* vs, lapack_int* ldvs, + double* work, lapack_int* lwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_cgees( char* jobvs, char* sort, LAPACK_C_SELECT1 select, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int* ldvs, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_zgees( char* jobvs, char* sort, LAPACK_Z_SELECT1 select, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int* ldvs, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_logical* bwork, lapack_int *info ); +void LAPACK_sgeesx( char* jobvs, char* sort, LAPACK_S_SELECT2 select, + char* sense, lapack_int* n, float* a, lapack_int* lda, + lapack_int* sdim, float* wr, float* wi, float* vs, + lapack_int* ldvs, float* rconde, float* rcondv, float* work, + lapack_int* lwork, lapack_int* iwork, lapack_int* liwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_dgeesx( char* jobvs, char* sort, LAPACK_D_SELECT2 select, + char* sense, lapack_int* n, double* a, lapack_int* lda, + lapack_int* sdim, double* wr, double* wi, double* vs, + lapack_int* ldvs, double* rconde, double* rcondv, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_cgeesx( char* jobvs, char* sort, LAPACK_C_SELECT1 select, + char* sense, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* sdim, lapack_complex_float* w, + lapack_complex_float* vs, lapack_int* ldvs, float* rconde, + float* rcondv, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_zgeesx( char* jobvs, char* sort, LAPACK_Z_SELECT1 select, + char* sense, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* sdim, lapack_complex_double* w, + lapack_complex_double* vs, lapack_int* ldvs, double* rconde, + double* rcondv, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_sgeev( char* jobvl, char* jobvr, lapack_int* n, float* a, + lapack_int* lda, float* wr, float* wi, float* vl, + lapack_int* ldvl, float* vr, lapack_int* ldvr, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgeev( char* jobvl, char* jobvr, lapack_int* n, double* a, + lapack_int* lda, double* wr, double* wi, double* vl, + lapack_int* ldvl, double* vr, lapack_int* ldvr, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgeev( char* jobvl, char* jobvr, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int* ldvl, lapack_complex_float* vr, lapack_int* ldvr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zgeev( char* jobvl, char* jobvr, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int* ldvl, lapack_complex_double* vr, + lapack_int* ldvr, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int *info ); +void LAPACK_sgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, float* a, lapack_int* lda, float* wr, + float* wi, float* vl, lapack_int* ldvl, float* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + float* scale, float* abnrm, float* rconde, float* rcondv, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_dgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, double* a, lapack_int* lda, double* wr, + double* wi, double* vl, lapack_int* ldvl, double* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + double* scale, double* abnrm, double* rconde, + double* rcondv, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_cgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* w, lapack_complex_float* vl, + lapack_int* ldvl, lapack_complex_float* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + float* scale, float* abnrm, float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zgeevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* w, lapack_complex_double* vl, + lapack_int* ldvl, lapack_complex_double* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + double* scale, double* abnrm, double* rconde, + double* rcondv, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int *info ); +void LAPACK_sgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, + float* a, lapack_int* lda, float* s, float* u, + lapack_int* ldu, float* vt, lapack_int* ldvt, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_dgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, + double* a, lapack_int* lda, double* s, double* u, + lapack_int* ldu, double* vt, lapack_int* ldvt, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* s, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* vt, lapack_int* ldvt, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zgesvd( char* jobu, char* jobvt, lapack_int* m, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* s, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* vt, lapack_int* ldvt, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_sgesdd( char* jobz, lapack_int* m, lapack_int* n, float* a, + lapack_int* lda, float* s, float* u, lapack_int* ldu, + float* vt, lapack_int* ldvt, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dgesdd( char* jobz, lapack_int* m, lapack_int* n, double* a, + lapack_int* lda, double* s, double* u, lapack_int* ldu, + double* vt, lapack_int* ldvt, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_cgesdd( char* jobz, lapack_int* m, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, float* s, + lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* vt, lapack_int* ldvt, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_zgesdd( char* jobz, lapack_int* m, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, double* s, + lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* vt, lapack_int* ldvt, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* iwork, lapack_int *info ); +void LAPACK_dgejsv( char* joba, char* jobu, char* jobv, char* jobr, char* jobt, + char* jobp, lapack_int* m, lapack_int* n, double* a, + lapack_int* lda, double* sva, double* u, lapack_int* ldu, + double* v, lapack_int* ldv, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_sgejsv( char* joba, char* jobu, char* jobv, char* jobr, char* jobt, + char* jobp, lapack_int* m, lapack_int* n, float* a, + lapack_int* lda, float* sva, float* u, lapack_int* ldu, + float* v, lapack_int* ldv, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_dgesvj( char* joba, char* jobu, char* jobv, lapack_int* m, + lapack_int* n, double* a, lapack_int* lda, double* sva, + lapack_int* mv, double* v, lapack_int* ldv, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sgesvj( char* joba, char* jobu, char* jobv, lapack_int* m, + lapack_int* n, float* a, lapack_int* lda, float* sva, + lapack_int* mv, float* v, lapack_int* ldv, float* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_sggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* alpha, float* beta, float* u, lapack_int* ldu, + float* v, lapack_int* ldv, float* q, lapack_int* ldq, + float* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_dggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* alpha, double* beta, double* u, lapack_int* ldu, + double* v, lapack_int* ldv, double* q, lapack_int* ldq, + double* work, lapack_int* iwork, lapack_int *info ); +void LAPACK_cggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* alpha, + float* beta, lapack_complex_float* u, lapack_int* ldu, + lapack_complex_float* v, lapack_int* ldv, + lapack_complex_float* q, lapack_int* ldq, + lapack_complex_float* work, float* rwork, lapack_int* iwork, + lapack_int *info ); +void LAPACK_zggsvd( char* jobu, char* jobv, char* jobq, lapack_int* m, + lapack_int* n, lapack_int* p, lapack_int* k, lapack_int* l, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* alpha, + double* beta, lapack_complex_double* u, lapack_int* ldu, + lapack_complex_double* v, lapack_int* ldv, + lapack_complex_double* q, lapack_int* ldq, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int *info ); +void LAPACK_ssygv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* w, float* work, lapack_int* lwork, lapack_int *info ); +void LAPACK_dsygv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* w, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_chegv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* w, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zhegv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* w, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_ssygvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + float* w, float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dsygvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* w, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_chegvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* w, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zhegvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* w, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_ssygvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* vl, float* vu, lapack_int* il, + lapack_int* iu, float* abstol, lapack_int* m, float* w, + float* z, lapack_int* ldz, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_dsygvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_chegvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, float* vl, + float* vu, lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_zhegvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_sspgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + float* ap, float* bp, float* w, float* z, lapack_int* ldz, + float* work, lapack_int *info ); +void LAPACK_dspgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + double* ap, double* bp, double* w, double* z, + lapack_int* ldz, double* work, lapack_int *info ); +void LAPACK_chpgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* ap, lapack_complex_float* bp, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, float* rwork, lapack_int *info ); +void LAPACK_zhpgv( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* ap, lapack_complex_double* bp, + double* w, lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_sspgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + float* ap, float* bp, float* w, float* z, lapack_int* ldz, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dspgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + double* ap, double* bp, double* w, double* z, + lapack_int* ldz, double* work, lapack_int* lwork, + lapack_int* iwork, lapack_int* liwork, lapack_int *info ); +void LAPACK_chpgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_float* ap, lapack_complex_float* bp, + float* w, lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zhpgvd( lapack_int* itype, char* jobz, char* uplo, lapack_int* n, + lapack_complex_double* ap, lapack_complex_double* bp, + double* w, lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_sspgvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, float* ap, float* bp, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, float* z, lapack_int* ldz, + float* work, lapack_int* iwork, lapack_int* ifail, + lapack_int *info ); +void LAPACK_dspgvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, double* ap, double* bp, double* vl, + double* vu, lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, double* z, lapack_int* ldz, + double* work, lapack_int* iwork, lapack_int* ifail, + lapack_int *info ); +void LAPACK_chpgvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, lapack_complex_float* ap, + lapack_complex_float* bp, float* vl, float* vu, + lapack_int* il, lapack_int* iu, float* abstol, + lapack_int* m, float* w, lapack_complex_float* z, + lapack_int* ldz, lapack_complex_float* work, float* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_zhpgvx( lapack_int* itype, char* jobz, char* range, char* uplo, + lapack_int* n, lapack_complex_double* ap, + lapack_complex_double* bp, double* vl, double* vu, + lapack_int* il, lapack_int* iu, double* abstol, + lapack_int* m, double* w, lapack_complex_double* z, + lapack_int* ldz, lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_ssbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, float* ab, lapack_int* ldab, float* bb, + lapack_int* ldbb, float* w, float* z, lapack_int* ldz, + float* work, lapack_int *info ); +void LAPACK_dsbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, double* ab, lapack_int* ldab, double* bb, + lapack_int* ldbb, double* w, double* z, lapack_int* ldz, + double* work, lapack_int *info ); +void LAPACK_chbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* bb, lapack_int* ldbb, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, float* rwork, lapack_int *info ); +void LAPACK_zhbgv( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* bb, lapack_int* ldbb, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int *info ); +void LAPACK_ssbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, float* ab, lapack_int* ldab, float* bb, + lapack_int* ldbb, float* w, float* z, lapack_int* ldz, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_dsbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, double* ab, lapack_int* ldab, double* bb, + lapack_int* ldbb, double* w, double* z, lapack_int* ldz, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_chbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_float* ab, lapack_int* ldab, + lapack_complex_float* bb, lapack_int* ldbb, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* lrwork, lapack_int* iwork, lapack_int* liwork, + lapack_int *info ); +void LAPACK_zhbgvd( char* jobz, char* uplo, lapack_int* n, lapack_int* ka, + lapack_int* kb, lapack_complex_double* ab, lapack_int* ldab, + lapack_complex_double* bb, lapack_int* ldbb, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, lapack_int* iwork, + lapack_int* liwork, lapack_int *info ); +void LAPACK_ssbgvx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* ka, lapack_int* kb, float* ab, lapack_int* ldab, + float* bb, lapack_int* ldbb, float* q, lapack_int* ldq, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, float* z, + lapack_int* ldz, float* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_dsbgvx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* ka, lapack_int* kb, double* ab, + lapack_int* ldab, double* bb, lapack_int* ldbb, double* q, + lapack_int* ldq, double* vl, double* vu, lapack_int* il, + lapack_int* iu, double* abstol, lapack_int* m, double* w, + double* z, lapack_int* ldz, double* work, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_chbgvx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* ka, lapack_int* kb, lapack_complex_float* ab, + lapack_int* ldab, lapack_complex_float* bb, + lapack_int* ldbb, lapack_complex_float* q, lapack_int* ldq, + float* vl, float* vu, lapack_int* il, lapack_int* iu, + float* abstol, lapack_int* m, float* w, + lapack_complex_float* z, lapack_int* ldz, + lapack_complex_float* work, float* rwork, lapack_int* iwork, + lapack_int* ifail, lapack_int *info ); +void LAPACK_zhbgvx( char* jobz, char* range, char* uplo, lapack_int* n, + lapack_int* ka, lapack_int* kb, lapack_complex_double* ab, + lapack_int* ldab, lapack_complex_double* bb, + lapack_int* ldbb, lapack_complex_double* q, lapack_int* ldq, + double* vl, double* vu, lapack_int* il, lapack_int* iu, + double* abstol, lapack_int* m, double* w, + lapack_complex_double* z, lapack_int* ldz, + lapack_complex_double* work, double* rwork, + lapack_int* iwork, lapack_int* ifail, lapack_int *info ); +void LAPACK_sgges( char* jobvsl, char* jobvsr, char* sort, + LAPACK_S_SELECT3 selctg, lapack_int* n, float* a, + lapack_int* lda, float* b, lapack_int* ldb, lapack_int* sdim, + float* alphar, float* alphai, float* beta, float* vsl, + lapack_int* ldvsl, float* vsr, lapack_int* ldvsr, + float* work, lapack_int* lwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_dgges( char* jobvsl, char* jobvsr, char* sort, + LAPACK_D_SELECT3 selctg, lapack_int* n, double* a, + lapack_int* lda, double* b, lapack_int* ldb, + lapack_int* sdim, double* alphar, double* alphai, + double* beta, double* vsl, lapack_int* ldvsl, double* vsr, + lapack_int* ldvsr, double* work, lapack_int* lwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_cgges( char* jobvsl, char* jobvsr, char* sort, + LAPACK_C_SELECT2 selctg, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, lapack_int* sdim, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int* ldvsl, + lapack_complex_float* vsr, lapack_int* ldvsr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_zgges( char* jobvsl, char* jobvsr, char* sort, + LAPACK_Z_SELECT2 selctg, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, lapack_int* sdim, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int* ldvsl, + lapack_complex_double* vsr, lapack_int* ldvsr, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_logical* bwork, lapack_int *info ); +void LAPACK_sggesx( char* jobvsl, char* jobvsr, char* sort, + LAPACK_S_SELECT3 selctg, char* sense, lapack_int* n, + float* a, lapack_int* lda, float* b, lapack_int* ldb, + lapack_int* sdim, float* alphar, float* alphai, float* beta, + float* vsl, lapack_int* ldvsl, float* vsr, + lapack_int* ldvsr, float* rconde, float* rcondv, + float* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_dggesx( char* jobvsl, char* jobvsr, char* sort, + LAPACK_D_SELECT3 selctg, char* sense, lapack_int* n, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + lapack_int* sdim, double* alphar, double* alphai, + double* beta, double* vsl, lapack_int* ldvsl, double* vsr, + lapack_int* ldvsr, double* rconde, double* rcondv, + double* work, lapack_int* lwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_cggesx( char* jobvsl, char* jobvsr, char* sort, + LAPACK_C_SELECT2 selctg, char* sense, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, lapack_int* sdim, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* vsl, lapack_int* ldvsl, + lapack_complex_float* vsr, lapack_int* ldvsr, float* rconde, + float* rcondv, lapack_complex_float* work, + lapack_int* lwork, float* rwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_zggesx( char* jobvsl, char* jobvsr, char* sort, + LAPACK_Z_SELECT2 selctg, char* sense, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, lapack_int* sdim, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* vsl, lapack_int* ldvsl, + lapack_complex_double* vsr, lapack_int* ldvsr, + double* rconde, double* rcondv, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int* iwork, + lapack_int* liwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_sggev( char* jobvl, char* jobvr, lapack_int* n, float* a, + lapack_int* lda, float* b, lapack_int* ldb, float* alphar, + float* alphai, float* beta, float* vl, lapack_int* ldvl, + float* vr, lapack_int* ldvr, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dggev( char* jobvl, char* jobvr, lapack_int* n, double* a, + lapack_int* lda, double* b, lapack_int* ldb, double* alphar, + double* alphai, double* beta, double* vl, lapack_int* ldvl, + double* vr, lapack_int* ldvr, double* work, + lapack_int* lwork, lapack_int *info ); +void LAPACK_cggev( char* jobvl, char* jobvr, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* vl, lapack_int* ldvl, + lapack_complex_float* vr, lapack_int* ldvr, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int *info ); +void LAPACK_zggev( char* jobvl, char* jobvr, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int* ldvl, + lapack_complex_double* vr, lapack_int* ldvr, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int *info ); +void LAPACK_sggevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* alphar, float* alphai, float* beta, + float* vl, lapack_int* ldvl, float* vr, lapack_int* ldvr, + lapack_int* ilo, lapack_int* ihi, float* lscale, + float* rscale, float* abnrm, float* bbnrm, float* rconde, + float* rcondv, float* work, lapack_int* lwork, + lapack_int* iwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_dggevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* alphar, double* alphai, + double* beta, double* vl, lapack_int* ldvl, double* vr, + lapack_int* ldvr, lapack_int* ilo, lapack_int* ihi, + double* lscale, double* rscale, double* abnrm, + double* bbnrm, double* rconde, double* rcondv, double* work, + lapack_int* lwork, lapack_int* iwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_cggevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* vl, lapack_int* ldvl, + lapack_complex_float* vr, lapack_int* ldvr, lapack_int* ilo, + lapack_int* ihi, float* lscale, float* rscale, float* abnrm, + float* bbnrm, float* rconde, float* rcondv, + lapack_complex_float* work, lapack_int* lwork, float* rwork, + lapack_int* iwork, lapack_logical* bwork, + lapack_int *info ); +void LAPACK_zggevx( char* balanc, char* jobvl, char* jobvr, char* sense, + lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* vl, lapack_int* ldvl, + lapack_complex_double* vr, lapack_int* ldvr, + lapack_int* ilo, lapack_int* ihi, double* lscale, + double* rscale, double* abnrm, double* bbnrm, + double* rconde, double* rcondv, lapack_complex_double* work, + lapack_int* lwork, double* rwork, lapack_int* iwork, + lapack_logical* bwork, lapack_int *info ); +void LAPACK_dsfrk( char* transr, char* uplo, char* trans, lapack_int* n, + lapack_int* k, double* alpha, const double* a, + lapack_int* lda, double* beta, double* c ); +void LAPACK_ssfrk( char* transr, char* uplo, char* trans, lapack_int* n, + lapack_int* k, float* alpha, const float* a, lapack_int* lda, + float* beta, float* c ); +void LAPACK_zhfrk( char* transr, char* uplo, char* trans, lapack_int* n, + lapack_int* k, double* alpha, const lapack_complex_double* a, + lapack_int* lda, double* beta, lapack_complex_double* c ); +void LAPACK_chfrk( char* transr, char* uplo, char* trans, lapack_int* n, + lapack_int* k, float* alpha, const lapack_complex_float* a, + lapack_int* lda, float* beta, lapack_complex_float* c ); +void LAPACK_dtfsm( char* transr, char* side, char* uplo, char* trans, + char* diag, lapack_int* m, lapack_int* n, double* alpha, + const double* a, double* b, lapack_int* ldb ); +void LAPACK_stfsm( char* transr, char* side, char* uplo, char* trans, + char* diag, lapack_int* m, lapack_int* n, float* alpha, + const float* a, float* b, lapack_int* ldb ); +void LAPACK_ztfsm( char* transr, char* side, char* uplo, char* trans, + char* diag, lapack_int* m, lapack_int* n, + lapack_complex_double* alpha, const lapack_complex_double* a, + lapack_complex_double* b, lapack_int* ldb ); +void LAPACK_ctfsm( char* transr, char* side, char* uplo, char* trans, + char* diag, lapack_int* m, lapack_int* n, + lapack_complex_float* alpha, const lapack_complex_float* a, + lapack_complex_float* b, lapack_int* ldb ); +void LAPACK_dtfttp( char* transr, char* uplo, lapack_int* n, const double* arf, + double* ap, lapack_int *info ); +void LAPACK_stfttp( char* transr, char* uplo, lapack_int* n, const float* arf, + float* ap, lapack_int *info ); +void LAPACK_ztfttp( char* transr, char* uplo, lapack_int* n, + const lapack_complex_double* arf, lapack_complex_double* ap, + lapack_int *info ); +void LAPACK_ctfttp( char* transr, char* uplo, lapack_int* n, + const lapack_complex_float* arf, lapack_complex_float* ap, + lapack_int *info ); +void LAPACK_dtfttr( char* transr, char* uplo, lapack_int* n, const double* arf, + double* a, lapack_int* lda, lapack_int *info ); +void LAPACK_stfttr( char* transr, char* uplo, lapack_int* n, const float* arf, + float* a, lapack_int* lda, lapack_int *info ); +void LAPACK_ztfttr( char* transr, char* uplo, lapack_int* n, + const lapack_complex_double* arf, lapack_complex_double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_ctfttr( char* transr, char* uplo, lapack_int* n, + const lapack_complex_float* arf, lapack_complex_float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_dtpttf( char* transr, char* uplo, lapack_int* n, const double* ap, + double* arf, lapack_int *info ); +void LAPACK_stpttf( char* transr, char* uplo, lapack_int* n, const float* ap, + float* arf, lapack_int *info ); +void LAPACK_ztpttf( char* transr, char* uplo, lapack_int* n, + const lapack_complex_double* ap, lapack_complex_double* arf, + lapack_int *info ); +void LAPACK_ctpttf( char* transr, char* uplo, lapack_int* n, + const lapack_complex_float* ap, lapack_complex_float* arf, + lapack_int *info ); +void LAPACK_dtpttr( char* uplo, lapack_int* n, const double* ap, double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_stpttr( char* uplo, lapack_int* n, const float* ap, float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_ztpttr( char* uplo, lapack_int* n, const lapack_complex_double* ap, + lapack_complex_double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_ctpttr( char* uplo, lapack_int* n, const lapack_complex_float* ap, + lapack_complex_float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dtrttf( char* transr, char* uplo, lapack_int* n, const double* a, + lapack_int* lda, double* arf, lapack_int *info ); +void LAPACK_strttf( char* transr, char* uplo, lapack_int* n, const float* a, + lapack_int* lda, float* arf, lapack_int *info ); +void LAPACK_ztrttf( char* transr, char* uplo, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* arf, lapack_int *info ); +void LAPACK_ctrttf( char* transr, char* uplo, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* arf, lapack_int *info ); +void LAPACK_dtrttp( char* uplo, lapack_int* n, const double* a, lapack_int* lda, + double* ap, lapack_int *info ); +void LAPACK_strttp( char* uplo, lapack_int* n, const float* a, lapack_int* lda, + float* ap, lapack_int *info ); +void LAPACK_ztrttp( char* uplo, lapack_int* n, const lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* ap, + lapack_int *info ); +void LAPACK_ctrttp( char* uplo, lapack_int* n, const lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* ap, + lapack_int *info ); +void LAPACK_sgeqrfp( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_dgeqrfp( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_cgeqrfp( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_zgeqrfp( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int* lwork, + lapack_int *info ); +void LAPACK_clacgv( lapack_int* n, lapack_complex_float* x, lapack_int* incx ); +void LAPACK_zlacgv( lapack_int* n, lapack_complex_double* x, lapack_int* incx ); +void LAPACK_slarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, + float* x ); +void LAPACK_dlarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, + double* x ); +void LAPACK_clarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, + lapack_complex_float* x ); +void LAPACK_zlarnv( lapack_int* idist, lapack_int* iseed, lapack_int* n, + lapack_complex_double* x ); +void LAPACK_sgeqr2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int *info ); +void LAPACK_dgeqr2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int *info ); +void LAPACK_cgeqr2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zgeqr2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_slacpy( char* uplo, lapack_int* m, lapack_int* n, const float* a, + lapack_int* lda, float* b, lapack_int* ldb ); +void LAPACK_dlacpy( char* uplo, lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, double* b, lapack_int* ldb ); +void LAPACK_clacpy( char* uplo, lapack_int* m, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb ); +void LAPACK_zlacpy( char* uplo, lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb ); +void LAPACK_sgetf2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_dgetf2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + lapack_int* ipiv, lapack_int *info ); +void LAPACK_cgetf2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int* ipiv, lapack_int *info ); +void LAPACK_zgetf2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int* ipiv, lapack_int *info ); +void LAPACK_slaswp( lapack_int* n, float* a, lapack_int* lda, lapack_int* k1, + lapack_int* k2, const lapack_int* ipiv, lapack_int* incx ); +void LAPACK_dlaswp( lapack_int* n, double* a, lapack_int* lda, lapack_int* k1, + lapack_int* k2, const lapack_int* ipiv, lapack_int* incx ); +void LAPACK_claswp( lapack_int* n, lapack_complex_float* a, lapack_int* lda, + lapack_int* k1, lapack_int* k2, const lapack_int* ipiv, + lapack_int* incx ); +void LAPACK_zlaswp( lapack_int* n, lapack_complex_double* a, lapack_int* lda, + lapack_int* k1, lapack_int* k2, const lapack_int* ipiv, + lapack_int* incx ); +float LAPACK_slange( char* norm, lapack_int* m, lapack_int* n, const float* a, + lapack_int* lda, float* work ); +double LAPACK_dlange( char* norm, lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, double* work ); +float LAPACK_clange( char* norm, lapack_int* m, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, float* work ); +double LAPACK_zlange( char* norm, lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* work ); +float LAPACK_clanhe( char* norm, char* uplo, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, float* work ); +double LAPACK_zlanhe( char* norm, char* uplo, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* work ); +float LAPACK_slansy( char* norm, char* uplo, lapack_int* n, const float* a, + lapack_int* lda, float* work ); +double LAPACK_dlansy( char* norm, char* uplo, lapack_int* n, const double* a, + lapack_int* lda, double* work ); +float LAPACK_clansy( char* norm, char* uplo, lapack_int* n, + const lapack_complex_float* a, lapack_int* lda, float* work ); +double LAPACK_zlansy( char* norm, char* uplo, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, double* work ); +float LAPACK_slantr( char* norm, char* uplo, char* diag, lapack_int* m, + lapack_int* n, const float* a, lapack_int* lda, float* work ); +double LAPACK_dlantr( char* norm, char* uplo, char* diag, lapack_int* m, + lapack_int* n, const double* a, lapack_int* lda, double* work ); +float LAPACK_clantr( char* norm, char* uplo, char* diag, lapack_int* m, + lapack_int* n, const lapack_complex_float* a, lapack_int* lda, + float* work ); +double LAPACK_zlantr( char* norm, char* uplo, char* diag, lapack_int* m, + lapack_int* n, const lapack_complex_double* a, lapack_int* lda, + double* work ); +float LAPACK_slamch( char* cmach ); +double LAPACK_dlamch( char* cmach ); +void LAPACK_sgelq2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* tau, float* work, lapack_int *info ); +void LAPACK_dgelq2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* tau, double* work, lapack_int *info ); +void LAPACK_cgelq2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* tau, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zgelq2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* tau, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_slarfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, const float* v, + lapack_int* ldv, const float* t, lapack_int* ldt, float* c, + lapack_int* ldc, float* work, lapack_int* ldwork ); +void LAPACK_dlarfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, + const double* v, lapack_int* ldv, const double* t, + lapack_int* ldt, double* c, lapack_int* ldc, double* work, + lapack_int* ldwork ); +void LAPACK_clarfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int* ldwork ); +void LAPACK_zlarfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int* ldwork ); +void LAPACK_slarfg( lapack_int* n, float* alpha, float* x, lapack_int* incx, + float* tau ); +void LAPACK_dlarfg( lapack_int* n, double* alpha, double* x, lapack_int* incx, + double* tau ); +void LAPACK_clarfg( lapack_int* n, lapack_complex_float* alpha, + lapack_complex_float* x, lapack_int* incx, + lapack_complex_float* tau ); +void LAPACK_zlarfg( lapack_int* n, lapack_complex_double* alpha, + lapack_complex_double* x, lapack_int* incx, + lapack_complex_double* tau ); +void LAPACK_slarft( char* direct, char* storev, lapack_int* n, lapack_int* k, + const float* v, lapack_int* ldv, const float* tau, float* t, + lapack_int* ldt ); +void LAPACK_dlarft( char* direct, char* storev, lapack_int* n, lapack_int* k, + const double* v, lapack_int* ldv, const double* tau, + double* t, lapack_int* ldt ); +void LAPACK_clarft( char* direct, char* storev, lapack_int* n, lapack_int* k, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* tau, lapack_complex_float* t, + lapack_int* ldt ); +void LAPACK_zlarft( char* direct, char* storev, lapack_int* n, lapack_int* k, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* tau, lapack_complex_double* t, + lapack_int* ldt ); +void LAPACK_slarfx( char* side, lapack_int* m, lapack_int* n, const float* v, + float* tau, float* c, lapack_int* ldc, float* work ); +void LAPACK_dlarfx( char* side, lapack_int* m, lapack_int* n, const double* v, + double* tau, double* c, lapack_int* ldc, double* work ); +void LAPACK_clarfx( char* side, lapack_int* m, lapack_int* n, + const lapack_complex_float* v, lapack_complex_float* tau, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work ); +void LAPACK_zlarfx( char* side, lapack_int* m, lapack_int* n, + const lapack_complex_double* v, lapack_complex_double* tau, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work ); +void LAPACK_slatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, + char* sym, float* d, lapack_int* mode, float* cond, + float* dmax, lapack_int* kl, lapack_int* ku, char* pack, + float* a, lapack_int* lda, float* work, lapack_int *info ); +void LAPACK_dlatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, + char* sym, double* d, lapack_int* mode, double* cond, + double* dmax, lapack_int* kl, lapack_int* ku, char* pack, + double* a, lapack_int* lda, double* work, + lapack_int *info ); +void LAPACK_clatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, + char* sym, float* d, lapack_int* mode, float* cond, + float* dmax, lapack_int* kl, lapack_int* ku, char* pack, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zlatms( lapack_int* m, lapack_int* n, char* dist, lapack_int* iseed, + char* sym, double* d, lapack_int* mode, double* cond, + double* dmax, lapack_int* kl, lapack_int* ku, char* pack, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_slag2d( lapack_int* m, lapack_int* n, const float* sa, + lapack_int* ldsa, double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dlag2s( lapack_int* m, lapack_int* n, const double* a, + lapack_int* lda, float* sa, lapack_int* ldsa, + lapack_int *info ); +void LAPACK_clag2z( lapack_int* m, lapack_int* n, + const lapack_complex_float* sa, lapack_int* ldsa, + lapack_complex_double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_zlag2c( lapack_int* m, lapack_int* n, + const lapack_complex_double* a, lapack_int* lda, + lapack_complex_float* sa, lapack_int* ldsa, + lapack_int *info ); +void LAPACK_slauum( char* uplo, lapack_int* n, float* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_dlauum( char* uplo, lapack_int* n, double* a, lapack_int* lda, + lapack_int *info ); +void LAPACK_clauum( char* uplo, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_zlauum( char* uplo, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_int *info ); +void LAPACK_slagge( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const float* d, float* a, lapack_int* lda, + lapack_int* iseed, float* work, lapack_int *info ); +void LAPACK_dlagge( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const double* d, double* a, lapack_int* lda, + lapack_int* iseed, double* work, lapack_int *info ); +void LAPACK_clagge( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const float* d, lapack_complex_float* a, + lapack_int* lda, lapack_int* iseed, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zlagge( lapack_int* m, lapack_int* n, lapack_int* kl, + lapack_int* ku, const double* d, lapack_complex_double* a, + lapack_int* lda, lapack_int* iseed, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_slaset( char* uplo, lapack_int* m, lapack_int* n, float* alpha, + float* beta, float* a, lapack_int* lda ); +void LAPACK_dlaset( char* uplo, lapack_int* m, lapack_int* n, double* alpha, + double* beta, double* a, lapack_int* lda ); +void LAPACK_claset( char* uplo, lapack_int* m, lapack_int* n, + lapack_complex_float* alpha, lapack_complex_float* beta, + lapack_complex_float* a, lapack_int* lda ); +void LAPACK_zlaset( char* uplo, lapack_int* m, lapack_int* n, + lapack_complex_double* alpha, lapack_complex_double* beta, + lapack_complex_double* a, lapack_int* lda ); +void LAPACK_slasrt( char* id, lapack_int* n, float* d, lapack_int *info ); +void LAPACK_dlasrt( char* id, lapack_int* n, double* d, lapack_int *info ); +void LAPACK_claghe( lapack_int* n, lapack_int* k, const float* d, + lapack_complex_float* a, lapack_int* lda, lapack_int* iseed, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zlaghe( lapack_int* n, lapack_int* k, const double* d, + lapack_complex_double* a, lapack_int* lda, + lapack_int* iseed, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_slagsy( lapack_int* n, lapack_int* k, const float* d, float* a, + lapack_int* lda, lapack_int* iseed, float* work, + lapack_int *info ); +void LAPACK_dlagsy( lapack_int* n, lapack_int* k, const double* d, double* a, + lapack_int* lda, lapack_int* iseed, double* work, + lapack_int *info ); +void LAPACK_clagsy( lapack_int* n, lapack_int* k, const float* d, + lapack_complex_float* a, lapack_int* lda, lapack_int* iseed, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zlagsy( lapack_int* n, lapack_int* k, const double* d, + lapack_complex_double* a, lapack_int* lda, + lapack_int* iseed, lapack_complex_double* work, + lapack_int *info ); +void LAPACK_slapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, + float* x, lapack_int* ldx, lapack_int* k ); +void LAPACK_dlapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, + double* x, lapack_int* ldx, lapack_int* k ); +void LAPACK_clapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, + lapack_complex_float* x, lapack_int* ldx, lapack_int* k ); +void LAPACK_zlapmr( lapack_logical* forwrd, lapack_int* m, lapack_int* n, + lapack_complex_double* x, lapack_int* ldx, lapack_int* k ); +float LAPACK_slapy2( float* x, float* y ); +double LAPACK_dlapy2( double* x, double* y ); +float LAPACK_slapy3( float* x, float* y, float* z ); +double LAPACK_dlapy3( double* x, double* y, double* z ); +void LAPACK_slartgp( float* f, float* g, float* cs, float* sn, float* r ); +void LAPACK_dlartgp( double* f, double* g, double* cs, double* sn, double* r ); +void LAPACK_slartgs( float* x, float* y, float* sigma, float* cs, float* sn ); +void LAPACK_dlartgs( double* x, double* y, double* sigma, double* cs, + double* sn ); +// LAPACK 3.3.0 +void LAPACK_cbbcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + lapack_int* m, lapack_int* p, lapack_int* q, + float* theta, float* phi, + lapack_complex_float* u1, lapack_int* ldu1, + lapack_complex_float* u2, lapack_int* ldu2, + lapack_complex_float* v1t, lapack_int* ldv1t, + lapack_complex_float* v2t, lapack_int* ldv2t, + float* b11d, float* b11e, float* b12d, + float* b12e, float* b21d, float* b21e, + float* b22d, float* b22e, float* rwork, + lapack_int* lrwork , lapack_int *info ); +void LAPACK_cheswapr( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* i1, + lapack_int* i2 ); +void LAPACK_chetri2( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_chetri2x( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* nb , lapack_int *info ); +void LAPACK_chetrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work , lapack_int *info ); +void LAPACK_csyconv( char* uplo, char* way, + lapack_int* n, lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* work , lapack_int *info ); +void LAPACK_csyswapr( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* i1, + lapack_int* i2 ); +void LAPACK_csytri2( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_csytri2x( char* uplo, lapack_int* n, + lapack_complex_float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* nb , lapack_int *info ); +void LAPACK_csytrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, const lapack_complex_float* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work , lapack_int *info ); +void LAPACK_cunbdb( char* trans, char* signs, + lapack_int* m, lapack_int* p, lapack_int* q, + lapack_complex_float* x11, lapack_int* ldx11, + lapack_complex_float* x12, lapack_int* ldx12, + lapack_complex_float* x21, lapack_int* ldx21, + lapack_complex_float* x22, lapack_int* ldx22, + float* theta, float* phi, + lapack_complex_float* taup1, + lapack_complex_float* taup2, + lapack_complex_float* tauq1, + lapack_complex_float* tauq2, + lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_cuncsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + char* signs, lapack_int* m, lapack_int* p, + lapack_int* q, lapack_complex_float* x11, + lapack_int* ldx11, lapack_complex_float* x12, + lapack_int* ldx12, lapack_complex_float* x21, + lapack_int* ldx21, lapack_complex_float* x22, + lapack_int* ldx22, float* theta, + lapack_complex_float* u1, lapack_int* ldu1, + lapack_complex_float* u2, lapack_int* ldu2, + lapack_complex_float* v1t, lapack_int* ldv1t, + lapack_complex_float* v2t, lapack_int* ldv2t, + lapack_complex_float* work, lapack_int* lwork, + float* rwork, lapack_int* lrwork, + lapack_int* iwork , lapack_int *info ); +void LAPACK_dbbcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + lapack_int* m, lapack_int* p, lapack_int* q, + double* theta, double* phi, double* u1, + lapack_int* ldu1, double* u2, lapack_int* ldu2, + double* v1t, lapack_int* ldv1t, double* v2t, + lapack_int* ldv2t, double* b11d, double* b11e, + double* b12d, double* b12e, double* b21d, + double* b21e, double* b22d, double* b22e, + double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_dorbdb( char* trans, char* signs, + lapack_int* m, lapack_int* p, lapack_int* q, + double* x11, lapack_int* ldx11, double* x12, + lapack_int* ldx12, double* x21, lapack_int* ldx21, + double* x22, lapack_int* ldx22, double* theta, + double* phi, double* taup1, double* taup2, + double* tauq1, double* tauq2, double* work, + lapack_int* lwork , lapack_int *info ); +void LAPACK_dorcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + char* signs, lapack_int* m, lapack_int* p, + lapack_int* q, double* x11, lapack_int* ldx11, + double* x12, lapack_int* ldx12, double* x21, + lapack_int* ldx21, double* x22, lapack_int* ldx22, + double* theta, double* u1, lapack_int* ldu1, + double* u2, lapack_int* ldu2, double* v1t, + lapack_int* ldv1t, double* v2t, lapack_int* ldv2t, + double* work, lapack_int* lwork, + lapack_int* iwork , lapack_int *info ); +void LAPACK_dsyconv( char* uplo, char* way, + lapack_int* n, double* a, lapack_int* lda, + const lapack_int* ipiv, double* work , lapack_int *info ); +void LAPACK_dsyswapr( char* uplo, lapack_int* n, + double* a, lapack_int* i1, lapack_int* i2 ); +void LAPACK_dsytri2( char* uplo, lapack_int* n, + double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_dsytri2x( char* uplo, lapack_int* n, + double* a, lapack_int* lda, + const lapack_int* ipiv, double* work, + lapack_int* nb , lapack_int *info ); +void LAPACK_dsytrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, const double* a, + lapack_int* lda, const lapack_int* ipiv, + double* b, lapack_int* ldb, double* work , lapack_int *info ); +void LAPACK_sbbcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + lapack_int* m, lapack_int* p, lapack_int* q, + float* theta, float* phi, float* u1, + lapack_int* ldu1, float* u2, lapack_int* ldu2, + float* v1t, lapack_int* ldv1t, float* v2t, + lapack_int* ldv2t, float* b11d, float* b11e, + float* b12d, float* b12e, float* b21d, + float* b21e, float* b22d, float* b22e, + float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_sorbdb( char* trans, char* signs, + lapack_int* m, lapack_int* p, lapack_int* q, + float* x11, lapack_int* ldx11, float* x12, + lapack_int* ldx12, float* x21, lapack_int* ldx21, + float* x22, lapack_int* ldx22, float* theta, + float* phi, float* taup1, float* taup2, + float* tauq1, float* tauq2, float* work, + lapack_int* lwork , lapack_int *info ); +void LAPACK_sorcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + char* signs, lapack_int* m, lapack_int* p, + lapack_int* q, float* x11, lapack_int* ldx11, + float* x12, lapack_int* ldx12, float* x21, + lapack_int* ldx21, float* x22, lapack_int* ldx22, + float* theta, float* u1, lapack_int* ldu1, + float* u2, lapack_int* ldu2, float* v1t, + lapack_int* ldv1t, float* v2t, lapack_int* ldv2t, + float* work, lapack_int* lwork, + lapack_int* iwork , lapack_int *info ); +void LAPACK_ssyconv( char* uplo, char* way, + lapack_int* n, float* a, lapack_int* lda, + const lapack_int* ipiv, float* work , lapack_int *info ); +void LAPACK_ssyswapr( char* uplo, lapack_int* n, + float* a, lapack_int* i1, lapack_int* i2 ); +void LAPACK_ssytri2( char* uplo, lapack_int* n, + float* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_float* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_ssytri2x( char* uplo, lapack_int* n, + float* a, lapack_int* lda, + const lapack_int* ipiv, float* work, + lapack_int* nb , lapack_int *info ); +void LAPACK_ssytrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, const float* a, + lapack_int* lda, const lapack_int* ipiv, + float* b, lapack_int* ldb, float* work , lapack_int *info ); +void LAPACK_zbbcsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + lapack_int* m, lapack_int* p, lapack_int* q, + double* theta, double* phi, + lapack_complex_double* u1, lapack_int* ldu1, + lapack_complex_double* u2, lapack_int* ldu2, + lapack_complex_double* v1t, lapack_int* ldv1t, + lapack_complex_double* v2t, lapack_int* ldv2t, + double* b11d, double* b11e, double* b12d, + double* b12e, double* b21d, double* b21e, + double* b22d, double* b22e, double* rwork, + lapack_int* lrwork , lapack_int *info ); +void LAPACK_zheswapr( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* i1, + lapack_int* i2 ); +void LAPACK_zhetri2( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_zhetri2x( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* nb , lapack_int *info ); +void LAPACK_zhetrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work , lapack_int *info ); +void LAPACK_zsyconv( char* uplo, char* way, + lapack_int* n, lapack_complex_double* a, + lapack_int* lda, const lapack_int* ipiv, + lapack_complex_double* work , lapack_int *info ); +void LAPACK_zsyswapr( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* i1, + lapack_int* i2 ); +void LAPACK_zsytri2( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_zsytri2x( char* uplo, lapack_int* n, + lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* work, lapack_int* nb , lapack_int *info ); +void LAPACK_zsytrs2( char* uplo, lapack_int* n, + lapack_int* nrhs, + const lapack_complex_double* a, lapack_int* lda, + const lapack_int* ipiv, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work , lapack_int *info ); +void LAPACK_zunbdb( char* trans, char* signs, + lapack_int* m, lapack_int* p, lapack_int* q, + lapack_complex_double* x11, lapack_int* ldx11, + lapack_complex_double* x12, lapack_int* ldx12, + lapack_complex_double* x21, lapack_int* ldx21, + lapack_complex_double* x22, lapack_int* ldx22, + double* theta, double* phi, + lapack_complex_double* taup1, + lapack_complex_double* taup2, + lapack_complex_double* tauq1, + lapack_complex_double* tauq2, + lapack_complex_double* work, lapack_int* lwork , lapack_int *info ); +void LAPACK_zuncsd( char* jobu1, char* jobu2, + char* jobv1t, char* jobv2t, char* trans, + char* signs, lapack_int* m, lapack_int* p, + lapack_int* q, lapack_complex_double* x11, + lapack_int* ldx11, lapack_complex_double* x12, + lapack_int* ldx12, lapack_complex_double* x21, + lapack_int* ldx21, lapack_complex_double* x22, + lapack_int* ldx22, double* theta, + lapack_complex_double* u1, lapack_int* ldu1, + lapack_complex_double* u2, lapack_int* ldu2, + lapack_complex_double* v1t, lapack_int* ldv1t, + lapack_complex_double* v2t, lapack_int* ldv2t, + lapack_complex_double* work, lapack_int* lwork, + double* rwork, lapack_int* lrwork, + lapack_int* iwork , lapack_int *info ); +// LAPACK 3.4.0 +void LAPACK_sgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* nb, const float* v, + lapack_int* ldv, const float* t, lapack_int* ldt, float* c, + lapack_int* ldc, float* work, lapack_int *info ); +void LAPACK_dgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* nb, const double* v, + lapack_int* ldv, const double* t, lapack_int* ldt, + double* c, lapack_int* ldc, double* work, + lapack_int *info ); +void LAPACK_cgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* nb, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* c, lapack_int* ldc, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zgemqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* nb, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* c, lapack_int* ldc, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_sgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, float* a, + lapack_int* lda, float* t, lapack_int* ldt, float* work, + lapack_int *info ); +void LAPACK_dgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, double* a, + lapack_int* lda, double* t, lapack_int* ldt, double* work, + lapack_int *info ); +void LAPACK_cgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_zgeqrt( lapack_int* m, lapack_int* n, lapack_int* nb, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_sgeqrt2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* t, lapack_int* ldt, lapack_int *info ); +void LAPACK_dgeqrt2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* t, lapack_int* ldt, lapack_int *info ); +void LAPACK_cgeqrt2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_zgeqrt2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_sgeqrt3( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* t, lapack_int* ldt, lapack_int *info ); +void LAPACK_dgeqrt3( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* t, lapack_int* ldt, lapack_int *info ); +void LAPACK_cgeqrt3( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_zgeqrt3( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_stpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, lapack_int* nb, + const float* v, lapack_int* ldv, const float* t, + lapack_int* ldt, float* a, lapack_int* lda, float* b, + lapack_int* ldb, float* work, lapack_int *info ); +void LAPACK_dtpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, lapack_int* nb, + const double* v, lapack_int* ldv, const double* t, + lapack_int* ldt, double* a, lapack_int* lda, double* b, + lapack_int* ldb, double* work, lapack_int *info ); +void LAPACK_ctpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, lapack_int* nb, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_ztpmqrt( char* side, char* trans, lapack_int* m, lapack_int* n, + lapack_int* k, lapack_int* l, lapack_int* nb, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_dtpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, + double* a, lapack_int* lda, double* b, lapack_int* ldb, + double* t, lapack_int* ldt, double* work, + lapack_int *info ); +void LAPACK_ctpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* t, lapack_complex_float* b, + lapack_int* ldb, lapack_int* ldt, + lapack_complex_float* work, lapack_int *info ); +void LAPACK_ztpqrt( lapack_int* m, lapack_int* n, lapack_int* l, lapack_int* nb, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* work, lapack_int *info ); +void LAPACK_stpqrt2( lapack_int* m, lapack_int* n, float* a, lapack_int* lda, + float* b, lapack_int* ldb, float* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_dtpqrt2( lapack_int* m, lapack_int* n, double* a, lapack_int* lda, + double* b, lapack_int* ldb, double* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_ctpqrt2( lapack_int* m, lapack_int* n, lapack_complex_float* a, + lapack_int* lda, lapack_complex_float* b, lapack_int* ldb, + lapack_complex_float* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_ztpqrt2( lapack_int* m, lapack_int* n, lapack_complex_double* a, + lapack_int* lda, lapack_complex_double* b, lapack_int* ldb, + lapack_complex_double* t, lapack_int* ldt, + lapack_int *info ); +void LAPACK_stprfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, + const float* v, lapack_int* ldv, const float* t, + lapack_int* ldt, float* a, lapack_int* lda, float* b, + lapack_int* ldb, const float* mywork, + lapack_int* myldwork ); +void LAPACK_dtprfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, + const double* v, lapack_int* ldv, const double* t, + lapack_int* ldt, double* a, lapack_int* lda, double* b, + lapack_int* ldb, const double* mywork, + lapack_int* myldwork ); +void LAPACK_ctprfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, + const lapack_complex_float* v, lapack_int* ldv, + const lapack_complex_float* t, lapack_int* ldt, + lapack_complex_float* a, lapack_int* lda, + lapack_complex_float* b, lapack_int* ldb, + const float* mywork, lapack_int* myldwork ); +void LAPACK_ztprfb( char* side, char* trans, char* direct, char* storev, + lapack_int* m, lapack_int* n, lapack_int* k, lapack_int* l, + const lapack_complex_double* v, lapack_int* ldv, + const lapack_complex_double* t, lapack_int* ldt, + lapack_complex_double* a, lapack_int* lda, + lapack_complex_double* b, lapack_int* ldb, + const double* mywork, lapack_int* myldwork ); +// LAPACK 3.X.X +void LAPACK_csyr( char* uplo, lapack_int* n, lapack_complex_float* alpha, + const lapack_complex_float* x, lapack_int* incx, + lapack_complex_float* a, lapack_int* lda ); +void LAPACK_zsyr( char* uplo, lapack_int* n, lapack_complex_double* alpha, + const lapack_complex_double* x, lapack_int* incx, + lapack_complex_double* a, lapack_int* lda ); + +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#endif /* _LAPACKE_H_ */ + +#endif /* _MKL_LAPACKE_H_ */ diff --git a/include/eigen/Eigen/src/misc/lapacke_mangling.h b/include/eigen/Eigen/src/misc/lapacke_mangling.h new file mode 100644 index 0000000000000000000000000000000000000000..6211fd144d361701309e3d39ace6b5b9e14d188e --- /dev/null +++ b/include/eigen/Eigen/src/misc/lapacke_mangling.h @@ -0,0 +1,17 @@ +#ifndef LAPACK_HEADER_INCLUDED +#define LAPACK_HEADER_INCLUDED + +#ifndef LAPACK_GLOBAL +#if defined(LAPACK_GLOBAL_PATTERN_LC) || defined(ADD_) +#define LAPACK_GLOBAL(lcname,UCNAME) lcname##_ +#elif defined(LAPACK_GLOBAL_PATTERN_UC) || defined(UPPER) +#define LAPACK_GLOBAL(lcname,UCNAME) UCNAME +#elif defined(LAPACK_GLOBAL_PATTERN_MC) || defined(NOCHANGE) +#define LAPACK_GLOBAL(lcname,UCNAME) lcname +#else +#define LAPACK_GLOBAL(lcname,UCNAME) lcname##_ +#endif +#endif + +#endif + diff --git a/include/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h b/include/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h new file mode 100644 index 0000000000000000000000000000000000000000..6a79563c94a328ddf6ca604f64f97b328ea445c0 --- /dev/null +++ b/include/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h @@ -0,0 +1,431 @@ + +/** \returns an expression of the coefficient wise product of \c *this and \a other + * + * \sa MatrixBase::cwiseProduct + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product) +operator*(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)(derived(), other.derived()); +} + +/** \returns an expression of the coefficient wise quotient of \c *this and \a other + * + * \sa MatrixBase::cwiseQuotient + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +operator/(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise min of \c *this and \a other + * + * Example: \include Cwise_min.cpp + * Output: \verbinclude Cwise_min.out + * + * \sa max() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +#ifdef EIGEN_PARSED_BY_DOXYGEN +min +#else +(min) +#endif +(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +#ifdef EIGEN_PARSED_BY_DOXYGEN +min +#else +(min) +#endif +(const OtherDerived &other) const +{ + return (min)(other); +} + +/** \returns an expression of the coefficient-wise min of \c *this and scalar \a other + * + * \sa max() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, + const CwiseNullaryOp, PlainObject> > +#ifdef EIGEN_PARSED_BY_DOXYGEN +min +#else +(min) +#endif +(const Scalar &other) const +{ + return (min)(Derived::PlainObject::Constant(rows(), cols(), other)); +} + +EIGEN_DEVICE_FUNC + EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, + const CwiseNullaryOp, PlainObject> > +#ifdef EIGEN_PARSED_BY_DOXYGEN +min +#else +(min) +#endif +(const Scalar &other) const +{ + return (min)(Derived::PlainObject::Constant(rows(), cols(), other)); +} + +/** \returns an expression of the coefficient-wise max of \c *this and \a other + * + * Example: \include Cwise_max.cpp + * Output: \verbinclude Cwise_max.out + * + * \sa min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +#ifdef EIGEN_PARSED_BY_DOXYGEN +max +#else +(max) +#endif +(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +#ifdef EIGEN_PARSED_BY_DOXYGEN +max +#else +(max) +#endif +(const OtherDerived &other) const +{ + return (max)(other); +} + +/** \returns an expression of the coefficient-wise max of \c *this and scalar \a other + * + * \sa min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, + const CwiseNullaryOp, PlainObject> > +#ifdef EIGEN_PARSED_BY_DOXYGEN +max +#else +(max) +#endif +(const Scalar &other) const +{ + return (max)(Derived::PlainObject::Constant(rows(), cols(), other)); +} + +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, + const CwiseNullaryOp, PlainObject> > +#ifdef EIGEN_PARSED_BY_DOXYGEN +max +#else +(max) +#endif +(const Scalar &other) const +{ + return (max)(Derived::PlainObject::Constant(rows(), cols(), other)); +} + +/** \returns an expression of the coefficient-wise absdiff of \c *this and \a other + * + * \sa absolute_difference() + */ +EIGEN_MAKE_CWISE_BINARY_OP(absolute_difference,absolute_difference) + +/** \returns an expression of the coefficient-wise absolute_difference of \c *this and scalar \a other + * + * \sa absolute_difference() + */ +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, + const CwiseNullaryOp, PlainObject> > +#ifdef EIGEN_PARSED_BY_DOXYGEN +absolute_difference +#else +(absolute_difference) +#endif +(const Scalar &other) const +{ + return (absolute_difference)(Derived::PlainObject::Constant(rows(), cols(), other)); +} + +/** \returns an expression of the coefficient-wise power of \c *this to the given array of \a exponents. + * + * This function computes the coefficient-wise power. + * + * Example: \include Cwise_array_power_array.cpp + * Output: \verbinclude Cwise_array_power_array.out + */ +EIGEN_MAKE_CWISE_BINARY_OP(pow,pow) + +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(pow,pow) +#else +/** \returns an expression of the coefficients of \c *this rasied to the constant power \a exponent + * + * \tparam T is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression. + * + * This function computes the coefficient-wise power. The function MatrixBase::pow() in the + * unsupported module MatrixFunctions computes the matrix power. + * + * Example: \include Cwise_pow.cpp + * Output: \verbinclude Cwise_pow.out + * + * \sa ArrayBase::pow(ArrayBase), square(), cube(), exp(), log() + */ +template +const CwiseBinaryOp,Derived,Constant > pow(const T& exponent) const; +#endif + + +// TODO code generating macros could be moved to Macros.h and could include generation of documentation +#define EIGEN_MAKE_CWISE_COMP_OP(OP, COMPARATOR) \ +template \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> \ +OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ +{ \ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); \ +}\ +typedef CwiseBinaryOp, const Derived, const CwiseNullaryOp, PlainObject> > Cmp ## COMPARATOR ## ReturnType; \ +typedef CwiseBinaryOp, const CwiseNullaryOp, PlainObject>, const Derived > RCmp ## COMPARATOR ## ReturnType; \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Cmp ## COMPARATOR ## ReturnType \ +OP(const Scalar& s) const { \ + return this->OP(Derived::PlainObject::Constant(rows(), cols(), s)); \ +} \ +EIGEN_DEVICE_FUNC friend EIGEN_STRONG_INLINE const RCmp ## COMPARATOR ## ReturnType \ +OP(const Scalar& s, const EIGEN_CURRENT_STORAGE_BASE_CLASS& d) { \ + return Derived::PlainObject::Constant(d.rows(), d.cols(), s).OP(d); \ +} + +#define EIGEN_MAKE_CWISE_COMP_R_OP(OP, R_OP, RCOMPARATOR) \ +template \ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const OtherDerived, const Derived> \ +OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ +{ \ + return CwiseBinaryOp, const OtherDerived, const Derived>(other.derived(), derived()); \ +} \ +EIGEN_DEVICE_FUNC \ +inline const RCmp ## RCOMPARATOR ## ReturnType \ +OP(const Scalar& s) const { \ + return Derived::PlainObject::Constant(rows(), cols(), s).R_OP(*this); \ +} \ +friend inline const Cmp ## RCOMPARATOR ## ReturnType \ +OP(const Scalar& s, const Derived& d) { \ + return d.R_OP(Derived::PlainObject::Constant(d.rows(), d.cols(), s)); \ +} + + + +/** \returns an expression of the coefficient-wise \< operator of *this and \a other + * + * Example: \include Cwise_less.cpp + * Output: \verbinclude Cwise_less.out + * + * \sa all(), any(), operator>(), operator<=() + */ +EIGEN_MAKE_CWISE_COMP_OP(operator<, LT) + +/** \returns an expression of the coefficient-wise \<= operator of *this and \a other + * + * Example: \include Cwise_less_equal.cpp + * Output: \verbinclude Cwise_less_equal.out + * + * \sa all(), any(), operator>=(), operator<() + */ +EIGEN_MAKE_CWISE_COMP_OP(operator<=, LE) + +/** \returns an expression of the coefficient-wise \> operator of *this and \a other + * + * Example: \include Cwise_greater.cpp + * Output: \verbinclude Cwise_greater.out + * + * \sa all(), any(), operator>=(), operator<() + */ +EIGEN_MAKE_CWISE_COMP_R_OP(operator>, operator<, LT) + +/** \returns an expression of the coefficient-wise \>= operator of *this and \a other + * + * Example: \include Cwise_greater_equal.cpp + * Output: \verbinclude Cwise_greater_equal.out + * + * \sa all(), any(), operator>(), operator<=() + */ +EIGEN_MAKE_CWISE_COMP_R_OP(operator>=, operator<=, LE) + +/** \returns an expression of the coefficient-wise == operator of *this and \a other + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * Example: \include Cwise_equal_equal.cpp + * Output: \verbinclude Cwise_equal_equal.out + * + * \sa all(), any(), isApprox(), isMuchSmallerThan() + */ +EIGEN_MAKE_CWISE_COMP_OP(operator==, EQ) + +/** \returns an expression of the coefficient-wise != operator of *this and \a other + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * Example: \include Cwise_not_equal.cpp + * Output: \verbinclude Cwise_not_equal.out + * + * \sa all(), any(), isApprox(), isMuchSmallerThan() + */ +EIGEN_MAKE_CWISE_COMP_OP(operator!=, NEQ) + + +#undef EIGEN_MAKE_CWISE_COMP_OP +#undef EIGEN_MAKE_CWISE_COMP_R_OP + +// scalar addition +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_MAKE_SCALAR_BINARY_OP(operator+,sum) +#else +/** \returns an expression of \c *this with each coeff incremented by the constant \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + * + * Example: \include Cwise_plus.cpp + * Output: \verbinclude Cwise_plus.out + * + * \sa operator+=(), operator-() + */ +template +const CwiseBinaryOp,Derived,Constant > operator+(const T& scalar) const; +/** \returns an expression of \a expr with each coeff incremented by the constant \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + */ +template friend +const CwiseBinaryOp,Constant,Derived> operator+(const T& scalar, const StorageBaseType& expr); +#endif + +#ifndef EIGEN_PARSED_BY_DOXYGEN +EIGEN_MAKE_SCALAR_BINARY_OP(operator-,difference) +#else +/** \returns an expression of \c *this with each coeff decremented by the constant \a scalar + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + * + * Example: \include Cwise_minus.cpp + * Output: \verbinclude Cwise_minus.out + * + * \sa operator+=(), operator-() + */ +template +const CwiseBinaryOp,Derived,Constant > operator-(const T& scalar) const; +/** \returns an expression of the constant matrix of value \a scalar decremented by the coefficients of \a expr + * + * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. + */ +template friend +const CwiseBinaryOp,Constant,Derived> operator-(const T& scalar, const StorageBaseType& expr); +#endif + + +#ifndef EIGEN_PARSED_BY_DOXYGEN + EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(operator/,quotient) +#else + /** + * \brief Component-wise division of the scalar \a s by array elements of \a a. + * + * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar). + */ + template friend + inline const CwiseBinaryOp,Constant,Derived> + operator/(const T& s,const StorageBaseType& a); +#endif + +/** \returns an expression of the coefficient-wise ^ operator of *this and \a other + * + * \warning this operator is for expression of bool only. + * + * Example: \include Cwise_boolean_xor.cpp + * Output: \verbinclude Cwise_boolean_xor.out + * + * \sa operator&&(), select() + */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryOp +operator^(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + EIGEN_STATIC_ASSERT((internal::is_same::value && internal::is_same::value), + THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL); + return CwiseBinaryOp(derived(),other.derived()); +} + +// NOTE disabled until we agree on argument order +#if 0 +/** \cpp11 \returns an expression of the coefficient-wise polygamma function. + * + * \specialfunctions_module + * + * It returns the \a n -th derivative of the digamma(psi) evaluated at \c *this. + * + * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x) + * + * \sa Eigen::polygamma() + */ +template +inline const CwiseBinaryOp, const DerivedN, const Derived> +polygamma(const EIGEN_CURRENT_STORAGE_BASE_CLASS &n) const +{ + return CwiseBinaryOp, const DerivedN, const Derived>(n.derived(), this->derived()); +} +#endif + +/** \returns an expression of the coefficient-wise zeta function. + * + * \specialfunctions_module + * + * It returns the Riemann zeta function of two arguments \c *this and \a q: + * + * \param q is the shift, it must be > 0 + * + * \note *this is the exponent, it must be > 1. + * \note This function supports only float and double scalar types. To support other scalar types, the user has + * to provide implementations of zeta(T,T) for any scalar type T to be supported. + * + * This method is an alias for zeta(*this,q); + * + * \sa Eigen::zeta() + */ +template +inline const CwiseBinaryOp, const Derived, const DerivedQ> +zeta(const EIGEN_CURRENT_STORAGE_BASE_CLASS &q) const +{ + return CwiseBinaryOp, const Derived, const DerivedQ>(this->derived(), q.derived()); +} diff --git a/include/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h b/include/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h new file mode 100644 index 0000000000000000000000000000000000000000..13c55f4b115880c0becb6246bdc1fb86c9f404fa --- /dev/null +++ b/include/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h @@ -0,0 +1,696 @@ + + +typedef CwiseUnaryOp, const Derived> AbsReturnType; +typedef CwiseUnaryOp, const Derived> ArgReturnType; +typedef CwiseUnaryOp, const Derived> Abs2ReturnType; +typedef CwiseUnaryOp, const Derived> SqrtReturnType; +typedef CwiseUnaryOp, const Derived> RsqrtReturnType; +typedef CwiseUnaryOp, const Derived> SignReturnType; +typedef CwiseUnaryOp, const Derived> InverseReturnType; +typedef CwiseUnaryOp, const Derived> BooleanNotReturnType; + +typedef CwiseUnaryOp, const Derived> ExpReturnType; +typedef CwiseUnaryOp, const Derived> Expm1ReturnType; +typedef CwiseUnaryOp, const Derived> LogReturnType; +typedef CwiseUnaryOp, const Derived> Log1pReturnType; +typedef CwiseUnaryOp, const Derived> Log10ReturnType; +typedef CwiseUnaryOp, const Derived> Log2ReturnType; +typedef CwiseUnaryOp, const Derived> CosReturnType; +typedef CwiseUnaryOp, const Derived> SinReturnType; +typedef CwiseUnaryOp, const Derived> TanReturnType; +typedef CwiseUnaryOp, const Derived> AcosReturnType; +typedef CwiseUnaryOp, const Derived> AsinReturnType; +typedef CwiseUnaryOp, const Derived> AtanReturnType; +typedef CwiseUnaryOp, const Derived> TanhReturnType; +typedef CwiseUnaryOp, const Derived> LogisticReturnType; +typedef CwiseUnaryOp, const Derived> SinhReturnType; +#if EIGEN_HAS_CXX11_MATH +typedef CwiseUnaryOp, const Derived> AtanhReturnType; +typedef CwiseUnaryOp, const Derived> AsinhReturnType; +typedef CwiseUnaryOp, const Derived> AcoshReturnType; +#endif +typedef CwiseUnaryOp, const Derived> CoshReturnType; +typedef CwiseUnaryOp, const Derived> SquareReturnType; +typedef CwiseUnaryOp, const Derived> CubeReturnType; +typedef CwiseUnaryOp, const Derived> RoundReturnType; +typedef CwiseUnaryOp, const Derived> RintReturnType; +typedef CwiseUnaryOp, const Derived> FloorReturnType; +typedef CwiseUnaryOp, const Derived> CeilReturnType; +typedef CwiseUnaryOp, const Derived> IsNaNReturnType; +typedef CwiseUnaryOp, const Derived> IsInfReturnType; +typedef CwiseUnaryOp, const Derived> IsFiniteReturnType; + +/** \returns an expression of the coefficient-wise absolute value of \c *this + * + * Example: \include Cwise_abs.cpp + * Output: \verbinclude Cwise_abs.out + * + * \sa Math functions, abs2() + */ +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const AbsReturnType +abs() const +{ + return AbsReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise phase angle of \c *this + * + * Example: \include Cwise_arg.cpp + * Output: \verbinclude Cwise_arg.out + * + * \sa abs() + */ +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const ArgReturnType +arg() const +{ + return ArgReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise squared absolute value of \c *this + * + * Example: \include Cwise_abs2.cpp + * Output: \verbinclude Cwise_abs2.out + * + * \sa Math functions, abs(), square() + */ +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const Abs2ReturnType +abs2() const +{ + return Abs2ReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise exponential of *this. + * + * This function computes the coefficient-wise exponential. The function MatrixBase::exp() in the + * unsupported module MatrixFunctions computes the matrix exponential. + * + * Example: \include Cwise_exp.cpp + * Output: \verbinclude Cwise_exp.out + * + * \sa Math functions, pow(), log(), sin(), cos() + */ +EIGEN_DEVICE_FUNC +inline const ExpReturnType +exp() const +{ + return ExpReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise exponential of *this minus 1. + * + * In exact arithmetic, \c x.expm1() is equivalent to \c x.exp() - 1, + * however, with finite precision, this function is much more accurate when \c x is close to zero. + * + * \sa Math functions, exp() + */ +EIGEN_DEVICE_FUNC +inline const Expm1ReturnType +expm1() const +{ + return Expm1ReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise logarithm of *this. + * + * This function computes the coefficient-wise logarithm. The function MatrixBase::log() in the + * unsupported module MatrixFunctions computes the matrix logarithm. + * + * Example: \include Cwise_log.cpp + * Output: \verbinclude Cwise_log.out + * + * \sa Math functions, log() + */ +EIGEN_DEVICE_FUNC +inline const LogReturnType +log() const +{ + return LogReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise logarithm of 1 plus \c *this. + * + * In exact arithmetic, \c x.log() is equivalent to \c (x+1).log(), + * however, with finite precision, this function is much more accurate when \c x is close to zero. + * + * \sa Math functions, log() + */ +EIGEN_DEVICE_FUNC +inline const Log1pReturnType +log1p() const +{ + return Log1pReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise base-10 logarithm of *this. + * + * This function computes the coefficient-wise base-10 logarithm. + * + * Example: \include Cwise_log10.cpp + * Output: \verbinclude Cwise_log10.out + * + * \sa Math functions, log() + */ +EIGEN_DEVICE_FUNC +inline const Log10ReturnType +log10() const +{ + return Log10ReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise base-2 logarithm of *this. + * + * This function computes the coefficient-wise base-2 logarithm. + * + */ +EIGEN_DEVICE_FUNC +inline const Log2ReturnType +log2() const +{ + return Log2ReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise square root of *this. + * + * This function computes the coefficient-wise square root. The function MatrixBase::sqrt() in the + * unsupported module MatrixFunctions computes the matrix square root. + * + * Example: \include Cwise_sqrt.cpp + * Output: \verbinclude Cwise_sqrt.out + * + * \sa Math functions, pow(), square() + */ +EIGEN_DEVICE_FUNC +inline const SqrtReturnType +sqrt() const +{ + return SqrtReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse square root of *this. + * + * This function computes the coefficient-wise inverse square root. + * + * Example: \include Cwise_sqrt.cpp + * Output: \verbinclude Cwise_sqrt.out + * + * \sa pow(), square() + */ +EIGEN_DEVICE_FUNC +inline const RsqrtReturnType +rsqrt() const +{ + return RsqrtReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise signum of *this. + * + * This function computes the coefficient-wise signum. + * + * Example: \include Cwise_sign.cpp + * Output: \verbinclude Cwise_sign.out + * + * \sa pow(), square() + */ +EIGEN_DEVICE_FUNC +inline const SignReturnType +sign() const +{ + return SignReturnType(derived()); +} + + +/** \returns an expression of the coefficient-wise cosine of *this. + * + * This function computes the coefficient-wise cosine. The function MatrixBase::cos() in the + * unsupported module MatrixFunctions computes the matrix cosine. + * + * Example: \include Cwise_cos.cpp + * Output: \verbinclude Cwise_cos.out + * + * \sa Math functions, sin(), acos() + */ +EIGEN_DEVICE_FUNC +inline const CosReturnType +cos() const +{ + return CosReturnType(derived()); +} + + +/** \returns an expression of the coefficient-wise sine of *this. + * + * This function computes the coefficient-wise sine. The function MatrixBase::sin() in the + * unsupported module MatrixFunctions computes the matrix sine. + * + * Example: \include Cwise_sin.cpp + * Output: \verbinclude Cwise_sin.out + * + * \sa Math functions, cos(), asin() + */ +EIGEN_DEVICE_FUNC +inline const SinReturnType +sin() const +{ + return SinReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise tan of *this. + * + * Example: \include Cwise_tan.cpp + * Output: \verbinclude Cwise_tan.out + * + * \sa Math functions, cos(), sin() + */ +EIGEN_DEVICE_FUNC +inline const TanReturnType +tan() const +{ + return TanReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise arc tan of *this. + * + * Example: \include Cwise_atan.cpp + * Output: \verbinclude Cwise_atan.out + * + * \sa Math functions, tan(), asin(), acos() + */ +EIGEN_DEVICE_FUNC +inline const AtanReturnType +atan() const +{ + return AtanReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise arc cosine of *this. + * + * Example: \include Cwise_acos.cpp + * Output: \verbinclude Cwise_acos.out + * + * \sa Math functions, cos(), asin() + */ +EIGEN_DEVICE_FUNC +inline const AcosReturnType +acos() const +{ + return AcosReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise arc sine of *this. + * + * Example: \include Cwise_asin.cpp + * Output: \verbinclude Cwise_asin.out + * + * \sa Math functions, sin(), acos() + */ +EIGEN_DEVICE_FUNC +inline const AsinReturnType +asin() const +{ + return AsinReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise hyperbolic tan of *this. + * + * Example: \include Cwise_tanh.cpp + * Output: \verbinclude Cwise_tanh.out + * + * \sa Math functions, tan(), sinh(), cosh() + */ +EIGEN_DEVICE_FUNC +inline const TanhReturnType +tanh() const +{ + return TanhReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise hyperbolic sin of *this. + * + * Example: \include Cwise_sinh.cpp + * Output: \verbinclude Cwise_sinh.out + * + * \sa Math functions, sin(), tanh(), cosh() + */ +EIGEN_DEVICE_FUNC +inline const SinhReturnType +sinh() const +{ + return SinhReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise hyperbolic cos of *this. + * + * Example: \include Cwise_cosh.cpp + * Output: \verbinclude Cwise_cosh.out + * + * \sa Math functions, tanh(), sinh(), cosh() + */ +EIGEN_DEVICE_FUNC +inline const CoshReturnType +cosh() const +{ + return CoshReturnType(derived()); +} + +#if EIGEN_HAS_CXX11_MATH +/** \returns an expression of the coefficient-wise inverse hyperbolic tan of *this. + * + * \sa Math functions, atanh(), asinh(), acosh() + */ +EIGEN_DEVICE_FUNC +inline const AtanhReturnType +atanh() const +{ + return AtanhReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse hyperbolic sin of *this. + * + * \sa Math functions, atanh(), asinh(), acosh() + */ +EIGEN_DEVICE_FUNC +inline const AsinhReturnType +asinh() const +{ + return AsinhReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse hyperbolic cos of *this. + * + * \sa Math functions, atanh(), asinh(), acosh() + */ +EIGEN_DEVICE_FUNC +inline const AcoshReturnType +acosh() const +{ + return AcoshReturnType(derived()); +} +#endif + +/** \returns an expression of the coefficient-wise logistic of *this. + */ +EIGEN_DEVICE_FUNC +inline const LogisticReturnType +logistic() const +{ + return LogisticReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse of *this. + * + * Example: \include Cwise_inverse.cpp + * Output: \verbinclude Cwise_inverse.out + * + * \sa operator/(), operator*() + */ +EIGEN_DEVICE_FUNC +inline const InverseReturnType +inverse() const +{ + return InverseReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise square of *this. + * + * Example: \include Cwise_square.cpp + * Output: \verbinclude Cwise_square.out + * + * \sa Math functions, abs2(), cube(), pow() + */ +EIGEN_DEVICE_FUNC +inline const SquareReturnType +square() const +{ + return SquareReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise cube of *this. + * + * Example: \include Cwise_cube.cpp + * Output: \verbinclude Cwise_cube.out + * + * \sa Math functions, square(), pow() + */ +EIGEN_DEVICE_FUNC +inline const CubeReturnType +cube() const +{ + return CubeReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise rint of *this. + * + * Example: \include Cwise_rint.cpp + * Output: \verbinclude Cwise_rint.out + * + * \sa Math functions, ceil(), floor() + */ +EIGEN_DEVICE_FUNC +inline const RintReturnType +rint() const +{ + return RintReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise round of *this. + * + * Example: \include Cwise_round.cpp + * Output: \verbinclude Cwise_round.out + * + * \sa Math functions, ceil(), floor() + */ +EIGEN_DEVICE_FUNC +inline const RoundReturnType +round() const +{ + return RoundReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise floor of *this. + * + * Example: \include Cwise_floor.cpp + * Output: \verbinclude Cwise_floor.out + * + * \sa Math functions, ceil(), round() + */ +EIGEN_DEVICE_FUNC +inline const FloorReturnType +floor() const +{ + return FloorReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise ceil of *this. + * + * Example: \include Cwise_ceil.cpp + * Output: \verbinclude Cwise_ceil.out + * + * \sa Math functions, floor(), round() + */ +EIGEN_DEVICE_FUNC +inline const CeilReturnType +ceil() const +{ + return CeilReturnType(derived()); +} + +template struct ShiftRightXpr { + typedef CwiseUnaryOp, const Derived> Type; +}; + +/** \returns an expression of \c *this with the \a Scalar type arithmetically + * shifted right by \a N bit positions. + * + * The template parameter \a N specifies the number of bit positions to shift. + * + * \sa shiftLeft() + */ +template +EIGEN_DEVICE_FUNC +typename ShiftRightXpr::Type +shiftRight() const +{ + return typename ShiftRightXpr::Type(derived()); +} + + +template struct ShiftLeftXpr { + typedef CwiseUnaryOp, const Derived> Type; +}; + +/** \returns an expression of \c *this with the \a Scalar type logically + * shifted left by \a N bit positions. + * + * The template parameter \a N specifies the number of bit positions to shift. + * + * \sa shiftRight() + */ +template +EIGEN_DEVICE_FUNC +typename ShiftLeftXpr::Type +shiftLeft() const +{ + return typename ShiftLeftXpr::Type(derived()); +} + +/** \returns an expression of the coefficient-wise isnan of *this. + * + * Example: \include Cwise_isNaN.cpp + * Output: \verbinclude Cwise_isNaN.out + * + * \sa isfinite(), isinf() + */ +EIGEN_DEVICE_FUNC +inline const IsNaNReturnType +isNaN() const +{ + return IsNaNReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise isinf of *this. + * + * Example: \include Cwise_isInf.cpp + * Output: \verbinclude Cwise_isInf.out + * + * \sa isnan(), isfinite() + */ +EIGEN_DEVICE_FUNC +inline const IsInfReturnType +isInf() const +{ + return IsInfReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise isfinite of *this. + * + * Example: \include Cwise_isFinite.cpp + * Output: \verbinclude Cwise_isFinite.out + * + * \sa isnan(), isinf() + */ +EIGEN_DEVICE_FUNC +inline const IsFiniteReturnType +isFinite() const +{ + return IsFiniteReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise ! operator of *this + * + * \warning this operator is for expression of bool only. + * + * Example: \include Cwise_boolean_not.cpp + * Output: \verbinclude Cwise_boolean_not.out + * + * \sa operator!=() + */ +EIGEN_DEVICE_FUNC +inline const BooleanNotReturnType +operator!() const +{ + EIGEN_STATIC_ASSERT((internal::is_same::value), + THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL); + return BooleanNotReturnType(derived()); +} + + +// --- SpecialFunctions module --- + +typedef CwiseUnaryOp, const Derived> LgammaReturnType; +typedef CwiseUnaryOp, const Derived> DigammaReturnType; +typedef CwiseUnaryOp, const Derived> ErfReturnType; +typedef CwiseUnaryOp, const Derived> ErfcReturnType; +typedef CwiseUnaryOp, const Derived> NdtriReturnType; + +/** \cpp11 \returns an expression of the coefficient-wise ln(|gamma(*this)|). + * + * \specialfunctions_module + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of lgamma(T) for any scalar + * type T to be supported. + * + * \sa Math functions, digamma() + */ +EIGEN_DEVICE_FUNC +inline const LgammaReturnType +lgamma() const +{ + return LgammaReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise digamma (psi, derivative of lgamma). + * + * \specialfunctions_module + * + * \note This function supports only float and double scalar types. To support other scalar types, + * the user has to provide implementations of digamma(T) for any scalar + * type T to be supported. + * + * \sa Math functions, Eigen::digamma(), Eigen::polygamma(), lgamma() + */ +EIGEN_DEVICE_FUNC +inline const DigammaReturnType +digamma() const +{ + return DigammaReturnType(derived()); +} + +/** \cpp11 \returns an expression of the coefficient-wise Gauss error + * function of *this. + * + * \specialfunctions_module + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of erf(T) for any scalar + * type T to be supported. + * + * \sa Math functions, erfc() + */ +EIGEN_DEVICE_FUNC +inline const ErfReturnType +erf() const +{ + return ErfReturnType(derived()); +} + +/** \cpp11 \returns an expression of the coefficient-wise Complementary error + * function of *this. + * + * \specialfunctions_module + * + * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, + * or float/double in non c++11 mode, the user has to provide implementations of erfc(T) for any scalar + * type T to be supported. + * + * \sa Math functions, erf() + */ +EIGEN_DEVICE_FUNC +inline const ErfcReturnType +erfc() const +{ + return ErfcReturnType(derived()); +} + +/** \returns an expression of the coefficient-wise inverse of the CDF of the Normal distribution function + * function of *this. + * + * \specialfunctions_module + * + * In other words, considering `x = ndtri(y)`, it returns the argument, x, for which the area under the + * Gaussian probability density function (integrated from minus infinity to x) is equal to y. + * + * \note This function supports only float and double scalar types. To support other scalar types, + * the user has to provide implementations of ndtri(T) for any scalar type T to be supported. + * + * \sa Math functions + */ +EIGEN_DEVICE_FUNC +inline const NdtriReturnType +ndtri() const +{ + return NdtriReturnType(derived()); +} diff --git a/include/eigen/Eigen/src/plugins/BlockMethods.h b/include/eigen/Eigen/src/plugins/BlockMethods.h new file mode 100644 index 0000000000000000000000000000000000000000..63a52a6ffaa9bcadef7961d05fabe353f52aadc2 --- /dev/null +++ b/include/eigen/Eigen/src/plugins/BlockMethods.h @@ -0,0 +1,1442 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud +// Copyright (C) 2006-2010 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PARSED_BY_DOXYGEN + +/// \internal expression type of a column */ +typedef Block::RowsAtCompileTime, 1, !IsRowMajor> ColXpr; +typedef const Block::RowsAtCompileTime, 1, !IsRowMajor> ConstColXpr; +/// \internal expression type of a row */ +typedef Block::ColsAtCompileTime, IsRowMajor> RowXpr; +typedef const Block::ColsAtCompileTime, IsRowMajor> ConstRowXpr; +/// \internal expression type of a block of whole columns */ +typedef Block::RowsAtCompileTime, Dynamic, !IsRowMajor> ColsBlockXpr; +typedef const Block::RowsAtCompileTime, Dynamic, !IsRowMajor> ConstColsBlockXpr; +/// \internal expression type of a block of whole rows */ +typedef Block::ColsAtCompileTime, IsRowMajor> RowsBlockXpr; +typedef const Block::ColsAtCompileTime, IsRowMajor> ConstRowsBlockXpr; +/// \internal expression type of a block of whole columns */ +template struct NColsBlockXpr { typedef Block::RowsAtCompileTime, N, !IsRowMajor> Type; }; +template struct ConstNColsBlockXpr { typedef const Block::RowsAtCompileTime, N, !IsRowMajor> Type; }; +/// \internal expression type of a block of whole rows */ +template struct NRowsBlockXpr { typedef Block::ColsAtCompileTime, IsRowMajor> Type; }; +template struct ConstNRowsBlockXpr { typedef const Block::ColsAtCompileTime, IsRowMajor> Type; }; +/// \internal expression of a block */ +typedef Block BlockXpr; +typedef const Block ConstBlockXpr; +/// \internal expression of a block of fixed sizes */ +template struct FixedBlockXpr { typedef Block Type; }; +template struct ConstFixedBlockXpr { typedef Block Type; }; + +typedef VectorBlock SegmentReturnType; +typedef const VectorBlock ConstSegmentReturnType; +template struct FixedSegmentReturnType { typedef VectorBlock Type; }; +template struct ConstFixedSegmentReturnType { typedef const VectorBlock Type; }; + +/// \internal inner-vector +typedef Block InnerVectorReturnType; +typedef Block ConstInnerVectorReturnType; + +/// \internal set of inner-vectors +typedef Block InnerVectorsReturnType; +typedef Block ConstInnerVectorsReturnType; + +#endif // not EIGEN_PARSED_BY_DOXYGEN + +/// \returns an expression of a block in \c *this with either dynamic or fixed sizes. +/// +/// \param startRow the first row in the block +/// \param startCol the first column in the block +/// \param blockRows number of rows in the block, specified at either run-time or compile-time +/// \param blockCols number of columns in the block, specified at either run-time or compile-time +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example using runtime (aka dynamic) sizes: \include MatrixBase_block_int_int_int_int.cpp +/// Output: \verbinclude MatrixBase_block_int_int_int_int.out +/// +/// \newin{3.4}: +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. In the later case, \c n plays the role of a runtime fallback value in case \c N equals Eigen::Dynamic. +/// Here is an example with a fixed number of rows \c NRows and dynamic number of columns \c cols: +/// \code +/// mat.block(i,j,fix,cols) +/// \endcode +/// +/// This function thus fully covers the features offered by the following overloads block(Index, Index), +/// and block(Index, Index, Index, Index) that are thus obsolete. Indeed, this generic version avoids +/// redundancy, it preserves the argument order, and prevents the need to rely on the template keyword in templated code. +/// +/// but with less redundancy and more consistency as it does not modify the argument order +/// and seamlessly enable hybrid fixed/dynamic sizes. +/// +/// \note Even in the case that the returned expression has dynamic size, in the case +/// when it is applied to a fixed-size matrix, it inherits a fixed maximal size, +/// which means that evaluating it does not cause a dynamic memory allocation. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block, fix, fix(int) +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type( + derived(), startRow, startCol, internal::get_runtime_value(blockRows), internal::get_runtime_value(blockCols)); +} + +/// This is the const version of block(Index,Index,NRowsType,NColsType) +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +const typename ConstFixedBlockXpr<...,...>::Type +#endif +block(Index startRow, Index startCol, NRowsType blockRows, NColsType blockCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type( + derived(), startRow, startCol, internal::get_runtime_value(blockRows), internal::get_runtime_value(blockCols)); +} + + + +/// \returns a expression of a top-right corner of \c *this with either dynamic or fixed sizes. +/// +/// \param cRows the number of rows in the corner +/// \param cCols the number of columns in the corner +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example with dynamic sizes: \include MatrixBase_topRightCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_topRightCorner_int_int.out +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +topRightCorner(NRowsType cRows, NColsType cCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), 0, cols() - internal::get_runtime_value(cCols), internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// This is the const version of topRightCorner(NRowsType, NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +const typename ConstFixedBlockXpr<...,...>::Type +#endif +topRightCorner(NRowsType cRows, NColsType cCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), 0, cols() - internal::get_runtime_value(cCols), internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// \returns an expression of a fixed-size top-right corner of \c *this. +/// +/// \tparam CRows the number of rows in the corner +/// \tparam CCols the number of columns in the corner +/// +/// Example: \include MatrixBase_template_int_int_topRightCorner.cpp +/// Output: \verbinclude MatrixBase_template_int_int_topRightCorner.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block, block(Index,Index) +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type topRightCorner() +{ + return typename FixedBlockXpr::Type(derived(), 0, cols() - CCols); +} + +/// This is the const version of topRightCorner(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type topRightCorner() const +{ + return typename ConstFixedBlockXpr::Type(derived(), 0, cols() - CCols); +} + +/// \returns an expression of a top-right corner of \c *this. +/// +/// \tparam CRows number of rows in corner as specified at compile-time +/// \tparam CCols number of columns in corner as specified at compile-time +/// \param cRows number of rows in corner as specified at run-time +/// \param cCols number of columns in corner as specified at run-time +/// +/// This function is mainly useful for corners where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a cRows should equal \a CRows unless +/// \a CRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_topRightCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_topRightCorner_int_int.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type topRightCorner(Index cRows, Index cCols) +{ + return typename FixedBlockXpr::Type(derived(), 0, cols() - cCols, cRows, cCols); +} + +/// This is the const version of topRightCorner(Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type topRightCorner(Index cRows, Index cCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), 0, cols() - cCols, cRows, cCols); +} + + + +/// \returns an expression of a top-left corner of \c *this with either dynamic or fixed sizes. +/// +/// \param cRows the number of rows in the corner +/// \param cCols the number of columns in the corner +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_topLeftCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_topLeftCorner_int_int.out +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +topLeftCorner(NRowsType cRows, NColsType cCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), 0, 0, internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// This is the const version of topLeftCorner(Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +const typename ConstFixedBlockXpr<...,...>::Type +#endif +topLeftCorner(NRowsType cRows, NColsType cCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), 0, 0, internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// \returns an expression of a fixed-size top-left corner of \c *this. +/// +/// The template parameters CRows and CCols are the number of rows and columns in the corner. +/// +/// Example: \include MatrixBase_template_int_int_topLeftCorner.cpp +/// Output: \verbinclude MatrixBase_template_int_int_topLeftCorner.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type topLeftCorner() +{ + return typename FixedBlockXpr::Type(derived(), 0, 0); +} + +/// This is the const version of topLeftCorner(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type topLeftCorner() const +{ + return typename ConstFixedBlockXpr::Type(derived(), 0, 0); +} + +/// \returns an expression of a top-left corner of \c *this. +/// +/// \tparam CRows number of rows in corner as specified at compile-time +/// \tparam CCols number of columns in corner as specified at compile-time +/// \param cRows number of rows in corner as specified at run-time +/// \param cCols number of columns in corner as specified at run-time +/// +/// This function is mainly useful for corners where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a cRows should equal \a CRows unless +/// \a CRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_topLeftCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_topLeftCorner_int_int.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type topLeftCorner(Index cRows, Index cCols) +{ + return typename FixedBlockXpr::Type(derived(), 0, 0, cRows, cCols); +} + +/// This is the const version of topLeftCorner(Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type topLeftCorner(Index cRows, Index cCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), 0, 0, cRows, cCols); +} + + + +/// \returns an expression of a bottom-right corner of \c *this with either dynamic or fixed sizes. +/// +/// \param cRows the number of rows in the corner +/// \param cCols the number of columns in the corner +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_bottomRightCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_bottomRightCorner_int_int.out +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +bottomRightCorner(NRowsType cRows, NColsType cCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), rows() - internal::get_runtime_value(cRows), cols() - internal::get_runtime_value(cCols), + internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// This is the const version of bottomRightCorner(NRowsType, NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +const typename ConstFixedBlockXpr<...,...>::Type +#endif +bottomRightCorner(NRowsType cRows, NColsType cCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), rows() - internal::get_runtime_value(cRows), cols() - internal::get_runtime_value(cCols), + internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// \returns an expression of a fixed-size bottom-right corner of \c *this. +/// +/// The template parameters CRows and CCols are the number of rows and columns in the corner. +/// +/// Example: \include MatrixBase_template_int_int_bottomRightCorner.cpp +/// Output: \verbinclude MatrixBase_template_int_int_bottomRightCorner.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type bottomRightCorner() +{ + return typename FixedBlockXpr::Type(derived(), rows() - CRows, cols() - CCols); +} + +/// This is the const version of bottomRightCorner(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type bottomRightCorner() const +{ + return typename ConstFixedBlockXpr::Type(derived(), rows() - CRows, cols() - CCols); +} + +/// \returns an expression of a bottom-right corner of \c *this. +/// +/// \tparam CRows number of rows in corner as specified at compile-time +/// \tparam CCols number of columns in corner as specified at compile-time +/// \param cRows number of rows in corner as specified at run-time +/// \param cCols number of columns in corner as specified at run-time +/// +/// This function is mainly useful for corners where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a cRows should equal \a CRows unless +/// \a CRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_bottomRightCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_bottomRightCorner_int_int.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type bottomRightCorner(Index cRows, Index cCols) +{ + return typename FixedBlockXpr::Type(derived(), rows() - cRows, cols() - cCols, cRows, cCols); +} + +/// This is the const version of bottomRightCorner(Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type bottomRightCorner(Index cRows, Index cCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), rows() - cRows, cols() - cCols, cRows, cCols); +} + + + +/// \returns an expression of a bottom-left corner of \c *this with either dynamic or fixed sizes. +/// +/// \param cRows the number of rows in the corner +/// \param cCols the number of columns in the corner +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_bottomLeftCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_bottomLeftCorner_int_int.out +/// +/// The number of rows \a blockRows and columns \a blockCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename FixedBlockXpr<...,...>::Type +#endif +bottomLeftCorner(NRowsType cRows, NColsType cCols) +{ + return typename FixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), rows() - internal::get_runtime_value(cRows), 0, + internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// This is the const version of bottomLeftCorner(NRowsType, NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type +#else +typename ConstFixedBlockXpr<...,...>::Type +#endif +bottomLeftCorner(NRowsType cRows, NColsType cCols) const +{ + return typename ConstFixedBlockXpr::value,internal::get_fixed_value::value>::Type + (derived(), rows() - internal::get_runtime_value(cRows), 0, + internal::get_runtime_value(cRows), internal::get_runtime_value(cCols)); +} + +/// \returns an expression of a fixed-size bottom-left corner of \c *this. +/// +/// The template parameters CRows and CCols are the number of rows and columns in the corner. +/// +/// Example: \include MatrixBase_template_int_int_bottomLeftCorner.cpp +/// Output: \verbinclude MatrixBase_template_int_int_bottomLeftCorner.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type bottomLeftCorner() +{ + return typename FixedBlockXpr::Type(derived(), rows() - CRows, 0); +} + +/// This is the const version of bottomLeftCorner(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type bottomLeftCorner() const +{ + return typename ConstFixedBlockXpr::Type(derived(), rows() - CRows, 0); +} + +/// \returns an expression of a bottom-left corner of \c *this. +/// +/// \tparam CRows number of rows in corner as specified at compile-time +/// \tparam CCols number of columns in corner as specified at compile-time +/// \param cRows number of rows in corner as specified at run-time +/// \param cCols number of columns in corner as specified at run-time +/// +/// This function is mainly useful for corners where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a cRows should equal \a CRows unless +/// \a CRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_bottomLeftCorner_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_bottomLeftCorner_int_int.out +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa class Block +/// +template +EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type bottomLeftCorner(Index cRows, Index cCols) +{ + return typename FixedBlockXpr::Type(derived(), rows() - cRows, 0, cRows, cCols); +} + +/// This is the const version of bottomLeftCorner(Index, Index). +template +EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type bottomLeftCorner(Index cRows, Index cCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), rows() - cRows, 0, cRows, cCols); +} + + + +/// \returns a block consisting of the top rows of \c *this. +/// +/// \param n the number of rows in the block +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// +/// Example: \include MatrixBase_topRows_int.cpp +/// Output: \verbinclude MatrixBase_topRows_int.out +/// +/// The number of rows \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NRowsBlockXpr::value>::Type +#else +typename NRowsBlockXpr<...>::Type +#endif +topRows(NRowsType n) +{ + return typename NRowsBlockXpr::value>::Type + (derived(), 0, 0, internal::get_runtime_value(n), cols()); +} + +/// This is the const version of topRows(NRowsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNRowsBlockXpr::value>::Type +#else +const typename ConstNRowsBlockXpr<...>::Type +#endif +topRows(NRowsType n) const +{ + return typename ConstNRowsBlockXpr::value>::Type + (derived(), 0, 0, internal::get_runtime_value(n), cols()); +} + +/// \returns a block consisting of the top rows of \c *this. +/// +/// \tparam N the number of rows in the block as specified at compile-time +/// \param n the number of rows in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_topRows.cpp +/// Output: \verbinclude MatrixBase_template_int_topRows.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NRowsBlockXpr::Type topRows(Index n = N) +{ + return typename NRowsBlockXpr::Type(derived(), 0, 0, n, cols()); +} + +/// This is the const version of topRows(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNRowsBlockXpr::Type topRows(Index n = N) const +{ + return typename ConstNRowsBlockXpr::Type(derived(), 0, 0, n, cols()); +} + + + +/// \returns a block consisting of the bottom rows of \c *this. +/// +/// \param n the number of rows in the block +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// +/// Example: \include MatrixBase_bottomRows_int.cpp +/// Output: \verbinclude MatrixBase_bottomRows_int.out +/// +/// The number of rows \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NRowsBlockXpr::value>::Type +#else +typename NRowsBlockXpr<...>::Type +#endif +bottomRows(NRowsType n) +{ + return typename NRowsBlockXpr::value>::Type + (derived(), rows() - internal::get_runtime_value(n), 0, internal::get_runtime_value(n), cols()); +} + +/// This is the const version of bottomRows(NRowsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNRowsBlockXpr::value>::Type +#else +const typename ConstNRowsBlockXpr<...>::Type +#endif +bottomRows(NRowsType n) const +{ + return typename ConstNRowsBlockXpr::value>::Type + (derived(), rows() - internal::get_runtime_value(n), 0, internal::get_runtime_value(n), cols()); +} + +/// \returns a block consisting of the bottom rows of \c *this. +/// +/// \tparam N the number of rows in the block as specified at compile-time +/// \param n the number of rows in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_bottomRows.cpp +/// Output: \verbinclude MatrixBase_template_int_bottomRows.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NRowsBlockXpr::Type bottomRows(Index n = N) +{ + return typename NRowsBlockXpr::Type(derived(), rows() - n, 0, n, cols()); +} + +/// This is the const version of bottomRows(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNRowsBlockXpr::Type bottomRows(Index n = N) const +{ + return typename ConstNRowsBlockXpr::Type(derived(), rows() - n, 0, n, cols()); +} + + + +/// \returns a block consisting of a range of rows of \c *this. +/// +/// \param startRow the index of the first row in the block +/// \param n the number of rows in the block +/// \tparam NRowsType the type of the value handling the number of rows in the block, typically Index. +/// +/// Example: \include DenseBase_middleRows_int.cpp +/// Output: \verbinclude DenseBase_middleRows_int.out +/// +/// The number of rows \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NRowsBlockXpr::value>::Type +#else +typename NRowsBlockXpr<...>::Type +#endif +middleRows(Index startRow, NRowsType n) +{ + return typename NRowsBlockXpr::value>::Type + (derived(), startRow, 0, internal::get_runtime_value(n), cols()); +} + +/// This is the const version of middleRows(Index,NRowsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNRowsBlockXpr::value>::Type +#else +const typename ConstNRowsBlockXpr<...>::Type +#endif +middleRows(Index startRow, NRowsType n) const +{ + return typename ConstNRowsBlockXpr::value>::Type + (derived(), startRow, 0, internal::get_runtime_value(n), cols()); +} + +/// \returns a block consisting of a range of rows of \c *this. +/// +/// \tparam N the number of rows in the block as specified at compile-time +/// \param startRow the index of the first row in the block +/// \param n the number of rows in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include DenseBase_template_int_middleRows.cpp +/// Output: \verbinclude DenseBase_template_int_middleRows.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NRowsBlockXpr::Type middleRows(Index startRow, Index n = N) +{ + return typename NRowsBlockXpr::Type(derived(), startRow, 0, n, cols()); +} + +/// This is the const version of middleRows(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNRowsBlockXpr::Type middleRows(Index startRow, Index n = N) const +{ + return typename ConstNRowsBlockXpr::Type(derived(), startRow, 0, n, cols()); +} + + + +/// \returns a block consisting of the left columns of \c *this. +/// +/// \param n the number of columns in the block +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_leftCols_int.cpp +/// Output: \verbinclude MatrixBase_leftCols_int.out +/// +/// The number of columns \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NColsBlockXpr::value>::Type +#else +typename NColsBlockXpr<...>::Type +#endif +leftCols(NColsType n) +{ + return typename NColsBlockXpr::value>::Type + (derived(), 0, 0, rows(), internal::get_runtime_value(n)); +} + +/// This is the const version of leftCols(NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNColsBlockXpr::value>::Type +#else +const typename ConstNColsBlockXpr<...>::Type +#endif +leftCols(NColsType n) const +{ + return typename ConstNColsBlockXpr::value>::Type + (derived(), 0, 0, rows(), internal::get_runtime_value(n)); +} + +/// \returns a block consisting of the left columns of \c *this. +/// +/// \tparam N the number of columns in the block as specified at compile-time +/// \param n the number of columns in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_leftCols.cpp +/// Output: \verbinclude MatrixBase_template_int_leftCols.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NColsBlockXpr::Type leftCols(Index n = N) +{ + return typename NColsBlockXpr::Type(derived(), 0, 0, rows(), n); +} + +/// This is the const version of leftCols(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNColsBlockXpr::Type leftCols(Index n = N) const +{ + return typename ConstNColsBlockXpr::Type(derived(), 0, 0, rows(), n); +} + + + +/// \returns a block consisting of the right columns of \c *this. +/// +/// \param n the number of columns in the block +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include MatrixBase_rightCols_int.cpp +/// Output: \verbinclude MatrixBase_rightCols_int.out +/// +/// The number of columns \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NColsBlockXpr::value>::Type +#else +typename NColsBlockXpr<...>::Type +#endif +rightCols(NColsType n) +{ + return typename NColsBlockXpr::value>::Type + (derived(), 0, cols() - internal::get_runtime_value(n), rows(), internal::get_runtime_value(n)); +} + +/// This is the const version of rightCols(NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNColsBlockXpr::value>::Type +#else +const typename ConstNColsBlockXpr<...>::Type +#endif +rightCols(NColsType n) const +{ + return typename ConstNColsBlockXpr::value>::Type + (derived(), 0, cols() - internal::get_runtime_value(n), rows(), internal::get_runtime_value(n)); +} + +/// \returns a block consisting of the right columns of \c *this. +/// +/// \tparam N the number of columns in the block as specified at compile-time +/// \param n the number of columns in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_rightCols.cpp +/// Output: \verbinclude MatrixBase_template_int_rightCols.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NColsBlockXpr::Type rightCols(Index n = N) +{ + return typename NColsBlockXpr::Type(derived(), 0, cols() - n, rows(), n); +} + +/// This is the const version of rightCols(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNColsBlockXpr::Type rightCols(Index n = N) const +{ + return typename ConstNColsBlockXpr::Type(derived(), 0, cols() - n, rows(), n); +} + + + +/// \returns a block consisting of a range of columns of \c *this. +/// +/// \param startCol the index of the first column in the block +/// \param numCols the number of columns in the block +/// \tparam NColsType the type of the value handling the number of columns in the block, typically Index. +/// +/// Example: \include DenseBase_middleCols_int.cpp +/// Output: \verbinclude DenseBase_middleCols_int.out +/// +/// The number of columns \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename NColsBlockXpr::value>::Type +#else +typename NColsBlockXpr<...>::Type +#endif +middleCols(Index startCol, NColsType numCols) +{ + return typename NColsBlockXpr::value>::Type + (derived(), 0, startCol, rows(), internal::get_runtime_value(numCols)); +} + +/// This is the const version of middleCols(Index,NColsType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstNColsBlockXpr::value>::Type +#else +const typename ConstNColsBlockXpr<...>::Type +#endif +middleCols(Index startCol, NColsType numCols) const +{ + return typename ConstNColsBlockXpr::value>::Type + (derived(), 0, startCol, rows(), internal::get_runtime_value(numCols)); +} + +/// \returns a block consisting of a range of columns of \c *this. +/// +/// \tparam N the number of columns in the block as specified at compile-time +/// \param startCol the index of the first column in the block +/// \param n the number of columns in the block as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include DenseBase_template_int_middleCols.cpp +/// Output: \verbinclude DenseBase_template_int_middleCols.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename NColsBlockXpr::Type middleCols(Index startCol, Index n = N) +{ + return typename NColsBlockXpr::Type(derived(), 0, startCol, rows(), n); +} + +/// This is the const version of middleCols(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstNColsBlockXpr::Type middleCols(Index startCol, Index n = N) const +{ + return typename ConstNColsBlockXpr::Type(derived(), 0, startCol, rows(), n); +} + + + +/// \returns a fixed-size expression of a block of \c *this. +/// +/// The template parameters \a NRows and \a NCols are the number of +/// rows and columns in the block. +/// +/// \param startRow the first row in the block +/// \param startCol the first column in the block +/// +/// Example: \include MatrixBase_block_int_int.cpp +/// Output: \verbinclude MatrixBase_block_int_int.out +/// +/// \note The usage of of this overload is discouraged from %Eigen 3.4, better used the generic +/// block(Index,Index,NRowsType,NColsType), here is the one-to-one equivalence: +/// \code +/// mat.template block(i,j) <--> mat.block(i,j,fix,fix) +/// \endcode +/// +/// \note since block is a templated member, the keyword template has to be used +/// if the matrix type is also a template parameter: \code m.template block<3,3>(1,1); \endcode +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type block(Index startRow, Index startCol) +{ + return typename FixedBlockXpr::Type(derived(), startRow, startCol); +} + +/// This is the const version of block<>(Index, Index). */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type block(Index startRow, Index startCol) const +{ + return typename ConstFixedBlockXpr::Type(derived(), startRow, startCol); +} + +/// \returns an expression of a block of \c *this. +/// +/// \tparam NRows number of rows in block as specified at compile-time +/// \tparam NCols number of columns in block as specified at compile-time +/// \param startRow the first row in the block +/// \param startCol the first column in the block +/// \param blockRows number of rows in block as specified at run-time +/// \param blockCols number of columns in block as specified at run-time +/// +/// This function is mainly useful for blocks where the number of rows is specified at compile-time +/// and the number of columns is specified at run-time, or vice versa. The compile-time and run-time +/// information should not contradict. In other words, \a blockRows should equal \a NRows unless +/// \a NRows is \a Dynamic, and the same for the number of columns. +/// +/// Example: \include MatrixBase_template_int_int_block_int_int_int_int.cpp +/// Output: \verbinclude MatrixBase_template_int_int_block_int_int_int_int.out +/// +/// \note The usage of of this overload is discouraged from %Eigen 3.4, better used the generic +/// block(Index,Index,NRowsType,NColsType), here is the one-to-one complete equivalence: +/// \code +/// mat.template block(i,j,rows,cols) <--> mat.block(i,j,fix(rows),fix(cols)) +/// \endcode +/// If we known that, e.g., NRows==Dynamic and NCols!=Dynamic, then the equivalence becomes: +/// \code +/// mat.template block(i,j,rows,NCols) <--> mat.block(i,j,rows,fix) +/// \endcode +/// +EIGEN_DOC_BLOCK_ADDONS_NOT_INNER_PANEL +/// +/// \sa block(Index,Index,NRowsType,NColsType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedBlockXpr::Type block(Index startRow, Index startCol, + Index blockRows, Index blockCols) +{ + return typename FixedBlockXpr::Type(derived(), startRow, startCol, blockRows, blockCols); +} + +/// This is the const version of block<>(Index, Index, Index, Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const typename ConstFixedBlockXpr::Type block(Index startRow, Index startCol, + Index blockRows, Index blockCols) const +{ + return typename ConstFixedBlockXpr::Type(derived(), startRow, startCol, blockRows, blockCols); +} + +/// \returns an expression of the \a i-th column of \c *this. Note that the numbering starts at 0. +/// +/// Example: \include MatrixBase_col.cpp +/// Output: \verbinclude MatrixBase_col.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(column-major) +/** + * \sa row(), class Block */ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +ColXpr col(Index i) +{ + return ColXpr(derived(), i); +} + +/// This is the const version of col(). +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +ConstColXpr col(Index i) const +{ + return ConstColXpr(derived(), i); +} + +/// \returns an expression of the \a i-th row of \c *this. Note that the numbering starts at 0. +/// +/// Example: \include MatrixBase_row.cpp +/// Output: \verbinclude MatrixBase_row.out +/// +EIGEN_DOC_BLOCK_ADDONS_INNER_PANEL_IF(row-major) +/** + * \sa col(), class Block */ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +RowXpr row(Index i) +{ + return RowXpr(derived(), i); +} + +/// This is the const version of row(). */ +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +ConstRowXpr row(Index i) const +{ + return ConstRowXpr(derived(), i); +} + +/// \returns an expression of a segment (i.e. a vector block) in \c *this with either dynamic or fixed sizes. +/// +/// \only_for_vectors +/// +/// \param start the first coefficient in the segment +/// \param n the number of coefficients in the segment +/// \tparam NType the type of the value handling the number of coefficients in the segment, typically Index. +/// +/// Example: \include MatrixBase_segment_int_int.cpp +/// Output: \verbinclude MatrixBase_segment_int_int.out +/// +/// The number of coefficients \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +/// \note Even in the case that the returned expression has dynamic size, in the case +/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, +/// which means that evaluating it does not cause a dynamic memory allocation. +/// +/// \sa block(Index,Index,NRowsType,NColsType), fix, fix(int), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedSegmentReturnType::value>::Type +#else +typename FixedSegmentReturnType<...>::Type +#endif +segment(Index start, NType n) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::value>::Type + (derived(), start, internal::get_runtime_value(n)); +} + + +/// This is the const version of segment(Index,NType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedSegmentReturnType::value>::Type +#else +const typename ConstFixedSegmentReturnType<...>::Type +#endif +segment(Index start, NType n) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::value>::Type + (derived(), start, internal::get_runtime_value(n)); +} + +/// \returns an expression of the first coefficients of \c *this with either dynamic or fixed sizes. +/// +/// \only_for_vectors +/// +/// \param n the number of coefficients in the segment +/// \tparam NType the type of the value handling the number of coefficients in the segment, typically Index. +/// +/// Example: \include MatrixBase_start_int.cpp +/// Output: \verbinclude MatrixBase_start_int.out +/// +/// The number of coefficients \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +/// \note Even in the case that the returned expression has dynamic size, in the case +/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, +/// which means that evaluating it does not cause a dynamic memory allocation. +/// +/// \sa class Block, block(Index,Index) +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedSegmentReturnType::value>::Type +#else +typename FixedSegmentReturnType<...>::Type +#endif +head(NType n) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::value>::Type + (derived(), 0, internal::get_runtime_value(n)); +} + +/// This is the const version of head(NType). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedSegmentReturnType::value>::Type +#else +const typename ConstFixedSegmentReturnType<...>::Type +#endif +head(NType n) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::value>::Type + (derived(), 0, internal::get_runtime_value(n)); +} + +/// \returns an expression of a last coefficients of \c *this with either dynamic or fixed sizes. +/// +/// \only_for_vectors +/// +/// \param n the number of coefficients in the segment +/// \tparam NType the type of the value handling the number of coefficients in the segment, typically Index. +/// +/// Example: \include MatrixBase_end_int.cpp +/// Output: \verbinclude MatrixBase_end_int.out +/// +/// The number of coefficients \a n can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. +/// See \link block(Index,Index,NRowsType,NColsType) block() \endlink for the details. +/// +/// \note Even in the case that the returned expression has dynamic size, in the case +/// when it is applied to a fixed-size vector, it inherits a fixed maximal size, +/// which means that evaluating it does not cause a dynamic memory allocation. +/// +/// \sa class Block, block(Index,Index) +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +typename FixedSegmentReturnType::value>::Type +#else +typename FixedSegmentReturnType<...>::Type +#endif +tail(NType n) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::value>::Type + (derived(), this->size() - internal::get_runtime_value(n), internal::get_runtime_value(n)); +} + +/// This is the const version of tail(Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +#ifndef EIGEN_PARSED_BY_DOXYGEN +const typename ConstFixedSegmentReturnType::value>::Type +#else +const typename ConstFixedSegmentReturnType<...>::Type +#endif +tail(NType n) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::value>::Type + (derived(), this->size() - internal::get_runtime_value(n), internal::get_runtime_value(n)); +} + +/// \returns a fixed-size expression of a segment (i.e. a vector block) in \c *this +/// +/// \only_for_vectors +/// +/// \tparam N the number of coefficients in the segment as specified at compile-time +/// \param start the index of the first element in the segment +/// \param n the number of coefficients in the segment as specified at compile-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_segment.cpp +/// Output: \verbinclude MatrixBase_template_int_segment.out +/// +/// \sa segment(Index,NType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedSegmentReturnType::Type segment(Index start, Index n = N) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::Type(derived(), start, n); +} + +/// This is the const version of segment(Index). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstFixedSegmentReturnType::Type segment(Index start, Index n = N) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::Type(derived(), start, n); +} + +/// \returns a fixed-size expression of the first coefficients of \c *this. +/// +/// \only_for_vectors +/// +/// \tparam N the number of coefficients in the segment as specified at compile-time +/// \param n the number of coefficients in the segment as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_start.cpp +/// Output: \verbinclude MatrixBase_template_int_start.out +/// +/// \sa head(NType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedSegmentReturnType::Type head(Index n = N) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::Type(derived(), 0, n); +} + +/// This is the const version of head(). +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstFixedSegmentReturnType::Type head(Index n = N) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::Type(derived(), 0, n); +} + +/// \returns a fixed-size expression of the last coefficients of \c *this. +/// +/// \only_for_vectors +/// +/// \tparam N the number of coefficients in the segment as specified at compile-time +/// \param n the number of coefficients in the segment as specified at run-time +/// +/// The compile-time and run-time information should not contradict. In other words, +/// \a n should equal \a N unless \a N is \a Dynamic. +/// +/// Example: \include MatrixBase_template_int_end.cpp +/// Output: \verbinclude MatrixBase_template_int_end.out +/// +/// \sa tail(NType), class Block +/// +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename FixedSegmentReturnType::Type tail(Index n = N) +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename FixedSegmentReturnType::Type(derived(), size() - n); +} + +/// This is the const version of tail. +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename ConstFixedSegmentReturnType::Type tail(Index n = N) const +{ + EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) + return typename ConstFixedSegmentReturnType::Type(derived(), size() - n); +} + +/// \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this +/// is col-major (resp. row-major). +/// +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +InnerVectorReturnType innerVector(Index outer) +{ return InnerVectorReturnType(derived(), outer); } + +/// \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this +/// is col-major (resp. row-major). Read-only. +/// +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const ConstInnerVectorReturnType innerVector(Index outer) const +{ return ConstInnerVectorReturnType(derived(), outer); } + +/// \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this +/// is col-major (resp. row-major). +/// +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +InnerVectorsReturnType +innerVectors(Index outerStart, Index outerSize) +{ + return Block(derived(), + IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart, + IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize); + +} + +/// \returns the \a outer -th column (resp. row) of the matrix \c *this if \c *this +/// is col-major (resp. row-major). Read-only. +/// +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +const ConstInnerVectorsReturnType +innerVectors(Index outerStart, Index outerSize) const +{ + return Block(derived(), + IsRowMajor ? outerStart : 0, IsRowMajor ? 0 : outerStart, + IsRowMajor ? outerSize : rows(), IsRowMajor ? cols() : outerSize); + +} + +/** \returns the i-th subvector (column or vector) according to the \c Direction + * \sa subVectors() + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename internal::conditional::type +subVector(Index i) +{ + return typename internal::conditional::type(derived(),i); +} + +/** This is the const version of subVector(Index) */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE +typename internal::conditional::type +subVector(Index i) const +{ + return typename internal::conditional::type(derived(),i); +} + +/** \returns the number of subvectors (rows or columns) in the direction \c Direction + * \sa subVector(Index) + */ +template +EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR +Index subVectors() const +{ return (Direction==Vertical)?cols():rows(); } diff --git a/include/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h b/include/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h new file mode 100644 index 0000000000000000000000000000000000000000..5418dc4154f2b078e964383d6bb5acebe0bf3210 --- /dev/null +++ b/include/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h @@ -0,0 +1,177 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// This file is a base class plugin containing common coefficient wise functions. + +#ifndef EIGEN_PARSED_BY_DOXYGEN + +/** \internal the return type of conjugate() */ +typedef typename internal::conditional::IsComplex, + const CwiseUnaryOp, const Derived>, + const Derived& + >::type ConjugateReturnType; +/** \internal the return type of real() const */ +typedef typename internal::conditional::IsComplex, + const CwiseUnaryOp, const Derived>, + const Derived& + >::type RealReturnType; +/** \internal the return type of real() */ +typedef typename internal::conditional::IsComplex, + CwiseUnaryView, Derived>, + Derived& + >::type NonConstRealReturnType; +/** \internal the return type of imag() const */ +typedef CwiseUnaryOp, const Derived> ImagReturnType; +/** \internal the return type of imag() */ +typedef CwiseUnaryView, Derived> NonConstImagReturnType; + +typedef CwiseUnaryOp, const Derived> NegativeReturnType; + +#endif // not EIGEN_PARSED_BY_DOXYGEN + +/// \returns an expression of the opposite of \c *this +/// +EIGEN_DOC_UNARY_ADDONS(operator-,opposite) +/// +EIGEN_DEVICE_FUNC +inline const NegativeReturnType +operator-() const { return NegativeReturnType(derived()); } + + +template struct CastXpr { typedef typename internal::cast_return_type, const Derived> >::type Type; }; + +/// \returns an expression of \c *this with the \a Scalar type casted to +/// \a NewScalar. +/// +/// The template parameter \a NewScalar is the type we are casting the scalars to. +/// +EIGEN_DOC_UNARY_ADDONS(cast,conversion function) +/// +/// \sa class CwiseUnaryOp +/// +template +EIGEN_DEVICE_FUNC +typename CastXpr::Type +cast() const +{ + return typename CastXpr::Type(derived()); +} + +/// \returns an expression of the complex conjugate of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(conjugate,complex conjugate) +/// +/// \sa Math functions, MatrixBase::adjoint() +EIGEN_DEVICE_FUNC +inline ConjugateReturnType +conjugate() const +{ + return ConjugateReturnType(derived()); +} + +/// \returns an expression of the complex conjugate of \c *this if Cond==true, returns derived() otherwise. +/// +EIGEN_DOC_UNARY_ADDONS(conjugate,complex conjugate) +/// +/// \sa conjugate() +template +EIGEN_DEVICE_FUNC +inline typename internal::conditional::type +conjugateIf() const +{ + typedef typename internal::conditional::type ReturnType; + return ReturnType(derived()); +} + +/// \returns a read-only expression of the real part of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(real,real part function) +/// +/// \sa imag() +EIGEN_DEVICE_FUNC +inline RealReturnType +real() const { return RealReturnType(derived()); } + +/// \returns an read-only expression of the imaginary part of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(imag,imaginary part function) +/// +/// \sa real() +EIGEN_DEVICE_FUNC +inline const ImagReturnType +imag() const { return ImagReturnType(derived()); } + +/// \brief Apply a unary operator coefficient-wise +/// \param[in] func Functor implementing the unary operator +/// \tparam CustomUnaryOp Type of \a func +/// \returns An expression of a custom coefficient-wise unary operator \a func of *this +/// +/// The function \c ptr_fun() from the C++ standard library can be used to make functors out of normal functions. +/// +/// Example: +/// \include class_CwiseUnaryOp_ptrfun.cpp +/// Output: \verbinclude class_CwiseUnaryOp_ptrfun.out +/// +/// Genuine functors allow for more possibilities, for instance it may contain a state. +/// +/// Example: +/// \include class_CwiseUnaryOp.cpp +/// Output: \verbinclude class_CwiseUnaryOp.out +/// +EIGEN_DOC_UNARY_ADDONS(unaryExpr,unary function) +/// +/// \sa unaryViewExpr, binaryExpr, class CwiseUnaryOp +/// +template +EIGEN_DEVICE_FUNC +inline const CwiseUnaryOp +unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const +{ + return CwiseUnaryOp(derived(), func); +} + +/// \returns an expression of a custom coefficient-wise unary operator \a func of *this +/// +/// The template parameter \a CustomUnaryOp is the type of the functor +/// of the custom unary operator. +/// +/// Example: +/// \include class_CwiseUnaryOp.cpp +/// Output: \verbinclude class_CwiseUnaryOp.out +/// +EIGEN_DOC_UNARY_ADDONS(unaryViewExpr,unary function) +/// +/// \sa unaryExpr, binaryExpr class CwiseUnaryOp +/// +template +EIGEN_DEVICE_FUNC +inline const CwiseUnaryView +unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const +{ + return CwiseUnaryView(derived(), func); +} + +/// \returns a non const expression of the real part of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(real,real part function) +/// +/// \sa imag() +EIGEN_DEVICE_FUNC +inline NonConstRealReturnType +real() { return NonConstRealReturnType(derived()); } + +/// \returns a non const expression of the imaginary part of \c *this. +/// +EIGEN_DOC_UNARY_ADDONS(imag,imaginary part function) +/// +/// \sa real() +EIGEN_DEVICE_FUNC +inline NonConstImagReturnType +imag() { return NonConstImagReturnType(derived()); } diff --git a/include/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h b/include/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h new file mode 100644 index 0000000000000000000000000000000000000000..514d83a71de96e3855b6a060a0300e3f1f54d29c --- /dev/null +++ b/include/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h @@ -0,0 +1,184 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// This file is a base class plugin containing matrix specifics coefficient wise functions. + +/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other + * + * Example: \include MatrixBase_cwiseProduct.cpp + * Output: \verbinclude MatrixBase_cwiseProduct.out + * + * \sa class CwiseBinaryOp, cwiseAbs2 + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product) +cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise == operator of *this and \a other + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * Example: \include MatrixBase_cwiseEqual.cpp + * Output: \verbinclude MatrixBase_cwiseEqual.out + * + * \sa cwiseNotEqual(), isApprox(), isMuchSmallerThan() + */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise != operator of *this and \a other + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * Example: \include MatrixBase_cwiseNotEqual.cpp + * Output: \verbinclude MatrixBase_cwiseNotEqual.out + * + * \sa cwiseEqual(), isApprox(), isMuchSmallerThan() + */ +template +EIGEN_DEVICE_FUNC +inline const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseNotEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +/** \returns an expression of the coefficient-wise min of *this and \a other + * + * Example: \include MatrixBase_cwiseMin.cpp + * Output: \verbinclude MatrixBase_cwiseMin.out + * + * \sa class CwiseBinaryOp, max() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseMin(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseMin(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return cwiseMin(other); +} + +/** \returns an expression of the coefficient-wise min of *this and scalar \a other + * + * \sa class CwiseBinaryOp, min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> +cwiseMin(const Scalar &other) const +{ + return cwiseMin(Derived::Constant(rows(), cols(), other)); +} + +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> +cwiseMin(const Scalar &other) const +{ + return cwiseMin(Derived::Constant(rows(), cols(), other)); +} + +/** \returns an expression of the coefficient-wise max of *this and \a other + * + * Example: \include MatrixBase_cwiseMax.cpp + * Output: \verbinclude MatrixBase_cwiseMax.out + * + * \sa class CwiseBinaryOp, min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseMax(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseMax(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return cwiseMax(other); +} + +/** \returns an expression of the coefficient-wise max of *this and scalar \a other + * + * \sa class CwiseBinaryOp, min() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> +cwiseMax(const Scalar &other) const +{ + return cwiseMax(Derived::Constant(rows(), cols(), other)); +} + +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> +cwiseMax(const Scalar &other) const +{ + return cwiseMax(Derived::Constant(rows(), cols(), other)); +} + + +/** \returns an expression of the coefficient-wise quotient of *this and \a other + * + * Example: \include MatrixBase_cwiseQuotient.cpp + * Output: \verbinclude MatrixBase_cwiseQuotient.out + * + * \sa class CwiseBinaryOp, cwiseProduct(), cwiseInverse() + */ +template +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> +cwiseQuotient(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const +{ + return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); +} + +typedef CwiseBinaryOp, const Derived, const ConstantReturnType> CwiseScalarEqualReturnType; + +/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s + * + * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. + * In order to check for equality between two vectors or matrices with floating-point coefficients, it is + * generally a far better idea to use a fuzzy comparison as provided by isApprox() and + * isMuchSmallerThan(). + * + * \sa cwiseEqual(const MatrixBase &) const + */ +EIGEN_DEVICE_FUNC +inline const CwiseScalarEqualReturnType +cwiseEqual(const Scalar& s) const +{ + return CwiseScalarEqualReturnType(derived(), Derived::Constant(rows(), cols(), s), internal::scalar_cmp_op()); +} diff --git a/include/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h b/include/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h new file mode 100644 index 0000000000000000000000000000000000000000..0514d8f78b5ff44ed659113f85e5aa0e512cc6c5 --- /dev/null +++ b/include/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h @@ -0,0 +1,95 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2006-2008 Benoit Jacob +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +// This file is included into the body of the base classes supporting matrix specific coefficient-wise functions. +// This include MatrixBase and SparseMatrixBase. + + +typedef CwiseUnaryOp, const Derived> CwiseAbsReturnType; +typedef CwiseUnaryOp, const Derived> CwiseAbs2ReturnType; +typedef CwiseUnaryOp, const Derived> CwiseArgReturnType; +typedef CwiseUnaryOp, const Derived> CwiseSqrtReturnType; +typedef CwiseUnaryOp, const Derived> CwiseSignReturnType; +typedef CwiseUnaryOp, const Derived> CwiseInverseReturnType; + +/// \returns an expression of the coefficient-wise absolute value of \c *this +/// +/// Example: \include MatrixBase_cwiseAbs.cpp +/// Output: \verbinclude MatrixBase_cwiseAbs.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseAbs,absolute value) +/// +/// \sa cwiseAbs2() +/// +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseAbsReturnType +cwiseAbs() const { return CwiseAbsReturnType(derived()); } + +/// \returns an expression of the coefficient-wise squared absolute value of \c *this +/// +/// Example: \include MatrixBase_cwiseAbs2.cpp +/// Output: \verbinclude MatrixBase_cwiseAbs2.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseAbs2,squared absolute value) +/// +/// \sa cwiseAbs() +/// +EIGEN_DEVICE_FUNC +EIGEN_STRONG_INLINE const CwiseAbs2ReturnType +cwiseAbs2() const { return CwiseAbs2ReturnType(derived()); } + +/// \returns an expression of the coefficient-wise square root of *this. +/// +/// Example: \include MatrixBase_cwiseSqrt.cpp +/// Output: \verbinclude MatrixBase_cwiseSqrt.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseSqrt,square-root) +/// +/// \sa cwisePow(), cwiseSquare() +/// +EIGEN_DEVICE_FUNC +inline const CwiseSqrtReturnType +cwiseSqrt() const { return CwiseSqrtReturnType(derived()); } + +/// \returns an expression of the coefficient-wise signum of *this. +/// +/// Example: \include MatrixBase_cwiseSign.cpp +/// Output: \verbinclude MatrixBase_cwiseSign.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseSign,sign function) +/// +EIGEN_DEVICE_FUNC +inline const CwiseSignReturnType +cwiseSign() const { return CwiseSignReturnType(derived()); } + + +/// \returns an expression of the coefficient-wise inverse of *this. +/// +/// Example: \include MatrixBase_cwiseInverse.cpp +/// Output: \verbinclude MatrixBase_cwiseInverse.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseInverse,inverse) +/// +/// \sa cwiseProduct() +/// +EIGEN_DEVICE_FUNC +inline const CwiseInverseReturnType +cwiseInverse() const { return CwiseInverseReturnType(derived()); } + +/// \returns an expression of the coefficient-wise phase angle of \c *this +/// +/// Example: \include MatrixBase_cwiseArg.cpp +/// Output: \verbinclude MatrixBase_cwiseArg.out +/// +EIGEN_DOC_UNARY_ADDONS(cwiseArg,arg) + +EIGEN_DEVICE_FUNC +inline const CwiseArgReturnType +cwiseArg() const { return CwiseArgReturnType(derived()); } diff --git a/include/eigen/Eigen/src/plugins/ReshapedMethods.h b/include/eigen/Eigen/src/plugins/ReshapedMethods.h new file mode 100644 index 0000000000000000000000000000000000000000..482a6b045ef5a530517f55785b2ce27b448595d8 --- /dev/null +++ b/include/eigen/Eigen/src/plugins/ReshapedMethods.h @@ -0,0 +1,149 @@ + +#ifdef EIGEN_PARSED_BY_DOXYGEN + +/// \returns an expression of \c *this with reshaped sizes. +/// +/// \param nRows the number of rows in the reshaped expression, specified at either run-time or compile-time, or AutoSize +/// \param nCols the number of columns in the reshaped expression, specified at either run-time or compile-time, or AutoSize +/// \tparam Order specifies whether the coefficients should be processed in column-major-order (ColMajor), in row-major-order (RowMajor), +/// or follows the \em natural order of the nested expression (AutoOrder). The default is ColMajor. +/// \tparam NRowsType the type of the value handling the number of rows, typically Index. +/// \tparam NColsType the type of the value handling the number of columns, typically Index. +/// +/// Dynamic size example: \include MatrixBase_reshaped_int_int.cpp +/// Output: \verbinclude MatrixBase_reshaped_int_int.out +/// +/// The number of rows \a nRows and columns \a nCols can also be specified at compile-time by passing Eigen::fix, +/// or Eigen::fix(n) as arguments. In the later case, \c n plays the role of a runtime fallback value in case \c N equals Eigen::Dynamic. +/// Here is an example with a fixed number of rows and columns: +/// \include MatrixBase_reshaped_fixed.cpp +/// Output: \verbinclude MatrixBase_reshaped_fixed.out +/// +/// Finally, one of the sizes parameter can be automatically deduced from the other one by passing AutoSize as in the following example: +/// \include MatrixBase_reshaped_auto.cpp +/// Output: \verbinclude MatrixBase_reshaped_auto.out +/// AutoSize does preserve compile-time sizes when possible, i.e., when the sizes of the input are known at compile time \b and +/// that the other size is passed at compile-time using Eigen::fix as above. +/// +/// \sa class Reshaped, fix, fix(int) +/// +template +EIGEN_DEVICE_FUNC +inline Reshaped +reshaped(NRowsType nRows, NColsType nCols); + +/// This is the const version of reshaped(NRowsType,NColsType). +template +EIGEN_DEVICE_FUNC +inline const Reshaped +reshaped(NRowsType nRows, NColsType nCols) const; + +/// \returns an expression of \c *this with columns (or rows) stacked to a linear column vector +/// +/// \tparam Order specifies whether the coefficients should be processed in column-major-order (ColMajor), in row-major-order (RowMajor), +/// or follows the \em natural order of the nested expression (AutoOrder). The default is ColMajor. +/// +/// This overloads is essentially a shortcut for `A.reshaped(AutoSize,fix<1>)`. +/// +/// - If `Order==ColMajor` (the default), then it returns a column-vector from the stacked columns of \c *this. +/// - If `Order==RowMajor`, then it returns a column-vector from the stacked rows of \c *this. +/// - If `Order==AutoOrder`, then it returns a column-vector with elements stacked following the storage order of \c *this. +/// This mode is the recommended one when the particular ordering of the element is not relevant. +/// +/// Example: +/// \include MatrixBase_reshaped_to_vector.cpp +/// Output: \verbinclude MatrixBase_reshaped_to_vector.out +/// +/// If you want more control, you can still fall back to reshaped(NRowsType,NColsType). +/// +/// \sa reshaped(NRowsType,NColsType), class Reshaped +/// +template +EIGEN_DEVICE_FUNC +inline Reshaped +reshaped(); + +/// This is the const version of reshaped(). +template +EIGEN_DEVICE_FUNC +inline const Reshaped +reshaped() const; + +#else + +// This file is automatically included twice to generate const and non-const versions + +#ifndef EIGEN_RESHAPED_METHOD_2ND_PASS +#define EIGEN_RESHAPED_METHOD_CONST const +#else +#define EIGEN_RESHAPED_METHOD_CONST +#endif + +#ifndef EIGEN_RESHAPED_METHOD_2ND_PASS + +// This part is included once + +#endif + +template +EIGEN_DEVICE_FUNC +inline Reshaped::value, + internal::get_compiletime_reshape_size::value> +reshaped(NRowsType nRows, NColsType nCols) EIGEN_RESHAPED_METHOD_CONST +{ + return Reshaped::value, + internal::get_compiletime_reshape_size::value> + (derived(), + internal::get_runtime_reshape_size(nRows,internal::get_runtime_value(nCols),size()), + internal::get_runtime_reshape_size(nCols,internal::get_runtime_value(nRows),size())); +} + +template +EIGEN_DEVICE_FUNC +inline Reshaped::value, + internal::get_compiletime_reshape_size::value, + internal::get_compiletime_reshape_order::value> +reshaped(NRowsType nRows, NColsType nCols) EIGEN_RESHAPED_METHOD_CONST +{ + return Reshaped::value, + internal::get_compiletime_reshape_size::value, + internal::get_compiletime_reshape_order::value> + (derived(), + internal::get_runtime_reshape_size(nRows,internal::get_runtime_value(nCols),size()), + internal::get_runtime_reshape_size(nCols,internal::get_runtime_value(nRows),size())); +} + +// Views as linear vectors + +EIGEN_DEVICE_FUNC +inline Reshaped +reshaped() EIGEN_RESHAPED_METHOD_CONST +{ + return Reshaped(derived(),size(),1); +} + +template +EIGEN_DEVICE_FUNC +inline Reshaped::value> +reshaped() EIGEN_RESHAPED_METHOD_CONST +{ + EIGEN_STATIC_ASSERT(Order==RowMajor || Order==ColMajor || Order==AutoOrder, INVALID_TEMPLATE_PARAMETER); + return Reshaped::value> + (derived(), size(), 1); +} + +#undef EIGEN_RESHAPED_METHOD_CONST + +#ifndef EIGEN_RESHAPED_METHOD_2ND_PASS +#define EIGEN_RESHAPED_METHOD_2ND_PASS +#include "ReshapedMethods.h" +#undef EIGEN_RESHAPED_METHOD_2ND_PASS +#endif + +#endif // EIGEN_PARSED_BY_DOXYGEN diff --git a/include/eigen/INSTALL b/include/eigen/INSTALL new file mode 100644 index 0000000000000000000000000000000000000000..4f717e9c21662d90f08b13dbbc1ff5efc63771c3 --- /dev/null +++ b/include/eigen/INSTALL @@ -0,0 +1,35 @@ +Installation instructions for Eigen +*********************************** + +Explanation before starting +*************************** + +Eigen consists only of header files, hence there is nothing to compile +before you can use it. Moreover, these header files do not depend on your +platform, they are the same for everybody. + +Method 1. Installing without using CMake +**************************************** + +You can use right away the headers in the Eigen/ subdirectory. In order +to install, just copy this Eigen/ subdirectory to your favorite location. +If you also want the unsupported features, copy the unsupported/ +subdirectory too. + +Method 2. Installing using CMake +******************************** + +Let's call this directory 'source_dir' (where this INSTALL file is). +Before starting, create another directory which we will call 'build_dir'. + +Do: + + cd build_dir + cmake source_dir + make install + +The "make install" step may require administrator privileges. + +You can adjust the installation destination (the "prefix") +by passing the -DCMAKE_INSTALL_PREFIX=myprefix option to cmake, as is +explained in the message that cmake prints at the end. diff --git a/include/eigen/README.md b/include/eigen/README.md new file mode 100644 index 0000000000000000000000000000000000000000..9b40e9ed490cc37fbd5e17e9153187ef00a924d2 --- /dev/null +++ b/include/eigen/README.md @@ -0,0 +1,5 @@ +**Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.** + +For more information go to http://eigen.tuxfamily.org/. + +For ***pull request***, ***bug reports***, and ***feature requests***, go to https://gitlab.com/libeigen/eigen. diff --git a/include/eigen/blas/BandTriangularSolver.h b/include/eigen/blas/BandTriangularSolver.h new file mode 100644 index 0000000000000000000000000000000000000000..ce2d74daa95df3c760870425e20306b6f869273a --- /dev/null +++ b/include/eigen/blas/BandTriangularSolver.h @@ -0,0 +1,97 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2011 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BAND_TRIANGULARSOLVER_H +#define EIGEN_BAND_TRIANGULARSOLVER_H + +namespace internal { + + /* \internal + * Solve Ax=b with A a band triangular matrix + * TODO: extend it to matrices for x abd b */ +template +struct band_solve_triangular_selector; + + +template +struct band_solve_triangular_selector +{ + typedef Map, 0, OuterStride<> > LhsMap; + typedef Map > RhsMap; + enum { IsLower = (Mode&Lower) ? 1 : 0 }; + static void run(Index size, Index k, const LhsScalar* _lhs, Index lhsStride, RhsScalar* _other) + { + const LhsMap lhs(_lhs,size,k+1,OuterStride<>(lhsStride)); + RhsMap other(_other,size,1); + typename internal::conditional< + ConjLhs, + const CwiseUnaryOp,LhsMap>, + const LhsMap&> + ::type cjLhs(lhs); + + for(int col=0 ; col0) + other.coeffRef(i,col) -= cjLhs.row(i).segment(actual_start,actual_k).transpose() + .cwiseProduct(other.col(col).segment(IsLower ? i-actual_k : i+1,actual_k)).sum(); + + if((Mode&UnitDiag)==0) + other.coeffRef(i,col) /= cjLhs(i,IsLower ? k : 0); + } + } + } + +}; + +template +struct band_solve_triangular_selector +{ + typedef Map, 0, OuterStride<> > LhsMap; + typedef Map > RhsMap; + enum { IsLower = (Mode&Lower) ? 1 : 0 }; + static void run(Index size, Index k, const LhsScalar* _lhs, Index lhsStride, RhsScalar* _other) + { + const LhsMap lhs(_lhs,k+1,size,OuterStride<>(lhsStride)); + RhsMap other(_other,size,1); + typename internal::conditional< + ConjLhs, + const CwiseUnaryOp,LhsMap>, + const LhsMap&> + ::type cjLhs(lhs); + + for(int col=0 ; col0) + other.col(col).segment(IsLower ? i+1 : i-actual_k, actual_k) + -= other.coeff(i,col) * cjLhs.col(i).segment(actual_start,actual_k); + + } + } + } +}; + + +} // end namespace internal + +#endif // EIGEN_BAND_TRIANGULARSOLVER_H diff --git a/include/eigen/blas/CMakeLists.txt b/include/eigen/blas/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..c530957fbdecda8b21ae67ebc1b50e873fffc846 --- /dev/null +++ b/include/eigen/blas/CMakeLists.txt @@ -0,0 +1,63 @@ + +project(EigenBlas CXX) + +if(EIGEN_BUILD_BLAS) +include(CheckLanguage) +check_language(Fortran) +if(CMAKE_Fortran_COMPILER) + enable_language(Fortran) + set(EIGEN_Fortran_COMPILER_WORKS ON) +else() + set(EIGEN_Fortran_COMPILER_WORKS OFF) +endif() + +add_custom_target(blas) + +set(EigenBlas_SRCS single.cpp double.cpp complex_single.cpp complex_double.cpp xerbla.cpp + f2c/srotm.c f2c/srotmg.c f2c/drotm.c f2c/drotmg.c + f2c/lsame.c f2c/dspmv.c f2c/ssbmv.c f2c/chbmv.c + f2c/sspmv.c f2c/zhbmv.c f2c/chpmv.c f2c/dsbmv.c + f2c/zhpmv.c f2c/dtbmv.c f2c/stbmv.c f2c/ctbmv.c + f2c/ztbmv.c f2c/d_cnjg.c f2c/r_cnjg.c + ) + +if (EIGEN_Fortran_COMPILER_WORKS) + set(EigenBlas_SRCS ${EigenBlas_SRCS} fortran/complexdots.f) +else() + set(EigenBlas_SRCS ${EigenBlas_SRCS} f2c/complexdots.c) +endif() + +set(EIGEN_BLAS_TARGETS "") + +add_library(eigen_blas_static ${EigenBlas_SRCS}) +list(APPEND EIGEN_BLAS_TARGETS eigen_blas_static) + +if (EIGEN_BUILD_SHARED_LIBS) + add_library(eigen_blas SHARED ${EigenBlas_SRCS}) + list(APPEND EIGEN_BLAS_TARGETS eigen_blas) +endif() + +foreach(target IN LISTS EIGEN_BLAS_TARGETS) + if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO) + target_link_libraries(${target} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO}) + endif() + + add_dependencies(blas ${target}) + install(TARGETS ${target} + RUNTIME DESTINATION bin + LIBRARY DESTINATION lib + ARCHIVE DESTINATION lib) +endforeach() + +if(EIGEN_Fortran_COMPILER_WORKS) + +if(EIGEN_BUILD_TESTING) + if(EIGEN_LEAVE_TEST_IN_ALL_TARGET) + add_subdirectory(testing) # can't do EXCLUDE_FROM_ALL here, breaks CTest + else() + add_subdirectory(testing EXCLUDE_FROM_ALL) + endif() +endif() + +endif() +endif() diff --git a/include/eigen/blas/GeneralRank1Update.h b/include/eigen/blas/GeneralRank1Update.h new file mode 100644 index 0000000000000000000000000000000000000000..07d388c886e4424c06f0b92a3da055225de9eb29 --- /dev/null +++ b/include/eigen/blas/GeneralRank1Update.h @@ -0,0 +1,44 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Chen-Pang He +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_GENERAL_RANK1UPDATE_H +#define EIGEN_GENERAL_RANK1UPDATE_H + +namespace internal { + +/* Optimized matrix += alpha * uv' */ +template +struct general_rank1_update; + +template +struct general_rank1_update +{ + static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha) + { + typedef Map > OtherMap; + typedef typename conj_expr_if::type ConjRhsType; + conj_if cj; + + for (Index i=0; i >(mat+stride*i,rows) += alpha * cj(v[i]) * ConjRhsType(OtherMap(u,rows)); + } +}; + +template +struct general_rank1_update +{ + static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha) + { + general_rank1_update::run(rows,cols,mat,stride,u,v,alpha); + } +}; + +} // end namespace internal + +#endif // EIGEN_GENERAL_RANK1UPDATE_H diff --git a/include/eigen/blas/PackedSelfadjointProduct.h b/include/eigen/blas/PackedSelfadjointProduct.h new file mode 100644 index 0000000000000000000000000000000000000000..07327a24670f4139d264b85d8a8c0122958131f5 --- /dev/null +++ b/include/eigen/blas/PackedSelfadjointProduct.h @@ -0,0 +1,53 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Chen-Pang He +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_SELFADJOINT_PACKED_PRODUCT_H +#define EIGEN_SELFADJOINT_PACKED_PRODUCT_H + +namespace internal { + +/* Optimized matrix += alpha * uv' + * The matrix is in packed form. + */ +template +struct selfadjoint_packed_rank1_update; + +template +struct selfadjoint_packed_rank1_update +{ + typedef typename NumTraits::Real RealScalar; + static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha) + { + typedef Map > OtherMap; + typedef typename conj_expr_if::type ConjRhsType; + conj_if cj; + + for (Index i=0; i >(mat, UpLo==Lower ? size-i : (i+1)) += alpha * cj(vec[i]) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1))); + //FIXME This should be handled outside. + mat[UpLo==Lower ? 0 : i] = numext::real(mat[UpLo==Lower ? 0 : i]); + mat += UpLo==Lower ? size-i : (i+1); + } + } +}; + +template +struct selfadjoint_packed_rank1_update +{ + typedef typename NumTraits::Real RealScalar; + static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha) + { + selfadjoint_packed_rank1_update::run(size,mat,vec,alpha); + } +}; + +} // end namespace internal + +#endif // EIGEN_SELFADJOINT_PACKED_PRODUCT_H diff --git a/include/eigen/blas/PackedTriangularMatrixVector.h b/include/eigen/blas/PackedTriangularMatrixVector.h new file mode 100644 index 0000000000000000000000000000000000000000..0039536a867b754fa360137b0a5234048bdf83e8 --- /dev/null +++ b/include/eigen/blas/PackedTriangularMatrixVector.h @@ -0,0 +1,79 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Chen-Pang He +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H +#define EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H + +namespace internal { + +template +struct packed_triangular_matrix_vector_product; + +template +struct packed_triangular_matrix_vector_product +{ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + enum { + IsLower = (Mode & Lower) ==Lower, + HasUnitDiag = (Mode & UnitDiag)==UnitDiag, + HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag + }; + static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha) + { + internal::conj_if cj; + typedef Map > LhsMap; + typedef typename conj_expr_if::type ConjLhsType; + typedef Map > ResMap; + + for (Index i=0; i0)) + ResMap(res+(IsLower ? s+i : 0),r) += alpha * cj(rhs[i]) * ConjLhsType(LhsMap(lhs+s,r)); + if (HasUnitDiag) + res[i] += alpha * cj(rhs[i]); + lhs += IsLower ? size-i: i+1; + } + }; +}; + +template +struct packed_triangular_matrix_vector_product +{ + typedef typename ScalarBinaryOpTraits::ReturnType ResScalar; + enum { + IsLower = (Mode & Lower) ==Lower, + HasUnitDiag = (Mode & UnitDiag)==UnitDiag, + HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag + }; + static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha) + { + internal::conj_if cj; + typedef Map > LhsMap; + typedef typename conj_expr_if::type ConjLhsType; + typedef Map > RhsMap; + typedef typename conj_expr_if::type ConjRhsType; + + for (Index i=0; i0)) + res[i] += alpha * (ConjLhsType(LhsMap(lhs+s,r)).cwiseProduct(ConjRhsType(RhsMap(rhs+(IsLower ? 0 : s+i),r)))).sum(); + if (HasUnitDiag) + res[i] += alpha * cj(rhs[i]); + lhs += IsLower ? i+1 : size-i; + } + }; +}; + +} // end namespace internal + +#endif // EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H diff --git a/include/eigen/blas/PackedTriangularSolverVector.h b/include/eigen/blas/PackedTriangularSolverVector.h new file mode 100644 index 0000000000000000000000000000000000000000..5c0bb4bd653de3f55afb3738a75512259e9a0e3c --- /dev/null +++ b/include/eigen/blas/PackedTriangularSolverVector.h @@ -0,0 +1,88 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Chen-Pang He +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H +#define EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H + +namespace internal { + +template +struct packed_triangular_solve_vector; + +// forward and backward substitution, row-major, rhs is a vector +template +struct packed_triangular_solve_vector +{ + enum { + IsLower = (Mode&Lower)==Lower + }; + static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs) + { + internal::conj_if cj; + typedef Map > LhsMap; + typedef typename conj_expr_if::type ConjLhsType; + + lhs += IsLower ? 0 : (size*(size+1)>>1)-1; + for(Index pi=0; pi0) + rhs[i] -= (ConjLhsType(LhsMap(lhs+s,pi)) + .cwiseProduct(Map >(rhs+(IsLower ? 0 : i+1),pi))).sum(); + if (!(Mode & UnitDiag)) + rhs[i] /= cj(lhs[IsLower ? i : 0]); + IsLower ? lhs += pi+1 : lhs -= pi+2; + } + } +}; + +// forward and backward substitution, column-major, rhs is a vector +template +struct packed_triangular_solve_vector +{ + enum { + IsLower = (Mode&Lower)==Lower + }; + static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs) + { + internal::conj_if cj; + typedef Map > LhsMap; + typedef typename conj_expr_if::type ConjLhsType; + + lhs += IsLower ? 0 : size*(size-1)>>1; + for(Index pi=0; pi0) + Map >(rhs+(IsLower? i+1 : 0),r) -= + rhs[i] * ConjLhsType(LhsMap(lhs+(IsLower? 1 : 0),r)); + IsLower ? lhs += size-pi : lhs -= r; + } + } +}; + +template +struct packed_triangular_solve_vector +{ + static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs) + { + packed_triangular_solve_vector::run(size, lhs, rhs); + } +}; + +} // end namespace internal + +#endif // EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H diff --git a/include/eigen/blas/README.txt b/include/eigen/blas/README.txt new file mode 100644 index 0000000000000000000000000000000000000000..63a5203b974896e6131b959cf0c8c978d2873fce --- /dev/null +++ b/include/eigen/blas/README.txt @@ -0,0 +1,6 @@ + +This directory contains a BLAS library built on top of Eigen. + +This module is not built by default. In order to compile it, you need to +type 'make blas' from within your build dir. + diff --git a/include/eigen/blas/Rank2Update.h b/include/eigen/blas/Rank2Update.h new file mode 100644 index 0000000000000000000000000000000000000000..138d70fd6d82a7db6a855c73574abbe49be369ea --- /dev/null +++ b/include/eigen/blas/Rank2Update.h @@ -0,0 +1,57 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Chen-Pang He +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_RANK2UPDATE_H +#define EIGEN_RANK2UPDATE_H + +namespace internal { + +/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu' + * This is the low-level version of SelfadjointRank2Update.h + */ +template +struct rank2_update_selector +{ + static void run(Index size, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha) + { + typedef Map > OtherMap; + for (Index i=0; i >(mat+stride*i+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)) += + numext::conj(alpha) * numext::conj(u[i]) * OtherMap(v+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)) + + alpha * numext::conj(v[i]) * OtherMap(u+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)); + } + } +}; + +/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu' + * The matrix is in packed form. + */ +template +struct packed_rank2_update_selector +{ + static void run(Index size, Scalar* mat, const Scalar* u, const Scalar* v, Scalar alpha) + { + typedef Map > OtherMap; + Index offset = 0; + for (Index i=0; i >(mat+offset, UpLo==Lower ? size-i : (i+1)) += + numext::conj(alpha) * numext::conj(u[i]) * OtherMap(v+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)) + + alpha * numext::conj(v[i]) * OtherMap(u+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)); + //FIXME This should be handled outside. + mat[offset+(UpLo==Lower ? 0 : i)] = numext::real(mat[offset+(UpLo==Lower ? 0 : i)]); + offset += UpLo==Lower ? size-i : (i+1); + } + } +}; + +} // end namespace internal + +#endif // EIGEN_RANK2UPDATE_H diff --git a/include/eigen/blas/common.h b/include/eigen/blas/common.h new file mode 100644 index 0000000000000000000000000000000000000000..a9b6978423fade7385c2bab0badcc6153b60bab3 --- /dev/null +++ b/include/eigen/blas/common.h @@ -0,0 +1,175 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2015 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_BLAS_COMMON_H +#define EIGEN_BLAS_COMMON_H + +#ifdef __GNUC__ +# if __GNUC__<5 +// GCC < 5.0 does not like the global Scalar typedef +// we just keep shadow-warnings disabled permanently +# define EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS +# endif +#endif + +#include "../Eigen/Core" +#include "../Eigen/Jacobi" + +#include + +#ifndef SCALAR +#error the token SCALAR must be defined to compile this file +#endif + +#include "../Eigen/src/misc/blas.h" + +#define NOTR 0 +#define TR 1 +#define ADJ 2 + +#define LEFT 0 +#define RIGHT 1 + +#define UP 0 +#define LO 1 + +#define NUNIT 0 +#define UNIT 1 + +#define INVALID 0xff + +#define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \ + : ((X)=='T' || (X)=='t') ? TR \ + : ((X)=='C' || (X)=='c') ? ADJ \ + : INVALID) + +#define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \ + : ((X)=='R' || (X)=='r') ? RIGHT \ + : INVALID) + +#define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \ + : ((X)=='L' || (X)=='l') ? LO \ + : INVALID) + +#define DIAG(X) ( ((X)=='N' || (X)=='n') ? NUNIT \ + : ((X)=='U' || (X)=='u') ? UNIT \ + : INVALID) + + +inline bool check_op(const char* op) +{ + return OP(*op)!=0xff; +} + +inline bool check_side(const char* side) +{ + return SIDE(*side)!=0xff; +} + +inline bool check_uplo(const char* uplo) +{ + return UPLO(*uplo)!=0xff; +} + + +namespace Eigen { +#include "BandTriangularSolver.h" +#include "GeneralRank1Update.h" +#include "PackedSelfadjointProduct.h" +#include "PackedTriangularMatrixVector.h" +#include "PackedTriangularSolverVector.h" +#include "Rank2Update.h" +} + +using namespace Eigen; + +typedef SCALAR Scalar; +typedef NumTraits::Real RealScalar; +typedef std::complex Complex; + +enum +{ + IsComplex = Eigen::NumTraits::IsComplex, + Conj = IsComplex +}; + +typedef Matrix PlainMatrixType; +typedef Map, 0, OuterStride<> > MatrixType; +typedef Map, 0, OuterStride<> > ConstMatrixType; +typedef Map, 0, InnerStride > StridedVectorType; +typedef Map > CompactVectorType; + +template +Map, 0, OuterStride<> > +matrix(T* data, int rows, int cols, int stride) +{ + return Map, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride)); +} + +template +Map, 0, OuterStride<> > +matrix(const T* data, int rows, int cols, int stride) +{ + return Map, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride)); +} + +template +Map, 0, InnerStride > make_vector(T* data, int size, int incr) +{ + return Map, 0, InnerStride >(data, size, InnerStride(incr)); +} + +template +Map, 0, InnerStride > make_vector(const T* data, int size, int incr) +{ + return Map, 0, InnerStride >(data, size, InnerStride(incr)); +} + +template +Map > make_vector(T* data, int size) +{ + return Map >(data, size); +} + +template +Map > make_vector(const T* data, int size) +{ + return Map >(data, size); +} + +template +T* get_compact_vector(T* x, int n, int incx) +{ + if(incx==1) + return x; + + typename Eigen::internal::remove_const::type* ret = new Scalar[n]; + if(incx<0) make_vector(ret,n) = make_vector(x,n,-incx).reverse(); + else make_vector(ret,n) = make_vector(x,n, incx); + return ret; +} + +template +T* copy_back(T* x_cpy, T* x, int n, int incx) +{ + if(x_cpy==x) + return 0; + + if(incx<0) make_vector(x,n,-incx).reverse() = make_vector(x_cpy,n); + else make_vector(x,n, incx) = make_vector(x_cpy,n); + return x_cpy; +} + +#ifndef EIGEN_BLAS_FUNC_SUFFIX +#define EIGEN_BLAS_FUNC_SUFFIX _ +#endif + +#define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX, EIGEN_CAT(X, EIGEN_BLAS_FUNC_SUFFIX)) + +#endif // EIGEN_BLAS_COMMON_H diff --git a/include/eigen/blas/complex_double.cpp b/include/eigen/blas/complex_double.cpp new file mode 100644 index 0000000000000000000000000000000000000000..648c6d4c6062d3f7266501702d1154a5e550b9a5 --- /dev/null +++ b/include/eigen/blas/complex_double.cpp @@ -0,0 +1,20 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define SCALAR std::complex +#define SCALAR_SUFFIX z +#define SCALAR_SUFFIX_UP "Z" +#define REAL_SCALAR_SUFFIX d +#define ISCOMPLEX 1 + +#include "level1_impl.h" +#include "level1_cplx_impl.h" +#include "level2_impl.h" +#include "level2_cplx_impl.h" +#include "level3_impl.h" diff --git a/include/eigen/blas/complex_single.cpp b/include/eigen/blas/complex_single.cpp new file mode 100644 index 0000000000000000000000000000000000000000..77865194375d2fe44b5931694caa7b9f79919eaa --- /dev/null +++ b/include/eigen/blas/complex_single.cpp @@ -0,0 +1,20 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define SCALAR std::complex +#define SCALAR_SUFFIX c +#define SCALAR_SUFFIX_UP "C" +#define REAL_SCALAR_SUFFIX s +#define ISCOMPLEX 1 + +#include "level1_impl.h" +#include "level1_cplx_impl.h" +#include "level2_impl.h" +#include "level2_cplx_impl.h" +#include "level3_impl.h" diff --git a/include/eigen/blas/double.cpp b/include/eigen/blas/double.cpp new file mode 100644 index 0000000000000000000000000000000000000000..eb2e57307241a1bd9f5a8f99d419578fa953a3e7 --- /dev/null +++ b/include/eigen/blas/double.cpp @@ -0,0 +1,32 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// Copyright (C) 2012 Chen-Pang He +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define SCALAR double +#define SCALAR_SUFFIX d +#define SCALAR_SUFFIX_UP "D" +#define ISCOMPLEX 0 + +#include "level1_impl.h" +#include "level1_real_impl.h" +#include "level2_impl.h" +#include "level2_real_impl.h" +#include "level3_impl.h" + +double EIGEN_BLAS_FUNC(sdot)(int* n, float* x, int* incx, float* y, int* incy) +{ + if(*n<=0) return 0; + + if(*incx==1 && *incy==1) return (make_vector(x,*n).cast().cwiseProduct(make_vector(y,*n).cast())).sum(); + else if(*incx>0 && *incy>0) return (make_vector(x,*n,*incx).cast().cwiseProduct(make_vector(y,*n,*incy).cast())).sum(); + else if(*incx<0 && *incy>0) return (make_vector(x,*n,-*incx).reverse().cast().cwiseProduct(make_vector(y,*n,*incy).cast())).sum(); + else if(*incx>0 && *incy<0) return (make_vector(x,*n,*incx).cast().cwiseProduct(make_vector(y,*n,-*incy).reverse().cast())).sum(); + else if(*incx<0 && *incy<0) return (make_vector(x,*n,-*incx).reverse().cast().cwiseProduct(make_vector(y,*n,-*incy).reverse().cast())).sum(); + else return 0; +} diff --git a/include/eigen/blas/level1_cplx_impl.h b/include/eigen/blas/level1_cplx_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..6c7edd7eb374b74a2fcfea8dd8d30b62addf96fa --- /dev/null +++ b/include/eigen/blas/level1_cplx_impl.h @@ -0,0 +1,155 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "common.h" + +struct scalar_norm1_op { + typedef RealScalar result_type; + EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op) + inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); } +}; +namespace Eigen { + namespace internal { + template<> struct functor_traits + { + enum { Cost = 3 * NumTraits::AddCost, PacketAccess = 0 }; + }; + } +} + +// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum +// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n +RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(asum))(int *n, RealScalar *px, int *incx) +{ +// std::cerr << "__asum " << *n << " " << *incx << "\n"; + Complex* x = reinterpret_cast(px); + + if(*n<=0) return 0; + + if(*incx==1) return make_vector(x,*n).unaryExpr().sum(); + else return make_vector(x,*n,std::abs(*incx)).unaryExpr().sum(); +} + +int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amax))(int *n, RealScalar *px, int *incx) +{ + if(*n<=0) return 0; + Scalar* x = reinterpret_cast(px); + + DenseIndex ret; + if(*incx==1) make_vector(x,*n).unaryExpr().maxCoeff(&ret); + else make_vector(x,*n,std::abs(*incx)).unaryExpr().maxCoeff(&ret); + return int(ret)+1; +} + +int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amin))(int *n, RealScalar *px, int *incx) +{ + if(*n<=0) return 0; + Scalar* x = reinterpret_cast(px); + + DenseIndex ret; + if(*incx==1) make_vector(x,*n).unaryExpr().minCoeff(&ret); + else make_vector(x,*n,std::abs(*incx)).unaryExpr().minCoeff(&ret); + return int(ret)+1; +} + +// computes a dot product of a conjugated vector with another vector. +int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) +{ +// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; + Scalar* res = reinterpret_cast(pres); + + if(*n<=0) + { + *res = Scalar(0); + return 0; + } + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + + if(*incx==1 && *incy==1) *res = (make_vector(x,*n).dot(make_vector(y,*n))); + else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy))); + else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy))); + else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse())); + else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse())); + return 0; +} + +// computes a vector-vector dot product without complex conjugation. +int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) +{ + Scalar* res = reinterpret_cast(pres); + + if(*n<=0) + { + *res = Scalar(0); + return 0; + } + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + + if(*incx==1 && *incy==1) *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum(); + else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum(); + else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum(); + else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); + else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); + return 0; +} + +RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(nrm2))(int *n, RealScalar *px, int *incx) +{ +// std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + + if(*incx==1) + return make_vector(x,*n).stableNorm(); + + return make_vector(x,*n,*incx).stableNorm(); +} + +int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot))(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) +{ + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + RealScalar c = *pc; + RealScalar s = *ps; + + StridedVectorType vx(make_vector(x,*n,std::abs(*incx))); + StridedVectorType vy(make_vector(y,*n,std::abs(*incy))); + + Reverse rvx(vx); + Reverse rvy(vy); + + // TODO implement mixed real-scalar rotations + if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation(c,s)); + else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation(c,s)); + else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation(c,s)); + + return 0; +} + +int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx) +{ + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + RealScalar alpha = *palpha; + +// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; + + if(*incx==1) make_vector(x,*n) *= alpha; + else make_vector(x,*n,std::abs(*incx)) *= alpha; + + return 0; +} diff --git a/include/eigen/blas/level1_impl.h b/include/eigen/blas/level1_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..71bd534b74f62db39d84c45fdfebfebafec01be3 --- /dev/null +++ b/include/eigen/blas/level1_impl.h @@ -0,0 +1,144 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "common.h" + +int EIGEN_BLAS_FUNC(axpy)(const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *py, const int *incy) +{ + const Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar alpha = *reinterpret_cast(palpha); + + if(*n<=0) return 0; + + if(*incx==1 && *incy==1) make_vector(y,*n) += alpha * make_vector(x,*n); + else if(*incx>0 && *incy>0) make_vector(y,*n,*incy) += alpha * make_vector(x,*n,*incx); + else if(*incx>0 && *incy<0) make_vector(y,*n,-*incy).reverse() += alpha * make_vector(x,*n,*incx); + else if(*incx<0 && *incy>0) make_vector(y,*n,*incy) += alpha * make_vector(x,*n,-*incx).reverse(); + else if(*incx<0 && *incy<0) make_vector(y,*n,-*incy).reverse() += alpha * make_vector(x,*n,-*incx).reverse(); + + return 0; +} + +int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) +{ + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + + // be careful, *incx==0 is allowed !! + if(*incx==1 && *incy==1) + make_vector(y,*n) = make_vector(x,*n); + else + { + if(*incx<0) x = x - (*n-1)*(*incx); + if(*incy<0) y = y - (*n-1)*(*incy); + for(int i=0;i<*n;++i) + { + *y = *x; + x += *incx; + y += *incy; + } + } + + return 0; +} + +int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) +{ + using std::sqrt; + using std::abs; + + Scalar& a = *reinterpret_cast(pa); + Scalar& b = *reinterpret_cast(pb); + RealScalar* c = pc; + Scalar* s = reinterpret_cast(ps); + + #if !ISCOMPLEX + Scalar r,z; + Scalar aa = abs(a); + Scalar ab = abs(b); + if((aa+ab)==Scalar(0)) + { + *c = 1; + *s = 0; + r = 0; + z = 0; + } + else + { + r = sqrt(a*a + b*b); + Scalar amax = aa>ab ? a : b; + r = amax>0 ? r : -r; + *c = a/r; + *s = b/r; + z = 1; + if (aa > ab) z = *s; + if (ab > aa && *c!=RealScalar(0)) + z = Scalar(1)/ *c; + } + *pa = r; + *pb = z; + #else + Scalar alpha; + RealScalar norm,scale; + if(abs(a)==RealScalar(0)) + { + *c = RealScalar(0); + *s = Scalar(1); + a = b; + } + else + { + scale = abs(a) + abs(b); + norm = scale*sqrt((numext::abs2(a/scale)) + (numext::abs2(b/scale))); + alpha = a/abs(a); + *c = abs(a)/norm; + *s = alpha*numext::conj(b)/norm; + a = alpha*norm; + } + #endif + +// JacobiRotation r; +// r.makeGivens(a,b); +// *c = r.c(); +// *s = r.s(); + + return 0; +} + +int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx) +{ + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + Scalar alpha = *reinterpret_cast(palpha); + + if(*incx==1) make_vector(x,*n) *= alpha; + else make_vector(x,*n,std::abs(*incx)) *= alpha; + + return 0; +} + +int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) +{ + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + + if(*incx==1 && *incy==1) make_vector(y,*n).swap(make_vector(x,*n)); + else if(*incx>0 && *incy>0) make_vector(y,*n,*incy).swap(make_vector(x,*n,*incx)); + else if(*incx>0 && *incy<0) make_vector(y,*n,-*incy).reverse().swap(make_vector(x,*n,*incx)); + else if(*incx<0 && *incy>0) make_vector(y,*n,*incy).swap(make_vector(x,*n,-*incx).reverse()); + else if(*incx<0 && *incy<0) make_vector(y,*n,-*incy).reverse().swap(make_vector(x,*n,-*incx).reverse()); + + return 1; +} diff --git a/include/eigen/blas/level1_real_impl.h b/include/eigen/blas/level1_real_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..c58771125ddb6da4a39a74273aa246f843b4edf9 --- /dev/null +++ b/include/eigen/blas/level1_real_impl.h @@ -0,0 +1,122 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "common.h" + +// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum +// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n +RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx) +{ +// std::cerr << "_asum " << *n << " " << *incx << "\n"; + + Scalar* x = reinterpret_cast(px); + + if(*n<=0) return 0; + + if(*incx==1) return make_vector(x,*n).cwiseAbs().sum(); + else return make_vector(x,*n,std::abs(*incx)).cwiseAbs().sum(); +} + +int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amax))(int *n, RealScalar *px, int *incx) +{ + if(*n<=0) return 0; + Scalar* x = reinterpret_cast(px); + + DenseIndex ret; + if(*incx==1) make_vector(x,*n).cwiseAbs().maxCoeff(&ret); + else make_vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret); + return int(ret)+1; +} + +int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amin))(int *n, RealScalar *px, int *incx) +{ + if(*n<=0) return 0; + Scalar* x = reinterpret_cast(px); + + DenseIndex ret; + if(*incx==1) make_vector(x,*n).cwiseAbs().minCoeff(&ret); + else make_vector(x,*n,std::abs(*incx)).cwiseAbs().minCoeff(&ret); + return int(ret)+1; +} + +// computes a vector-vector dot product. +Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) +{ +// std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n"; + + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + + if(*incx==1 && *incy==1) return (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum(); + else if(*incx>0 && *incy>0) return (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum(); + else if(*incx<0 && *incy>0) return (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum(); + else if(*incx>0 && *incy<0) return (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); + else if(*incx<0 && *incy<0) return (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); + else return 0; +} + +// computes the Euclidean norm of a vector. +// FIXME +Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx) +{ +// std::cerr << "_nrm2 " << *n << " " << *incx << "\n"; + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + + if(*incx==1) return make_vector(x,*n).stableNorm(); + else return make_vector(x,*n,std::abs(*incx)).stableNorm(); +} + +int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) +{ +// std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n"; + if(*n<=0) return 0; + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar c = *reinterpret_cast(pc); + Scalar s = *reinterpret_cast(ps); + + StridedVectorType vx(make_vector(x,*n,std::abs(*incx))); + StridedVectorType vy(make_vector(y,*n,std::abs(*incy))); + + Reverse rvx(vx); + Reverse rvy(vy); + + if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation(c,s)); + else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation(c,s)); + else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation(c,s)); + + + return 0; +} + +/* +// performs rotation of points in the modified plane. +int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param) +{ + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + + // TODO + + return 0; +} + +// computes the modified parameters for a Givens rotation. +int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param) +{ + // TODO + + return 0; +} +*/ diff --git a/include/eigen/blas/level2_cplx_impl.h b/include/eigen/blas/level2_cplx_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..e3ce61435e334bedbda88eb3aa14958dc1e8a8f0 --- /dev/null +++ b/include/eigen/blas/level2_cplx_impl.h @@ -0,0 +1,360 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "common.h" + +/** ZHEMV performs the matrix-vector operation + * + * y := alpha*A*x + beta*y, + * + * where alpha and beta are scalars, x and y are n element vectors and + * A is an n by n hermitian matrix. + */ +int EIGEN_BLAS_FUNC(hemv)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, + const RealScalar *px, const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy) +{ + typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar); + static const functype func[2] = { + // array index: UP + (internal::selfadjoint_matrix_vector_product::run), + // array index: LO + (internal::selfadjoint_matrix_vector_product::run), + }; + + const Scalar* a = reinterpret_cast(pa); + const Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + + // check arguments + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*lda=2 || func[code]==0) + return 0; + + func[code](*n, a, *lda, actual_x, actual_y, alpha); + } + + if(actual_x!=x) delete[] actual_x; + if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); + + return 1; +} + +/** ZHBMV performs the matrix-vector operation + * + * y := alpha*A*x + beta*y, + * + * where alpha and beta are scalars, x and y are n element vectors and + * A is an n by n hermitian band matrix, with k super-diagonals. + */ +// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, +// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) +// { +// return 1; +// } + +/** ZHPMV performs the matrix-vector operation + * + * y := alpha*A*x + beta*y, + * + * where alpha and beta are scalars, x and y are n element vectors and + * A is an n by n hermitian matrix, supplied in packed form. + */ +// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) +// { +// return 1; +// } + +/** ZHPR performs the hermitian rank 1 operation + * + * A := alpha*x*conjg( x' ) + A, + * + * where alpha is a real scalar, x is an n element vector and A is an + * n by n hermitian matrix, supplied in packed form. + */ +int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) +{ + typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar); + static const functype func[2] = { + // array index: UP + (internal::selfadjoint_packed_rank1_update::run), + // array index: LO + (internal::selfadjoint_packed_rank1_update::run), + }; + + Scalar* x = reinterpret_cast(px); + Scalar* ap = reinterpret_cast(pap); + RealScalar alpha = *palpha; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x, *n, *incx); + + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, ap, x_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + + return 1; +} + +/** ZHPR2 performs the hermitian rank 2 operation + * + * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, + * + * where alpha is a scalar, x and y are n element vectors and A is an + * n by n hermitian matrix, supplied in packed form. + */ +int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) +{ + typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); + static const functype func[2] = { + // array index: UP + (internal::packed_rank2_update_selector::run), + // array index: LO + (internal::packed_rank2_update_selector::run), + }; + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar* ap = reinterpret_cast(pap); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x, *n, *incx); + Scalar* y_cpy = get_compact_vector(y, *n, *incy); + + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, ap, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} + +/** ZHER performs the hermitian rank 1 operation + * + * A := alpha*x*conjg( x' ) + A, + * + * where alpha is a real scalar, x is an n element vector and A is an + * n by n hermitian matrix. + */ +int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) +{ + typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&); + static const functype func[2] = { + // array index: UP + (selfadjoint_rank1_update::run), + // array index: LO + (selfadjoint_rank1_update::run), + }; + + Scalar* x = reinterpret_cast(px); + Scalar* a = reinterpret_cast(pa); + RealScalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*lda=2 || func[code]==0) + return 0; + + func[code](*n, a, *lda, x_cpy, x_cpy, alpha); + + matrix(a,*n,*n,*lda).diagonal().imag().setZero(); + + if(x_cpy!=x) delete[] x_cpy; + + return 1; +} + +/** ZHER2 performs the hermitian rank 2 operation + * + * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, + * + * where alpha is a scalar, x and y are n element vectors and A is an n + * by n hermitian matrix. + */ +int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) +{ + typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); + static const functype func[2] = { + // array index: UP + (internal::rank2_update_selector::run), + // array index: LO + (internal::rank2_update_selector::run), + }; + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar* a = reinterpret_cast(pa); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + else if(*lda=2 || func[code]==0) + return 0; + + func[code](*n, a, *lda, x_cpy, y_cpy, alpha); + + matrix(a,*n,*n,*lda).diagonal().imag().setZero(); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} + +/** ZGERU performs the rank 1 operation + * + * A := alpha*x*y' + A, + * + * where alpha is a scalar, x is an m element vector, y is an n element + * vector and A is an m by n matrix. + */ +int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) +{ + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar* a = reinterpret_cast(pa); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(*m<0) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + else if(*lda::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} + +/** ZGERC performs the rank 1 operation + * + * A := alpha*x*conjg( y' ) + A, + * + * where alpha is a scalar, x is an m element vector, y is an n element + * vector and A is an m by n matrix. + */ +int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) +{ + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar* a = reinterpret_cast(pa); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(*m<0) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + else if(*lda::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} diff --git a/include/eigen/blas/level2_impl.h b/include/eigen/blas/level2_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..173f40b441f679f24d32cfa80c601fd959a62412 --- /dev/null +++ b/include/eigen/blas/level2_impl.h @@ -0,0 +1,553 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "common.h" + +template +struct general_matrix_vector_product_wrapper +{ + static void run(Index rows, Index cols,const Scalar *lhs, Index lhsStride, const Scalar *rhs, Index rhsIncr, Scalar* res, Index resIncr, Scalar alpha) + { + typedef internal::const_blas_data_mapper LhsMapper; + typedef internal::const_blas_data_mapper RhsMapper; + + internal::general_matrix_vector_product + ::run( + rows, cols, LhsMapper(lhs, lhsStride), RhsMapper(rhs, rhsIncr), res, resIncr, alpha); + } +}; + +int EIGEN_BLAS_FUNC(gemv)(const char *opa, const int *m, const int *n, const RealScalar *palpha, + const RealScalar *pa, const int *lda, const RealScalar *pb, const int *incb, const RealScalar *pbeta, RealScalar *pc, const int *incc) +{ + typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar); + static const functype func[4] = { + // array index: NOTR + (general_matrix_vector_product_wrapper::run), + // array index: TR + (general_matrix_vector_product_wrapper::run), + // array index: ADJ + (general_matrix_vector_product_wrapper::run), + 0 + }; + + const Scalar* a = reinterpret_cast(pa); + const Scalar* b = reinterpret_cast(pb); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + + // check arguments + int info = 0; + if(OP(*opa)==INVALID) info = 1; + else if(*m<0) info = 2; + else if(*n<0) info = 3; + else if(*lda=4 || func[code]==0) + return 0; + + func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha); + + if(actual_b!=b) delete[] actual_b; + if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc); + + return 1; +} + +int EIGEN_BLAS_FUNC(trsv)(const char *uplo, const char *opa, const char *diag, const int *n, const RealScalar *pa, const int *lda, RealScalar *pb, const int *incb) +{ + typedef void (*functype)(int, const Scalar *, int, Scalar *); + static const functype func[16] = { + // array index: NOTR | (UP << 2) | (NUNIT << 3) + (internal::triangular_solve_vector::run), + // array index: TR | (UP << 2) | (NUNIT << 3) + (internal::triangular_solve_vector::run), + // array index: ADJ | (UP << 2) | (NUNIT << 3) + (internal::triangular_solve_vector::run), + 0, + // array index: NOTR | (LO << 2) | (NUNIT << 3) + (internal::triangular_solve_vector::run), + // array index: TR | (LO << 2) | (NUNIT << 3) + (internal::triangular_solve_vector::run), + // array index: ADJ | (LO << 2) | (NUNIT << 3) + (internal::triangular_solve_vector::run), + 0, + // array index: NOTR | (UP << 2) | (UNIT << 3) + (internal::triangular_solve_vector::run), + // array index: TR | (UP << 2) | (UNIT << 3) + (internal::triangular_solve_vector::run), + // array index: ADJ | (UP << 2) | (UNIT << 3) + (internal::triangular_solve_vector::run), + 0, + // array index: NOTR | (LO << 2) | (UNIT << 3) + (internal::triangular_solve_vector::run), + // array index: TR | (LO << 2) | (UNIT << 3) + (internal::triangular_solve_vector::run), + // array index: ADJ | (LO << 2) | (UNIT << 3) + (internal::triangular_solve_vector::run), + 0 + }; + + const Scalar* a = reinterpret_cast(pa); + Scalar* b = reinterpret_cast(pb); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*lda::run), + // array index: TR | (UP << 2) | (NUNIT << 3) + (internal::triangular_matrix_vector_product::run), + // array index: ADJ | (UP << 2) | (NUNIT << 3) + (internal::triangular_matrix_vector_product::run), + 0, + // array index: NOTR | (LO << 2) | (NUNIT << 3) + (internal::triangular_matrix_vector_product::run), + // array index: TR | (LO << 2) | (NUNIT << 3) + (internal::triangular_matrix_vector_product::run), + // array index: ADJ | (LO << 2) | (NUNIT << 3) + (internal::triangular_matrix_vector_product::run), + 0, + // array index: NOTR | (UP << 2) | (UNIT << 3) + (internal::triangular_matrix_vector_product::run), + // array index: TR | (UP << 2) | (UNIT << 3) + (internal::triangular_matrix_vector_product::run), + // array index: ADJ | (UP << 2) | (UNIT << 3) + (internal::triangular_matrix_vector_product::run), + 0, + // array index: NOTR | (LO << 2) | (UNIT << 3) + (internal::triangular_matrix_vector_product::run), + // array index: TR | (LO << 2) | (UNIT << 3) + (internal::triangular_matrix_vector_product::run), + // array index: ADJ | (LO << 2) | (UNIT << 3) + (internal::triangular_matrix_vector_product::run), + 0 + }; + + const Scalar* a = reinterpret_cast(pa); + Scalar* b = reinterpret_cast(pb); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*lda res(*n); + res.setZero(); + + int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); + if(code>=16 || func[code]==0) + return 0; + + func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1)); + + copy_back(res.data(),b,*n,*incb); + if(actual_b!=b) delete[] actual_b; + + return 1; +} + +/** GBMV performs one of the matrix-vector operations + * + * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, + * + * where alpha and beta are scalars, x and y are vectors and A is an + * m by n band matrix, with kl sub-diagonals and ku super-diagonals. + */ +int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda, + RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) +{ + const Scalar* a = reinterpret_cast(pa); + const Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + int coeff_rows = *kl+*ku+1; + + int info = 0; + if(OP(*trans)==INVALID) info = 1; + else if(*m<0) info = 2; + else if(*n<0) info = 3; + else if(*kl<0) info = 4; + else if(*ku<0) info = 5; + else if(*lda(pa); + Scalar* x = reinterpret_cast(px); + int coeff_rows = *k + 1; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*k<0) info = 5; + else if(*lda::run), + // array index: TR | (UP << 2) | (NUNIT << 3) + (internal::band_solve_triangular_selector::run), + // array index: ADJ | (UP << 2) | (NUNIT << 3) + (internal::band_solve_triangular_selector::run), + 0, + // array index: NOTR | (LO << 2) | (NUNIT << 3) + (internal::band_solve_triangular_selector::run), + // array index: TR | (LO << 2) | (NUNIT << 3) + (internal::band_solve_triangular_selector::run), + // array index: ADJ | (LO << 2) | (NUNIT << 3) + (internal::band_solve_triangular_selector::run), + 0, + // array index: NOTR | (UP << 2) | (UNIT << 3) + (internal::band_solve_triangular_selector::run), + // array index: TR | (UP << 2) | (UNIT << 3) + (internal::band_solve_triangular_selector::run), + // array index: ADJ | (UP << 2) | (UNIT << 3) + (internal::band_solve_triangular_selector::run), + 0, + // array index: NOTR | (LO << 2) | (UNIT << 3) + (internal::band_solve_triangular_selector::run), + // array index: TR | (LO << 2) | (UNIT << 3) + (internal::band_solve_triangular_selector::run), + // array index: ADJ | (LO << 2) | (UNIT << 3) + (internal::band_solve_triangular_selector::run), + 0, + }; + + Scalar* a = reinterpret_cast(pa); + Scalar* x = reinterpret_cast(px); + int coeff_rows = *k+1; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*op)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*k<0) info = 5; + else if(*lda=16 || func[code]==0) + return 0; + + func[code](*n, *k, a, *lda, actual_x); + + if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx); + + return 0; +} + +/** DTPMV performs one of the matrix-vector operations + * + * x := A*x, or x := A'*x, + * + * where x is an n element vector and A is an n by n unit, or non-unit, + * upper or lower triangular matrix, supplied in packed form. + */ +int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) +{ + typedef void (*functype)(int, const Scalar*, const Scalar*, Scalar*, Scalar); + static const functype func[16] = { + // array index: NOTR | (UP << 2) | (NUNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + // array index: TR | (UP << 2) | (NUNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + // array index: ADJ | (UP << 2) | (NUNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + 0, + // array index: NOTR | (LO << 2) | (NUNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + // array index: TR | (LO << 2) | (NUNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + // array index: ADJ | (LO << 2) | (NUNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + 0, + // array index: NOTR | (UP << 2) | (UNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + // array index: TR | (UP << 2) | (UNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + // array index: ADJ | (UP << 2) | (UNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + 0, + // array index: NOTR | (LO << 2) | (UNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + // array index: TR | (LO << 2) | (UNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + // array index: ADJ | (LO << 2) | (UNIT << 3) + (internal::packed_triangular_matrix_vector_product::run), + 0 + }; + + Scalar* ap = reinterpret_cast(pap); + Scalar* x = reinterpret_cast(px); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*incx==0) info = 7; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"TPMV ",&info,6); + + if(*n==0) + return 1; + + Scalar* actual_x = get_compact_vector(x,*n,*incx); + Matrix res(*n); + res.setZero(); + + int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); + if(code>=16 || func[code]==0) + return 0; + + func[code](*n, ap, actual_x, res.data(), Scalar(1)); + + copy_back(res.data(),x,*n,*incx); + if(actual_x!=x) delete[] actual_x; + + return 1; +} + +/** DTPSV solves one of the systems of equations + * + * A*x = b, or A'*x = b, + * + * where b and x are n element vectors and A is an n by n unit, or + * non-unit, upper or lower triangular matrix, supplied in packed form. + * + * No test for singularity or near-singularity is included in this + * routine. Such tests must be performed before calling this routine. + */ +int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) +{ + typedef void (*functype)(int, const Scalar*, Scalar*); + static const functype func[16] = { + // array index: NOTR | (UP << 2) | (NUNIT << 3) + (internal::packed_triangular_solve_vector::run), + // array index: TR | (UP << 2) | (NUNIT << 3) + (internal::packed_triangular_solve_vector::run), + // array index: ADJ | (UP << 2) | (NUNIT << 3) + (internal::packed_triangular_solve_vector::run), + 0, + // array index: NOTR | (LO << 2) | (NUNIT << 3) + (internal::packed_triangular_solve_vector::run), + // array index: TR | (LO << 2) | (NUNIT << 3) + (internal::packed_triangular_solve_vector::run), + // array index: ADJ | (LO << 2) | (NUNIT << 3) + (internal::packed_triangular_solve_vector::run), + 0, + // array index: NOTR | (UP << 2) | (UNIT << 3) + (internal::packed_triangular_solve_vector::run), + // array index: TR | (UP << 2) | (UNIT << 3) + (internal::packed_triangular_solve_vector::run), + // array index: ADJ | (UP << 2) | (UNIT << 3) + (internal::packed_triangular_solve_vector::run), + 0, + // array index: NOTR | (LO << 2) | (UNIT << 3) + (internal::packed_triangular_solve_vector::run), + // array index: TR | (LO << 2) | (UNIT << 3) + (internal::packed_triangular_solve_vector::run), + // array index: ADJ | (LO << 2) | (UNIT << 3) + (internal::packed_triangular_solve_vector::run), + 0 + }; + + Scalar* ap = reinterpret_cast(pap); + Scalar* x = reinterpret_cast(px); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*incx==0) info = 7; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"TPSV ",&info,6); + + Scalar* actual_x = get_compact_vector(x,*n,*incx); + + int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); + func[code](*n, ap, actual_x); + + if(actual_x!=x) delete[] copy_back(actual_x,x,*n,*incx); + + return 1; +} diff --git a/include/eigen/blas/level2_real_impl.h b/include/eigen/blas/level2_real_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..7620f0a3899b979f671936e77e741bf7c4c76508 --- /dev/null +++ b/include/eigen/blas/level2_real_impl.h @@ -0,0 +1,306 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "common.h" + +// y = alpha*A*x + beta*y +int EIGEN_BLAS_FUNC(symv) (const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, + const RealScalar *px, const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy) +{ + typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar); + static const functype func[2] = { + // array index: UP + (internal::selfadjoint_matrix_vector_product::run), + // array index: LO + (internal::selfadjoint_matrix_vector_product::run), + }; + + const Scalar* a = reinterpret_cast(pa); + const Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + + // check arguments + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*lda=2 || func[code]==0) + return 0; + + func[code](*n, a, *lda, actual_x, actual_y, alpha); + + if(actual_x!=x) delete[] actual_x; + if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); + + return 1; +} + +// C := alpha*x*x' + C +int EIGEN_BLAS_FUNC(syr)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *pc, const int *ldc) +{ + + typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&); + static const functype func[2] = { + // array index: UP + (selfadjoint_rank1_update::run), + // array index: LO + (selfadjoint_rank1_update::run), + }; + + const Scalar* x = reinterpret_cast(px); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*ldc=2 || func[code]==0) + return 0; + + func[code](*n, c, *ldc, x_cpy, x_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + + return 1; +} + +// C := alpha*x*y' + alpha*y*x' + C +int EIGEN_BLAS_FUNC(syr2)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, const RealScalar *py, const int *incy, RealScalar *pc, const int *ldc) +{ + typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); + static const functype func[2] = { + // array index: UP + (internal::rank2_update_selector::run), + // array index: LO + (internal::rank2_update_selector::run), + }; + + const Scalar* x = reinterpret_cast(px); + const Scalar* y = reinterpret_cast(py); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + else if(*ldc=2 || func[code]==0) + return 0; + + func[code](*n, c, *ldc, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + +// int code = UPLO(*uplo); +// if(code>=2 || func[code]==0) +// return 0; + +// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha); + return 1; +} + +/** DSBMV performs the matrix-vector operation + * + * y := alpha*A*x + beta*y, + * + * where alpha and beta are scalars, x and y are n element vectors and + * A is an n by n symmetric band matrix, with k super-diagonals. + */ +// int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, +// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) +// { +// return 1; +// } + + +/** DSPMV performs the matrix-vector operation + * + * y := alpha*A*x + beta*y, + * + * where alpha and beta are scalars, x and y are n element vectors and + * A is an n by n symmetric matrix, supplied in packed form. + * + */ +// int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) +// { +// return 1; +// } + +/** DSPR performs the symmetric rank 1 operation + * + * A := alpha*x*x' + A, + * + * where alpha is a real scalar, x is an n element vector and A is an + * n by n symmetric matrix, supplied in packed form. + */ +int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *pap) +{ + typedef void (*functype)(int, Scalar*, const Scalar*, Scalar); + static const functype func[2] = { + // array index: UP + (internal::selfadjoint_packed_rank1_update::run), + // array index: LO + (internal::selfadjoint_packed_rank1_update::run), + }; + + Scalar* x = reinterpret_cast(px); + Scalar* ap = reinterpret_cast(pap); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"SPR ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x, *n, *incx); + + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, ap, x_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + + return 1; +} + +/** DSPR2 performs the symmetric rank 2 operation + * + * A := alpha*x*y' + alpha*y*x' + A, + * + * where alpha is a scalar, x and y are n element vectors and A is an + * n by n symmetric matrix, supplied in packed form. + */ +int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) +{ + typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); + static const functype func[2] = { + // array index: UP + (internal::packed_rank2_update_selector::run), + // array index: LO + (internal::packed_rank2_update_selector::run), + }; + + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar* ap = reinterpret_cast(pap); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"SPR2 ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x, *n, *incx); + Scalar* y_cpy = get_compact_vector(y, *n, *incy); + + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, ap, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} + +/** DGER performs the rank 1 operation + * + * A := alpha*x*y' + A, + * + * where alpha is a scalar, x is an m element vector, y is an n element + * vector and A is an m by n matrix. + */ +int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda) +{ + Scalar* x = reinterpret_cast(px); + Scalar* y = reinterpret_cast(py); + Scalar* a = reinterpret_cast(pa); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(*m<0) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + else if(*lda::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} diff --git a/include/eigen/blas/level3_impl.h b/include/eigen/blas/level3_impl.h new file mode 100644 index 0000000000000000000000000000000000000000..66216c96451159fb959e590b631d6701a1e45743 --- /dev/null +++ b/include/eigen/blas/level3_impl.h @@ -0,0 +1,702 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. +#include +#include "common.h" + +int EIGEN_BLAS_FUNC(gemm)(const char *opa, const char *opb, const int *m, const int *n, const int *k, const RealScalar *palpha, + const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) +{ +// std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; + typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, Scalar, internal::level3_blocking&, Eigen::internal::GemmParallelInfo*); + static const functype func[12] = { + // array index: NOTR | (NOTR << 2) + (internal::general_matrix_matrix_product::run), + // array index: TR | (NOTR << 2) + (internal::general_matrix_matrix_product::run), + // array index: ADJ | (NOTR << 2) + (internal::general_matrix_matrix_product::run), + 0, + // array index: NOTR | (TR << 2) + (internal::general_matrix_matrix_product::run), + // array index: TR | (TR << 2) + (internal::general_matrix_matrix_product::run), + // array index: ADJ | (TR << 2) + (internal::general_matrix_matrix_product::run), + 0, + // array index: NOTR | (ADJ << 2) + (internal::general_matrix_matrix_product::run), + // array index: TR | (ADJ << 2) + (internal::general_matrix_matrix_product::run), + // array index: ADJ | (ADJ << 2) + (internal::general_matrix_matrix_product::run), + 0 + }; + + const Scalar* a = reinterpret_cast(pa); + const Scalar* b = reinterpret_cast(pb); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + + int info = 0; + if(OP(*opa)==INVALID) info = 1; + else if(OP(*opb)==INVALID) info = 2; + else if(*m<0) info = 3; + else if(*n<0) info = 4; + else if(*k<0) info = 5; + else if(*lda blocking(*m,*n,*k,1,true); + + int code = OP(*opa) | (OP(*opb) << 2); + func[code](*m, *n, *k, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking, 0); + return 0; +} + +int EIGEN_BLAS_FUNC(trsm)(const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n, + const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) +{ +// std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n"; + typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, internal::level3_blocking&); + static const functype func[32] = { + // array index: NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run),\ + 0, + // array index: NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + 0, + // array index: NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + 0, + // array index: NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) + (internal::triangular_solve_matrix::run), + 0, + // array index: NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: TR | (LEFT << 2) | (UP << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + 0, + // array index: NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + 0, + // array index: NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: TR | (LEFT << 2) | (LO << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + 0, + // array index: NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + // array index: ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4) + (internal::triangular_solve_matrix::run), + 0 + }; + + const Scalar* a = reinterpret_cast(pa); + Scalar* b = reinterpret_cast(pb); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(SIDE(*side)==INVALID) info = 1; + else if(UPLO(*uplo)==INVALID) info = 2; + else if(OP(*opa)==INVALID) info = 3; + else if(DIAG(*diag)==INVALID) info = 4; + else if(*m<0) info = 5; + else if(*n<0) info = 6; + else if(*lda blocking(*m,*n,*m,1,false); + func[code](*m, *n, a, *lda, b, 1, *ldb, blocking); + } + else + { + internal::gemm_blocking_space blocking(*m,*n,*n,1,false); + func[code](*n, *m, a, *lda, b, 1, *ldb, blocking); + } + + if(alpha!=Scalar(1)) + matrix(b,*m,*n,*ldb) *= alpha; + + return 0; +} + + +// b = alpha*op(a)*b for side = 'L'or'l' +// b = alpha*b*op(a) for side = 'R'or'r' +int EIGEN_BLAS_FUNC(trmm)(const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n, + const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb) +{ +// std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n"; + typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, const Scalar&, internal::level3_blocking&); + static const functype func[32] = { + // array index: NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + 0, + // array index: NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + 0, + // array index: NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + 0, + // array index: NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4) + (internal::product_triangular_matrix_matrix::run), + 0, + // array index: NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: TR | (LEFT << 2) | (UP << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + 0, + // array index: NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + 0, + // array index: NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: TR | (LEFT << 2) | (LO << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + 0, + // array index: NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + // array index: ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4) + (internal::product_triangular_matrix_matrix::run), + 0 + }; + + const Scalar* a = reinterpret_cast(pa); + Scalar* b = reinterpret_cast(pb); + Scalar alpha = *reinterpret_cast(palpha); + + int info = 0; + if(SIDE(*side)==INVALID) info = 1; + else if(UPLO(*uplo)==INVALID) info = 2; + else if(OP(*opa)==INVALID) info = 3; + else if(DIAG(*diag)==INVALID) info = 4; + else if(*m<0) info = 5; + else if(*n<0) info = 6; + else if(*lda tmp = matrix(b,*m,*n,*ldb); + matrix(b,*m,*n,*ldb).setZero(); + + if(SIDE(*side)==LEFT) + { + internal::gemm_blocking_space blocking(*m,*n,*m,1,false); + func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, 1, *ldb, alpha, blocking); + } + else + { + internal::gemm_blocking_space blocking(*m,*n,*n,1,false); + func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, 1, *ldb, alpha, blocking); + } + return 1; +} + +// c = alpha*a*b + beta*c for side = 'L'or'l' +// c = alpha*b*a + beta*c for side = 'R'or'r +int EIGEN_BLAS_FUNC(symm)(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, + const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) +{ +// std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; + const Scalar* a = reinterpret_cast(pa); + const Scalar* b = reinterpret_cast(pb); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + + int info = 0; + if(SIDE(*side)==INVALID) info = 1; + else if(UPLO(*uplo)==INVALID) info = 2; + else if(*m<0) info = 3; + else if(*n<0) info = 4; + else if(*lda matA(size,size); + if(UPLO(*uplo)==UP) + { + matA.triangularView() = matrix(a,size,size,*lda); + matA.triangularView() = matrix(a,size,size,*lda).transpose(); + } + else if(UPLO(*uplo)==LO) + { + matA.triangularView() = matrix(a,size,size,*lda); + matA.triangularView() = matrix(a,size,size,*lda).transpose(); + } + if(SIDE(*side)==LEFT) + matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); + else if(SIDE(*side)==RIGHT) + matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; + #else + internal::gemm_blocking_space blocking(*m,*n,size,1,false); + + if(SIDE(*side)==LEFT) + if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking); + else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking); + else return 0; + else if(SIDE(*side)==RIGHT) + if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking); + else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking); + else return 0; + else + return 0; + #endif + + return 0; +} + +// c = alpha*a*a' + beta*c for op = 'N'or'n' +// c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c' +int EIGEN_BLAS_FUNC(syrk)(const char *uplo, const char *op, const int *n, const int *k, + const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) +{ +// std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; + #if !ISCOMPLEX + typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, const Scalar&, internal::level3_blocking&); + static const functype func[8] = { + // array index: NOTR | (UP << 2) + (internal::general_matrix_matrix_triangular_product::run), + // array index: TR | (UP << 2) + (internal::general_matrix_matrix_triangular_product::run), + // array index: ADJ | (UP << 2) + (internal::general_matrix_matrix_triangular_product::run), + 0, + // array index: NOTR | (LO << 2) + (internal::general_matrix_matrix_triangular_product::run), + // array index: TR | (LO << 2) + (internal::general_matrix_matrix_triangular_product::run), + // array index: ADJ | (LO << 2) + (internal::general_matrix_matrix_triangular_product::run), + 0 + }; + #endif + + const Scalar* a = reinterpret_cast(pa); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*op)==INVALID || (ISCOMPLEX && OP(*op)==ADJ) ) info = 2; + else if(*n<0) info = 3; + else if(*k<0) info = 4; + else if(*lda().setZero(); + else matrix(c, *n, *n, *ldc).triangularView() *= beta; + else + if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView().setZero(); + else matrix(c, *n, *n, *ldc).triangularView() *= beta; + } + + if(*n==0 || *k==0) + return 0; + + #if ISCOMPLEX + // FIXME add support for symmetric complex matrix + if(UPLO(*uplo)==UP) + { + if(OP(*op)==NOTR) + matrix(c, *n, *n, *ldc).triangularView() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); + else + matrix(c, *n, *n, *ldc).triangularView() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); + } + else + { + if(OP(*op)==NOTR) + matrix(c, *n, *n, *ldc).triangularView() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); + else + matrix(c, *n, *n, *ldc).triangularView() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); + } + #else + internal::gemm_blocking_space blocking(*n,*n,*k,1,false); + + int code = OP(*op) | (UPLO(*uplo) << 2); + func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking); + #endif + + return 0; +} + +// c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n' +// c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't' +int EIGEN_BLAS_FUNC(syr2k)(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha, + const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) +{ + const Scalar* a = reinterpret_cast(pa); + const Scalar* b = reinterpret_cast(pb); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + +// std::cerr << "in syr2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << *ldb << " " << beta << " " << *ldc << "\n"; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*op)==INVALID || (ISCOMPLEX && OP(*op)==ADJ) ) info = 2; + else if(*n<0) info = 3; + else if(*k<0) info = 4; + else if(*lda().setZero(); + else matrix(c, *n, *n, *ldc).triangularView() *= beta; + else + if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView().setZero(); + else matrix(c, *n, *n, *ldc).triangularView() *= beta; + } + + if(*k==0) + return 1; + + if(OP(*op)==NOTR) + { + if(UPLO(*uplo)==UP) + { + matrix(c, *n, *n, *ldc).triangularView() + += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() + + alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); + } + else if(UPLO(*uplo)==LO) + matrix(c, *n, *n, *ldc).triangularView() + += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() + + alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); + } + else if(OP(*op)==TR || OP(*op)==ADJ) + { + if(UPLO(*uplo)==UP) + matrix(c, *n, *n, *ldc).triangularView() + += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) + + alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); + else if(UPLO(*uplo)==LO) + matrix(c, *n, *n, *ldc).triangularView() + += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) + + alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); + } + + return 0; +} + + +#if ISCOMPLEX + +// c = alpha*a*b + beta*c for side = 'L'or'l' +// c = alpha*b*a + beta*c for side = 'R'or'r +int EIGEN_BLAS_FUNC(hemm)(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha, + const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) +{ + const Scalar* a = reinterpret_cast(pa); + const Scalar* b = reinterpret_cast(pb); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + Scalar beta = *reinterpret_cast(pbeta); + +// std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; + + int info = 0; + if(SIDE(*side)==INVALID) info = 1; + else if(UPLO(*uplo)==INVALID) info = 2; + else if(*m<0) info = 3; + else if(*n<0) info = 4; + else if(*lda blocking(*m,*n,size,1,false); + + if(SIDE(*side)==LEFT) + { + if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix + ::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking); + else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix + ::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking); + else return 0; + } + else if(SIDE(*side)==RIGHT) + { + if(UPLO(*uplo)==UP) matrix(c,*m,*n,*ldc) += alpha * matrix(b,*m,*n,*ldb) * matrix(a,*n,*n,*lda).selfadjointView();/*internal::product_selfadjoint_matrix + ::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);*/ + else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix + ::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking); + else return 0; + } + else + { + return 0; + } + + return 0; +} + +// c = alpha*a*conj(a') + beta*c for op = 'N'or'n' +// c = alpha*conj(a')*a + beta*c for op = 'C'or'c' +int EIGEN_BLAS_FUNC(herk)(const char *uplo, const char *op, const int *n, const int *k, + const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc) +{ +// std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; + + typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, const Scalar&, internal::level3_blocking&); + static const functype func[8] = { + // array index: NOTR | (UP << 2) + (internal::general_matrix_matrix_triangular_product::run), + 0, + // array index: ADJ | (UP << 2) + (internal::general_matrix_matrix_triangular_product::run), + 0, + // array index: NOTR | (LO << 2) + (internal::general_matrix_matrix_triangular_product::run), + 0, + // array index: ADJ | (LO << 2) + (internal::general_matrix_matrix_triangular_product::run), + 0 + }; + + const Scalar* a = reinterpret_cast(pa); + Scalar* c = reinterpret_cast(pc); + RealScalar alpha = *palpha; + RealScalar beta = *pbeta; + +// std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2; + else if(*n<0) info = 3; + else if(*k<0) info = 4; + else if(*lda().setZero(); + else matrix(c, *n, *n, *ldc).triangularView() *= beta; + else + if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView().setZero(); + else matrix(c, *n, *n, *ldc).triangularView() *= beta; + + if(beta!=Scalar(0)) + { + matrix(c, *n, *n, *ldc).diagonal().real() *= beta; + matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); + } + } + + if(*k>0 && alpha!=RealScalar(0)) + { + internal::gemm_blocking_space blocking(*n,*n,*k,1,false); + func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking); + matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); + } + return 0; +} + +// c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n' +// c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c, for op = 'C'or'c' +int EIGEN_BLAS_FUNC(her2k)(const char *uplo, const char *op, const int *n, const int *k, + const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc) +{ + const Scalar* a = reinterpret_cast(pa); + const Scalar* b = reinterpret_cast(pb); + Scalar* c = reinterpret_cast(pc); + Scalar alpha = *reinterpret_cast(palpha); + RealScalar beta = *pbeta; + +// std::cerr << "in her2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << *ldb << " " << beta << " " << *ldc << "\n"; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2; + else if(*n<0) info = 3; + else if(*k<0) info = 4; + else if(*lda().setZero(); + else matrix(c, *n, *n, *ldc).triangularView() *= beta; + else + if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView().setZero(); + else matrix(c, *n, *n, *ldc).triangularView() *= beta; + + if(beta!=Scalar(0)) + { + matrix(c, *n, *n, *ldc).diagonal().real() *= beta; + matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); + } + } + else if(*k>0 && alpha!=Scalar(0)) + matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); + + if(*k==0) + return 1; + + if(OP(*op)==NOTR) + { + if(UPLO(*uplo)==UP) + { + matrix(c, *n, *n, *ldc).triangularView() + += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() + + numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); + } + else if(UPLO(*uplo)==LO) + matrix(c, *n, *n, *ldc).triangularView() + += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() + + numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); + } + else if(OP(*op)==ADJ) + { + if(UPLO(*uplo)==UP) + matrix(c, *n, *n, *ldc).triangularView() + += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) + + numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); + else if(UPLO(*uplo)==LO) + matrix(c, *n, *n, *ldc).triangularView() + += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) + + numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); + } + + return 1; +} + +#endif // ISCOMPLEX diff --git a/include/eigen/blas/single.cpp b/include/eigen/blas/single.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e66879aea1a7659699e7079933763050cab072e5 --- /dev/null +++ b/include/eigen/blas/single.cpp @@ -0,0 +1,22 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define SCALAR float +#define SCALAR_SUFFIX s +#define SCALAR_SUFFIX_UP "S" +#define ISCOMPLEX 0 + +#include "level1_impl.h" +#include "level1_real_impl.h" +#include "level2_impl.h" +#include "level2_real_impl.h" +#include "level3_impl.h" + +float EIGEN_BLAS_FUNC(dsdot)(int* n, float* alpha, float* x, int* incx, float* y, int* incy) +{ return double(*alpha) + BLASFUNC(dsdot)(n, x, incx, y, incy); } diff --git a/include/eigen/blas/xerbla.cpp b/include/eigen/blas/xerbla.cpp new file mode 100644 index 0000000000000000000000000000000000000000..c373e86996d5e16fe81e3d6f3f5c202e85cf1f39 --- /dev/null +++ b/include/eigen/blas/xerbla.cpp @@ -0,0 +1,23 @@ + +#include + +#if (defined __GNUC__) && (!defined __MINGW32__) && (!defined __CYGWIN__) +#define EIGEN_WEAK_LINKING __attribute__ ((weak)) +#else +#define EIGEN_WEAK_LINKING +#endif + +#ifdef __cplusplus +extern "C" +{ +#endif + +EIGEN_WEAK_LINKING int xerbla_(const char * msg, int *info, int) +{ + printf("Eigen BLAS ERROR #%i: %s\n", *info, msg ); + return 0; +} + +#ifdef __cplusplus +} +#endif diff --git a/include/eigen/cmake/ComputeCppCompilerChecks.cmake b/include/eigen/cmake/ComputeCppCompilerChecks.cmake new file mode 100644 index 0000000000000000000000000000000000000000..1807485e47d535af2e9bf0e2590554d9662b3707 --- /dev/null +++ b/include/eigen/cmake/ComputeCppCompilerChecks.cmake @@ -0,0 +1,50 @@ +cmake_minimum_required(VERSION 3.4.3) + +if(CMAKE_COMPILER_IS_GNUCXX) + if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.8) + message(FATAL_ERROR "host compiler - gcc version must be > 4.8") + endif() +elseif ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang") + if (${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 3.6) + message(FATAL_ERROR "host compiler - clang version must be > 3.6") + endif() +endif() + +if(MSVC) + set(ComputeCpp_STL_CHECK_SRC __STL_check) + file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/${ComputeCpp_STL_CHECK_SRC}.cpp + "#include \n" + "int main() { return 0; }\n") + execute_process( + COMMAND ${ComputeCpp_DEVICE_COMPILER_EXECUTABLE} + ${COMPUTECPP_DEVICE_COMPILER_FLAGS} + -isystem ${ComputeCpp_INCLUDE_DIRS} + -o ${ComputeCpp_STL_CHECK_SRC}.sycl + -c ${ComputeCpp_STL_CHECK_SRC}.cpp + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + RESULT_VARIABLE ComputeCpp_STL_CHECK_RESULT + ERROR_QUIET + OUTPUT_QUIET) + if(NOT ${ComputeCpp_STL_CHECK_RESULT} EQUAL 0) + # Try disabling compiler version checks + execute_process( + COMMAND ${ComputeCpp_DEVICE_COMPILER_EXECUTABLE} + ${COMPUTECPP_DEVICE_COMPILER_FLAGS} + -D_ALLOW_COMPILER_AND_STL_VERSION_MISMATCH + -isystem ${ComputeCpp_INCLUDE_DIRS} + -o ${ComputeCpp_STL_CHECK_SRC}.cpp.sycl + -c ${ComputeCpp_STL_CHECK_SRC}.cpp + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + RESULT_VARIABLE ComputeCpp_STL_CHECK_RESULT + ERROR_QUIET + OUTPUT_QUIET) + if(NOT ${ComputeCpp_STL_CHECK_RESULT} EQUAL 0) + message(STATUS "Device compiler cannot consume hosted STL headers. Using any parts of the STL will likely result in device compiler errors.") + else() + message(STATUS "Device compiler does not meet certain STL version requirements. Disabling version checks and hoping for the best.") + list(APPEND COMPUTECPP_DEVICE_COMPILER_FLAGS -D_ALLOW_COMPILER_AND_STL_VERSION_MISMATCH) + endif() + endif() + file(REMOVE ${CMAKE_CURRENT_BINARY_DIR}/${ComputeCpp_STL_CHECK_SRC}.cpp + ${CMAKE_CURRENT_BINARY_DIR}/${ComputeCpp_STL_CHECK_SRC}.cpp.sycl) +endif(MSVC) diff --git a/include/eigen/cmake/ComputeCppIRMap.cmake b/include/eigen/cmake/ComputeCppIRMap.cmake new file mode 100644 index 0000000000000000000000000000000000000000..942d91d6401975cf80bf2fc87b9799a55d9e77d2 --- /dev/null +++ b/include/eigen/cmake/ComputeCppIRMap.cmake @@ -0,0 +1,18 @@ +cmake_minimum_required(VERSION 3.4.3) + +# These should match the types of IR output by compute++ +set(IR_MAP_spir bc) +set(IR_MAP_spir64 bc) +set(IR_MAP_spir32 bc) +set(IR_MAP_spirv spv) +set(IR_MAP_spirv64 spv) +set(IR_MAP_spirv32 spv) +set(IR_MAP_aorta-x86_64 o) +set(IR_MAP_aorta-aarch64 o) +set(IR_MAP_aorta-rcar-cve o) +set(IR_MAP_custom-spir64 bc) +set(IR_MAP_custom-spir32 bc) +set(IR_MAP_custom-spirv64 spv) +set(IR_MAP_custom-spirv32 spv) +set(IR_MAP_ptx64 s) +set(IR_MAP_amdgcn s) diff --git a/include/eigen/cmake/Eigen3Config.cmake.in b/include/eigen/cmake/Eigen3Config.cmake.in new file mode 100644 index 0000000000000000000000000000000000000000..58dc3de7d7134b00d18e224362b4f7768fcbbb28 --- /dev/null +++ b/include/eigen/cmake/Eigen3Config.cmake.in @@ -0,0 +1,23 @@ +# This file exports the Eigen3::Eigen CMake target which should be passed to the +# target_link_libraries command. + +@PACKAGE_INIT@ + +if (NOT TARGET Eigen3::Eigen) + include ("${CMAKE_CURRENT_LIST_DIR}/Eigen3Targets.cmake") +endif (NOT TARGET Eigen3::Eigen) + +# Legacy variables, do *not* use. May be removed in the future. + +set (EIGEN3_FOUND 1) +set (EIGEN3_USE_FILE "${CMAKE_CURRENT_LIST_DIR}/UseEigen3.cmake") + +set (EIGEN3_DEFINITIONS "@EIGEN_DEFINITIONS@") +set (EIGEN3_INCLUDE_DIR "@PACKAGE_EIGEN_INCLUDE_DIR@") +set (EIGEN3_INCLUDE_DIRS "@PACKAGE_EIGEN_INCLUDE_DIR@") +set (EIGEN3_ROOT_DIR "@PACKAGE_EIGEN_ROOT_DIR@") + +set (EIGEN3_VERSION_STRING "@EIGEN_VERSION_STRING@") +set (EIGEN3_VERSION_MAJOR "@EIGEN_VERSION_MAJOR@") +set (EIGEN3_VERSION_MINOR "@EIGEN_VERSION_MINOR@") +set (EIGEN3_VERSION_PATCH "@EIGEN_VERSION_PATCH@") diff --git a/include/eigen/cmake/Eigen3ConfigVersion.cmake.in b/include/eigen/cmake/Eigen3ConfigVersion.cmake.in new file mode 100644 index 0000000000000000000000000000000000000000..b9f9a9559eccc10eaaba506db26bce79e6d40e52 --- /dev/null +++ b/include/eigen/cmake/Eigen3ConfigVersion.cmake.in @@ -0,0 +1,100 @@ +# This is a CMake version file for the Config-mode of find_package(). +# +# The version constraint is compatible with the current package under the +# following conditions: +# - If a version range is specified, the package version falls within the +# range up to the supplied version components. +# - If a single version is specified, the current package version matches +# only the requested version components. +# - For backward-compatibility with Eigen 3.4.0, if the specified version +# is >=3.0.0 and <= 3.4.1. +# +# Examples: +# - 3...5 matches 3.0.0.0 to <6.0.0.0 +# - 3...<5 matches 3.0.0.0 to <5.0.0.0 +# - 3...<5.1 matches 3.0.0.0 to <5.1.0.0 +# - 3 matches 3.0.0.0 to <4.0.0.0 +# - 3.4 matches 3.0.0.0 to <4.0.0.0 + +set(PACKAGE_VERSION "@CVF_VERSION@") + +# Extract version components. +if ("${PACKAGE_VERSION}" MATCHES "^([0-9]+)(\\.([0-9]+))?(\\.([0-9]+))?(\\.([0-9]+))?$") + set(_PACKAGE_VERSION_MAJOR "${CMAKE_MATCH_1}") + if (DEFINED CMAKE_MATCH_3) + set(_PACKAGE_VERSION_MINOR "${CMAKE_MATCH_3}") + else() + set(_PACKAGE_VERSION_MINOR "0") + endif() + if (DEFINED CMAKE_MATCH_5) + set(_PACKAGE_VERSION_PATCH "${CMAKE_MATCH_5}") + else() + set(_PACKAGE_VERSION_PATCH "0") + endif() + if (DEFINED CMAKE_MATCH_7) + set(_PACKAGE_VERSION_TWEAK "${CMAKE_MATCH_7}") + else() + set(_PACKAGE_VERSION_TWEAK "0") + endif() + set(_PACKAGE_VERSION_FULL "${_PACKAGE_VERSION_MAJOR}.${_PACKAGE_VERSION_MINOR}.${_PACKAGE_VERSION_PATCH}.${_PACKAGE_VERSION_TWEAK}") +endif() + +if (PACKAGE_FIND_VERSION_RANGE) + # Create exclusive bound for the range maximum. + if (PACKAGE_FIND_VERSION_RANGE_MAX STREQUAL "EXCLUDE") + set(_PACKAGE_FIND_VERSION_UPPER "${PACKAGE_FIND_VERSION_MAX_MAJOR}.${PACKAGE_FIND_VERSION_MAX_MINOR}.${PACKAGE_FIND_VERSION_MAX_PATCH}.${PACKAGE_FIND_VERSION_MAX_TWEAK}") + else() + # Increment the last supplied version number. + if (PACKAGE_FIND_VERSION_MAX_COUNT EQUAL 1) + math(EXPR _PACKAGE_FIND_VERSION_MAX_MAJOR "${PACKAGE_FIND_VERSION_MAX_MAJOR}+1") + set(_PACKAGE_FIND_VERSION_UPPER "${_PACKAGE_FIND_VERSION_MAX_MAJOR}.0.0.0") + elseif (PACKAGE_FIND_VERSION_MAX_COUNT EQUAL 2) + math(EXPR _PACKAGE_FIND_VERSION_MAX_MINOR "${PACKAGE_FIND_VERSION_MAX_MINOR}+1") + set(_PACKAGE_FIND_VERSION_UPPER "${PACKAGE_FIND_VERSION_MAX_MAJOR}.${_PACKAGE_FIND_VERSION_MAX_MINOR}.0.0") + elseif (PACKAGE_FIND_VERSION_MAX_COUNT EQUAL 3) + math(EXPR _PACKAGE_FIND_VERSION_MAX_PATCH "${PACKAGE_FIND_VERSION_MAX_PATCH}+1") + set(_PACKAGE_FIND_VERSION_UPPER "${PACKAGE_FIND_VERSION_MAX_MAJOR}.${PACKAGE_FIND_VERSION_MAX_MINOR}.${_PACKAGE_FIND_VERSION_MAX_PATCH}.0") + elseif (PACKAGE_FIND_VERSION_MAX_COUNT EQUAL 4) + math(EXPR _PACKAGE_FIND_VERSION_MAX_TWEAK "${PACKAGE_FIND_VERSION_MAX_TWEAK}+1") + set(_PACKAGE_FIND_VERSION_UPPER "${PACKAGE_FIND_VERSION_MAX_MAJOR}.${PACKAGE_FIND_VERSION_MAX_MINOR}.${PACKAGE_FIND_VERSION_MAX_PATCH}.${_PACKAGE_FIND_VERSION_MAX_TWEAK}") + endif() + endif() + + if ((_PACKAGE_VERSION_FULL VERSION_LESS PACKAGE_FIND_VERSION_MIN) + OR (_PACKAGE_VERSION_FULL VERSION_GREATER_EQUAL _PACKAGE_FIND_VERSION_UPPER)) + set(PACKAGE_VERSION_COMPATIBLE FALSE) + else() + set(PACKAGE_VERSION_COMPATIBLE TRUE) + endif() +else() + + # Backward-compatibility with 3.4.0. + if (PACKAGE_FIND_VERSION_MAJOR EQUAL 3) + # 3.4.1 is compatible with any 3.x version. + set(_PACKAGE_FIND_VERSION_UPPER "4.0.0.0") + else() + # Create exclusive upper bound. + if (PACKAGE_FIND_VERSION_COUNT EQUAL 1) + math(EXPR _PACKAGE_FIND_VERSION_MAJOR "${PACKAGE_FIND_VERSION_MAJOR}+1") + set(_PACKAGE_FIND_VERSION_UPPER "${_PACKAGE_FIND_VERSION_MAJOR}.0.0.0") + elseif (PACKAGE_FIND_VERSION_COUNT EQUAL 2) + math(EXPR _PACKAGE_FIND_VERSION_MINOR "${PACKAGE_FIND_VERSION_MINOR}+1") + set(_PACKAGE_FIND_VERSION_UPPER "${PACKAGE_FIND_VERSION_MAJOR}.${_PACKAGE_FIND_VERSION_MINOR}.0.0") + elseif (PACKAGE_FIND_VERSION_COUNT EQUAL 3) + math(EXPR _PACKAGE_FIND_VERSION_PATCH "${PACKAGE_FIND_VERSION_PATCH}+1") + set(_PACKAGE_FIND_VERSION_UPPER "${PACKAGE_FIND_VERSION_MAJOR}.${PACKAGE_FIND_VERSION_MINOR}.${_PACKAGE_FIND_VERSION_PATCH}.0") + elseif (PACKAGE_FIND_VERSION_COUNT EQUAL 4) + math(EXPR _PACKAGE_FIND_VERSION_TWEAK "${PACKAGE_FIND_VERSION_TWEAK}+1") + set(_PACKAGE_FIND_VERSION_UPPER "${PACKAGE_FIND_VERSION_MAJOR}.${PACKAGE_FIND_VERSION_MINOR}.${PACKAGE_FIND_VERSION_PATCH}.${_PACKAGE_FIND_VERSION_TWEAK}") + endif() + endif() + + if((_PACKAGE_VERSION_FULL VERSION_LESS PACKAGE_FIND_VERSION) OR (_PACKAGE_VERSION_FULL VERSION_GREATER_EQUAL _PACKAGE_FIND_VERSION_UPPER)) + set(PACKAGE_VERSION_COMPATIBLE FALSE) + else() + set(PACKAGE_VERSION_COMPATIBLE TRUE) + if(PACKAGE_FIND_VERSION STREQUAL PACKAGE_VERSION) + set(PACKAGE_VERSION_EXACT TRUE) + endif() + endif() +endif() diff --git a/include/eigen/cmake/EigenConfigureTesting.cmake b/include/eigen/cmake/EigenConfigureTesting.cmake new file mode 100644 index 0000000000000000000000000000000000000000..2a1e7ab5a755509cf807a6e25998ed63aed1114c --- /dev/null +++ b/include/eigen/cmake/EigenConfigureTesting.cmake @@ -0,0 +1,67 @@ +include(EigenTesting) +include(CheckCXXSourceCompiles) + +# configure the "site" and "buildname" +ei_set_sitename() + +# retrieve and store the build string +ei_set_build_string() + +add_custom_target(buildtests) +add_custom_target(check COMMAND "ctest" ${EIGEN_CTEST_ARGS}) +add_dependencies(check buildtests) + +# Convenience target for only building GPU tests. +add_custom_target(buildtests_gpu) +add_custom_target(check_gpu COMMAND "ctest" "--output-on-failure" + "--no-compress-output" + "--build-no-clean" + "-T" "test" + "-L" "gpu") +add_dependencies(check_gpu buildtests_gpu) + +# check whether /bin/bash exists (disabled as not used anymore) +# find_file(EIGEN_BIN_BASH_EXISTS "/bin/bash" PATHS "/" NO_DEFAULT_PATH) + +# This call activates testing and generates the DartConfiguration.tcl +include(CTest) + +set(EIGEN_TEST_BUILD_FLAGS "" CACHE STRING "Options passed to the build command of unit tests") +set(EIGEN_DASHBOARD_BUILD_TARGET "buildtests" CACHE STRING "Target to be built in dashboard mode, default is buildtests") +set(EIGEN_CTEST_ERROR_EXCEPTION "" CACHE STRING "Regular expression for build error messages to be filtered out") + +# Overwrite default DartConfiguration.tcl such that ctest can build our unit tests. +# Recall that our unit tests are not in the "all" target, so we have to explicitly ask ctest to build our custom 'buildtests' target. +# At this stage, we can also add custom flags to the build tool through the user defined EIGEN_TEST_BUILD_FLAGS variable. +file(READ "${CMAKE_CURRENT_BINARY_DIR}/DartConfiguration.tcl" EIGEN_DART_CONFIG_FILE) +# try to grab the default flags +string(REGEX MATCH "MakeCommand:.*-- (.*)\nDefaultCTestConfigurationType" EIGEN_DUMMY ${EIGEN_DART_CONFIG_FILE}) +if(NOT CMAKE_MATCH_1) +string(REGEX MATCH "MakeCommand:.*[^c]make (.*)\nDefaultCTestConfigurationType" EIGEN_DUMMY ${EIGEN_DART_CONFIG_FILE}) +endif() +string(REGEX REPLACE "MakeCommand:.*DefaultCTestConfigurationType" "MakeCommand: ${CMAKE_COMMAND} --build . --target ${EIGEN_DASHBOARD_BUILD_TARGET} --config \"\${CTEST_CONFIGURATION_TYPE}\" -- ${CMAKE_MATCH_1} ${EIGEN_TEST_BUILD_FLAGS}\nDefaultCTestConfigurationType" + EIGEN_DART_CONFIG_FILE2 ${EIGEN_DART_CONFIG_FILE}) +file(WRITE "${CMAKE_CURRENT_BINARY_DIR}/DartConfiguration.tcl" ${EIGEN_DART_CONFIG_FILE2}) + +configure_file(${CMAKE_CURRENT_SOURCE_DIR}/CTestCustom.cmake.in ${CMAKE_BINARY_DIR}/CTestCustom.cmake) + +# some documentation of this function would be nice +ei_init_testing() + +# configure Eigen related testing options +option(EIGEN_NO_ASSERTION_CHECKING "Disable checking of assertions using exceptions" OFF) +option(EIGEN_DEBUG_ASSERTS "Enable advanced debugging of assertions" OFF) + +if(CMAKE_COMPILER_IS_GNUCXX) + option(EIGEN_COVERAGE_TESTING "Enable/disable gcov" OFF) + if(EIGEN_COVERAGE_TESTING) + set(COVERAGE_FLAGS "-fprofile-arcs -ftest-coverage") + set(CTEST_CUSTOM_COVERAGE_EXCLUDE "/test/") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${COVERAGE_FLAGS}") + endif() + +elseif(MSVC) + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /D_CRT_SECURE_NO_WARNINGS /D_SCL_SECURE_NO_WARNINGS") +endif() + + diff --git a/include/eigen/cmake/EigenDetermineVSServicePack.cmake b/include/eigen/cmake/EigenDetermineVSServicePack.cmake new file mode 100644 index 0000000000000000000000000000000000000000..fed78194d2faea19f50f2dabc0157f419d6e45d3 --- /dev/null +++ b/include/eigen/cmake/EigenDetermineVSServicePack.cmake @@ -0,0 +1,41 @@ +include(CMakeDetermineVSServicePack) + +# The code is almost identical to the CMake version. The only difference is that we remove +# _DetermineVSServicePack_FastCheckVersionWithCompiler which lead to errors on some systems. +function(EigenDetermineVSServicePack _pack) + if(NOT DETERMINED_VS_SERVICE_PACK OR NOT ${_pack}) + if(NOT DETERMINED_VS_SERVICE_PACK) + _DetermineVSServicePack_CheckVersionWithTryCompile(DETERMINED_VS_SERVICE_PACK _cl_version) + if(NOT DETERMINED_VS_SERVICE_PACK) + _DetermineVSServicePack_CheckVersionWithTryRun(DETERMINED_VS_SERVICE_PACK _cl_version) + endif() + endif() + + if(DETERMINED_VS_SERVICE_PACK) + if(_cl_version) + # Call helper function to determine VS version + _DetermineVSServicePackFromCompiler(_sp "${_cl_version}") + + # temporary fix, until CMake catches up + if (NOT _sp) + if(${_cl_version} VERSION_EQUAL "17.00.50727.1") + set(_sp "vc110") + elseif(${_cl_version} VERSION_EQUAL "17.00.51106.1") + set(_sp "vc110sp1") + elseif(${_cl_version} VERSION_EQUAL "17.00.60315.1") + set(_sp "vc110sp2") + elseif(${_cl_version} VERSION_EQUAL "17.00.60610.1") + set(_sp "vc110sp3") + else() + set(_sp ${CMAKE_CXX_COMPILER_VERSION}) + endif() + endif() + + if(_sp) + set(${_pack} ${_sp} CACHE INTERNAL + "The Visual Studio Release with Service Pack") + endif() + endif() + endif() + endif() +endfunction() diff --git a/include/eigen/cmake/EigenTesting.cmake b/include/eigen/cmake/EigenTesting.cmake new file mode 100644 index 0000000000000000000000000000000000000000..0b4ccee6d6048dab632ff48ff1b6be48e8fae4e6 --- /dev/null +++ b/include/eigen/cmake/EigenTesting.cmake @@ -0,0 +1,772 @@ + +macro(ei_add_property prop value) + get_property(previous GLOBAL PROPERTY ${prop}) + if ((NOT previous) OR (previous STREQUAL "")) + set_property(GLOBAL PROPERTY ${prop} "${value}") + else() + set_property(GLOBAL PROPERTY ${prop} "${previous} ${value}") + endif() +endmacro() + +#internal. See documentation of ei_add_test for details. +macro(ei_add_test_internal testname testname_with_suffix) + set(targetname ${testname_with_suffix}) + + if(EIGEN_ADD_TEST_FILENAME_EXTENSION) + set(filename ${testname}.${EIGEN_ADD_TEST_FILENAME_EXTENSION}) + else() + set(filename ${testname}.cpp) + endif() + + # Add the current target to the list of subtest targets + get_property(EIGEN_SUBTESTS_LIST GLOBAL PROPERTY EIGEN_SUBTESTS_LIST) + set(EIGEN_SUBTESTS_LIST "${EIGEN_SUBTESTS_LIST}${targetname}\n") + set_property(GLOBAL PROPERTY EIGEN_SUBTESTS_LIST "${EIGEN_SUBTESTS_LIST}") + + set(is_gpu_test OFF) + if(EIGEN_ADD_TEST_FILENAME_EXTENSION STREQUAL cu) + set(is_gpu_test ON) + if(EIGEN_TEST_HIP) + hip_reset_flags() + hip_add_executable(${targetname} ${filename} HIPCC_OPTIONS -std=c++14) + target_compile_definitions(${targetname} PRIVATE -DEIGEN_USE_HIP) + set_property(TARGET ${targetname} PROPERTY HIP_ARCHITECTURES gfx900 gfx906 gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030) + elseif(EIGEN_TEST_CUDA_CLANG) + set_source_files_properties(${filename} PROPERTIES LANGUAGE CXX) + + if(CUDA_64_BIT_DEVICE_CODE AND (EXISTS "${CUDA_TOOLKIT_ROOT_DIR}/lib64")) + link_directories("${CUDA_TOOLKIT_ROOT_DIR}/lib64") + else() + link_directories("${CUDA_TOOLKIT_ROOT_DIR}/lib") + endif() + + add_executable(${targetname} ${filename}) + set(CUDA_CLANG_LINK_LIBRARIES "cudart_static" "cuda" "dl" "pthread") + if (CMAKE_SYSTEM_NAME STREQUAL "Linux") + set(CUDA_CLANG_LINK_LIBRARIES ${CUDA_CLANG_LINK_LIBRARIES} "rt") + endif() + target_link_libraries(${targetname} ${CUDA_CLANG_LINK_LIBRARIES}) + else() + cuda_add_executable(${targetname} ${filename}) + endif() + else() + add_executable(${targetname} ${filename}) + endif() + + add_dependencies(buildtests ${targetname}) + + if (is_gpu_test) + add_dependencies(buildtests_gpu ${targetname}) + endif() + + if(EIGEN_NO_ASSERTION_CHECKING) + target_compile_definitions(${targetname} PRIVATE EIGEN_NO_ASSERTION_CHECKING=1) + else() + if(EIGEN_DEBUG_ASSERTS) + target_compile_definitions(${targetname} PRIVATE EIGEN_DEBUG_ASSERTS=1) + endif() + endif() + + target_compile_definitions(${targetname} PRIVATE EIGEN_TEST_MAX_SIZE=${EIGEN_TEST_MAX_SIZE}) + + if(MSVC) + target_compile_options(${targetname} PRIVATE "/bigobj") + endif() + + # let the user pass flags. + if(${ARGC} GREATER 2) + separate_arguments(compile_options NATIVE_COMMAND ${ARGV2}) + target_compile_options(${targetname} PRIVATE ${compile_options}) + endif() + + if(EIGEN_TEST_CUSTOM_CXX_FLAGS) + target_compile_options(${targetname} PRIVATE ${EIGEN_TEST_CUSTOM_CXX_FLAGS}) + endif() + + if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO) + target_link_libraries(${targetname} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO}) + endif() + if(EXTERNAL_LIBS) + target_link_libraries(${targetname} ${EXTERNAL_LIBS}) + endif() + if(EIGEN_TEST_CUSTOM_LINKER_FLAGS) + target_link_libraries(${targetname} ${EIGEN_TEST_CUSTOM_LINKER_FLAGS}) + endif() + target_link_libraries(${targetname} Eigen3::Eigen) + + if(${ARGC} GREATER 3) + set(libs_to_link ${ARGV3}) + # it could be that some cmake module provides a bad library string " " (just spaces), + # and that severely breaks target_link_libraries ("can't link to -l-lstdc++" errors). + # so we check for strings containing only spaces. + string(STRIP "${libs_to_link}" libs_to_link_stripped) + string(LENGTH "${libs_to_link_stripped}" libs_to_link_stripped_length) + if(${libs_to_link_stripped_length} GREATER 0) + # notice: no double quotes around ${libs_to_link} here. It may be a list. + target_link_libraries(${targetname} ${libs_to_link}) + endif() + endif() + + add_test(NAME ${testname_with_suffix} COMMAND "${targetname}") + + # Specify target and test labels according to EIGEN_CURRENT_SUBPROJECT + get_property(current_subproject GLOBAL PROPERTY EIGEN_CURRENT_SUBPROJECT) + if ((current_subproject) AND (NOT (current_subproject STREQUAL ""))) + set_property(TARGET ${targetname} PROPERTY LABELS "Build${current_subproject}") + add_dependencies("Build${current_subproject}" ${targetname}) + set_property(TEST ${testname_with_suffix} PROPERTY LABELS "${current_subproject}") + endif() + if (is_gpu_test) + # Add gpu tag for testing only GPU tests. + set_property(TEST ${testname_with_suffix} APPEND PROPERTY LABELS "gpu") + endif() + + if(EIGEN_SYCL) + # Force include of the SYCL file at the end to avoid errors. + set_property(TARGET ${gittargetname} PROPERTY COMPUTECPP_INCLUDE_AFTER 1) + # Link against pthread and add sycl to target + set(THREADS_PREFER_PTHREAD_FLAG ON) + find_package(Threads REQUIRED) + target_link_libraries(${targetname} Threads::Threads) + add_sycl_to_target(TARGET ${targetname} SOURCES ${filename}) + endif(EIGEN_SYCL) +endmacro(ei_add_test_internal) +# Macro to add a test +# +# the unique mandatory parameter testname must correspond to a file +# .cpp which follows this pattern: +# +# #include "main.h" +# void test_() { ... } +# +# Depending on the contents of that file, this macro can have 2 behaviors, +# see below. +# +# The optional 2nd parameter is libraries to link to. +# +# A. Default behavior +# +# this macro adds an executable as well as a ctest test +# named too. +# +# On platforms with bash simply run: +# "ctest -V" or "ctest -V -R " +# On other platform use ctest as usual +# +# B. Multi-part behavior +# +# If the source file matches the regexp +# CALL_SUBTEST_[0-9]+|EIGEN_TEST_PART_[0-9]+ +# then it is interpreted as a multi-part test. The behavior then depends on the +# CMake option EIGEN_SPLIT_LARGE_TESTS, which is ON by default. +# +# If EIGEN_SPLIT_LARGE_TESTS is OFF, the behavior is the same as in A (the multi-part +# aspect is ignored). +# +# If EIGEN_SPLIT_LARGE_TESTS is ON, the test is split into multiple executables +# test__ +# where N runs from 1 to the greatest occurrence found in the source file. Each of these +# executables is built passing -DEIGEN_TEST_PART_N. This allows to split large tests +# into smaller executables. +# +# Moreover, targets are still generated, they +# have the effect of building all the parts of the test. +# +# Again, ctest -R allows to run all matching tests. +macro(ei_add_test testname) + get_property(EIGEN_TESTS_LIST GLOBAL PROPERTY EIGEN_TESTS_LIST) + set(EIGEN_TESTS_LIST "${EIGEN_TESTS_LIST}${testname}\n") + set_property(GLOBAL PROPERTY EIGEN_TESTS_LIST "${EIGEN_TESTS_LIST}") + + if(EIGEN_ADD_TEST_FILENAME_EXTENSION) + set(filename ${testname}.${EIGEN_ADD_TEST_FILENAME_EXTENSION}) + else() + set(filename ${testname}.cpp) + endif() + + file(READ "${filename}" test_source) + string(REGEX MATCHALL "CALL_SUBTEST_[0-9]+|EIGEN_TEST_PART_[0-9]+|EIGEN_SUFFIXES(;[0-9]+)+" + occurrences "${test_source}") + string(REGEX REPLACE "CALL_SUBTEST_|EIGEN_TEST_PART_|EIGEN_SUFFIXES" "" suffixes "${occurrences}") + list(REMOVE_DUPLICATES suffixes) + set(explicit_suffixes "") + if( (NOT EIGEN_SPLIT_LARGE_TESTS) AND suffixes) + # Check whether we have EIGEN_TEST_PART_* statements, in which case we likely must enforce splitting. + # For instance, indexed_view activate a different c++ version for each part. + string(REGEX MATCHALL "EIGEN_TEST_PART_[0-9]+" occurrences "${test_source}") + string(REGEX REPLACE "EIGEN_TEST_PART_" "" explicit_suffixes "${occurrences}") + list(REMOVE_DUPLICATES explicit_suffixes) + endif() + if( (EIGEN_SPLIT_LARGE_TESTS AND suffixes) OR explicit_suffixes) + add_custom_target(${testname}) + foreach(suffix ${suffixes}) + ei_add_test_internal(${testname} ${testname}_${suffix} "${ARGV1}" "${ARGV2}") + add_dependencies(${testname} ${testname}_${suffix}) + target_compile_definitions(${testname}_${suffix} PRIVATE -DEIGEN_TEST_PART_${suffix}=1) + endforeach() + else() + ei_add_test_internal(${testname} ${testname} "${ARGV1}" "${ARGV2}") + target_compile_definitions(${testname} PRIVATE -DEIGEN_TEST_PART_ALL=1) + endif() +endmacro() + +# adds a failtest, i.e. a test that succeed if the program fails to compile +# note that the test runner for these is CMake itself, when passed -DEIGEN_FAILTEST=ON +# so here we're just running CMake commands immediately, we're not adding any targets. +macro(ei_add_failtest testname) + + set(test_target_ok ${testname}_ok) + set(test_target_ko ${testname}_ko) + + # Add executables + add_executable(${test_target_ok} ${testname}.cpp) + add_executable(${test_target_ko} ${testname}.cpp) + + # Remove them from the normal build process + set_target_properties(${test_target_ok} ${test_target_ko} PROPERTIES + EXCLUDE_FROM_ALL TRUE + EXCLUDE_FROM_DEFAULT_BUILD TRUE) + + # Configure the failing test + target_compile_definitions(${test_target_ko} PRIVATE EIGEN_SHOULD_FAIL_TO_BUILD) + + # Add the tests to ctest. + add_test(NAME ${test_target_ok} + COMMAND ${CMAKE_COMMAND} --build . --target ${test_target_ok} --config $ + WORKING_DIRECTORY ${CMAKE_BINARY_DIR}) + add_test(NAME ${test_target_ko} + COMMAND ${CMAKE_COMMAND} --build . --target ${test_target_ko} --config $ + WORKING_DIRECTORY ${CMAKE_BINARY_DIR}) + # Disable emulator if cross-compiling. + if (CMAKE_CROSSCOMPILING) + set_property(TEST ${test_target_ok} PROPERTY CROSSCOMPILING_EMULATOR "") + set_property(TEST ${test_target_ko} PROPERTY CROSSCOMPILING_EMULATOR "") + endif() + + # Expect the second test to fail + set_tests_properties(${test_target_ko} PROPERTIES WILL_FAIL TRUE) +endmacro() + +# print a summary of the different options +macro(ei_testing_print_summary) + message(STATUS "************************************************************") + message(STATUS "*** Eigen's unit tests configuration summary ***") + message(STATUS "************************************************************") + message(STATUS "") + message(STATUS "Build type: ${CMAKE_BUILD_TYPE}") + message(STATUS "Build site: ${SITE}") + message(STATUS "Build string: ${BUILDNAME}") + get_property(EIGEN_TESTING_SUMMARY GLOBAL PROPERTY EIGEN_TESTING_SUMMARY) + get_property(EIGEN_TESTED_BACKENDS GLOBAL PROPERTY EIGEN_TESTED_BACKENDS) + get_property(EIGEN_MISSING_BACKENDS GLOBAL PROPERTY EIGEN_MISSING_BACKENDS) + message(STATUS "Enabled backends: ${EIGEN_TESTED_BACKENDS}") + message(STATUS "Disabled backends: ${EIGEN_MISSING_BACKENDS}") + + if(EIGEN_DEFAULT_TO_ROW_MAJOR) + message(STATUS "Default order: Row-major") + else() + message(STATUS "Default order: Column-major") + endif() + + if(EIGEN_TEST_NO_EXPLICIT_ALIGNMENT) + message(STATUS "Explicit alignment (hence vectorization) disabled") + elseif(EIGEN_TEST_NO_EXPLICIT_VECTORIZATION) + message(STATUS "Explicit vectorization disabled (alignment kept enabled)") + else() + + message(STATUS "Maximal matrix/vector size: ${EIGEN_TEST_MAX_SIZE}") + + if(EIGEN_TEST_SSE2) + message(STATUS "SSE2: ON") + else() + message(STATUS "SSE2: Using architecture defaults") + endif() + + if(EIGEN_TEST_SSE3) + message(STATUS "SSE3: ON") + else() + message(STATUS "SSE3: Using architecture defaults") + endif() + + if(EIGEN_TEST_SSSE3) + message(STATUS "SSSE3: ON") + else() + message(STATUS "SSSE3: Using architecture defaults") + endif() + + if(EIGEN_TEST_SSE4_1) + message(STATUS "SSE4.1: ON") + else() + message(STATUS "SSE4.1: Using architecture defaults") + endif() + + if(EIGEN_TEST_SSE4_2) + message(STATUS "SSE4.2: ON") + else() + message(STATUS "SSE4.2: Using architecture defaults") + endif() + + if(EIGEN_TEST_AVX) + message(STATUS "AVX: ON") + else() + message(STATUS "AVX: Using architecture defaults") + endif() + + if(EIGEN_TEST_AVX2) + message(STATUS "AVX2: ON") + else() + message(STATUS "AVX2: Using architecture defaults") + endif() + + if(EIGEN_TEST_FMA) + message(STATUS "FMA: ON") + else() + message(STATUS "FMA: Using architecture defaults") + endif() + + if(EIGEN_TEST_AVX512) + message(STATUS "AVX512: ON") + else() + message(STATUS "AVX512: Using architecture defaults") + endif() + + if(EIGEN_TEST_AVX512DQ) + message(STATUS "AVX512DQ: ON") + else() + message(STATUS "AVX512DQ: Using architecture defaults") + endif() + + if(EIGEN_TEST_ALTIVEC) + message(STATUS "Altivec: ON") + else() + message(STATUS "Altivec: Using architecture defaults") + endif() + + if(EIGEN_TEST_VSX) + message(STATUS "VSX: ON") + else() + message(STATUS "VSX: Using architecture defaults") + endif() + + if(EIGEN_TEST_MSA) + message(STATUS "MIPS MSA: ON") + else() + message(STATUS "MIPS MSA: Using architecture defaults") + endif() + + if(EIGEN_TEST_NEON) + message(STATUS "ARM NEON: ON") + else() + message(STATUS "ARM NEON: Using architecture defaults") + endif() + + if(EIGEN_TEST_NEON64) + message(STATUS "ARMv8 NEON: ON") + else() + message(STATUS "ARMv8 NEON: Using architecture defaults") + endif() + + if(EIGEN_TEST_ZVECTOR) + message(STATUS "S390X ZVECTOR: ON") + else() + message(STATUS "S390X ZVECTOR: Using architecture defaults") + endif() + + if(EIGEN_TEST_CXX11) + message(STATUS "C++11: ON") + else() + message(STATUS "C++11: OFF") + endif() + + if(EIGEN_TEST_SYCL) + if(EIGEN_SYCL_TRISYCL) + message(STATUS "SYCL: ON (using triSYCL)") + elseif(EIGEN_SYCL_ComputeCpp) + message(STATUS "SYCL: ON (using computeCPP)") + elseif(EIGEN_SYCL_DPCPP) + message(STATUS "SYCL: ON (using DPCPP)") + endif() + else() + message(STATUS "SYCL: OFF") + endif() + if(EIGEN_TEST_CUDA) + if(EIGEN_TEST_CUDA_CLANG) + message(STATUS "CUDA: ON (using clang)") + else() + message(STATUS "CUDA: ON (using nvcc)") + endif() + else() + message(STATUS "CUDA: OFF") + endif() + if(EIGEN_TEST_HIP) + message(STATUS "HIP: ON (using hipcc)") + else() + message(STATUS "HIP: OFF") + endif() + + endif() # vectorization / alignment options + + message(STATUS "\n${EIGEN_TESTING_SUMMARY}") + + message(STATUS "************************************************************") +endmacro() + +macro(ei_init_testing) + define_property(GLOBAL PROPERTY EIGEN_CURRENT_SUBPROJECT BRIEF_DOCS " " FULL_DOCS " ") + define_property(GLOBAL PROPERTY EIGEN_TESTED_BACKENDS BRIEF_DOCS " " FULL_DOCS " ") + define_property(GLOBAL PROPERTY EIGEN_MISSING_BACKENDS BRIEF_DOCS " " FULL_DOCS " ") + define_property(GLOBAL PROPERTY EIGEN_TESTING_SUMMARY BRIEF_DOCS " " FULL_DOCS " ") + define_property(GLOBAL PROPERTY EIGEN_TESTS_LIST BRIEF_DOCS " " FULL_DOCS " ") + define_property(GLOBAL PROPERTY EIGEN_SUBTESTS_LIST BRIEF_DOCS " " FULL_DOCS " ") + + set_property(GLOBAL PROPERTY EIGEN_TESTED_BACKENDS "") + set_property(GLOBAL PROPERTY EIGEN_MISSING_BACKENDS "") + set_property(GLOBAL PROPERTY EIGEN_TESTING_SUMMARY "") + set_property(GLOBAL PROPERTY EIGEN_TESTS_LIST "") + set_property(GLOBAL PROPERTY EIGEN_SUBTESTS_LIST "") + + define_property(GLOBAL PROPERTY EIGEN_FAILTEST_FAILURE_COUNT BRIEF_DOCS " " FULL_DOCS " ") + define_property(GLOBAL PROPERTY EIGEN_FAILTEST_COUNT BRIEF_DOCS " " FULL_DOCS " ") + + set_property(GLOBAL PROPERTY EIGEN_FAILTEST_FAILURE_COUNT "0") + set_property(GLOBAL PROPERTY EIGEN_FAILTEST_COUNT "0") + + # uncomment anytime you change the ei_get_compilerver_from_cxx_version_string macro + # ei_test_get_compilerver_from_cxx_version_string() +endmacro() + +macro(ei_set_sitename) + # if the sitename is not yet set, try to set it + if(NOT ${SITE} OR ${SITE} STREQUAL "") + set(eigen_computername $ENV{COMPUTERNAME}) + set(eigen_hostname $ENV{HOSTNAME}) + if(eigen_hostname) + set(SITE ${eigen_hostname}) + elseif(eigen_computername) + set(SITE ${eigen_computername}) + endif() + endif() + # in case it is already set, enforce lower case + if(SITE) + string(TOLOWER ${SITE} SITE) + endif() +endmacro() + +macro(ei_get_compilerver VAR) + if (NOT CMAKE_CXX_COMPILER_ID) + set(CMAKE_CXX_COMPILER_ID "") + endif() + if(MSVC) + set(${VAR} "${CMAKE_CXX_COMPILER_VERSION}") + elseif(${CMAKE_CXX_COMPILER_ID} MATCHES "PGI") + set(${VAR} "${CMAKE_CXX_COMPILER_ID}-${CMAKE_CXX_COMPILER_VERSION}") + else() + # on all other system we rely on ${CMAKE_CXX_COMPILER} + # supporting a "--version" or "/version" flag + + if(WIN32 AND ${CMAKE_CXX_COMPILER_ID} EQUAL "Intel") + set(EIGEN_CXX_FLAG_VERSION "/version") + else() + set(EIGEN_CXX_FLAG_VERSION "--version") + endif() + + execute_process(COMMAND ${CMAKE_CXX_COMPILER} ${EIGEN_CXX_FLAG_VERSION} + OUTPUT_VARIABLE eigen_cxx_compiler_version_string OUTPUT_STRIP_TRAILING_WHITESPACE) + string(REGEX REPLACE "^[ \n\r]+" "" eigen_cxx_compiler_version_string ${eigen_cxx_compiler_version_string}) + string(REGEX REPLACE "[\n\r].*" "" eigen_cxx_compiler_version_string ${eigen_cxx_compiler_version_string}) + + ei_get_compilerver_from_cxx_version_string("${eigen_cxx_compiler_version_string}" CNAME CVER) + set(${VAR} "${CNAME}-${CVER}") + + endif() +endmacro() + +# Extract compiler name and version from a raw version string +# WARNING: if you edit this macro, then please test it by uncommenting +# the testing macro call in ei_init_testing() of the EigenTesting.cmake file. +# See also the ei_test_get_compilerver_from_cxx_version_string macro at the end +# of the file +macro(ei_get_compilerver_from_cxx_version_string VERSTRING CNAME CVER) + # extract possible compiler names + string(REGEX MATCH "g\\+\\+" ei_has_gpp ${VERSTRING}) + string(REGEX MATCH "llvm|LLVM" ei_has_llvm ${VERSTRING}) + string(REGEX MATCH "gcc|GCC" ei_has_gcc ${VERSTRING}) + string(REGEX MATCH "icpc|ICC" ei_has_icpc ${VERSTRING}) + string(REGEX MATCH "clang|CLANG" ei_has_clang ${VERSTRING}) + string(REGEX MATCH "mingw32" ei_has_mingw ${VERSTRING}) + + # combine them + if((ei_has_llvm) AND (ei_has_gpp OR ei_has_gcc)) + set(${CNAME} "llvm-g++") + elseif((ei_has_llvm) AND (ei_has_clang)) + set(${CNAME} "llvm-clang++") + elseif(ei_has_clang) + set(${CNAME} "clang++") + elseif ((ei_has_mingw) AND (ei_has_gpp OR ei_has_gcc)) + set(${CNAME} "mingw32-g++") + elseif(ei_has_icpc) + set(${CNAME} "icpc") + elseif(ei_has_gpp OR ei_has_gcc) + set(${CNAME} "g++") + else() + set(${CNAME} "_") + endif() + + # extract possible version numbers + # first try to extract 3 isolated numbers: + string(REGEX MATCH " [0-9]+\\.[0-9]+\\.[0-9]+" eicver ${VERSTRING}) + if(NOT eicver) + # try to extract 2 isolated ones: + string(REGEX MATCH " [0-9]+\\.[0-9]+" eicver ${VERSTRING}) + if(NOT eicver) + # try to extract 3: + string(REGEX MATCH "[^0-9][0-9]+\\.[0-9]+\\.[0-9]+" eicver ${VERSTRING}) + if(NOT eicver) + # try to extract 2: + string(REGEX MATCH "[^0-9][0-9]+\\.[0-9]+" eicver ${VERSTRING}) + if (NOT eicver AND ei_has_mingw) + # try to extract 1 number plus suffix: + string(REGEX MATCH "[^0-9][0-9]+-win32" eicver ${VERSTRING}) + endif() + endif() + endif() + endif() + + if (NOT eicver) + set(eicver " _") + endif() + + string(REGEX REPLACE ".(.*)" "\\1" ${CVER} ${eicver}) + +endmacro() + +macro(ei_get_cxxflags VAR) + set(${VAR} "") + ei_is_64bit_env(IS_64BIT_ENV) + if(EIGEN_TEST_NEON) + set(${VAR} NEON) + elseif(EIGEN_TEST_NEON64) + set(${VAR} NEON) + elseif(EIGEN_TEST_ZVECTOR) + set(${VAR} ZVECTOR) + elseif(EIGEN_TEST_VSX) + set(${VAR} VSX) + elseif(EIGEN_TEST_ALTIVEC) + set(${VAR} ALVEC) + elseif(EIGEN_TEST_FMA) + set(${VAR} FMA) + elseif(EIGEN_TEST_AVX) + set(${VAR} AVX) + elseif(EIGEN_TEST_SSE4_2) + set(${VAR} SSE42) + elseif(EIGEN_TEST_SSE4_1) + set(${VAR} SSE41) + elseif(EIGEN_TEST_SSSE3) + set(${VAR} SSSE3) + elseif(EIGEN_TEST_SSE3) + set(${VAR} SSE3) + elseif(EIGEN_TEST_SSE2 OR IS_64BIT_ENV) + set(${VAR} SSE2) + elseif(EIGEN_TEST_MSA) + set(${VAR} MSA) + endif() + + if(EIGEN_TEST_OPENMP) + if (${VAR} STREQUAL "") + set(${VAR} OMP) + else() + set(${VAR} ${${VAR}}-OMP) + endif() + endif() + + if(EIGEN_DEFAULT_TO_ROW_MAJOR) + if (${VAR} STREQUAL "") + set(${VAR} ROW) + else() + set(${VAR} ${${VAR}}-ROWMAJ) + endif() + endif() +endmacro() + +macro(ei_set_build_string) + ei_get_compilerver(LOCAL_COMPILER_VERSION) + ei_get_cxxflags(LOCAL_COMPILER_FLAGS) + + set(TMP_BUILD_STRING ${CMAKE_SYSTEM}-${LOCAL_COMPILER_VERSION}) + + if (NOT ${LOCAL_COMPILER_FLAGS} STREQUAL "") + set(TMP_BUILD_STRING ${TMP_BUILD_STRING}-${LOCAL_COMPILER_FLAGS}) + endif() + + if(EIGEN_TEST_EXTERNAL_BLAS) + set(TMP_BUILD_STRING ${TMP_BUILD_STRING}-external_blas) + endif() + + ei_is_64bit_env(IS_64BIT_ENV) + if(NOT IS_64BIT_ENV) + set(TMP_BUILD_STRING ${TMP_BUILD_STRING}-32bit) + else() + set(TMP_BUILD_STRING ${TMP_BUILD_STRING}-64bit) + endif() + + if(EIGEN_TEST_CXX11) + set(TMP_BUILD_STRING ${TMP_BUILD_STRING}-cxx11) + endif() + + if(EIGEN_BUILD_STRING_SUFFIX) + set(TMP_BUILD_STRING ${TMP_BUILD_STRING}-${EIGEN_BUILD_STRING_SUFFIX}) + endif() + + string(TOLOWER ${TMP_BUILD_STRING} BUILDNAME) +endmacro() + +macro(ei_is_64bit_env VAR) + if(CMAKE_SIZEOF_VOID_P EQUAL 8) + set(${VAR} 1) + elseif(CMAKE_SIZEOF_VOID_P EQUAL 4) + set(${VAR} 0) + else() + message(WARNING "Unsupported pointer size. Please contact the authors.") + endif() +endmacro() + + +# helper macro for testing ei_get_compilerver_from_cxx_version_string +# STR: raw version string +# REFNAME: expected compiler name +# REFVER: expected compiler version +macro(ei_test1_get_compilerver_from_cxx_version_string STR REFNAME REFVER) + ei_get_compilerver_from_cxx_version_string(${STR} CNAME CVER) + if((NOT ${REFNAME} STREQUAL ${CNAME}) OR (NOT ${REFVER} STREQUAL ${CVER})) + message("STATUS ei_get_compilerver_from_cxx_version_string error:") + message("Expected \"${REFNAME}-${REFVER}\", got \"${CNAME}-${CVER}\"") + endif() +endmacro() + +# macro for testing ei_get_compilerver_from_cxx_version_string +# feel free to add more version strings +macro(ei_test_get_compilerver_from_cxx_version_string) + ei_test1_get_compilerver_from_cxx_version_string("g++ (SUSE Linux) 4.5.3 20110428 [gcc-4_5-branch revision 173117]" "g++" "4.5.3") + ei_test1_get_compilerver_from_cxx_version_string("c++ (GCC) 4.5.1 20100924 (Red Hat 4.5.1-4)" "g++" "4.5.1") + ei_test1_get_compilerver_from_cxx_version_string("icpc (ICC) 11.0 20081105" "icpc" "11.0") + ei_test1_get_compilerver_from_cxx_version_string("g++-3.4 (GCC) 3.4.6" "g++" "3.4.6") + ei_test1_get_compilerver_from_cxx_version_string("SUSE Linux clang version 3.0 (branches/release_30 145598) (based on LLVM 3.0)" "llvm-clang++" "3.0") + ei_test1_get_compilerver_from_cxx_version_string("icpc (ICC) 12.0.5 20110719" "icpc" "12.0.5") + ei_test1_get_compilerver_from_cxx_version_string("Apple clang version 2.1 (tags/Apple/clang-163.7.1) (based on LLVM 3.0svn)" "llvm-clang++" "2.1") + ei_test1_get_compilerver_from_cxx_version_string("i686-apple-darwin11-llvm-g++-4.2 (GCC) 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2335.15.00)" "llvm-g++" "4.2.1") + ei_test1_get_compilerver_from_cxx_version_string("g++-mp-4.4 (GCC) 4.4.6" "g++" "4.4.6") + ei_test1_get_compilerver_from_cxx_version_string("g++-mp-4.4 (GCC) 2011" "g++" "4.4") + ei_test1_get_compilerver_from_cxx_version_string("x86_64-w64-mingw32-g++ (GCC) 10-win32 20210110" "mingw32-g++" "10-win32") +endmacro() + +# Split all tests listed in EIGEN_TESTS_LIST into num_splits many targets +# named buildtestspartN with N = { 0, ..., num_splits-1}. +# +# The intention behind the existence of this macro is the size of Eigen's +# testsuite. Together with the relatively big compile-times building all tests +# can take a substantial amount of time depending on the available hardware. +# +# The last buildtestspartN target will build possible remaining tests. +# +# An example: +# +# EIGEN_TESTS_LIST= [ test1, test2, test3, test4, test5, test6, test7 ] +# +# A call to ei_split_testsuite(3) creates the following targets with dependencies +# +# Target Dependencies +# ------ ------------ +# buildtestspart0 test1, test2 +# buildtestspart1 test3, test4 +# buildtestspart2 test5, test6, test7 +# +macro(ei_split_testsuite num_splits) + get_property(EIGEN_TESTS_LIST GLOBAL PROPERTY EIGEN_TESTS_LIST) + + # Translate EIGEN_TESTS_LIST into a CMake list + string(REGEX REPLACE "\n" " " EIGEN_TESTS_LIST "${EIGEN_TESTS_LIST}") + set(EIGEN_TESTS_LIST "${EIGEN_TESTS_LIST}") + separate_arguments(EIGEN_TESTS_LIST) + + set(eigen_test_count "0") + foreach(t IN ITEMS ${EIGEN_TESTS_LIST}) + math(EXPR eigen_test_count "${eigen_test_count}+1") + endforeach() + + # Get number of tests per target + math(EXPR num_tests_per_target "${eigen_test_count}/${num_splits} - ${eigen_test_count}/${num_splits} % 1") + + set(test_idx "0") + math(EXPR target_bound "${num_splits}-1") + foreach(part RANGE "0" "${target_bound}") + # Create target + set(current_target "buildtestspart${part}") + add_custom_target("${current_target}") + math(EXPR upper_bound "${test_idx} + ${num_tests_per_target} - 1") + foreach(test_idx RANGE "${test_idx}" "${upper_bound}") + list(GET EIGEN_TESTS_LIST "${test_idx}" curr_test) + add_dependencies("${current_target}" "${curr_test}") + endforeach() + math(EXPR test_idx "${test_idx} + ${num_tests_per_target}") + endforeach() + + # Handle the possibly remaining tests + math(EXPR test_idx "${num_splits} * ${num_tests_per_target}") + math(EXPR target_bound "${eigen_test_count} - 1") + foreach(test_idx RANGE "${test_idx}" "${target_bound}") + list(GET EIGEN_TESTS_LIST "${test_idx}" curr_test) + add_dependencies("${current_target}" "${curr_test}") + endforeach() +endmacro(ei_split_testsuite num_splits) + +# Defines the custom command buildsmoketests to build a number of tests +# specified in smoke_test_list. +# +# Test in smoke_test_list can be either test targets (e.g. packetmath) or +# subtests targets (e.g. packetmath_2). If any of the test are not available +# in the current configuration they are just skipped. +# +# All tests added via this macro are labeled with the smoketest label. This +# allows running smoketests only using ctest. +# +# Smoke tests are intended to be run before the whole test suite is invoked, +# e.g., to smoke test patches. +macro(ei_add_smoke_tests smoke_test_list) + # Set the build target to build smoketests + set(buildtarget "buildsmoketests") + add_custom_target("${buildtarget}") + + # Get list of all tests and translate it into a CMake list + get_property(EIGEN_TESTS_LIST GLOBAL PROPERTY EIGEN_TESTS_LIST) + string(REGEX REPLACE "\n" " " EIGEN_TESTS_LIST "${EIGEN_TESTS_LIST}") + set(EIGEN_TESTS_LIST "${EIGEN_TESTS_LIST}") + separate_arguments(EIGEN_TESTS_LIST) + + # Check if the test in smoke_test_list is a currently valid test target + foreach(test IN ITEMS ${smoke_test_list}) + # Add tests in smoke_test_list to our smoke test target but only if the test + # is currently available, i.e., is in EIGEN_SUBTESTS_LIST + if ("${test}" IN_LIST EIGEN_TESTS_LIST) + add_dependencies("${buildtarget}" "${test}") + # In the case of a test we match all subtests + set(ctest_regex "${ctest_regex}^${test}_[0-9]+$$|") + endif() + endforeach() + + # Get list of all subtests and translate it into a CMake list + get_property(EIGEN_SUBTESTS_LIST GLOBAL PROPERTY EIGEN_SUBTESTS_LIST) + string(REGEX REPLACE "\n" " " EIGEN_SUBTESTS_LIST "${EIGEN_SUBTESTS_LIST}") + set(EIGEN_SUBTESTS_LIST "${EIGEN_SUBTESTS_LIST}") + separate_arguments(EIGEN_SUBTESTS_LIST) + + # Check if the test in smoke_test_list is a currently valid subtest target + foreach(test IN ITEMS ${smoke_test_list}) + # Add tests in smoke_test_list to our smoke test target but only if the test + # is currently available, i.e., is in EIGEN_SUBTESTS_LIST + if ("${test}" IN_LIST EIGEN_SUBTESTS_LIST) + add_dependencies("${buildtarget}" "${test}") + # Add label smoketest to be able to run smoketests using ctest + set_property(TEST ${test} APPEND PROPERTY LABELS "smoketest") + endif() + endforeach() +endmacro(ei_add_smoke_tests) diff --git a/include/eigen/cmake/EigenUninstall.cmake b/include/eigen/cmake/EigenUninstall.cmake new file mode 100644 index 0000000000000000000000000000000000000000..5e63c98d9974cdf7a5679690be9dbf7d78a02b30 --- /dev/null +++ b/include/eigen/cmake/EigenUninstall.cmake @@ -0,0 +1,40 @@ +################ CMake Uninstall Template ####################### +# CMake Template file for uninstallation of files +# mentioned in 'install_manifest.txt' +# +# Used by uinstall target +################################################################# + +set(MANIFEST "${CMAKE_CURRENT_BINARY_DIR}/install_manifest.txt") + +if(EXISTS ${MANIFEST}) + message(STATUS "============== Uninstalling Eigen ===================") + + file(STRINGS ${MANIFEST} files) + foreach(file ${files}) + if(EXISTS ${file}) + message(STATUS "Removing file: '${file}'") + + execute_process( + COMMAND ${CMAKE_COMMAND} -E remove ${file} + OUTPUT_VARIABLE rm_out + RESULT_VARIABLE rm_retval + ) + + if(NOT "${rm_retval}" STREQUAL 0) + message(FATAL_ERROR "Failed to remove file: '${file}'.") + endif() + else() + message(STATUS "File '${file}' does not exist.") + endif() + endforeach() + + message(STATUS "========== Finished Uninstalling Eigen ==============") +else() + message(STATUS "Cannot find install manifest: '${MANIFEST}'") + message(STATUS "Probably make install has not been performed") + message(STATUS " or install_manifest.txt has been deleted.") +endif() + + + diff --git a/include/eigen/cmake/FindCLANG_FORMAT.cmake b/include/eigen/cmake/FindCLANG_FORMAT.cmake new file mode 100644 index 0000000000000000000000000000000000000000..e00f19fe6384d02c7462e6e6609b2b8e225e9a5b --- /dev/null +++ b/include/eigen/cmake/FindCLANG_FORMAT.cmake @@ -0,0 +1,61 @@ + + +# Find clang-format +# +# CLANG_FORMAT_EXECUTABLE - Path to clang-format executable +# CLANG_FORMAT_FOUND - True if the clang-format executable was found. +# CLANG_FORMAT_VERSION - The version of clang-format found +# +# Copyright 2009-2020 The VOTCA Development Team (http://www.votca.org) +# +# Licensed under the Mozilla Public License Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.mozilla.org/en-US/MPL/2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +find_program(CLANG_FORMAT_EXECUTABLE + NAMES + clang-format-9 + clang-format + clang-format-11 + clang-format-10 + clang-format-8 + clang-format-7 + + DOC "clang-format executable") +mark_as_advanced(CLANG_FORMAT_EXECUTABLE) + +# Extract version from command "clang-format -version" +if(CLANG_FORMAT_EXECUTABLE) + execute_process(COMMAND ${CLANG_FORMAT_EXECUTABLE} -version + OUTPUT_VARIABLE clang_format_version + ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) + + if(clang_format_version MATCHES "^.*clang-format version .*") + # clang_format_version sample: "clang-format version 3.9.1-4ubuntu3~16.04.1 + # (tags/RELEASE_391/rc2)" + string(REGEX + REPLACE "^.*clang-format version ([.0-9]+).*" + "\\1" + CLANG_FORMAT_VERSION + "${clang_format_version}") + # CLANG_FORMAT_VERSION sample: "3.9.1" + else() + set(CLANG_FORMAT_VERSION 0.0) + endif() +else() + set(CLANG_FORMAT_VERSION 0.0) +endif() + +include(FindPackageHandleStandardArgs) +# handle the QUIETLY and REQUIRED arguments and set CLANG_FORMAT_FOUND to TRUE +# if all listed variables are TRUE +find_package_handle_standard_args(CLANG_FORMAT REQUIRED_VARS CLANG_FORMAT_EXECUTABLE VERSION_VAR CLANG_FORMAT_VERSION) diff --git a/include/eigen/cmake/FindEigen3.cmake b/include/eigen/cmake/FindEigen3.cmake new file mode 100644 index 0000000000000000000000000000000000000000..0b36805e75ec37ba2af7a8fe9c8036f73558a618 --- /dev/null +++ b/include/eigen/cmake/FindEigen3.cmake @@ -0,0 +1,107 @@ +# - Try to find Eigen3 lib +# +# This module supports requiring a minimum version, e.g. you can do +# find_package(Eigen3 3.1.2) +# to require version 3.1.2 or newer of Eigen3. +# +# Once done this will define +# +# EIGEN3_FOUND - system has eigen lib with correct version +# EIGEN3_INCLUDE_DIR - the eigen include directory +# EIGEN3_VERSION - eigen version +# +# and the following imported target: +# +# Eigen3::Eigen - The header-only Eigen library +# +# This module reads hints about search locations from +# the following environment variables: +# +# EIGEN3_ROOT +# EIGEN3_ROOT_DIR + +# Copyright (c) 2006, 2007 Montel Laurent, +# Copyright (c) 2008, 2009 Gael Guennebaud, +# Copyright (c) 2009 Benoit Jacob +# Redistribution and use is allowed according to the terms of the 2-clause BSD license. + +if(NOT Eigen3_FIND_VERSION) + if(NOT Eigen3_FIND_VERSION_MAJOR) + set(Eigen3_FIND_VERSION_MAJOR 2) + endif() + if(NOT Eigen3_FIND_VERSION_MINOR) + set(Eigen3_FIND_VERSION_MINOR 91) + endif() + if(NOT Eigen3_FIND_VERSION_PATCH) + set(Eigen3_FIND_VERSION_PATCH 0) + endif() + + set(Eigen3_FIND_VERSION "${Eigen3_FIND_VERSION_MAJOR}.${Eigen3_FIND_VERSION_MINOR}.${Eigen3_FIND_VERSION_PATCH}") +endif() + +macro(_eigen3_check_version) + file(READ "${EIGEN3_INCLUDE_DIR}/Eigen/src/Core/util/Macros.h" _eigen3_version_header) + + string(REGEX MATCH "define[ \t]+EIGEN_WORLD_VERSION[ \t]+([0-9]+)" _eigen3_world_version_match "${_eigen3_version_header}") + set(EIGEN3_WORLD_VERSION "${CMAKE_MATCH_1}") + string(REGEX MATCH "define[ \t]+EIGEN_MAJOR_VERSION[ \t]+([0-9]+)" _eigen3_major_version_match "${_eigen3_version_header}") + set(EIGEN3_MAJOR_VERSION "${CMAKE_MATCH_1}") + string(REGEX MATCH "define[ \t]+EIGEN_MINOR_VERSION[ \t]+([0-9]+)" _eigen3_minor_version_match "${_eigen3_version_header}") + set(EIGEN3_MINOR_VERSION "${CMAKE_MATCH_1}") + + set(EIGEN3_VERSION ${EIGEN3_WORLD_VERSION}.${EIGEN3_MAJOR_VERSION}.${EIGEN3_MINOR_VERSION}) + if(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION}) + set(EIGEN3_VERSION_OK FALSE) + else() + set(EIGEN3_VERSION_OK TRUE) + endif() + + if(NOT EIGEN3_VERSION_OK) + + message(STATUS "Eigen3 version ${EIGEN3_VERSION} found in ${EIGEN3_INCLUDE_DIR}, " + "but at least version ${Eigen3_FIND_VERSION} is required") + endif() +endmacro() + +if (EIGEN3_INCLUDE_DIR) + + # in cache already + _eigen3_check_version() + set(EIGEN3_FOUND ${EIGEN3_VERSION_OK}) + set(Eigen3_FOUND ${EIGEN3_VERSION_OK}) + +else () + + # search first if an Eigen3Config.cmake is available in the system, + # if successful this would set EIGEN3_INCLUDE_DIR and the rest of + # the script will work as usual + find_package(Eigen3 ${Eigen3_FIND_VERSION} NO_MODULE QUIET) + + if(NOT EIGEN3_INCLUDE_DIR) + find_path(EIGEN3_INCLUDE_DIR NAMES signature_of_eigen3_matrix_library + HINTS + ENV EIGEN3_ROOT + ENV EIGEN3_ROOT_DIR + PATHS + ${CMAKE_INSTALL_PREFIX}/include + ${KDE4_INCLUDE_DIR} + PATH_SUFFIXES eigen3 eigen + ) + endif() + + if(EIGEN3_INCLUDE_DIR) + _eigen3_check_version() + endif() + + include(FindPackageHandleStandardArgs) + find_package_handle_standard_args(Eigen3 DEFAULT_MSG EIGEN3_INCLUDE_DIR EIGEN3_VERSION_OK) + + mark_as_advanced(EIGEN3_INCLUDE_DIR) + +endif() + +if(EIGEN3_FOUND AND NOT TARGET Eigen3::Eigen) + add_library(Eigen3::Eigen INTERFACE IMPORTED) + set_target_properties(Eigen3::Eigen PROPERTIES + INTERFACE_INCLUDE_DIRECTORIES "${EIGEN3_INCLUDE_DIR}") +endif() diff --git a/include/eigen/cmake/FindFFTW.cmake b/include/eigen/cmake/FindFFTW.cmake new file mode 100644 index 0000000000000000000000000000000000000000..ed55c5fad6baa31628a2327541a03c1701055566 --- /dev/null +++ b/include/eigen/cmake/FindFFTW.cmake @@ -0,0 +1,120 @@ +# - Find the FFTW library +# +# Usage: +# find_package(FFTW [REQUIRED] [QUIET] ) +# +# It sets the following variables: +# FFTW_FOUND ... true if fftw is found on the system +# FFTW_LIBRARIES ... full path to fftw library +# FFTW_INCLUDES ... fftw include directory +# +# The following variables will be checked by the function +# FFTW_USE_STATIC_LIBS ... if true, only static libraries are found +# FFTW_ROOT ... if set, the libraries are exclusively searched +# under this path +# FFTW_LIBRARY ... fftw library to use +# FFTW_INCLUDE_DIR ... fftw include directory +# + +#If environment variable FFTWDIR is specified, it has same effect as FFTW_ROOT +if( NOT FFTW_ROOT AND ENV{FFTWDIR} ) + set( FFTW_ROOT $ENV{FFTWDIR} ) +endif() + +# Check if we can use PkgConfig +include(CMakeFindDependencyMacro) +find_dependency(PkgConfig) + +#Determine from PKG +if( PKG_CONFIG_FOUND AND NOT FFTW_ROOT ) + pkg_check_modules( PKG_FFTW QUIET "fftw3" ) +endif() + +#Check whether to search static or dynamic libs +set( CMAKE_FIND_LIBRARY_SUFFIXES_SAV ${CMAKE_FIND_LIBRARY_SUFFIXES} ) + +if( ${FFTW_USE_STATIC_LIBS} ) + set( CMAKE_FIND_LIBRARY_SUFFIXES ${CMAKE_STATIC_LIBRARY_SUFFIX} ) +else() + set( CMAKE_FIND_LIBRARY_SUFFIXES ${CMAKE_SHARED_LIBRARY_SUFFIX} ) +endif() + +if( FFTW_ROOT ) + + #find libs + find_library( + FFTW_LIB + NAMES "fftw3" + PATHS ${FFTW_ROOT} + PATH_SUFFIXES "lib" "lib64" + NO_DEFAULT_PATH + ) + + find_library( + FFTWF_LIB + NAMES "fftw3f" + PATHS ${FFTW_ROOT} + PATH_SUFFIXES "lib" "lib64" + NO_DEFAULT_PATH + ) + + find_library( + FFTWL_LIB + NAMES "fftw3l" + PATHS ${FFTW_ROOT} + PATH_SUFFIXES "lib" "lib64" + NO_DEFAULT_PATH + ) + + #find includes + find_path( + FFTW_INCLUDES + NAMES "fftw3.h" + PATHS ${FFTW_ROOT} + PATH_SUFFIXES "include" + NO_DEFAULT_PATH + ) + +else() + + find_library( + FFTW_LIB + NAMES "fftw3" + PATHS ${PKG_FFTW_LIBRARY_DIRS} ${LIB_INSTALL_DIR} + ) + + find_library( + FFTWF_LIB + NAMES "fftw3f" + PATHS ${PKG_FFTW_LIBRARY_DIRS} ${LIB_INSTALL_DIR} + ) + + + find_library( + FFTWL_LIB + NAMES "fftw3l" + PATHS ${PKG_FFTW_LIBRARY_DIRS} ${LIB_INSTALL_DIR} + ) + + find_path( + FFTW_INCLUDES + NAMES "fftw3.h" + PATHS ${PKG_FFTW_INCLUDE_DIRS} ${INCLUDE_INSTALL_DIR} + ) + +endif() + +set(FFTW_LIBRARIES ${FFTW_LIB} ${FFTWF_LIB}) + +if(FFTWL_LIB) + set(FFTW_LIBRARIES ${FFTW_LIBRARIES} ${FFTWL_LIB}) +endif() + +set( CMAKE_FIND_LIBRARY_SUFFIXES ${CMAKE_FIND_LIBRARY_SUFFIXES_SAV} ) + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(FFTW DEFAULT_MSG + FFTW_INCLUDES FFTW_LIBRARIES) + +mark_as_advanced(FFTW_INCLUDES FFTW_LIBRARIES FFTW_LIB FFTWF_LIB FFTWL_LIB) + diff --git a/include/eigen/cmake/FindGoogleHash.cmake b/include/eigen/cmake/FindGoogleHash.cmake new file mode 100644 index 0000000000000000000000000000000000000000..481eb4dad5fa234672600d5de7f62320ad5984ab --- /dev/null +++ b/include/eigen/cmake/FindGoogleHash.cmake @@ -0,0 +1,23 @@ + +if (GOOGLEHASH_INCLUDES AND GOOGLEHASH_LIBRARIES) + set(GOOGLEHASH_FIND_QUIETLY TRUE) +endif () + +find_path(GOOGLEHASH_INCLUDES + NAMES + google/dense_hash_map + PATHS + ${INCLUDE_INSTALL_DIR} +) + +if(GOOGLEHASH_INCLUDES) + # let's make sure it compiles with the current compiler + file(WRITE ${CMAKE_BINARY_DIR}/googlehash_test.cpp + "#include \n#include \nint main(int argc, char** argv) { google::dense_hash_map a; google::sparse_hash_map b; return 0;}\n") + try_compile(GOOGLEHASH_COMPILE ${CMAKE_BINARY_DIR} ${CMAKE_BINARY_DIR}/googlehash_test.cpp OUTPUT_VARIABLE GOOGLEHASH_COMPILE_RESULT) +endif() + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(GoogleHash DEFAULT_MSG GOOGLEHASH_INCLUDES GOOGLEHASH_COMPILE) + +mark_as_advanced(GOOGLEHASH_INCLUDES) diff --git a/include/eigen/cmake/FindKLU.cmake b/include/eigen/cmake/FindKLU.cmake new file mode 100644 index 0000000000000000000000000000000000000000..6217d14908fe3720af561c2101e91666bda2ee07 --- /dev/null +++ b/include/eigen/cmake/FindKLU.cmake @@ -0,0 +1,48 @@ +# KLU lib usually requires linking to a blas library. +# It is up to the user of this module to find a BLAS and link to it. + +if (KLU_INCLUDES AND KLU_LIBRARIES) + set(KLU_FIND_QUIETLY TRUE) +endif () + +find_path(KLU_INCLUDES + NAMES + klu.h + PATHS + $ENV{KLUDIR} + ${INCLUDE_INSTALL_DIR} + PATH_SUFFIXES + suitesparse + ufsparse +) + +find_library(KLU_LIBRARIES klu PATHS $ENV{KLUDIR} ${LIB_INSTALL_DIR}) + +if(KLU_LIBRARIES) + + if(NOT KLU_LIBDIR) + get_filename_component(KLU_LIBDIR ${KLU_LIBRARIES} PATH) + endif() + + find_library(COLAMD_LIBRARY colamd PATHS ${KLU_LIBDIR} $ENV{KLUDIR} ${LIB_INSTALL_DIR}) + if(COLAMD_LIBRARY) + set(KLU_LIBRARIES ${KLU_LIBRARIES} ${COLAMD_LIBRARY}) + endif () + + find_library(AMD_LIBRARY amd PATHS ${KLU_LIBDIR} $ENV{KLUDIR} ${LIB_INSTALL_DIR}) + if(AMD_LIBRARY) + set(KLU_LIBRARIES ${KLU_LIBRARIES} ${AMD_LIBRARY}) + endif () + + find_library(BTF_LIBRARY btf PATHS $ENV{KLU_LIBDIR} $ENV{KLUDIR} ${LIB_INSTALL_DIR}) + if(BTF_LIBRARY) + set(KLU_LIBRARIES ${KLU_LIBRARIES} ${BTF_LIBRARY}) + endif() + +endif() + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(KLU DEFAULT_MSG + KLU_INCLUDES KLU_LIBRARIES) + +mark_as_advanced(KLU_INCLUDES KLU_LIBRARIES AMD_LIBRARY COLAMD_LIBRARY BTF_LIBRARY) diff --git a/include/eigen/cmake/FindMPFR.cmake b/include/eigen/cmake/FindMPFR.cmake new file mode 100644 index 0000000000000000000000000000000000000000..d8da9d6ff81105913c58741831e38d6abb803653 --- /dev/null +++ b/include/eigen/cmake/FindMPFR.cmake @@ -0,0 +1,83 @@ +# Try to find the MPFR library +# See http://www.mpfr.org/ +# +# This module supports requiring a minimum version, e.g. you can do +# find_package(MPFR 2.3.0) +# to require version 2.3.0 to newer of MPFR. +# +# Once done this will define +# +# MPFR_FOUND - system has MPFR lib with correct version +# MPFR_INCLUDES - the MPFR include directory +# MPFR_LIBRARIES - the MPFR library +# MPFR_VERSION - MPFR version + +# Copyright (c) 2006, 2007 Montel Laurent, +# Copyright (c) 2008, 2009 Gael Guennebaud, +# Copyright (c) 2010 Jitse Niesen, +# Redistribution and use is allowed according to the terms of the BSD license. + +# Set MPFR_INCLUDES + +find_path(MPFR_INCLUDES + NAMES + mpfr.h + PATHS + $ENV{GMPDIR} + ${INCLUDE_INSTALL_DIR} +) + +# Set MPFR_FIND_VERSION to 1.0.0 if no minimum version is specified + +if(NOT MPFR_FIND_VERSION) + if(NOT MPFR_FIND_VERSION_MAJOR) + set(MPFR_FIND_VERSION_MAJOR 1) + endif() + if(NOT MPFR_FIND_VERSION_MINOR) + set(MPFR_FIND_VERSION_MINOR 0) + endif() + if(NOT MPFR_FIND_VERSION_PATCH) + set(MPFR_FIND_VERSION_PATCH 0) + endif() + + set(MPFR_FIND_VERSION "${MPFR_FIND_VERSION_MAJOR}.${MPFR_FIND_VERSION_MINOR}.${MPFR_FIND_VERSION_PATCH}") +endif() + + +if(MPFR_INCLUDES) + + # Set MPFR_VERSION + + file(READ "${MPFR_INCLUDES}/mpfr.h" _mpfr_version_header) + + string(REGEX MATCH "define[ \t]+MPFR_VERSION_MAJOR[ \t]+([0-9]+)" _mpfr_major_version_match "${_mpfr_version_header}") + set(MPFR_MAJOR_VERSION "${CMAKE_MATCH_1}") + string(REGEX MATCH "define[ \t]+MPFR_VERSION_MINOR[ \t]+([0-9]+)" _mpfr_minor_version_match "${_mpfr_version_header}") + set(MPFR_MINOR_VERSION "${CMAKE_MATCH_1}") + string(REGEX MATCH "define[ \t]+MPFR_VERSION_PATCHLEVEL[ \t]+([0-9]+)" _mpfr_patchlevel_version_match "${_mpfr_version_header}") + set(MPFR_PATCHLEVEL_VERSION "${CMAKE_MATCH_1}") + + set(MPFR_VERSION ${MPFR_MAJOR_VERSION}.${MPFR_MINOR_VERSION}.${MPFR_PATCHLEVEL_VERSION}) + + # Check whether found version exceeds minimum version + + if(${MPFR_VERSION} VERSION_LESS ${MPFR_FIND_VERSION}) + set(MPFR_VERSION_OK FALSE) + message(STATUS "MPFR version ${MPFR_VERSION} found in ${MPFR_INCLUDES}, " + "but at least version ${MPFR_FIND_VERSION} is required") + else() + set(MPFR_VERSION_OK TRUE) + endif() + +endif() + +# Set MPFR_LIBRARIES + +find_library(MPFR_LIBRARIES mpfr PATHS $ENV{GMPDIR} ${LIB_INSTALL_DIR}) + +# Epilogue + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(MPFR DEFAULT_MSG + MPFR_INCLUDES MPFR_LIBRARIES MPFR_VERSION_OK) +mark_as_advanced(MPFR_INCLUDES MPFR_LIBRARIES) diff --git a/include/eigen/cmake/FindPTSCOTCH.cmake b/include/eigen/cmake/FindPTSCOTCH.cmake new file mode 100644 index 0000000000000000000000000000000000000000..6ccc743e68cc5711fce90bf74ccb611cebd4759d --- /dev/null +++ b/include/eigen/cmake/FindPTSCOTCH.cmake @@ -0,0 +1,422 @@ +### +# +# @copyright (c) 2009-2014 The University of Tennessee and The University +# of Tennessee Research Foundation. +# All rights reserved. +# @copyright (c) 2012-2016 Inria. All rights reserved. +# @copyright (c) 2012-2014 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved. +# +### +# +# - Find PTSCOTCH include dirs and libraries +# Use this module by invoking find_package with the form: +# find_package(PTSCOTCH +# [REQUIRED] # Fail with error if ptscotch is not found +# [COMPONENTS ...] # dependencies +# ) +# +# PTSCOTCH depends on the following libraries: +# - Threads +# - MPI +# +# COMPONENTS can be some of the following: +# - ESMUMPS: to activate detection of PT-Scotch with the esmumps interface +# +# This module finds headers and ptscotch library. +# Results are reported in variables: +# PTSCOTCH_FOUND - True if headers and requested libraries were found +# PTSCOTCH_LINKER_FLAGS - list of required linker flags (excluding -l and -L) +# PTSCOTCH_INCLUDE_DIRS - ptscotch include directories +# PTSCOTCH_LIBRARY_DIRS - Link directories for ptscotch libraries +# PTSCOTCH_LIBRARIES - ptscotch component libraries to be linked +# PTSCOTCH_INCLUDE_DIRS_DEP - ptscotch + dependencies include directories +# PTSCOTCH_LIBRARY_DIRS_DEP - ptscotch + dependencies link directories +# PTSCOTCH_LIBRARIES_DEP - ptscotch libraries + dependencies +# PTSCOTCH_INTSIZE - Number of octets occupied by a SCOTCH_Num +# +# The user can give specific paths where to find the libraries adding cmake +# options at configure (ex: cmake path/to/project -DPTSCOTCH=path/to/ptscotch): +# PTSCOTCH_DIR - Where to find the base directory of ptscotch +# PTSCOTCH_INCDIR - Where to find the header files +# PTSCOTCH_LIBDIR - Where to find the library files +# The module can also look for the following environment variables if paths +# are not given as cmake variable: PTSCOTCH_DIR, PTSCOTCH_INCDIR, PTSCOTCH_LIBDIR + +#============================================================================= +# Copyright 2012-2013 Inria +# Copyright 2012-2013 Emmanuel Agullo +# Copyright 2012-2013 Mathieu Faverge +# Copyright 2012 Cedric Castagnede +# Copyright 2013-2016 Florent Pruvost +# +# Distributed under the OSI-approved BSD License (the "License"); +# see accompanying file MORSE-Copyright.txt for details. +# +# This software is distributed WITHOUT ANY WARRANTY; without even the +# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the License for more information. +#============================================================================= +# (To distribute this file outside of Morse, substitute the full +# License text for the above reference.) + +if (NOT PTSCOTCH_FOUND) + set(PTSCOTCH_DIR "" CACHE PATH "Installation directory of PTSCOTCH library") + if (NOT PTSCOTCH_FIND_QUIETLY) + message(STATUS "A cache variable, namely PTSCOTCH_DIR, has been set to specify the install directory of PTSCOTCH") + endif() +endif() + +# Set the version to find +set(PTSCOTCH_LOOK_FOR_ESMUMPS OFF) + +if( PTSCOTCH_FIND_COMPONENTS ) + foreach( component ${PTSCOTCH_FIND_COMPONENTS} ) + if (${component} STREQUAL "ESMUMPS") + # means we look for esmumps library + set(PTSCOTCH_LOOK_FOR_ESMUMPS ON) + endif() + endforeach() +endif() + +# PTSCOTCH depends on Threads, try to find it +include(CMakeFindDependencyMacro) +if (NOT THREADS_FOUND) + if (PTSCOTCH_FIND_REQUIRED) + find_dependency(Threads REQUIRED) + else() + find_dependency(Threads) + endif() +endif() + +# PTSCOTCH depends on MPI, try to find it +if (NOT MPI_FOUND) + if (PTSCOTCH_FIND_REQUIRED) + find_dependency(MPI REQUIRED) + else() + find_dependency(MPI) + endif() +endif() + +# Looking for include +# ------------------- + +# Add system include paths to search include +# ------------------------------------------ +unset(_inc_env) +set(ENV_PTSCOTCH_DIR "$ENV{PTSCOTCH_DIR}") +set(ENV_PTSCOTCH_INCDIR "$ENV{PTSCOTCH_INCDIR}") +if(ENV_PTSCOTCH_INCDIR) + list(APPEND _inc_env "${ENV_PTSCOTCH_INCDIR}") +elseif(ENV_PTSCOTCH_DIR) + list(APPEND _inc_env "${ENV_PTSCOTCH_DIR}") + list(APPEND _inc_env "${ENV_PTSCOTCH_DIR}/include") + list(APPEND _inc_env "${ENV_PTSCOTCH_DIR}/include/ptscotch") +else() + if(WIN32) + string(REPLACE ":" ";" _inc_env "$ENV{INCLUDE}") + else() + string(REPLACE ":" ";" _path_env "$ENV{INCLUDE}") + list(APPEND _inc_env "${_path_env}") + string(REPLACE ":" ";" _path_env "$ENV{C_INCLUDE_PATH}") + list(APPEND _inc_env "${_path_env}") + string(REPLACE ":" ";" _path_env "$ENV{CPATH}") + list(APPEND _inc_env "${_path_env}") + string(REPLACE ":" ";" _path_env "$ENV{INCLUDE_PATH}") + list(APPEND _inc_env "${_path_env}") + endif() +endif() +list(APPEND _inc_env "${CMAKE_PLATFORM_IMPLICIT_INCLUDE_DIRECTORIES}") +list(APPEND _inc_env "${CMAKE_C_IMPLICIT_INCLUDE_DIRECTORIES}") +list(REMOVE_DUPLICATES _inc_env) + + +# Try to find the ptscotch header in the given paths +# ------------------------------------------------- + +set(PTSCOTCH_hdrs_to_find "ptscotch.h;scotch.h") + +# call cmake macro to find the header path +if(PTSCOTCH_INCDIR) + foreach(ptscotch_hdr ${PTSCOTCH_hdrs_to_find}) + set(PTSCOTCH_${ptscotch_hdr}_DIRS "PTSCOTCH_${ptscotch_hdr}_DIRS-NOTFOUND") + find_path(PTSCOTCH_${ptscotch_hdr}_DIRS + NAMES ${ptscotch_hdr} + HINTS ${PTSCOTCH_INCDIR}) + mark_as_advanced(PTSCOTCH_${ptscotch_hdr}_DIRS) + endforeach() +else() + if(PTSCOTCH_DIR) + foreach(ptscotch_hdr ${PTSCOTCH_hdrs_to_find}) + set(PTSCOTCH_${ptscotch_hdr}_DIRS "PTSCOTCH_${ptscotch_hdr}_DIRS-NOTFOUND") + find_path(PTSCOTCH_${ptscotch_hdr}_DIRS + NAMES ${ptscotch_hdr} + HINTS ${PTSCOTCH_DIR} + PATH_SUFFIXES "include" "include/scotch") + mark_as_advanced(PTSCOTCH_${ptscotch_hdr}_DIRS) + endforeach() + else() + foreach(ptscotch_hdr ${PTSCOTCH_hdrs_to_find}) + set(PTSCOTCH_${ptscotch_hdr}_DIRS "PTSCOTCH_${ptscotch_hdr}_DIRS-NOTFOUND") + find_path(PTSCOTCH_${ptscotch_hdr}_DIRS + NAMES ${ptscotch_hdr} + HINTS ${_inc_env} + PATH_SUFFIXES "scotch") + mark_as_advanced(PTSCOTCH_${ptscotch_hdr}_DIRS) + endforeach() + endif() +endif() + +# If found, add path to cmake variable +# ------------------------------------ +foreach(ptscotch_hdr ${PTSCOTCH_hdrs_to_find}) + if (PTSCOTCH_${ptscotch_hdr}_DIRS) + list(APPEND PTSCOTCH_INCLUDE_DIRS "${PTSCOTCH_${ptscotch_hdr}_DIRS}") + else () + if (NOT PTSCOTCH_FIND_QUIETLY) + message(STATUS "Looking for ptscotch -- ${ptscotch_hdr} not found") + endif() + endif() +endforeach() +list(REMOVE_DUPLICATES PTSCOTCH_INCLUDE_DIRS) + +# Looking for lib +# --------------- + +# Add system library paths to search lib +# -------------------------------------- +unset(_lib_env) +set(ENV_PTSCOTCH_LIBDIR "$ENV{PTSCOTCH_LIBDIR}") +if(ENV_PTSCOTCH_LIBDIR) + list(APPEND _lib_env "${ENV_PTSCOTCH_LIBDIR}") +elseif(ENV_PTSCOTCH_DIR) + list(APPEND _lib_env "${ENV_PTSCOTCH_DIR}") + list(APPEND _lib_env "${ENV_PTSCOTCH_DIR}/lib") +else() + if(WIN32) + string(REPLACE ":" ";" _lib_env "$ENV{LIB}") + else() + if(APPLE) + string(REPLACE ":" ";" _lib_env "$ENV{DYLD_LIBRARY_PATH}") + else() + string(REPLACE ":" ";" _lib_env "$ENV{LD_LIBRARY_PATH}") + endif() + list(APPEND _lib_env "${CMAKE_PLATFORM_IMPLICIT_LINK_DIRECTORIES}") + list(APPEND _lib_env "${CMAKE_C_IMPLICIT_LINK_DIRECTORIES}") + endif() +endif() +list(REMOVE_DUPLICATES _lib_env) + +# Try to find the ptscotch lib in the given paths +# ---------------------------------------------- + +set(PTSCOTCH_libs_to_find "ptscotch;ptscotcherr") +if (PTSCOTCH_LOOK_FOR_ESMUMPS) + list(INSERT PTSCOTCH_libs_to_find 0 "ptesmumps") + list(APPEND PTSCOTCH_libs_to_find "esmumps" ) +endif() +list(APPEND PTSCOTCH_libs_to_find "scotch;scotcherr") + +# call cmake macro to find the lib path +if(PTSCOTCH_LIBDIR) + foreach(ptscotch_lib ${PTSCOTCH_libs_to_find}) + set(PTSCOTCH_${ptscotch_lib}_LIBRARY "PTSCOTCH_${ptscotch_lib}_LIBRARY-NOTFOUND") + find_library(PTSCOTCH_${ptscotch_lib}_LIBRARY + NAMES ${ptscotch_lib} + HINTS ${PTSCOTCH_LIBDIR}) + endforeach() +else() + if(PTSCOTCH_DIR) + foreach(ptscotch_lib ${PTSCOTCH_libs_to_find}) + set(PTSCOTCH_${ptscotch_lib}_LIBRARY "PTSCOTCH_${ptscotch_lib}_LIBRARY-NOTFOUND") + find_library(PTSCOTCH_${ptscotch_lib}_LIBRARY + NAMES ${ptscotch_lib} + HINTS ${PTSCOTCH_DIR} + PATH_SUFFIXES lib lib32 lib64) + endforeach() + else() + foreach(ptscotch_lib ${PTSCOTCH_libs_to_find}) + set(PTSCOTCH_${ptscotch_lib}_LIBRARY "PTSCOTCH_${ptscotch_lib}_LIBRARY-NOTFOUND") + find_library(PTSCOTCH_${ptscotch_lib}_LIBRARY + NAMES ${ptscotch_lib} + HINTS ${_lib_env}) + endforeach() + endif() +endif() + +set(PTSCOTCH_LIBRARIES "") +set(PTSCOTCH_LIBRARY_DIRS "") +# If found, add path to cmake variable +# ------------------------------------ +foreach(ptscotch_lib ${PTSCOTCH_libs_to_find}) + + if (PTSCOTCH_${ptscotch_lib}_LIBRARY) + get_filename_component(${ptscotch_lib}_lib_path "${PTSCOTCH_${ptscotch_lib}_LIBRARY}" PATH) + # set cmake variables + list(APPEND PTSCOTCH_LIBRARIES "${PTSCOTCH_${ptscotch_lib}_LIBRARY}") + list(APPEND PTSCOTCH_LIBRARY_DIRS "${${ptscotch_lib}_lib_path}") + else () + if (NOT PTSCOTCH_FIND_QUIETLY) + message(STATUS "Looking for ptscotch -- lib ${ptscotch_lib} not found") + endif() + endif () + + mark_as_advanced(PTSCOTCH_${ptscotch_lib}_LIBRARY) + +endforeach() +list(REMOVE_DUPLICATES PTSCOTCH_LIBRARY_DIRS) + +# check a function to validate the find +if(PTSCOTCH_LIBRARIES) + + set(REQUIRED_LDFLAGS) + set(REQUIRED_INCDIRS) + set(REQUIRED_LIBDIRS) + set(REQUIRED_LIBS) + + # PTSCOTCH + if (PTSCOTCH_INCLUDE_DIRS) + set(REQUIRED_INCDIRS "${PTSCOTCH_INCLUDE_DIRS}") + endif() + if (PTSCOTCH_LIBRARY_DIRS) + set(REQUIRED_LIBDIRS "${PTSCOTCH_LIBRARY_DIRS}") + endif() + set(REQUIRED_LIBS "${PTSCOTCH_LIBRARIES}") + # MPI + if (MPI_FOUND) + if (MPI_C_INCLUDE_PATH) + list(APPEND CMAKE_REQUIRED_INCLUDES "${MPI_C_INCLUDE_PATH}") + endif() + if (MPI_C_LINK_FLAGS) + if (${MPI_C_LINK_FLAGS} MATCHES " -") + string(REGEX REPLACE " -" "-" MPI_C_LINK_FLAGS ${MPI_C_LINK_FLAGS}) + endif() + list(APPEND REQUIRED_LDFLAGS "${MPI_C_LINK_FLAGS}") + endif() + list(APPEND REQUIRED_LIBS "${MPI_C_LIBRARIES}") + endif() + # THREADS + if(CMAKE_THREAD_LIBS_INIT) + list(APPEND REQUIRED_LIBS "${CMAKE_THREAD_LIBS_INIT}") + endif() + set(Z_LIBRARY "Z_LIBRARY-NOTFOUND") + find_library(Z_LIBRARY NAMES z) + mark_as_advanced(Z_LIBRARY) + if(Z_LIBRARY) + list(APPEND REQUIRED_LIBS "-lz") + endif() + set(M_LIBRARY "M_LIBRARY-NOTFOUND") + find_library(M_LIBRARY NAMES m) + mark_as_advanced(M_LIBRARY) + if(M_LIBRARY) + list(APPEND REQUIRED_LIBS "-lm") + endif() + set(RT_LIBRARY "RT_LIBRARY-NOTFOUND") + find_library(RT_LIBRARY NAMES rt) + mark_as_advanced(RT_LIBRARY) + if(RT_LIBRARY) + list(APPEND REQUIRED_LIBS "-lrt") + endif() + + # set required libraries for link + set(CMAKE_REQUIRED_INCLUDES "${REQUIRED_INCDIRS}") + set(CMAKE_REQUIRED_LIBRARIES) + list(APPEND CMAKE_REQUIRED_LIBRARIES "${REQUIRED_LDFLAGS}") + foreach(lib_dir ${REQUIRED_LIBDIRS}) + list(APPEND CMAKE_REQUIRED_LIBRARIES "-L${lib_dir}") + endforeach() + list(APPEND CMAKE_REQUIRED_LIBRARIES "${REQUIRED_LIBS}") + list(APPEND CMAKE_REQUIRED_FLAGS "${REQUIRED_FLAGS}") + string(REGEX REPLACE "^ -" "-" CMAKE_REQUIRED_LIBRARIES "${CMAKE_REQUIRED_LIBRARIES}") + + # test link + unset(PTSCOTCH_WORKS CACHE) + include(CheckFunctionExists) + check_function_exists(SCOTCH_dgraphInit PTSCOTCH_WORKS) + mark_as_advanced(PTSCOTCH_WORKS) + + if(PTSCOTCH_WORKS) + # save link with dependencies + set(PTSCOTCH_LIBRARIES_DEP "${REQUIRED_LIBS}") + set(PTSCOTCH_LIBRARY_DIRS_DEP "${REQUIRED_LIBDIRS}") + set(PTSCOTCH_INCLUDE_DIRS_DEP "${REQUIRED_INCDIRS}") + set(PTSCOTCH_LINKER_FLAGS "${REQUIRED_LDFLAGS}") + list(REMOVE_DUPLICATES PTSCOTCH_LIBRARY_DIRS_DEP) + list(REMOVE_DUPLICATES PTSCOTCH_INCLUDE_DIRS_DEP) + list(REMOVE_DUPLICATES PTSCOTCH_LINKER_FLAGS) + else() + if(NOT PTSCOTCH_FIND_QUIETLY) + message(STATUS "Looking for PTSCOTCH : test of SCOTCH_dgraphInit with PTSCOTCH library fails") + message(STATUS "CMAKE_REQUIRED_LIBRARIES: ${CMAKE_REQUIRED_LIBRARIES}") + message(STATUS "CMAKE_REQUIRED_INCLUDES: ${CMAKE_REQUIRED_INCLUDES}") + message(STATUS "Check in CMakeFiles/CMakeError.log to figure out why it fails") + endif() + endif() + set(CMAKE_REQUIRED_INCLUDES) + set(CMAKE_REQUIRED_FLAGS) + set(CMAKE_REQUIRED_LIBRARIES) +endif() + +if (PTSCOTCH_LIBRARIES) + list(GET PTSCOTCH_LIBRARIES 0 first_lib) + get_filename_component(first_lib_path "${first_lib}" PATH) + if (${first_lib_path} MATCHES "/lib(32|64)?$") + string(REGEX REPLACE "/lib(32|64)?$" "" not_cached_dir "${first_lib_path}") + set(PTSCOTCH_DIR_FOUND "${not_cached_dir}" CACHE PATH "Installation directory of PTSCOTCH library" FORCE) + else() + set(PTSCOTCH_DIR_FOUND "${first_lib_path}" CACHE PATH "Installation directory of PTSCOTCH library" FORCE) + endif() +endif() +mark_as_advanced(PTSCOTCH_DIR) +mark_as_advanced(PTSCOTCH_DIR_FOUND) + +# Check the size of SCOTCH_Num +# --------------------------------- +set(CMAKE_REQUIRED_INCLUDES ${PTSCOTCH_INCLUDE_DIRS}) + +include(CheckCSourceRuns) +#stdio.h and stdint.h should be included by scotch.h directly +set(PTSCOTCH_C_TEST_SCOTCH_Num_4 " +#include +#include +#include +int main(int argc, char **argv) { + if (sizeof(SCOTCH_Num) == 4) + return 0; + else + return 1; +} +") + +set(PTSCOTCH_C_TEST_SCOTCH_Num_8 " +#include +#include +#include +int main(int argc, char **argv) { + if (sizeof(SCOTCH_Num) == 8) + return 0; + else + return 1; +} +") +check_c_source_runs("${PTSCOTCH_C_TEST_SCOTCH_Num_4}" PTSCOTCH_Num_4) +if(NOT PTSCOTCH_Num_4) + check_c_source_runs("${PTSCOTCH_C_TEST_SCOTCH_Num_8}" PTSCOTCH_Num_8) + if(NOT PTSCOTCH_Num_8) + set(PTSCOTCH_INTSIZE -1) + else() + set(PTSCOTCH_INTSIZE 8) + endif() +else() + set(PTSCOTCH_INTSIZE 4) +endif() +set(CMAKE_REQUIRED_INCLUDES "") + +# check that PTSCOTCH has been found +# --------------------------------- +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(PTSCOTCH DEFAULT_MSG + PTSCOTCH_LIBRARIES + PTSCOTCH_WORKS) +# +# TODO: Add possibility to check for specific functions in the library +# diff --git a/include/eigen/cmake/FindSCOTCH.cmake b/include/eigen/cmake/FindSCOTCH.cmake new file mode 100644 index 0000000000000000000000000000000000000000..11b971a926443aa415fb28759f6aa2f04f703e41 --- /dev/null +++ b/include/eigen/cmake/FindSCOTCH.cmake @@ -0,0 +1,370 @@ +### +# +# @copyright (c) 2009-2014 The University of Tennessee and The University +# of Tennessee Research Foundation. +# All rights reserved. +# @copyright (c) 2012-2014 Inria. All rights reserved. +# @copyright (c) 2012-2014 Bordeaux INP, CNRS (LaBRI UMR 5800), Inria, Univ. Bordeaux. All rights reserved. +# +### +# +# - Find SCOTCH include dirs and libraries +# Use this module by invoking find_package with the form: +# find_package(SCOTCH +# [REQUIRED] # Fail with error if scotch is not found +# [COMPONENTS ...] # dependencies +# ) +# +# COMPONENTS can be some of the following: +# - ESMUMPS: to activate detection of Scotch with the esmumps interface +# +# This module finds headers and scotch library. +# Results are reported in variables: +# SCOTCH_FOUND - True if headers and requested libraries were found +# SCOTCH_INCLUDE_DIRS - scotch include directories +# SCOTCH_LIBRARY_DIRS - Link directories for scotch libraries +# SCOTCH_LIBRARIES - scotch component libraries to be linked +# SCOTCH_INTSIZE - Number of octets occupied by a SCOTCH_Num +# +# The user can give specific paths where to find the libraries adding cmake +# options at configure (ex: cmake path/to/project -DSCOTCH=path/to/scotch): +# SCOTCH_DIR - Where to find the base directory of scotch +# SCOTCH_INCDIR - Where to find the header files +# SCOTCH_LIBDIR - Where to find the library files +# The module can also look for the following environment variables if paths +# are not given as cmake variable: SCOTCH_DIR, SCOTCH_INCDIR, SCOTCH_LIBDIR + +#============================================================================= +# Copyright 2012-2013 Inria +# Copyright 2012-2013 Emmanuel Agullo +# Copyright 2012-2013 Mathieu Faverge +# Copyright 2012 Cedric Castagnede +# Copyright 2013 Florent Pruvost +# +# Distributed under the OSI-approved BSD License (the "License"); +# see accompanying file MORSE-Copyright.txt for details. +# +# This software is distributed WITHOUT ANY WARRANTY; without even the +# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the License for more information. +#============================================================================= +# (To distribute this file outside of Morse, substitute the full +# License text for the above reference.) + +if (NOT SCOTCH_FOUND) + set(SCOTCH_DIR "" CACHE PATH "Installation directory of SCOTCH library") + if (NOT SCOTCH_FIND_QUIETLY) + message(STATUS "A cache variable, namely SCOTCH_DIR, has been set to specify the install directory of SCOTCH") + endif() +endif() + +# Set the version to find +set(SCOTCH_LOOK_FOR_ESMUMPS OFF) + +if( SCOTCH_FIND_COMPONENTS ) + foreach( component ${SCOTCH_FIND_COMPONENTS} ) + if (${component} STREQUAL "ESMUMPS") + # means we look for esmumps library + set(SCOTCH_LOOK_FOR_ESMUMPS ON) + endif() + endforeach() +endif() + +# SCOTCH may depend on Threads, try to find it +include(CMakeFindDependencyMacro) +if (NOT THREADS_FOUND) + if (SCOTCH_FIND_REQUIRED) + find_dependency(Threads REQUIRED) + else() + find_dependency(Threads) + endif() +endif() + +# Looking for include +# ------------------- + +# Add system include paths to search include +# ------------------------------------------ +unset(_inc_env) +set(ENV_SCOTCH_DIR "$ENV{SCOTCH_DIR}") +set(ENV_SCOTCH_INCDIR "$ENV{SCOTCH_INCDIR}") +if(ENV_SCOTCH_INCDIR) + list(APPEND _inc_env "${ENV_SCOTCH_INCDIR}") +elseif(ENV_SCOTCH_DIR) + list(APPEND _inc_env "${ENV_SCOTCH_DIR}") + list(APPEND _inc_env "${ENV_SCOTCH_DIR}/include") + list(APPEND _inc_env "${ENV_SCOTCH_DIR}/include/scotch") +else() + if(WIN32) + string(REPLACE ":" ";" _inc_env "$ENV{INCLUDE}") + else() + string(REPLACE ":" ";" _path_env "$ENV{INCLUDE}") + list(APPEND _inc_env "${_path_env}") + string(REPLACE ":" ";" _path_env "$ENV{C_INCLUDE_PATH}") + list(APPEND _inc_env "${_path_env}") + string(REPLACE ":" ";" _path_env "$ENV{CPATH}") + list(APPEND _inc_env "${_path_env}") + string(REPLACE ":" ";" _path_env "$ENV{INCLUDE_PATH}") + list(APPEND _inc_env "${_path_env}") + endif() +endif() +list(APPEND _inc_env "${CMAKE_PLATFORM_IMPLICIT_INCLUDE_DIRECTORIES}") +list(APPEND _inc_env "${CMAKE_C_IMPLICIT_INCLUDE_DIRECTORIES}") +list(REMOVE_DUPLICATES _inc_env) + + +# Try to find the scotch header in the given paths +# ------------------------------------------------- +# call cmake macro to find the header path +if(SCOTCH_INCDIR) + set(SCOTCH_scotch.h_DIRS "SCOTCH_scotch.h_DIRS-NOTFOUND") + find_path(SCOTCH_scotch.h_DIRS + NAMES scotch.h + HINTS ${SCOTCH_INCDIR}) +else() + if(SCOTCH_DIR) + set(SCOTCH_scotch.h_DIRS "SCOTCH_scotch.h_DIRS-NOTFOUND") + find_path(SCOTCH_scotch.h_DIRS + NAMES scotch.h + HINTS ${SCOTCH_DIR} + PATH_SUFFIXES "include" "include/scotch") + else() + set(SCOTCH_scotch.h_DIRS "SCOTCH_scotch.h_DIRS-NOTFOUND") + find_path(SCOTCH_scotch.h_DIRS + NAMES scotch.h + HINTS ${_inc_env} + PATH_SUFFIXES "scotch") + endif() +endif() +mark_as_advanced(SCOTCH_scotch.h_DIRS) + +# If found, add path to cmake variable +# ------------------------------------ +if (SCOTCH_scotch.h_DIRS) + set(SCOTCH_INCLUDE_DIRS "${SCOTCH_scotch.h_DIRS}") +else () + set(SCOTCH_INCLUDE_DIRS "SCOTCH_INCLUDE_DIRS-NOTFOUND") + if (NOT SCOTCH_FIND_QUIETLY) + message(STATUS "Looking for scotch -- scotch.h not found") + endif() +endif() +list(REMOVE_DUPLICATES SCOTCH_INCLUDE_DIRS) + +# Looking for lib +# --------------- + +# Add system library paths to search lib +# -------------------------------------- +unset(_lib_env) +set(ENV_SCOTCH_LIBDIR "$ENV{SCOTCH_LIBDIR}") +if(ENV_SCOTCH_LIBDIR) + list(APPEND _lib_env "${ENV_SCOTCH_LIBDIR}") +elseif(ENV_SCOTCH_DIR) + list(APPEND _lib_env "${ENV_SCOTCH_DIR}") + list(APPEND _lib_env "${ENV_SCOTCH_DIR}/lib") +else() + if(WIN32) + string(REPLACE ":" ";" _lib_env "$ENV{LIB}") + else() + if(APPLE) + string(REPLACE ":" ";" _lib_env "$ENV{DYLD_LIBRARY_PATH}") + else() + string(REPLACE ":" ";" _lib_env "$ENV{LD_LIBRARY_PATH}") + endif() + list(APPEND _lib_env "${CMAKE_PLATFORM_IMPLICIT_LINK_DIRECTORIES}") + list(APPEND _lib_env "${CMAKE_C_IMPLICIT_LINK_DIRECTORIES}") + endif() +endif() +list(REMOVE_DUPLICATES _lib_env) + +# Try to find the scotch lib in the given paths +# ---------------------------------------------- + +set(SCOTCH_libs_to_find "scotch;scotcherrexit") +if (SCOTCH_LOOK_FOR_ESMUMPS) + list(INSERT SCOTCH_libs_to_find 0 "esmumps") +endif() + +# call cmake macro to find the lib path +if(SCOTCH_LIBDIR) + foreach(scotch_lib ${SCOTCH_libs_to_find}) + set(SCOTCH_${scotch_lib}_LIBRARY "SCOTCH_${scotch_lib}_LIBRARY-NOTFOUND") + find_library(SCOTCH_${scotch_lib}_LIBRARY + NAMES ${scotch_lib} + HINTS ${SCOTCH_LIBDIR}) + endforeach() +else() + if(SCOTCH_DIR) + foreach(scotch_lib ${SCOTCH_libs_to_find}) + set(SCOTCH_${scotch_lib}_LIBRARY "SCOTCH_${scotch_lib}_LIBRARY-NOTFOUND") + find_library(SCOTCH_${scotch_lib}_LIBRARY + NAMES ${scotch_lib} + HINTS ${SCOTCH_DIR} + PATH_SUFFIXES lib lib32 lib64) + endforeach() + else() + foreach(scotch_lib ${SCOTCH_libs_to_find}) + set(SCOTCH_${scotch_lib}_LIBRARY "SCOTCH_${scotch_lib}_LIBRARY-NOTFOUND") + find_library(SCOTCH_${scotch_lib}_LIBRARY + NAMES ${scotch_lib} + HINTS ${_lib_env}) + endforeach() + endif() +endif() + +set(SCOTCH_LIBRARIES "") +set(SCOTCH_LIBRARY_DIRS "") +# If found, add path to cmake variable +# ------------------------------------ +foreach(scotch_lib ${SCOTCH_libs_to_find}) + + if (SCOTCH_${scotch_lib}_LIBRARY) + get_filename_component(${scotch_lib}_lib_path "${SCOTCH_${scotch_lib}_LIBRARY}" PATH) + # set cmake variables + list(APPEND SCOTCH_LIBRARIES "${SCOTCH_${scotch_lib}_LIBRARY}") + list(APPEND SCOTCH_LIBRARY_DIRS "${${scotch_lib}_lib_path}") + else () + list(APPEND SCOTCH_LIBRARIES "${SCOTCH_${scotch_lib}_LIBRARY}") + if (NOT SCOTCH_FIND_QUIETLY) + message(STATUS "Looking for scotch -- lib ${scotch_lib} not found") + endif() + endif () + + mark_as_advanced(SCOTCH_${scotch_lib}_LIBRARY) + +endforeach() +list(REMOVE_DUPLICATES SCOTCH_LIBRARY_DIRS) + +# check a function to validate the find +if(SCOTCH_LIBRARIES) + + set(REQUIRED_INCDIRS) + set(REQUIRED_LIBDIRS) + set(REQUIRED_LIBS) + + # SCOTCH + if (SCOTCH_INCLUDE_DIRS) + set(REQUIRED_INCDIRS "${SCOTCH_INCLUDE_DIRS}") + endif() + if (SCOTCH_LIBRARY_DIRS) + set(REQUIRED_LIBDIRS "${SCOTCH_LIBRARY_DIRS}") + endif() + set(REQUIRED_LIBS "${SCOTCH_LIBRARIES}") + # THREADS + if(CMAKE_THREAD_LIBS_INIT) + list(APPEND REQUIRED_LIBS "${CMAKE_THREAD_LIBS_INIT}") + endif() + set(Z_LIBRARY "Z_LIBRARY-NOTFOUND") + find_library(Z_LIBRARY NAMES z) + mark_as_advanced(Z_LIBRARY) + if(Z_LIBRARY) + list(APPEND REQUIRED_LIBS "-lz") + endif() + set(M_LIBRARY "M_LIBRARY-NOTFOUND") + find_library(M_LIBRARY NAMES m) + mark_as_advanced(M_LIBRARY) + if(M_LIBRARY) + list(APPEND REQUIRED_LIBS "-lm") + endif() + set(RT_LIBRARY "RT_LIBRARY-NOTFOUND") + find_library(RT_LIBRARY NAMES rt) + mark_as_advanced(RT_LIBRARY) + if(RT_LIBRARY) + list(APPEND REQUIRED_LIBS "-lrt") + endif() + + # set required libraries for link + set(CMAKE_REQUIRED_INCLUDES "${REQUIRED_INCDIRS}") + set(CMAKE_REQUIRED_LIBRARIES) + foreach(lib_dir ${REQUIRED_LIBDIRS}) + list(APPEND CMAKE_REQUIRED_LIBRARIES "-L${lib_dir}") + endforeach() + list(APPEND CMAKE_REQUIRED_LIBRARIES "${REQUIRED_LIBS}") + string(REGEX REPLACE "^ -" "-" CMAKE_REQUIRED_LIBRARIES "${CMAKE_REQUIRED_LIBRARIES}") + + # test link + unset(SCOTCH_WORKS CACHE) + include(CheckFunctionExists) + check_function_exists(SCOTCH_graphInit SCOTCH_WORKS) + mark_as_advanced(SCOTCH_WORKS) + + if(SCOTCH_WORKS) + # save link with dependencies + set(SCOTCH_LIBRARIES "${REQUIRED_LIBS}") + else() + if(NOT SCOTCH_FIND_QUIETLY) + message(STATUS "Looking for SCOTCH : test of SCOTCH_graphInit with SCOTCH library fails") + message(STATUS "CMAKE_REQUIRED_LIBRARIES: ${CMAKE_REQUIRED_LIBRARIES}") + message(STATUS "CMAKE_REQUIRED_INCLUDES: ${CMAKE_REQUIRED_INCLUDES}") + message(STATUS "Check in CMakeFiles/CMakeError.log to figure out why it fails") + endif() + endif() + set(CMAKE_REQUIRED_INCLUDES) + set(CMAKE_REQUIRED_FLAGS) + set(CMAKE_REQUIRED_LIBRARIES) +endif() + +if (SCOTCH_LIBRARIES) + list(GET SCOTCH_LIBRARIES 0 first_lib) + get_filename_component(first_lib_path "${first_lib}" PATH) + if (${first_lib_path} MATCHES "/lib(32|64)?$") + string(REGEX REPLACE "/lib(32|64)?$" "" not_cached_dir "${first_lib_path}") + set(SCOTCH_DIR_FOUND "${not_cached_dir}" CACHE PATH "Installation directory of SCOTCH library" FORCE) + else() + set(SCOTCH_DIR_FOUND "${first_lib_path}" CACHE PATH "Installation directory of SCOTCH library" FORCE) + endif() +endif() +mark_as_advanced(SCOTCH_DIR) +mark_as_advanced(SCOTCH_DIR_FOUND) + +# Check the size of SCOTCH_Num +# --------------------------------- +set(CMAKE_REQUIRED_INCLUDES ${SCOTCH_INCLUDE_DIRS}) + +include(CheckCSourceRuns) +#stdio.h and stdint.h should be included by scotch.h directly +set(SCOTCH_C_TEST_SCOTCH_Num_4 " +#include +#include +#include +int main(int argc, char **argv) { + if (sizeof(SCOTCH_Num) == 4) + return 0; + else + return 1; +} +") + +set(SCOTCH_C_TEST_SCOTCH_Num_8 " +#include +#include +#include +int main(int argc, char **argv) { + if (sizeof(SCOTCH_Num) == 8) + return 0; + else + return 1; +} +") +check_c_source_runs("${SCOTCH_C_TEST_SCOTCH_Num_4}" SCOTCH_Num_4) +if(NOT SCOTCH_Num_4) + check_c_source_runs("${SCOTCH_C_TEST_SCOTCH_Num_8}" SCOTCH_Num_8) + if(NOT SCOTCH_Num_8) + set(SCOTCH_INTSIZE -1) + else() + set(SCOTCH_INTSIZE 8) + endif() +else() + set(SCOTCH_INTSIZE 4) +endif() +set(CMAKE_REQUIRED_INCLUDES "") + +# check that SCOTCH has been found +# --------------------------------- +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(SCOTCH DEFAULT_MSG + SCOTCH_LIBRARIES + SCOTCH_WORKS) +# +# TODO: Add possibility to check for specific functions in the library +# diff --git a/include/eigen/cmake/FindSPQR.cmake b/include/eigen/cmake/FindSPQR.cmake new file mode 100644 index 0000000000000000000000000000000000000000..d6fb2e13d98065505bd959298ebeb9d488cb5507 --- /dev/null +++ b/include/eigen/cmake/FindSPQR.cmake @@ -0,0 +1,41 @@ +# SPQR lib usually requires linking to a blas and lapack library. +# It is up to the user of this module to find a BLAS and link to it. + +# SPQR lib requires Cholmod, colamd and amd as well. +# FindCholmod.cmake can be used to find those packages before finding spqr + +if (SPQR_INCLUDES AND SPQR_LIBRARIES) + set(SPQR_FIND_QUIETLY TRUE) +endif () + +find_path(SPQR_INCLUDES + NAMES + SuiteSparseQR.hpp + PATHS + $ENV{SPQRDIR} + ${INCLUDE_INSTALL_DIR} + PATH_SUFFIXES + suitesparse + ufsparse +) + +find_library(SPQR_LIBRARIES spqr $ENV{SPQRDIR} ${LIB_INSTALL_DIR}) + +if(SPQR_LIBRARIES) + + find_library(SUITESPARSE_LIBRARY SuiteSparse PATHS $ENV{SPQRDIR} ${LIB_INSTALL_DIR}) + if (SUITESPARSE_LIBRARY) + set(SPQR_LIBRARIES ${SPQR_LIBRARIES} ${SUITESPARSE_LIBRARY}) + endif() + + find_library(CHOLMOD_LIBRARY cholmod PATHS $ENV{UMFPACK_LIBDIR} $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR}) + if(CHOLMOD_LIBRARY) + set(SPQR_LIBRARIES ${SPQR_LIBRARIES} ${CHOLMOD_LIBRARY}) + endif() + +endif() + +include(FindPackageHandleStandardArgs) +find_package_handle_standard_args(SPQR DEFAULT_MSG SPQR_INCLUDES SPQR_LIBRARIES) + +mark_as_advanced(SPQR_INCLUDES SPQR_LIBRARIES) \ No newline at end of file diff --git a/include/eigen/cmake/SyclConfigureTesting.cmake b/include/eigen/cmake/SyclConfigureTesting.cmake new file mode 100644 index 0000000000000000000000000000000000000000..d4aa423699073e3f3004fddc8b685a472b8dc101 --- /dev/null +++ b/include/eigen/cmake/SyclConfigureTesting.cmake @@ -0,0 +1,64 @@ +set(CMAKE_CXX_STANDARD 17) +# Forward CMake options as preprocessor definitions +if(EIGEN_SYCL_USE_DEFAULT_SELECTOR) + add_definitions(-DEIGEN_SYCL_USE_DEFAULT_SELECTOR=${EIGEN_SYCL_USE_DEFAULT_SELECTOR}) +endif() +if(EIGEN_SYCL_NO_LOCAL_MEM) + add_definitions(-DEIGEN_SYCL_NO_LOCAL_MEM=${EIGEN_SYCL_NO_LOCAL_MEM}) +endif() +if(EIGEN_SYCL_LOCAL_MEM) + add_definitions(-DEIGEN_SYCL_LOCAL_MEM=${EIGEN_SYCL_LOCAL_MEM}) +endif() +if(EIGEN_SYCL_MAX_GLOBAL_RANGE) + add_definitions(-DEIGEN_SYCL_MAX_GLOBAL_RANGE=${EIGEN_SYCL_MAX_GLOBAL_RANGE}) +endif() +if(EIGEN_SYCL_LOCAL_THREAD_DIM0) + add_definitions(-DEIGEN_SYCL_LOCAL_THREAD_DIM0=${EIGEN_SYCL_LOCAL_THREAD_DIM0}) +endif() +if(EIGEN_SYCL_LOCAL_THREAD_DIM1) + add_definitions(-DEIGEN_SYCL_LOCAL_THREAD_DIM1=${EIGEN_SYCL_LOCAL_THREAD_DIM1}) +endif() +if(EIGEN_SYCL_REG_M) + add_definitions(-DEIGEN_SYCL_REG_M=${EIGEN_SYCL_REG_M}) +endif() +if(EIGEN_SYCL_REG_N) + add_definitions(-DEIGEN_SYCL_REG_N=${EIGEN_SYCL_REG_N}) +endif() +if(EIGEN_SYCL_ASYNC_EXECUTION) + add_definitions(-DEIGEN_SYCL_ASYNC_EXECUTION=${EIGEN_SYCL_ASYNC_EXECUTION}) +endif() +if(EIGEN_SYCL_DISABLE_SKINNY) + add_definitions(-DEIGEN_SYCL_DISABLE_SKINNY=${EIGEN_SYCL_DISABLE_SKINNY}) +endif() +if(EIGEN_SYCL_DISABLE_DOUBLE_BUFFER) + add_definitions(-DEIGEN_SYCL_DISABLE_DOUBLE_BUFFER=${EIGEN_SYCL_DISABLE_DOUBLE_BUFFER}) +endif() +if(EIGEN_SYCL_DISABLE_SCALAR) + add_definitions(-DEIGEN_SYCL_DISABLE_SCALAR=${EIGEN_SYCL_DISABLE_SCALAR}) +endif() +if(EIGEN_SYCL_DISABLE_GEMV) + add_definitions(-DEIGEN_SYCL_DISABLE_GEMV=${EIGEN_SYCL_DISABLE_GEMV}) +endif() +if(EIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION) + add_definitions(-DEIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION=${EIGEN_SYCL_DISABLE_ARM_GPU_CACHE_OPTIMISATION}) +endif() + +if(EIGEN_SYCL_ComputeCpp) + if(MSVC) + list(APPEND COMPUTECPP_USER_FLAGS -DWIN32) + else() + list(APPEND COMPUTECPP_USER_FLAGS -Wall) + endif() + # The following flags are not supported by Clang and can cause warnings + # if used with -Werror so they are removed here. + if(COMPUTECPP_USE_COMPILER_DRIVER) + set(CMAKE_CXX_COMPILER ${ComputeCpp_DEVICE_COMPILER_EXECUTABLE}) + string(REPLACE "-Wlogical-op" "" CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) + string(REPLACE "-Wno-psabi" "" CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) + endif() + list(APPEND COMPUTECPP_USER_FLAGS + -DEIGEN_NO_ASSERTION_CHECKING=1 + -no-serial-memop + -Xclang + -cl-mad-enable) +endif(EIGEN_SYCL_ComputeCpp) diff --git a/include/eigen/eigen3.pc.in b/include/eigen/eigen3.pc.in new file mode 100644 index 0000000000000000000000000000000000000000..3368a3aa1d4f6cf647632101d949d88427386a1d --- /dev/null +++ b/include/eigen/eigen3.pc.in @@ -0,0 +1,9 @@ +prefix=@CMAKE_INSTALL_PREFIX@ +exec_prefix=${prefix} + +Name: Eigen3 +Description: A C++ template library for linear algebra: vectors, matrices, and related algorithms +Requires: +Version: @EIGEN_VERSION_NUMBER@ +Libs: +Cflags: -I${prefix}/@INCLUDE_INSTALL_DIR@ diff --git a/include/eigen/failtest/CMakeLists.txt b/include/eigen/failtest/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..256e541e270947a240e1b6e95154f4a3325d5560 --- /dev/null +++ b/include/eigen/failtest/CMakeLists.txt @@ -0,0 +1,70 @@ + +ei_add_failtest("failtest_sanity_check") + +ei_add_failtest("block_nonconst_ctor_on_const_xpr_0") +ei_add_failtest("block_nonconst_ctor_on_const_xpr_1") +ei_add_failtest("block_nonconst_ctor_on_const_xpr_2") +ei_add_failtest("transpose_nonconst_ctor_on_const_xpr") +ei_add_failtest("diagonal_nonconst_ctor_on_const_xpr") +ei_add_failtest("cwiseunaryview_nonconst_ctor_on_const_xpr") +ei_add_failtest("triangularview_nonconst_ctor_on_const_xpr") +ei_add_failtest("selfadjointview_nonconst_ctor_on_const_xpr") + +ei_add_failtest("const_qualified_block_method_retval_0") +ei_add_failtest("const_qualified_block_method_retval_1") +ei_add_failtest("const_qualified_transpose_method_retval") +ei_add_failtest("const_qualified_diagonal_method_retval") + +ei_add_failtest("map_nonconst_ctor_on_const_ptr_0") +ei_add_failtest("map_nonconst_ctor_on_const_ptr_1") +ei_add_failtest("map_nonconst_ctor_on_const_ptr_2") +ei_add_failtest("map_nonconst_ctor_on_const_ptr_3") +ei_add_failtest("map_nonconst_ctor_on_const_ptr_4") + +ei_add_failtest("map_on_const_type_actually_const_0") +ei_add_failtest("map_on_const_type_actually_const_1") +ei_add_failtest("block_on_const_type_actually_const_0") +ei_add_failtest("block_on_const_type_actually_const_1") +ei_add_failtest("transpose_on_const_type_actually_const") +ei_add_failtest("diagonal_on_const_type_actually_const") +ei_add_failtest("cwiseunaryview_on_const_type_actually_const") +ei_add_failtest("triangularview_on_const_type_actually_const") +ei_add_failtest("selfadjointview_on_const_type_actually_const") + +ei_add_failtest("ref_1") +ei_add_failtest("ref_2") +ei_add_failtest("ref_3") +ei_add_failtest("ref_4") +ei_add_failtest("ref_5") + +ei_add_failtest("swap_1") +ei_add_failtest("swap_2") + +ei_add_failtest("ternary_1") +ei_add_failtest("ternary_2") + +ei_add_failtest("sparse_ref_1") +ei_add_failtest("sparse_ref_2") +ei_add_failtest("sparse_ref_3") +ei_add_failtest("sparse_ref_4") +ei_add_failtest("sparse_ref_5") + +ei_add_failtest("sparse_storage_mismatch") + +ei_add_failtest("partialpivlu_int") +ei_add_failtest("fullpivlu_int") +ei_add_failtest("llt_int") +ei_add_failtest("ldlt_int") +ei_add_failtest("qr_int") +ei_add_failtest("colpivqr_int") +ei_add_failtest("fullpivqr_int") +ei_add_failtest("jacobisvd_int") +ei_add_failtest("bdcsvd_int") +ei_add_failtest("eigensolver_int") +ei_add_failtest("eigensolver_cplx") + +if(EIGEN_TEST_CXX11) + ei_add_failtest("initializer_list_1") + ei_add_failtest("initializer_list_2") +endif() + diff --git a/include/eigen/failtest/block_nonconst_ctor_on_const_xpr_0.cpp b/include/eigen/failtest/block_nonconst_ctor_on_const_xpr_0.cpp new file mode 100644 index 0000000000000000000000000000000000000000..40b82014f9eda66b1da961dd8745196c80a697ec --- /dev/null +++ b/include/eigen/failtest/block_nonconst_ctor_on_const_xpr_0.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(CV_QUALIFIER Matrix3d &m){ + Block b(m,0,0); +} + +int main() {} diff --git a/include/eigen/failtest/block_nonconst_ctor_on_const_xpr_1.cpp b/include/eigen/failtest/block_nonconst_ctor_on_const_xpr_1.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ef6d53702aba7810908c858a8ad437887f4e599b --- /dev/null +++ b/include/eigen/failtest/block_nonconst_ctor_on_const_xpr_1.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(CV_QUALIFIER Matrix3d &m){ + Block b(m,0,0,3,3); +} + +int main() {} diff --git a/include/eigen/failtest/block_on_const_type_actually_const_0.cpp b/include/eigen/failtest/block_on_const_type_actually_const_0.cpp new file mode 100644 index 0000000000000000000000000000000000000000..009bebece08e09f94459d1628856ecc42cf4386c --- /dev/null +++ b/include/eigen/failtest/block_on_const_type_actually_const_0.cpp @@ -0,0 +1,16 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(){ + Matrix3f m; + Block(m, 0, 0, 3, 3).coeffRef(0, 0) = 1.0f; +} + +int main() {} diff --git a/include/eigen/failtest/colpivqr_int.cpp b/include/eigen/failtest/colpivqr_int.cpp new file mode 100644 index 0000000000000000000000000000000000000000..db11910d42a58066af6bec7ddd1aa26fdb470327 --- /dev/null +++ b/include/eigen/failtest/colpivqr_int.cpp @@ -0,0 +1,14 @@ +#include "../Eigen/QR" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define SCALAR int +#else +#define SCALAR float +#endif + +using namespace Eigen; + +int main() +{ + ColPivHouseholderQR > qr(Matrix::Random(10,10)); +} diff --git a/include/eigen/failtest/const_qualified_transpose_method_retval.cpp b/include/eigen/failtest/const_qualified_transpose_method_retval.cpp new file mode 100644 index 0000000000000000000000000000000000000000..2d7f19cabc31b5db4d6503dea2d9e4efb200d65f --- /dev/null +++ b/include/eigen/failtest/const_qualified_transpose_method_retval.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(CV_QUALIFIER Matrix3d &m){ + Transpose b(m.transpose()); +} + +int main() {} diff --git a/include/eigen/failtest/cwiseunaryview_nonconst_ctor_on_const_xpr.cpp b/include/eigen/failtest/cwiseunaryview_nonconst_ctor_on_const_xpr.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e23cf8fd8d07ab5d3c587a709d5bbd16c3ec2ab9 --- /dev/null +++ b/include/eigen/failtest/cwiseunaryview_nonconst_ctor_on_const_xpr.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(CV_QUALIFIER Matrix3d &m){ + CwiseUnaryView,Matrix3d> t(m); +} + +int main() {} diff --git a/include/eigen/failtest/cwiseunaryview_on_const_type_actually_const.cpp b/include/eigen/failtest/cwiseunaryview_on_const_type_actually_const.cpp new file mode 100644 index 0000000000000000000000000000000000000000..fcd41dfdb882fd869ff19fcbb7987114786ca3fa --- /dev/null +++ b/include/eigen/failtest/cwiseunaryview_on_const_type_actually_const.cpp @@ -0,0 +1,16 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(){ + MatrixXf m; + CwiseUnaryView,CV_QUALIFIER MatrixXf>(m).coeffRef(0, 0) = 1.0f; +} + +int main() {} diff --git a/include/eigen/failtest/diagonal_on_const_type_actually_const.cpp b/include/eigen/failtest/diagonal_on_const_type_actually_const.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d4b2fd9b82f708e8919984d04538f2341e3252ff --- /dev/null +++ b/include/eigen/failtest/diagonal_on_const_type_actually_const.cpp @@ -0,0 +1,16 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(){ + MatrixXf m; + Diagonal(m).coeffRef(0) = 1.0f; +} + +int main() {} diff --git a/include/eigen/failtest/eigensolver_int.cpp b/include/eigen/failtest/eigensolver_int.cpp new file mode 100644 index 0000000000000000000000000000000000000000..eda8dc20b237ae5016f0539167ed7f516d9502c3 --- /dev/null +++ b/include/eigen/failtest/eigensolver_int.cpp @@ -0,0 +1,14 @@ +#include "../Eigen/Eigenvalues" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define SCALAR int +#else +#define SCALAR float +#endif + +using namespace Eigen; + +int main() +{ + EigenSolver > eig(Matrix::Random(10,10)); +} diff --git a/include/eigen/failtest/fullpivlu_int.cpp b/include/eigen/failtest/fullpivlu_int.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e9d2c6eb32290507381f8cfc9e339c17f58123b7 --- /dev/null +++ b/include/eigen/failtest/fullpivlu_int.cpp @@ -0,0 +1,14 @@ +#include "../Eigen/LU" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define SCALAR int +#else +#define SCALAR float +#endif + +using namespace Eigen; + +int main() +{ + FullPivLU > lu(Matrix::Random(10,10)); +} diff --git a/include/eigen/failtest/fullpivqr_int.cpp b/include/eigen/failtest/fullpivqr_int.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d182a7b6b327d45ec0ec160928b3a7b5dafdfa0b --- /dev/null +++ b/include/eigen/failtest/fullpivqr_int.cpp @@ -0,0 +1,14 @@ +#include "../Eigen/QR" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define SCALAR int +#else +#define SCALAR float +#endif + +using namespace Eigen; + +int main() +{ + FullPivHouseholderQR > qr(Matrix::Random(10,10)); +} diff --git a/include/eigen/failtest/initializer_list_1.cpp b/include/eigen/failtest/initializer_list_1.cpp new file mode 100644 index 0000000000000000000000000000000000000000..92dfd1f658aed123c3a6a1125d4f444bc8e270cf --- /dev/null +++ b/include/eigen/failtest/initializer_list_1.cpp @@ -0,0 +1,14 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define ROWS Dynamic +#else +#define ROWS 3 +#endif + +using namespace Eigen; + +int main() +{ + Matrix {1, 2, 3}; +} diff --git a/include/eigen/failtest/initializer_list_2.cpp b/include/eigen/failtest/initializer_list_2.cpp new file mode 100644 index 0000000000000000000000000000000000000000..1996050a781b53bfce99685da2ccbc5481766ad3 --- /dev/null +++ b/include/eigen/failtest/initializer_list_2.cpp @@ -0,0 +1,16 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define ROWS Dynamic +#define COLS Dynamic +#else +#define ROWS 3 +#define COLS 1 +#endif + +using namespace Eigen; + +int main() +{ + Matrix {1, 2, 3}; +} diff --git a/include/eigen/failtest/map_nonconst_ctor_on_const_ptr_3.cpp b/include/eigen/failtest/map_nonconst_ctor_on_const_ptr_3.cpp new file mode 100644 index 0000000000000000000000000000000000000000..830f6f0c9453aad0eacb9e62dea8403de1f0ce7f --- /dev/null +++ b/include/eigen/failtest/map_nonconst_ctor_on_const_ptr_3.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(CV_QUALIFIER float *ptr, DenseIndex rows, DenseIndex cols){ + Map > m(ptr, rows, cols, InnerStride<2>()); +} + +int main() {} diff --git a/include/eigen/failtest/map_on_const_type_actually_const_0.cpp b/include/eigen/failtest/map_on_const_type_actually_const_0.cpp new file mode 100644 index 0000000000000000000000000000000000000000..8cb6aa0cda9d266cf87bac450c7f29764856d23d --- /dev/null +++ b/include/eigen/failtest/map_on_const_type_actually_const_0.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(float *ptr){ + Map(ptr, 1, 1).coeffRef(0,0) = 1.0f; +} + +int main() {} diff --git a/include/eigen/failtest/ref_4.cpp b/include/eigen/failtest/ref_4.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6c11fa4cbce41af6021e846d0d743da0c4c7fdb7 --- /dev/null +++ b/include/eigen/failtest/ref_4.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Core" + +using namespace Eigen; + +void call_ref(Ref > a) {} + +int main() +{ + MatrixXf A(10,10); +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD + call_ref(A.transpose()); +#else + call_ref(A); +#endif +} diff --git a/include/eigen/failtest/selfadjointview_nonconst_ctor_on_const_xpr.cpp b/include/eigen/failtest/selfadjointview_nonconst_ctor_on_const_xpr.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a240f818480d12ed8eeeb1777d6031ad1b503199 --- /dev/null +++ b/include/eigen/failtest/selfadjointview_nonconst_ctor_on_const_xpr.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(CV_QUALIFIER Matrix3d &m){ + SelfAdjointView t(m); +} + +int main() {} diff --git a/include/eigen/failtest/sparse_ref_1.cpp b/include/eigen/failtest/sparse_ref_1.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d78d1f9b1158a759beaa71ee7d7691a379527856 --- /dev/null +++ b/include/eigen/failtest/sparse_ref_1.cpp @@ -0,0 +1,18 @@ +#include "../Eigen/Sparse" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void call_ref(Ref > a) { } + +int main() +{ + SparseMatrix a(10,10); + CV_QUALIFIER SparseMatrix& ac(a); + call_ref(ac); +} diff --git a/include/eigen/failtest/sparse_ref_2.cpp b/include/eigen/failtest/sparse_ref_2.cpp new file mode 100644 index 0000000000000000000000000000000000000000..46c9440c2fa2e42dd953ebebbea06d5a82c3345d --- /dev/null +++ b/include/eigen/failtest/sparse_ref_2.cpp @@ -0,0 +1,15 @@ +#include "../Eigen/Sparse" + +using namespace Eigen; + +void call_ref(Ref > a) { } + +int main() +{ + SparseMatrix A(10,10); +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD + call_ref(A.row(3)); +#else + call_ref(A.col(3)); +#endif +} diff --git a/include/eigen/failtest/sparse_ref_5.cpp b/include/eigen/failtest/sparse_ref_5.cpp new file mode 100644 index 0000000000000000000000000000000000000000..4478f6f2f1eca88a4ed3b992e0f681ecb944f30d --- /dev/null +++ b/include/eigen/failtest/sparse_ref_5.cpp @@ -0,0 +1,16 @@ +#include "../Eigen/Sparse" + +using namespace Eigen; + +void call_ref(Ref > a) { } + +int main() +{ + SparseMatrix a(10,10); + SparseMatrixBase > &ac(a); +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD + call_ref(ac); +#else + call_ref(ac.derived()); +#endif +} diff --git a/include/eigen/failtest/sparse_storage_mismatch.cpp b/include/eigen/failtest/sparse_storage_mismatch.cpp new file mode 100644 index 0000000000000000000000000000000000000000..51840d416a91e2011b67a7ef6a9a92c80b823d14 --- /dev/null +++ b/include/eigen/failtest/sparse_storage_mismatch.cpp @@ -0,0 +1,16 @@ +#include "../Eigen/Sparse" +using namespace Eigen; + +typedef SparseMatrix Mat1; +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +typedef SparseMatrix Mat2; +#else +typedef SparseMatrix Mat2; +#endif + +int main() +{ + Mat1 a(10,10); + Mat2 b(10,10); + a += b; +} diff --git a/include/eigen/failtest/swap_1.cpp b/include/eigen/failtest/swap_1.cpp new file mode 100644 index 0000000000000000000000000000000000000000..106379720a444b81e7c98ea2eb6bfdadccc365bf --- /dev/null +++ b/include/eigen/failtest/swap_1.cpp @@ -0,0 +1,14 @@ +#include "../Eigen/Core" + +using namespace Eigen; + +int main() +{ + VectorXf a(10), b(10); +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD + const DenseBase &ac(a); +#else + DenseBase &ac(a); +#endif + b.swap(ac); +} diff --git a/include/eigen/failtest/swap_2.cpp b/include/eigen/failtest/swap_2.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b386cf419ff5762479f2a7a9a34d116952d654fd --- /dev/null +++ b/include/eigen/failtest/swap_2.cpp @@ -0,0 +1,14 @@ +#include "../Eigen/Core" + +using namespace Eigen; + +int main() +{ + VectorXf a(10), b(10); + VectorXf const &ac(a); +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD + b.swap(ac); +#else + b.swap(ac.const_cast_derived()); +#endif +} diff --git a/include/eigen/failtest/ternary_1.cpp b/include/eigen/failtest/ternary_1.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b40bcb0cc2310243d690a32c6e7449d6b7e9d5c8 --- /dev/null +++ b/include/eigen/failtest/ternary_1.cpp @@ -0,0 +1,13 @@ +#include "../Eigen/Core" + +using namespace Eigen; + +int main(int argc,char **) +{ + VectorXf a(10), b(10); +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD + b = argc>1 ? 2*a : -a; +#else + b = argc>1 ? 2*a : VectorXf(-a); +#endif +} diff --git a/include/eigen/failtest/ternary_2.cpp b/include/eigen/failtest/ternary_2.cpp new file mode 100644 index 0000000000000000000000000000000000000000..a46b12b2b95506d42fd9873c75b937d8f1f615d8 --- /dev/null +++ b/include/eigen/failtest/ternary_2.cpp @@ -0,0 +1,13 @@ +#include "../Eigen/Core" + +using namespace Eigen; + +int main(int argc,char **) +{ + VectorXf a(10), b(10); +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD + b = argc>1 ? 2*a : a+a; +#else + b = argc>1 ? VectorXf(2*a) : VectorXf(a+a); +#endif +} diff --git a/include/eigen/failtest/triangularview_on_const_type_actually_const.cpp b/include/eigen/failtest/triangularview_on_const_type_actually_const.cpp new file mode 100644 index 0000000000000000000000000000000000000000..0a381a6126953a17a859c5d0d1c532606373da97 --- /dev/null +++ b/include/eigen/failtest/triangularview_on_const_type_actually_const.cpp @@ -0,0 +1,16 @@ +#include "../Eigen/Core" + +#ifdef EIGEN_SHOULD_FAIL_TO_BUILD +#define CV_QUALIFIER const +#else +#define CV_QUALIFIER +#endif + +using namespace Eigen; + +void foo(){ + MatrixXf m; + TriangularView(m).coeffRef(0, 0) = 1.0f; +} + +int main() {} diff --git a/include/eigen/scripts/buildtests.in b/include/eigen/scripts/buildtests.in new file mode 100644 index 0000000000000000000000000000000000000000..ab9c18fb1d54c52ecb3f5ee61fffad8767721c83 --- /dev/null +++ b/include/eigen/scripts/buildtests.in @@ -0,0 +1,22 @@ +#!/bin/bash + +if [[ $# != 1 || $1 == *help ]] +then + echo "usage: $0 regexp" + echo " Builds tests matching the regexp." + echo " The EIGEN_MAKE_ARGS environment variable allows to pass args to 'make'." + echo " For example, to launch 5 concurrent builds, use EIGEN_MAKE_ARGS='-j5'" + exit 0 +fi + +TESTSLIST="@EIGEN_TESTS_LIST@" +targets_to_make=$(echo "$TESTSLIST" | grep -E "$1" | xargs echo) + +if [ -n "${EIGEN_MAKE_ARGS:+x}" ] +then + @CMAKE_MAKE_PROGRAM@ $targets_to_make ${EIGEN_MAKE_ARGS} +else + @CMAKE_MAKE_PROGRAM@ $targets_to_make @EIGEN_TEST_BUILD_FLAGS@ +fi +exit $? + diff --git a/include/eigen/scripts/check.in b/include/eigen/scripts/check.in new file mode 100644 index 0000000000000000000000000000000000000000..7717e2d939b9ba33dcf91f855bc14787fdf5383f --- /dev/null +++ b/include/eigen/scripts/check.in @@ -0,0 +1,21 @@ +#!/bin/bash +# check : shorthand for make and ctest -R + +if [[ $# != 1 || $1 == *help ]] +then + echo "usage: $0 regexp" + echo " Builds and runs tests matching the regexp." + echo " The EIGEN_MAKE_ARGS environment variable allows to pass args to 'make'." + echo " For example, to launch 5 concurrent builds, use EIGEN_MAKE_ARGS='-j5'" + echo " The EIGEN_CTEST_ARGS environment variable allows to pass args to 'ctest'." + echo " For example, with CTest 2.8, you can use EIGEN_CTEST_ARGS='-j5'." + exit 0 +fi + +if [ -n "${EIGEN_CTEST_ARGS:+x}" ] +then + ./buildtests.sh "$1" && ctest -R "$1" ${EIGEN_CTEST_ARGS} +else + ./buildtests.sh "$1" && ctest -R "$1" +fi +exit $? diff --git a/include/eigen/signature_of_eigen3_matrix_library b/include/eigen/signature_of_eigen3_matrix_library new file mode 100644 index 0000000000000000000000000000000000000000..80aaf4621fef3c9455f91c375926cad1ec62d527 --- /dev/null +++ b/include/eigen/signature_of_eigen3_matrix_library @@ -0,0 +1 @@ +This file is just there as a signature to help identify directories containing Eigen3. When writing a script looking for Eigen3, just look for this file. This is especially useful to help disambiguate with Eigen2... diff --git a/include/nanoflann.hpp b/include/nanoflann.hpp new file mode 100644 index 0000000000000000000000000000000000000000..2d74dd946fe184c997e602f0bf8f6549c7dd95ac --- /dev/null +++ b/include/nanoflann.hpp @@ -0,0 +1,1305 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * Copyright 2011 Jose Luis Blanco (joseluisblancoc@gmail.com). + * All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef NANOFLANN_HPP_ +#define NANOFLANN_HPP_ + +#include +#include +#include +#include +#include // for fwrite() +#include // for fabs(),... +#include + +// Avoid conflicting declaration of min/max macros in windows headers +#if !defined(NOMINMAX) && (defined(_WIN32) || defined(_WIN32_) || defined(WIN32) || defined(_WIN64)) +# define NOMINMAX +# ifdef max +# undef max +# undef min +# endif +#endif + +namespace nanoflann +{ +/** @addtogroup nanoflann_grp nanoflann C++ library for ANN + * @{ */ + + /** Library version: 0xMmP (M=Major,m=minor,P=path) */ + #define NANOFLANN_VERSION 0x113 + + /** @addtogroup result_sets_grp Result set classes + * @{ */ + template + class KNNResultSet + { + IndexType * indices; + DistanceType* dists; + CountType capacity; + CountType count; + + public: + inline KNNResultSet(CountType capacity_) : capacity(capacity_), count(0) + { + } + + inline void init(IndexType* indices_, DistanceType* dists_) + { + indices = indices_; + dists = dists_; + count = 0; + dists[capacity-1] = (std::numeric_limits::max)(); + } + + inline CountType size() const + { + return count; + } + + inline bool full() const + { + return count == capacity; + } + + + inline void addPoint(DistanceType dist, IndexType index) + { + CountType i; + for (i=count; i>0; --i) { +#ifdef NANOFLANN_FIRST_MATCH // If defined and two poins have the same distance, the one with the lowest-index will be returned first. + if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) ) { +#else + if (dists[i-1]>dist) { +#endif + if (i + class RadiusResultSet + { + public: + const DistanceType radius; + + std::vector >& m_indices_dists; + + inline RadiusResultSet(DistanceType radius_, std::vector >& indices_dists) : radius(radius_), m_indices_dists(indices_dists) + { + init(); + } + + inline ~RadiusResultSet() { } + + inline void init() { clear(); } + inline void clear() { m_indices_dists.clear(); } + + inline size_t size() const { return m_indices_dists.size(); } + + inline bool full() const { return true; } + + inline void addPoint(DistanceType dist, IndexType index) + { + if (dist(index,dist)); + } + + inline DistanceType worstDist() const { return radius; } + + /** Clears the result set and adjusts the search radius. */ + inline void set_radius_and_clear( const DistanceType r ) + { + radius = r; + clear(); + } + + /** + * Find the worst result (furtherest neighbor) without copying or sorting + * Pre-conditions: size() > 0 + */ + std::pair worst_item() const + { + if (m_indices_dists.empty()) throw std::runtime_error("Cannot invoke RadiusResultSet::worst_item() on an empty list of results."); + typedef typename std::vector >::const_iterator DistIt; + DistIt it = std::max_element(m_indices_dists.begin(), m_indices_dists.end()); + return *it; + } + }; + + /** operator "<" for std::sort() */ + struct IndexDist_Sorter + { + /** PairType will be typically: std::pair */ + template + inline bool operator()(const PairType &p1, const PairType &p2) const { + return p1.second < p2.second; + } + }; + + /** @} */ + + + /** @addtogroup loadsave_grp Load/save auxiliary functions + * @{ */ + template + void save_value(FILE* stream, const T& value, size_t count = 1) + { + fwrite(&value, sizeof(value),count, stream); + } + + template + void save_value(FILE* stream, const std::vector& value) + { + size_t size = value.size(); + fwrite(&size, sizeof(size_t), 1, stream); + fwrite(&value[0], sizeof(T), size, stream); + } + + template + void load_value(FILE* stream, T& value, size_t count = 1) + { + size_t read_cnt = fread(&value, sizeof(value), count, stream); + if (read_cnt != count) { + throw std::runtime_error("Cannot read from file"); + } + } + + + template + void load_value(FILE* stream, std::vector& value) + { + size_t size; + size_t read_cnt = fread(&size, sizeof(size_t), 1, stream); + if (read_cnt!=1) { + throw std::runtime_error("Cannot read from file"); + } + value.resize(size); + read_cnt = fread(&value[0], sizeof(T), size, stream); + if (read_cnt!=size) { + throw std::runtime_error("Cannot read from file"); + } + } + /** @} */ + + + /** @addtogroup metric_grp Metric (distance) classes + * @{ */ + + template inline T abs(T x) { return (x<0) ? -x : x; } + template<> inline int abs(int x) { return ::abs(x); } + template<> inline float abs(float x) { return fabsf(x); } + template<> inline double abs(double x) { return fabs(x); } + template<> inline long double abs(long double x) { return fabsl(x); } + + /** Manhattan distance functor (generic version, optimized for high-dimensionality data sets). + * Corresponding distance traits: nanoflann::metric_L1 + * \tparam T Type of the elements (e.g. double, float, uint8_t) + * \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) + */ + template + struct L1_Adaptor + { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L1_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } + + inline DistanceType operator()(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const + { + DistanceType result = DistanceType(); + const T* last = a + size; + const T* lastgroup = last - 3; + size_t d = 0; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + const DistanceType diff0 = nanoflann::abs(a[0] - data_source.kdtree_get_pt(b_idx,d++)); + const DistanceType diff1 = nanoflann::abs(a[1] - data_source.kdtree_get_pt(b_idx,d++)); + const DistanceType diff2 = nanoflann::abs(a[2] - data_source.kdtree_get_pt(b_idx,d++)); + const DistanceType diff3 = nanoflann::abs(a[3] - data_source.kdtree_get_pt(b_idx,d++)); + result += diff0 + diff1 + diff2 + diff3; + a += 4; + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 components. Not needed for standard vector lengths. */ + while (a < last) { + result += nanoflann::abs( *a++ - data_source.kdtree_get_pt(b_idx,d++) ); + } + return result; + } + + template + inline DistanceType accum_dist(const U a, const V b, int dim) const + { + return (a-b)*(a-b); + } + }; + + /** Squared Euclidean distance functor (generic version, optimized for high-dimensionality data sets). + * Corresponding distance traits: nanoflann::metric_L2 + * \tparam T Type of the elements (e.g. double, float, uint8_t) + * \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) + */ + template + struct L2_Adaptor + { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L2_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } + + inline DistanceType operator()(const T* a, const size_t b_idx, size_t size, DistanceType worst_dist = -1) const + { + DistanceType result = DistanceType(); + const T* last = a + size; + const T* lastgroup = last - 3; + size_t d = 0; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + const DistanceType diff0 = a[0] - data_source.kdtree_get_pt(b_idx,d++); + const DistanceType diff1 = a[1] - data_source.kdtree_get_pt(b_idx,d++); + const DistanceType diff2 = a[2] - data_source.kdtree_get_pt(b_idx,d++); + const DistanceType diff3 = a[3] - data_source.kdtree_get_pt(b_idx,d++); + result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; + a += 4; + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 components. Not needed for standard vector lengths. */ + while (a < last) { + const DistanceType diff0 = *a++ - data_source.kdtree_get_pt(b_idx,d++); + result += diff0 * diff0; + } + return result; + } + + template + inline DistanceType accum_dist(const U a, const V b, int dim) const + { + return (a-b)*(a-b); + } + }; + + /** Squared Euclidean distance functor (suitable for low-dimensionality datasets, like 2D or 3D point clouds) + * Corresponding distance traits: nanoflann::metric_L2_Simple + * \tparam T Type of the elements (e.g. double, float, uint8_t) + * \tparam DistanceType Type of distance variables (must be signed) (e.g. float, double, int64_t) + */ + template + struct L2_Simple_Adaptor + { + typedef T ElementType; + typedef _DistanceType DistanceType; + + const DataSource &data_source; + + L2_Simple_Adaptor(const DataSource &_data_source) : data_source(_data_source) { } + + inline DistanceType operator()(const T* a, const size_t b_idx, size_t size) const { + return data_source.kdtree_distance(a,b_idx,size); + } + + template + inline DistanceType accum_dist(const U a, const V b, int dim) const + { + dim = dim; + return (a-b)*(a-b); + } + }; + + /** Metaprogramming helper traits class for the L1 (Manhattan) metric */ + struct metric_L1 { + template + struct traits { + typedef L1_Adaptor distance_t; + }; + }; + /** Metaprogramming helper traits class for the L2 (Euclidean) metric */ + struct metric_L2 { + template + struct traits { + typedef L2_Adaptor distance_t; + }; + }; + /** Metaprogramming helper traits class for the L2_simple (Euclidean) metric */ + struct metric_L2_Simple { + template + struct traits { + typedef L2_Simple_Adaptor distance_t; + }; + }; + + /** @} */ + + + + /** @addtogroup param_grp Parameter structs + * @{ */ + + /** Parameters (see http://code.google.com/p/nanoflann/ for help choosing the parameters) + */ + struct KDTreeSingleIndexAdaptorParams + { + KDTreeSingleIndexAdaptorParams(size_t _leaf_max_size = 10, int dim_ = -1) : + leaf_max_size(_leaf_max_size), dim(dim_) + {} + + size_t leaf_max_size; + int dim; + }; + + /** Search options for KDTreeSingleIndexAdaptor::findNeighbors() */ + struct SearchParams + { + /** Note: The first argument (checks_IGNORED_) is ignored, but kept for compatibility with the FLANN interface */ + SearchParams(int checks_IGNORED_ = 32, float eps_ = 0, bool sorted_ = true ) : + eps(eps_), sorted(sorted_) { + checks_IGNORED_ = checks_IGNORED_; + } + + int checks; //!< Ignored parameter (Kept for compatibility with the FLANN interface). + float eps; //!< search for eps-approximate neighbours (default: 0) + bool sorted; //!< only for radius search, require neighbours sorted by distance (default: true) + }; + /** @} */ + + + /** @addtogroup memalloc_grp Memory allocation + * @{ */ + + /** + * Allocates (using C's malloc) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ + template + inline T* allocate(size_t count = 1) + { + T* mem = (T*) ::malloc(sizeof(T)*count); + return mem; + } + + + /** + * Pooled storage allocator + * + * The following routines allow for the efficient allocation of storage in + * small chunks from a specified pool. Rather than allowing each structure + * to be freed individually, an entire pool of storage is freed at once. + * This method has two advantages over just using malloc() and free(). First, + * it is far more efficient for allocating small objects, as there is + * no overhead for remembering all the information needed to free each + * object or consolidating fragmented memory. Second, the decision about + * how long to keep an object is made at the time of allocation, and there + * is no need to track down all the objects to free them. + * + */ + + const size_t WORDSIZE=16; + const size_t BLOCKSIZE=8192; + + class PooledAllocator + { + /* We maintain memory alignment to word boundaries by requiring that all + allocations be in multiples of the machine wordsize. */ + /* Size of machine word in bytes. Must be power of 2. */ + /* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */ + + + size_t remaining; /* Number of bytes left in current block of storage. */ + void* base; /* Pointer to base of current block of storage. */ + void* loc; /* Current location in block to next allocate memory. */ + size_t blocksize; + + + public: + size_t usedMemory; + size_t wastedMemory; + + /** + Default constructor. Initializes a new pool. + */ + PooledAllocator(const size_t blocksize = BLOCKSIZE) + { + this->blocksize = blocksize; + remaining = 0; + base = NULL; + + usedMemory = 0; + wastedMemory = 0; + } + + /** + * Destructor. Frees all the memory allocated in this pool. + */ + ~PooledAllocator() + { + while (base != NULL) { + void *prev = *((void**) base); /* Get pointer to prev block. */ + ::free(base); + base = prev; + } + } + + /** + * Returns a pointer to a piece of new memory of the given size in bytes + * allocated from the pool. + */ + void* malloc(const size_t req_size) + { + /* Round size up to a multiple of wordsize. The following expression + only works for WORDSIZE that is a power of 2, by masking last bits of + incremented size to zero. + */ + const size_t size = (req_size + (WORDSIZE - 1)) & ~(WORDSIZE - 1); + + /* Check whether a new block must be allocated. Note that the first word + of a block is reserved for a pointer to the previous block. + */ + if (size > remaining) { + + wastedMemory += remaining; + + /* Allocate new storage. */ + const size_t blocksize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ? + size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE; + + // use the standard C malloc to allocate memory + void* m = ::malloc(blocksize); + if (!m) { + fprintf(stderr,"Failed to allocate memory.\n"); + return NULL; + } + + /* Fill first word of new block with pointer to previous block. */ + ((void**) m)[0] = base; + base = m; + + size_t shift = 0; + //int size_t = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1); + + remaining = blocksize - sizeof(void*) - shift; + loc = ((char*)m + sizeof(void*) + shift); + } + void* rloc = loc; + loc = (char*)loc + size; + remaining -= size; + + usedMemory += size; + + return rloc; + } + + /** + * Allocates (using this pool) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ + template + T* allocate(const size_t count = 1) + { + T* mem = (T*) this->malloc(sizeof(T)*count); + return mem; + } + + }; + /** @} */ + + + /** @addtogroup kdtrees_grp KD-tree classes and adaptors + * @{ */ + + /** kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + * + * The class "DatasetAdaptor" must provide the following interface (can be non-virtual, inlined methods): + * + * \code + * // Must return the number of data points + * inline size_t kdtree_get_point_count() const { ... } + * + * // Must return the Euclidean (L2) distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class: + * inline DistanceType kdtree_distance(const T *p1, const size_t idx_p2,size_t size) const { ... } + * + * // Must return the dim'th component of the idx'th point in the class: + * inline T kdtree_get_pt(const size_t idx, int dim) const { ... } + * + * // Optional bounding-box computation: return false to default to a standard bbox computation loop. + * // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again. + * // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) + * template + * bool kdtree_get_bbox(BBOX &bb) const + * { + * bb[0].low = ...; bb[0].high = ...; // 0th dimension limits + * bb[1].low = ...; bb[1].high = ...; // 1st dimension limits + * ... + * return true; + * } + * + * \endcode + * + * \tparam IndexType Will be typically size_t or int + */ + template + class KDTreeSingleIndexAdaptor + { + public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::DistanceType DistanceType; + protected: + + /** + * Array of indices to vectors in the dataset. + */ + std::vector vind; + + size_t m_leaf_max_size; + + + /** + * The dataset used by this index + */ + const DatasetAdaptor &dataset; //!< The source of our data + + const KDTreeSingleIndexAdaptorParams index_params; + + size_t m_size; + int dim; //!< Dimensionality of each data point + + + /*--------------------- Internal Data Structures --------------------------*/ + struct Node + { + union { + struct + { + /** + * Indices of points in leaf node + */ + IndexType left, right; + } lr; + struct + { + /** + * Dimension used for subdivision. + */ + int divfeat; + /** + * The values used for subdivision. + */ + DistanceType divlow, divhigh; + } sub; + }; + /** + * The child nodes. + */ + Node* child1, * child2; + }; + typedef Node* NodePtr; + + + struct Interval + { + ElementType low, high; + }; + + typedef std::vector BoundingBox; + + + /** This record represents a branch point when finding neighbors in + the tree. It contains a record of the minimum distance to the query + point, as well as the node at which the search resumes. + */ + template + struct BranchStruct + { + T node; /* Tree node at which search resumes */ + DistanceType mindist; /* Minimum distance to query for all nodes below. */ + + BranchStruct() {} + BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {} + + inline bool operator<(const BranchStruct& rhs) const + { + return mindist BranchSt; + typedef BranchSt* Branch; + + BoundingBox root_bbox; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool; + + public: + + Distance distance; + + /** + * KDTree constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the kdtree algorithm (see http://code.google.com/p/nanoflann/ for help choosing the parameters) + */ + KDTreeSingleIndexAdaptor(const int dimensionality, const DatasetAdaptor& inputData, const KDTreeSingleIndexAdaptorParams& params = KDTreeSingleIndexAdaptorParams() ) : + dataset(inputData), index_params(params), distance(inputData) + { + m_size = dataset.kdtree_get_point_count(); + dim = dimensionality; + if (DIM>0) dim=DIM; + else { + if (params.dim>0) dim = params.dim; + } + m_leaf_max_size = params.leaf_max_size; + + // Create a permutable array of indices to the input vectors. + init_vind(); + } + + /** + * Standard destructor + */ + ~KDTreeSingleIndexAdaptor() + { + } + + /** + * Builds the index + */ + void buildIndex() + { + init_vind(); + computeBoundingBox(root_bbox); + root_node = divideTree(0, m_size, root_bbox ); // construct the tree + } + + /** + * Returns size of index. + */ + size_t size() const + { + return m_size; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return static_cast(DIM>0 ? DIM : dim); + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + size_t usedMemory() const + { + return pool.usedMemory+pool.wastedMemory+dataset.kdtree_get_point_count()*sizeof(IndexType); // pool memory and vind array memory + } + + /** \name Query methods + * @{ */ + + /** + * Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * + * \tparam RESULTSET Should be any ResultSet + * \sa knnSearch, radiusSearch + */ + template + void findNeighbors(RESULTSET& result, const ElementType* vec, const SearchParams& searchParams) const + { + assert(vec); + float epsError = 1+searchParams.eps; + + std::vector dists( (DIM>0 ? DIM : dim) ,0); + DistanceType distsq = computeInitialDistances(vec, dists); + searchLevel(result, vec, root_node, distsq, dists, epsError); // "count_leaf" parameter removed since was neither used nor returned to the user. + } + + /** + * Find the "num_closest" nearest neighbors to the \a query_point[0:dim-1]. Their indices are stored inside + * the result object. + * \sa radiusSearch, findNeighbors + * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. + */ + inline void knnSearch(const ElementType *query_point, const size_t num_closest, IndexType *out_indices, DistanceType *out_distances_sq) const + { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + this->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + } + + /** + * Find all the neighbors to \a query_point[0:dim-1] within a maximum radius. + * The output is given as a vector of pairs, of which the first element is a point index and the second the corresponding distance. + * Previous contents of \a IndicesDists are cleared. + * + * If searchParams.sorted==true, the output list is sorted by ascending distances. + * + * For a better performance, it is advisable to do a .reserve() on the vector if you have any wild guess about the number of expected matches. + * + * \sa knnSearch, findNeighbors + * \return The number of points within the given radius (i.e. indices.size() or dists.size() ) + */ + size_t radiusSearch(const ElementType *query_point,const DistanceType radius, std::vector >& IndicesDists, const SearchParams& searchParams) const + { + RadiusResultSet resultSet(radius,IndicesDists); + this->findNeighbors(resultSet, query_point, searchParams); + + if (searchParams.sorted) + std::sort(IndicesDists.begin(),IndicesDists.end(), IndexDist_Sorter() ); + + return resultSet.size(); + } + + /** @} */ + + private: + /** Make sure the auxiliary list \a vind has the same size than the current dataset, and re-generate if size has changed. */ + void init_vind() + { + // Create a permutable array of indices to the input vectors. + m_size = dataset.kdtree_get_point_count(); + if (vind.size()!=m_size) + { + vind.resize(m_size); + for (size_t i = 0; i < m_size; i++) vind[i] = i; + } + } + + /// Helper accessor to the dataset points: + inline ElementType dataset_get(size_t idx, int component) const { + return dataset.kdtree_get_pt(idx,component); + } + + + void save_tree(FILE* stream, NodePtr tree) + { + save_value(stream, *tree); + if (tree->child1!=NULL) { + save_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + save_tree(stream, tree->child2); + } + } + + + void load_tree(FILE* stream, NodePtr& tree) + { + tree = pool.allocate(); + load_value(stream, *tree); + if (tree->child1!=NULL) { + load_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + load_tree(stream, tree->child2); + } + } + + + void computeBoundingBox(BoundingBox& bbox) + { + bbox.resize((DIM>0 ? DIM : dim)); + if (dataset.kdtree_get_bbox(bbox)) + { + // Done! It was implemented in derived class + } + else + { + for (int i=0; i<(DIM>0 ? DIM : dim); ++i) { + bbox[i].low = + bbox[i].high = dataset_get(0,i); + } + const size_t N = dataset.kdtree_get_point_count(); + for (size_t k=1; k0 ? DIM : dim); ++i) { + if (dataset_get(k,i)bbox[i].high) bbox[i].high = dataset_get(k,i); + } + } + } + } + + + /** + * Create a tree node that subdivides the list of vecs from vind[first] + * to vind[last]. The routine is called recursively on each sublist. + * Place a pointer to this new tree node in the location pTree. + * + * Params: pTree = the new node to create + * first = index of the first vector + * last = index of the last vector + */ + NodePtr divideTree(const IndexType left, const IndexType right, BoundingBox& bbox) + { + NodePtr node = pool.allocate(); // allocate memory + + /* If too few exemplars remain, then make this a leaf node. */ + if ( (right-left) <= m_leaf_max_size) { + node->child1 = node->child2 = NULL; /* Mark as leaf node. */ + node->lr.left = left; + node->lr.right = right; + + // compute bounding-box of leaf points + for (int i=0; i<(DIM>0 ? DIM : dim); ++i) { + bbox[i].low = dataset_get(vind[left],i); + bbox[i].high = dataset_get(vind[left],i); + } + for (IndexType k=left+1; k0 ? DIM : dim); ++i) { + if (bbox[i].low>dataset_get(vind[k],i)) bbox[i].low=dataset_get(vind[k],i); + if (bbox[i].highsub.divfeat = cutfeat; + + BoundingBox left_bbox(bbox); + left_bbox[cutfeat].high = cutval; + node->child1 = divideTree(left, left+idx, left_bbox); + + BoundingBox right_bbox(bbox); + right_bbox[cutfeat].low = cutval; + node->child2 = divideTree(left+idx, right, right_bbox); + + node->sub.divlow = left_bbox[cutfeat].high; + node->sub.divhigh = right_bbox[cutfeat].low; + + for (int i=0; i<(DIM>0 ? DIM : dim); ++i) { + bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low); + bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high); + } + } + + return node; + } + + void computeMinMax(IndexType* ind, IndexType count, int element, ElementType& min_elem, ElementType& max_elem) + { + min_elem = dataset_get(ind[0],element); + max_elem = dataset_get(ind[0],element); + for (IndexType i=1; imax_elem) max_elem = val; + } + } + + void middleSplit(IndexType* ind, IndexType count, IndexType& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) + { + // find the largest span from the approximate bounding box + ElementType max_span = bbox[0].high-bbox[0].low; + cutfeat = 0; + cutval = (bbox[0].high+bbox[0].low)/2; + for (int i=1; i<(DIM>0 ? DIM : dim); ++i) { + ElementType span = bbox[i].low-bbox[i].low; + if (span>max_span) { + max_span = span; + cutfeat = i; + cutval = (bbox[i].high+bbox[i].low)/2; + } + } + + // compute exact span on the found dimension + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + cutval = (min_elem+max_elem)/2; + max_span = max_elem - min_elem; + + // check if a dimension of a largest span exists + size_t k = cutfeat; + for (size_t i=0; i<(DIM>0 ? DIM : dim); ++i) { + if (i==k) continue; + ElementType span = bbox[i].high-bbox[i].low; + if (span>max_span) { + computeMinMax(ind, count, i, min_elem, max_elem); + span = max_elem - min_elem; + if (span>max_span) { + max_span = span; + cutfeat = i; + cutval = (min_elem+max_elem)/2; + } + } + } + IndexType lim1, lim2; + planeSplit(ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1>count/2) index = lim1; + else if (lim2(0.00001); + ElementType max_span = bbox[0].high-bbox[0].low; + for (int i=1; i<(DIM>0 ? DIM : dim); ++i) { + ElementType span = bbox[i].high-bbox[i].low; + if (span>max_span) { + max_span = span; + } + } + ElementType max_spread = -1; + cutfeat = 0; + for (int i=0; i<(DIM>0 ? DIM : dim); ++i) { + ElementType span = bbox[i].high-bbox[i].low; + if (span>(1-EPS)*max_span) { + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + ElementType spread = max_elem-min_elem;; + if (spread>max_spread) { + cutfeat = i; + max_spread = spread; + } + } + } + // split in the middle + DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2; + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + + if (split_valmax_elem) cutval = max_elem; + else cutval = split_val; + + IndexType lim1, lim2; + planeSplit(ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1>count/2) index = lim1; + else if (lim2cutval + */ + void planeSplit(IndexType* ind, const IndexType count, int cutfeat, DistanceType cutval, IndexType& lim1, IndexType& lim2) + { + /* Move vector indices for left subtree to front of list. */ + IndexType left = 0; + IndexType right = count-1; + for (;; ) { + while (left<=right && dataset_get(ind[left],cutfeat)=cutval) --right; + if (left>right || !right) break; // "!right" was added to support unsigned Index types + std::swap(ind[left], ind[right]); + ++left; + --right; + } + /* If either list is empty, it means that all remaining features + * are identical. Split in the middle to maintain a balanced tree. + */ + lim1 = left; + right = count-1; + for (;; ) { + while (left<=right && dataset_get(ind[left],cutfeat)<=cutval) ++left; + while (right && left<=right && dataset_get(ind[right],cutfeat)>cutval) --right; + if (left>right || !right) break; // "!right" was added to support unsigned Index types + std::swap(ind[left], ind[right]); + ++left; + --right; + } + lim2 = left; + } + + DistanceType computeInitialDistances(const ElementType* vec, std::vector& dists) const + { + assert(vec); + DistanceType distsq = 0.0; + + for (int i = 0; i < (DIM>0 ? DIM : dim); ++i) { + if (vec[i] < root_bbox[i].low) { + dists[i] = distance.accum_dist(vec[i], root_bbox[i].low, i); + distsq += dists[i]; + } + if (vec[i] > root_bbox[i].high) { + dists[i] = distance.accum_dist(vec[i], root_bbox[i].high, i); + distsq += dists[i]; + } + } + + return distsq; + } + + /** + * Performs an exact search in the tree starting from a node. + * \tparam RESULTSET Should be any ResultSet + */ + template + void searchLevel(RESULTSET& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, + std::vector& dists, const float epsError) const + { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL)&&(node->child2 == NULL)) { + //count_leaf += (node->lr.right-node->lr.left); // Removed since was neither used nor returned to the user. + DistanceType worst_dist = result_set.worstDist(); + for (IndexType i=node->lr.left; ilr.right; ++i) { + const IndexType index = vind[i];// reorder... : i; + DistanceType dist = distance(vec, index, (DIM>0 ? DIM : dim)); + if (distsub.divfeat; + ElementType val = vec[idx]; + DistanceType diff1 = val - node->sub.divlow; + DistanceType diff2 = val - node->sub.divhigh; + + NodePtr bestChild; + NodePtr otherChild; + DistanceType cut_dist; + if ((diff1+diff2)<0) { + bestChild = node->child1; + otherChild = node->child2; + cut_dist = distance.accum_dist(val, node->sub.divhigh, idx); + } + else { + bestChild = node->child2; + otherChild = node->child1; + cut_dist = distance.accum_dist( val, node->sub.divlow, idx); + } + + /* Call recursively to search next level down. */ + searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError); + + DistanceType dst = dists[idx]; + mindistsq = mindistsq + cut_dist - dst; + dists[idx] = cut_dist; + if (mindistsq*epsError<=result_set.worstDist()) { + searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError); + } + dists[idx] = dst; + } + + + void saveIndex(FILE* stream) + { + save_value(stream, m_size); + save_value(stream, dim); + save_value(stream, root_bbox); + save_value(stream, m_leaf_max_size); + save_value(stream, vind); + save_tree(stream, root_node); + } + + void loadIndex(FILE* stream) + { + load_value(stream, m_size); + load_value(stream, dim); + load_value(stream, root_bbox); + load_value(stream, m_leaf_max_size); + load_value(stream, vind); + load_tree(stream, root_node); + } + + }; // class KDTree + + + /** A simple KD-tree adaptor for working with data directly stored in an Eigen Matrix, without duplicating the data storage. + * Each row in the matrix represents a point in the state space. + * + * Example of usage: + * \code + * Eigen::Matrix mat; + * // Fill out "mat"... + * + * typedef KDTreeEigenMatrixAdaptor< Eigen::Matrix > my_kd_tree_t; + * const int max_leaf = 10; + * my_kd_tree_t mat_index(dimdim, mat, max_leaf ); + * mat_index.index->buildIndex(); + * mat_index.index->... + * \endcode + * + * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations. + * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. + * \tparam IndexType The type for indices in the KD-tree index (typically, size_t of int) + */ + template + struct KDTreeEigenMatrixAdaptor + { + typedef KDTreeEigenMatrixAdaptor self_t; + typedef typename MatrixType::Scalar num_t; + typedef typename Distance::template traits::distance_t metric_t; + typedef KDTreeSingleIndexAdaptor< metric_t,self_t,DIM,IndexType> index_t; + + index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index. + + /// Constructor: takes a const ref to the matrix object with the data points + KDTreeEigenMatrixAdaptor(const int dimensionality, const MatrixType &mat, const int leaf_max_size = 10) : m_data_matrix(mat) + { + const size_t dims = mat.cols(); + if (DIM>0 && static_cast(dims)!=DIM) + throw std::runtime_error("Data set dimensionality does not match the 'DIM' template argument"); + index = new index_t( dims, *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size, dims ) ); + index->buildIndex(); + } + + ~KDTreeEigenMatrixAdaptor() { + delete index; + } + + const MatrixType &m_data_matrix; + + /** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]). + * Note that this is a short-cut method for index->findNeighbors(). + * The user can also call index->... methods as desired. + * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface. + */ + inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const + { + nanoflann::KNNResultSet resultSet(num_closest); + resultSet.init(out_indices, out_distances_sq); + index->findNeighbors(resultSet, query_point, nanoflann::SearchParams()); + } + + /** @name Interface expected by KDTreeSingleIndexAdaptor + * @{ */ + + const self_t & derived() const { + return *this; + } + self_t & derived() { + return *this; + } + + // Must return the number of data points + inline size_t kdtree_get_point_count() const { + return m_data_matrix.rows(); + } + + // Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class: + inline num_t kdtree_distance(const num_t *p1, const size_t idx_p2,size_t size) const + { + num_t s=0; + for (size_t i=0; i + bool kdtree_get_bbox(BBOX &bb) const { + return false; + } + + /** @} */ + + }; // end of KDTreeEigenMatrixAdaptor + /** @} */ + +/** @} */ // end of grouping +} // end of NS + + +#endif /* NANOFLANN_HPP_ */ diff --git a/io_pc.h b/io_pc.h new file mode 100644 index 0000000000000000000000000000000000000000..426f9c3910d2aa2d614df4c94ca45283a45345e7 --- /dev/null +++ b/io_pc.h @@ -0,0 +1,403 @@ +#ifndef IO_H +#define IO_H +///--- hacked from OpenGP obj reader +#include +#include +#include +#include +#include +#include + +template +bool read_obj(MatrixType& vertices, MatrixType& normals, MatrixType& vert_colors, const std::string& filename, int D) { + char s[200]; + float x, y, z, cx, cy, cz; + + // open file (in ASCII mode) + FILE* in = fopen(filename.c_str(), "r"); + if (!in) return false; + + // clear line once + memset(&s, 0, 200); + + //--- First pass, counts vertices + int n_vertices = 0; + int n_normals = 0; + while (in && !feof(in) && fgets(s, 200, in)) { + // comment + if (s[0] == '#' || isspace(s[0])) continue; + // vertex + else if (strncmp(s, "v ", 2) == 0) + n_vertices++; + else if (strncmp(s, "vn ", 2) == 0) + n_normals++; + } + fseek(in, 0, 0); ///< rewind + vertices.resize(D, n_vertices); + if(n_normals > 0) + normals.resize(D, n_vertices); + bool runonce = true; + + //--- Second pass, fills in + int curr_vertex=0; + while (in && !feof(in) && fgets(s, 200, in)) { + // comment + if (s[0] == '#' || isspace(s[0])) continue; + + // normal + else if (strncmp(s, "vn ", 3) == 0) { + if (sscanf(s, "vn %f %f %f", &x, &y, &z)) { + if (runonce) + { + normals.resize(D, n_vertices); + runonce = false; + } + normals(0, curr_vertex) = x; + normals(1, curr_vertex) = y; + normals(2, curr_vertex) = z; + } + } + + // vertex + else if (strncmp(s, "v ", 2) == 0) { + if (sscanf(s, "v %f %f %f %f %f %f", &x, &y, &z, &cx, &cy, &cz)) { + vertices(0,curr_vertex) = x; + vertices(1,curr_vertex) = y; + vertices(2,curr_vertex) = z; + + if(vert_colors.size()==0) + vert_colors.resize(D, n_vertices); + + vert_colors(0, curr_vertex) = cx; + vert_colors(1, curr_vertex) = cy; + vert_colors(2, curr_vertex) = cz; + curr_vertex++; + } + else if (sscanf(s, "v %f %f %f", &x, &y, &z)) { + vertices(0,curr_vertex) = x; + vertices(1,curr_vertex) = y; + vertices(2,curr_vertex) = z; + + curr_vertex++; + } + } + // face + else if (strncmp(s, "f ", 2) == 0) { + continue; + } + + // clear line + memset(&s, 0, 200); + } + + fclose(in); + return true; +} +//----------------------------------------------------------------------------- + +///--- Replaces vertices in prev_filename with content of vertices, saves in filename +template +bool write_obj_replaceverts(const std::string& prev_filename, const MatrixType& vertices, const MatrixType& normals, + const MatrixType& vert_colors, const std::string& filename) { + typedef Eigen::Vector3d Texture_coordinate; + + char s[200]; + + FILE* out = fopen(filename.c_str(), "w"); + FILE* in = fopen(prev_filename.c_str(), "r"); + if (!in || !out) + return false; + + // clear line once + memset(&s, 0, 200); + + //--- Second pass, fills in + int curr_vertex=0; + while (in && !feof(in) && fgets(s, 200, in)) { + // vertex + if (!isspace(s[0]) && strncmp(s, "v ", 2) == 0) { + fprintf(out, "vn %f %f %f\n", normals(0,curr_vertex), normals(1,curr_vertex), normals(2,curr_vertex)); + fprintf(out, "v %f %f %f ", vertices(0,curr_vertex), vertices(1,curr_vertex), vertices(2,curr_vertex)); + if(vert_colors.size()) + fprintf(out, "%f %f %f\n", vert_colors(0,curr_vertex), vert_colors(1, curr_vertex), vert_colors(2, curr_vertex)); + else + fprintf(out, "\n"); + curr_vertex++; + } else { + fprintf(out, "%s", s); + } + + // clear line + memset(&s, 0, 200); + } + + + fclose(in); + fclose(out); + return true; +} + + +template +bool read_transMat(MatrixType& trans, const std::string& filename) +{ + std::ifstream input(filename); + std::string line; + int rows, cols; + std::vector> total_data; + while (getline(input, line)) { + if(line[0] == 'V' || line[0] == 'M') + continue; + std::istringstream iss(line); + std::vector lineVec; + while (iss) { + double item; + if (iss >> item) + lineVec.push_back(item); + } + cols = lineVec.size(); + total_data.push_back(lineVec); + } + if (total_data.size() == 0) + { + std::cout << filename << " is empty !! " << std::endl; + return false; + } + rows = total_data.size(); + trans.resize(rows, cols); + std::cout << "rows = " << rows << " cols = " << cols << std::endl; + for (int i = 0; i < rows; i++) + { + for (int j = 0; j < cols; j++) + { + trans(i, j) = total_data[i][j]; + } + } + input.close(); + std::cout << "read trans = \n" << trans << std::endl; + return true; +} + +template +bool read_ply(MatrixType& vertices, MatrixType& normals, MatrixType& colors, const std::string& filename, int D) { + char s[200]; + float x, y, z, nx, ny, nz; + int r, g, b; + int dim = 0; + int n_vertices, curr_vertex; + Eigen::Vector3i ID; + ID.setZero(); + + // open file (in ASCII mode) + FILE* in = fopen(filename.c_str(), "r"); + if (!in) return false; + + // clear line once + memset(&s, 0, 200); + + //--- First pass, counts vertices + while (in && !feof(in) && fgets(s, 200, in)) { + + // comment + if (strncmp(s, "element ", 8) == 0) + { + sscanf(s, "element vertex %d", &n_vertices); + } + if (strncmp(s, "property float x", 16) == 0) + { + if(strncmp(s, "property float x_", 17)==0) + { + continue; + } + vertices.resize(D,n_vertices); + ID[0]=1; + dim += 3; + } + if(strncmp(s, "property float nx", 17) == 0) + { + normals.resize(D,n_vertices); + ID[1]=1; + dim += 3; + } + if(strncmp(s, "property uchar red", 18) == 0) + { + colors.resize(3,n_vertices); + ID[2]=1; + dim += 3; + } + if(strncmp(s, "end_header", 10) == 0) + { + break; + } + memset(&s, 0, 200); + } + + // clear line + memset(&s, 0, 200); + curr_vertex = 0; + while (in && !feof(in) && fgets(s, 200, in) && curr_vertex n_vertices) + { + n_vertices = curr_vertex; + vertices.resize(Eigen::NoChange, n_vertices); + if(normals.size()) + { + normals.resize(Eigen::NoChange, n_vertices); + } + break; + } + // clear line + memset(&s, 0, 200); + } + fclose(in); + return true; +} + +template +bool write_ply(MatrixType& vertices, MatrixType& normals, MatrixType& colors, const std::string& filename) { + char s[200]; + int n_vertices, curr_vertex; + n_vertices = vertices.cols(); + Eigen::Vector3d ID; // whether there are normal or color + ID.setZero(); + if (vertices.cols()) + { + ID[0] = 1; + } + else + { + std::cout << "Warning : No points!!!" << std::endl; + return false; + } + if (normals.cols()) + { + ID[1] = 1; +// std::cout << "output file has normals !" << std::endl; + } + if (colors.cols()) + { + ID[2] = 1; +// std::cout << "output file has colors !" << std::endl; + } + + FILE* out = fopen(filename.c_str(), "w"); + if (!out) + return false; + // clear line once + memset(&s, 0, 200); + + fprintf(out, "ply\nformat ascii 1.0\nelement vertex %d\n", n_vertices); + fprintf(out, "property float x \nproperty float y\nproperty float z\n"); + if(ID[1]) fprintf(out, "property float nx \nproperty float ny\nproperty float nz\n"); + if(ID[2]) fprintf(out, "property uchar red\nproperty uchar green\nproperty uchar blue\n"); + fprintf(out, "end_header\n"); + + // clear line + memset(&s, 0, 200); + curr_vertex = 0; + while (curr_vertex +bool read_file(MatrixType& vertices, MatrixType& normals, MatrixType& vert_colors, + const std::string& filename) { + if(strcmp(filename.substr(filename.size()-4,4).c_str(), ".obj") == 0) + { + return read_obj(vertices, normals, vert_colors, filename, 3); + } + else if(strcmp(filename.substr(filename.size()-4, 4).c_str(),".ply")==0) + { + return read_ply(vertices, normals, vert_colors, filename, 3); + } + else + { + std::cout << "Can't read file " << filename << std::endl; + } +} + +template +bool write_file(const std::string& prev_filename, const MatrixType& vertices, const MatrixType& normals, + const MatrixType& vert_colors, const std::string& filename) { + if(strcmp(filename.substr(filename.size()-4,4).c_str(),".obj")==0) + { + return write_obj_replaceverts(prev_filename, vertices, normals, vert_colors, filename); + } + else if(strcmp(filename.substr(filename.size()-4,4).c_str(),".ply")==0) + { + return write_ply(vertices, normals, vert_colors, filename); + } + else + { + std::cout << "Can't write to file "<< filename << std::endl; + } +} + +#endif // IO_H diff --git a/main.cpp b/main.cpp new file mode 100644 index 0000000000000000000000000000000000000000..745dd5049896a0af986238dd25bdd4c9324a9fff --- /dev/null +++ b/main.cpp @@ -0,0 +1,192 @@ +#include +#include "ICP.h" +#include "io_pc.h" +#include "FRICP.h" + +int main(int argc, char const ** argv) +{ + typedef double Scalar; + typedef Eigen::Matrix Vertices; + typedef Eigen::Matrix VectorN; + std::string file_source; + std::string file_target; + std::string file_init = "./data/"; + std::string res_trans_path; + std::string out_path; + bool use_init = false; + MatrixXX res_trans; + enum Method{ICP, AA_ICP, FICP, RICP, PPL, RPPL, SparseICP, SICPPPL} method=RICP; + if(argc == 5) + { + file_target = argv[1]; + file_source = argv[2]; + out_path = argv[3]; + method = Method(std::stoi(argv[4])); + } + else if(argc==4) + { + file_target = argv[1]; + file_source = argv[2]; + out_path = argv[3]; + } + else + { + std::cout << "Usage: target.ply source.ply out_path " << std::endl; + std::cout << "Method :\n" + << "0: ICP\n1: AA-ICP\n2: Our Fast ICP\n3: Our Robust ICP\n4: ICP Point-to-plane\n" + << "5: Our Robust ICP point to plane\n6: Sparse ICP\n7: Sparse ICP point to plane" << std::endl; + exit(0); + } + int dim = 3; + + + //--- Model that will be rigidly transformed + Vertices vertices_source, normal_source, src_vert_colors; + read_file(vertices_source, normal_source, src_vert_colors, file_source); + std::cout << "source: " << vertices_source.rows() << "x" << vertices_source.cols() << std::endl; + + //--- Model that source will be aligned to + Vertices vertices_target, normal_target, tar_vert_colors; + read_file(vertices_target, normal_target, tar_vert_colors, file_target); + std::cout << "target: " << vertices_target.rows() << "x" << vertices_target.cols() << std::endl; + + // scaling + Eigen::Vector3d source_scale, target_scale; + source_scale = vertices_source.rowwise().maxCoeff() - vertices_source.rowwise().minCoeff(); + target_scale = vertices_target.rowwise().maxCoeff() - vertices_target.rowwise().minCoeff(); + double scale = std::max(source_scale.norm(), target_scale.norm()); + std::cout << "scale = " << scale << std::endl; + vertices_source /= scale; + vertices_target /= scale; + + /// De-mean + VectorN source_mean, target_mean; + source_mean = vertices_source.rowwise().sum() / double(vertices_source.cols()); + target_mean = vertices_target.rowwise().sum() / double(vertices_target.cols()); + vertices_source.colwise() -= source_mean; + vertices_target.colwise() -= target_mean; + + double time; + // set ICP parameters + ICP::Parameters pars; + + // set Sparse-ICP parameters + SICP::Parameters spars; + spars.p = 0.4; + spars.print_icpn = false; + + /// Initial transformation + if(use_init) + { + MatrixXX init_trans; + read_transMat(init_trans, file_init); + init_trans.block(0, dim, dim, 1) /= scale; + init_trans.block(0,3,3,1) += init_trans.block(0,0,3,3)*source_mean - target_mean; + pars.use_init = true; + pars.init_trans = init_trans; + spars.init_trans = init_trans; + } + + ///--- Execute registration + std::cout << "begin registration..." << std::endl; + FRICP<3> fricp; + double begin_reg = omp_get_wtime(); + double converge_rmse = 0; + switch(method) + { + case ICP: + { + pars.f = ICP::NONE; + pars.use_AA = false; + fricp.point_to_point(vertices_source, vertices_target, source_mean, target_mean, pars); + res_trans = pars.res_trans; + break; + } + case AA_ICP: + { + AAICP::point_to_point_aaicp(vertices_source, vertices_target, source_mean, target_mean, pars); + res_trans = pars.res_trans; + break; + } + case FICP: + { + pars.f = ICP::NONE; + pars.use_AA = true; + fricp.point_to_point(vertices_source, vertices_target, source_mean, target_mean, pars); + res_trans = pars.res_trans; + break; + } + case RICP: + { + pars.f = ICP::WELSCH; + pars.use_AA = true; + fricp.point_to_point(vertices_source, vertices_target, source_mean, target_mean, pars); + res_trans = pars.res_trans; + break; + } + case PPL: + { + pars.f = ICP::NONE; + pars.use_AA = false; + if(normal_target.size()==0) + { + std::cout << "Warning! The target model without normals can't run Point-to-plane method!" << std::endl; + exit(0); + } + fricp.point_to_plane(vertices_source, vertices_target, normal_source, normal_target, source_mean, target_mean, pars); + res_trans = pars.res_trans; + break; + } + case RPPL: + { + pars.nu_end_k = 1.0/6; + pars.f = ICP::WELSCH; + pars.use_AA = true; + if(normal_target.size()==0) + { + std::cout << "Warning! The target model without normals can't run Point-to-plane method!" << std::endl; + exit(0); + } + fricp.point_to_plane_GN(vertices_source, vertices_target, normal_source, normal_target, source_mean, target_mean, pars); + res_trans = pars.res_trans; + break; + } + case SparseICP: + { + SICP::point_to_point(vertices_source, vertices_target, source_mean, target_mean, spars); + res_trans = spars.res_trans; + break; + } + case SICPPPL: + { + if(normal_target.size()==0) + { + std::cout << "Warning! The target model without normals can't run Point-to-plane method!" << std::endl; + exit(0); + } + SICP::point_to_plane(vertices_source, vertices_target, normal_target, source_mean, target_mean, spars); + res_trans = spars.res_trans; + break; + } + } + std::cout << "Registration done!" << std::endl; + double end_reg = omp_get_wtime(); + time = end_reg - begin_reg; + vertices_source = scale * vertices_source; + + out_path = out_path + "m" + std::to_string(method); + Eigen::Affine3d res_T; + res_T.linear() = res_trans.block(0,0,3,3); + res_T.translation() = res_trans.block(0,3,3,1); + res_trans_path = out_path + "trans.txt"; + std::ofstream out_trans(res_trans_path); + res_trans.block(0,3,3,1) *= scale; + out_trans << res_trans << std::endl; + out_trans.close(); + + ///--- Write result to file + std::string file_source_reg = out_path + "reg_pc.ply"; + write_file(file_source, vertices_source, normal_source, src_vert_colors, file_source_reg); + + return 0; +} diff --git a/median.h b/median.h new file mode 100644 index 0000000000000000000000000000000000000000..cb8fc715f875a4e0febfa0e9df3009dae6514139 --- /dev/null +++ b/median.h @@ -0,0 +1,61 @@ +#ifndef MEDIAN_H +#define MEDIAN_H +// This file is part of libigl, a simple c++ geometry processing library. +// +// Copyright (C) 2013 Alec Jacobson +// +// This Source Code Form is subject to the terms of the Mozilla Public License +// v. 2.0. If a copy of the MPL was not distributed with this file, You can +// obtain one at http://mozilla.org/MPL/2.0/. +#include +#include +namespace igl +{ + template +void matrix_to_list(const Eigen::DenseBase& M, + std::vector &V) +{ + using namespace std; + V.resize(M.size()); + // loop over cols then rows + for(int j =0; j + bool median( + const Eigen::MatrixBase & V, mType & m) + { + using namespace std; + if(V.size() == 0) + { + return false; + } + vector vV; + matrix_to_list(V,vV); + // http://stackoverflow.com/a/1719155/148668 + size_t n = vV.size()/2; + nth_element(vV.begin(),vV.begin()+n,vV.end()); + if(vV.size()%2==0) + { + nth_element(vV.begin(),vV.begin()+n-1,vV.end()); + m = 0.5*(vV[n]+vV[n-1]); + }else + { + m = vV[n]; + } + return true; + } +} +#endif