# coding=utf-8 import datasets logger = datasets.logging.get_logger(__name__) _URL = "https://huggingface.co/datasets/adalbertojunior/segmentacao2/resolve/main/" _TRAIN_FILE = "train.conll" _TEST_FILE = "test.conll" class Harem(datasets.GeneratorBasedBuilder): """Harem dataset.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name='segmentacao',version=VERSION,description="segmentacao dataset"), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "pos_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", ] ) ), "chunk_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", ] ) ), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "B-Segmento", "I-Segmento", ] ) ), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): # urls_to_download = { "train": f"{_URL}{_TRAIN_FILE}", "dev": f"{_URL}{_TEST_FILE }", "test": f"{_URL}{_TEST_FILE }", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "split": "dev"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"], "split": "test"}, ), ] def _generate_examples(self, filepath, split): """This function returns the examples in the raw (text) form by iterating on all the files.""" logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] pos_tags = [] chunk_tags = [] ner_tags = [] for line in f: if line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "chunk_tags": chunk_tags, "ner_tags": ner_tags, } guid += 1 tokens = [] pos_tags = [] chunk_tags = [] ner_tags = [] else: splits = line.split(" ") tokens.append(splits[0]) pos_tags.append(splits[1]) chunk_tags.append(splits[2]) ner_tags.append(splits[-1].rstrip()) # last example yield guid, { "id": str(guid), "tokens": tokens, "pos_tags": pos_tags, "chunk_tags": chunk_tags, "ner_tags": ner_tags, }