|
1 |
|
00:00:22,050 --> 00:00:27,550 |
|
طيب بسم الله الرحمن الرحيم في القائلة فات كنا نحكي |
|
|
|
2 |
|
00:00:27,550 --> 00:00:32,110 |
|
عن ال .. إذا كانت ال observation .. if the |
|
|
|
3 |
|
00:00:32,110 --> 00:00:35,130 |
|
observation is not follow the normal distribution |
|
|
|
4 |
|
00:00:35,130 --> 00:00:40,490 |
|
إذا كانت البيانات مابتتبعش التوزيع الطبيعي okay so |
|
|
|
5 |
|
00:00:40,490 --> 00:00:46,030 |
|
how we know the data is not following the normal |
|
|
|
6 |
|
00:00:46,030 --> 00:00:50,300 |
|
distributionwe check the skewness skew and we .. |
|
|
|
7 |
|
00:00:50,300 --> 00:00:54,660 |
|
we check the cortices احنا بنعمل check على ال .. |
|
|
|
8 |
|
00:00:54,660 --> 00:00:59,860 |
|
الالتواء و على التفلطح بيسموه ال skew او skew و ال |
|
|
|
9 |
|
00:00:59,860 --> 00:01:05,780 |
|
.. و ال cortices زي ما احنا شوفنا المرة الفاتة و |
|
|
|
10 |
|
00:01:05,780 --> 00:01:06,960 |
|
احنا رسمنا مع بعض |
|
|
|
11 |
|
00:01:14,280 --> 00:01:19,340 |
|
Okay زي ما اشوف now if you look at this black one |
|
|
|
12 |
|
00:01:19,340 --> 00:01:25,120 |
|
so it's skewed to the right if you look at the |
|
|
|
13 |
|
00:01:25,120 --> 00:01:32,520 |
|
blue one is skewed to the left so you have to |
|
|
|
14 |
|
00:01:32,520 --> 00:01:38,680 |
|
think on three things in skewness if it's skewed |
|
|
|
15 |
|
00:01:40,320 --> 00:01:45,340 |
|
وإذا ال data is 0 فهذا يعني تحقيقنا لتنمية عادية |
|
|
|
16 |
|
00:01:45,340 --> 00:01:56,400 |
|
إذا ال skew هو positivo وهو أكبر من 0 فال data هو |
|
|
|
17 |
|
00:01:56,400 --> 00:02:02,380 |
|
skewed لليسار لليسار وإذا |
|
|
|
18 |
|
00:02:02,380 --> 00:02:06,900 |
|
ال skew هو نقل لليسار لليسار |
|
|
|
19 |
|
00:02:08,690 --> 00:02:14,230 |
|
إذا كانت على اليسار، يعني أن الانفصالين يتقررون |
|
|
|
20 |
|
00:02:14,230 --> 00:02:20,570 |
|
المخاطر تتقرر المخاطر |
|
|
|
21 |
|
00:02:20,570 --> 00:02:25,090 |
|
إذا كانت تتقرر على اليسار، يعني أن الانفصالين |
|
|
|
22 |
|
00:02:25,090 --> 00:02:33,250 |
|
يتقررون المخاطر تتقرر المخاطر تتقرر المخاطر تتقرر |
|
|
|
23 |
|
00:02:33,250 --> 00:02:33,410 |
|
المخاطر تتقرر المخاطر تتقرر المخاطر تتقرر المخاطر |
|
|
|
24 |
|
00:02:33,410 --> 00:02:33,530 |
|
تتقرر المخاطر تتقرر المخاطر تتقرر المخاطر تتقرر |
|
|
|
25 |
|
00:02:33,530 --> 00:02:33,550 |
|
المخاطر تتقرر المخاطر تتقرر المخاطر تتقرر المخاطر |
|
|
|
26 |
|
00:02:33,550 --> 00:02:35,750 |
|
تتقرر المخاطر تتقرر المخاطر تتقرر المخاطر تتقرر |
|
|
|
27 |
|
00:02:35,750 --> 00:02:41,100 |
|
المخاطر تالمشكلة هي عندما تكون الملاحظة مرسومة إلى |
|
|
|
28 |
|
00:02:41,100 --> 00:02:47,500 |
|
اليسار لأن مايعنيه .. انظر .. انظر هنا .. فقط .. |
|
|
|
29 |
|
00:02:47,500 --> 00:02:53,940 |
|
يعني أننا لدينا عدد .. لدينا البيانات مثل هذه .. |
|
|
|
30 |
|
00:02:53,940 --> 00:02:58,660 |
|
لذلك إذا كنت نتخيل البيانات .. إذا كنت نتخيل عدد |
|
|
|
31 |
|
00:02:58,660 --> 00:03:03,700 |
|
هذا البيانات .. عددها أو الميان يجب أن يكون موجود |
|
|
|
32 |
|
00:03:03,700 --> 00:03:08,720 |
|
في الوسطOkay should be located in the middle for |
|
|
|
33 |
|
00:03:08,720 --> 00:03:14,760 |
|
instance take this example here if you have like |
|
|
|
34 |
|
00:03:14,760 --> 00:03:23,940 |
|
this observation 9% 10% or let's say 12% this is R |
|
|
|
35 |
|
00:03:23,940 --> 00:03:30,960 |
|
okay إذا أخدنا بيانات ل R لليوم الأول for instance |
|
|
|
36 |
|
00:03:30,960 --> 00:03:38,560 |
|
ليوم التاني التالتالرابع الخامس السادس بيانات R |
|
|
|
37 |
|
00:03:38,560 --> 00:03:42,500 |
|
اللي هو ال R ال expected return إذا أخدنا ال R أو |
|
|
|
38 |
|
00:03:42,500 --> 00:03:49,560 |
|
ال daily return أخدنا 12% أو for instance 11% 10% |
|
|
|
39 |
|
00:03:49,560 --> 00:03:55,930 |
|
7% 6% if we calculate the averageإذا قمنا بتخصيص |
|
|
|
40 |
|
00:03:55,930 --> 00:04:03,390 |
|
عدد هذا العدد أو عدد الرسمي هو 12 plus 11 plus 10 |
|
|
|
41 |
|
00:04:03,390 --> 00:04:11,830 |
|
plus 9 plus 7 plus 6 divided by 1 2 3 4 5 6 مخصومة |
|
|
|
42 |
|
00:04:11,830 --> 00:04:18,030 |
|
على 6 احسبوها كام تطلع؟ إذا كان لدينا ملاحظات مثل |
|
|
|
43 |
|
00:04:18,030 --> 00:04:18,330 |
|
هذه؟ |
|
|
|
44 |
|
00:04:24,020 --> 00:04:29,080 |
|
سرعة القلات دايما تكون twelve |
|
|
|
45 |
|
00:04:29,080 --> 00:04:36,540 |
|
percent eleven nine seven and finally six six |
|
|
|
46 |
|
00:04:36,540 --> 00:04:42,840 |
|
percent nine point one okay so the arithmetic or |
|
|
|
47 |
|
00:04:42,840 --> 00:04:45,800 |
|
the average is nine point one look at here so nine |
|
|
|
48 |
|
00:04:45,800 --> 00:04:53,860 |
|
point one is located here or somewhere hereمع ذلك |
|
|
|
49 |
|
00:04:53,860 --> 00:05:00,220 |
|
يعني أن الملاحظة أو البيانات أو عدد البيانات يكون |
|
|
|
50 |
|
00:05:00,220 --> 00:05:05,440 |
|
بين 9 و 10 وهو حوالي نصف البيانات أو اختلاف |
|
|
|
51 |
|
00:05:05,440 --> 00:05:12,040 |
|
البيانات إلى اتنين جزء أساسي، هذا يكون حوالي اتنين |
|
|
|
52 |
|
00:05:12,040 --> 00:05:19,000 |
|
كهذا، كما قلت إن هذا الجزءالصحيح هو مظهر اليسار |
|
|
|
53 |
|
00:05:19,000 --> 00:05:24,100 |
|
الذي يعني أن البيانات تتبع المشاركة الطبيعية لكن |
|
|
|
54 |
|
00:05:24,100 --> 00:05:30,540 |
|
المشكلة هي إذا كان لدينا قيم أعظم إذا كان لدينا |
|
|
|
55 |
|
00:05:30,540 --> 00:05:34,960 |
|
قيم أعظم أو ما يسمونه الـ outliers إذا كان لدينا |
|
|
|
56 |
|
00:05:34,960 --> 00:05:38,720 |
|
outliers على سبيل المثال دعونا نضيف شيء إلى هذه |
|
|
|
57 |
|
00:05:38,720 --> 00:05:45,150 |
|
الجزيرة إذا كان لديناالخاطر هو مثلًا يوم واحد نقوم |
|
|
|
58 |
|
00:05:45,150 --> 00:05:57,250 |
|
بتسجيل حوالي 400% و 300% ما نشاهده في هذا البرنامج |
|
|
|
59 |
|
00:05:57,250 --> 00:05:59,830 |
|
إذا قمنا بالتسجيل من المعلومات لدينا هذه المعلومات |
|
|
|
60 |
|
00:05:59,830 --> 00:06:05,030 |
|
الأن لدينا هذه المعلومات الأن و يبدو مثلًا هذا |
|
|
|
61 |
|
00:06:05,030 --> 00:06:10,910 |
|
المعلومات يبدو مثلًا هذاهذا الاختلاف الكبير بين |
|
|
|
62 |
|
00:06:10,910 --> 00:06:13,550 |
|
الاثنين الملاحظات والمقالات المختلفة من الملاحظات |
|
|
|
63 |
|
00:06:13,550 --> 00:06:19,530 |
|
هذا يسمى اختلافات اخرى او اقل قيم اخرى او اقل قيم |
|
|
|
64 |
|
00:06:19,530 --> 00:06:27,030 |
|
اخرى تسميهم اخرى او اقل قيم اخرى تسميهم اخرى |
|
|
|
65 |
|
00:06:27,030 --> 00:06:27,270 |
|
تسميهم اخرى تسميهم اخرى تسميهم اخرى تسميهم اخرى |
|
|
|
66 |
|
00:06:27,270 --> 00:06:27,270 |
|
تسميهم اخرى تسميهم اخرى تسميهم اخرى تسميهم اخرى |
|
|
|
67 |
|
00:06:27,270 --> 00:06:27,390 |
|
تسميهم اخرى تسميهم اخرى تسميهم اخرى تسميهم اخرى |
|
|
|
68 |
|
00:06:27,390 --> 00:06:27,850 |
|
تسميهم اخرى تسميهم اخرى تسميهم اخرى تسميهم اخرى |
|
|
|
69 |
|
00:06:27,850 --> 00:06:29,840 |
|
تسميهم اخرى تسميهم اخرى تسميهم اعيدوا احتساب ال |
|
|
|
70 |
|
00:06:29,840 --> 00:06:35,300 |
|
average هنعيد احتساب ال average 400 plus 300 plus |
|
|
|
71 |
|
00:06:35,300 --> 00:06:41,580 |
|
12 plus 11 plus 10 plus 9 plus 7 plus 6 divided by |
|
|
|
72 |
|
00:06:41,580 --> 00:06:47,520 |
|
8 احسبوا ال average ال average will be in some |
|
|
|
73 |
|
00:06:47,520 --> 00:06:55,880 |
|
area in here ال average هيكون في .. احسبوا ال |
|
|
|
74 |
|
00:06:55,880 --> 00:06:56,360 |
|
average now |
|
|
|
75 |
|
00:07:01,030 --> 00:07:12,910 |
|
كداش طلع 94.3 you see so it is 94.3 so now the |
|
|
|
76 |
|
00:07:12,910 --> 00:07:16,750 |
|
average now the average what's what's happened |
|
|
|
77 |
|
00:07:16,750 --> 00:07:23,570 |
|
with the data ايش اللي صار في البيانات because yes |
|
|
|
78 |
|
00:07:23,570 --> 00:07:27,570 |
|
فينا بيانات شاذة فالبيانات شاذة عملت polling up |
|
|
|
79 |
|
00:07:28,540 --> 00:07:31,380 |
|
pulling the data to the top or pulling the average |
|
|
|
80 |
|
00:07:31,380 --> 00:07:35,580 |
|
to the top يعني هلأ صار ال average is pulling to |
|
|
|
81 |
|
00:07:35,580 --> 00:07:39,700 |
|
the top okay |
|
|
|
82 |
|
00:07:39,700 --> 00:07:46,160 |
|
صار في تحيز or there is a bias صار عندي إيه؟ bias |
|
|
|
83 |
|
00:07:46,160 --> 00:07:51,140 |
|
in this case the positive look at here the |
|
|
|
84 |
|
00:07:51,140 --> 00:07:57,740 |
|
positive is greater than the negativeال outliers |
|
|
|
85 |
|
00:07:57,740 --> 00:08:01,000 |
|
ال positive أكتر من ال outliers ال negative we |
|
|
|
86 |
|
00:08:01,000 --> 00:08:04,880 |
|
don't have negative outliers here فاللي صار أنه |
|
|
|
87 |
|
00:08:04,880 --> 00:08:08,640 |
|
صار عندي التواق لليمين هيكون الشكل تبعوا للشكل |
|
|
|
88 |
|
00:08:08,640 --> 00:08:16,140 |
|
هيكون الشكل هيك هيكون في to the right to the right |
|
|
|
89 |
|
00:08:16,140 --> 00:08:18,800 |
|
why to the right because we have extreme values |
|
|
|
90 |
|
00:08:18,800 --> 00:08:24,020 |
|
فال average the average is move to the right ال |
|
|
|
91 |
|
00:08:24,020 --> 00:08:27,130 |
|
average هيروح على ال rightلأن هنا فينا الاربعمية |
|
|
|
92 |
|
00:08:27,130 --> 00:08:34,310 |
|
والتلاتمية هم outliers so the outliers try to move |
|
|
|
93 |
|
00:08:34,310 --> 00:08:38,550 |
|
the average to the right side هياخد ال average لل |
|
|
|
94 |
|
00:08:38,550 --> 00:08:44,010 |
|
right side okay this |
|
|
|
95 |
|
00:08:44,010 --> 00:08:51,250 |
|
is why .. this is why we have positive skew and |
|
|
|
96 |
|
00:08:51,250 --> 00:08:53,980 |
|
the opposite if we take another example hereإذا |
|
|
|
97 |
|
00:08:53,980 --> 00:09:00,120 |
|
أخدنا نفس المثال و |
|
|
|
98 |
|
00:09:00,120 --> 00:09:04,320 |
|
خلّينا القيام like this شوفوا القيام like this |
|
|
|
99 |
|
00:09:04,320 --> 00:09:10,600 |
|
they say twelve percent eleven ten nine seven six |
|
|
|
100 |
|
00:09:10,600 --> 00:09:21,940 |
|
and we have here like point five and minus okay |
|
|
|
101 |
|
00:09:23,590 --> 00:09:31,290 |
|
minus fifteen and minus thirty أخدنا القيام هدول |
|
|
|
102 |
|
00:09:31,290 --> 00:09:38,370 |
|
فشوفوا عكس الحالة هذي بيكون ال data like this ال |
|
|
|
103 |
|
00:09:38,370 --> 00:09:44,810 |
|
average like this then it's like this طب ال |
|
|
|
104 |
|
00:09:44,810 --> 00:09:49,390 |
|
outliers وين تحت ولا فوق تحت so it's negative لما |
|
|
|
105 |
|
00:09:49,390 --> 00:09:54,020 |
|
بيكون the outliers it meansif the average is here |
|
|
|
106 |
|
00:09:54,020 --> 00:10:01,400 |
|
so the outliers try to push it down bowling يعني |
|
|
|
107 |
|
00:10:01,400 --> 00:10:06,160 |
|
يسحب bowling up pushing down فهيصير ال average |
|
|
|
108 |
|
00:10:06,160 --> 00:10:08,840 |
|
somewhere هنا احسبوا الكلام ده شوفوا واحد و اتنين |
|
|
|
109 |
|
00:10:08,840 --> 00:10:17,780 |
|
طيب يعني هتكون بمكان مهم مظبوط the average should |
|
|
|
110 |
|
00:10:17,780 --> 00:10:21,780 |
|
be somewhere in herebut the average is moved down |
|
|
|
111 |
|
00:10:21,780 --> 00:10:27,500 |
|
because the data is skewed to the left حيكون شكل |
|
|
|
112 |
|
00:10:27,500 --> 00:10:39,100 |
|
ال .. شكل ال .. شكله هيك تقريب to |
|
|
|
113 |
|
00:10:39,100 --> 00:10:42,360 |
|
the left فبكون هدول ال outliers minus fifteen |
|
|
|
114 |
|
00:10:42,360 --> 00:10:49,810 |
|
minus thirty is located somewhere in hereOkay, so |
|
|
|
115 |
|
00:10:49,810 --> 00:10:54,890 |
|
because there is no symmetric with the data, |
|
|
|
116 |
|
00:10:55,090 --> 00:10:58,430 |
|
generally speaking most people in statistics they |
|
|
|
117 |
|
00:10:58,430 --> 00:11:02,690 |
|
ignore these things, they ignore this, الناس كلهم |
|
|
|
118 |
|
00:11:02,690 --> 00:11:07,070 |
|
بيتجهلوهم, يعني بيتجهلوهم, but in finance we |
|
|
|
119 |
|
00:11:07,070 --> 00:11:11,350 |
|
should consider them, in the first case look at |
|
|
|
120 |
|
00:11:11,350 --> 00:11:18,000 |
|
here, in this onewhen the .. when the data .. when |
|
|
|
121 |
|
00:11:18,000 --> 00:11:23,180 |
|
the data is positive when we have outliers greater |
|
|
|
122 |
|
00:11:23,180 --> 00:11:27,900 |
|
than the average it means we have a positive skew |
|
|
|
123 |
|
00:11:27,900 --> 00:11:32,100 |
|
but here we have negative skew and because we have |
|
|
|
124 |
|
00:11:32,100 --> 00:11:37,680 |
|
positive skew it means لأنه إذا كان عندنا skew ما |
|
|
|
125 |
|
00:11:37,680 --> 00:11:41,200 |
|
أنت عارف .. هعرفنا ال skew يعني هالتوا صح؟ إذا |
|
|
|
126 |
|
00:11:41,200 --> 00:11:47,120 |
|
كانت موجب positiveبكون عندي over estimate و إذا |
|
|
|
127 |
|
00:11:47,120 --> 00:11:54,220 |
|
كانت negative under estimate طيب this is the |
|
|
|
128 |
|
00:11:54,220 --> 00:11:58,940 |
|
importance of skew هذا أهمية ال skew نيجي نحكي عن |
|
|
|
129 |
|
00:11:58,940 --> 00:12:06,280 |
|
ال cortices على ال cortices خلينا نذكركم بس |
|
|
|
130 |
|
00:12:06,280 --> 00:12:11,220 |
|
بالقانون تبع ال skew how to calculate the skew بس |
|
|
|
131 |
|
00:12:11,220 --> 00:12:20,580 |
|
يعني القانونبتعرفوا انه Q is equal R minus R bar |
|
|
|
132 |
|
00:12:20,580 --> 00:12:29,160 |
|
okay cubed divided by sigma cubed هذا هو ال raise |
|
|
|
133 |
|
00:12:29,160 --> 00:12:34,460 |
|
to the power three الكورتوسيز ايش بيقيس الكورتوسيز |
|
|
|
134 |
|
00:12:34,460 --> 00:12:38,500 |
|
الكورتوسيز is measure to what extent our data is |
|
|
|
135 |
|
00:12:38,500 --> 00:12:43,030 |
|
flatيعني ال I درجة بيكون ال بيانات تبعتنا flat |
|
|
|
136 |
|
00:12:43,030 --> 00:12:55,930 |
|
ناخد نتالي لو |
|
|
|
137 |
|
00:12:55,930 --> 00:13:03,270 |
|
شوفنا احنا هذا |
|
|
|
138 |
|
00:13:03,270 --> 00:13:06,430 |
|
ايش رأيكوا؟ هذا normal distribution ولا ايش؟ this |
|
|
|
139 |
|
00:13:06,430 --> 00:13:07,370 |
|
is normal distribution |
|
|
|
140 |
|
00:13:11,120 --> 00:13:18,920 |
|
هذا normal distribution توزيع طبيعي هذا |
|
|
|
141 |
|
00:13:18,920 --> 00:13:24,980 |
|
فيه توزيع طبيعي why because the right side is |
|
|
|
142 |
|
00:13:24,980 --> 00:13:27,840 |
|
approximately equal to the left side يعني الجانب |
|
|
|
143 |
|
00:13:27,840 --> 00:13:34,160 |
|
اليمين تقريبا يشبه الجانب الشمال okay طيب so the |
|
|
|
144 |
|
00:13:34,160 --> 00:13:41,080 |
|
thing is now the thing is the thing is nowإذا ننظر |
|
|
|
145 |
|
00:13:41,080 --> 00:13:44,980 |
|
إلى الجانب اليسار هو تقريبًا يقل الجانب اليسار، |
|
|
|
146 |
|
00:13:44,980 --> 00:13:50,140 |
|
إذا كان لدينا كورتوسيه، يعني أن البيانات أكتر |
|
|
|
147 |
|
00:13:50,140 --> 00:13:54,500 |
|
مطمئنة من المشاركة الطبيعية، يبدو هكذا |
|
|
|
148 |
|
00:14:14,330 --> 00:14:17,730 |
|
So the data .. this is .. this one this means we |
|
|
|
149 |
|
00:14:17,730 --> 00:14:20,490 |
|
have a very narrow mean .. mean and the data is |
|
|
|
150 |
|
00:14:20,490 --> 00:14:26,830 |
|
flat is scattered in the left and scattered in the |
|
|
|
151 |
|
00:14:26,830 --> 00:14:29,390 |
|
.. in the right or in the right and in the left if |
|
|
|
152 |
|
00:14:29,390 --> 00:14:35,750 |
|
you see here there is a space between this line |
|
|
|
153 |
|
00:14:35,750 --> 00:14:39,030 |
|
with this line but with this one there is .. there |
|
|
|
154 |
|
00:14:39,030 --> 00:14:43,430 |
|
is a limit يعني إذا إحنا بناحي البيانات موجودة هون |
|
|
|
155 |
|
00:14:46,170 --> 00:14:53,130 |
|
هنجيب بال Cortices ان |
|
|
|
156 |
|
00:14:53,130 --> 00:14:57,050 |
|
البيانات تأخذ بعض المكان هنا و بعض المكان هنا |
|
|
|
157 |
|
00:14:57,050 --> 00:15:04,630 |
|
هنلاقي بيانات فوق و لاتحت و في الوسط كيف نحسب ال |
|
|
|
158 |
|
00:15:04,630 --> 00:15:08,530 |
|
Cortices كيف احنا بنحسب ال Cortices The Cortices |
|
|
|
159 |
|
00:15:08,530 --> 00:15:20,920 |
|
is equal to R minus R bar ريز تو البرور فور ريز |
|
|
|
160 |
|
00:15:20,920 --> 00:15:21,760 |
|
تو البرور فور ريز تو البرور فور ريز تو البرور فور |
|
|
|
161 |
|
00:15:21,760 --> 00:15:22,760 |
|
ريز تو البرور فور ريز تو البرور فور ريز تو البرور |
|
|
|
162 |
|
00:15:22,760 --> 00:15:29,180 |
|
فور ريز تو البرور فور ريز تو البرور فور ريز تو |
|
|
|
163 |
|
00:15:29,180 --> 00:15:32,180 |
|
البرور فور ريز تو البرور فور ريز تو البرور فور ريز |
|
|
|
164 |
|
00:15:32,180 --> 00:15:32,180 |
|
تو البرور فور ريز تو البرور فور ريز تو البرور فور |
|
|
|
165 |
|
00:15:32,180 --> 00:15:32,180 |
|
ريز تو البرور فور ريز تو البرور فور ريز تو البرور |
|
|
|
166 |
|
00:15:32,180 --> 00:15:33,860 |
|
فور ريز تو البرور فور ريز تو البرور فور ريز تو |
|
|
|
167 |
|
00:15:33,860 --> 00:15:41,320 |
|
البرور فور ريز تو البرور فور ريز |
|
|
|
168 |
|
00:15:41,320 --> 00:15:46,930 |
|
تلحظة يا تيه إذا قمنا بالتخيل هذا الجانب بشكل |
|
|
|
169 |
|
00:15:46,930 --> 00:15:51,230 |
|
مختلف و إذا كانت البيانات تتبع اتجارة عادية فهذا |
|
|
|
170 |
|
00:15:51,230 --> 00:15:55,790 |
|
يجب أن يكون ثلاثة إذا كانت النتيجة ثلاثة ثلاثة أقل |
|
|
|
171 |
|
00:15:55,790 --> 00:16:00,010 |
|
ثلاثة ثم ننتهي بزيرولذلك إذا كانت النتيجة صحيحة |
|
|
|
172 |
|
00:16:00,010 --> 00:16:06,870 |
|
إذا كانت النتيجة صحيحة إذا كانت النتيجة صحيحة إذا |
|
|
|
173 |
|
00:16:06,870 --> 00:16:07,170 |
|
كانت النتيجة صحيحة إذا كانت النتيجة صحيحة إذا كانت |
|
|
|
174 |
|
00:16:07,170 --> 00:16:08,990 |
|
النتيجة صحيحة إذا كانت النتيجة صحيحة إذا كانت |
|
|
|
175 |
|
00:16:08,990 --> 00:16:09,610 |
|
النتيجة صحيحة إذا كانت النتيجة صحيحة إذا كانت |
|
|
|
176 |
|
00:16:09,610 --> 00:16:11,190 |
|
النتيجة صحيحة إذا كانت النتيجة صحيحة إذا كانت |
|
|
|
177 |
|
00:16:11,190 --> 00:16:13,210 |
|
النتيجة صحيحة إذا كانت النتيجة صحيحة إذا كانت |
|
|
|
178 |
|
00:16:13,210 --> 00:16:18,530 |
|
النتيجة صحيحة إذا كانت النتيجة صحيحة إذا كانت |
|
|
|
179 |
|
00:16:18,530 --> 00:16:23,510 |
|
النتيجة صحيحة إذا |
|
|
|
180 |
|
00:16:23,510 --> 00:16:27,330 |
|
كانت |
|
|
|
181 |
|
00:16:27,330 --> 00:16:30,840 |
|
النتيجة صحيحةهي تطلع على المعادلة المعادلة فيها |
|
|
|
182 |
|
00:16:30,840 --> 00:16:34,500 |
|
إلها شقين هذه ناقص تلاتة إذا طلع هذا الجواب تلاتة |
|
|
|
183 |
|
00:16:34,500 --> 00:16:38,280 |
|
تلاتة ناقص تلاتة so it's equal zero إذا كان zero |
|
|
|
184 |
|
00:16:38,280 --> 00:16:43,440 |
|
بيكون هذا شوف هذه بيكون zero لأن هاي touch the |
|
|
|
185 |
|
00:16:43,440 --> 00:16:47,120 |
|
line and this is touch the line but if it is |
|
|
|
186 |
|
00:16:47,120 --> 00:16:51,400 |
|
greater than three شوف إذا كان هذا جوابي greater |
|
|
|
187 |
|
00:16:51,400 --> 00:16:55,440 |
|
than three then it's greater than zero so we have |
|
|
|
188 |
|
00:16:55,440 --> 00:16:59,070 |
|
corticesOkay, so this is the problem. |
|
|
|
189 |
|
00:17:02,490 --> 00:17:10,370 |
|
Now, again the Skew and Cortices help the |
|
|
|
190 |
|
00:17:10,370 --> 00:17:12,690 |
|
researcher and help financial people or investors |
|
|
|
191 |
|
00:17:12,690 --> 00:17:17,470 |
|
to mention the data are normally distributed or |
|
|
|
192 |
|
00:17:17,470 --> 00:17:22,230 |
|
not. إذا كانت البيانات تبعتهم موزعة توزيع طبيعي |
|
|
|
193 |
|
00:17:22,230 --> 00:17:23,090 |
|
ولا لأ؟ |
|
|
|
194 |
|
00:17:27,160 --> 00:17:30,700 |
|
الcortices بيبنوا like this طلع البيانات scattered |
|
|
|
195 |
|
00:17:30,700 --> 00:17:34,140 |
|
بيكون في outliers in the top and outliers in the |
|
|
|
196 |
|
00:17:34,140 --> 00:17:39,280 |
|
bottom and we have something in the middle فبتكون |
|
|
|
197 |
|
00:17:39,280 --> 00:17:43,700 |
|
في زي πاي باي observation أو binomial بتكونش |
|
|
|
198 |
|
00:17:43,700 --> 00:17:46,600 |
|
البيانات is focused on the average يعني زي ما انت |
|
|
|
199 |
|
00:17:46,600 --> 00:17:51,740 |
|
شايفها هان in this one red one the most of our |
|
|
|
200 |
|
00:17:51,740 --> 00:17:57,200 |
|
data look at here most of our dataموجودة في مكان |
|
|
|
201 |
|
00:17:57,200 --> 00:18:03,100 |
|
ما هنا وهو حوالي 68% من البيانات الموجودة هنا ولكن |
|
|
|
202 |
|
00:18:03,100 --> 00:18:09,320 |
|
إذا كنت تنظر إلى الـ blue one حوالي 30% من |
|
|
|
203 |
|
00:18:09,320 --> 00:18:12,800 |
|
بياناتنا موجودة في الأعلى أو موجودة في ال .. |
|
|
|
204 |
|
00:18:12,800 --> 00:18:18,700 |
|
والباقية من بياناتنا موجودة في الخارج ممكننا أن |
|
|
|
205 |
|
00:18:18,700 --> 00:18:23,600 |
|
نلاحظ مثل هذا إذا أردنا لدينا بيانات مثل هذه و |
|
|
|
206 |
|
00:18:23,600 --> 00:18:28,520 |
|
لدينا بيانات مثل هذهو لدينا مصادر مثل هذه حسنا اذا |
|
|
|
207 |
|
00:18:28,520 --> 00:18:36,000 |
|
ماهي عاملة؟ عاملة مخططة لهم لأن حسنا ربما العاملة |
|
|
|
208 |
|
00:18:36,000 --> 00:18:43,300 |
|
في هنا لذا لدينا شيء هنا و لدينا شيء هنا لذلك إذا |
|
|
|
209 |
|
00:18:43,300 --> 00:18:49,600 |
|
قمنا بترتيب هذا في مقالة ننتهي بمقالة بلوOkay, |
|
|
|
210 |
|
00:18:50,140 --> 00:18:53,060 |
|
this is .. it's like this has two wings, two big |
|
|
|
211 |
|
00:18:53,060 --> 00:18:57,460 |
|
wings يعني هناخد for instance look at here two big |
|
|
|
212 |
|
00:18:57,460 --> 00:19:02,220 |
|
wings الناس |
|
|
|
213 |
|
00:19:02,220 --> 00:19:05,720 |
|
.. بعض الناس مش كتير في ال statistics so بتاع |
|
|
|
214 |
|
00:19:05,720 --> 00:19:10,020 |
|
they're ignoring the outlines فاحنا بالنسبة لل |
|
|
|
215 |
|
00:19:10,020 --> 00:19:14,540 |
|
finance outlines are important why outlines are |
|
|
|
216 |
|
00:19:14,540 --> 00:19:16,820 |
|
important because indicate something in finance |
|
|
|
217 |
|
00:19:17,510 --> 00:19:19,830 |
|
الناس تتعامل بـ Overestimation عندما تكون لديها |
|
|
|
218 |
|
00:19:19,830 --> 00:19:23,310 |
|
إتجار مفيد والناس تتعامل ب Underestimate Risk |
|
|
|
219 |
|
00:19:23,310 --> 00:19:30,470 |
|
عندما تكون لديها إتجار مفيد حسنا |
|
|
|
220 |
|
00:19:30,470 --> 00:19:34,270 |
|
الآن |
|
|
|
221 |
|
00:19:34,270 --> 00:19:42,370 |
|
دعونا نتحدث عن إتجار مفقود وهو مهم أيضا في |
|
|
|
222 |
|
00:19:42,370 --> 00:19:50,930 |
|
الوزيارة لأنof this look at here as I said we have |
|
|
|
223 |
|
00:19:50,930 --> 00:19:55,530 |
|
data like this this is normal and then we have |
|
|
|
224 |
|
00:19:55,530 --> 00:20:01,050 |
|
outliers like this اذا احنا أخدنا observations R |
|
|
|
225 |
|
00:20:01,050 --> 00:20:05,530 |
|
زي هيك مع الكلام هدول ال average بيكون somewhere |
|
|
|
226 |
|
00:20:05,530 --> 00:20:09,050 |
|
هنا because of this outliers maybe the average |
|
|
|
227 |
|
00:20:09,050 --> 00:20:14,230 |
|
will go down هيكون جريب لهدولOkay so what the |
|
|
|
228 |
|
00:20:14,230 --> 00:20:18,390 |
|
problem then is this positive skew or negative |
|
|
|
229 |
|
00:20:18,390 --> 00:20:23,070 |
|
okay this positive or negative why it is negative |
|
|
|
230 |
|
00:20:23,070 --> 00:20:27,070 |
|
because لأنه هيسحبوه من التحت okay so we have |
|
|
|
231 |
|
00:20:27,070 --> 00:20:33,150 |
|
negative and if we draw the negative so |
|
|
|
232 |
|
00:20:33,150 --> 00:20:37,230 |
|
this is this is a negative skew to the right to |
|
|
|
233 |
|
00:20:37,230 --> 00:20:44,670 |
|
the leftوإذا قمت بإرسالهم هنا، فسنلاحظ أن البيانات |
|
|
|
234 |
|
00:20:44,670 --> 00:20:53,410 |
|
هنا ونلاحظ ما يوجد هنا، الـ outliers، حسنًا؟ |
|
|
|
235 |
|
00:20:53,410 --> 00:20:59,790 |
|
الأن هذه الـ outliers، لأنها في الجانات المفارقة، |
|
|
|
236 |
|
00:20:59,790 --> 00:21:06,850 |
|
نسميها قيمة في خطرbe careful we write it values at |
|
|
|
237 |
|
00:21:06,850 --> 00:21:10,650 |
|
risk we are not writing like this this is var |
|
|
|
238 |
|
00:21:10,650 --> 00:21:13,950 |
|
which is variance and this is values at risk |
|
|
|
239 |
|
00:21:13,950 --> 00:21:19,930 |
|
values at risk what it means values at risk values |
|
|
|
240 |
|
00:21:19,930 --> 00:21:26,370 |
|
at risk it means قيم معرضة للخطر بالظبط قيم معرضة |
|
|
|
241 |
|
00:21:26,370 --> 00:21:31,990 |
|
للخطر يعني لو جينا احنا رصدنا درجات الطلابلا يا |
|
|
|
242 |
|
00:21:31,990 --> 00:21:35,010 |
|
بابا مش ال variance احنا حكينا look be careful |
|
|
|
243 |
|
00:21:35,010 --> 00:21:38,150 |
|
this is not not variance هذا مش whole variance |
|
|
|
244 |
|
00:21:38,150 --> 00:21:44,970 |
|
this is values at risk زي ما حكت انه قيم معرضة |
|
|
|
245 |
|
00:21:44,970 --> 00:21:53,570 |
|
للخطر values at risk values at risk قيم معرضة |
|
|
|
246 |
|
00:21:53,570 --> 00:21:58,250 |
|
للخطر طيب هلا مثلا أجينا احنا أخدنا درجات الطلاب |
|
|
|
247 |
|
00:21:59,240 --> 00:22:04,140 |
|
لجينا الطلاب في تسعين تمانين خمسين سبعين ستين ف ال |
|
|
|
248 |
|
00:22:04,140 --> 00:22:07,980 |
|
values at risk هي ال values ال extreme negative |
|
|
|
249 |
|
00:22:07,980 --> 00:22:14,900 |
|
يعني أخدنا درجة الطلاب لجينا فينا تسعين خمس و |
|
|
|
250 |
|
00:22:14,900 --> 00:22:21,460 |
|
تسعين تمانين خمس و تمانين سبعين تسعة و ستين سبعين |
|
|
|
251 |
|
00:22:21,460 --> 00:22:25,500 |
|
خمس و تمانين okay و بعدين لجينا عشرين عشرة خمس و |
|
|
|
252 |
|
00:22:25,500 --> 00:22:30,760 |
|
أستعشسجلنا درجة الطلاب and we found like this |
|
|
|
253 |
|
00:22:30,760 --> 00:22:34,000 |
|
لقينا درجات الطلاب where is the values at risk |
|
|
|
254 |
|
00:22:34,000 --> 00:22:39,940 |
|
هدول هما ال 20, 10, 15 هدول values at risk هدول |
|
|
|
255 |
|
00:22:39,940 --> 00:22:44,260 |
|
values at risk will move the will move the average |
|
|
|
256 |
|
00:22:44,260 --> 00:22:49,160 |
|
down وبالتالي ال average هيصير misleading the |
|
|
|
257 |
|
00:22:49,160 --> 00:22:52,460 |
|
problem is now from the investment point of view |
|
|
|
258 |
|
00:22:52,460 --> 00:22:56,650 |
|
من وجهة نظر المستثمرينto what extent these people |
|
|
|
259 |
|
00:22:56,650 --> 00:23:02,610 |
|
are at risk؟ لأي درجة ان هدول ال people في خطر؟ |
|
|
|
260 |
|
00:23:02,610 --> 00:23:07,010 |
|
لأي درجة هدول الطلاب عندهم .. okay let's things in |
|
|
|
261 |
|
00:23:07,010 --> 00:23:13,870 |
|
different ways values at risk measures worst loss |
|
|
|
262 |
|
00:23:13,870 --> 00:23:21,570 |
|
أسوأ خسارة يعني بنيجي و بنقول احنا ما هي أسوأ |
|
|
|
263 |
|
00:23:21,570 --> 00:23:28,470 |
|
خسارة ممكن نحصل عليها بالفصلأسوأ نتيجة يعني |
|
|
|
264 |
|
00:23:28,470 --> 00:23:35,750 |
|
لأ يعني أكم طالب يرصب بنيجي نقول أسوأ نتيجة ممكن |
|
|
|
265 |
|
00:23:35,750 --> 00:23:42,350 |
|
نحصل عليها يعني جداش أن عدد طلاب مثلا ستين بنقول |
|
|
|
266 |
|
00:23:42,350 --> 00:23:46,650 |
|
احنا حسب الحسابات تبعنا أسوأ نتيجة ممكن نحصل عليها |
|
|
|
267 |
|
00:23:46,650 --> 00:23:53,050 |
|
أنه يرصب تلاتة في المية أو بطريقة ثانية أسوأ نتيجة |
|
|
|
268 |
|
00:23:54,240 --> 00:24:00,240 |
|
نحصل عليها انه ماتزدش الخسارة بتاعتنا عن 3% this |
|
|
|
269 |
|
00:24:00,240 --> 00:24:05,220 |
|
is fine or in other words او بطريقة أخرى نقول أسوأ |
|
|
|
270 |
|
00:24:05,220 --> 00:24:11,160 |
|
نتيجة انه احنا نحصل عليها انه النجاح يكون اقل من |
|
|
|
271 |
|
00:24:11,160 --> 00:24:17,640 |
|
97% النجاح يكون اقل من 97% نفس ال 3% نفس الفكرة |
|
|
|
272 |
|
00:24:17,640 --> 00:24:24,360 |
|
يعني احنا قلنا او النجاح مايزدش عن 97%فبكون لما |
|
|
|
273 |
|
00:24:24,360 --> 00:24:28,960 |
|
أقول النجاح مايسدش عن 97% it means أن أسوأ خسارة |
|
|
|
274 |
|
00:24:28,960 --> 00:24:33,400 |
|
ممكن نحصل عليها 3% from investment point of view |
|
|
|
275 |
|
00:24:33,400 --> 00:24:38,580 |
|
ممكن من وجهة نظر الاستثمار okay what is the worst |
|
|
|
276 |
|
00:24:38,580 --> 00:24:45,740 |
|
loss ما هي أسوأ خسارة ممكن نحصل عليها so we need |
|
|
|
277 |
|
00:24:45,740 --> 00:24:49,060 |
|
to calculate values at risk عشان نحصل على أسوأ |
|
|
|
278 |
|
00:24:49,060 --> 00:24:52,700 |
|
خسارة there are three methods to calculate values |
|
|
|
279 |
|
00:24:52,700 --> 00:24:58,130 |
|
at riskin your handbook is only one method فى |
|
|
|
280 |
|
00:24:58,130 --> 00:25:03,870 |
|
الكتاب تبعك موجود بس methods واحدة okay and this |
|
|
|
281 |
|
00:25:03,870 --> 00:25:06,490 |
|
method is called Monte Carlo method مش موجودة |
|
|
|
282 |
|
00:25:06,490 --> 00:25:09,630 |
|
بالكتاب إن اسمها Monte Carlo لكن أنا بقولكوا إيها |
|
|
|
283 |
|
00:25:09,630 --> 00:25:13,530 |
|
it is Monte Carlo فممكن بال corrections و لا بالصح |
|
|
|
284 |
|
00:25:13,530 --> 00:25:15,490 |
|
و الغلط تقولوا والله يا عزيزي مش موجودة بالكتاب no |
|
|
|
285 |
|
00:25:15,490 --> 00:25:19,370 |
|
I'm telling you now this method is Monte Carlo |
|
|
|
286 |
|
00:25:23,640 --> 00:25:29,100 |
|
اسم الطريقة اسمها Monte Carlo okay في Monte Carlo |
|
|
|
287 |
|
00:25:29,100 --> 00:25:32,580 |
|
في إذاعة اسمها Monte Carlo في دراسة اسمها Monte |
|
|
|
288 |
|
00:25:32,580 --> 00:25:39,820 |
|
Carlo so the normal so the values at risk is equal |
|
|
|
289 |
|
00:25:39,820 --> 00:25:52,890 |
|
a mu which is the average minus z times sigmaو |
|
|
|
290 |
|
00:25:52,890 --> 00:25:58,530 |
|
سنشرح ماذا يعني Z يعني |
|
|
|
291 |
|
00:25:58,530 --> 00:26:02,950 |
|
ميو |
|
|
|
292 |
|
00:26:02,950 --> 00:26:11,090 |
|
او عامل مانوس سيجما زد مانوس زد يعني عامل عامل |
|
|
|
293 |
|
00:26:11,090 --> 00:26:15,150 |
|
عامل عامل عامل عامل عامل عامل عامل عامل عامل عامل |
|
|
|
294 |
|
00:26:15,150 --> 00:26:16,530 |
|
عامل عامل عامل عامل عامل عامل عامل عامل عامل عامل |
|
|
|
295 |
|
00:26:16,530 --> 00:26:17,790 |
|
عامل عامل عامل عامل عامل عامل عامل عامل عامل عامل |
|
|
|
296 |
|
00:26:17,790 --> 00:26:17,810 |
|
عامل عامل عامل عامل عامل عامل عامل عامل عامل عامل |
|
|
|
297 |
|
00:26:17,810 --> 00:26:17,810 |
|
عامل عامل عامل عامل عامل عامل عامل عامل عامل عامل |
|
|
|
298 |
|
00:26:17,810 --> 00:26:17,810 |
|
عامل عامل عامل عامل عامل عامل عامل عامل عامل عامل |
|
|
|
299 |
|
00:26:17,810 --> 00:26:17,810 |
|
ع |
|
|
|
300 |
|
00:26:21,460 --> 00:26:24,720 |
|
the critical value اللي هو القيمة الحرجة بتسميها |
|
|
|
301 |
|
00:26:24,720 --> 00:26:30,440 |
|
okay what it means القيمة الحرجة فاكرين القيمة |
|
|
|
302 |
|
00:26:30,440 --> 00:26:38,560 |
|
الحرجة at a particular confidence |
|
|
|
303 |
|
00:26:38,560 --> 00:26:43,960 |
|
level عند |
|
|
|
304 |
|
00:26:43,960 --> 00:26:48,600 |
|
مستوى معنوية أو مستوى ثقة معين خلّيني أجي نقول |
|
|
|
305 |
|
00:26:49,520 --> 00:26:54,560 |
|
تطلعوا على التلات مقالات الموجودين هنا لنفترض أن |
|
|
|
306 |
|
00:26:54,560 --> 00:26:59,960 |
|
هدول بمثله minus 30% و minus 20% و minus .. خلّيني |
|
|
|
307 |
|
00:26:59,960 --> 00:27:04,140 |
|
minus 30% و minus 20% هدول النقطتين الموجودين هنا |
|
|
|
308 |
|
00:27:04,140 --> 00:27:10,760 |
|
اللي هم ال extreme negative values okay هلأ بنحكي |
|
|
|
309 |
|
00:27:10,760 --> 00:27:15,900 |
|
what is .. what is the worst loss |
|
|
|
310 |
|
00:27:19,890 --> 00:27:28,490 |
|
95% ما هي أسوأ خسارة ممكن نحصل عليها عند 95% then |
|
|
|
311 |
|
00:27:28,490 --> 00:27:36,010 |
|
we apply this هنطبق هذه ال average معروف وال sigma |
|
|
|
312 |
|
00:27:36,010 --> 00:27:39,910 |
|
معروفة ال standard deviation معروف بيضل ال z ايش |
|
|
|
313 |
|
00:27:39,910 --> 00:27:46,730 |
|
ال z هذه ال z عند 95% اللي هي المنطقة هذه عند 95% |
|
|
|
314 |
|
00:27:46,730 --> 00:27:53,260 |
|
بتساوي 1.65أخدتها بال .. بتنجح بين الجدول اللي هو |
|
|
|
315 |
|
00:27:53,260 --> 00:27:55,980 |
|
بال .. اللي أخدتها من الإحسان اه one point six |
|
|
|
316 |
|
00:27:55,980 --> 00:28:00,980 |
|
five فبصير احنا ال MUE minus one point six five |
|
|
|
317 |
|
00:28:00,980 --> 00:28:07,480 |
|
times sigma نفترض الجواب تلعنا minus twenty |
|
|
|
318 |
|
00:28:07,480 --> 00:28:11,700 |
|
percent ايش معناه what it means ايش معناه ماعرفت |
|
|
|
319 |
|
00:28:11,700 --> 00:28:16,040 |
|
عشان عشانين تمية أسوأ خسارة ممكن احنا نحصل عليها |
|
|
|
320 |
|
00:28:16,040 --> 00:28:22,630 |
|
من الاستثمار في Aما بتزيد عن minus 20% in other |
|
|
|
321 |
|
00:28:22,630 --> 00:28:26,470 |
|
words the worst loss that we can take when we |
|
|
|
322 |
|
00:28:26,470 --> 00:28:32,990 |
|
invest in A is not greater than 20% or minus 20% |
|
|
|
323 |
|
00:28:32,990 --> 00:28:43,430 |
|
أو بطريقة أخرى أنه we are hundred percent sure or |
|
|
|
324 |
|
00:28:43,430 --> 00:28:50,040 |
|
five percentيعني احنا حكينا عن 95% هيك 95% وها 5% |
|
|
|
325 |
|
00:28:50,040 --> 00:28:57,100 |
|
بنسبة 5% احنا بنكون متأكدين انه البيانات الخسائر |
|
|
|
326 |
|
00:28:57,100 --> 00:29:06,720 |
|
تبعتنا مش هتزيد عن .. مش هتزيد عن 20% okay هذه إذا |
|
|
|
327 |
|
00:29:06,720 --> 00:29:13,040 |
|
كانت negative values طيب |
|
|
|
328 |
|
00:29:15,120 --> 00:29:18,240 |
|
إذا ال values ال risk بتقيس لإيه؟ أهم إيش تعرفوا |
|
|
|
329 |
|
00:29:18,240 --> 00:29:23,060 |
|
هذا ال loss loss أسوأ خسارة ممكن إحنا نحصل عليها |
|
|
|
330 |
|
00:29:23,060 --> 00:29:26,780 |
|
and we compare زي ما شوفنا ال loss loss we compare |
|
|
|
331 |
|
00:29:26,780 --> 00:29:32,300 |
|
the average values with the negative values |
|
|
|
332 |
|
00:29:43,920 --> 00:29:46,320 |
|
So the values at risk just to remind you with the |
|
|
|
333 |
|
00:29:46,320 --> 00:29:50,020 |
|
values at risk a measure of loss most frequently |
|
|
|
334 |
|
00:29:50,020 --> 00:29:51,960 |
|
associated with the extreme negative returns |
|
|
|
335 |
|
00:29:51,960 --> 00:29:55,640 |
|
العلاج بالextreme negative returns be careful is |
|
|
|
336 |
|
00:29:55,640 --> 00:30:00,300 |
|
not related to the positive return is related to |
|
|
|
337 |
|
00:30:00,300 --> 00:30:03,460 |
|
the extreme negative return values at risk is the |
|
|
|
338 |
|
00:30:03,460 --> 00:30:07,800 |
|
quantile of a distribution below which lies Q |
|
|
|
339 |
|
00:30:07,800 --> 00:30:10,620 |
|
percent of the possible values of that |
|
|
|
340 |
|
00:30:10,620 --> 00:30:12,820 |
|
distribution يعني ما هو احتمال انه نحصل على |
|
|
|
341 |
|
00:30:13,590 --> 00:30:16,510 |
|
outliers في المنطقة هذه مالكو مش كتير في هذا |
|
|
|
342 |
|
00:30:16,510 --> 00:30:18,650 |
|
الكلام لإن هم عرفوا ليه هذا، هذا شوية صعب عادي |
|
|
|
343 |
|
00:30:18,650 --> 00:30:26,890 |
|
okay the five percent values at risk في ناس |
|
|
|
344 |
|
00:30:26,890 --> 00:30:29,830 |
|
بيعتبروا ال values at risk هي ال probability هي |
|
|
|
345 |
|
00:30:29,830 --> 00:30:35,250 |
|
إيش احتمالية is the probability to make loss هي |
|
|
|
346 |
|
00:30:35,250 --> 00:30:40,950 |
|
احتمال جديش احنا الاحتمال نخسردائما الناس بتنظر لل |
|
|
|
347 |
|
00:30:40,950 --> 00:30:45,010 |
|
.. للربح لكن احنا في ال finance و ال investment |
|
|
|
348 |
|
00:30:45,010 --> 00:30:48,930 |
|
برضه بنشوف ما هو احتمال ان احنا نخسر بتعطينا ال |
|
|
|
349 |
|
00:30:48,930 --> 00:30:53,230 |
|
investment option commonly estimated in practice |
|
|
|
350 |
|
00:30:53,230 --> 00:30:57,650 |
|
هذه كتير مستخدمة في الحياة العملية اللي هو ال |
|
|
|
351 |
|
00:30:57,650 --> 00:31:01,210 |
|
values at risk صحيح ان انت .. you first time to .. |
|
|
|
352 |
|
00:31:01,210 --> 00:31:04,730 |
|
to hear about this to know about this but this is |
|
|
|
353 |
|
00:31:04,730 --> 00:31:08,290 |
|
commonly used in practiceكتير ناس بيستخدموها في |
|
|
|
354 |
|
00:31:08,290 --> 00:31:11,550 |
|
الحياة العملية ممكن ناس يكونوا مش خرجين جامعات |
|
|
|
355 |
|
00:31:11,550 --> 00:31:15,410 |
|
يعني unfortunately you are in the university and |
|
|
|
356 |
|
00:31:15,410 --> 00:31:17,570 |
|
you are the first time to know about this but some |
|
|
|
357 |
|
00:31:17,570 --> 00:31:19,990 |
|
people is not in the university and they know |
|
|
|
358 |
|
00:31:19,990 --> 00:31:23,670 |
|
about this فى ناس مش أصلا مارحوش على الجامعة و |
|
|
|
359 |
|
00:31:23,670 --> 00:31:25,890 |
|
they know their values at risk and they asking |
|
|
|
360 |
|
00:31:25,890 --> 00:31:29,690 |
|
themselves إيش أسوأ إيش ممكن نسويه مرات يعني even |
|
|
|
361 |
|
00:31:29,690 --> 00:31:33,520 |
|
me sometimes what is the worst thingif you know |
|
|
|
362 |
|
00:31:33,520 --> 00:31:36,500 |
|
the worst things is fine يعني إيش أسوأ إشي ممكن |
|
|
|
363 |
|
00:31:36,500 --> 00:31:39,700 |
|
يصير and build your decision based on the worst |
|
|
|
364 |
|
00:31:39,700 --> 00:31:44,500 |
|
thing على أسوأ إشي دائما احنا we are looking to |
|
|
|
365 |
|
00:31:44,500 --> 00:31:48,780 |
|
the future as a flourish a future and we ignoring |
|
|
|
366 |
|
00:31:48,780 --> 00:31:51,860 |
|
the worst things يعني بنشوف المستقبل أحسن إشي و |
|
|
|
367 |
|
00:31:51,860 --> 00:31:55,620 |
|
أحلى إشي ف sometimes you have to look back and to |
|
|
|
368 |
|
00:31:55,620 --> 00:31:58,360 |
|
see if the worst thing happened what you can do |
|
|
|
369 |
|
00:31:58,360 --> 00:32:02,870 |
|
then إذا أسوأ إشي صار شو نعمل؟from the investment |
|
|
|
370 |
|
00:32:02,870 --> 00:32:08,250 |
|
point of view من وجهة نظر المستثمرين، so if you |
|
|
|
371 |
|
00:32:08,250 --> 00:32:10,790 |
|
know the worst things so you can easily manage the |
|
|
|
372 |
|
00:32:10,790 --> 00:32:13,870 |
|
investment لكن if you don't know the worst things |
|
|
|
373 |
|
00:32:13,870 --> 00:32:17,630 |
|
so how you can know thisso commonly estimated in |
|
|
|
374 |
|
00:32:17,630 --> 00:32:20,790 |
|
practice كتير مشهورة بال practice is the return at |
|
|
|
375 |
|
00:32:20,790 --> 00:32:25,490 |
|
the fifth percentile okay يعني ال .. ال .. ال .. |
|
|
|
376 |
|
00:32:25,490 --> 00:32:28,930 |
|
بتعرفوا ال .. أخدتوا الأشاير؟ أخدتوا الأشاير و |
|
|
|
377 |
|
00:32:28,930 --> 00:32:33,250 |
|
الربيع؟ الربيع الأول؟ الربيع التان؟ هذا هو الزمان |
|
|
|
378 |
|
00:32:33,250 --> 00:32:37,070 |
|
أخدته يعني هي بتيجي بعد ما أنا قسم البيانات شوف |
|
|
|
379 |
|
00:32:37,070 --> 00:32:41,730 |
|
عندي بيانات في عندى observation أه بقسمها إلى |
|
|
|
380 |
|
00:32:41,730 --> 00:32:47,650 |
|
أشيريات percentilesف percentile انه احنا بنقسم |
|
|
|
381 |
|
00:32:47,650 --> 00:32:51,330 |
|
البيانات من ال .. البيانات .. البيانات بنقسمها من |
|
|
|
382 |
|
00:32:51,330 --> 00:32:56,550 |
|
أعلى إلى أقل وبنقسمها إلى .. إلى عشيريات أول عشرات |
|
|
|
383 |
|
00:32:56,550 --> 00:33:00,110 |
|
.. يعني مثلا جيبنا درجات الطلاب مثلا جيبنا درجات |
|
|
|
384 |
|
00:33:00,110 --> 00:33:05,850 |
|
الطلاب من تسعين لسفر مش لمية أو من مية لسفرأه من |
|
|
|
385 |
|
00:33:05,850 --> 00:33:11,170 |
|
مية لسفر بعدين جسمنا عملنا لهم ranking و روحنا |
|
|
|
386 |
|
00:33:11,170 --> 00:33:14,470 |
|
جيبنا أول عشر طلاب بعدين تانية عشر طلاب تالت عشر |
|
|
|
387 |
|
00:33:14,470 --> 00:33:18,930 |
|
طلاب رابعة و .. and so on هنجرى أنه احنا حسب .. |
|
|
|
388 |
|
00:33:18,930 --> 00:33:22,270 |
|
هذا بيسموه percentile هذا إيش اسمه؟ في عندنا شغل |
|
|
|
389 |
|
00:33:22,270 --> 00:33:26,210 |
|
اسمه quartile و في quantile و في عندنا percentile |
|
|
|
390 |
|
00:33:26,210 --> 00:33:31,950 |
|
okay بقى percent اللي هو الربيع و الأشير و المهم |
|
|
|
391 |
|
00:33:32,700 --> 00:33:36,460 |
|
ففي ال percentile او خلينا نحكي بال .. اذا قسمناهم |
|
|
|
392 |
|
00:33:36,460 --> 00:33:40,420 |
|
لمائة مثلا او لعشرة طبعا هم مستخدم ال quantile |
|
|
|
393 |
|
00:33:40,420 --> 00:33:43,880 |
|
ممكن نستخدم ال percentile نقسمهم لأول عشرة .. اول |
|
|
|
394 |
|
00:33:43,880 --> 00:33:46,320 |
|
عشرة .. اول عشرة .. هذا اول عشرة .. تاني عشرة .. |
|
|
|
395 |
|
00:33:46,320 --> 00:33:50,440 |
|
ال values at risk هي بتكون بالعشرات اللي تحت يعني |
|
|
|
396 |
|
00:33:50,440 --> 00:33:53,340 |
|
بالنسبة للطلاب ال values عشان انا اعرف where is |
|
|
|
397 |
|
00:33:53,340 --> 00:33:57,280 |
|
the best هيكونوا هم اللي تحت اصلا فعشان هيك they |
|
|
|
398 |
|
00:33:57,280 --> 00:34:02,480 |
|
take the lastquantiles or last quantiles or last |
|
|
|
399 |
|
00:34:02,480 --> 00:34:06,480 |
|
percentiles okay when returns are sorted from high |
|
|
|
400 |
|
00:34:06,480 --> 00:34:10,800 |
|
to low جربوها يعني لو بتاخدوا معايا الحاسوب |
|
|
|
401 |
|
00:34:10,800 --> 00:34:14,520 |
|
التحليل معايا بيواجهيكوا how .. بيصنفوا ناخد أخر |
|
|
|
402 |
|
00:34:14,520 --> 00:34:18,240 |
|
ناس سهل نعرف أن مين أسوأ ناس موجودين لا سمح الله |
|
|
|
403 |
|
00:34:18,240 --> 00:34:21,920 |
|
يعني okay |
|
|
|
404 |
|
00:34:21,920 --> 00:34:27,470 |
|
خليني بس ع السريع لإن انا هخلصكم اليومالشغلات |
|
|
|
405 |
|
00:34:27,470 --> 00:34:32,810 |
|
مصيصة ال dial بس ال expected shortfall is expected |
|
|
|
406 |
|
00:34:32,810 --> 00:34:35,910 |
|
shortfall is also called conditional tail |
|
|
|
407 |
|
00:34:35,910 --> 00:34:40,110 |
|
expectation المشكلة |
|
|
|
408 |
|
00:34:40,110 --> 00:34:44,530 |
|
في ال values at risk is comparing these values |
|
|
|
409 |
|
00:34:44,530 --> 00:34:49,350 |
|
with these values لما احنا we compare this نقرر |
|
|
|
410 |
|
00:34:49,350 --> 00:34:54,140 |
|
الناس الشاطرين بالناس الرسمينيعني we compare the |
|
|
|
411 |
|
00:34:54,140 --> 00:34:57,300 |
|
positive values with the negative values هذا باسمه |
|
|
|
412 |
|
00:34:57,300 --> 00:34:59,820 |
|
بال values at risk so values at risk is a |
|
|
|
413 |
|
00:34:59,820 --> 00:35:05,680 |
|
conservative measure يعني محافظ شوية but in |
|
|
|
414 |
|
00:35:05,680 --> 00:35:08,900 |
|
shortfalls is only focusing on the negative values |
|
|
|
415 |
|
00:35:08,900 --> 00:35:12,340 |
|
بس بتركز على ال negative values to what extent |
|
|
|
416 |
|
00:35:12,340 --> 00:35:18,980 |
|
these values are negative؟ جداش هم سيئين أصلا okay |
|
|
|
417 |
|
00:35:18,980 --> 00:35:23,750 |
|
we know we have negative valuesيعني احنا بنعرف ان |
|
|
|
418 |
|
00:35:23,750 --> 00:35:28,270 |
|
في عندنا negative returns but to what extent these |
|
|
|
419 |
|
00:35:28,270 --> 00:35:31,990 |
|
negative returns influence on our portfolio or in |
|
|
|
420 |
|
00:35:31,990 --> 00:35:37,890 |
|
our decision يعني شفنا مثلا في عندنا طلاب رصفين |
|
|
|
421 |
|
00:35:37,890 --> 00:35:42,870 |
|
تحت لكن كدهش هدول مهمين بالنسبالنا إذا لجينا ان |
|
|
|
422 |
|
00:35:42,870 --> 00:35:48,720 |
|
والله هذا العدد مقارنة مع ال big people انهvery |
|
|
|
423 |
|
00:35:48,720 --> 00:35:52,700 |
|
very small we can ignore them but if it is if |
|
|
|
424 |
|
00:35:52,700 --> 00:35:57,080 |
|
there is a problem if we observe if we observe the |
|
|
|
425 |
|
00:35:57,080 --> 00:36:00,380 |
|
negative return like we have a number of people so |
|
|
|
426 |
|
00:36:00,380 --> 00:36:06,240 |
|
we focus on this ف shortfalls is not comparing the |
|
|
|
427 |
|
00:36:06,240 --> 00:36:09,040 |
|
good people with the good results with the bad |
|
|
|
428 |
|
00:36:09,040 --> 00:36:12,980 |
|
results just only focusing on the bad results بس |
|
|
|
429 |
|
00:36:12,980 --> 00:36:16,880 |
|
بتطلع ال negative returnsOkay and see why why |
|
|
|
430 |
|
00:36:16,880 --> 00:36:21,960 |
|
these negative returns So values at risk take the |
|
|
|
431 |
|
00:36:21,960 --> 00:36:26,640 |
|
highest return from the worst cases Okay بتاخد |
|
|
|
432 |
|
00:36:26,640 --> 00:36:32,840 |
|
أعلى عائد من أسوأ حالات Expected shortfalls اللي |
|
|
|
433 |
|
00:36:32,840 --> 00:36:37,420 |
|
EC take an average return of the worst cases هتيجي |
|
|
|
434 |
|
00:36:37,420 --> 00:36:43,170 |
|
كأنه إيش هنسوي طلعوا هنا شوفوا الحالة هنافي ال |
|
|
|
435 |
|
00:36:43,170 --> 00:36:46,970 |
|
values at risk ال average moved to the down، |
|
|
|
436 |
|
00:36:46,970 --> 00:36:52,290 |
|
مظبوط؟ وشوفنا إيش ال .. إيش هذا اتأثرت بهدول، لكن |
|
|
|
437 |
|
00:36:52,290 --> 00:36:56,250 |
|
بال .. ال expected shortfalls هذا .. we ignore |
|
|
|
438 |
|
00:36:56,250 --> 00:37:00,550 |
|
this and we calculate the average of this، بنشوف |
|
|
|
439 |
|
00:37:00,550 --> 00:37:04,870 |
|
ال average تلقى هدول، كداش هو is negative، كداش هو |
|
|
|
440 |
|
00:37:04,870 --> 00:37:10,250 |
|
سيءهذا الفرق بين ال values at risk و بين expected |
|
|
|
441 |
|
00:37:10,250 --> 00:37:13,790 |
|
shortfalls expected shortfalls تأخذ عدد عادل عادل |
|
|
|
442 |
|
00:37:13,790 --> 00:37:19,750 |
|
عادل عادل عادل عادل عادل عادل عادل عادل عادل عادل |
|
|
|
443 |
|
00:37:19,750 --> 00:37:21,010 |
|
عادل عادل عادل عادل عادل عادل عادل عادل عادل عادل |
|
|
|
444 |
|
00:37:21,010 --> 00:37:24,190 |
|
عادل عادل عادل عادل عادل عادل عادل عادل عادل عادل |
|
|
|
445 |
|
00:37:24,190 --> 00:37:24,190 |
|
عادل عادل عادل عادل عادل عادل عادل عادل عادل عادل |
|
|
|
446 |
|
00:37:24,190 --> 00:37:25,530 |
|
عادل عادل عادل عادل عادل عادل عادل عادل عادل عادل |
|
|
|
447 |
|
00:37:25,530 --> 00:37:25,550 |
|
عادل عادل عادل عادل عادل عادل عادل عادل عادل عادل |
|
|
|
448 |
|
00:37:25,550 --> 00:37:31,770 |
|
عادل عادل عادل عادل |
|
|
|
449 |
|
00:37:31,770 --> 00:37:36,500 |
|
عاللي هو ال lower partial standard deviation and |
|
|
|
450 |
|
00:37:36,500 --> 00:37:42,740 |
|
the Sortino ratio احنا حكينا احنا اذا كان عندنا |
|
|
|
451 |
|
00:37:42,740 --> 00:37:47,540 |
|
non-normal distribution so the average is no |
|
|
|
452 |
|
00:37:47,540 --> 00:37:52,940 |
|
longer is a good measure to return or to the risk |
|
|
|
453 |
|
00:37:52,940 --> 00:37:57,140 |
|
حكينا اذا كان البيانات مش normal distribution |
|
|
|
454 |
|
00:37:57,940 --> 00:38:00,640 |
|
توزيعها مش طبيعي معناه الكلام ال average is |
|
|
|
455 |
|
00:38:00,640 --> 00:38:04,020 |
|
misleading the standard deviation is misleading so |
|
|
|
456 |
|
00:38:04,020 --> 00:38:09,520 |
|
what we can do then ايش ممكن نسوي instead of using |
|
|
|
457 |
|
00:38:09,520 --> 00:38:12,680 |
|
average بدل ما احنا نستخدم ال average we can |
|
|
|
458 |
|
00:38:12,680 --> 00:38:19,180 |
|
replace the average by the risk free يعني شوفوا |
|
|
|
459 |
|
00:38:19,180 --> 00:38:23,780 |
|
شايفين البيانات هذه البيانات |
|
|
|
460 |
|
00:38:23,780 --> 00:38:29,100 |
|
هذههذه البيانات اللي فيها outliers وروحنا جيبنا ال |
|
|
|
461 |
|
00:38:29,100 --> 00:38:32,740 |
|
average طالع حامل حسب ال lower partial standard |
|
|
|
462 |
|
00:38:32,740 --> 00:38:38,960 |
|
deviation هذا ال average is misleading so the |
|
|
|
463 |
|
00:38:38,960 --> 00:38:42,600 |
|
statisticians or the statistical people and the |
|
|
|
464 |
|
00:38:42,600 --> 00:38:45,340 |
|
financial people think the average is misleading |
|
|
|
465 |
|
00:38:45,340 --> 00:38:51,580 |
|
so what we can do then is remove the average بدلاش |
|
|
|
466 |
|
00:38:51,580 --> 00:38:54,960 |
|
ال average so replace the average with the risk |
|
|
|
467 |
|
00:38:54,960 --> 00:38:55,240 |
|
-free |
|
|
|
468 |
|
00:38:59,820 --> 00:39:03,120 |
|
بنجيب ال average و بنحط ال risk free بلغه okay |
|
|
|
469 |
|
00:39:03,120 --> 00:39:09,140 |
|
because the risk free is a parameter or a good |
|
|
|
470 |
|
00:39:09,140 --> 00:39:12,620 |
|
indicator for all of the investments فاحنا بنشوف |
|
|
|
471 |
|
00:39:12,620 --> 00:39:17,400 |
|
ال risk free وين بيجي أه بيجي أها خلاص فلما بنحسب |
|
|
|
472 |
|
00:39:17,400 --> 00:39:20,440 |
|
ال sigma بنقول هذه ال observation ناقصها يعني لما |
|
|
|
473 |
|
00:39:20,440 --> 00:39:24,900 |
|
احنا نحسب ال sigma كنا نحسبها R minus R bar okay |
|
|
|
474 |
|
00:39:24,900 --> 00:39:28,500 |
|
تربيه divided by N صح؟ |
|
|
|
475 |
|
00:39:31,100 --> 00:39:34,840 |
|
في حالة ما نستخدم ال lower partial هنشيل ال R bar |
|
|
|
476 |
|
00:39:34,840 --> 00:39:44,880 |
|
ونحط بدلها إيه؟ ال R ال RR بس فهدول بيعتقدوا أنه |
|
|
|
477 |
|
00:39:44,880 --> 00:39:49,260 |
|
هيك أدق بيصير so issues need to consider negative |
|
|
|
478 |
|
00:39:49,260 --> 00:39:52,620 |
|
deviations separately طبعا هاي negative retained |
|
|
|
479 |
|
00:39:52,620 --> 00:39:55,180 |
|
separately بتتوافق مع ال expected shortfalls، |
|
|
|
480 |
|
00:39:55,180 --> 00:39:58,840 |
|
مظبوط؟ ها دي بتتوافق مع ال expected shortfalls |
|
|
|
481 |
|
00:39:58,840 --> 00:40:04,420 |
|
اللي فاتتyes لان احنا just focus on the expected |
|
|
|
482 |
|
00:40:04,420 --> 00:40:10,620 |
|
shortfalls هذي بس ركزوا على ال negative values |
|
|
|
483 |
|
00:40:12,010 --> 00:40:16,050 |
|
الإضافة الجديدة اللى عملوها يعني هي ال ال values |
|
|
|
484 |
|
00:40:16,050 --> 00:40:20,030 |
|
at risk كنتبهوا ال values at risk زى صار فيها |
|
|
|
485 |
|
00:40:20,030 --> 00:40:23,430 |
|
developments بعدين اجوا ناس قالوا لأ ال values at |
|
|
|
486 |
|
00:40:23,430 --> 00:40:26,590 |
|
risk هى conservatives خلّينا نطور واحدة تانية |
|
|
|
487 |
|
00:40:26,590 --> 00:40:29,730 |
|
سموها ال expected shortfalls قالوا لأ ال expected |
|
|
|
488 |
|
00:40:29,730 --> 00:40:33,750 |
|
shortfalls بتاخد عند اعتبار ال average صحيح it's |
|
|
|
489 |
|
00:40:33,750 --> 00:40:37,800 |
|
it's looking at the negative returnsبقى is looking |
|
|
|
490 |
|
00:40:37,800 --> 00:40:40,460 |
|
to the average and the average is misleading so |
|
|
|
491 |
|
00:40:40,460 --> 00:40:45,780 |
|
what we can do then replace the average by the by |
|
|
|
492 |
|
00:40:45,780 --> 00:40:49,000 |
|
the risk free فهم اعتمدوا نقطتين need to consider |
|
|
|
493 |
|
00:40:49,000 --> 00:40:51,220 |
|
the negative deviation separately negative returns |
|
|
|
494 |
|
00:40:51,220 --> 00:40:53,900 |
|
and need to consider deviation from return from |
|
|
|
495 |
|
00:40:53,900 --> 00:40:57,620 |
|
the risk free rates من ال risk free not from the |
|
|
|
496 |
|
00:40:57,620 --> 00:40:59,280 |
|
not from the average |
|
|
|
497 |
|
00:41:07,530 --> 00:41:11,730 |
|
هذه الأولى look like they expected shortfalls |
|
|
|
498 |
|
00:41:11,730 --> 00:41:15,930 |
|
خلصنا إيش عملوا تطوير عليها؟ عملوا تطوير جديد |
|
|
|
499 |
|
00:41:15,930 --> 00:41:21,570 |
|
عليها بدل ما يحسبوا ال minus minus the average |
|
|
|
500 |
|
00:41:21,570 --> 00:41:29,850 |
|
استخدموا ال risk free بس ال LBSD similar to usual |
|
|
|
501 |
|
00:41:29,850 --> 00:41:32,390 |
|
standard deviation هي شبه ال standard deviation |
|
|
|
502 |
|
00:41:32,390 --> 00:41:37,700 |
|
لكن إيش الفرق منها؟ بس ال risk freeطيب فاكرين |
|
|
|
503 |
|
00:41:37,700 --> 00:41:43,760 |
|
share ratio share ratio اللي هو ال share ratio |
|
|
|
504 |
|
00:41:43,760 --> 00:41:46,700 |
|
اللي حكيناكوا فيها ال excess return او risk |
|
|
|
505 |
|
00:41:46,700 --> 00:41:51,700 |
|
premium divided by the standard deviation، مظبوط؟ |
|
|
|
506 |
|
00:41:51,700 --> 00:41:58,220 |
|
طيب بما ان ال data is not normally distributed طب |
|
|
|
507 |
|
00:41:58,220 --> 00:42:02,520 |
|
بعد كلام ال share ratio is not workingهذا الكلام |
|
|
|
508 |
|
00:42:02,520 --> 00:42:05,800 |
|
حكيناه قويا قبل تلت أربعتين قولنا إذا البيانات |
|
|
|
509 |
|
00:42:05,800 --> 00:42:10,840 |
|
توزيع غير طبيعي معنى الكلام إن ال sharp ratio مش |
|
|
|
510 |
|
00:42:10,840 --> 00:42:16,080 |
|
صح please focus on this what I said just three |
|
|
|
511 |
|
00:42:16,080 --> 00:42:20,000 |
|
meetings I said if our data is not normally |
|
|
|
512 |
|
00:42:20,000 --> 00:42:25,080 |
|
distributed we cannot .. we no longer use the |
|
|
|
513 |
|
00:42:25,080 --> 00:42:29,290 |
|
sharp ratioطب what is the solution if our data is |
|
|
|
514 |
|
00:42:29,290 --> 00:42:33,970 |
|
not normally distributed we can just replace the |
|
|
|
515 |
|
00:42:33,970 --> 00:42:35,730 |
|
standard deviation because the standard deviation |
|
|
|
516 |
|
00:42:35,730 --> 00:42:38,830 |
|
is misleading in Sharpe ratio and replace this |
|
|
|
517 |
|
00:42:38,830 --> 00:42:44,870 |
|
with the risk-free yes and when we replace it with |
|
|
|
518 |
|
00:42:44,870 --> 00:42:50,170 |
|
risk-free it's become Soratino ratio or Sortino |
|
|
|
519 |
|
00:42:55,820 --> 00:42:59,780 |
|
So Sortino Ratio is similar to the Sharpe Ratio |
|
|
|
520 |
|
00:42:59,780 --> 00:43:03,300 |
|
بقى in .. in .. in the Sortino Ratio just we |
|
|
|
521 |
|
00:43:03,300 --> 00:43:06,160 |
|
replace the standard deviation with the risk-free |
|
|
|
522 |
|
00:43:06,160 --> 00:43:12,460 |
|
اه حلو والله okay |
|
|
|
523 |
|
00:43:12,460 --> 00:43:18,600 |
|
تمام |
|
|
|
524 |
|
00:43:18,600 --> 00:43:19,500 |
|
okay |
|
|
|
|