|
1 |
|
00:00:00,720 --> 00:00:05,260 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุฐู ูู ุงูู
ุญุงุถุฑุฉ ุงูุฑูู
11 |
|
|
|
2 |
|
00:00:05,260 --> 00:00:12,280 |
|
ูู
ุณุงู ุฑูุงุถูุงุช ู
ู ูุตูุฉ ูุทูุงุจ ุทุงูุจุงุช ุงูุฌุงู
ุนุฉ |
|
|
|
3 |
|
00:00:12,280 --> 00:00:16,080 |
|
ุงูุฅุณูุงู
ูุฉ ูููุฉ ุชูููููุฌูุง ุงูู
ุนููู
ุงุช ูุณู
ุงูุญูุณุจุฉ |
|
|
|
4 |
|
00:00:16,080 --> 00:00:22,540 |
|
ุงูู
ุชูููุฉ ุจุฏุฃูุง ุญุฏูุซูุง ูู ุงูู
ุญุงุถุฑุฉ ุงูุนุงุดุฑุฉ ุงูุณุงุจูุฉ |
|
|
|
5 |
|
00:00:22,540 --> 00:00:27,700 |
|
ุนูู ุงููู ูู ุงู graphsุนุฑููุง ุดู ู
ุนูุงุช ุงู graph ูููุง |
|
|
|
6 |
|
00:00:27,700 --> 00:00:33,160 |
|
ุนุจุงุฑุฉ ุนู ุงููู ูู set V ุงููู ูู ุจุชู
ุซู vertices ู A |
|
|
|
7 |
|
00:00:33,160 --> 00:00:37,940 |
|
ุจุชู
ุซู ุงููู ูู ุนุจุงุฑุฉ ุนู ุงูุฎุทูุท ุงููู ุจูู ุงููู ูู ุงู |
|
|
|
8 |
|
00:00:37,940 --> 00:00:46,300 |
|
vertices ู ุจุนุฏูู ุฃุฎุฐูุง ุงููู ูู ุดู ู
ุนูุงุช ุงู edge |
|
|
|
9 |
|
00:00:46,300 --> 00:00:51,360 |
|
ุงููู ูู ุงูุฎุท ู ุดู ู
ุนูุงุช ุงููู ูู ุงู neighborhoodู |
|
|
|
10 |
|
00:00:51,360 --> 00:00:55,700 |
|
ุจุนุฏูู ุงููู ูู ุดู .. ูููุง ุดู ู
ุนูุงุช ุงูู two edgesููู |
|
|
|
11 |
|
00:00:55,700 --> 00:01:02,960 |
|
adjacent ู ุฃูุถุง ุนุฑููุง ุงููู ูู ุดู ู
ุนูุงุช ุงู degree |
|
|
|
12 |
|
00:01:02,960 --> 00:01:08,340 |
|
ูู vertex ู .. ู ูููุง ุงู vertex ุงููู ุงู degree ูู |
|
|
|
13 |
|
00:01:08,340 --> 00:01:12,900 |
|
zero ูููุง isolated ู ุฃุฎุฏูุง ุฃู
ุซูุฉ ุนูู ููู ูุฃู
ุซูุฉ |
|
|
|
14 |
|
00:01:12,900 --> 00:01:18,300 |
|
ุงููู ุฃู
ุงู
ูุง ูุฐู ู ุนูู ุงู degree ุฅูู ุฃุฎุฑู ู ุงูุชูููุง |
|
|
|
15 |
|
00:01:20,810 --> 00:01:24,030 |
|
ุทุจุนุง ููุง ุญุงูููุง ุนู ุงูู undirected graph ุจุนุฏูู |
|
|
|
16 |
|
00:01:24,030 --> 00:01:28,650 |
|
ุฃุฎุฏูุง ุฃู
ุซูุฉ ุนูู ูู ูุฐู ุงูู
ูุถูุนุงุช ูุฌููุง ุฃุฎุฏูุง ุงููู |
|
|
|
17 |
|
00:01:28,650 --> 00:01:33,270 |
|
ูู ุงููุธุฑูุฉ ุงููู ุจุชููู ุฏุงูู
ุง ุงููู ูู ุงูู
ุฌู
ูุน ุงููู |
|
|
|
18 |
|
00:01:33,270 --> 00:01:37,050 |
|
ูู ุงู degree ูู vertices ุนูู ูู ุงู vertices ุงููู |
|
|
|
19 |
|
00:01:37,050 --> 00:01:41,650 |
|
ูู ุงู V ุจุชุณุงูู 2 ูุญุงุตู ุถุฑุจ ุงููู ูู ุนุฏุฏ ุงูุฎุทูุท ุฃู |
|
|
|
20 |
|
00:01:41,650 --> 00:01:46,570 |
|
ุนุฏุฏ ุงู edges ุงููู ูู ุงูุดููู ุจุนุฏูู ุฃุฎุฏูุง ุฃู
ุซูุฉ ุนูู |
|
|
|
21 |
|
00:01:46,570 --> 00:01:51,570 |
|
ููู ู ุฃุฎุฏูุง ุจุนุฏ ููู ุดู ู
ุนูู .. ุดู ู
ุนูุงุช ุงููู ูู ุงู |
|
|
|
22 |
|
00:01:51,570 --> 00:01:54,690 |
|
directed graph ุงููู ุจูููู .. ููููุง ุจูุณูุฑ ุงููู ูู |
|
|
|
23 |
|
00:01:54,690 --> 00:02:00,370 |
|
ุงูุฎุท ุงููู ูู directed from ููุทุฉ ุฅูู ููุทุฉ ุฃุฎุฑูู |
|
|
|
24 |
|
00:02:00,370 --> 00:02:05,990 |
|
ุฃุฎุฏูุง ุงููู ูู ุฃูุซู ุนูููู
ู ุฃุฎุฏูุง ุดู ุงู degree ุงููู |
|
|
|
25 |
|
00:02:05,990 --> 00:02:09,990 |
|
ูู ุงูุฎุงุฑุฌุฉ ู ุงู degree ุงูุฏุงุฎูุฉ ู ุฃุฎุฏูุง ุงู homework |
|
|
|
26 |
|
00:02:09,990 --> 00:02:13,690 |
|
ู ุงูููู
ุงู ุดุงุก ุงููู ุจุฏูุง ูุจุฏุฃ ูุญูู ุนู ุงููู ูู |
|
|
|
27 |
|
00:02:13,690 --> 00:02:18,210 |
|
ุงูู
ูุถูุนุงุช ุงูู
ูู
ูุฉ ููู ุญูููุงูุง ุงููู ูู ุฎูููุง ูุญูู |
|
|
|
28 |
|
00:02:18,210 --> 00:02:22,510 |
|
ุนู ุญุงุฌุฉ ุงุณู
ูุง subigraph subigraph ูุนูู ุฌุฒุก ู
ู |
|
|
|
29 |
|
00:02:22,510 --> 00:02:25,930 |
|
ุงูigraph ุฌุฒุก ู
ู ุงูigraph ุทุจูุนู ูุดูู ุฅูุด ูุนุฑููุงู |
|
|
|
30 |
|
00:02:26,460 --> 00:02:31,860 |
|
ุจููู ูู ูุงู ุนูุฏู graph g1 is a sub graph ูุนูู ูุฐุง |
|
|
|
31 |
|
00:02:31,860 --> 00:02:36,320 |
|
g1 ุจูููู ุนูู sub graph ู
ู ู
ูู of another graph g |
|
|
|
32 |
|
00:02:36,320 --> 00:02:41,040 |
|
ูุนูู g1 ุนุจุงุฑุฉ ุนู sub graph ุงู graph ุฌุฒุฆู ู
ู ุงู |
|
|
|
33 |
|
00:02:41,040 --> 00:02:46,080 |
|
graph g if and only if the vertex and edges sits |
|
|
|
34 |
|
00:02:46,080 --> 00:02:49,730 |
|
of g1G1 are respectively subsets of the vertex and |
|
|
|
35 |
|
00:02:49,730 --> 00:02:53,730 |
|
edges of G ูุญู ูุชูุงุฌ ุฃู G ูููู ู
ูููู ู
ู ุดุบู ุชุงูู |
|
|
|
36 |
|
00:02:53,730 --> 00:02:59,270 |
|
ู
ู vertices ู
ู vertices ูู
ู ุฎุทูุท ุฅุฐุง ุจูููู ุฅู G1 |
|
|
|
37 |
|
00:02:59,270 --> 00:03:04,450 |
|
sub graph ู
ู G ุฅุฐุง ูุงู ูู ุงู vertices ุงููู ูู G1 |
|
|
|
38 |
|
00:03:04,450 --> 00:03:11,610 |
|
ู
ูุฌูุฏุฉ ูู vertices ูู G ูู ุงู V ุชุจุนุชูู
ู ูู ุงูุฎุทูุท |
|
|
|
39 |
|
00:03:11,610 --> 00:03:15,190 |
|
ุงูู edges ุงููู ูู ุงู .. ุงููู ูู ุงูู G1 ุงููู ููุง |
|
|
|
40 |
|
00:03:15,190 --> 00:03:20,070 |
|
ูุณู
ููุง ุฅูู ูู ุนุจุงุฑุฉ ุนู ุฎุทูุท ู
ูุฌูุฏุฉ ูู ู
ูู ูู ุงูู G |
|
|
|
41 |
|
00:03:20,070 --> 00:03:24,950 |
|
ุงูุฃุตููุฉ ุงูุขู ููุฌู ูุงุฎุฏ ุฃู
ุซูุฉ ุงููู ูู ุฃู
ุงู
ูุง ูุงู |
|
|
|
42 |
|
00:03:24,950 --> 00:03:27,570 |
|
ุนูุฏู ุงู graph G ูุงู ู ูุฐุง ุงู graph G ูุงู ุงู |
|
|
|
43 |
|
00:03:27,570 --> 00:03:31,290 |
|
vertices ูููุง ู
ูุฌูุฏุฉ ุนูุฏู ู ูุงู ุงูุฎุทูุท ุงููู ุจูููุง |
|
|
|
44 |
|
00:03:31,290 --> 00:03:34,550 |
|
ุงููู ูู ุงู edges ุงููู ุจูููุง ุงููู ูููุฌููุง ูุทูุนูุง |
|
|
|
45 |
|
00:03:34,550 --> 00:03:42,870 |
|
ููุฐุง ูุฐุง V4 ูู ู
ูุฌูุฏุฉ ููุง V4V3 ูููุง ุฌุงู ู
ู ููุง V7 |
|
|
|
46 |
|
00:03:42,870 --> 00:03:48,090 |
|
ูููุง ู
ู ููุง V6 ูููุง ู
ู ููุง ุงูุฎุทูุท ุงููู ุจูููู
V7 ู |
|
|
|
47 |
|
00:03:48,090 --> 00:03:58,230 |
|
V6 ูู V7 ู V6 ู
ูุฌูุฏ V6 ู V3 ูู ู
ูุฌูุฏ V4 ู V3 ูู V4 |
|
|
|
48 |
|
00:03:58,230 --> 00:04:04,770 |
|
ู V3 ู
ูุฌูุฏุฅุฐุง ูุฐุง ุงู graph ูู ุนุจุงุฑุฉ ุนู ุฌุฒุก ู
ู ูุฐุง |
|
|
|
49 |
|
00:04:04,770 --> 00:04:08,510 |
|
ูุฃู ุงูุฎุทูุท ูุฐู ู
ูุฌูุฏุฉ ูู ุงู graph ุงูุฃุตูู ู ุงู |
|
|
|
50 |
|
00:04:08,510 --> 00:04:12,530 |
|
vertices ู
ูุฌูุฏุฉ ูู ุงู graph ุงูุฃุตูู ุนุดุงู ููู ุจูุณู
ู |
|
|
|
51 |
|
00:04:12,530 --> 00:04:17,150 |
|
ูุฐุง sub graph ู
ู ูุฐุง ูุดูู ุงู graph ุงูุชุงููุ ูุงุญุธูุง |
|
|
|
52 |
|
00:04:17,150 --> 00:04:25,280 |
|
V2 ูู ู
ูุฌูุฏุฉV3 ูู V3 V6 |
|
|
|
53 |
|
00:04:25,280 --> 00:04:33,000 |
|
V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู |
|
|
|
54 |
|
00:04:33,000 --> 00:04:33,140 |
|
V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 |
|
|
|
55 |
|
00:04:33,140 --> 00:04:34,080 |
|
ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 |
|
|
|
56 |
|
00:04:34,080 --> 00:04:34,920 |
|
V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 V7 ูู |
|
|
|
57 |
|
00:04:34,920 --> 00:04:47,760 |
|
V6 V7 ูู V6 V7 ูู V6 V7 ูู V6 |
|
|
|
58 |
|
00:04:47,760 --> 00:04:53,380 |
|
V7ุงูุงู ุจุฏูุง ูุงุฎุฏ ุงููู ูู some special simple |
|
|
|
59 |
|
00:04:53,380 --> 00:04:58,160 |
|
graphs ุฃู ุญุงุฌุฉ ุจูุณู
ููุง complete graphs ุจุฏูุง ูุฑุฌุน ู |
|
|
|
60 |
|
00:04:58,160 --> 00:05:03,420 |
|
ุงููู ูู ุงู graphs ู ุจุฏูุง ูุณู
ู ุจุนุถ ุงู graphs ููุด |
|
|
|
61 |
|
00:05:03,420 --> 00:05:09,820 |
|
ุจูุณู
ููุง complete graph ุจูุณู
ูู ู ูุดูู ููุด ุงู graph |
|
|
|
62 |
|
00:05:09,820 --> 00:05:14,340 |
|
ุจูุณู
ูู completeุจูุงุฎุฏ ุฃููุงุน ู
ุนููุฉ ุฎููููุง ูุดูู ุฅูุด |
|
|
|
63 |
|
00:05:14,340 --> 00:05:18,280 |
|
ุงูู
ุฌููุฉ for any positive integer n ูู ูุงู n ุนุจุงุฑุฉ |
|
|
|
64 |
|
00:05:18,280 --> 00:05:20,840 |
|
ุนู positive integer ูุนูู ูุงุญุฏ ููุง ุงุชููู ููุง ุชูุงุชุฉ |
|
|
|
65 |
|
00:05:20,840 --> 00:05:24,280 |
|
ููุง ุงุฑุจุนุฉ ุงูุงุฎุฑ ูู the complete graph on n |
|
|
|
66 |
|
00:05:24,280 --> 00:05:29,620 |
|
vertices ูุนูู ูู
ุง ูููู ุนู ุงู graph ุงููู ููู n |
|
|
|
67 |
|
00:05:29,620 --> 00:05:30,220 |
|
vertices |
|
|
|
68 |
|
00:05:33,500 --> 00:05:38,600 |
|
ูุนูู ูู ุฃูู
ุฑุฃุณ ูู N ู
ู ุงูุฑุคูุณ ุจููู ุฏู complete |
|
|
|
69 |
|
00:05:38,600 --> 00:05:43,380 |
|
graph on N vertices denote KN ูุนูู ุงูุขู ุจุฏูุง ูุณู
ู |
|
|
|
70 |
|
00:05:43,380 --> 00:05:51,240 |
|
ุงู KN ูุฐุง ูุฑู
ุฒ ุฅูู complete graphwith n vertices |
|
|
|
71 |
|
00:05:51,240 --> 00:05:57,700 |
|
ูู ุงูุด ู
ุงูู ู ู
ู ุงูุฑุคูุณ ุทุจุนุง ุดูููุง ูุฐุง ูุฃู is a |
|
|
|
72 |
|
00:05:57,700 --> 00:06:02,400 |
|
graph with n vertices ูุนูู ูุฐุง ูุฃู ุนุจุงุฑุฉ ุนู graph |
|
|
|
73 |
|
00:06:02,400 --> 00:06:06,760 |
|
with n vertices every two of which are adjacent |
|
|
|
74 |
|
00:06:06,760 --> 00:06:11,380 |
|
ูุนูู ูู ุงุชููู ู
ู ุงู vertices adjacent ุงุชุฌุณูุช |
|
|
|
75 |
|
00:06:11,380 --> 00:06:14,420 |
|
ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช |
|
|
|
76 |
|
00:06:14,420 --> 00:06:15,000 |
|
ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช |
|
|
|
77 |
|
00:06:15,000 --> 00:06:19,260 |
|
ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช |
|
|
|
78 |
|
00:06:19,260 --> 00:06:23,500 |
|
ุงุชุฌุณูุช ุงุชุฌุณูุช ุงุชุฌุณูุช ุงูู ุนูุฏู ูุชููู ูู ููุทุชูู |
|
|
|
79 |
|
00:06:23,500 --> 00:06:29,260 |
|
ุงูููุทุชูู ูุฏููุฉ ูู ุงูุชูุชูู ุจูููุง ุฎุท ู
ุงููุด ุงู ููุทุฉ |
|
|
|
80 |
|
00:06:29,260 --> 00:06:34,440 |
|
ูู ุฏุงุฎู ุงููุชููู ู
ุงููุด ุจูููุง ูุจูู ุงูุจุงููุงุช ุฎุทูุท |
|
|
|
81 |
|
00:06:34,440 --> 00:06:42,900 |
|
ุนุดุงู ููู ุจูุณู
ู ูุฐุง complete graphู
ู ุงูููุน K2 ูุดูู |
|
|
|
82 |
|
00:06:42,900 --> 00:06:50,440 |
|
ููุน ุขุฎุฑ K3 K3 K3 ุฃุดู
ู ููู ุชูุงุช ุฑุคูุณ ูุฐู ุฑุงุณ ูุฐู |
|
|
|
83 |
|
00:06:50,440 --> 00:06:55,960 |
|
ุฑุงุณูู ูุฐู ุชูุงุชุฉ ูุงุญุธุช ุชูุงุช ุฑุคูุณ ูุนูุง ูุฐุง ููุฐุง ุจูู |
|
|
|
84 |
|
00:06:55,960 --> 00:06:59,860 |
|
ุงูุฎุท ููุฐุง ููุฐุง ุจูู ุงูุฎุท ููุฐุง ููุฐุง ุจูู ุงูุฎุท ูุนูู ูู |
|
|
|
85 |
|
00:06:59,860 --> 00:07:05,920 |
|
ุงูุฑุคูุณ are adjacentูุนูู ู
ุง ููู ูู ุงูุฑุคูุณ ุงููู ูู |
|
|
|
86 |
|
00:07:05,920 --> 00:07:09,380 |
|
ุจูููู ูุจูู ุจุนุถ ุฎุทูุท ุนุดุงู ููู ุจูุณู
ููุง ุฏู Complete |
|
|
|
87 |
|
00:07:09,380 --> 00:07:13,640 |
|
Graph ูุฐุง ุงูููุน ู
ู ุงู graphs ุงููู ุฒู ููู ุงููู |
|
|
|
88 |
|
00:07:13,640 --> 00:07:17,240 |
|
ูุชููู ูุชูุงุชุฉ ุงููู ูู ุนุฏุฏ ุงููู ูู ุงุชููู ุงู ุนุฏุฏ |
|
|
|
89 |
|
00:07:17,240 --> 00:07:21,860 |
|
ุชูุงุชุฉ ุงู ุจุนุฏ ุดููุฉ ุงุฑุจุน ุงู ุฎู
ุณ ุงู ุณุชุฉ ูุจููู ุจุฎุงุตูุฉ |
|
|
|
90 |
|
00:07:21,860 --> 00:07:28,320 |
|
ุงูู ูู ุงุชููู ูู ููุทุชูู ุจูู ุงูุฎุท ุจูุณู
ูู ุงููู ูู |
|
|
|
91 |
|
00:07:28,320 --> 00:07:32,990 |
|
Complete Graph ู
ู ุงูููุน KNูุฌู ููู ุฃุฑุจุนุฉ ูู ุฃุฑุจุนุฉ |
|
|
|
92 |
|
00:07:32,990 --> 00:07:36,110 |
|
ุงููู ูู ูุงุญุฏ ุชููู ุชูุงุชุฉ ุฃุฑุจุนุฉ ูููุง ุฃุฑุจุน ุนูุงุด ููุงุท |
|
|
|
93 |
|
00:07:36,110 --> 00:07:43,330 |
|
ุงูุฃุฑุจุน ููุงุท ูููู
ุจูู ูุฐู ู ูุฐู ุฎุท ู ุจูููุง ู ุจูููุง |
|
|
|
94 |
|
00:07:43,330 --> 00:07:48,510 |
|
ุฏู ุฎุท ู ุจูููุง ู ุจูููุง ุฏู ุฎุท ูุนูู ูู ุงูููุงุท ุงููู ูู
|
|
|
|
95 |
|
00:07:48,510 --> 00:07:52,970 |
|
adjacent ูุจุนุถ ุนุดุงู ููู ุจูุณู
ูู graph ุฅุฐุง ุงู |
|
|
|
96 |
|
00:07:52,970 --> 00:07:58,890 |
|
complete graphูู graph ุนุงุฏู ูู ููุทูู ููู adjacent |
|
|
|
97 |
|
00:07:58,890 --> 00:08:03,590 |
|
ูุนูู ูู ููุทูู ููู graph ุญุงูุฉ ุฎุงุตุฉ ู
ู ูุฐูู ุงู |
|
|
|
98 |
|
00:08:03,590 --> 00:08:08,850 |
|
complete graph ุงููู ูู ุนุงุฆูุฉ ู
ู ุงู graphs ุงุณู
ูุง kn |
|
|
|
99 |
|
00:08:08,850 --> 00:08:14,890 |
|
ุงูุด ุงู kn ูุฐู ุงููู ูู ุนุฏุฏูุง n ู
ู ุงููู ูู ุงู |
|
|
|
100 |
|
00:08:14,890 --> 00:08:20,000 |
|
vertices ูููุงุู ุจูุนู
ููู complete graph ูุนูู ูู |
|
|
|
101 |
|
00:08:20,000 --> 00:08:25,820 |
|
ุงูููุงุท are adjacent ุฏู ูุดูู ุงููู ุจุนุฏูุง ูุงู K ุฎู
ุณุฉ |
|
|
|
102 |
|
00:08:25,820 --> 00:08:30,140 |
|
ู
ุซูุง ุจุฎู
ุณุฉ ูุงู ุนูุฏู ุฎู
ุณ ููุงุท ูุงุญุฏุฉ ุชูุชูู ู
ู ุชูุงุชุฉ |
|
|
|
103 |
|
00:08:30,140 --> 00:08:32,900 |
|
ุงุฑุจุนุฉ ุฎู
ุณุฉ ูุงุถุญ ุงู ูู ุงูููุงุท ูู ูุงุญุฏุฉ ุจูุทูุน ู
ููุง |
|
|
|
104 |
|
00:08:32,900 --> 00:08:37,940 |
|
ุงุฑุจุน ุฎุทูุท ููุงุฎุฑูู ูุนุดุงู ููู ุจูุณู
ููุง complete graph |
|
|
|
105 |
|
00:08:37,940 --> 00:08:43,680 |
|
ู
ู ุงูููุน Kูู ูุงุญุฏ ุจุฏู ูุฑุณู
K6 ุจุชูุฏุฑ ุชุฑุณู
ูุง ุจููุณ |
|
|
|
106 |
|
00:08:43,680 --> 00:08:48,060 |
|
ุงูุงุณู
ู K7 ุทุจุนุง ุจุชุบูุจ ุดููุฉ ููู ุจุชุธููุง ูู ููุณ |
|
|
|
107 |
|
00:08:48,060 --> 00:08:54,800 |
|
ุงููุทุงู ูุฐู ุจูุณู
ููุง complete graphs ุงู ู
ุซู ุนูู ุงู |
|
|
|
108 |
|
00:08:54,800 --> 00:09:00,240 |
|
complete graphs ุงููู ูู ุงูุนุงุฆูุฉ ุงููู ุณู
ููุงูุง KNุนูุฏ |
|
|
|
109 |
|
00:09:00,240 --> 00:09:03,280 |
|
K ูุงุญุฏ ุจุฑุถู ูุนุชุจุฑู complete ููุดุ ูุฃู ุงูู complete |
|
|
|
110 |
|
00:09:03,280 --> 00:09:07,740 |
|
graph ู
ุงููููุด ููู ููุทุชูู ู
ุด adjacent ูุงูููุด ููู |
|
|
|
111 |
|
00:09:07,740 --> 00:09:10,840 |
|
ููุทุชูู ู
ุด adjacent ูุฃูู ุฃุตูุง ูู ุงูููุทุฉ ุจุณ ูุญุงููุง |
|
|
|
112 |
|
00:09:10,840 --> 00:09:17,730 |
|
ุนุดุงูู ุจูุณู
ููุง ุงููู ูู ุจุฑุถู complete graphK1, K2, |
|
|
|
113 |
|
00:09:17,850 --> 00:09:22,130 |
|
K3, K4, K5 ุงูุงุฎุฑ ูู ุฒู
ูุชู ุจุชุงุนูุง ุงูุงู ุจุฏูุง ููุฌู |
|
|
|
114 |
|
00:09:22,130 --> 00:09:26,810 |
|
ููุน ุซุงูู ู graphs ุญุงุฌุฉ ุงุณู
ูุง ุงู cycles ู
ุงุดู ุงูุด ุงู |
|
|
|
115 |
|
00:09:26,810 --> 00:09:31,850 |
|
cycles ุงููู ูู ู ุงู wheels ุงู ุงูุด ุชุดูู ุงูุด ุงู |
|
|
|
116 |
|
00:09:31,850 --> 00:09:37,900 |
|
cycle ู ุงูุด ุงู wheelุงูุงู cycle cn ุฏู ูุฑู
ุฒู ูุจุฑูุงู
ุฌ |
|
|
|
117 |
|
00:09:37,900 --> 00:09:41,220 |
|
cn ุจุนุฏ ุงุฐููู
ูุนูู ูู ุนูุฏู n ุฃูุจุฑ ุชุณุงูู ุชูุงุชุฉ ูุนูู |
|
|
|
118 |
|
00:09:41,220 --> 00:09:47,380 |
|
ุนูุฏู cycle c3 ู c4 ู c5 ู c6 ุฅูู ู
ุง ูููุงูุฉ |
|
|
|
119 |
|
00:09:47,380 --> 00:09:51,900 |
|
consists of n vertices ูุนูู ุงู cn ูุฐู ุจุฑุถู ุจุชุญุชูู |
|
|
|
120 |
|
00:09:51,900 --> 00:09:57,860 |
|
ุนูู ุงูู ุนุดุงู n ู
ู ุงู verticesู
ุงุฐุง ูุณู
ูู Cycle ูู
ุง |
|
|
|
121 |
|
00:09:57,860 --> 00:10:02,960 |
|
ูููู ุชุญููู ู
ุง ูููู ุงูู CNN Consists Of N Vertices |
|
|
|
122 |
|
00:10:02,960 --> 00:10:08,480 |
|
V1 ู V2 ู VN And Edges ู ุงูู Edges ุงูุด ู
ุง ููุง V1 ู |
|
|
|
123 |
|
00:10:08,480 --> 00:10:13,890 |
|
V2 ูุนูู ุฎุท ุจูู V1 ู V2 ู ุฎุท ุจูู V2 ู V3ู ุฎุท ุจูู V3 |
|
|
|
124 |
|
00:10:13,890 --> 00:10:19,330 |
|
ู V4 ูู
ุง ุฃุตู ุนูุฏ ุฎุท ุจูู ุงููู ูู ุงูููุทุฉ ุงูุฃุฎูุฑุฉ VN |
|
|
|
125 |
|
00:10:19,330 --> 00:10:25,430 |
|
ู ุจุฑุฌุน ูู
ูู ูู V1 ู ูุฅู ุฅูุด ุจุณูุฑ ู ุจุนู
ูู cycle ุฒู |
|
|
|
126 |
|
00:10:25,430 --> 00:10:30,190 |
|
ุฏุงุฆุฑุฉ ุฃู ุงููู ูู ุฏูุฑุฉ ูุงู
ูุฉ ู
ุงุดู the cycles C3, |
|
|
|
127 |
|
00:10:30,330 --> 00:10:38,350 |
|
C4, C5, C6 are displaced ุงููุฌุงุฑุง ูู ููุฐู ููุฐูุงููู |
|
|
|
128 |
|
00:10:38,350 --> 00:10:46,690 |
|
ูู V1 V2 V2 V3 V3 V1 ุฅุฐุงู ูุฐุง cycle ุตุงุฑ ุงูุขู ูุฐุง |
|
|
|
129 |
|
00:10:46,690 --> 00:10:50,170 |
|
ุงู graph complete ุฃู complete ูุฃูู ูู ู
ุบุทูู |
|
|
|
130 |
|
00:10:50,170 --> 00:10:54,850 |
|
adjacent ูุนูู ุงู cycle ู
ู
ูู ุชููู complete ูุนูู |
|
|
|
131 |
|
00:10:54,850 --> 00:10:59,730 |
|
ู
ุซุงู ุนูู complete graph ูุฌู ููู ุจุนุฏูุง C4ูู ู
ู ุนูุฏ |
|
|
|
132 |
|
00:10:59,730 --> 00:11:03,010 |
|
ุงูููุทุฉ ุงูุฃููู ููุชุงููุฉ ูู ุฎุท ู ู
ู ุงูุชุงููุฉ ููุชุงูุชุฉ ู |
|
|
|
133 |
|
00:11:03,010 --> 00:11:05,770 |
|
ู
ู ุงูุชุงูุชุฉ ููุฑุงุจุนุฉ ู ู
ู ุงูุฑุงุจุนุฉ ููุฃููู ุฑุฌุนุช ูุนูู |
|
|
|
134 |
|
00:11:05,770 --> 00:11:10,190 |
|
ุฃูููุฉ ุงูุฏุงุฆุฑุฉ ุฃู ุฃูููุฉ ุงููู ูู ุงู cycle ูุฐุง ุจูุณู
ูู |
|
|
|
135 |
|
00:11:10,190 --> 00:11:13,590 |
|
ุจุฑุถู cycle ูู ูุฐุง completeุ ูุฃ ู
ุด complete ููุด ู
ุด |
|
|
|
136 |
|
00:11:13,590 --> 00:11:16,850 |
|
completeุ ูุฃู ูุฐู ู ูุฐุง ุงูููุทุฉ they are not |
|
|
|
137 |
|
00:11:16,850 --> 00:11:20,850 |
|
adjacent ูุฃูู ู
ุงููุด ุจูู ุงูุฎุท ู ูุฐู ูู
ุงู ู ูุฐู ุฅุฐุง |
|
|
|
138 |
|
00:11:20,850 --> 00:11:24,090 |
|
ูู ูู ุนูุฏ ุงู cycle ููุณ ุดุฑุท ุงููุง ุชููู ุฅูุด ู
ุงููุง |
|
|
|
139 |
|
00:11:24,090 --> 00:11:28,450 |
|
complete ุงูุฑุฃุชุงูุงู ูุฌู ูู C5 C5 ุจููุณ ุงูุฃุณููุจ ูููุง |
|
|
|
140 |
|
00:11:28,450 --> 00:11:31,330 |
|
ุฎู
ุณ ููุงุท ุงูุฎู
ุณ ููุงุท ุจุชุจุฏุฃ ู
ู ุนูุฏ ุงูููุทุฉ ุงูุฃููู ู |
|
|
|
141 |
|
00:11:31,330 --> 00:11:33,670 |
|
ุจุชุจุฏุฃ ููุชุงููุฉ ุฃู ููุชุงูุชุฉ ุฃู ููุฑุจุนุฉ ุฃู ููุฎู
ุณุฉ ุฃู |
|
|
|
142 |
|
00:11:33,670 --> 00:11:37,770 |
|
ููุณุงุฏุณุฉ ุงููู ุงูุฎู
ุณุฉ ุจุชุฑุฌุน ูู
ูู ููููุทุฉ ุงูุฃููู |
|
|
|
143 |
|
00:11:37,770 --> 00:11:42,770 |
|
ูุจุชุนู
ู ููู cycle ุงููู ูู ุจุชุณูุฑ ุงููู ูู ุงูุฏูุฑุฉ ุงูุงู |
|
|
|
144 |
|
00:11:42,770 --> 00:11:47,890 |
|
C6 ุจููุณ ุงูุฃุณููุจ ูููุง ุณุช ููุงุท ูู ููุทุฉ ุงู V1 ุจุชุฑูุญูุง |
|
|
|
145 |
|
00:11:47,890 --> 00:11:52,150 |
|
V2 V2 ุชูุงุชุฉ V3 ุงู V4 ู
ุงูููู
ุด ู
ุนูุงุช ุจุชุฑูุญ ูุนูู ุจูู |
|
|
|
146 |
|
00:11:52,150 --> 00:12:02,610 |
|
ุงูุฎุทV4 V5 V5 V6 V6 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 |
|
|
|
147 |
|
00:12:02,610 --> 00:12:03,510 |
|
V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 |
|
|
|
148 |
|
00:12:03,510 --> 00:12:06,110 |
|
V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 |
|
|
|
149 |
|
00:12:06,110 --> 00:12:06,890 |
|
V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 |
|
|
|
150 |
|
00:12:06,890 --> 00:12:08,650 |
|
V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 |
|
|
|
151 |
|
00:12:08,650 --> 00:12:12,150 |
|
V1 V1 V1 V1 V1 V1 V1 V1 V1 V1 |
|
|
|
152 |
|
00:12:12,150 --> 00:12:15,610 |
|
V1 V1 |
|
|
|
153 |
|
00:12:15,980 --> 00:12:21,720 |
|
when we add an additional vertex to cycle CN ูุนูู |
|
|
|
154 |
|
00:12:21,720 --> 00:12:29,280 |
|
ุงูุด ุจูุฌูุจุ ุจูุฌูุจ ูู ุงู cycle ู ุจูุถูู ููุง ููุทุฉ ุงูุด |
|
|
|
155 |
|
00:12:29,280 --> 00:12:33,040 |
|
ุงูููุทุฉ ุฏู ู
ุงููุงุ ุชูุดูู ุงูุด ู
ุงููุง we add an |
|
|
|
156 |
|
00:12:33,040 --> 00:12:36,260 |
|
additional vertex to cycle CN for N ุฃูุจุฑ ุณูุงุก |
|
|
|
157 |
|
00:12:36,260 --> 00:12:41,940 |
|
ุชูุงุชุฉ and connect this new vertex to each of the |
|
|
|
158 |
|
00:12:41,940 --> 00:12:48,410 |
|
vertices in CN by new edgesุฅุฐุง ุงูุขู ู
ุง ูู ุฅูุง |
|
|
|
159 |
|
00:12:48,410 --> 00:12:52,570 |
|
cycle ุจูุญุท ุฌูุงุชูุง ููุทุฉ ุฃู ุฌูุจูุง ููุทุฉ ูู ุงูู
ูุงู |
|
|
|
160 |
|
00:12:52,570 --> 00:12:56,010 |
|
ุงูู
ูุงุณุจ ุฌูุงุชูุง ุฃูุถู ูุนูู ุจุชููู ุฃุญูู ูู ุงูุฑุณู
ู |
|
|
|
161 |
|
00:12:56,010 --> 00:13:01,590 |
|
ุจููุตู ู
ู ุงูููุทุฉ ูุฐู ุฎุทูุท ููู ุงู edges ููู ู
ู ุงู |
|
|
|
162 |
|
00:13:01,590 --> 00:13:05,390 |
|
vertices ุงููู ู
ูุฌูุฏุฉ ูุฐู ุงูููุทุฉ ููุนู
ููุง ุงููู ูู |
|
|
|
163 |
|
00:13:05,390 --> 00:13:09,810 |
|
edge ููู edge ููู edge ู
ุน ูู ุงูููุงุท ูุฐู ุจูุณู
ููุง |
|
|
|
164 |
|
00:13:09,810 --> 00:13:16,510 |
|
wheel W ุชูุงุชุฉ ุชุจุนุง ู C ุชูุงุชุฉุงูุงู ูุฐู complete ุงู |
|
|
|
165 |
|
00:13:16,510 --> 00:13:19,590 |
|
complete ูุฐู ูุงุถุญ ุงููุง complete ูุงู ูู ู
ุน ุงููู ูู |
|
|
|
166 |
|
00:13:19,590 --> 00:13:26,570 |
|
ุงูููุงุท ู
ุน ุงููู ุงูุงู ูุฐู ุงูููุทุฉ ูู ุนูุฏูุงููู ูู ู
ู |
|
|
|
167 |
|
00:13:26,570 --> 00:13:31,630 |
|
ุงูููุทุฉ ูุฐู ุญุทููุง ู ุฑุณู
ูุง ููู ุงูููุงุทุ ู
ุธุจูุทุ ูุฐู |
|
|
|
168 |
|
00:13:31,630 --> 00:13:35,050 |
|
ุนู
ูุช ู wheel ูู ููุณูุง ุงููู ููู ุจุณ ุนู
ููุง ููุง ููุทุฉ ู |
|
|
|
169 |
|
00:13:35,050 --> 00:13:40,390 |
|
ููุทุฉ ูุฏูุง ููุง ุงููู ูู ู
ู ููู ุงูููุงุท ุฎุทูุท ุญุณุจ ุชุนุฑูู |
|
|
|
170 |
|
00:13:40,390 --> 00:13:44,370 |
|
ุงููู ุนุฑููุง ูู
ูู ูู wheel ูู ูุฐู completeุ ููุณ ุดุฑุทุง |
|
|
|
171 |
|
00:13:44,370 --> 00:13:47,410 |
|
ูุฃูู ููุด ุจูู ุงูููุทุฉ ูุฐู ู
ุซูุง ุงูููุทุฉ ูุฐู ุฎุท ู
ุจุงุดุฑ |
|
|
|
172 |
|
00:13:47,850 --> 00:13:51,270 |
|
ูุฐุง ูู ุฎุท ู
ู ููุง ุฅูู ููุง ููุฐุง ู
ู ููุง ุฅูู ููุง ูุฃู |
|
|
|
173 |
|
00:13:51,270 --> 00:13:55,530 |
|
ูู ูุงู ููุงู ุฎุท ู
ุจุงุดุฑ ุจูููู
ูุณู
ูู complete ูู ูุงู |
|
|
|
174 |
|
00:13:55,530 --> 00:13:59,430 |
|
ููุงู ุฎุทูุท ู
ู ุงููู ุทุจุนุง ุงูุงู ูุฃุชู ููุฐู ุงููู ูู ุงู |
|
|
|
175 |
|
00:13:59,430 --> 00:14:03,850 |
|
wheel ุจูุฌูุจ ุงู C3 ู ุจูุญุท ููุทุฉ ูู ุฏุงุฎููุง ู ุจููุตู |
|
|
|
176 |
|
00:14:03,850 --> 00:14:08,470 |
|
ุจูููู
ูููู
ุงููู ูู ุงูุด ุจูู ุงูููุทุฉ ูุฐู ู ุจูู ูู |
|
|
|
177 |
|
00:14:08,470 --> 00:14:12,030 |
|
ุงูููุงุท ุงูุฃุฎุฑู ุจููุตู ุฎุทูุท ูุจุชุนู
ู wheel ูู ุงู wheel |
|
|
|
178 |
|
00:14:12,030 --> 00:14:15,090 |
|
complete ููุณ ุดุทุก ูุฃู ูู ู
ู ููุง ุฅูู ููุง ู
ุซูุง ุงูุด |
|
|
|
179 |
|
00:14:15,090 --> 00:14:19,810 |
|
ู
ุงููุด ุฎุทููุฐุง ุงููู ุจุนุฏูุง ุงูุงู ูุฐู ุงููู ูู ู
ูู ุงูุดูู |
|
|
|
180 |
|
00:14:19,810 --> 00:14:23,810 |
|
ุงูุณุฏุงุณู ูู ุงูุดูู ุงูุณุฏุงุณู ุญุทููุง ููุทุฉ ููุตููุง ุจูู |
|
|
|
181 |
|
00:14:23,810 --> 00:14:28,090 |
|
ุงูููุทุฉ ู ุจูู ุจุงูู ุงูููุงุท ูุนู
ูุช ููุด ุจุฑุถู wheel ูุงู |
|
|
|
182 |
|
00:14:28,090 --> 00:14:32,850 |
|
ุดูู ุงูุณุฏุงุณู ุนูุฏู ููู ุงูููุทุฉ ู ุจุฏู ุงุชูุตู ู
ู ุงูุดูู |
|
|
|
183 |
|
00:14:32,850 --> 00:14:37,350 |
|
ุงูุณุฏุงุณู ููู ุงูููุงุท ุดููููุงุดุชุจุชุทูุนูุด ุชูุจููุง ูููุง |
|
|
|
184 |
|
00:14:37,350 --> 00:14:40,310 |
|
ุชูููููุง ู
ูุนุจ ูุฃ ูุฐุง ู
ูุทุจ ูู ุงูู
ุตู ู ุทุจุนุง ูู ุจุชุธูุฑ |
|
|
|
185 |
|
00:14:40,310 --> 00:14:43,790 |
|
ูู ุงุชูุนุงูุช ูุชุดูููุง ู
ูุนุจ ูู ุงุชูุนุงูุช ูู ุตูุฑุฉ ุฃุฎุฑู |
|
|
|
186 |
|
00:14:43,790 --> 00:14:47,070 |
|
ูุชุดูููุง ููุทุฉ ูู ุงูุฏุงุฎู ู ู
ู ุงููู ู
ุด ู
ูุถูุนูุง ูุฐุง ุจุณ |
|
|
|
187 |
|
00:14:47,070 --> 00:14:51,930 |
|
ููู ุนุดุงู ุงูุฎุฏุงุน ุงูุจุตุฑู ุทูุจ ูุฐู ุงููู ูู ู
ุนูุงุช ุงู |
|
|
|
188 |
|
00:14:51,930 --> 00:14:58,050 |
|
wheel ุงูุงู ูู ุญุฏ ุงุณู
ู ุจูุจุง ุชุฑุงูุช ุจูุจุง ุจูุจุงุฑุชุงูุช |
|
|
|
189 |
|
00:14:58,410 --> 00:15:03,350 |
|
graph ุจูุจุฑุชุงูุช graph ุงููู ูู ูุนูู ุงูู Graph |
|
|
|
190 |
|
00:15:03,350 --> 00:15:06,830 |
|
ุงูุซูุงุฆู ุงูุด ุงู graph ุงูุซูุงุฆู ุฎูููุง ูุดูู ุงูุด ุจูููู |
|
|
|
191 |
|
00:15:06,830 --> 00:15:11,030 |
|
ุงู graph ุงูุซูุงุฆู a bipartite graph is a graph ูู |
|
|
|
192 |
|
00:15:11,030 --> 00:15:14,750 |
|
ุนุจุงุฑุฉ ุนู graph whose vertices can be partitioned |
|
|
|
193 |
|
00:15:14,750 --> 00:15:19,470 |
|
into two disjoint sets V1 and V2 ูุนูู ุงู ุจูุจุฑุชุงูุช |
|
|
|
194 |
|
00:15:19,470 --> 00:15:23,970 |
|
graph ุฃู ุงููู ูู ุงู graph ุงูุซูุงุฆู ุจูููู ูุฐุง ุจุชูุฏุฑ |
|
|
|
195 |
|
00:15:23,970 --> 00:15:32,640 |
|
ุชุนู
ู ุงู vertices ุฅููู ุฌุฒุฆููV1 ู V2 ูู V1 ููู V2 ุจุณ |
|
|
|
196 |
|
00:15:32,640 --> 00:15:39,940 |
|
ุชุญุช ุดุฑุท ู
ุนูู ูู Graphs ู
ู
ูู ุชุนู
ููุง V1 ู V2ุจูุฏุฑ |
|
|
|
197 |
|
00:15:39,940 --> 00:15:45,220 |
|
ุงุนู
ู V1 ู V2 ุจูุจูู partition sets ูุนูู ูุฐูู ุงููู |
|
|
|
198 |
|
00:15:45,220 --> 00:15:50,540 |
|
ุจูุณู
ููู
ูู
ุงููู ุฌุฒุก ู
ู ุงู set ุงูุฃุตูู ุชุจุน ุงู |
|
|
|
199 |
|
00:15:50,540 --> 00:15:56,440 |
|
vertices in such a way ุจุชุฌุฒุฆูุง ุจุทุฑููุฉ ูู V1 ู V2 |
|
|
|
200 |
|
00:15:56,440 --> 00:16:02,840 |
|
ุจุชุฌุฒุฆูุง ุจุทุฑููุฉ that every edge point joins a |
|
|
|
201 |
|
00:16:02,840 --> 00:16:08,070 |
|
vertex in V1 ู V2 ูุนูู ุงูุขู ูู
ุง ูุงุฎุฏ V1ูููู ุงุชููู |
|
|
|
202 |
|
00:16:08,070 --> 00:16:16,590 |
|
ูุชุฌุฒุฆูู ุงููู ูู ุงู vertices ุฅูู ุฌุฒุฆูู ุงุจุญุซ ุงูู ูู |
|
|
|
203 |
|
00:16:16,590 --> 00:16:22,730 |
|
edge ูู ุงูุดูู ุจุฑุจุท ููุทุฉ ู
ู ููุง ู
ุน ููุทุฉ ู
ู ููุง ูู |
|
|
|
204 |
|
00:16:22,730 --> 00:16:26,590 |
|
edge ูู ุงูุดูู .. ูู edge ู
ูุฌูุฏ ูู edge ุจุฑุจุท ููุทุฉ |
|
|
|
205 |
|
00:16:26,590 --> 00:16:29,150 |
|
ู
ู ููุง ู
ุน ููุทุฉ ู
ู ููุง ุงู edge ุงูุชุงูู ูู ุจุฑุจุท ููุทุฉ |
|
|
|
206 |
|
00:16:29,150 --> 00:16:31,710 |
|
ู
ู ููุง ู
ุน ููุทุฉ ู
ู ููุง ุงู edge ุงูุชุงูุช ู
ู ููุทุฉ ู
ู |
|
|
|
207 |
|
00:16:31,710 --> 00:16:33,830 |
|
ููุง ู
ุน ููุทุฉ ู
ู ููุง ุงู edge ุงูุฑุงุจุน ู
ู ููุทุฉ ู
ู ููุง |
|
|
|
208 |
|
00:16:33,830 --> 00:16:37,390 |
|
ู
ุน ููุทุฉ ู
ู ููุงูู ุงูุงุชุฌุงูุงุช ุงููู ู
ูุฌูุฏุฉ ุงูุฎุทูุท |
|
|
|
209 |
|
00:16:37,390 --> 00:16:42,810 |
|
ุจุชููู ูุงุตูุฉ ุจูู ููุทุฉ ู
ู ู
ุฌู
ูุนุฉ ุงู vertices ุงูุฃููู |
|
|
|
210 |
|
00:16:42,810 --> 00:16:47,770 |
|
ูููุทุฉ ู
ู ู
ุฌู
ูุนุฉ ุงู vertices ุงูุชุงููุฉ ูุนูู ุงูุขู ูู |
|
|
|
211 |
|
00:16:47,770 --> 00:16:52,290 |
|
ูุงู ุจูู ูุฐู ููุฐู ูุฃ ุจููุนุด ูููู ุงููู ูู ุงูู ุดู
ุงูู |
|
|
|
212 |
|
00:16:52,680 --> 00:16:58,620 |
|
ุนูุฏู ุงููู ูู ุจู
ุณู
ููุด ุนู
ูุฉ partition ูุฃูู ู
ู ูุงููุงู |
|
|
|
213 |
|
00:16:58,620 --> 00:17:02,920 |
|
ุจูุตูุฑ ูุฐุง ุงูููุทุฉ ูู ููุณ ุงู .. ููุทุชูู ูู ููุณ ุงู V |
|
|
|
214 |
|
00:17:02,920 --> 00:17:08,420 |
|
ูุงุญุฏ ูุฃ ูุฃู ูู ุงูุฎุทูุท ุจุฏูุง ุชููู ุฌุงูุฉ ู
ู ุงู |
|
|
|
215 |
|
00:17:08,420 --> 00:17:13,080 |
|
vertices ุงูุฃููู ู
ุน ุงู vertices ุงูุชุงููุฉ ุนุดุงู ููู |
|
|
|
216 |
|
00:17:13,080 --> 00:17:20,280 |
|
ุจูุณู
ู ูุฐุง bipartite graph ุฃู graph ุซูุงุฆูุงูุงู ูุงู |
|
|
|
217 |
|
00:17:20,280 --> 00:17:26,820 |
|
ูุงุญุฏ ุชุงูู ุจุฑุถู ุจุจุฑุชุงูุฉ graph ุขุฎุฑ ูู ุงู V1 ุงููุจูุฑุฉ |
|
|
|
218 |
|
00:17:26,820 --> 00:17:31,920 |
|
ูุนูู ุจุชุญุชูู ุนูู ูู ุงููู ูู ุงู vertices ุงูุฌุฒุก ุงูุฃูู |
|
|
|
219 |
|
00:17:31,920 --> 00:17:35,980 |
|
ููุฐู ุจุชุญุชูู ุนูู ุงู vertices ุงูุฌุฒุก ุงูุซุงูู ูุงุญุธ ุงูู |
|
|
|
220 |
|
00:17:35,980 --> 00:17:42,030 |
|
ูู ุฎุทู
ูุฌูุฏ ุจุฑุจุท ุจูู ููุทุฉ ุจูู ูุฐู V1 ู V2 ูู ุฎุท |
|
|
|
221 |
|
00:17:42,030 --> 00:17:47,670 |
|
ู
ูุฌูุฏ ุจุฑุจุท ุจูู V2 ู V1 ูู ุฎุท ู
ูุฌูุฏ ุจูู V1 ู V2 ู |
|
|
|
222 |
|
00:17:47,670 --> 00:17:54,470 |
|
ููุฐุง ูุฐุง ุจูุณู
ููู
ุงุดู
ุงููู
ุงู
ุซู ุนุจุงุฑุฉ ุนูู bipartite |
|
|
|
223 |
|
00:17:54,470 --> 00:17:58,330 |
|
graphs ููุฌู ูุงุฎุฑ ูุงุญุฏุฉ ุทุจุนุง ูู ุงูุญุงูุฉ ู
ู ุญุงูุฉ |
|
|
|
224 |
|
00:17:58,330 --> 00:18:05,600 |
|
ุฑุณู
ูุง ุญุงูุฉ ูู ูุฐู ุงููู ูู ุงู V2ููู ูุฏู
ูู ุงูู V1 ูู |
|
|
|
225 |
|
00:18:05,600 --> 00:18:12,920 |
|
ุงููู ูู
ุง ุงู V1 ู ุงู V2 ุงููู ุฌุฒุกูู ููู ุงููู ุฌุฒุกูู |
|
|
|
226 |
|
00:18:12,920 --> 00:18:18,460 |
|
ููู ุงููู ูู ุงู vertices ุงูู ุฌุฒุกูู ุงุจุญุซ ุงู ูู ุฎุท |
|
|
|
227 |
|
00:18:18,460 --> 00:18:24,900 |
|
ู
ูุฌูุฏ ูุงุฎุฏ ู
ู ููุทุฉ ูู ุงู V1 ุงูู V2 ุงู ู
ู V2 ู V1 ู |
|
|
|
228 |
|
00:18:24,900 --> 00:18:29,700 |
|
ููุฐุง ุฒู ู
ุง ุงูุชูุง ุดุงูููู ููุฏููุฉ ุงู
ุซูุฉ ุนูู bipartite |
|
|
|
229 |
|
00:18:29,700 --> 00:18:36,590 |
|
graphsุฃู ุฌุฑุงูุงุช ุซูุงุฆูุฉ ุงูู Complete bipartite |
|
|
|
230 |
|
00:18:36,590 --> 00:18:41,310 |
|
graph is a bipartite graph in which every vertex |
|
|
|
231 |
|
00:18:41,310 --> 00:18:46,390 |
|
in V1 is joined to every vertex in V2 |
|
|
|
232 |
|
00:18:49,970 --> 00:18:54,290 |
|
ุนุจุงุฑุฉ ุนู ุจูุจุฑุชุงูุชู graph in which every vertex in |
|
|
|
233 |
|
00:18:54,290 --> 00:18:58,870 |
|
v1 ูู ุงู vertex ูู ุงู v1 is joined to every vertex |
|
|
|
234 |
|
00:18:58,870 --> 00:19:03,570 |
|
in v2 ู
ุงูููุงุด ุงู ูู ุงู vertices ุงููู ูู ุงู v1 |
|
|
|
235 |
|
00:19:03,570 --> 00:19:08,410 |
|
ุจุฑุชุจุท ู
ุน ุจุนุถ ู ุงู v2 ุงููู ุจุฑุชุจุท ู
ุน ุจุนุถ ูุฃ ูููุง ุงู |
|
|
|
236 |
|
00:19:08,410 --> 00:19:13,870 |
|
ูู vertex v1 ุจุฑุชุจุท ู
ุน ุงูุงุด ู
ุน ุงููู ูู ุงู .. ู
ุน |
|
|
|
237 |
|
00:19:13,870 --> 00:19:19,030 |
|
ูุงุญุฏ ู
ู ู
ูู ู
ู v2 every vertex in v1 is joined to |
|
|
|
238 |
|
00:19:19,030 --> 00:19:23,280 |
|
everyjoin to every ูููุณ ู
ุน ูุงุญุฏ ููุท to every ูุงุญุฏ |
|
|
|
239 |
|
00:19:23,280 --> 00:19:31,460 |
|
ูู ุฐู ุงุชูู ุงูุงู ุฎูููุง ูู ุฑุฌุนูุง ุงูุงู ูุฐุง ู
ุซูุง ูุดูู |
|
|
|
240 |
|
00:19:31,460 --> 00:19:35,240 |
|
complete ููุง ูุฃ ูู ูู ูุฐุง ุจุฑุชุจุท ู
ุน ูุฐุง ูุจุฑุชุจุท ู
ุน |
|
|
|
241 |
|
00:19:35,240 --> 00:19:40,360 |
|
ูุฐุง ููู ุจุฑุชุจุทุด ู
ุน ุงููู ุจุนูุฏ ูุฐุง ุงุฐุง ู
ุด complete ุทุจ |
|
|
|
242 |
|
00:19:40,360 --> 00:19:46,630 |
|
ุงูุงู ูุฐุง ูู ูุจุฑุชุจุท ู
ุน ูุฐุง ูุจุฑุชุจุท ู
ุน ูุฐุงู ูุฐู |
|
|
|
243 |
|
00:19:46,630 --> 00:19:52,150 |
|
ุจุชุฑุชุจุทุด ู
ุน ู
ููุ ู
ุน ูุฐุง ูู ุฑุจุทูุงูุง ู
ุน ูุฐุง ูุนูู ูู |
|
|
|
244 |
|
00:19:52,150 --> 00:19:58,850 |
|
ูุตููุง ูุฐุง ุงูุฎุท ููู ู ูุตููุง ูุฐุง ุงูุฎุท ูููููุตููุง ูุฐุง |
|
|
|
245 |
|
00:19:58,850 --> 00:20:02,670 |
|
ุฎุท ูุงุตู ูุจุตูุฑ ุนูุฏู ูุฐุง complete ูุนูู ู
ุชู ุจูุตูุฑ ูุฐุง |
|
|
|
246 |
|
00:20:02,670 --> 00:20:07,290 |
|
complete ูู
ุง ููุงุฏู ูุฃู ูู ูุตูุช ู
ุน ุญุฏู ููุตูุช ู
ุน ุญุฏู |
|
|
|
247 |
|
00:20:07,290 --> 00:20:13,030 |
|
ูููุตู ูุฐู ู
ุน ุญุฏู ูู
ุด ููู ูู
ุงู ูููุตู ูุฐู ู
ุน ุญุฏู |
|
|
|
248 |
|
00:20:13,030 --> 00:20:16,950 |
|
ุจูุตูุฑ ุงู graph ุงููู ุทูุน ุนูุฏู ูุดู
ูู complete ูุนูู |
|
|
|
249 |
|
00:20:16,950 --> 00:20:20,490 |
|
ุนุดุงู ูููู complete ูุฐุง ุจูููู ูู ูุงุญุฏุฉ ู
ู ูุฏููุฉ |
|
|
|
250 |
|
00:20:20,490 --> 00:20:26,950 |
|
ุงูุชูุชูู ุจุชุชูุตู ู
ุน ูู ูุงุญุฏุฉ ู
ู ุงูุชูุงุชุฉูุนูู ุจูููุง |
|
|
|
251 |
|
00:20:26,950 --> 00:20:31,070 |
|
ูุจูู ูู ุฃุญุฏ ู
ู ุชูุงุชุฉ ุฎุท ูุงุถุญ ุฃููุง ูุณู
ูู complete |
|
|
|
252 |
|
00:20:31,070 --> 00:20:35,200 |
|
bipartiteigraphุฃุฐุง ุฒู ู
ุง ูููุง ุงูู bipartite graph |
|
|
|
253 |
|
00:20:35,200 --> 00:20:39,700 |
|
ุจููู complete ุฅุฐุง ูุงู ูู bipartite graph ููู |
|
|
|
254 |
|
00:20:39,700 --> 00:20:46,140 |
|
vertex ูู ุงูู V1 is joined to every vertex in V2 |
|
|
|
255 |
|
00:20:46,140 --> 00:20:48,420 |
|
ููู vertex ูู ุงูู V1 is joined to every vertex in |
|
|
|
256 |
|
00:20:48,420 --> 00:20:53,360 |
|
V2 ููู vertex ูู ุงูู V1 is joined to every vertex |
|
|
|
257 |
|
00:20:53,360 --> 00:20:53,540 |
|
in V2 ููู vertex ูู ุงูู V1 is joined to every |
|
|
|
258 |
|
00:20:53,540 --> 00:20:53,600 |
|
to every vertex in V2 ููู vertex ูู ุงูู V1 is |
|
|
|
259 |
|
00:20:53,600 --> 00:20:53,660 |
|
joined to every vertex in V2 ููู vertex ูู ุงูู V1 |
|
|
|
260 |
|
00:20:53,660 --> 00:20:58,580 |
|
vertex ูู ุงูู V1 is joined to every vertex in V2 |
|
|
|
261 |
|
00:20:58,580 --> 00:21:04,130 |
|
ููู vertex ูู ุงูู V1 isุงููู ุจูููู ุงููู ูู ุงู .. ุงู |
|
|
|
262 |
|
00:21:04,130 --> 00:21:08,930 |
|
.. ุงู .. ุงู V1 ูู M ู
ู ุงูุนูุงุตุฑ ู ุงู V2 ุจูููู M ู
ู |
|
|
|
263 |
|
00:21:08,930 --> 00:21:13,890 |
|
ุงู .. N ู
ู ุงูุนูุงุตุฑ ูุนูู ุนูุฏ ุงู V1 ุงู vertices |
|
|
|
264 |
|
00:21:13,890 --> 00:21:19,570 |
|
ุนุฏุฏูู
M ู ุงู V2 ุนุฏุฏูู
N ู ูุงู ูุฐุง bipartite graph |
|
|
|
265 |
|
00:21:19,570 --> 00:21:24,370 |
|
ู ูู ููุณ ุงูููุช complete ุจูููู ุงููู ูู ูุงู ุดููู |
|
|
|
266 |
|
00:21:24,370 --> 00:21:30,120 |
|
ููุฌููุชููู ู ุชูุงุชุฉ ุงูุงู ูู ุนูุฏู ููู ุงุชููู ููุง ูุชุญุช |
|
|
|
267 |
|
00:21:30,120 --> 00:21:33,360 |
|
ุงูุด ุชูุงุชุฉ ุฒู ู
ุง ุนู
ููุงูุง ูุจู ุดููุฉ ูู ุงูุงู ูุฐู ุจุฏูุง |
|
|
|
268 |
|
00:21:33,360 --> 00:21:39,020 |
|
ุชุฑูุญ ูููู ูู ุฑุงุญุช ูููู ููุฐู ุจุฑุถู ุฑุงุญุช ูุฅูุด ูููู |
|
|
|
269 |
|
00:21:39,020 --> 00:21:44,150 |
|
ูุทุจุนุง ูุฏููุฉ ุงูุชูู
ุงุชูู ุฑุงุญูู ู
ูู ูุชูุชูู ุงููู ููููุฃู |
|
|
|
270 |
|
00:21:44,150 --> 00:21:47,290 |
|
K ุซูุงุซุฉ ุซูุงุซุฉ ููููู ุนูุฏูุง ุซูุงุซุฉ ููุง ู ุซูุงุซุฉ ููู |
|
|
|
271 |
|
00:21:47,290 --> 00:21:50,730 |
|
ููู ูุฃู ุงูุชููู ุงูุฃููู ุฎููููุง ูุตุทูุญ ู
ุน ุจุนุถ ุงููู |
|
|
|
272 |
|
00:21:50,730 --> 00:21:57,230 |
|
ุจูุฑุณู
ูุง ููู ุงูุชูุงุชุฉ ุงูุชุงููุฉ ูุฐู ุจูุฑุณู
ูุง ุชุญุช ูุฃู |
|
|
|
273 |
|
00:21:57,230 --> 00:22:00,650 |
|
ุชูุงุชุฉ ู ุชูุงุชุฉ ูู ุชูุงุชุฉ ููู ู ูู ุชูุงุชุฉ ุชุญุช ู ุจููุตู |
|
|
|
274 |
|
00:22:00,650 --> 00:22:05,150 |
|
ู
ู ูู ูุงุญุฏุฉ ูููู ู
ู
ููุน ููุตู ุจูู ูุฏูู ุงููู ููุง ู
ุน |
|
|
|
275 |
|
00:22:05,150 --> 00:22:10,110 |
|
ุจุนุถ ูุฃ ุจูุจุทู ุงู bipartite ุฃุตูุง ุงู bipartite ุฃู |
|
|
|
276 |
|
00:22:10,110 --> 00:22:16,810 |
|
ูุฏููุฉูู ุฌูุฉ ู ูุฏููุฉ ูู ุฌูุฉ ู ุงูุฎุทูุท ุจูู ููุง ูุจุณ |
|
|
|
277 |
|
00:22:16,810 --> 00:22:23,850 |
|
ู
ุงููุด ุจูู ุงููู ูู ุนูุงุตุฑ ุงููู ูู ุงู V2 ู
ุน ุจุนุถูุง |
|
|
|
278 |
|
00:22:23,850 --> 00:22:28,590 |
|
ุฎุทูุท ุจูุจุทู ุจูุจุฑุชุงูุฏ ููุฐุง ููุณ ุงูุงุดู ุทูุจ ูุฅู ููุฌู |
|
|
|
279 |
|
00:22:28,590 --> 00:22:32,670 |
|
ุชูุงุชุฉ ู ุฎู
ุณุฉ ุฅุฐุง ุชูุงุชุฉ ุจูุฑุณู
ูุง ููู ููุฐู ุฎู
ุณุฉ ุชุญุช ู |
|
|
|
280 |
|
00:22:32,670 --> 00:22:38,950 |
|
ุจูุทูุน ู
ู ูู ุชูุงุชุฉุฎู
ุณ ุฎุทูุท ูุฎู
ุณ ููุงุท ู
ู ูู ุชูุงุชุฉ |
|
|
|
281 |
|
00:22:38,950 --> 00:22:42,630 |
|
ุฎู
ุณ ุฎุทูุท ู
ู ูู ุชูุงุชุฉ ุฎู
ุณ ุฎุทูุท ูุนูู ูู ุจุฏู ุชูุฌู |
|
|
|
282 |
|
00:22:42,630 --> 00:22:47,210 |
|
ุชุญุณุจ ุงูุฎุทูุท ุงูู
ูุฌูุฏุฉ ู
ู ูุฐู ุจุชุทูุน ู
ููุง ุฎู
ุณ ุฎุทูุท |
|
|
|
283 |
|
00:22:47,210 --> 00:22:51,650 |
|
ุฎู
ุณ ุฎุทูุท ูู
ู ูุฐู ุฎู
ุณุฉ ูู
ู ูุฐู ุฎู
ุณุฉ ูุนูู ุฎู
ุณุชุงุดุฑ ุฎุท |
|
|
|
284 |
|
00:22:52,480 --> 00:22:56,460 |
|
ู
ู
ูู ุงุนุฏ ุงู ุงูู 15 ุงูุฎุท ุจุทุฑููุฉ ุชุงููุฉ ุงู ูุฐู ุงุทูุน |
|
|
|
285 |
|
00:22:56,460 --> 00:23:00,620 |
|
ู
ููุง ุชูุช ุฎุทูุท ููู ููู ุนุดุงู ูุตูุฑ complete ููุฐู ุงุทูุน |
|
|
|
286 |
|
00:23:00,620 --> 00:23:03,360 |
|
ู
ููุง ุชูุช ุฎุทูุท ููู ููู ููุฐู ุงุทูุน ู
ููุง ุชูุช ุฎุทูุท |
|
|
|
287 |
|
00:23:03,360 --> 00:23:07,880 |
|
ุจูุตูุฑ ุชูุช ุฎุทูุท ูู ุฎู
ุณ ููุงุท ุจุฎู
ุณ ุชุนุงุดุฑ ููุง ุฎู
ุณ ููุงุท |
|
|
|
288 |
|
00:23:07,880 --> 00:23:11,220 |
|
ุทุงูุนูู ุชูุช ููุงุท ุทุงูุน ุงูุฎู
ุณ ุฎุทูุท ุชูุช ูู ุฎู
ุณุฉ ุจุฎู
ุณ |
|
|
|
289 |
|
00:23:11,220 --> 00:23:14,480 |
|
ุชุนุงุดุฑ ุงุฐุง ุจูุฏุฑ ุงุนุฏ ุงูุฎุทูุท ู
ู ุงุนูู ุงู ุงูุฎุทูุท ู
ู |
|
|
|
290 |
|
00:23:14,480 --> 00:23:21,730 |
|
ุงุณูู ุฒู ู
ุง ูุถุญุชุงูุงู ุงุชููู ู ุณุชุฉ ูู ููุทุฉ ููุทุชูู ููู |
|
|
|
291 |
|
00:23:21,730 --> 00:23:25,090 |
|
ุงููู ูู ุณุช ููุทุฉ ุชุญุช ููู ุงูุชูุงุฌูุฉ ุงูุฃููู ุจุชุทูุน ููู |
|
|
|
292 |
|
00:23:25,090 --> 00:23:30,190 |
|
ูุงูุชุงููุฉ ุจุชุทูุน ุชุญุชูุง ุชุตูุญ ุจูููุง ูุจูู ุจุนุถ ุงูุงู ูุฐู |
|
|
|
293 |
|
00:23:30,190 --> 00:23:34,970 |
|
ุงูุชูุชูู ุงูููุทุฉ ุงูุฃููู ุจุชุทูุน ุณุชุฉ ุชูุฑูู ุณุช ุฎุทูุทู ูุฏู |
|
|
|
294 |
|
00:23:34,970 --> 00:23:38,650 |
|
ุจุชุทูุน ุณุช ุฎุทูุท ููููุงุท ุงููู ุชุญุชูุง ูุจุตูุฑ ุณุชุฉ ู ุณุชุฉ |
|
|
|
295 |
|
00:23:38,650 --> 00:23:42,670 |
|
ุงุชูุงุด ูุฏู ุจุชุทูุน ุฎุทูู ู ูุฏู ุฎุทูู ู ูุฏู ุฎุทูู ูู |
|
|
|
296 |
|
00:23:42,670 --> 00:23:45,670 |
|
ูุงุญุฏุฉ ุณุช ููุงุท ุจุชุทูุน ูู ูุงุญุฏุฉ ุฎุทูู ุจูุตูุฑ ุณุชุฉ ูู |
|
|
|
297 |
|
00:23:45,670 --> 00:23:49,870 |
|
ุงุชููู ุจุงุชูุงุด ุฏู ุจูุฏุฑ ุงุนุฏ ุงููู ูู ู
ู ููุง ุงู ู
ู ููุง |
|
|
|
298 |
|
00:23:49,870 --> 00:23:53,270 |
|
ูุนูู ูุฏููุฉ ุจุชุทูุนูู ุงุชูุงุด ุฎุท ู ูุฏููุฉ ุจุชุทูุนูู ุงุชูุงุด |
|
|
|
299 |
|
00:23:53,270 --> 00:23:57,100 |
|
ุฎุทูุนูู ูู ุจุฏูุง ูุญุณุจ ุงู degree ููุฏููุฉ ุงู degree |
|
|
|
300 |
|
00:23:57,100 --> 00:24:00,980 |
|
ููุฏููุฉ ุงุชูุงุด ู ุงู degree ููู ููู ุจุฑุถู ุงูุด ุงุชูุงุด |
|
|
|
301 |
|
00:24:00,980 --> 00:24:06,280 |
|
ูุนูู ู
ุฌู
ูุน ุงู degree ู
ุฌู
ูุน ุงู degree ููู ุงูุนูุงุตุฑ |
|
|
|
302 |
|
00:24:06,280 --> 00:24:10,800 |
|
ููู ุงู vertices ุงููู ูุงู ูู ุฃุฑุจุนุฉ ู ุนุดุฑูู ุงููู ูู |
|
|
|
303 |
|
00:24:10,800 --> 00:24:13,920 |
|
ุถุงุฆู ุนุฏุฏ ุงูุฎุทูุท ุฒู ู
ุง ูููุง ูู ุงููุธุฑูุฉ ุงููู ูููุงูุง |
|
|
|
304 |
|
00:24:13,920 --> 00:24:17,780 |
|
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ููุฐุง ุงููู ูู sum of degree ุงููู |
|
|
|
305 |
|
00:24:17,780 --> 00:24:22,970 |
|
ุจุญููููุฃู how many edges does K3 ู K6 contains ูู |
|
|
|
306 |
|
00:24:22,970 --> 00:24:27,790 |
|
ุงูุดุฑุญ ููุชู ูุจู ุดููุฉ ุจูุทูุน ู
ู ุชูุงุชุฉ ุณุช ุฎุทูุท ูุจุตูุฑ |
|
|
|
307 |
|
00:24:27,790 --> 00:24:33,410 |
|
ุนูุฏู ุฃูู
ุฎุท ุชูุงุชุฉ ูู ุณุชุฉ ุจุทู
ูุชุนุด ูุฃู ุงูุณุชุฉ ุจูุทูุน |
|
|
|
308 |
|
00:24:33,410 --> 00:24:36,490 |
|
ู
ููุง ุชูุช ุฎุทูุท ูู ูุงุญุฏุฉ ุณุชุฉ ูู ุชูุงุชุฉ ุจุฑุถู ุจุทู
ูุชุนุด |
|
|
|
309 |
|
00:24:36,490 --> 00:24:41,310 |
|
ุงุฐุง ุทู
ูุชุนุด ุทู
ูุชุนุดุฑ ุฎุท ุงููู ูู ููุฃูู ุงู degrees |
|
|
|
310 |
|
00:24:41,310 --> 00:24:45,470 |
|
ููุฏููุฉ ุงููู ูู ูู ูุงุญุฏุฉ ุงู degree ุงููู ูู ุณุชุฉ ู
ู |
|
|
|
311 |
|
00:24:45,470 --> 00:24:50,990 |
|
ุงูููุงุท ุงูุชูุงุชุฉูุจููู ู
ุฌู
ูุน ุงู degrees ููููุงุท ุงููู |
|
|
|
312 |
|
00:24:50,990 --> 00:24:56,610 |
|
ููู 18 ุงูุงู ุงู 6 ุงููู ุชุญุช ุงู degree ููู ูุงุญุฏุฉ |
|
|
|
313 |
|
00:24:56,610 --> 00:24:59,690 |
|
ุชูุงุชุฉ ูุฅูู ุจูุทูุน ุจูููุง ุชูุช ุฎุทูุท ูุจููู ู
ุฌู
ูุน ุงู |
|
|
|
314 |
|
00:24:59,690 --> 00:25:03,570 |
|
degrees ุงููู ุชุญุช 18 ูุนูู ุงููู ุชุญุช 18 ู ุงููู ููู 18 |
|
|
|
315 |
|
00:25:03,570 --> 00:25:08,490 |
|
ุจูุทูุน ุนู 36 36 ููุง ุถุนู ุนุฏุฏ ุงูุฎุทูุท ุฒู ู
ุง ุนูููุง ูุจู |
|
|
|
316 |
|
00:25:08,490 --> 00:25:14,120 |
|
ุดููุฉ ูุฐุง ูู this complete bipartiteGraph has six |
|
|
|
317 |
|
00:25:14,120 --> 00:25:17,100 |
|
vertices ูุนูู ูุฐุง ุงูู Complete ุจูุจุฑุชุงูุช ุงูู Graph |
|
|
|
318 |
|
00:25:17,100 --> 00:25:21,860 |
|
ุงููู ูููุง ุนูู ุฒู ุงููู ุชูู ูู ุณุชุฉ vertices with |
|
|
|
319 |
|
00:25:21,860 --> 00:25:25,280 |
|
degree ุชูุงุชุฉ ูุนูู ุณุชุฉ vertices with degree ุชูุงุชุฉ ู |
|
|
|
320 |
|
00:25:25,280 --> 00:25:28,660 |
|
ุชูุงุชุฉ vertices with degree ุณุชุฉ ุฒู ู
ุง ูุถุญุช ูุจู ู |
|
|
|
321 |
|
00:25:28,660 --> 00:25:33,220 |
|
ุดููุฉ ุงูุงู ู
ุฏู
ูุน ุงู degree ููู ุงู V ุงููู ูู
ุง ุงูุณุชุฉ |
|
|
|
322 |
|
00:25:33,220 --> 00:25:38,680 |
|
ูุงูุชูุงุชุฉ ุณุชุฉูู ูุงุญุฏ ุฏูุฌุฑู ุชูุงุชุฉ ู ุชูุงุชุฉ ูู ูุงุญุฏุฉ |
|
|
|
323 |
|
00:25:38,680 --> 00:25:44,200 |
|
ุฏูุฌุฑู ุณุชุฉ ุจุชุทูุน ู 36 ูุนูู ุงุชููู ูู ุนุฏุฏ ุงูุฎุทูุท ุงููู |
|
|
|
324 |
|
00:25:44,200 --> 00:25:48,380 |
|
ูู ุจูููู ุนุฏุฏ ุงูุฎุทูุท 18 ุฎุท ูุฅู ุงู 36 ุฒู ู
ุง ุงูุชูุง |
|
|
|
325 |
|
00:25:48,380 --> 00:25:53,600 |
|
ุนุงุฑููู ูุนูู ู
ุถุงุนู ุนุฏุฏ ุงูุฎุทูุท ุฌูููุง ุงุฐุง ุงููู ุจูููู |
|
|
|
326 |
|
00:25:53,600 --> 00:26:00,410 |
|
ุนุฏุฏ ุงูุฎุทูุท ุนูุง 18 ุฎุทSo that K36 has 18 edges |
|
|
|
327 |
|
00:26:00,410 --> 00:26:04,570 |
|
ุชูุฑูุจุง 18 ุฎุท degree sequence ูุนุฑู ุญุงุฌุฉ ุงุณู
ูุง |
|
|
|
328 |
|
00:26:04,570 --> 00:26:10,800 |
|
degree sequence ูุดูู ุงูุด degree sequenceุงูุดุนุฑ ุงููู |
|
|
|
329 |
|
00:26:10,800 --> 00:26:16,100 |
|
ุณูู ูุนูู suppose that D1 ูD2 ูDn are degree of the |
|
|
|
330 |
|
00:26:16,100 --> 00:26:18,900 |
|
vertices of a graph ูุนูู ูู ุนูุฏูุง graph ุจูุณูุฏู |
|
|
|
331 |
|
00:26:18,900 --> 00:26:22,580 |
|
graph ุฒู ุงู graph ุชุจุนุช ุงูู
ุฑุฉ ุงููุงุชุฉ ุนูุฏูุง graph G |
|
|
|
332 |
|
00:26:22,580 --> 00:26:27,200 |
|
ูุฐุง ุงู graph ุฌููุง ุญุณุจูุง ุงููู ูู ููู N ู
ู ุงู |
|
|
|
333 |
|
00:26:27,200 --> 00:26:31,020 |
|
vertices ุญุณุจูุง ุฃูู ูุงุญุฏุฉ ูุฌููุง ุงููุง degree D1 |
|
|
|
334 |
|
00:26:31,020 --> 00:26:38,320 |
|
ุงูุชุงููุฉ D2 ุงูุชูุงุชุฉ Dnุนูุฏู
ุง ูุฑุชุจ ุชุณุงุนุฏ ุชูุงุฒูู D1 |
|
|
|
335 |
|
00:26:38,320 --> 00:26:43,320 |
|
ุฃูุจุฑ ุณูู D2 ุฃูุจุฑ ุณูู D3 ุฃูุจุฑ ุณูู DN ูุฐู ุงูู D1 ูD2 |
|
|
|
336 |
|
00:26:43,320 --> 00:26:48,160 |
|
ูDN ุงูู
ุฑุชุจุฉ ุงููู ูู ุจุดูู ุชูุงุฒูู |
|
|
|
337 |
|
00:26:48,980 --> 00:26:55,540 |
|
ุงููู ูู ุทุจุนุง ุฏู ูุงุญุฏ ุชู
ุซู ุงู degree ู ุงููู ูู ููุทุฉ |
|
|
|
338 |
|
00:26:55,540 --> 00:26:58,520 |
|
ุฃููู ูุฐู ุงู degree ูุชุงููุฉ ูุฐู ุงู degree ู ุงูุฃุฎูุฑุฉ |
|
|
|
339 |
|
00:26:58,520 --> 00:27:03,760 |
|
ูู
ุง ูุฑุชุจู ุงูุชุตุงุฑ ุชูุงุฒู ุฒู ููู ุจูุณู
ูู degree |
|
|
|
340 |
|
00:27:03,760 --> 00:27:08,220 |
|
sequence of G ุงููู ูู degree sequence ูู
ูู ูู G ูู |
|
|
|
341 |
|
00:27:08,220 --> 00:27:11,620 |
|
ุงููุงูุน degree sequence ูู G ูุฃ ูู ูู ุงููุงูุน ุงู |
|
|
|
342 |
|
00:27:11,620 --> 00:27:16,530 |
|
degree sequence ูู vertices ุชุจุนุงุช ุงู Gูุฐุง ุงุตุทูุงุญุง |
|
|
|
343 |
|
00:27:16,530 --> 00:27:19,930 |
|
ู
ุน ุจุนุถ ุนุดุงู ูู
ุง ูุญูู ุนู ุงู degree sequence of G |
|
|
|
344 |
|
00:27:19,930 --> 00:27:26,130 |
|
ูููู ูุงูู
ูู ุงูู ุจูุตุฏ ุงูู ุจูุฌูุจ ุงููู ูู ุงู degree |
|
|
|
345 |
|
00:27:26,130 --> 00:27:31,910 |
|
ููู ููู ููุทุฉ ู
ู ุงูููุงุท ู ุจุนุฏูู ุจูุฑุชุจูุง ุชุณุงู ุชูุงุฒูู |
|
|
|
346 |
|
00:27:31,910 --> 00:27:37,050 |
|
ุฏู ูุดูู ูุงู ุนูุฏู ู
ุซูุง V1 V2 ูุงู ุงูุฎุทูุท ุงููู ุจูููู
|
|
|
|
347 |
|
00:27:37,050 --> 00:27:43,440 |
|
ุงู degree ูู V1 ูู 1 2ุงู degree ูู V2 ูู ูุงุญุฏ |
|
|
|
348 |
|
00:27:43,440 --> 00:27:51,040 |
|
ุงุชููู ุชูุงุชุฉ ุตุญ ุงู degree ูู V3 ูู ูุงุญุฏ ุงุชููู ู ูุฐุง |
|
|
|
349 |
|
00:27:51,040 --> 00:27:55,240 |
|
ุฒู ู
ุง .. ุฏู ู
ูุชูุฑูู ุจูุญุณุจ ุงูุด ุงุชููู ูู ุงุฑุจุนุฉ ู ูุฐู |
|
|
|
350 |
|
00:27:55,240 --> 00:27:59,260 |
|
ุงู degree ุงููู ูู ุงูุด ูุงุญุฏ ุงุฐุง ูู ุนูุฏู .. ูู ูู |
|
|
|
351 |
|
00:27:59,260 --> 00:28:04,320 |
|
ุนูุฏู ุงุฑุจุนุฉ ูุฐู ุงู V3 ุงุฑุจุนุฉ ุงู degree ููุง ู V2 |
|
|
|
352 |
|
00:28:04,320 --> 00:28:11,620 |
|
ุงุชููู V2 ุชูุงุชุฉ ุงุณู ูู ูุงุญุฏ ูู ุงุชููู ูู ุชูุงุชุฉูู ุงุฐุง |
|
|
|
353 |
|
00:28:11,620 --> 00:28:17,620 |
|
V3 V2 ุงู degree degree V3 degree V2 ุฃุฑุจุนุฉ ุชูุงุชุฉ |
|
|
|
354 |
|
00:28:17,620 --> 00:28:21,540 |
|
ุจุนุฏูู ุงูุฃุฌู ู
ู ููุง ุงู degree ู V12 ุจุนุฏูู ุงู degree |
|
|
|
355 |
|
00:28:21,540 --> 00:28:26,200 |
|
ู V4 ุงููู ูู ูุงุญุฏ ูุนูู ุจูุตูุฑ ุนูุฏู the degree |
|
|
|
356 |
|
00:28:26,200 --> 00:28:29,600 |
|
sequence of the pseudograph ูุฐุง ุงููู ุฃู
ุงู
ูุง is |
|
|
|
357 |
|
00:28:29,600 --> 00:28:38,600 |
|
degree V3 ุงููู ูู ุฃุฑุจุนุฉ degree V2 ุงููู ููุชูุงุชุฉ |
|
|
|
358 |
|
00:28:38,600 --> 00:28:45,200 |
|
degree v1 ุงูุชู ูู ูุงุญุฏ ุงุชููู degree v4 ุงูุชู ูู |
|
|
|
359 |
|
00:28:45,200 --> 00:28:50,560 |
|
ูุงุญุฏุฅุฐุงู ูุฐู ุงููู ูู ู
ุซุงู ุนูู ุงูู sequence degree |
|
|
|
360 |
|
00:28:50,560 --> 00:28:55,960 |
|
ุฃู ุงูู degree sequence of this pseudograph ุงูุฃู
ุงู
ู |
|
|
|
361 |
|
00:28:55,960 --> 00:29:06,080 |
|
ุงูุขู how many degree does a graph have if its |
|
|
|
362 |
|
00:29:06,080 --> 00:29:09,920 |
|
degree sequence is ุฎู
ุณุฉุ ุงุชูููุ ุงุชูููุ ุงุชูููุ |
|
|
|
363 |
|
00:29:09,920 --> 00:29:15,300 |
|
ุงุชูููุ ูุงุญุฏdraw such a graph ุจููู ููู ุงูุขู ุฌุฏุงุด ุงู |
|
|
|
364 |
|
00:29:15,300 --> 00:29:19,160 |
|
degree ุงููู ูู ุฌุฏุงุด ุงููู ูู how many edges ุฌุฏุงุด |
|
|
|
365 |
|
00:29:19,160 --> 00:29:24,360 |
|
ุนุฏุฏ ุงู edges ุงููู ูู ุงู .. ุงููู .. ุงููู ูู ุงูุฌุฑุงู |
|
|
|
366 |
|
00:29:24,360 --> 00:29:28,160 |
|
ุงููู ุนูุฏู ุงููู ุงู degree ูููู ุงููู ุงู degree |
|
|
|
367 |
|
00:29:28,160 --> 00:29:33,840 |
|
sequence ุงููู ูู ูู how many edges of a graph ุฃูู
|
|
|
|
368 |
|
00:29:33,840 --> 00:29:39,200 |
|
ุฎุท ูู ูู ุงูุฌุฑุงูุฅุฐุง ูุงูุช ุงู degree sequence ูุนูู ุงู |
|
|
|
369 |
|
00:29:39,200 --> 00:29:44,820 |
|
degree sequence ุดูููุง ุจุฏูุง ูู ุชุฌุนููุง ูุนุฑู ูุฑุณู
ุงู |
|
|
|
370 |
|
00:29:44,820 --> 00:29:50,220 |
|
graph ูู ุงููู ุจุชุฌุนููุง ูุนุฑู ุฌุฏุงุด ุงูุฎุทูุท ุงููู ูููุง |
|
|
|
371 |
|
00:29:50,220 --> 00:29:56,100 |
|
ุงููู ุฃูุง ู
ููู is ุฎู
ุณุฉ ู ุงุชููู ู ุงุชููู ู ุงุชููู ู |
|
|
|
372 |
|
00:29:56,100 --> 00:30:01,300 |
|
ุงุชููู ู ูุงุญุฏ ุฃูู ุญุงุฌุฉ ุจุฏู ุจุชุทูุน ูุฐูู ุฃูุจ ููุทุฉ ูุฐู |
|
|
|
373 |
|
00:30:01,300 --> 00:30:05,200 |
|
ูู ูุงุญุฏุฉ ููุทุฉ ู
ู ุงูููุงุทูุฃูู ุจุชู
ุซู degree ููููุงุท |
|
|
|
374 |
|
00:30:05,200 --> 00:30:10,920 |
|
ูุฐู ููุทุฉ ููุทูู ุชูุงุชุฉ ุฃุฑุจุนุฉ ุฎู
ุณุฉ ุณุชุฉ ุฅุฐุง ุณุช ููุงุท |
|
|
|
375 |
|
00:30:10,920 --> 00:30:16,280 |
|
ูู
ุง ุฃุชู ุฃุทูุน ู degree ุงูููุทุฉ ูุฐู ุงูุฃููู ุจููู ุณุช |
|
|
|
376 |
|
00:30:16,280 --> 00:30:22,500 |
|
ุทุงูุน ู
ููุง ุงููู ูู degree ููุง ุฎู
ุณุฉ ู
ุงุดู ุฅุฐุง ุฑุงูุญุฉ |
|
|
|
377 |
|
00:30:22,500 --> 00:30:27,080 |
|
ููุงุญุฏ ูุงุชููู ูุชูุงุชุฉ ูุงุฑุจุนุฉ ูุฎู
ุณุฉ ุฅุฐุง ูู ุฅูููุง ุฅูู |
|
|
|
378 |
|
00:30:27,080 --> 00:30:32,160 |
|
ุดู
ุงููุง ุทุงูุน ู
ููุง ุฎู
ุณ ุฎุทูุท ุงูุชููู ุทุงูุน ู
ููุง ุฎุทูู |
|
|
|
379 |
|
00:30:33,030 --> 00:30:37,010 |
|
ุงูุชููู ุฎุทูู .. ุงูุชููู ุฎุทูู .. ุงูุชููู ุฎุทูู .. |
|
|
|
380 |
|
00:30:37,010 --> 00:30:42,650 |
|
ุงููุงุญุฏ ุฎุทูู .. ุฅุฐุง ูู
ุง ุฃุญุณุจ ุงู degree .. ุงู degree |
|
|
|
381 |
|
00:30:42,650 --> 00:30:48,310 |
|
ุงูุฃููู ุฎู
ุณุฉุฌุฏูุงุด ุงูุฃููู ุฎู
ุณุฉ ูุงูุชุงููุฉ ุงุชููู |
|
|
|
382 |
|
00:30:48,310 --> 00:30:50,630 |
|
ูุงูุชุงููุฉ ุงุชููู ูุงูุชุงููุฉ ุงุชููู ูุงูุชุงููุฉ ุงุชููู ูุงุญุฏุฉ |
|
|
|
383 |
|
00:30:50,630 --> 00:30:54,390 |
|
ูุฐุง ู
ุฌู
ูุน ุงู degrees ูู
ูู ููููุงุท ุงููู ู
ูุฌูุฏุฉ ูุฃู |
|
|
|
384 |
|
00:30:54,390 --> 00:30:57,530 |
|
ูู ุงู sequence ูู degrees ููููุงุท ูููุง ููู
ุง |
|
|
|
385 |
|
00:30:57,530 --> 00:31:01,090 |
|
ุฃุนุทููููุง ุฅุฐู ุฃุฑุจุนุชุงุด ูุงุญูุง ุงุชูุงุฌูุง ุงูุฃุฑุจุนุชุงุด ุฃูุด |
|
|
|
386 |
|
00:31:01,090 --> 00:31:05,410 |
|
ุจูุณุงูู ุงู ุงุชููู ุถุนู ุงูุฎุทูุท ูุฐู ูุธุฑูุฉ ุฎุฏูุงูุง ุงูู
ุฑุฉ |
|
|
|
387 |
|
00:31:05,410 --> 00:31:08,770 |
|
ุงูู
ุงุถูุฉ ุงุชููู ุถุนู ุงูุฎุทูุท ูุนูู ุนุฏุฏ ุงูุฎุทูุท ุฃูุด |
|
|
|
388 |
|
00:31:08,770 --> 00:31:12,810 |
|
ุจูุณุงูู ุณุจุนุฉ ุฅุฐุง ุงู edges ุงููู ู
ูุฌูุฏุฉ ูู ุนุจุงุฑุฉ ุนู |
|
|
|
389 |
|
00:31:12,810 --> 00:31:18,470 |
|
ุณุจุนุฉู
ุงุดู ุณุจุนุฉ ุงูุงู ููู ุจุชุฏุฑุณู
ูุง ุงูุณุจุนุฉ ุงูุงู ุจุงุฌู |
|
|
|
390 |
|
00:31:18,470 --> 00:31:22,150 |
|
ููููุทุฉ ุงููู ูู ุงููู .. ุงููู ูู ุนูุฏู ุณุช ููุงุท ุจุญุท |
|
|
|
391 |
|
00:31:22,150 --> 00:31:26,570 |
|
ูุงุญุฏุฉ ุชุงูุชูู ุชูุงุชุฉ ุงุฑุจุนุฉ ุฎู
ุณุฉ ู ูู ุณุช ูู ุณุช ููุงุท |
|
|
|
392 |
|
00:31:26,570 --> 00:31:30,370 |
|
ู
ุงุดู ููุด ุญุทูุชูุง ููุง ุฏู ู ู
ุงุญุทูุชูุงุด ููุง ูุฅู ุงูุง |
|
|
|
393 |
|
00:31:30,370 --> 00:31:33,210 |
|
ุนุงุฑู ูุฐุง ุงู ูู ููุทุฉ ู
ู ุงูููุงุท ุงููู ูู ุทุงูุน ู
ููุง |
|
|
|
394 |
|
00:31:33,210 --> 00:31:38,490 |
|
ุฌุฏุงุด ุฎู
ุณ ุฎุทูุท ูุนูู ุทุงูุน ู
ููุง ุฏู ุฎุท ููุง ู ููุง ุฎุท ู |
|
|
|
395 |
|
00:31:38,490 --> 00:31:43,520 |
|
ููุง ุฎุท ู ููุง ุฎุทูุนูู ุทุงูุนููุง ููู ุฎุทูุท ูููุง ุฃุณูู ูู |
|
|
|
396 |
|
00:31:43,520 --> 00:31:47,560 |
|
ุงูุฑุณู
ุจุณ ุนุดุงู ุณูููุฉ ุงูุฑุณู
ูุนูู ูุงุญุฏ ุชุงูู ู
ู
ูู ูุญุท |
|
|
|
397 |
|
00:31:47,560 --> 00:31:51,960 |
|
ููุง ููุง ู
ู
ูู ูุญุทูุง ูููุนุฏ ูุฑุณู
ูููุตู ุจูููู
ุจููุน ููุง |
|
|
|
398 |
|
00:31:51,960 --> 00:31:55,580 |
|
ู
ู
ูู ูุญุทูุง ููุง ู
ู
ูู ูุญุทูุง ูุนูู ู
ู
ูู ูููู ุงูุฑุณู
ุตุญ |
|
|
|
399 |
|
00:31:55,580 --> 00:32:00,880 |
|
ููู ุดูููุง ู
ุฎุชูู ู
ู ูุงุญุฏ ููุงุญุฏ ุจุณ ุจูููู ุงูุด ุงูุตุญ ุงู |
|
|
|
400 |
|
00:32:00,880 --> 00:32:05,510 |
|
ุงูููุงุฑุฏุฉ ุทุงูุนููุง ุฎู
ุณ ุฎุทูุท ูุงููู ูุงู ุงูุฎู
ุณุฉุงูุงู |
|
|
|
401 |
|
00:32:05,510 --> 00:32:09,750 |
|
ุงูููุทุฉ ุงูุชุงููุฉ ุงูุชุงููุงุช ูููู
ูุงุญุฏุฉ ุชูุชูู ุชูุงุชุฉ |
|
|
|
402 |
|
00:32:09,750 --> 00:32:13,690 |
|
ุงุฑุจุนุฉ ูููู
ุงุดู
ุงู ููู ุฎุทูู ุฎุทูู ุฎุทูู ูุนูู ูุฐู ุงูุขู |
|
|
|
403 |
|
00:32:13,690 --> 00:32:17,650 |
|
ุจุชุทูุน ุจูููุง ุฎุทูู ููุฏู ู
ุญุฏุฏ ููุฐู ุฎุทููู ูุฐู ููุฐู ุฎุท |
|
|
|
404 |
|
00:32:17,650 --> 00:32:21,590 |
|
ููุฐู ููุฐู ุฎุท ููุฐู ููุฐู ุฎุท ูุจูุฎูู ูุงุญุฏุฉ ุจุณ ุจูุทูุน |
|
|
|
405 |
|
00:32:21,590 --> 00:32:24,550 |
|
ู
ููุง ุฎุท ุงููู ูู ุทุงู ุนูู
ูุง ููุฐุง ุงูููุทุฉ ุฎุงุตุฉ ุนููุง |
|
|
|
406 |
|
00:32:24,550 --> 00:32:28,730 |
|
ุนุดุงู ูุณููุง ุงูุฎู
ุณุฉ ุฏููุงุฑ ููุฐุง ุจูููู ุงููู ูู ุฑุณู
ูุง ู |
|
|
|
407 |
|
00:32:28,730 --> 00:32:34,110 |
|
graph ู
ู ูุนุฑููุง ุฌุฏุงุด ุนุฏุฏ ุงูุฎุทูุท ู
ู ุฎูุงู ุงููู ูู |
|
|
|
408 |
|
00:32:34,110 --> 00:32:40,300 |
|
ู
ุนุฑูุฉ ุงู degreeุณูููุงูุณ ููู vertices ุชุจุนุงุช ุงู graph |
|
|
|
409 |
|
00:32:40,300 --> 00:32:45,660 |
|
ู ูู ูู
ุง ูููู ุงุญูุง ุฎูุตูุง ุงูู
ุญุงุถุฑุฉ ุฑูู
11 ููู ุนูุฏูู
|
|
|
|
410 |
|
00:32:45,660 --> 00:32:50,460 |
|
ุงู homework ุงูู
ุทููุจ ุชุญูู ู ุชุณูู
ููููุง ูุงูุนุงุฏุฉ ุงู |
|
|
|
411 |
|
00:32:50,460 --> 00:32:53,700 |
|
ุดุงุก ุงููู ู ุฅูู ููุงุก ุงุฎุฑ ุงูุณูุงู
ุนูููู
ู ุฑุญู
ุฉ ุงููู |
|
|
|
412 |
|
00:32:53,700 --> 00:32:54,280 |
|
ูุจุฑูุงุชู |
|
|
|
|