File size: 37,114 Bytes
ac87599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1
00:00:20,650 --> 00:00:22,910
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู…ุŒ today ุฅู† ุดุงุก ุงู„ู„ู‡ we

2
00:00:22,910 --> 00:00:25,990
continue with chapter 9, at the last lecture we

3
00:00:25,990 --> 00:00:29,890
talked about hypothesis testing and we said that

4
00:00:29,890 --> 00:00:33,990
there are two cases when I will deal with the

5
00:00:33,990 --> 00:00:37,710
hypothesis tests. There are two cases, the first one 

6
00:00:37,710 --> 00:00:42,030
we said, and it depends on the existence of sigma

7
00:00:42,030 --> 00:00:46,910
which is the population standard deviation. We said 

8
00:00:46,910 --> 00:00:50,510
that the first case is when sigma is known and we

9
00:00:50,510 --> 00:00:53,290
took it in details at the last lecture. We said 

10
00:00:53,290 --> 00:00:57,090
that we will use the z test, and under the z test there are

11
00:00:57,090 --> 00:01:00,640
two approaches: ุงู„ critical value approach and ุงู„ู€ P value approach, and we learned how we

12
00:01:00,640 --> 00:01:04,500
calculate the P value, and we said that we have to

13
00:01:04,500 --> 00:01:07,520
compare the P value with alpha, which is the level of

14
00:01:07,520 --> 00:01:11,620
significance. Today we will focus on the second

15
00:01:16,340 --> 00:01:22,030
case, which is when sigma is unknown. Okay, so the

16
00:01:22,030 --> 00:01:26,430
first slide says, "Do you ever truly know sigma, ุงู„ู€"

17
00:01:26,430 --> 00:01:29,250
ู„ูŠ ู‡ูŠ population standard deviationุŸ ูŠุนู†ูŠ ู‡ู„ ุงุญู†ุง ู‡ู„

18
00:01:29,250 --> 00:01:32,890
ูุนู„ุง ุฏุงุฆู…ุง ุชูƒูˆู† ุงู„ sigma ู…ุนุฑูˆูุฉ ุนู†ุฏูŠ ูˆู„ุง ู„ุฃุŸ ุจุญูƒูŠู„ูƒ

19
00:01:32,890 --> 00:01:35,790
ุญูŠู† probably not. ูŠุนู†ูŠ perhaps ุงู†ู‡ ู…ู…ูƒู† ู…ุง ุชูƒูˆู†ุด 

20
00:01:35,790 --> 00:01:39,590
ู…ุนุฑูˆูุฉ ุงู„ sigma ุนู†ุฏูŠ. ูุจุญูƒูŠู„ูƒ ุงู† virtually all

21
00:01:39,590 --> 00:01:42,970
real-world business situations, sigma is not known.

22
00:01:42,970 --> 00:01:46,150
ูŠุนู†ูŠ ุจุงู„ุญูŠุงุฉ practically, ูŠุนู†ูŠ ุจุงู„ุญูŠุงุฉ ุจุงู„ูˆุงู‚ุนูŠุฉ

23
00:01:46,150 --> 00:01:49,820
ู…ุซู„ุง ู†ุญูƒูŠ ููŠ ุงู„ business situations ุจุงู„ุฃุบู„ุจ ุจุชูƒูˆู†

24
00:01:49,820 --> 00:01:53,320
ุงู„ sigma ู…ุด ู…ุนุฑูˆูุฉ. Okay, ุงู„ู€ ุจุนุฏ ุจุญูƒูŠู„ูƒ if there is

25
00:01:53,320 --> 00:01:57,380
a situation where sigma is known, then mu is also

26
00:01:57,380 --> 00:02:00,580
known, since to calculate sigma, you need to know mu.

27
00:02:00,580 --> 00:02:04,500
ูŠุนู†ูŠ ุจู‚ูˆู„ูƒ ููŠ situation ู„ู…ุง ุจุชูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ 

28
00:02:04,500 --> 00:02:08,360
sigma ู…ุนุฑูˆูุฉุŒ ูุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ mu ู…ุนุฑูˆูุฉ ู„ูŠุดุŸ ู„ุฃู†ู‡

29
00:02:08,360 --> 00:02:11,400
ุงู„ sigma ู„ู…ุง ุฃุฌูŠ ุฃุญุณุจ ุงู„ sigma ููŠ ุงู„ู‚ุงู†ูˆู† ุชุจุน ุญุณุงุจ

30
00:02:11,400 --> 00:02:14,800
ุงู„ sigmaุŒ ุงูŠุด ู…ูˆุฌูˆุฏุŸ ุงู„ mu. ูุจู…ุง ุงู†ูŠ ุงู†ุง ุทู„ุนุช ุงู„ 

31
00:02:14,800 --> 00:02:17,560
sigma ุงูˆ ูƒุงู†ุช ู…ุนุฑูˆูุฉ ุฃูƒูŠุฏ ุงู„ mu ู…ุนุฑูˆูุฉุŒ ู„ุฃู† ุจุณุชุฎุฏู…ู‡ุง

32
00:02:17,560 --> 00:02:23,620
ููŠ ุญุณุงุจ ุงู„ sigma. Okay, ุจุณู…ูƒ ุจุชุญูƒูŠ ู„ู„ู‡ุงุชู ุฎุงู†ูˆู† ุงู„

33
00:02:23,620 --> 00:02:29,880
sigmaุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ summation x minus mu square ุฃูˆ 

34
00:02:29,880 --> 00:02:33,560
ูˆุฑู‚ูŠู† under square root. ุงุฐุง ู„ูˆ ุญูƒูŠู†ุง sigma is non

35
00:02:33,560 --> 00:02:36,980
known

36
00:02:36,980 --> 00:02:42,300
ูŠุนู†ูŠ ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง

37
00:02:42,300 --> 00:02:43,280
ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง

38
00:02:43,280 --> 00:02:43,300
ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง ุงู†ุง

39
00:02:43,300 --> 00:02:47,220
ุฃู†ุง ู…ุธุจูˆุท ูŠุง ุนุฒูŠุฒูŠุŒ ู„ูˆ ุงู„ู€ mu ู…ุนุฑูˆูุฉุŒ ูุฃู‚ุฏุฑ ุฃุญุตู„

40
00:02:47,220 --> 00:02:53,380
ุนู„ู‰ ุงู„ sigma. ู„ูƒู† ู„ูˆ ูƒุงู†ุช ุงู„ sigma ุบูŠุฑ ู…ุนุฑูˆูุฉุŒ 

41
00:02:53,380 --> 00:02:59,840
ูุงู„ mu ุบูŠุฑ ู…ุนุฑูˆูุฉุŒ ู…ุด ู‡ูŠุŸ ุฃู†ุง ูƒู„ ุดุบู„ ุจูŠู‚ุฏุณุŒ 

42
00:02:59,840 --> 00:03:03,040
ูุจุงู„ุชุงู„ูŠ ู…ุง ูŠูู‡ุงุด ุชูƒูˆู† ุนู†ุฏูƒ ุงู„ mu ู…ุด ู…ุนุฑูˆูุฉุŒ ูˆ

43
00:03:03,040 --> 00:03:06,140
ุงู„ sigma. ูุจุงู„ุชุงู„ูŠ ุฅุฐุง ูƒุงู†ุช ุงู„ mu ุบูŠุฑ ู…ุนุฑูˆูุฉุŒ ุฃูƒูŠุฏ

44
00:03:06,140 --> 00:03:09,380
ุงู„ sigma ุบูŠุฑ ู…ุนุฑูˆูุฉ. Is it a real practice,

45
00:03:09,480 --> 00:03:14,580
problemsุŸ ููŠ ุงู„ business situations, is always sigma

46
00:03:14,580 --> 00:03:14,900
is unknown.

47
00:03:19,900 --> 00:03:23,160
ุงู„ู€ ุจุนุฏ ู‡ูˆ ุจูŠุญูƒูŠู„ูƒ if you truly know mu, there

48
00:03:23,160 --> 00:03:26,160
would be no need to gather a sample to estimate it.

49
00:03:26,160 --> 00:03:28,640
ูŠุนู†ูŠ ุจูŠุญูƒูŠ ุฅู† ู„ูˆ ู…ุซู„ุง ููŠ ุงู„ situation ุงู„ู„ูŠ ุนู†ุฏูŠ

50
00:03:28,640 --> 00:03:31,380
ุงู„ู„ูŠ ู‡ูˆ ุงู„ muุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ population mean ูƒุงู† ู…ูˆุฌูˆุฏ

51
00:03:31,380 --> 00:03:34,720
ุนู†ุฏู‡ ูู…ุง ููŠุด ุฏุงุนูŠ ุฅู† ุฃู†ุง ุฃุนู…ู„ ุฃุฌูŠุจ sample ุนุดุงู†

52
00:03:34,720 --> 00:03:39,040
ุฃุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sample mean ุนุดุงู† ูŠุนู†ูŠ ุฎู„ุงุต ูŠุนู†ูŠ 

53
00:03:39,040 --> 00:03:41,020
ุจุชูƒููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ population mean ุฅุฐุง ูƒุงู† ู…ูˆุฌูˆุฏ

54
00:03:41,020 --> 00:03:44,440
ุฎู„ุงุต ุจูŠูƒููŠ ุจูŠุณุชุฎุฏู…ู‡ ู‡ูˆ. ุงู„ู…ูˆุถูˆุน ุงุณู…ุชู‡ ุชุญูƒูŠ ู†ู‚ุทุฉ

55
00:03:44,440 --> 00:03:49,050
ู…ู‡ู…ุฉ. ุฅุฐุง ุงู„ mu ู…ุนุฑูˆูุฉ ู…ู† ุงู„ุฃุตู„ุŒ ุฃูˆ ุงู„ mu is givenุŒ ู…ุง

56
00:03:49,050 --> 00:03:52,110
ูƒู†ุช ุจู€ ูŠุดุฌุน ุฃุนู…ู„ testing ุฅุฐุง ุงู„ hypothesis test ุงู„ู„ูŠ

57
00:03:52,110 --> 00:03:57,110
ุจู†ุนู…ู„. ุงู„ู…ู‡ู… ู‡ูˆ ู„ู…ุง ุชูƒูˆู† ุงู„ mu is unknown. ุทุงู„ู…ุง 

58
00:03:57,110 --> 00:03:59,670
ุงู„ mu is unknownุŒ ุฃูƒูŠุฏ ุฃู†ุง ู‡ุนู…ู„ sample. ู„ูƒู† ู„ูˆ ุงู„ mu 

59
00:03:59,670 --> 00:04:03,230
is givenุŒ ุจูŠุดุฌุน ุฃุนู…ู„ sample. ูˆุงุถุญุŸ ูŠุนู†ูŠ ุงูุชุฑุถ ูˆุงุญุฏ

60
00:04:03,230 --> 00:04:06,930
ุจูŠุญูƒูŠ ุนู…ุฑ ุทุงู„ุจ ุฌุงู…ุนุฉ ุงุณุชู…ูŠู‡ 22 ุณู†ุฉ. ุนู…ุฑ ุทุงู„ุจ

61
00:04:06,930 --> 00:04:09,710
ุงู„ุฌุงู…ุนุฉ ูƒู„ู‡ุง. ุจูŠุดุฌุน ุฃุฎุฏ sample ุฃูˆ ุฃุนู…ู„ estimation

62
00:04:09,710 --> 00:04:13,490
ุฃูˆ ุฃุนู…ู„ test. ุฅุฐุง if the true mean is given, then

63
00:04:13,490 --> 00:04:18,290
there is no need. ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ ุชุฌุงุฑุจ

64
00:04:18,290 --> 00:04:23,690
ุชุฌุงุฑุจ ุชุฌุงุฑุจ ู‡ู„ู‚ูŠุช. Okay, ู‡ู„ู‚ูŠุช ุงู„ hypothesis

65
00:04:23,690 --> 00:04:26,670
testing when sigma is unknown. ู‡ู„ู‚ูŠุช ู‡ู†ุงุฎุฏ ุงู„ 

66
00:04:26,670 --> 00:04:29,770
differences between ุงู„ู„ูŠ ู‡ูˆ ุงู„ case ู„ู…ุง ูŠูƒูˆู† ุงู„

67
00:04:29,770 --> 00:04:32,890
sigma known ูˆ ุงู„ sigma unknown. ุฑูƒุฒูˆุง ู…ุนุงูŠุง. ุฃูˆู„

68
00:04:32,890 --> 00:04:35,650
difference ุจูŠุญูƒูŠู„ูƒ if the population standard

69
00:04:35,650 --> 00:04:38,750
deviation is unknownุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sigma ูˆู…ุง ูƒุงู†ุช ู…ุด 

70
00:04:38,750 --> 00:04:41,490
ู…ุนุฑูˆูุฉุŒ you instead use the sample standard

71
00:04:41,490 --> 00:04:44,470
deviation. ุฃุตู„ุง ูŠุนู†ูŠ ุงุฎุชู„ุงู ุจุณูŠุท. ุจู…ุง ุฃู† ุงู„ 

72
00:04:44,470 --> 00:04:47,050
population standard deviation ุงู„ู„ูŠ ู‡ูˆ ุงู„ sigma ู…ุด 

73
00:04:47,050 --> 00:04:49,990
ู…ุนุฑูˆูุฉุŒ ู‡ุณุชุฎุฏู… ุจุฏู„ู‡ุง ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ูˆ ุงู„ SุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ 

74
00:04:49,990 --> 00:04:53,750
sample standard deviation. ู‡ุงูŠ ุฃูˆู„ ุงุฎุชู„ุงู. ุชุงู†ูŠ ุฅุดูŠ

75
00:04:53,750 --> 00:04:56,890
because of this exchange, you use the T

76
00:04:56,890 --> 00:05:00,290
distribution instead of useโ€ฆ instead of the Z

77
00:05:00,290 --> 00:05:02,630
distribution to test the null hypothesis about the

78
00:05:02,630 --> 00:05:05,730
mean. ูŠุนู†ูŠ ุจุฏู„ ุงู„ู„ูŠ ุงุญู†ุง ูƒู†ุง ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ Z 

79
00:05:05,730 --> 00:05:08,950
distribution ุฃูˆ Z test, ู‡ู„ุฃ ู‡ู†ุณุชุฎุฏู… ุฅุดูŠ ุงุณู…ู‡ T

80
00:05:08,950 --> 00:05:12,270
distribution ุฃูˆ T test. ู‡ู„ุฃ ู‡ู†ุดูˆู ูƒูŠู ูŠุนู†ูŠ ุจูŠูƒูˆู† 

81
00:05:12,270 --> 00:05:16,500
ุงู„ุฎุทูˆุงุช. ุชุงู„ุช ุงุฎุชู„ุงู when using the T distribution,

82
00:05:16,500 --> 00:05:18,920
you must assume the population you are sampling

83
00:05:18,920 --> 00:05:22,580
from follows a normal distribution. ูŠุนู†ูŠ ู„ู…ุง ุฃุณุชุฎุฏู… 

84
00:05:22,580 --> 00:05:25,140
ุงู„ T test ู„ุงุฒู… ูŠูƒูˆู† ุนู†ุฏูŠ ููŠู‡ assumption ุฃู†ุง ุฃูุชุฑุถู‡

85
00:05:25,140 --> 00:05:28,460
ุฃูˆ ุญุชู‰ ู…ู† ุงู„ุณุคุงู„ ู‡ูˆ ุจูŠูƒูˆู† ู…ูุชุฑุถ ู„ูƒ ูŠุง ุฅู†ู‡ ุชูƒูˆู† ุงู„

86
00:05:28,460 --> 00:05:31,180
population follows normal distributionุŒ ุชูˆุฒูŠุน ุทุจูŠุนูŠ

87
00:05:31,180 --> 00:05:33,860
ุงู„ population. ูˆุจุนุฏูŠู† ุจูŠุญูƒูŠู„ูƒ all other steps,

88
00:05:33,860 --> 00:05:37,180
concepts, and conclusions are the same. ุจุงู‚ูŠ ุงู„ุฎุทูˆุงุช

89
00:05:37,180 --> 00:05:42,490
as we took when sigma is known. ูŠุนู†ูŠ ู†ูุณ ุงู„ุฎุทูˆุงุช ุจุณ

90
00:05:42,490 --> 00:05:46,610
basically ู†ุญูƒูŠ ู„ูˆ ุชูƒูˆู† sigma is not given ู‡ูŠ ุงู†ุช 

91
00:05:46,610 --> 00:05:50,510
ู‡ุชู„ุงู‚ูŠ ุดุบู„ุชูŠู†. ุฑู‚ู… ูˆุงุญุฏ ุจูŠ replace sigma which is

92
00:05:50,510 --> 00:05:54,760
unknown by S. ุฅุฐุง ู†ุดูŠู„ sigma ูˆู†ุทู„ุน ุงู„ู€ โ€ฆ ุงู„ 

93
00:05:54,760 --> 00:05:57,180
simplicity ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุงู„ sample standard

94
00:05:57,180 --> 00:06:01,080
deviation. ู‡ุฐุง ุฑู‚ู… ูˆุงุญุฏ. ุฑู‚ู… ุงุซู†ูŠู† ุจุฏู„ ู…ุง ูƒู†ุง ู†ุณุชุฎุฏู…

95
00:06:01,080 --> 00:06:05,180
z for distribution ููŠ ุนู†ุฏู†ุง new test called T 

96
00:06:05,180 --> 00:06:08,080
distribution. ุฅุฐุง ุงุญู†ุง ู†ุณุชุฎุฏู… T ูˆู‡ูˆุฑูŠูƒูˆุง ุจุนุฏ ุดูˆูŠุฉ

97
00:06:08,080 --> 00:06:10,720
table ุชุจุน ุงู„ T ูˆ how can we compute the critical

98
00:06:10,720 --> 00:06:14,060
values using T distribution. ุงู„ู†ู‚ุทุฉ ุงู„ุฃุฎูŠุฑุฉ ู…ู‡ู…ุฉ

99
00:06:14,060 --> 00:06:17,280
ุฌุฏุง ุงู†ู‡ ู„ุงุฒู… ูŠูƒูˆู† ุนู†ุฏู†ุง ุงู„ normal assumption

100
00:06:17,280 --> 00:06:20,460
satisfied. ูŠุนู†ูŠ ูุฑุถูŠุฉ ุงู„ุชูˆุฒูŠุน ุงู„ุทุจูŠุนูŠ ุชูƒูˆู† ู…ุง ู„ู‡ุง

101
00:06:20,460 --> 00:06:24,440
is okay. ุฃูŠ ุญุงุฌุฉ ุชุงู†ูŠุฉ ุงู„ steps ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู„ูŠู‡ู…

102
00:06:24,440 --> 00:06:28,260
still the same. ุชุจุชุฏูˆุง ู†ูุณ ุงู„ุดูŠุก ุณูˆุงุก ู…ู† ู†ุงุญูŠุฉ ุงู„

103
00:06:28,260 --> 00:06:33,120
concepts ุฃูˆ ุงู„ conclusions are still the same. Any

104
00:06:33,120 --> 00:06:39,040
questions? ู‡ุฐุง ู…ู‚ุฏู…ุฉ ู„ู…ูˆุถูˆุน ุงู„ sigma is unknown.

105
00:06:43,750 --> 00:06:46,370
Okay. ู‡ู„ุฃ ุฅุฐุง ุจุญูƒูŠู„ูƒ ุงู„ุขู† ุจู†ุดูˆู ุงู„ู„ูŠ ู‡ูŠ ุฎุทูˆุงุช ุงู„ 

106
00:06:46,370 --> 00:06:49,390
test. ุฃูˆู„ ุฅูŠุด ุจูŠุญูƒูŠู„ูƒุŸ Test of hypothesis for the

107
00:06:49,390 --> 00:06:52,670
mean when sigma is unknown. ุฅูŠุด ุจุฏู†ุง ู†ุญูˆู„ ุงู„ู„ูŠ ู‡ูˆ

108
00:06:52,670 --> 00:06:56,710
convert sample statistic x bar to a t state. ูŠุนู†ูŠ

109
00:06:56,710 --> 00:07:03,350
ู‡ู†ุงูƒ ูƒู†ุง ู†ุญูˆู„ ู„ z state, ุชูŠ statistic. Okay, ุงู„ู„ูŠ ู‡ูˆ

110
00:07:03,350 --> 00:07:08,890
ู‡ู†ุดูˆู ุงูŠุด ุงู„ู‚ุงู†ูˆู† ุงู„ t state ุฃูˆ statistic equal ุงู„

111
00:07:08,890 --> 00:07:17,210
x bar - mu divided by S over square root of N. ุฒูŠ ู…ุง

112
00:07:17,210 --> 00:07:20,170
ุงุญู†ุง ุดุงูŠููŠู† ุจุดุจู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ Z statistic ุจุณ ุงู„

113
00:07:20,170 --> 00:07:23,330
difference ุงู„ูˆุญูŠุฏ ุงุญู†ุง ุญูƒูŠู†ุง ุจุฏู„ ุงู„ุณูŠุฌู…ุง ุงู„ู„ูŠ ู‡ูŠ 

114
00:07:23,330 --> 00:07:26,350
population standard deviation ุฑุงุญ ู†ุณุชุจุฏู„ู‡ุง ุจ S

115
00:07:26,350 --> 00:07:29,350
ุจุงู„ู€ S ุงู„ู„ูŠ ู‡ูŠ ุงู„ุณู… ุจุงู„ standard deviation ุจุณ ูˆู‡ูŠ 

116
00:07:29,350 --> 00:07:33,730
ู‡ู†ุง ุญุทุช ู„ูƒ ุงู„ู…ุฎุทุท. Hypothesis test test for the mean

117
00:07:33,730 --> 00:07:37,810
sigma known, Z test. ุฃู…ุง sigma unknown ู‡ู†ุณุชุฎุฏู… ุงู„ T 

118
00:07:37,810 --> 00:07:41,990
test. The test statistic is a T statistic equal ู‡ูŠูˆ

119
00:07:41,990 --> 00:07:46,310
X bar minus ุงู„ู€ mu divided by S over square root of

120
00:07:46,310 --> 00:07:54,840
N. ุจุณ ุงู„ู„ูŠ ุจุนุฏ ู‡ู‡ุŸ ู‡ู„ุฃ ู‡ู†ุงุฎุฏ example. ุฑูƒุฒูˆุง ู…ุนุงู‡ ู„ุฅู†ู‡ 

121
00:07:54,840 --> 00:07:58,480
ููŠ ุงุดูŠุงุก ุฌุฏูŠุฏุฉ ู‡ู†ุชุนุฑู ุนู„ูŠู‡ุง ูู†ู‚ุฑุฃ ู…ุน ุจุนุถ ุงู„

122
00:07:58,480 --> 00:08:04,220
example. ุฎู„ู†ุง ุงู„ example ูˆุงุญุฏุฉ ู…ู†ูƒู… ุชู‚ุฑุฃู‡ ูˆูˆุงุญุฏุฉ 

123
00:08:04,220 --> 00:08:08,780
ุชุทู„ุน ุงู„ู…ุนู„ูˆู…ุฉ ุงู„ู„ูŠ ููŠู‡. ุฎู„ู†ุง ู…ุดุงุฑูƒุฉ ู…ู†ูƒู…. ุชุนุงู„ ู‡ู†ุง.

124
00:08:10,100 --> 00:08:13,120
The average cost of a hotel room in New York is

125
00:08:13,120 --> 00:08:19,760
said to be $168 per night. To determine if this is

126
00:08:19,760 --> 00:08:25,550
true, a random sample of 25 hotels taken and

127
00:08:25,550 --> 00:08:38,050
resulted in an x-bar of $172.50 and an s of $15.40. ุงู„

128
00:08:38,050 --> 00:08:42,370
standard sample standard deviation 15. This is the 

129
00:08:42,370 --> 00:08:50,130
appropriate hypothesis at alpha 0.05. ุทู„ุน ุฒู…ูŠู„ุชูƒ

130
00:08:50,130 --> 00:08:54,780
ุญูƒุช ููŠ ุดุบู„ุชูŠู† ู…ู‡ู…ุงุช ููŠ ุงู„ example. ุจุชุญูƒูŠ ุงู„ average

131
00:08:54,780 --> 00:09:00,360
cost of a hotel room is said to be $168. ุงู„ู€ 168

132
00:09:00,360 --> 00:09:06,740
sample mean ูˆู„ุง ุงู„ population meanุŸ ุงู„ู€ 168 ู‡ูˆ ุจูŠุญูƒูŠุด

133
00:09:06,740 --> 00:09:09,640
ุงู„ average cost of a hotel room in New York ุจู„ุฏ

134
00:09:09,640 --> 00:09:18,400
ูƒู„ู‡ุง population. ุฅุฐุง ุงู„ 168 ู‡ูŠ mu. ุฅุฐุง ุงู„ mu 168. ู‡ุฐุง

135
00:09:18,400 --> 00:09:27,240
ู†ู‚ุทุฉ ู…ู‡ู…ุฉ. ุงู„ู†ู‚ุทุฉ ุงู„ุชุงู†ูŠุฉ ุจุชุฃูƒุฏ ุฅุฐุง ูƒุงู† ู‡ุฐุง ุตุญูŠุญุŒ ุจุฏูŠ 

136
00:09:27,240 --> 00:09:35,400
ุฃุญุฏุซ ูƒู„ู…ุฉ ุตุญูŠุญุฉ ูˆู„ุง ู„ุฃุŸ ุฎู…ุณูŠู† ูˆุนุดุฑูŠู† ุฎู…ุณูŠู† ูˆุนุดุฑูŠู†

137
00:09:37,930 --> 00:09:45,350
ุฅู† โ€ฆ ุงูŠู‡ ู‡ุฐู‡ุŸ x-bar. ุตู„ุญูˆู‡ุงุŒ ู…ุด X. x-bar of $172.5

138
00:09:45,350 --> 00:09:50,150
ูŠุนุทู‰ x-bar. Average ู…ูŠู† ุงู„ู„ูŠ ูŠุนุทูŠ ุงู„ average ู„ู€ 25

139
00:09:50,150 --> 00:09:54,450
ุงู„ู€ 25 sample. ู…ุธุจูˆุทุŸ ูู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ sample mean ูˆู„ุง

140
00:09:54,450 --> 00:09:58,010
ุงู„ population meanุŸ ุงู„ sample. ุทุงู„ู…ุง ุญูƒูŠุช random

141
00:09:58,010 --> 00:10:02,730
sample ู„ู€ 25 resulted in. ู…ุน ูƒุฏู‡ ุนู†ุฏ ุงู„ sample mean

142
00:10:02,730 --> 00:10:06,390
ุฅุฐุง ุงู„ x-bar equal 172.5

143
00:10:12,650 --> 00:10:20,150
ูˆ S 15.4. ู‡ุฐุง ุงู„ S ู„ู„ samples standard deviation ูˆ 

144
00:10:20,150 --> 00:10:27,090
ุงู„ S 15.4. ุทุงู„ุนุด ุจูŠุณุฃู„ ุงู„ test the appropriate

145
00:10:27,090 --> 00:10:32,280
hypothesis. ุจุฏูˆุง ุงู„ hypothesis ุงู„ู…ู†ุงุณุจุฉ. ู‡ูˆ ุงูŠุด โ€ฆ 

146
00:10:32,280 --> 00:10:36,180
ุงูŠุด ุงู„ู„ูŠ ุงุนุทุงู†ูŠ ุงู† ุงู„ average overall 168? We are

147
00:10:36,180 --> 00:10:39,500
testing this average, this null hypothesis against

148
00:10:39,500 --> 00:10:43,260
do you think mu should be โ€ฆ does not equal to or

149
00:10:43,260 --> 00:10:46,220
greater than or smaller thanุŸ ุงู„ู„ูŠ ู…ูŠุญูƒู…ูˆุง ุงู„ู„ูŠ 

150
00:10:46,220 --> 00:10:50,710
ุฃู‚ู„ ูˆู„ุง ุฃูƒุจุฑุŸ ู‡ู„ ุญูƒู‰ ููŠ ุงู„ู…ุซู„ุฉ direction ู…ุนูŠู†ุŸ ู„ุฃ

151
00:10:50,710 --> 00:10:54,390
ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ

152
00:10:54,390 --> 00:10:55,550
ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ

153
00:10:55,550 --> 00:10:59,170
ู„ุฃ ู„ุฃ

154
00:10:59,170 --> 00:10:59,350
ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ

155
00:10:59,350 --> 00:11:08,530
ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ ู„ุฃ

156
00:11:08,530 --> 00:11:12,830
ู„ุฃ

157
00:11:19,730 --> 00:11:23,670
ุงู„ุขู† ู‡ุชุทู„ุนู†ุง ุงู„ information ุงู„ู„ูŠ ู„ุงุฒู…ุฉ ู…ู† ุงู„ู…ุซู„ุฉุŒ

158
00:11:23,670 --> 00:11:30,200
ู…ุงุดูŠูŠู†ุŸ ุจุจุฏุฃ ุฃูƒู…ู„ุŸ ุฃูƒู…ู„ ุฃู†ุงุŸ ุจู…ุง ุฃู† ูƒุชุจู†ุง ุงุญู†ุง ุงู„ู„ูŠ 

159
00:11:30,200 --> 00:11:32,680
ู‡ูŠ null hypothesis ูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ alternative

160
00:11:32,680 --> 00:11:37,160
hypothesisุŒ ุงู„ู„ูŠ ู‡ูˆ ุฅู† ุงู„ mu equal 168 ูˆุฅู† ุงู„

161
00:11:37,160 --> 00:11:42,260
alternative hypothesis ุฅู† ุงู„ mu not equal 168. ุฃูˆู„

162
00:11:42,260 --> 00:11:44,940
ุดุบู„ ุจู†ุทู„ุน ููŠู‡ุง ุจุงู„ุณุคุงู„ุŒ ุฒูŠ ู…ุง ูƒู†ุง ู…ุงุฎุฏูŠู†ู‡ ู‚ุจู„ ูƒุฏู‡ุŒ ุจู†ุดูˆู 

163
00:11:44,940 --> 00:11:48,500
ุฅุฐุง ุงู„ sigma known ูˆู„ุง unknown. ุทุจุนุง ุนู†ุฏูƒ ุงู„ุณุคุงู„ ุงุญู†ุง

164
00:11:48,500 --> 00:11:51,180
ูƒุชุจู†ุง ูƒู„ ุงู„ู…ุนุทูŠุงุชุŒ ู…ุนุทูŠู†ูŠ ุงู„ sample standard

165
00:11:51,180 --> 00:11:54,960
deviation ุฃู…ุง ุงู„ sigma ู…ุด ู…ุนุฑูˆูุฉ. So ุจู†ุญูƒูŠ ุฅู†ู‡ โ€ฆ 

166
00:11:54,960 --> 00:12:02,830
so ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ sigma is unknown. So 

167
00:12:02,830 --> 00:12:11,770
we will use โ€ฆ ุฅูŠุด ู‡ู†ุณุชุฎุฏู…ุŸ T test โ€ฆ T test. ูˆุจู…ุง 

168
00:12:11,770 --> 00:12:14,350
ุฃู†ู†ุง ู‡ู†ุณุชุฎุฏู… ุงู„ T test ูˆู‡ูˆ ูƒุชุจ ู„ู‡ you assume the

169
00:12:14,350 --> 00:12:16,930
population distribution is normal. ุงุญู†ุง ุญูƒูŠู†ุง ุฅู†ู‡

170
00:12:16,930 --> 00:12:19,770
ุนุดุงู† ู†ุณุชุฎุฏู… ุงู„ T test ู„ุงุฒู… ู†ูุชุฑุถ ุฅู†ู‡ ุงู„ population

171
00:12:19,770 --> 00:12:22,830
follows normal distribution. ูŠุนู†ูŠ ุงู„ุชูˆุฒูŠุน ุทุจูŠุนูŠ. 

172
00:12:22,830 --> 00:12:27,010
ุทุจุนุง ููŠ ุงู„ T test ุจุฏู†ุง ู†ุฌูŠุจ ุฅุดูŠ ุงุณู…ู‡ T statistic

173
00:12:27,010 --> 00:12:30,210
ุงู„ู„ูŠ ู‚ุจู„ ุดูˆูŠุฉ ูƒุชุจู†ุง ู‚ุงู†ูˆู†ู‡ ู‡ูŠู‡ุง. ุฃูˆู„ ุฅุดูŠ ุจู†ุฌูŠุจ ุงู„ T 

174
00:12:30,210 --> 00:12:30,950
statistic.

175
00:12:35,440 --> 00:12:39,980
divided by ุงู„ S ุนู„ู‰ a square root of n. ูˆู‡ูŠ

176
00:12:39,980 --> 00:12:47,200
ุงู„ู…ูˆุถูˆุนุงุช ุทู„ุนู†ุงู‡ู… ุฏุบุฑูŠ. ู…ูˆ ุจุจู‚ู‰ ุดุจูƒุฉ. Minus ุงู„ู„ูŠ ู‡ูˆ 

177
00:12:47,200 --> 00:12:50,920
168 divided by ุงู„ S ุงู„ู„ูŠ ู‡ูŠ

178
00:12:50,920 --> 00:12:55,980
sample standard deviation 15.4 ุนู„ู‰

179
00:12:55,980 --> 00:13:00,280
ุงู„ู„ูŠ ู‡ูˆ a square root of n 25. ุจูŠุทู„ุน ุนู†ุฏูŠ

180
00:13:00,280 --> 00:13:07,530
ุงู„ T statistic 1.46. ุงู„ุญู…ุฏ ู„ู„ู‡ ุงู‡ูˆ

181
00:13:07,530 --> 00:13:11,170
ู‡ู„ุงู‚ูŠุชู‡ุง ุจุนุฏ ู…ุง ุฌุจู†ุง ุงู„ T statistic ุจุฏู†ุง ู†ุฌ

216
00:15:50,230 --> 00:15:53,950
ุฃู†ุชูˆุง ุดุงูŠููŠู† ููŠ ุนู†ุฏู‡ู… T-table  hands ุฅูŠุด ุงุณู…ู‡ุŸ ุงู„ู„ูŠ 

217
00:15:53,950 --> 00:16:02,070
ู‡ูˆ DF ุตุญุŸ ู‡ุฐุง ุงู„ู€ DF is equal DF ู‡ูŠ degree of

218
00:16:02,070 --> 00:16:07,400
freedom ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ุนุฑุจูŠ ุฏุฑุฌุฉ ุงู„ุญุฑูŠุฉ ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูŠ

219
00:16:07,400 --> 00:16:10,900
ู‚ุงู†ูˆู† ุซุงุจุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ N ู†ู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ sample

220
00:16:10,900 --> 00:16:15,300
size minus one okay ุจู†ุฌูŠุจ ุงู„ุฏู‚ูŠู‚ุฉ ูุฃูˆู„ ุฅุดูŠ ุทุจุนุง

221
00:16:15,300 --> 00:16:22,320
ู„ุฅู†ู†ุง ุงู„ู€ N ู‚ุฏุงุด 25 minus one ู‚ุฏุด ุจุทู„ุน 24 ู‡ู„ุฃ ูˆุงุญู†ุง

222
00:16:22,320 --> 00:16:26,600
ุจู†ุฌูŠุจ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ุฃู†ุง two sides okay ู‡ู„ุฃ ู„ูˆ ุทู„ุนู†ุง

223
00:16:26,600 --> 00:16:30,680
ุนู„ู‰ ุงู„ุฌุฏูˆู„ ุจูŠุญูƒูŠ ู„ูŠ ู…ุนุทู„ูƒ ุฅู†ู‡ table entry for B and

224
00:16:30,680 --> 00:16:35,020
C is the critical value T star with probability B

225
00:16:35,020 --> 00:16:38,460
lying to its right and probability C lying between

226
00:16:38,460 --> 00:16:43,880
minus T star and T star ู…ุนุทู„ูƒูŠ ุงู„ุฌุฏูˆู„ ุฅู† ุฃูˆู„ ุดูŠ

227
00:16:43,880 --> 00:16:47,380
ู‡ูŠู† ุงู„ู€ DF ุงู„ู„ูŠ ุงุญู†ุง ุญุณุจู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ N minus one

228
00:16:47,380 --> 00:16:50,740
ูŠุนู†ูŠ ู„ุงุฒู… ุชุฌูŠุจูŠ ู„ูŠู‡ุง ุงู„ู€ DF N minus one ูˆ ุจูŠุญูƒูŠู„ูƒ

229
00:16:50,740 --> 00:16:54,240
ุฅู…ุง ุจุชุฑูˆุญูŠ ุชุณุชุฎุฏู…ูŠ ุงู„ู€ .. ุงู„ู€ upper tail probability

230
00:16:54,240 --> 00:16:59,140
ุงู„ู€ B ู‡ุฐูŠูƒ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู€ B ุฃูˆ ู…ู…ูƒู† ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€

231
00:16:59,140 --> 00:17:02,140
ุงุญุชูŠุงุท ุฃูˆ ุฅุฐุง ูƒุงู† ุนู†ุฏูƒ ู…ูˆุฌุฉ ุจุณุงู„ุจ T ุฒูŠ ู…ุง ุงุญู†ุง 

232
00:17:02,140 --> 00:17:05,100
ุนู†ุฏู†ุง ู…ูˆุฌุฉ ุจุณุงู„ุจ T ู…ู…ูƒู† ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ hand

233
00:17:05,100 --> 00:17:08,600
ุงู„ู…ุณุงุญุฉ ุงู„ู„ูŠ hand ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุจุฃุฎุฑ ุงู„ุฌุฏูˆู„ ุชุญุช

234
00:17:08,600 --> 00:17:13,340
ู…ู…ุชุงุฒ ุงู„ุขู† ุฒู…ูŠู„ุชูŠ ูƒุงู†ุช ุญุงูƒูŠุฉ ูƒุงู†ุช ุชุงู„ูŠุฉ ุงู„ู€ table

235
00:17:13,340 --> 00:17:17,400
ุงู„ู„ูŠ ุนู†ุฏูŠ ุงุณู…ู‡ T table ูˆุจูŠุนุทูŠ ุงู„ู€ area to the right

236
00:17:17,400 --> 00:17:21,340
ุดุงูŠูุฉ ุงู„ุตูุฑุงุก ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ู†ุง ู‡ุฐู‡ ุงู„ู€ area to the right

237
00:17:21,340 --> 00:17:26,200
ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ู‡ู†ุง ุงู„ู€ Z table ูƒุงู† ูŠุนุทูŠ ุงู„ู€ area ู„ูˆูŠู†

238
00:17:26,200 --> 00:17:29,640
to the left ุงู„ู€ T table to the right ุฅุฐุง ู†ู†ุณู‰ ุงู„ุขู†

239
00:17:29,640 --> 00:17:33,520
ุงู„ู€ Z ุงู„ู€ Z area to the left ุงู„ู€ T table ุงู„ู€ area to

240
00:17:33,520 --> 00:17:38,620
the right ุงู„ู€ rows represent degrees of freedom

241
00:17:38,620 --> 00:17:42,770
ุฏุฑุฌุงุช ุงู„ุญุฑูŠุฉ ุฒูŠ ู…ุง ุญูƒุช degrees of freedom equals n

242
00:17:42,770 --> 00:17:45,750
minus one in this case we have sample size of

243
00:17:45,750 --> 00:17:48,350
twenty five so degrees of freedom of twenty five

244
00:17:48,350 --> 00:17:52,990
minus one which is twenty four so now two steps

245
00:17:52,990 --> 00:17:59,850
just locate the row of twenty four because degrees

246
00:17:59,850 --> 00:18:04,870
of freedom of twenty four and column of this

247
00:18:04,870 --> 00:18:06,830
probability which is point zero two five

248
00:18:10,190 --> 00:18:16,050
ุงู„ู€ degrees of freedom ุจุนู…ู„ู‡ across ู…ุน ู…ูŠู† ู…ุน ุงู„ู€

249
00:18:16,050 --> 00:18:19,210
probability which is point zero to five ุงุนู…ู„ 

250
00:18:19,210 --> 00:18:25,630
across ุงู„ู„ูŠ ู‡ูˆู† ุจุทู„ุน ุงู„ุฌูˆุงุจ ุจุทู„ุน ุงู„ุฌูˆุงุจ ู‡ุงูŠ ุงู„ู„ูŠ

251
00:18:25,630 --> 00:18:32,010
ู‡ูˆ two point zero two zero six four ุฅุฐุง

252
00:18:32,010 --> 00:18:37,110
ุงู„ุฌูˆุงุจ ุทู„ุน two point zero six four ุทุจุนุง

253
00:18:37,110 --> 00:18:43,830
ุนู†ุฏูŠ ู…ูˆุฌุจ ุณุงู„ุจ Tู„ู…ูŠู† ุงู„ู€ DF 24 ูˆุงู„ู€ probability

254
00:18:43,830 --> 00:18:48,630
ูƒุงู†ุช 0.025 ู‚ูŠู…ุชู‡ุง ุทุจุนุง ู‚ูŠู…ุฉ ูˆุงุญุฏุฉ ุจุณ ู‡ู… ู†ูุณ ุงู„ู‚ูŠู…ุฉ

255
00:18:48,630 --> 00:18:51,870
ู‡ุชูƒูˆู† ู„ุฅู†ู‡ normal distribution ุจุณ ูˆุงุญุฏุฉ ุจุงู„ู€

256
00:18:51,870 --> 00:18:59,190
negative ูˆูˆุงุญุฏุฉ ุจุงู„ู€ positive ู…ูˆุฌุฉ ุจุงู„ุณุงู„ุจ 2.064

257
00:18:59,190 --> 00:19:05,690
6 4 ุตุญุŸ ู„ุฃ ู„ุฃ ุฃู‚ู„ 2 ุตุญูŠุญ ุจุณ ู‡ูŠูƒ ุตุญ ูŠุนู†ูŠ ุจุณ ุญุท ุงู„ู€

258
00:19:05,690 --> 00:19:12,120
point ูˆุงุถุญ ู„ุฃู† ุงู„ุฃูˆู„ู‰ two point zero six four ูˆุงู„ู€

259
00:19:12,120 --> 00:19:19,200
ุชุงู†ูŠุฉ ุฒูŠู‡ุง negative two point zero six four ู‡ุฏูˆู„

260
00:19:19,200 --> 00:19:23,560
ู‡ู… ุนู†ุฏูŠ ุทุจุนุง ู‡ุงูŠ ุงู„ู…ูˆุฌุฉ ุจุณุงู„ุจ ุงุชู†ูŠู† point zero six

261
00:19:23,560 --> 00:19:34,420
four ู‡ู… ุฅูŠุด ุงู„ู€ critical values ู‡ุฏูˆู„ ู‡ูŠ

262
00:19:34,420 --> 00:19:38,040
ูƒู„ ุฃูŠ ุนุตุฑู‡ู„ุฃ ุนู†ุฏ .. ุจู†ุฑุฌุน ู„ู„ูŠ ุฌูŠุจู†ุง .. ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€

263
00:19:38,040 --> 00:19:40,860
T statistic ุงู„ู„ูŠ ุฅุญู†ุง ุฌูŠุจู†ุงู‡ุง ู‡ูŠ one point four

264
00:19:40,860 --> 00:19:44,100
six ุจู†ุดูˆู ุฅุฐุง ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ุจู€ rejection region ูˆู„ุง ุจุงู„ู€

265
00:19:44,100 --> 00:19:46,440
non rejection region ุญุณุจ ู…ูŠู†ุŸ ุญุณุจ ุงู„ู€ critical

266
00:19:46,440 --> 00:19:50,160
values ูˆูŠู† ู…ูˆุฌูˆุฏุฉุŸ ุงู„ู„ูŠ ู‡ูŠ one point four six ูˆูŠู†

267
00:19:50,160 --> 00:19:52,260
ู‡ุชูƒูˆู† ู…ูˆุฌูˆุฏุฉุŸ ููŠ rejection .. ููŠ rejection region

268
00:19:52,260 --> 00:19:54,860
ูˆู„ุง non rejection regionุŸ non .. non rejection

269
00:19:54,860 --> 00:20:00,060
region ู„ุฃู†ู‡ุง ู‡ุชูƒูˆู† ู‡ุฐู‡ ุชู‚ุฑูŠุจุง one point four six

270
00:20:00,060 --> 00:20:04,180
ู‡ุชูƒูˆู† ููŠ ุงู„ู€ non rejection region ูุจู…ุง ุฅู†ู‡ ู‡ูŠ ููŠ ุงู„ู€

271
00:20:04,180 --> 00:20:08,140
non rejection region so we will ash don't reject

272
00:20:08,140 --> 00:20:12,880
ุงู„ู„ูŠ ู‡ูˆ ash ุงู„ู€ null hypothesis ุจู†ุญูƒูŠ

273
00:20:12,880 --> 00:20:16,020
ู‡ุฐู‡ ุนู†ุฏ ุงู„ู„ูŠ ุจูŠุฃุชูŠ stat

274
00:20:19,750 --> 00:20:25,610
one less than ุงู„ู„ูŠ ู‡ูˆ two point between them is

275
00:20:25,610 --> 00:20:35,870
six part so four point major

276
00:20:35,870 --> 00:20:35,990
point

277
00:20:39,670 --> 00:20:43,890
ูˆุจู…ุง ุฅู†ู‡ ุงู„ู€ .. ุฃู…ุง ู„ู…ุง ู†ูŠุฌูŠ ู†ุนู…ู„ proof ู„ู„ู€ .. ุงู„ู€

278
00:20:43,890 --> 00:20:46,590
alternative hypothesis ู‡ู†ุญูƒูŠ ุฅู†ู‡ there is .. ุงู„ู„ูŠ

279
00:20:46,590 --> 00:20:50,450
ู‡ูˆ insufficient evidence that the true .. the true

280
00:20:50,450 --> 00:20:54,510
mean is different .. different from the given mean

281
00:20:54,510 --> 00:21:00,050
ุงู„ู„ูŠ ู‡ูˆ 168 ู…ู…ุชุงุฒุฉ ุทู„ุน ุฒู…ูŠู„ุชูƒ ุงู„ู„ูŠ ุนู…ู„ุชู‡ ุงู„ุดุบู„ุชูŠู†

282
00:21:00,050 --> 00:21:05,120
ูˆุฑุง ุจุนุถ ุฑู‚ู… ูˆุงุญุฏ ุญุณุจุช ุงู„ู€ T statistic one point four

283
00:21:05,120 --> 00:21:12,360
six ุญุณุจุช ุงู„ู€ critical values ู…ู† ุงู„ู€ T table ูˆุงู„ู€ T

284
00:21:12,360 --> 00:21:16,780
table ุงุณุชุฎุฏุงู…ู‡ ุณู‡ู„ ูˆูˆุฑุฏูƒูŠ ูŠุง ุจู† ุดูˆูŠุฉ ู…ุด ู‡ูŠูƒ ุงู„ู„ูŠ

285
00:21:16,780 --> 00:21:21,120
ู‡ูˆ ุฅูŠู‡ ุงู„ู€ T table ููŠ ุงู„ู€ T table ุฒูŠ ู…ุง ุญูƒูŠุช ู…ุฑุฉ

286
00:21:21,120 --> 00:21:25,160
ุชุงู†ูŠุฉ ุจุฑุทู„ุน degrees of freedom at one four ูˆุจุฏูˆุฑ

287
00:21:25,160 --> 00:21:28,800
ุนู„ู‰ ุงู„ู€ probability of one zero two five ุทู„ุนุช ุงู„ู€

288
00:21:28,800 --> 00:21:33,170
critical value two point zero six four ุฅุฐุง ุงู†ุชุธุฑ

289
00:21:33,170 --> 00:21:38,670
ุฅูŠู‡ ุงู„ู€ 2.064 ุงู„ู„ูŠูุชุด ู‡ุชูƒูˆู† negative 2.064 We

290
00:21:38,670 --> 00:21:45,250
reject if this statistic fall either to the upper

291
00:21:45,250 --> 00:21:49,310
side I mean greater than 2.064 ุฃูˆ ุฃู‚ู„ ู…ู† ุงู„ู€

292
00:21:49,310 --> 00:21:54,030
negative 2.064 Now is this value fall in the

293
00:21:54,030 --> 00:22:00,050
rejection region ุงู„ู€ 1.46 ุฃู‚ู„ ู…ู† 2.064 ู„ุฃู†ู‡ ูŠุชุฌุงูˆุฒ

294
00:22:00,050 --> 00:22:03,730
ุจูŠู† ู‡ุฐู‡ ุงู„ุงุซู†ูŠู† ุงู„ู‚ูŠู…. ู‡ุฐุง ูŠุนู†ูŠ ุฃู†ู†ุง ู„ุง ู†ุชุฌุงูˆุฒ

295
00:22:03,730 --> 00:22:09,110
ุงู„ู€ hypothesis. ุฅุฐุง ู‚ุฑุงุฑู†ุง ุฅูŠุดุŸ ู„ุง ุชุชุฌุงูˆุฒุŒ ูู‡ูˆ ุตุญูŠุญ.

296
00:22:09,730 --> 00:22:12,890
ู„ุง ูŠูƒููŠ ู„ุญุงู„ู‡ุŒ ุนุงูŠุฒ ูŠุดุชุบู„ ู…ู† ุงู„ู†ุฌุงุฑูŠุฉ ุฅู„ู‰ ุงู„ู†ุชูŠุฌุฉ.

297
00:22:13,650 --> 00:22:17,370
ุงู„ู†ุชูŠุฌุฉุŒ ูƒู„ู…ุชูŠู† ุจุญูƒูŠู‡ู… ุฏุงุฆู…ุงุŒ ู…ูƒุฑุฑุงุช. ุทุงู„ู…ุง ุญูƒูŠุช

298
00:22:17,370 --> 00:22:21,330
ู„ุง ุชุชุฌุงูˆุฒุŒ ู…ุน ูƒุฏู‡ุŒ ู„ุง ูŠูˆุฌุฏ ุฏู„ูŠู„ ูƒุงููŠ ู„ุฅุธู‡ุงุฑ ุฃู† ุงู„ู€

299
00:22:21,330 --> 00:22:26,270
true mean Cost is different from 168 ูŠุนู†ูŠ ุงู„ุฅุฏุนุงุก

300
00:22:26,270 --> 00:22:32,090
ุงู„ู„ูŠ ุจูŠุญูƒูŠ ุฅู†ู‡ ูŠุฎุชู„ู ุนู† 168 ู…ุง ูŠุฏุนุจุŒ ู…ุง ููŠุด ุฏู„ูŠู„

301
00:22:32,090 --> 00:22:39,010
ูƒุงููŠ ูŠุฏุนุจ ููŠ ุฃูŠ ุณุคุงู„ุŸ

302
00:22:39,010 --> 00:22:42,150
ููŠ ุงู„ู€ T-testุŒ ุงู„ู€ T-test depends on a new term

303
00:22:42,150 --> 00:22:45,890
called degrees of freedom ุฏุฑุฌุงุช ุงู„ุญุฑูŠุฉุŒ ุฃู†ุช ู…ุด

304
00:22:45,890 --> 00:22:50,190
ู…ุทู„ูˆุจ ู…ู†ูƒ ููŠ ุงู„ู€ course of basic statistics ุชุนุฑู ุฅูŠู‡

305
00:22:50,190 --> 00:22:52,790
ุฃูƒุซุฑ ู…ู† degrees of freedom equals n-1

306
00:22:57,220 --> 00:23:00,320
ูˆุฃู†ุง ุจุฅู…ูƒุงู†ูŠ ุงุณุชุฎุฏุงู…ู‡ุง ูู‚ุท ู„ูƒุชุงุจุฉ ุงู„ู‚ูŠู…

307
00:23:00,320 --> 00:23:03,100
ุงู„ู€ critical ุฅุฐุง ุนุดุงู† ุชุนู…ู„ location ู„ู„ู‚ูŠู…

308
00:23:03,100 --> 00:23:07,240
ุงู„ู€ critical ุจู„ุฒู…ู†ูŠ ุดุบู„ุชูŠู† ูˆู‚ุฑุฑุช ุจู‚ู‰ ุชุงู„ุช ู…ุฑุฉ

309
00:23:07,240 --> 00:23:11,880
ุจู„ุฒู…ู†ูŠ ู…ูŠู† ุงู„ู€ degrees of freedom ุงู„ู„ูŠ ู‡ูŠ 24 ุงู„ู„ูŠ

310
00:23:11,880 --> 00:23:15,780
ู‡ูŠ n-1 ูˆุงู„ู€ probability ุงู„ู„ูŠ ุฃู†ุง ุนุงูŠุฒู‡ุง in this

311
00:23:15,780 --> 00:23:20,060
case Alpha is 5% ุฅุฐุง ุงู„ู€ probability ู‡ุชูƒูˆู† ุจู‚ู‰ ุฌุณู…ู‡ุง

312
00:23:20,060 --> 00:23:22,440
ุนู„ู‰ ุงุชู†ูŠู† zero to five ุนู„ู‰ ุงู„ูŠู…ูŠู† ูˆ zero to five

313
00:23:22,440 --> 00:23:26,360
ุนู„ู‰ ุงู„ุดู…ุงู„ ุงู‡ ุงู„ู€ alpha ุจุชูƒูŠ ูŠุนู†ูŠ ู„ูˆ ู…ุง ู‚ุถู†ุด ุงู„ู€

314
00:23:26,360 --> 00:23:30,160
alpha we assume alpha to be five percent any

315
00:23:30,160 --> 00:23:36,280
question ุฃูŠ ุณุคุงู„ ู…ู…ูƒู† ุงู„ุฏูƒุชูˆุฑ ุจุฑุถู‡ ู‡ูŠ non

316
00:23:36,280 --> 00:23:41,720
rejection ู„ุฃู† ู‡ู†ุง 95 ููŠ ุชุญุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ minus ุชุดูˆู

317
00:23:41,720 --> 00:23:48,430
ุงู„ู€ table ู…ู† ุชุญุช ุฎุงู„ุต ูŠุนุทูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ Z star ุงู„ู€ Z

318
00:23:48,430 --> 00:23:52,210
star ู‡ุฏูˆู„ ุงู„ู€ Z ุงู„ู„ูŠ ุฎุฏู†ุงู‡ุง ููŠ ุงู„ุฃูˆู„ ุทุจุนุง ุงู„ู€ T ูˆุงู„ู€

319
00:23:52,210 --> 00:23:56,730
Z close to each other for large sample size ูŠุนู†ูŠ

320
00:23:56,730 --> 00:24:00,630
when the sample size gets bigger and bigger T

321
00:24:00,630 --> 00:24:04,350
becomes very small to Z ูŠุนู†ูŠ ู„ู…ุง N ุจุชูƒุจุฑ ูƒุชูŠุฑ

322
00:24:04,350 --> 00:24:09,590
ุจุชุตูŠุฑ ู‚ูŠู…ุฉ ุงู„ู€ T ูˆู‚ูŠู…ุฉ ุงู„ู€ Z ู…ุงู„ู‡ู… ุญูˆุงู„ูŠ ุจุนุถ ุชู„ุงุญุธ

323
00:24:09,590 --> 00:24:14,240
ู‡ู†ุง ู„ู…ุง ุงู„ู€ degree of freedom 1000 ุทู„ุน ุนู„ู‰ ู‚ูŠู…ุฉ T

324
00:24:14,240 --> 00:24:17,920
ุงู„ุณุทุฑ ุงู„ู„ูŠ ุฌุงุจู†ูŠ ุงู„ุฃุฎูŠุฑ ูˆุงู„ุณุทุฑ ุงู„ุฃุฎูŠุฑ ุงู„ูุฑู‚ ุจูŠู†ู‡ู…

325
00:24:17,920 --> 00:24:25,720
ู…ุงู„ู‡ ุจุณูŠุท ุงู„ุฃูˆู„ ู‚ูŠู…ุฉ 0.675 ู„ุชุญุช ูƒุฏู‡ุŸ 0.674 ู‡ุฐุง

326
00:24:25,720 --> 00:24:31,580
ู„ุชุญุช Z ูููŠ ุญุงู„ุฉ ุชุจุนุชู†ุง ุฅุฐุง ุชุฐูƒุฑ ู„ู…ุง ูƒุงู†ุช ุงู„ู€ Z star

327
00:24:31,580 --> 00:24:37,560
1.96 ู‡ู†ุง job 1.962 ูุงู„ุตู„ุงุฉ ุงู„ุฃุฎูŠุฑุฉ ุจูŠุจูŠู† ู„ูŠ ู‚ุฏ ุฅูŠุด

328
00:24:37,560 --> 00:24:41,640
ู‚ุฑูŠุจ ุงู„ุชูˆุฒูŠุน ุงู„ุทุจูŠุนูŠ ุงู„ู€ Z ู…ู† ุชูˆุฒูŠุน ุงู„ู€ T ุฅุฐุง as N

329
00:24:41,640 --> 00:24:45,720
gets bigger and bigger ุจูŠูƒูˆู† ุงู„ู€ T ู…ุงู„ู‡ ู‚ุฑูŠุจ ู…ู† ุงู„ู€

330
00:24:45,720 --> 00:24:51,160
Z ูŠุนู†ูŠ ู„ู…ุง N ูƒุจูŠุฑุฉ ุจูŠูƒูˆู† ู‚ูŠู…ุฉ ุงู„ู€ T ุชู‚ุฑูŠุจุง ู†ูุณ ู‚ูŠู…ุฉ

331
00:24:51,160 --> 00:25:01,060
ุงู„ู€ Z ุจุณ ููŠ ุฃูŠ ุณุคุงู„ุŸ ุฃูŠ ุณุคุงู„ุŸ

332
00:25:01,060 --> 00:25:07,050
ูƒู… ู„ู‡ุง ุฏู‡ุŸ ุงู„ุจุนุฏ ู‡ูˆ to use the t-test must assume

333
00:25:07,050 --> 00:25:10,310
the population is normal ุฒูŠ ู…ุง ุญูƒูŠู†ุง ุฅู†ู‡ ููŠ ู„ุงุฒู…

334
00:25:10,310 --> 00:25:12,750
ุฅู†ู‡ ู†ูุชุฑุถ ุฅู†ู‡ ุงู„ู€ population is normal

335
00:25:12,750 --> 00:25:15,970
distribution, follows normal distribution ุจูŠุญูƒูŠ ู„ูƒ

336
00:25:15,970 --> 00:25:18,770
ุนู„ู‰ ุฅุดูŠ as long as the sample size is not very

337
00:25:18,770 --> 00:25:22,750
small and the population is not very skewed, the t

338
00:25:22,750 --> 00:25:26,960
-test can be used ุณุจู‚ ูˆุญูƒูŠู†ุง ุงุญู†ุง ู‚ุจู„ ู‡ูŠูƒ ุฅู†ู‡ ูƒู„ ู…ุง

339
00:25:26,960 --> 00:25:30,480
ุงู„ู€ sample size ูƒุจุฑุช ูƒู„ ู…ุง ูƒุงู† ุนู†ุฏูŠ ุญุฌู… ุงู„ุนูŠู†ุฉ ุฃูƒุจุฑ

340
00:25:30,480 --> 00:25:33,620
ูƒู„ ู…ุง ู‚ุฑุจุช ุฅู† ู‡ูŠ ุจูŠูƒูˆู† ุดูƒู„ู‡ุง ุจูŠุจุฏุฃ ูŠุชูˆุฒุน ุฃูƒุซุฑ

341
00:25:33,620 --> 00:25:35,800
ูุจุงู„ุชุงู„ูŠ ุจุชู‚ุฑุจ ุฅู† ู‡ูŠ ุชุตูŠุฑ normal distribution

342
00:25:35,800 --> 00:25:41,060
ุฃูƒุซุฑ ูุจูŠุญูƒูŠ ู„ูƒ ุฅู† ุงุญู†ุง ูƒู„ ู…ุง ุญุฌู… ุงู„ุนูŠู†ุฉ ูƒุจุฑ ูุงู„ู€

343
00:25:41,060 --> 00:25:43,280
population ู‡ูŠูƒูˆู† ุฃูƒุซุฑ ุฃู‚ุฑุจ ู„ู€ ุงู„ู€ normal

344
00:25:43,280 --> 00:25:46,840
distribution ูุจู†ู‚ุฏุฑ ุฅู† ู†ุณุชุฎุฏู… ุงู„ู€ T test ูˆุจุนุฏ ู‡ูŠูƒ

345
00:25:46,840 --> 00:25:51,690
ุญูƒู‰ ู„ูƒ ุงู„ู„ูŠ ู‡ูˆ .. ุฃู†ุง ูˆุงุถุญู‡ุง ุฏูŠ ุฃูƒุซุฑ ุงู„ุดุฑุท ุงู„ุฃุณุงุณูŠ

346
00:25:51,690 --> 00:25:54,850
ุนุดุงู† ุงุณุชุฎุฏู…ุชูŠู‡ ุฅู† ูŠูƒูˆู† ุนู†ุฏู‡ normal distribution is

347
00:25:54,850 --> 00:25:58,410
satisfied ุนุดุงู† ุฃุถู…ู† normal distribution ู„ุงุฒู… ุงู„ู€

348
00:25:58,410 --> 00:26:02,150
sample size ูŠูƒูˆู† not very small ูŠุนู†ูŠ ุฅูŠุด ุนูƒุณ not

349
00:26:02,150 --> 00:26:05,630
very smallุŸ large .. large .. ู‡ุฐู‡ ูˆุงุญุฏุŒ ุงู„ุญุงู„ุฉ

350
00:26:05,630 --> 00:26:07,990
ุงู„ุชุงู†ูŠุฉ and the population is not very skewed

351
00:26:07,990 --> 00:26:11,990
ู…ุง ูŠูƒูˆู†ุด ู…ู„ุชูˆูŠ ูŠู…ูŠู† ุฃูˆ ุดู…ุงู„ ุจุฏุฑุฌุฉ ูƒุจูŠุฑุฉ ูŠุนู†ูŠ ู…ู…ูƒู†

352
00:26:11,990 --> 00:26:14,950
ูŠูƒูˆู† ููŠู‡ ุงู„ุชูˆุงุก ุดูˆูŠุฉ ู„ูƒู† ู…ุง ูŠูƒูˆู†ุด ุงู„ุชูˆุงุก ุจุฏุฑุฌุฉ

353
00:26:14,950 --> 00:26:19,930
ูƒุจูŠุฑุฉุŒ ู„ุฐุง ููŠ ุญุงู„ุฉ sample size is large enough or

354
00:26:19,930 --> 00:26:22,830
population is not very skewed either to the right

355
00:26:22,830 --> 00:26:25,870
or to the left in this case we can assume the

356
00:26:25,870 --> 00:26:29,830
population is normal and go ahead using T test ุฅุฐุง

357
00:26:29,830 --> 00:26:33,330
ุจุณุชุฎุฏู… T ููŠ ู‡ุฏูˆู„ ุงู„ุญุงู„ุชูŠู† how can we evaluate

358
00:26:33,330 --> 00:26:38,950
normality as we did before in section 6.3 either

359
00:26:38,950 --> 00:26:43,710
by using histogram or normal probability plot we can

360
00:26:43,710 --> 00:26:47,150
evaluate if the data is normally distributed ุฎุฏู†ุง

361
00:26:47,150 --> 00:26:51,690
ุฌุจู„ ู‡ูŠูƒ ุงู„ุขู† ููŠ ู†ู‚ุทุฉ ุฃู†ุง ู‡ุดุฑุญู‡ุง ุงู„ู„ูŠ ู‡ูŠ .. ุงู„ู„ูŠ

362
00:26:51,690 --> 00:26:55,330
ู‡ุดุฑุญู‡ุง ููŠ ุฒู…ูŠู„ุชูŠ ุงู„ู€ critical value approach ุทุฑูŠู‚ุฉ

363
00:26:55,330 --> 00:26:58,810
ุงู„ู€ critical value ู‚ูŠู…ุฉ ุงู„ุญุฑุฌุฉ ููŠ ุทุฑูŠู‚ุฉ ุซุงู†ูŠุฉ ุงุณู…ู‡ุง

364
00:26:58,810 --> 00:27:03,050
ูŠุงุด ุงู„ู€ P value approach ู‚ูŠู…ุฉ ุงู„ู€ P value ุฒูŠ ู…ุง

365
00:27:03,050 --> 00:27:07,050
ุงุณุชุฎุฏู…ู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ุขู† ุจุฏูŠ ุฃูƒูŠุฏ ุฃู†ุช ู„ุญุงู„ูƒ

366
00:27:07,050 --> 00:27:11,930
ู…ุนุงูƒูŠ ุฏู‚ูŠู‚ุชูŠู† ุชุทู„ุนูŠ ู„ูŠ ู‚ูŠู…ุฉ ุงู„ู€ P value ู…ู† ุงู„ู€ table

367
00:27:11,930 --> 00:27:15,050
ู‡ุฐุง

368
00:27:15,050 --> 00:27:18,670
ุงู„ู€ slide ู…ุด ุนู†ุฏูƒ .. ู…ุด ููŠ ุงู„ูƒุชุงุจ ู…ูˆุฌูˆุฏุฉ ู‡ุฐุง ุงู„ู€

369
00:27:18,670 --> 00:27:21,490
slide ู…ุด ู…ูˆุฌูˆุฏุฉ ููŠ ุถู…ู† ุงู„ู€ slides ุงู„ู„ูŠ ู…ุนุงูƒ ู‡ุฐุง ุงู„ู€

370
00:27:21,490 --> 00:27:24,810
slide ุจุชุญูƒูŠ ุนู† ุงู„ู€ P value approach ุฃู†ุช ุญุณุจูŠ ู„ูŠู‡ ู‡ูŠ

371
00:27:24,810 --> 00:27:30,630
ุจูŠุฏูƒ ุงู„ุขู† ุจุญูƒูŠ ู„ู„ูƒู„ ุทู„ุนูŠ ูˆุฑู‚ุฉ ุตุบูŠุฑุฉ ูˆุงุญุณุจูŠ ู‚ูŠู…ุฉ ุงู„ู€

372
00:27:30,630 --> 00:27:34,650
P value ู„ู„ู€ test ุงู„ู„ูŠ ุทู„ุนุช ู‚ูŠู…ุชู‡ one point four six

373
00:27:34,650 --> 00:27:38,350
ุญุงูˆู„ูŠ ู‡ุชุทู„ุนูŠ ุงู„ุฌูˆุงุจ ู„ู„ู€ P value approach

374
00:27:41,430 --> 00:27:44,570
ุฃูˆู„ ู…ุง ูŠุฎุจุฑ ุงู„ุทุงู„ุจ ุจุฃู† P-Value ู‡ูˆ one point ูู‡ู†ุงูƒ

375
00:27:44,570 --> 00:27:51,170
ุดูŠุก ุบู„ุท ู„ุฃู† P-Value ุจูŠู† 0 ูˆ1 ุทุจุนุง

376
00:27:51,170 --> 00:27:57,670
P-Value ู‡ูŠ probability ุจูŠู† 0 ูˆ1 ุทูŠุจุŒ

377
00:27:57,670 --> 00:28:00,210
ู‡ู„ ูŠู…ูƒู† ุฃุญุฏ ุฃู† ูŠุฑูŠู†ูŠ ูƒูŠู ุฃุฎุฑุฌ ุงู„ู„ูˆุญุฉุŸ

378
00:28:16,430 --> 00:28:20,030
ุทูŠุจ ุฎู„ูŠู†ูŠ ุฃุญู„ู‡ุง ูˆุฃุดูˆู ุงู„ุฎุทุฃ ุนู†ุฏูƒ ุจูŠู† ุงู„ู…ูˆุถูˆุน

379
00:28:20,030 --> 00:28:30,610
ุฑูƒุฒูŠ ู…ุนุงูŠุง ุงู„ู…ูŠูˆ ู…ุงู„ู‡ุง ู…ุง ุชุณุงูˆูŠุด 168 ูŠุนู†ูŠ one-tailed

380
00:28:30,610 --> 00:28:39,150
ูˆู„ุง two-tailedุŸ two-tailed ุฅุฐุง

381
00:28:39,150 --> 00:28:39,710
ุงู„ู€ P value

382
00:28:42,580 --> 00:28:53,700
ู†ุญู† ู†ุจุญุซ ุนู† ุงุนุชู‚ุงุฏ T ุฅู…ุง ุฃู† ูŠุณู‚ุท ููŠ ู‡ุฐุง ุงู„ุฌุงู†ุจ

383
00:28:53,700 --> 00:29:02,420
ุงู„ุตุญูŠุญุŒ ุงู„ุขู† ู‚ูŠู…ุฉ ุชุงุนุชู‚ุงุฏ T ู‡ูŠ 1.46ุŒ ู„ุฐู„ูƒ ุฃูƒุจุฑ ู…ู†

384
00:29:02,420 --> 00:29:11,470
1.46. ุงู„ุขู† ุจู…ุง ุฃู†ู†ุง ู†ุชุญุฏุซ ุนู† ุชุฌุงุฑุจ 2D ุชูƒูˆู† ู‡ู†ุงูƒ

385
00:29:11,470 --> 00:29:17,410
ุงุชูุงู‚ูŠู† ู…ู† ุงู„ู…ู†ุงุทู‚ ูˆุงุญุฏ ุนู„ู‰ ุงู„ูŠู…ูŠู† ู…ู† 1.46 ูˆุงู„ุขุฎุฑ

386
00:29:17,410 --> 00:29:23,170
ุนู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ

387
00:29:23,170 --> 00:29:27,570
ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰

388
00:29:27,570 --> 00:29:33,050
ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1

389
00:29:33,050 --> 00:29:35,950
.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰

390
00:29:35,950 --> 00:29:38,850
ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1

391
00:29:38,850 --> 00:29:42,300
.46 ุฅู„ู‰ ุงู„ูŠุณุงุฑ ู…ู† 1.46 ุฅุฐุง ููŠ ุงู„ู€ two-sided ุฃูˆ ุงู„

431
00:33:06,000 --> 00:33:14,720
ุฃูƒุซุฑ ู…ู† Alpha ู…ู† 5% ู„ุฐู„ูƒ ู„ุง ู†ู‚ูุฒ

432
00:33:36,530 --> 00:33:42,310
ุจุฅู…ูƒุงู†ูƒ ุงุณุชุฎุฏุงู… ุจุฑุงู…ุฌ ุญุงุณูˆุจูŠุฉ ุฌุงู‡ุฒุฉ ุชุนุทูŠูƒ ุงู„ู€ exact

433
00:33:42,310 --> 00:33:42,830
result

434
00:33:46,800 --> 00:33:52,740
around point one five seven  point one five seven

435
00:33:52,740 --> 00:33:59,280
ู‡ุฐู‡ ุงู„ู€ exact answer ู†ุญู† ู…ุด ู‡ุชุทู„ุน ุงู„ู€ exact ู†ู‡ุงุฆูŠุงุŒ

436
00:33:59,280 --> 00:34:02,980
ู‡ุชุทู„ุน ุงู„ู€ approximate value ุฎู„ุงุตุŸ ุฅุฐุง ู‡ุงูŠ ุงู„ู€ two

437
00:34:02,980 --> 00:34:05,680
approaches to reject or don't reject the null

438
00:34:05,680 --> 00:34:10,080
hypothesis ุทูŠุจ ุงู„ู„ูŠ ู‚ุงู„ ุฌุงูŠ ุจุงุฎุฏ ุงู„ู€ one tipุŒ

439
00:34:10,080 --> 00:34:14,460
ุฐุงูƒุฑูŠู† ุฅูŠู‡ ุจูˆุŸ ุฎู„ุงุตุŸ

440
00:34:14,460 --> 00:34:16,080
ู…ุด ู…ุดูƒู„ุฉุŒ ุจูƒุฑุง ุจู†ูƒู…ู„ ุฅู† ุดุงุก ุงู„ู„ู‡