File size: 37,114 Bytes
ac87599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 |
1
00:00:20,650 --> 00:00:22,910
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุ today ุฅู ุดุงุก ุงููู we
2
00:00:22,910 --> 00:00:25,990
continue with chapter 9, at the last lecture we
3
00:00:25,990 --> 00:00:29,890
talked about hypothesis testing and we said that
4
00:00:29,890 --> 00:00:33,990
there are two cases when I will deal with the
5
00:00:33,990 --> 00:00:37,710
hypothesis tests. There are two cases, the first one
6
00:00:37,710 --> 00:00:42,030
we said, and it depends on the existence of sigma
7
00:00:42,030 --> 00:00:46,910
which is the population standard deviation. We said
8
00:00:46,910 --> 00:00:50,510
that the first case is when sigma is known and we
9
00:00:50,510 --> 00:00:53,290
took it in details at the last lecture. We said
10
00:00:53,290 --> 00:00:57,090
that we will use the z test, and under the z test there are
11
00:00:57,090 --> 00:01:00,640
two approaches: ุงู critical value approach and ุงูู P value approach, and we learned how we
12
00:01:00,640 --> 00:01:04,500
calculate the P value, and we said that we have to
13
00:01:04,500 --> 00:01:07,520
compare the P value with alpha, which is the level of
14
00:01:07,520 --> 00:01:11,620
significance. Today we will focus on the second
15
00:01:16,340 --> 00:01:22,030
case, which is when sigma is unknown. Okay, so the
16
00:01:22,030 --> 00:01:26,430
first slide says, "Do you ever truly know sigma, ุงูู"
17
00:01:26,430 --> 00:01:29,250
ูู ูู population standard deviationุ ูุนูู ูู ุงุญูุง ูู
18
00:01:29,250 --> 00:01:32,890
ูุนูุง ุฏุงุฆู
ุง ุชููู ุงู sigma ู
ุนุฑููุฉ ุนูุฏู ููุง ูุฃุ ุจุญูููู
19
00:01:32,890 --> 00:01:35,790
ุญูู probably not. ูุนูู perhaps ุงูู ู
ู
ูู ู
ุง ุชูููุด
20
00:01:35,790 --> 00:01:39,590
ู
ุนุฑููุฉ ุงู sigma ุนูุฏู. ูุจุญูููู ุงู virtually all
21
00:01:39,590 --> 00:01:42,970
real-world business situations, sigma is not known.
22
00:01:42,970 --> 00:01:46,150
ูุนูู ุจุงูุญูุงุฉ practically, ูุนูู ุจุงูุญูุงุฉ ุจุงููุงูุนูุฉ
23
00:01:46,150 --> 00:01:49,820
ู
ุซูุง ูุญูู ูู ุงู business situations ุจุงูุฃุบูุจ ุจุชููู
24
00:01:49,820 --> 00:01:53,320
ุงู sigma ู
ุด ู
ุนุฑููุฉ. Okay, ุงูู ุจุนุฏ ุจุญูููู if there is
25
00:01:53,320 --> 00:01:57,380
a situation where sigma is known, then mu is also
26
00:01:57,380 --> 00:02:00,580
known, since to calculate sigma, you need to know mu.
27
00:02:00,580 --> 00:02:04,500
ูุนูู ุจูููู ูู situation ูู
ุง ุจุชููู ุงููู ูู ุงู
28
00:02:04,500 --> 00:02:08,360
sigma ู
ุนุฑููุฉุ ูุฃููุฏ ุงููู ูู ุงู mu ู
ุนุฑููุฉ ููุดุ ูุฃูู
29
00:02:08,360 --> 00:02:11,400
ุงู sigma ูู
ุง ุฃุฌู ุฃุญุณุจ ุงู sigma ูู ุงููุงููู ุชุจุน ุญุณุงุจ
30
00:02:11,400 --> 00:02:14,800
ุงู sigmaุ ุงูุด ู
ูุฌูุฏุ ุงู mu. ูุจู
ุง ุงูู ุงูุง ุทูุนุช ุงู
31
00:02:14,800 --> 00:02:17,560
sigma ุงู ูุงูุช ู
ุนุฑููุฉ ุฃููุฏ ุงู mu ู
ุนุฑููุฉุ ูุฃู ุจุณุชุฎุฏู
ูุง
32
00:02:17,560 --> 00:02:23,620
ูู ุญุณุงุจ ุงู sigma. Okay, ุจุณู
ู ุจุชุญูู ูููุงุชู ุฎุงููู ุงู
33
00:02:23,620 --> 00:02:29,880
sigmaุ ุงููู ูู ุงู summation x minus mu square ุฃู
34
00:02:29,880 --> 00:02:33,560
ูุฑููู under square root. ุงุฐุง ูู ุญูููุง sigma is non
35
00:02:33,560 --> 00:02:36,980
known
36
00:02:36,980 --> 00:02:42,300
ูุนูู ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง
37
00:02:42,300 --> 00:02:43,280
ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง
38
00:02:43,280 --> 00:02:43,300
ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง ุงูุง
39
00:02:43,300 --> 00:02:47,220
ุฃูุง ู
ุธุจูุท ูุง ุนุฒูุฒูุ ูู ุงูู mu ู
ุนุฑููุฉุ ูุฃูุฏุฑ ุฃุญุตู
40
00:02:47,220 --> 00:02:53,380
ุนูู ุงู sigma. ููู ูู ูุงูุช ุงู sigma ุบูุฑ ู
ุนุฑููุฉุ
41
00:02:53,380 --> 00:02:59,840
ูุงู mu ุบูุฑ ู
ุนุฑููุฉุ ู
ุด ููุ ุฃูุง ูู ุดุบู ุจููุฏุณุ
42
00:02:59,840 --> 00:03:03,040
ูุจุงูุชุงูู ู
ุง ูููุงุด ุชููู ุนูุฏู ุงู mu ู
ุด ู
ุนุฑููุฉุ ู
43
00:03:03,040 --> 00:03:06,140
ุงู sigma. ูุจุงูุชุงูู ุฅุฐุง ูุงูุช ุงู mu ุบูุฑ ู
ุนุฑููุฉุ ุฃููุฏ
44
00:03:06,140 --> 00:03:09,380
ุงู sigma ุบูุฑ ู
ุนุฑููุฉ. Is it a real practice,
45
00:03:09,480 --> 00:03:14,580
problemsุ ูู ุงู business situations, is always sigma
46
00:03:14,580 --> 00:03:14,900
is unknown.
47
00:03:19,900 --> 00:03:23,160
ุงูู ุจุนุฏ ูู ุจูุญูููู if you truly know mu, there
48
00:03:23,160 --> 00:03:26,160
would be no need to gather a sample to estimate it.
49
00:03:26,160 --> 00:03:28,640
ูุนูู ุจูุญูู ุฅู ูู ู
ุซูุง ูู ุงู situation ุงููู ุนูุฏู
50
00:03:28,640 --> 00:03:31,380
ุงููู ูู ุงู muุ ุงููู ูู ุงู population mean ูุงู ู
ูุฌูุฏ
51
00:03:31,380 --> 00:03:34,720
ุนูุฏู ูู
ุง ููุด ุฏุงุนู ุฅู ุฃูุง ุฃุนู
ู ุฃุฌูุจ sample ุนุดุงู
52
00:03:34,720 --> 00:03:39,040
ุฃุญุณุจ ุงููู ูู ุงู sample mean ุนุดุงู ูุนูู ุฎูุงุต ูุนูู
53
00:03:39,040 --> 00:03:41,020
ุจุชููู ุงููู ูู ุงู population mean ุฅุฐุง ูุงู ู
ูุฌูุฏ
54
00:03:41,020 --> 00:03:44,440
ุฎูุงุต ุจูููู ุจูุณุชุฎุฏู
ู ูู. ุงูู
ูุถูุน ุงุณู
ุชู ุชุญูู ููุทุฉ
55
00:03:44,440 --> 00:03:49,050
ู
ูู
ุฉ. ุฅุฐุง ุงู mu ู
ุนุฑููุฉ ู
ู ุงูุฃุตูุ ุฃู ุงู mu is givenุ ู
ุง
56
00:03:49,050 --> 00:03:52,110
ููุช ุจู ูุดุฌุน ุฃุนู
ู testing ุฅุฐุง ุงู hypothesis test ุงููู
57
00:03:52,110 --> 00:03:57,110
ุจูุนู
ู. ุงูู
ูู
ูู ูู
ุง ุชููู ุงู mu is unknown. ุทุงูู
ุง
58
00:03:57,110 --> 00:03:59,670
ุงู mu is unknownุ ุฃููุฏ ุฃูุง ูุนู
ู sample. ููู ูู ุงู mu
59
00:03:59,670 --> 00:04:03,230
is givenุ ุจูุดุฌุน ุฃุนู
ู sample. ูุงุถุญุ ูุนูู ุงูุชุฑุถ ูุงุญุฏ
60
00:04:03,230 --> 00:04:06,930
ุจูุญูู ุนู
ุฑ ุทุงูุจ ุฌุงู
ุนุฉ ุงุณุชู
ูู 22 ุณูุฉ. ุนู
ุฑ ุทุงูุจ
61
00:04:06,930 --> 00:04:09,710
ุงูุฌุงู
ุนุฉ ูููุง. ุจูุดุฌุน ุฃุฎุฏ sample ุฃู ุฃุนู
ู estimation
62
00:04:09,710 --> 00:04:13,490
ุฃู ุฃุนู
ู test. ุฅุฐุง if the true mean is given, then
63
00:04:13,490 --> 00:04:18,290
there is no need. ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ
64
00:04:18,290 --> 00:04:23,690
ุชุฌุงุฑุจ ุชุฌุงุฑุจ ููููุช. Okay, ููููุช ุงู hypothesis
65
00:04:23,690 --> 00:04:26,670
testing when sigma is unknown. ููููุช ููุงุฎุฏ ุงู
66
00:04:26,670 --> 00:04:29,770
differences between ุงููู ูู ุงู case ูู
ุง ูููู ุงู
67
00:04:29,770 --> 00:04:32,890
sigma known ู ุงู sigma unknown. ุฑูุฒูุง ู
ุนุงูุง. ุฃูู
68
00:04:32,890 --> 00:04:35,650
difference ุจูุญูููู if the population standard
69
00:04:35,650 --> 00:04:38,750
deviation is unknownุ ุงููู ูู ุงู sigma ูู
ุง ูุงูุช ู
ุด
70
00:04:38,750 --> 00:04:41,490
ู
ุนุฑููุฉุ you instead use the sample standard
71
00:04:41,490 --> 00:04:44,470
deviation. ุฃุตูุง ูุนูู ุงุฎุชูุงู ุจุณูุท. ุจู
ุง ุฃู ุงู
72
00:04:44,470 --> 00:04:47,050
population standard deviation ุงููู ูู ุงู sigma ู
ุด
73
00:04:47,050 --> 00:04:49,990
ู
ุนุฑููุฉุ ูุณุชุฎุฏู
ุจุฏููุง ู
ููุ ุงููู ูู ุงู Sุ ุงููู ูู ุงู
74
00:04:49,990 --> 00:04:53,750
sample standard deviation. ูุงู ุฃูู ุงุฎุชูุงู. ุชุงูู ุฅุดู
75
00:04:53,750 --> 00:04:56,890
because of this exchange, you use the T
76
00:04:56,890 --> 00:05:00,290
distribution instead of useโฆ instead of the Z
77
00:05:00,290 --> 00:05:02,630
distribution to test the null hypothesis about the
78
00:05:02,630 --> 00:05:05,730
mean. ูุนูู ุจุฏู ุงููู ุงุญูุง ููุง ูุณุชุฎุฏู
ุงููู ูู Z
79
00:05:05,730 --> 00:05:08,950
distribution ุฃู Z test, ููุฃ ููุณุชุฎุฏู
ุฅุดู ุงุณู
ู T
80
00:05:08,950 --> 00:05:12,270
distribution ุฃู T test. ููุฃ ููุดูู ููู ูุนูู ุจูููู
81
00:05:12,270 --> 00:05:16,500
ุงูุฎุทูุงุช. ุชุงูุช ุงุฎุชูุงู when using the T distribution,
82
00:05:16,500 --> 00:05:18,920
you must assume the population you are sampling
83
00:05:18,920 --> 00:05:22,580
from follows a normal distribution. ูุนูู ูู
ุง ุฃุณุชุฎุฏู
84
00:05:22,580 --> 00:05:25,140
ุงู T test ูุงุฒู
ูููู ุนูุฏู ููู assumption ุฃูุง ุฃูุชุฑุถู
85
00:05:25,140 --> 00:05:28,460
ุฃู ุญุชู ู
ู ุงูุณุคุงู ูู ุจูููู ู
ูุชุฑุถ ูู ูุง ุฅูู ุชููู ุงู
86
00:05:28,460 --> 00:05:31,180
population follows normal distributionุ ุชูุฒูุน ุทุจูุนู
87
00:05:31,180 --> 00:05:33,860
ุงู population. ูุจุนุฏูู ุจูุญูููู all other steps,
88
00:05:33,860 --> 00:05:37,180
concepts, and conclusions are the same. ุจุงูู ุงูุฎุทูุงุช
89
00:05:37,180 --> 00:05:42,490
as we took when sigma is known. ูุนูู ููุณ ุงูุฎุทูุงุช ุจุณ
90
00:05:42,490 --> 00:05:46,610
basically ูุญูู ูู ุชููู sigma is not given ูู ุงูุช
91
00:05:46,610 --> 00:05:50,510
ูุชูุงูู ุดุบูุชูู. ุฑูู
ูุงุญุฏ ุจู replace sigma which is
92
00:05:50,510 --> 00:05:54,760
unknown by S. ุฅุฐุง ูุดูู sigma ููุทูุน ุงูู โฆ ุงู
93
00:05:54,760 --> 00:05:57,180
simplicity ุนุจุงุฑุฉ ุนู ู
ููุ ุงู sample standard
94
00:05:57,180 --> 00:06:01,080
deviation. ูุฐุง ุฑูู
ูุงุญุฏ. ุฑูู
ุงุซููู ุจุฏู ู
ุง ููุง ูุณุชุฎุฏู
95
00:06:01,080 --> 00:06:05,180
z for distribution ูู ุนูุฏูุง new test called T
96
00:06:05,180 --> 00:06:08,080
distribution. ุฅุฐุง ุงุญูุง ูุณุชุฎุฏู
T ูููุฑูููุง ุจุนุฏ ุดููุฉ
97
00:06:08,080 --> 00:06:10,720
table ุชุจุน ุงู T ู how can we compute the critical
98
00:06:10,720 --> 00:06:14,060
values using T distribution. ุงูููุทุฉ ุงูุฃุฎูุฑุฉ ู
ูู
ุฉ
99
00:06:14,060 --> 00:06:17,280
ุฌุฏุง ุงูู ูุงุฒู
ูููู ุนูุฏูุง ุงู normal assumption
100
00:06:17,280 --> 00:06:20,460
satisfied. ูุนูู ูุฑุถูุฉ ุงูุชูุฒูุน ุงูุทุจูุนู ุชููู ู
ุง ููุง
101
00:06:20,460 --> 00:06:24,440
is okay. ุฃู ุญุงุฌุฉ ุชุงููุฉ ุงู steps ุงููู ุญูููุง ุนูููู
102
00:06:24,440 --> 00:06:28,260
still the same. ุชุจุชุฏูุง ููุณ ุงูุดูุก ุณูุงุก ู
ู ูุงุญูุฉ ุงู
103
00:06:28,260 --> 00:06:33,120
concepts ุฃู ุงู conclusions are still the same. Any
104
00:06:33,120 --> 00:06:39,040
questions? ูุฐุง ู
ูุฏู
ุฉ ูู
ูุถูุน ุงู sigma is unknown.
105
00:06:43,750 --> 00:06:46,370
Okay. ููุฃ ุฅุฐุง ุจุญูููู ุงูุขู ุจูุดูู ุงููู ูู ุฎุทูุงุช ุงู
106
00:06:46,370 --> 00:06:49,390
test. ุฃูู ุฅูุด ุจูุญููููุ Test of hypothesis for the
107
00:06:49,390 --> 00:06:52,670
mean when sigma is unknown. ุฅูุด ุจุฏูุง ูุญูู ุงููู ูู
108
00:06:52,670 --> 00:06:56,710
convert sample statistic x bar to a t state. ูุนูู
109
00:06:56,710 --> 00:07:03,350
ููุงู ููุง ูุญูู ู z state, ุชู statistic. Okay, ุงููู ูู
110
00:07:03,350 --> 00:07:08,890
ููุดูู ุงูุด ุงููุงููู ุงู t state ุฃู statistic equal ุงู
111
00:07:08,890 --> 00:07:17,210
x bar - mu divided by S over square root of N. ุฒู ู
ุง
112
00:07:17,210 --> 00:07:20,170
ุงุญูุง ุดุงูููู ุจุดุจู ุงููู ูู ุงู Z statistic ุจุณ ุงู
113
00:07:20,170 --> 00:07:23,330
difference ุงููุญูุฏ ุงุญูุง ุญูููุง ุจุฏู ุงูุณูุฌู
ุง ุงููู ูู
114
00:07:23,330 --> 00:07:26,350
population standard deviation ุฑุงุญ ูุณุชุจุฏููุง ุจ S
115
00:07:26,350 --> 00:07:29,350
ุจุงูู S ุงููู ูู ุงูุณู
ุจุงู standard deviation ุจุณ ููู
116
00:07:29,350 --> 00:07:33,730
ููุง ุญุทุช ูู ุงูู
ุฎุทุท. Hypothesis test test for the mean
117
00:07:33,730 --> 00:07:37,810
sigma known, Z test. ุฃู
ุง sigma unknown ููุณุชุฎุฏู
ุงู T
118
00:07:37,810 --> 00:07:41,990
test. The test statistic is a T statistic equal ููู
119
00:07:41,990 --> 00:07:46,310
X bar minus ุงูู mu divided by S over square root of
120
00:07:46,310 --> 00:07:54,840
N. ุจุณ ุงููู ุจุนุฏ ููุ ููุฃ ููุงุฎุฏ example. ุฑูุฒูุง ู
ุนุงู ูุฅูู
121
00:07:54,840 --> 00:07:58,480
ูู ุงุดูุงุก ุฌุฏูุฏุฉ ููุชุนุฑู ุนูููุง ูููุฑุฃ ู
ุน ุจุนุถ ุงู
122
00:07:58,480 --> 00:08:04,220
example. ุฎููุง ุงู example ูุงุญุฏุฉ ู
ููู
ุชูุฑุฃู ููุงุญุฏุฉ
123
00:08:04,220 --> 00:08:08,780
ุชุทูุน ุงูู
ุนููู
ุฉ ุงููู ููู. ุฎููุง ู
ุดุงุฑูุฉ ู
ููู
. ุชุนุงู ููุง.
124
00:08:10,100 --> 00:08:13,120
The average cost of a hotel room in New York is
125
00:08:13,120 --> 00:08:19,760
said to be $168 per night. To determine if this is
126
00:08:19,760 --> 00:08:25,550
true, a random sample of 25 hotels taken and
127
00:08:25,550 --> 00:08:38,050
resulted in an x-bar of $172.50 and an s of $15.40. ุงู
128
00:08:38,050 --> 00:08:42,370
standard sample standard deviation 15. This is the
129
00:08:42,370 --> 00:08:50,130
appropriate hypothesis at alpha 0.05. ุทูุน ุฒู
ููุชู
130
00:08:50,130 --> 00:08:54,780
ุญูุช ูู ุดุบูุชูู ู
ูู
ุงุช ูู ุงู example. ุจุชุญูู ุงู average
131
00:08:54,780 --> 00:09:00,360
cost of a hotel room is said to be $168. ุงูู 168
132
00:09:00,360 --> 00:09:06,740
sample mean ููุง ุงู population meanุ ุงูู 168 ูู ุจูุญููุด
133
00:09:06,740 --> 00:09:09,640
ุงู average cost of a hotel room in New York ุจูุฏ
134
00:09:09,640 --> 00:09:18,400
ูููุง population. ุฅุฐุง ุงู 168 ูู mu. ุฅุฐุง ุงู mu 168. ูุฐุง
135
00:09:18,400 --> 00:09:27,240
ููุทุฉ ู
ูู
ุฉ. ุงูููุทุฉ ุงูุชุงููุฉ ุจุชุฃูุฏ ุฅุฐุง ูุงู ูุฐุง ุตุญูุญุ ุจุฏู
136
00:09:27,240 --> 00:09:35,400
ุฃุญุฏุซ ููู
ุฉ ุตุญูุญุฉ ููุง ูุฃุ ุฎู
ุณูู ูุนุดุฑูู ุฎู
ุณูู ูุนุดุฑูู
137
00:09:37,930 --> 00:09:45,350
ุฅู โฆ ุงูู ูุฐูุ x-bar. ุตูุญููุงุ ู
ุด X. x-bar of $172.5
138
00:09:45,350 --> 00:09:50,150
ูุนุทู x-bar. Average ู
ูู ุงููู ูุนุทู ุงู average ูู 25
139
00:09:50,150 --> 00:09:54,450
ุงูู 25 sample. ู
ุธุจูุทุ ููุฐู ุนุจุงุฑุฉ ุนู ุงู sample mean ููุง
140
00:09:54,450 --> 00:09:58,010
ุงู population meanุ ุงู sample. ุทุงูู
ุง ุญููุช random
141
00:09:58,010 --> 00:10:02,730
sample ูู 25 resulted in. ู
ุน ูุฏู ุนูุฏ ุงู sample mean
142
00:10:02,730 --> 00:10:06,390
ุฅุฐุง ุงู x-bar equal 172.5
143
00:10:12,650 --> 00:10:20,150
ู S 15.4. ูุฐุง ุงู S ูู samples standard deviation ู
144
00:10:20,150 --> 00:10:27,090
ุงู S 15.4. ุทุงูุนุด ุจูุณุฃู ุงู test the appropriate
145
00:10:27,090 --> 00:10:32,280
hypothesis. ุจุฏูุง ุงู hypothesis ุงูู
ูุงุณุจุฉ. ูู ุงูุด โฆ
146
00:10:32,280 --> 00:10:36,180
ุงูุด ุงููู ุงุนุทุงูู ุงู ุงู average overall 168? We are
147
00:10:36,180 --> 00:10:39,500
testing this average, this null hypothesis against
148
00:10:39,500 --> 00:10:43,260
do you think mu should be โฆ does not equal to or
149
00:10:43,260 --> 00:10:46,220
greater than or smaller thanุ ุงููู ู
ูุญูู
ูุง ุงููู
150
00:10:46,220 --> 00:10:50,710
ุฃูู ููุง ุฃูุจุฑุ ูู ุญูู ูู ุงูู
ุซูุฉ direction ู
ุนููุ ูุฃ
151
00:10:50,710 --> 00:10:54,390
ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ
152
00:10:54,390 --> 00:10:55,550
ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ
153
00:10:55,550 --> 00:10:59,170
ูุฃ ูุฃ
154
00:10:59,170 --> 00:10:59,350
ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ
155
00:10:59,350 --> 00:11:08,530
ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ ูุฃ
156
00:11:08,530 --> 00:11:12,830
ูุฃ
157
00:11:19,730 --> 00:11:23,670
ุงูุขู ูุชุทูุนูุง ุงู information ุงููู ูุงุฒู
ุฉ ู
ู ุงูู
ุซูุฉุ
158
00:11:23,670 --> 00:11:30,200
ู
ุงุดูููุ ุจุจุฏุฃ ุฃูู
ูุ ุฃูู
ู ุฃูุงุ ุจู
ุง ุฃู ูุชุจูุง ุงุญูุง ุงููู
159
00:11:30,200 --> 00:11:32,680
ูู null hypothesis ู ุงููู ูู ุงู alternative
160
00:11:32,680 --> 00:11:37,160
hypothesisุ ุงููู ูู ุฅู ุงู mu equal 168 ูุฅู ุงู
161
00:11:37,160 --> 00:11:42,260
alternative hypothesis ุฅู ุงู mu not equal 168. ุฃูู
162
00:11:42,260 --> 00:11:44,940
ุดุบู ุจูุทูุน ูููุง ุจุงูุณุคุงูุ ุฒู ู
ุง ููุง ู
ุงุฎุฏููู ูุจู ูุฏูุ ุจูุดูู
163
00:11:44,940 --> 00:11:48,500
ุฅุฐุง ุงู sigma known ููุง unknown. ุทุจุนุง ุนูุฏู ุงูุณุคุงู ุงุญูุง
164
00:11:48,500 --> 00:11:51,180
ูุชุจูุง ูู ุงูู
ุนุทูุงุชุ ู
ุนุทููู ุงู sample standard
165
00:11:51,180 --> 00:11:54,960
deviation ุฃู
ุง ุงู sigma ู
ุด ู
ุนุฑููุฉ. So ุจูุญูู ุฅูู โฆ
166
00:11:54,960 --> 00:12:02,830
so ุนูุฏู ุงููู ูู ุงู sigma is unknown. So
167
00:12:02,830 --> 00:12:11,770
we will use โฆ ุฅูุด ููุณุชุฎุฏู
ุ T test โฆ T test. ูุจู
ุง
168
00:12:11,770 --> 00:12:14,350
ุฃููุง ููุณุชุฎุฏู
ุงู T test ููู ูุชุจ ูู you assume the
169
00:12:14,350 --> 00:12:16,930
population distribution is normal. ุงุญูุง ุญูููุง ุฅูู
170
00:12:16,930 --> 00:12:19,770
ุนุดุงู ูุณุชุฎุฏู
ุงู T test ูุงุฒู
ููุชุฑุถ ุฅูู ุงู population
171
00:12:19,770 --> 00:12:22,830
follows normal distribution. ูุนูู ุงูุชูุฒูุน ุทุจูุนู.
172
00:12:22,830 --> 00:12:27,010
ุทุจุนุง ูู ุงู T test ุจุฏูุง ูุฌูุจ ุฅุดู ุงุณู
ู T statistic
173
00:12:27,010 --> 00:12:30,210
ุงููู ูุจู ุดููุฉ ูุชุจูุง ูุงูููู ูููุง. ุฃูู ุฅุดู ุจูุฌูุจ ุงู T
174
00:12:30,210 --> 00:12:30,950
statistic.
175
00:12:35,440 --> 00:12:39,980
divided by ุงู S ุนูู a square root of n. ููู
176
00:12:39,980 --> 00:12:47,200
ุงูู
ูุถูุนุงุช ุทูุนูุงูู
ุฏุบุฑู. ู
ู ุจุจูู ุดุจูุฉ. Minus ุงููู ูู
177
00:12:47,200 --> 00:12:50,920
168 divided by ุงู S ุงููู ูู
178
00:12:50,920 --> 00:12:55,980
sample standard deviation 15.4 ุนูู
179
00:12:55,980 --> 00:13:00,280
ุงููู ูู a square root of n 25. ุจูุทูุน ุนูุฏู
180
00:13:00,280 --> 00:13:07,530
ุงู T statistic 1.46. ุงูุญู
ุฏ ููู ุงูู
181
00:13:07,530 --> 00:13:11,170
ููุงููุชูุง ุจุนุฏ ู
ุง ุฌุจูุง ุงู T statistic ุจุฏูุง ูุฌ
216
00:15:50,230 --> 00:15:53,950
ุฃูุชูุง ุดุงูููู ูู ุนูุฏูู
T-table hands ุฅูุด ุงุณู
ูุ ุงููู
217
00:15:53,950 --> 00:16:02,070
ูู DF ุตุญุ ูุฐุง ุงูู DF is equal DF ูู degree of
218
00:16:02,070 --> 00:16:07,400
freedom ุงููู ูู ุจุงูุนุฑุจู ุฏุฑุฌุฉ ุงูุญุฑูุฉ ูุนูู ุงููู ูู
219
00:16:07,400 --> 00:16:10,900
ูุงููู ุซุงุจุช ุงููู ูู ุงูู N ููุต ูุงุญุฏ ุงููู ูู ุงูู sample
220
00:16:10,900 --> 00:16:15,300
size minus one okay ุจูุฌูุจ ุงูุฏูููุฉ ูุฃูู ุฅุดู ุทุจุนุง
221
00:16:15,300 --> 00:16:22,320
ูุฅููุง ุงูู N ูุฏุงุด 25 minus one ูุฏุด ุจุทูุน 24 ููุฃ ูุงุญูุง
222
00:16:22,320 --> 00:16:26,600
ุจูุฌูุจ ุงููู ูู ุนูุฏู ุฃูุง two sides okay ููุฃ ูู ุทูุนูุง
223
00:16:26,600 --> 00:16:30,680
ุนูู ุงูุฌุฏูู ุจูุญูู ูู ู
ุนุทูู ุฅูู table entry for B and
224
00:16:30,680 --> 00:16:35,020
C is the critical value T star with probability B
225
00:16:35,020 --> 00:16:38,460
lying to its right and probability C lying between
226
00:16:38,460 --> 00:16:43,880
minus T star and T star ู
ุนุทููู ุงูุฌุฏูู ุฅู ุฃูู ุดู
227
00:16:43,880 --> 00:16:47,380
ููู ุงูู DF ุงููู ุงุญูุง ุญุณุจูุงูุง ุงููู ูู ุงูู N minus one
228
00:16:47,380 --> 00:16:50,740
ูุนูู ูุงุฒู
ุชุฌูุจู ูููุง ุงูู DF N minus one ู ุจูุญูููู
229
00:16:50,740 --> 00:16:54,240
ุฅู
ุง ุจุชุฑูุญู ุชุณุชุฎุฏู
ู ุงูู .. ุงูู upper tail probability
230
00:16:54,240 --> 00:16:59,140
ุงูู B ูุฐูู ูุนูู ูุฐุง ุงูู B ุฃู ู
ู
ูู ูุณุชุฎุฏู
ุงููู ูู ุงูู
231
00:16:59,140 --> 00:17:02,140
ุงุญุชูุงุท ุฃู ุฅุฐุง ูุงู ุนูุฏู ู
ูุฌุฉ ุจุณุงูุจ T ุฒู ู
ุง ุงุญูุง
232
00:17:02,140 --> 00:17:05,100
ุนูุฏูุง ู
ูุฌุฉ ุจุณุงูุจ T ู
ู
ูู ูุณุชุฎุฏู
ุงููู ูู ุงูู hand
233
00:17:05,100 --> 00:17:08,600
ุงูู
ุณุงุญุฉ ุงููู hand ุงููู ู
ูุฌูุฏุฉ ุจุฃุฎุฑ ุงูุฌุฏูู ุชุญุช
234
00:17:08,600 --> 00:17:13,340
ู
ู
ุชุงุฒ ุงูุขู ุฒู
ููุชู ูุงูุช ุญุงููุฉ ูุงูุช ุชุงููุฉ ุงูู table
235
00:17:13,340 --> 00:17:17,400
ุงููู ุนูุฏู ุงุณู
ู T table ูุจูุนุทู ุงูู area to the right
236
00:17:17,400 --> 00:17:21,340
ุดุงููุฉ ุงูุตูุฑุงุก ูุฐู ุงููู ููุง ูุฐู ุงูู area to the right
237
00:17:21,340 --> 00:17:26,200
ุงูู
ูุทูุฉ ุงููู ููุง ุงูู Z table ูุงู ูุนุทู ุงูู area ูููู
238
00:17:26,200 --> 00:17:29,640
to the left ุงูู T table to the right ุฅุฐุง ููุณู ุงูุขู
239
00:17:29,640 --> 00:17:33,520
ุงูู Z ุงูู Z area to the left ุงูู T table ุงูู area to
240
00:17:33,520 --> 00:17:38,620
the right ุงูู rows represent degrees of freedom
241
00:17:38,620 --> 00:17:42,770
ุฏุฑุฌุงุช ุงูุญุฑูุฉ ุฒู ู
ุง ุญูุช degrees of freedom equals n
242
00:17:42,770 --> 00:17:45,750
minus one in this case we have sample size of
243
00:17:45,750 --> 00:17:48,350
twenty five so degrees of freedom of twenty five
244
00:17:48,350 --> 00:17:52,990
minus one which is twenty four so now two steps
245
00:17:52,990 --> 00:17:59,850
just locate the row of twenty four because degrees
246
00:17:59,850 --> 00:18:04,870
of freedom of twenty four and column of this
247
00:18:04,870 --> 00:18:06,830
probability which is point zero two five
248
00:18:10,190 --> 00:18:16,050
ุงูู degrees of freedom ุจุนู
ูู across ู
ุน ู
ูู ู
ุน ุงูู
249
00:18:16,050 --> 00:18:19,210
probability which is point zero to five ุงุนู
ู
250
00:18:19,210 --> 00:18:25,630
across ุงููู ููู ุจุทูุน ุงูุฌูุงุจ ุจุทูุน ุงูุฌูุงุจ ูุงู ุงููู
251
00:18:25,630 --> 00:18:32,010
ูู two point zero two zero six four ุฅุฐุง
252
00:18:32,010 --> 00:18:37,110
ุงูุฌูุงุจ ุทูุน two point zero six four ุทุจุนุง
253
00:18:37,110 --> 00:18:43,830
ุนูุฏู ู
ูุฌุจ ุณุงูุจ Tูู
ูู ุงูู DF 24 ูุงูู probability
254
00:18:43,830 --> 00:18:48,630
ูุงูุช 0.025 ููู
ุชูุง ุทุจุนุง ููู
ุฉ ูุงุญุฏุฉ ุจุณ ูู
ููุณ ุงูููู
ุฉ
255
00:18:48,630 --> 00:18:51,870
ูุชููู ูุฅูู normal distribution ุจุณ ูุงุญุฏุฉ ุจุงูู
256
00:18:51,870 --> 00:18:59,190
negative ููุงุญุฏุฉ ุจุงูู positive ู
ูุฌุฉ ุจุงูุณุงูุจ 2.064
257
00:18:59,190 --> 00:19:05,690
6 4 ุตุญุ ูุฃ ูุฃ ุฃูู 2 ุตุญูุญ ุจุณ ููู ุตุญ ูุนูู ุจุณ ุญุท ุงูู
258
00:19:05,690 --> 00:19:12,120
point ูุงุถุญ ูุฃู ุงูุฃููู two point zero six four ูุงูู
259
00:19:12,120 --> 00:19:19,200
ุชุงููุฉ ุฒููุง negative two point zero six four ูุฏูู
260
00:19:19,200 --> 00:19:23,560
ูู
ุนูุฏู ุทุจุนุง ูุงู ุงูู
ูุฌุฉ ุจุณุงูุจ ุงุชููู point zero six
261
00:19:23,560 --> 00:19:34,420
four ูู
ุฅูุด ุงูู critical values ูุฏูู ูู
262
00:19:34,420 --> 00:19:38,040
ูู ุฃู ุนุตุฑููุฃ ุนูุฏ .. ุจูุฑุฌุน ููู ุฌูุจูุง .. ุงููู ูู ุงูู
263
00:19:38,040 --> 00:19:40,860
T statistic ุงููู ุฅุญูุง ุฌูุจูุงูุง ูู one point four
264
00:19:40,860 --> 00:19:44,100
six ุจูุดูู ุฅุฐุง ูู ู
ูุฌูุฏุฉ ุจู rejection region ููุง ุจุงูู
265
00:19:44,100 --> 00:19:46,440
non rejection region ุญุณุจ ู
ููุ ุญุณุจ ุงูู critical
266
00:19:46,440 --> 00:19:50,160
values ููู ู
ูุฌูุฏุฉุ ุงููู ูู one point four six ููู
267
00:19:50,160 --> 00:19:52,260
ูุชููู ู
ูุฌูุฏุฉุ ูู rejection .. ูู rejection region
268
00:19:52,260 --> 00:19:54,860
ููุง non rejection regionุ non .. non rejection
269
00:19:54,860 --> 00:20:00,060
region ูุฃููุง ูุชููู ูุฐู ุชูุฑูุจุง one point four six
270
00:20:00,060 --> 00:20:04,180
ูุชููู ูู ุงูู non rejection region ูุจู
ุง ุฅูู ูู ูู ุงูู
271
00:20:04,180 --> 00:20:08,140
non rejection region so we will ash don't reject
272
00:20:08,140 --> 00:20:12,880
ุงููู ูู ash ุงูู null hypothesis ุจูุญูู
273
00:20:12,880 --> 00:20:16,020
ูุฐู ุนูุฏ ุงููู ุจูุฃุชู stat
274
00:20:19,750 --> 00:20:25,610
one less than ุงููู ูู two point between them is
275
00:20:25,610 --> 00:20:35,870
six part so four point major
276
00:20:35,870 --> 00:20:35,990
point
277
00:20:39,670 --> 00:20:43,890
ูุจู
ุง ุฅูู ุงูู .. ุฃู
ุง ูู
ุง ููุฌู ูุนู
ู proof ููู .. ุงูู
278
00:20:43,890 --> 00:20:46,590
alternative hypothesis ููุญูู ุฅูู there is .. ุงููู
279
00:20:46,590 --> 00:20:50,450
ูู insufficient evidence that the true .. the true
280
00:20:50,450 --> 00:20:54,510
mean is different .. different from the given mean
281
00:20:54,510 --> 00:21:00,050
ุงููู ูู 168 ู
ู
ุชุงุฒุฉ ุทูุน ุฒู
ููุชู ุงููู ุนู
ูุชู ุงูุดุบูุชูู
282
00:21:00,050 --> 00:21:05,120
ูุฑุง ุจุนุถ ุฑูู
ูุงุญุฏ ุญุณุจุช ุงูู T statistic one point four
283
00:21:05,120 --> 00:21:12,360
six ุญุณุจุช ุงูู critical values ู
ู ุงูู T table ูุงูู T
284
00:21:12,360 --> 00:21:16,780
table ุงุณุชุฎุฏุงู
ู ุณูู ููุฑุฏูู ูุง ุจู ุดููุฉ ู
ุด ููู ุงููู
285
00:21:16,780 --> 00:21:21,120
ูู ุฅูู ุงูู T table ูู ุงูู T table ุฒู ู
ุง ุญููุช ู
ุฑุฉ
286
00:21:21,120 --> 00:21:25,160
ุชุงููุฉ ุจุฑุทูุน degrees of freedom at one four ูุจุฏูุฑ
287
00:21:25,160 --> 00:21:28,800
ุนูู ุงูู probability of one zero two five ุทูุนุช ุงูู
288
00:21:28,800 --> 00:21:33,170
critical value two point zero six four ุฅุฐุง ุงูุชุธุฑ
289
00:21:33,170 --> 00:21:38,670
ุฅูู ุงูู 2.064 ุงููููุชุด ูุชููู negative 2.064 We
290
00:21:38,670 --> 00:21:45,250
reject if this statistic fall either to the upper
291
00:21:45,250 --> 00:21:49,310
side I mean greater than 2.064 ุฃู ุฃูู ู
ู ุงูู
292
00:21:49,310 --> 00:21:54,030
negative 2.064 Now is this value fall in the
293
00:21:54,030 --> 00:22:00,050
rejection region ุงูู 1.46 ุฃูู ู
ู 2.064 ูุฃูู ูุชุฌุงูุฒ
294
00:22:00,050 --> 00:22:03,730
ุจูู ูุฐู ุงูุงุซููู ุงูููู
. ูุฐุง ูุนูู ุฃููุง ูุง ูุชุฌุงูุฒ
295
00:22:03,730 --> 00:22:09,110
ุงูู hypothesis. ุฅุฐุง ูุฑุงุฑูุง ุฅูุดุ ูุง ุชุชุฌุงูุฒุ ููู ุตุญูุญ.
296
00:22:09,730 --> 00:22:12,890
ูุง ูููู ูุญุงููุ ุนุงูุฒ ูุดุชุบู ู
ู ุงููุฌุงุฑูุฉ ุฅูู ุงููุชูุฌุฉ.
297
00:22:13,650 --> 00:22:17,370
ุงููุชูุฌุฉุ ููู
ุชูู ุจุญูููู
ุฏุงุฆู
ุงุ ู
ูุฑุฑุงุช. ุทุงูู
ุง ุญููุช
298
00:22:17,370 --> 00:22:21,330
ูุง ุชุชุฌุงูุฒุ ู
ุน ูุฏูุ ูุง ููุฌุฏ ุฏููู ูุงูู ูุฅุธูุงุฑ ุฃู ุงูู
299
00:22:21,330 --> 00:22:26,270
true mean Cost is different from 168 ูุนูู ุงูุฅุฏุนุงุก
300
00:22:26,270 --> 00:22:32,090
ุงููู ุจูุญูู ุฅูู ูุฎุชูู ุนู 168 ู
ุง ูุฏุนุจุ ู
ุง ููุด ุฏููู
301
00:22:32,090 --> 00:22:39,010
ูุงูู ูุฏุนุจ ูู ุฃู ุณุคุงูุ
302
00:22:39,010 --> 00:22:42,150
ูู ุงูู T-testุ ุงูู T-test depends on a new term
303
00:22:42,150 --> 00:22:45,890
called degrees of freedom ุฏุฑุฌุงุช ุงูุญุฑูุฉุ ุฃูุช ู
ุด
304
00:22:45,890 --> 00:22:50,190
ู
ุทููุจ ู
ูู ูู ุงูู course of basic statistics ุชุนุฑู ุฅูู
305
00:22:50,190 --> 00:22:52,790
ุฃูุซุฑ ู
ู degrees of freedom equals n-1
306
00:22:57,220 --> 00:23:00,320
ูุฃูุง ุจุฅู
ูุงูู ุงุณุชุฎุฏุงู
ูุง ููุท ููุชุงุจุฉ ุงูููู
307
00:23:00,320 --> 00:23:03,100
ุงูู critical ุฅุฐุง ุนุดุงู ุชุนู
ู location ููููู
308
00:23:03,100 --> 00:23:07,240
ุงูู critical ุจูุฒู
ูู ุดุบูุชูู ููุฑุฑุช ุจูู ุชุงูุช ู
ุฑุฉ
309
00:23:07,240 --> 00:23:11,880
ุจูุฒู
ูู ู
ูู ุงูู degrees of freedom ุงููู ูู 24 ุงููู
310
00:23:11,880 --> 00:23:15,780
ูู n-1 ูุงูู probability ุงููู ุฃูุง ุนุงูุฒูุง in this
311
00:23:15,780 --> 00:23:20,060
case Alpha is 5% ุฅุฐุง ุงูู probability ูุชููู ุจูู ุฌุณู
ูุง
312
00:23:20,060 --> 00:23:22,440
ุนูู ุงุชููู zero to five ุนูู ุงููู
ูู ู zero to five
313
00:23:22,440 --> 00:23:26,360
ุนูู ุงูุดู
ุงู ุงู ุงูู alpha ุจุชูู ูุนูู ูู ู
ุง ูุถูุด ุงูู
314
00:23:26,360 --> 00:23:30,160
alpha we assume alpha to be five percent any
315
00:23:30,160 --> 00:23:36,280
question ุฃู ุณุคุงู ู
ู
ูู ุงูุฏูุชูุฑ ุจุฑุถู ูู non
316
00:23:36,280 --> 00:23:41,720
rejection ูุฃู ููุง 95 ูู ุชุญุช ุงููู ูู ุงูู minus ุชุดูู
317
00:23:41,720 --> 00:23:48,430
ุงูู table ู
ู ุชุญุช ุฎุงูุต ูุนุทููุง ุงููู ูู Z star ุงูู Z
318
00:23:48,430 --> 00:23:52,210
star ูุฏูู ุงูู Z ุงููู ุฎุฏูุงูุง ูู ุงูุฃูู ุทุจุนุง ุงูู T ูุงูู
319
00:23:52,210 --> 00:23:56,730
Z close to each other for large sample size ูุนูู
320
00:23:56,730 --> 00:24:00,630
when the sample size gets bigger and bigger T
321
00:24:00,630 --> 00:24:04,350
becomes very small to Z ูุนูู ูู
ุง N ุจุชูุจุฑ ูุชูุฑ
322
00:24:04,350 --> 00:24:09,590
ุจุชุตูุฑ ููู
ุฉ ุงูู T ูููู
ุฉ ุงูู Z ู
ุงููู
ุญูุงูู ุจุนุถ ุชูุงุญุธ
323
00:24:09,590 --> 00:24:14,240
ููุง ูู
ุง ุงูู degree of freedom 1000 ุทูุน ุนูู ููู
ุฉ T
324
00:24:14,240 --> 00:24:17,920
ุงูุณุทุฑ ุงููู ุฌุงุจูู ุงูุฃุฎูุฑ ูุงูุณุทุฑ ุงูุฃุฎูุฑ ุงููุฑู ุจูููู
325
00:24:17,920 --> 00:24:25,720
ู
ุงูู ุจุณูุท ุงูุฃูู ููู
ุฉ 0.675 ูุชุญุช ูุฏูุ 0.674 ูุฐุง
326
00:24:25,720 --> 00:24:31,580
ูุชุญุช Z ููู ุญุงูุฉ ุชุจุนุชูุง ุฅุฐุง ุชุฐูุฑ ูู
ุง ูุงูุช ุงูู Z star
327
00:24:31,580 --> 00:24:37,560
1.96 ููุง job 1.962 ูุงูุตูุงุฉ ุงูุฃุฎูุฑุฉ ุจูุจูู ูู ูุฏ ุฅูุด
328
00:24:37,560 --> 00:24:41,640
ูุฑูุจ ุงูุชูุฒูุน ุงูุทุจูุนู ุงูู Z ู
ู ุชูุฒูุน ุงูู T ุฅุฐุง as N
329
00:24:41,640 --> 00:24:45,720
gets bigger and bigger ุจูููู ุงูู T ู
ุงูู ูุฑูุจ ู
ู ุงูู
330
00:24:45,720 --> 00:24:51,160
Z ูุนูู ูู
ุง N ูุจูุฑุฉ ุจูููู ููู
ุฉ ุงูู T ุชูุฑูุจุง ููุณ ููู
ุฉ
331
00:24:51,160 --> 00:25:01,060
ุงูู Z ุจุณ ูู ุฃู ุณุคุงูุ ุฃู ุณุคุงูุ
332
00:25:01,060 --> 00:25:07,050
ูู
ููุง ุฏูุ ุงูุจุนุฏ ูู to use the t-test must assume
333
00:25:07,050 --> 00:25:10,310
the population is normal ุฒู ู
ุง ุญูููุง ุฅูู ูู ูุงุฒู
334
00:25:10,310 --> 00:25:12,750
ุฅูู ููุชุฑุถ ุฅูู ุงูู population is normal
335
00:25:12,750 --> 00:25:15,970
distribution, follows normal distribution ุจูุญูู ูู
336
00:25:15,970 --> 00:25:18,770
ุนูู ุฅุดู as long as the sample size is not very
337
00:25:18,770 --> 00:25:22,750
small and the population is not very skewed, the t
338
00:25:22,750 --> 00:25:26,960
-test can be used ุณุจู ูุญูููุง ุงุญูุง ูุจู ููู ุฅูู ูู ู
ุง
339
00:25:26,960 --> 00:25:30,480
ุงูู sample size ูุจุฑุช ูู ู
ุง ูุงู ุนูุฏู ุญุฌู
ุงูุนููุฉ ุฃูุจุฑ
340
00:25:30,480 --> 00:25:33,620
ูู ู
ุง ูุฑุจุช ุฅู ูู ุจูููู ุดูููุง ุจูุจุฏุฃ ูุชูุฒุน ุฃูุซุฑ
341
00:25:33,620 --> 00:25:35,800
ูุจุงูุชุงูู ุจุชูุฑุจ ุฅู ูู ุชุตูุฑ normal distribution
342
00:25:35,800 --> 00:25:41,060
ุฃูุซุฑ ูุจูุญูู ูู ุฅู ุงุญูุง ูู ู
ุง ุญุฌู
ุงูุนููุฉ ูุจุฑ ูุงูู
343
00:25:41,060 --> 00:25:43,280
population ููููู ุฃูุซุฑ ุฃูุฑุจ ูู ุงูู normal
344
00:25:43,280 --> 00:25:46,840
distribution ูุจููุฏุฑ ุฅู ูุณุชุฎุฏู
ุงูู T test ูุจุนุฏ ููู
345
00:25:46,840 --> 00:25:51,690
ุญูู ูู ุงููู ูู .. ุฃูุง ูุงุถุญูุง ุฏู ุฃูุซุฑ ุงูุดุฑุท ุงูุฃุณุงุณู
346
00:25:51,690 --> 00:25:54,850
ุนุดุงู ุงุณุชุฎุฏู
ุชูู ุฅู ูููู ุนูุฏู normal distribution is
347
00:25:54,850 --> 00:25:58,410
satisfied ุนุดุงู ุฃุถู
ู normal distribution ูุงุฒู
ุงูู
348
00:25:58,410 --> 00:26:02,150
sample size ูููู not very small ูุนูู ุฅูุด ุนูุณ not
349
00:26:02,150 --> 00:26:05,630
very smallุ large .. large .. ูุฐู ูุงุญุฏุ ุงูุญุงูุฉ
350
00:26:05,630 --> 00:26:07,990
ุงูุชุงููุฉ and the population is not very skewed
351
00:26:07,990 --> 00:26:11,990
ู
ุง ููููุด ู
ูุชูู ูู
ูู ุฃู ุดู
ุงู ุจุฏุฑุฌุฉ ูุจูุฑุฉ ูุนูู ู
ู
ูู
352
00:26:11,990 --> 00:26:14,950
ูููู ููู ุงูุชูุงุก ุดููุฉ ููู ู
ุง ููููุด ุงูุชูุงุก ุจุฏุฑุฌุฉ
353
00:26:14,950 --> 00:26:19,930
ูุจูุฑุฉุ ูุฐุง ูู ุญุงูุฉ sample size is large enough or
354
00:26:19,930 --> 00:26:22,830
population is not very skewed either to the right
355
00:26:22,830 --> 00:26:25,870
or to the left in this case we can assume the
356
00:26:25,870 --> 00:26:29,830
population is normal and go ahead using T test ุฅุฐุง
357
00:26:29,830 --> 00:26:33,330
ุจุณุชุฎุฏู
T ูู ูุฏูู ุงูุญุงูุชูู how can we evaluate
358
00:26:33,330 --> 00:26:38,950
normality as we did before in section 6.3 either
359
00:26:38,950 --> 00:26:43,710
by using histogram or normal probability plot we can
360
00:26:43,710 --> 00:26:47,150
evaluate if the data is normally distributed ุฎุฏูุง
361
00:26:47,150 --> 00:26:51,690
ุฌุจู ููู ุงูุขู ูู ููุทุฉ ุฃูุง ูุดุฑุญูุง ุงููู ูู .. ุงููู
362
00:26:51,690 --> 00:26:55,330
ูุดุฑุญูุง ูู ุฒู
ููุชู ุงูู critical value approach ุทุฑููุฉ
363
00:26:55,330 --> 00:26:58,810
ุงูู critical value ููู
ุฉ ุงูุญุฑุฌุฉ ูู ุทุฑููุฉ ุซุงููุฉ ุงุณู
ูุง
364
00:26:58,810 --> 00:27:03,050
ูุงุด ุงูู P value approach ููู
ุฉ ุงูู P value ุฒู ู
ุง
365
00:27:03,050 --> 00:27:07,050
ุงุณุชุฎุฏู
ูุงูุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุงูุขู ุจุฏู ุฃููุฏ ุฃูุช ูุญุงูู
366
00:27:07,050 --> 00:27:11,930
ู
ุนุงูู ุฏูููุชูู ุชุทูุนู ูู ููู
ุฉ ุงูู P value ู
ู ุงูู table
367
00:27:11,930 --> 00:27:15,050
ูุฐุง
368
00:27:15,050 --> 00:27:18,670
ุงูู slide ู
ุด ุนูุฏู .. ู
ุด ูู ุงููุชุงุจ ู
ูุฌูุฏุฉ ูุฐุง ุงูู
369
00:27:18,670 --> 00:27:21,490
slide ู
ุด ู
ูุฌูุฏุฉ ูู ุถู
ู ุงูู slides ุงููู ู
ุนุงู ูุฐุง ุงูู
370
00:27:21,490 --> 00:27:24,810
slide ุจุชุญูู ุนู ุงูู P value approach ุฃูุช ุญุณุจู ููู ูู
371
00:27:24,810 --> 00:27:30,630
ุจูุฏู ุงูุขู ุจุญูู ูููู ุทูุนู ูุฑูุฉ ุตุบูุฑุฉ ูุงุญุณุจู ููู
ุฉ ุงูู
372
00:27:30,630 --> 00:27:34,650
P value ููู test ุงููู ุทูุนุช ููู
ุชู one point four six
373
00:27:34,650 --> 00:27:38,350
ุญุงููู ูุชุทูุนู ุงูุฌูุงุจ ููู P value approach
374
00:27:41,430 --> 00:27:44,570
ุฃูู ู
ุง ูุฎุจุฑ ุงูุทุงูุจ ุจุฃู P-Value ูู one point ูููุงู
375
00:27:44,570 --> 00:27:51,170
ุดูุก ุบูุท ูุฃู P-Value ุจูู 0 ู1 ุทุจุนุง
376
00:27:51,170 --> 00:27:57,670
P-Value ูู probability ุจูู 0 ู1 ุทูุจุ
377
00:27:57,670 --> 00:28:00,210
ูู ูู
ูู ุฃุญุฏ ุฃู ูุฑููู ููู ุฃุฎุฑุฌ ุงูููุญุฉุ
378
00:28:16,430 --> 00:28:20,030
ุทูุจ ุฎูููู ุฃุญููุง ูุฃุดูู ุงูุฎุทุฃ ุนูุฏู ุจูู ุงูู
ูุถูุน
379
00:28:20,030 --> 00:28:30,610
ุฑูุฒู ู
ุนุงูุง ุงูู
ูู ู
ุงููุง ู
ุง ุชุณุงููุด 168 ูุนูู one-tailed
380
00:28:30,610 --> 00:28:39,150
ููุง two-tailedุ two-tailed ุฅุฐุง
381
00:28:39,150 --> 00:28:39,710
ุงูู P value
382
00:28:42,580 --> 00:28:53,700
ูุญู ูุจุญุซ ุนู ุงุนุชูุงุฏ T ุฅู
ุง ุฃู ูุณูุท ูู ูุฐุง ุงูุฌุงูุจ
383
00:28:53,700 --> 00:29:02,420
ุงูุตุญูุญุ ุงูุขู ููู
ุฉ ุชุงุนุชูุงุฏ T ูู 1.46ุ ูุฐูู ุฃูุจุฑ ู
ู
384
00:29:02,420 --> 00:29:11,470
1.46. ุงูุขู ุจู
ุง ุฃููุง ูุชุญุฏุซ ุนู ุชุฌุงุฑุจ 2D ุชููู ููุงู
385
00:29:11,470 --> 00:29:17,410
ุงุชูุงููู ู
ู ุงูู
ูุงุทู ูุงุญุฏ ุนูู ุงููู
ูู ู
ู 1.46 ูุงูุขุฎุฑ
386
00:29:17,410 --> 00:29:23,170
ุนูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ
387
00:29:23,170 --> 00:29:27,570
ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู
388
00:29:27,570 --> 00:29:33,050
ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1
389
00:29:33,050 --> 00:29:35,950
.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู
390
00:29:35,950 --> 00:29:38,850
ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅูู ุงููุณุงุฑ ู
ู 1
391
00:29:38,850 --> 00:29:42,300
.46 ุฅูู ุงููุณุงุฑ ู
ู 1.46 ุฅุฐุง ูู ุงูู two-sided ุฃู ุงู
431
00:33:06,000 --> 00:33:14,720
ุฃูุซุฑ ู
ู Alpha ู
ู 5% ูุฐูู ูุง ูููุฒ
432
00:33:36,530 --> 00:33:42,310
ุจุฅู
ูุงูู ุงุณุชุฎุฏุงู
ุจุฑุงู
ุฌ ุญุงุณูุจูุฉ ุฌุงูุฒุฉ ุชุนุทูู ุงูู exact
433
00:33:42,310 --> 00:33:42,830
result
434
00:33:46,800 --> 00:33:52,740
around point one five seven point one five seven
435
00:33:52,740 --> 00:33:59,280
ูุฐู ุงูู exact answer ูุญู ู
ุด ูุชุทูุน ุงูู exact ููุงุฆูุงุ
436
00:33:59,280 --> 00:34:02,980
ูุชุทูุน ุงูู approximate value ุฎูุงุตุ ุฅุฐุง ูุงู ุงูู two
437
00:34:02,980 --> 00:34:05,680
approaches to reject or don't reject the null
438
00:34:05,680 --> 00:34:10,080
hypothesis ุทูุจ ุงููู ูุงู ุฌุงู ุจุงุฎุฏ ุงูู one tipุ
439
00:34:10,080 --> 00:34:14,460
ุฐุงูุฑูู ุฅูู ุจูุ ุฎูุงุตุ
440
00:34:14,460 --> 00:34:16,080
ู
ุด ู
ุดููุฉุ ุจูุฑุง ุจููู
ู ุฅู ุดุงุก ุงููู
|