{ "language": "Solidity", "settings": { "evmVersion": "istanbul", "libraries": {}, "metadata": { "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 100 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }, "sources": { "contracts/JumpRateModelV2.sol": { "content": "pragma solidity ^0.5.16;\n\nimport \"./compound/InterestRateModel.sol\";\nimport \"./compound/SafeMath.sol\";\n\n/**\n * @title Ondo's modified JumpRateModel Contract V2\n * @author Compound (modified by Dharma Labs)\n * @notice Version 2 modifies Version 1 by enabling updateable parameters.\n */\ncontract JumpRateModelV2 is InterestRateModel {\n using SafeMath for uint;\n\n event NewInterestParams(\n uint baseRatePerBlock,\n uint multiplierPerBlock,\n uint jumpMultiplierPerBlock,\n uint kink\n );\n\n /**\n * @notice The address of the owner, i.e. the Timelock contract, which can update parameters directly\n */\n address public owner;\n\n /**\n * @notice The approximate number of blocks per year that is assumed by the interest rate model\n */\n uint public constant blocksPerYear = 2628000;\n\n /**\n * @notice The multiplier of utilization rate that gives the slope of the interest rate\n */\n uint public multiplierPerBlock;\n\n /**\n * @notice The base interest rate which is the y-intercept when utilization rate is 0\n */\n uint public baseRatePerBlock;\n\n /**\n * @notice The multiplierPerBlock after hitting a specified utilization point\n */\n uint public jumpMultiplierPerBlock;\n\n /**\n * @notice The utilization point at which the jump multiplier is applied\n */\n uint public kink;\n\n /**\n * @notice Construct an interest rate model\n * @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18)\n * @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18)\n * @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point\n * @param kink_ The utilization point at which the jump multiplier is applied\n * @param owner_ The address of the owner, i.e. the Timelock contract (which has the ability to update parameters directly)\n */\n constructor(\n uint baseRatePerYear,\n uint multiplierPerYear,\n uint jumpMultiplierPerYear,\n uint kink_,\n address owner_\n ) public {\n owner = owner_;\n\n updateJumpRateModelInternal(\n baseRatePerYear,\n multiplierPerYear,\n jumpMultiplierPerYear,\n kink_\n );\n }\n\n /**\n * @notice Update the parameters of the interest rate model (only callable by owner, i.e. Timelock)\n * @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18)\n * @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18)\n * @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point\n * @param kink_ The utilization point at which the jump multiplier is applied\n */\n function updateJumpRateModel(\n uint baseRatePerYear,\n uint multiplierPerYear,\n uint jumpMultiplierPerYear,\n uint kink_\n ) external {\n require(msg.sender == owner, \"only the owner may call this function.\");\n\n updateJumpRateModelInternal(\n baseRatePerYear,\n multiplierPerYear,\n jumpMultiplierPerYear,\n kink_\n );\n }\n\n /**\n * @notice Calculates the utilization rate of the market: `borrows / (cash + borrows - reserves)`\n * @param cash The amount of cash in the market\n * @param borrows The amount of borrows in the market\n * @param reserves The amount of reserves in the market (currently unused)\n * @return The utilization rate as a mantissa between [0, 1e18]\n */\n function utilizationRate(\n uint cash,\n uint borrows,\n uint reserves\n ) public pure returns (uint) {\n // Utilization rate is 0 when there are no borrows\n if (borrows == 0) {\n return 0;\n }\n\n return borrows.mul(1e18).div(cash.add(borrows).sub(reserves));\n }\n\n /**\n * @notice Calculates the current borrow rate per block, with the error code expected by the market\n * @param cash The amount of cash in the market\n * @param borrows The amount of borrows in the market\n * @param reserves The amount of reserves in the market\n * @return The borrow rate percentage per block as a mantissa (scaled by 1e18)\n */\n function getBorrowRate(\n uint cash,\n uint borrows,\n uint reserves\n ) public view returns (uint) {\n uint util = utilizationRate(cash, borrows, reserves);\n\n if (util <= kink) {\n return util.mul(multiplierPerBlock).div(1e18).add(baseRatePerBlock);\n } else {\n uint normalRate = kink.mul(multiplierPerBlock).div(1e18).add(\n baseRatePerBlock\n );\n uint excessUtil = util.sub(kink);\n return excessUtil.mul(jumpMultiplierPerBlock).div(1e18).add(normalRate);\n }\n }\n\n /**\n * @notice Calculates the current supply rate per block\n * @param cash The amount of cash in the market\n * @param borrows The amount of borrows in the market\n * @param reserves The amount of reserves in the market\n * @param reserveFactorMantissa The current reserve factor for the market\n * @return The supply rate percentage per block as a mantissa (scaled by 1e18)\n */\n function getSupplyRate(\n uint cash,\n uint borrows,\n uint reserves,\n uint reserveFactorMantissa\n ) public view returns (uint) {\n uint oneMinusReserveFactor = uint(1e18).sub(reserveFactorMantissa);\n uint borrowRate = getBorrowRate(cash, borrows, reserves);\n uint rateToPool = borrowRate.mul(oneMinusReserveFactor).div(1e18);\n return utilizationRate(cash, borrows, reserves).mul(rateToPool).div(1e18);\n }\n\n /**\n * @notice Internal function to update the parameters of the interest rate model\n * @param baseRatePerYear The approximate target base APR, as a mantissa (scaled by 1e18)\n * @param multiplierPerYear The rate of increase in interest rate wrt utilization (scaled by 1e18)\n * @param jumpMultiplierPerYear The multiplierPerBlock after hitting a specified utilization point\n * @param kink_ The utilization point at which the jump multiplier is applied\n */\n function updateJumpRateModelInternal(\n uint baseRatePerYear,\n uint multiplierPerYear,\n uint jumpMultiplierPerYear,\n uint kink_\n ) internal {\n baseRatePerBlock = baseRatePerYear.div(blocksPerYear);\n multiplierPerBlock = (multiplierPerYear.mul(1e18)).div(\n blocksPerYear.mul(kink_)\n );\n jumpMultiplierPerBlock = jumpMultiplierPerYear.div(blocksPerYear);\n kink = kink_;\n\n emit NewInterestParams(\n baseRatePerBlock,\n multiplierPerBlock,\n jumpMultiplierPerBlock,\n kink\n );\n }\n}\n" }, "contracts/compound/InterestRateModel.sol": { "content": "pragma solidity ^0.5.16;\n\n/**\n * @title Compound's InterestRateModel Interface\n * @author Compound\n */\ncontract InterestRateModel {\n /// @notice Indicator that this is an InterestRateModel contract (for inspection)\n bool public constant isInterestRateModel = true;\n\n /**\n * @notice Calculates the current borrow interest rate per block\n * @param cash The total amount of cash the market has\n * @param borrows The total amount of borrows the market has outstanding\n * @param reserves The total amnount of reserves the market has\n * @return The borrow rate per block (as a percentage, and scaled by 1e18)\n */\n function getBorrowRate(\n uint cash,\n uint borrows,\n uint reserves\n ) external view returns (uint);\n\n /**\n * @notice Calculates the current supply interest rate per block\n * @param cash The total amount of cash the market has\n * @param borrows The total amount of borrows the market has outstanding\n * @param reserves The total amnount of reserves the market has\n * @param reserveFactorMantissa The current reserve factor the market has\n * @return The supply rate per block (as a percentage, and scaled by 1e18)\n */\n function getSupplyRate(\n uint cash,\n uint borrows,\n uint reserves,\n uint reserveFactorMantissa\n ) external view returns (uint);\n}\n" }, "contracts/compound/SafeMath.sol": { "content": "pragma solidity ^0.5.16;\n\n// From https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/Math.sol\n// Subject to the MIT license.\n\n/**\n * @dev Wrappers over Solidity's arithmetic operations with added overflow\n * checks.\n *\n * Arithmetic operations in Solidity wrap on overflow. This can easily result\n * in bugs, because programmers usually assume that an overflow raises an\n * error, which is the standard behavior in high level programming languages.\n * `SafeMath` restores this intuition by reverting the transaction when an\n * operation overflows.\n *\n * Using this library instead of the unchecked operations eliminates an entire\n * class of bugs, so it's recommended to use it always.\n */\nlibrary SafeMath {\n /**\n * @dev Returns the addition of two unsigned integers, reverting on overflow.\n *\n * Counterpart to Solidity's `+` operator.\n *\n * Requirements:\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n uint256 c = a + b;\n require(c >= a, \"SafeMath: addition overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the addition of two unsigned integers, reverting with custom message on overflow.\n *\n * Counterpart to Solidity's `+` operator.\n *\n * Requirements:\n * - Addition cannot overflow.\n */\n function add(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n uint256 c = a + b;\n require(c >= a, errorMessage);\n\n return c;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on underflow (when the result is negative).\n *\n * Counterpart to Solidity's `-` operator.\n *\n * Requirements:\n * - Subtraction cannot underflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n return sub(a, b, \"SafeMath: subtraction underflow\");\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on underflow (when the result is negative).\n *\n * Counterpart to Solidity's `-` operator.\n *\n * Requirements:\n * - Subtraction cannot underflow.\n */\n function sub(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n require(b <= a, errorMessage);\n uint256 c = a - b;\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on overflow.\n *\n * Counterpart to Solidity's `*` operator.\n *\n * Requirements:\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring 'a' not being zero, but the\n // benefit is lost if 'b' is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c = a * b;\n require(c / a == b, \"SafeMath: multiplication overflow\");\n\n return c;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on overflow.\n *\n * Counterpart to Solidity's `*` operator.\n *\n * Requirements:\n * - Multiplication cannot overflow.\n */\n function mul(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n // Gas optimization: this is cheaper than requiring 'a' not being zero, but the\n // benefit is lost if 'b' is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) {\n return 0;\n }\n\n uint256 c = a * b;\n require(c / a == b, errorMessage);\n\n return c;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers.\n * Reverts on division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity's `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n return div(a, b, \"SafeMath: division by zero\");\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers.\n * Reverts with custom message on division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity's `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function div(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n // Solidity only automatically asserts when dividing by 0\n require(b > 0, errorMessage);\n uint256 c = a / b;\n // assert(a == b * c + a % b); // There is no case in which this doesn't hold\n\n return c;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts when dividing by zero.\n *\n * Counterpart to Solidity's `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n return mod(a, b, \"SafeMath: modulo by zero\");\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * Reverts with custom message when dividing by zero.\n *\n * Counterpart to Solidity's `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n * - The divisor cannot be zero.\n */\n function mod(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n require(b != 0, errorMessage);\n return a % b;\n }\n}\n" } } }