{ "cells": [ { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import torch\n", "from torch_geometric.data import Data\n", "import tqdm\n", "import pickle\n", "from torch_sparse import SparseTensor" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "p1 = np.load(\"68841_tweets_multiclasses_filtered_0722_part2.npy\", allow_pickle=True)\n", "p2 = np.load(\"68841_tweets_multiclasses_filtered_0722_part2.npy\", allow_pickle=True)\n", "g = np.concatenate((p1, p2), axis=0)\n", "df = pd.DataFrame(data=g, columns=[\"event_id\", \"tweet_id\", \"text\", \"user_id\", \"created_at\", \"user_loc\",\n", "\t\t\t\"place_type\", \"place_full_name\", \"place_country_code\", \"hashtags\", \"user_mentions\", \"image_urls\", \"entities\",\n", "\t\t\t\"words\", \"filtered_words\", \"sampled_words\"])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "67682it [00:04, 15665.18it/s]\n" ] } ], "source": [ "tweet_id2idx = {}\n", "user_id2idx = {}\n", "user = []\n", "tweet = []\n", "text_edges = []\n", "text_nodes = [-1] * len(df) * 20\n", "count = 0\n", "\n", "# Use df instead of g for iteration\n", "for _, row in tqdm.tqdm(df.iterrows()):\n", " # Convert tweet_id and user_id to string to ensure consistency\n", " tweet_id = str(row['tweet_id'])\n", " user_id = str(row['user_id'])\n", " \n", " if tweet_id not in tweet_id2idx:\n", " tweet_id2idx[tweet_id] = count\n", " tweet.append(count)\n", " count += 1\n", " else:\n", " tweet.append(tweet_id2idx[tweet_id])\n", " text_nodes[tweet_id2idx[tweet_id]] = f\"tweet{tweet_id2idx[tweet_id]} of event{row['event_id']}\"\n", " \n", " if user_id not in user_id2idx:\n", " user_id2idx[user_id] = count\n", " user.append(count)\n", " count += 1\n", " else:\n", " user.append(user_id2idx[user_id])\n", " text_nodes[user_id2idx[user_id]] = f\"user\"\n", " \n", " text_edges.append(row['text'])\n", " \n", " for mention in row['user_mentions']:\n", " if mention not in user_id2idx:\n", " user_id2idx[mention] = count\n", " user.append(count)\n", " count += 1\n", " else:\n", " user.append(user_id2idx[mention])\n", " tweet.append(tweet_id2idx[tweet_id])\n", " text_nodes[user_id2idx[mention]] = f\"mentioned user\"\n", " text_edges.append(row['text'])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "text_nodes = text_nodes[:count]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "edge_index = [user, tweet]\n", "graph = Data(\n", "\t\t\ttext_nodes=text_nodes,\n", "\t\t\ttext_edges=text_edges,\n", "\t\t\tedge_index=torch.tensor(edge_index, dtype=torch.long)\n", "\t\t)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "with open('../processed/twitter.pkl', 'wb') as f:\n", " pickle.dump(graph, f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 2 }