|
1 |
|
00:00:21,240 --> 00:00:27,440 |
|
ูุงุฒููุง ูู ุดุจุชุฑ ุณุชุฉ ููู ุงู isomorphism ุงูู
ุฑุฉ ุงููู |
|
|
|
2 |
|
00:00:27,440 --> 00:00:33,520 |
|
ูุงุชุช ุนุฑููุง ุงู atomorphism ูุนุฑููุง ุงูู ุนุจุงุฑุฉ ุนู |
|
|
|
3 |
|
00:00:33,520 --> 00:00:37,880 |
|
isomorphism ููู ู
ู ุงู group ุฅูู ููุณ ุงู group |
|
|
|
4 |
|
00:00:37,880 --> 00:00:43,720 |
|
ูุจุงูุชุงูู ุณู
ูุงู atomorphismุนุฑููุง ูู
ุงู ุงูู Inner |
|
|
|
5 |
|
00:00:43,720 --> 00:00:48,560 |
|
Atomorphism induced by an element of A group G |
|
|
|
6 |
|
00:00:48,560 --> 00:00:55,940 |
|
ููููุง ุงูู Phi A of X ูุณุงูู A X A inverse ูุณู
ููุง |
|
|
|
7 |
|
00:00:55,940 --> 00:01:02,640 |
|
ูุฐุง ุงูู Inner Atomorphism ู
ู G ุงูุขู ูู ุฌู
ุนูุง ูู |
|
|
|
8 |
|
00:01:02,640 --> 00:01:08,570 |
|
ุงูู Atomorphism ูู G ูุณู
ููุงูู
ุงูุณุชAtomorphism ูู G |
|
|
|
9 |
|
00:01:08,570 --> 00:01:14,310 |
|
ุฌู
ุนูุง ูู ุงู inner atomorphism ูุณู
ููุงูู
ุงู inner |
|
|
|
10 |
|
00:01:14,310 --> 00:01:18,750 |
|
atomorphism of G ููุฌุฑ ุงูุฑู
ุฒ ุงููู ูุฏุงู
ุงู |
|
|
|
11 |
|
00:01:18,750 --> 00:01:24,110 |
|
atomorphism ู G ูู ุงู atomorphism ุงููู ู
ูุฌูุฏุฉ ูู |
|
|
|
12 |
|
00:01:24,110 --> 00:01:28,910 |
|
ุงู group G ุงู inner atomorphism ู G ูู ุงู inner |
|
|
|
13 |
|
00:01:28,910 --> 00:01:34,490 |
|
atomorphism of group G ุงููุธุฑูุฉ ุงููู ุนูุฏูุงุจุชููู ูู |
|
|
|
14 |
|
00:01:34,490 --> 00:01:38,210 |
|
ูุงูุช ุฌู ุฌุฑูุจ ูุจูู ุงูุงุทู
ูุฑูุฒู
ูุงู inner |
|
|
|
15 |
|
00:01:38,210 --> 00:01:45,270 |
|
-automorphism ูุฌุฑูุจ ุฌู ูู ูุงุญุฏ ูููู
ุนุจุงุฑุฉ ุนู ุฌุฑูุจ |
|
|
|
16 |
|
00:01:45,770 --> 00:01:49,370 |
|
ุจุฏู ุฃุญุงูู ุฃุซุจุช ุงูููุทุฉ ุงูุฃููู ูู
ู ุซู
ุฃุซุจุช ุงูููุทุฉ |
|
|
|
17 |
|
00:01:49,370 --> 00:01:53,170 |
|
ุงูุซุงููุฉ ุทุจุน ุงููุชุงุจ ุชุฑููู .. ุชุฑูู ู
ููู as an |
|
|
|
18 |
|
00:01:53,170 --> 00:01:57,170 |
|
exercise ูุนูู ุญุทู ุงู .. ุงู .. ุงู .. ูู ุงูุชู
ุฑูู |
|
|
|
19 |
|
00:01:57,170 --> 00:02:02,190 |
|
ุชุจุนุช ู
ูู
ุชุจุนุช ุงููุชุงุจ ุนูู ุฃุณุงุณ ุงุชุญูู ู exercise |
|
|
|
20 |
|
00:02:02,190 --> 00:02:07,070 |
|
ุงุญูุง ููุจุฑู ุฅูู ุจุฑูุงู ุนุงุฏููุจูู ุงูุฎุทูุฉ ุงูุฃููู ุจุฏู |
|
|
|
21 |
|
00:02:07,070 --> 00:02:11,590 |
|
ุฃุซุจุช ูู ุงู ุงูุงุชู ู
ูุฑูุฒู
is a group ูุนูู ุจุฏู ุฃุซุจุช |
|
|
|
22 |
|
00:02:11,590 --> 00:02:16,150 |
|
ุงู ุงู binary operation ุงููู ุนูู ุงูุงุชู ู
ูุฑูุฒู
ุงููู |
|
|
|
23 |
|
00:02:16,150 --> 00:02:20,150 |
|
ุฌูู is a binary operation associative ุงู identity |
|
|
|
24 |
|
00:02:20,150 --> 00:02:25,050 |
|
element ุงู inverse element ู ููุฐุง ูุฌู ููููุทุฉ |
|
|
|
25 |
|
00:02:25,050 --> 00:02:31,510 |
|
ุงูุฃููู ูุฐูู ุจุฏู ุฃูููู letูุงู ูุงุญุฏ ููุงู ุงุชููู |
|
|
|
26 |
|
00:02:31,510 --> 00:02:39,110 |
|
ู
ูุฌูุฏุงุช ูู ุงูุงุชู
ูุฑูุฒู
ุงููุงุฌุฆ ูุจูู |
|
|
|
27 |
|
00:02:39,110 --> 00:02:44,530 |
|
ุจูุงุก ุนููู ู
ุฏุงู
ุงุชู
ูุฑูุฒู
ูุจูู ูู ู
ู ูุงู ูุงุญุฏ ููุงู |
|
|
|
28 |
|
00:02:44,530 --> 00:02:53,530 |
|
ุงุชููู is one to one and unto ูุจูู then ุงููุงุญุฏ ููุงู |
|
|
|
29 |
|
00:02:53,530 --> 00:03:01,210 |
|
ุงุชููู is one to one and untoูุฐุง ุจูุนุทููุง ู
ู ู
ุจุงุฏุฆ |
|
|
|
30 |
|
00:03:01,210 --> 00:03:06,910 |
|
ุงูุฑูุงุถูุงุช ุงู ุงู composition ููู
ุง ุจูููู
ุง ูู ูุงุญุฏ ูู |
|
|
|
31 |
|
00:03:06,910 --> 00:03:14,510 |
|
ุงุชููู is one to one and one to ูุฐููู
ู ู
ุจุงุฏุฆ |
|
|
|
32 |
|
00:03:14,510 --> 00:03:18,330 |
|
ุงูุฑูุงุถูุงุช ูู ูุงู ุนูุฏู two functions ูู ูุงุญุฏุฉ ูููู
|
|
|
|
33 |
|
00:03:18,330 --> 00:03:21,730 |
|
one to one and unto ูุจูู ุงู composition ุนูููู
|
|
|
|
34 |
|
00:03:21,730 --> 00:03:26,450 |
|
ุจูุนุทููุง one to one and unto function ุจุฏู ุฃุดูู |
|
|
|
35 |
|
00:03:26,450 --> 00:03:31,110 |
|
ูุงููุฏู ุจุชุฎุฏู
ุฎุงุตูุฉ ุงู isomorphism ููุง ูุฃ ุฅู ุฎุฏู
ุช |
|
|
|
36 |
|
00:03:31,110 --> 00:03:36,000 |
|
ูุจูู ุจุตูุฑ ูุฏููุฐู ู
ูุฌูุฏุฉ ูู ุงูุงุชู
ูููุฒู
|
|
|
|
37 |
|
00:03:44,810 --> 00:03:53,910 |
|
ูุจูู ุจูุงุก ุนููู ูุฐู ุจุชุนุทููุง ูู ูุงู ููู ุชูู XY ููุด |
|
|
|
38 |
|
00:03:53,910 --> 00:03:57,970 |
|
ูุฐุง ุชุนุฑูู ุงู composition of functions ุงููู ุฃุฎุฏูุงู |
|
|
|
39 |
|
00:03:57,970 --> 00:04:05,810 |
|
ูู calculus A ูุฐุง ุงูููุงู
ูุณุงูู ูู ูุงุญุฏ ุงู
ุงูุงู ูู |
|
|
|
40 |
|
00:04:05,810 --> 00:04:11,070 |
|
ุงุชููู ุงูุง ูุฑุถู ุงุชู ู
ูุฑูุฒู
ูุฌู ูุนูู ุงูุฒู ู
ูุฑูุฒู
ุงุฐุง |
|
|
|
41 |
|
00:04:11,070 --> 00:04:15,110 |
|
ุจูุงุก ุนููู ูู
ุง ูุฃุซุฑ ุนูู ุงู X ู Y ูุจุฏู ูุณุงูู ูู ูู |
|
|
|
42 |
|
00:04:15,110 --> 00:04:23,790 |
|
ุชู of X ูู ูู ุชู of Y ูุจูู ูู ุชู of X ูู ูู ุชู of |
|
|
|
43 |
|
00:04:23,790 --> 00:04:33,230 |
|
Y ููุดุ since ูุฅู ุงู ูู ุชู is isomorphismุทูุจ ูุฐุง |
|
|
|
44 |
|
00:04:33,230 --> 00:04:42,890 |
|
ุงูููุงู
ูุณุงูู ูุณุงูู ูุงู ูุงู ููุงู two of x ููู
ุงู ูุงู |
|
|
|
45 |
|
00:04:42,890 --> 00:04:51,370 |
|
ูุงู ููุงู two of y ูููุณ ุงูุณุจุจ ูุธุฑุง ูุฅู ูุงู ูุงู is |
|
|
|
46 |
|
00:04:51,370 --> 00:04:57,510 |
|
an isomorphism ูุจูู ูุฐุง ุงูููุงู
since ูุงู ูุงู is an |
|
|
|
47 |
|
00:04:57,510 --> 00:05:01,930 |
|
isomorphismุทูุจ ุจุฏุง ุงูุดุบูุงูุฉ ุงู composition of |
|
|
|
48 |
|
00:05:01,930 --> 00:05:06,930 |
|
functions ุจุฏู ุฑุฌุนูู
ุงูู ุฃุตููู
ูุจูู ูุฐุง ู
ุนูุงู ูู |
|
|
|
49 |
|
00:05:06,930 --> 00:05:12,890 |
|
ูุงุญุฏ ูู ุงุชููู ููู as a function of x ู ูู ูุงุญุฏ ูู |
|
|
|
50 |
|
00:05:12,890 --> 00:05:19,290 |
|
ุงุชููู as a function of y ูุจูู ุจูุงุก ุนููู ุฃุตุจุญ ูู |
|
|
|
51 |
|
00:05:19,290 --> 00:05:23,950 |
|
ูุงุญุฏ ูู ุงุชููู ูู ุงุชููู is an isomorphism ูุจุงูุชุงูู |
|
|
|
52 |
|
00:05:23,950 --> 00:05:30,380 |
|
ุงุชูู
ูุฑูุฒู
ูุจูู ุงู atomorphism ู G is closed under |
|
|
|
53 |
|
00:05:30,380 --> 00:05:34,500 |
|
the composition of functions ุฃู ุงู composition of |
|
|
|
54 |
|
00:05:34,500 --> 00:05:38,940 |
|
functions is a binary operation ุนูู ู
ููุ ุนูู G |
|
|
|
55 |
|
00:05:38,940 --> 00:05:45,220 |
|
ูุจูู ูุง ุจุชุฑูุญ ุชูููู ููุง ุงู atomorphism |
|
|
|
56 |
|
00:05:45,220 --> 00:05:54,740 |
|
atomorphism ู G is closed under the |
|
|
|
57 |
|
00:05:59,540 --> 00:06:06,340 |
|
composition of functions ูุนูู ุฅุฐุง ูุงู ุจุฏู ุงูุนุจุงุฑุฉ |
|
|
|
58 |
|
00:06:06,340 --> 00:06:09,300 |
|
ูุฐู ุจุชูุฏุฑ ุชูููู so the composition of a function |
|
|
|
59 |
|
00:06:09,300 --> 00:06:14,700 |
|
is a binary operation ุนูู ู
ูู ุนูู ุงูุงุชูู
ูุฑูุฒู
ูู
ูู |
|
|
|
60 |
|
00:06:14,700 --> 00:06:20,300 |
|
ุฅูู ุฏู ูุนูู ุฅุญูุง ุญุชู ุงูุขู ุฃุซุจุชูุง ู
ูู ุงูุฎุงุตูุฉ |
|
|
|
61 |
|
00:06:20,300 --> 00:06:25,210 |
|
ุงูุฃููู ุฅู ุงู operation is a binary operationุจุชูุฏุฑ |
|
|
|
62 |
|
00:06:25,210 --> 00:06:30,030 |
|
ุชููููุง ุจููุฌู ุณูู ุญุทูุง binary operation ุนูุฏู ู
ุดุงู |
|
|
|
63 |
|
00:06:30,030 --> 00:06:34,390 |
|
ุชุชุฃูุฏ ุงู ูุฐู ุงูุฎุทูุฉ ูู ุงูุฎุทูุฉ ุงูุฃููู ูู ุฅุซุจุงุช ุงู |
|
|
|
64 |
|
00:06:34,390 --> 00:06:40,690 |
|
group ุงูุฎุทูุฉ ุงูุชุงููุฉ ุฎุงุตูุฉ associativity we know |
|
|
|
65 |
|
00:06:40,690 --> 00:06:50,950 |
|
that ุงุญูุง ุจูุนุฑู ุงู that the composition of |
|
|
|
66 |
|
00:06:50,950 --> 00:06:52,870 |
|
functions |
|
|
|
67 |
|
00:06:54,160 --> 00:06:59,880 |
|
is associative ูุจูู ููุด ุฏุงุนู ุฃุฑูุญ ูุนู
ููุง ูุฅููุง |
|
|
|
68 |
|
00:06:59,880 --> 00:07:05,000 |
|
ุนุงุฑููู ุฅููุง ูุฐู ูุจูู ุงุชุญููุช ู
ู ุงูุฎุงุตูุฉ ุงูุซุงููุฉ |
|
|
|
69 |
|
00:07:05,000 --> 00:07:10,660 |
|
ุจุฏูุง ูุฑูุญ ูุฌูุจ ุฎุงุตูุฉ ุงู identity element ุงูุขู ุงู I |
|
|
|
70 |
|
00:07:10,660 --> 00:07:20,440 |
|
ู
ู G ุฅูู G ูุฐู is the identity function |
|
|
|
71 |
|
00:07:21,740 --> 00:07:24,580 |
|
ุฎููููู ุฃุณุฃููู
ุงูุณุคุงู ุงููู ุทุงูุน ูู
ุง ุฃุฎุฏุชู
ู
ุจุงุฏุฆ |
|
|
|
72 |
|
00:07:24,580 --> 00:07:27,460 |
|
ุงูุฑูุงุถูุฉ ุงู identity function one to one and unto |
|
|
|
73 |
|
00:07:27,460 --> 00:07:34,460 |
|
ููุง ูุฃุ ู
ุธุจูุทุ ูุจูู ูุฐู ุงู identity function which |
|
|
|
74 |
|
00:07:34,460 --> 00:07:44,920 |
|
is one to one and unto ู
ุด ุนุฌุจุง ููุฐุง and ุงู I ูู |
|
|
|
75 |
|
00:07:44,920 --> 00:07:50,000 |
|
ุฃุซุฑุช ุนูู ุงู X ูู Yุ ุฃูุด ุจุชุนุทูู ููุุงูู X ูู Y ูุฃู |
|
|
|
76 |
|
00:07:50,000 --> 00:07:56,920 |
|
ุงูู Identity function ุงูู X ูุฐู ููุณุช I of X ููุฐู I |
|
|
|
77 |
|
00:07:56,920 --> 00:08:02,520 |
|
of Yุฅุฐุง ุญููุช ุงูุฎุงุตูุฉ ุชุจุน ุงูู isomorphism ุตุงุฑ one |
|
|
|
78 |
|
00:08:02,520 --> 00:08:08,260 |
|
to one and unto ู ุญูู ุงูุฎุงุตูุฉ ู ู
ู ุงู group ูููุณูุง |
|
|
|
79 |
|
00:08:08,260 --> 00:08:15,880 |
|
ูุจูู ููุง ุงู I ู
ูุฌูุฏ ูู ุงู atomorphism ุงูุฌูุจ ูุจูู |
|
|
|
80 |
|
00:08:15,880 --> 00:08:21,440 |
|
ุฃุตุจุญุช ุงู I ุนุจุงุฑุฉ ุนู atomorphism ูุฐุง ูู ุงู identity |
|
|
|
81 |
|
00:08:21,440 --> 00:08:26,600 |
|
element ูุจูู is the identity |
|
|
|
82 |
|
00:08:35,120 --> 00:08:42,320 |
|
Element of ุงูุงุชู
ูุฑูุฒู
|
|
|
|
83 |
|
00:08:42,320 --> 00:08:49,620 |
|
ุงููู ุฌูู ุจุฏู ุชุนู
ู ุชุดู ุชุงุฎุฏ ุงู identity ู
ุน ุงุชู
ูุฑูุฒู
|
|
|
|
84 |
|
00:08:49,620 --> 00:08:52,740 |
|
ุชุงูู ู ุชุนู
ู ุจูููู
composites ุจูููู
ู
ุงููุด ุชุฃุซูุฑ |
|
|
|
85 |
|
00:08:52,740 --> 00:08:58,900 |
|
ู
ุงููุด ู
ุดููุฉุทุจ ุงูุขู ุจุฏูุง ููุฌู ูู
ููุ ููู
ุนููุณุ ุงูุงู |
|
|
|
86 |
|
00:08:58,900 --> 00:09:09,160 |
|
ุงู ูู ู
ูุฌูุฏ ูู ุงู atom ูุงุฑูุฒู
ูุฌูุจุฃุญุงูู ุฃู ุฃุซุจุช ุฃู |
|
|
|
87 |
|
00:09:09,160 --> 00:09:13,300 |
|
ุงููPhi Inverse ุนุจุงุฑุฉ ุนู Atomorphism ุฅุฐุง ุฃุซุจุชุช ุฃู |
|
|
|
88 |
|
00:09:13,300 --> 00:09:16,780 |
|
ุงููPhi Inverse ุนุจุงุฑุฉ ุนู Atomorphism ูุจูู ุฃุซุงุฑุฉ |
|
|
|
89 |
|
00:09:16,780 --> 00:09:21,860 |
|
ุงููAtomorphism is a group ูุงูุชูููุง ู
ู ุงูู
ุซูุฉ ูุนูู |
|
|
|
90 |
|
00:09:21,860 --> 00:09:27,060 |
|
ูุฃููุง ูุดุชุบู ุงูุขู ู
ุง ุฃุดุชุบููุงู ูู ุงูุดุงุจุชุฑ ุงูุซุงูู ุจุนุฏ |
|
|
|
91 |
|
00:09:27,060 --> 00:09:34,080 |
|
ุดุงุจุชุฑ ุงูู
ูุฏู
ุฉ ููู ุดุงุจุชุฑ ุงููgroup ูุจูู then Phi is |
|
|
|
92 |
|
00:09:34,080 --> 00:09:40,910 |
|
one to one and untoู
ุด ุนูู ุฌุฏ ููู ู
ุงุฏุงู
ูู one to |
|
|
|
93 |
|
00:09:40,910 --> 00:09:47,350 |
|
one and one to one ูุจุฌู ู
ุนุงูุณู as one to one and |
|
|
|
94 |
|
00:09:47,350 --> 00:09:53,650 |
|
one to ูุฐูู functionูุจูู one to one and onto |
|
|
|
95 |
|
00:09:53,650 --> 00:09:58,590 |
|
function ูุฐุง ู
ุนูุงู ุงูู ูู ุงููุฑุณ ุนุจุงุฑุฉ ุนู one to |
|
|
|
96 |
|
00:09:58,590 --> 00:10:03,510 |
|
one and onto function ุถุงูู ุนูููุง ู
ููุ ุถุงูู ุนูููุง |
|
|
|
97 |
|
00:10:03,510 --> 00:10:07,670 |
|
ูุซุจุช ุงู ูู ุงููุฑุณ is an isomorphism ูุนูู ูู ุงููุฑุณ |
|
|
|
98 |
|
00:10:07,670 --> 00:10:11,250 |
|
of x y ูู ูู ุงููุฑุณ of x ููู ุงููุฑุณ of y ุงุธู |
|
|
|
99 |
|
00:10:11,250 --> 00:10:16,590 |
|
ุงุซุจุชูุงูุง ูู ุงููุธุฑูุฉ ูุจู ุงูู
ุงุถูุฉ ุงู ุงูุณุจุน ููุงุท |
|
|
|
100 |
|
00:10:16,590 --> 00:10:20,810 |
|
ุงุซุจุชูุงูุง ูููู
ุทูุจ ู |
|
|
|
101 |
|
00:10:23,400 --> 00:10:31,860 |
|
Prove that ุงุญูุง ุจุฑูููุง ูุฐูู ุงู ูู ุงููุฑุณ of x y |
|
|
|
102 |
|
00:10:31,860 --> 00:10:40,780 |
|
ูุณูู ูู ุงููุฑุณ of x ูู ูู ุงููุฑุณ of y ุจุฑูููุง ุณุงุจูุง |
|
|
|
103 |
|
00:10:40,780 --> 00:10:47,440 |
|
ูุจูู ุตุงุฑุฉ ูู ุงููุฑุณ exist ููู ููุณ ุงูููุช ุญููุช ุฎุงุตูุฉ |
|
|
|
104 |
|
00:10:47,440 --> 00:10:52,570 |
|
ุงู isomorphism ูุจูู ู ุฃู ุงู atomorphismูุฐุง ู
ุนูุงู |
|
|
|
105 |
|
00:10:52,570 --> 00:10:59,690 |
|
ุงู ูู ุงููุฑุณ ู
ูุฌูุฏ ูู ุงูุงุชู
ูููุฒู
ูู
ุงู
ุงูุงุฌูู ุตุงุฑ |
|
|
|
106 |
|
00:10:59,690 --> 00:11:03,510 |
|
ุงูุงุชู
ูููุฒู
ุงูุงุฌูู closed under the operation |
|
|
|
107 |
|
00:11:03,510 --> 00:11:08,850 |
|
ุงูุนู
ููุฉ associative ุงู identity element ู
ูุฌูุฏ |
|
|
|
108 |
|
00:11:08,850 --> 00:11:15,170 |
|
ุงูู
ุนููุณ ูุฃู element ู
ูุฌูุฏ ูู ุงูุงุชู
ูููุฒู
ู
ูุฌูุฏ ูุจูู |
|
|
|
109 |
|
00:11:15,170 --> 00:11:23,170 |
|
ุงูุงุชู
ูููุฒู
ู
ุงููุง is a groupูุจูู ุงู atomorphism ูุฏู |
|
|
|
110 |
|
00:11:23,170 --> 00:11:34,990 |
|
is a group under the composition of |
|
|
|
111 |
|
00:11:34,990 --> 00:11:36,790 |
|
functions |
|
|
|
112 |
|
00:11:38,510 --> 00:11:44,830 |
|
ุทูุจ ูููุณ ุงูุชูููุง ู
ู ุงูุฃููู ูุฌู ููุทุฉ ุซุงููุฉ ุงู inner |
|
|
|
113 |
|
00:11:44,830 --> 00:11:50,910 |
|
atom morphism ู G the set of all elements Phi A |
|
|
|
114 |
|
00:11:50,910 --> 00:11:58,610 |
|
such that ุงู Phi A of X ุจุฏู ูุณุงูู ุงู A X A inverse |
|
|
|
115 |
|
00:11:58,610 --> 00:12:05,960 |
|
ููุฐุง ุงูููุงู
ููู ุงู X ุงููู ู
ูุฌูุฏุฉ ูู Gูุฐู ุนุฑููุงูุง |
|
|
|
116 |
|
00:12:05,960 --> 00:12:09,380 |
|
ุงูู
ุฑุฉ ุงููู ูุงุชุช ุจุงูุดูู ุงููู ุนููุง ุฏูุ ุจุฏู ุฃุญุงูู |
|
|
|
117 |
|
00:12:09,380 --> 00:12:14,840 |
|
ุฃุซุจุช ุฅูู ูุฐู is a group ุทุจ ุฎูููู ุฃุณุฃูููุง ุงูุณุคุงู |
|
|
|
118 |
|
00:12:14,840 --> 00:12:19,960 |
|
ุงูุชุงููุ ูู ูุฏุฑุช ุฃุซุจุช ุฅู ุงู inner atomorphism ุงููู |
|
|
|
119 |
|
00:12:19,960 --> 00:12:25,000 |
|
ุฌู subgroup ู
ู ุงู atomorphism ุงููู ุฌู ู
ุด ุงู inner |
|
|
|
120 |
|
00:12:25,000 --> 00:12:32,000 |
|
ุจุตูุฑ groupูุฃู ุงูู subgroup ูู ู
ุฌู
ูุนุฉ ุฌุฒุฆูุฉ ู
ู |
|
|
|
121 |
|
00:12:32,000 --> 00:12:36,560 |
|
ุงูู
ุฌู
ูุนุฉ ุงูุฃุตููุฉ ุจุณ ุชุญุช ููุณ ุงูุนู
ููุฉ ุฅุฐุง ูู ูุฏุฑุช |
|
|
|
122 |
|
00:12:36,560 --> 00:12:41,540 |
|
ุฃุซุจุช ุฅู ุงู inner atomorphisms ุงููู ุฌูู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
123 |
|
00:12:41,540 --> 00:12:45,580 |
|
subgroup ู
ู ุงู atomorphism ุงููู ุฌูู ุจุตูุฑ ูุฐู group |
|
|
|
124 |
|
00:12:45,580 --> 00:12:52,360 |
|
ููููู ุงูุชูููุง ู
ู ุงูู
ุณุฃูุฉ ูุฐู ูุจูู ุจุฏูุง ูุฑูุญ ูุซุจุชูุง |
|
|
|
125 |
|
00:12:52,760 --> 00:13:00,500 |
|
ุจุฏูุง ูุซุจุช ุงู ุงู inner ูุฐู is a group ู
ุดุงู ุฃุซุจุชูุง |
|
|
|
126 |
|
00:13:00,500 --> 00:13:04,440 |
|
group ุจุฏุฃ ุฃุซุจุชูุง sub group ู
ู ุงู atom morphism ู G |
|
|
|
127 |
|
00:13:04,440 --> 00:13:14,920 |
|
ุงู inner atom morphism ู G is non empty non empty |
|
|
|
128 |
|
00:13:14,920 --> 00:13:16,280 |
|
ููุดุ because |
|
|
|
129 |
|
00:13:19,280 --> 00:13:27,680 |
|
ุงูู Phi E ู
ูุฌูุฏุฉ ูู ุงูู Inner Atomorphism ูุฌู ูุนูู |
|
|
|
130 |
|
00:13:27,680 --> 00:13:36,440 |
|
ูุฐุง ูู ุงู identity element because and ุงู Phi E is |
|
|
|
131 |
|
00:13:36,440 --> 00:13:47,260 |
|
the identity element element andุงูู Inner |
|
|
|
132 |
|
00:13:47,260 --> 00:13:49,740 |
|
Atomorphism ูู G |
|
|
|
133 |
|
00:14:01,130 --> 00:14:05,330 |
|
ุงูุง ุจุชุฏุนู ุงูู ุงู identity element ุงูุงู ุจุฏู ุจูู ุงู |
|
|
|
134 |
|
00:14:05,330 --> 00:14:10,470 |
|
ูุฐุง ูู ุงู identity element ุชุจุน ุงู atomorphism ูุจูู |
|
|
|
135 |
|
00:14:10,470 --> 00:14:17,110 |
|
ูุฐุง ุจุฏู ูุนุทููู ุงู ุงู phi E of X ูุณุงูู ุงู X ูุณุงูู |
|
|
|
136 |
|
00:14:17,110 --> 00:14:22,410 |
|
ุดุฑูู ุงู X ูุฐู ูู ุถุฑุจุช ูู ุงู identity element ุชุชุบูุฑ |
|
|
|
137 |
|
00:14:22,410 --> 00:14:30,360 |
|
ูุนูู ูู ููุชูู ูุฐู E X ุตุญ ููุง ุบูุทุู
ูุฉ ุงูู
ูุฉ ุทุจ ูู |
|
|
|
138 |
|
00:14:30,360 --> 00:14:34,440 |
|
ููุชูู ูู
ุงู ุถุฑุจุช ูู ู
ุนููุณ ุงู identity element ู
ูู |
|
|
|
139 |
|
00:14:34,440 --> 00:14:39,600 |
|
ู
ุนููุณ ุงู identity element ุงู identity element ููุณู |
|
|
|
140 |
|
00:14:39,600 --> 00:14:47,140 |
|
ูุจูู ุณุนุฑ ุงู ูู ุฅูู ุฏู ู
ูุฌูุฏ ูู ุงู inner atom |
|
|
|
141 |
|
00:14:47,140 --> 00:14:51,880 |
|
morphism ู G ูู
ู ููุง ุงู inner atom morphism ู G is |
|
|
|
142 |
|
00:14:51,880 --> 00:14:59,450 |
|
non emptyุทุจ ูููุณ ุงูุงู ุจุฏุฃ ุงุฎุฏ two elements ู
ูุฌูุฏุงุช |
|
|
|
143 |
|
00:14:59,450 --> 00:15:05,190 |
|
ูู ุงู inner ู ุงุซุจุช ุงู ุงูุฃูู ูู ู
ุนููุณ ุงูุซุงูู ู
ูุฌูุฏ |
|
|
|
144 |
|
00:15:05,190 --> 00:15:13,910 |
|
ูุจูู ุจุฏุงุฌู ุงูููู let code ููุงู a ููุงู ุจู ู
ูุฌูุฏุงุช |
|
|
|
145 |
|
00:15:13,910 --> 00:15:18,750 |
|
ูู ุงู inner atomorphism ูุฌูู then |
|
|
|
146 |
|
00:15:20,330 --> 00:15:28,470 |
|
ุจุฏู ุงุฎุฏ ูุงู ุง ูุงู ุจู ุงููุฑุณ ููู as a function of x |
|
|
|
147 |
|
00:15:28,470 --> 00:15:34,330 |
|
ูุดูู ูู ูุฐุง ู
ูุฌูุฏ ูู ุงู inner ููุง ูุฃ ุจู
ุนูู ุงุฎุฑ ูู |
|
|
|
148 |
|
00:15:34,330 --> 00:15:40,430 |
|
ุจูุฏุฑ ุงูุชุจ ุญุตู ุงูุถุฑุจ ูุฐุง ุนูู ุดูู inner atomorphism |
|
|
|
149 |
|
00:15:40,430 --> 00:15:47,060 |
|
ูุงููู ู
ูุฏุฑุด ูุฐุง ู
ุง ุณูุฌูุจ ุนูููุทูุจ ูุฐุง ุงูููุงู
ูุณุงูู |
|
|
|
150 |
|
00:15:47,060 --> 00:15:52,820 |
|
as a |
|
|
|
151 |
|
00:15:52,820 --> 00:15:58,700 |
|
function of x ุทุจุนุง ุจุฑูู
ูุง ูุฐุง ุงูููุงู
ุณุงุจูุง ูู |
|
|
|
152 |
|
00:15:58,700 --> 00:16:03,440 |
|
ูุธุฑูุงุช ุงูุณุงุจูุฉ ุจูุงููุง ุงู ูุงู ุงู ุงููุฑุณ ุงูุงููุฑุณ |
|
|
|
153 |
|
00:16:03,440 --> 00:16:08,720 |
|
ุจูุฒูู ุนูู ู
ูุ ุนูู ุงู element ูุจูู ูุงู ูุฒููุง ุงู |
|
|
|
154 |
|
00:16:08,720 --> 00:16:12,470 |
|
inverse ุนูู ู
ูุ ุนูู ุงู element ุงููู ุฌูุงูุฐุง |
|
|
|
155 |
|
00:16:12,470 --> 00:16:20,610 |
|
composition of functions ูุจูู ูุงู a ูู
ูู ููุงู ุจู |
|
|
|
156 |
|
00:16:20,610 --> 00:16:27,150 |
|
ุงููุฑุณ as a function of x ูุจูู ูุฐู ุงููุงู ุงููู ุจุฑุง |
|
|
|
157 |
|
00:16:27,150 --> 00:16:32,810 |
|
ูุฐู ุงููุงู ุงููู ุจุฑุง a ูุงููู ุฌูุง ูุฐู ุจุฏู ุงุทุจู ุนูููุง |
|
|
|
158 |
|
00:16:32,810 --> 00:16:38,560 |
|
ุงูุชุนุฑูู ุงููู ุงุญูุง ุฌุงููููู ููุงูุจูู ูุฐู ุนุจุงุฑุฉ ุนู B |
|
|
|
159 |
|
00:16:38,560 --> 00:16:46,220 |
|
inverse X B inverse Inverse ุทุจู ููุฐุง ุงูุชุนุฑูู Phi A |
|
|
|
160 |
|
00:16:46,220 --> 00:16:51,800 |
|
ุงู element A X A inverse ูุจูู ูุฐุง ุงู element X ุงู |
|
|
|
161 |
|
00:16:51,800 --> 00:16:57,850 |
|
element inverse ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุงูุงู ุจุฏู ุงุทุจู |
|
|
|
162 |
|
00:16:57,850 --> 00:17:04,110 |
|
ุงูุชุนุฑูู ูู
ุงู ู
ุฑุฉ ูุจูู ูุฐุง ุจุฏู ูุนุทููู ุงู a b |
|
|
|
163 |
|
00:17:04,110 --> 00:17:13,250 |
|
inverse x b inverse x b inverse inverse ูู ูุฐุง |
|
|
|
164 |
|
00:17:13,250 --> 00:17:20,410 |
|
ุงูููุงู
ูู ู
ูุ ูู ุงู a inverseูุจูู ุงุนุชุจุฑุช ูุฐุง ููู |
|
|
|
165 |
|
00:17:20,410 --> 00:17:24,790 |
|
element ูู domain ุงูู phi of A ุทุจูุช ุนููู ุงูุชุนุฑูู |
|
|
|
166 |
|
00:17:24,790 --> 00:17:30,030 |
|
ุงููู ููุงู A ููุณ ุงู element ุงู A inverse ุงูุงู |
|
|
|
167 |
|
00:17:30,030 --> 00:17:35,170 |
|
ุจุงูุฏุงูู ูุฎุงุตูุฉ ุงู associativity ูุจูู ุจูุงุก ุนููู ูุฐุง |
|
|
|
168 |
|
00:17:35,170 --> 00:17:42,120 |
|
ุจูุฏุฑ ุงููู A B inverse ูู ุงู X ูููุฃุชุทูุนูู ูุฐุง ุงู |
|
|
|
169 |
|
00:17:42,120 --> 00:17:45,660 |
|
element inverse ู ูุฐุง ุงู element inverse ุจูุฏุฑ |
|
|
|
170 |
|
00:17:45,660 --> 00:17:51,360 |
|
ุฃุฌู
ุนูู
ุจ inverse ูุงุญุฏ ุจุนุฏ ู
ุง ุฃุบูุฑ ุฃู ุฃุจุฏู ู
ูุงูุนูู
|
|
|
|
171 |
|
00:17:51,360 --> 00:17:57,740 |
|
ูุจูู ูุฐุง ุงูููุงู
ุงููู ูู ุงู a b inverse ุงููู |
|
|
|
172 |
|
00:17:57,740 --> 00:18:02,480 |
|
inverse ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูุจูู ูุฐุง inverse ู |
|
|
|
173 |
|
00:18:02,480 --> 00:18:07,160 |
|
ูุฐุง inverse ุฌูุจุช ูุถุนูู
ู ุฎูุช inverse ูููู ุงุชุทูุนูู |
|
|
|
174 |
|
00:18:07,160 --> 00:18:12,120 |
|
ููู
ูุฏุงุฑ ุจูู ุงููุงูุณูู ูู ูุฐุง ููุง ูุงูุจูู ุตุงุฑ ุงู |
|
|
|
175 |
|
00:18:12,120 --> 00:18:18,180 |
|
element ูุฐุง ูู ุงู element ูุฐุง ุจุณ inverse ุฃููุณ ูู |
|
|
|
176 |
|
00:18:18,180 --> 00:18:25,760 |
|
ุชุนุฑูู inner atomorphism ูุนูู ูุฐุง ูุฃูู ู
ูู ูุฃูู ูู |
|
|
|
177 |
|
00:18:25,760 --> 00:18:32,300 |
|
a b inverse of x ุชู
ุงู
|
|
|
|
178 |
|
00:18:32,970 --> 00:18:40,210 |
|
ูุจูู ุงุจุชุฏุงุช ุจ element ูู ู
ุนููุณู ุซุงูู ุทูุน ุนูุฏู Phi |
|
|
|
179 |
|
00:18:40,210 --> 00:18:45,910 |
|
of AB inverse ูุนูู ุฅูุดุ ูุนูู ุงููู ูู inner |
|
|
|
180 |
|
00:18:45,910 --> 00:18:53,370 |
|
atomorphism ุฅุฐุง ูุฐุง ู
ูุฌูุฏ ูู inner atomorphism ู G |
|
|
|
181 |
|
00:18:55,870 --> 00:19:00,910 |
|
ุซุจุช ููุง ุงูู non-empty ุฃุฎุฏุช ุงู elements ู
ูุฌูุฏุงุช ูู |
|
|
|
182 |
|
00:19:00,910 --> 00:19:06,350 |
|
ุงู inner ูุฑุฏุช ุงูุฃูู ูู ู
ุนููุณ ุงูุซุงูู ุทูุน ู
ูุฌูุฏ ููู |
|
|
|
183 |
|
00:19:06,350 --> 00:19:12,810 |
|
ูู ุงู inner atomorphism ูุจูู ุจูุงุก ุนููู ุงู inner |
|
|
|
184 |
|
00:19:12,810 --> 00:19:20,150 |
|
atomorphism ูุฌู is a subgroup ู
ู ุงู atomorphism |
|
|
|
185 |
|
00:19:20,150 --> 00:19:22,970 |
|
ูุฌู ูุฐุง ุจูุนุทููุง |
|
|
|
186 |
|
00:19:48,290 --> 00:19:52,050 |
|
ุญุฏ ูู ูุชุณุงูู ุจุงููุณุจุฉ ูููุธุฑูุฉ |
|
|
|
187 |
|
00:19:55,710 --> 00:20:02,030 |
|
ุนูู ุตูุชู ุดููุฉ ุนุดุงู |
|
|
|
188 |
|
00:20:02,030 --> 00:20:13,110 |
|
ูุซุจุช ุงููุง non-empty ู
ู
ุชุงุฒ ุชุนุงู |
|
|
|
189 |
|
00:20:13,110 --> 00:20:17,810 |
|
ููุง ุชุนุงู ุชุนุงู ุงูุญู ุงูุญู ููู |
|
|
|
190 |
|
00:20:26,310 --> 00:20:31,150 |
|
ุงูุง ุงุฏุนูุช ุงู ูุฐุง ูู ุงู identity element ูุงูู ุฌุงููู |
|
|
|
191 |
|
00:20:31,150 --> 00:20:34,990 |
|
ูุฐุง is identity element ุงู ุฌูู ุฌูุช ูููุชูู ู
ุฏุงู
|
|
|
|
192 |
|
00:20:34,990 --> 00:20:39,410 |
|
identity ูุจูู ุจุฏู ูุณุงูู ูููู
ุธุจูุท ุชุฃุซูุฑู ุนูู ุงู |
|
|
|
193 |
|
00:20:39,410 --> 00:20:43,350 |
|
element ุจูุณูู ุงู element ูุฐู ุงููุชูุฌุฉ ุจุฏู ุงุญุงูู ุงุญุท |
|
|
|
194 |
|
00:20:43,350 --> 00:20:49,510 |
|
ุนูู ุดูู inner atomorphism ูุฑูุญุช ูููุช ุงููู ูุณูู X |
|
|
|
195 |
|
00:20:49,510 --> 00:20:54,670 |
|
ูุณูู E X E inverse ูุฐุง ุดูู inner atomorphism |
|
|
|
196 |
|
00:20:54,670 --> 00:21:02,070 |
|
ูุจุงูุชุงูู ูุฐุง ู
ูุฌูุฏ ููุง ูุณู
ุฉ ุนุงูู
ูุฉ ุฃุฑุจุนุฉ ุจูุตูุฑ |
|
|
|
197 |
|
00:21:02,070 --> 00:21:09,380 |
|
ูู A X ุจูุณูู E X E inverseูุงู ุงู ูู ุงู identity ูู |
|
|
|
198 |
|
00:21:09,380 --> 00:21:14,840 |
|
ุฌุงููู ู
ู ุงูุฃูู ูู ุงู ู
ูุฌูุฏุฉ ููู ุงู identity ู
ุด ุงู |
|
|
|
199 |
|
00:21:14,840 --> 00:21:19,620 |
|
ุงู ุงู ุงู ูู ุงู identity ุชุจุน ุงู group ููู ูู ุงู ูู |
|
|
|
200 |
|
00:21:19,620 --> 00:21:23,020 |
|
ุงู identity element ุชุจุน ุงู atom morphism ูุชุจุน ุงู |
|
|
|
201 |
|
00:21:23,020 --> 00:21:26,800 |
|
inner atom morphism ุฏุฑ ุจุงูู ูุนูู ูุฏูู functions |
|
|
|
202 |
|
00:21:26,800 --> 00:21:32,580 |
|
ูููุณุช elements ุนุงุฏูุฉ ุชู
ุงู
ููู ุตูุฑูุง ูู ุงู elements |
|
|
|
203 |
|
00:21:32,580 --> 00:21:36,400 |
|
ุงููู ู
ูุฌูุฏุฉ ููู ูู ููุณ ุงู group ุงููู ุนูุฏูุง ุฌููุญุฏ |
|
|
|
204 |
|
00:21:36,400 --> 00:21:41,380 |
|
ููุงูู ุชุณุงูู ุงูุขุฎุฑุ ุทูุจ ุจุฏูุง ูุฑูุญ ู ููุถุน ูุฐุง ุงูููุงู
|
|
|
|
205 |
|
00:21:41,380 --> 00:21:49,800 |
|
ุจู
ุซุงู example |
|
|
|
206 |
|
00:22:12,580 --> 00:22:22,400 |
|
ุจููู ุงูู ุฏู ููุฑ ุจุฏู ูุณุงูู ุงู R ููุฏ R ุชุณุนูู R ู
ูุฉ ู |
|
|
|
207 |
|
00:22:22,400 --> 00:22:35,360 |
|
ุชู
ุงููู R ู
ูุชูู ู ุณุจุนูู H V D D prime find find ุงู |
|
|
|
208 |
|
00:22:35,360 --> 00:22:38,340 |
|
ุฌุฏ ููู ุงู inner |
|
|
|
209 |
|
00:22:41,510 --> 00:22:47,710 |
|
ูู
ุงู ูุฏู four ุจุฏูุง ุงู inner atomorphism ูุฏู four |
|
|
|
210 |
|
00:22:47,710 --> 00:22:53,550 |
|
solution |
|
|
|
211 |
|
00:23:03,160 --> 00:23:08,840 |
|
ุชุนุงูู ูุดูู ุงููู ูู ุงู elements ุงูู
ุฎุชููุฉ ุงููู ุจุฏูุง |
|
|
|
212 |
|
00:23:08,840 --> 00:23:13,480 |
|
ูุฌูุจูุง ู
ู ุฎูุงู ุงู elements ุงููู ุนูุฏูุง ูุชููู
ุงุญูุง |
|
|
|
213 |
|
00:23:13,480 --> 00:23:17,620 |
|
ุนูู ุงู inner ู
ุฏุงู
ุนูู ุงู inner ูุจูู ูุชููู
ุนูู |
|
|
|
214 |
|
00:23:17,620 --> 00:23:23,560 |
|
functions ูููุง ุจูุฐุง ุงูุดูู ุชู
ุงู
ุ ุจุฏู ุฃุฑูุญ ุฃุฌูุจ ููุง |
|
|
|
215 |
|
00:23:23,560 --> 00:23:34,730 |
|
ูุงู ุงุฑุชุณ ุงุฑุฒูุฑู as a function of xุทุจุนุง ุงู X ู
ูู ูุง |
|
|
|
216 |
|
00:23:34,730 --> 00:23:41,130 |
|
ุดุจุงุจ ุงู X ุงู ุนูุตุฑ ู
ู ูุฏูู ู
ูู ู
ุงูุงู ูููู ูุจูู ูุฐุง |
|
|
|
217 |
|
00:23:41,130 --> 00:23:45,870 |
|
ููู ุงู X ุงููู ู
ูุฌูุฏุฉ ูู G ูุจูู ูุฐุง ุญุณุจ ุงู |
|
|
|
218 |
|
00:23:45,870 --> 00:23:52,890 |
|
definition ุจุฏู ูุณุงูู R node X R node inverse ุญุฏ |
|
|
|
219 |
|
00:23:52,890 --> 00:23:59,030 |
|
ูููู
ููุฏุฑ ููููู ูุฏุงุด ุงููุงุชุฌุูุฏุงุดุ X ูุฃู ูุฐุง ูู ุงู |
|
|
|
220 |
|
00:23:59,030 --> 00:24:02,450 |
|
identity element ูู
ุนููุณ ุงู identity element ุงู |
|
|
|
221 |
|
00:24:02,450 --> 00:24:06,210 |
|
identity element ููุณู ููุถุฑุจู ูู ุฃู element ุจูุนุทููุง |
|
|
|
222 |
|
00:24:06,210 --> 00:24:12,790 |
|
ููุณ ุงู element ุทูุจ ูููุณ ุงุฐุง ุชุฃุซูุฑ ูู ุงุฑููุฏ ุนูู |
|
|
|
223 |
|
00:24:12,790 --> 00:24:17,350 |
|
ุฌู
ูุน ุฃูุงุตุฑ ุฌูู ุจูุนุทููู ุฌู
ูุน ุฃูุงุตุฑ ุฏู ุญุท ุนูู ุดุฌุฑุฉ |
|
|
|
224 |
|
00:24:17,350 --> 00:24:24,350 |
|
ุงูุงู ุจุฏุงุฌุฉ ุงุฎุฏ ูู ุงุฑ ู
ูุฉ ูุชู
ุงููู as a function of |
|
|
|
225 |
|
00:24:24,350 --> 00:24:33,860 |
|
Xูุจูู ูุฐุง ุงูููุงู
ูุจุฏู ูุณุงูู R180 X R180 Inverse |
|
|
|
226 |
|
00:24:33,860 --> 00:24:41,360 |
|
ุงูุณุคุงู ูู ูุจู ู
ุณุงูุฑ ุงุนุทูุชููุง ุงู center ุชุจุน ุงู D4 |
|
|
|
227 |
|
00:24:41,360 --> 00:24:46,860 |
|
ุงู ุงู DN ูููุง ูููุง ุงุฐุง ุงู N ูุฑุฏู ูุจูู ุงู center |
|
|
|
228 |
|
00:24:46,860 --> 00:24:53,340 |
|
ู
ุงููู ุงูุง ุงู identity elementูุฅุฐุง ุงูู DN ุงูู N |
|
|
|
229 |
|
00:24:53,340 --> 00:24:58,140 |
|
ุฒูุฌู ูุจูู ูููุง ุงูู Identity Element ูุงูู R180 ุตุญูุญ |
|
|
|
230 |
|
00:24:58,140 --> 00:25:02,860 |
|
ููุง ูุฃุ ุฅุฐุง ุงูู R180 ูุฐู ู
ูุฌูุฏุฉ ูู ุงูู Center ูุนูู |
|
|
|
231 |
|
00:25:02,860 --> 00:25:10,100 |
|
ูู
ููุชุณ ู
ุน ุฌู
ูุน ุนูุงุตุฑ D4 ุฅุฐุง ูุฐู ูู ุจุฏูุชูุง ููุง ุจุตูุฑ |
|
|
|
232 |
|
00:25:10,100 --> 00:25:14,400 |
|
X R180 IR Inverse ุงููู ูู ุจุงูู Identity ูุจูู ูุงุชุฌ |
|
|
|
233 |
|
00:25:14,400 --> 00:25:15,660 |
|
ูุฏู ุจุฏู ูุนุทููุง |
|
|
|
234 |
|
00:25:19,650 --> 00:25:27,540 |
|
ูุฃู ุงูู R 180 ู
ูุฌูุฏุฉ ูู ุงูู Center ุชุจุน ุงูู D4ุทุจ ู
ู |
|
|
|
235 |
|
00:25:27,540 --> 00:25:33,520 |
|
ุงูุงุชููู ูุฏูู ุฅุฐุง ุงููุงุชุฌ ูู ููุณู ู
ุนูุงุชู ูู ุงุฑ ููุช |
|
|
|
236 |
|
00:25:33,520 --> 00:25:37,200 |
|
ุชุฃุซูุฑูุง ุนูู ุงู elements ุจุชุณุงูู ูู ุงุฑ ููุช ุชุฃุซูุฑูุง |
|
|
|
237 |
|
00:25:37,200 --> 00:25:40,920 |
|
ุนูู ุงูุงุฑ ู
ูุฉ ู ุชู
ุงููู ุชุฃุซูุฑูุง ุนูู ุงู elements ูุจูู |
|
|
|
238 |
|
00:25:40,920 --> 00:25:49,640 |
|
ุฃุตุจุญ ูู ุงุฑ ููุช ุจุชุณุงูู ูู ุงุฑ ู
ูุฉ ู ุชู
ุงููู ุชู
ุงู
ูุจูู |
|
|
|
239 |
|
00:25:49,640 --> 00:25:53,600 |
|
ูุฏูู ูู ุงู atom morphism ุนูุตุฑูู ููุง ุนูุตุฑ ูุงุญุฏ |
|
|
|
240 |
|
00:25:54,780 --> 00:26:01,440 |
|
ุงูุตุฑูู ููุง ูุงุญุฏ ูุงุญุฏ ู
ู
ุชุงุฒ ุฌุฏุง ุทูุจ ุชุนุงูู ูุดูู ูุงู |
|
|
|
241 |
|
00:26:01,440 --> 00:26:10,120 |
|
R ู
ูุชูู ูุณุจุนูู ู
ูุชูู ูุณุจุนูู ุชุซูุฑูุง ุนูู X ูุจูู ูุฐู |
|
|
|
242 |
|
00:26:10,120 --> 00:26:19,700 |
|
R ู
ูุชูู ูุณุจุนูู X R ู
ูุชูู ูุณุจุนูู inverse ูุชุณุงููุงูุด |
|
|
|
243 |
|
00:26:19,700 --> 00:26:28,240 |
|
ุฑุงูู ุงู R270 ุจูุฏุฑ ุงูุชุจูุง R180 ู
ุถุฑูุจุฉ ูู R90 ุตุญูุญ |
|
|
|
244 |
|
00:26:28,240 --> 00:26:33,500 |
|
ููุง ูุงุูุฃู ูุฐู ููุณูุง ุงู rotation ูู ููุณู ู
ุงุนูุงู ู
ุด |
|
|
|
245 |
|
00:26:33,500 --> 00:26:39,960 |
|
ู
ุดููุฉ ุทูุจ ููุง ุงู X ุงู R ู
ูุชูู .. ุงู ูุฐู R ู
ูุชูู ู |
|
|
|
246 |
|
00:26:39,960 --> 00:26:45,220 |
|
ุณุจุนูู inverse ุญุณุจ ุงูุชุนุฑูู ุทุจุนุง ูุจูู R ู
ูุชูู ู |
|
|
|
247 |
|
00:26:45,220 --> 00:26:49,120 |
|
ุณุจุนูู inverse ูู ุงู H ู
ุด ุฎูููู ุงุณุฃูููุง ุงูุณุคุงู |
|
|
|
248 |
|
00:26:49,120 --> 00:26:56,640 |
|
ุงูุชุงูู R ุชูุชู
ูุฉ ู ุณุชูู ูุฏูุด ุชุณุงูู ูุง ุดุจุงุจ ุงุฑููุฏ |
|
|
|
249 |
|
00:26:56,640 --> 00:27:06,420 |
|
ุทุจุนุงุทูุจ ุงุฑููุฏ ูู ุถุฑุจุชูุง ูู R ุชุณุนูู ุงููุฑุณ ุจูุตูุฑ ุงู |
|
|
|
250 |
|
00:27:06,420 --> 00:27:17,440 |
|
R ู
ูุชูู ู ุณุจุนูู ุชุณุงูู ุงู R ุชุณุนูู ุงููุฑุณ ูุนูู ุถุฑุจุช |
|
|
|
251 |
|
00:27:17,440 --> 00:27:24,200 |
|
ุงูุทุฑููู ูู ู
ููุุฑ ุชุณุนูู ุงููุฑุณ ูุจูู ุจูุงุก ุนููู ุงูุงุฑ |
|
|
|
252 |
|
00:27:24,200 --> 00:27:30,500 |
|
ู
ูุชูู ูุณุจุนูู ุงููุฑุณ ุงูุงุฑ ู
ูุชูู ูุณุจุนูู ุงููุฑุณ ูู ุจุฏุฃ |
|
|
|
253 |
|
00:27:30,500 --> 00:27:35,660 |
|
ุงุฎุฏ ุงูุงููุฑุณ ููุง ูููู ููุนุทููู ู
ู ุงูุงููุฑุณ ููุง ูุจูู |
|
|
|
254 |
|
00:27:35,660 --> 00:27:43,180 |
|
ุงูุงุฑ ู
ูุชูู ูุณุจุนูู ุงููุฑุณ ุจุฏู ูุณุงูู ุงูุงุฑ ุชุณุนูู ุทูุจ |
|
|
|
255 |
|
00:27:45,430 --> 00:27:54,010 |
|
ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูุฐู ุงู R ุงูุชู ูู |
|
|
|
256 |
|
00:27:54,010 --> 00:28:02,850 |
|
R ุชุณุนูู inverse ูู R ู
ูุฉ ูุชู
ุงููู inverseุงูู R 180 |
|
|
|
257 |
|
00:28:02,850 --> 00:28:07,570 |
|
ู
ูุฌูุฏุฉ ู
ุน ุงูู Center ูุจูู ูู ุฌูุจ ุชูุงุฏู ู
ุนูุฏุด ุจุตูุฑ |
|
|
|
258 |
|
00:28:07,570 --> 00:28:15,670 |
|
ุงูู Identity Element ูุจูู ุจุตูุฑ ุงููุงุชุฌ R 90 X R 90 |
|
|
|
259 |
|
00:28:15,670 --> 00:28:21,410 |
|
Inverse ุฃููุณ ุชูุงุฏู ุนูู ุงูุตูุบุฉ ุงููู ู
ูุฌูุฏุฉ ุนูุฏูุง |
|
|
|
260 |
|
00:28:21,410 --> 00:28:31,640 |
|
ูุฐูุูุจูู ูุฐู ูุงู R ุชุณุนูู ูุจูู ูุฐู ูุงู R ุชุณุนูู as a |
|
|
|
261 |
|
00:28:31,640 --> 00:28:39,440 |
|
function of X ูุจูู ุจูุงุก ุนููู ุฃุตุจุญ ุนูุฏ ููุง ู
ูู ูุงู |
|
|
|
262 |
|
00:28:39,440 --> 00:28:48,640 |
|
R ู
ูุชูู ูุณุจุนูู ุจุฏู ุณูู ูุงู R ุชุณุนูู ูุฐู ุจุฑูุฒูุงูุง |
|
|
|
263 |
|
00:28:48,640 --> 00:28:54,030 |
|
ููุฐู ุจุฑูุฒูุงูุง ุงููุชูุฌุฉ ุงููู ุญุตููุง ุนูููุงูุจูู ุฎูุตูุง |
|
|
|
264 |
|
00:28:54,030 --> 00:28:59,650 |
|
ู
ู R ููุฏ ู ู
ู R ุชุณุนูู ู ู
ู R ู
ูุฉ ู ุชู
ุงููู ู ู
ู R |
|
|
|
265 |
|
00:28:59,650 --> 00:29:07,710 |
|
ู
ูุชูู ู ุณุจุนูู ุจุฏูุง ูุฌู ูุงู
ุงู
ููุงู H as a function |
|
|
|
266 |
|
00:29:07,710 --> 00:29:19,670 |
|
of X ูุจูู H X H inverse ูุฐุง ุงูููุงู
ูุณุงูู ุจุงูุฏุฌู ุงู |
|
|
|
267 |
|
00:29:19,670 --> 00:29:26,360 |
|
H ุนูุฏูุงูู ุฑูุญุช ูุชุญุช ุนูู ุงูุฌุฏูู ุตูุญุฉ ูุงุญุฏ ู ุชูุงุชูู |
|
|
|
268 |
|
00:29:26,360 --> 00:29:33,100 |
|
ุชุงุจุน ุงูููุชุงุจ ุงููุงู
ุงู ูู ุฏู ููุฑ ุตูุญุฉ ูุงุญุฏ ู ุชูุงุชูู |
|
|
|
269 |
|
00:29:33,100 --> 00:29:40,460 |
|
ูุฑูุญ ุชุฏูุฑ ุนูู ุญ ู
ู
ูู ุชุณุงูู ููุงุฌููุง R ู
ูุฉ ู ุชู
ุงููู |
|
|
|
270 |
|
00:29:40,460 --> 00:29:47,490 |
|
ูู Vูุจูู ุฑ ู
ูุฉ ู ุชู
ุงููู ูู V ูู ุงู H ุฅุฐุง ู
ู
ูู |
|
|
|
271 |
|
00:29:47,490 --> 00:29:56,890 |
|
ุฃุดูููุง ู ุฃูุชุจ ุฑ ู
ูุฉ ู ุชู
ุงููู V ูู ุงู X ูู ุงู R ู
ูุฉ |
|
|
|
272 |
|
00:29:56,890 --> 00:30:05,800 |
|
ู ุชู
ุงููู V ููู inverseุทุจ ููุด ูุชุจุชูุง ูููุ ุนุดุงู ุฃุณูู |
|
|
|
273 |
|
00:30:05,800 --> 00:30:10,180 |
|
ุนู
ููุฉ ุงูุงุฎุชุตุงุฑุงุช ูุนูู ุจุฏู ุฃุญุงูู ุฃูุชุจูุง ุจุฏูุงูุฉ ู
ูุ |
|
|
|
274 |
|
00:30:10,180 --> 00:30:14,560 |
|
ุจุฏูุงูุฉ ุงู R180 ููู ุงู R180 ูู ุงู center ุฅุฐุง |
|
|
|
275 |
|
00:30:14,560 --> 00:30:20,780 |
|
ุจุชุฎุชุตุฑูู ูุต ุงูุดูุก ุงููู ู
ูุฌูุฏ ุทูุจ ูุฐุง ุงูููุงู
ูุณุงูู |
|
|
|
276 |
|
00:30:20,780 --> 00:30:23,060 |
|
R180 |
|
|
|
277 |
|
00:30:25,010 --> 00:30:33,570 |
|
ูู V ูู ุงู X ูุฐู ุงู inverse ุงููู V inverse R ู
ูุฉ ู |
|
|
|
278 |
|
00:30:33,570 --> 00:30:40,030 |
|
ุชู
ุงููู inverse ุทุจ ูุฐู ูู ุฌุจุช ุนูุฏูุง ุฏู ุจูู ูู
ุจุตูุฑ |
|
|
|
279 |
|
00:30:40,030 --> 00:30:48,770 |
|
ุจุงู identity ุงูุด ุจุตูุฑ ุนูุฏูุง ููุง VX V inverse ูุจูู |
|
|
|
280 |
|
00:30:48,770 --> 00:30:57,900 |
|
ูุฐู ู
ูู ูุฐู Phi V of Xูุจูู ุจูุงุก ุนููู ุฃุตุจุญ ุนูุฏู ูุงู |
|
|
|
281 |
|
00:30:57,900 --> 00:31:06,700 |
|
H ูู ุนุจุงุฑุฉ ุนู ูุงู V ุจูู ุงููู ุนูุฏู ุฃุฎุฑ ุญุงุฌุฉ ูุงู D |
|
|
|
282 |
|
00:31:06,700 --> 00:31:14,780 |
|
Prime as a function of X ูุจูู ูู D Prime X D Prime |
|
|
|
283 |
|
00:31:14,780 --> 00:31:21,100 |
|
Inverseุจููุณ ุงูุทุฑููุฉ ุงููู ุฌุจุช ูููุง H ุจุฏู ุฃุฑูุญ ุฃุฌูุจ |
|
|
|
284 |
|
00:31:21,100 --> 00:31:28,460 |
|
D' ุจุฑูุญ ุจูุชุญ ุงูุฌุฏูู ุตูุญุฉ ูุงุญุฏ ู ุชูุงุชูู ุนูู ุงู D' |
|
|
|
285 |
|
00:31:29,220 --> 00:31:35,820 |
|
ุนูู ู
ูุ ุนูู ุงู D' ุจุฏู R ู
ูุฉ ู ุชู
ุงููู ุนุดุงู ูุฌูุจูู |
|
|
|
286 |
|
00:31:35,820 --> 00:31:42,530 |
|
D' ุจุตูุฑ R ู
ูุฉ ู ุชู
ุงููู ูู Dูุจูู ุจุดูููุง ู ุจูุชุจ |
|
|
|
287 |
|
00:31:42,530 --> 00:31:51,250 |
|
ุจุฏุงููุง R ู
ูุฉ ู ุชู
ุงููู ูู D ูู X ูู ุงู R ู
ูุฉ ู |
|
|
|
288 |
|
00:31:51,250 --> 00:31:58,270 |
|
ุชู
ุงููู ูู D ูู ูุฐุง ุงูููุงู
inverse ูุจูู ูุฐุง ุงูููุงู
|
|
|
|
289 |
|
00:31:58,270 --> 00:32:02,370 |
|
ุจูุตูุฑ R ู
ูุฉ ู ุชู
ุงููู ูู D |
|
|
|
290 |
|
00:32:12,070 --> 00:32:18,930 |
|
ูุจูู ูุฐู ู
ุน ูุฐู ุจู
ูู ุจุงู identity element ุชู
ุงู
|
|
|
|
291 |
|
00:32:18,930 --> 00:32:26,920 |
|
ูุจูู ุงููุชูุฌุฉ ูุชุนุทูู DX D inverseูุฐู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
292 |
|
00:32:26,920 --> 00:32:35,380 |
|
main ูุงูุฏู of x ูุจูู ุจูุงุก ุนููู ุฃุตุจุญ ูุงูุฏู prime |
|
|
|
293 |
|
00:32:35,380 --> 00:32:38,300 |
|
ุจุฏู ูุณุงูู ูุงูุฏู |
|
|
|
294 |
|
00:32:40,110 --> 00:32:45,830 |
|
ูุจูู ุงูุชู
ุงููุฉ inner atomorphism |
|
|
|
295 |
|
00:32:45,830 --> 00:32:54,030 |
|
ุตุงุฑูุง ูุฏูุ ุฃุฑุจุนุฉ ูููุณุช ุชู
ุงููุฉ ุงูุฃุฑุจุน ุตุงุฑูุง ุนูู |
|
|
|
296 |
|
00:32:54,030 --> 00:32:55,850 |
|
ุงูุดูู ุงูุชุงูู |
|
|
|
297 |
|
00:33:11,130 --> 00:33:19,170 |
|
ูุจูู ููุง ุณุง ุงู inner atomorphism ู D for ูู ุนุจุงุฑุฉ |
|
|
|
298 |
|
00:33:19,170 --> 00:33:26,130 |
|
ุนู ุงู ูู R ููุช ุทุจุนุง ูุณูู ูู R ู
ูุฉ ู ุชู
ุงููู ูุงูุชุงูู |
|
|
|
299 |
|
00:33:26,130 --> 00:33:33,850 |
|
ูู R ุชุณุนูู ุงููู ูุณูู ูู R ู
ูุชูู ูุณุจุนูู ูุงูุชุงูุช |
|
|
|
300 |
|
00:33:33,850 --> 00:33:39,690 |
|
ุงููู ูู ูู H ูุงูุฑุงุจุน ุงููู ูู main ูู D ุจูุฐุง ุงูุดูู |
|
|
|
301 |
|
00:33:40,480 --> 00:33:46,740 |
|
ูุจูู ูุฏูู ุงู inner atomorphism ูู
ูุ ููG ุงูุณุคุงู ูู |
|
|
|
302 |
|
00:33:46,740 --> 00:33:53,380 |
|
ูู ุงู inner atomorphism ููG ุฃูู ู
ู ุฐูู ู ุงูููููู
|
|
|
|
303 |
|
00:33:53,380 --> 00:33:58,720 |
|
ุงูุฃุฑุจุนุฉ ููุด ุบูุฑูู
ุจู
ุนูู ุฃุฎุฑ ูู ุงูุฃุฑุจุนุฉ ูุฏูู ุจูุฏุฑ |
|
|
|
304 |
|
00:33:58,720 --> 00:34:04,040 |
|
ุฃุฎุณุฑูู
ูุชูุงุชุฉ ููุง ูุงุชููู ุชุนุงููุง ูุดูููุง ูุชุฃูุฏ ู
ู |
|
|
|
305 |
|
00:34:04,040 --> 00:34:09,640 |
|
ูุฐุง ุงูููุงู
ุฃูุง ุฃุฏุนู ุฃู ูุฐู ุงูุฃุฑุจุนุฉ are destined |
|
|
|
306 |
|
00:34:10,700 --> 00:34:21,380 |
|
ูุจูู ููุง this ุฃู the elements ูู five R node ูfive |
|
|
|
307 |
|
00:34:21,380 --> 00:34:29,580 |
|
R ุชุณุนูู ูfive H and ุงููู |
|
|
|
308 |
|
00:34:29,580 --> 00:34:31,260 |
|
ุฏู are destiny |
|
|
|
309 |
|
00:34:34,120 --> 00:34:38,580 |
|
ุฅุฐุง Destinate ู
ุนูุงุชู ุฅููุ ู
ุนูุงุชู ุฅูู ูุนูุง ุงูู |
|
|
|
310 |
|
00:34:38,580 --> 00:34:43,080 |
|
Inner Atomorphism ููู ุงููD ู ุงููG ู
ุงููุด ููู ุฅูุง |
|
|
|
311 |
|
00:34:43,080 --> 00:34:49,600 |
|
ุงูุฃุฑุจุน ุนูุงุตุฑ ูุฏูู ุฃู ุงูุฃุฑุจุน Inner Atomorphism ู
ุดุงู |
|
|
|
312 |
|
00:34:49,600 --> 00:34:54,540 |
|
ุฃุซุจุชูู
Destinate ูููููู counter example ูุงุญุฏ ููู |
|
|
|
313 |
|
00:34:54,540 --> 00:34:59,670 |
|
ูุงุญุฏุฉ ูููู
ุชุนุงูู ูุดููุงูุงู ุงูุง ุงุฏุนู ุงููู
ูุฐูู |
|
|
|
314 |
|
00:34:59,670 --> 00:35:06,830 |
|
destinect ุงุฐุง ูู ุฌูุช ููุช ูุงู ุงุฑ ููุฏ ู ุจุฏู ุงุฎููู |
|
|
|
315 |
|
00:35:06,830 --> 00:35:15,910 |
|
ุงุซุฑ ู
ุซูุง ุนูู ุงุชุด ุงุฎุฏ ุงุชุด ุนุดูุงุฆูุง ู
ู ุงู D4 ูุจูู ูุฐุง |
|
|
|
316 |
|
00:35:15,910 --> 00:35:23,290 |
|
ุจุฏู ูุณูู ุงุฑ ููุฏ ุงุชุด ุงุฑ ููุฏ ุงููู ูู main ุจ ุงุชุดุงูุงู |
|
|
|
317 |
|
00:35:23,290 --> 00:35:31,170 |
|
ุจุฏุฃ ุงุฎุฏ ูุงู R ุชุณุนูู as a function of H ูุจูู ูุฐุง |
|
|
|
318 |
|
00:35:31,170 --> 00:35:39,850 |
|
ุงูููุงู
ุจุฏู ูุณุงูู R ุชุณุนูู H R ุชุณุนูู inverse ู ูุณุงูู |
|
|
|
319 |
|
00:35:39,850 --> 00:35:46,370 |
|
ุจุฑุถู ุจุฏู ุงุฑุฌุน ููุฌุฏูู R ุชุณุนูู H ุงููู ูู ุตูุญุฉ ูุงุญุฏุฉ |
|
|
|
320 |
|
00:35:46,370 --> 00:35:55,890 |
|
ู ุชูุงุชูู R ุชุณุนูู HR ุชุณุนูู ุชุถุฑุจูุง ูู H ุจูุทูุน D |
|
|
|
321 |
|
00:35:55,890 --> 00:36:02,590 |
|
Prime ูุจูู ูุฐู D Prime R ุชุณุนูู Inverse ุงููู ูู |
|
|
|
322 |
|
00:36:02,590 --> 00:36:09,250 |
|
ุจู
ูู ุจR ู
ูุชูู ูุงูุณุจุนูู ูุจูู R ู
ูุชูู ูุงูุณุจุนูู ุงู D |
|
|
|
323 |
|
00:36:09,250 --> 00:36:13,950 |
|
Prime ูู ุงู R ู
ูุชูู ูุงูุณุจุนูู ุนูุฏู D Prime ูู ุงู R |
|
|
|
324 |
|
00:36:13,950 --> 00:36:20,340 |
|
ู
ูุชูู ูุงูุณุจุนูู ุงููู ูู ุจูุนุทููู V ุจูุนุทููู Vูุฐู |
|
|
|
325 |
|
00:36:20,340 --> 00:36:29,460 |
|
ุงุนุทุชูู H ููุฐู ุงุนุทุชูู V ุฅุฐุง ูุง ูู
ูู ูู R ูู FI R |
|
|
|
326 |
|
00:36:29,460 --> 00:36:37,460 |
|
ุชุณุนูู ุงูู ูุณุงูู ู
ูู ุงูู ูุณุงูู ุงู FI R ููุช ุงูุงู |
|
|
|
327 |
|
00:36:37,460 --> 00:36:45,240 |
|
ุจุงูู
ุซู ูู ุฌูุช ูููุช FI R ุชุณุนูู ุจุฏู ุงุจุญุซูุง ู
ุน ู
ูู ู
ุน |
|
|
|
328 |
|
00:36:45,240 --> 00:36:50,710 |
|
FI H ุจุฏู ุงุซุจุช ุงูู ู
ููุด ุชุณุงูู ููู
ุง ุจูููู
ุงูุจูู ูู ุงุฑ |
|
|
|
329 |
|
00:36:50,710 --> 00:36:57,030 |
|
ุชุณุนูู ู
ุซูุง ูู ุฎูุชูุง ุชุฃุซุฑ ุนูู ุงุฑ ุชุณุนูู ูุจูุงุด ุจูุตูุฑ |
|
|
|
330 |
|
00:36:57,030 --> 00:37:05,510 |
|
ุงุฑ ุชุณุนูู ุงุฑ ุชุณุนูู ุงุฑ ุชุณุนูู ุงููุฑุณ ุงููู ูู ุจูุฏุงุด ุงุฑ |
|
|
|
331 |
|
00:37:05,510 --> 00:37:14,770 |
|
ุชุณุนูู ุงูุงู ุจุฏู ุงูุง ุงุฎุฏ ูู ุงุชุดุฑ ุชุณุนูู ูุจูู ูุฐุง |
|
|
|
332 |
|
00:37:14,770 --> 00:37:24,750 |
|
ุงูููุงู
ูุณุงูู H R ุชุณุนูู H inverse ูุจูู |
|
|
|
333 |
|
00:37:24,750 --> 00:37:30,090 |
|
H inverse Y ูุณุงูู ุจุงูุฏุงุฌู ุงู H R ุชุณุนูู ุจุฑุถู ู
ู |
|
|
|
334 |
|
00:37:30,090 --> 00:37:37,710 |
|
ุตูุญุฉ ูุงุญุฏุฉ ูุชูุงุชููุจุฏู ู
ูุ ุจุฏู ุงู H R ุชุณุนูู ุนูุฏู ุงู |
|
|
|
335 |
|
00:37:37,710 --> 00:37:46,570 |
|
H R ุชุณุนูู ุงููู ูู ุจ D ุฏู ุฏู ุทุจ ู ุงู H ุงููุฑุณ ู
ุด ูู |
|
|
|
336 |
|
00:37:46,570 --> 00:37:54,720 |
|
H ูุง ุดุจุงุจ ููุง ูุงุ ุณูุช ุงูุดุนุจุงูุนูุงุตุฑ ุงููู ุนูุฏูุง ูุฐู |
|
|
|
337 |
|
00:37:54,720 --> 00:37:59,260 |
|
ูู ุงูุฑุงุญุฉ H ุชุฑุจููุง ุชุณุงูู V ุชุฑุจููุง ุชุณุงูู D ุชุฑุจููุง |
|
|
|
338 |
|
00:37:59,260 --> 00:38:03,460 |
|
ุชุณุงูู D ุชุฑุจููุง ุชุณุงูู ุงู identity ููููุง ูุจูู ุงููH |
|
|
|
339 |
|
00:38:03,460 --> 00:38:06,900 |
|
ูุงููH inverse DD inverse VV inverse D prime ูุง D |
|
|
|
340 |
|
00:38:06,900 --> 00:38:10,480 |
|
prime inverseุ ู
ุธุจูุทุ ุฅุฐุง ุงุดููุชูุง ูุญุทูุช ููู
ุชูุงุ |
|
|
|
341 |
|
00:38:10,480 --> 00:38:16,680 |
|
ุงูุขู ุจุฏู ุฃุดูู ุงููDH ู
ูู ููุ ูุจูู ูู ุฌูุช ููD ูู Hุ |
|
|
|
342 |
|
00:38:16,680 --> 00:38:25,460 |
|
D ูู H ุจุงููู ุจูู 270ูุจูู ูุฐู ุจุฏูุง ุชุณุงูู ุงูุงุฑ ู
ุชูู |
|
|
|
343 |
|
00:38:25,460 --> 00:38:30,980 |
|
ูุณุจุนูู ูุจูู ู
ู ุงูุงุชููู ูุฏูู ู
ุนูุงู ูุฐุง ุงูููุงู
ุงููู |
|
|
|
344 |
|
00:38:30,980 --> 00:38:37,780 |
|
ูู ูุงู ุงุฑ ุชุณุนูู ูุง ูู
ูู ุงู ุชุณุงูู ุงููุงู ุงุชุด ุงููู |
|
|
|
345 |
|
00:38:37,780 --> 00:38:43,590 |
|
ุนูุฏูุง ุจูู ุงููู ุนูุฏูุง ู
ูู ุจูู ุงููุงูุฏููุงูุงู ุงุญูุง |
|
|
|
346 |
|
00:38:43,590 --> 00:38:47,850 |
|
ุจูุงููุง ูู ุงูุชูุชูู ุงูุงููู ููุงุชู ู ูู ุงูุชูุชูู |
|
|
|
347 |
|
00:38:47,850 --> 00:38:53,850 |
|
ุงูุชุงููุงุช ู ูู ุงูุชูุชูู ุงููู ุจุนุถูู
ูุงู R ุชุณุนูู ุจุฑุถู |
|
|
|
348 |
|
00:38:53,850 --> 00:38:59,770 |
|
ุจุฏู ูุฎูู ูุฃุซุฑ ุนูู R ุชุณุนูู ุงุนุทุงูู R ุชุณุนูู itself |
|
|
|
349 |
|
00:38:59,770 --> 00:39:08,140 |
|
ุจุฏู ุงุฎุฏ ุงุฎุฑ ูุงุญุฏุฉ ูุงู Dูู
ุง ุชุฃุซุฑ ุนูู R ุชุณุนูู ูุจูู |
|
|
|
350 |
|
00:39:08,140 --> 00:39:16,660 |
|
ูุฐุง ุงูููุงู
ูุณุงูู DR ุชุณุนูู D inverseูู ูุณุงูู ุจุฏู |
|
|
|
351 |
|
00:39:16,660 --> 00:39:22,760 |
|
ุฃุฌูุจ ูู ุงู D R ุชุณุนูู ู
ู ุงูุฌุฏูู ุงู D R ุชุณุนูู ุนุจุงุฑุฉ |
|
|
|
352 |
|
00:39:22,760 --> 00:39:30,140 |
|
ุนู V ูุจูู ูุฐู V ู ุงู D inverse ูู ุนุจุงุฑุฉ ุนู D ุจุฏู |
|
|
|
353 |
|
00:39:30,140 --> 00:39:38,300 |
|
ุฃุฌูุจ ูู ุงู V ูู D ูุจูู ุงู V ูู D ุงููู ูุจูู R ู
ูุชูู |
|
|
|
354 |
|
00:39:38,300 --> 00:39:46,120 |
|
ูุณุจุนูููุจูู ูุฐู ุชุณุงูู R ู
ูุชูู ูุณุจุนูู ู
ูู ุงุชููู ูุฏูู |
|
|
|
355 |
|
00:39:46,120 --> 00:39:54,260 |
|
ุจุณ ุชูุชุฌ ุงู ุงููุงู R ุชุณุนูู ูุง ูู
ูู ุงู ุชุณุงูู ุงููุงู D |
|
|
|
356 |
|
00:39:55,610 --> 00:40:00,970 |
|
ุงููู ุนู
ูุชู ุงูุง ูุณู ุดุบูุฉ ุงุซุจุช ุงู ุงูู Phi R ุชุณุนูู ูุง |
|
|
|
357 |
|
00:40:00,970 --> 00:40:05,030 |
|
ุจุชุณุงูู ูุฐู ููุง ุจุชุณุงูู ูุฐู ููุง ุจุชุณุงูู ูุฐู ุงูุงู ุงูุช |
|
|
|
358 |
|
00:40:05,030 --> 00:40:09,710 |
|
ุจูุชุจ ุงู ุงู Phi H ุจุณุงููุด ูุฐู Phi H ุจุณุงููุด ูุฐู ู Phi |
|
|
|
359 |
|
00:40:09,710 --> 00:40:14,590 |
|
H ุจุณุงููุด ูุฐู ู ุจุนุฏูู Phi D ูุจูู ุจุฑูุญ ุจูููู |
|
|
|
360 |
|
00:40:14,590 --> 00:40:15,910 |
|
similarly |
|
|
|
361 |
|
00:40:18,410 --> 00:40:28,530 |
|
similarly for ุงููู ูู ูุงู ุงุชุด and ูุงู ุฏู thus ู |
|
|
|
362 |
|
00:40:28,530 --> 00:40:35,850 |
|
ููุฐุง ุงู inner atom morphism ุงููู ุฏู for ูู ุนุจุงุฑุฉ |
|
|
|
363 |
|
00:40:35,850 --> 00:40:46,050 |
|
ุนู ุงููุงู ุงุฑ ููุฏ ู ุงููุงู ุงุฑ ุชุณุนูู ู ุงููุงู ุงุชุด ู |
|
|
|
364 |
|
00:40:46,050 --> 00:40:55,540 |
|
ุงููุงู ุฏูููุท ูุง ุบูุฑ ุทูุจ ุจุฏู ุฃุณุฃู ุงูุณุคุงู ุงูุชุงูู ุฃูุง |
|
|
|
365 |
|
00:40:55,540 --> 00:41:01,360 |
|
ุฃุฎุฏ ุชุฃุซูุฑ ุงู R node ุนูู H ู R node ุนูู H ุทุจ ูู |
|
|
|
366 |
|
00:41:01,360 --> 00:41:08,060 |
|
ุบูุฑุช ุงู H ูุฐู ูู
ูู ูุทูุน ุงุชููู ุฒู ุจุนุถ ุงู ุฏูุฑ ุจุงูู |
|
|
|
367 |
|
00:41:08,060 --> 00:41:13,370 |
|
ุงุตุจุฑ ุดููุฉ ุงุตุจุฑ ุนููุง ุดููุฉุงูุง ููุง ุงุซุจุช ูู ุงู ุงูุงุฑุฏ |
|
|
|
368 |
|
00:41:13,370 --> 00:41:18,690 |
|
ููุฏ ุงูุงุฑุฏ ููุฏ ูู ุงูุงุฑุฏ ู
ูุฉ ู ุชู
ุงููู ุนูู ู
ูู ุนูู |
|
|
|
369 |
|
00:41:18,690 --> 00:41:25,270 |
|
ุงูุณ ูู ุงู X ุงุฎุชุฑุช ุฑู
ุฒ ู
ุนูู ููุง ุฌูุช ุนูู ุชู
ุงููุฉ ุฑู
ูุฒ |
|
|
|
370 |
|
00:41:25,270 --> 00:41:30,770 |
|
ุนูู ุชู
ุงููุฉ ู
ู
ุชุงุฒ ุงุฐุงุฅุฐุง ุฃูุง ูู
ุง ุฃููู ูุฐู ูุง ุชุณุงูู |
|
|
|
371 |
|
00:41:30,770 --> 00:41:36,190 |
|
ูุฏ ุชุณุงูู ุนูู ุจุนุถ ุงูุฑู
ูุฒ ููุง ุชุณุงูู ุนูู ุงูุจุนุถ ุงูุขุฎุฑ |
|
|
|
372 |
|
00:41:36,190 --> 00:41:41,050 |
|
ูุจูู ุฃูุง ุจุณ ุฌุจุช counter example ุฃููุง ูุง ุชุณุงูู in |
|
|
|
373 |
|
00:41:41,050 --> 00:41:46,430 |
|
general ููู ูุฏ ูุญุฏุซ ุชุณุงูู ุขุฎุฑ ูุง ู
ุดููุฉ ูู ุฐูู ูุฃู |
|
|
|
374 |
|
00:41:46,430 --> 00:41:52,620 |
|
ุฃูุง ุจุฏู ุนุฏู
ุงูุชุณุงูู ูููู ุนูู ุงููู ุจูุง ุงุณุชุซูุงุกุงุฐุง |
|
|
|
375 |
|
00:41:52,620 --> 00:41:58,260 |
|
ูู ูุฌูุช ุฑู
ุฒ ูุงุญุฏ ู
ู ุงูุชู
ุงููุฉ ุงูุชุณุงูู ุบูุฑ ุญุงุตู ุฒู |
|
|
|
376 |
|
00:41:58,260 --> 00:42:04,160 |
|
ู
ุง ุดููุช ููุง ูุจูู ูุฏูู ูู
ูู ุงู ูุชุณุงูู ุฑุบู
ุงู ูู
|
|
|
|
377 |
|
00:42:04,160 --> 00:42:08,680 |
|
ู
ู
ูู ูุชุณุงูู ุนูู ุจุนุถ ุงูุนูุงุตุฑ ููู in general ุนูู D4 |
|
|
|
378 |
|
00:42:08,680 --> 00:42:15,720 |
|
ูููุง ุจุญุตูุด ุชุณุงูู ูุงุถุญ ููุงู
ูุ ุงููุฉ ู
ุด ุณุงู
ุน ุงูุด |
|
|
|
379 |
|
00:42:15,720 --> 00:42:18,220 |
|
ุจุชููู ููุตูุชู |
|
|
|
380 |
|
00:42:23,350 --> 00:42:24,650 |
|
ู
ูู ุงูู
ุชุณุงูููุ |
|
|
|
381 |
|
00:42:33,630 --> 00:42:38,550 |
|
ู
ุงุนูุฏูุด ู
ุดููุฉ ุงูุง ุจูููู ุงูู ู
ู
ูู ูุญุตู ุชุณุงูู ููู |
|
|
|
382 |
|
00:42:38,550 --> 00:42:42,710 |
|
ุงุฐุง ุจุฏู ุงูุชุณุงูู ุนูู ุฌู
ูุน ุงูุนูุงุตุฑ ูููุณ ุนูู ุจุนุถูุง |
|
|
|
383 |
|
00:42:42,710 --> 00:42:47,130 |
|
ุนุดุงู ูุญุตู ุงูุชุณุงูู ุทุจุนุง ุงุฐุง ุงูุง ู
ู ุงูุชู
ุงู ุนูุงุตุฑ |
|
|
|
384 |
|
00:42:47,130 --> 00:42:52,650 |
|
ูุจุนุฏ if ูู ูุฌูุช ุนูุตุฑ ูุงุญุฏ ุงูุชุณุงูู ุบูุฑ ุญุงุตู ุงุฐุง in |
|
|
|
385 |
|
00:42:52,650 --> 00:42:56,670 |
|
general ุงูุชุณุงูู ุบูุฑ ุญุงุตูู
ุดุงู ูููู ุชุณุงูู ุจุฏู ูููู |
|
|
|
386 |
|
00:42:56,670 --> 00:43:02,510 |
|
ูุฌู
ูุน ุงูุนูุงุตุฑ X ูุนูู ุฌู
ูุน ุนูุงุตุฑ D4 ุงูุซู
ุงููุฉ ุจูุง |
|
|
|
387 |
|
00:43:02,510 --> 00:43:06,710 |
|
ุงุณุชุซูุงุก ูุจูู ุจูุงุก ุนููู ูุฏูู ุนูุงุตุฑ ุงู inner |
|
|
|
388 |
|
00:43:06,710 --> 00:43:11,790 |
|
automorphism ุชุจุนุช ู
ููู
ุชุจุนุงุช ุงู D4 ุงููู ูู ุทูุจูู
|
|
|
|
389 |
|
00:43:11,790 --> 00:43:18,570 |
|
ูุจุงูุชุงูู ุงูุชูู ูุฐุง ุงูุณุคุงู ููุชูู ุงูุขู ุฅูู ุณุคุงู |
|
|
|
390 |
|
00:43:20,250 --> 00:43:24,970 |
|
ุงูุณุคุงู ุงูุขุฎุฑ ููู very important ู ูู ุงูู ูู
ูุจูู |
|
|
|
391 |
|
00:43:24,970 --> 00:43:45,030 |
|
ูู ููุช ุงูุณุคุงู ุงูุขุฎุฑ ุจูููู ู
ุง ูุฃุชู ุฎููู |
|
|
|
392 |
|
00:43:45,030 --> 00:43:47,330 |
|
ุจููู ูู
ุงู example |
|
|
|
393 |
|
00:43:51,320 --> 00:44:02,000 |
|
example ุจููู ุงููู
ุจููุช ุงุญุณุจูู ุงู atomorphism ู z |
|
|
|
394 |
|
00:44:02,000 --> 00:44:04,080 |
|
ู
ููู ู z ุนุดุฑุฉ |
|
|
|
395 |
|
00:44:12,500 --> 00:44:17,500 |
|
ุฃูุง ุจุฏู ุงุญุณุจ ูู ูู ุงูุงุชูู
ูุฑูุฒู
ูู Z10 ูุนูู ุงูุง ุจุฏู |
|
|
|
396 |
|
00:44:17,500 --> 00:44:24,460 |
|
function ู
ู Z10 ุฅูู Z10 ุชุจูู ูุงูุช ูุงู ูุงูุช ู ุชุฎุฏู
|
|
|
|
397 |
|
00:44:24,460 --> 00:44:29,800 |
|
ุฎุงุตูุฉ ู
ู ุงูู isomorphism ูู function ุจูุฐู ุงูุทุฑููุฉ |
|
|
|
398 |
|
00:44:29,800 --> 00:44:35,480 |
|
ุจุชุจูู ู
ูุฌูุฏ ูููุ ูู ุงูุงุชูู
ูุฑูุฒู
ูู
ููุ ูู Z10 ุทุจุนุง |
|
|
|
399 |
|
00:44:35,480 --> 00:44:41,590 |
|
ููุซุจุช ุงู ูุฏูู ุฃุฑุจุนุฉ ููุท ูุบูุฑููุฐุง ู
ุง ุณูููู ูู |
|
|
|
400 |
|
00:44:41,590 --> 00:44:45,690 |
|
ุงูู
ุญุงุถุฑุฉ ุจุนุถ ุงูุธูุฑ ูุฅูู ู
ุงุถูุด ู
ุนุงูุง ูุงุฌุฏ ุฅูุง ุชู
ุงู
ุ |
|
|
|
401 |
|
00:44:45,690 --> 00:44:49,230 |
|
ูุฐุง ุฃูุง ุจุบุดุดู ู
ู ุงูุญูู ุฅุฐุง ู
ุนุงู ุงููุชุงุจ ู
ูุฌูุฏุฉ ูู |
|
|
|
402 |
|
00:44:49,230 --> 00:44:53,890 |
|
ุงููุชุงุจ ุชู
ุฑ ุนูููุง ููู ุชููู
ู
ููุง ุฅูุง ุงููููู ุฃูุง |
|
|
|
403 |
|
00:44:53,890 --> 00:44:58,290 |
|
ู
ุชุฃูุฏ ู
ุด ูุชููู
ุฅู ูู ูุชุงุจ ุฅูุง ุงููููู ููู ุงู ุดุงุก |
|
|
|
404 |
|
00:44:58,290 --> 00:45:02,510 |
|
ุงููู ุจููุถุญูุง ูู ู ุจูููู
ูุง ูู ูู ุงูู
ุญุงุถุฑุฉ ุงููุงุฏู
ุฉ |
|
|
|
405 |
|
00:45:02,510 --> 00:45:04,170 |
|
ุงู ุดุงุก ุงููู ูุนุทูููุง ุงูุนูู |
|
|
|
|